WorldWideScience

Sample records for air injection reactors

  1. Reactor water injection facility

    International Nuclear Information System (INIS)

    A steam turbine and an electric generator are connected by way of a speed convertor. The speed convertor is controlled so that the number of rotation of the electric generator is constant irrespective of the speed change of the steam turbine. A shaft coupler is disposed between the turbine and the electric generator or between the turbine and a water injection pump. With such a constitution, the steam turbine and the electric generator are connected by way of the speed convertor, and since the number of revolution of the electric generator is controlled to be constant, the change of the number of rotation of the turbine can be controlled irrespective of the change of the number of rotation of the electric generator. Accordingly, the flow rate of the injection water from the water injection pump to a reactor pressure vessel can be controlled freely thereby enabling to supply stable electric power. (T.M.)

  2. Water injection device for reactor container

    International Nuclear Information System (INIS)

    A pressure vessel incorporating a reactor core is placed and secured on a pedestal in a dry well of a reactor container. A pedestal water injection line is disposed opened at one end in a pedestal cavity passing through the side wall of the pedestal and led at the other end to the outside of the reactor container. A substitution dry well spray line is connected to a spray header disposed at the upper portion of the dry well. When the pressure vessel should be damaged by a molten reactor core and the molten reactor core should drop to the dry well upon occurrence of an accident, the molten reactor core on the floor of the pedestal is cooled by water injection from the pedestal water injection line. At the same time, the elevation of the pressure and the temperature in the reactor container is suppressed by the water injection of the substitution dry well spray line. This can avoid large scaled release of radioactive materials to the environmental circumference. (I.N.)

  3. Fluid flow separation in a reactor pressure vessel during an ECC injection. Single phase flow and two phase flow (air-water) experimental results

    International Nuclear Information System (INIS)

    Full text of publication follows: Within the framework of the nuclear power plant lifetime issue, the assessment of the French 900 MWe (3-loops) series reactor pressure vessel (RPV) integrity has been performed. A simplified analysis has shown that the most severe loading conditions are given by the small break loss of coolant accidents due to the pressurized injection of cold water (9 deg. C) into the cold leg and down comer of the RPV. During these transient scenarios, single or two-phase (uncovered cold leg) flows have been shown in the cold leg, depending on the crack size and RPV model (900 MWe or 1300 MWe). An experimental study has been carried out, on the one hand, to consolidate the numerical results obtained with CFD home code (Code-Saturne) which mainly showed the stratified flow in the cold leg and the fluid flow separation and its oscillations in the down comer during a single phase scenario. These physical phenomena are important for the thermal RPV loading assessment. On the other hand, the absence of experimental two-phase data necessitated to carry out an experimental study around the mixing area behavior (free surface, stratified flow) during an ECC injection with an uncovered cold leg. The new EDF R and D mock up, called HYBISCUS, is a facility which is made out of Plexiglas (atmosphere pressure) and represents a half scale CP0 geometry with one cold leg and part of the down comer. The mock up modularity allows us to insert representative ECC nozzles and a thermal shield. In reference to the reactor scenarios, the experimental operating conditions are derived from the conservation of the density effects (Froude number). For that, a heated salted water flow is used to represent the ECC injection whereas water represents the cold leg fluid. This mock up has been defined in order to represent single phase flow (cold leg and down comer full of water) or two-phase flow (uncovered cold leg) ECC scenarios. This paper reports experimental results

  4. Nanostructured Catalytic Reactors for Air Purification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase II project proposes the development of lightweight compact nanostructured catalytic reactors for air purification from toxic gaseous organic...

  5. Nanostructured Catalytic Reactors for Air Purification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project proposes the development of lightweight compact nanostructured catalytic reactors for air purification from toxic gaseous organic...

  6. Secondary air injection system and method

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Ko-Jen; Walter, Darrell J.

    2014-08-19

    According to one embodiment of the invention, a secondary air injection system includes a first conduit in fluid communication with at least one first exhaust passage of the internal combustion engine and a second conduit in fluid communication with at least one second exhaust passage of the internal combustion engine, wherein the at least one first and second exhaust passages are in fluid communication with a turbocharger. The system also includes an air supply in fluid communication with the first and second conduits and a flow control device that controls fluid communication between the air supply and the first conduit and the second conduit and thereby controls fluid communication to the first and second exhaust passages of the internal combustion engine.

  7. Air injection vacuum blower noise control

    Energy Technology Data Exchange (ETDEWEB)

    Mose, Tyler L.A.; Faszer, Andrew C. [Noise Solutions Inc. (Canada)], email: tmose@noisesolutions.com, email: afaszer@noisesolutions.com

    2011-07-01

    Air injection vacuum blowers, with applications in waste removal, central vacuum systems, and aeration systems, are widely used when high vacuum levels are required. Noise generated by those blowers must be addressed for operator health and residential disturbance. This paper describes a project led by Noise Solutions Inc., to identify noise sources in a blower, and design and test a noise mitigation system. First the predominant noise sources in the blower must be determined, this is done with a sound level meter used to quantify the contribution of each individual noise source and the dominant tonal noise from the blower. Design of a noise abatement system must take into account constraints arising from blower mobile use, blower optimal performance, and the resulting overall vibration of the structure. The design was based on calculations from the sound attenuation of a reactive expansion chamber and two prototypes of custom silencers were then tested, showing a significant noise reduction both in total sound levels and tonal noise.

  8. Water injection system for turbine driven BWR type reactor

    International Nuclear Information System (INIS)

    The present invention provides a water injection system of a turbine driven nuclear reactor for maintaining the function thereof even upon occurrence of a severe accident in a BWR type nuclear reactor. That is, the system comprises a differential pressure detection means for measuring a pressure difference between the downstream of a the turbine and a reactor container and an interrupting means for stopping the supply of steams to the turbine when the differential pressure exceeds a predetermined value. With such a constitution, when the pressure in the turbine driven water injection system is locally increased, the differential pressure detection means detects the differential pressure, to interrupt the supply of the steams to the turbine. Further, upon occurrence of a severe accident that a pressure in the reactor container is abnormally elevated, differential pressure is not caused between the downstream of the turbine and the reactor container. Accordingly, a protection function is not operated by the differential pressure detection means. Accordingly, injection of coolants to the reactor can be continued even upon loss of AC power source. (I.S.)

