WorldWideScience

Sample records for air inleakage test

  1. Control room envelope unfiltered air inleakage test protocols

    International Nuclear Information System (INIS)

    Lagus, P.L.; Grot, R.A.

    1997-01-01

    In 1983, the Advisory Committee on Reactor Safeguards (ACRS) recommended that the US NRC develop a control room HVAC performance testing protocol. To date no such protocol has been forthcoming. Beginning in mid-1994, an effort was funded by NRC under a Small Business Innovation Research (SBIR) grant to develop several simplified test protocols based on the principles of tracer gas testing in order to measure the total unfiltered inleakage entering a CRE during emergency mode operation of the control room ventilation system. These would allow accurate assessment of unfiltered air inleakage as required in SRP 6.4. The continuing lack of a standard protocol is unfortunate since one of the significant parameters required to calculate operator dose is the amount of unfiltered air inleakage into the control room. Often it is assumed that, if the Control Room Envelope (CRE) is maintained at +1/8 in. w.g. differential pressure relative to the surroundings, no significant unfiltered inleakage can occur it is further assumed that inleakage due to door openings is the only source of unfiltered air. 23 refs., 13 figs., 2 tabs

  2. Control room envelope unfiltered air inleakage test protocols

    Energy Technology Data Exchange (ETDEWEB)

    Lagus, P.L. [Lagus Applied Technology, San Diego, CA (United States); Grot, R.A. [Lagus Applied Technology, Olney, MD (United States)

    1997-08-01

    In 1983, the Advisory Committee on Reactor Safeguards (ACRS) recommended that the US NRC develop a control room HVAC performance testing protocol. To date no such protocol has been forthcoming. Beginning in mid-1994, an effort was funded by NRC under a Small Business Innovation Research (SBIR) grant to develop several simplified test protocols based on the principles of tracer gas testing in order to measure the total unfiltered inleakage entering a CRE during emergency mode operation of the control room ventilation system. These would allow accurate assessment of unfiltered air inleakage as required in SRP 6.4. The continuing lack of a standard protocol is unfortunate since one of the significant parameters required to calculate operator dose is the amount of unfiltered air inleakage into the control room. Often it is assumed that, if the Control Room Envelope (CRE) is maintained at +1/8 in. w.g. differential pressure relative to the surroundings, no significant unfiltered inleakage can occur it is further assumed that inleakage due to door openings is the only source of unfiltered air. 23 refs., 13 figs., 2 tabs.

  3. Control room inleakage testing using tracer gases at Zion Generating station

    International Nuclear Information System (INIS)

    Lagus, P.L.; Brown, J.H.; Dubois, L.J.; Fleming, K.M.

    1993-01-01

    In order to assess the amount of air inleakage into the Control Room Envelope at Zion Generating Station (ZGS), a series of tracer gas tests using sulfur hexafluoride (SF 6 ) were performed on the Control Room ventilation system (PV system) and the Computer Room/Miscellaneous Area ventilation system (OV system) during February, 1991. Two redundant trains, denoted A and B comprise the PV system. Inleakage was measured for each train. An OV supply duct passes through the Control Room Envelope. Leakage from this duct into the Control Room would constitute air leakage into the Control room Envelope and hence any potential leakage had to be quantified. Each test attempted to measure the contribution (if any) of a particular section of PV return duct or OV supply duct to the total air inleakage into the Control Room. This paper reviews the tracer gas tests. Described here are the control room inleakage testing, HVAC equipment room duct inleakage, purge plenum inleakage, OV duct leakage into the control room envelope, vestibule PV return inleakage, TSC duct inleakage, and cable spreading room inleakage. Conclusions from the testing are presented. 5 refs., 4 figs., 7 tabs

  4. Assessment of control room habitability and unfiltered air inleakage test of the OPR 1000 NPP

    International Nuclear Information System (INIS)

    Song, Dong Soo; Lee, Jong Beom; Ha, Sang Jun; Huh, Seong Cheol

    2015-01-01

    The assessment of control room habitability for Hanbit unit 5 was performed based on GL 2003-01 and Regulatory Guide 1.197. The integrated control room envelope (CRE) test was performed utilizing ASTM E741. Four tests were performed using each of the control room HVAC subtrains. The control room heating, ventilating, and air conditioning (HVAC) system lineup of pressurization mode test was based upon a lineup that encompassed the design basis radiological analyses. The other control room HVAC system lineup of isolation mode test was based on an operation mode that considers toxic gas. The measured inleakage for the isolation test mode remains within the toxicity limit. Radiation effect analysis showed that the measured inleakage satisfied the regulatory criteria, and the inleakage would not result in control room operator dose exceeding 50 mSv whole body and 500 mSv thyroid except train A pressurization test mode. The thyroid dose due to maximum measured unfiltered inleakage of 8976 lpm for train A is corresponding to 700 mSv. Modifications to the CRE boundary and control room HVAC system should be done to demonstrate that the measured unfiltered inleakage for train A pressurization test mode is bounded by the regulatory criteria assumed in the design basis radiological analyses. (author)

  5. Atmospheric Tracer Depletion Testing for Unfiltered Air In-Leakage Determination at the Wolf Creek Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T. M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wilke, R. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roberts, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Vignato, G. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-03-01

    Atmospheric Tracer Depletion tests were conducted at the Wolf Creek Nuclear Power Plant to quantify the unfiltered in-leakage (UI) into the Control Room (CR), Control Building (CB), and Equipment Rooms (ER) at the Wolf Creek Nuclear Power Plant. Wolf Creek has two independent charcoal filter Emergency Ventilation Systems (EVS) that can be used to purify air entering the control building and control room. The Bravo System contains a filtration system in Room 1501 in the Auxiliary Building for the Control Room and another filtration system (FGK02B) on Elevation 2016 for the Control Building. The Alpha system contains a filtration system in Room 1512 in the Auxiliary Building for the Control Room and another filtration system (FGK02A) on Elevation 2016 for the Control Building. The Atmospheric Tracer Depletion (ATD) test is a technique to measure in-leakage using the concentration of perfluorocarbon compounds that have a constant atmospheric background. These levels are present in the Control Room and Control Building under normal operating conditions. When air is supplied by either of the EVS, most of the PFTS are removed by the charcoal filters. If the concentrations of the PFTs measured in protected areas are the same as the levels at the output of the EVS, the in-leakage of outside air into the protected area would be zero. If the concentration is higher in the protected area than at the output of the filter system, there is in-leakage and the in-leakage can be quantified by the difference. Sampling was performed using state-of-the-art Brookhaven Atmospheric Tracer Samplers (BATS) air sampling equipment and analysis performed on Brookhaven National Laboratory (BNL) dedicated PFT analytical systems. In the Alpha test two tracers PMCH and mcPDCH were used to determine in-leakage into the control building. The analytical system was tuned to maximize sensitivity after initial analysis of the Alpha test. The increased sensitivity permitted accurate quantification of

  6. Atmospheric Tracer Depletion Testing for Unfiltered Air In-Leakage Determination at the Wolf Creek Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T. M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wilke, R. J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Roberts, T. [Brookhaven National Lab. (BNL), Upton, NY (United States); Vignato, G. J. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-04-01

    Atmospheric Tracer Depletion tests were conducted at the Wolf Creek Nuclear Power Plant to quantify the unfiltered in-leakage (UI) into the Control Room (CR), Control Building (CB), and Equipment Rooms (ER) at the Wolf Creek Nuclear Power Plant. Wolf Creek has two independent charcoal filter Emergency Ventilation Systems (EVS) that can be used to purify air entering the control building and control room. The Bravo System contains a filtration system in Room 1501 in the Auxiliary Building for the Control Room and another filtration system (FGK02B) on Elevation 2016 for the Control Building. The Alpha system contains a filtration system in Room 1512 in the Auxiliary Building for the Control Room and another filtration system (FGK02A) on Elevation 2016 for the Control Building.The Atmospheric Tracer Depletion (ATD) test is a technique to measure in-leakage using the concentration of perfluorocarbon compounds that have a constant atmospheric background. These levels are present in the Control Room and Control Building under normal operating conditions. When air is supplied by either of the EVS, most of the PFTS are removed by the charcoal filters. If the concentrations of the PFTs measured in protected areas are the same as the levels at the output of the EVS, the in-leakage of outside air into the protected area would be zero. If the concentration is higher in the protected area than at the output of the filter system, there is in-leakage and the in-leakage can be quantified by the difference.Sampling was performed using state-of-the-art Brookhaven Atmospheric Tracer Samplers (BATS) air sampling equipment and analysis performed on Brookhaven National Laboratory (BNL) dedicated PFT analytical systems. In the Alpha test two tracers PMCH and mcPDCH were used to determine in-leakage into the control building. The analytical system was tuned to maximize sensitivity after initial analysis of the Alpha test. The increased sensitivity permitted accurate quantification of five

  7. Control room habitability assessment and in-leakage test for Korean NPP - 15510

    International Nuclear Information System (INIS)

    Song, D.S.; Lee, J.B.; Ha, S.J.; Seong, J.J.

    2015-01-01

    The assessment of control room habitability for Wolsung unit 1 was performed based on GL 2003-01 and Reg. Guide 1.197. The control room habitability program including Control Room Envelope (CRE) in-leakage test procedures, self assessment guidance, CRE boundary control program, CRE maintenance/sealing program was developed for Wolsung unit 1. The integrated CRE test was performed utilizing ASTM E741. There are two operating modes of pressurization and isolation for CRE ventilation test, and four tests were performed using each of the control room HVAC sub-trains. The control room HVAC system lineup of pressurization mode test was based upon a lineup that encompassed the design basis radiological analyses. The other control room HVAC system lineup of isolation mode test was based on an operation mode that considers toxic gas. The in-leakage testing was performed in accordance with CRE in-leakage test procedures. In the pressurization mode, measured unfiltered in-leakage rates for train A and train B were 0 CFM and 405 CFM respectively. In the isolation mode, measured unfiltered in-leakage rates for train A and train B were 1,739 CFM and 1,502 CFM, respectively. Maximum concentration of ammonia at the control room HVAC intake is calculated to be 0.027 g/m 3 (39 ppm), and satisfied the toxicity limit of 300 ppm. The test result shows that the measured unfiltered in-leakage is bounded by the regulatory criteria assumed in the design basis radiological analyses. (authors)

  8. Condenser inleakage monitoring system development. Final report

    International Nuclear Information System (INIS)

    Kassen, W.R.; Putkey, T.A.; Sawochka, S.G.; Pearl, W.L.; Clouse, M.E.

    1982-09-01

    An instrument/hardware package for air and condenser cooling water inleakage location employing the helium and freon techniques was designed and fabricated. The package consists of design details for tracer gas distribution hardware, injection plenums, and a sample preconditioner and instrument module. Design of the package was based on an evaluation of helium and freon leak detectors and a survey of utility user's experience with the helium and freon techniques. The applicability of the instrument/hardware package to air and cooling water inleakage location was demonstrated at Pacific Gas and Electric Company's Moss Landing Station. The use of calibrated leaks indicated that cooling water leaks down to 1.5 x 10 -4 gpm (0.56 ml/min) and air leaks down to 0.05 cfm were readily detectable with the helium technique, whereas a 4 x 10 -4 gpm (1.5 ml/min) liquid leak was the readily detectable minimum via the freon technique. The field demonstration and in-house detector testing showed the helium technique to be preferable to the freon technique for inleakage location at PWRs, BWRs, and fossil-fueled systems

  9. Control room unfiltered in-leakage limit analysis of design-basis LOCA for Lungmen ABWR plant

    International Nuclear Information System (INIS)

    Tsai Chihming; Chang Chinjang; Yuann Yngruey

    2014-01-01

    In USNRC's Generic Letter 2003-01, 'Control Room Habitability,' it requests utilities provide information to demonstrate that the control room at each of their respective facilities complies with the current licensing and design bases, and applicable regulatory requirements, and that suitable design, maintenance and testing control measures are in place for maintaining this compliance. In particular, each utility is required to perform the control room in-leakage test to demonstrate that the unfiltered in-leakage rate is within that assumed in the licensing analyses. It must be ensured that the control room envelope habitability, in terms of radiation dose, is maintained during normal operations as well as design basis accidents. In view of this, a dose analysis has been performed to establish the control room unfiltered in-leakage limit which can be used as an acceptance criterion for the in-leakage test. The analysis in this study is for Lungmen ABWR plant. The plant has twin units, with each unit having its own control room. The TID-4844 source terms and associated methodology are used. The USNRC RADTRAD v3.03 code is employed for the transport calculation of radioactive materials in different paths, including control room in-leakage path. The radiological criterion on protection of the operators specified in 10 CFR 50, Appendix A, General Design Criterion 19 is followed. It's demonstrated that the performance of Lungmen control room with 500 cfm unfiltered in-leakage air could meet the radiological habitability acceptance criteria in case of radiation hazards. (author)

  10. Effect of condenser water in-leakage on steam generator water chemistry

    International Nuclear Information System (INIS)

    Balakrishnan, P.V.

    1978-01-01

    Corrosive environments may be generated within steam genrators from condenser cooling water in-leakage. Theoretical as well as experimental evaluation of the aggressiveness of such environments is being carried out for the condenser-cooling waters used at CANDU-PHW nuclear power stations. Calculations have shown that highly concentrated chloride solutions - acidic in the case of sea-water in-leakage, and alkaline in the rest of the cases considered - would be produced within the steam generator. Experiments in a model boiler showed that sea-water in-leakage caused rapid corrosion of carbon steel components when only AVT (all volatile treatment) was used for water chemistry control. Use of a non-volatile reagent, as in the congruent phosphate treatment, avoided the rapid corrosion of carbon steel. On the basis of our studies, congruent phosphate treatment during sea water in-leakage appears desirable. (author)

  11. Criticality safety of spent fuel casks considering water inleakage

    International Nuclear Information System (INIS)

    Osgood, N.L.; Withee, C.J.; Easton, E.P.

    2004-01-01

    A fundamental safety design parameter for all fissile material packages is that a single package must be critically safe even if water leaks into the containment system. In addition, criticality safety must be assured for arrays of packages under normal conditions of transport (undamaged packages) and under hypothetical accident conditions (damaged packages). The U.S. Nuclear Regulatory Commission staff has revised the review protocol for demonstrating criticality safety for spent fuel casks. Previous review guidance specified that water inleakage be considered under accident conditions. This practice was based on the fact that the leak tightness of spent fuel casks is typically demonstrated by use of structural analysis and not by physical testing. In addition, since a single package was shown to be safe with water inleakage, it was concluded that this analysis was also applicable to an array of damaged packages, since the heavy shield walls in spent fuel casks neutronically isolate each cask in the array. Inherent in this conclusion is that the fuel assembly geometry does not change significantly, even under drop test conditions. Requests for shipping fuel with burnup exceeding 40 GWd/MTU, including very high burnups exceeding 60 GWD/MTU, caused a reassessment of this assumption. Fuel cladding structural strength and ductility were not clearly predictable for these higher burnups. Therefore the single package analysis for an undamaged package may not be applicable for the damaged package. NRC staff developed a new practice for review of spent fuel casks under accident conditions. The practice presents two methods for approval that would allow an assessment of potential reconfiguration of the fuel assembly under accident conditions, or, alternatively, a demonstration of the water-exclusion boundary through physical testing

  12. Wind tunnel testing to predict control room atmospheric dispersion factors

    International Nuclear Information System (INIS)

    Holmquist, L.J.; Harden, P.A.; Muraida, J.E.

    1993-01-01

    Recent concerns at Palisades about control room habitability in the event of a loss-of-coolant accident have led to an extensive effort to increase control room habitability margin. The heating, ventilating and air-conditioning (HVAC) system servicing the control room has the potential for unfiltered in-leakage through its normal outside air intake louvered isolation dampers during emergency mode. The current limiting control room habitability analysis allows for 1.2 x 10 -2 m 3 /s (25 ft 3 /min) unfiltered in-leakage into the control room envelope. This leakage value was not thought to be achievable with the existing as-built configuration. Repairing the system was considered as a potential solution; however, this would be costly and could negatively affect plant operation. In addition, the system would still be required to meet the low specified unfiltered in-leakage. A second approach to this problem was to determine the atmospheric dispersion factors (x/Q's) through a wind tunnel test using a scale model of Palisades. The results of the wind tunnel testing could yield more realistic x/Q's for control room habitability than previously employed methods. Palisades selected the wind tunnel study option based on its ease of implementation, realistic results, and low cost. More importantly, the results of the study could increase the allowable unfiltered in-leakage

  13. Effects of secondary containment air cleanup system leakage on the accident offsite dose as determined during preop tests of the Sequoyah Nuclear Plant

    International Nuclear Information System (INIS)

    Klaes, L.J.; Nass, S.A.; Proctor, L.D.

    1981-01-01

    The Sequoyah Nuclear Plant has two secondary containments. One is the annular region between the primary containment and the shield building surrounding the primary containment. The second is the auxiliary building secondary containment enclosure which is potentially subject to direct airborne radioactivity. Two air cleanup systems are provided to serve these areas. The emergency gas treatment system (EGTS) serves the annulus between the primary containment and the shield building, and the auxiliary building gas treatment system (ABGTS) serves the area inside of the auxiliary building secondary containment enclosure. The major function served by these air cleanup systems is that of controlling and processing airborne contamination released in these areas during any accident up to a design basis accident. This is accomplished by (1) creating a negative pressure in the areas served to ensure that no unprocessed air is released to the atmosphere, (2) providing filtration units to process all air exhausted from the secondary containment spaces, and (3) providing a low-leakage enclosure to limit exhaust flows. Offsite dose effects due to secondary containment release rates, bypass leakage, and duct and damper leakages are presented and parameter variations are considered. For the EGTS, a recirculation system, the most important parameter is the total inleakage of the system which causes an increase in both whole body (gamma) and thyroid (iodine) doses. For the ABGTS, a once-through system, the most important paramter is the inleakage which bypasses the filters resulting in an increase in the thyroid dose only. Actual preoperational test data are utilized. Problems encountered during the preop test are summarized. Solutions incorporated to bring the EGTS and ABGTS air cleanup systems within the test acceptance criteria required to meet offsite dose limitations are discussed and the resultant calculated offsite dose is presented

  14. New technologies for control room habitability assessment

    International Nuclear Information System (INIS)

    Lahti, G.P.; Muraida, J.E.; Perchiazzi, W.T.; Harden, P.A.

    1994-01-01

    Older nuclear power plants typically considered only a nominal amount of unfiltered inleakage (typically 10 cfm) impacting their postaccident control room habitability. However, recent measurements of unfiltered inleakage show values in excess of the nominal 10 cfm. A reassessment for two of these ''older'' stations has been completed recently to show that the measured inleakage did not jeopardize the safety of the control room occupants. Recent concerns at the Zion Station and the Palisades Station about control room habitability in the event of a loss-of-coolant accident have led to an extensive effort to increase control room habitability margin. The heating, ventilating and air-conditioning (HVAC) system servicing each of the control rooms has the potential for unfiltered in-leakage through many locations. For example, at the Palisades Station, the current limiting control room habitability analysis allows for 25 cfm unfiltered in-leakage through its normal outside air intake louvered isolation dampers during emergency mode into the control room envelope. This leakage value was not thought to be achievable with the existing as-built configuration. Repairing the system was considered a potential solution; however, this would be costly and could negatively affect plant operation. In addition, the system would still be required to meet the low specified unfiltered in-leakage. An alternate approach was to review the analysis and reassess the most important parameters. The key effort was to determine the atmospheric dispersion factors (χ/Qs) through wind tunnel tests using scale models of the stations. The results of the wind tunnel testing could yield more realistic χ/Qs for control room habitability than previously employed methods. The wind tunnel study options were selected based on their ease of implementation, realistic results, and low cost. More importantly, the results of the studies would allow more realistic values of unfiltered inleakage

  15. Test plan for N2 HEPA filters assembly shop stock used on PFP E4 exhaust system

    International Nuclear Information System (INIS)

    DICK, J.D.

    1999-01-01

    At Plutonium Finishing Plant (PFP) and Plutonium Reclamation Facility (PRF) Self-contained HEPA filters, encased in wooden frames and boxes, are installed in the E4 Exhaust Ventilation System to provide confinement of radioactive releases to the environment and confinement of radioactive contamination within designated zones inside the facility. Recently during the routine testing in-leakage was discovered downstream of the Self-contained HEPA filters boxes. This Test Plan describes the approach to conduct investigation of the root causes for the in-leakage of HEPA filters

  16. Spent nuclear fuel transportation casks evaluation for water in-leakage

    International Nuclear Information System (INIS)

    Shah, M.J.; Huang, D.T.; Guttmann, J.; Klymyshyn, N.A.; Koeppel, B.J.; Adkins, H.E.

    2004-01-01

    The United States Nuclear Regulatory Commission (USNRC) is responsible for licensing commercial spent fuel storage and transportation systems. To ensure that the regulations are risk-informed, and do not place unnecessary regulatory burden on the industry, the USNRC has been examining its regulations that apply to spent fuel transportation casks for maintaining sub-criticality under hypothetical accident conditions. Code of Federal Regulations, Title 10, Part 71[1] (10 CFR 71), section 71.55(b) requires that, for evaluation of sub-criticality for fissile material packages, water moderation should be assumed to occur to the most reactive credible extent consistent with the chemical and physical form of the contents. This requirement is based on a defense-in-depth policy, and accounts for any possibility of water intrusion into the package. This program is designed to quantify the margins of safety of certified transportation casks to water intrusion following hypothetical accident conditions. This paper describes the current status of analytical work being performed to evaluate two USNRC-certified spent fuel transportation casks, HI-STAR 100[2] and TN-68[3]. The analytical work is performed using the ANSYS registered [4] and LS-DYNA trademark [5] finite element analysis (FEA) codes. The models are sufficiently detailed in the areas of bolt closure interfaces and containment boundaries to evaluate the likelihood water in-leakage under free drop hypothetical accident conditions of 10 CFR 71.73

  17. Experimental plans for LMFBR cavity liner sodium spill test LT-1

    International Nuclear Information System (INIS)

    Hilliard, R.K.; Newell, G.A.

    1976-01-01

    Reinforced concrete is an important material of construction in LMFBR cavities and cells. Steel liners are often installed on the concrete surfaces to provide a gastight seal for minimizing air inleakage to inerted cell atmospheres and to protect the concrete from direct contact with sodium in the event of a sodium spill. In making safety assessment analyses, it is of interest to determine the adequacy of the liners to maintain their leaktightness during postulated accidents involving large sodium spills. However, data for basing analytical assessments of cell liners are very meager and an experimental program is underway at HEDL to provide some of the needed information. The HEDL cell liner evaluation program consists of both bench-scale feature tests and large-scale sodium spill demonstration tests. The plans for the first large-scale sodium spill test (LT-1) are the subject of this paper

  18. Kilowatt Isotope Power System. Phase I. System test report. 78-KIPS-33

    International Nuclear Information System (INIS)

    1978-01-01

    The KIPS Ground Demonstration System (GDS) was designed to simulate, as closely as possible, a Flight System Conceptual Design (FSCD). No radiator was incorporated and electric heat sources were used in place of isotope heat sources. To minimize air in-leakage and to simulate heat losses associated with space operation, the system was operated in a vacuum chamber. Initial testing was performed on the development system which did not incorporate a high performance turbine or non-condensing configuration of the cold liquid passages in certain regenerator vapor regions. After testing of the development system and retrofit to the GDS configuration, which included improvements in the above two items, the GDS was installed in the test chamber. Testing to date showed the GDS configuration has demonstrated a system efficiency of greater than 15%. Satisfactory heat balances have been calculated on most system components, permitting evaluation of component performance. Certain performance deficiencies currently exist which prevented the 18% efficiency goal being attained. These can be corrected with further development

  19. Over the air test

    DEFF Research Database (Denmark)

    2015-01-01

    [1] This invention relates to over-the-air testing of a device in an anechoic chamber. In particular, the invention is suitable for simulating both uplink and downlink over-the-air communication with a device under test even when the anechoic chamber has different numbers of uplink and downlink...

  20. Testing of nuclear air-cleaning systems

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    A standard is presented which describes methods for field-testing nuclear power plant air cleaning systems. Included are specifications for visual inspection; duct and housing leak test; mounting frame pressure leak test; airflow capacity, distribution, and residence time tests; air-aerosol mixing uniformity test; in place leak test of HEPA filter banks; multiple sampling technique; in-place leak test of adsorber stage; laboratory testing of adsorbent; and duct heater performance test

  1. Investigation of water accumulation in an offgas test facility HEPA housing

    International Nuclear Information System (INIS)

    Speed, D.L.; Burns, D.B.; Van Pelt, W.B.; Burns, H.H.

    1997-01-01

    The Consolidated Incineration Facility, at the Department of Energy's Savannah River Site, is designed to treat solid and liquid RCRA hazardous and mixed wastes generated by site operations and clean-up activities. During CIF's pretrial burn campaigns in 1995, an appreciable amount of water was recovered from the HEPA housings. Questions were immediately raised as to the source of the water, and the degree of wetness of the filters during operation. There are two primary issues involved: Water could reduce the life expectancy and performance of the HEPA filters, housing, and associated ducting, and wet HEPAs also present radiological concerns for personnel during filter change-out. A similar phenomenon was noted at the Offgas Components Test Facility (OCTF), a 1/10 scale pilot of CIF's air pollution control system. Tests at OCTF indicated the water's most likely origin to be vapor condensing out from the flue gas stream due to excessive air in-leakage at housing door seals, ducting flanges, and actual holes in the ducting. The rate of accumulation bears no statistical correlation to such process parameters as steam flow, reheater outlet temperature and offgas velocity in the duct. Test results also indicated that the HEPA filter media is moistened by the initial process flow while the facility is being brought on line. However, even when the HEPA filters were manually drenched prior to startup, they became completely dry within four hours of the time steam was introduced to the reheater. Finally, no demonstrable relationship was found between the degree of filter media wetness and filter dP

  2. Air-water tests in support of LLTR series II Test A-4

    International Nuclear Information System (INIS)

    Chen, K.

    1980-07-01

    A series of tests injecting air into a tank of stagnant water was conducted in June 1980 utilizing the GE Plenum Mixing Test Facility in San Jose, California. The test was concerned with investigating the behavior of air jets at a submerged orifice in water over a wide range of flow rates. The main objective was to improve the basic understanding of gas-liquid phenomena (e.g., leak dynamics, gas bubble agglomeration, etc.) in a simulated tube bundle through visualization. The experimental results from these air-water tests will be used as a guide to help select the leak size for LLTR Series II Test A-4 because air-water system is a good simulation of water-sodium mixture

  3. New technologies for a postaccident control room habitability assessment

    International Nuclear Information System (INIS)

    Lahti, G.P.; Perchiazzi, W.T.

    1993-01-01

    Older nuclear power plants typically considered only a nominal amount of unfiltered in-leakage (typically 10 ft 3 /min) affecting their postaccident habitability. However, recent measurements of unfiltered in-leakage show leakages in excess of the nominal 10 ft 3 /m in. The assessment of postaccident doses in control rooms is done in a number of well-defined steps: (1) Determine the initial release of radioactivity to the containment (the open-quotes source termclose quotes). (2) Determine the release of radioactivity to the environment. (3) Determine the atmospheric dispersion and the concentration at the control room air intake. (4) Determine within-building dilution (if any). (5) Determine unfiltered in-leakage. (6) Determine the concentration of radioactivity in the control room. (7) Determine the dose to control room occupants. The prescriptive methodology of the Murphy-Campe paper and Standard Review Plan (SRP) 6.4 has been used by the U.S. Nuclear Regulatory Commission (NRC) to assess control room designs. However, a number of new technologies have been employed to reevaluate an existing pressurized water reactor plant design

  4. Air-tighten test for used glove boxes

    International Nuclear Information System (INIS)

    Itoh, Masanori; Kashiro, Kashio; Matsumoto, Masaki; Ogiya, Takashi; Nakata, Keiji; Gohda, Masahiko

    2000-05-01

    All of the glove boxes in Plutonium Fuel Fabrication facilities are operated after confirming their condition by conducting negative pressure maintenance test and air-tighten test. Although we check the negative pressure maintenance condition before operating glove boxes in a daily basis, we have not been conducted the air-tighten test. Hence, we have conduct air-tighten test using the glove box that will be dismantled in the near future. In order to compare the present data to the criteria of licensing and to the measurement data for new glove box, the test was conducted by leak tightness vessel which is used the competent authority's test for newly constructed equipments. We also have confirmed the leakage condition in case failure of keeping negative pressure. The main results are as follows: 1. No leakage was detected after leaving the glove box 21 days in case failure of keeping negative pressure condition. 2. The measurement result of the air-tighten test was 0.025 vol%/h, and it was confirmed that this result is within the range of licensing criteria (-0.04 - 0.06 vol%/h). 3. The measurement result was also within the error of leak tightness vessel, and it was confirmed that the air-tighten condition was in force within this past 10 years after installing this glove box (the corresponding value for used the competent authority test for newly constructed equipments was 0.019 vol%/h). (author)

  5. Experimental apparatus to test air trap valves

    Science.gov (United States)

    Lemos De Lucca, Y. de F.; de Aquino, G. A.; Filho, J. G. D.

    2010-08-01

    It is known that the presence of trapped air within water distribution pipes can lead to irregular operation or even damage to the distribution systems and their components. The presence of trapped air may occur while the pipes are being filled with water, or while the pumping systems are in operation. The formation of large air pockets can produce the water hammer phenomenon, the instability and the loss of pressure in the water distribution networks. As a result, it can overload the pumps, increase the consumption of electricity, and damage the pumping system. In order to avoid its formation, all of the trapped air should be removed through "air trap valves". In Brazil, manufacturers frequently have unreliable sizing charts, which cause malfunctioning of the "air trap valves". The result of these malfunctions causes accidents of substantial damage. The construction of a test facility will provide a foundation of technical information that will be used to help make decisions when designing a system of pipelines where "air trap valves" are used. To achieve this, all of the valve characteristics (geometric, mechanic, hydraulic and dynamic) should be determined. This paper aims to describe and analyze the experimental apparatus and test procedure to be used to test "air trap valves". The experimental apparatus and test facility will be located at the University of Campinas, Brazil at the College of Civil Engineering, Architecture, and Urbanism in the Hydraulics and Fluid Mechanics laboratory. The experimental apparatus will be comprised of various components (pumps, steel pipes, butterfly valves to control the discharge, flow meter and reservoirs) and instrumentation (pressure transducers, anemometer and proximity sensor). It should be emphasized that all theoretical and experimental procedures should be defined while taking into consideration flow parameters and fluid properties that influence the tests.

  6. Experimental apparatus to test air trap valves

    Energy Technology Data Exchange (ETDEWEB)

    Lemos De Lucca, Y de F [CTH-DAEE-USP/FAAP/UNICAMP (Brazil); Aquino, G A de [SABESP/UNICAMP (Brazil); Filho, J G D, E-mail: yvone.lucca@gmail.co [Water Resources Department, University of Campinas-UNICAMP, Av. Albert Einstein, 951, Cidade Universitaria-Barao Geraldo-Campinas, S.P., 13083-852 (Brazil)

    2010-08-15

    It is known that the presence of trapped air within water distribution pipes can lead to irregular operation or even damage to the distribution systems and their components. The presence of trapped air may occur while the pipes are being filled with water, or while the pumping systems are in operation. The formation of large air pockets can produce the water hammer phenomenon, the instability and the loss of pressure in the water distribution networks. As a result, it can overload the pumps, increase the consumption of electricity, and damage the pumping system. In order to avoid its formation, all of the trapped air should be removed through 'air trap valves'. In Brazil, manufacturers frequently have unreliable sizing charts, which cause malfunctioning of the 'air trap valves'. The result of these malfunctions causes accidents of substantial damage. The construction of a test facility will provide a foundation of technical information that will be used to help make decisions when designing a system of pipelines where 'air trap valves' are used. To achieve this, all of the valve characteristics (geometric, mechanic, hydraulic and dynamic) should be determined. This paper aims to describe and analyze the experimental apparatus and test procedure to be used to test 'air trap valves'. The experimental apparatus and test facility will be located at the University of Campinas, Brazil at the College of Civil Engineering, Architecture, and Urbanism in the Hydraulics and Fluid Mechanics laboratory. The experimental apparatus will be comprised of various components (pumps, steel pipes, butterfly valves to control the discharge, flow meter and reservoirs) and instrumentation (pressure transducers, anemometer and proximity sensor). It should be emphasized that all theoretical and experimental procedures should be defined while taking into consideration flow parameters and fluid properties that influence the tests.

  7. Testing on air cleaning systems: Testing of the components in-place tests

    International Nuclear Information System (INIS)

    Billard, F.; Brion, J.

    1967-01-01

    The reliability of air cleaning systems is dependent on testing they are submitted to. Although in-place tests are the most important as they act as final tests upon achieved plants, component tests are necessary too. They allow detection of defective units before they are installed, partition of unit defects from mounting defects and they are more sensitive. For similar reasons, material teats are most useful. The various tests are described, about aerosol filters for one part, iodine trap for the other. The checked features are: materials nature, units sizes, efficiency, air resistance, flammability, humidity resistance, temperature resistance, adsorbent friability, etc... On iodine trapping systems, small check traps, working by-pass with the main trap are periodically subjected to efficiency test. This control allow to cut down the in-place tests frequency, particularly when poisoning from organic vapours is to be feared. (authors) [fr

  8. Acceptance test report for 241-AW process air system

    International Nuclear Information System (INIS)

    Kostelnik, A.J.

    1994-01-01

    The acceptance test procedure (ATP) for the compressed air system at building 241-AW-273 was completed on March 11, 1993. The system was upgraded to provide a reliable source of compressed air to the tank farm. The upgrade included the demolition of the existing air compressor and associated piping, as well as the installation of a new air compressor with a closed loop cooling system. A compressed air cross-tie was added to allow the process air compressor to function as a back-up to the existing instrument air compressor. The purpose of the ATP was to achieve three primary objectives: verify system upgrade in accordance with the design media; provide functional test of system components and controls; and prepare the system for the Operational Test. The ATP was successfully completed with thirteen exceptions, which were resolved prior to completing the acceptance test. The repaired exceptions had no impact to safety or the environment and are briefly summarized. Testing ensured that the system was installed per design, that its components function as required and that it is ready for operational testing and subsequent turnover to operations

  9. Evaluation of off-gas characteristics in vitrification process of ion-exchange resin

    International Nuclear Information System (INIS)

    Park, S. C.; Kim, H. S.; Yang, K. H.; Yun, C. H.; Hwang, T. W.; Shin, S. W.

    2001-01-01

    The properties of off-gas generated from vitrification process of ion-exchange resin were characterized. Theoretical composition and flow rate of the off-gas were calculated based on chemical composition of resin and it's burning condition inside CCM. The calculated off-gas flow rate was 67.9 Nm 3 /h at the burning rate of 40 kg/h. And the composition of off-gas was evaluated as CO 2 (41.4%), Steam (40.0%), O 2 (13.3%), NO (3.6%), and SO 2 (1.6%) in order. Then, actual flow rate and composition of off-gas were measured during pilot-scale demonstration tests and the results were compared with theoretical values. The actual flow rate of off-gas was about 1.6 times higher than theoretical one. The difference between theoretical and actual flow rates was caused by the in-leakage of air to the system, and the in-leakage rate was evaluated as 36.3 Nm 3 /h. Because of continuous change in the combustion parameters inside CCM, during demonstration tests, the concentration of toxic gases showed wide fluctuation. However, the concentration of CO, a barometer of incompleteness of combustion inside CCM, was stabilized soon. The result showed quasi-equilibrium state was achieved two hours after feeding of resin. (author)

  10. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, Armin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bergey, Daniel [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-02-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  11. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, Armin [Building Science Corporation, Somerville, MA (United States); Bergey, Daniel [Building Science Corporation, Somerville, MA (United States)

    2014-02-01

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  12. Indoor Air Quality Test House

    Data.gov (United States)

    Federal Laboratory Consortium — Description:In order to enable studies of a range of indoor air quality and ventilation issues, EL maintains a highly instrumented three-bedroom test house. Previous...

  13. Fastbus non-forced air-cooling tests

    International Nuclear Information System (INIS)

    Downing, R.W.

    1981-07-01

    Tests were conducted on a closed box with all walls at room temperature with heat test units positioned between the plates with small cardboard spacers. The rear of the test unit was taped closed, and no external air was allowed to flow through the box. Outside wall temperature was monitored for all tests. Tests were performed to test a possible method of conducting heat away from high powered I.C.'s in a closed chamber. The effect of a brass strip attached to the top of the I.C. and making mechanical contact with the wall of the box is tested. Tests show that some heatsinking technique is needed for I.C.'s of more than 3/4 watt dissipation. It is concluded that conventional air-cooled printed circuit boards can be effectively cooled by simply installing them in a cool-walled box. The chassis construction could also consist of card slots divided by water filled plates similar to refrigeration walls. Problems relating to wire-wrap modules are addressed

  14. 49 CFR 232.217 - Train brake tests conducted using yard air.

    Science.gov (United States)

    2010-10-01

    ... reduction of brake pipe air pressure at the same, or slower, rate as an engineer's brake valve. (b) The yard... 49 Transportation 4 2010-10-01 2010-10-01 false Train brake tests conducted using yard air. 232... Train brake tests conducted using yard air. (a) When a train air brake system is tested from a yard air...

  15. Uncertainty Evaluation of Residential Central Air-conditioning Test System

    Science.gov (United States)

    Li, Haoxue

    2018-04-01

    According to national standards, property tests of air-conditioning are required. However, test results could be influenced by the precision of apparatus or measure errors. Therefore, uncertainty evaluation of property tests should be conducted. In this paper, the uncertainties are calculated on the property tests of Xinfei13.6 kW residential central air-conditioning. The evaluation result shows that the property tests are credible.

  16. Sodium flow distribution test of the air cooler tubes

    International Nuclear Information System (INIS)

    Uchida, Hiroyuki; Ohta, Hidehisa; Shimazu, Hisashi

    1980-01-01

    In the heat transfer tubes of the air cooler which is installed in the auxiliary core cooling system of the fast breeder prototype plant reactor ''Monju'', sodium freezing may be caused by undercooling the sodium induced by an extremely unbalanced sodium flow in the tubes. Thus, the sodium flow distribution test of the air cooler tubes was performed to examine the flow distribution of the tubes and to estimate the possibility of sodium freezing in the tubes. This test was performed by using a one fourth air cooler model installed in the water flow test facility. As the test results show, the flow distribution from the inlet header to each tube is almost equal at any operating condition, that is, the velocity deviation from normalized mean velocity is less than 6% and sodium freezing does not occur up to 250% air velocity deviation at stand-by condition. It was clear that the proposed air cooler design for the ''Monju'' will have a good sodium flow distribution at any operating condition. (author)

  17. HESTIA Phase I Test Results: The Air Revitalization System

    Science.gov (United States)

    Wright, Sarah E.; Hansen, Scott W.

    2016-01-01

    In any human spaceflight mission, a number of Environmental Control & Life Support System (ECLSS) technologies work together to provide the conditions astronauts need to live healthily, productively, and comfortably in space. In a long-duration mission, many of these ECLSS technologies may use materials supplied by In-Situ Resource Utilization (ISRU), introducing more interactions between systems. The Human Exploration Spacecraft Test-bed for Integration & Advancement (HESTIA) Project aims to create a test-bed to evaluate ECLSS and ISRU technologies and how they interact in a high-fidelity, closed-loop, human-rated analog habitat. Air purity and conditioning are essential components within any ECLSS and for HESTIA's first test they were achieved with the Air Revitalization System (ARS) described below. The ARS provided four essential functions to the test-bed chamber: cooling the air, removing humidity from the air, removing trace contaminants, and scrubbing carbon dioxide (CO2) from the air. In this case, the oxygen supply function was provided by ISRU. In the current configuration, the ARS is a collection of different subsystems. A fan circulates the air, while a condensing heat exchanger (CHX) pulls humidity out of the air. A Trace Contaminant Removal System (TCRS) filters the air of potentially harmful contaminants. Lastly, a Reactive Plastic Lithium Hydroxide (RP-LiOH) unit removes CO2 from the breathing air. During the HESTIA Phase I test in September 2015, the ARS and its individual components each functioned as expected, although further analysis is underway. During the Phase I testing and in prior bench-top tests, the energy balance of heat removed by the CHX was not equal to the cooling it received. This indicated possible instrument error and therefore recalibration of the instruments and follow-up testing is planned in 2016 to address the issue. The ARS was tested in conjunction with two other systems: the Human Metabolic Simulator (HMS) and the

  18. Breathing air trailer acceptance test report

    International Nuclear Information System (INIS)

    Kostelnik, A.J.

    1996-01-01

    This Acceptance Test Report documents compliance with the requirements of specification WHC-S-0251, Rev.0 and ECNs 613530 and 606113. The equipment was tested according to WHC-SD-WM-ATP-104. The equipment tested is a Breathing Air Supply Trailer purchased as a design and fabrication procurement activity. The ATP was written by the Seller and was performed by the Seller with representatives of the Westinghouse Hanford Company witnessing portions of the test at the Seller's location

  19. Test plan for air monitoring during the Cryogenic Retrieval Demonstration

    International Nuclear Information System (INIS)

    Yokuda, E.

    1992-06-01

    This report presents a test plan for air monitoring during the Cryogenic Retrieval Demonstration (CRD). Air monitors will be used to sample for the tracer elements neodymium, terbium, and ytterbium, and dysprosium. The results from this air monitoring will be used to determine if the CRD is successful in controlling dust and minimizing contamination. Procedures and equipment specifications for the test are included

  20. Worchester Solenoid Actuated Gas Operated MCO Isolation Valves

    International Nuclear Information System (INIS)

    VAN KATWIJK, C.

    2000-01-01

    These valves are 1 inch gas-operated full-port ball valves incorporating a solenoid and limit switches as integral parts of the actuator that are used in process streams within the CVDF hood. The valves fail closed (on loss of pressure or electrical) to prevent MCO vent drain to either reduce air in-leakage or loss of He. The valves have couplings for transverse actuator mounting

  1. The Yucca Mountain Project prototype air-coring test, U12g tunnel, Nevada test site

    International Nuclear Information System (INIS)

    Ray, J.M.; Newsom, J.C.

    1994-12-01

    The Prototype Air-Coring Test was conducted at the Nevada Test Site (NTS) G-Tunnel facility to evaluate standard coring techniques, modified slightly for air circulation, for use in testing at a prospective nuclear waste repository at Yucca Mountain, Nevada. Air-coring technology allows sampling of subsurface lithology with minimal perturbation to ambient characteristic such as that required for exploratory holes near aquifers, environmental applications, and site characterization work. Two horizontal holes were cored, one 50 ft long and the other 150 ft long, in densely welded fractured tuff to simulate the difficult drilling conditions anticipated at Yucca Mountain. Drilling data from seven holes on three other prototype tests in nonwelded tuff were also collected for comparison. The test was used to establish preliminary standards of performance for drilling and dust collection equipment and to assess procedural efficiencies. The Longyear-38 drill achieved 97% recovery for HQ-size core (-2.5 in.), and the Atlas Copco dust collector (DCT-90) captured 1500 lb of fugitive dust in a mine environment with only minor modifications. Average hole production rates were 6-8 ft per 6-h shift in welded tuff and almost 20 ft per shift on deeper holes in nonwelded tuff. Lexan liners were successfully used to encapsulate core samples during the coring process and protect core properties effectively. The Prototype Air-Coring Test demonstrated that horizontal air coring in fractured welded tuff (to at least 150 ft) can be safely accomplished by proper selection, integration, and minor modification of standard drilling equipment, using appropriate procedures and engineering controls. The test also indicated that rig logistics, equipment, and methods need improvement before attempting a large-scale dry drilling program at Yucca Mountain

  2. Interim results from UO2 fuel oxidation tests in air

    International Nuclear Information System (INIS)

    Campbell, T.K.; Gilbert, E.R.; Thornhill, C.K.; White, G.D.; Piepel, G.F.; Griffin, C.W.j.

    1987-08-01

    An experimental program is being conducted at Pacific Northwest Laboratory (PNL) to extend the characterization of spent fuel oxidation in air. To characterize oxidation behavior of irradiated UO 2 , fuel oxidation tests were performed on declad light-water reactor spent fuel and nonirradited UO 2 pellets in the temperature range of 135 to 250 0 C. These tests were designed to determine the important independent variables that might affect spent fuel oxidation behavior. The data from this program, when combined with the test results from other programs, will be used to develop recommended spent fuel dry-storage temperature limits in air. This report describes interim test results. The initial PNL investigations of nonirradiated and spent fuels identified the important testing variables as temperature, fuel burnup, radiolysis of the air, fuel microstructure, and moisture in the air. Based on these initial results, a more extensive statistically designed test matrix was developed to study the effects of temperature, burnup, and moisture on the oxidation behavior of spent fuel. Oxidation tests were initiated using both boiling-water reactor and pressurized-water reactor fuels from several different reactors with burnups from 8 to 34 GWd/MTU. A 10 5 R/h gamma field was applied to the test ovens to simulate dry storage cask conditions. Nonirradiated fuel was included as a control. This report describes experimental results from the initial tests on both the spent and nonirradiated fuels and results to date on the tests in a 10 5 R/h gamma field. 33 refs., 51 figs., 6 tabs

  3. Operational test procedure for Bldg 241-A-701 air compressor

    International Nuclear Information System (INIS)

    Desantis, G.N.

    1995-01-01

    This document is an Operability Test Procedure (OTP) which will verify and record that the 241-A-701 air compressor and associated equipment operates within their intended design parameters. The activities defined in this OTP will be performed to ensure the daily operation of the new compressed air system can be reliable and efficient. The Compressed Air System (CAS) for 241-A-701 supplies process and instrument air to the A, AX, AY, and AZ tank farms. The primary use of the CAS is for tank farms instrumentation, air operated valves, and air lift circulators

  4. ASTM Validates Air Pollution Test Methods

    Science.gov (United States)

    Chemical and Engineering News, 1973

    1973-01-01

    The American Society for Testing and Materials (ASTM) has validated six basic methods for measuring pollutants in ambient air as the first part of its Project Threshold. Aim of the project is to establish nationwide consistency in measuring pollutants; determining precision, accuracy and reproducibility of 35 standard measuring methods. (BL)

  5. Acceptance Test Report for 241-U compressed air system

    International Nuclear Information System (INIS)

    Freeman, R.D.

    1994-01-01

    This Acceptance Test Report (ATR) documents the results of acceptance testing of a newly upgraded compressed air system at 241-U Farm. The system was installed and the test successfully performed under work package 2W-92-01027

  6. Refractometry and Extinguishment/Burnback Testing of Pacific Air Forces AFFF

    National Research Council Canada - National Science Library

    Kalberer, Jennifer L; Barrett, Kimberly D

    2006-01-01

    At the request of Pacific Air Forces (PACAF), the Air Force Research Laboratory (AFRL) performed refractometry and extinguishment/burnback tests on samples of Ansulite and 3M aqueous film forming foam...

  7. Specifications and test procedures for airline-type supplied-air suits

    International Nuclear Information System (INIS)

    Revoir, W.H.; Pritchard, J.A.; Davis, T.O.; Richards, C.P.; Wheat, L.D.

    1975-05-01

    Procedures and requirements have been established to permit airline-type supplied-air suits needed by contractors of the Energy Research and Development Administration to be tested for performance by the Respirator Research and Development Section, Industrial Hygiene Group, of the Los Alamos Scientific Laboratory, and to have the adequacy of the performance of these devices evaluated by the Los Alamos Scientific Laboratory Respirator Advisory Committee. Test equipment, test methods, and performance criteria for airline-type supplied-air suits are prescribed. (U.S.)

  8. Frosting and defrosting of air-coils - results from laboratory testing

    Energy Technology Data Exchange (ETDEWEB)

    Fahlen, P

    1997-12-31

    Frosting of air-coils is an important factor in the design and operation of air-source heat pumps, heat recovery ventilators, cooling and refrigeration equipment etc. This report presents results from laboratory testing of two brine-cooled air-coils under frosting conditions. The coils have the same number of plane, continuous fins, 4 tube rows with 12 tubes in each row, tube spacing of 50 mm and fin spacing of 3 and 6 mm respectively. The original purpose of the test program was to compare various possible indicators of coil frosting and to analyze the possible effects of different control strategies on coil capacity and the COP of the system (the analysis will be presented in a separate report). Tests involved inlet air temperatures of -7 and +2 degC, variation of humidity between 70 and 100% RH (including simulated rain), velocities in the range 1 to 4 m/s, and specific cooling loads from 50 to 150 W/m{sup 2}. Test results include variations due to frosting of e.g. cooling capacity, COP, air flow and pressure drop, fan power, air outlet temperature and humidity, coil temperature, frost mass, and frosting time. Results also include the subsequently required defrost time, defrost energy and collected mass of defrost water. The frosting process was interrupted when the air flow had decreased to 30% of the original value with a non-frosted coil. The results clearly show the advantage of demand controlled defrosting with variations in frosting time between 2 h with high humidity/high specific cooling load up to, for practical purposes, infinite frosting times with low humidity/low specific cooling load. The accumulated frost mass during one frosting cycle varied from less than 0.02 kg/m{sup 2} up to approximately 0.4 kg/m{sup 2}. 23 refs, 93 figs, 89 tabs

  9. Frosting and defrosting of air-coils - results from laboratory testing

    Energy Technology Data Exchange (ETDEWEB)

    Fahlen, P.

    1996-12-31

    Frosting of air-coils is an important factor in the design and operation of air-source heat pumps, heat recovery ventilators, cooling and refrigeration equipment etc. This report presents results from laboratory testing of two brine-cooled air-coils under frosting conditions. The coils have the same number of plane, continuous fins, 4 tube rows with 12 tubes in each row, tube spacing of 50 mm and fin spacing of 3 and 6 mm respectively. The original purpose of the test program was to compare various possible indicators of coil frosting and to analyze the possible effects of different control strategies on coil capacity and the COP of the system (the analysis will be presented in a separate report). Tests involved inlet air temperatures of -7 and +2 degC, variation of humidity between 70 and 100% RH (including simulated rain), velocities in the range 1 to 4 m/s, and specific cooling loads from 50 to 150 W/m{sup 2}. Test results include variations due to frosting of e.g. cooling capacity, COP, air flow and pressure drop, fan power, air outlet temperature and humidity, coil temperature, frost mass, and frosting time. Results also include the subsequently required defrost time, defrost energy and collected mass of defrost water. The frosting process was interrupted when the air flow had decreased to 30% of the original value with a non-frosted coil. The results clearly show the advantage of demand controlled defrosting with variations in frosting time between 2 h with high humidity/high specific cooling load up to, for practical purposes, infinite frosting times with low humidity/low specific cooling load. The accumulated frost mass during one frosting cycle varied from less than 0.02 kg/m{sup 2} up to approximately 0.4 kg/m{sup 2}. 23 refs, 93 figs, 89 tabs

  10. Testing on air cleaning systems: Testing of the components in-place tests; Controle des installations d'epuration de l'air essais de conformite des elements: Tests in situ

    Energy Technology Data Exchange (ETDEWEB)

    Billard, F; Brion, J [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1967-07-01

    The reliability of air cleaning systems is dependent on testing they are submitted to. Although in-place tests are the most important as they act as final tests upon achieved plants, component tests are necessary too. They allow detection of defective units before they are installed, partition of unit defects from mounting defects and they are more sensitive. For similar reasons, material teats are most useful. The various tests are described, about aerosol filters for one part, iodine trap for the other. The checked features are: materials nature, units sizes, efficiency, air resistance, flammability, humidity resistance, temperature resistance, adsorbent friability, etc... On iodine trapping systems, small check traps, working by-pass with the main trap are periodically subjected to efficiency test. This control allow to cut down the in-place tests frequency, particularly when poisoning from organic vapours is to be feared. (authors) [French] La surete de fonctionnement des installations d'epuratition de l'air esf fonction des controles auxquels ces installations sont soumises. Si les tests in situ sont les plus importants puisqu'ils constituent le controle final de l'installation terminee, les essais de conformite des elements constitutifs sont egalement necessaires. Ils permettent l'elimination d'elements defectueux avant leur mise en place, la discrimination des defauts du montage de ceux de l'element et sont en outre plus sensibles. De meme, le controle des materiaux constitutifs de l'element s'avere fort utile. On decrit les differents controles, d'une part, pour les fittres a aerosols, d'autre part, pour les pieges a iode. Les caracteristiques verifiees sont: nature des materiaux, dimenesions des elements, efficacite, perte de charge, resistance mecanique, inflammabilite, tenue a l'humidite, tenue a la temperature, resistance au detassement des pieges a iode, friabilite du materiau adsorbant, etc... En ce qui concerne les installations de piegeage d

  11. CMHC research project: Testing of air barrier construction details, II: Report

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    Air leakage control through the building envelope of wood framed houses is more important than ever. The leakage of air is controlled by the air barrier system. There are several new technologies to construct an air barrier system for the building envelope. These are the Poly Approach, the Air Drywall Approach and the EASE system. The development of these systems was undertaken primarily by the building community without significant research and development. The purpose of this study was to determine the actual performance of several different types of construction details for each of the different approaches. Each of these details was designed and constructed using one of the air barrier methods and tested in the laboratory. The test details included the sill plate, the partition wall, the stair stringer, the electrical outlets, the bathtub detail, the plumbing stack detail, the metal chimney detail, the bathroom fan detail and the EASE wall system.

  12. Operability test procedure for 241-U compressed air system and heat pump

    International Nuclear Information System (INIS)

    Freeman, R.D.

    1994-01-01

    The 241-U-701 compressed air system supplies instrument quality compressed air to Tank Farm 241-U. The supply piping to the 241-U Tank Farm is not included in the modification. Modifications to the 241-U-701 compressed air system include installation of a 15 HP Reciprocating Air Compressor, Ingersoll-Rand Model 10T3NLM-E15; an air dryer, Hankinson, Model DH-45; and miscellaneous system equipment and piping (valves, filters, etc.) to meet the design. A newly installed heat pump allows the compressor to operate within an enclosed relatively dust free atmosphere and keeps the compressor room within a standard acceptable temperature range, which makes possible efficient compressor operation, reduces maintenance, and maximizes compressor operating life. This document is an Operability Test Procedure (OTP) which will further verify (in addition to the Acceptance Test Procedure) that the 241-U-701 compressed air system and heat pump operate within their intended design parameters. The activities defined in this OTP will be performed to ensure the performance of the new compressed air system will be adequate, reliable and efficient. Completion of this OTP and sign off of the OTP Acceptance of Test Results is necessary for turnover of the compressed air system from Engineering to Operations

  13. 49 CFR 232.305 - Single car air brake tests.

    Science.gov (United States)

    2010-10-01

    ... from a train or when placed on a shop or repair track, as defined in § 232.303(a); (2) A car is on a shop or repair track, as defined in § 232.303(a), for any reason and has not received a single car air... 49 Transportation 4 2010-10-01 2010-10-01 false Single car air brake tests. 232.305 Section 232...

  14. Separate-effect tests on zirconium cladding degradation in air ingress situations

    Energy Technology Data Exchange (ETDEWEB)

    Duriez, C. [Institut de Radioprotection et de Surete Nucleaire, IRSN, Direction de Prevention des Accidents Majeurs, Centre de Cadarache, 13115 St Paul Lez Durance (France)], E-mail: christian.duriez@irsn.fr; Steinbrueck, M. [Forschungszentrum Karlsruhe, FZK, Institut fuer Materialforschung, Postfach 3640, 76021 Karlsruhe (Germany); Ohai, D.; Meleg, T. [Institute for Nuclear Research, INR, Nuclear Material and Corrosion Department, Pitesti, 115400 Mioveni Arges (Romania); Birchley, J.; Haste, T. [Paul Scherrer Institute, 5232 Villigen PSI (Switzerland)

    2009-02-15

    In the event of air ingress during a reactor or spent fuel pond low probability accident, the fuel rods will be exposed to air-containing atmospheres at high temperatures. In comparison with steam, the presence of air is expected to result in a more rapid escalation of the accident. A state-of-the-art review performed before SARNET started showed that the existing data on zirconium alloy oxidation in air were scarce. Moreover, the exact role of zirconium nitride on the cladding degradation process was poorly understood. Regarding the cladding behaviour in air + steam or nitrogen-enriched atmospheres (encountered in oxygen-starved conditions), almost no data were available. New experimental programmes comprising small-scale tests have therefore been launched at FZK, IRSN (MOZART programme in the frame of the International Source Term Program-ISTP) and INR. Zircaloy-4 cladding in PWR (FZK, IRSN) and in CANDU (INR) geometry are investigated. On-line kinetic data are obtained on centimetre size tube segments, by thermogravimetry (FZK, IRSN and INR) or by mass spectrometry (FZK). Plugged tubes 15 cm long (FZK) are also investigated. The samples are air-oxidised either in the 'as-received' state, or after pre-oxidation in steam. 'Analytical' tests at constant temperature and gas composition provide basic kinetic data, while more prototypical temperature transients and sequential gas compositions are also investigated. The temperature domains extend from 600 deg. C up to 1500 deg. C. Systematic post-test metallographic inspections are performed. The paper gives a synthesis of the results obtained, comparing them in terms of kinetics and oxide scale structure and composition. A comparative analysis is performed with results of the QUENCH-10 (Q-10) bundle test, which included an air ingress phase. It is shown how the data contribute to a better understanding of the cladding degradation process, especially regarding the role of nitrogen. For modelling of

  15. Separate-effect tests on zirconium cladding degradation in air ingress situations

    International Nuclear Information System (INIS)

    Duriez, C.; Steinbrueck, M.; Ohai, D.; Meleg, T.; Birchley, J.; Haste, T.

    2009-01-01

    In the event of air ingress during a reactor or spent fuel pond low probability accident, the fuel rods will be exposed to air-containing atmospheres at high temperatures. In comparison with steam, the presence of air is expected to result in a more rapid escalation of the accident. A state-of-the-art review performed before SARNET started showed that the existing data on zirconium alloy oxidation in air were scarce. Moreover, the exact role of zirconium nitride on the cladding degradation process was poorly understood. Regarding the cladding behaviour in air + steam or nitrogen-enriched atmospheres (encountered in oxygen-starved conditions), almost no data were available. New experimental programmes comprising small-scale tests have therefore been launched at FZK, IRSN (MOZART programme in the frame of the International Source Term Program-ISTP) and INR. Zircaloy-4 cladding in PWR (FZK, IRSN) and in CANDU (INR) geometry are investigated. On-line kinetic data are obtained on centimetre size tube segments, by thermogravimetry (FZK, IRSN and INR) or by mass spectrometry (FZK). Plugged tubes 15 cm long (FZK) are also investigated. The samples are air-oxidised either in the 'as-received' state, or after pre-oxidation in steam. 'Analytical' tests at constant temperature and gas composition provide basic kinetic data, while more prototypical temperature transients and sequential gas compositions are also investigated. The temperature domains extend from 600 deg. C up to 1500 deg. C. Systematic post-test metallographic inspections are performed. The paper gives a synthesis of the results obtained, comparing them in terms of kinetics and oxide scale structure and composition. A comparative analysis is performed with results of the QUENCH-10 (Q-10) bundle test, which included an air ingress phase. It is shown how the data contribute to a better understanding of the cladding degradation process, especially regarding the role of nitrogen. For modelling of the oxide scale

  16. Environmental Technology Verification: Supplement to Test/QA Plan for Biological and Aerosol Testing of General Ventilation Air Cleaners; Bioaerosol Inactivation Efficiency by HVAC In-Duct Ultraviolet Light Air Cleaners

    Science.gov (United States)

    The Air Pollution Control Technology Verification Center has selected general ventilation air cleaners as a technology area. The Generic Verification Protocol for Biological and Aerosol Testing of General Ventilation Air Cleaners is on the Environmental Technology Verification we...

  17. 77 FR 8178 - Test Procedures for Central Air Conditioners and Heat Pumps: Public Meeting

    Science.gov (United States)

    2012-02-14

    .... EERE-2010-BT-TP-0038] Test Procedures for Central Air Conditioners and Heat Pumps: Public Meeting... methodologies and gather comments on testing residential central air conditioners and heat pumps designed to use... residential central air conditioners and heat pumps that are single phase with rated cooling capacities less...

  18. Airline Transport Pilot-Airplane (Air Carrier) Written Test Guide.

    Science.gov (United States)

    Federal Aviation Administration (DOT), Washington, DC. Flight Standards Service.

    Presented is information useful to applicants who are preparing for the Airline Transport Pilot-Airplane (Air Carrier) Written Test. The guide describes the basic aeronautical knowledge and associated requirements for certification, as well as information on source material, instructions for taking the official test, and questions that are…

  19. Results and code prediction comparisons of lithium-air reaction and aerosol behavior tests

    International Nuclear Information System (INIS)

    Jeppson, D.W.

    1986-03-01

    The Hanford Engineering Development Laboratory (HEDL) Fusion Safety Support Studies include evaluation of potential safety and environmental concerns associated with the use of liquid lithium as a breeder and coolant for fusion reactors. Potential mechanisms for volatilization and transport of radioactive metallic species associated with breeder materials are of particular interest. Liquid lithium pool-air reaction and aerosol behavior tests were conducted with lithium masses up to 100 kg within the 850-m 3 containment vessel in the Containment Systems Test Facility. Lithium-air reaction rates, aerosol generation rates, aerosol behavior and characterization, as well as containment atmosphere temperature and pressure responses were determined. Pool-air reaction and aerosol behavior test results were compared with computer code calculations for reaction rates, containment atmosphere response, and aerosol behavior. The volatility of potentially radioactive metallic species from a lithium pool-air reaction was measured. The response of various aerosol detectors to the aerosol generated was determined. Liquid lithium spray tests in air and in nitrogen atmospheres were conducted with lithium temperatures of about 427 0 and 650 0 C. Lithium reaction rates, containment atmosphere response, and aerosol generation and characterization were determined for these spray tests

  20. Experimental test of a novel multi-surface trough solar concentrator for air heating

    International Nuclear Information System (INIS)

    Zheng Hongfei; Tao Tao; Ma Ming; Kang Huifang; Su Yuehong

    2012-01-01

    Highlights: ► We made a prototype novel multi-surface trough solar concentrator for air heating. ► Circular and rectangular types of receiver were chosen for air heating in the test. ► The changes of instantaneous system efficiency with different air flow were obtained. ► The system has the advantage of high collection temperature, which can be over 140 °C. ► The average efficiency can exceed 45% at the outlet temperature of above 60 °C. - Abstract: This study presents the experimental test of a novel multi-surface trough solar concentrator for air heating. Three receivers of different air flow channels are individually combined with the solar concentrator. The air outlet temperature and solar irradiance were recorded for different air flow rates under the real weather condition and used to determine the collection efficiency and time constant of the air heater system. The characteristics of the solar air heater with different airflow channels are compared, and the variation of the daily efficiency with the normalized temperature change is also presented. The testing results indicates that the highest temperature of the air heater with a circular glass receiver can be over 140 °C. When the collection temperature is around 60 °C, the collection efficiency can be over 45%. For the rectangular receivers, the system also has a considerable daily efficiency at a larger air flow rate. The air heater based on the novel trough solar concentrator would be suitable for space heating and drying applications.