  9. Equation of Energy Injection to a Dielectric Barrier Discharge Reactor

    Science.gov (United States)

    Yao, Shuiliang; Weng, Shan; Jin, Qi; Han, Jingyi; Jiang, Boqiong; Wu, Zuliang

    2016-08-01

    The electric energy injection from a pulsed power supply to a planar type of dielectric barrier discharge (DBD) reactor at atmospheric pressure was studied. Relations of the energy injection with barrier materials, barrier thickness, peak voltage, gap distance, electrode area, and operation temperature were experimentally investigated. The energy injection is a function of relative permittivity, barrier thickness, peak voltage, gap distance, and electrode area. The influence of operation temperature on energy injection is slight in the range of 27–300 °C but becomes obvious in the range of 300–500 °C. A model was established using which the energy injection can be easily predicted. supported by National Natural Science Foundation of China (No. 11575159), Zhejiang Provincial Natural Science Foundation of China (No. LY13B070004), Program for Zhejiang Leading Team of S&T Innovation (No. 2013TD07), and National Natural Science Foundation of China (No. 51206146)

  10. Pneumomediastinum following high pressure air injection to the hand.

    LENUS (Irish Health Repository)

    Kennedy, J

    2010-04-01

    We present the case of a patient who developed pneumomediastinum after high pressure air injection to the hand. To our knowledge this is the first reported case of pneumomediastinum where the gas injection site was the thenar eminence. Fortunately the patient recovered with conservative management.

  11. Pneumomediastinum following high pressure air injection to the hand.

    LENUS (Irish Health Repository)

    Kennedy, J

    2012-02-01

    We present the case of a patient who developed pneumomediastinum after high pressure air injection to the hand. To our knowledge this is the first reported case of pneumomediastinum where the gas injection site was the thenar eminence. Fortunately the patient recovered with conservative management.

  12. Severe Scapular Pain Following Unintentional Cervical Epidural Air Injection.

    Science.gov (United States)

    Henthorn, Randall W; Murray, Kerra

    2016-03-01

    This a unique case of severe scapular pain following unintentional epidural space air injection during epidural steroid injection.A 70-year-old woman presented for a fluoroscopically guided C7-T1 interlaminar epidural steroid injection. Three injection attempts were made using the loss of resistance with air technique. On the first attempt the epidural space was entered, but contrast injection showed that the needle was intravenous. On the second attempt an equivocal loss of resistance with air was perceived and 5 mL of air was lost from the syringe. The needle was withdrawn and redirected, and upon the third needle passage the contrast injection showed appropriate epidural space filling up to the C4-5 level. Injection of betamethasone mixed in lidocaine was initially uneventful.However, 20 minutes post-injection the patient experienced sudden sharp and continuous pain along the medial edge of the scapula. After failing to respond to multiple intravascular analgesics, the patient was transferred to the emergency room. Her pain subsided completely following an intravenous diazepam injection. Cervical spine computerized tomography showed obvious air in the posterior epidural space from C4-5 to C6-7 as well as outside the spinal canal from (C4-T2). Having recovered fully, she was discharged the following morning. In reviewing the procedure, the equivocal loss of resistance on the second passage was actually a true loss of resistance to epidural space and air was unintentionally injected. Surprisingly, severe scapular pain resulted in a delayed manner after the steroid solution was injected. The authors theorize that unintentional prefilling of the epidural space with air prior to the injection of the subsequent steroid mixture added sufficient pressure to the epidural space to cause right-sided C4 nerve root stretching/entrapment and ensuing radicular pain to the right scapular border. The subsequent intravenous diazepam provided cervical muscle relaxation and

  13. Economics of water injected air screw compressor systems

    Science.gov (United States)

    Venu Madhav, K.; Kovačević, A.

    2015-08-01

    There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an investigation carried out to determine the current limitations of water injected screw compressor systems and how these could be overcome in the 15-315 kW power range and delivery pressures of 6-10 bar. Modern rotor profiles and approach to sealing and cooling allow reasonably inexpensive air end design. The prototype of the water injected screw compressor air system was built and tested for performance and reliability. The water injected compressor system was compared with the oil injected and oil free compressor systems of the equivalent size including the economic analysis based on the lifecycle costs. Based on the obtained results, it was concluded that water injected screw compressor systems could be designed to deliver clean air free of oil contamination with a better user value proposition than the oil injected or oil free screw compressor systems over the considered range of operations.

  14. Evaluation of a subsurface oxygenation technique using colloidal gas aphron injections into packed column reactors

    International Nuclear Information System (INIS)

    Bioremediation may be a remedial technology capable of decontaminating subsurface environments. The objective of this research was to evaluate the use of colloidal gas aphron (CGA) injection, which is the injection of micrometer-size air bubbles in an aqueous surfactant solution, as a subsurface oxygenation technique to create optimal growth conditions for aerobic bacteria. Along with this, the capability of CGAs to act as a soil-washing agent and free organic components from a coal tar-contaminated matrix was examined. Injection of CGAs may be useful for remediation of underground coal gasification (UCG) sites. Because of this, bacteria and solid material from a UCG site located in northeastern Wyoming were used in this research. Colloidal gas aphrons were generated and pumped through packed column reactors (PCRS) containing post-burn core materials. For comparison, PCRs containing sand were also studied. Bacteria from this site were tested for their capability to degrade phenol, a major contaminant at the UCG site, and were also used to bioaugment the PCR systems. In this study we examined: (1) the effect of CGA injection on dissolved oxygen concentrations in the PCR effluents, (2) the effect of CGA, H2O2, and phenol injections on bacterial populations, (3) the stability and transport of CGAs over distance, and (4) CGA injection versus H2O2 injection as an oxygenation technique

  15. Aging study of boiling water reactor high pressure injection systems

    International Nuclear Information System (INIS)

    The purpose of high pressure injection systems is to maintain an adequate coolant level in reactor pressure vessels, so that the fuel cladding temperature does not exceed 1,200 degrees C (2,200 degrees F), and to permit plant shutdown during a variety of design basis loss-of-coolant accidents. This report presents the results of a study on aging performed for high pressure injection systems of boiling water reactor plants in the United States. The purpose of the study was to identify and evaluate the effects of aging and the effectiveness of testing and maintenance in detecting and mitigating aging degradation. Guidelines from the United States Nuclear Regulatory Commission's Nuclear Plant Aging Research Program were used in performing the aging study. Review and analysis of the failures reported in databases such as Nuclear Power Experience, Licensee Event Reports, and the Nuclear Plant Reliability Data System, along with plant-specific maintenance records databases, are included in this report to provide the information required to identify aging stressors, failure modes, and failure causes. Several probabilistic risk assessments were reviewed to identify risk-significant components in high pressure injection systems. Testing, maintenance, specific safety issues, and codes and standards are also discussed

  16. An emergency water injection system (EWIS) for future CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Andre L.F. [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil). E-mail: momarques@uol.com.br; Todreas, Neil E.; Driscoll, Michael J. [Massachusetts Inst.of Tech., Cambridge, MA (United States). Nuclear Engineering Dept.