  1. Air injection test on a Kaplan turbine: prototype - model comparison

    Science.gov (United States)

    Angulo, M.; Rivetti, A.; Díaz, L.; Liscia, S.

    2016-11-01

    Air injection is a very well-known resource to reduce pressure pulsation magnitude in turbines, especially on Francis type. In the case of large Kaplan designs, even when not so usual, it could be a solution to mitigate vibrations arising when tip vortex cavitation phenomenon becomes erosive and induces structural vibrations. In order to study this alternative, aeration tests were performed on a Kaplan turbine at model and prototype scales. The research was focused on efficiency of different air flow rates injected in reducing vibrations, especially at the draft tube and the discharge ring and also in the efficiency drop magnitude. It was found that results on both scales presents the same trend in particular for vibration levels at the discharge ring. The efficiency drop was overestimated on model tests while on prototype were less than 0.2 % for all power output. On prototype, air has a beneficial effect in reducing pressure fluctuations up to 0.2 ‰ of air flow rate. On model high speed image computing helped to quantify the volume of tip vortex cavitation that is strongly correlated with the vibration level. The hydrophone measurements did not capture the cavitation intensity when air is injected, however on prototype, it was detected by a sonometer installed at the draft tube access gallery.

  2. DISAIN SISTEM KENDALI MESIN AIR LEAK TEST MENGGUNAKAN SISTEM KENDALI PLC OMRON CJ2M DI HVAC (HEATING, VENTILATING, AND AIR CONDITIONING LINE 6

    Directory of Open Access Journals (Sweden)

    Syahril Ardi

    2015-03-01

    Full Text Available Pada proses produksi pembuatan komponen HVAC (Heating, Ventilating, and Air Conditioning dari perusahaan manufaktur di Indonesia, memerlukan proses pengecekan kebocoran pada bagian HVAC. Proses pengecekan ini dilakukan untuk memastikan tidak ada komponen HVAC yang bocor sebelum dikirim ke pihak pelanggan. Penelitian ini dilakukan untuk membuat system dan alat air leak test. Mesin air leak test ini menggunakan prinsip kerja differential pressure air leak test, yaitu metode yang membandingkan antara tekanan udara yang diberikan ke produk dan master produk. Pada penelitian ini, kami membuat disain mesin air leak test menggunakan sistem kendali berupa air leak tester, PLC, dan HMI. Berdasarkan kondisi dengan kapasitas produksi yang meningkat karena bertambahnya permintaan dari customer, dapat ditanggulangi dengan adanya share loading produksi dari HVAC line 4 ke line baru, yaitu HVAC line 6. Hasil yang didapat dari pengujian deteksi kebocoran produk,didapat nilai parameter kebocoran produk sebesar 2.23 ml/min.

  3. Double Trait Assessment Test Battery for Air Force Pilots

    National Research Council Canada - National Science Library

    Tarnowski, Adam

    1998-01-01

    Building on years of theoretical discussions as well as diagnostic experience in the Polish Air Force Institute of Aviation Medicine, a battery of psychological tests was proposed for the assessment...

  4. Testing and operation of nuclear air-cleaning systems in Qinshan NPP

    International Nuclear Information System (INIS)

    Yang Lin

    1993-01-01

    The components of nuclear air-cleaning system, system function, operational mode and the performance of cleaning components in Qinshan Nuclear Power Plant are described. The items, purpose, methods and results of in-place testing after the installation are also described in detail. The in-place testing verifies that nuclear air-cleaning systems in Qinshan Nuclear Power Plant are reliable and high effective. It also describes the points of the operational management. It is shown that the good operational management is the key which developed prescription function of nuclear air-cleaning systems. At present, Qinshan Nuclear Power Plant will be in full power, the normal operation of the system is satisfied with the demand of safe operation in Qinshan Nuclear Power Company

  5. The predictive validity of personality tests in air traffic controller selection

    NARCIS (Netherlands)

    Roe, R.A.; Oprins, E.A.P.B.; Geven, E.

    2012-01-01

    A brief historical review of test methods used for selecting air traffic controllers (ATCOs) shows that in contrast to e.g. ability tests and job samples, personality tests have been used rather infrequently. The lesser popularity of personality tests may be explained from the belief that

  6. Factor Structure of the Air Force Officer Qualifying Test: Analysis and Comparison

    National Research Council Canada - National Science Library

    Carreta, Thomas

    1998-01-01

    The Air Force Officer Qualifying Test (AFOQT) is used to qualify men and women for commissions in the Air Force, classify them for pilot and navigator jobs, and award Reserve Officer Training Corps (ROTC) scholarships...

  7. LIQUID AIR INTERFACE CORROSION TESTING FOR FY2010

    International Nuclear Information System (INIS)

    Zapp, P.

    2010-01-01

    An experimental study was undertaken to investigate the corrosivity to carbon steel of the liquid-air interface of dilute simulated radioactive waste solutions. Open-circuit potentials were measured on ASTM A537 carbon steel specimens located slightly above, at, and below the liquid-air interface of simulated waste solutions. The 0.12-inch-diameter specimens used in the study were sized to respond to the assumed distinctive chemical environment of the liquid-air interface, where localized corrosion in poorly inhibited solutions may frequently be observed. The practical inhibition of such localized corrosion in liquid radioactive waste storage tanks is based on empirical testing and a model of a liquid-air interface environment that is made more corrosive than the underlying bulk liquid due to chemical changes brought about by absorbed atmospheric carbon dioxide. The chemical changes were assumed to create a more corrosive open-circuit potential in carbon in contact with the liquid-air interface. Arrays of 4 small specimens spaced about 0.3 in. apart were partially immersed so that one specimen contacted the top of the meniscus of the test solution. Two specimens contacted the bulk liquid below the meniscus and one specimen was positioned in the vapor space above the meniscus. Measurements were carried out for up to 16 hours to ensure steady-state had been obtained. The results showed that there was no significant difference in open-circuit potentials between the meniscus-contact specimens and the bulk-liquid-contact specimens. With the measurement technique employed, no difference was detected between the electrochemical conditions of the meniscus versus the bulk liquid. Stable open-circuit potentials were measured on the specimen located in the vapor space above the meniscus, showing that there existed an electrochemical connection through a thin film of solution extending up from the meniscus. This observation supports the Hobbs-Wallace model of the development

  8. Air pollution control system testing at the DOE offgas components test facility

    International Nuclear Information System (INIS)

    Burns, D.B.; Speed, D.; VanPelt, W.; Burns, H.H.

    1997-01-01

    In 1997, the Department of Energy (DOE) Savannah River Site (SRS) plans to begin operation of the Consolidated Incineration Facility (CIF) to treat solid and liquid RCRA hazardous and mixed wastes. The Savannah River Technology Center (SRTC) leads an extensive technical support program designed to obtain incinerator and air pollution control equipment performance data to support facility start-up and operation. A key component of this technical support program includes the Offgas Components Test Facility (OCTF), a pilot-scale offgas system test bed. The primary goal for this test facility is to demonstrate and evaluate the performance of the planned CIF Air Pollution Control System (APCS). To accomplish this task, the OCTF has been equipped with a 1/10 scale CIF offgas system equipment components and instrumentation. In addition, the OCTF design maximizes the flexibility of APCS operation and facility instrumentation and sampling capabilities permit accurate characterization of all process streams throughout the facility. This allows APCS equipment performance to be evaluated in an integrated system under a wide range of possible operating conditions. This paper summarizes the use of this DOE test facility to successfully demonstrate APCS operability and maintainability, evaluate and optimize equipment and instrument performance, and provide direct CIF start-up support. These types of facilities are needed to permit resolution of technical issues associated with design and operation of systems that treat and dispose combustible hazardous, mixed, and low-level radioactive waste throughout and DOE complex

  9. Development of a large lithium coolant system for operation under vacuum

    International Nuclear Information System (INIS)

    Kolowith, R.; Schwartz, K.E.; Meadows, G.E.; Berg, J.D.

    1983-11-01

    Argon and vacuum systems for the Experimental Lithium System (ELS) were tested to demonstrate vacuum-break capability, vacuum pumping performance, and vacuum sensor compatibility with a hostile liquid metal vapor/aerosol environment. Mechanical, diffusion and cryogenic vacuum pumps were evaluated. High-vacuum levels in the 10 -3 Pa range were achieved over a 270 0 C flowing lithium system. Ionization, thermal conductivity, capacitance manometer, and compound-type pressure sensors were evaluated to determine the effects of this potentially deleterious environment. Screening elbows were evaluated as pressure sensor protective devices. A dual-purpose vacuum-level/nitrogen partial-pressure sensor was evaluated as a means of detecting air in-leakage. Several types of static mechanical vacuum seals were also evaluated. Measurements of the vapor/aerosol generation were made at several system locations and operating conditions

  10. Test Report for Perforated Metal Air Transportable Package (PMATO) Prototype.

    Energy Technology Data Exchange (ETDEWEB)

    Bobbe, Jeffery G.; Pierce, Jim Dwight

    2003-06-01

    A prototype design for a plutonium air transport package capable of carrying 7.6 kg of plutonium oxide and surviving a ''worst-case'' plane crash has been developed by Sandia National Laboratories (SNL) for the Japan Nuclear Cycle Development Institute (JNC). A series of impact tests were conducted on half-scale models of this design for side, end, and comer orientations at speeds close to 282 m/s onto a target designed to simulate weathered sandstone. These tests were designed to evaluate the performance of the overpack concept and impact-limiting materials in critical impact orientations. The impact tests of the Perforated Metal Air Transportable Package (PMATP) prototypes were performed at SNL's 10,000-ft rocket sled track. This report describes test facilities calibration and environmental testing methods of the PMATP under specific test conditions. The tests were conducted according to the test plan and procedures that were written by the authors and approved by SNL management and quality assurance personnel. The result of these tests was that the half-scale PMATP survived the ''worst-case'' airplane crash conditions, and indicated that a full-scale PMATP, utilizing this overpack concept and these impact-limiting materials, would also survive these crash conditions.

  11. Air trapping on HRCT in asthmatics: correlation with pulmonary function test

    International Nuclear Information System (INIS)

    Hwang, Jung Hwa; Cha, Chull Hee; Park, Jai Soung; Kim, Young Beom; Lee, Hae Kyung; Choi, Deuk Lin; Kim, Kyung Ho; Park, Choon Sik

    1997-01-01

    To evaluate on the basis of the pulmonary function test the correlation between the extent of air trapping on HRCT with the severity of airway obstruction and also to identify the prognostic effect of the extent of air trapping after treatment of asthma. Thirty five patients with clinically diagnosed bronchial asthma and air trapping, as seen on HRCT, were included in this study. We quantitatively analysed on HRCT the extent of air trapping and then statistically compared this with the clinical parameters of the pulmonary function test. We classified the patients into two groups on the basis of the pulmonary function test and clinical status : Group 1 (N=35), the total number of asthmatic patients; Group 2 (N=18), relatively stable asthmatics without acute asthmatic attack who showed FEV1 of more than 80% of the predicted value. Using the functional paramenters of PEFR, one of the obijective indicators of improvement in airway obstruction, we also classified the patients into three groups on the basis of interval between treatment and clinical improvement. The result of this was as follows : group 1, asymptomatic group (initial PEFR within normal limit, N=7); group 2, early responder (improvement of PEFR within three hospital days, N=18); group 3, late responder (improvement of PEFR within fourteen hospital days should there be a number here). Using HRCT, we then statistically analysed the differences between the three groups in the extent of air trapping. Among the total of 35 asthmatics, the extent of air trapping on HRCT showed significant correlation with FEV1 (r= -0.6161, p < 0.001) and MEFR (r= -0.6012, p < 0.001). Among the relatively stable asthmatics who showed FEV1 more than 80% of the predicted value, MEFR (r= -0.7553, p < 0.001) and FEF75 (r= -0.7529, p=0.012) showed statistically significant correlation with the extent of air trapping on HRCT, but there was no significant correlation between air trapping on HRCT and FEV1. In the three groups of

  12. Air trapping on HRCT in asthmatics: correlation with pulmonary function test

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jung Hwa; Cha, Chull Hee; Park, Jai Soung; Kim, Young Beom; Lee, Hae Kyung; Choi, Deuk Lin; Kim, Kyung Ho; Park, Choon Sik [Soonchunhyang Univ. College of Medicine, Seoul (Korea, Republic of)

    1997-02-01

    To evaluate on the basis of the pulmonary function test the correlation between the extent of air trapping on HRCT with the severity of airway obstruction and also to identify the prognostic effect of the extent of air trapping after treatment of asthma. Thirty five patients with clinically diagnosed bronchial asthma and air trapping, as seen on HRCT, were included in this study. We quantitatively analysed on HRCT the extent of air trapping and then statistically compared this with the clinical parameters of the pulmonary function test. We classified the patients into two groups on the basis of the pulmonary function test and clinical status : Group 1 (N=35), the total number of asthmatic patients; Group 2 (N=18), relatively stable asthmatics without acute asthmatic attack who showed FEV1 of more than 80% of the predicted value. Using the functional paramenters of PEFR, one of the obijective indicators of improvement in airway obstruction, we also classified the patients into three groups on the basis of interval between treatment and clinical improvement. The result of this was as follows : group 1, asymptomatic group (initial PEFR within normal limit, N=7); group 2, early responder (improvement of PEFR within three hospital days, N=18); group 3, late responder (improvement of PEFR within fourteen hospital days should there be a number here). Using HRCT, we then statistically analysed the differences between the three groups in the extent of air trapping. Among the total of 35 asthmatics, the extent of air trapping on HRCT showed significant correlation with FEV1 (r= -0.6161, p < 0.001) and MEFR (r= -0.6012, p < 0.001). Among the relatively stable asthmatics who showed FEV1 more than 80% of the predicted value, MEFR (r= -0.7553, p < 0.001) and FEF75 (r= -0.7529, p=0.012) showed statistically significant correlation with the extent of air trapping on HRCT, but there was no significant correlation between air trapping on HRCT and FEV1. In the three groups of

  13. 77 FR 28519 - Test Procedure Guidance for Room Air Conditioners, Residential Dishwashers, and Residential...

    Science.gov (United States)

    2012-05-15

    ... Guidance for Room Air Conditioners, Residential Dishwashers, and Residential Clothes Washers: Public... procedures for room air conditioners, residential dishwashers, and residential clothes washers. DATES: DOE...'s existing test procedures for residential room air conditioners, residential dishwashers, and...

  14. Operability Test Report for 241-U Compressed Air System and heat pump

    International Nuclear Information System (INIS)

    Rensink, G.E.

    1995-01-01

    The 241-U-701 compressed air system supplies instrument quality compressed air to Tank Farm 241-U. The system was upgraded. The operability test showed that the system operates within its intended design parameters. System performance was monitored, recorded, and used to identify areas of concern. Exceptions to the OTP and additional items for safe system performance were minimal and have been resolved; the air system is ready for Operation's use

  15. ASME N511-19XX, Standard for periodic in-service testing of nuclear air treatment, heating, ventilating and air conditioning systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    A draft version of the Standard is presented in this document. The Standard covers the requirements for periodic in-service testing of nuclear safety-related air treatment, heating, ventilating, and air conditioning systems in nuclear facilities. The Standard provides a basis for the development of test programs and does not include acceptance criteria, except in cases where the results of one test influence the performance of other tests. The Standard covers general inspection and test requirements, reference values, inspection and test requirements, generic tests, acceptance criteria, in-service test requirements, testing following an abnormal incident, corrective action requirements, and quality assurance. Mandatory appendices provide a visual inspection checklist and four test procedures. Non-mandatory appendices provide additional information and guidance on mounting frame pressure leak test procedure, corrective action, challenge gas substitute selection criteria, and test program development. 8 refs., 10 tabs.

  16. ASME N511-19XX, Standard for periodic in-service testing of nuclear air treatment, heating, ventilating and air conditioning systems

    International Nuclear Information System (INIS)

    1997-01-01

    A draft version of the Standard is presented in this document. The Standard covers the requirements for periodic in-service testing of nuclear safety-related air treatment, heating, ventilating, and air conditioning systems in nuclear facilities. The Standard provides a basis for the development of test programs and does not include acceptance criteria, except in cases where the results of one test influence the performance of other tests. The Standard covers general inspection and test requirements, reference values, inspection and test requirements, generic tests, acceptance criteria, in-service test requirements, testing following an abnormal incident, corrective action requirements, and quality assurance. Mandatory appendices provide a visual inspection checklist and four test procedures. Non-mandatory appendices provide additional information and guidance on mounting frame pressure leak test procedure, corrective action, challenge gas substitute selection criteria, and test program development. 8 refs., 10 tabs

  17. Air-injection testing in vertical boreholes in welded and nonwelded Tuff, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    LeCain, G.D.

    1997-12-31

    Air-injection tests, by use of straddle packers, were done in four vertical boreholes (UE-25 UZ-No.16, USW SD-12, USW NRG-6, and USW NRG-7a) at Yucca Mountain, Nevada. The geologic units tested were the Tiva Canyon Tuff, nonwelded tuffs of the Paintbrush Group, Topopah Spring Tuff, and Calico Hills Formation. Air-injection permeability values of the Tiva Canyon Tuff ranged from 0.3 x 10{sup -12} to 54.0 x 10{sup -12} m{sup 2}(square meter). Air-injection permeability values of the Paintbrush nonwelded tuff ranged from 0.12 x 10{sup -12} to 3.0 x 10{sup -12} m{sup 2}. Air-injection permeability values of the Topopah Spring Tuff ranged from 0.02 x 10{sup -12} to 33.0 x 10{sup -12} m{sup 2}. The air-injection permeability value of the only Calico Hills Formation interval tested was 0.025 x 10{sup -12} m{sup 2}. The shallow test intervals of the Tiva Canyon Tuff had the highest air-injection permeability values. Variograms of the air-injection permeability values of the Topopah Spring Tuff show a hole effect; an initial increase in the variogram values is followed by a decrease. The hole effect is due to the decrease in permeability with depth identified in several geologic zones. The hole effect indicates some structural control of the permeability distribution, possibly associated with the deposition and cooling of the tuff. Analysis of variance indicates that the air-injection permeability values of borehole NRG-7a of the Topopah Spring Tuff are different from the other boreholes; this indicates areal variation in permeability.

  18. Operability Test Report for 241-T compressed air system and heat pump

    International Nuclear Information System (INIS)

    Freeman, R.D.

    1995-02-01

    This Operability Test Report (OTR) documents the results of functional testing performed on the operating parameters of the 241-T-701 Compressed Air System. The System was successfully installed and tested per work package 2W-92-01172

  19. new developments for control room habitability evaluation and analysis. Panel Discussion

    International Nuclear Information System (INIS)

    Cozens, Kurt O.; Harvey, Robert B. Jr.; Hayes, John J. Jr.; Jarosz, Gregory; Lagus, Peter L.; Taplett, Kenneth J.; Schultz, Stephen P.

    2001-01-01

    analysis. It also includes guidance on how to demonstrate adequate protection of control room operators against the effects of postulated external releases of radioactivity, toxic gas, or smoke. Finally, it provides guidance on the development of a control room integrity program to facilitate long-term maintenance of the control room envelope. Air in-leakage testing is recommended in the NEI guidance. The team recommends the completion of a baseline test to determine the amount of unfiltered CRE in-leakage and provides guidance on its performance. The test may be performed using the ASTM E741 tracer gas methodology or a component test methodology. Provisions are made for defining alternate test methods. The purpose of this baseline test is to determine if the in-leakage is consistent with that used in the CRH evaluation. Following presentations and discussions with the NRC staff and NEI industry representatives in December 2000, the Advisory Committee on Reactor Safeguards (ACRS) prepared a comment letter to the NRC staff,2 and the NRC staff provided a response. The ACRS concluded that the current draft version of NEI 99-03 can provide excellent guidance to industry to deal with CRH issues and to ensure compliance with the applicable regulations. In response, NRC agreed and indicated that NRC plans to work with NEI to further refine it. Several important open issues remained following substantial dialogue between industry and the NRC staff. These include the following: 1. the frequency and method of testing; 2. the basis for establishing test frequency; 3. the proper level of regulatory control of in-leakage; 4. consideration of radiation doses from design-basis accidents; at adjacent units; 5. guidance for addressing smoke generated outside the control room. The new regulatory guide is currently under development by the NRC staff and is expected to be published for public comment in the summer of 2001. The current positions espoused by the staff are preliminary and may

  20. HEAT ENGINEERING TESTING OF AIR COOLING UNIT OF HORIZONTAL TYPE

    OpenAIRE

    Rohachov, Valerii Andriiovych; Semeniako, Oleksandr Volodymyrovych; Лазоренко, Р. О.; Середа, Р. М.; Parafeinyk, Volodymyr Petrovych

    2018-01-01

    The results of the thermal tests of the section of air cooler, the heat-exchange surface of which is made up of chess package of bimetal finned tubes are presented. The methods of research are presented, the experimental stand is described, the measurement errors are given. The efficiency of the experimental stand and the accuracy of the experimental data on it are confirmed. Proposed to use the stand for researches of air cooling units with other types and sections of finned tubes.

  1. EFFECTS OF TEMPERATURE AND CONTAMINATION ON MPCMS ELECTRODES IN 241-AY-101 AND 241-AN-107 TANK WASTE SIMULANTS

    Energy Technology Data Exchange (ETDEWEB)

    CATO DM; DAHL MM; PHILO GL; EDGEMON GL; BELL DR.JLS; MOORE CG

    2010-03-26

    This report documents the results of tests designed to characterize the relationship between temperature and the measured potential of electrodes installed on multi-probe corrosion monitoring systems in waste tanks. This report also documents the results of tests designed to demonstrate the impact of liquid in-leakage into electrode bodies as well as the contamination of primary reference electrodes by diffusion through the electrode tip.

  2. EFFECTS OF TEMPERATURE AND CONTAMINATION ON MPCMS ELECTRODES IN 241-AY-101 AND 241-AN-107 TANK WASTE SIMULANTS

    International Nuclear Information System (INIS)

    Cato, D.M.; Dahl, M.M.; Philo, G.L.; Edgemon, G.L.; Bell, J.L.S.; Moore, C.G.

    2010-01-01

    This report documents the results of tests designed to characterize the relationship between temperature and the measured potential of electrodes installed on multi-probe corrosion monitoring systems in waste tanks. This report also documents the results of tests designed to demonstrate the impact of liquid in-leakage into electrode bodies as well as the contamination of primary reference electrodes by diffusion through the electrode tip.

  3. Indoor simulation and testing of photovoltaic thermal (PV/T) air collectors

    NARCIS (Netherlands)

    Solanki, S.C.; Dubey, Swapnil; Tiwari, A.

    2009-01-01

    An indoor standard test procedure has been developed for thermal and electrical testing of PV/T collectors connected in series. For this, a PV/T solar air heater has been designed, fabricated and its performance over different operating parameters were studied. Based on the energy balance equations,

  4. Results from uranium deposition studies for development of a Limited Frequency-Unannounced Access (LFUA) inspection strategy for gas centrifuge enrichment plants

    International Nuclear Information System (INIS)

    Cooley, J.N.; Fields, L.W.; Swindle, D.W.

    1985-06-01

    Uranium deposition studies were performed on a test loop system designed to simulate process gas flow through the header piping of a gas centrifuge enrichment plant. The objectives of these studies were to investigate the effectiveness of an in-line gaseous cleaning agent in removing uranium in pipe deposits and to analyze long-term deposition growth and isotopic exchange under simulated centrifuge plant operating conditions. The test loop studies are described, the results are reported, and the implications for analyzing actual plant data are discussed. Results indicate that: 93% of the uranium deposit is removed within 15 min when a pipe is pressurized with gaseous ClF 3 ; the isotopic abundance of a highly enriched uranium deposit remains unchanged when UF 6 of a lower assay is introduced into the pipe; and air inleakage will be the cause of the largest deposits in centrifuge plant process header pipes. 3 refs., 3 figs., 3 tabs

  5. Large-scale generic test stand for testing of multiple configurations of air filters utilizing a range of particle size distributions

    Science.gov (United States)

    Giffin, Paxton K.; Parsons, Michael S.; Unz, Ronald J.; Waggoner, Charles A.

    2012-05-01

    The Institute for Clean Energy Technology (ICET) at Mississippi State University has developed a test stand capable of lifecycle testing of high efficiency particulate air filters and other filters specified in American Society of Mechanical Engineers Code on Nuclear Air and Gas Treatment (AG-1) filters. The test stand is currently equipped to test AG-1 Section FK radial flow filters, and expansion is currently underway to increase testing capabilities for other types of AG-1 filters. The test stand is capable of producing differential pressures of 12.45 kPa (50 in. w.c.) at volumetric air flow rates up to 113.3 m3/min (4000 CFM). Testing is performed at elevated and ambient conditions for temperature and relative humidity. Current testing utilizes three challenge aerosols: carbon black, alumina, and Arizona road dust (A1-Ultrafine). Each aerosol has a different mass median diameter to test loading over a wide range of particles sizes. The test stand is designed to monitor and maintain relative humidity and temperature to required specifications. Instrumentation is implemented on the upstream and downstream sections of the test stand as well as on the filter housing itself. Representative data are presented herein illustrating the test stand's capabilities. Digital images of the filter pack collected during and after testing is displayed after the representative data are discussed. In conclusion, the ICET test stand with AG-1 filter testing capabilities has been developed and hurdles such as test parameter stability and design flexibility overcome.

  6. 76 FR 18105 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Central Air...

    Science.gov (United States)

    2011-04-01

    ... the lab-added transformer. Id. Under this proposal, the instrument used to measure the electrical... the low-voltage transformer used when testing coil-only residential central air conditioners and heat... the Low-Voltage Transformer Used When Testing Coil- Only Central Air Conditioners and Heat Pumps and...

  7. Open-Air Biowarfare Testing and the Evolution of Values

    Science.gov (United States)

    2016-01-01

    The United States and the United Kingdom ended outdoor biological warfare testing in populated areas nearly half a century ago. Yet, the conduct, health effects, and propriety of those tests remain controversial. The varied views reflect the limits of currently available test information and evolving societal values on research involving human subjects. Western political culture has changed since the early days of the American and British testing programs. People have become less reluctant to question authority, and institutional review boards must now pre-approve research involving human subjects. Further, the heightened stringency of laboratory containment has accentuated the safety gap between a confined test space and one without physical boundaries. All this makes it less likely that masses of people would again be unwittingly subjected to secret open-air biological warfare tests. PMID:27564984

  8. Vacuum-to-air interface for the advanced test accelerator beam director

    International Nuclear Information System (INIS)

    Cruz, G.E.; Edwards, W.F.; Kavanagh, D.P.; Addis, R.B.; Weiss, W.C.; Livenspargar, C.M.

    1986-01-01

    A vacuum-to-air transition was created to facilitate the Lawrence Livermore National Laboratory's Advanced Test Accelerator (ATA) electron beam 1-Hz pulse rate. It is necessary that a pulsed particle beam go from a region at 10 -6 torr through a 1-cm-diam maximum aperture into a region at 760 torr. This must be accomplished without the use of windows or solid barriers. Two tests will be conducted on the vacuum-to-air interface. The first determines pressure profiles through 1.0-mm- and 10.0-mm-diam orifices. The second test employs an expendable foil and foil advancement mechanism. In this paper, the experimental results of the orifice test are presented and the analytical results are compared with the empirical results. The foil advancement test will be documented after the test is completed. The mechanism serves both as an orifice and as a fast-acting vacuum valve. In operation, the electron beam penetrates the thin foil, thereby creating an aperture of minimum geometry. During the balance of the pulse cycle, after the beam duration, the foil is advanced to seal the opening and recover the almost negligible loss in vacuum

  9. Solubility testing of actinides on breathing-zone and area air samples

    International Nuclear Information System (INIS)

    Metzger, R.L.; Jessop, B.H.; McDowell, B.L.

    1996-02-01

    A solubility testing method for several common actinides has been developed with sufficient sensitivity to allow profiles to be determined from routine breathing zone and area air samples in the workplace. Air samples are covered with a clean filter to form a filter-sample-filter sandwich which is immersed in an extracellular lung serum simulant solution. The sample is moved to a fresh beaker of the lung fluid simulant each day for one week, and then weekly until the end of the 28 day test period. The soak solutions are wet ashed with nitric acid and hydrogen peroxide to destroy the organic components of the lung simulant solution prior to extraction of the nuclides of interest directly into an extractive scintillator for subsequent counting on a Photon-Electron Rejecting Alpha Liquid Scintillation (PERALS reg-sign) spectrometer. Solvent extraction methods utilizing the extractive scintillators have been developed for the isotopes of uranium, plutonium, and curium. The procedures normally produce an isotopic recovery greater than 95% and have been used to develop solubility profiles from air samples with 40 pCi or less of U 3 O 8 . Profiles developed for U 3 O 8 samples show good agreement with in vitro and in vivo tests performed by other investigators on samples from the same uranium mills

  10. Field Measurements of Perceived Air Quality in the Test-Bed for Innovative Climate Conditioning Technologies

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Toftum, Jørn; Kabrhel, Michal

    the potential influence of aforementioned technologies on the perceived air quality. Additionally, the effect of Demand Controlled Ventilation (DCV) on the perceived air quality was tested. Measurements comprised of the assessments of perceived air quality and objective measurements of operative temperature...

  11. Experiments on hydraulically-compensated Compressed Air Energy Storage (CAES) system using large-diameter vertical pipe two-phase flow test facility: test facility and test procedure

    International Nuclear Information System (INIS)

    Ohtsu, Iwao; Murata, Hideo; Kukita, Yutaka; Kumamaru, Hiroshige.

    1996-07-01

    JAERI, the University of Tokyo, the Central Research Institute of Electric Power Industry and Shimizu Corporation jointing performed and experimental study on two-phase flow in the hydraulically-compensated Compressed Air Energy Storage (CAES) system with a large-diameter vertical pipe two-phase flow test facility from 1993 to 1995. A hydraulically-compensated CAES system is a proposed, conceptual energy storage system where energy is stored in the form of compressed air in an underground cavern which is sealed by a deep (several hundred meters) water shaft. The shaft water head maintains a constant pressure in the cavern, of several mega Pascals, even during loading or unloading of the cavern with air. The dissolved air in the water, however, may create voids in the shaft when the water rises through the shaft during the loading, being forced by the air flow into the cavern. The voids may reduce the effective head of the shaft, and thus the seal may fail, if significant bubbling should occur in the shaft. This bubbling phenomenon (termed 'Champaign effect') and potential failure of the water seal ('blowout') are simulated in a scaled-height, scaled-diameter facility. Carbon dioxide is used to simulate high solubility of air in the full-height, full-pressure system. This report describes the expected and potential two-phase flow phenomena in a hydraulically-compensated CAES system, the test facility and the test procedure, a method to estimate quantities which are not directly measured by using measured quantities and hydrodynamic basic equations, and desirable additional instrumentation. (author)

  12. Identification of conductive hearing loss using air conduction tests alone: reliability and validity of an automatic test battery.

    Science.gov (United States)

    Convery, Elizabeth; Keidser, Gitte; Seeto, Mark; Freeston, Katrina; Zhou, Dan; Dillon, Harvey

    2014-01-01

    The primary objective of this study was to determine whether a combination of automatically administered pure-tone audiometry and a tone-in-noise detection task, both delivered via an air conduction (AC) pathway, could reliably and validly predict the presence of a conductive component to the hearing loss. The authors hypothesized that performance on the battery of tests would vary according to hearing loss type. A secondary objective was to evaluate the reliability and validity of a novel automatic audiometry algorithm to assess its suitability for inclusion in the test battery. Participants underwent a series of hearing assessments that were conducted in a randomized order: manual pure-tone air conduction audiometry and bone conduction audiometry; automatic pure-tone air conduction audiometry; and an automatic tone-in-noise detection task. The automatic tests were each administered twice. The ability of the automatic test battery to: (a) predict the presence of an air-bone gap (ABG); and (b) accurately measure AC hearing thresholds was assessed against the results of manual audiometry. Test-retest conditions were compared to determine the reliability of each component of the automatic test battery. Data were collected on 120 ears from normal-hearing and conductive, sensorineural, and mixed hearing-loss subgroups. Performance differences between different types of hearing loss were observed. Ears with a conductive component (conductive and mixed ears) tended to have normal signal to noise ratios (SNR) despite impaired thresholds in quiet, while ears without a conductive component (normal and sensorineural ears) demonstrated, on average, an increasing relationship between their thresholds in quiet and their achieved SNR. Using the relationship between these two measures among ears with no conductive component as a benchmark, the likelihood that an ear has a conductive component can be estimated based on the deviation from this benchmark. The sensitivity and

  13. PA171 Containers on a Wood Pallet with Metal Top Adapter, Air Pressure Tests During MIL-STD-1660 Tests

    National Research Council Canada - National Science Library

    2004-01-01

    ... (PM-MAS) to conduct Air Pressure Tests during MIL-STD-1660, "Design Criteria for Ammunition Unit Loads" testing on the PA171 containers on a wood pallet with metal top adapter as manufactured by Alliant Tech...

  14. Advances in developing a new test method to assess spray drift potential from air blast sprayers

    Energy Technology Data Exchange (ETDEWEB)

    Grella, M.; Gil, E.; Balsari, P.; Marucco, P.; Gallart, M.

    2017-07-01

    Drift is one of the most important issues to consider for realising sustainable pesticide sprays. This study proposes and tests an alternative methodology for quantifying the drift potential (DP) of air blast sprayers, trying to avoid the difficulties faced in conducting field trials according to the standard protocol (ISO 22866:2005). For this purpose, an ad hoc test bench designed for DP comparative measurements was used. The proposed methodology was evaluated in terms of robustness, repetitiveness and coherence by arranging a series of trials at two laboratories. Representative orchard and vineyard air blast sprayers in eight configurations (combination of two forward speeds, two air fan flow rates, and two nozzle types) were tested. The test bench was placed perpendicular to the spray track to collect the fraction of spray liquid remaining in the air after the spray process and potentially susceptible to drift out of the treated area. Downwind spray deposition curves were obtained and a new approach was proposed to calculate an index value of the DP estimation that could allow the differences among the tested configurations to be described. Results indicated that forward speed of 1.67 m/s allows better discrimination among configurations tested. Highest DP reduction, over 87.5%, was achieved using the TVI nozzles in combination with low air fan flow rate in both laboratories; conversely, the highest DP value was obtained with the ATR nozzles in combination with high air fan flow rate. Although the proposed method shows a promising potential to evaluate drift potential of different sprayer types and nozzles types used for bush and tree crops further research and tests are necessary to improve and validate this method.

  15. Investigation of a vacuum system of the U-240 isochronous cyclotron

    International Nuclear Information System (INIS)

    Bykov, V.I.; Glushko, A.Ya.; Olejnik, E.E.; Prokopenko, V.S.

    1988-01-01

    The investigation results of intensity loss causes of accelerated heavy and H - ions on residual gas in the accelerator chamber were given. The results are compared with the gas inleakage data, performed by the MX-7304 mass-spectrometer. It was shown that the pumping out of heavy molecules of residual gas, inleakage reduction from the source and vacuum hygiene requirement observance, decrease to a considerable degree the ion intensity losses in acceleration process. 8 refs.; 7 figs

  16. 76 FR 82323 - Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units

    Science.gov (United States)

    2011-12-30

    ... Filtration and Adsorption Units AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide... for Air Filtration and Adsorption Units of Postaccident Engineered-Safety-Feature Atmosphere Cleanup... testing of air filtration and iodine adsorption units of engineered-safety-feature (ESF) atmosphere...

  17. ALMERA Proficiency Test: Determination of Gamma Emitting Radionuclides in Simulated Air Filters

    International Nuclear Information System (INIS)

    2010-01-01

    The activity concentration of radionuclides in air is a critical factor in assessing the air quality and the potential impact of possible pollutants. Air is in fact one of the main pathways for human exposure to radioactivity. Radioactivity may be present in the atmosphere due to natural processes; intentional (low level) anthropogenic release; or as a consequence of nuclear or radiological incident. The resulting environmental impact should be considered carefully to ensure safety and compliance with environmental regulations. A reliable determination of radionuclides in air is necessary for regular monitoring of air quality to comply with radiation protection and environmental regulations. This proficiency test (PT) is one of the series of the ALMERA network proficiency tests organised on regular basis by the Terrestrial Environment Laboratory in Seibersdorf, designed to assess the technical capacity of ALMERA Members in analysing radionuclides to identify any analytical problems and to support ALMERA laboratories to maintain their preparedness to provide rapid and reliable analytical results. The range of simulated air filters used in this PT for analysis has been mainly at environmental level. The PT set consisted of four filters. The participating laboratories were requested to analyze Mn-54, Co-57, Fe-59, Co-60, Zn-65, Cd-109, Ba-133, Cs-134, Cs-137, Eu-152 and Am-241 in filters 01, 02 and 03. The participants were informed that only some of the listed radionuclides were present in the filters and the levels of the radionuclides were such that they could be measured within a 6-hour measurement period using a conventional HPGe gammaspectrometer of 35% relative efficiency. Filter 04, was containing only Co-60 and Ba-133 with known activities to the participants, had to be used as a control for the efficiency calibration. The tasks of IAEA were to prepare and distribute the simulated air filters to the participating laboratories, to collect and interpret

  18. 42 CFR 84.157 - Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum...

    Science.gov (United States)

    2010-10-01

    ... test; Type C supplied-air respirator, pressure-demand class; minimum requirements. (a) The static... 42 Public Health 1 2010-10-01 2010-10-01 false Airflow resistance test; Type C supplied-air respirator, pressure-demand class; minimum requirements. 84.157 Section 84.157 Public Health PUBLIC HEALTH...

  19. CMHC [Canada Mortgage and Housing Corporation] research project: Testing of air barrier construction details 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-31

    Air leakage control through the building envelope of wood framed houses is more important than ever. This is because owners expect better temperature control, higher indoor humidity in winter, low energy consumption and building durability. The leakage of air is controlled by the air barrier system. There are several new technologies to construct an air barrier system for the building envelope. These are the Poly Approach, the Air Drywall Approach (ADA) and the EASE system. The development of these systems was undertaken primarily by the building community without significant research and development. While it is believed that these methods improve airtightness it is not known if the improvement is marginal or significant. A study was conducted to determine actual performace of several different types of construction details for each of the different approaches. Each of these details was designed and constructed using one of the air barrier methods and tested in the laboratory. The test details included sill plate, the partition wall, the stair stringer, the electrical outlets, the bathtub detail, the plumbing stack detail, the metal chimney detail, the bathroom fan detail and the EASE wall system. The test results revealed that the Poly, ADA and EASE approaches reduce air leakage by a factor of six, if applied with a modest degree of workmanship. Further, certain Poly details are to be reconsidered because they lack adequate support against design wind load pressures. 37 figs., 12 tabs.

  20. Sample and injection manifolds used to in-place test of nuclear air-cleaning system

    International Nuclear Information System (INIS)

    Qiu Dangui; Li Xinzhi; Hou Jianrong; Qiao Taifei; Wu Tao; Zhang Jirong; Han Lihong

    2012-01-01

    Objective: According to the regulations of nuclear safety rules and related standards, in-place test of the nuclear air-cleaning systems should be carried out before and during operation of the nuclear facilities, which ensure them to be in good condition. In some special conditions, the use of sample and injection manifolds is required to make the test tracer and ventilating duct air fully mixed, so as to get the on-spot typical sample. Methods: This paper introduces the technology and application of the sample and injection manifolds in nuclear air-cleaning system. Results: Multi point injection and multi point sampling technology as an effective experimental method, has been used in a of domestic and international nuclear facilities. Conclusion: The technology solved the problem of uniformly of on-spot injection and sampling,which plays an important role in objectively evaluating the function of nuclear air-cleaning system. (authors)

  1. Acceptance Test Procedure: SY101 air pallet system

    International Nuclear Information System (INIS)

    Koons, B.M.

    1995-01-01

    The purpose of this test procedure is to verify that the system(s) procured to load the SY-101 Mitigation Test Pump package fulfills its functional requirements. It will also help determine the man dose expected due to handling of the package during the actual event. The scope of this procedure focuses on the ability of the air pallets and container saddles to carry the container package from the new 100 foot concrete pad into 2403-WD where it will be stored awaiting final disposition. This test attempts to simulate the actual event of depositing the SY-101 hydrogen mitigation test pump into the 2403-WD building. However, at the time of testing road modifications required to drive the 100 ton trailer into CWC were not performed. Therefore a flatbed trailer will be use to transport the container to CWC. The time required to off load the container from the 100 ton trailer will be recorded for man dose evaluation on location. The cranes used for this test will also be different than the actual event. This is not considered to be an issue due to minimal effects on man dose

  2. THE COMPLEX OF STANDS FOR TESTING THE AIR CUSHION CHASSIS OF AIRCRAFT AND VEHICLES

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available This article deals with a set of stands made in NIMK TSAGI for testing and creating the air cushion chassis for the aircraft and vehicles. It allows to fully embrace the process of developing and constructing the air cushion chassis for air- craft and solve problems relating to peculiarities of such aircraft on the takeoff, landing and movement in the elementary prepared and unprepared soil runways, flat terrain and water areas. The complex includes: the experimental installation to study aeroelasticity phenomena of the chassis in the extending and retracting process with simulation of aircraft and ekran- oplane takeoff and landing modes in the air flow, including the wind tunnels; the experimental stand with vertical screen for testing of ekranoplane models in T-5 wind tunnel of NIMC TsAGI, permitting to simultaneously vary the model’s posi- tion relatively to the screen, roll, pitch (angle of attack, and banking; mobile experimental stand with contact crawler gear, for experimental determination and comparative evaluation of the chassis with different patterns of formation and air cush- ion fences for all-year-round testing in natural conditions at elementary-prepared and unprepared sites and water areas. Based on mathematical simulation of flow past in the wind tunnel the possibility of use booth stand with vertical screen and experimental installation to study aeroelasticity phenomena of the chassis for experimental studies, respectively, by defini- tion of the aerodynamic characteristics of forces and moments of the air cushion aircraft and ekranoplanes models and the research of phenomena of aeroelasticity of flexible fencing is substantiated.

  3. Hydrogen generation during treatment of simulated high-level radioactive waste with formic acid

    International Nuclear Information System (INIS)

    Ritter, J.A.; Zamecnik, J.R.; Hsu, C.W.

    1992-01-01

    The Integrated Defense Waste Processing Facility (DWPF) Melter System (IDMS), operated by the Savannah River Laboratory, is a one-fifth scale pilot facility used in support of the start-up and operation of the Department of Energy's DWPF. Five IDMS runs determined the effect of the presence of noble metals in HLW sludge on the H 2 generation rate during the preparation of melter feed with formic acid. Overall, the results clearly showed that H 2 generation in the DWPF SRAT could, at times, exceed the lower flammable limit of H 2 in air (4 vol%), depending on such factors as offgas generation and air inleakage of the DWPF vessels. Therefore, the installation of a forced air purge system and H 2 monitors were recommended to the DWPF to control the generation of H 2 during melter feed preparation by fuel dilution

  4. 40 CFR 86.165-12 - Air conditioning idle test procedure.

    Science.gov (United States)

    2010-07-01

    .... If engine stalling occurs during cycle operation, follow the provisions of § 86.136-90 to restart the... minimum of 30 second intervals. (d) Test sequence. (1) Connect the vehicle exhaust system to the raw..., close the vehicle's hood, fully close all the vehicle's windows, ensure that all the vehicle's air...

  5. Planes, Politics and Oral Proficiency: Testing International Air Traffic Controllers

    Science.gov (United States)

    Moder, Carol Lynn; Halleck, Gene B.

    2009-01-01

    This study investigates the variation in oral proficiency demonstrated by 14 Air Traffic Controllers across two types of testing tasks: work-related radio telephony-based tasks and non-specific English tasks on aviation topics. Their performance was compared statistically in terms of level ratings on the International Civil Aviation Organization…

  6. Process modeling study of the CIF incinerator

    International Nuclear Information System (INIS)

    Hang, T.

    1995-01-01

    The Savannah River Site (SRS) plans to begin operating the Consolidated Incineration Facility (CIF) in 1996. The CIF will treat liquid and solid low-level radioactive, mixed and RCRA hazardous wastes generated at SRS. In addition to experimental test programs, process modeling was applied to provide guidance in areas of safety, environmental regulation compliances, process improvement and optimization. A steady-state flowsheet model was used to calculate material/energy balances and to track key chemical constituents throughout the process units. Dynamic models were developed to predict the CIF transient characteristics in normal and abnormal operation scenarios. Predictions include the rotary kiln heat transfer, dynamic responses of the CIF to fluctuations in the solid waste feed or upsets in the system equipments, performance of the control system, air inleakage in the kiln, etc. This paper reviews the modeling study performed to assist in the deflagration risk assessment

  7. Performance test of a grid-tied PV system to power a split air conditioner system in Surabaya

    Science.gov (United States)

    Tarigan, E.

    2017-11-01

    Air conditioner for cooling air is one of the major needs for those who live in hot climate area such as Indonesia. This work presents the performance test of a grid-tied PV system to power air conditioner under a hot tropical climate in Surabaya, Indonesia. A 800 WP grid-tied photovoltaic (PV) system was used, and its performance was tested to power a 0.5 pk of split air conditioner system. It was found that about 3.5 kWh daily energy was consumed by the tested air conditioner system, and about 80% it could be supplied from the PV system. While the other 20% was supplied by the grid during periods of low solar irradiation, 440 Wh of energy was fed into the grid during operation out of office hours. By using the grid-tied PV system, the energy production by PV system did not need to match the consumption of the air conditioner. However, a larger capacity of PV system would mean that a higher percentage of the load would be covered by PV system.

  8. 10 CFR Appendix F to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Room Air Conditioners

    Science.gov (United States)

    2010-01-01

    ... of Room Air Conditioners F Appendix F to Subpart B of Part 430 Energy DEPARTMENT OF ENERGY ENERGY... Conditioners 1. Test method. The test method for testing room air conditioners shall consist of application of the methods and conditions in American National Standard (ANS) Z234.1-1972, “Room Air Conditioners...

  9. Multinodal control room envelope model used for habitability analysis

    International Nuclear Information System (INIS)

    Blumberg, W.M.; Gore, D.E.

    1995-01-01

    This work analyzes the habitability of the control room envelope (CRE) during an off-normal ventilation system condition. The most limiting design basis accident utilized for this analysis is the postulated loss-of-coolant accident. The off-normal condition assumes two rooms within the CRE are at pressures that are lower than adjoining rooms outside the CRE. This pressure differential allows unfiltered in-leakage to enter the CRE through the doors and penetrations in these rooms. This paper quantifies the maximum unfiltered in-leakage

  10. The accuracy of postoperative, non-invasive Air-Test to diagnose atelectasis in healthy patients after surgery: a prospective, diagnostic pilot study.

    Science.gov (United States)

    Ferrando, Carlos; Romero, Carolina; Tusman, Gerardo; Suarez-Sipmann, Fernando; Canet, Jaume; Dosdá, Rosa; Valls, Paola; Villena, Abigail; Serralta, Ferran; Jurado, Ana; Carrizo, Juan; Navarro, Jose; Parrilla, Cristina; Romero, Jose E; Pozo, Natividad; Soro, Marina; Villar, Jesús; Belda, Francisco Javier

    2017-05-29

    To assess the diagnostic accuracy of peripheral capillary oxygen saturation (SpO 2 ) while breathing room air for 5 min (the 'Air-Test') in detecting postoperative atelectasis. Prospective cohort study. Diagnostic accuracy was assessed by measuring the agreement between the index test and the reference standard CT scan images. Postanaesthetic care unit in a tertiary hospital in Spain. Three hundred and fifty patients from 12 January to 7 February 2015; 170 patients scheduled for surgery under general anaesthesia who were admitted into the postsurgical unit were included. The Air-Test was performed in conscious extubated patients after a 30 min stabilisation period during which they received supplemental oxygen therapy via a venturi mask. The Air-Test was defined as positive when SpO 2 was ≤96% and negative when SpO 2 was ≥97%. Arterial blood gases were measured in all patients at the end of the Air-Test. In the subsequent 25 min, the presence of atelectasis was evaluated by performing a CT scan in 59 randomly selected patients. The primary study outcome was assessment of the accuracy of the Air-Test for detecting postoperative atelectasis compared with the reference standard. The secondary outcome was the incidence of positive Air-Test results. The Air-Test diagnosed postoperative atelectasis with an area under the receiver operating characteristic curve of 0.90 (95% CI 0.82 to 0.98) with a sensitivity of 82.6% and a specificity of 87.8%. The presence of atelectasis was confirmed by CT scans in all patients (30/30) with positive and in 5 patients (17%) with negative Air-Test results. Based on the Air-Test, postoperative atelectasis was present in 36% of the patients (62 out of 170). The Air-Test may represent an accurate, simple, inexpensive and non-invasive method for diagnosing postoperative atelectasis. NCT02650037. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is

  11. Development of a Smart Release Algorithm for Mid-Air Separation of Parachute Test Articles

    Science.gov (United States)

    Moore, James W.

    2011-01-01

    The Crew Exploration Vehicle Parachute Assembly System (CPAS) project is currently developing an autonomous method to separate a capsule-shaped parachute test vehicle from an air-drop platform for use in the test program to develop and validate the parachute system for the Orion spacecraft. The CPAS project seeks to perform air-drop tests of an Orion-like boilerplate capsule. Delivery of the boilerplate capsule to the test condition has proven to be a critical and complicated task. In the current concept, the boilerplate vehicle is extracted from an aircraft on top of a Type V pallet and then separated from the pallet in mid-air. The attitude of the vehicles at separation is critical to avoiding re-contact and successfully deploying the boilerplate into a heatshield-down orientation. Neither the pallet nor the boilerplate has an active control system. However, the attitude of the mated vehicle as a function of time is somewhat predictable. CPAS engineers have designed an avionics system to monitor the attitude of the mated vehicle as it is extracted from the aircraft and command a release when the desired conditions are met. The algorithm includes contingency capabilities designed to release the test vehicle before undesirable orientations occur. The algorithm was verified with simulation and ground testing. The pre-flight development and testing is discussed and limitations of ground testing are noted. The CPAS project performed a series of three drop tests as a proof-of-concept of the release technique. These tests helped to refine the attitude instrumentation and software algorithm to be used on future tests. The drop tests are described in detail and the evolution of the release system with each test is described.

  12. Transfer of Air Force technical procurement bid set data to small businesses, using CALS and EDI: Test report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-08-15

    This report documents a test transfer of three Air Force technical procurement bid sets to one large and twelve small businesses, using the Department of Defense (DoD) Continuous Acquisition and Life-cycle Support (CALS) and ANSI ASC X12 Electronic Data Interchange (EDI) standards. The main goal of the test was to evaluate the effectiveness of using CALS technical data within the context of the DoD`s EDI-based standard approach to electronic commerce in procurement, with particular emphasis on receipt and use of the data by small contractors. Air Force procurement data was provided by the Sacramento Air Logistics Center at McClellan Air Force Base; the manufacturing participants were selected from among McClellan`s ``Blue Ribbon`` contractors, located throughout the US. The test was sponsored by the Air Force CALS Test Network, headquartered at Wright-Patterson Air Force Base. The test successfully demonstrated the technical feasibility of including CALS MIL-R-28002 (Raster) engineering data in an EDI Specification/Technical Information transaction set (ANSI ASC X12 841) when issuing electronic requests for quotation to small businesses. In many cases, the data was complete enough for the contractor participant to feel comfortable generating a quote. Lessons learned from the test are being fed back to the CALS and EDI standards organizations, and to future implementors of CALS-EDI based acquisition or contracting systems, which require the transfer of technical information, such as engineering data, manufacturing process data, quality test data, and other product or process data, in the form of a CALS or other digital datafile.

  13. Analytical support for the preparation of bundle test QUENCH-10 on air ingress

    International Nuclear Information System (INIS)

    Birchley, J.; Haste, T.; Homann, C.; Hering, W.

    2005-07-01

    Bundle test QUENCH-10 is dedicated to study air ingress with subsequent water quench during a supposed accident in a spent fuel storage tank. It was proposed by AEKI, Budapest, Hungary and was performed on 21 July 2004 in the QUENCH facility at Forschungszentrum Karlsruhe. Preparation of the test is based on common analytical work at Forschungszentrum Karlsruhe and Paul Scherrer Institut, Villigen, Switzerland, mainly with the severe accident codes SCDAP/RELAP5 and MELCOR, to derive the protocol for the essential test phases, namely pre-oxidation, air ingress and quench phase. For issues that could not be tackled by this computational work, suggestions for the test conduct were made and applied during the test. Improvements of the experimental set-up and the test conduct were suggested and largely applied. In SCDAP/RELAP5, an error was found: for thick oxide scales, the output value of the oxide scale is sensibly underestimated. For the aims of the test preparation, its consequences could be taken into account. Together with the related computational and other analytical support by the engaged institutions the test is co-financed as test QUENCH-L1 by the European Community under the Euratom Fifth Framework Programme on Nuclear Fission Safety 1998 - 2002 (LACOMERA Project, contract No. FIR1-CT2002-40158). (orig.)

  14. Construction and testing of a blower-door assembly for regulation of air pressure within structures

    International Nuclear Information System (INIS)

    Steele, W.D.

    1987-09-01

    The Technical Measurements Center is evaluating several methods to decrease the time required to determine an annual average radon-daughter concentration in structures. One method involves stabilizing the air pressure within the structure at a constant pressure with reference to external atmospheric or soil-gas pressure. This report describes the construction and preliminary testing of a blower-door system to maintain a constant differential air pressure within a structure. The blower-door assembly includes a collapsible frame and a large fan to occlude a doorway, a damper with an actuator to control air flow, a controller to drive the damper actuator, and a pressure transducer to measure the differential pressure. Preliminary testing of the system indicates that pressure within the structure in the range of 1 to 20 Pascals can be held to within approximately +-1 Pa of the set point. Further testing of the blower-door system is planned to provide data on the applicability of this method to short-duration tests for annual average radon-daughter concentration estimates. 13 figs., 1 tab

  15. Field Performance Test of an Air-Cleaner with Photocatalysis-Plasma Synergistic Reactors for Practical and Long-Term Use

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Ochiai

    2014-10-01

    Full Text Available A practical and long-term usable air-cleaner based on the synergy of photocatalysis and plasma treatments has been developed. A field test of the air-cleaner was carried out in an office smoking room. The results were compared to previously reported laboratory test results. Even after a treatment of 12,000 cigarettes-worth of tobacco smoke, the air-cleaner maintained high-level air-purification activity (98.9% ± 0.1% and 88% ± 1% removal of the total suspended particulate (TSP and total volatile organic compound (TVOC concentrations, respectively at single-pass conditions. Although the removal ratio of TSP concentrations was 98.6% ± 0.2%, the ratio of TVOC concentrations was 43.8% after a treatment of 21,900 cigarettes-worth of tobacco smoke in the field test. These results indicate the importance of suitable maintenance of the reactors in the air-cleaner during field use.

  16. Summary of air permeability data from single-hole injection tests in unsaturated fractured tuffs at the Apache Leap Research Site: Results of steady-state test interpretation

    International Nuclear Information System (INIS)

    Guzman, A.G.; Geddis, A.M.; Henrich, M.J.; Lohrstorfer, C.F.; Neuman, S.P.

    1996-03-01

    This document summarizes air permeability estimates obtained from single hole pneumatic injection tests in unsaturated fractured tuffs at the Covered Borehole Site (CBS) within the larger apache Leap Research Site (ALRS). Only permeability estimates obtained from a steady state interpretation of relatively stable pressure and flow rate data are included. Tests were conducted in five boreholes inclined at 45 degree to the horizontal, and one vertical borehole. Over 180 borehole segments were tested by setting the packers 1 m apart. Additional tests were conducted in segments of lengths 0.5, 2.0, and 3.0 m in one borehole, and 2.0 m in another borehole, bringing the total number of tests to over 270. Tests were conducted by maintaining a constant injection rate until air pressure became relatively stable and remained so for some time. The injection rate was then incremented by a constant value and the procedure repeated. The air injection rate, pressure, temperature, and relative humidity were recorded. For each relatively stable period of injection rate and pressure, air permeability was estimated by treating the rock around each test interval as a uniform, isotropic porous medium within which air flows as a single phase under steady state, in a pressure field exhibiting prolate spheroidal symmetry. For each permeability estimate the authors list the corresponding injection rate, pressure, temperature and relative humidity. They also present selected graphs which show how the latter quantities vary with time; logarithmic plots of pressure versus time which demonstrate the importance of borehole storage effects during the early transient portion of each incremental test period; and semilogarithmic plots of pressure versus recovery time at the end of each test sequence

  17. A Flight Control System Architecture for the NASA AirSTAR Flight Test Infrastructure

    Science.gov (United States)

    Murch, Austin M.

    2008-01-01

    A flight control system architecture for the NASA AirSTAR infrastructure has been designed to address the challenges associated with safe and efficient flight testing of research control laws in adverse flight conditions. The AirSTAR flight control system provides a flexible framework that enables NASA Aviation Safety Program research objectives, and includes the ability to rapidly integrate and test research control laws, emulate component or sensor failures, inject automated control surface perturbations, and provide a baseline control law for comparison to research control laws and to increase operational efficiency. The current baseline control law uses an angle of attack command augmentation system for the pitch axis and simple stability augmentation for the roll and yaw axes.

  18. Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)

    Science.gov (United States)

    Forbes, John C.; Xenofos, George D.; Farrow, John L.; Tyler, Tom; Williams, Robert; Sargent, Scott; Moharos, Jozsef

    2004-01-01

    To support development of the Boeing-Rocketdyne RS84 rocket engine, a full-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrumentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors.

  19. Evaluation of malodor for automobile air conditioner evaporator by using laboratory-scale test cooling bench.

    Science.gov (United States)

    Kim, Kyung Hwan; Kim, Sun Hwa; Jung, Young Rim; Kim, Man Goo

    2008-09-12

    As one of the measures to improve the environment in an automobile, malodor caused by the automobile air-conditioning system evaporator was evaluated and analyzed using laboratory-scale test cooling bench. The odor was simulated with an evaporator test cooling bench equipped with an airflow controller, air temperature and relative humidity controller. To simulate the same odor characteristics that occur from automobiles, one previously used automobile air conditioner evaporator associated with unpleasant odors was selected. The odor was evaluated by trained panels and collected with aluminum polyester bags. Collected samples were analyzed by thermal desorption into a cryotrap and subsequent gas chromatographic separation, followed by simultaneous olfactometry, flame ionization detector and identified by atomic emission detection and mass spectrometry. Compounds such as alcohols, aldehydes, and organic acids were identified as responsible odor-active compounds. Gas chromatography/flame ionization detection/olfactometry combined sensory method with instrumental analysis was very effective as an odor evaluation method in an automobile air-conditioning system evaporator.

  20. Accelerated aging, natural aging, and small punch testing of gamma-air sterilized polycarbonate urethane acetabular components.

    Science.gov (United States)

    Kurtz, S M; Siskey, R; Reitman, M

    2010-05-01

    The objectives of this study were three-fold: (1) to determine the applicability of the small punch test to characterize Bionate 80A polycarbonate urethane (PCU) acetabular implants; (2) to evaluate the susceptibility of PCU acetabular implants to exhibit degradation of mechanical behavior following gamma irradiation in air and accelerated aging; and (3) to compare the oxidation of gamma-air sterilized PCU following accelerated aging and 5 years of natural shelf aging. In addition to attenuated total reflectance-Fourier transform infrared spectroscopy, we also adapted a miniature specimen mechanical test, the small punch test, for the deformable PCU cups. Accelerated aging was performed using ASTM F2003, a standard test that represents a severe oxidative challenge. The results of this study suggest that the small punch test is sufficiently sensitive and reproducible to discriminate slight differences in the large-deformation mechanical behavior of Bionate 80A following accelerated aging. The gamma-air sterilized PCU had a reduction of 9% in ultimate load after aging. Five years of shelf aging had little effect on the mechanical properties of the PCU. Overall, our findings suggest that the Bionate 80A material has greater oxidative stability than ultra-high molecular weight polyethylene following gamma irradiation in air and exposure to a severe oxidative challenge. (c) 2010 Wiley Periodicals, Inc.

  1. Integrated corridor management initiative : demonstration phase evaluation, Dallas air quality test plan.

    Science.gov (United States)

    2012-08-01

    This report presents the test plan for conducting the Air Quality Analysis for the United States : Department of Transportation (U.S. DOT) evaluation of the Dallas U.S. 75 Integrated Corridor : Management (ICM) Initiative Demonstration. The ICM proje...

  2. Volatile organic carbon/air separation test using gas membranes

    International Nuclear Information System (INIS)

    King, C.V.; Kaschemekat, J.

    1993-08-01

    An estimated 900 metric tons of carbon tetrachloride were discharged to soil columns during the Plutonium Finishing Plant Operations at the Hanford Site. The largest percentage of this volatile organic compound was found in the vadose region of the 200 West Area. Using a Vacuum Extraction System, the volatile organic compound was drawn from the soil in an air mixture at a concentration of about 1,000 parts per million. The volatile organic compounds were absorbed from the air stream using granulated activated carbon canisters. A gas membrane separation system, developed by Membrane Technology and Research, Inc., was tested at the Vacuum Extraction System site to determine if the volatile organic compound load on the granulated activated carbon could be reduced. The Vacuum Extraction System condensed most of the volatile organic compound into liquid carbon tetrachloride and vented the residual gas stream into the granulated activated carbon. This system reduced the cost of operation about $5/kilogram of volatile organic compound removed

  3. A test section design to simulate horizontal two-phase air-water flow

    International Nuclear Information System (INIS)

    Faccini, Jose Luiz H.; Cesar, Silvia B.G.; Coutinho, Jorge A.; Freitas, Sergio Carlos; Addor, Pedro N.

    2002-01-01

    In this work an air-water two-phase flow horizontal test section assembling at Nuclear Engineering Institute (IEN) is presented. The test section was designed to allow four-phase flow patterns to be simulated: bubble flow, stratified flow, wave flow and slug flow. These flow patterns will be identified by non-conventional ultrasonic techniques which have been developed to meet this particular application. Based on the separated flow and drift-flux models the test section design steps are shown. A description of the test section and its instrumentation and data acquisition system is also provided. (author)

  4. Reservoir characterization and final pre-test analysis in support of the compressed-air-energy-storage Pittsfield aquifer field test in Pike County, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Wiles, L.E.; McCann, R.A.