    2000-07-01

    This paper deals with the investigation of the feasibility and effectiveness of water injection into the annulus between the calandria tubes and the pressure tubes of CANDU reactors. The purpose is to provide an efficient decay heat removal process that avoids permanent deformation of pressure tubes severe accident conditions, such as loss of coolant accident (LOCA). The water injection may present the benefit of cost reduction and better actuation of other related safety systems. The experimental work was conducted at the Massachusetts Institute of Technology (MIT), in a setup that simulated, as close as possible, a CANDU bundle annular configuration, with heat fluxes on the order of 90 kW/m{sup 2}: the inner cylinder simulates the pressure tube and the outer tube represents the calandria tube. The experimental matrix had three dimensions: power level, annulus water level and boundary conditions. The results achieved overall heat transfer coefficients (U), which are comparable to those required (for nominal accident progression) to avoid pressure tube permanent deformation, considering current CANDU reactor data. Nonetheless, future work should be carried out to investigate the fluid dynamics such as blowdown behavior, in the peak bundle, and the system lay-out inside the containment to provide fast water injection. (author)

  17. Counter-current flow limitations during hot leg injection in pressurized water reactors

    International Nuclear Information System (INIS)

    A one-dimensional model is presented to predict counter-current flow limitations during hot leg injection in pressurized water reactors. Different from previous models, it may also be applied in case of high Froude numbers of the liquid flow, such as to be expected in the case of emergency coolant injection through the hot leg. The model has been verified with an extensive experimental program performed in the WENKA test facility at the Forschungszentrum Karlsruhe. Typical flow regimes were investigated for a wide range of flow conditions, simulated with air and water at ambient pressure and temperature, in a simplified Pressurized Water Reactor (PWR) hot leg geometry. Depending on the water and air flow rates, flow phenomena such as a hydraulic jump and flow reversal were experimentally observed. The theoretical model shows that not only the nondimensional superficial velocities of liquid and gas, but also the Froude number of the liquid at the injection point and the Reynolds number of the gas play an important role for the prediction of flow reversal. In case of a high liquid inlet Froude number, a flow reversal could only be observed if the liquid flow became locally subcritical, i.e. if a hydraulic jump occurred in the channel. The flow reversal is predicted by the presented model with good accuracy

  18. Air Flow and Gassing Potential in Micro-injection Moulding

    DEFF Research Database (Denmark)

    Griffithsa, C.A.; Dimova, S.S.; Scholz, S.; Tosello, Guido

    Process monitoring of micro injection moulding (μ-IM) is of crucial importance in understanding the effects of different parameter settings on the process, especially on its performance and consistency in regards to parts’ quality. Quality factors related to mould cavity air evacuation can provide...

  19. Different types of cryogenics Pellet injection systems (PIS for fusion reactor

    Directory of Open Access Journals (Sweden)

    Devarshi Patel

    2014-05-01

    Full Text Available Fusion reactor is the one of the most capable option for generating the large amount of energy in future. Fusion means joining smaller nuclei (the plural of nucleus to make a larger nucleus and release energy in the form of neutrons.The sun uses nuclear fusion of hydrogen atoms into helium atoms. This gives off heat and light and other radiation. Hydrogen is used as the fuel in the fusion reactor. We have to inject the solid hydrogen pellet into the tokamak as per the requirement. For injecting the pellet we use the pellet injection system. Pellet injection system (PIS is the fuel injection system of the fusion reactor.

  20. Experimental Investigations of Micro Air Injection to Control Rotating Stall

    Institute of Scientific and Technical Information of China (English)

    Chaoqun Nie; Zhiting Tong; Shaojuan Geng; Junqiang Zhu; Weiguang Huang

    2007-01-01

    Steady discrete micro air injection at the tip region in front of the first compressor rotor has been proved to be an effective method to delay the inception of rotating stall in a low speed axial compressor. Considering the practical application a new type of micro injector was designed and described in this paper, which was imbedded in the casing and could be moved along the chord. In order to verify its feasibility to other cases, such as high subsonic axial compressor or centrifugal compressor, some other cases have been studied. Experimental results of the same low speed axial compressor showed that the new injector could possess many other advantages besides successfully stabilizing the compressor. Experiments performed on a high subsonic axial compressor confirmed the effectiveness of micro air injection when the relative velocity at the blade tip is high subsonic. Meanwhile in order to explore its feasibility in centrifugal compressor, a similar micro injector was designed and tested on a low speed centrifugal compressor with vaned diffuser. The injected mass flow was a bit larger than that used in axial compressors and the results showed micro injection could also delay the onset of rotating stall in the centrifugal compressor.

  1. Steady Thermal Field Simulation of Forced Air-cooled Column-type Air-core Reactor

    Institute of Scientific and Technical Information of China (English)

    DENG Qiu; LI Zhenbiao; YIN Xiaogen; YUAN Zhao

    2013-01-01

    Modeling the steady thermal field of the column-type air-core reactor,and further analyzing its distribution regularity,will help optimizing reactor design as well as improving its quality.The operation mechanism and inner insulation structure of a novel current limiting column-type air-core reactor is introduced in this paper.The finite element model of five encapsulation forced air-cooled column type air-core reactor is constructed using Fluent.Most importantly,this paper present a new method that,the steady thermal field of reactor working under forced air-cooled condition is simulated without arbitrarily defining the convection heat transfer coefficient for the initial condition; The result of the thermal field distribution shows that,the maximum steady temperature rise of forced air-cooled columntype air-core reactor happens approximately 5% to its top.The law of temperature distribution indicates:In the 1/3part of the reactor to its bottom,the temperature will rise rapidly to the increasing of height,yet the gradient rate is gradually decreasing; In the 5 % part of the reactor to its top,the temperature will drop rapidly to the increasing of height; In the part between,the temperature will rise slowly to the increasing of height.The conclusion draws that more thermal withstand capacity should be considered at the 5 % part of the reactor to its top to achieve optimal design solution.

  2. Domestic wastewater treatment by a submerged MBR (membrane bio-reactor) with enhanced air sparging.

    Science.gov (United States)

    Chang, I S; Judd, S J

    2003-01-01

    The air sparging technique has been recognised as an effective way to control membrane fouling. However, its application to a submerged MBR (Membrane Bio-Reactor) has not yet been reported. This paper deals with the performances of air sparging on a submerged MBR for wastewater treatment. Two kinds of air sparging techniques were used respectively. First, air is injected into the membrane tube channels so that mixed liquor can circulate in the bioreactor (air-lift mode). Second, a periodic air-jet into the membrane tube is introduced (air-jet mode). Their applicability was evaluated with a series of lab-scale experiments using domestic wastewater. The flux increased from 23 to 33 l m(-2) h(-1) (43% enhancement) when air was injected for the air-lift module. But further increase of flux was not observed as the gas flow increased. The Rc/(Rc+Rf), ratio of cake resistance (Rc) to sum of Rc and Rf (internal fouling resistance), was 23%, indicating that the Rc is not the predominant resistance unlike other MBR studies. It showed that the cake layer was removed sufficiently due to the air injection. Thus, an increase of airflow could not affect the flux performance. The air-jet module suffered from a clogging problem with accumulated sludge inside the lumen. Because the air-jet module has characteristics of dead end filtration, a periodic air-jet was not enough to blast all the accumulated sludge out. But flux was greater than in the air-lift module if the clogging was prevented by an appropriate cleaning regime such as periodical backwashing. PMID:12926682

  3. An Innovative Reactor Technology to Improve Indoor Air Quality

    Energy Technology Data Exchange (ETDEWEB)

    Rempel, Jane [TIAX LLC., Lexington, MA (United States)

    2013-03-30

    As residential buildings achieve tighter envelopes in order to minimize energy used for space heating and cooling, accumulation of indoor air pollutants such as volatile organic compounds (VOCs), becomes a major concern causing poor air quality and increased health risks. Current VOC removal methods include sorbents, ultraviolet photocatalytic oxidation (UVPCO), and increased ventilation, but these methods do not capture or destroy all VOCs or are prohibitively expensive to implement. TIAX's objective in this program was to develop a new VOC removal technology for residential buildings. This novel air purification technology is based on an innovative reactor and light source design along with UVPCO properties of the chosen catalyst to purify indoor air and enhance indoor air quality (IAQ). During the program we designed, fabricated and tested a prototype air purifier to demonstrate its feasibility and effectiveness. We also measured kinetics of VOC destruction on photocatalysts, providing deep insight into reactor design.

  4. Optimization of air ducts for nuclear reactor power generation station

    International Nuclear Information System (INIS)

    In the optimization study on the heating, ventilating and air conditions system in Nuclear Reactor Power Generation Station, proper arrangement of air ducts has been studied using the experimental and analytical investigation from a viewpoint of duct arrangement optimization. This study consists of two parts. Part I is optimization of air ducts in the corridors and Part II is optimization of air duct in each room. In part I, from viewpoints of confinement of radioactive materials in facilities having possible radioactive contamination and improvement of thermal environment for workers, the authors have studied air ducts system in which fresh air is supplied to corridors and heat removal and ventilation for each room are performed by transferring air from the corridors, instead of current ducts system with supply duct to each room. In part II, the condenser room with complex configuration and large space, and the electrical equipment room with simple space are selected for model areas. Based on these studies, experimental and analytical investigation (using a three-dimensional thermal hydraulic analysis) technique has been established, and the effective design method for duct arrangement of HVAC design has been verified for Boiling Water Reactor Power Station. The air-duct arrangements optimized in this study are applied to an Advanced Boiling Water Reactor Power Station in trial and reduction of the air-duct quantity is confirmed

  5. Development of poison injection code-COPJET for high pressure liquid poison injection in pressure tube type heavy water reactor

    International Nuclear Information System (INIS)

    Shut Down System-2 (SDS-2) in advanced vertical pressure tube type reactor, provides rapid reactor shutdown by high pressure injection of a neutron absorbing liquid called poison, into the moderator in the calandria. Poison inside the calandria is distributed by poison jets issued from holes provided in the injection tubes. Effectiveness of the system depends on the rate and spread of the poison in the moderator. In this study, a transient one-dimensional (1-D) hydraulic code, COPJET is developed, to predict the performance of system by predicting poison jet length with time. Validation of the COPJET is done with the data available in literature. Thereafter, it is applied for poison jet length prediction of advanced vertical pressure type reactor. (author)

  6. STUDY ON AIR INGRESS MITIGATION METHODS IN THE VERY HIGH TEMPERATURE GAS COOLED REACTOR (VHTR)

    Energy Technology Data Exchange (ETDEWEB)

    Chang H. Oh

    2011-03-01

    -ingress mitigation methods are proposed in this study. Among them, the following two mitigation ideas are extensively investigated using computational fluid dynamic codes (CFD): (1) helium injection in the lower plenum, and (2) reactor enclosure opened at the bottom. The main idea of the helium injection method is to replace air in the core and the lower plenum upper part by buoyancy force. This method reduces graphite oxidation damage in the severe locations of the reactor inside. To validate this method, CFD simulations are addressed here. A simple 2-D CFD model is developed based on the GT-MHR 600MWt design. The simulation results showed that the helium replace the air flow into the core and significantly reduce the air concentration in the core and bottom reflector potentially protecting oxidation damage. According to the simulation results, even small helium flow was sufficient to remove air in the core, mitigating the air-ingress successfully. The idea of the reactor enclosure with an opening at the bottom changes overall air-ingress mechanism from natural convection to molecular diffusion. This method can be applied to the current system by some design modification of the reactor cavity. To validate this concept, this study also uses CFD simulations based on the simplified 2-D geometry. The simulation results showed that the enclosure open at the bottom can successfully mitigate air-ingress into the reactor even after on-set natural circulation occurs.

  7. Design guide for category VI reactors: air-cooled graphite reactors

    International Nuclear Information System (INIS)

    The purpose of this Design Guide is to provide additional guidance to aid the DOE facility contractor in meeting the requirement that the siting, design, construction, modification, operation, maintenance, and decommissioning of DOE-owned air-cooled graphite reactors be in accordance with generally uniform standards, guides, and codes which are comparable to those applied to similar reactors licensed by the Nuclear Regulatory Commission

  8. Investigation of vessel exterior air cooling for a HLMC reactor

    International Nuclear Information System (INIS)

    The Secure Transportable Autonomous Reactor (STAR) concept under development at Argonne National Laboratory provides a small (300 MWt) reactor module for steam supply that incorporates design features to attain proliferation resistance, heightened passive safety, and improved cost competitiveness through extreme simplification. Examples are the achievement of 100%+ natural circulation heat removal from the low power density/low pressure drop ultra-long lifetime core and utilization of lead-bismuth eutectic (LBE) coolant enabling elimination of main coolant pumps as well as the need for an intermediate heat transport circuit. It is required to provide a passive means of removing decay heat and effecting reactor cooldown in the event that the normal steam generator heat sink, including its normal shutdown heat removal mode, is postulated to be unavailable. In the present approach, denoted as the Reactor Exterior Cooling System (RECS), passive decay heat removal is provided by cooling the outside of the containment/guard vessel with air. RECS is similar to the Reactor Vessel Auxiliary Cooling System (RVACS) incorporated into the PRISM design. However, to enhance the heat removal, RECS incorporates fins on the containment vessel exterior to enhance heat transfer to air as well as removable steel venetian conductors that provide a conduction heat transfer path across the reactor vessel-containment vessel gap to enhance heat transfer between the vessels. The objective of the present work is to investigate the effectiveness of air cooling in removing heat from the vessel and limiting the coolant temperature increase following a sudden complete loss of the steam generator heat sink

  9. Development of a hydrodynamic model for air-lift reactors

    OpenAIRE

    Carvalho E.; Camarasa E.; Meleiro L.A.C.; Maciel Filho R.; Domingues A.; Vial Ch.; Wild G.; Poncin S.; Midoux N.; Bouillard J.

    2000-01-01

    In this paper, a 1D hydrodynamic model has been developed for gas hold-up and liquid circulation velocity prediction in air-lift reactors. The model is based on momentum balance equations and has been adjusted to experimental data collected on a pilot plant reactor equipped with two types of gas distributors and using water and water/butanol as the liquid phase. Different techniques of signal analysis have also been applied to pressure fluctuations in order to extract information about flow r...

  10. Development of a hydrodynamic model for air-lift reactors

    Directory of Open Access Journals (Sweden)

    Carvalho E.