    1983-06-01

    The work reported is part of a field experimental program to demonstrate and evaluate compressed air energy storage in a porous media aquifer reservoir near Pittsfield, Illinois. The reservoir is described. Numerical modeling of the reservoir was performed concurrently with site development. The numerical models were applied to predict the thermohydraulic performance of the porous media reservoir. This reservoir characterization and pre-test analysis made use of evaluation of bubble development, water coning, thermal development, and near-wellbore desaturation. The work was undertaken to define the time required to develop an air storage bubble of adequate size, to assess the specification of instrumentation and above-ground equipment, and to develop and evaluate operational strategies for air cycling. A parametric analysis was performed for the field test reservoir. (LEW)

  5. An experimental study of the air-side particulate fouling in finned-tube heat exchangers of air conditioners through accelerated tests

    International Nuclear Information System (INIS)

    Ahn, Young Chull; Cho, Jae Min; Lee, Jae Keun; Lee, Hyun Uk; Ahn, Seung Phyo; Youn, Deok Hyun; Kang, Tae Wook; Ock, Ju Jo

    2003-01-01

    The air-side particulate fouling in the heat exchangers of HVAC applications degrades the performance of cooling capacity, pressure drop across a heat exchanger, and indoor air quality. Indoor and outdoor air contaminants foul heat exchangers. The purpose of this study is to investigate the fouling characteristics trough accelerated tests. The fouling characteristics are analyzed as functions of a dust concentration (1.28 and 3.84 g/m 3 ), a face velocity (0.5, 1.0, and 1.5 m/s), and a surface condition. The cooling capacity in the slitted finned-tube heat exchangers at the face velocity of 1 m/s decreases about 2% and the pressure drop increases up to 57%. The rate of build-up of fouling is observed to be 3 times slower for this three-fold reduction of dust concentration whilst still approaching the same asymptotic level

  6. 10 CFR 431.76 - Uniform test method for the measurement of energy efficiency of commercial warm air furnaces.

    Science.gov (United States)

    2010-01-01

    ...) Measurement of flue CO 2 (carbon dioxide) for oil-fired commercial warm air furnaces. In addition to the flue... commercial warm air furnace. The test procedure for the measurement of the condensate from the flue gas under... 10 Energy 3 2010-01-01 2010-01-01 false Uniform test method for the measurement of energy...

  7. Multi-temporal AirSWOT elevations on the Willamette river: error characterization and algorithm testing

    Science.gov (United States)

    Tuozzolo, S.; Frasson, R. P. M.; Durand, M. T.

    2017-12-01

    We analyze a multi-temporal dataset of in-situ and airborne water surface measurements from the March 2015 AirSWOT field campaign on the Willamette River in Western Oregon, which included six days of AirSWOT flights over a 75km stretch of the river. We examine systematic errors associated with dark water and layover effects in the AirSWOT dataset, and test the efficacies of different filtering and spatial averaging techniques at reconstructing the water surface profile. Finally, we generate a spatially-averaged time-series of water surface elevation and water surface slope. These AirSWOT-derived reach-averaged values are ingested in a prospective SWOT discharge algorithm to assess its performance on SWOT-like data collected from a borderline SWOT-measurable river (mean width = 90m).

  8. 42 CFR 84.156 - Airflow resistance test; Type C supplied-air respirator, demand class; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... C supplied-air respirator, demand class; minimum requirements. (a) Inhalation resistance shall not... 42 Public Health 1 2010-10-01 2010-10-01 false Airflow resistance test; Type C supplied-air respirator, demand class; minimum requirements. 84.156 Section 84.156 Public Health PUBLIC HEALTH SERVICE...

  9. 77 FR 38857 - Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Normal...

    Science.gov (United States)

    2012-06-29

    ... Filtration and Adsorption Units of Normal Atmosphere Cleanup Systems in Light-Water- Cooled Nuclear Power... Criteria for Air Filtration and Adsorption Units of Normal Atmosphere Cleanup Systems in Light-Water-Cooled... draft regulatory guide (DG), DG-1280, ``Design, Inspection, and Testing Criteria for Air Filtration and...

  10. Testing cleanable/reuseable HEPA prefilters for mixed waste incinerator air pollution control systems

    Energy Technology Data Exchange (ETDEWEB)

    Burns, D.B.; Wong, A.; Walker, B.W.; Paul, J.D. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1997-08-01

    The Consolidated Incineration Facility (CIF) at the US DOE Savannah River Site is undergoing preoperational testing. The CIF is designed to treat solid and liquid RCRA hazardous and mixed wastes from site operations and clean-up activities. The technologies selected for use in the air pollution control system (APCS) were based on reviews of existing incinerators, air pollution control experience, and recommendations from consultants. This approach resulted in a facility design using experience from other operating hazardous/radioactive incinerators. In order to study the CIF APCS prior to operation, a 1/10 scale pilot facility, the Offgas Components Test Facility (OCTF), was constructed and has been in operation since late 1994. Its mission is to demonstrate the design integrity of the CIF APCS and optimize equipment/instrument performance of the full scale production facility. Operation of the pilot facility has provided long-term performance data of integrated systems and critical facility components. This has reduced facility startup problems and helped ensure compliance with facility performance requirements. Technical support programs assist in assuring all stakeholders the CIF can properly treat combustible hazardous, mixed, and low-level radioactive wastes. High Efficiency Particulate Air (HEPA) filters are used to remove hazardous and radioactive particulates from the exhaust gas strewn before being released into the atmosphere. The HEPA filter change-out frequency has been a potential issue and was the first technical issue to be studied at the OCTF. Tests were conducted to evaluate the performance of HEPA filters under different operating conditions. These tests included evaluating the impact on HEPA life of scrubber operating parameters and the type of HEPA prefilter used. This pilot-scale testing demonstrated satisfactory HEPA filter life when using cleanable metal prefilters and high flows of steam and water in the offgas scrubber. 8 figs., 2 tabs.

  11. Sterilization of health care products - Chemical indicators - Part 5: Class 2 indicators for Bowie and Dick-type air removal tests. 2. ed.

    International Nuclear Information System (INIS)

    2007-01-01

    The air removal test is used to evaluate the efficacy of air removal during the pre-vacuum phase of a prevacuum sterilization cycle or during the pulsing stage of positive pulsing cycles if non-condensable gases were present in the steam. Retention of air due to an inefficient air removal stage or the presence of an air leak or non-condensable gases during the air removal stage are circumstances which can lead to failure of the test. This part of ISO 11140 describes the requirements for Class 2 indicators for Bowie and Dick-type air removal test sheets and packs. For a description of the classes of chemical indicators, see ISO 11140-1. The difference between the steam penetration test (ISO 11140-3 and ISO 11140-4) and the air removal test (ISO 11140-5) is described in the chemical indicator guidance document (ISO 15882). This part of ISO 11140 specifies the requirements for Class 2 indicators for Bowie and Dick-type air removal tests used to evaluate the effectiveness of air removal during the pre-vacuum phase of pre-vacuum steam sterilization cycles. Additionally, this part of ISO 11140 includes test methods and equipment used to meet these performance requirements. The paper provides information on scope, normative references, terms and definitions, general requirements, indicator system, its format and performance, indicator, its format and performance, packaging and labelling, quality assurance and sampling conditioning. 7 annexes report on the determination of the degree of contrast between the colour of the substrate and the indicator agent, the method of determining uniform colour change on exposure to saturated steam, the method of determining indicator colour change on exposure to dry heat, the method of determining transfer of indicator agent to standard test pack, standard test pack, the method of determining non-uniform colour change on exposure to a standard fault condition, and the steam exposure apparatus. Finally a bibliography is provided

  12. Area balance method for calculation of air interchange in fire-resesistance testing laboratory for building products and constructions

    Directory of Open Access Journals (Sweden)

    Sargsyan Samvel Volodyaevich

    2014-09-01

    Full Text Available Fire-resistance testing laboratory for building products and constructions is a production room with a substantial excess heat (over 23 W/m . Significant sources of heat inside the aforementioned laboratory are firing furnace, designed to simulate high temperature effects on structures and products of various types in case of fire development. The excess heat production in the laboratory during the tests is due to firing furnaces. The laboratory room is considered as an object consisting of two control volumes (CV, in each of which there may be air intake and air removal, pollutant absorption or emission. In modeling air exchange conditions the following processes are being considered: the processes connected with air movement in the laboratory room: the jet stream in a confined space, distribution of air parameters, air motion and impurity diffusion in the ventilated room. General upward ventilation seems to be the most rational due to impossibility of using local exhaust ventilation. It is connected with the peculiarities of technological processes in the laboratory. Air jets spouted through large-perforated surface mounted at the height of 2 m from the floor level, "flood" the lower control volume, entrained by natural convective currents from heat sources upward and removed from the upper area. In order to take advantage of the proposed method of the required air exchange calculation, you must enter additional conditions, taking into account the provision of sanitary-hygienic characteristics of the current at the entrance of the service (work area. Exhaust air containing pollutants (combustion products, is expelled into the atmosphere by vertical jet discharge. Dividing ventilated rooms into two control volumes allows describing the research process in a ventilated room more accurately and finding the air exchange in the lab room during the tests on a more reasonable basis, allowing to provide safe working conditions for the staff without

  13. Integrated corridor management initiative : demonstration phase evaluation, San Diego air quality test plan.

    Science.gov (United States)

    2012-08-01

    This report presents the test plan for conducting the Air Quality Analysis for the United States Department of Transportation (U.S. DOT) evaluation of the San Diego Integrated Corridor Management (ICM) Initiative Demonstration. The ICM projects being...

  14. Mediterranean Region proficiency test on the determination of radionuclides in air filters. IAEA-CU--2008-02

    International Nuclear Information System (INIS)

    2009-01-01

    The IAEA helps the Member States laboratories to maintain their readiness and improving the quality of the analytical results by producing reference materials, by development of standardized methods for sample collection and analysis, and by conducting interlaboratory comparisons and proficiency tests as a tool for external quality control of analytical results. The Chemistry Unit of the Physics, Chemistry and Instrumentation Laboratory in the International Atomic Energy Agency's Seibersdorf Laboratories in Austria, has the programmatic responsibility to support global radionuclide measurement systems. To fulfil this obligation and ensure a reliable worldwide, rapid and consistent response, the Chemistry Unit organises interlaboratory studies and proficiency tests. The activity concentration of radionuclides in the air is a critical factor in assessing the air quality and the potential impact of possible pollutants. Air is in fact one of the main pathways for human exposure to pollutants. Radioactivity may be present in the atmosphere due to natural processes; intentional (low level) anthropogenic release; or as a consequence of nuclear or radiological incident. Within the frame of the IAEA Technical Cooperation project RER/8/009 'Air Pollution Monitoring in the Mediterranean Region', several Member States expressed their interest in establishing close cooperation among Mediterranean countries in the field of harmonization of air pollution monitoring systems and creation of a common database, since they share geographical position and mutual interest in the environmental conditions of the Mediterranean region. Such cooperation will also promote and enhance the exchange of experience/information. This report summarizes the results of the IAEA-CU-2008-02 Mediterranean Region proficiency test on the determination of radionuclides in air filters

  15. Treatability test of a stacked-tray air stripper for VOC in water

    Energy Technology Data Exchange (ETDEWEB)

    Pico, T., LLNL

    1998-04-01

    A common strategy for hydraulic containment and mass removal at VOC contaminated sites is `pump and treat (P&T)`. In P&T operations, contaminated ground water is pumped from wells, treated above ground, and discharged. Many P&T remediation systems at VOC sites rely on air stripping technology because VOCs are easily transferred to the vapor phase. In stacked-tray air strippers, contaminated water is aerated while it flows down through a series of trays. System operations at LLNL are strictly regulated by the California and federal Environmental Protection Agencies (Cal/EPA and EPA), the Bay Area Air Quality Management District (BAAQMD), the California Regional Water Quality Control Board (RWQCB) and the Department of Toxic Substances Control (DTSC). These agencies set discharge limits, require performance monitoring, and assess penalties for non-compliance. National laboratories are also subject to scrutiny by the public and other government agencies. This extensive oversight makes it necessary to accurately predict field treatment performance at new extraction locations to ensure compliance with all requirements prior to facility activation. This paper presents treatability test results for a stacked- tray air stripper conducted at LLNL and compares them to the vendor`s modeling software results.

  16. Modeling and Closed Loop Flight Testing of a Fixed Wing Micro Air Vehicle

    Directory of Open Access Journals (Sweden)

    Harikumar Kandath

    2018-03-01

    Full Text Available This paper presents the nonlinear six degrees of freedom dynamic modeling of a fixed wing micro air vehicle. The static derivatives of the micro air vehicle are obtained through the wind tunnel testing. The propeller effects on the lift, drag, pitching moment and side force are quantified through wind tunnel testing. The dynamic derivatives are obtained through empirical relations available in the literature. The trim conditions are computed for a straight and constant altitude flight condition. The linearized longitudinal and lateral state space models are obtained about trim conditions. The variations in short period mode, phugoid mode, Dutch roll mode, roll subsidence mode and spiral mode with respect to different trim operating conditions is presented. A stabilizing static output feedback controller is designed using the obtained model. Successful closed loop flight trials are conducted with the static output feedback controller.

  17. CFD simulation of air discharge tests in the PPOOLEX facility

    Energy Technology Data Exchange (ETDEWEB)

    Tanskanen, V.; Puustinen, M. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2008-07-15

    This report summarizes the CFD simulation results of two air discharge tests of the characterizing test program in 2007 with the scaled down PPOOLEX facility. Air was blown to the dry well compartment and from there through a DN200 blowdown pipe into the condensation pool (wet well). The selected tests were modeled with Fluent CFD code. Test CHAR-09-1 was simulated to 28.92 seconds of real time and test CHAR-09-3 to 17.01 seconds. The VOF model was used as a multiphase model and the standard k epsilon-model as a turbulence model. Occasional convergence problems, usually at the beginning of bubble formation, required the use of relatively short time stepping. The simulation time costs threatened to become unbearable since weeks or months of wall-clock time with 1-2 processors were needed. Therefore, the simulated time periods were limited from the real duration of the experiments. The results obtained from the CFD simulations are in a relatively good agreement with the experimental results. Simulated pressures correspond well to the measured ones and, in addition, fluctuations due to bubble formations and breakups are also captured. Most of the differences in temperature values and in their behavior seem to depend on the locations of the measurements. In the vicinity of regions occupied by water in the experiments, thermocouples getting wet and drying slowly may have had an effect on the measured temperature values. Generally speaking, most temperatures were simulated satisfyingly and the largest discrepancies could be explained by wetted thermocouples. However, differences in the dry well and blowdown pipe top measurements could not be explained by thermocouples getting wet. Heat losses and dry well / wet well heat transfer due to conduction have neither been estimated in the experiments nor modeled in the simulations. Estimation of heat conduction and heat losses should be carried out in future experiments and they should be modeled in future simulations, too. (au)

  18. CFD simulation of air discharge tests in the PPOOLEX facility

    International Nuclear Information System (INIS)

    Tanskanen, V.; Puustinen, M.

    2008-07-01

    This report summarizes the CFD simulation results of two air discharge tests of the characterizing test program in 2007 with the scaled down PPOOLEX facility. Air was blown to the dry well compartment and from there through a DN200 blowdown pipe into the condensation pool (wet well). The selected tests were modeled with Fluent CFD code. Test CHAR-09-1 was simulated to 28.92 seconds of real time and test CHAR-09-3 to 17.01 seconds. The VOF model was used as a multiphase model and the standard k ε-model as a turbulence model. Occasional convergence problems, usually at the beginning of bubble formation, required the use of relatively short time stepping. The simulation time costs threatened to become unbearable since weeks or months of wall-clock time with 1-2 processors were needed. Therefore, the simulated time periods were limited from the real duration of the experiments. The results obtained from the CFD simulations are in a relatively good agreement with the experimental results. Simulated pressures correspond well to the measured ones and, in addition, fluctuations due to bubble formations and breakups are also captured. Most of the differences in temperature values and in their behavior seem to depend on the locations of the measurements. In the vicinity of regions occupied by water in the experiments, thermocouples getting wet and drying slowly may have had an effect on the measured temperature values. Generally speaking, most temperatures were simulated satisfyingly and the largest discrepancies could be explained by wetted thermocouples. However, differences in the dry well and blowdown pipe top measurements could not be explained by thermocouples getting wet. Heat losses and dry well / wet well heat transfer due to conduction have neither been estimated in the experiments nor modeled in the simulations. Estimation of heat conduction and heat losses should be carried out in future experiments and they should be modeled in future simulations, too. (au)

  19. Laboratory test investigations on soil water characteristic curve and air permeability of municipal solid waste.

    Science.gov (United States)

    Shi, Jianyong; Wu, Xun; Ai, Yingbo; Zhang, Zhen

    2018-05-01

    The air permeability coefficient has a high correlation with the water content of municipal solid waste. In this study, continuous drying methodology using a tension meter was employed to construct the soil water characteristic curve of municipal solid waste (M-SWCC). The municipal solid waste air permeability test was conducted by a newly designed apparatus. The measured M-SWCC was well reproduced by the van Genuchten (V-G) model and was used to predict the parameters of typical points in M-SWCC, including saturated water content, field capacity, residual water content and water content at the inflection point. It was found that the M-SWCC was significantly influenced by void ratio. The final evaporation and test period of M-SWCC increase with the increase in void ratio of municipal solid waste. The evolution of air permeability coefficient with water content of municipal solid waste depicted three distinct characteristic stages. It was observed that the water contents that corresponded to the two cut-off points of the three stages were residual water content and water content at the inflection point, respectively. The air permeability coefficient of municipal solid waste decreased with the increase of the water content from zero to the residual water content. The air permeability coefficient was almost invariable when the water content increased from residual water content to the water content at the inflection point. When the water content of municipal solid waste exceeded the water content at the inflection point, the air permeability coefficient sharply decreased with the increase of water content.

  20. Experimental system description for air-water CCFL tests of the 161-rod FLECHT-SEASET test vessel upper plenum

    International Nuclear Information System (INIS)

    Fogdall, S.P.; Anderson, J.L.

    1983-01-01

    A series of countercurrent flow limiting (CCFL) experiments has been performed by EG and G Idaho, Inc. in the Steam-Air-Water (SAW) test facility at the Idaho National Engineering Laboratory on behalf of the US Nuclear Regulatory Commission (NRC). Tests were performed in a mockup of the vessel for the 161-Rod Systems Effects Test (SET) facility of the FLECHT-SEASET program, conducted by the Westinghouse Electric Corporation. Westinghouse and the NRC will use the test results to provide a CCFL correlation to predict the flooding behavior in the upper plenum of the SET vessel. This paper presents a description of the experimental system and the test conduct, including data validation and uncertainty analysis. The test objectives centered on experimentally obtaining coefficients in the Wallis correlation for flooding with the specific vessel geometry. The test conditions and vessel configuration are described and the design of the test loop, instrumentation, and data acquisition are discussed. The establishment of a test point and the resultant data are described

  1. Test-retest repeatability of child's respiratory symptoms and perceived indoor air quality - comparing self- and parent-administered questionnaires.

    Science.gov (United States)

    Lampi, Jussi; Ung-Lanki, Sari; Santalahti, Päivi; Pekkanen, Juha

    2018-02-09

    Questionnaires can be used to assess perceived indoor air quality and symptoms in schools. Questionnaires for primary school aged children have traditionally been parent-administered, but self-administered questionnaires would be easier to administer and may yield as good, if not better, information. Our aim was to compare the repeatability of self- and parent-administered indoor air questionnaires designed for primary school aged pupils. Indoor air questionnaire with questions on child's symptoms and perceived indoor air quality in schools was sent to parents of pupils aged 7-12 years in two schools and again after two weeks. Slightly modified version of the questionnaire was administered to pupils aged 9-12 years in another two schools and repeated after a week. 351 (52%) parents and 319 pupils (86%) answered both the first and the second questionnaire. Test-retest repeatability was assessed with intra-class correlation (ICC) and Cohen's kappa coefficients (k). Test-retest repeatability was generally between 0.4-0.7 (ICC; k) in both self- and parent-administered questionnaire. In majority of the questions on symptoms and perceived indoor air quality test-retest repeatability was at the same level or slightly better in self-administered compared to parent-administered questionnaire. Agreement of self- and parent administered questionnaires was generally indoor air quality. Children aged 9-12 years can give as, or even more, repeatable information about their respiratory symptoms and perceived indoor air quality than their parents. Therefore, it may be possible to use self-administered questionnaires in future studies also with children.

  2. Report on the IAEA-CU-2006-11 proficiency test on the determination of gamma emitting radionuclides in air filters

    International Nuclear Information System (INIS)

    Shakhashiro, A.; Kim, C.-K.; Sansone, U.; Ferrari, M.; Sill, D.

    2006-10-01

    This report summarises the results of the IAEA-CU-2006-11 proficiency test on the determination of gamma emitting radionuclides in air filters, organised within the frame of the IAEA Technical Cooperation project RER/8/009 ''Air Pollution Monitoring in the Mediterranean Region''. The proficiency test was conducted by the Reference Materials Group of the Chemistry Unit (Physics, Chemistry and Instrumentation Laboratory) of the IAEA's analytical laboratories located in Seibersdorf (Austria) in cooperation with the Radiological and Environmental Sciences Laboratory, Department of Energy in the United States of America. The objective of TC project RER/8/009 is to contribute to air quality improvement through the establishment of a network for air monitoring and the design of a remedial strategy where the monitoring shows poor air quality. A spiked air filter with known activities of gamma emitting radionuclides prepared by the Department of Energy of the United States of America was used in this proficiency test. 14 spiked filters were distributed to the participating laboratories in April 2006. The deadline for receiving the results from the participants was set at 31 July 2006. The participating laboratories were requested to analyse the samples employing the methods used in their routine work, so that their performance on the test samples could be directly related to the real performance of the laboratory. Each laboratory was given a confidential code to assure the anonymity of the evaluation results. From the 14 initially registered, 11 laboratories reported their results back to the IAEA. The analytical results of the participating laboratories were evaluated against the reference values assigned to the reference air filter, and a rating system was applied

  3. The UKAEA mechanical test programs in air

    International Nuclear Information System (INIS)

    Wood, D.S.

    1977-01-01

    The design of CDFR will be based on the mechanical behaviour of materials in air, although at a later date account may need to be taken of sodium effects. The need for this Information is outlined in the introductory paper. The extent of the air programs and preliminary findings are described in this paper

  4. The UKAEA mechanical test programs in air

    Energy Technology Data Exchange (ETDEWEB)

    Wood, D S [UKAEA, RNPDL, Risley (United Kingdom)

    1977-07-01

    The design of CDFR will be based on the mechanical behaviour of materials in air, although at a later date account may need to be taken of sodium effects. The need for this Information is outlined in the introductory paper. The extent of the air programs and preliminary findings are described in this paper.

  5. Air Leakage and Air Transfer Between Garage and Living Space

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, A.

    2014-09-01

    This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed. For houses employing whole-house supply ventilation (positive pressure) or balanced ventilation (same pressure effect as the Baseline condition), adherence to the EPA Indoor airPLUS house-to-garage air sealing requirements should be sufficient to expect little to no garage-to-house air transfer.

  6. Control room habitability in Spanish Nuclear Power Plants

    International Nuclear Information System (INIS)

    Mediavilla, F.; Sierra, J. J.

    2007-01-01

    Since the NRC published in 2003 the Generic Letter 2003-01 Control room Habitability and the Regulatory guide 1.197 Demonstrating Control Room Envelope Integrity at Nuclear Power Reactors, where it is emphasized the importance of verifying the control room habitability by means of alternative methods, Spanish Nuclear Power Plants are undertaking the different necessary activities to fulfill the requirements of the regulatory commission. This paper describes the main mechanisms included in NEI 99-03 Nuclear Energy Institute publication Control room Habitability Assessment guidance, to demonstrate and maintain Control room Habitability. In addition, in this article it Ds shown the theoretical principle of the test used to quantify air in-leakage in a control room envelope by using tracer gas techniques. The necessary activities to perform the initial in leakage testing are also put forward. Since 2006 Tecnatom, S. A. has performed the baseline testing in four Spanish Units, all of them with successful results. The rest of the Plants are scheduled to perform the tests during the second half of this year. Finally, this document summarises the more important aspects to be taken into account in the development of control room Habitability Programs, which are expected to ensure the integral maintenance of the Control room Envelope during the life a plant. (Author)

  7. Test Protocol for Room-to-Room Distribution of Outside Air by Residential Ventilation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Barley, C. D.; Anderson, R.; Hendron, B.; Hancock, E.

    2007-12-01

    This test and analysis protocol has been developed as a practical approach for measuring outside air distribution in homes. It has been used successfully in field tests and has led to significant insights on ventilation design issues. Performance advantages of more sophisticated ventilation systems over simpler, less-costly designs have been verified, and specific problems, such as airflow short-circuiting, have been identified.

  8. Design Report for the ½ Scale Air-Cooled RCCS Tests in the Natural convection Shutdown heat removal Test Facility (NSTF)

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, D. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Farmer, M. T. [Argonne National Lab. (ANL), Argonne, IL (United States); Lomperski, S. [Argonne National Lab. (ANL), Argonne, IL (United States); Kilsdonk, D. J. [Argonne National Lab. (ANL), Argonne, IL (United States); Bremer, N. [Argonne National Lab. (ANL), Argonne, IL (United States); Aeschlimann, R. W. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-06-01

    The Natural convection Shutdown heat removal Test Facility (NSTF) is a large scale thermal hydraulics test facility that has been built at Argonne National Laboratory (ANL). The facility was constructed in order to carry out highly instrumented experiments that can be used to validate the performance of passive safety systems for advanced reactor designs. The facility has principally been designed for testing of Reactor Cavity Cooling System (RCCS) concepts that rely on natural convection cooling for either air or water-based systems. Standing 25-m in height, the facility is able to supply up to 220 kW at 21 kW/m2 to accurately simulate the heat fluxes at the walls of a reactor pressure vessel. A suite of nearly 400 data acquisition channels, including a sophisticated fiber optic system for high density temperature measurements, guides test operations and provides data to support scaling analysis and modeling efforts. Measurements of system mass flow rate, air and surface temperatures, heat flux, humidity, and pressure differentials, among others; are part of this total generated data set. The following report provides an introduction to the top level-objectives of the program related to passively safe decay heat removal, a detailed description of the engineering specifications, design features, and dimensions of the test facility at Argonne. Specifications of the sensors and their placement on the test facility will be provided, along with a complete channel listing of the data acquisition system.

  9. Long-Duration Testing of a Temperature-Swing Adsorption Compressor for Carbon Dioxide for Closed-Loop Air Revitalization Systems

    Science.gov (United States)

    Rosen, Micha; Mulloth, Lila; Varghese, Mini

    2005-01-01

    This paper describes the results of long-duration testing of a temperature-swing adsorption compressor that has application in the International Space Station (ISS) and future spacecraft for closing the air revitalization loop. The air revitalization system of the ISS operates in an open loop mode and relies on the resupply of oxygen and other consumables from Earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby closing the air-loop. The TSAC is a solid-state compressor that has the capability to remove CO2 from a low-pressure source, and subsequently store, compress, and deliver at a higher pressure as required by a processor. The TSAC is an ideal interface device for CO2 removal and reduction units in the air revitalization loop of a spacecraft for oxygen recovery. The TSAC was developed and its operation was successfully verified in integration tests with the flight-like Carbon Dioxide Removal Assembly (CDRA) at Marshall Space Flight Center prior to the long-duration tests. Long-duration tests reveal the impacts of repeated thermal cycling on the compressor components and the adsorbent material.

  10. Forecast of thermal-hydrological conditions and air injection test results of the single heater test at Yucca Mountain

    International Nuclear Information System (INIS)

    Birkholzer, J.T.; Tsang, Y.W.

    1996-12-01

    The heater in the Single Heater Test (SHT) in alcove 5 of the Exploratory Studies Facility (ESF) was turned on August 26, 1996. A large number of sensors are installed in the various instrumented boreholes to monitor the coupled thermal-hydrological-mechanical-chemical responses of the rock mass to the heat generated in the single heater. In this report the authors present the results of the modeling of both the heating and cooling phases of the Single Heater Test (SHT), with focus on the thermal-hydrological aspect of the coupled processes. Also in this report, the authors present simulations of air injection tests will be performed at different stages of the heating and cooling phase of the SHT

  11. Storage of LWR spent fuel in air: Volume 1: Design and operation of a spent fuel oxidation test facility

    International Nuclear Information System (INIS)

    Thornhill, C.K.; Campbell, T.K.; Thornhill, R.E.

    1988-12-01

    This report describes the design and operation and technical accomplishments of a spent-fuel oxidation test facility at the Pacific Northwest Laboratory. The objective of the experiments conducted in this facility was to develop a data base for determining spent-fuel dry storage temperature limits by characterizing the oxidation behavior of light-water reactor (LWR) spent fuels in air. These data are needed to support licensing of dry storage in air as an alternative to spent-fuel storage in water pools. They are to be used to develop and validate predictive models of spent-fuel behavior during dry air storage in an Independent Spent Fuel Storage Installation (ISFSI). The present licensed alternative to pool storage of spent fuel is dry storage in an inert gas environment, which is called inerted dry storage (IDS). Licensed air storage, however, would not require monitoring for maintenance of an inert-gas environment (which IDS requires) but does require the development of allowable temperature limits below which UO 2 oxidation in breached fuel rods would not become a problem. Scoping tests at PNL with nonirradiated UO 2 pellets and spent-fuel fragment specimens identified the need for a statistically designed test matrix with test temperatures bounding anticipated maximum acceptable air-storage temperatures. This facility was designed and operated to satisfy that need. 7 refs

  12. CMHC [Canadian Mortgage and Housing Corporation] research project: Testing of air barriers construction details

    Energy Technology Data Exchange (ETDEWEB)

    1991-08-26

    The airtightness of building envelopes is important in controlling comfort and energy usage in houses. Leakage generally occurs through construction details, where there are joints or connections between materials, or where there are penetrations for services or other components. A study was conducted to quantify the air leakage characteristics of three such details in wood-frame walls: the header joist, the electric outlets, and the window opening detail. Three construction methods employed to achieve airtightness were evaluated: the sealed internal membrane approach (POLY); the external air barrier approach using a continuous vapour permeable membrane sandwiched between two layers of wall sheathing(EASE); and the airtight drywall approach (ADA). Test panels containing the details were subjected to air leakage testing at pressure differentials from 50 to 1,000 pascals. Measurements of air flow were made and evidence of failure of the barrier due to pressure loading was noted. Leakage rates for the header detail with the POLY, EASE and ADA panels were 24%, 18% and 10% respectively of that for the reference panel. For the electrical outlet joint, leakage rates for POLY and EASE panels were 24% and 36%, while the ADA panel had higher leakage rates than the traditional panel. For the window detail, leakage rates were lowest for the ADA panel and similar for the POLY and EASE panels; all were less than 15% that of traditional panels. 48 figs., 2 tabs.

  13. Final Project Report on RCCS Testing with Air-based NSTF

    Energy Technology Data Exchange (ETDEWEB)

    Lisowski, Darius D. [Argonne National Lab. (ANL), Argonne, IL (United States); Gerardi, Craig D. [Argonne National Lab. (ANL), Argonne, IL (United States); Kilsdonk, Dennis J. [Argonne National Lab. (ANL), Argonne, IL (United States); Bremer, Nathan C. [Argonne National Lab. (ANL), Argonne, IL (United States); Lomperski, Stephen W. [Argonne National Lab. (ANL), Argonne, IL (United States); Hu, Rui [Argonne National Lab. (ANL), Argonne, IL (United States); Kraus, Adam R. [Argonne National Lab. (ANL), Argonne, IL (United States); Bucknor, Matthew D. [Argonne National Lab. (ANL), Argonne, IL (United States); Lv, Qiuping [Argonne National Lab. (ANL), Argonne, IL (United States); Lee, Taeseung [Argonne National Lab. (ANL), Argonne, IL (United States); Farmer, Mitchell T. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-08-01

    The following report serves as a comprehensive summary of the air-based portion of the Natural convection Shutdown heat removal Test Facility (NSTF) program at Argonne National Laboratory (Argonne). Initiated in 2005 to generate validation data for the Next Generation Nuclear Plant (NGNP), the project was centered on an experimental testing program to study the behavior and bound the performance of Reactor Cavity Cooling System (RCCS) concepts. Parallel modeling and simulation efforts also have been performed to guide the design, fabrication, and operation of NSTF, as well as to assess the suitability of analysis methods for natural convection systems. The program operates under support from the Department of Energy (DOE) Office of Advanced Reactor Technologies (ART), and maintained compliance with NQA-1 2008 with 2009a in both administrative and technical portions of program activities.

  14. Characteristics Air Flow in Room Chamber Test Refrigerator Household Energy Consumption with Inlet Flow Variation

    Science.gov (United States)

    Susanto, Edy; Idrus Alhamid, M.; Nasruddin; Budihardjo

    2018-03-01

    Room Chamber is the most important in making a good Testing Laboratory. In this study, the 2-D modeling conducted to assess the effect placed the inlet on designing a test chamber room energy consumption of household refrigerators. Where the geometry room chamber is rectangular and approaching the enclosure conditions. Inlet varied over the side parallel to the outlet and compared to the inlet where the bottom is made. The purpose of this study was to determine and define the characteristics of the airflow in the room chamber using CFD simulation. CFD method is used to obtain flow characteristics in detail, in the form of vector flow velocity and temperature distribution inside the chamber room. The result found that the position of the inlet parallel to the outlet causes air flow cannot move freely to the side of the floor, even flow of air moves up toward the outlet. While by making the inlet is below, the air can move freely from the bottom up to the side of the chamber room wall as well as to help uniform flow.

  15. Evaluation and Comparison of Freeze-Thaw Tests and Air Void Analysis of Pervious Concrete

    DEFF Research Database (Denmark)

    Lund, Mia Schou Møller; Hansen, Kurt Kielsgaard; Kevern, John T.

    2016-01-01

    Pearl-Chain Bridge technology is an innovative precast arch bridge solution which uses pervious concrete as fill material. To ensure longevity of the bridge superstructure it is necessary that the per-vious concrete fill is designed to be freeze-thaw durable; however, no standards exist on how...... to eval-uate the freeze-thaw resistance of fresh or hardened pervious concrete and correspondingly what constitutes acceptable freeze-thaw durability. A greater understanding of the correlation between the freeze-thaw performance and the air void structure of pervious concrete is needed. In the present...... study six pervious concrete mixes were exposed to freeze-thaw testing, and their air void structure was analyzed using an automated linear-traverse method. It was found that there is a miscorrelation between these two test methods in their assumption of whether or not the large interconnected voids...

  16. Air Leakage and Air Transfer Between Garage and Living Space

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, Armin [Building Science Corporation, Westford, MA (United States)

    2014-09-01

    This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed.

  17. South Coast Air Quality Management District Truck Testing | Transportation

    Science.gov (United States)

    Research | NREL South Coast Air Quality Management District Truck Evaluation South Coast Air Quality Management District Truck Evaluation Photo of heavy-duty truck cab. Electric drayage truck Cargo Transportation project, conducted in partnership with the South Coast Air Quality Management

  18. Gas flow in and out of a nuclear waste container

    International Nuclear Information System (INIS)

    Zwahlen, E.D.; Pigford, T.H.; Chambre, P.L.; Lee, W.W.L.

    1989-05-01

    We analyze the flow of gases out of and into a high-level-waste container in the unsaturated tuff of Yucca Mountain. Containers are expected to fail eventually by localized cracks and penetrations. Even though the penetrations may be small, argon gas initially in the hot container can leak out. As the waste package cools, the pressure inside the container can become less than atmospheric, and air can leak in. 14 C released from the hot fuel-cladding surface can leak out of penetrations, and air inleakage can mobilize additional 14 C and other volatile radioactive species as it oxidizes the fuel cladding and the spent fuel. In an earlier paper we studied the gas flow through container penetrations occurring at the time of emplacement. Here we analyze the flow of gas for various penetration sizes occurring at 300 years. 3 refs., 2 figs

  19. Staging Options for the Air Force’s Electronic Combat Test Capability: a Cost Analysis

    Science.gov (United States)

    1990-09-01

    strategic in nature and completely different than daily operating decisions (20:6). Horngren , in his book Cost Accounting : A Managerial Emphasis...AFIT/GCA/LSY/90S-3 DTTC S E-191 J) C, STAGING OPTIONS FOR THE AIR FORCE’S ELECTRONIC COMBAT TEST CAPABILITY: A COST ANALYSIS THESIS Joseph J. Landino...Alternative Costs ......... 56 v AFIT/GCA/LSY/90S-3 Abstract This study’s purpose was to identify the lowest cost aircraft staging base( s ) for the Air

  20. Validation testing of radioactive waste drum filter vents

    Energy Technology Data Exchange (ETDEWEB)

    Weber, L.D. [Pall Corp., Port Washington, NY (United States); Rahimi, R.S. [Pall Corp., Cortland, NY (United States); Edling, D. [Edling & Associates, Inc., Russel Springs, KY (United States)

    1997-08-01

    The minimum requirements for Drum Filter Vents (DFVs) can be met by demonstrating conformance with the Waste Isolation Pilot Plant (WIPP) Trupact II Safety Assessment Report (SAR), and conformance with U.S. Federal shipping regulations 49 CFR 178.350, DOT Spec 7A, for Type A packages. These together address a number of safety related performance parameters such as hydrogen diffusivity, flow related pressure drop, filtration efficiency and, separately, mechanical stability and the ability to prevent liquid water in-leakage. In order to make all metal DFV technology (including metallic filter medium) available to DOE sites, Pall launched a product development program to validate an all metal design to meet these requirements. Numerous problems experienced by DOE sites in the past came to light during this development program. They led us to explore enhancements to DFV design and performance testing addressing these difficulties and concerns. The result is a patented all metal DFV certified to all applicable regulatory requirements, which for the first time solves operational and health safety problems reported by DOE site personnel but not addressed by previous DFV`s. The new technology facilitates operations (such as manual, automated and semi-automated drum handling/redrumming), sampling, on-site storage, and shipping. At the same time, it upgrades filtration efficiency in configurations documented to maintain filter efficiency following mechanical stress. 2 refs., 2 figs., 10 tabs.

  1. Humidifying system design of PEMFC test platform based on the mixture of dry and wet air

    Directory of Open Access Journals (Sweden)

    Tiancai Ma

    2015-01-01

    Full Text Available Based on the present humidifying system of PEMFC test platform, a novel design based on dry and wet air mixture is proposed. Key parameters are calculated, and test platform is built. Three experiments are implemented to test the performance of proposed design. Results show that the new design can meet the requirements, and realize the quick response and accurate control.

  2. Air-injection field tests to determine the effect of a heat cycle on the permeability of welded tuff

    International Nuclear Information System (INIS)

    Lee, K.H.; Ueng, Tzou-Shin.

    1991-01-01

    As part of a series of prototype tests conducted in preparation for site characterization of the potential nuclear-waste repository site at Yucca Mountain, Nevada, air-injection tests were conducted in the welded tuffs in G-Tunnel at the Nevada Test Site. The objectives were to characterize the permeability of the highly fractured tuff around a horizontal heater emplacement borehole, and to determine the effect of a heating and cooling cycle on the rock-mass permeability. Air was injected into packed-off intervals along the heater borehole. The bulk permeability of the rock adjacent to the test interval and the aperture of fractures intersecting the interval were computed from the air-flow rate, temperature, and pressure at steady state. The bulk permeability of intervals along with borehole varied from a minimum of 0.08 D to a maximum of over 144 D and the equivalent parallel-plate apertures of fractures intersecting the borehole varied from 70 to 589 μm. Higher permeabilities seemed to correlate spatially with the mapped fractures. The rock was then heated for a period of 6.5 months with an electrical-resistive heater installed in the borehole. After heating, the rock was allowed to cool down to the ambient temperature. The highest borehole wall temperature measured was 242 degree C. Air injection tests were repeated following the heating and cooling cycle, and the results showed significant increases in bulk permeability ranging from 10 to 1830% along the borehole. 8 ref., 6 figs., 3 tabs

  3. Air Traffic Management Technology Demostration: 1 Research and Procedural Testing of Routes

    Science.gov (United States)

    Wilson, Sara R.; Kibler, Jennifer L.; Hubbs, Clay E.; Smail, James W.

    2015-01-01

    NASA's Air Traffic Management Technology Demonstration-1 (ATD-1) will operationally demonstrate the feasibility of efficient arrival operations combining ground-based and airborne NASA technologies. The ATD-1 integrated system consists of the Traffic Management Advisor with Terminal Metering which generates precise time-based schedules to the runway and merge points; Controller Managed Spacing decision support tools which provide controllers with speed advisories and other information needed to meet the schedule; and Flight deck-based Interval Management avionics and procedures which allow flight crews to adjust their speed to achieve precise relative spacing. Initial studies identified air-ground challenges related to the integration of these three scheduling and spacing technologies, and NASA's airborne spacing algorithm was modified to address some of these challenges. The Research and Procedural Testing of Routes human-in-the-loop experiment was then conducted to assess the performance of the new spacing algorithm. The results of this experiment indicate that the algorithm performed as designed, and the pilot participants found the airborne spacing concept, air-ground procedures, and crew interface to be acceptable. However, the researchers concluded that the data revealed issues with the frequency of speed changes and speed reversals.

  4. Specification of test criteria and probabilistic approach: the case of plutonium air transport

    International Nuclear Information System (INIS)

    Hubert, P.; Pages, P.; Ringot, C.; Tomachewsky, E.

    1989-03-01

    The safety of international transportation relies on compliance with IAEA regulations which specify a serie of test which the package is supposed to withstand. For Plutonium air transport some national regulations are more stringent than the IAEA one, namely the US one. For example the drop test is to be performed at 129 m.s -1 instead of 13.4 m.s -1 . The development of international Plutonium exchanges has raised the question of the adequacy of both those standards. The purpose of this paper is to show how a probabilistic approach helps in assessing the efficiency of a move towards more stringent tests

  5. A novel test cage with an air ventilation system as an alternative to conventional cages for the efficacy testing of mosquito repellents.

    Science.gov (United States)

    Obermayr, U; Rose, A; Geier, M

    2010-11-01

    We have developed a novel test cage and improved method for the evaluation of mosquito repellents. The method is compatible with the United States Environmental Protection Agency, 2000 draft OPPTS 810.3700 Product Performance Test Guidelines for Testing of Insect Repellents. The Biogents cages (BG-cages) require fewer test mosquitoes than conventional cages and are more comfortable for the human volunteers. The novel cage allows a section of treated forearm from a volunteer to be exposed to mosquito probing through a window. This design minimizes residual contamination of cage surfaces with repellent. In addition, an air ventilation system supplies conditioned air to the cages after each single test, to flush out and prevent any accumulation of test substances. During biting activity tests, the untreated skin surface does not receive bites because of a screen placed 150 mm above the skin. Compared with the OPPTS 810.3700 method, the BG-cage is smaller (27 liters, compared with 56 liters) and contains 30 rather than hundreds of blood-hungry female mosquitoes. We compared the performance of a proprietary repellent formulation containing 20% KBR3023 with four volunteers on Aedes aegypti (L.) (Diptera: Culicidae) in BG- and conventional cages. Repellent protection time was shorter in tests conducted with conventional cages. The average 95% protection time was 4.5 +/- 0.4 h in conventional cages and 7.5 +/- 0.6 h in the novel BG-cages. The protection times measured in BG-cages were more similar to the protection times determined with these repellents in field tests.

  6. Air Force Officer Qualifying Test Form T: Initial Item-, Test-, Factor-, and Composite-Level Analyses

    Science.gov (United States)

    2016-12-01

    used to qualify applicants for ROTC and OTS officer commissioning programs. The Pilot, Combat Systems Officer (CSO), and Air Battle Manager ( ABM ...AIR FORCE RESEARCH LABORATORY 711 HUMAN PERFORMANCE WING, AIRMAN SYSTEMS DIRECTORATE, WRIGHT-PATTERSON AIR FORCE BASE, OH 45433 AIR FORCE MATERIEL...Warfighter Interface Division Airman Systems Directorate This report is published in the interest of scientific and technical information exchange, and

  7. Designing and testing the optimum design of automotive air-to-air thermoelectric air conditioner (TEAC) system

    International Nuclear Information System (INIS)

    Attar, Alaa; Lee, HoSung

    2016-01-01

    Highlights: • The optimum design of automotive thermoelectric AC system is proposed. • It is optimized by combining the thermal isolation and the dimensionless methods. • An experiment is conducted to validate the analytical design. - Abstract: The current project is discussing the optimization of counter flow air-to-air thermoelectric air conditioners (TEAC) system. Previous work showed an analytical model with experimental validation of a unit cell of TEAC system. However, the focus of this work is to simulate the optimum design of a whole TEAC system from given inlet parameters (i.e., hot and cold air mass flow rates and ambient temperatures). The analytical model was built by combining an optimal design method with dimensional analysis, which was recently developed, and the thermal isolation method in order to optimize the thermoelectric parameters (i.e., electrical current supplied and the number of thermocouples or the geometric factor, simultaneously). Moreover, based on the designed model, an experiment was conducted in order to study the accuracy of the analytical model. Even though the analytical model was built based on the thermoelectric ideal equations, it shows a good agreement with the experiment. This agreement was mainly a result of the use of the thermoelectric effective material properties which are obtained from the measured maximum thermoelectric module parameters. Since the experiment validate the analytical model, this model provides uncomplicated method to study the optimum design at given inputs.

  8. Pulmonary function tests in air conditioner users | Vidya ...

    African Journals Online (AJOL)

    Background: Modernization has been implicated in the pathogenesis of allergic airway diseases. House dust, mites, and indoor air pollutants have been reported to cause elevation of serum IgE levels and/or enhancement of eosinophil activity. A component of modern lifestyle is the intense use of air-conditioners (AC) that ...

  9. Contamination mechanisms of air basin with tritium in venues of underground nuclear explosions at the former Semipalatinsk test site

    International Nuclear Information System (INIS)

    Lyakhova, O.N.; Lukashenko, S.N.; Larionova, N.V.; Tur, Y.S.

    2012-01-01

    During the period of testing from 1945 to 1962 at the territory of Semipalatinsk test site (STS) within the Degelen Mountains in tunnels, 209 underground nuclear explosions were produced. Many of the tunnels have seasonal water seepage in the form of streams, through which tritium migrates from the underground nuclear explosion (UNE) venues towards the surface. The issue of tritium contamination occupies a special place in the radioactive contamination of the environment. In this paper we assess the level and distribution of tritium in the atmospheric air of ecosystems with water seepage at tunnels № 176 and № 177, located on “Degelen” site. There has been presented general nature of tritium distribution in the atmosphere relative to surface of a watercourse which has been contaminated with tritium. The basic mechanisms were studied for tritium distribution in the air of studied ecosystems, namely, the distribution of tritium in the systems: water–atmosphere, tunnel air–atmosphere, soil water–atmosphere, vegetation–atmosphere. An analytical calculation of tritium concentration in the atmosphere by the concentration of tritium in water has been performed. There has experimentally obtained the dependence for predictive assessment of tritium concentrations in air as a function of tritium concentration in one of the inlet sources such as water, tunnel air, soil water, vegetation, etc.. The paper also describes the general nature of tritium distribution in the air in the area “Degelen”. - Highlights: ► The basic mechanisms for tritium distribution in the air of nuclear testing sites were examined. ► We researched the distribution of tritium in the systems such as water–atmosphere, tunnel air–atmosphere, soil water–atmosphere and vegetation–atmosphere. ► An analytical calculation of tritium concentration in the atmosphere was performed. ► We experimentally obtained the dependence for predictive assessment of tritium concentrations in

  10. Improvement of energy efficiency: the use of thermography and air-tightness test in verification of thermal performance of school buildings

    Science.gov (United States)

    Kauppinen, Timo; Siikanen, Sami

    2011-05-01

    The improvement of energy efficiency is the key issue after the energy performance of buildings directive came into the force in European Union countries. The city of Kuopio participate a project, in which different tools will be used, generated and tested to improve the energy efficiency of public buildings. In this project there are 2 schools, the other consuming much more heating energy than the other same type of school. In this paper the results of the thermography in normal conditions and under 50 Pa pressure drop will be presented; as well as the results of remote controlled air tightness test of the buildings. Thermography combined with air tightness test showed clearly the reasons of specific consumption differences of heating energy - also in the other hand, the measurements showed the problems in the performance of ventilation system. Thermography, air tightness test and other supporting measurements can be used together to solve energy loss problems - if these measurements will be carried out by proper way.

  11. A review of acceptance testing of the Los Alamos, Canberra Alpha Sentry Continuous Air Monitor (CAM)

    International Nuclear Information System (INIS)

    Rodgers, J.C.

    1998-01-01

    Los Alamos National Laboratory (LANL) undertook the design and development of a new generation of alpha continuous air monitor (CAM) instrumentation that would incorporate advanced technologies in the design of the sampling inlet, multi-channel analyzer (MCA) electronics, solid state alpha detectors, radon background interference suppression, background interference compensation and based on spectral analysis, and microcomputer based data communication, processing, storage, and retrieval. The ANSI air monitoring instrument standards (Performance Specifications for Health Physics Instrumentation -- Occupational Airborne Radioactivity Monitoring Instrumentation, N42.17B) specify performance criteria and testing procedures for instruments and instrument systems designed to continuously sample and quantify airborne radioactivity in the workplace. Although the intent of the standard is to provide performance testing criteria for type testing, it is appropriate to evaluate the performance of a new instrument such as the Alpha Sentry against certain of these criteria for purposes of an acceptance test based on stated specifications and the Los Alamos CAM Requirements document. This report provides an overview of the results of these tests, as they pertain to instruments designed to detect alpha-emitting radionuclides in particulate form

  12. Evaluation of Burning Test Rate Method for Flammable Solids to Increase air-Cargo Safety.

    Science.gov (United States)

    Lukežič, Marjan; Marinšek, Marjan; Faganeli, Jadran

    2010-03-01

    This paper deals with a standard classification procedure for readily combustible solids and their assignment to the relevant packing groups according to international air-cargo legislation and regulations. The current International Air Transport Association and United Nations Orange Book regulations were used on chemically similar substances: hexamethylenetetramine and Dancook ignition briquettes, which are both assigned into the same Packing Group III. To critically evaluate the degree of hazard both chemicals present, a standard burning test rate as well as thermogravimetry, differential scanning calorimetry and evolved gas analysis measurements were performed. It was shown that relatively small changes in the chemical composition of the material may have essential influence on the package group determination. Taking into account all the facts collected in the experimental work, it was concluded that ignition briquettes will undergo spontaneous combustion if exposed to elevated temperatures and, from this point of view, represent higher risk than hexamethylenetetramine during air transportation. Therefore, ignition briquettes should be classified into Packing Group II.

  13. Gaining control room habitability margin at the Palisades Plant

    International Nuclear Information System (INIS)

    Harden, P.A.

    1993-01-01

    The bounding design-basis accident for control room habitability is the loss-of-coolant accident (LOCA). At Palisades, very little margin existed between the calculated control room operator thyroid dose and the 0.3-Sv (30-rem) limit of Standard Review Plan (SRP) 6.4. Also, a low rate of unfiltered air leakage into the control room during the emergency mode of operation, 5.5 x 10 -3 m 3 /s (11.6 ft 3 /min), was accounted for in the control room habitability analysis. The control room heating, ventilating and air-conditioning system at Palisades has louvered isolation dampers for the normal air intake that are exposed to a negative pressure. Considering the small margin to the thyroid dose limits and the leakage characteristics of louvered dampers, a low allowable rate of unfiltered air in-leakage raised some concern. A significant effort has been initiated to alleviate control room habitability concerns at Palisades. The first step in this effort was to evaluate the calculational models for control room habitability and gain margin through updated analytical methods. To accomplish this, a new radiological consequence analysis for the LOCA was completed

  14. Helium Tracer Tests for Assessing Air Recovery and Air Distribution During In Situ Air Sparging

    National Research Council Canada - National Science Library

    Johnson, Richard

    2001-01-01

    ...) systems for capturing contaminant vapors liberated by in situ air sparging (IAS). The tracer approach is simple to conduct and provides more direct and reliable measures than the soil-gas pressure approach...

  15. Characterization of an enriched uranyl fluoride deposit in a valve and pipe intersection using time-of-flight transmission measurements with 252Cf

    International Nuclear Information System (INIS)

    Wyatt, M.S.; Hannon, T.F.

    1998-01-01

    A method was developed and successfully applied to characterize large uranyl fluoride (UO 2 F 2 ) deposits at the former Oak Ridge Gaseous Diffusion Plant. These deposits were formed by a wet air in-leakage into the UF 6 process gas lines over a period of years. The resulting UO 2 F 2 is hygroscopic, readily absorbing moisture from the air to form hydrates as UO 2 F 2 -nH 2 O. The ratio of hydrogen to uranium can vary from 0--16, and has significant nuclear criticality safety impacts for large deposits. In order to properly formulate the required course of action, a non-intrusive characterization of the distribution of the fissile material within the pipe, its total mass, and amount of hydration was necessary. The Nuclear Weapons Identification System (NWIS) previously developed at the Oak Ridge Y-12 Plant for identification of uranium weapons components in storage containers was used to successfully characterize these deposits

  16. High-efficiency particulate air filter test activities at the Department of Energy

    International Nuclear Information System (INIS)

    Bresson, J.F.

    1987-01-01

    For the past 2 years, test activities at the three Department of Energy HEPA Filter Test Facilities (FTFs) have been conducted under a unified set of operating standards intended to help achieve consistency in test methods and test results. Reviews of test operations are conducted at each FTF annually, and technical support and guidance are provided on request. Round Robin tests are conducted twice a year to compare penetration and resistance test results among the three FTFs. The FTFs prepare summary test data twice a year, and the data is analyzed for trends with respect to ongoing quality of HEPA filters in nuclear facilities. Data and conclusions from both the Round Robin tests and semiannual reports are discussed, the latter without reference to specific manufacturers. The new DOE standards include provisions for consideration and approval of new test aerosols or test methods, under closely controlled change procedures. Progress in obtaining DOE approval for DOS as a new aerosol, and for the Alternative Test System (ATS) developed by, and reported on by the LANL, as an approved new test method are discussed, as are 2 significant changes in standard NE-F-3-43, related to (a) toxicology test alternatives, and (b) the test aerosol definition. Finally, the emergence of new, higher flow rated HEPA filters and Ultra Low Particulate Air (ULPA) filters will impact DOE's design, procurement, testing and use of HEPA filters in the near future

  17. NASA Langley's AirSTAR Testbed: A Subscale Flight Test Capability for Flight Dynamics and Control System Experiments

    Science.gov (United States)

    Jordan, Thomas L.; Bailey, Roger M.

    2008-01-01

    As part of the Airborne Subscale Transport Aircraft Research (AirSTAR) project, NASA Langley Research Center (LaRC) has developed a subscaled flying testbed in order to conduct research experiments in support of the goals of NASA s Aviation Safety Program. This research capability consists of three distinct components. The first of these is the research aircraft, of which there are several in the AirSTAR stable. These aircraft range from a dynamically-scaled, twin turbine vehicle to a propeller driven, off-the-shelf airframe. Each of these airframes carves out its own niche in the research test program. All of the airplanes have sophisticated on-board data acquisition and actuation systems, recording, telemetering, processing, and/or receiving data from research control systems. The second piece of the testbed is the ground facilities, which encompass the hardware and software infrastructure necessary to provide comprehensive support services for conducting flight research using the subscale aircraft, including: subsystem development, integrated testing, remote piloting of the subscale aircraft, telemetry processing, experimental flight control law implementation and evaluation, flight simulation, data recording/archiving, and communications. The ground facilities are comprised of two major components: (1) The Base Research Station (BRS), a LaRC laboratory facility for system development, testing and data analysis, and (2) The Mobile Operations Station (MOS), a self-contained, motorized vehicle serving as a mobile research command/operations center, functionally equivalent to the BRS, capable of deployment to remote sites for supporting flight tests. The third piece of the testbed is the test facility itself. Research flights carried out by the AirSTAR team are conducted at NASA Wallops Flight Facility (WFF) on the Eastern Shore of Virginia. The UAV Island runway is a 50 x 1500 paved runway that lies within restricted airspace at Wallops Flight Facility. The

  18. High speed cinematography of the initial break-point of latex condoms during the air burst test.

    Science.gov (United States)

    Stube, R; Voeller, B; Davidhazy, A

    1990-06-01

    High speed cinematography of latex condoms inflated to burst under standard (ISO) conditions reveals that rupture of the condom typically is initiated at a small focal point on the shank of the condom and then rapidly propagates throughout the condom's surface, often ending with partial or full severance of the condom at its point of attachment to the air burst instrument. This sequence of events is the reverse of that sometimes hypothesized to occur, where initiation of burst was considered to begin at the attachment point and to constitute a testing method artifact. This hypothesis of breakage at the attachment point, if true, would diminish the value of the air burst test as a standard for assessing manufacturing quality control as well as for condom strength measurements and comparisons.

  19. Group Centric Networking: Large Scale Over the Air Testing of Group Centric Networking

    Science.gov (United States)

    2016-11-01

    Large Scale Over-the-Air Testing of Group Centric Networking Logan Mercer, Greg Kuperman, Andrew Hunter, Brian Proulx MIT Lincoln Laboratory...performance of Group Centric Networking (GCN), a networking protocol developed for robust and scalable communications in lossy networks where users are...devices, and the ad-hoc nature of the network . Group Centric Networking (GCN) is a proposed networking protocol that addresses challenges specific to

  20. Development and Testing of a Rotating Detonation Engine Run on Hydrogen and Air

    Science.gov (United States)

    2012-03-22

    Jay Rutledge (Member) Date v AFIT/GAE/ENY/12-M36 Abstract Rotating detonation engines ( RDEs ) have the potential for greater...efficiencies over conventional engines by utilizing pressure gain combustion. A new modular RDE (6 in diameter) was developed and successfully run on...hydrogen and standard air. The RDE allows for variation of injection scheme and detonation channel widths. Tests provided the operational space of the

  1. System for measuring of air concentration in air-steam mixture during the transients

    International Nuclear Information System (INIS)

    Gorbenko, Gennady A.; Gakal, Pavlo G.; Epifanov, Konstantin S.; Osokin, Gennady V.; Smirnov, Sergey V.

    2006-01-01

    Description of system for air concentration measuring in air-steam mixture during the transients is represented. Air concentration measuring is based on discrete sampling method. The measuring system consists of sampler, transport pipeline, distributor and six measuring vessels. From the sampler air-steam mixture comes to distributor through transport pipeline and fills consecutively the measuring vessels. The true air concentration in place of measurement was defined based on measured air concentration in samples taken from measuring vessels. For this purpose, the mathematical model of transients in measuring system was developed. Air concentration transient in air-steam mixture in place of measurement was described in mathematical model by air concentration time-dependent function. The function parameters were defined based on air concentration measured in samples taken from measuring vessels. Estimated error of air concentration identification was about 10%. Measuring system was used in experiments on EREC BKV-213 test facility intended for testing of VVER-440/V-213 reactor barbotage-vacuum system

  2. Life testing of a low voltage air circuit breaker

    International Nuclear Information System (INIS)

    Subudhi, M.

    1991-01-01

    ADS-416 low voltage air circuit breaker manufacture by Westinghouse was mechanically cycled to identify age-related degradation in various breaker subcomponents, in particular, the power-operating mechanism. This accelerated aging test was performed on one breaker unit for over 36,000 cycles. Three separate pole shafts, one with a 60 degree weld, one with a 120 degree weld and one with a 180 degree weld in the third pole lever were used to characterize the cracking in these welds. In addition, during the testing, three different operating mechanisms and several other parts were replaced as they degraded to an inoperable condition. Of the seven welds on the pole shaft, two were found to be the critical ones whose fracture can result in misalignment problems of the pole levers. These failures, in turn can lead to many other problems with the operating mechanism including the burn-out of coils, excessive wear in certain parts and over-stressed linkages. Furthermore, the limiting service life of a number of subcomponents of the power-operated mechanism, including the operating mechanism itself, were assessed. 1 ref., 3 figs

  3. Wind and water tunnel testing of a morphing aquatic micro air vehicle.

    Science.gov (United States)

    Siddall, Robert; Ortega Ancel, Alejandro; Kovač, Mirko

    2017-02-06

    Aerial robots capable of locomotion in both air and water would enable novel mission profiles in complex environments, such as water sampling after floods or underwater structural inspections. The design of such a vehicle is challenging because it implies significant propulsive and structural design trade-offs for operation in both fluids. In this paper, we present a unique Aquatic Micro Air Vehicle (AquaMAV), which uses a reconfigurable wing to dive into the water from flight, inspired by the plunge diving strategy of water diving birds in the family Sulidae . The vehicle's performance is investigated in wind and water tunnel experiments, from which we develop a planar trajectory model. This model is used to predict the dive behaviour of the AquaMAV, and investigate the efficacy of passive dives initiated by wing folding as a means of water entry. The paper also includes first field tests of the AquaMAV prototype where the folding wings are used to initiate a plunge dive.

  4. CMHC research project: Testing of air barriers construction details: Report

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    This project was conducted to quantify the air leakage characteristics of the header joist, the electric outlets, and the window openings in wood-frame walls. The study evaluated the sealed internal membrane method, where polyethylene sheet and sealant provide the air barrier; the external air barrier method, which uses a continuous vapour permeable membrane (spun-bonded olefin film), sandwiched between two layers of external wall sheathing; and the airtight drywall method, where the interior gypsum board finish, together with framing materials and gaskets, are used as the air barrier. In addition, the traditional approach to wood-frame wall construction, where no special attention is given to achieving a continuous air barrier, was evaluated for comparison.

  5. Evaluation of ozone generation and indoor organic compounds removal by air cleaners based on chamber tests

    Science.gov (United States)

    Yu, Kuo-Pin; Lee, Grace Whei-May; Hsieh, Ching-Pei; Lin, Chi-Chi

    2011-01-01

    Ozone can cause many health problems, including exacerbation of asthma, throat irritation, cough, chest ache, shortness of breath, and respiratory infections. Air cleaners are one of the sources of indoor ozone, and thus the evaluation of ozone generated by air cleaners is desired significant issue. Most evaluation methods proposed are based on chamber tests. However, the adsorption and desorption of ozone on the wall of test chamber and the deposition of ozone resulted from the surface reaction can influence the evaluation results. In this study, we developed a mass balance model that took the adsorption, desorption and deposition of ozone into consideration to evaluate the effective ozone emission rates of six selected air cleaners. The experiments were conducted in a stainless steel chamber with a volume of 11.3 m 3 at 25 °C and 60% relative humidity. The adsorption, desorption and deposition rate constants of ozone obtained by fitting the model to the experimental data were k a = 0.149 ± 0.052 m h -1, k d = 0.013 ± 0.007 h -1, and k r = 0.050 ± 0.020 h -1, respectively. The effective ozone emission rates of Air Cleaners No. 1, 2, and 3 ranged between 13,400-24,500 μg h -1, 7190-10,400 μg h -1, and 4880-6560 μg h -1, respectively, which were more stable than those of No.4, 5, and 6. The effective ozone emission rates of Air Cleaners No. 4, 5, and 6 increased with the time of operation which might be relevant to the decrease of ozone removal by the "aging" filter installed in these cleaners. The removal of toluene and formaldehyde by these six air cleaners were also evaluated and the clean air delivery rates (CADRs) of these two pollutants ranged from non-detectable to 0.42 ± 0.08 m 3 h -1, and from non-detectable to 0.75 ± 0.07 m 3 h -1, respectively. The CADRs showed an insignificant relationship with the effective ozone emission rates. Thus, the removal of toluene and formaldehyde might be resulted from the adsorption on the filters and the

  6. GSPEL - Air Filtration Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Evaluation capabilities for air filtration devicesThe Air Filtration Lab provides testing of air filtration devices to demonstrate and validate new or legacy system...