    2000-01-01

    Full Text Available In this paper, a 1D hydrodynamic model has been developed for gas hold-up and liquid circulation velocity prediction in air-lift reactors. The model is based on momentum balance equations and has been adjusted to experimental data collected on a pilot plant reactor equipped with two types of gas distributors and using water and water/butanol as the liquid phase. Different techniques of signal analysis have also been applied to pressure fluctuations in order to extract information about flow regimes and regime transitions. A good knowledge of the flow pattern is essential to establish adequate correlations for the hydrodynamic model.

  11. Temperature distribution in graphite during annealing in air cooled reactors

    International Nuclear Information System (INIS)

    A model for the evaluation temperature distributions in graphite during annealing operation in graphite. Moderated an-cooled reactors, is presented. One single channel and one dimension for air and graphite were considered. A numerical method based on finite control volumes was used for partioning the mathematical equations. The problem solution involves the use of unsteady equations of mass, momentum and energy conservation for air, and energy conservation for graphite. The source term was considered as stored energy release during annealing for describing energy conservation in the graphite. The coupling of energy conservation equations in air and graphite is performed by the heat transfer term betwen air and graphite. The results agree with experimental data. A sensitivity analysis shown that the termal conductivity of graphite and the maximum inlet channel temperature have great effect on the maximum temperature reached in graphite during the annealing. (author)

  12. Studies on air ingress for pebble bed reactors

    International Nuclear Information System (INIS)

    A loss-of-coolant accident (LOCA) has been considered a critical event for helium-cooled pebbled bed reactors. Following helium depressurization, it is anticipated that unless countermeasures are taken air will enter the core through the break and then by molecular diffusion and ultimately by natural convection leading to oxidation of the in-core graphite structure and graphite pebbles. Thus, without any mitigating features a LOCA will lead to an air ingress event. The INEEL is studying such an event with two well-respected light water reactor transient response codes: RELAP5/ATHENA and MELCOR. To study the degree of graphite oxidation occurring due to an air ingress event, a MELCOR model of a reference pebble bed design was constructed. A modified version of MELCOR developed at INEEL, which includes graphite oxidation capabilities, and molecular diffusion of air into helium was used for these calculations. Results show that the lower reflector graphite consumes all of the oxygen before reaching the core. The results also show a long time delay between the time that the depressurization phase of the accident is over and the time that natural circulation air through the core occurs. (author)

  13. Application of macro-cellular SiC reactor to diesel engine-like injection and combustion conditions

    Science.gov (United States)

    Cypris, Weclas, M.; Greil, P.; Schlier, L. M.; Travitzky, N.; Zhang, W.

    2012-05-01

    One of novel combustion technologies for low emissions and highly efficient internal combustion engines is combustion in porous reactors (PM). The heat release process inside combustion reactor is homogeneous and flameless resulting in a nearly zero emissions level. Such combustion process, however is non-stationary, is performed under high pressure with requirement of mixture formation directly inside the combustion reactor (high pressure fuel injection). Reactor heat capacity resulting in lowering of combustion temperature as well as internal heat recuperation during the engine cycle changes the thermodynamic conditions of the process as compared to conventional engine. For the present investigations a macro-cellular lattice structure based on silicon carbide (non-foam structure) with 600 vertical cylindrical struts was fabricated and applied to engine-like combustion conditions (combustion chamber). The lattice design with a high porosity > 80% was shaped by indirect three-dimensional printing of a SiC powder mixed with a dextrin binder which also serves as a carbon precursor. In order to perform detailed investigations on low-and high-temperature oxidation processes in porous reactors under engine-like conditions, a special combustion chamber has been built and equipped with a Diesel common-rail injection system. This system simulates the thermodynamic conditions at the time instance of injection onset (corresponding to the nearly TDC of compression in a real engine). Overall analysis of oxidation processes (for variable initial pressure, temperature and air excess ratio) for free Diesel spray combustion and for combustion in porous reactor allows selection of three regions representing different characteristics of the oxidation process represented by a single-step and multi-step reactions Another characteristic feature of investigated processes is reaction delay time. There are five characteristic regions to be selected according to the delay time (t) duration

  14. Thermal Analysis of Air-Core Power Reactors

    OpenAIRE

    Zhao Yuan; Jun-jia He; Yuan Pan; Xiao-gen Yin; Can Ding; Shao-fei Ning; Hong-lei Li

    2013-01-01

    A fluid-thermal coupled analysis based on FEM is conducted. The inner structure of the coils is built with consideration of both the structural details and the simplicity; thus, the detailed heat conduction process is coupled with the computational fluid dynamics in the thermal computation of air-core reactors. According to the simulation results, 2D temperature distribution results are given and proved by the thermal test results of a prototype. Then the temperature results are used to calcu...

  15. Experimental study on two-dimensional film flow with lateral air injection

    International Nuclear Information System (INIS)

    Recently developed advanced nuclear reactors incorporate new safety components where multi-dimensional two-phase phenomena occur. In the downcomer of the reactor vessel, which adopts the direct vessel injection (DVI) system of the emergency core coolant (ECC), the downward flow of the ECC interacts with the transverse steam flow during the reflood phase of the large break loss-of-coolant accident (LBLOCA). Since these phenomena cannot be reproduced appropriately by one-dimensional system analysis codes, the advanced thermal-hydraulic modelling used in Computational Multi-Fluid Dynamics (CMFD) codes, or the multi-dimensional module of the safety analysis code, is required for the safety assessment of the system. Prior to the application of the multi-dimensional simulation tools, however, the constitutive models implemented in the codes for a two-phase flow need to be carefully validated, such as the interfacial friction factor and interfacial heat transfer coefficient. The present paper describes a preliminary experiment for a two-dimensional film flow, which was performed to provide the validation data for the interfacial friction factor models of multi-dimensional two-phase equations. A rectangular test section, which simulates an unfolded downcomer annulus, was devised. It was conducted to investigate the momentum transfer between the downward liquid film and the lateral air flow. The working fluids for the test were air and water. For the measurement of the local velocity and thickness of the liquid film, volume particle image velocimetry (PIV) and an ultrasonic thickness gauge were applied, respectively. This paper presents the measurement method and experimental data for the local variables of the liquid film and the uncertainty analysis result. (author)

  16. Thermionic plasma injection for the Lockheed Martin T4 Compact Fusion Reactor experiment

    Science.gov (United States)

    Heinrich, Jonathon

    2015-11-01

    Lockheed Martin's Compact Fusion Reactor (CFR) concept relies on diamagnetic confinement in a magnetically encapsulated linear ring cusp geometry. Plasma injection into cusp field configurations requires careful deliberation. Previous work has shown that axial injection via a plasma gun is capable of achieving high-beta conditions in cusp configurations. We present a pulsed, high power thermionic plasma source and the associated magnetic field topology for plasma injection into the caulked-cusp magnetic field. The resulting plasma fueling and cross-field diffusion is discussed.

  17. Co-injection of air and steam for the prevention of the downward migration of DNAPLs during steam enhanced extraction: an experimental evaluation of optimum injection ratio predictions.

    Science.gov (United States)

    Kaslusky, Scott F; Udell, Kent S

    2005-05-01

    When steam is injected into soil containing a dense volatile non-aqueous phase liquid contaminant, the DNAPL vaporized within the heated soil region condenses and accumulates ahead of the steam condensation front. If enough DNAPL accumulates, gravitational forces can overcome trapping forces allowing the liquid contaminant to flow downward. By injecting air with steam, a portion of the DNAPL vapor remains suspended in equilibrium with the air, decreasing liquid contaminant accumulation ahead of the steam condensation front, and thus reducing the possibility of downward migration. In a previous work, a theoretical model was developed to predict the optimum injection ratio of air to steam that would eliminate accumulation of DNAPL ahead of the temperature front and thus minimize the potential for downward migration. In this work, the theoretical model is summarized, and an experiment is presented in order to evaluate the optimum injection ratio prediction. In the experiment, a two-dimensional water saturated sand pack is contaminated with a known mass of TCE (DNAPL). The system is then remediated by co-injecting air and steam at the predicted optimum injection ratio, calculated based on the average contaminant soil concentration in the sand pack. Results for the co-injection of air and steam are compared to results for the injection of pure steam or pure air. Injection at the predicted optimum injection ratio for a volumetric average NAPL saturation, reduced accumulation of the contaminant ahead of the condensation front by over 90%, as compared to steam injection alone. This indicates that the optimum injection ratio prediction is a valuable tool for limiting the spreading of DNAPL during steam-enhanced extraction. Injection at the optimum injection ratio resulted in earlier recovery of contaminant than for steam injection alone. Co-injection of steam and air is also shown to result in much higher recovery rates than air injection alone. PMID:15854722

  18. Co-injection of air and steam for the prevention of the downward migration of DNAPLs during steam enhanced extraction: An experimental evaluation of optimum injection ratio predictions

    Science.gov (United States)

    Kaslusky, Scott F.; Udell, Kent S.

    2005-05-01

    When steam is injected into soil containing a dense volatile non-aqueous phase liquid contaminant, the DNAPL vaporized within the heated soil region condenses and accumulates ahead of the steam condensation front. If enough DNAPL accumulates, gravitational forces can overcome trapping forces allowing the liquid contaminant to flow downward. By injecting air with steam, a portion of the DNAPL vapor remains suspended in equilibrium with the air, decreasing liquid contaminant accumulation ahead of the steam condensation front, and thus reducing the possibility of downward migration. In a previous work, a theoretical model was developed to predict the optimum injection ratio of air to steam that would eliminate accumulation of DNAPL ahead of the temperature front and thus minimize the potential for downward migration. In this work, the theoretical model is summarized, and an experiment is presented in order to evaluate the optimum injection ratio prediction. In the experiment, a two-dimensional water saturated sand pack is contaminated with a known mass of TCE (DNAPL). The system is then remediated by co-injecting air and steam at the predicted optimum injection ratio, calculated based on the average contaminant soil concentration in the sand pack. Results for the co-injection of air and steam are compared to results for the injection of pure steam or pure air. Injection at the predicted optimum injection ratio for a volumetric average NAPL saturation, reduced accumulation of the contaminant ahead of the condensation front by over 90%, as compared to steam injection alone. This indicates that the optimum injection ratio prediction is a valuable tool for limiting the spreading of DNAPL during steam-enhanced extraction. Injection at the optimum injection ratio resulted in earlier recovery of contaminant than for steam injection alone. Co-injection of steam and air is also shown to result in much higher recovery rates than air injection alone.

  19. Experimentally Measured Interfacial Area during Gas Injection into Saturated Porous Media: An Air Sparging Analogy

    Energy Technology Data Exchange (ETDEWEB)

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H., Bromhal, Grant

    2010-01-01

    The amount of interfacial area (awn) between air and subsurface liquids during air-sparging can limit the rate of site remediation. Lateral movement within porous media could be encountered during air-sparging operations when air moves along the bottom of a low-permeability lens. This study was conducted to directly measure the amount of awn between air and water flowing within a bench-scale porous flow cell during the lateral movement of air along the upper edge of the cell during air injections into an initially water-saturated flow cell. Four different cell orientations were used to evaluate the effect of air injection rates and porous media geometries on the amount of awn between fluids. Air was injected at flow rates that varied by three orders of magnitude, and for each flow cellover this range of injection rates little change in awn was noted. A wider variation in awn was observed when air moved through different regions for the different flow cell orientations. These results are in good agreement with the experimental findings of Waduge et al. (2007), who performed experiments in a larger sand-pack flow cell, and determined that air-sparging efficiency is nearly independent of flow rate but highly dependent on the porous structure. By directly measuring the awn, and showing that awn does not vary greatly with changes in injection rate, we show that the lack of improvement to remediation rates is because there is a weak dependence of the awn on the air injection rate.

  20. Direct energy conversion and neutral beam injection for catalyzed D and D-3He tokamak reactors

    International Nuclear Information System (INIS)

    The calculated performance of single stage and Venetian blind direct energy converters for Catalyzed D and D-3He Tokamak reactors are discussed. Preliminary results on He pumping are outlined. The efficiency of D and T neutral beam injection is reviewed

  1. Injection method and device for solid fuel for use in thermonuclear reactor

    International Nuclear Information System (INIS)

    Solid fuels are injected into plasmas of a reactor core of a thermonuclear reactor at a predetermined high speed, thereby enabling to conduct a steady operation of the thermonuclear reactor. That is, oxygen and hydrogen are reacted in an aluminium capsule, to result in high temperature steams and the high temperature steams are reacted chemically with aluminium of the capsule, to form high temperature hydrogen. The hydrogen is jetted, and the solid fuels attached to the top end of the capsule are jetted into a reactor core at a high speed. In addition, since the injection device has a shape of a rocket, it can be sent at a required moment. Then, a continuous steady operation in the thermonuclear reactor can be attained. Further, since it has such a constitution that solid fuels are contained in the nuclear fuel containing vessel, and oxygen and hydrogen are contained in the injection fuel containing vessel independently in the capsule, it is not unreasonable theoretically, thereby enabling to increase the speed of the deuterium ice or tritium ice to a predetermined value easily. (N.H.)