  7. Breakdown voltage at the electric terminals of GCFR-core flow test loop fuel rod simulators in helium and air

    International Nuclear Information System (INIS)

    Huntley, W.R.; Conley, T.B.

    1979-12-01

    Tests were performed to determine the ac and dc breakdown voltage at the terminal ends of a fuel rod simulator (FRS) in helium and air atmospheres. The tests were performed at low pressures (1 to 2 atm) and at temperatures from 20 to 350 0 C (68 to 660 0 F). The area of concern was the 0.64-mm (0.025-in.) gap between the coaxial conductor of the FRS and the sheaths of the four internal thermocouples as they exit the FRS. The tests were prformed to ensure a sufficient safety margin during Core Flow Test Loop (CFTL) operations that require potentials up to 350 V ac at the FRS terminals. The primary conclusion from the test results is that the CFTL cannot be operated safely if the terminal ends of the FRSs are surrounded by a helium atmosphere but can be operated safely in air

  8. Air leakage test of reactor hall using tracer technique

    International Nuclear Information System (INIS)

    Yang Yanqiu; Yang Liang; Yang Tongzai

    2011-01-01

    The leakage ratios of three related reactor halls were tested by sulfur hexafluoride gaseous tracer technique. Moreover, the accumulation intensities of leak gas and its retention time in some important working rooms, the crossroads of corridors and anteroom of the building were detected. The results show that the air leakage ratios of the three reactor halls are (7.30±0.16) x 10 -4 , (1.88±0.12) x 10 -4 and (2.07±0.07) x 10 -4 h -1 . The leak gas accumulates in all the detected working rooms fast, and the retention time to various rooms is about 5 h. The heaviest intensities are in the clothes change rooms on the first floor. However, the retention time to the crossroads and the anteroom is about 10 h, and the accumulation intensities are much small. (authors)

  9. Field test of two high-pressure, direct-contact downhole steam generators. Volume I. Air/diesel system

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, B.W.

    1983-05-01

    As a part of the Project DEEP STEAM to develop technology to more efficiently utilize steam for the recovery of heavy oil from deep reservoirs, a field test of a downhole steam generator (DSG) was performed. The DSG burned No. 2 diesel fuel in air and was a direct-contact, high pressure device which mixed the steam with the combustion products and injected the resulting mixture directly into the oil reservoir. The objectives of the test program included demonstration of long-term operation of a DSG, development of operational methods, assessment of the effects of the steam/combustion gases on the reservoir and comparison of this air/diesel DSG with an adjacent oxygen/diesel direct contact generator. Downhole operation of the air/diesel DSG was started in June 1981 and was terminated in late February 1982. During this period two units were placed downhole with the first operating for about 20 days. It was removed, the support systems were slightly modified, and the second one was operated for 106 days. During this latter interval the generator operated for 70% of the time with surface air compressor problems the primary source of the down time. Thermal contact, as evidenced by a temperature increase in the production well casing gases, and an oil production increase were measured in one of the four wells in the air/diesel pattern. Reservoir scrubbing of carbon monoxide was observed, but no conclusive data on scrubbing of SO/sub x/ and NO/sub x/ were obtained. Corrosion of the DSG combustor walls and some other parts of the downhole package were noted. Metallurgical studies have been completed and recommendations made for other materials that are expected to better withstand the downhole combustion environment. 39 figures, 8 tables.

  10. Experimental testing of the thermal performance of finned air coolers

    International Nuclear Information System (INIS)

    Imhof, A.; Keller, J.; Koelliker, A.

    1988-05-01

    Finned heat exchangers are often used as regenerators in heat recovery systems or as a heat source for heat pump installations. These exchangers are usually operating as air coolers. Heat is extracted from the air flowing through the heat exchanger. If the fin temperature lies below the dew point at the air inlet, water vapour may be condensed, increasing the thermal performance of the cooler. If the air/water heat exchanger is installed outdoors, the blower is usually mounted directly at the exchaner's case. In general this leads to non-ideal air flow conditions. For the sizing of such components the manufacturers dispose of design rules which are based either on theoretical models or on experiments using a uniform air stream. These rules which are mostly internal codes of the individual companies presumably do not take into account some non-ideal conditions such as an inhomogeneous air flow, a poorly sized blower or an increased pressure drop between the fins due to condensed water vapour. Moreover, these codes are possibly not sophisticated enough to enable a correct sizing of the products for any given condition of operation, especially in heat pumps operating under condensation conditions. Therfore, the Swiss Federal Institute for Reactor Research (EIR) carried out a research program dealing with the thermal performance of commercially available finned air coolers. The results give a strong evidence that the sizing of finned air coolers involving a phase change in one of the heat transfer fluids is not yet a procedure belonging to the common knowledge of most of the manufacturers. Moreover, the correct sizing of the blower is at least as important as the sizing of the finned exchanger itself. However, it is evident that there are companies on the Swiss market which use already reliable design tools. 25 refs., 81 figs., 12 tabs

  11. Contamination mechanisms of air basin with tritium in venues of underground nuclear explosions at the former Semipalatinsk test site.

    Science.gov (United States)

    Lyakhova, O N; Lukashenko, S N; Larionova, N V; Tur, Y S

    2012-11-01

    During the period of testing from 1945 to 1962 at the territory of Semipalatinsk test site (STS) within the Degelen Mountains in tunnels, 209 underground nuclear explosions were produced. Many of the tunnels have seasonal water seepage in the form of streams, through which tritium migrates from the underground nuclear explosion (UNE) venues towards the surface. The issue of tritium contamination occupies a special place in the radioactive contamination of the environment. In this paper we assess the level and distribution of tritium in the atmospheric air of ecosystems with water seepage at tunnels № 176 and № 177, located on "Degelen" site. There has been presented general nature of tritium distribution in the atmosphere relative to surface of a watercourse which has been contaminated with tritium. The basic mechanisms were studied for tritium distribution in the air of studied ecosystems, namely, the distribution of tritium in the systems: water-atmosphere, tunnel air-atmosphere, soil water-atmosphere, vegetation-atmosphere. An analytical calculation of tritium concentration in the atmosphere by the concentration of tritium in water has been performed. There has experimentally obtained the dependence for predictive assessment of tritium concentrations in air as a function of tritium concentration in one of the inlet sources such as water, tunnel air, soil water, vegetation, etc.. The paper also describes the general nature of tritium distribution in the air in the area "Degelen". Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Study of the test method for prediction of air conditioning equipment seasonal performance

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, S.B.

    1980-05-01

    The test procedure, Method of Testing, Rating and Estimating the Seasonal Performance of Central Air-Conditioners and Heat Pumps Operating in the Cooling Mode, has been analyzed. The analysis of the test procedure incorporated two main functions: (1) to determine the validity of the test procedure; and (2) to determine if there are other alternate methods of obtaining the same results with less testing burden. Data were collected from industry and analyzed for any significant trends. Certain conclusions are drawn about the energy efficiency ratios, degradation coefficients and seasonal energy efficiency ratios. An error analysis was performed on the test procedure to determine the approximate amount of error when using this procedure. A semi-empirical model assuming a first order system response was developed to determine the factors that affect the part-load and cooling-load factors. The corresponding transient characteristics are then determined in terms of a single time constant. A thermostat demand cycle is used to determine the relationship between on-time and cycle-time. Recommendations are made regarding an alternate method being used to determine the seasonal energy efficiency ratio.

  13. Analyses and estimates of hydraulic conductivity from slug tests in alluvial aquifer underlying Air Force Plant 4 and Naval Air Station-Joint Reserve Base Carswell Field, Fort Worth, Texas

    Science.gov (United States)

    Houston, Natalie A.; Braun, Christopher L.

    2004-01-01

    This report describes the collection, analyses, and distribution of hydraulic-conductivity data obtained from slug tests completed in the alluvial aquifer underlying Air Force Plant 4 and Naval Air Station-Joint Reserve Base Carswell Field, Fort Worth, Texas, during October 2002 and August 2003 and summarizes previously available hydraulic-conductivity data. The U.S. Geological Survey, in cooperation with the U.S. Air Force, completed 30 slug tests in October 2002 and August 2003 to obtain estimates of horizontal hydraulic conductivity to use as initial values in a ground-water-flow model for the site. The tests were done by placing a polyvinyl-chloride slug of known volume beneath the water level in selected wells, removing the slug, and measuring the resulting water-level recovery over time. The water levels were measured with a pressure transducer and recorded with a data logger. Hydraulic-conductivity values were estimated from an analytical relation between the instantaneous displacement of water in a well bore and the resulting rate of head change. Although nearly two-thirds of the tested wells recovered 90 percent of their slug-induced head change in less than 2 minutes, 90-percent recovery times ranged from 3 seconds to 35 minutes. The estimates of hydraulic conductivity range from 0.2 to 200 feet per day. Eighty-three percent of the estimates are between 1 and 100 feet per day.

  14. Air Conditioning Compressor Air Leak Detection by Image Processing Techniques for Industrial Applications

    Directory of Open Access Journals (Sweden)

    Pookongchai Kritsada

    2015-01-01

    Full Text Available This paper presents method to detect air leakage of an air conditioning compressor using image processing techniques. Quality of air conditioning compressor should not have air leakage. To test an air conditioning compressor leak, air is pumped into a compressor and then submerged into the water tank. If air bubble occurs at surface of the air conditioning compressor, that leakage compressor must be returned for maintenance. In this work a new method to detect leakage and search leakage point with high accuracy, fast, and precise processes was proposed. In a preprocessing procedure to detect the air bubbles, threshold and median filter techniques have been used. Connected component labeling technique is used to detect the air bubbles while blob analysis is searching technique to analyze group of the air bubbles in sequential images. The experiments are tested with proposed algorithm to determine the leakage point of an air conditioning compressor. The location of the leakage point was presented as coordinated point. The results demonstrated that leakage point during process could be accurately detected. The estimation point had error less than 5% compared to the real leakage point.

  15. Testing of adsorbents used in nuclear power plant air cleaning systems using the open-quotes Newclose quotes standards

    International Nuclear Information System (INIS)

    Freeman, W.P.

    1993-01-01

    Ever since the publication of the NRC Information Notice No. 87-32: Deficiencies in the Testing of Nuclear-Grade Activated Charcoal, nuclear power facilities in the US have struggled in their efforts to open-quotes...review the information for applicability to their facilities and consider action, if appropriate ...close quotes as stated in the notice. The encouragement of resident NRC inspectors at some nuclear power facilities has prompted a variety of responses ranging from no change at all in testing requirements to contemplated changes in plant technical specifications. This confusion is the result of a couple factors. The first factor is the lack of a current revision to NRC Regulatory Guide 1.52, the basic document used in nuclear power plant technical specifications for the testing of engineered-safety feature (ESF) post accident air cleaning systems. The second factor is the standards that have been written since the last revision of Reg. Guide 1.52 which include two revision of ANSI N509 and N510, two revisions of RDT M16-1T, two version of ASTM D3803, two versions of ASTM D4069, and three versions of an SME code AG-1. Few of the standards and codes listed above are commensurate with each other and, thus, present a nearly insolvable maze to the HVAC engineer asked to upgrade adsorbent testing requirements following the standards. This paper describes the authors experience with a number of nuclear power facilities in their efforts to meet the requirements of the new standards of testing adsorbents from nuclear power plant air cleaning systems. The existing standards are discussed in light of the current state of the art for adsorbent testing of adsorbent media from nuclear air treatment systems. Test results are presented showing the impact of new test requirements on acceptance criteria when compared to the old test requirements and recommendations are offered for solution of this testing problem in the future. 12 refs., 5 tabs

  16. Summary of the BIOMOVS A4 scenario: Testing models of the air-pasture-cow milk pathway using Chernobyl fallout data

    International Nuclear Information System (INIS)

    Peterson, S.R.; Hoffman, F.O.; Koehler, H.

    1996-01-01

    A unique opportunity to test dose assessment models arose after the Chernobyl reactor accident. During the passage of the contaminated plume, concentrations of 131 I and 137 Cs in air, pasture, and cow's milk were collected at various sites in the northern hemisphere. Afterwards, contaminated pasture and milk samples were analyzed over time. Under the auspices of the Biospheric Model Validation Study (BIOMOVS), data from 13 sites for 131 I and 10 sites for 137 Cs were used to test model predictions for the air-pasture-cow milk pathway. Calculations were submitted for 23 models, 10 of which were quasi-steady state. The others were time-dependent. Daily predictions and predictions of time-integrated concentration of 131 I and 137 Cs in pasture grass and milk for six months post-accident were calculated and compared with observed data. Testing against data from several locations over time for several steps in the air-to-milk pathway resulted in a better understanding of important processes and how they should be modeled. This model testing exercise showed both the strengths and weaknesses of the models and revealed the importance of testing all parts of dose assessment models whenever possible. 19 refs., 14 figs., 4 tabs

  17. Dependence of Error Level on the Number of Probes in Over-the-Air Multiprobe Test Systems

    Directory of Open Access Journals (Sweden)

    Afroza Khatun

    2012-01-01

    Full Text Available Development of MIMO over-the-air (OTA test methodology is ongoing. Several test methods have been proposed. Anechoic chamber-based multiple-probe technique is one promising candidate for MIMO-OTA testing. The required number of probes for synthesizing the desired fields inside the multiprobe system is an important issue as it has a large impact on the cost of the test system. In this paper, we review the existing investigations on this important topic and end up presenting rules for the required number of probes as a function of the test zone size in wavelengths for certain chosen uncertainty levels of the field synthesis.

  18. Design Evaluation of Thermal-hydraulic Test Facility for a Finned-tube Sodium-to-Air Heat Exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyungmo; Kim, Byeong-Yeon; Ko, Yung Joo; Cho, Youngil; Kim, Jong-Man; Son, Seok-Kwon; Jo, Youngchul; Kang, Byeong Su; Jung, Minhwan; Eoh, Jaehyuk; Lee, Hyeong-Yeon; Jeong, Ji-Young [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    This paper introduces the recent progress of overall design phase for the SELFA facility and deals with basic thermal-hydraulic design parameters and its design validation as well. For more reliable design of the safety-grade decay heat removal system (DHRS) in PGSFR (Prototype Gen-IV Sodium-cooled Fast Reactor), two kinds of sodium-to-air heat exchangers have been employed in the system as an ultimate heat sink. One is a natural draft sodium-to-air heat exchanger (AHX) with helically-coiled sodium tubes, and the other is a forced draft sodium-to-air heat exchanger (FHX) with finned tubes with a straight-type arranged. Since the FHX is normally operated in an active mode with a forced air draft conditions, its performance should be verified for any anticipated operating conditions. To validate the test section design, evaluations of both thermal-hydraulic and mechanical design have been carried out, and some new concepts or devices were newly employed to replicate the prototypic conditions as closely as possible.

  19. Assessment of MARS for downcomer multi-dimensional thermal hydraulics during LBLOCA reflood using KAERI air-water direct vessel injection tests

    Energy Technology Data Exchange (ETDEWEB)

    Won-Jae, Lee; Kwi-Seok, Ha; Chul-Hwa, Song [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)

    2001-07-01

    The MARS code has been assessed for the downcomer multi-dimensional thermal hydraulics during a large break loss-of-coolant accident (LBLOCA) reflood of Korean Next Generation Reactor (KNGR) that adopted an upper direct vessel injection (DVI) design. Direct DVI bypass and downcomer level sweep-out tests carried out at 1/50-scale air-water DVI test facility are simulated to examine the capability of MARS. Test conditions are selected such that they represent typical reflood conditions of KNGR, that is, DVI injection velocities of 1.0 {approx} 1.6 m/sec and air injection velocities of 18.0 {approx} 35.0 m/sec, for single and double DVI configurations. MARS calculation is first adjusted to the experimental DVI film distribution that largely affects air-water interaction in a scaled-down downcomer, then, the code is assessed for the selected test matrix. With some improvements of MARS thermal-hydraulic (T/H) models, it has been demonstrated that the MARS code is capable of simulating the direct DVI bypass and downcomer level sweep-out as well as the multi-dimensional thermal hydraulics in downcomer, where condensation effect is excluded. (authors)

  20. Review of the Air-Coupled Impact-Echo Method for Non-Destructive Testing

    Science.gov (United States)

    Nowotarski, Piotr; Dubas, Sebastian; Milwicz, Roman

    2017-10-01

    The article presents the general idea of Air-Coupled Impact-Echo (ACIE) method which is one of the non-destructive testing (NDT) techniques used in the construction industry. One of the main advantages of the general Impact Echo (IE) method is that it is sufficient to access from one side to that of the structure which greatly facilitate research in the road facilities or places which are difficult to access and diagnose. The main purpose of the article is to present state-of-the-art related to ACIE method based on the publications available at Thomson Reuters Web of Science Core Collection database (WOS) with the further analysis of the mentioned methods. Deeper analysis was also performed for the newest publications published within last 3 years related to ACIE for investigation on the subject of main focus of the researchers and scientists to try to define possible regions where additional examination and work is necessary. One of the main conclusions that comes from the performed analysis is that ACIE methods can be widely used for performing NDT of concrete structures and can be performed faster than standard IE method thanks to the Air-coupled sensors. What is more, 92.3% of the analysed recent research described in publications connected with ACIE was performed in laboratories, and only 23.1% in-situ on real structures. This indicates that method requires further research to prepare test stand ready to perform analysis on real objects outside laboratory conditions. Moreover, algorithms that are used for data processing and later presentation in ACIE method are still being developed and there is no universal solution available for all kinds of the existing and possible to find defects, which indicates possible research area for further works. Authors are of the opinion that emerging ACIE method could be good opportunity for ND testing especially for concrete structures. Development and refinement of test stands that will allow to perform in-situ tests could

  1. A directional passive air sampler for monitoring polycyclic aromatic hydrocarbons (PAHs) in air mass

    International Nuclear Information System (INIS)

    Tao, S.; Liu, Y.N.; Lang, C.; Wang, W.T.; Yuan, H.S.; Zhang, D.Y.; Qiu, W.X.; Liu, J.M.; Liu, Z.G.; Liu, S.Z.; Yi, R.; Ji, M.; Liu, X.X.

    2008-01-01

    A passive air sampler was developed for collecting polycyclic aromatic hydrocarbons (PAHs) in air mass from various directions. The airflow velocity within the sampler was assessed for its responses to ambient wind speed and direction. The sampler was examined for trapped particles, evaluated quantitatively for influence of airflow velocity and temperature on PAH uptake, examined for PAH uptake kinetics, calibrated against active sampling, and finally tested in the field. The airflow volume passing the sampler was linearly proportional to ambient wind speed and sensitive to wind direction. The uptake rate for an individual PAH was a function of airflow velocity, temperature and the octanol-air partitioning coefficient of the PAH. For all PAHs with more than two rings, the passive sampler operated in a linear uptake phase for three weeks. Different PAH concentrations were obtained in air masses from different directions in the field test. - A novel directional passive air sampler was developed and tested for monitoring PAHs in air masses from different directions

  2. SpaceX Dragon Air Circulation System

    Science.gov (United States)

    Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro

    2011-01-01

    The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.

  3. Connectable solar air collectors

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard Jensen, S.; Bosanac, M.

    2002-02-01

    The project has proved that it is possible to manufacture solar air collector panels, which in an easy way can be connected into large collector arrays with integrated ducting without loss of efficiency. The developed connectable solar air collectors are based on the use of matrix absorbers in the form of perforated metal sheets. Three interconnected solar air collectors of the above type - each with an transparent area of approx. 3 m{sup 2} - was tested and compared with parallel tests on two single solar air collectors also with a transparent area of approx. 3 m{sup 2} One of the single solar air collectors has an identical absorber as the connectable solar air collectors while the absorber of the other single solar air collector was a fibre cloth. The efficiency of the three solar air collectors proved to be almost identical in the investigated range of mass flow rates and temperature differences. The solar air collectors further proved to be very efficient - as efficient as the second most efficient solar air collectors tested in the IEA task 19 project Solar Air Systems. Some problems remain although to be solved: the pressure drop across especially the connectable solar air collectors is too high - mainly across the inlets of the solar air collectors. It should, however, be possible to considerably reduce the pressure losses with a more aerodynamic design of the inlet and outlet of the solar air collectors; The connectable solar air collectors are easy connectable but the air tightness of the connections in the present form is not good enough. As leakage leads to lower efficiencies focus should be put on making the connections more air tight without loosing the easiness in connecting the solar air collectors. As a spin off of the project a simple and easy way to determine the efficiency of solar, air collectors for pre-heating of fresh air has been validated. The simple method of determining the efficiency has with success been compared with an advance method

  4. Tests of the heat transfer characteristic of air cooler during cooling by natural convection of the Fast Breeder Reactor plants

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The purpose of this study is to confirm the heat transfer characteristics of the air cooler (AC) of the Fast Breeder Reactor(FBR) which has a function to remove the residual heat of the reactor by heat exchange between sodium and air in natural convection region if electric power would be lost. In order to confirm the characteristics of the AC installed in the FBR plant, the heat transfer test by using the AC which is installed in the sodium test loop owned by Toshiba Corporation has been planned. In this study, the heat transfer characteristic tests were performed by using the AC in sodium test loop, and the CFD analyses were conducted to evaluate the test results and the heat transfer characteristics of the plant scale AC at the condition of natural convection. In addition, the elemental tests to confirm the influence of the heat transfer tube placement by using the heat transfer tube of the same specification as the AC of Monju were performed. (author)

  5. Air pollution test methods

    Energy Technology Data Exchange (ETDEWEB)

    Yoneyama, E; Sugano, S; Fukui, S

    1974-06-01

    Vanadium exists in heavy oil as a chelate with mesoporphiline methyl ester, and the combustion ash of the oil may contain up to 80 percent of its oxides. Air is sampled in a standard way and to each 50 ml of the sample and blank solutions, add 5 ml of phosphoric acid and 2 ml of 10 percent ammonium sulfamate solution. After 10 min, the solution is titrated with potassium permanganate until it becomes purple. Two ml of hydrochloric acid and 10 ml of N-benzoylphenylhydroxylamine benzene solution are added and shaken for 30 sec. The benzene layer is washed with several portions of 2 ml HCl until no coloration of the HCl solution is visible. The benzene layer is transferred to a colorimetric tube and dried with granular calcium chloride. The absorbance is measured near 530 nm and the concentration is determined from a calibration curve previously prepared.

  6. Photodegradation of polyaromatic hydrocarbons in passive air samplers: Field testing different deployment chambers

    International Nuclear Information System (INIS)

    Bartkow, Michael E.; Kennedy, Karen E.; Huckins, James N.; Holling, Neil; Komarova, Tatiana; Mueller, Jochen F.

    2006-01-01

    Semi-permeable membrane devices (SPMDs) were loaded with deuterated anthracene and pyrene as performance reference compounds (PRCs) and deployed at a test site in four different chambers (open and closed box chamber, bowl chamber and cage chamber) for 29 days. The losses of PRCs and the uptake of polyaromatic hydrocarbons (PAHs) from the ambient air were quantified. UV-B levels measured in each deployment chamber indicated that SPMDs would be exposed to the most UV-B in the cage chamber and open box chamber. Significantly less PAHs were quantified in SPMDs deployed in the cage chamber and open box chamber compared to samplers from the other two chambers, suggesting that photodegradation of PAHs had occurred. The loss of PRCs confirmed these results but also showed that photodegradation was occurring in the closed box chamber. The bowl chamber appears to provide the best protection from the influence of direct photodegradation. - Photodegradation/loss of PAHs occurs from passive air samplers (SPMDs) deployed in various sampler chambers

  7. Evaluation of functional color vision requirements and current color vision screening tests for air traffic control specialists.

    Science.gov (United States)

    1990-08-01

    An experiment was conducted to evaluate the relation of type and degree of color vision deficiency and aeromedical color vision screening test scores to performance of color-dependent tasks of Air Traffic Control Specialists. The subjects included 37...

  8. Innovative Virtual Air Data Sensors: Algorithms and Flight Test Results

    OpenAIRE

    Garbarino, Luca

    2015-01-01

    This thesis deals with the design, prototype implementation and the assessment of virtual sensors for an Air Data System (ADS). The needs for the development of a virtual Air Data Sensors resides on two relevant aspects in aviation transport development: a) the opportunity to improve the safety of manned aviation, by implementing an affordable solution for ADS redundancy; b) the possibility to improve the reliability of unmanned air vehicles (UAVs), which can support their integration in non-...

  9. Air-deployable oil spill sampling devices review phase 2 testing. Volume 1

    International Nuclear Information System (INIS)

    Hawke, L.; Dumouchel, A.; Fingas, M.; Brown, C.E.

    2007-01-01

    SAIC Canada tested air deployable oil sampling devices for the Emergencies Science and Technology Division of Environment Canada in order to determine the applicability and status of these devices. The 3 devices tested were: Canada's SABER (sampling autonomous buoy for evidence recovery), the United States' POPEIE (probe for oil pollution evidence in the environment); and, Sweden's SAR Floatation 2000. They were tested for buoyancy properties, drift behaviour and sampler sorbent pickup ratios. The SAR and SABER both had lesser draft and greater freeboard, while the POPEIE had much greater draft than freeboard. All 3 devices could be used for oil sample collection in that their drift characteristics would allow for the SABER and SAR devices to be placed upwind of the slick while the POPEIE device could be placed downwind of an oil spill. The sorbent testing revealed that Sefar sorbent and Spectra sorbent used in the 3 devices had negative pickup ratios for diesel but performance improved as oil viscosity increased. Both sorbents are inert and capable of collecting oil in sufficient volumes for consistent fingerprinting analysis. 10 refs., 8 tabs., 8 figs

  10. Nevada Test Site National Emission Standards for Hazardous Air Pollutants - Radionuclide Emissions Calendar Year 2008

    International Nuclear Information System (INIS)

    Warren, Ronald; Grossman, Robert F.

    2009-01-01

    The Nevada Test Site (NTS) is operated by the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office. From 1951 through 1992, the NTS was the continental testing location for U.S. nuclear weapons. The release of radionuclides from NTS activities has been monitored since the initiation of atmospheric testing. Limitation to under-ground detonations after 1962 greatly reduced radiation exposure to the public surrounding the NTS. After nuclear testing ended in 1992, NTS radiation monitoring focused on detecting airborne radionuclides from historically contaminated soils. These radionuclides are derived from re-suspension of soil (primarily by winds) and emission of tritium-contaminated soil moisture through evapotranspiration. Low amounts of tritium were also emitted to air at the North Las Vegas Facility (NLVF), an NTS support complex in the city of North Las Vegas. To protect the public from harmful levels of man-made radiation, the Clean Air Act, National Emission Standards for Hazardous Air Pollutants (NESHAP) (Title 40 Code of Federal Regulations (CFR) Part 61 Subpart H) (CFR, 2008a) limits the release of radioactivity from a U.S. Department of Energy facility (e.g., the NTS) to 10 millirem per year (mrem/yr) effective dose equivalent to any member of the public. This limit does not include radiation not related to NTS activities. Unrelated doses could come from naturally occurring radioactive elements or from other man-made sources such as medical treatments. The NTS demonstrates compliance with the NESHAP limit by using environmental measurements of radionuclide air concentrations at critical receptor locations. This method was approved by the U.S. Environmental Protection Agency for use on the NTS in 2001 and has been the sole method used since 2005. Six locations on the NTS have been established to act as critical receptor locations to demonstrate compliance with the NESHAP limit. These locations are actually pseudo

  11. Performance Evaluation of "Low-cost" Sensors for Measuring Gaseous and Particle Air Pollutants: Results from Two Years of Field and Laboratory Testing

    Science.gov (United States)

    Feenstra, B. J.; Polidori, A.; Tisopulos, L.; Papapostolou, V.; Zhang, H.; Pathmanabhan, J.

    2016-12-01

    In recent years great progress has been made in development of low-cost miniature air quality sensing technologies. Such low-cost sensors offer a prospect of providing a real-time spatially dense information on pollutants, however, the quality of the data produced by these sensors is so far untested. In an effort to inform the general public about the actual performance of commercially available low-cost air quality sensors, in June 2014 the South Coast Air Quality Management District (SCAQMD) has established the Air Quality Sensor Performance Evaluation Center (AQ-SPEC). This program performs a thorough characterization of low-cost sensors under ambient (in the field) and controlled (in the laboratory) conditions. During the field testing, air quality sensors are operated side-by-side with Federal Reference Methods and Federal Equivalent Methods (FRM and FEM, respectively), which are routinely used to measure the ambient concentration of gaseous or particle pollutants for regulatory purposes. Field testing is conducted at two of SCAQMD's existing air monitoring stations, one in Rubidoux and one near the I-710 freeway. Sensors that demonstrate an acceptable performance in the field are brought back to the lab where a "characterization chamber" is used to challenge these devices with known concentrations of different particle and gaseous pollutants under different temperature and relative humidity levels. Testing results for each sensor are then summarized in a technical report and, along with other relevant information, posted online on a dedicated website (www.aqmd.gov/aq-spec) to educate the public about the capabilities of commercially available sensors and their potential applications. During this presentation, the results from two years of field and laboratory testing will be presented. The major strengths and weaknesses of some of the most commonly available particle and gaseous sensors will be discussed.

  12. Technology Solutions Case Study: Air Leakage and Air Transfer Between Garage and Living Space, Waldorf, Maryland

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-11-01

    In this project, Building Science Corporation worked with production homebuilder K. Hovnanian to evaluate air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multipoint fan pressurization tests and additional zone pressure diagnostic testing measured the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed. For houses employing whole-house supply ventilation (positive pressure) or balanced ventilation (same pressure effect as the baseline condition), adherence to the EPA Indoor airPLUS house-to-garage air sealing requirements should be sufficient to expect little to no garage-to-house air transfer.

  13. Hypoxia Stress Test Reveals Exaggerated Cardiovascular Effects in Hypertensive Rats after Exposure to the Air Pollutant Acrolein

    Science.gov (United States)

    Exposure to air pollution increases the risk of cardiovascular morbidity and mortality, especially in susceptible populations with cardiovascular disease. Stress tests are useful in assessing cardiovascular risk and manifesting latent effects of exposure. The goal of this study w...

  14. Test and evaluation of the Argonne BPAC10 Series air chamber calorimeter designed for 20 minute measurements

    International Nuclear Information System (INIS)

    Perry, R.B.; Fiarman, S.; Jung, E.A.; Cremers, T.

    1990-10-01

    This paper is the final report on DOE-OSS Task ANLE88002 ''Fast Air Chamber Calorimetry.'' The task objective was to design, construct, and test an isothermal air chamber calorimeter for plutonium assay of bulk samples that would meet the following requirements for sample power measurement: average sample measurement time less than 20 minutes. Measurement of samples with power output up to 10 W. Precision of better than 1% RSD for sample power greater than 1 W. Precision better than 0.010 watt SD, for sample power less than 1 W. This report gives a description of the calorimeter hardware and software and discusses the test results. The instrument operating procedure, included as an appendix, gives examples of typical input/output and explains the menu driven software. Sample measurement time of less than 20 minutes was attained by pre-equilibration of the samples in low cost precision preheaters and by prediction of equilibrium measurements. Tests at the TA55 Plutonium Facility at Los Alamos National Laboratory, on typical samples, indicates that the instrument meets all the measurement requirements

  15. Construction and test of a box system for operations with air-sensitive and radioactive compounds

    International Nuclear Information System (INIS)

    Kuenstler, K.; Betzl, K.; Grosser, H.J.; Furkert, W.; Novotny, D.

    1985-06-01

    A system of mechanical components has been develoed, which can be used to design inert atmosphere boxes as well as radioactive boxes. The advantage in comparison with known designs consists in the modular construction principle which permits variable dimensions. Standard parts (flanges, bushings, air locks and so on) possess a uniform size. The system for the maintenance of a high-purity atmosphere in the box has been improved, decreasing the level of oxygen and water vapour below 10 vpm. The low impurity level in the inert atmosphere is attained by means of continuous circulation of the gases through a purification system. The usefulness of the boxes for handling air-sensitive and radioactive compounds has been tested over a period of some years. (author)

  16. Life testing of a low voltage air circuit breaker

    International Nuclear Information System (INIS)

    Subudhi, M.; Aggarwal, S.

    1992-01-01

    A DS-416 low voltage air circuit breaker manufactured by Westinghouse was mechanically cycled to identify age-related degradation in the various breaker subcomponents, specifically the power-operated mechanism. This accelerated aging test was performed on one breaker unit for over 36,000 cycles. Three separate pole shafts, one with a 60-degree weld, one with a 120-degree weld, and one with a 180-degree weld in the third pole lever were used to characterize cracking in the welds. In addition, during the testing three different operating mechanisms and several other parts were replaced as they became inoperable. Among the seven welds on the pole shaft, number-sign 1 and number-sign 3 were found to be critical ones whose fracture can result in misalignment of the pole levers. This can lead to problems with the operating mechanism, including the burning of coils, excessive wear in certain parts, and overstressed linkages. Furthermore, the limiting service life of a number of subcomponents of the power-operated mechanism, including the operating mechanism itself, were assessed. Based on these findings, suggestions are provided to alleviate the age-related degradation that could occur as a result of normal closing and opening of the breaker contacts during its service life. Also, cause and effect analyses of various age-related degradation in various breaker parts are discussed

  17. Emission of biocides from treated materials: test procedures for water and air.

    Science.gov (United States)

    Schoknecht, Ute; Wegner, Robby; Horn, Wolfgang; Jann, Oliver

    2003-01-01

    Methods for the determination of biocide emissions from treated materials into water and air were developed and tested in order to support a comparative ecological assessment of biocidal products. Leaching tests, experiments with simulated rain, extraction cleaning of carpets and emission chamber tests were performed with a series of treated materials. The experiments focused on the effect of changes in the procedure as well as characteristics of the specimens and demonstrate the suitability of the proposed methods for biocides of different product types. It was demonstrated that emissions of biocides into water can be compared on the basis of leaching tests in which the emission kinetics of the active ingredients are recorded. However, the water volume per surface area and the timetable for water changes have to be defined in such tests. Functions of flux rates related to time can be well described for inorganic compounds, whereas modelling of the data is more complicated for organic substances. Emission chamber tests using 20-litre and 23-litre glass exsiccators, originally developed to study volatile organic compounds, were successfully adapted for the investigation of the emission of biocides from treated materials which are usually semi volatile organic compounds. However test parameters and the method of analysis have to be adapted to the substances to be determined. Generally, it was found that the emission curves for the semi volatile organic compounds investigated differ from those of volatile organic compounds.

  18. Experimental investigation of air relative humidity (RH) cycling tests on MEA/cell aging in PEMFC. Pt. I. Study of high RH cycling test with air RH at 62%/100%

    Energy Technology Data Exchange (ETDEWEB)

    Huang, B.T.; Chatillon, Y.; Bonnet, C.; Lapicque, F. [Laboratoire Reactions et Genie des Procedes, CNRS-Nancy University, Nancy (France); Leclerc, S. [Laboratoire d' Energetique et de Mecanique Theorique et Appliquee, CNRS-Nancy University, Vandoeuvre-les-Nancy (France); Hinaje, M.; Rael, S. [Groupe de Recherche en Electrotechnique et Electronique de Nancy, CNRS-Nancy University, Vandoeuvre-les-Nancy (France)

    2012-06-15

    The effect of high air relative humidity (RH) cycling (RH{sub C} 62%/100%) on the degradation mechanisms of a single (5 x 5 cm{sup 2}) proton exchange membrane fuel cells was investigated. The cell performance was compared to a cell operated at constant humidification (RH{sub C} = 62%). Runs were conducted over approximately 1,500 h at 0.3 A cm{sup -2}. The overall loss in cell performance for the high RH cycling test was 12 {mu}V h{sup -1} whereas it was at 3 {mu}V h{sup -1} under constant humidification. Impedance spectroscopy reveals that the ohmic and charge transfer resistances were little modified in both runs. H{sub 2} crossover measurement indicated that both high RH cycling and constant RH test did not promote serious effect on gas permeability. The electroactive surface loss for anode and cathode during high air RH cycling was more significant than at constant RH operation. The water uptake determined by {sup 1}H nuclear magnetic resonance within the membrane electrode assembly (MEA) after high RH cycling was reduced by 12% in comparison with a fresh MEA. Transmission electron microscopy showed bubbles and pinholes formation in the membrane, catalyst particles agglomeration (also observed by X-ray diffraction), catalyst particles migration in the membrane and thickness reduction of the catalytic layers. Scanning electron microscopy was conducted to observe the changes in morphology of gas diffusion layers after the runs. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Medición "in situ" de la permeabilidad al aire del hormigón: status quo Concrete air permeability "in situ "test status quo

    Directory of Open Access Journals (Sweden)

    Luis Ebensperger

    2010-01-01

    Full Text Available Los autores han estado involucrados en la creación y primeros ensayos y desarrollos del llamado "Método Torrent" para medir la permeabilidad al aire del hormigón. Transcurridos más de 15 años de ese trabajo fundacional, el artículo presenta una revisión de la evolución y estado de situación del método, incluido como Norma Oficial Suiza en 2003. Se presentan ejemplos de su aplicación en laboratorio y en obras (puentes, túneles, etc., con datos de valores medidos, provenientes de distintos países del mundo. Se presentan correlaciones entre el coeficiente de permeabilidad al aire kT y otros indicadores de durabilidad, tales como la migración de cloruros (ASTM C1202 y la penetración de agua a presión (EN 12390-8 o por capilaridad. Finalmente se discuten sus perspectivas de uso futuro, como herramienta de control de calidad de estructuras nuevas, con las importantes implicancias que ello acarreará, así como de diagnóstico de estructuras existentes.The authors have been involved in the creation, preliminary tests and development of the "Torrent Method", which is intended to test air permeability in concrete. It's been more than 15 years since such foundational research and, now, this paper presents a review of the evolution and current situation of the Method, included in the Switzerland standards in 2003. Application examples conducted in laboratory and civil works (bridges, tunnels, and so on are introduced, including data from different countries worldwide. Correlations between the air permeability coefficient kT and other durability indicators, such as chloride migration (ASTM C1202, penetration of water under pressure (EN 12390-8 or capillary action are presented. Finally the future prospective uses are discussed, as quality control tool for new structures, considering relevant implications they would lead to, as well as the diagnosis on existing structures.

  20. Second Line of Defense, Port of Buenos Aires and Exolgan Container Terminal Operational Testing and Evaluation Plan, Buenos Aires, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Bryan W.

    2012-08-23

    The Office of the Second Line of Defense (SLD) Megaports project team for Argentina will conduct operational testing and evaluation (OT&E) at Exolgan Container Terminal at the Port of Dock Sud from July 16-20, 2012; and at the Port of Buenos Aires from September 3-7, 2012. SLD is installing radiation detection equipment to screen export, import, and transshipment containers at these locations. The purpose of OT&E is to validate and baseline an operable system that meets the SLD mission and to ensure the system continues to perform as expected in an operational environment with Argentina Customs effectively adjudicating alarms.

  1. Operational air sampling report

    International Nuclear Information System (INIS)

    Lyons, C.L.

    1994-03-01

    Nevada Test Site vertical shaft and tunnel events generate beta/gamma fission products. The REECo air sampling program is designed to measure these radionuclides at various facilities supporting these events. The current testing moratorium and closure of the Decontamination Facility has decreased the scope of the program significantly. Of the 118 air samples collected in the only active tunnel complex, only one showed any airborne fission products. Tritiated water vapor concentrations were very similar to previously reported levels. The 206 air samples collected at the Area-6 decontamination bays and laundry were again well below any Derived Air Concentration calculation standard. Laboratory analyses of these samples were negative for any airborne fission products

  2. Design and laboratory testing of a new flow-through directional passive air sampler for ambient particulate matter.

    Science.gov (United States)

    Lin, Chun; Solera Garcia, Maria Angeles; Timmis, Roger; Jones, Kevin C

    2011-03-01

    A new type of directional passive air sampler (DPAS) is described for collecting particulate matter (PM) in ambient air. The prototype sampler has a non-rotating circular sampling tray that is divided into covered angular channels, whose ends are open to winds from sectors covering the surrounding 360°. Wind-blown PM from different directions enters relevant wind-facing channels, and is retained there in collecting pools containing various sampling media. Information on source direction and type can be obtained by examining the distribution of PM between channels. Wind tunnel tests show that external wind velocities are at least halved over an extended area of the collecting pools, encouraging PM to settle from the air stream. Internal and external wind velocities are well-correlated over an external velocity range of 2.0-10.0 m s⁻¹, which suggests it may be possible to relate collected amounts of PM simply to ambient concentrations and wind velocities. Measurements of internal wind velocities in different channels show that velocities decrease from the upwind channel round to the downwind channel, so that the sampler effectively resolves wind directions. Computational fluid dynamics (CFD) analyses were performed on a computer-generated model of the sampler for a range of external wind velocities; the results of these analyses were consistent with those from the wind tunnel. Further wind tunnel tests were undertaken using different artificial particulates in order to assess the collection performance of the sampler in practice. These tests confirmed that the sampler can resolve the directions of sources, by collecting particulates preferentially in source-facing channels.

  3. 42 CFR 84.159 - Man tests for gases and vapors; supplied-air respirators; general performance requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Man tests for gases and vapors; supplied-air respirators; general performance requirements. 84.159 Section 84.159 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES...

  4. Air void structure and frost resistance

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange

    2014-01-01

    ). This observation is interesting as the parameter of total surface area of air voids normally is not included in air void analysis. The following reason for the finding is suggested: In the air voids conditions are favourable for ice nucleation. When a capillary pore is connected to an air void, ice formation...... on that capillary pores are connected to air voids. The chance that a capillary pore is connected to an air void depends on the total surface area of air voids in the system, not the spacing factor.......This article compiles results from 4 independent laboratory studies. In each study, the same type of concrete is tested at least 10 times, the air void structure being the only variable. For each concrete mix both air void analysis of the hardened concrete and a salt frost scaling test...

  5. A review on test procedure, energy efficiency standards and energy labels for room air conditioners and refrigerator-freezers

    Energy Technology Data Exchange (ETDEWEB)

    Mahlia, T.M.I.; Saidur, R. [Department of Mechanical Engineering, University of Malaya, 50603 Kuala Lumpur (Malaysia)

    2010-09-15

    Air conditioners and refrigerator-freezers are major energy users in a household environment and hence efficiency improvement of these appliances can be considered as an important step to reduce their energy consumption along with environmental pollution prevention. Energy efficiency standards and labels are commonly used tools to reduce the energy uses for household appliances for many countries around the world. The first step towards adopting energy efficiency standards is to establish a test procedure for rating and testing of an appliance. It may be mentioned that an energy test procedure is the technical foundation for energy efficiency standards, energy labels, and other related programs. This paper reviews requirements and specifications of various international test standards for testing and rating of room air conditioners and refrigerators. A review on the development of the energy efficiency standards has been provided as well. Finally, energy labels that provide some useful information for identifying energy efficient products have been reviewed for these appliances. It may be stated that the review will be useful for the developing countries who wish to develop these energy savings strategies. It is also expected to be useful to revise the existing strategies for a few selected countries who already implemented these strategies earlier. (author)

  6. Pulmonary function tests in air conditioner users

    African Journals Online (AJOL)

    McRoy

    2014-07-26

    Jul 26, 2014 ... Background: Modernization has been implicated in the pathogenesis of allergic airway diseases. House dust, mites, and indoor air pollutants have been reported to cause elevation of serum IgE levels and/or enhancement of eosinophil activity. A component of modern lifestyle is the intense use of ...

  7. 42 CFR 84.163 - Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand...

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Man test for gases and vapors; Type C supplied-air respirators, demand and pressure-demand classes; test requirements. 84.163 Section 84.163 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF...

  8. Physics of enriched uranyl fluoride deposit characterizations using active neutron and gamma interrogation techniques with 252Cf

    International Nuclear Information System (INIS)

    Wyatt, M.S.; Hannon, T.F.

    1998-01-01

    A method was developed and successfully applied to characterize large uranyl fluoride (UO 2 F 21 ) deposits at the former Oak Ridge Gaseous Diffusion Plant. These deposits were formed by a wet air in-leakage into the UF 6 process gas lines over a period of years. The resulting UO 2 F 2 is hygroscopic, readily absorbing moisture from the air to form hydrates as UO 2 F 2 -nH 2 O. The ratio of hydrogen to uranium, denoted H/U, can vary from 0--16, and has significant nuclear criticality safety impacts for large deposits. In order to properly formulate the required course of action, a non-intrusive characterization of the distribution of the fissile material within the pipe, its total mass, and amount of hydration was needed. The Nuclear Weapons Identification System (NWIS) previously developed at the Oak Ridge Y-12 Plant for identification of uranium weapons components in storage containers was used to successfully characterize the distribution, hydration, and total mass of these deposits

  9. Preliminary Calculations of Bypass Flow Distribution in a Multi-Block Air Test

    International Nuclear Information System (INIS)

    Kim, Min Hwan; Tak, Nam Il

    2011-01-01

    The development of a methodology for the bypass flow assessment in a prismatic VHTR (Very High Temperature Reactor) core has been conducted at KAERI. A preliminary estimation of variation of local bypass flow gap size between graphite blocks in the NHDD core were carried out. With the predicted gap sizes, their influence on the bypass flow distribution and the core hot spot was assessed. Due to the complexity of gap distributions, a system thermo-fluid analysis code is suggested as a tool for the core thermo-fluid analysis, the model and correlations of which should be validated. In order to generate data for validating the bypass flow analysis model, an experimental facility for a multi-block air test was constructed at Seoul National University (SNU). This study is focused on the preliminary evaluation of flow distribution in the test section to understand how the flow is distributed and to help the selection of experimental case. A commercial CFD code, ANSYS CFX is used for the analyses

  10. Contribution to the improvement of the sodium chloride air filter test method

    International Nuclear Information System (INIS)

    Delhaye, J.; Michel, J.

    1977-01-01

    The essential feature of the test method initially developed by the Porton Down Chemical Defence Establishment and modified subsequently by the Atomic Energy Research Establishment at Harwell have been adopted for the testing of high efficiency filters by the European Committee of Manufacturers of Equipment for Air Treatment (EUROVENT). The method has also been studied in the context of the ISO. The Heating and Ventilation Industries, Technical Centre (CETIAT), which uses this method, has drawn attention to a number of imperfections which affect reproductibility. It proposes changes which should have the effect of making the method reproducible not only in a given laboratory but also from one laboratory to another. It will then be possible to carry out studies to compare this method with other similar ones, in particular the fluorescin method (Standard NF X 44 011). The work carried out by CETIAT was concerned mainly with the following: aerosol generation, the velocity spectra in sampling sections, photometer calibration

  11. Building America Case Study: Air Leakage and Air Transfer Between Garage and Living Space, Waldorf, Maryland (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-11-01

    This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed. For houses employing whole-house supply ventilation (positive pressure) or balanced ventilation (same pressure effect as the Baseline condition), adherence to the EPA Indoor airPLUS house-to-garage air sealing requirements should be sufficient to expect little to no garage-to-house air transfer.

  12. Testing hadronic interactions at ultrahigh energies with air showers measured by the Pierre Auger Observatory

    Czech Academy of Sciences Publication Activity Database

    Aab, A.; Abreu, P.; Aglietta, M.; Blažek, Jiří; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub

    2016-01-01

    Roč. 117, č. 19 (2016), 1-9, č. článku 192001. ISSN 0031-9007 R&D Projects: GA MŠk LM2015038; GA MŠk LG15014; GA ČR(CZ) GA14-17501S Institutional support: RVO:68378271 Keywords : Pierre Auger Observatory * testing hadronic Interactions * ultrahigh energies * air showers Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 8.462, year: 2016

  13. Scaling and design analyses of a scaled-down, high-temperature test facility for experimental investigation of the initial stages of a VHTR air-ingress accident

    International Nuclear Information System (INIS)

    Arcilesi, David J.; Ham, Tae Kyu; Kim, In Hun; Sun, Xiaodong; Christensen, Richard N.; Oh, Chang H.

    2015-01-01

    Highlights: • A 1/8th geometric-scale test facility that models the VHTR hot plenum is proposed. • Geometric scaling analysis is introduced for VHTR to analyze air-ingress accident. • Design calculations are performed to show that accident phenomenology is preserved. • Some analyses include time scale, hydraulic similarity and power scaling analysis. • Test facility has been constructed and shake-down tests are currently being carried out. - Abstract: A critical event in the safety analysis of the very high-temperature gas-cooled reactor (VHTR) is an air-ingress accident. This accident is initiated, in its worst case scenario, by a double-ended guillotine break of the coaxial cross vessel, which leads to a rapid reactor vessel depressurization. In a VHTR, the reactor vessel is located within a reactor cavity that is filled with air during normal operating conditions. Following the vessel depressurization, the dominant mode of ingress of an air–helium mixture into the reactor vessel will either be molecular diffusion or density-driven stratified flow. The mode of ingress is hypothesized to depend largely on the break conditions of the cross vessel. Since the time scales of these two ingress phenomena differ by orders of magnitude, it is imperative to understand under which conditions each of these mechanisms will dominate in the air ingress process. Computer models have been developed to analyze this type of accident scenario. There are, however, limited experimental data available to understand the phenomenology of the air-ingress accident and to validate these models. Therefore, there is a need to design and construct a scaled-down experimental test facility to simulate the air-ingress accident scenarios and to collect experimental data. The current paper focuses on the analyses performed for the design and operation of a 1/8th geometric scale (by height and diameter), high-temperature test facility. A geometric scaling analysis for the VHTR, a time

  14. Development and Testing of a Temperature-swing Adsorption Compressor for Carbon Dioxide in Closed-loop Air Revitalization Systems

    Science.gov (United States)

    Mulloth, Lila M.; Rosen, Micha; Affleck, David; LeVan, M. Douglas; Wang, Yuan

    2005-01-01

    The air revitalization system of the International Space Station (ISS) operates in an open loop mode and relies on the resupply of oxygen and other consumables from earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby dosing the air-loop. We have developed a temperature-swing adsorption compressor (TSAC) that is energy efficient, quiet, and has no rapidly moving parts for performing these tasks. The TSAC is a solid-state compressor that has the capability to remove CO2 from a low- pressure source, and subsequently store, compress, and deliver at a higher pressure as required by a processor. The TSAC is an ideal interface device for CO2 removal and reduction units in the air revitalization loop of a spacecraft for oxygen recovery. This paper discusses the design and testing of a TSAC for carbon dioxide that has application in the ISS and future spacecraft for closing the air revitalization loop.

  15. Compressed air demand-type firefighter's breathing system, volume 1. [design analysis and performance tests

    Science.gov (United States)

    Sullivan, J. L.

    1975-01-01

    The commercial availability of lightweight high pressure compressed air vessels has resulted in a lightweight firefighter's breathing apparatus. The improved apparatus, and details of its design and development are described. The apparatus includes a compact harness assembly, a backplate mounted pressure reducer assembly, a lightweight bubble-type facemask with a mask mounted demand breathing regulator. Incorporated in the breathing regulator is exhalation valve, a purge valve and a whistle-type low pressure warning that sounds only during inhalation. The pressure reducer assembly includes two pressure reducers, an automatic transfer valve and a signaling device for the low pressure warning. Twenty systems were fabricated, tested, refined through an alternating development and test sequence, and extensively examined in a field evaluation program. Photographs of the apparatus are included.

  16. 75 FR 72739 - Compliance Testing Procedures: Correction Factor for Room Air Conditioners

    Science.gov (United States)

    2010-11-26

    ...: Correction Factor for Room Air Conditioners AGENCY: Office of the General Counsel, Department of Energy (DOE... air conditioners. The petition seeks temporary enforcement forbearance, or in the alternative, a... procedures for room air conditioners. Public comment is requested on whether DOE should grant the petition...

  17. Air Layer Drag Reduction

    Science.gov (United States)

    Ceccio, Steven; Elbing, Brian; Winkel, Eric; Dowling, David; Perlin, Marc

    2008-11-01

    A set of experiments have been conducted at the US Navy's Large Cavitation Channel to investigate skin-friction drag reduction with the injection of air into a high Reynolds number turbulent boundary layer. Testing was performed on a 12.9 m long flat-plate test model with the surface hydraulically smooth and fully rough at downstream-distance-based Reynolds numbers to 220 million and at speeds to 20 m/s. Local skin-friction, near-wall bulk void fraction, and near-wall bubble imaging were monitored along the length of the model. The instrument suite was used to access the requirements necessary to achieve air layer drag reduction (ALDR). Injection of air over a wide range of air fluxes showed that three drag reduction regimes exist when injecting air; (1) bubble drag reduction that has poor downstream persistence, (2) a transitional regime with a steep rise in drag reduction, and (3) ALDR regime where the drag reduction plateaus at 90% ± 10% over the entire model length with large void fractions in the near-wall region. These investigations revealed several requirements for ALDR including; sufficient volumetric air fluxes that increase approximately with the square of the free-stream speed, slightly higher air fluxes are needed when the surface tension is reduced, higher air fluxes are required for rough surfaces, and the formation of ALDR is sensitive to the inlet condition.

  18. Test of Different Air Distribution Concepts for a Single-Aisle Aircraft Cabin

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Damsgaard, Charlotte; Liu, Li

    2013-01-01

    Traditionally, air is supplied to the aircraft cabin either by individual nozzles or by supply slots. The air is expected to be fully mixed in the cabin, and the system is considered to be a mixing ventilation system. This paper will describe different air distribution systems known from other ap...

  19. Proposal for the modernization of CDTN's Air-Water CCFL experimental test circuit

    International Nuclear Information System (INIS)

    Pessoa, Marcio Araujo; Mesquita, Amir Zacarias; Navarro, Moyses A.; Santos, Andre A. Campagnole dos

    2015-01-01

    The Counter Current Flow Limitation (CCFL) phenomenon, specifically the control that the gas exerts in a liquid flow in the opposite direction, is of real importance in the study of design and operation of various industrial sectors, particularly the nuclear industry. In nuclear engineering, such a phenomenon can occur in a loss of coolant accident (LOCA) of a Pressurized Water Reactor (PWR) when there is the need to re-flood the reactor core during an emergency cooling process. The CCFL phenomenon is being investigated at the Nuclear Technology Development Center (CDTN) thermo-hydraulics laboratory in order to better understand the flow and its limitations and thereby contribute to the improvement of its modeling for analysis of severe accidents. For this, a series of experiments were performed in CDTN in a reduced scale acrylic test section of the 'hot leg' of a PWR. In these tests, the countercurrent flow was established through the water injection by the upper end of the inclined pipe and the air addition at the end opposite to the entry of liquid flow. With the gradual increase of the air flow for predetermined water levels, the onset of the limitation of flow to the full blockage was determined. After full blockage, a gradual reduction of air flow was performed to evaluate the deflooding of the hot leg. The trials also evaluated CCFL behavior for various lengths of the horizontal section, the inclined duct slope influence and the dependence of the pipe's diameter. The infrastructure for CCFL analysis was built 14 years ago and has not been updated since. This paper describes the updates that are being performed to the existing setup. Hydraulic circuit and instrumentation upgrades and the implementation of modern control systems will allow new data to be collected and a new range of experiments to be performed with lower uncertainty. It is intended that the new data be used to validate CFD models that are also being developed by the research

  20. Differential Prediction of FAA Academy Performance on the Basis of Race and Written Air Traffic Control Specialist Aptitude Test Scores

    National Research Council Canada - National Science Library

    Broach, Dana

    1999-01-01

    The written air traffic control specialist (ATCS) aptitude test battery was evaluated for evidence of predictive bias within the framework of the Uniform Guidelines on Employee Selection Procedures (29 CFR 1607...

  1. Advanced house air-barrier systems

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R.K. [Natural Resources Canada, Ottawa, ON (Canada)

    1996-08-01

    Air barrier systems used in modern Canadian airtight homes were discussed. The Advanced Houses Program sets its airtightness requirements at 1.5 air changes per hour at 50 Pascals pressure difference (ACH{sub 5}0). In recent tests of 10 houses, it was suggested that a better airtightness level was attainable with average airtightness of about 1.0 ACH{sub 5}0. Six of the homes tested did not use the traditional polyethylene approach. Two of the houses used the airtight drywall approach, one used a foam system, and three used exterior air barriers. The advantages and disadvantages of each system was described, including cost effectiveness, cost reduction, performance and installation advantages. The confusion between an air barrier and a vapour diffusion retarder was explained. Exterior air barriers showed the greatest potential for meeting airtightness requirements at reasonable cost. 5 refs., 3 tabs.

  2. Integrated Testing of a 4-Bed Molecular Sieve, Air-Cooled Temperature Swing Adsorption Compressor, and Sabatier Engineering Development Unit

    Science.gov (United States)

    Knox, James C.; Miller, Lee; Campbell, Melissa; Mulloth, Lila; Varghese, Mini

    2006-01-01

    Accumulation and subsequent compression of carbon dioxide that is removed from the space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The 4-Bed Molecular Sieve (4BMS) of ISS currently operates in an open loop mode without a compressor. The Sabatier Engineering Development Unit (EDU) processes waste CO2 to provide water to the crew. This paper reports the integrated 4BMS, air-cooled Temperature Swing Adsorption Compressor (TSAC), and Sabatier EDU testing. The TSAC prototype was developed at NASA Ames Research Center (ARC). The 4BMS was modified to a functionally flight-like condition at NASA Marshall Space Flight Center (MSFC). Testing was conducted at MSFC. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of the 4BMS and Sabatier.

  3. An Ultra-low Frequency Modal Testing Suspension System for High Precision Air Pressure Control

    Directory of Open Access Journals (Sweden)

    Qiaoling YUAN

    2014-05-01

    Full Text Available As a resolution for air pressure control challenges in ultra-low frequency modal testing suspension systems, an incremental PID control algorithm with dead band is applied to achieve high-precision pressure control. We also develop a set of independent hardware and software systems for high-precision pressure control solutions. Taking control system versatility, scalability, reliability, and other aspects into considerations, a two-level communication employing Ethernet and CAN bus, is adopted to complete such tasks as data exchange between the IPC, the main board and the control board ,and the pressure control. Furthermore, we build a single set of ultra-low frequency modal testing suspension system and complete pressure control experiments, which achieve the desired results and thus confirm that the high-precision pressure control subsystem is reasonable and reliable.

  4. Tonopah Test Range Air Monitoring: CY2016 Meteorological, Radiological, and Wind Transported Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Jenny [Desert Research Inst. (DRI), Las Vegas, NV (United States); Nikolich, George [Desert Research Inst. (DRI), Las Vegas, NV (United States); Shadel, Craig [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, Greg [Desert Research Inst. (DRI), Las Vegas, NV (United States); Etyemezian, Vicken [Desert Research Inst. (DRI), Las Vegas, NV (United States); Miller, Julianne J [Desert Research Inst. (DRI), Las Vegas, NV (United States); Mizell, Steve [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2017-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This operation resulted in radionuclide-contaminated soils at the Clean Slate I, II, and III sites. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III, and at the TTR Sandia National Laboratories (SNL) Range Operations Control (ROC) center. The primary objective of the monitoring effort is to determine if wind blowing across the Clean Slate sites is transporting particles of radionuclide-contaminated soil beyond the physical and administrative boundaries of the sites.

  5. 10 CFR Appendix M to Subpart B of... - Uniform Test Method for Measuring the Energy Consumption of Central Air Conditioners and Heat Pumps

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Uniform Test Method for Measuring the Energy Consumption... Consumption of Central Air Conditioners and Heat Pumps 1. DEFINITIONS 2. TESTING CONDITIONS 2.1Test room... more common ducts within each test room that contains multiple indoor coils. At the plane where each...

  6. Control of the outlet air temperature in an air handling unit

    DEFF Research Database (Denmark)

    Brath, P.; Rasmussen, Henrik; Hägglund, T.

    1998-01-01

    This paper discuss modeling and control of the inlet temperature in an Air Handling Unit, AHU. The model is based on step response experiments made at a full scale test plant. We use gain scheduling to lower the correlation of the air flow with the process dynamic which simplify the control task...

  7. Design and cold-air test of single-stage uncooled turbine with high work output

    Science.gov (United States)

    Moffitt, T. P.; Szanca, E. M.; Whitney, W. J.; Behning, F. P.

    1980-01-01

    A solid version of a 50.8 cm single stage core turbine designed for high temperature was tested in cold air over a range of speed and pressure ratio. Design equivalent specific work was 76.84 J/g at an engine turbine tip speed of 579.1 m/sec. At design speed and pressure ratio, the total efficiency of the turbine was 88.6 percent, which is 0.6 point lower than the design value of 89.2 percent. The corresponding mass flow was 4.0 percent greater than design.

  8. IMPACT TESTING OF MATERIALS USING AN EIGHT-INCH AIR GUN AND COMPUTER REDUCTION OF DATA

    Energy Technology Data Exchange (ETDEWEB)

    Thorne, L. F.

    1973-10-01

    A mechanical shock actuator has been converted into an air gun capable of firing 8-inch-·diameter (20.32 cm) projectiles to velocities exceeding 1000 fps (304.8 m/ s). This new capability has been used to study the effect of impact velocity upon the energy.absorbed by crushable materials. Shockpulse data is reduced by computer techniques and test results are displayed in either tabular or graphic format by use of the C DC 6600 Calcomp plotter.

  9. 77 FR 65823 - Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures

    Science.gov (United States)

    2012-10-31

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Parts 87 [EPA-HQ-OAR-2010-0687; FRL-9678-1] RIN 2060-AO70 Control of Air Pollution From Aircraft and Aircraft Engines; Emission Standards and Test Procedures Correction In rule document 2012-13828 appearing on pages 36341-36386 in the issue of Monday, June 18, 2012, make the following corrections: Sec. 87.2...