  2. Analytical model for performance verification of liquid poison injection system of a nuclear reactor

    International Nuclear Information System (INIS)

    Highlights: • One-dimensional modelling of shut down system-2. • Semi-empirical correlation poison jet progression. • Validation of code. - Abstract: Shut down system-2 (SDS-2) in advanced vertical pressure tube type reactor, provides rapid reactor shutdown by high pressure injection of a neutron absorbing liquid called poison, into the moderator in the calandria. Poison inside the calandria is distributed by poison jets issued from holes provided in the injection tubes. Effectiveness of the system depends on the rate and spread of the poison in the moderator. In this study, a transient one-dimensional (1D) hydraulic code, COPJET is developed, to predict the performance of system by predicting progression of poison jet with time. Validation of the COPJET is done with the data available in literature. Thereafter, it is applied for advanced vertical pressure type reactor

  3. Sample and injection manifolds used to in-place test of nuclear air-cleaning system

    International Nuclear Information System (INIS)

    Objective: According to the regulations of nuclear safety rules and related standards, in-place test of the nuclear air-cleaning systems should be carried out before and during operation of the nuclear facilities, which ensure them to be in good condition. In some special conditions, the use of sample and injection manifolds is required to make the test tracer and ventilating duct air fully mixed, so as to get the on-spot typical sample. Methods: This paper introduces the technology and application of the sample and injection manifolds in nuclear air-cleaning system. Results: Multi point injection and multi point sampling technology as an effective experimental method, has been used in a of domestic and international nuclear facilities. Conclusion: The technology solved the problem of uniformly of on-spot injection and sampling,which plays an important role in objectively evaluating the function of nuclear air-cleaning system. (authors)

  4. Electroremediation of air pollution control residues in a continuous reactor

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Ferreira, Célia M. D.; Hansen, Henrik K.;

    2010-01-01

    Air pollution control (APC) residue from municipal solid waste incineration is considered hazardous waste due to its alkalinity and high content of salts and mobile heavy metals. Various solutions for the handling of APC-residue exist, however most commercial solutions involve landfilling. A demand...... were made with raw residue, water-washed residue, acid washed residue and acid-treated residue with emphasis on reduction of heavy metal mobility. Main results indicate that the reactor successfully removes toxic elements lead, copper, cadmium and zinc from the feed stream, suggesting...

  5. TFTR [Tokamak Fusion Test Reactor] neutral beam injected power measurement

    International Nuclear Information System (INIS)

    Energy flow within TFTR neutral beamlines is measured with a waterfall calorimetry system capable of simultaneously measuring the energy deposited within four heating beamlines (three ion sources each), or of measuring the energy deposited in a separate neutral beam test stand. Of the energy extracted from the ion source in the well instrumented test stand, 99.5 +- 3.5% can be accounted for. When the ion deflection magnet is energized, however, 6.5% of the extracted energy is lost. This loss is attributed to a spray of devious particles onto unmonitored surfaces. A 30% discrepancy is also observed between energy measurements on the internal beamline calorimeter and energy measurements on a calorimeter located in the test stand target chamber. Particle reflection from the flat plate calorimeter in the target chamber, which the incident beam strikes at a near-grazing angle of 12/degree/, is the primary loss of this energy. A slight improvement in energy accountability is observed as the beam pulse length is increased. This improvement is attributed to systematic error in the sensitivity of the energy measurement to small fluctuations on the supply water temperature. An overall accuracy of 15% is estimated for the total power injected into TFTR. Contributions to this error are uncertainties in the beam neutralization efficiency, reionization and beam scrape-off in the drift duct, and fluctuations in the temperature of the supply water. 28 refs., 9 figs., 1 tab

  6. Influence of ethanol-amine injection on flow accelerated corrosion rate in pressurized water reactor

    International Nuclear Information System (INIS)

    Some pressurized water reactor (PWR) plants have introduced ethanol-amine (ETA) injection for the purpose of decreasing iron transfer in steam generator (SG). The ETA injection is supposed to decrease flow accelerated corrosion (FAC) rate, because of secondary system pH increase. But the water chemistry in the secondary system is very complicated. So water chemistry following ETA injection and the effect of ETA injection on FAC rate have not been studied systematically. To assess the influence of ETA injection on FAC rate, it is assumed that the model of FAC rate is proportional to the concentration gradient of magnetite. Then chemical concentration and magnetite solubility of the secondary system are calculated and the change of FAC rate is evaluated in the outline. It has been clarified that the effect of ETA injection reduces the FAC rate to about 1/3-1/22 of that of ammonia. In some portions of the secondary system, the effects of ETA injection have been measured experimentally by rotary disk test. The FAC rate of ETA injection is larger than that of ammonia at high temperature. And the FAC rate peaks at about 180degC in the case of ammonia, but the peak seems to shift to higher temperatures in the case of ETA. (author)

  7. Influence of ethanol-amine injection on flow accelerated corrosion rate in pressurized water reactor

    International Nuclear Information System (INIS)

    Some pressurized water reactor (PWR) plants have introduced ethanol-amine (ETA) injection for the purpose of decreasing iron transfer in the steam generator (SG). The ETA injection is supposed to decrease the rate of flow accelerated corrosion (FAC) by increasing the pH of the secondary system. However, the water chemistry in the secondary system is very complicated and so water chemistry following ETA injection and the effect of ETA injection on FAC rate have not been studied systematically. To assess the influence of ETA injection on FAC rate, we use a model that assumes the FAC rate is proportional to the concentration gradient of magnetite. We then calculate the chemical concentration and magnetite solubility of the secondary system and approximately evaluate the change of FAC rate. It is shown that ETA injection reduces the FAC rate to about 1/3 - 1/22 of that of ammonia. In some portions of the secondary system, we also measured the effects of ETA injection experimentally by rotating disk test, and found that the FAC rate decreases under ETA conditions. The peak FAC rate shifted to a higher temperature after ETA injection. At 274degC, the FAC rates are nearly the same under the conditions of high pH of ETA and low pH of ammonia. (author)

  8. STEAM INJECTION INTO FRACTURED LIMESTONE AT LORING AIR FORCE BASE

    Science.gov (United States)

    A research project on steam injection for the remediation of spent chlorinated solvents from fractured limestone was recently undertaken at the former Loring AFB in Limestone, ME. Participants in the project include the Maine Department of Environmental Protection, EPA Region I,...

  9. Experimental feasibility study of radial injection cooling of three-pad radial air foil bearings

    Science.gov (United States)

    Shrestha, Suman K.

    Air foil bearings use ambient air as a lubricant allowing environment-friendly operation. When they are designed, installed, and operated properly, air foil bearings are very cost effective and reliable solution to oil-free turbomachinery. Because air is used as a lubricant, there are no mechanical contacts between the rotor and bearings and when the rotor is lifted off the bearing, near frictionless quiet operation is possible. However, due to the high speed operation, thermal management is one of the very important design factors to consider. Most widely accepted practice of the cooling method is axial cooling, which uses cooling air passing through heat exchange channels formed underneath the bearing pad. Advantage is no hardware modification to implement the axial cooling because elastic foundation structure of foil bearing serves as a heat exchange channels. Disadvantage is axial temperature gradient on the journal shaft and bearing. This work presents the experimental feasibility study of alternative cooling method using radial injection of cooling air directly on the rotor shaft. The injection speeds, number of nozzles, location of nozzles, total air flow rate are important factors determining the effectiveness of the radial injection cooling method. Effectiveness of the radial injection cooling was compared with traditional axial cooling method. A previously constructed test rig was modified to accommodate a new motor with higher torque and radial injection cooling. The radial injection cooling utilizes the direct air injection to the inlet region of air film from three locations at 120° from one another with each location having three axially separated holes. In axial cooling, a certain axial pressure gradient is applied across the bearing to induce axial cooling air through bump foil channels. For the comparison of the two methods, the same amount of cooling air flow rate was used for both axial cooling and radial injection. Cooling air flow rate was

  10. Investigation of air entrapment and weld line defects in micro injection moulded thermoplastic elastomer micro rings

    DEFF Research Database (Denmark)

    Hasnaes, F.B.; Tosello, Guido; Calaon, Matteo;

    2015-01-01

    The micro injection moulding (μIM) process for the production of micro rings in thermoplastic elastomers (TPE) was investigated and optimized. The objective was to minimize the formation of air entrapments and the depth of micro weld line created on the surface of the TPE micro moulded rings. The...... placement. The μIM processing parameters had a large influence on the weld line depth and the air entrapment. In particular, it was found that low settings of the injection speed and of the clamping force increased the air evacuation from the cavity, thus minimizing the weld line depth and the presence of...