  10. ChemAND - a system health monitor for plant chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Turner, C.W.; Mitchel, G.R.; Tosello, G.; Balakrishnan, P.V.; McKay, G.; Thompson, M. [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada); Dundar, Y.; Bergeron, M.; Laporte, R. [Hydro-Quebec, Groupe Chimie, Centrale Nucleaire Gentilly-2, Gentilly, Quebec (Canada)

    2001-03-01

    Effective management of plant systems throughout their lifetime requires much more than data acquisition and display - it requires that the plant's system health be continually monitored and managed. AECL has developed a System Health Monitor called ChemAND for CANDU plant chemistry. ChemAND, a Chemistry ANalysis and Diagnostic system, monitors key chemistry parameters in the heat transport system, moderator-cover gas, annulus gas, and the steam cycle during full-power operation. These parameters can be used as inputs to models that calculate the effect of current plant operating conditions on the present and future health of the system. Chemistry data from each of the systems are extracted on a regular basis from the plant's Historical Data Server and are sorted according to function, e.g., indicators for condenser in-leakage, air in-leakage, heavy water leakage into the annulus gas, fuel failure, etc. Each parameter is conveniently displayed and is trended along with its alarm limits. ChemAND currently includes two analytical models developed for the balance-of-plant. The first model, ChemSolv, calculates crevice chemistry conditions in the steam generator (SG) from either the SG blowdown chemistry conditions or from a simulated condenser leak. This information can be used by plant staff to evaluate the susceptibility of the SG tubes to crevice corrosion. ChemSolv also calculates chemistry conditions throughout the steam-cycle system as determined by the transport of volatile species such as ammonia, hydrazine, morpholine, and oxygen. The second model, SLUDGE, calculates the deposit loading and distribution in the SG as a function of time, based on concentrations of corrosion product in the final feedwater for both normal and start-up conditions. Operations personnel can use this information to predict where to inspect and when to clean. (author)

  11. ChemAND - a system health monitor for plant chemistry

    International Nuclear Information System (INIS)

    Turner, C.W.; Mitchell, G.R.; Tosello, G.; Balakrishnan, P.V.; McKay, G.; Thompson, M.; Dundar, Y.; Bergeron, M.; Laporte, R.

    2001-01-01

    Effective management of plant systems throughout their lifetime requires much more than data acquisition and display-it requires that the plant's system health be continually monitored and managed. AECL has developed a System Health Monitor called ChemAND for CANDU plant chemistry. ChemAND, a Chemistry ANalysis and Diagnostic system, monitors key chemistry parameters in the heat transport system, moderator-cover gas, annulus gas, and the steam cycle during full-power operation. These parameters can be used as inputs to models that calculate the effect of current plant operating conditions on the present and future health of the system. Chemistry data from each of the systems are extracted on a regular basis from the plant's Historical Data Server and are sorted according to function, e.g., indicators for condenser in-leakage, air in-leakage, heavy water leakage into the annulus gas, fuel failure, etc. Each parameter is conveniently displayed and is trended along with its alarm limits. ChemAND currently includes two analytical models developed for the balance-of-plant. The first model, ChemSolv, calculates crevice chemistry conditions in the steam generator (SG) from either the SG blowdown chemistry conditions or from a simulated condenser leak. This information can be used by plant staff to evaluate the susceptibility of the SG tubes to crevice corrosion. ChemSolv also calculates chemistry conditions throughout the steam cycle system, as determined by the transport of volatile species such as ammonia, hydrazine, morpholine, and oxygen. The second model, SLUDGE, calculates the deposit loading and distribution in the SG as a function of time, based on concentrations of corrosion product in the final feedwater for both normal and start-up conditions. Operations personnel can use this information to predict where to inspect and when to clean. (author)

  12. ChemAND - a system health monitor for plant chemistry

    International Nuclear Information System (INIS)

    Turner, C.W.; Mitchel, G.R.; Tosello, G.; Balakrishnan, P.V.; McKay, G.; Thompson, M.; Dundar, Y.; Bergeron, M.; Laporte, R.

    2001-03-01

    Effective management of plant systems throughout their lifetime requires much more than data acquisition and display - it requires that the plant's system health be continually monitored and managed. AECL has developed a System Health Monitor called ChemAND for CANDU plant chemistry. ChemAND, a Chemistry ANalysis and Diagnostic system, monitors key chemistry parameters in the heat transport system, moderator-cover gas, annulus gas, and the steam cycle during full-power operation. These parameters can be used as inputs to models that calculate the effect of current plant operating conditions on the present and future health of the system. Chemistry data from each of the systems are extracted on a regular basis from the plant's Historical Data Server and are sorted according to function, e.g., indicators for condenser in-leakage, air in-leakage, heavy water leakage into the annulus gas, fuel failure, etc. Each parameter is conveniently displayed and is trended along with its alarm limits. ChemAND currently includes two analytical models developed for the balance-of-plant. The first model, ChemSolv, calculates crevice chemistry conditions in the steam generator (SG) from either the SG blowdown chemistry conditions or from a simulated condenser leak. This information can be used by plant staff to evaluate the susceptibility of the SG tubes to crevice corrosion. ChemSolv also calculates chemistry conditions throughout the steam-cycle system as determined by the transport of volatile species such as ammonia, hydrazine, morpholine, and oxygen. The second model, SLUDGE, calculates the deposit loading and distribution in the SG as a function of time, based on concentrations of corrosion product in the final feedwater for both normal and start-up conditions. Operations personnel can use this information to predict where to inspect and when to clean. (author)

  13. Process air quality data

    Science.gov (United States)

    Butler, C. M.; Hogge, J. E.

    1978-01-01

    Air quality sampling was conducted. Data for air quality parameters, recorded on written forms, punched cards or magnetic tape, are available for 1972 through 1975. Computer software was developed to (1) calculate several daily statistical measures of location, (2) plot time histories of data or the calculated daily statistics, (3) calculate simple correlation coefficients, and (4) plot scatter diagrams. Computer software was developed for processing air quality data to include time series analysis and goodness of fit tests. Computer software was developed to (1) calculate a larger number of daily statistical measures of location, and a number of daily monthly and yearly measures of location, dispersion, skewness and kurtosis, (2) decompose the extended time series model and (3) perform some goodness of fit tests. The computer program is described, documented and illustrated by examples. Recommendations are made for continuation of the development of research on processing air quality data.

  14. Analysis of the air flow generated by an air-assisted sprayer equipped with two axial fans using a 3D sonic anemometer.

    Science.gov (United States)

    García-Ramos, F Javier; Vidal, Mariano; Boné, Antonio; Malón, Hugo; Aguirre, Javier

    2012-01-01

    The flow of air generated by a new design of air assisted sprayer equipped with two axial fans of reversed rotation was analyzed. For this goal, a 3D sonic anemometer has been used (accuracy: 1.5%; measurement range: 0 to 45 m/s). The study was divided into a static test and a dynamic test. During the static test, the air velocity in the working vicinity of the sprayer was measured considering the following machine configurations: (1) one activated fan regulated at three air flows (machine working as a traditional sprayer); (2) two activated fans regulated at three air flows for each fan. In the static test 72 measurement points were considered. The location of the measurement points was as follow: left and right sides of the sprayer; three sections of measurement (A, B and C); three measurement distances from the shaft of the machine (1.5 m, 2.5 m and 3.5 m); and four measurement heights (1 m, 2 m, 3 m and 4 m). The static test results have shown significant differences in the module and the vertical angle of the air velocity vector in function of the regulations of the sprayer. In the dynamic test, the air velocity was measured at 2.5 m from the axis of the sprayer considering four measurement heights (1 m, 2 m, 3 m and 4 m). In this test, the sprayer regulations were: one or two activated fans; one air flow for each fan; forward speed of 2.8 km/h. The use of one fan (back) or two fans (back and front) produced significant differences on the duration of the presence of wind in the measurement point and on the direction of the air velocity vector. The module of the air velocity vector was not affected by the number of activated fans.

  15. Prototype Systems for Measuring Outdoor Air Intake Rates in Rooftop Air Handlers

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chan, Wanyu R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hotchi, Toshifumi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-01-01

    The widespread absence of systems for real-time measurement and feedback control, of minimum outdoor air intake rates in HVAC systems contributes to the poor control of ventilation rates in commercial buildings. Ventilation rates affect building energy consumption and influence occupant health. The project designed fabricated and tested four prototypes of systems for measuring rates of outdoor air intake into roof top air handlers. All prototypes met the ±20% accuracy target at low wind speeds, with all prototypes accurate within approximately ±10% after application of calibration equations. One prototype met the accuracy target without a calibration. With two of four prototype measurement systems, there was no evidence that wind speed or direction affected accuracy; however, winds speeds were generally below usually 3.5 m s-1 (12.6 km h-1) and further testing is desirable. The airflow resistance of the prototypes was generally less than 35 Pa at maximum RTU air flow rates. A pressure drop of this magnitude will increase fan energy consumption by approximately 4%. The project did not have resources necessary to estimate costs of mass produced systems. The retail cost of components and materials used to construct prototypes ranged from approximately $1,200 to $1,700. The test data indicate that the basic designs developed in this project, particularly the designs of two of the prototypes, have considerable merit. Further design refinement, testing, and cost analysis would be necessary to fully assess commercial potential. The designs and test results will be communicated to the HVAC manufacturing community.

  16. Safety-related control air systems

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    This Standard applies to those portions of the control air system that furnish air required to support, control, or operate systems or portions of systems that are safety related in nuclear power plants. This Standard relates only to the air supply system(s) for safety-related air operated devices and does not apply to the safety-related air operated device or to air operated actuators for such devices. The objectives of this Standard are to provide (1) minimum system design requirements for equipment, piping, instruments, controls, and wiring that constitute the air supply system; and (2) the system and component testing and maintenance requirements

  17. Low cost solar air heater

    International Nuclear Information System (INIS)

    Gill, R.S.; Singh, Sukhmeet; Singh, Parm Pal

    2012-01-01

    Highlights: ► Single glazed low cost solar air heater is more efficient during summer while double glazed is better in winter. ► For the same initial investment, low cost solar air heaters collect more energy than packed bed solar air heater. ► During off season low cost solar air heater can be stored inside as it is light in weight. - Abstract: Two low cost solar air heaters viz. single glazed and double glazed were designed, fabricated and tested. Thermocole, ultraviolet stabilised plastic sheet, etc. were used for fabrication to reduce the fabrication cost. These were tested simultaneously at no load and with load both in summer and winter seasons along with packed bed solar air heater using iron chips for absorption of radiation. The initial costs of single glazed and double glazed are 22.8% and 26.8% of the initial cost of packed bed solar air heater of the same aperture area. It was found that on a given day at no load, the maximum stagnation temperatures of single glazed and double glazed solar air heater were 43.5 °C and 62.5 °C respectively. The efficiencies of single glazed, double glazed and packed bed solar air heaters corresponding to flow rate of 0.02 m 3 /s-m 2 were 30.29%, 45.05% and 71.68% respectively in winter season. The collector efficiency factor, heat removal factor based on air outlet temperature and air inlet temperature for three solar air heaters were also determined.

  18. Experimental analysis of an air-to-air heat recovery unit for balanced ventilation systems in residential buildings

    International Nuclear Information System (INIS)

    Fernandez-Seara, Jose; Diz, Ruben; Uhia, Francisco J.; Dopazo, Alberto; Ferro, Jose M.

    2011-01-01

    This paper deals with the experimental analysis of an air-to-air heat recovery unit equipped with a sensible polymer plate heat exchanger (PHE) for balanced ventilation systems in residential buildings. The PHE is arranged in parallel triangular ducts. An experimental facility was designed to reproduce the typical outdoor and exhaust air conditions with regard to temperature and humidity. The unit was tested under balanced operation conditions, as commonly used in practice. A set of tests was conducted under the reference operating conditions to evaluate the PHE performance. Afterwards, an experimental parametric analysis was conducted to investigate the influence of changing the operating conditions on the PHE performance. Experiments were carried out varying the inlet fresh air temperature, the exhaust air relative humidity and the air flow rate. The experimental results are shown and discussed in this paper.

  19. The Fort St. Vrain high temperature gas-cooled reactor. III

    International Nuclear Information System (INIS)

    Olson, H.G.; Brey, H.L.

    1979-01-01

    The helium circulator auxiliary system provides buffer helium and bearing water for the reactor's four circulators with two nearly identical auxiliary loops serving the two circulators of a primary coolant loop. A series of drains removes the water and helium for separation and recycle. Loss of buffer helium's function as a dynamic seal has resulted in inleakage of bearing water into the primary coolant and outleakage of primary coolant into the auxiliary system. Inleakage of water also has occurred due to inadvertent pressurization of the bearing cavity with the static shutdown seal set. Satisfactory performance of the normal, backup and emergency bearing water systems has been accomplished after numerous component additions and modifications. Frequent circulator trips have occurred. Most of these have involved the delicate sensors that measure buffer helium differential pressure. Transients in one loop have communicated to the other loop through common components. Total separation of the auxiliary loops will occur after the planned installation of those components that currently service both loops. (Auth.)

  20. RadNet Radiological Air Monitoring Network

    International Nuclear Information System (INIS)

    Scott Telofski, J.; Askren, D.R.; Petko, Ch.M.; Fraass, R.G.

    2010-01-01

    The United States Environmental Protection Agency operates a national environmental radiation monitoring program called RadNet. RadNet monitors airborne particulates, precipitation, milk, and drinking water for radiation levels. The primary purpose of the original program in the 1950's and 1960's was to collect and analyze samples in various media to assess the effects of radioactive fallout from above-ground nuclear weapon testing. As above-ground testing diminished in the 1970's, the program, especially the air network, became critical in evaluating effects of other types of nuclear incidents, such as the nuclear reactor accident at Chernobyl, as well as monitoring trends in environmental radioactive contamination. The value of rapid data collection subsequent to such incidents led to the consideration of developing air monitors with radiation detectors and telecommunication equipment for real-time radiation measurement. The strengthened United States homeland security posture after 2001 led to production and installation of the current real-time RadNet air monitors. There are now 118 stationary, continuously operating air monitoring stations and 40 mobile air monitors for site specific monitoring. The stationary air monitors include radiation detectors, meteorological sensors, a high-volume air sampler, and communication devices for hourly data transfers. When unusual levels are detected, scientists download a full sodium iodide detector spectrum for analysis. The real-time data collected by RadNet stationary systems permit rapid identification and quantification of airborne nuclides with sufficient sensitivity to provide critical information to help determine protective actions. The data also may help to rapidly refine long-range radioactive plume models and estimate exposure to the population. This paper provides an overview of the airborne particulate monitoring conducted during above-ground nuclear weapon testing, summarizes the uses of data from the program

  1. 42 CFR 84.162 - Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air respirators; test requirements. 84.162 Section 84.162 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES OCCUPATIONAL SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL...

  2. Field-Based Procedures for Screening Diver's Air

    National Research Council Canada - National Science Library

    Lillo, R

    2000-01-01

    The U.S. Navy Diver's Air Sampling Program coordinates use mandatory semi-annual air purity testing of compressors used to supply diver's air in the Fleet The current approach of sending gas-sampling kits...

  3. Technical safety requirments for the South Tank Farm Remediation Project, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Platfoot, J.H.

    1998-02-01

    The South Tank Farm (STF) is a series of six, 170,000-gal underground, domed storage tanks that were placed into service in 1943. The tanks were constructed of a concrete mixture known as gunite. They were used as a portion of the Liquid LOW-LEVEL WASTE (LLLW) System for the collection, neutralization, storage, and transfer of the aqueous portion of the radioactive and/or hazardous chemical wastes produced as part of normal facility operations at Oak Ridge National Laboratory (ORNL). Although the last of the tanks was taken out of service in 1986, they have been shown by structural analysis to continue to be structurally sound. An attempt was made in 1983 to empty the tanks; however, removal of all the sludge from the tanks was not possible with the equipment and schedule available. Since removal of the liquid waste in 1983, liquid continues to accumulate within the tanks. The in-leakage is believed to be the result of groundwater dripping into the tanks around penetrations in the domes. The tanks are currently being maintained under a Surveillance and Maintenance Program, which includes activities such as level monitoring, vegetation control, High Efficiency Particulate Air filter leakage requirement testing/replacement, sign erection/repair, pump-out of excessive liquids, and instrument calibration/maintenance

  4. Testing of GFL Geosiphon; FINAL

    International Nuclear Information System (INIS)

    Steimke, J.L.

    2001-01-01

    A full-scale, transparent replica of a GeoSiphon was constructed in the TFL to test a new concept, using a solar powered vacuum pump to remove accumulated gases from the air chamber. It did not have a treatment cell containing iron filings as do the actual TNX GeoSiphons in the field, but it was accurate in all other respects. The gas generation that is observed in an actual GeoSiphon was simulated by air injection at the inlet of the TFL GeoSiphon. After facility shakedown, three stages of testing were conducted: verification testing, parametric testing and long term testing. In verification testing, the TFL GeoSiphon was used to reproduce a particular test at TNX in which the water flowrate decreased gradually as the result of air accumulation at the crest of a siphon without an air chamber. For this test the vacuum pump was not used and the air chamber was initially filled with air rather than water. Agreement between data from the TNX GeoSiphon and the TFL GeoSiphon was good, which gave confidence that the TFL GeoSiphon was a good hydraulic representation of the TNX GeoSiphon. For the remaining tests, the solar powered vacuum pump and air chamber were used. In parametric testing, steady state runs were made for water flowrates ranging from 1 gpm to 19 gpm, air injection rates ranging from 0 to 77 standard cc/min and outfall line angles ranging from vertical to 60 degrees from vertical. In all cases, the air chamber and vacuum pump removed nearly all of the air and the GeoSiphon operated without problems. In long term testing, the GeoSiphon was allowed to run continuously for 21 days at one set of conditions. During this time the solar cell kept the storage battery fully charged at all times and the control circuit for the vacuum pump operated reliably. The solar panel was observed to have a large excess capacity when used with the vacuum pump. With two changes, the concept of using a solar powered vacuum pump attached to an air chamber should be ready for long

  5. Air barrier details: How effective are they

    Energy Technology Data Exchange (ETDEWEB)

    A project was initiated to measure the air leakage through three typical details in wood frame walls: the header joist, electric outlets, and window openings. Three construction methods were tested: the poly approach, where a sealed internal polyethylene sheet and caulking provide the air barrier; an external air barrier approach using a continuous vapor permeable membrane sandwiched between two layers of external wall sheathing; and the airtight drywall approach (ADA), where the interior gypsum board finish along with framing and gaskets are the air barrier. Twelve sample panels using each of the three details were built using each of the construction approaches. A traditional wood-frame wall construction detail, with no effort made to create a continuous air barrier, was also built and tested for comparison. The samples were put in a test chamber so that air pressures could create infiltration or exfiltration through the panel under loads similar to those due to wind action. Measurements were made at several stages during construction of each sample to see the effect of different components on the air leakage. Overall, all but the traditional samples and the ADA electrical outlet panel exceeded the current tightness standards for glass and aluminum curtain walls. All three approaches could meet the airtightness standards of the R-2000 program. The total air leakage calculated for each approach is under 20% of that in traditional construction. Of the details tested, window detailing offers the greatest potential for increasing overall airtightness compared to traditional methods. 1 ref., 2 figs., 1 tab.

  6. Transmissivity and storage coefficient estimates from slug tests, Naval Air Warfare Center, West Trenton, New Jersey

    Science.gov (United States)

    Fiore, Alex R.

    2014-01-01

    Slug tests were conducted on 56 observation wells open to bedrock at the former Naval Air Warfare Center (NAWC) in West Trenton, New Jersey. Aquifer transmissivity (T) and storage coefficient (S) values for most wells were estimated from slug-test data using the Cooper-Bredehoeft-Papadopulos method. Test data from three wells exhibited fast, underdamped water-level responses and were analyzed with the Butler high-K method. The range of T at NAWC was approximately 0.07 to 10,000 square feet per day. At 11 wells, water levels did not change measurably after 20 minutes following slug insertion; transmissivity at these 11 wells was estimated to be less than 0.07 square feet per day. The range of S was approximately 10-10 to 0.01, the mode being 10-10. Water-level responses for tests at three wells fit poorly to the type curves of both methods, indicating that these methods were not appropriate for adequately estimating T and S from those data.

  7. Effects of reducing exposure to air pollution on submaximal cardiopulmonary test in patients with heart failure: Analysis of the randomized, double-blind and controlled FILTER-HF trial.

    Science.gov (United States)

    Vieira, Jefferson L; Guimaraes, Guilherme V; de Andre, Paulo A; Saldiva, Paulo H Nascimento; Bocchi, Edimar A

    2016-07-15

    Air pollution exposure could mitigate the health benefits of exercise in patients with heart failure (HF). We tested the effects of a respiratory filter on HF patients exposed to air pollution during exercise. Ancillary analysis of the FILTER-HF trial, focused on the exercise outcomes. In a randomized, double-blind, 3-way crossover design, 26 HF patients and 15 control volunteers were exposed to clean air, unfiltered dilute diesel engine exhaust (DE), or filtered DE for 6min during a submaximal cardiopulmonary testing in a controlled-exposure facility. Prospectively collected data included six-minute walking test [6mwt], VO2, VE/VCO2 Slope, O2Pulse, pulmonary ventilation [VE], tidal volume, VD/Vt, oxyhemoglobin saturation and CO2-rebreathing. Compared to clean air, DE adversely affected VO2 (11.0±3.9 vs. 8.4±2.8ml/kg/min; preduced the particulate concentration from 325±31 to 25±6μg/m(3), and was associated with an increase in VO2 (10.4±3.8ml/kg/min; preduce the adverse effects of pollution on VO2 and O2Pulse. Given the worldwide prevalence of exposure to traffic-related air pollution, these findings are relevant for public health especially in this highly susceptible population. The filter intervention holds great promise that needs to be tested in future studies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Air distribution system with the discharge action in the working cavity of downhole air hammer drills

    Science.gov (United States)

    Timonin, VV; Alekseev, SE; Kokoulin, DI; Kubanychbek, B.

    2018-03-01

    It is proposed to carry out pre-mine methane drainage using underground degassing holes made by downhole air hammer drills. The features of downhole air drills are described. The downhole air drill layout with the simple-shape striking part is presented with its pluses and minuses. The researchers point at available options to eliminate the shortcomings. The improved layout of the downhole air hammer drill is suggested. The paper ends with the test data on the prototype air hammer drill, its characteristics and trial drilling results.

  9. 40 CFR 89.414 - Air flow measurement specifications.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in understated...

  10. Low cost bare-plate solar air collector

    Science.gov (United States)

    Maag, W. L.; Wenzler, C. J.; Rom, F. E.; Vanarsdale, D. R.

    1980-09-01

    A low cost, bare plate solar collector for preheating ambient air was developed. This type of solar heating system would be applicable for preheating ventilation air for public buildings or other commercial and industrial ventilation requirements. Two prototype collectors were designed, fabricated and installed into an instrumented test system. Tests were conducted for a period of five months. Results of the tests showed consistent operating efficiencies of 60 percent or greater with air preheat temperature uses up to 20 degrees for one of the prototypes. The economic analyses indicated that this type of solar system was economically viable. For the materials of construction and the type of fabrication and installation perceived, costs for the bare plate solar collector are attainable. Applications for preheating ventilation air for schools were evaluated and judged to be economically viable.

  11. 40 CFR 90.310 - Engine intake air humidity measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Emission Test Equipment Provisions § 90.310 Engine intake air humidity measurement. This section refers to... for the engine intake air, the ambient test cell humidity measurement may be used. (a) Humidity...

  12. Concetration and Distribution of Depleted Uranium (DU) and Beryllium (Be) in Soil and Air on Illeginni Island at Kwajalein Atoll after the Final Land-Impact Test

    Energy Technology Data Exchange (ETDEWEB)

    Robison, W L; Hamilton, T F; Martinelli, R E; Gouveia, F J; Kehl, S R; Lindman, T R; Yakuma, S C

    2010-04-22

    Re-entry vehicles on missiles launched from Vandenberg Air Force base in California re-enter at the Western Test Range, the Regan Test Site (RTS) at Kwajalein Atoll. An Environmental Assessment (EA) was written at the beginning of the program to assess potential impact of DU and Be, the major RV materials of interest from a health and environmental perspective, for both ocean and land impacts. The chemical and structural form of Be and DU in RVs is such that they are insoluble in soil water and seawater. Thus, they are not toxic to plant life on the isalnd (no soil to plant uptake.) Similarly, due to their insolubility in sea water there is no uptake of either element by fish, mollusks, shellfish, sea mammals, etc. No increase in either element has been observed in sea life around Illeginnin Island where deposition of DU and Be has occured. The critical terrestrial exposure pathway for U and Be is inhalation. Concentration of both elements in air over the test period (1989 to 2006) is lower by a factor of nearly 10,000 than the most restrictive U.S. guideline for the general public. Uranium concentrations in air are also lower by factors of 10 to 100 than concentrations of U in air in the U.S. measured by the EPA (Keith et al., 1999). U and Be concentrations in air downwind of deposition areas on Illeginni Island are essentially indistinguishable from natural background concentrations of U in air at the atolls. Thus, there are no health related issues associated with people using the island.

  13. Concetration and Distribution of Depleted Uranium (DU) and Beryllium (Be) in Soil and Air on Illeginni Island at Kwajalein Atoll after the Final Land-Impact Test

    International Nuclear Information System (INIS)

    Robison, W.L.; Hamilton, T.F.; Martinelli, R.E.; Gouveia, F.J.; Kehl, S.R.; Lindman, T.R.; Yakuma, S.C.

    2010-01-01

    Re-entry vehicles on missiles launched from Vandenberg Air Force base in California re-enter at the Western Test Range, the Regan Test Site (RTS) at Kwajalein Atoll. An Environmental Assessment (EA) was written at the beginning of the program to assess potential impact of DU and Be, the major RV materials of interest from a health and environmental perspective, for both ocean and land impacts. The chemical and structural form of Be and DU in RVs is such that they are insoluble in soil water and seawater. Thus, they are not toxic to plant life on the isalnd (no soil to plant uptake.) Similarly, due to their insolubility in sea water there is no uptake of either element by fish, mollusks, shellfish, sea mammals, etc. No increase in either element has been observed in sea life around Illeginnin Island where deposition of DU and Be has occured. The critical terrestrial exposure pathway for U and Be is inhalation. Concentration of both elements in air over the test period (1989 to 2006) is lower by a factor of nearly 10,000 than the most restrictive U.S. guideline for the general public. Uranium concentrations in air are also lower by factors of 10 to 100 than concentrations of U in air in the U.S. measured by the EPA (Keith et al., 1999). U and Be concentrations in air downwind of deposition areas on Illeginni Island are essentially indistinguishable from natural background concentrations of U in air at the atolls. Thus, there are no health related issues associated with people using the island.

  14. Experimental analysis of fuzzy controlled energy efficient demand controlled ventilation economizer cycle variable air volume air conditioning system

    Directory of Open Access Journals (Sweden)

    Rajagopalan Parameshwaran

    2008-01-01

    Full Text Available In the quest for energy conservative building design, there is now a great opportunity for a flexible and sophisticated air conditioning system capable of addressing better thermal comfort, indoor air quality, and energy efficiency, that are strongly desired. The variable refrigerant volume air conditioning system provides considerable energy savings, cost effectiveness and reduced space requirements. Applications of intelligent control like fuzzy logic controller, especially adapted to variable air volume air conditioning systems, have drawn more interest in recent years than classical control systems. An experimental analysis was performed to investigate the inherent operational characteristics of the combined variable refrigerant volume and variable air volume air conditioning systems under fixed ventilation, demand controlled ventilation, and combined demand controlled ventilation and economizer cycle techniques for two seasonal conditions. The test results of the variable refrigerant volume and variable air volume air conditioning system for each techniques are presented. The test results infer that the system controlled by fuzzy logic methodology and operated under the CO2 based mechanical ventilation scheme, effectively yields 37% and 56% per day of average energy-saving in summer and winter conditions, respectively. Based on the experimental results, the fuzzy based combined system can be considered to be an alternative energy efficient air conditioning scheme, having significant energy-saving potential compared to the conventional constant air volume air conditioning system.

  15. Assessment of indoor air quality in comparison using air conditioning and fan system in printing premise

    OpenAIRE

    Ramlan Nazirah; Nurhalimatul Husna Ahmad Siti; Aminuddin Eeydzah; Abdul Hamid Hazrul; Khalijah Yaman Siti; Halid Abdullah Abd

    2017-01-01

    Printers contribute to various emissions consist with chemical contaminants. High concentration of the particulate matter can cause serious health problems. This study focuses on the indoor air quality in printing premise unit in Universiti Tun Hussein Onn, Malaysia. Field testing involving air sampling methods were taken from 900 hours to 1600 hours, for every 30 minutes using physical measurement which is Multi-Channel Air Quality Monitor (YESAIR), E-Sampler and Ozone Meter. Air sampling wa...

  16. Evaluation of dust-related health hazards associated with air coring at G-Tunnel, Nevada Test Site

    International Nuclear Information System (INIS)

    Skaggs, B.J.; Ortiz, L.W.; Burton, D.J.; Isom, B.L.; Vigil, E.A.

    1991-03-01

    The Yucca Mountain Project was established to evaluate the potential for storing high-level radioactive wastes in geologic formations. Hydrologists recommended that drilling or coring in support of characterization tests be performed dry. Dry drilling, or air coring, presents a concern about health protection for the drilling personnel. The rock generally has a high silica content, and natural zeolites are abundant. Some zeolites are fibrous, leading to concerns that inhalation may result in asbestos-like lung diseases. An industrial hygiene study (IH) was conducted as part of an air coring technical feasibility test. The IH study found the potential for exposures to airborne silica and nuisance dusts to be within regulatory requirements and determined the commercial dust control equipment monitored to be effective when used in conjunction with a good area ventilation system and sound IH practices. Fibrous zeolites were not detected. Recommendations for the Yucca Mountain studies are (1) dust collection and control equipment equivalent or superior to that monitored must be used for any dry drilling activity and must be used with good general dilution ventilation and local exhaust ventilation provided on major emission sources; (2) good industrial hygiene work practices must be implemented, including monitoring any area where zeolitic fibers are suspect; and (3) a study should be conducted to determine the biological effects of the fibrous zeolite, mordenite. 25 refs., 17 figs., 14 tabs

  17. Evaluation of sampling methods for toxicological testing of indoor air particulate matter.

    Science.gov (United States)

    Tirkkonen, Jenni; Täubel, Martin; Hirvonen, Maija-Riitta; Leppänen, Hanna; Lindsley, William G; Chen, Bean T; Hyvärinen, Anne; Huttunen, Kati

    2016-09-01

    There is a need for toxicity tests capable of recognizing indoor environments with compromised air quality, especially in the context of moisture damage. One of the key issues is sampling, which should both provide meaningful material for analyses and fulfill requirements imposed by practitioners using toxicity tests for health risk assessment. We aimed to evaluate different existing methods of sampling indoor particulate matter (PM) to develop a suitable sampling strategy for a toxicological assay. During three sampling campaigns in moisture-damaged and non-damaged school buildings, we evaluated one passive and three active sampling methods: the Settled Dust Box (SDB), the Button Aerosol Sampler, the Harvard Impactor and the National Institute for Occupational Safety and Health (NIOSH) Bioaerosol Cyclone Sampler. Mouse RAW264.7 macrophages were exposed to particle suspensions and cell metabolic activity (CMA), production of nitric oxide (NO) and tumor necrosis factor (TNFα) were determined after 24 h of exposure. The repeatability of the toxicological analyses was very good for all tested sampler types. Variability within the schools was found to be high especially between different classrooms in the moisture-damaged school. Passively collected settled dust and PM collected actively with the NIOSH Sampler (Stage 1) caused a clear response in exposed cells. The results suggested the higher relative immunotoxicological activity of dust from the moisture-damaged school. The NIOSH Sampler is a promising candidate for the collection of size-fractionated PM to be used in toxicity testing. The applicability of such sampling strategy in grading moisture damage severity in buildings needs to be developed further in a larger cohort of buildings.

  18. Environmental Assessment Preparation for Air Force Test Mission in the 21st Century: Upgrade and Improve the Test Capability at the Edwards Air Force Base California Test Complex

    Science.gov (United States)

    2015-04-01

    National Ambient Air Quality Standards NAGPRA Native American Graves Protection and Repatriation Act NDMA N-Nitrosodimethylamine NEPA National...parts of OUs 1, 2, 5/10, 6, and 8. Groundwater contamination in the form of solvent, perchlorate, petroleum, nitrate, and N- Nitrosodimethylamine ( NDMA

  19. Hydrologic transport of depleted uranium associated with open air dynamic range testing at Los Alamos National Laboratory, New Mexico, and Eglin Air Force Base, Florida

    Energy Technology Data Exchange (ETDEWEB)

    Becker, N.M. [Los Alamos National Lab., NM (United States); Vanta, E.B. [Wright Laboratory Armament Directorate, Eglin Air Force Base, FL (United States)

    1995-05-01

    Hydrologic investigations on depleted uranium fate and transport associated with dynamic testing activities were instituted in the 1980`s at Los Alamos National Laboratory and Eglin Air Force Base. At Los Alamos, extensive field watershed investigations of soil, sediment, and especially runoff water were conducted. Eglin conducted field investigations and runoff studies similar to those at Los Alamos at former and active test ranges. Laboratory experiments complemented the field investigations at both installations. Mass balance calculations were performed to quantify the mass of expended uranium which had transported away from firing sites. At Los Alamos, it is estimated that more than 90 percent of the uranium still remains in close proximity to firing sites, which has been corroborated by independent calculations. At Eglin, we estimate that 90 to 95 percent of the uranium remains at test ranges. These data demonstrate that uranium moves slowly via surface water, in both semi-arid (Los Alamos) and humid (Eglin) environments.

  20. Hydrologic transport of depleted uranium associated with open air dynamic range testing at Los Alamos National Laboratory, New Mexico, and Eglin Air Force Base, Florida

    International Nuclear Information System (INIS)

    Becker, N.M.; Vanta, E.B.

    1995-01-01

    Hydrologic investigations on depleted uranium fate and transport associated with dynamic testing activities were instituted in the 1980's at Los Alamos National Laboratory and Eglin Air Force Base. At Los Alamos, extensive field watershed investigations of soil, sediment, and especially runoff water were conducted. Eglin conducted field investigations and runoff studies similar to those at Los Alamos at former and active test ranges. Laboratory experiments complemented the field investigations at both installations. Mass balance calculations were performed to quantify the mass of expended uranium which had transported away from firing sites. At Los Alamos, it is estimated that more than 90 percent of the uranium still remains in close proximity to firing sites, which has been corroborated by independent calculations. At Eglin, we estimate that 90 to 95 percent of the uranium remains at test ranges. These data demonstrate that uranium moves slowly via surface water, in both semi-arid (Los Alamos) and humid (Eglin) environments

  1. Ductless personalized ventilation with local air cleaning

    DEFF Research Database (Denmark)

    Dalewski, Mariusz; Vesely, Michal; Melikov, Arsen Krikor

    2012-01-01

    An experiment with 28 human subjects was performed to examine effects of using a local air cleaning device combined with ductless personalized ventilation (DPV) on perceived air quality. Experiments were performed in a test room with displacement ventilation. The DPV at one of two desks was equip......An experiment with 28 human subjects was performed to examine effects of using a local air cleaning device combined with ductless personalized ventilation (DPV) on perceived air quality. Experiments were performed in a test room with displacement ventilation. The DPV at one of two desks...... was equipped with an activated carbon filter installed at the air intake, while the DPV at the second desk was without such a filter. The air temperature in the occupied zone (1.1 m above the floor) was 29 °C. The pollution load in the room was simulated by PVC floor covering. The subjects assessed...

  2. Determination and evaluation of air quality control. Manual of ambient air quality control in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Lahmann, E.

    1997-07-01

    Measurement of air pollution emissions and ambient air quality are essential instruments for air quality control. By undertaking such measurements, pollutants are registered both at their place of origin and at the place where they may have an effect on people or the environment. Both types of measurement complement each other and are essential for the implementation of air quality legislation, particularly, in compliance with emission and ambient air quality limit values. Presented here are similar accounts of measurement principles and also contains as an Appendix a list of suitability-tested measuring devices which is based on information provided by the manufacturers. In addition, the guide of ambient air quality control contains further information on discontinuous measurement methods, on measurement planning and on the assessment of ambient air quality data. (orig./SR)

  3. Testing Selected Behaviors to Reduce Indoor Air Pollution Exposure in Young Children

    Science.gov (United States)

    Barnes, B. R.; Mathee, A.; Krieger, L.; Shafritz, L.; Favin, M.; Sherburne, L.

    2004-01-01

    Indoor air pollution is responsible for the deaths and illness of millions of young children in developing countries. This study investigated the acceptability (willingness to try) and feasibility (ability to perform) of four indoor air pollution reduction behaviors (improve stove maintenance practices, child location practices, ventilation…

  4. Operation technology of air treatment system in nuclear facilities

    CERN Document Server

    Chun, Y B; Hwong, Y H; Lee, H K; Min, D K; Park, K J; Uom, S H; Yang, S Y

    2001-01-01

    Effective operation techniques were reviewed on the air treatment system to protect the personnel in nuclear facilities from the contamination of radio-active particles and to keep the environment clear. Nuclear air treatment system consisted of the ventilation and filtering system was characterized by some test. Measurement of air velocity of blowing/exhaust fan in the ventilation system, leak tests of HEPA filters in the filtering, and measurement of pressure difference between the areas defined by radiation level were conducted. The results acquired form the measurements were reflected directly for the operation of air treatment. In the abnormal state of virus parts of devices composted of the system, the repairing method, maintenance and performance test were also employed in operating effectively the air treatment system. These measuring results and techniques can be available to the operation of air treatment system of PIEF as well as the other nuclear facilities in KAERI.

  5. Improving Awareness of Health Hazards Associated with Air Pollution in Primary School Children: Design and Test of Didactic Tools

    Science.gov (United States)

    Carducci, Annalaura; Casini, Beatrice; Donzelli, Gabriele; Verani, Marco; Bruni, Beatrice; Ceretti, Elisabetta; Zani, Claudia; Carraro, Elisabetta; Bonetta, Sara; Bagordo, Francesco; Grassi, Tiziana; Villarini, Milena; Bonizzoni, Silvia; Zagni, Licia; Gelatti, Umberto

    2016-01-01

    One of the objectives of the MAPEC-Life project is raising children's awareness on air quality and its health effects. To achieve this goal, we designed didactic tools for primary school students, including leaflets with more information for teachers, a cartoon, and three educational videogames. The tools were then tested with 266 children who…

  6. LABORATORY EVALUATION OF AIR FLOW MEASUREMENT METHODS FOR RESIDENTIAL HVAC RETURNS

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain; Stratton, Chris

    2015-02-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent). Because manufacturers’ accuracy estimates for their equipment do not include many of the sources of error found in actual field measurements (and replicated in the laboratory testing in this study) it is essential for a test method that could be used to determine the actual uncertainty in this specific application. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  7. Advance planning for air pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Brewer, G L

    1972-11-01

    An air quality management program for nitric acid plants emitting pollutants which include nitrogen oxides is proposed. The program consists of the following five phases: an inventory of the handling equipment within the plant, including the identification of potential emission sources in terms of process material balances; source testing (if required); ambient air quality measurements; emission control analysis; and the development of a complete air management plan which includes a balance between air exhausted from buildups and processes and air supplied in a controlled economical manner. Typical NOx air pollution problems associated with nitric acid plants are reviewed along with various approaches to control and by-product recovery.

  8. Quench tank in-leakage diagnosis at St. Lucie

    Energy Technology Data Exchange (ETDEWEB)

    Price, J.E.; Au-Yang, M.K.; Beckner, D.A.; Vickery, A.N.

    1996-12-01

    In February 1995, leakage into the quench tank of the St. Lucie Nuclear Station Unit 1 was becoming an operational concern. This internal leak resulted in measurable increases in both the temperature and level of the quench tank water, and was so severe that, if the trend continued, plant shut down would be necessary. Preliminary diagnosis based on in-plant instrumentation indicated that any one of 11 valves might be leaking into the quench tank. This paper describes the joint effort by two teams of engineers--one from Florida Power & Light, the other from Framatome Technologies--to identify the sources of the leak, using the latest technology developed for valve diagnosis.

  9. Quench tank in-leakage diagnosis at St. Lucie

    International Nuclear Information System (INIS)

    Price, J.E.; Au-Yang, M.K.; Beckner, D.A.; Vickery, A.N.

    1996-01-01

    In February 1995, leakage into the quench tank of the St. Lucie Nuclear Station Unit 1 was becoming an operational concern. This internal leak resulted in measurable increases in both the temperature and level of the quench tank water, and was so severe that, if the trend continued, plant shut down would be necessary. Preliminary diagnosis based on in-plant instrumentation indicated that any one of 11 valves might be leaking into the quench tank. This paper describes the joint effort by two teams of engineers--one from Florida Power ampersand Light, the other from Framatome Technologies--to identify the sources of the leak, using the latest technology developed for valve diagnosis

  10. First interim examination of defected BWR and PWR rods tested in unlimited air at 2290C

    International Nuclear Information System (INIS)

    Einziger, R.E.; Cook, J.A.

    1983-01-01

    A five-year whole rod test was initiated to investigate the long-term stability of spent fuel rods under a variety of possible dry storage conditions. Both PWR and BWR rods were included in the test. The first interim examination was conducted after three months of testing to determine if there was any degradation in those defected rods stored in an unlimited air atmosphere. Visual observations, diametral measurements and radiographic smears were used to assess the degree of cladding deformation and particulate dispersal. The PWR rod showed no measurable change from the pre-test condition. The two original artificial defects had not changed in appearance and there was no diametral growth of the cladding. One of the defects in BWR rod showed significant deformation. There was approximately 10% cladding strain at the defect site and a small axial crack had formed. The fuel in the defect did not appear to be friable. The second defect showed no visible change and no cladding strain. Following examination, the test was continued at 230 0 C. Another interim examination is planned during the summer of 1983. This paper discusses the details and meaning of the data from the first interim examination

  11. Radon barrier: Method of testing airtightness

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn; Buch-Hansen, Thomas Cornelius

    2017-01-01

    The test method NBI 167/02 Radon membrane: Test of airtightness can be used for determining the airtightness of a radon barrier as a system solution. The test determines the air infiltration through the radon barrier for a number of levels of air pressure differences. The airflow through versus...... of the barrier with the low air pressure, through a well-defined opening, as a modification of the test method in general. Results, obtained using the improved test method, are shown for a number of radon barriers tested....

  12. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain; Stratton, Chris

    2015-07-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent).

  13. Field testing the effectiveness of pumping to remove sulfur hexafluoride traced drilling air from a prototype borehole near superior, Arizona

    International Nuclear Information System (INIS)

    Peters, C.A.; Striffler, P.; Yang, I.C.; Ferarese, J.

    1993-01-01

    The US Geological Survey (USGS), Department of the Interior is conducting studies at Yucca Mountain, Nevada, to provide hydrologic, hydrochemical, and geologic information to evaluate the suitability of Yucca Mountain for development as a high-level nuclear-waste repository. The USGS unsaturated-zone hydrochemistry study involves the collection of gas and water samples from the unsaturated zone for chemical and isotopic analyses. Results from these analyses will aid in the understanding of the movement of gas and water in the rock units at Yucca Mountain. A prototype borehole designated USW UZP5 was drilled by the US Department of Energy, Yucca Mountain Site Characterization Project Office (DOE, YMSCPO) in June 1990 in the Apache Leap Tuff of southcentral Arizona. The hole was dry drilled with air using sulfur hexafluoride (SF 6 ) as a tracer. This drilling method simulated that which will be used to drill boreholes for the collection of gas and water samples at Yucca Mountain. The purpose of tracing the drilling air is to quantify its removal by pumping, prior to sampling of in situ gases. The objectives of our work in Arizona were to: (1) Determine the amount of time and the pumping rates required to remove the SF 6 -enriched drilling air without inducing additional atmospheric contamination; (2) collect core samples for uniaxial compression to determine the amount of SF 6 gas that penetrated the core during drilling; (3) test the effectiveness of the SF 6 injection and sampling system; (4) test the installation and effectiveness of the prototype packer system; and (5) test the effectiveness of several core sealing methods. 1 fig., 1 tab

  14. 40 CFR 89.326 - Engine intake air humidity measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air humidity measurement... Test Equipment Provisions § 89.326 Engine intake air humidity measurement. (a) Humidity conditioned air... type of intake air supply, the humidity measurements must be made within the intake air supply system...

  15. Air-cleaning systems for sodium-fire-aerosol control

    International Nuclear Information System (INIS)

    Hilliard, R.K.; Muhlestein, L.D.

    1982-05-01

    A development program has been carried out at the Hanford Engineering Development Laboratory (HEDL) with the purpose of developing and proof testing air cleaning components and systems for use under severe sodium fire conditions, including those involving high levels of radioactivity. The air cleaning components tested can be classified as either dry filters or aqueous scrubbers. Test results are presented

  16. Interzonal air and moisture transport through large horizontal openings in a full-scale two-story test-hut: Part 2 - CFD study

    Energy Technology Data Exchange (ETDEWEB)

    Vera, S. [Department of Building, Civil and Environmental Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, Quebec (Canada); Department of Construction Engineering and Management, Pontificia Universidad Catolica de Chile, Av. Vicuna Mackenna 4860, San Agustin building, 3rd floor, Campus San Joaquin, Macul, Santiago 6904411 (Chile); Fazio, P.; Rao, J. [Department of Building, Civil and Environmental Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montreal, Quebec (Canada)

    2010-03-15

    The aim of this paper is to study the air and moisture transport through a large horizontal opening in a full-scale two-story test-hut with mixed ventilation by means of computational fluid dynamics (CFD) simulations. CFD allows extending the experimental study presented in the companion paper and overcoming some limitations of experimental data. More than 80 cases were simulated for conditions similar to those tested experimentally and for additional ventilation rates and temperature difference between the two rooms. CFD simulations were performed in Airpak and the indoor zero-equation turbulence model was used. The CFD model was extensively validated with the distributions of air speed, temperature and humidity ratio measured across the two rooms, as well as with the measured interzonal mass airflows through the horizontal opening. CFD simulation results show that temperature difference between the two rooms and ventilation rate strongly influence the interzonal mass airflows through the opening when the upper room is colder than the lower room, while warm convective air currents from the baseboard heater and from the moisture source placed in the lower room cause upward mass airflows when the upper room is warmer than the lower room. Finally, empirical relationships between the upward mass airflow and the temperature difference between the two rooms are developed. (author)

  17. Design aspects of plutonium air-transportable packages

    International Nuclear Information System (INIS)

    Allen, G.C.; Moya, J.L.; Pierce, J.D.; Attaway, S.W.

    1989-01-01

    Recent worldwide interest in transporting plutonium powders by air has created a need for expanding the packaging technology base as well as improving their understanding of how plutonium air transport (PAT) packagings perform during severe accident tests. Historically it has not been possible to establish design rules for individual package components because of the complex way parts interacted in forming a successful whole unit. Also, computer analyses were only considered valid for very limited portions of the design effort because of large deformations, localized tearing occurring in the package during accident testing, and extensive use of orthotropic materials. Consequently, iterative design and experimentation has historically been used to develop plutonium air-transportable packages. Full-scale prototypes have been tested since scaling of packages utilizing wood as an energy absorber and thermal insulator has not proven to be very successful. This is because the wood grain and dynamic performance of the wood during crush do not always scale. The high cost of full-scale testing of large packages has certainly hindered obtaining additional data and development new designs. The testing criteria for PAT packages, as described in the US Nuclear Regulatory Commission's Qualification Criteria to Certify a Package for Air Transport of Plutonium, NUREG-0360, 1978, are summarized. Computer modeling techniques have greatly improved over the last ten years, and there are some areas of opportunity for future applications to plutonium air-transportable package design problems. Having developed a better understanding of the performance of current packages, they have the opportunity to make major improvements in new packaging concepts. Each of these areas is explored in further depth to establish their impact on design practices for air-transportable packages

  18. Experimental evaluation of sodium to air heat exchanger performance

    International Nuclear Information System (INIS)

    Vinod, V.; Pathak, S.P.; Paunikar, V.D.; Suresh Kumar, V.A.; Noushad, I.B.; Rajan, K.K.

    2013-01-01

    Highlights: ► Sodium to air heat exchangers are used to remove the decay heat produced in fast breeder reactor after shutdown. ► Finned tube sodium to air heat exchanger with sodium on tube side was tested for its heat transfer performance. ► A one dimensional computer code was validated by the experimental data obtained. ► Non uniform sodium and air flow distribution was present in the heat exchanger. - Abstract: Sodium to air heat exchangers (AHXs) is used in Prototype Fast Breeder Reactor (PFBR) circuits to reject the decay heat produced by the radioactive decay of the fission products after reactor shutdown, to the atmospheric air. The heat removal through sodium to air heat exchanger maintains the temperature of reactor components in the pool within safe limits in case of non availability of normal heat transport path. The performance of sodium to air heat exchanger is very critical to ensure high reliability of the decay heat removal systems in sodium cooled fast breeder reactors. Hence experimental evaluation of the adequacy of the heat transfer capability gives confidence to the designers. A finned tube cross flow sodium to air heat exchanger of 2 MW heat transfer capacity with sodium on tube side and air on shell side was tested in the Steam Generator Test Facility at Indira Gandhi Center for Atomic Research, India. Heat transfer experiments were carried out with forced circulation of sodium and air, which confirmed the adequacy of heat removal capacity of the heat exchanger. The testing showed that 2.34 MW of heat power is transferred from sodium to air at nominal flow and temperature conditions. A one dimensional computer code developed for design and analysis of the sodium to air heat exchanger was validated by the experimental data obtained. An equivalent Nusselt number, Nu eq is derived by approximating that the resistance of heat transfer from sodium to air is contributed only by the film resistance of air. The variation of Nu eq with respect

  19. A Monocular Vision Measurement System of Three-Degree-of-Freedom Air-Bearing Test-Bed Based on FCCSP

    Science.gov (United States)

    Gao, Zhanyu; Gu, Yingying; Lv, Yaoyu; Xu, Zhenbang; Wu, Qingwen

    2018-06-01

    A monocular vision-based pose measurement system is provided for real-time measurement of a three-degree-of-freedom (3-DOF) air-bearing test-bed. Firstly, a circular plane cooperative target is designed. An image of a target fixed on the test-bed is then acquired. Blob analysis-based image processing is used to detect the object circles on the target. A fast algorithm (FCCSP) based on pixel statistics is proposed to extract the centers of object circles. Finally, pose measurements can be obtained when combined with the centers and the coordinate transformation relation. Experiments show that the proposed method is fast, accurate, and robust enough to satisfy the requirement of the pose measurement.

  20. Characterization of water absorption by CFRP using air-coupled ultrasonic testing

    International Nuclear Information System (INIS)

    Lee, Joo Min; Lee, Joo Sung; Park, Ik Keun; Kim, Yong Kwon

    2014-01-01

    Carbon-fiber-reinforced plastic (CFRP) composites are increasingly being used in a variety of industry applications, such as aircraft, automobiles, and ships because of their high specific stiffness and high specific strength. Aircraft are exposed to high temperatures and high humidity for a long duration during flights. CFRP materials of the aircraft can absorb water, which could decrease the adhesion strength of these materials and cause their volumes to change with variation in internal stress. Therefore, it is necessary to estimate the characteristics of CFRP composites under actual conditions from the viewpoint of aircraft safety. In this study air-coupled ultrasonic testing (ACUT) was applied to the evaluation of water absorption properties of CFRP composites. CFRP specimens were fabricated and immersed in distilled water at 75 degree C for 30, 60, and 120 days, after which their ultrasonic images were obtained by ACUT. The water absorption properties were determined by quantitatively analyzing the changes in ultrasonic signals. Further, shear strength was applied to the specimens to verify the changes in their mechanical properties for water absorption.

  1. Characterization of water absorption by CFRP using air-coupled ultrasonic testing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Joo Min; Lee, Joo Sung; Park, Ik Keun [Seoul National University of Science and Technology, Seoul (Korea, Republic of); Kim, Yong Kwon [Technology Research and Development Institute, KEPCO Plant Service and Engineering Co., Ltd, Naju (Korea, Republic of)

    2014-04-15

    Carbon-fiber-reinforced plastic (CFRP) composites are increasingly being used in a variety of industry applications, such as aircraft, automobiles, and ships because of their high specific stiffness and high specific strength. Aircraft are exposed to high temperatures and high humidity for a long duration during flights. CFRP materials of the aircraft can absorb water, which could decrease the adhesion strength of these materials and cause their volumes to change with variation in internal stress. Therefore, it is necessary to estimate the characteristics of CFRP composites under actual conditions from the viewpoint of aircraft safety. In this study air-coupled ultrasonic testing (ACUT) was applied to the evaluation of water absorption properties of CFRP composites. CFRP specimens were fabricated and immersed in distilled water at 75 degree C for 30, 60, and 120 days, after which their ultrasonic images were obtained by ACUT. The water absorption properties were determined by quantitatively analyzing the changes in ultrasonic signals. Further, shear strength was applied to the specimens to verify the changes in their mechanical properties for water absorption.

  2. A passive air sampler for characterizing the vertical concentration profile of gaseous phase polycyclic aromatic hydrocarbons in near soil surface air

    International Nuclear Information System (INIS)

    Zhang Yuzhong; Deng Shuxing; Liu Yanan; Shen Guofeng; Li Xiqing; Cao Jun; Wang Xilong; Reid, Brian; Tao Shu

    2011-01-01

    Air-soil exchange is an important process governing the fate of polycyclic aromatic hydrocarbons (PAHs). A novel passive air sampler was designed and tested for measuring the vertical concentration profile of 4 low molecular weight PAHs in gaseous phase (PAH LMW4 ) in near soil surface air. Air at various heights from 5 to 520 mm above the ground was sampled by polyurethane foam disks held in down-faced cartridges. The samplers were tested at three sites: A: an extremely contaminated site, B: a site near A, and C: a background site on a university campus. Vertical concentration gradients were revealed for PAH LMW4 within a thin layer close to soil surface at the three sites. PAH concentrations either decreased (Site A) or increased (Sites B and C) with height, suggesting either deposition to or evaporation from soils. The sampler is a useful tool for investigating air-soil exchange of gaseous phase semi-volatile organic chemicals. - Research highlights: → Design, field test and calibration of the novel passive air sampler, PAS-V-I. → Vertical concentration gradients of PAH LMW4 within a thin layer close to soil. → Comparison of results between PAS-V-I measurement and fugacity approach. → Potential application of PAS-V-I and further modifications. - A novel passive sampling device was developed and tested for measuring vertical concentration profile of gaseous phase polycyclic aromatic hydrocarbons in near soil surface air.

  3. Reversibility of trapped air on chest computed tomography in cystic fibrosis patients

    DEFF Research Database (Denmark)

    Loeve, Martine; Rosenow, Tim; Gorbunova, Vladlena

    2015-01-01

    measured by plethysmography and helium dilution, residual volume to total lung capacity ratio, forced expiratory flow at 75% of vital capacity, and maximum mid-expiratory flow as pulmonary function test markers of trapped air. Statistical analysis included Wilcoxon's signed rank test and Spearman......PURPOSE: To investigate changes in trapped air volume and distribution over time and compare computed tomography (CT) with pulmonary function tests for determining trapped air. METHODS: Thirty children contributed two CTs and pulmonary function tests over 2 years. Localized changes in trapped air...

  4. Cellulose insulation as an air barrier

    Energy Technology Data Exchange (ETDEWEB)

    Manning, K.

    1989-10-01

    The objective of this study was to determine if a wet sprayed cellulose wall insulation system would function satisfactorily without use of a polyethylene air/vapour barrier. The research was designed to demonstrate that this particular insulation system would form enough of a barrier to air leakage, that moisture accumulation from condensation and vapour diffusion would be insignificant. Field work conducted in Alberta, involved construction of a conventional duplex housing unit which was insulated with wet sprayed cellulose in the exterior walls and dry loose-fill cellulose in the attic areas. One half of the unit did not have a polyethylene air/vapor barrier installed. Air leakage and exterior wall moisture levels were monitored for a year following construction. Data collected during this time indicated that the moisture added to the walls during the insulating process was dissipated over the study period. The presence of polyethylene sheeting had no significant effect on the moisture levels in either the wall or attic areas of the test structure. On the other hand, testing indicated that the use of polyethylene sheeting in the wall system did serve to improve blower door air test results. In conclusion, although the air leakage resistance apparently provided by the polyethylene sheeting is significant, the amount is probably not more than could otherwise be obtained by more careful attention to sealing procedures such as those used in the airtight drywall technique. A more important finding is that the use of polyethylene sheeting is not essential in a structure which has the degree of air leakage resistance provided by the insulation system used in this project. 6 figs., 2 tabs.

  5. THE DISTRIBUTION OF CHLORPYRIFOS FOLLOWING A CRACK AND CREVICE TYPE APPLICATION IN THE U.S. EPA INDOOR AIR QUALITY TEST HOUSE

    Science.gov (United States)

    A study was conducted in the U.S. EPA Indoor Air Quality Test House to determine the spatial and temporal distribution of chlorpyrifos following a professional crack and crevice application in the kitchen. Following the application, measurements were made in the kitchen, den a...

  6. Internal short circuit and accelerated rate calorimetry tests of lithium-ion cells: Considerations for methane-air intrinsic safety and explosion proof/flameproof protection methods.

    Science.gov (United States)

    Dubaniewicz, Thomas H; DuCarme, Joseph P

    2016-09-01

    Researchers with the National Institute for Occupational Safety and Health (NIOSH) studied the potential for lithium-ion cell thermal runaway from an internal short circuit in equipment for use in underground coal mines. In this third phase of the study, researchers compared plastic wedge crush-induced internal short circuit tests of selected lithium-ion cells within methane (CH 4 )-air mixtures with accelerated rate calorimetry tests of similar cells. Plastic wedge crush test results with metal oxide lithium-ion cells extracted from intrinsically safe evaluated equipment were mixed, with one cell model igniting the chamber atmosphere while another cell model did not. The two cells models exhibited different internal short circuit behaviors. A lithium iron phosphate (LiFePO 4 ) cell model was tolerant to crush-induced internal short circuits within CH 4 -air, tested under manufacturer recommended charging conditions. Accelerating rate calorimetry tests with similar cells within a nitrogen purged 353-mL chamber produced ignitions that exceeded explosion proof and flameproof enclosure minimum internal pressure design criteria. Ignition pressures within a 20-L chamber with 6.5% CH 4 -air were relatively low, with much larger head space volume and less adiabatic test conditions. The literature indicates that sizeable lithium thionyl chloride (LiSOCl 2 ) primary (non rechargeable) cell ignitions can be especially violent and toxic. Because ignition of an explosive atmosphere is expected within explosion proof or flameproof enclosures, there is a need to consider the potential for an internal explosive atmosphere ignition in combination with a lithium or lithium-ion battery thermal runaway process, and the resulting effects on the enclosure.

  7. Experimental testing of a small sorption air cooler using composite material made from natural siliceous shale and chloride

    International Nuclear Information System (INIS)

    Liu, Hongzhi; Nagano, Katsunori; Morita, Atsushi; Togawa, Junya; Nakamura, Makoto

    2015-01-01

    A sorption air cooler experimental setup including a reactor and fin tube condenser/evaporator was built. The reactor was developed with inner copper fins and dual layers of curing copper meshes. Composite material made by impregnating LiCl into the mesopores of Wakkanai Siliceous Shale (WSS) micropowders was packed between the intervals of two fins. Heat transfer was enhanced by the attached fins, and the dual layers of curing meshes installed between each interval of two fins were designed to improve the sorbate mass transfer. On the other hand, the fin-tube evaporator/condenser with fins outside is valuable for improving the convective heat transfer between the functional water inside the evaporator/condenser and the flowing outside heat transfer medium, air. The sorption capacity of the composite material increased dramatically after being impregnated with LiCl. Among the four tested samples, WSS + 40 wt% LiCl exhibits the best performance. A regeneration temperature of 80 °C appears to be optimal for obtaining both a high COP and high specific cooling power. A lower condensation temperature can increase the cooling power. The sorption and desorption times of 60 min yield a reasonable compromise between cooling COP and mass specific cooling powers. The developed sorption air cooler system using WSS + 40 wt% LiCl can store heat at temperatures below 100 °C and produce cooling energy with a cooling coefficient of performance (COP) of approximately 0.3. - Highlights: • Mesoporous composite material was developed using natural siliceous shale and LiCl. • Properties of the developed material were measured. • A sorption air cooler experimental setup including an inner-fin reactor and a fin tube condenser/evaporator was built. • The performance of the composite material in the sorption air cooler was examined. • The sorption air cooler system can produce cooling energy with a cooling COP around 0.3

  8. Innovative application of air ejector as a pump for continuous air monitors

    International Nuclear Information System (INIS)

    Dhanasekaran, A.; Ajoy, K.C.; Santhanam, R.; Rajagopal, V.; Jose, M.T.

    2016-01-01

    Workplace monitoring, one of the key components of the radiation protection program is generally carried out by means of instruments installed permanently in respective areas or through portable air sampling instruments. Continuous air monitor (CAM) is one such monitor that constantly monitors the radionuclide concentration in air and triggers alarm as and when the air concentration goes above the pre-set levels. Conventional CAM system has a filter head, detector, display unit and a pump as four major parts. Pump may be either rotary vane or a vibrating diaphragm which are electrically driven using motors. Air lift pumps using ejectors are widely used where pump reliability and low maintenance are required, and where corrosive, abrasive, or radioactive fluids are handled. Since ejectors are uncomplicated alternative to vacuum pumps, an attempt was made to use the same as a pump for conventional CAMs. An ejector based sampling set up was made, tested and the results are represented in this paper

  9. Use Of The Operational Air Quality Monitor (AQM) For In-Flight Water Testing Project

    Science.gov (United States)

    Macatangay, Ariel

    2014-01-01

    A primary requirement for manned spaceflight is Environmental Health which ensures air and water contaminants, acoustic profiles, microbial flora, and radiation exposures within the cabin are maintained to levels needed for crew health and for vehicle system functionality. The reliance on ground analyses of returned samples is a limitation in the current environmental monitoring strategy that will prevent future Exploration missions beyond low-Earth orbit. This proposal attempts to address this shortcoming by advancing in-flight analyses of water and air. Ground analysis of in-flight, air and water samples typically employ vapor-phase analysis by gas chromatography-mass spectrometry (GC-MS) to identify and quantify organic compounds present in the samples. We envision the use of newly-developed direct ionization approaches as the most viable avenue leading towards an integrated analytical platform for the monitoring of water, air, and, potentially bio-samples in the cabin environment. Development of an in-flight instrument capable of analyzing air and water samples would be the logical next step to meeting the environmental monitoring needs of Exploration missions. Currently, the Air Quality Monitor (AQM) on-board ISS provides this specific information for a number of target compounds in the air. However, there is a significant subset of common target compounds between air and water. Naturally, the following question arises, "Can the AQM be used for both air and water quality monitoring?" Previous directorate-level IR&D funding led to the development of a water sample introduction method for mass spectrometry using electrothermal vaporization (ETV). This project will focus on the integration of the ETV with a ground-based AQM. The capabilities of this integrated platform will be evaluated using a subset of toxicologically important compounds.

  10. Baltimore Air Toxics Study (BATS)

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, D.A. [Sullivan Environmental Consulting, Inc., Alexandria, VA (United States)

    1996-12-31

    The Baltimore Air Toxics Study is one of the three urban air toxics initiatives funded by EPA to support the development of the national air toxics strategy. As part of this project, the Air Quality Integrated Management System (AIMS) is under development. AIMS is designed to bring together the key components of urban air quality management into an integrated system, including emissions assessment, air quality modeling, and air quality monitoring. Urban area source emissions are computed for a wide range of pollutants and source categories, and are joined with existing point source emissions data. Measured air quality data are used to evaluate the adequacy of the emissions data and model treatments as a function of season, meteorological parameters, and daytime/nighttime conditions. Based on tested model performance, AIMS provides the potential to improve the ability to predict air quality benefits of alternative control options for criteria and toxic air pollutants. This paper describes the methods used to develop AIMS, and provides examples from its application in the Baltimore metropolitan area. The use of AIMS in the future to enhance environmental management of major industrial facilities also will be addressed in the paper.

  11. Safety-related control air systems - approved 1977

    International Nuclear Information System (INIS)

    Anon.

    1978-01-01

    This standard applies to those portions of the control air system that furnish air required to support, control, or operate systems or portions of systems that are safety related in nuclear power plants. This standard relates only to the air supply system(s) for safety-related air operated devices and does not apply to the safety-related air operated device or to air operated actuators for such devices. The objectives of this standard are to provide (1) minimum system design requirements for equipment, piping, instruments, controls, and wiring that constitute the air supply system; and (2) the system and component testing and maintenance requirements

  12. 40 CFR 89.325 - Engine intake air temperature measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature measurement. 89.325 Section 89.325 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Test Equipment Provisions § 89.325 Engine intake air temperature measurement. (a) Engine intake air...

  13. Test of Blanc's law for negative ion mobility in mixtures of SF6 with N2, O2 and air

    International Nuclear Information System (INIS)

    Hinojosa, G; Urquijo, J de

    2003-01-01

    We have measured the mobility of negative ion species drifting in mixtures of SF 6 with N 2 , O 2 and air. The pulsed Townsend experiment was used for this purpose. The conditions of the experiment, high pressures and low values of the reduced electric field, E/N, ensured that the majority species drifting in the gap was SF 6 - , to which the present mobilities are ascribed. The extrapolated, zero field mobilities for several mixture compositions were used to test them successfully with Blanc's law. Moreover, the measured zero field SF 6 - mobilities in air could also be explained in terms of the measured mobilities for this ionic species in N 2 and O 2

  14. Do nistagmo às provas calóricas com ar e com água From nystagmus to the air and water caloric tests

    Directory of Open Access Journals (Sweden)

    Anna Carolina Marques Perrella de Barros

    2012-08-01

    Full Text Available A prova calórica é uma importante ferramenta na avaliação da função labiríntica. OBJETIVO: Comparar o nistagmo pós-calórico da prova com ar a 50ºC e 24ºC com o da prova com água a 44ºC e 30ºC. Desenho científico: Estudo clínico cruzado randomizado. MATERIAL E MÉTODO: 40 indivíduos hígidos submetidos à avaliação da função vestibular incluindo a prova calórica com ar a 50ºC e 24ºC e com água a 44ºC e 30ºC. RESULTADOS: À comparação das provas com ar e com água, não houve diferença significante entre os valores da velocidade angular da componente lenta (VACL do nistagmo pós-calórico quanto à ordem de realização das estimulações, entre as orelhas e entre os valores de predomínio labiríntico e de preponderância direcional. Os valores da VACL foram maiores nas estimulações com água (p = 0,008; p The caloric test is an important tool for the assessment of labyrinthine function. OBJECTIVE: To compare the nystagmus response in the caloric tests with air at 50ºC and 24ºC and with water at 44ºC and 30ºC. Study Design: Randomized crossover clinical trial. MATERIALS AND METHODS: 40 healthy individuals were submitted to a neurotological evaluation, including caloric tests with air at 50ºC and 24ºC and water at 44ºC and 30ºC. RESULTS: Comparing the air and water caloric tests, there were no significant differences among the post-caloric nystagmus slow-phase velocity in relation to the stimulation order, between ears and between the values of unilateral weakness and directional preponderance. The slow-phase velocity values were higher with water (p = 0.008, p < 0.001, and cold stimulation produced stronger responses (p < 0.001. CONCLUSION: Comparing 50ºC and 24ºC air caloric test and 44ºC and 30ºC water caloric test, we observed similar slow-phase velocity values for both ears, higher responses in the cold temperature and in the test with water, and similar results of unilateral weakness or directional

  15. A Women-Only Comparison of the U.S. Air Force Fitness Test and the Marine Combat Fitness Test

    Science.gov (United States)

    2012-03-01

    Air Force established the Fitness Assessment Cell to conduct fitness assessments for all Air Force members and to encourage standardization in...objective. “The MCFT was specifically designed to evaluate strength, stamina , agility and coordination as well as overall anaerobic capacity” (Department...1308.1, “Service members must possess stamina and strength to perform, successfully, any mission,” and that “…each service develops a quality 78

  16. Impact of Air Entraining Method on the Resistance of Concrete to Internal Cracking

    Science.gov (United States)

    Wawrzeńczyk, Jerzy; Molendowska, Agnieszka

    2017-10-01

    This paper presents the test results of air entrained concrete mixtures made at a constant W/C ratio of 0.44. Three different air entraining agents were used: polymer microspheres, glass microspheres and a conventional air entraining admixture. The aim of this study was to compare the effectiveness of the air entraining methods. Concrete mixture tests were performed for consistency (slump test), density and, in the case of AEA series, air content by pressure method. Hardened concrete tests were performed for compressive strength, water absorption, resistance to chloride ingress, and freeze-thaw durability - resistance to internal cracking tests were conducted in accordance with PN-88/B-06250 on cube specimens and with the modified ASTM C666 A test method on beam specimens; porosity characteristics (A, A300, \\bar L) were determined to PN-EN 480-11:1998. No significant mass and length changes were recorded for the concrete air entrained with the conventional methods or with polymer microspheres. The results indicate that polymer microspheres are a very good alternative to traditional air entraining methods for concrete, providing effective air entrainment and protection from freezing and thawing. The glass microsphere-based concretes showed insufficient freeze-thaw resistance. The test results indicate that both the conventional methods (AEA) and the air entrainment by polymer microspheres are effective air entraining methods. It has to be noted that in the case of the use of polymer microspheres, a comparable value of \\bar L and a very good freeze-thaw resistance can be achieved at a noticeably lower air and micropore contents and at lower strength loss.

  17. Air sampling in the workplace

    International Nuclear Information System (INIS)

    Hickey, E.E.; Stoetzel, G.A.; Strom, D.J.; Cicotte, G.R.; Wiblin, C.M.; McGuire, S.A.

    1993-09-01

    This report provides technical information on air sampling that will be useful for facilities following the recommendations in the NRC's Regulatory Guide 8.25, Revision 1, ''Air sampling in the Workplace.'' That guide addresses air sampling to meet the requirements in NRC's regulations on radiation protection, 10 CFR Part 20. This report describes how to determine the need for air sampling based on the amount of material in process modified by the type of material, release potential, and confinement of the material. The purposes of air sampling and how the purposes affect the types of air sampling provided are discussed. The report discusses how to locate air samplers to accurately determine the concentrations of airborne radioactive materials that workers will be exposed to. The need for and the methods of performing airflow pattern studies to improve the accuracy of air sampling results are included. The report presents and gives examples of several techniques that can be used to evaluate whether the airborne concentrations of material are representative of the air inhaled by workers. Methods to adjust derived air concentrations for particle size are described. Methods to calibrate for volume of air sampled and estimate the uncertainty in the volume of air sampled are described. Statistical tests for determining minimum detectable concentrations are presented. How to perform an annual evaluation of the adequacy of the air sampling is also discussed

  18. Investigation of Countercurrent Helium-Air Flows in Air-ingress Accidents for VHTRs

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaodong; Christensen, Richard; Oh, Chang

    2013-10-03

    The primary objective of this research is to develop an extensive experimental database for the air- ingress phenomenon for the validation of computational fluid dynamics (CFD) analyses. This research is intended to be a separate-effects experimental study. However, the project team will perform a careful scaling analysis prior to designing a scaled-down test facility in order to closely tie this research with the real application. As a reference design in this study, the team will use the 600 MWth gas turbine modular helium reactor (GT-MHR) developed by General Atomic. In the test matrix of the experiments, researchers will vary the temperature and pressure of the helium— along with break size, location, shape, and orientation—to simulate deferent scenarios and to identify potential mitigation strategies. Under support of the Department of Energy, a high-temperature helium test facility has been designed and is currently being constructed at Ohio State University, primarily for high- temperature compact heat exchanger testing for the VHTR program. Once the facility is in operation (expected April 2009), this study will utilize high-temperature helium up to 900°C and 3 MPa for loss-of-coolant accident (LOCA) depressurization and air-ingress experiments. The project team will first conduct a scaling study and then design an air-ingress test facility. The major parameter to be measured in the experiments is oxygen (or nitrogen) concentration history at various locations following a LOCA scenario. The team will use two measurement techniques: 1) oxygen (or similar type) sensors employed in the flow field, which will introduce some undesirable intrusiveness, disturbing the flow, and 2) a planar laser-induced fluorescence (PLIF) imaging technique, which has no physical intrusiveness to the flow but requires a transparent window or test section that the laser beam can penetrate. The team will construct two test facilities, one for high-temperature helium tests with

  19. 15 CFR Supplement No. 1 to Part 774 - The Commerce Control List

    Science.gov (United States)

    2010-01-01

    ... radiation detection and measuring instruments to determine neutron flux levels; e. Pressure tubes specially... for compressors or blowers specified in 0B001.b.2.a. and designed for a buffer gas in-leakage rate of.... Systems for the conversion of UO2 to UCl4. 0B004Plant for the production of heavy water, deuterium or...

  20. Sustainable Design of EPA's Campus in Research Triangle Park, NC—Environmental Performance Specifications in Construction Contracts—Section 01445 Testing for Indoor Air Quality, Baseline IAQ, and Materials

    Science.gov (United States)

    More information on testing for maximum indoor pollutant concentrations for acceptance of the facility, as well as requirements for Independent Materials Testing of specific materials anticipated to have major impact on indoor air quality.

  1. Testing Open-Air Storage of Stumps to Provide Clean Biomass for Energy Production

    Directory of Open Access Journals (Sweden)

    Luigi Pari

    2017-10-01

    Full Text Available When orchards reach the end of the productive cycle, the stumps removal becomes a mandatory operation to allow new soil preparation and to establish new cultivations. The exploitation of the removed stump biomass seems a valuable option, especially in the growing energy market of the biofuels; however, the scarce quality of the material obtained after the extraction compromises its marketability, making this product a costly waste to be disposed. In this regard, the identification of affordable strategies for the extraction and the cleaning of the material will be crucial in order to provide to plantation owners the chance to sell the biomass and offset the extraction costs. Mechanical extraction and cleaning technologies have been already tested on forest stumps, but these systems work on the singular piece and would be inefficient in the conditions of an intensive orchard, where stumps are small and numerous. The objective of this study was to test the possibility to exploit a natural stumps cleaning system through open-air storage. The tested stumps were obtained from two different vineyards, extracted with an innovative stump puller specifically designed for continuous stump removal in intensively-planted orchards. The effects of weathering were evaluated to determine the fuel quality immediately after the extraction and after a storage period of six months with respect to moisture content, ash content, and heating value. Results indicated interesting storage performance, showing also different dynamics depending on the stumps utilized.

  2. Deployed Flight Test of the Iraqi Air Force Comp Air 7SLX (CA-7)

    Science.gov (United States)

    2014-02-28

    been built with a castering nose wheel mounted to the engine mount, a simple yet effective design. The team purchased new engine mounts and castering ...nose wheels from Aero Comp Inc. to solve these problems on all the CA-7s they refurbished, which Fred Webster called “a pretty big modification .”22...from a Cessna 310. The UAE had made numerous other modifications .2 The United States Central Command Air Forces (CENTAF) was working with the

  3. Transient Air-Water Flow and Air Demand following an Opening Outlet Gate

    Directory of Open Access Journals (Sweden)

    James Yang

    2018-01-01

    Full Text Available In Sweden, the dam-safety guidelines call for an overhaul of many existing bottom outlets. During the opening of an outlet gate, understanding the transient air-water flow is essential for its safe operation, especially under submerged tailwater conditions. Three-dimensional CFD simulations are undertaken to examine air-water flow behaviors at both free and submerged outflows. The gate, hoisted by wire ropes and powered by AC, opens at a constant speed. A mesh is adapted to follow the gate movement. At the free outflow, the CFD simulations and model tests agree well in terms of outlet discharge capacity. Larger air vents lead to more air supply; the increment becomes, however, limited if the vent area is larger than 10 m2. At the submerged outflow, a hydraulic jump builds up in the conduit when the gate reaches approximately 45% of its full opening. The discharge is affected by the tailwater and slightly by the flow with the hydraulic jump. The flow features strong turbulent mixing of air and water, with build-up and break-up of air pockets and collisions of defragmented water bodies. The air demand rate is several times as much as required by steady-state hydraulic jump with free surface.

  4. Leak test method and test device for iodine filter

    International Nuclear Information System (INIS)

    Fukasawa, Tetsuo; Funabashi, Kiyomi; Miura, Noboru; Miura, Eiichi.

    1995-01-01

    An air introduction device which can change a humidity is disposed upstream of an iodine filter to be tested, and a humidity measuring device is disposed downstream of the iodine filter respectively. At first, dried air reduced with humidity is flown from the air introduction device to the iodine filter, to remove moisture content from an iodine adsorber in the iodine filter. Next, air at an increased humidity is supplied to the iodine filter. The difference between the time starting the supply of the highly humid air and the time detecting the high humidity at the humidity measuring device is measured. When the time difference is smaller than the time difference measured previously in a normal iodine filter, it shows the presence of leak in the iodine filter to be tested. With such procedures, leakage in the iodine filter which removes radioactive iodine from off-gases discharged from the radioactive material handling facilities can be detected easily by using water (steams), namely, a naturally present material. (I.N.)

  5. DEMONSTRATION AND TESTING OF AN EER OPTIMIZER SYSTEM FOR DX AIR-CONDITIONERS

    Science.gov (United States)

    2017-10-07

    Conditioner and Any Web Connected Device Such as a Tablet, Phone, Laptop, or Desktop Computer. ............. 28  Figure 15. A Summary Screen Showing...efficiency specifications published by the Consortium for Energy Efficiency (CEEE) for new unitary air conditioning and heat pump systems5 establish Energy...Figure 14. Connection Diagram Showing Data Path between the Air Conditioner and Any Web Connected Device Such as a Tablet, Phone, Laptop, or Desktop

  6. Enhancing down-the-hole air hammer capacity in directional drilling

    Science.gov (United States)

    Klishin, V. I.; Timonin, V. V.; Kokoulin, D. I.; Alekseev, S. E.; Kubanychbek, B.

    2017-09-01

    The authors discuss the issue connected with drilling trajectory deviation and present the technique of rotary-percussion drilling with a down-the-hole air hammer. The article describes pilot testing of the air hammer drill PNB76 in Berezovskaya Mine. The ways of improving the air hammer drill are identified, and the basic diagram and R&D test data are given.

  7. 16th DOE nuclear air cleaning conference: proceedings

    International Nuclear Information System (INIS)

    First, M.W.

    1981-02-01

    Major topics discussed during the Sixteenth DOE Nuclear Air Cleaning Conference were: waste treatment, including volume reduction and storage; system and component response to stress and accident conditions; Three Mile Island accident; iodine adsorption; treatment and storage of noble gas: treatment of offgases from chemical processing; aerosol; behavior; containment venting; laboratory and in-place filter-testing methods; and particulate filtration. Volume I of the Proceedings has 49 papers from the following sessions; HEPA filter test methods; noble gas separation; air cleaning system design; containment venting; iodine adsorption; reprocessing offgas cleaning; critical review; filtration; filter testing; and aerosols. Volume II contains 44 papers from the sessions on: nuclear waste treatment; critical review; noble gas treatment; carbon-14 and tritium; air cleaning system response to stress; nuclear standards and safety; round table; open end; and air cleaning technology at Three Mile Island. Abstracts are provided for all of these papers

  8. 16th DOE nuclear air cleaning conference: proceedings

    International Nuclear Information System (INIS)

    First, M.W.

    1981-02-01

    Major topics discussed during the Sixteenth DOE Nuclear Air Cleaning Conference were: waste treatment, including volume reduction and storage; system and component response to stress and accident conditions; Three Mile Island accident; iodine adsorption; treatment and storage of noble gas; treatment of offgases from chemical processing; aerosol behavior; containment venting; laboratory and in-place filter-testing methods; and particulate filtration. Volume I of the Proceedings has 49 papers from the following sessions: HEPA filter test methods; noble gas separation; air cleaning system design; containment venting; iodine adsorption; reprocessing offgas cleaning; critical review; filtration, filter testing, and aerosols. Volume II contains 44 papers from the sessions on: nuclear waste treatment; critical review; noble gas treatment; carbon-14 and tritium; air cleaning system response to stress; nuclear standards and safety; round table; open end; and air cleaning technology at Three Mile Island. Abstracts are provided for all of these papers

  9. Breathing Air Purification for Hyperbaric Purposes, Part II

    Directory of Open Access Journals (Sweden)

    Woźniak Arkadiusz

    2015-03-01

    Full Text Available Determining the efficiency of breathing air purification for hyperbaric purposes with the use of filtration systems is of a crucial importance. However, when the Polish Navy took samples of breathing air from their own filtration plant for quality purposes, these were found to not meet the required standard. The identification of this problem imposed the need to undertake actions aimed at the elimination of the identified disruptions in the process of breathing air production, with the objective of assuring its proper quality. This study presents the results of the initial tests on the air supply sources utilised by the Polish Navy, which were carried out for the purpose of setting a proper direction of future works and implementing corrective measures in order to optimise the breathing air production process. The obtained test results will be used in a subsequent publication devoted to the assessment of the level of efficiency of air purification with the use of a multifaceted approach consisting in the utilisation of various types of air supply sources and different configurations of purification systems.

  10. VERIFICATION TESTING OF AIR POLLUTION CONTROL TECHNOLOGY QUALITY MANAGEMENT PLAN

    Science.gov (United States)

    This document is the basis for quality assurance for the Air Pollution Control Technology Verification Center (APCT Center) operated under the U.S. Environmental Protection Agency (EPA). It describes the policies, organizational structure, responsibilities, procedures, and qualit...

  11. SUBMERGED GRAVEL SCRUBBER DEMONSTRATION AS A PASSIVE AIR CLEANER FOR CONTAINMENT VENTING AND PURGING WITH SODIUM AEROSOLS -- CSTF TESTS AC7 - AC10

    Energy Technology Data Exchange (ETDEWEB)

    HILLIARD, R K.; MCCORMACK, J D.; POSTMA, A K.

    1981-11-01

    Four large-scale air cleaning tests (AC7 - AC10) were performed in the Containment Systems Test Facility (CS'lF) to demonstrate the performance of a Submerged Gravel Scrubber for cleaning the effluent gas from a vented and purged breeder reactor containment vessel. The test article, comprised of a Submerged Gravel Scrubber (SGS) followed by a high efficiency fiber demister, had a design gas flow rate of 0.47 m{sup 3}/s (1000 ft{sup 3}/min) at a pressure drop of 9.0 kPa (36 in. H{sub 2}O). The test aerosol was sodium oxide, sodium hydroxide, or sodium carbonate generated in the 850-m{sup 3} CSTF vessel by continuously spraying sodium into the air-filled vessel while adding steam or carbon dioxide. Approximately 4500 kg (10,000 lb) of sodium was sprayed over a total period of 100 h during the tests. The SGS/Demister system was shown to be highly efficient (removing ~99.98% of the entering sodium aerosol mass), had a high mass loading capacity, and operated in a passive manner, with no electrical requirement. Models for predicting aerosol capture, gas cooling, and pressure drop are developed and compared with experimental results.

  12. Improved correlation between CT emphysema quantification and pulmonary function test by density correction of volumetric CT data based on air and aortic density

    International Nuclear Information System (INIS)

    Kim, Song Soo; Seo, Joon Beom; Kim, Namkug; Chae, Eun Jin; Lee, Young Kyung; Oh, Yeon Mok; Lee, Sang Do

    2014-01-01

    Objectives: To determine the improvement of emphysema quantification with density correction and to determine the optimal site to use for air density correction on volumetric computed tomography (CT). Methods: Seventy-eight CT scans of COPD patients (GOLD II–IV, smoking history 39.2 ± 25.3 pack-years) were obtained from several single-vendor 16-MDCT scanners. After density measurement of aorta, tracheal- and external air, volumetric CT density correction was conducted (two reference values: air, −1000 HU/blood, +50 HU). Using in-house software, emphysema index (EI) and mean lung density (MLD) were calculated. Differences in air densities, MLD and EI prior to and after density correction were evaluated (paired t-test). Correlation between those parameters and FEV 1 and FEV 1 /FVC were compared (age- and sex adjusted partial correlation analysis). Results: Measured densities (HU) of tracheal- and external air differed significantly (−990 ± 14, −1016 ± 9, P < 0.001). MLD and EI on original CT data, after density correction using tracheal- and external air also differed significantly (MLD: −874.9 ± 27.6 vs. −882.3 ± 24.9 vs. −860.5 ± 26.6; EI: 16.8 ± 13.4 vs. 21.1 ± 14.5 vs. 9.7 ± 10.5, respectively, P < 0.001). The correlation coefficients between CT quantification indices and FEV 1 , and FEV 1 /FVC increased after density correction. The tracheal air correction showed better results than the external air correction. Conclusion: Density correction of volumetric CT data can improve correlations of emphysema quantification and PFT

  13. Air to air fixed plate enthalpy heat exchanger, performance variation and energy analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nasif, Mohammad Shakir [Universiti Teknologi Petronas, Bandar Seri Iskandar (Malaysia); Alwaked, Rafat [Prince Mohammad Bin Fahd University, Al Khobar (Saudi Arabia); Behnia, Masud [University of Sydney, Sydney (Australia); Morrison, Graham [The University of New South Wales, Sydney (Australia)

    2013-11-15

    The thermal performance of a Z shape enthalpy heat exchanger utilising 70 gsm Kraft paper as the heat and moisture transfer surface has been investigated. Effects of different inlet air humidity ratio conditions on the heat exchanger effectiveness and on the energy recovered by the heat exchanger have been the main focus of this investigation. A typical air conditioning cooling coil which incorporates an enthalpy heat exchanger has been modelled for tropical climate. Under test conditions, results have shown that latent effectiveness and the moisture resistance coefficient have strong dependency on the inlet air humidity ratio. Moreover, the latent effectiveness has been found to be strongly dependent on the moisture resistance coefficient rather than the convective mass transfer coefficient. Finally, annual energy analysis for Singapore weather conditions have also shown that energy recovered under variable inlet air conditions is 15% less than that recovered under constant inlet air conditions for the same heat exchanger.

  14. Human Response to Ductless Personalized Ventilation with Local Air Cleaning: Air Quality and Prevalence of SBS Symptoms

    DEFF Research Database (Denmark)

    Dalewski, Mariusz; Bivolarova, Maria; Fillon, Maelys

    2013-01-01

    The impact of local air cleaning and cooling of the head region by ductless personalized ventilation (DPV) on perceived air quality (PAQ) and Sick Building Syndrome (SBS) symptoms was studied. Thirty subjects participated in experiments performed in a test room with displacement ventilation (DV...... with air filter and 29 °C with DPV without filter. During the experiments the subjects simulated office work and answered on computerized questionnaires. At warm environment PAQ and air freshness significantly improved when DPV was used. Eye dryness increased significantly with time but was not influenced...... by air temperature and filtering. At 29 °C the facially applied air movement from DPV increased the eye dryness. The SBS symptoms increased with time and were higher (not significantly) at the warm conditions. Air movement did not have profound impact on the SBS symptoms, while filtering had only at 23...

  15. Relationship between Air Traffic Selection and Training (AT-SAT)) Battery Test Scores and Composite Scores in the Initial en Route Air Traffic Control Qualification Training Course at the Federal Aviation Administration (FAA) Academy

    Science.gov (United States)

    Kelley, Ronald Scott

    2012-01-01

    Scope and Method of Study: This study focused on the development and use of the AT-SAT test battery and the Initial En Route Qualification training course for the selection, training, and evaluation of air traffic controller candidates. The Pearson product moment correlation coefficient was used to measure the linear relationship between the…

  16. Tonopah Test Range Air Monitoring: CY2015 Meteorological, Radiological, and Airborne Particulate Observations

    International Nuclear Information System (INIS)

    Nikolich, George; Shadel, Craig; Chapman, Jenny; McCurdy, Greg; Etyemezian, Vicken; Miller, Julianne J.; Mizell, Steve

    2016-01-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). The operation resulted in radionuclide-contaminated soils at the Clean Slate I, II, and III sites. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III, and at the TTR Sandia National Laboratories (SNL) Range Operations Control (ROC) center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soil beyond the physical and administrative boundaries of the sites. Radionuclide assessment of airborne particulates in 2015 found the gross alpha and gross beta values of dust collected from the filters at the monitoring stations are consistent with background conditions. The meteorological and particle monitoring indicate that conditions for wind-borne contaminant movement exist at the Clean Slate sites and that, although the transport of radionuclide-contaminated soil by suspension has not been detected, movement by saltation is occurring.

  17. Tonopah Test Range Air Monitoring: CY2015 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Nikolich, George [Nevada University, Reno, NV (United States). Desert Research Inst.; Shadel, Craig [Nevada University, Reno, NV (United States). Desert Research Inst.; Chapman, Jenny [Nevada University, Reno, NV (United States). Desert Research Inst.; McCurdy, Greg [Nevada University, Reno, NV (United States). Desert Research Inst.; Etyemezian, Vicken [Nevada University, Reno, NV (United States). Desert Research Inst.; Miller, Julianne J. [Nevada University, Reno, NV (United States). Desert Research Inst.; Mizell, Steve [Nevada University, Reno, NV (United States). Desert Research Inst.

    2016-09-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). The operation resulted in radionuclide-contaminated soils at the Clean Slate I, II, and III sites. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III, and at the TTR Sandia National Laboratories (SNL) Range Operations Control (ROC) center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soil beyond the physical and administrative boundaries of the sites. Radionuclide assessment of airborne particulates in 2015 found the gross alpha and gross beta values of dust collected from the filters at the monitoring stations are consistent with background conditions. The meteorological and particle monitoring indicate that conditions for wind-borne contaminant movement exist at the Clean Slate sites and that, although the transport of radionuclide-contaminated soil by suspension has not been detected, movement by saltation is occurring.

  18. Effects of filter housing and ductwork configuration on air flow uniformity inside air cleaning filter housings

    International Nuclear Information System (INIS)

    Paul, J.D.

    1993-01-01

    Each new HEPA filter installation presents a different physical configuration based on the system requirements, the available space and designer preference. Each different configuration can result in variations of air flow uniformity inside the filter housing across the filter banks. This paper presents the results of air flow uniformity testing for six different filter housing/ductwork configurations and discusses if any of those variations in air flow uniformity is attributable to the difference in the physical arrangements for the six cases

  19. The effect of a photocatalytic air purifier on indoor air quality quantified using different measuring methods

    DEFF Research Database (Denmark)

    Kolarik, Barbara; Wargocki, Pawel; Skorek-Osikowska, A.

    2010-01-01

    The effect on indoor air quality of an air purifier based on photocatalytic oxidation (PCO) was determined by different measuring techniques: sensory assessments of air quality made by human subjects, Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) and chromatographic methods (Gas......, additional measurements were made with no pollution sources present in the office. All conditions were tested with the photocatalytic air purifier turned on and off. The results show that operation of the air purifier in the presence of pollutants emitted by building materials and furniture improves indoor...... Chromatography/Mass Spectrometry and High-Pressure Liquid Chromatography with UV detection). The experiment was conducted in a simulated office, ventilated with 0.6 h(-1), 2.5 h(-1) and 6 h(-1), in the presence of additional pollution sources (carpet, chipboard and linoleum). At the lowest air change rate...

  20. 40 CFR 92.124 - Test sequence; general requirements.

    Science.gov (United States)

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92...) For the testing of locomotives and engines, the atmospheric pressure shall be between 31.0 inches Hg... test conditions. (c) No control of humidity is required for ambient air, engine intake air or dilution...

  1. Final air test results for the 1/5-scale Mark I boiling water reactor pressure suppression experiment

    International Nuclear Information System (INIS)

    Collins, E.K.; Lai, W.

    1977-01-01

    A loss-of-coolant accident (LOCA) in a boiling-water reactor (BWR) power plant has never occurred. However, because this type of accident is particularly severe, it is used as a principal basis for design. During a hypothetical LOCA in a Mark I BWR, air followed by steam is injected from a drywell into a toroidal wetwell about half-filled with water. A series of consistent, versatile, and accurate air-water tests simulating LOCA conditions was completed in the Lawrence Livermore Laboratory 1/5-Scale Mark I BWR Pressure Suppression Experimental Facility. Results from this test series were used to quantify the vertical loading function and to study the associated fluid dynamic phenomena. Detailed histories of vertical loads on the wetwell are shown. In particular, variations of hydrodynamic-generated vertical loads with changes in drywell pressurization rate, downcomer submergence, and the vent-line loss coefficient are established. Initial drywell overpressure, which partially preclears the downcomers of water, substantially reduces the peak vertical loads. Scaling relationships, developed from dimensional analysis and verified by bench-top experiments, allow the 1/5-scale results to be applied to a full-scale BWR power plant. This analysis leads to dimensionless groupings which are invariant. These groupongs show that if water is used as the working fluid, the magnitude of the forces in a scaled facility is reduced by the cube of the scale factor; the time when these forces occur is reduced by the square root of the scale factor

  2. Performance Testing of Tracer Gas and Tracer Aerosol Detectors for use in Radionuclide NESHAP Compliance Testing

    Energy Technology Data Exchange (ETDEWEB)

    Fuehne, David Patrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lattin, Rebecca Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-06-28

    The Rad-NESHAP program, part of the Air Quality Compliance team of LANL’s Compliance Programs group (EPC-CP), and the Radiation Instrumentation & Calibration team, part of the Radiation Protection Services group (RP-SVS), frequently partner on issues relating to characterizing air flow streams. This memo documents the most recent example of this partnership, involving performance testing of sulfur hexafluoride detectors for use in stack gas mixing tests. Additionally, members of the Rad-NESHAP program performed a functional trending test on a pair of optical particle counters, comparing results from a non-calibrated instrument to a calibrated instrument. Prior to commissioning a new stack sampling system, the ANSI Standard for stack sampling requires that the stack sample location must meet several criteria, including uniformity of tracer gas and aerosol mixing in the air stream. For these mix tests, tracer media (sulfur hexafluoride gas or liquid oil aerosol particles) are injected into the stack air stream and the resulting air concentrations are measured across the plane of the stack at the proposed sampling location. The coefficient of variation of these media concentrations must be under 20% when evaluated over the central 2/3 area of the stack or duct. The instruments which measure these air concentrations must be tested prior to the stack tests in order to ensure their linear response to varying air concentrations of either tracer gas or tracer aerosol. The instruments used in tracer gas and aerosol mix testing cannot be calibrated by the LANL Standards and Calibration Laboratory, so they would normally be sent off-site for factory calibration by the vendor. Operational requirements can prevent formal factory calibration of some instruments after they have been used in hazardous settings, e.g., within a radiological facility with potential airborne contamination. The performance tests described in this document are intended to demonstrate the reliable

  3. Effects of biodiesel on emissions of regulated air pollutants and polycyclic aromatic hydrocarbons under engine durability testing

    International Nuclear Information System (INIS)

    Hsi-Hsien Yang; Shu-Mei Chien; Mei-Yu Lo; John Chi-Wei Lan; Wen-Chang Lu; Yong-Yuan Ku

    2007-01-01

    An 80,000-km durability test was performed on two engines using diesel and biodiesel (methyl ester of waste cooking oil) as fuel in order to examine emissions resulting from the use of biodiesel. The test biodiesel (B20) was blended with 80% diesel and 20% methyl ester derived from waste cooking oil. Emissions of regulated air pollutants, including CO, HC, NO x , particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) were measured at 20,000-km intervals. The identical-model engines were installed on a standard dynamometer equipped with a dilution tunnel used to measure the pollutants. To simulate real-world driving conditions, emission measurements were made in accordance with the United States Environmental Protection Agency (USEPA) FTP transient cycle guidelines. At 0 km of the durability test, HC, CO and PM emission levels were lower for the B20 engine than those for diesel. After running for 20,000 km and longer, they were higher. However, the deterioration coefficients for these regulated air pollutants were not statistically higher than 1.0, implying that the emission factors do not increase significantly after 80,000 km of driving. Total (gaseous+particulate phase) PAH emission levels for both B20 and diesel decreased as the driving mileage accumulated. However, for the engine using B20 fuel, particulate PAH emissions increased as engine mileage increased. The average total PAH emission factors were 1097 and 1437 μg bhp h -1 for B20 and diesel, respectively. For B20, the benzo[a]pyrene equivalence emission factors were 0.77, 0.24, 0.20, 7.48, 5.43 and 14.1 μg bhp h -1 for 2-, 3-, 4-, 5-, 6-ringed and total PAHs. Results show that B20 use can reduce both PAH emission and its corresponding carcinogenic potency. (author)

  4. Effects of biodiesel on emissions of regulated air pollutants and polycyclic aromatic hydrocarbons under engine durability testing

    Energy Technology Data Exchange (ETDEWEB)

    Hsi-Hsien Yang; Shu-Mei Chien; Mei-Yu Lo [Chaoyang University of Technology, Wufong (China). Dept. of Environmental Engineering and Management; John Chi-Wei Lan [Yuan Ze University (China). Dept. of Chemical Engineering and Materials Science; Wen-Chang Lu [Industrial Technology Research Institute, Hsinchu (China). New Energy Div.; Yong-Yuan Ku [Automotive Research and Testing Center, Chunhwa (China). Diesel Vehicle Section

    2007-11-15

    An 80,000-km durability test was performed on two engines using diesel and biodiesel (methyl ester of waste cooking oil) as fuel in order to examine emissions resulting from the use of biodiesel. The test biodiesel (B20) was blended with 80% diesel and 20% methyl ester derived from waste cooking oil. Emissions of regulated air pollutants, including CO, HC, NO{sub x}, particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs) were measured at 20,000-km intervals. The identical-model engines were installed on a standard dynamometer equipped with a dilution tunnel used to measure the pollutants. To simulate real-world driving conditions, emission measurements were made in accordance with the United States Environmental Protection Agency (USEPA) FTP transient cycle guidelines. At 0 km of the durability test, HC, CO and PM emission levels were lower for the B20 engine than those for diesel. After running for 20,000 km and longer, they were higher. However, the deterioration coefficients for these regulated air pollutants were not statistically higher than 1.0, implying that the emission factors do not increase significantly after 80,000 km of driving. Total (gaseous+particulate phase) PAH emission levels for both B20 and diesel decreased as the driving mileage accumulated. However, for the engine using B20 fuel, particulate PAH emissions increased as engine mileage increased. The average total PAH emission factors were 1097 and 1437 {mu}g bhp h{sup -1} for B20 and diesel, respectively. For B20, the benzo[a]pyrene equivalence emission factors were 0.77, 0.24, 0.20, 7.48, 5.43 and 14.1 {mu}g bhp h{sup -1} for 2-, 3-, 4-, 5-, 6-ringed and total PAHs. Results show that B20 use can reduce both PAH emission and its corresponding carcinogenic potency. (author)

  5. IMPACT OF AN OZONE GENERATOR AIR CLEANER ON STYRENE CONCENTRATIONS IN AN INDOOR AIR QUALITY RESEARCH CHAMBER

    Science.gov (United States)

    The paper gives results of an investigation of the impact of an ozone generator air cleaner on vapor-phase styrene concentrations in a full-scale indoor air quality test chamber. The time history of the concentrations of styrene and ozone is well predicted by a simulation model u...

  6. Safety analysis report for the gunite and associated tanks project remediation of the South Tank Farm, facility 3507, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    Platfoot, J.H.

    1998-02-01

    The South Tank Farm (STF) is a series of six, 170,000-gal underground, domed storage tanks, which were placed into service in 1943. The tanks were constructed of a concrete mixture known as gunite. They were used as a portion of the Liquid Low-Level Waste System for the collection, neutralization, storage, and transfer of the aqueous portion of the radioactive and/or hazardous chemical wastes produced as part of normal facility operations at Oak Ridge National Laboratory (ORNL). The last of the tanks was taken out of service in 1986, but the tanks have been shown by structural analysis to continue to be structurally sound. An attempt was made in 1983 to empty the tanks; however, removal of all the sludge from the tanks was not possible with the equipment and schedule available. Since removal of the liquid waste in 1983, liquid continues to accumulate within the tanks. The in-leakage is believed to be the result of groundwater dripping into the tanks around penetrations in the domes. The tanks are currently being maintained under a Surveillance and Maintenance Program that includes activities such as level monitoring, vegetation control, High Efficiency Particulate Air (HEPA) filter leakage requirement testing/replacement, sign erection/repair, pump-out of excessive liquids, and instrument calibration/maintenance. These activities are addressed in ORNL/ER-275

  7. Air flow distribution in and around a single-sided naturally ventilated room

    Energy Technology Data Exchange (ETDEWEB)

    Eftekhari, M.M.; Marjanovic, L.D.; Pinnock, D.J. [Loughborough University (United Kingdom). Dept. of Civil and Building Engineering

    2002-03-01

    The objective of this research is to compare calculated and measured air flow distributions inside a test room which is naturally ventilated. The test room is situated in a relatively sheltered location and to visualise the resultant local wind pattern around the room for all prevailing wind directions, wind tunnel trials were carried out. Both the wind tunnel and full-scale measurements show that the wind direction at the test cell was generally restricted to either a westerly or an easterly direction. To investigate air flow inside the room, the air pressures and velocities across the openings together with indoor air temperature and velocity at four locations and six different levels are measured. The experimental results demonstrate that for both winter and summer the air was entering the test room at bottom and leaving at the top louvre. Separate air flow and thermal modelling programs are used to predict the spatial distribution of the air flow and thermal comfort. The air flow distribution was predicted using a network air flow program. The predicted flow showed similar trends and the simulation results were in agreement with the measured data. An explicit finite-difference thermal modeling simulation package was used to predict the thermal comfort indices.(author)

  8. CONCRETE BLOCKS' ADVERSE EFFECTS ON INDOOR AIR AND RECOMMENDED SOLUTIONS

    Science.gov (United States)

    Air infiltration through highly permeable concrete blocks can allow entry of various serious indoor air pollutants. An easy approach to avoiding these pollutants is to select a less–air-permeable concrete block. Tests show that air permeability of concrete blocks can vary by a fa...

  9. Air quality monitoring in the Canadian oil sands. Tests of new technology

    Energy Technology Data Exchange (ETDEWEB)

    Platt, Ulrich; Seitz, Katja; Buxmann, Joelle [Heidelberg Univ. (Germany). Inst. of Environmental Physics; Thimm, Harald F. [Thimm Petroleum Technologies Inc., Calgary (Canada)

    2012-12-15

    Modern bitumen recovery processes, such as Steam Assisted Gravity Drainage (SAGD), minimize the environmental footprint of oil recovery in terms of land disturbance and water demands. However, as a corollary, air monitoring becomes more difficult. In particular air quality monitoring for sulphur and nitrogen oxides, as currently practiced, suffers from significant limitations in remote regions, such as the Canadian Oil Sands Areas. Current techniques require the placement of monitoring trailers in accessible locations, but the electrical power or even access for optimal location for trailers is not always given. In addition, the trailers are capable of monitoring air quality only at the location of their deployment. There would be an advantage in deploying monitoring techniques that require minimal power (e.g. car battery, solar cell) and are capable of measuring air quality at a distance from the place of deployment. In the autumn of 2008, a trial of DOAS (Differential Optical Absorption Spectroscopy) was undertaken in Northern Alberta and Northern Saskatchewan, at four SAGD plants in various stages of development. Results of this study, and a discussion of the technology, will be given. Advantages and limitations of DOAS for deployment in Athabasca will be discussed. In general it was found that SO{sub 2} results showed remarkably low degrees of contamination, while NO{sub 2} concentrations were more noticeable. (orig.)

  10. Statistical Analysis of Spatiotemporal Heterogeneity of the Distribution of Air Quality and Dominant Air Pollutants and the Effect Factors in Qingdao Urban Zones

    Directory of Open Access Journals (Sweden)

    Xiangwei Zhao

    2018-04-01

    Full Text Available Air pollution has impacted people’s lives in urban China, and the analysis of the distribution and driving factors behind air quality has become a current research focus. In this study, the temporal heterogeneity of air quality (AQ and the dominant air pollutants across the four seasons were analyzed based on the Kruskal-Wallis rank-sum test method. Then, the spatial heterogeneity of AQ and the dominant air pollutants across four sites were analyzed based on the Wilcoxon signed-rank test method. Finally, the copula model was introduced to analyze the effect of relative factors on dominant air pollutants. The results show that AQ and dominant air pollutants present significant spatiotemporal heterogeneity in the study area. AQ is worst in winter and best in summer. PM10, O3, and PM2.5 are the dominant air pollutants in spring, summer, and winter, respectively. The average concentration of dominant air pollutants presents significant and diverse daily peaks and troughs across the four sites. The main driving factors are pollutants such as SO2, NO2, and CO, so pollutant emission reduction is the key to improving air quality. Corresponding pollution control measures should account for this heterogeneity in terms of AQ and the dominant air pollutants among different urban zones.

  11. Use of the Operational Air Quality Monitor (AQM) for In-Flight Water Testing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Currently, the Air Quality Monitor (AQM) on-board ISS provides specific information for a number of target compounds in the air. However, there is a significant...

  12. Improved correlation between CT emphysema quantification and pulmonary function test by density correction of volumetric CT data based on air and aortic density

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Song Soo [Department of Radiology, Chungnam National University Hospital, Chungnam National University School of Medicine (Korea, Republic of); Seo, Joon Beom, E-mail: seojb@amc.seoul.kr [Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center (Korea, Republic of); Kim, Namkug; Chae, Eun Jin [Department of Radiology, University of Ulsan College of Medicine, Asan Medical Center (Korea, Republic of); Lee, Young Kyung [Department of Radiology, Kyung Hee University Hospital at Gangdong (Korea, Republic of); Oh, Yeon Mok; Lee, Sang Do [Division of Pulmonology, Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center (Korea, Republic of)

    2014-01-15

    Objectives: To determine the improvement of emphysema quantification with density correction and to determine the optimal site to use for air density correction on volumetric computed tomography (CT). Methods: Seventy-eight CT scans of COPD patients (GOLD II–IV, smoking history 39.2 ± 25.3 pack-years) were obtained from several single-vendor 16-MDCT scanners. After density measurement of aorta, tracheal- and external air, volumetric CT density correction was conducted (two reference values: air, −1000 HU/blood, +50 HU). Using in-house software, emphysema index (EI) and mean lung density (MLD) were calculated. Differences in air densities, MLD and EI prior to and after density correction were evaluated (paired t-test). Correlation between those parameters and FEV{sub 1} and FEV{sub 1}/FVC were compared (age- and sex adjusted partial correlation analysis). Results: Measured densities (HU) of tracheal- and external air differed significantly (−990 ± 14, −1016 ± 9, P < 0.001). MLD and EI on original CT data, after density correction using tracheal- and external air also differed significantly (MLD: −874.9 ± 27.6 vs. −882.3 ± 24.9 vs. −860.5 ± 26.6; EI: 16.8 ± 13.4 vs. 21.1 ± 14.5 vs. 9.7 ± 10.5, respectively, P < 0.001). The correlation coefficients between CT quantification indices and FEV{sub 1}, and FEV{sub 1}/FVC increased after density correction. The tracheal air correction showed better results than the external air correction. Conclusion: Density correction of volumetric CT data can improve correlations of emphysema quantification and PFT.

  13. Indoor air pollution

    International Nuclear Information System (INIS)

    Qureshi, I.H.

    2001-01-01

    Indoor air pollution is a potential risk to human health. Prolonged exposure to indoor pollutants may cause various infectious, allergic and other diseases. Indoor pollutants can emanate from a broad array of internal and external sources. Internal sources include building and furnishing materials, consumer and commercial products, office equipment, micro-organisms, pesticides and human occupants activities. External sources include soil, water supplies and outside makeup air. The main indoor air pollutants of concern are inorganic gases, formaldehyde and other volatile organic compounds, pesticides, radon and its daughters, particulates and microbes. The magnitude of human exposure to indoor pollutants can be estimated or predicted with the help of mathematical models which have been developed using the data from source emission testing and field monitoring of pollutants. In order to minimize human exposure to indoor pollutants, many countries have formulated guidelines / standards for the maximum permissible levels of main pollutants. Acceptable indoor air quality can be achieved by controlling indoor pollution sources and by effective ventilation system for removal of indoor pollutants. (author)

  14. Bench-scale feasibility testing of pulsed-air technology for in-tank mixing of dry cementitious solids with tank liquids and settled solids

    International Nuclear Information System (INIS)

    Whyatt, G.A.; Hymas, C.R.

    1997-09-01

    This report documents the results of testing performed to determine the feasibility of using a pulsed-air mixing technology (equipment developed by Pulsair Systems, Inc., Bellevue, WA) to mix cementitious dry solids with supernatant and settled solids within a horizontal tank. The mixing technology is being considered to provide in situ stabilization of the open-quotes Vclose quotes tanks at the Idaho National Engineering and Environmental Laboratory (INEEL). The testing was performed in a vessel roughly 1/6 the scale of the INEEL tanks. The tests used a fine soil to simulate settled solids and water to simulate tank supernatants. The cementitious dry materials consisted of Portland cement and Aquaset-2H (a product of Fluid Tech Inc. consisting of clay and Portland cement). Two scoping tests were conducted to allow suitable mixing parameters to be selected. The scoping tests used only visual observations during grout disassembly to assess mixing performance. After the scoping tests indicated the approach may be feasible, an additional two mixing tests were conducted. In addition to visual observations during disassembly of the solidified grout, these tests included addition of chemical tracers and chemical analysis of samples to determine the degree of mixing uniformity achieved. The final two mixing tests demonstrated that the pulsed-air mixing technique is capable of producing slurries containing substantially more cementitious dry solids than indicated by the formulations suggested by INEEL staff. Including additional cement in the formulation may have benefits in terms of increasing mobilization of solids, reducing water separation during curing, and increasing the strength of the solidified product. During addition to the tank, the cementitious solids had a tendency to form clumps which broke down with continued mixing

  15. 40 CFR 90.309 - Engine intake air temperature measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Engine intake air temperature measurement. 90.309 Section 90.309 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Emission Test Equipment Provisions § 90.309 Engine intake air temperature measurement. (a) The measurement...

  16. CFD Analyses of Air-Ingress Accident for VHTRs

    Science.gov (United States)

    Ham, Tae Kyu

    The Very High Temperature Reactor (VHTR) is one of six proposed Generation-IV concepts for the next generation of nuclear powered plants. The VHTR is advantageous because it is able to operate at very high temperatures, thus producing highly efficient electrical generation and hydrogen production. A critical safety event of the VHTR is a loss-of-coolant accident. This accident is initiated, in its worst-case scenario, by a double-ended guillotine break of the cross vessel that connects the reactor vessel and the power conversion unit. Following the depressurization process, the air (i.e., the air and helium mixture) in the reactor cavity could enter the reactor core causing an air-ingress event. In the event of air-ingress into the reactor core, the high-temperature in-core graphite structures will chemically react with the air and could lose their structural integrity. We designed a 1/8th scaled-down test facility to develop an experimental database for studying the mechanisms involved in the air-ingress phenomenon. The current research focuses on the analysis of the air-ingress phenomenon using the computational fluid dynamics (CFD) tool ANSYS FLUENT for better understanding of the air-ingress phenomenon. The anticipated key steps in the air-ingress scenario for guillotine break of VHTR cross vessel are: 1) depressurization; 2) density-driven stratified flow; 3) local hot plenum natural circulation; 4) diffusion into the reactor core; and 5) global natural circulation. However, the OSU air-ingress test facility covers the time from depressurization to local hot plenum natural circulation. Prior to beginning the CFD simulations for the OSU air-ingress test facility, benchmark studies for the mechanisms which are related to the air-ingress accident, were performed to decide the appropriate physical models for the accident analysis. In addition, preliminary experiments were performed with a simplified 1/30th scaled down acrylic set-up to understand the air

  17. Legionella bacteria in combustion air humidifiers; Legionella i luftuppfuktare foer foerbraenningsluft

    Energy Technology Data Exchange (ETDEWEB)

    Jeppesen, Jessica; Hansson, Helen; Cederfeldt, Ola; Axby, Fredrik

    2007-10-15

    Over the last couple of years several outbreaks of Legionnaires' disease has occurred around the world. The source of infection varies, but in many cases the bacteria has been traced back to cooling towers. The common denominator for most of the sources of infection has been water systems with high oxygen levels and a system temperature ranging from 20 to 40 deg C. If a water system furthermore has high levels of other bacteria/microorganisms, then it is also probable that favorable conditions for legionella bacteria exist within the system. These conditions consist well with conditions in combustion air humidifiers in district heating plants and therefore it can be suspected that legionella may thrive also in these types of air humidifiers. In order to examine if legionella bacteria exists in combustion air humidifiers, and in what quantity, ten different district heating plants where selected for a survey. The goal of the survey is to get a general picture of the extent of the occurrence of legionella bacteria in different types of air humidifiers. This was done by taking legionella tests in three different types of air humidifiers in district heating plants. The first step of the testing was conducted by measuring the level of legionella bacteria in water samples from the air humidifiers in the different plants. The water samples were taken from water that circulates in the air humidifiers. A few months later another water sample was taken from the same location. Two district heating plants, where legionella bacteria had been detected, were selected for further testing after compiling the results from the first two tests. The further testing involved fuel gas analysis to see if any of the plants fuel gas contained legionella bacteria. The test results show that a major part of the district heating plants in the survey have heterotrophic bacteria in their water systems, which implies the possibility of growth of legionella bacteria. About half of the plants

  18. Characterization of process holdup material at the Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Boyd, D.E.; Miller, R.R.

    1986-01-01

    The cascade material balance area at the Portsmouth Gaseous Diffusion Plant is characterized by continuous, large, in-process inventories of gaseous uranium hexafluoride (UF 6 ) and very large inputs and outputs of UF 6 over a complete range of 235 U enrichments. Monthly inventories are conducted to quantify the in-place material, but the inventory techniques are blind to material not in the gas phase. Material is removed from the gas phase by any one of four mechanisms: (1) freeze-outs which are the solidification of UF 6 , (2) inleakage of wet air which produces solid uranium oxyfluorides, (3) consumption of uranium through UF 6 reaction with internal metal surfaces, and (4) adsorption of UF 6 on internal surfaces. This presentation describes efforts to better characterize and, where possible, to eliminate or reduce the effects of these mechanisms on material accountability. Freeze-outs and wet air deposits occur under absormal operating conditions, and techniques are available to prevent, detect and reverse them. Consumption and adsorption occur under normal operating conditions and are more complex to manage, however, computer models have been developed to quantify monthly the net effects due to consumption and adsorption. These models have shown that consumption and adsorption effects on inventory differences are significant

  19. Air pollution. Actions to promote radon testing

    International Nuclear Information System (INIS)

    Guerrero, Peter F.; Adams, Charles M.; McGee, William F.; Goldsmith, Larry A.; Feldesman, Alice G.; Grissinger, Charles R.; Updegraff, William D.; Langdon, Robin S.; Bartholomew, Philip L.

    1992-12-01

    To promote radon testing, EPA initiated public information and awareness programs and provided grants to states to develop programs aimed at encouraging homeowners to test for radon. Nationwide telephone surveys, according to EPA, indicate that these efforts have raised the public awareness of radon to as high as 78 percent but that about only 9 percent of those surveyed have tested their homes for radon. Concerned about improving risk reduction through its radon program, EPA convened a review panel. The panel not only recommended in May 1992 that the current voluntary approach be continued but also called for program changes to encourage more testing. These changes include targeting public information and other resources to areas where radon levels are predicted to be high and promoting testing and mitigation at the time of real estate transactions. To support state radon efforts, the Congress authorized a grant program for yearly grants of $10 million for 3 years. Funds for this program were recently extended for a fourth year through fiscal year 1993. Information to measure states' success in promoting testing by homeowners was generally not available because (1) much of the grant funding has been used to identify the extent of the radon problem; (2) federally funded public information projects were often directed to large audiences, making it difficult to measure testing rates; and (3) EPA's evaluation process for the grant program did not contain a component to measure increases in testing. We did, however, identify some state projects that have increased radon testing by targeting program efforts to homes in areas with potentially high levels of radon. The results of the state projects would seem to support the EPA review panel's recommendations on promoting radon testing through targeting program resources. In two states we surveyed, the voluntary use of disclosure statements as part of a real estate sales contract was a frequent occurrence, and in one state

  20. Evaluation of personal air sampling pumps

    International Nuclear Information System (INIS)

    Ritter, P.D.; Novick, V.J.; Alvarez, J.L.; Huntsman, B.L.

    1987-01-01

    Personal air samplers are used to more conveniently obtain breathing zone samples from individuals over periods of several hours. Personal air sampling pumps must meet minimum performance levels under all working conditions to be suitable for use in radiation protection programs. In addition, the pumps should be simple to operate and as comfortable to wear as possible. Ten models of personal air sampling pumps were tested to evaluate their mechanical performance and physical characteristics. The pumps varied over a wide range in basic performance and operating features. Some of the pumps were found to have adequate performance for use in health physics air sampling applications. 3 references, 2 figures, 5 tables

  1. Development and Testing of an Air Fluorescence Imaging System for the Detection of Radiological Contamination

    International Nuclear Information System (INIS)

    Inrig, Elizabeth; Koslowsky, Vern; Andrews, Bob; Dick, Michael; Forget, Patrick; Ing, Harry; Hugron, Roger; Wong, Larry

    2011-01-01

    Detection of radionuclides emitting short-range radiation, such as α and low-energy β particles, has always presented a challenge, particularly when such radionuclides are dispersed over a wide area. In this situation, conventional detection methods require the area of interest to be surveyed using a fragile probe at very close range--a slow, error-prone, and potentially dangerous process that may take many hours for a single room. The instrument under development uses a novel approach by imaging radiation-induced fluorescence in the air surrounding a contaminated area, rather than detecting the radiation directly. A robust and portable system has been designed and built that will allow contaminated areas to be rapidly detected and delineated. The detector incorporates position-sensitive photo-multiplier tubes, UV filters, a fast electronic shutter and an aspherical phase mask that significantly increases the depth-of-field. Preliminary tests have been conducted using sealed 241 Am sources of varying activities and surface areas. The details of the instrument design will be described and the results of recent testing will be presented.

  2. Results from an Interval Management (IM) Flight Test and Its Potential Benefit to Air Traffic Management Operations

    Science.gov (United States)

    Baxley, Brian; Swieringa, Kurt; Berckefeldt, Rick; Boyle, Dan

    2017-01-01

    NASA's first Air Traffic Management Technology Demonstration (ATD-1) subproject successfully completed a 19-day flight test of an Interval Management (IM) avionics prototype. The prototype was built based on IM standards, integrated into two test aircraft, and then flown in real-world conditions to determine if the goals of improving aircraft efficiency and airport throughput during high-density arrival operations could be met. The ATD-1 concept of operation integrates advanced arrival scheduling, controller decision support tools, and the IM avionics to enable multiple time-based arrival streams into a high-density terminal airspace. IM contributes by calculating airspeeds that enable an aircraft to achieve a spacing interval behind the preceding aircraft. The IM avionics uses its data (route of flight, position, etc.) and Automatic Dependent Surveillance-Broadcast (ADS-B) state data from the Target aircraft to calculate this airspeed. The flight test demonstrated that the IM avionics prototype met the spacing accuracy design goal for three of the four IM operation types tested. The primary issue requiring attention for future IM work is the high rate of IM speed commands and speed reversals. In total, during this flight test, the IM avionics prototype showed significant promise in contributing to the goals of improving aircraft efficiency and airport throughput.

  3. Design and test of low-capacitance, air-insulated, 80-kV, 0.5-sec source cables for MFTF sustaining-neutral-beam power supples

    International Nuclear Information System (INIS)

    Mayhall, D.J.; Wilson, J.H.; Caldwell, W.J.; Watson, T.F.; Jenkins, J.W. Jr.

    1981-01-01

    The design of air-insulated cables, which meet strict requirements, is described. Inductance, heat transfer, and electrostatic computer codes are used in design. Tests include electric circiut parameters, dc voltage holdoff, impulse voltage holdoff, heat rise at greater than peak duty, and shield mechanical strength

  4. A passive air sampler for characterizing the vertical concentration profile of gaseous phase polycyclic aromatic hydrocarbons in near soil surface air.

    Science.gov (United States)

    Zhang, Yuzhong; Deng, Shuxing; Liu, Yanan; Shen, Guofeng; Li, Xiqing; Cao, Jun; Wang, Xilong; Reid, Brian; Tao, Shu

    2011-03-01

    Air-soil exchange is an important process governing the fate of polycyclic aromatic hydrocarbons (PAHs). A novel passive air sampler was designed and tested for measuring the vertical concentration profile of 4 low molecular weight PAHs in gaseous phase (PAH(LMW4)) in near soil surface air. Air at various heights from 5 to 520 mm above the ground was sampled by polyurethane foam disks held in down-faced cartridges. The samplers were tested at three sites: A: an extremely contaminated site, B: a site near A, and C: a background site on a university campus. Vertical concentration gradients were revealed for PAH(LMW4) within a thin layer close to soil surface at the three sites. PAH concentrations either decreased (Site A) or increased (Sites B and C) with height, suggesting either deposition to or evaporation from soils. The sampler is a useful tool for investigating air-soil exchange of gaseous phase semi-volatile organic chemicals. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. 40 CFR 90.416 - Intake air flow measurement specifications.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the...

  6. Storage of LWR spent fuel in air. Volume 3, Results from exposure of spent fuel to fluorine-contaminated air

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, M.E.; Thomas, L.E.

    1995-06-01

    The Behavior of Spent Fuel in Storage (BSFS) Project has conducted research to develop data on spent nuclear fuel (irradiated U0{sub 2}) that could be used to support design, licensing, and operation of dry storage installations. Test Series B conducted by the BSFS Project was designed as a long-term study of the oxidation of spent fuel exposed to air. It was discovered after the exposures were completed in September 1990 that the test specimens had been exposed to an atmosphere of bottled air contaminated with an unknown quantity of fluorine. This exposure resulted in the test specimens reacting with both the oxygen and the fluorine in the oven atmospheres. The apparent source of the fluorine was gamma radiation-induced chemical decomposition of the fluoro-elastomer gaskets used to seal the oven doors. This chemical decomposition apparently released hydrofluoric acid (HF) vapor into the oven atmospheres. Because the Test Series B specimens were exposed to a fluorine-contaminated oven atmosphere and reacted with the fluorine, it is recommended that the Test Series B data not be used to develop time-temperature limits for exposure of spent nuclear fuel to air. This report has been prepared to document Test Series B and present the collected data and observations.

  7. Storage of LWR spent fuel in air. Volume 3, Results from exposure of spent fuel to fluorine-contaminated air

    International Nuclear Information System (INIS)

    Cunningham, M.E.; Thomas, L.E.

    1995-06-01

    The Behavior of Spent Fuel in Storage (BSFS) Project has conducted research to develop data on spent nuclear fuel (irradiated U0 2 ) that could be used to support design, licensing, and operation of dry storage installations. Test Series B conducted by the BSFS Project was designed as a long-term study of the oxidation of spent fuel exposed to air. It was discovered after the exposures were completed in September 1990 that the test specimens had been exposed to an atmosphere of bottled air contaminated with an unknown quantity of fluorine. This exposure resulted in the test specimens reacting with both the oxygen and the fluorine in the oven atmospheres. The apparent source of the fluorine was gamma radiation-induced chemical decomposition of the fluoro-elastomer gaskets used to seal the oven doors. This chemical decomposition apparently released hydrofluoric acid (HF) vapor into the oven atmospheres. Because the Test Series B specimens were exposed to a fluorine-contaminated oven atmosphere and reacted with the fluorine, it is recommended that the Test Series B data not be used to develop time-temperature limits for exposure of spent nuclear fuel to air. This report has been prepared to document Test Series B and present the collected data and observations

  8. Air traffic simulation in chemistry-climate model EMAC 2.41: AirTraf 1.0

    Science.gov (United States)

    Yamashita, Hiroshi; Grewe, Volker; Jöckel, Patrick; Linke, Florian; Schaefer, Martin; Sasaki, Daisuke

    2016-09-01

    Mobility is becoming more and more important to society and hence air transportation is expected to grow further over the next decades. Reducing anthropogenic climate impact from aviation emissions and building a climate-friendly air transportation system are required for a sustainable development of commercial aviation. A climate optimized routing, which avoids climate-sensitive regions by re-routing horizontally and vertically, is an important measure for climate impact reduction. The idea includes a number of different routing strategies (routing options) and shows a great potential for the reduction. To evaluate this, the impact of not only CO2 but also non-CO2 emissions must be considered. CO2 is a long-lived gas, while non-CO2 emissions are short-lived and are inhomogeneously distributed. This study introduces AirTraf (version 1.0) that performs global air traffic simulations, including effects of local weather conditions on the emissions. AirTraf was developed as a new submodel of the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model. Air traffic information comprises Eurocontrol's Base of Aircraft Data (BADA Revision 3.9) and International Civil Aviation Organization (ICAO) engine performance data. Fuel use and emissions are calculated by the total energy model based on the BADA methodology and Deutsches Zentrum für Luft- und Raumfahrt (DLR) fuel flow method. The flight trajectory optimization is performed by a genetic algorithm (GA) with respect to a selected routing option. In the model development phase, benchmark tests were performed for the great circle and flight time routing options. The first test showed that the great circle calculations were accurate to -0.004 %, compared to those calculated by the Movable Type script. The second test showed that the optimal solution found by the algorithm sufficiently converged to the theoretical true-optimal solution. The difference in flight time between the two solutions is less than 0.01 %. The dependence of

  9. TREAT [Transient Reactor Test Facility] reactor control rod scram system simulations and testing

    International Nuclear Information System (INIS)

    Solbrig, C.W.; Stevens, W.W.

    1990-01-01

    Air cylinders moving heavy components (100 to 300 lbs) at high speeds (above 300 in/sec) present a formidable end-cushion-shock problem. With no speed control, the moving components can reach over 600 in/sec if the air cylinder has a 5 ft stroke. This paper presents an overview of a successful upgrade modification to an existing reactor control rod drive design using a computer model to simulate the modified system performance for system design analysis. This design uses a high speed air cylinder to rapidly insert control rods (278 lb moved 5 ft in less than 300 msec) to scram an air-cooled test reactor. Included is information about the computer models developed to simulate high-speed air cylinder operation and a unique new speed control and end cushion design. A patent application is pending with the US Patent ampersand Trade Mark Office for this system (DOE case number S-68,622). The evolution of the design, from computer simulations thru operational testing in a test stand (simulating in-reactor operating conditions) to installation and use in the reactor, is also described. 6 figs

  10. Institutional Memory and the US Air Force

    Science.gov (United States)

    2016-01-01

    38 | Air & Space Power Journal Institutional Memory and the US Air Force Lt Col Daniel J. Brown, USAF Disclaimer: The views and opinions expressed...or implied in the Journal are those of the authors and should not be construed as carrying the official sanction of the Department of Defense, Air...national defense. After each ad- vance is tested in combat, a new round of intellectual sparring commences regarding Summer 2016 | 39 Institutional Memory

  11. Effects of political institutions on air quality

    International Nuclear Information System (INIS)

    Bernauer, Thomas; Koubi, Vally

    2009-01-01

    We empirically test existing theories on the provision of public goods, in particular air quality, using data on sulfur dioxide (SO 2 ) concentrations from the Global Environment Monitoring Projects for 107 cities in 42 countries from 1971 to 1996. The results are as follows: First, we provide additional support for the claim that the degree of democracy has an independent positive effect on air quality. Second, we find that among democracies, presidential systems are more conducive to air quality than parliamentary ones. Third, in testing competing claims about the effect of interest groups on public goods provision in democracies we establish that labor union strength contributes to lower environmental quality, whereas the strength of green parties has the opposite effect. (author)

  12. 40 CFR 53.64 - Test procedure: Static fractionator test.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Test procedure: Static fractionator test. 53.64 Section 53.64 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Performance Characteristics of Class II Equivalent Methods for PM2.5 § 53.64 Test procedure: Static...

  13. Test procedure for calibration, grooming and alignment of the LDUA Purge Air Supply System

    International Nuclear Information System (INIS)

    Potter, J.D.

    1995-01-01

    The Light Duty Utility Arm (LDUA) is a remotely operated manipulator used to enter into underground waste tanks through one of the tank risers. National Electric Code requirements mandate that the in-tank portions of the LDUA be maintained at a positive pressure for entrance into a flammable atmosphere. The LDUA Purge Air Supply System (PASS) is a small, portable air compressor, which provides a constant low flow of instrument grade air for this purpose. This procedure is used to assure that the instrumentation and equipment comprising the PASS is properly adjusted in order to achieve its intended functions successfully

  14. Tonopah Test Range Air Monitoring. CY2014 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Nikoloch, George [Desert Research Inst. (DRI), Las Vegas, NV (United States); Shadel, Craig [Desert Research Inst. (DRI), Las Vegas, NV (United States); Chapman, Jenny [Desert Research Inst. (DRI), Las Vegas, NV (United States); Mizell, Steve A. [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, Greg [Desert Research Inst. (DRI), Las Vegas, NV (United States); Etyemezian, Vicken [Desert Research Inst. (DRI), Las Vegas, NV (United States); Miller, Julianne J. [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2015-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2014 monitoring are: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2014 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations; (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. Differences in the observed dust concentrations are likely the result of differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  15. A regression-based method for mapping traffic-related air pollution. Application and testing in four contrasting urban environments

    International Nuclear Information System (INIS)

    Briggs, D.J.; De Hoogh, C.; Elliot, P.; Gulliver, J.; Wills, J.; Kingham, S.; Smallbone, K.

    2000-01-01

    Accurate, high-resolution maps of traffic-related air pollution are needed both as a basis for assessing exposures as part of epidemiological studies, and to inform urban air-quality policy and traffic management. This paper assesses the use of a GIS-based, regression mapping technique to model spatial patterns of traffic-related air pollution. The model - developed using data from 80 passive sampler sites in Huddersfield, as part of the SAVIAH (Small Area Variations in Air Quality and Health) project - uses data on traffic flows and land cover in the 300-m buffer zone around each site, and altitude of the site, as predictors of NO 2 concentrations. It was tested here by application in four urban areas in the UK: Huddersfield (for the year following that used for initial model development), Sheffield, Northampton, and part of London. In each case, a GIS was built in ArcInfo, integrating relevant data on road traffic, urban land use and topography. Monitoring of NO 2 was undertaken using replicate passive samplers (in London, data were obtained from surveys carried out as part of the London network). In Huddersfield, Sheffield and Northampton, the model was first calibrated by comparing modelled results with monitored NO 2 concentrations at 10 randomly selected sites; the calibrated model was then validated against data from a further 10-28 sites. In London, where data for only 11 sites were available, validation was not undertaken. Results showed that the model performed well in all cases. After local calibration, the model gave estimates of mean annual NO 2 concentrations within a factor of 1.5 of the actual mean (approx. 70-90%) of the time and within a factor of 2 between 70 and 100% of the time. r 2 values between modelled and observed concentrations are in the range of 0.58-0.76. These results are comparable to those achieved by more sophisticated dispersion models. The model also has several advantages over dispersion modelling. It is able, for example, to

  16. Air filters for use at nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Linder, P [Aktiebolaget Atomenergi, Studsvik, Nykoeping (Sweden)

    1970-12-01

    The ventilation system of a nuclear facility plays a vital role in ensuring that the air in working areas and the environment remains free from radioactive contamination. An earlier IAEA publication, Techniques for Controlling Air Pollution from the Operation of Nuclear Facilities, Safety Series No. 17, deals with the design and operation of ventilation systems at nuclear facilities. These systems are usually provided with air-cleaning devices which remove the contaminants from the air. This publication is intended as a guide to those who are concerned with the design of air-filtering systems and with the testing, operation and maintenance of air-filter installations at nuclear facilities. Emphasis is mainly placed on so-called high-efficiency particulate air filters (HEPA filters) and on providing general information on them. Besides describing the usual filter types, their dimensions and construction materials, the guidebook attempts to explain their properties and behaviour under different operating conditions. It also gives advice on testing and handling the filters so that effective and safe performance is ensured. The guidebook should serve as an introduction to the use of high efficiency particulate air filters in countries where work with radioactive materials has only recently commenced. The list of references at the end of the book indicates sources of more advanced information for those who already have comprehensive experience in this field. It is assumed here that the filters are obtained from a manufacturer, and the guidebook thus contains no information on the design and development of the filter itself, nor does it deal with the cleaning of the intake air to a plant, with gas sorption or protective respiratory equipment.

  17. Air filters for use at nuclear facilities

    International Nuclear Information System (INIS)

    Linder, P.

    1970-01-01

    The ventilation system of a nuclear facility plays a vital role in ensuring that the air in working areas and the environment remains free from radioactive contamination. An earlier IAEA publication, Techniques for Controlling Air Pollution from the Operation of Nuclear Facilities, Safety Series No. 17, deals with the design and operation of ventilation systems at nuclear facilities. These systems are usually provided with air-cleaning devices which remove the contaminants from the air. This publication is intended as a guide to those who are concerned with the design of air-filtering systems and with the testing, operation and maintenance of air-filter installations at nuclear facilities. Emphasis is mainly placed on so-called high-efficiency particulate air filters (HEPA filters) and on providing general information on them. Besides describing the usual filter types, their dimensions and construction materials, the guidebook attempts to explain their properties and behaviour under different operating conditions. It also gives advice on testing and handling the filters so that effective and safe performance is ensured. The guidebook should serve as an introduction to the use of high efficiency particulate air filters in countries where work with radioactive materials has only recently commenced. The list of references at the end of the book indicates sources of more advanced information for those who already have comprehensive experience in this field. It is assumed here that the filters are obtained from a manufacturer, and the guidebook thus contains no information on the design and development of the filter itself, nor does it deal with the cleaning of the intake air to a plant, with gas sorption or protective respiratory equipment

  18. The impact of draught related to air velocity, air temperature and workload.

    Science.gov (United States)

    Griefahn, B; Künemund, C; Gehring, U

    2001-08-01

    This experimental study was designed to test the hypotheses that the effects of draught increase with higher air velocity, with lower air temperature, and with lower workload. Thirty healthy young males were exposed to horizontal draught during 55 min while they operated an arm ergometer in a standing posture. Air velocity, air temperature, and workload were varied in 3 steps each, between 11 and 23 degrees C, 0.1 and 0.3 m/s, and 104 to 156 W/m2, respectively. The 27 combinations were distributed over subjects in a fractional factorial 3(3)-design. The participants were clothed for thermal neutrality. Workload was measured at the end of the sessions by respirometry. Draught-induced annoyance was determined every 5 min, separately for 10 body sites. Corresponding skin temperature was also recorded. The hypotheses were verified for the influence of air velocity and air temperature. Regarding workload, local heat production is probably decisive, meaning that draft-induced local annoyance is inversely related to workload in active but independent from workload in non-active body areas. To improve the situation for the workers concerned it is suggested to apply protective gloves that cover an as great area of the forearms as possible and to limit airflows to mean velocities of less than 0.2 m/s (with turbulence intensities of 50%).

  19. Measurement of diabetic wounds with optical coherence tomography-based air-jet indentation system and a material testing system.

    Science.gov (United States)

    Choi, M-C; Cheung, K-K; Ng, G Y-F; Zheng, Y-P; Cheing, G L-Y

    2015-11-01

    Material testing system is a conventional but destructive method for measuring the biomechanical properties of wound tissues in basic research. The recently developed optical coherence tomography-based air-jet indentation system is a non-destructive method for measuring these properties of soft tissues in a non-contact manner. The aim of the study was to examine the correlation between the biomechanical properties of wound tissues measured by the two systems. Young male Sprague-Dawley rats with streptozotocin-induced diabetic were wounded by a 6 mm biopsy punch on their hind limbs. The biomechanical properties of wound tissues were assessed with the two systems on post-wounding days 3, 7, 10, 14, and 21. Wound sections were stained with picro-sirius red for analysis on the collagen fibres. Data obtained on the different days were charted to obtain the change in biomechanical properties across the time points, and then pooled to examine the correlation between measurements made by the two devices. Qualitative analysis to determine any correlation between indentation stiffness measured by the air-jet indentation system and the orientation of collagen fibres. The indentation stiffness is significantly negatively correlated to the maximum load, maximum tensile stress, and Young's modulus by the material testing system (all pair-jet indentation system to evaluate the biomechanical properties of wounds in a non-contact manner. It is a potential clinical device to examine the biomechanical properties of chronic wounds in vivo in a repeatable manner.

  20. Improved emergency elevated air release for simplified PWR

    International Nuclear Information System (INIS)

    Naitoh, T.; Bruce, R.A.; Hirota, K.; Tajiri, Y.

    1992-01-01

    In developing the application of the simplified PWR in Japan, one of the most important areas is to limit post-accident site boundary whole body dose. In addressing this, the concept of Emergency Passive Air Filtration System (EPAFS) and it's feasibility is developed. The efficiency of charcoal filtering and the atmospheric diffusion effect of an elevated air release are important for dose reduction. The performance of these functions was evaluated by confirmatory testing. The test results confirmed a 99 percent efficiency of charcoal filter and an atmospheric diffusion effect higher than that of a conventional plant. The Emergency Passive Air Filtration System (EPAFS) and the atmospheric diffusion effect of elevated air release contribute to making the calculated post-accident site boundary whole body dose of simplified PWR as low as that of the conventional Japanese PWR plant. (author)

  1. Effect of air bubble localization after transfer on embryo transfer outcomes.

    Science.gov (United States)

    Tiras, Bulent; Korucuoglu, Umit; Polat, Mehtap; Saltik, Ayse; Zeyneloglu, Hulusi Bulent; Yarali, Hakan

    2012-09-01

    Our study aimed to provide information about the effects of air bubble localization after transfer on embryo transfer outcomes. Retrospective analysis of 7489 ultrasound-guided embryo transfers. Group 1 included 6631 embryo transfers in which no movement of the air bubbles was observed after transfer. Group 2 consisted of 407 embryo transfers in which the air bubbles moved towards the uterine fundus spontaneously, a little time after transfer. Group 3 included 370 embryo transfers in which the air bubbles moved towards the uterine fundus with ejection, immediately after transfer. Group 4 consisted of 81 embryo transfers in which the air bubbles moved towards the cervical canal. The four patient groups were different from one another with respect to positive pregnancy tests. Post hoc test revealed that this difference was between group 4 and other groups. An initial finding of our study was significantly decreased positive pregnancy test rates and clinical pregnancy rates with air bubbles moving towards the cervical canal after transfer. Although air bubbles moving towards the uterine fundus with ejection were associated with higher pregnancy rates, higher miscarriage rates and similar live birth rates were observed compared to air bubbles remaining stable after transfer. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Testing the Role of Recollision in N2+ Air Lasing

    Science.gov (United States)

    Britton, Mathew; Laferrière, Patrick; Ko, Dong Hyuk; Li, Zhengyan; Kong, Fanqi; Brown, Graham; Naumov, Andrei; Zhang, Chunmei; Arissian, Ladan; Corkum, P. B.

    2018-03-01

    It has been known for many years that during filamentation of femtosecond light pulses in air, gain is observed on the B to X transition in N2+ . While the gain mechanism remains unclear, it has been proposed that recollision, a process that is fundamental to much of strong field science, is critical for establishing gain. We probe this hypothesis by directly comparing the influence of the ellipticity of the pump light on gain in air filaments. Then, we decouple filamentation from gain by measuring the gain in a thin gas jet that we also use for high harmonic generation. The latter allows us to compare the dependence of the gain on the ellipticity of the pump with the dependence of the high harmonic signal on the ellipticity of the fundamental. We find that gain and harmonic generation have very different behavior in both filaments and in the jet. In fact, in a jet we even measure gain with circular polarization. Thus, we establish that recollision does not play a significant role in creating the inversion.

  3. Air filtration and indoor air quality

    DEFF Research Database (Denmark)

    Bekö, Gabriel

    2006-01-01

    Demands for better indoor air quality are increasing, since we spend most of our time indoors and we are more and more aware of indoor air pollution. Field studies in different parts of the world have documented that high percentage of occupants in many offices and buildings find the indoor air...... decent ventilation and air cleaning/air filtration, high indoor air quality cannot be accomplished. The need for effective air filtration has increased with increasing evidence on the hazardous effects of fine particles. Moreover, the air contains gaseous pollutants, removal of which requires various air...... cleaning techniques. Supply air filter is one of the key components in the ventilation system. Studies have shown that used ventilation filters themselves can be a significant source of indoor air pollution with consequent impact on perceived air quality, sick building syndrome symptoms and performance...

  4. Analysis of hospital interior air quality audits

    Directory of Open Access Journals (Sweden)

    Lin Lee-Kuo

    2017-01-01

    Full Text Available In general, people spent more than 80∼90% of living time in the indoor every day, human health and indoor environmental quality are closely related. The hospital has a complex and unique environmental characteristics, medical personnel and patients are prolonged exposed to risk factors in a variety of environments. Therefore, the merits of indoor air quality in the hospital, not only has a threat to the health of medical personnel and patients, but also will directly affect the quality and efficiency of health care work. A regular monitoring can, improve and maintain a well of indoor air quality, thus ensuring the safety maintenance of medical personnel and patients in hospital, it has become an important issue for hospital. This study has literatures review to collate and analyse that are related issues with indoor air quality. Then measures the indoor air quality test with direct-reading instruments. In selected hospital of this study were field-tested, then use the measured data in the field, discussion and analysis of the causes of air pollutants and the establishment of the sensing area of pollutants Concentration empirical mode.

  5. Effect of using low-polluting building materials and increasing ventilation on perceived indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Wargocki, P.; Zuczek, P. (International Centre for Indoor Environment and Energy, Dept. of Mechanical Engineering, DTU, Kgs. Lyngby (DK)); Knudsen, Henrik N. (Danish Building Research Institute, Aalborg Univ., Hoersholm (DK))

    2007-07-01

    The potential of improving perceived air quality indoors was quantified when low-polluting materials are used and when building ventilation is increased. This was done by studying the relationships between ventilation rate and the perceived indoor air quality. A sensory panel assessed the air quality in test rooms ventilated with realistic outdoor air supply rates, where combinations of high- and low-polluting wall, floor and ceiling materials were set up. These materials were ranked as high- and low-polluting using sensory assessments of air quality in small-scale glass chambers, where they were tested individually. Substituting materials ranked as high-polluting with materials ranked as lower-polluting improved the perceived air quality in the test rooms. This improvement was greater than what was achieved by a realistic increase of the ventilation rate in the test rooms. Thus reducing pollution emitted from building materials that affects the perceived air quality has a considerable potential of limiting the energy for ventilation without compromising indoor air quality. (au)

  6. Requirements of office air conditioners. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, W

    1988-01-01

    New building designs and experiences gained in the past are reponsible for the considerable changes the requirements of air conditioners have gone through in recent years. Details are given on an exemplary air conditioning system designed for the Colonia Insurances building complex located in the city of Cologne. The ventilation requirements and hygienic conditions set out for air conditioned rooms call for outside air supplies, the careful selection of air intakes, and the filtering of intake air. Details are given on the efficiency and limits of combined natural window ventilation/artificial ventilation systems, the influence of window types, and the influence of building structures. The pressure conditions to be expected for larger building complexes in the case of natural ventilation should be assessed with the help of models put to wind tunnel tests.

  7. Experimental analysis of the thermal entrainment factor of air curtains in vertical open display cabinets for different ambient air conditions

    International Nuclear Information System (INIS)

    Gaspar, Pedro Dinis; Carrilho Goncalves, L.C.; Pitarma, R.A.

    2011-01-01

    The vertical open refrigerated display cabinets suffer alterations of their thermal performance and energy efficiency due to variations of ambient air conditions. The air curtain provides an aerothermodynamics insulation effect that can be evaluated by the thermal entrainment factor calculation as an engineering approximation or by the calculus of all sensible and latent thermal loads. This study presents the variation of heat transfer rate and thermal entrainment factor obtained through experimental tests carried out for different ambient air conditions, varying air temperature, relative humidity, velocity and its direction relatively to the display cabinet frontal opening. The thermal entrainment factor are analysed and compared with the total sensible and latent heats results for the experimental tests. From an engineering point of view, it is concluded that thermal entrainment factor cannot be used indiscriminately, although its use is suitable to design better cabinet under the same climate class condition.

  8. Air-Cooled Design of a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization Systems

    Science.gov (United States)

    Mulloth, Lila M.; Affleck, Dave L.; Rosen, Micha; LeVan, M. Douglas; Wang, Yuan; Cavalcante, Celio L.

    2004-01-01

    The air revitalization system of the International Space Station (ISS) operates in an open loop mode and relies on the resupply of oxygen and other consumables from earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby closing the air-loop. We have a developed a temperature-swing adsorption compressor (TSAC) for performing these tasks that is energy efficient, quiet, and has no rapidly moving parts. This paper discusses the mechanical design and the results of thermal model validation tests of a TSAC that uses air as the cooling medium.

  9. Engine Test Facility (ETF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Air Force Arnold Engineering Development Center's Engine Test Facility (ETF) test cells are used for development and evaluation testing of propulsion systems for...

  10. Tonopah Test Range Air Monitoring: CY2012 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A; Nikolich, George; Shadel, Craig; McCurdy, Greg; Miller, Julianne J

    2013-07-01

    In 1963, the Atomic Energy Commission (AEC), predecessor to the US Department of Energy (DOE), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range (NAFR)). Operation Roller Coaster consisted of four tests in which chemical explosions were detonated in the presence of nuclear devices to assess the dispersal of radionuclides and evaluate the effectiveness of storage structures to contain the ejected radionuclides. These tests resulted in dispersal of plutonium over the ground surface downwind of the test ground zero. Three tests, Clean Slate 1, 2, and 3, were conducted on the TTR in Cactus Flat; the fourth, Double Tracks, was conducted in Stonewall Flat on the NTTR. DOE is working to clean up and close all four sites. Substantial cleaned up has been accomplished at Double Tracks and Clean Slate 1. Cleanup of Clean Slate 2 and 3 is on the DOE planning horizon for some time in the next several years. The Desert Research Institute installed two monitoring stations, number 400 at the Sandia National Laboratories Range Operations Center and number 401 at Clean Slate 3, in 2008 and a third monitoring station, number 402 at Clean Slate 1, in 2011 to measure radiological, meteorological, and dust conditions. The primary objectives of the data collection and analysis effort are to (1) monitor the concentration of radiological parameters in dust particles suspended in air, (2) determine whether winds are re-distributing radionuclides or contaminated soil material, (3) evaluate the controlling meteorological conditions if wind transport is occurring, and (4) measure ancillary radiological, meteorological, and environmental parameters that might provide insight to the above assessments. The following observations are based on data collected during CY2012. The mean annual concentration of gross alpha and gross beta is highest at Station 400 and lowest at Station

  11. Design, build, and test an air-cleaning system for working-level control in uranium mines. Open file report October 1979-April 1984

    International Nuclear Information System (INIS)

    Schroeder, W.E.; Muldoon, T.L.; Babbitt, C.

    1984-06-01

    The health hazard from 222 radon byproducts, radon daughters, will be increasingly difficult to control by dilution with primary ventilation as the uranium industry digs farther and deeper for ore of diminishing grade. One solution is removal of daughters from air at the work place by filtering out respirable-size dust particles to which most daughters attach. This report describes design and testing of a filtration unit that reduces the working level in ventilating air 95% on an airflow of 10,000 cfm. Buildup of dust on the filter is controlled by periodic back-pulsing, so that the unit can operate for an extended period without changing elements. The effectiveness of the self-cleaning action was satisfactory under a contaminant loading that was 43% diesel smoke. Back-pulsing was able to control filter loading or buildup to a degree even under 100% diesel. The report describes testing of the filter medium and filter unit in both an experimental and an active mine and concludes with an analysis of the prototype design

  12. A new certified reference material for benzene measurement in air on a sorbent tube: development and proficiency testing

    Energy Technology Data Exchange (ETDEWEB)

    Caurant, A. [Laboratoire National de Metrologie et d' Essais, Paris (France); Universite Paris 12 et CNRS (UMR 7583), Faculte des Sciences et Technologie, Laboratoire Inter-universitaire des Systemes Atmospheriques, Unite Mixte de Recherche Universite Paris 7 (France); Lalere, B.; Schbath, M.C.; Stumpf, C.; Sutour, C.; Mace, T.; Vaslin-Reimann, S. [Laboratoire National de Metrologie et d' Essais, Paris (France); Quisefit, J.P.; Doussin, J.F. [Universite Paris 12 et CNRS (UMR 7583), Faculte des Sciences et Technologie, Laboratoire Inter-universitaire des Systemes Atmospheriques, Unite Mixte de Recherche Universite Paris 7 (France)

    2010-11-15

    A certified matrix reference material (CRM) for the measurement of benzene in ambient air has been developed at Laboratoire National de Metrologie et d'Essais. The production of these CRMs was conducted using a gravimetric method fully traceable to the International System of Units. The CRMs were prepared by sampling an accurate mass of a gaseous primary reference material of benzene, using a high-precision laminar flowmeter and a mass flow controller, with a PerkinElmer sampler filled with Carbopack trademark X sorbent. The relative standard deviations obtained for the preparation of a batch of 20 tubes loaded with 500 ng of benzene were below 0.2%. Each CRM is considered independent from the others and with its own certified value and an expanded uncertainty estimated to be within 0.5%, lower than the uncertainties of benzene CRMs already available worldwide. The stability of these materials was also established up to 12 months. These CRMs were implemented during proficiency testing, to evaluate the analytical performances of seven French laboratories involved in benzene air monitoring. (orig.)

  13. Global thermal analysis of air-air cooled motor based on thermal network

    Science.gov (United States)

    Hu, Tian; Leng, Xue; Shen, Li; Liu, Haidong

    2018-02-01

    The air-air cooled motors with high efficiency, large starting torque, strong overload capacity, low noise, small vibration and other characteristics, are widely used in different department of national industry, but its cooling structure is complex, it requires the motor thermal management technology should be high. The thermal network method is a common method to calculate the temperature field of the motor, it has the advantages of small computation time and short time consuming, it can save a lot of time in the initial design phase of the motor. The domain analysis of air-air cooled motor and its cooler was based on thermal network method, the combined thermal network model was based, the main components of motor internal and external cooler temperature were calculated and analyzed, and the temperature rise test results were compared to verify the correctness of the combined thermal network model, the calculation method can satisfy the need of engineering design, and provide a reference for the initial and optimum design of the motor.

  14. Nitric Oxide and Oxygen Air-Contamination Effects on Extinction Limits of Non-Premixed Hydrocarbon-Air Flames for a HIFiRE Scramjet

    Science.gov (United States)

    Pellett, Gerald L.; Dawson, Lucy C.; Vaden, Sarah N.; Wilson, Lloyd G.

    2009-01-01

    Unique nitric oxide (NO) and oxygen air-contamination effects on the extinction Flame Strength (FS) of non-premixed hydrocarbon (HC) vs. air flames are characterized for 7 gaseous HCs, using a new idealized 9.3 mm straight-tube Opposed Jet Burner (OJB) at 1 atm. FS represents a laminar strain-induced extinction limit based on cross-section-average air jet velocity, Uair, that sustains combustion of a counter jet of gaseous fuel just before extinction. Besides ethane, propane, butane, and propylene, the HCs include ethylene, methane, and a 64 mole-% ethylene / 36 % methane mixture, the writer s previously recommended gaseous surrogate fuel for HIFiRE scramjet tests. The HC vs. clean air part of the work is an extension of a May 2008 JANNAF paper that characterized surrogates for the HIFiRE project that should mimic the flameholding of reformed (thermally- or catalytically-cracked) endothermic JP-like fuels. The new FS data for 7 HCs vs. clean air are thus consolidated with the previously validated data, normalized to absolute (local) axial-input strain rates, and co-plotted on a dual kinetically dominated reactivity scale. Excellent agreement with the prior data is obtained for all 7 fuels. Detailed comparisons are also made with recently published (Univ. Va) numerical results for ethylene extinction. A 2009-revised ethylene kinetic model (Univ. Southern Cal) led to predicted limits within approx. 5 % (compared to 45 %, earlier) of this writer s 2008 (and present) ethylene FSs, and also with recent independent data (Univ. Va) obtained on a new OJB system. These +/- 5 % agreements, and a hoped-for "near-identically-performing" reduced kinetics model, would greatly enhance the capability for accurate numerical simulations of surrogate HC flameholding in scramjets. The measured air-contamination effects on normalized FS extinction limits are projected to assess ongoing Arc-Heater-induced "facility test effects" of NO production (e.g., 3 mole-%) and resultant oxygen

  15. 21 CFR 874.1800 - Air or water caloric stimulator.

    Science.gov (United States)

    2010-04-01

    ... vestibular function testing of a patient's body balance system. The vestibular stimulation of the... stimulator. (a) Identification. An air or water caloric stimulator is a device that delivers a stream of air...

  16. Ames Air Revitalization

    Science.gov (United States)

    Huang, Roger Z.

    2015-01-01

    This is an informal presentation presented to the University of Colorado, Boulder Bioastronautics group seminar. It highlights the key focal areas of the Air Revitalization Group research over the past year, including progress on the CO2 Removal and Compression System, testing of CDRA drying bed configurations, and adsorption research.

  17. Thermal performance of 2350 kW totally enclosed air to air cooled motor

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.C.; Kuo, S.C.; Chen, S.L. [National Taiwan Univ., Taipei, Taiwan (China). Dept. of Mechanical Engineering; Cheng, T.F. [TATUNG CO., Sanhsia, Taiwan (China)

    2009-07-01

    This study investigated numerically and experimentally the thermal performance of a 2350 kW enclosed air-to-air cooled motor. The experiment was divided into 2 sections. The centrifugal fans were tested using a standard test apparatus. Flow rates, output power, and pressure drop between the inlet and outlet were obtained. The motor was then tested to measure the flow rate of the external flow, and inlet and outlet temperatures of the external and internal flow in the heat exchanger. Motor performance was then simulated using a computational fluid dynamics (CFD) tool. Heat transfer within the motor was divided into external and internal flows. External flow was driven by the rotation of the centrifugal fan mounted to the frame on the motor shaft and passing through the tubes of a staggered heat exchanger mounted on the top of the frame. Internal flow was circulated through the heat exchanger by 2 axial fans located on either side of the rotor and cooled by the external flow. Axial and centrifugal fan simulations were in good agreement with results obtained during the experiments. The study demonstrated that the calculated velocity distributions of external flow fluids through the heat exchanger tubes are non-uniform. Air outlet temperatures for internal and external flows were estimated within 2 per cent. However, stator and rotor simulations were 3 per cent lower than experimental measured values. 7 refs., 1 tab., 15 figs.

  18. Can citizen science produce good science? Testing the OPAL Air Survey methodology, using lichens as indicators of nitrogenous pollution

    International Nuclear Information System (INIS)

    Tregidgo, Daniel J.; West, Sarah E.; Ashmore, Mike R.

    2013-01-01

    Citizen science is having increasing influence on environmental monitoring as its advantages are becoming recognised. However methodologies are often simplified to make them accessible to citizen scientists. We tested whether a recent citizen science survey (the OPAL Air Survey) could detect trends in lichen community composition over transects away from roads. We hypothesised that the abundance of nitrophilic lichens would decrease with distance from the road, while that of nitrophobic lichens would increase. The hypothesised changes were detected along strong pollution gradients, but not where the road source was relatively weak, or background pollution relatively high. We conclude that the simplified OPAL methodology can detect large contrasts in nitrogenous pollution, but it may not be able to detect more subtle changes in pollution exposure. Similar studies are needed in conjunction with the ever-growing body of citizen science work to ensure that the limitations of these methods are fully understood. -- Highlights: •We investigated the validity of a simplified citizen science methodology. •Lichen abundance data were used to indicate nitrogenous air pollution. •Significant changes were detected beside busy roads with low background pollution. •The methodology detected major, but not subtle, contrasts in pollution. •Sensitivity of citizen science methods to environmental change must be evaluated. -- A simplified lichen biomonitoring method used for citizen science can detect the impact of nitrogenous air pollution from local roads

  19. Thermal performances of vertical hybrid PV/T air collector

    Science.gov (United States)

    Tabet, I.; Touafek, K.; Bellel, N.; Khelifa, A.

    2016-11-01

    In this work, numerical analyses and the experimental validation of the thermal behavior of a vertical photovoltaic thermal air collector are investigated. The thermal model is developed using the energy balance equations of the PV/T air collector. Experimental tests are conducted to validate our mathematical model. The tests are performed in the southern Algerian region (Ghardaïa) under clear sky conditions. The prototype of the PV/T air collector is vertically erected and south oriented. The absorber upper plate temperature, glass cover temperature, air temperature in the inlet and outlet of the collector, ambient temperature, wind speed, and solar radiation are measured. The efficiency of the collector increases with increase in mass flow of air, but the increase in mass flow of air reduces the temperature of the system. The increase in efficiency of the PV/T air collector is due to the increase in the number of fins added. In the experiments, the air temperature difference between the inlet and the outlet of the PV/T air collector reaches 10 ° C on November 21, 2014, the interval time is between 10:00 and 14:00, and the temperature of the upper plate reaches 45 ° C at noon. The mathematical model describing the dynamic behavior of the typical PV/T air collector is evaluated by calculating the root mean square error and mean absolute percentage error. A good agreement between the experiment and the simulation results is obtained.

  20. Do conventional monitoring practices indicate in situ air sparging performance?

    International Nuclear Information System (INIS)

    Johnson, P.C.

    1995-01-01

    Short-term pilot tests play a key role in the selection and design of in situ air sparging systems. Most pilot tests are less than 24 h in duration and consist of monitoring changes in dissolved oxygen, water levels in wells, soil gas pressures, and soil gas contaminant concentrations while air is injected into the aquifer. These parameters are assumed to be indicators of air sparging feasibility and performance, and are also used in the design of full-scale systems. In this work the authors assess the validity of this critical assumption. Data are presented from a study site where a typical pilot-scale short-term test was conducted, followed by continued operation of a full-scale system for 110 days. Conventional sampling practices were augmented with more discrete and detailed assessment methods. In addition, a tracer gas was used to better understand air distributions, vapor flow paths, and vapor recovery efficiency. The data illustrate that conclusions regarding the performance and applicability of air sparging at the study site vary significantly depending on the monitoring approach used. There was no clear correlation between short-term pilot-test data and extended system performance when using data collected only from conventional groundwater monitoring wells. Attention is focused on petroleum hydrocarbons

  1. Integrated Testing of a 4-Bed Molecular Sieve and a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization

    Science.gov (United States)

    Knox, James C.; Mulloth, Lila M.; Affleck, David L.

    2004-01-01

    Accumulation and subsequent compression of carbon dioxide that is removed from space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The 4-Bed Molecular Sieve (4BMS) of ISS currently operates in an open loop mode without a compressor. This paper reports the integrated 4BMS and liquid-cooled TSAC testing conducted during the period of March 3 to April 18, 2003. The TSAC prototype was developed at NASA Ames Research Center (ARC). The 4BMS was modified to a functionally flight-like condition at NASA Marshall Space Flight Center (MSFC). Testing was conducted at MSFC. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of CDRA.

  2. 14 CFR 120.21 - Testing for alcohol.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Testing for alcohol. 120.21 Section 120.21... AND OPERATORS FOR COMPENSATION OR HIRE: CERTIFICATION AND OPERATIONS DRUG AND ALCOHOL TESTING PROGRAM Air Traffic Controllers § 120.21 Testing for alcohol. (a) Each air traffic control facility not...

  3. Air quality investigations of the Sandia National Laboratories Sol se Mete Aerial Cable Facility

    International Nuclear Information System (INIS)

    Gutman, W.M.; Silver, R.J.

    1994-12-01

    The air quality implications of the test and evaluation activities at the Sandia National Laboratories Sol se Mete Aerial Cable Facility are examined. All facets of the activity that affect air quality are considered. Air contaminants produced directly include exhaust products of rocket motors used to accelerate test articles, dust and gas from chemical explosives, and exhaust gases from electricity generators in the test arenas. Air contaminants produced indirectly include fugitive dust and exhaust contaminants from vehicles used to transport personnel and material to the test area, and effluents produced by equipment used to heat the project buildings. Both the ongoing program and the proposed changes in the program are considered. Using a reliable estimate of th maximum annual testing level, the quantities of contaminants released by project activities ar computed either from known characteristics of test items or from EPA-approved emission factors Atmospheric concentrations of air contaminants are predicted using EPA dispersion models. The predicted quantities and concentrations are evaluated in relation to Federal, New Mexico, an Bernalillo County air quality regulations and the human health and safety standards of the American Conference of Governmental Industrial Hygienists

  4. Fire testing and analysis of TRUPACT-I Thermal Test Article

    International Nuclear Information System (INIS)

    Romesberg, L.E.; Longenbaugh, R.S.; Joseph, B.J.

    1989-02-01

    This report documents the fabrication and thermal test of a full-scale prototype of the revised TRUPACT-I design. The fire test demonstrated that the response of the Test Article to a jet-fueled pool fire, subsequent to the impact and puncture tests, meets the impact, puncture, and thermal performance requirements of the regulations governing transport of radioactive materials. The Test Article was a replica of the front half (closure end) of the revised TRUPACT-I design. To simulate the cumulative effect of the regulatory hypothetical accident sequence, the Test Article included the structural damage found in TRUPACT-I, Unit 0 after regulatory drop and puncture testing. The Test Article was totally engulfed in a pool fire fueled by JP-4 jet fuel for 46 minutes. The maximum temperature reached at the inner door seals was 149/degree/C (300/degree/F) and the maximum temperature at the inner door filters was 171/degree/C (340/degree/F). Both temperatures are within the normal working range for these components. Post-test leak rate measurements of 0.0041 atm-cm 3 /s (ANSI standard air) between the innermost pair of door seals and 0.0046 atm-cm 3 /s (ANSI standard air) between the outermost pair of door seals verified that the performance of the silicone seals met the design requirements. Since no detectable leakage was measured to a sensitivity of 1.0E-7 atm-cm 3 /s for the filter installation seal or quick-connect valve seal post-test, the total leak rate for the containment system was less than the maximum allowable 0.01 atm-cm 3 /s (ANSI standard air). 10 refs., 52 figs., 5 tabs

  5. Cost/benefit evaluation of electrofibrous air filters

    International Nuclear Information System (INIS)

    Bergman, W.; Kuhl, W.; Biermann, A.; Lum, B.

    1986-01-01

    Experimental electric air filters based on the principle of superimposing an electric field over conventional fibrous air filters have been developed. The different experimental electric filters described in this report include prefilters for use in glove boxes and in ventilation systems, re-circulating air filters, electric HEPA filters, and high efficiency, high temperature air filters. In each case the large improvement in filter efficiency that occurs when a mechanical filter is electrified is demonstrated. Also a significant increase in the particle loading capacity of filters in many of our evaluations is demonstrated. Both laboratory and field test results are presented. This paper also demonstrates that the performance of all of our electric filter designs, except one, can be matched by conventional mechanical air filters and usually at a lower cost. The one exception is the high temperature, high efficiency electric air filter. In that case there is no mechanical filter media that can match the performance of the electric air filter. Our findings show that electric air filters are only cost effective compared to mechanical air filters when the performance of the mechanical air filter cannot be further improved by mechanical means. (author)

  6. Evaluation of the Air Void Analyzer

    Science.gov (United States)

    2013-07-01

    concrete using image analysis: Petrography of cementitious materials. ASTM STP 1215. S.M. DeHayes and D. Stark, eds. Philadelphia, PA: American...Administration (FHWA). 2006. Priority, market -ready technologies and innovations: Air Void Analyzer. Washington D.C. PDF file. Germann Instruments (GI). 2011...tests and properties of concrete and concrete-making materials. STP 169D. West Conshohocken, PA: ASTM International. Magura, D.D. 1996. Air void

  7. Humidification and perceived indoor air quality in the office environment.

    Science.gov (United States)

    Reinikainen, L M; Aunela-Tapola, L; Jaakkola, J J

    1997-01-01

    OBJECTIVE: To evaluate the effect of humidification on the odour, acceptability, and stuffiness of indoor air. METHODS: In a six period cross over trial at the Pasila Office Center, Helsinki, the air of two wings of the building in turn were ventilated with air of 30%-40% humidity. A third wing served as a non-humidified control area. The quality of indoor air was assessed weekly by a panel containing 18 to 23 members. The intraindividual differences in the ratings for odour, stuffiness, and acceptability between humidified and non-humidified wings were used to assess the effect of humidification. The roles of sex, current smoking, and age as potential effect modifiers were assessed by comparing the mean intraindividual differences in ratings between the groups. RESULTS: Humidified air was found to be more odorous and stuffy (paired t test P = 0.0001) and less acceptable than the non-humidified air (McNemar's test P humidification decreases the perceived air quality. This effect is strongest in women and young subjects. PMID:9196454

  8. Reversibility of trapped air on chest computed tomography in cystic fibrosis patients

    International Nuclear Information System (INIS)

    Loeve, Martine; Rosenow, Tim; Gorbunova, Vladlena; Hop, Wim C.J.; Tiddens, Harm A.W.M.; Bruijne, Marleen de

    2015-01-01

    Highlights: • Trapped air in CF is thought to represent small airways disease. • Trapped air in CF is weakly associated with small airway measures of lung function. • Around one third of regional trapped air is stable in CF over 2 years. - Abstract: Purpose: To investigate changes in trapped air volume and distribution over time and compare computed tomography (CT) with pulmonary function tests for determining trapped air. Methods: Thirty children contributed two CTs and pulmonary function tests over 2 years. Localized changes in trapped air on CT were assessed using image analysis software, by deforming the CT at timepoint 2 to match timepoint 1, and measuring the volume of stable (TA stable ), disappeared (TA disappeared ) and new (TA new ) trapped air as a proportion of total lung volume. We used the difference between total lung capacity measured by plethysmography and helium dilution, residual volume to total lung capacity ratio, forced expiratory flow at 75% of vital capacity, and maximum mid-expiratory flow as pulmonary function test markers of trapped air. Statistical analysis included Wilcoxon's signed rank test and Spearman correlation coefficients. Results: Median (range) age at baseline was 11.9 (5–17) years. Median (range) of trapped air was 9.5 (2–33)% at timepoint 1 and 9.0 (0–25)% at timepoint 2 (p = 0.49). Median (range) TA stable , TA disappeared and TA new were respectively 3.0 (0–12)%, 5.0 (1–22)% and 7.0 (0–20)%. Trapped air on CT correlated statistically significantly with all pulmonary function measures (p < 0.01), other than residual volume to total lung capacity ratio (p = 0.37). Conclusion: Trapped air on CT did not significantly progress over 2 years, may have a substantial stable component, and is significantly correlated with pulmonary function markers

  9. Reversibility of trapped air on chest computed tomography in cystic fibrosis patients

    Energy Technology Data Exchange (ETDEWEB)

    Loeve, Martine [Department of Pediatric Pulmonology & Allergology, Erasmus MC-Sophia Children' s Hospital (Netherlands); Department of Radiology, Erasmus MC (Netherlands); Rosenow, Tim [Department of Pediatric Pulmonology & Allergology, Erasmus MC-Sophia Children' s Hospital (Netherlands); School of Paediatrics and Child Health Research, The University of Western Australia (Australia); Telethon Kids Institute, The University of Western Australia (Australia); Gorbunova, Vladlena [Department of Computer Science, University of Copenhagen (Denmark); Hop, Wim C.J. [Department of Biostatistics, Erasmus MC (Netherlands); Tiddens, Harm A.W.M., E-mail: H.Tiddens@erasmusmc.nl [Department of Pediatric Pulmonology & Allergology, Erasmus MC-Sophia Children' s Hospital (Netherlands); Department of Radiology, Erasmus MC (Netherlands); Bruijne, Marleen de [Department of Radiology, Erasmus MC (Netherlands); Department of Computer Science, University of Copenhagen (Denmark); Department of Medical Informatics, Erasmus MC (Netherlands)

    2015-06-15

    Highlights: • Trapped air in CF is thought to represent small airways disease. • Trapped air in CF is weakly associated with small airway measures of lung function. • Around one third of regional trapped air is stable in CF over 2 years. - Abstract: Purpose: To investigate changes in trapped air volume and distribution over time and compare computed tomography (CT) with pulmonary function tests for determining trapped air. Methods: Thirty children contributed two CTs and pulmonary function tests over 2 years. Localized changes in trapped air on CT were assessed using image analysis software, by deforming the CT at timepoint 2 to match timepoint 1, and measuring the volume of stable (TA{sub stable}), disappeared (TA{sub disappeared}) and new (TA{sub new}) trapped air as a proportion of total lung volume. We used the difference between total lung capacity measured by plethysmography and helium dilution, residual volume to total lung capacity ratio, forced expiratory flow at 75% of vital capacity, and maximum mid-expiratory flow as pulmonary function test markers of trapped air. Statistical analysis included Wilcoxon's signed rank test and Spearman correlation coefficients. Results: Median (range) age at baseline was 11.9 (5–17) years. Median (range) of trapped air was 9.5 (2–33)% at timepoint 1 and 9.0 (0–25)% at timepoint 2 (p = 0.49). Median (range) TA{sub stable}, TA{sub disappeared} and TA{sub new} were respectively 3.0 (0–12)%, 5.0 (1–22)% and 7.0 (0–20)%. Trapped air on CT correlated statistically significantly with all pulmonary function measures (p < 0.01), other than residual volume to total lung capacity ratio (p = 0.37). Conclusion: Trapped air on CT did not significantly progress over 2 years, may have a substantial stable component, and is significantly correlated with pulmonary function markers.

  10. Tonopah Test Range Air Monitoring: CY2013 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A [DRI; Nikolich, George [DRI; Shadel, Craig [DRI; McCurdy, Greg [DRI; Etyemezian, Vicken [DRI; Miller, Julianne J [DRI

    2014-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during on-going monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2013 monitoring include: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2012 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations (this was the latest documented data available at the time of this writing); (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. However, differences in the observed dust concentrations are likely due to differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  11. The ''Nuclear-Karlsruhe'' air-filter system

    International Nuclear Information System (INIS)

    Berliner, P.; Ohlmeyer, M.; Stotz, W.

    1976-01-01

    Increasing requirements for exhaust-air filter systems used in nuclear facilities induced the Gesellschaft fuer Kernforschung to develop the ''Nuclear-Karlsruhe'' HEPA filter system. This novel development has profited by experience gained in previous incidents as well as by maitenance and decontamination work performed with different HEPA filter systems. The proved ''Nuclear-Karlsruhe'' system takes equally into account the demands for optimum safety, maximum efficiency and economy, and is distinguished by the following features: (1) The air current is defected by 180 0 in the casing. Deflection causes quite a number of improvements, results in substantial reduction of space requirements, and avoids the dispersion of pollutants to the clean-air side. Besides, the HEPA filter is protected from damage by condensed particles or foreign materials entrained; (2) The ''Nuclear-Karlsruhe'' system allows gas-tight filter replacement. Special replacement collars have been provided at the casing, which allow the tight fastening of replacement bags which are self-locking. (3) In-place testing in the operating condition can be carried out very conveniently because the air is deflected. Minimum leaks in the filter medium or in the filter gasket can be detected by the high-sensitivity visual oil-thread test, which makes leaks distinctly visible as oil mist threads through a transparent front window provided on the clean-air side. The test takes only some minutes and its sensitivity is hardly matched by any other technique. (4) The clamping mechanism is installed outside the casing, i.e. outside the polluted or aggressive media. The contact force is spring-loaded absolutely uniformly to the circular filter gasket. (5) For practical and econmic reasons the filter casings can be locked individually so as to be gas-tight. (6) The entire system is made of stainless or coated steel and metal parts which are corrosion and fire-resistant. (author)

  12. Vibration tests on single heat exchanger tubes in air and static water

    International Nuclear Information System (INIS)

    Collinson, A.E.; Warneford, I.P.

    1978-07-01

    The vibrational characteristics of a 7 span straight tube and a 26 span U-tube have been investigated for the effects of fluid medium (air/water), tube-grid clearance, tube-grid contact force, vibration transmission and scale. Measured frequency response and mode shapes compared favourably with theoretical values, vibration with pin-pin tube support being most readily excited. The frequency reduction on immersion in water corresponded to an added mass equivalent to the liquid displaced mass. Dynamic magnifiers varied in the range 12 to 135 with mean values of 30 to 40 in water and 45 to 60 in air. Principal vibration modes and damping values were reproducible in a half-scale model of a U-tube. (author)

  13. Mechanical reliability evaluation of alternate motors for use in a radioiodine air sampler

    International Nuclear Information System (INIS)

    Bird, S.K.; Huchton, R.L.; Motes, B.G.

    1984-03-01

    Detailed mechanical reliability studies of two alternate motors identified for use in the BNL Air Sampler wer conducted. The two motor types were obtained from Minnesota Electric Technology, Incorporated (MET) and TCS Industries (TCSI). Planned testing included evaluation of motor lifetimes and motor operability under different conditions of temperature, relative humidity, simulated rainfall, and dusty air. The TCSI motors were not lifetime tested due to their poor performance during the temperature/relative humidity tests. While operation on alternating current was satisfactory, on direct current only one of five TCSI motors completed all environmental testing. The MET motors had average lifetimes of 47 hours, 97 hours, and 188 hours, respectively, and exhibited satisfactory operation under all environmental test conditions. Therefore, the MET motor appears to be the better candidate motor for use in the BNL Air Sampler. However, because of the relatively high cost of purchasing and incorporating the MET motor into the BNL Air Sampler System, it is recommended that commercial air sampler systems be evaluated for use instead of the BNL system

  14. 33 CFR 334.1280 - Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. 334.1280 Section 334.1280 Navigation and Navigable... REGULATIONS § 334.1280 Bristol Bay, Alaska; air-to-air weapon range, Alaskan Air Command, U.S. Air Force. (a...

  15. Development of testing techniques for mine fan performance

    Institute of Scientific and Technical Information of China (English)

    WU Zheng-yan; JIANG Shu-guang; PENG Dan-ren

    2006-01-01

    Three progressive stages of testing techniques are elaborated, which are entirely manual operating, taking separate instruments testing and computer program controlling. The testing method and principle are detailed based on the testing process for meteorological parameters, air pressure, air quality and rotating velocity. And every testing technique is analyzed. Finally, the technique outlook is viewed. All this plays a leading role in development of the testing techniques.

  16. Field Testing of Compartmentalization Methods for Multifamily Construction

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Westford, MA (United States); Lstiburek, J. [Building Science Corporation, Westford, MA (United States)

    2015-03-01

    The 2012 IECC has an airtightness requirement of 3 air changes per hour at 50 Pascals test pressure for both single-family and multifamily construction in Climate Zones 3-8. Other programs (LEED, ASHRAE 189, ASHRAE 62.2) have similar or tighter compartmentalization requirements, driving the need for easier and more effective methods of compartmentalization in multifamily buildings. Builders and practitioners have found that fire-resistance rated wall assemblies are a major source of difficulty in air sealing/compartmentalization, particularly in townhouse construction. This problem is exacerbated when garages are “tucked in” to the units and living space is located over the garages. In this project, Building Science Corporation examined the taping of exterior sheathing details to improve air sealing results in townhouse and multifamily construction, when coupled with a better understanding of air leakage pathways. Current approaches are cumbersome, expensive, time consuming, and ineffective; these details were proposed as a more effective and efficient method. The effectiveness of these air sealing methods was tested with blower door testing, including “nulled” or “guarded” testing (adjacent units run at equal test pressure to null out inter-unit air leakage, or “pressure neutralization”). Pressure diagnostics were used to evaluate unit-to-unit connections and series leakage pathways (i.e., air leakage from exterior, into the fire-resistance rated wall assembly, and to the interior).

  17. Selected Malaysia air quality pollutants assessment using ...

    African Journals Online (AJOL)

    Analysis of PCA, FA, KMO and Bartlett's test were done on five main air quality pollutants (O3, NO2, SO2, CO and PM10) from all around Malaysia. From the data analysis obtained, the concentrations of air quality pollutants all around Malaysia starting from 2008 to 2011 were acceptable and the most dominant major ...

  18. Royal Danish Air Force. Air Operations Doctrine

    DEFF Research Database (Denmark)

    Nørby, Søren

    This brief examines the development of the first Danish Air Force Air Operations Doctrine, which was officially commissioned in October 1997 and remained in effect until 2010. The development of a Danish air power doctrine was heavily influenced by the work of Colonel John Warden (USAF), both...... through his book ”The Air Campaign” and his subsequent planning of the air campaign against Iraq in 1990-1991. Warden’s ideas came to Denmark and the Danish Air Force by way of Danish Air Force students attending the United States Air Force Air University in Alabama, USA. Back in Denmark, graduates from...... the Air University inspired a small number of passionate airmen, who then wrote the Danish Air Operations Doctrine. The process was supported by the Air Force Tactical Command, which found that the work dovetailed perfectly with the transformation process that the Danish Air Force was in the midst...

  19. R744 air conditioner with stop/start air conditioning, parking air conditioning and heat pump function in the ''COMET'' test car; R744-Klimaanlage mit Stopp/Start- und Standklimatisierung sowie Waermepumpenfunktion im Versuchstraeger ''COMET''

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, H.; Horstmann, P.; Kneifel, M.; Hohl, R. [Robert Bosch GmbH, Schwieberdingen (Germany)

    2006-07-01

    Within a several years development project Robert Bosch GmbH has setup a test vehicle to investigate an integral energy management concept (COMET - Control of Mechanical, Electrical and Thermal Power). Key feature of the COMET vehicle concept is the hybrid drive train comprising the standard combustion engine and two electrical motors - each with 8 kW - being integrated in the power splitting Dual-E gearbox. Directly via the gearbox the compressor of the CO{sub 2} A/C system is driven so that an electrically parking and start-stop air condition and heating function using a CO{sub 2} heat pump can be realized. System setup, Cool down and heating up tests are shown and discussed. (orig.)

  20. Testing usability and trainability of indirect touch interaction: perspective for the next generation of air traffic control systems.

    Science.gov (United States)

    Causse, Mickaël; Alonso, Roland; Vachon, François; Parise, Robert; Orliaguet, Jean-Pierre; Tremblay, Sébastien; Terrier, Patrice

    2014-01-01

    This study aims to determine whether indirect touch device can be used to interact with graphical objects displayed on another screen in an air traffic control (ATC) context. The introduction of such a device likely requires an adaptation of the sensory-motor system. The operator has to simultaneously perform movements on the horizontal plane while assessing them on the vertical plane. Thirty-six right-handed participants performed movement training with either constant or variable practice and with or without visual feedback of the displacement of their actions. Participants then performed a test phase without visual feedback. Performance improved in both practice conditions, but accuracy was higher with visual feedback. During the test phase, movement time was longer for those who had practiced with feedback, suggesting an element of dependency. However, this 'cost' of feedback did not extend to movement accuracy. Finally, participants who had received variable training performed better in the test phase, but accuracy was still unsatisfactory. We conclude that continuous visual feedback on the stylus position is necessary if tablets are to be introduced in ATC.

  1. Retrieval process development and enhancements FY96 pulsed-air mixer testing and deployment study

    International Nuclear Information System (INIS)

    Powell, M.R.; Hymas, C.R.

    1996-08-01

    Millions of gallons of radioactive wastes resides in underground tanks at US Department of Energy sites. The waste was generated primarily by the processing of nuclear fuel elements to remove fissile radionuclides for use in atomic weapons. Plans call for the waste to be removed from the tanks and processed to create immobile waste forms, which will be stored to prevent release to the environment. The consistency of the waste ranges from liquid, to slurry, to sticky sludge, to hard saltcake. a variety of waste- retrieval and processing methods are being evaluated and implemented. One such method is pulsed-air mixing, which is the subject of this report. Pulsed-air mixing equipment has been successfully applied to a number of difficult mixing applications in various chemical-process industries. Most previous applications involved the mixing of particle-free viscous fluids. The study described in this report was preformed to improve the understanding of how pulsed-air mixing applies to slurries. This document describes work conducted to evaluate the potential application of pulsed-air mixers to the slurry- mixing needs of the US Department of Energy's waste-retrieval programs

  2. Seismic assessment of air-cooled type emergency electric power supply system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    JNES initiated seismic assessment programs to develop seismic review criterions for the air-cooled system (diesel generator, gas turbine generator), which will be newly installed for enhancing the diversity of emergency electric power supply system. Five principal subjects are involved in the programs: two subjects for fiscal 2011 and three ones for fiscal 2012 and 2013. The summary of outcomes is as follows: 1) Past capacity test data and related technical issues (2011). Seismic capacity data obtained from past seismic shaking tests were investigated. 2) Test programs based on the investigation of system specification (2011). Design specifications for the air-cooled system were investigated. 3) Large Air Fin Cooler (AFC) one unit model seismic capacity test and quantitative seismic capacity evaluation. AFC one unit model seismic capacity tests were conducted and quantitative seismic capacities were evaluated. (author)

  3. Seismic assessment of air-cooled type emergency electric power supply system

    International Nuclear Information System (INIS)

    2013-01-01

    JNES initiated seismic assessment programs to develop seismic review criterions for the air-cooled system (diesel generator, gas turbine generator), which will be newly installed for enhancing the diversity of emergency electric power supply system. Five principal subjects are involved in the programs: two subjects for fiscal 2011 and three ones for fiscal 2012 and 2013. The summary of outcomes is as follows: 1) Past capacity test data and related technical issues (2011). Seismic capacity data obtained from past seismic shaking tests were investigated. 2) Test programs based on the investigation of system specification (2011). Design specifications for the air-cooled system were investigated. 3) Large Air Fin Cooler (AFC) one unit model seismic capacity test and quantitative seismic capacity evaluation. AFC one unit model seismic capacity tests were conducted and quantitative seismic capacities were evaluated. (author)

  4. Implementation and testing of a simple data assimilation algorithm in the regional air pollution forecast model, DEOM

    Directory of Open Access Journals (Sweden)

    J. Frydendall

    2009-08-01

    Full Text Available A simple data assimilation algorithm based on statistical interpolation has been developed and coupled to a long-range chemistry transport model, the Danish Eulerian Operational Model (DEOM, applied for air pollution forecasting at the National Environmental Research Institute (NERI, Denmark. In this paper, the algorithm and the results from experiments designed to find the optimal setup of the algorithm are described. The algorithm has been developed and optimized via eight different experiments where the results from different model setups have been tested against measurements from the EMEP (European Monitoring and Evaluation Programme network covering a half-year period, April–September 1999. The best performing setup of the data assimilation algorithm for surface ozone concentrations has been found, including the combination of determining the covariances using the Hollingsworth method, varying the correlation length according to the number of adjacent observation stations and applying the assimilation routine at three successive hours during the morning. Improvements in the correlation coefficient in the range of 0.1 to 0.21 between the results from the reference and the optimal configuration of the data assimilation algorithm, were found. The data assimilation algorithm will in the future be used in the operational THOR integrated air pollution forecast system, which includes the DEOM.

  5. International Energy Agency Building Energy Simulation Test and Diagnostic Method for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST); Volume 1: Cases E100-E200

    Energy Technology Data Exchange (ETDEWEB)

    Neymark, J.; Judkoff, R.

    2002-01-01

    This report describes the Building Energy Simulation Test for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST) project conducted by the Tool Evaluation and Improvement International Energy Agency (IEA) Experts Group. The group was composed of experts from the Solar Heating and Cooling (SHC) Programme, Task 22, Subtask A. The current test cases, E100-E200, represent the beginning of work on mechanical equipment test cases; additional cases that would expand the current test suite have been proposed for future development.

  6. Assessment of indoor air quality in comparison using air conditioning and fan system in printing premise

    Directory of Open Access Journals (Sweden)

    Ramlan Nazirah

    2017-01-01

    Full Text Available Printers contribute to various emissions consist with chemical contaminants. High concentration of the particulate matter can cause serious health problems. This study focuses on the indoor air quality in printing premise unit in Universiti Tun Hussein Onn, Malaysia. Field testing involving air sampling methods were taken from 900 hours to 1600 hours, for every 30 minutes using physical measurement which is Multi-Channel Air Quality Monitor (YESAIR, E-Sampler and Ozone Meter. Air sampling was recorded based on one sampling point and most suitable point for production. A comparison based on different ventilation using fan and air-conditioning were also taken and results is being compared based on OSHA and NIOSH standards. Besides that, the statistical analysis is being conducted in order to predict the effect on number of printers. From the result, the O3 concentrations show, 10% reduced for printing premise using fan ventilation compared to air-conditioning but remain the same value for PM2.5. The concentration of O3 increased when the number of printers decreased, while the concentration of PM2.5 increased the increase of printers number. Overall, the use of fan in printing premise is more suggested since the level is slightly lower than the printing premise using air-conditioning.

  7. Inhomogeneous electric field air cleaner

    International Nuclear Information System (INIS)

    Schuster, B.G.

    1976-01-01

    For applications requiring the filtration of air contaminated with enriched uranium, plutonium or other transuranium compounds, it appears desirable to collect the material in a fashion more amenable to recovery than is now practical when material is collected on HEPA filters. In some instances, it may also be desirable to use an air cleaner of this type to substantially reduce the loading to which HEPA filters are subjected. A theoretical evaluation of such an air cleaner considers the interaction between an electrically neutral particle, dielectric or conducting, with an inhomogeneous electric field. An expression is derived for the force exerted on a particle in an electrode configuration of two concentric cylinders. Equations of motion are obtained for a particle suspended in a laminar flow of air passing through this geometry. An electrical quadrupole geometry is also examined and shown to be inferior to the cylindrical one. The results of two separate configurations of the single cell prototypes of the proposed air cleaner are described. These tests were designed to evaluate collection efficiencies using mono-disperse polystyrene latex and polydisperse NaCl aerosols. The advantages and problems of such systems in terms of a large scale air cleaning facility will be discussed

  8. The AMY experiment: Microwave emission from air shower plasmas

    Directory of Open Access Journals (Sweden)

    Alvarez-Muñiz J.

    2016-01-01

    Full Text Available You The Air Microwave Yield (AMY experiment investigate the molecular bremsstrahlung radiation emitted in the GHz frequency range from an electron beam induced air-shower. The measurements have been performed at the Beam Test Facility (BTF of Frascati INFN National Laboratories with a 510 MeV electron beam in a wide frequency range between 1 and 20 GHz. We present the apparatus and the results of the tests performed.

  9. Integrated Testing of a Carbon Dioxide Removal Assembly and a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization

    Science.gov (United States)

    Knox, J. C.; Mulloth, Lila; Frederick, Kenneth; Affleck, Dave

    2003-01-01

    Accumulation and subsequent compression of carbon dioxide that is removed from space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The carbon dioxide removal assembly (CDRA) of ISS currently operates in an open loop mode without a compressor. This paper describes the integrated test results of a flight-like CDRA and a temperature-swing adsorption compressor (TSAC) for carbon dioxide removal and compression. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of CDRA.

  10. Influence of water air content on cavitation erosion in distilled water

    CSIR Research Space (South Africa)

    Auret, JG

    1993-12-01

    Full Text Available The influence of increased air content of the cavitating liquid (distilled water) was studied in a rotating disk test rig. A rise in the total air content including dissolved and entrained air of the water in the under saturated range resulted...

  11. Experimental investigation of a super performance dew point air cooler

    International Nuclear Information System (INIS)

    Xu, Peng; Ma, Xiaoli; Zhao, Xudong; Fancey, Kevin

    2017-01-01

    Highlights: •The cooler had a complex heat & mass exchanger with an advanced wet material layer. •Intermittent water supply scheme was implemented. •The cooler achieved 100–160% higher COP compared to the existing dew point coolers. •Electricity use of the cooler was reduced by 50–70% compared to existing dew coolers. •This optimal working air ratio was 0.364 that enabled maximised cooling effectiveness. -- Abstract: This paper presents an experimental investigation of a super performance dew point air cooler which, by employing a super performance wet material layer, innovative heat and mass exchanger and intermittent water supply scheme, has achieved a significantly higher energy efficiency (i.e. Coefficient of Performance, COP) and a much lower electrical energy use compared to the existing air coolers of the same type. This involves the dedicated system design & construction, fully planned experimental testing under various simulated climatic conditions representing the climate of hot & dry, warm & dry, moderate, warm & humid and standard lab testing condition, testing results analysis and discussion, as well as the parallel comparison against the commercial dew point air cooler. Under the standard test condition, i.e. dry bulb temperature of 37.8 °C and coincident wet bulb temperature of 21.1 °C, the prototype cooler achieved the wet-bulb cooling effectiveness of 114% and dew-point cooling effectiveness of 75%, yielding a significantly high COP value of 52.5 at the optimal working air ratio of 0.364. The testing also indicated that the lower inlet air relative humidity led to a higher cooling efficiency, while the lower cooling output helped increase COP and cooling effectiveness (including the wet-bulb effectiveness and dew-point effectiveness) of the cooler.

  12. Design of ventilation and air cleaning systems for the new Los Alamos Plutonium Facility

    International Nuclear Information System (INIS)

    Mitchell, R.; DeField, J.; Stafford, R.; McNeese, W.; Eberhardt, W.; Laushkin, N.

    1975-01-01

    The Los Alamos Scientific Laboratory's new plutonium facility will conform to AECM Appendix 6301-Part II, Section H-Minimum Design Criteria for New Plutonium Facilities. The glove box process exhaust air is filtered through three or four stages of HEPA filters. The design of this multi-stage filter installation is shown with a method of in-place testing of each stage individually. A glove box filter holder and the in-place test procedure is described. General room air from plutonium work areas is recirculated at the rate of eight air changes per hour with a 10 percent fresh air make-up. The filter plenums for the recirculated air are designed to permit in-place testing of each of the two filter stages. (U.S.)

  13. Stress Corrosion Cracking of Ni-base Alloys in Sulfur Containing Solutions at 340 .deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun Hee; Hwang, Seong Sik; Kim, Dong Jin; Kim, Sung Woo [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Sulfur has been identified as one of the major impurities introduced into the secondary water of pressurized water-reactors (PWRs). Sulfur can originate from various sources, such as resin sources, feed water, cooling water in-leakage, and condenser leaks. Many authors have investigated effects of reduced sulfur in a wide pH range with or without additives. The presence of reduced sulfur species on the surfaces of pulled tubes having stress corrosion cracking (SCC) was also identified. In present work, SCC tests were conducted to investigate effects of reduced sulfur species on the SCC behavior of Ni-base Alloys. The Alloy 690 TT showed the most SCC resistant, regardless of the sulfur species. The Cr content and heat treatments of alloys appeared the increase in the SCC resistance.

  14. Potable water recovery for spacecraft application by electrolytic pretreatment/air evaporation

    Science.gov (United States)

    Wells, G. W.

    1975-01-01

    A process for the recovery of potable water from urine using electrolytic pretreatment followed by distillation in a closed-cycle air evaporator has been developed and tested. Both the electrolytic pretreatment unit and the air evaporation unit are six-person, flight-concept prototype, automated units. Significantly extended wick lifetimes have been achieved in the air evaporation unit using electrolytically pretreated, as opposed to chemically pretreated, urine feed. Parametric test data are presented on product water quality, wick life, process power, maintenance requirements, and expendable requirements.

  15. The transport of civil plutonium by air

    International Nuclear Information System (INIS)

    1988-01-01

    The paper presents the review entitled ''The Transport of Civil Plutonium by Air'' reported by the Advisory Committee on the Safe Transport of Radioactive Materials (ACTRAM) 1988. The contents contain chapters on the following topics:- the reasons for air transport, the various regulations, packagings for plutonium transport, testing of the packagings, accidents, the consequences of a release, and emergency arrangements. (U.K.)

  16. Heat transfer intensification within tube recuperator by inserting secondary emitters inside air channels

    International Nuclear Information System (INIS)

    Sandor, P.; Soroka, B.; Kudryavtsev, V.; Zgurskyy, V.

    2009-01-01

    The research program was stipulated by reduction the service life of the tube recuperators of reheating furnaces at DUNAFERR metallurgical works in Dunaujvaros (Hungary) while replacement the natural gas by coke - oven gas as a furnace fuel took place and air preheating temperature was increased. The tests procedure consists in comparison of temperature and pressure distributions by air flows preheating under air moving inside the tube loops. Advantages of new recuperator design compared to ordinary one have been proven by validation of concept for adequacy to the testing results. The first tests have demonstrated enhancement of local specific and total heat fluxes transferred from flue gases to air flow within the MD tube loops in comparison with those for BD loops by 25 to 45% - dependence on temperature level within the heating (furnace) chamber and on preheated air flow rate. (author)

  17. Air toxics: A new concern for the utility industry

    International Nuclear Information System (INIS)

    Torrens, I.; Chow, W.

    1992-01-01

    The 1990 Clean Air Acts Amendments call for EPA studies on utility emissions of potentially hazardous air pollutants and their impact, prior to any decision on regulation of these emissions. The Electric Power Research Institute is carrying out a comprehensive assessment of air toxics risk assessment, consisting of data compilation and analysis, field measurements of priority air toxics at power plants and test facilities, atmospheric transport and deposition, and health/ecological risk assessment. The paper reports on progress to data and objectives of the EPRI assessment

  18. Retention of fission products in air filters

    International Nuclear Information System (INIS)

    Sobnack, R.

    1986-01-01

    The plume from the Chernobyl nuclear reactor reached London in the morning of 1st May. Less than two weeks later, the Physics Department, University of Surrey, reported a measurable level of radioactivity in air filters. On 15th May air filters from within the air conditioning plant of the Radioisotope Department at the London Hospital were removed for radiation checks. Crude tests with a geiger counter gave readings of 5-10 times higher than background levels. Gamma-ray spectroscopy of the departmental air filters (AF1) using a 127 mm NaI detector revealed a pattern characteristic of emissions of fission products from a nuclear reactor. Another air filter (AF2), from the home of a member of staff, was much less active. Because of the complexity of the gamma-ray spectrum and the relatively high level of emission from the departmental air filter, a thorough investigation was carried out using a high purity germanium detector. (author)

  19. Automated air-void system characterization of hardened concrete: Helping computers to count air-voids like people count air-voids---Methods for flatbed scanner calibration

    Science.gov (United States)

    Peterson, Karl

    Since the discovery in the late 1930s that air entrainment can improve the durability of concrete, it has been important for people to know the quantity, spacial distribution, and size distribution of the air-voids in their concrete mixes in order to ensure a durable final product. The task of air-void system characterization has fallen on the microscopist, who, according to a standard test method laid forth by the American Society of Testing and Materials, must meticulously count or measure about a thousand air-voids per sample as exposed on a cut and polished cross-section of concrete. The equipment used to perform this task has traditionally included a stereomicroscope, a mechanical stage, and a tally counter. Over the past 30 years, with the availability of computers and digital imaging, automated methods have been introduced to perform the same task, but using the same basic equipment. The method described here replaces the microscope and mechanical stage with an ordinary flatbed desktop scanner, and replaces the microscopist and tally counter with a personal computer; two pieces of equipment much more readily available than a microscope with a mechanical stage, and certainly easier to find than a person willing to sit for extended periods of time counting air-voids. Most laboratories that perform air-void system characterization typically have cabinets full of prepared samples with corresponding results from manual operators. Proponents of automated methods often take advantage of this fact by analyzing the same samples and comparing the results. A similar iterative approach is described here where scanned images collected from a significant number of samples are analyzed, the results compared to those of the manual operator, and the settings optimized to best approximate the results of the manual operator. The results of this calibration procedure are compared to an alternative calibration procedure based on the more rigorous digital image accuracy

  20. Gas-Dynamic Designing of the Exhaust System for the Air Brake

    Science.gov (United States)

    Novikova, Yu; Goriachkin, E.; Volkov, A.

    2018-01-01

    Each gas turbine engine is tested some times during the life-cycle. The test equipment includes the air brake that utilizes the power produced by the gas turbine engine. In actual conditions, the outlet pressure of the air brake does not change and is equal to atmospheric pressure. For this reason, for the air brake work it is necessary to design the special exhaust system. Mission of the exhaust system is to provide the required level of backpressure at the outlet of the air brake. The backpressure is required for the required power utilization by the air brake (the air brake operation in the required points on the performance curves). The paper is described the development of the gas dynamic canal, designing outlet guide vane and the creation of a unified exhaust system for the air brake. Using a unified exhaust system involves moving the operating point to the performance curve further away from the calculated point. However, the applying of one exhaust system instead of two will significantly reduce the cash and time costs.

  1. Low-head air stripper treats oil tanker ballast water

    International Nuclear Information System (INIS)

    Goldman, M.

    1992-01-01

    Prototype tests conducted during the winter of 1989/90 have successfully demonstrated an economical design for air stripping volatile hydrocarbons from oily tanker ballast water. The prototype air stripper, developed for Alyeska's Ballast Water Treatment (BWT) facility in Valdez, Alaska, ran continuously for three months with an average removal of 88% of the incoming volatile organics. Initially designed to remove oil and grease compounds from tanker ballast water, the BWT system has been upgraded to a three-step process to comply with new, stringent regulations. The BWT biological oxidation process enhances the growth of bacteria present in the incoming ballast water through nutrient addition, aeration, and recirculation within a complete-mixed bioreactor. The average removal of BETX is over 95%, however, occassional upsets required the placement of a polishing air stripper downstream of the aeration tanks. Packed-tower air stripping was investigated but deemed economically unfeasible for a facility that would only occasionally be used. Twelve feet of excess gravity head in the existing BWT hydraulic gradeline were employed to drive the air stripper feed. This limited the stripper packing depth to 8 feet and imposed constraints on the design of the inlet water and air distributors. Water distribution, air flow, temperature effects, and fouling from constituents in the ballast water were investigated. The prototype was operated under water and air flow conditions similar to those specified for the full-scale unit, and at a range of test conditions above and below the normal design conditions

  2. 40 CFR 1065.225 - Intake-air flow meter.

    Science.gov (United States)

    2010-07-01

    ... as described in § 1065.650, as follows: (1) Use the actual value of calculated raw exhaust in the..., you may use an intake-air flow meter signal that does not give the actual value of raw exhaust, as... CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air...

  3. Liquid air cycle engines

    Science.gov (United States)

    Rosevear, Jerry

    1992-01-01

    Given here is a definition of Liquid Air Cycle Engines (LACE) and existing relevant technologies. Heat exchanger design and fabrication techniques, the handling of liquid hydrogen to achieve the greatest heat sink capabilities, and air decontamination to prevent heat exchanger fouling are discussed. It was concluded that technology needs to be extended in the areas of design and fabrication of heat exchangers to improve reliability along with weight and volume reductions. Catalysts need to be improved so that conversion can be achieved with lower quantities and lower volumes. Packaging studies need to be investigated both analytically and experimentally. Recycling with slush hydrogen needs further evaluation with experimental testing.

  4. Indoor air pollution produced by man (carbon dioxide, odors)

    Energy Technology Data Exchange (ETDEWEB)

    Wanner, H U

    1982-01-01

    Man contributes to indoor air pollution by the release of heat, humidity, carbon dioxide, particles, micro-organisms and body odours. The rise in temperature and the concentrations of the different pollutants depend on the number of persons in a room, the utilization of the room and the activities of the persons. Current parameters for the evaluation of man-made pollution in indoor air are carbon monoxide and odours. Experiments have been carried out in a test chamber under controlled conditions in order to determine the relations between carbon monoxide and odours, since these are two current parameters for the evaluation of man-made pollution in indoor air. In these experiments the variables were the number of persons in the room, the activity of the persons and the ventilation rate. For the measurement of odours a special method has been developed in which the undiluted air is tested by a test panel and compared with air containing two different pyridine concentrations. A significant relationship has been observed between the odour intensity and the carbon dioxide content of the air, and the correlation did not depend on the number of persons and the ventilation rate. At ventilation rates of 12 to 15 m3 per person and hour the carbon dioxide concentration was below 0.15% and the odour intensity was characterized as being only little annoying. Higher ventilation rates are necessary during physical activity and in rooms with tobacco smoke. The minimum ventilation rates as deduced from the laboratory experiments are compared to known standards.

  5. AirPEx. Air Pollution Exposure Model

    Energy Technology Data Exchange (ETDEWEB)

    Freijer, J.I.; Bloemen, H.J.Th.; De Loos, S.; Marra, M.; Rombout, P.J.A.; Steentjes, G.M.; Van Veen, M.P.

    1997-12-01

    Analysis of inhalatory exposure to air pollution is an important area of investigation when assessing the risks of air pollution for human health. Inhalatory exposure research focuses on the exposure of humans to air pollutants and the entry of these pollutants into the human respiratory tract. The principal grounds for studying the inhalatory exposure of humans to air pollutants are formed by the need for realistic exposure/dose estimates to evaluate the health effects of these pollutants. The AirPEx (Air Pollution Exposure) model, developed to assess the time- and space-dependence of inhalatory exposure of humans to air pollution, has been implemented for use as a Windows 3.1 computer program. The program is suited to estimating various exposure and dose quantities for individuals, as well as for populations and subpopulations. This report describes the fundamentals of the AirPEx model and provides a user manual for the computer program. Several examples included in the report illustrate the possibilities of the AirPEx model in exposure assessment. The model will be used at the National Institute of Public Health and the Environment as a tool in analysing the current exposure of the Dutch population to air pollutants. 57 refs.

  6. Experimental investigation of the effect of air velocity on a unit cooler under frosting condition: a case study

    Science.gov (United States)

    Bayrak, Ergin; Çağlayan, Akın; Konukman, Alp Er S.

    2017-10-01

    Finned tube evaporators are used in a wide range of applications such as commercial and industrial cold/freezed storage rooms with high traffic loading under frosting conditions. In this case study, an evaporator with an integrated fan was manufactured and tested under frosting conditions by only changing the air flow rate in an ambient balanced type test laboratory compared to testing in a wind tunnel with a more uniform flow distribution in order to detect the effect of air flow rate on frosting. During the test, operation was performed separately based on three different air flow rates. The parameters concerning test operation such as the changes of air temperature, air relative humidity, surface temperature, air-side pressure drop and refrigerant side capacity etc. were followed in detail for each air flow rate. At the same time, digital images were captured in front of the evaporator; thus, frost thicknesses and blockage ratios at the course of fan stall were determined by using an image-processing technique. Consequently, the test and visual results showed that the trendline of air-side pressure drop increased slowly at the first stage of test operations, then increased linearly up to a top point and then the linearity was disrupted instantly. This point speculated the beginning of defrost operation for each case. In addition, despite detecting a velocity that needs to be avoided, a test applied at minimum air velocity is superior to providing minimum capacity in terms of loss of capacity during test operations.

  7. A Comprehensive Real-Time Indoor Air-Quality Level Indicator

    Directory of Open Access Journals (Sweden)

    Jungho Kang

    2016-09-01

    Full Text Available The growing concern about Indoor Air-Quality has accelerated the development of small, low-cost air-quality monitoring systems. These systems are capable of monitoring various indoor air pollutants in real time, notifying users about the current air-quality status and gathering the information to the central server. However, most Internet of Things (IoT-based air-quality monitoring systems numerically present the sensed value per pollutant, making it difficult for general users to identify how polluted the air is. Therefore, in this paper, we first introduce a tiny air-quality monitoring system that we developed and, based on the system, we also test the applicability of the comprehensive Air-Quality Index (AQI, which is widely used all over the world, in terms of its capacity for a comprehensive indoor air-quality indication. We also develop design considerations for an IoT-based air-quality monitoring system and propose a real-time comprehensive indoor air-quality level indication method, which effectively copes with dynamic changes and is efficient in terms of processing and memory overhead.

  8. Operational air sampling report, July--December 1991

    International Nuclear Information System (INIS)

    Lyons, C.L.

    1992-11-01

    Air sampling is one of the more useful ways of assessing the effectiveness of operational radiation safety programs at the Nevada Test Site (NTS). Air sampling programs document NTS airborne radionuclide concentrations in various work locations and environments. These concentrations generally remain well below the Derived Air Concentration (DAC) values prescribed by the Department of Energy (DOE 5480.11, Attachment 1) or the Derived Concentration Guide (DCG) values prescribed by the Department of Energy DOE 5400.5, Chapter Ill. The Defense Nuclear Agency (DNA) tunnel complexes, Area 12 Test Support Compound and the Area 6 Decontamination Pad and Laundry air sampling programs are summarized in this report. Evaluations are based on Analytical Services Department (ASD) Counting Laboratory analyses and Health Protection Department (HPD)/Radiological Field Operations Section (RFOS) radiation protection technician's (RPT) or health physicists' calculations for air samples collected July 1 through December 31, 1991. Of the NTS operational air sampling programs in the tunnel complexes, the initial mining and event reentry and recovery operations represent the only real airborne radioactive inhalation potentials to personnel. Monthly filter and scintillation cell samples were taken and counted in RDA-200 Radon Detectors to document working levels of radon/thoron daughters and picocurie/liter (PCVL) concentrations of radon gas. Weekly Drierite samples for tritium analysis were taken in the active tunnel complexes to document any changes in normal background levels or reentry drifts as they are advanced toward ground zero (GZ) areas. Underground water sources are considered primary transporters of tritium from old event areas

  9. Performance of alternative refrigerants for residential air-conditioning applications

    International Nuclear Information System (INIS)

    Park, Ki-Jung; Seo, Taebeom; Jung, Dongsoo

    2007-01-01

    In this study, performances of two pure hydrocarbons and seven mixtures composed of propylene, propane, HFC152a, and dimethylether were measured to substitute for HCFC22 in residential air-conditioners and heat pumps. Thermodynamic cycle analysis was carried out to determine the optimum compositions before testing and actual tests were performed in a breadboard-type laboratory heat pump/air-conditioner at the evaporation and condensation temperatures of 7 and 45 deg. C, respectively. Test results show that the coefficient of performance of these mixtures is up to 5.7% higher than that of HCFC22. While propane showed a 11.5% reduction in capacity, most of the fluids had a similar capacity to that of HCFC22. For these fluids, compressor-discharge temperatures were reduced by 11-17 deg. C. For all fluids tested, the amount of charge was reduced by up to 55% as compared to HCFC22. Overall, these fluids provide good performances with reasonable energy-savings without any environmental problem and thus can be used as long-term alternatives for residential air-conditioning and heat-pumping applications

  10. Air movement and perceived air quality

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Kaczmarczyk, J.

    2012-01-01

    The impact of air movement on perceived air quality (PAQ) and sick building syndrome (SBS) symptoms was studied. In total, 124 human subjects participated in four series of experiments performed in climate chambers at different combinations of room air temperature (20, 23, 26 and 28 °C), relative...... and the humidity of the room air. At a low humidity level of 30% an increased velocity could compensate for the decrease in perceived air quality due to an elevated temperature ranging from 20 °C to 26 °C. In a room with 26 °C, increased air movement was also able to compensate for an increase in humidity from 30...... humidity (30, 40 and 70%) and pollution level (low and high). Most of the experiments were performed with and without facially applied airflow at elevated velocity. The importance of the use of recirculated room air and clean, cool and dry outdoor air was studied. The exposures ranged from 60. min to 235...

  11. Evaluation of seasonal exergy efficiency of air handing unit

    Directory of Open Access Journals (Sweden)

    Kęstutis Genys

    2015-10-01

    Full Text Available The article deals with the air handling unit seasonal exergy efficiency. TRNSYS simulation tool is used to evaluate it. The object of research is air treatment device used to treat an air for the ventilation of laboratory. The mathematical model of air handling unit using TRNSYS simulation tool was developed when the technical parameters of air handling unit and energy exchange in it were analysed. The developed model according to the made observations during the warm and cold periods was tested and validation of elements was performed. The simulation of air handling unit operation after the verification of reliability and permitted tolerances was performed. The control mechanisim which allows simulating the operation of air handling unit during cold and warm periods of the year was made. The mathematical algorithm for calculation of air handling unit exergy efficiency coefficient applying the principles of exergy analysis was developed. The seasonal exergy efficiency of air handling unit equal to 3.94 percent during the simulation was obtained.

  12. Personalized ventilation: evaluation of different air terminal devices

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Cermak, Radim; Majer, M.

    2002-01-01

    Personalized ventilation (PV) aims to provide clean air to the breathing zone of occupants. Its performance depends to a large extent on the supply air terminal device (ATD). Five different ATDs were developed, tested and compared. A typical office workplace consisting of a desk with mounted ATDs...... was simulated in a climate chamber. A breathing thermal manikin was used to simulate a human being. Experiments at room air temperatures of 26 and 20 deg.C and personalized air temperatures of 20 deg.C supplied from the ATDs were performed. The flow rate of personalized air was changed from less than 5 up to 23...... l/s. Tracer gas was used to identify the amount of personalized air inhaled by the manikin as well as the amount of exhaled air re-inhaled. The heat loss from the body segments of the thermal manikin was measured and used to calculate the equivalent temperature for the whole body as well as segments...

  13. THE GENOTOXICITY OF AMBIENT OUTDOOR AIR, A REVIEW: SALMONELLA MUTAGENICITY

    Science.gov (United States)

    The genotoxicity of ambient outdoor air, a review: Salmonella mutagenicityAbstractMutagens in urban air pollution come from anthropogenic sources (especially combustion sources) and are products of airborne chemical reactions. Bacterial mutation tests have been used ...

  14. Evaluation of Air Coupled Ultrasound for Composite Aerospace Structure

    Science.gov (United States)

    Tat, H.; Georgeson, G.; Bossi, R.

    2009-03-01

    Non-contact air coupled ultrasound suffers from the high acoustic impedance mismatch characteristics of air to solid interfaces. Advances in transducer technology, particularly MEMS, have improved the acoustic impedance match at the transmission stage and the signal to noise at the reception stage. Comparisons of through transmission (TTU) scanning of laminate and honeycomb test samples using conventional piezoelectric air coupled transducers, new MEMS air coupled transducers, and standard water coupled inspections have been performed to assess the capability. An additional issue for air coupled UT inspection is the need for a lean implementation for both manufacturing and in-service operations. Concepts and applications utilizing magnetic coupling of transducers have been developed that allows air coupled inspection operations in compact low cost configurations.

  15. 49 CFR 232.205 - Class I brake test-initial terminal inspection.

    Science.gov (United States)

    2010-10-01

    ... per minute. (ii) Air Flow Method Test. When a locomotive is equipped with a 26-L brake valve or equivalent pressure maintaining locomotive brake valve, a railroad may use the Air Flow Method Test as an... air flow shall not exceed 60 cubic feet per minute (CFM). (i) Leakage Test. The brake pipe leakage...

  16. Control of respirable particles and radon progeny with portable air cleaners

    International Nuclear Information System (INIS)

    Offermann, F.J.; Sextro, R.G.; Fisk, W.J.; Nazaroff, W.W.; Nero, A.V.; Revzan, K.L.; Yater, J.

    1984-02-01

    Eleven portable air cleaning devices have been evaluated for control of indoor concentrations of respirable particles and radon progeny. Following injection of cigarette smoke and radon in a room-size chamber, decay rates for particles and radon progeny concentrations were measured with and without air cleaner operation. Particle concentrations were obtained for total number concentration and for number concentration by particle size. In tests with no air cleaner the natural decay rate for cigarette smoke was observed to be 0.2 hr -1 . Air cleaning rates for particles were found to be negligible for several small panel-filters, a residential ion-generator, and a pair of mixing fans. The electrostatic precipitators and extended surface filters tested had significant particle removal rates, and a HEPA-type filter was the most efficient air cleaner. The evaluation of radon progeny control produced similar results; the air cleaners which were effective in removing particles were also effective in removing radon progeny. At low particle concentrations plateout of the unattached radon progeny is an important removal mechanism. Based on data from these tests, the plateout rate for unattached progeny was found to be 15 hr -1 . The unattached fraction and the overall removal rate due to deposition of attached and unattached nuclides have been estimated for each radon decay product as a function of particle concentration. While air cleaning can be effective in reducing total radon progeny, concentrations of unattached radon progeny can increase with increasing air cleaning. 39 references, 26 figures, 9 tables

  17. Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings

    Energy Technology Data Exchange (ETDEWEB)

    Klocke, S.; Faakye, O.; Puttagunta, S.

    2014-10-01

    ​While previous versions of the International Energy Conservation Code (IECC) have included provisions to improve the air tightness of dwellings, for the first time, the 2012 IECC mandates compliance verification through blower door testing. Simply completing the Air Barrier and Insulation Installation checklist through visual inspection is no longer sufficient by itself. In addition, the 2012 IECC mandates a significantly stricter air sealing requirement. In Climate Zones 3 through 8, air leakage may not exceed 3 ACH50, which is a significant reduction from the 2009 IECC requirement of 7 ACH50. This requirement is for all residential buildings, which includes low-rise multifamily dwellings. While this air leakage rate requirement is an important component to achieving an efficient building thermal envelope, currently, the code language doesn't explicitly address differences between single family and multifamily applications. In addition, the 2012 IECC does not provide an option to sample dwellings for larger multifamily buildings, so compliance would have to be verified on every unit. With compliance with the 2012 IECC air leakage requirements on the horizon, several of CARB's multifamily builder partners are evaluating how best to comply with this requirement. Builders are not sure whether it is more practical or beneficial to simply pay for guarded testing or to revise their air sealing strategies to improve compartmentalization to comply with code requirements based on unguarded blower door testing. This report summarizes CARB's research that was conducted to assess the feasibility of meeting the 2012 IECC air leakage requirements in 3 multifamily buildings.

  18. The endowment effect and WTA: a quasi-experimental test

    Science.gov (United States)

    H.F. MacDonald; J. Michael Bowker

    1993-01-01

    This paper reports a test of the endowment effect in an economic analysis of localized air pollution. Regression techniques are used to test the significance of perceived property rights on household WTP for improved air quality versus WTA compensation to forgo an improvement in air quality. Our experimental contributes to the research into WTP/WTA divergence by...

  19. A dedicated on-line detecting system for auto air dryers

    Science.gov (United States)

    Shi, Chao-yu; Luo, Zai

    2013-10-01

    According to the correlative automobile industry standard and the requirements of manufacturer, this dedicated on-line detecting system is designed against the shortage of low degree automatic efficiency and detection precision of auto air dryer in the domestic. Fast automatic detection is achieved by combining the technology of computer control, mechatronics and pneumatics. This system can detect the speciality performance of pressure regulating valve and sealability of auto air dryer, in which online analytical processing of test data is available, at the same time, saving and inquiring data is achieved. Through some experimental analysis, it is indicated that efficient and accurate detection of the performance of auto air dryer is realized, and the test errors are less than 3%. Moreover, we carry out the type A evaluation of uncertainty in test data based on Bayesian theory, and the results show that the test uncertainties of all performance parameters are less than 0.5kPa, which can meet the requirements of operating industrial site absolutely.

  20. Airflow Pattern Genereated by Three Air Diffusers

    DEFF Research Database (Denmark)

    Olmedo, Inés; Nielsen, Peter V.; de Adana, Manuel Ruiz

    The correct description of air diffusers plays a crucial role in the CFD predictions of the airflow pattern into a room. The numerical simulation of air distribution in an indoor space is challenging because of the complicated airflow pattern generated. An experimental study has been carried out...... in a full scale test room, 4.10 m (length), 3.20 m (width), and 2.70 m (height), in order to take velocity measurements of the airflow pattern generated by three different air diffusers: displacement, mixing and a low impulse diffuser. Smoke visualization has been developed to determine the direction...

  1. Development of Micro Air Vehicle Technology With In-Flight Adaptive-Wing Structure

    Science.gov (United States)

    Waszak, Martin R. (Technical Monitor); Shkarayev, Sergey; Null, William; Wagner, Matthew

    2004-01-01

    This is a final report on the research studies, "Development of Micro Air Vehicle Technology with In-Flight Adaptrive-Wing Structure". This project involved the development of variable-camber technology to achieve efficient design of micro air vehicles. Specifically, it focused on the following topics: 1) Low Reynolds number wind tunnel testing of cambered-plate wings. 2) Theoretical performance analysis of micro air vehicles. 3) Design of a variable-camber MAV actuated by micro servos. 4) Test flights of a variable-camber MAV.

  2. Reactor building pressure proof test (PPT) and leak rate test (LRT) of Qinshan phase III (CANDU) project

    International Nuclear Information System (INIS)

    Gu Jun; Shi Jinqi; Fan Fuping

    2004-12-01

    As the first reactor building (R/B) without stainless steel liner in china, TQNPC studied the containment characteristics, such as strong concrete absorb/release air effect, poor containment penetration. etc. And carefully prepared test scheme and emergency response, creatively introduced the instrument air self-supply system in reactor building, developed the special measurement and analysis system for PPT and LRT, organized work under high-pressure on large-scale in the test. Finally got the containment leak rate result and the test-cost-time value is the best in all same type tests. (authors)

  3. Development of Hybrid Type Flexible Pneumatic Cylinder for Considering Less Air Consumption

    Directory of Open Access Journals (Sweden)

    Tamaki Hiroaki

    2016-01-01

    Full Text Available Inexpensive rehabilitation devices that can be used at home are required because of a lack of PT and welfare workers. In the previous study, the low-cost portable rehabilitation device using a flexible spherical actuator that consists of flexible pneumatic cylinder was proposed and tested. However, a compact and high power compressor that supplies air pressure to pneumatic actuator has not been developed yet. In particular, the heat generated by compressing air prevents to miniaturize it. To realize a home rehabilitation, the small-sized compressors or less air consuming flexible actuators are required. In this study, a hybrid type flexible pneumatic cylinder driven by electric motors and air pressure is proposed and tested. The concept, the construction and the operating principle of the proposed actuator were described. The position control using the tested actuator is also carried out.

  4. Power Systems Development Facility Gasification Test Run TC11

    Energy Technology Data Exchange (ETDEWEB)

    Southern Company Services

    2003-04-30

    This report discusses Test Campaign TC11 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). Test run TC11 began on April 7, 2003, with startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until April 18, 2003, when a gasifier upset forced the termination of the test run. Over the course of the entire test run, gasifier temperatures varied between 1,650 and 1,800 F at pressures from 160 to 200 psig during air-blown operations and around 135 psig during enriched-air operations. Due to a restriction in the oxygen-fed lower mixing zone (LMZ), the majority of the test run featured air-blown operations.

  5. Design of direct solar PV driven air conditioner

    KAUST Repository

    Huang, Bin-Juine

    2015-12-05

    © 2015 Elsevier Ltd. Solar air conditioning system directly driven by stand-alone solar PV is studied. The air conditioning system will suffer from loss of power if the solar PV power generation is not high enough. It requires a proper system design to match the power consumption of air conditioning system with a proper PV size. Six solar air conditioners with different sizes of PV panel and air conditioners were built and tested outdoors to experimentally investigate the running probabilities of air conditioning at various solar irradiations. It is shown that the instantaneous operation probability (OPB) and the runtime fraction (RF) of the air conditioner are mainly affected by the design parameter rpL (ratio of maximum PV power to load power). The measured OPB is found to be greater than 0.98 at instantaneous solar irradiation IT > 600 W m-2 if rpL > 1.71 RF approaches 1.0 (the air conditioner is run in 100% with solar power) at daily-total solar radiation higher than 13 MJ m-2 day-1, if rpL > 3.

  6. KAJIAN ANALISIS PERBANDINGAN JUMLAH PEMANFAATAN AIR TANAH

    Directory of Open Access Journals (Sweden)

    Acep Hidayat

    2017-02-01

    Full Text Available Perkembangan pertumbuhan kota meningkat sehingga fenomena yang berkaitan dengan sumber daya air semakin meningkat. Pertumbuhan penduduk setiap tahun bertambah menyertai pertumbuhan kota, menjadikan pemanfaatan air tanah semakin meningkat. Fenomena yang terjadi adalah bahwa ketersediaan lahan untuk prosesnya terjadinya resapan air ke dalam tanah semakin berkurang, dimana luasan lahan yang ada sangat tidak mencukupi resapan air ke dalam tanah. Di samping itu, resapan air ke dalam tanah dipengaruhi tingkat permeabilitas dari jenis tanah pada lingkungan daerah sekitar resapan. Akibat dari jumlah resapan air ke dalam tanah yang tidak seimbang dengan jumlah pemakaian air tanah yang digunakan mengakibatkan terjadinya penurunan muka air tanah dengan disertai penurunan lapisan tanah. Bila hal ini terjadi secara terus menerus menjadikan elevasi permukaan tanah akan lebih rendah dari permukaan laut. Untuk mengantisipasi hal tersebut terjadi, maka penelitian ini melakukan kajian tingkat permeabilitas daya resap air untuk macam jenis tanah dengan melakukan tes-tes tanah, sehingga dapat diketahui titik imbang antara jumlah air tanah yang dapat diambil dengan air yang dapat meresap ke dalam tanah. Berdasarkan perhitungan curah hujan didapat bahwa besar curah hujan dalam satu tahun sebesar 54.56 m3/detik dan yang meresap hanya 5.37 m3/detik atau 9.84 %. Hal ini menunjukkan bahwa jenis tanah di sekitar wilayah penelitian berjenis lanau dan clay, sehingga mempunyai angka pori yang kecil. Dengan kondisi tersebut maka wilayah tersebut dapat diprogramkan dengan membuat folder-folder tampungan, sumur-sumur resapan, lubang-lubang biopori dan lainya.

  7. Oxygen enriched air using membrane for palm oil wastewater treatment

    Directory of Open Access Journals (Sweden)

    Ramlah Mohd Tajuddin

    2002-11-01

    Full Text Available A research aimed to explore new method of aeration using oxygen enriched air performance on BOD reduction of palm oil wastewater was conducted. The oxygen enriched air was obtained from an Oxygen Enriched System (OES developed using asymmetric polysulfone hollow fiber membrane with composition consisting of PSF: 22%, DMAc: 31.8%, THF: 31.8%, EtOH: 14.4%. Palm oil wastewater samples were taken from facultative pond effluent. These samples were tested for its initial biochemical oxygen demand (BOD, total suspended solids (TSS, pH, conductivity, turbidity, dissolved oxygen (DO, suspended solids (SS, and total dissolved solids (TDS before being subjected to two modes of aeration system, that is diffused air and oxygen enriched air. These water quality concentrations were tested for every 20 minutes for two-hour period during the aeration process. Results of BOD, TSS, pH, conductivity, DO, SS and TDS concentrations against time of samples from the two modes of aeration were then compared. It was found that DO concentration achieved in oxygen enriched air aeration was better than aeration using diffused air system. Aeration using OES improve the DO concentration in the wastewater and thus improve the BOD reduction and also influence other physical characteristics of wastewater. This phenomenon indicates the advantage of using air with higher oxygen concentration for wastewater aeration instead of diffused air system.

  8. Meteorological utilization of measurements of the artificial radioactivity on the air and precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Neuwirth, R

    1955-01-01

    German, French, and American measurements of the rainfall and air activity are being evaluated. For that purpose, trajectories from the experimental grounds for bomb tests in Nevada to Western Germany are drawn. By means of intermediate values, the test possibilities of air paths first only scheduled are given. The so-called deposit spaces and meridional circulations, which are significant particularly in divergence regions, prove to be of especial importance. The mechanism of activation of precipitation is discussed. A connexion between the activity of precipitation and air masses could only be found in individual cases. But it seems that semitropical air masses dispose of a higher specific activity in comparison with the polar air masses.

  9. Performance Evaluation of the United Nations Environment Programme Air Quality Unit

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Reference data represents reference monitoring data associated with EPA-operated air monitoring equipment located at its AIRS test site in the Research Triangle...

  10. Evaluation of an air drilling cuttings containment system

    Energy Technology Data Exchange (ETDEWEB)

    Westmoreland, J.

    1994-04-01

    Drilling at hazardous waste sites for environmental remediation or monitoring requires containment of all drilling fluids and cuttings to protect personnel and the environment. At many sites, air drilling techniques have advantages over other drilling methods, requiring effective filtering and containment of the return air/cuttings stream. A study of. current containment methods indicated improvements could be made in the filtering of radionuclides and volatile organic compounds, and in equipment like alarms, instrumentation or pressure safety features. Sandia National Laboratories, Dept. 61 11 Environmental Drilling Projects Group, initiated this work to address these concerns. A look at the industry showed that asbestos abatement equipment could be adapted for containment and filtration of air drilling returns. An industry manufacturer was selected to build a prototype machine. The machine was leased and put through a six-month testing and evaluation period at Sandia National Laboratories. Various materials were vacuumed and filtered with the machine during this time. In addition, it was used in an actual air drive drilling operation. Results of these tests indicate that the vacuum/filter unit will meet or exceed our drilling requirements. This vacuum/filter unit could be employed at a hazardous waste site or any site where drilling operations require cuttings and air containment.

  11. Theoretical and Experimental Investigations of Highly Uprated Diesel Engine with Temperature Regulator of Supercharging Air

    Directory of Open Access Journals (Sweden)

    G. A. Vershina

    2005-01-01

    Full Text Available Mathematical model of a highly uprated diesel engine with turbo-supercharging and intercooler of supercharging air is given in die paper. Theoretical study based on the model has made it possible to design and test an intercooler with a temperature regulator of supercharging air. Test results prove efficiency of temperature regulation of supercharging air in operation of an engine at low loads with excess air factor more than 3.2.

  12. Air Distribution in Rooms with a Fan-Driven Convector

    DEFF Research Database (Denmark)

    Larsen, Tine Steen; Bindels, Rob H.W.; Michalak, Lukasz

    2007-01-01

    the acceptable conditions for the supplyJlow rate and the temperature difference for the convector system. The paper shows that the air distribution from the convector results in comfortable velocity and temperature conditions with a heat load of 210 W. This is also confirmed by the draft ratings, which in all...... coming from the dijfuser is partly controlled by the momentum flow and partly from gravity forces, where the thermal load in the room and the temperature difference between room air and supply air affect the airflow from the convector. The convector system was tested in the same test room in which many......Experiments with a fan-driven convector used for both heating and cooling are de.scribed in this paper. Only the cooling situation is considered. The convector is positioned in the upper corner ofthe room, and from there the cold air is let out through the device along the ceiling. The airflow...

  13. Vertical Descent and Landing Tests of a 0.13-Scale Model of the Convair XFY-1 Vertically Rising Airplane in Still Air, TED No. NACA DE 368

    Science.gov (United States)

    Smith, Charlee C., Jr.; Lovell, Powell M., Jr.

    1954-01-01

    An investigation is being conducted to determine the dynamic stability and control characteristics of a 0.13-scale flying model of Convair XFY-1 vertically rising airplane. This paper presents the results of flight and force tests to determine the stability and control characteristics of the model in vertical descent and landings in still air. The tests indicated that landings, including vertical descent from altitudes representing up to 400 feet for the full-scale airplane and at rates of descent up to 15 or 20 feet per second (full scale), can be performed satisfactorily. Sustained vertical descent in still air probably will be more difficult to perform because of large random trim changes that become greater as the descent velocity is increased. A slight steady head wind or cross wind might be sufficient to eliminate the random trim changes.

  14. The critical care air transport program.

    Science.gov (United States)

    Beninati, William; Meyer, Michael T; Carter, Todd E

    2008-07-01

    The critical care air transport team program is a component of the U.S. Air Force Aeromedical Evacuation system. A critical care air transport team consists of a critical care physician, critical care nurse, and respiratory therapist along with the supplies and equipment to operate a portable intensive care unit within a cargo aircraft. This capability was developed to support rapidly mobile surgical teams with high capability for damage control resuscitation and limited capacity for postresuscitation care. The critical care air transport team permits rapid evacuation of stabilizing casualties to a higher level of care. The aeromedical environment presents important challenges for the delivery of critical care. All equipment must be tested for safety and effectiveness in this environment before use in flight. The team members must integrate the current standards of care with the limitation imposed by stresses of flight on their patient. The critical care air transport team capability has been used successfully in a range of settings from transport within the United States, to disaster response, to support of casualties in combat.

  15. Air quality and future energy system planning

    Science.gov (United States)

    Sobral Mourao, Zenaida; Konadu, Dennis; Lupton, Rick

    2016-04-01

    Ambient air pollution has been linked to an increasing number of premature deaths throughout the world. Projected increases in demand for food, energy resources and manufactured products will likely contribute to exacerbate air pollution with an increasing impact on human health, agricultural productivity and climate change. Current events such as tampering emissions tests by VW car manufacturers, failure to comply with EU Air Quality directives and WHO guidelines by many EU countries, the problem of smog in Chinese cities and new industrial emissions regulations represent unique challenges but also opportunities for regulators, local authorities and industry. However current models and practices of energy and resource use do not consider ambient air impacts as an integral part of the planing process. Furthermore the analysis of drivers, sources and impacts of air pollution is often fragmented, difficult to understand and lacks effective visualization tools that bring all of these components together. This work aims to develop a model that links impacts of air quality on human health and ecosystems to current and future developments in the energy system, industrial and agricultural activity and patterns of land use. The model will be added to the ForeseerTM tool, which is an integrated resource analysis platform that has been developed at the University of Cambridge initially with funding from BP and more recently through the EPSRC funded Whole Systems Energy Modeling (WholeSEM) project. The basis of the tool is a set of linked physical models for energy, water and land, including the technologies that are used to transform these resources into final services such as housing, food, transport and household goods. The new air quality model will explore different feedback effects between energy, land and atmospheric systems with the overarching goal of supporting better communication about the drivers of air quality and to incorporate concerns about air quality into

  16. A new technology for air-entrainment of concrete

    DEFF Research Database (Denmark)

    Laustsen, Sara; Hasholt, Marianne Tange; Jensen, Ole Mejlhede

    2008-01-01

    This paper describes a new technology for air-entrainment of concrete. The technology is based on the addition of dry superabsorbent polymers (SAP) to the concrete. A large amount of small internal water reservoirs are formed during mixing when SAP absorbs water and swells. The internal water......-entrainment include stability of the air void system and improved control of both the amount of added air and the air void size. The new technology based on SAP has been tested in freeze-thaw experiments, where the amount of surface scaling was measured. The results clearly show that SAP is beneficial for frost...... reservoirs are distributed throughout the concrete. During the hydration process the cement paste imbibes water from the water-filled SAP voids. Thereby the water-filled SAP voids turn into partly air-filled voids. The advantages of the SAP-based technology compared to traditional chemical air...

  17. Air intake shaft performance tests (Shaft 5): In situ data report (May 1988--July 1995). Waste Isolation Pilot Plant (WIPP) Thermal/Structural Interactions Program

    International Nuclear Information System (INIS)

    Munson, D.E.; Baird, G.T.; Jones, R.L.

    1995-07-01

    Data are presented from the Air Intake Shaft Test, an in situ test fielded at the Waste Isolation Pilot Plant (WIPP). The construction of this shaft, well after the initial three access shafts, presented an unusual opportunity to obtain valuable detailed data on the mechanical response of a shaft for application to seal design. These data include selected fielding information, test configuration, instrumentation activities, and comprehensive results from a large number of gages. Construction of the test began in December 1987; gage data in this report cover the period from May 1988 through July 1995, with the bulk of the data obtained after obtaining access in November, 1989 and from the heavily instrumented period after remote gage installation between May, 1990, and October, 1991

  18. Air intake shaft performance tests (Shaft 5): In situ data report (May 1988--July 1995). Waste Isolation Pilot Plant (WIPP) Thermal/Structural Interactions Program

    Energy Technology Data Exchange (ETDEWEB)

    Munson, D.E. [Sandia National Labs., Albuquerque, NM (United States). Repository Isolation Systems Dept.; Hoag, D.L.; Ball, J.R. [RE/SPEC Inc., Albuquerque, NM (United States); Baird, G.T.; Jones, R.L. [Tech Reps, Inc., Albuquerque, NM (United States)

    1995-07-01

    Data are presented from the Air Intake Shaft Test, an in situ test fielded at the Waste Isolation Pilot Plant (WIPP). The construction of this shaft, well after the initial three access shafts, presented an unusual opportunity to obtain valuable detailed data on the mechanical response of a shaft for application to seal design. These data include selected fielding information, test configuration, instrumentation activities, and comprehensive results from a large number of gages. Construction of the test began in December 1987; gage data in this report cover the period from May 1988 through July 1995, with the bulk of the data obtained after obtaining access in November, 1989 and from the heavily instrumented period after remote gage installation between May, 1990, and October, 1991.

  19. Planar air-bearing microgravity simulators: Review of applications, existing solutions and design parameters

    Science.gov (United States)

    Rybus, Tomasz; Seweryn, Karol

    2016-03-01

    All devices designed to be used in space must be thoroughly tested in relevant conditions. For several classes of devices the reduced gravity conditions are the key factor. In early stages of development and later due to financial reasons, the tests need to be done on Earth. However, in Earth conditions it is impossible to obtain a different gravity field independent on all linear and rotational spatial coordinates. Therefore, various test-bed systems are used, with their design driven by the device's specific needs. One of such test-beds are planar air-bearing microgravity simulators. In such an approach, the tested objects (e.g., manipulators intended for on-orbit operations or vehicles simulating satellites in a close formation flight) are mounted on planar air-bearings that allow almost frictionless motion on a flat surface, thus simulating microgravity conditions in two dimensions. In this paper we present a comprehensive review of research activities related to planar air-bearing microgravity simulators, demonstrating achievements of the most active research groups and describing newest trends and ideas, such as tests of landing gears for low-g bodies. Major design parameters of air-bearing test-beds are also reviewed and a list of notable existing test-beds is presented.

  20. Calculations of air cooler for new subsonic wind tunnel

    Science.gov (United States)

    Rtishcheva, A. S.

    2017-10-01

    As part of the component development of TsAGI’s new subsonic wind tunnel where the air flow velocity in the closed test section is up to 160 m/sec hydraulic and thermal characteristics of air cooler are calculated. The air cooler is one of the most important components due to its highest hydraulic resistance in the whole wind tunnel design. It is important to minimize its hydraulic resistance to ensure the energy efficiency of wind tunnel fans and the cost-cutting of tests. On the other hand the air cooler is to assure the efficient cooling of air flow in such a manner as to maintain the temperature below 40 °C for seamless operation of measuring equipment. Therefore the relevance of this project is driven by the need to develop the air cooler that would demonstrate low hydraulic resistance of air and high thermal effectiveness of heat exchanging surfaces; insofar as the cooling section must be given up per unit time with the amount of heat Q=30 MW according to preliminary evaluations. On basis of calculation research some variants of air cooler designs are proposed including elliptical tubes, round tubes, and lateral plate-like fins. These designs differ by the number of tubes and plates, geometrical characteristics and the material of finned surfaces (aluminium or cooper). Due to the choice of component configurations a high thermal effectiveness is achieved for finned surfaces. The obtained results form the basis of R&D support in designing the new subsonic wind tunnel.

  1. Fuzzy logic speed control for the engine of an air-powered vehicle

    OpenAIRE

    Qihui Yu; Yan Shi; Maolin Cai; Weiqing Xu

    2016-01-01

    To improve the condition of air and eliminate exhaust gas pollution, this article proposes a compressed air power system. Instead of an internal combustion engine, the automobile is equipped with a compressed air engine, which transforms the energy of compressed air into mechanical motion energy. A prototype was built, and the compressed air engine was tested on an experimental platform. The output torque and energy efficiency were obtained from experimental results. When the supply pressure ...

  2. Rerouting algorithms solving the air traffic congestion

    Science.gov (United States)

    Adacher, Ludovica; Flamini, Marta; Romano, Elpidio

    2017-06-01

    Congestion in the air traffic network is a problem with an increasing relevance for airlines costs as well as airspace safety. One of the major issue is the limited operative capacity of the air network. In this work an Autonomous Agent approach is proposed to solve in real time the problem of air traffic congestion. The air traffic infrastructures are modeled with a graph and are considered partitioned in different sectors. Each sector has its own decision agent dealing with the air traffic control involved in it. Each agent sector imposes a real time aircraft scheduling to respect both delay and capacity constrains. When a congestion is predicted, a new aircraft scheduling is computed. Congestion is solved when the capacity constrains are satisfied once again. This can be done by delaying on ground aircraft or/and rerouting aircraft and/or postponing the congestion. We have tested two different algorithms that calculate K feasible paths for each aircraft involved in the congestion. Some results are reported on North Italian air space.

  3. New Czechoslovak detector of leaking condenser tubes usable in both shutdown and reduced output operation of power unit

    International Nuclear Information System (INIS)

    Matal, O.; Klinga, J.; Varvarovsky, F.; Zachar, J.; Fratric, D.

    1986-01-01

    The main reason for penetration of undesirable admixtures from cooling water in the condensate is the inleakage of steam turbine condensers. Briefly assessed are the means and methods of detecting and locating condenser leaks used in the world and in power facilities in Czechoslovakia. Equipment was developed based on measuring the difference between the pressure in a temporarily closed condenser tube and ambient pressure, for leak testing of condenser tubes during operation and during shutdown of WWER-440 units. Two types of the equipment were tested in practice. Type VUEZ-PHN 85P meets the requirements of objective leak tests and those of leak location in condenser tubes and of leak detection in tube expansion in the tube plates of WWER-440 unit condensers, this as concerns sensitivity, the objectivity of results, the cost of tests, and minimal losses of power during the test. Type VUEZ-PHN 85P can be used for leak location in all tube type heat exchangers with access to tube outlets in which under- or overpressure can be achieved in the space between the tubes relative to ambient pressure during the test. (Z.M.) 5 figs., 4 tabs., 11 refs

  4. Characterizing experiments of the PPOOLEX test facility

    Energy Technology Data Exchange (ETDEWEB)

    Puustinen, M.; Laine, J. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2008-07-15

    This report summarizes the results of the characterizing test series in 2007 with the scaled down PPOOLEX facility designed and constructed at Lappeenranta University of Technology. Air and steam/air mixture was blown into the dry well compartment and from there through a DN200 blowdown pipe to the condensation pool (wet well). Altogether eight air and four steam/air mixture experiments, each consisting of several blows (tests), were carried out. The main purpose of the experiment series was to study the general behavior of the facility and the performance of basic instrumentation. Proper operation of automation, control and safety systems was also tested. The test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. The facility is equipped with high frequency measurements for capturing different aspects of the investigated phenomena. The general behavior of the PPOOLEX facility differs significantly from that of the previous POOLEX facility because of the closed two-compartment structure of the test vessel. Heat-up by several tens of degrees due to compression in both compartments was the most obvious evidence of this. Temperatures also stratified. Condensation oscillations and chugging phenomenon were encountered in those tests where the fraction of non-condensables had time to decrease significantly. A radical change from smooth condensation behavior to oscillating one occurred quite abruptly when the air fraction of the blowdown pipe flow dropped close to zero. The experiments again demonstrated the strong diminishing effect that noncondensable gases have on dynamic unsteady loadings experienced by submerged pool structures. BWR containment like behavior related to the beginning of a postulated steam line break accident was observed in the PPOOLEX test facility during the steam/air mixture experiments. The most important task of the research project, to produce experimental data for code simulation purposes, can be

  5. A mixed air/air and air/water heat pump system ensures the air-conditioning of a cinema; Un systeme mixte PAC air/air et air/eau climatise un cinema

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2001-03-01

    This article presents the air conditioning system of a new cinema complex of Boulogne (92, France) which comprises a double-flux air processing plant and two heat pumps. Each heat pump has two independent refrigerating loops: one with a air condenser and the other with a water condenser. This system allows to limit the power of the loop and to reduce the size of the cooling tower and of the vertical ducts. This article describes the technical characteristics of the installation: thermodynamic units, smoke clearing, temperature control, air renewing. (J.S.)

  6. THE ASSESSMENT OF MICROBIOLOGICAL INDOOR AIR QUALITY IN BAKERIES

    Directory of Open Access Journals (Sweden)

    Elżbieta Wołejko

    2016-05-01

    Full Text Available The aim of this study was to assess microbiological indoor air quality of selected bakeries located in the region of Podlasie. The microbiological studies were conducted in autumn in 2014 in three selected bakeries. Microbiological air counts were measured by impaction using an air sampler MAS-100 NT. The microbiological air studies, comprised the determination of the total number of psychrophilic and mesophilic bacteria, namely indicator bacteria such as: bacteria of the species Pseudomonas fluorescens, mannitol-positive and mannitol-negative Staphylococc, the total number of bacteria from the Enterobacteriaceae family and fungi found in atmospheric air. The results of the study of indoor air polluted with the analyzed groups of microorganisms differed depending on the type of test air and the location of the manufacturing plant. In the plants, the concentration of mesophilic bacteria and mannitol–positive and mannitol-negative Staphylococcus exceeded the limit values of unpolluted air, according to the Polish Standard recommendations.

  7. WIPP air-intake shaft disturbed-rock zone study

    International Nuclear Information System (INIS)

    Dale, T.; Hurtado, L.D.

    1996-01-01

    The disturbed-rock zone surrounding the air-intake shaft at the Waste Isolation Pilot Plant (WIPP) site was investigated to determine the extent and the permeability of the disturbed-rock zone as a function of radial distance from the 6.1 m diameter shaft, at different elevations within the Salado. Gas- and brine-permeability tests were performed in the bedded halite of the Salado formation at two levels within the air-intake shaft. The gas- and brine-permeability test results demonstrated that the radial distance to an undisturbed formation permeability of 1 x 10 -21 m 2 was less than 3.0 m

  8. Development and Application of a Next Generation Air Sensor Network for the Hong Kong Marathon 2015 Air Quality Monitoring.

    Science.gov (United States)

    Sun, Li; Wong, Ka Chun; Wei, Peng; Ye, Sheng; Huang, Hao; Yang, Fenhuan; Westerdahl, Dane; Louie, Peter K K; Luk, Connie W Y; Ning, Zhi

    2016-02-05

    This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO) and nitrogen dioxide (NO2) pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI) for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring.

  9. CFD Simulation of Air Velocity Distribution in Occupied Livestock Buildings

    DEFF Research Database (Denmark)

    Svidt, Kjeld; Zhang, G.; Bjerg, B.

    In modem livestock buildings the design of the ventilation systems is important in order to obtain good air distribution. The use of Computational Fluid Dynamics for predicting the air flow and air quality makes it possible to include the effect of room geometry, equipment and occupants in the de......In modem livestock buildings the design of the ventilation systems is important in order to obtain good air distribution. The use of Computational Fluid Dynamics for predicting the air flow and air quality makes it possible to include the effect of room geometry, equipment and occupants....... In this study laboratory measurements in a ventilated test room with "pig simulators" are compared with CFD-simulations....

  10. Small fan assisted air conditioner for thermal comfort and energy saving in Thailand

    International Nuclear Information System (INIS)

    Atthajariyakul, Surat; Lertsatittanakorn, Charoenporn

    2008-01-01

    From the fact that Thai people have a tolerance to high air temperature and are accustomed to high air movement from electric fans in non-air conditioned space, this paper proposes the use of small fan assisted air conditioners for human thermal comfort and energy saving in Thailand. In the study, a total 15 students were tested in a 2.5 x 3.5 x 2.5 m 3 test room equipped with a 12,000 Btu/h split type air conditioner. During the tests, the room air temperature was varied from 25, 26, 27 and 28 deg. C every 1 h. A small fan with 15 cm diameter was placed in front of each subject. In each hour, the small fan was varied to supply a small area with velocity from 0.2, 0.5, 1, 1.5 and 2 m/s. In each condition, the subjects were asked to vote for their thermal sensation. The results showed that the temperature set point could be increased up to 28 deg. C when a small fan was used to supply local air velocity from 0.5 to 2 m/s according to individual preference. This would reduce the electricity consumption of the air conditioning unit. According to the proposed method, this can save energy for office buildings in the commercial sector as high as 1959.51 GWh/year

  11. Protection against head injuries should not be optional: a case for mandatory installation of side-curtain air bags.

    Science.gov (United States)

    Stuke, Lance E; Nirula, Raminder; Gentilello, Larry M; Shafi, Shahid

    2010-10-01

    More than 9,000 vehicle occupants die each year in side-impact vehicle collisions, primarily from head injuries. The authors hypothesized that side-curtain air bags significantly improve head and neck safety in side-impact crash testing. Side-impact crash-test data were obtained from the Insurance Institute for Highway Safety, which ranks occupant protection as good, acceptable, marginal, or poor. Vehicles of the same make and model that underwent side-impact crash testing both with and without side-curtain air bags were compared, as well as the protective effect of these air bags on occupants' risk for head and neck injury. Of all the passenger vehicles, 25 models have undergone side-impact crash testing with and without side-curtain air bags by the Insurance Institute for Highway Safety. Only 3 models without side-curtain air bags (12%) provided good head and neck protection for drivers, while 21 cars with side-curtain air bags (84%) provided good protection (P bags was less dramatic but significant (84% without vs 100% with side-curtain air bags, P = .04). Side-curtain air bags significantly improve vehicle occupant safety in side-impact crash tests. Installation of these air bags should be federally mandated in all passenger vehicles. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings

    Energy Technology Data Exchange (ETDEWEB)

    Klocke, S. [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Faakye, O. [Consortium for Advanced Residential Buildings, Norwalk, CT (United States); Puttagunta, S. [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2014-10-01

    While previous versions of the International Energy Conservation Code (IECC) have included provisions to improve the air tightness of dwellings, for the first time, the 2012 IECC mandates compliance verification through blower door testing. Simply completing the Air Barrier and Insulation Installation checklist through visual inspection is no longer sufficient by itself. In addition, the 2012 IECC mandates a significantly stricter air sealing requirement. In Climate Zones 3 through 8, air leakage may not exceed 3 ACH50, which is a significant reduction from the 2009 IECC requirement of 7 ACH50. This requirement is for all residential buildings, which includes low-rise multifamily dwellings. While this air leakage rate requirement is an important component to achieving an efficient building thermal envelope, currently, the code language doesn't explicitly address differences between single family and multifamily applications. In addition, the 2012 IECC does not provide an option to sample dwellings for larger multifamily buildings, so compliance would have to be verified on every unit. With compliance with the 2012 IECC air leakage requirements on the horizon, several of Consortium for Advanced Residential Building's (CARB’s) multifamily builder partners are evaluating how best to comply with this requirement. Builders are not sure whether it is more practical or beneficial to simply pay for guarded testing or to revise their air sealing strategies to improve compartmentalization to comply with code requirements based on unguarded blower door testing. This report summarizes CARB's research that was conducted to assess the feasibility of meeting the 2012 IECC air leakage requirements in 3 multifamily buildings.

  13. Safety demonstration tests of air-ventilation system for the postulated explosive burning in a cell of fuel-reprocessing plant

    International Nuclear Information System (INIS)

    Takada, Junichi; Suzuki, Motoe; Tukamoto, Michio; Koike, Tadao; Nishio, Gunji

    1995-03-01

    Safety demonstration tests of an explosive burning in a cell in the reprocessing plant has been carried out in JAERI under the auspices of the Science and Technology Agency, to evaluate the safety of an air-ventilation system during the hypothetical explosion. The postulated explosive burning of organic solvent mixed with nitric acid was simulated by solid explosives. The demonstration test was performed using an industrial scale experimental facility simulating to the ventilation system of the large scale reprocessing plant in JAPAN. Propagations of pressure, temperature, and gas velocity through cells and ducts in the ventilation system were measured during the explosive burning under deflagration. Experimental data in this report can be used to evaluate the transport phenomena of radioactive materials in the ventilation system during the explosion, and also to verify computer code CELVA for the safety analysis of ventilation system in the event of explosion accidents. (author)

  14. Data Link Test and Analysis System/ATCRBS Transponder Test System Technical Reference

    Science.gov (United States)

    1990-05-01

    This document references material for personnel using or making software changes : to the Data Link Test and Analysis System (DATAS) for Air Traffic Control Radar : Beacon System (ATCRBS) transponder testing and data collection. This is one of : a se...

  15. Kajian Analitik Perencanaan Pintu Air Pembangkit Listrik Tenaga Air

    OpenAIRE

    Pradoto, Pradoto

    1993-01-01

    Pada pintu air pembangkit listrik tenaga air umumnya dipasang pengauat-penguat (girder). Tujuannya agar pintu air kuat dalam menahan tekanan air. Tekanan air yang diderita oleh pintu air cukup besar karena dipasang pada kedalaman + 50 meter di bawah permukaan air. Permasalahan yang timbul adalah menentukan posisi atau letak girder pada pintu air.

  16. Optimization of air injection parameters toward optimum fuel saving effect for ships

    Science.gov (United States)

    Lee, Inwon; Park, Seong Hyeon

    2016-11-01

    Air lubrication method is the most promising commercial strategy for the frictional drag reduction of ocean going vessels. Air bubbles are injected through the array of holes or the slots installed onto the flat bottom surface of vessel and a sufficient supply of air is required to ensure the formation of stable air layer by the by the coalescence of the bubbles. The air layer drag reduction becomes economically meaningful when the power gain through the drag reduction exceeds the pumping power consumption. In this study, a model ship of 50k medium range tanker is employed to investigate air lubrication method. The experiments were conducted in the 100m long towing tank facility at the Pusan National University. To create the effective air lubrication with lower air flow rate, various configurations including the layout of injection holes, employment of side fences and static trim have been tested. In the preliminary series of model tests, the maximum 18.13%(at 15kts) of reduction of model resistance was achieved. This research was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MEST) through GCRC-SOP (Grant No. 2011-0030013).

  17. Online optimal control of variable refrigerant flow and variable air volume combined air conditioning system for energy saving

    International Nuclear Information System (INIS)

    Zhu, Yonghua; Jin, Xinqiao; Du, Zhimin; Fang, Xing

    2015-01-01

    The variable refrigerant flow (VRF) and variable air volume (VAV) combined air conditioning system can solve the problem of the VRF system in outdoor air ventilation while taking advantage of its high part load energy efficiency. Energy performance of the combined air conditioning system can also be optimized by joint control of both the VRF and the VAV parts. A model-based online optimal control strategy for the combined air conditioning system is presented. Simplified adaptive models of major components of the combined air conditioning system are firstly developed for predicting system performances. And a cost function in terms of energy consumption and thermal comfort is constructed. Genetic algorithm is used to search for the optimal control sets. The optimal control strategy is tested and evaluated through two case studies based on the simulation platform. Results show that the optimal strategy can effectively reduce energy consumption of the combined air conditioning system while maintaining acceptable thermal comfort. - Highlights: • A VRF and VAV combined system is proposed. • A model-based online optimal control strategy is proposed for the combined system. • The strategy can reduce energy consumption without sacrificing thermal comfort. • Novel simplified adaptive models are firstly developed for the VRF system

  18. Control in indoor radon decay products by air treatment devices

    International Nuclear Information System (INIS)

    Hinds, W.C.; Rudnick, S.N.; Maher, E.F.; First, M.W.

    1983-01-01

    An evaluation of the efficacy of household air cleaning devices as a means to control radon decay products in existing buildings is presented. Previous research on air cleaning methods for airborne radon decay products has been directed primarily to the control of radon decay products in mines and has only limited application to control in residences where dust concentration, air change rate, and humidity are lower than in mines. Results show that room size air cleaners can achieve substantial reductions in working levels in residences. Reductions observed at air infiltration rates of 0.52 air changes per hour ranged from 58 to 89%. Although the two air cleaners tested produced the greatest reductions, the low cost, simplicity, and other benefits of air circulating fans, particularly the ceiling fan, appear to make them most suitable for residences

  19. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns for New Instrument Standards

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stratton, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  20. An experimental investigation on air-side performances of finned tube heat exchangers for indirect air-cooling tower

    Directory of Open Access Journals (Sweden)

    Du Xueping

    2014-01-01

    Full Text Available A tremendous quantity of water can be saved if the air cooling system is used, comparing with the ordinary water-cooling technology. In this study, two kinds of finned tube heat exchangers in an indirect air-cooling tower are experimentally studied, which are a plain finned oval-tube heat exchanger and a wavy-finned flat-tube heat exchanger in a cross flow of air. Four different air inlet angles (90°, 60 °, 45°, and 30° are tested separately to obtain the heat transfer and resistance performance. Then the air-side experimental correlations of the Nusselt number and friction factor are acquired. The comprehensive heat transfer performances for two finned tube heat exchangers under four air inlet angles are compared. For the plain finned oval-tube heat exchanger, the vertical angle (90° has the worst performance while 45° and 30° has the best performance at small ReDc and at large ReDc, respectively. For the wavy-finned flat-tube heat exchanger, the worst performance occurred at 60°, while the best performance occurred at 45° and 90° at small ReDc and at large ReDc, respectively. From the comparative results, it can be found that the air inlet angle has completely different effects on the comprehensive heat transfer performance for the heat exchangers with different structures.