  11. Theoretical analysis of ablative effects on behaviour of railguns for pellet injection on fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Becherini, G.; Raugi, M.; Tellini, A. (Accademia Navale, Livorno (Italy) Pisa Univ. (Italy). Dip. Sistemi Elettrici e Automazione)

    1992-05-01

    The behaviour analysis of arc-driven railguns injecting solid hydrogen macroparticles into fusion reactors is carried out by taking into account the effects of the drag force and ablation. The examined railguns deliver pellets whose velocity and mass are required by fusion reactor prototypes presently investigated. The characteristic quantities of the plasma armature are evaluated by means of an a-dimensional model. The behaviour of the device, with saboted and unsaboted pellets, is analyzed for different launch currents and for rails of different materials.

  12. Different types of cryogenics Pellet injection systems (PIS) for fusion reactor

    OpenAIRE

    Devarshi Patel; Alkesh Mavani

    2014-01-01

    Fusion reactor is the one of the most capable option for generating the large amount of energy in future. Fusion means joining smaller nuclei (the plural of nucleus) to make a larger nucleus and release energy in the form of neutrons.The sun uses nuclear fusion of hydrogen atoms into helium atoms. This gives off heat and light and other radiation. Hydrogen is used as the fuel in the fusion reactor. We have to inject the solid hydrogen pellet into the tokamak as per the require...

  13. Application of macro-cellular SiC reactor to diesel engine-like injection and combustion conditions

    OpenAIRE

    Cypris, Jochen; Weclas, Miroslaw; Greil, Peter; Schlier, Lorenz M.; Travitzky, Nahum; Zhang, W

    2012-01-01

    One of novel combustion technologies for low emissions and highly efficient internal combustion engines is combustion in porous reactors (PM). The heat release process inside combustion reactor is homogeneous and flameless resulting in a nearly zero emissions level. Such combustion process, however is non-stationary, is performed under high pressure with requirement of mixture formation directly inside the combustion reactor (high pressure fuel injection). Reactor heat capacity resulting in l...

  14. Simultaneous inversion of air-injection tests in fractured unsaturated tuff at Yucca Mountain

    Science.gov (United States)

    Huang, K.; Tsang, Y. W.; Bodvarsson, G. S.

    1999-08-01

    Air-injection tests are being used to characterize the flow characteristics of the fractured volcanic tuffs at Yucca Mountain, Nevada, the proposed site for a high-level nuclear waste repository. As the air component flows mainly in the heterogeneous fracture system, air-injection tests can be used to determine the hydrological properties and parameters of the fracture networks. In situ air-injection tests have been carried out in 30 boreholes drilled in a fractured rock block of 13 × 21.5 × 18 m3 in the underground facility at Yucca Mountain. These in situ field tests consist of a constant rate flow injection in one of the boreholes, while the pressure response is monitored in all 30 boreholes of the rock block. This paper presents a simultaneous inversion for 21 air-injection tests in 21 separate boreholes using TOUGH2, a three-dimensional numerical code for multiphase, multicomponent transport [Pruess, 1991; Pruess et al., 1996]. Spatially variable fracture permeability is used as an adjustable parameter to fit the measured pressure responses. For most of the pneumatic experiments the calculated pressure changes match the measured data well. Estimated permeabilities range over 5 orders of magnitude, from 10-15 to 8 × 10-11 m2, indicating large spatial variability in permeability of the heterogeneous fracture system.

  15. Experimental studies on in-bundle ECCS injection for Advanced Heavy Water Reactor

    International Nuclear Information System (INIS)

    The Advanced Heavy Water Reactor (AHWR) being designed at BARC is an innovative reactor with Thorium utilization as its major objective. It has many advanced passive safety features. One such feature is passive injection of emergency coolant after postulated Loss of Coolant Accident (LOCA). A novel feature of this injection scheme is that the injection does not take place in the header/plenum as in other reactors, but directly in to the bundle. For this purpose, the fuel cluster incorporates a central water rod which communicates with the ECCS header. The water rod extends along full length of the fuel cluster. In event of LOCA in the Main Heat Transport (MHT) system, ECC water flows from the accumulator to the water rod through ECCS header. The water flows into the bundle through holes in the water rod. The AHWR fuel cluster has fuel pins arranged in three concentric rings (of 12, 18 and 24 pins) around the central rod. While it is ensured that water does reach the fuel cluster, whether it reaches the outer ring of pins is needs investigation as the pins are closely spaced (1-3 mm gap between adjacent rods). The objective of the present experiments is to determine under what conditions (ECC flow and decay heat), the ECC water is able to rewet and cool all the fuel pins. The experiments have been done in a short, instrumented fuel bundle simulating the geometry of the AHWR fuel cluster

  16. Chaotic behavior of water column oscillator simulating pressure balanced injection system in passive safety reactor

    International Nuclear Information System (INIS)

    Japan Atomic Energy Research Institute (JAERI) proposed a passive safety reactor called the System-integrated Pressurized Water Reactor (SPWR). In a loss of coolant accident, the Pressurizing Line (PL) and the Injection Line (IL) are passively opened. Vapor generated by residual heat pushes down the water level in the Reactor Vessel (RV). When the level is lower than the inlet of the PL, the vapor is ejected into the Containment Vessel (CV) through the PL. Then boronized water in the CV is injected into the RV through the IL by the static head. In an experiment using a simple apparatus, gas ejection and water injection were found to occur alternately under certain conditions. The gas ejection interval was observed to fluctuate considerably. Though stochastic noise affected the interval, the experimental results suggested that the large fluctuation was produced by an inherent character in the system. A set of piecewise linear differential equations was derived to describe the experimental result. The large fluctuation was reproduced in the analytical solution. Thus it was shown to occur even in a deterministic system without any source of stochastic noise. Though the derived equations simulated the experiment well, they had ten independent parameters governing the behavior of the solution. There appeared chaotic features and bifurcation, but the analytical model was too complicated to examine the features and mechanism of bifurcation. In this study, a new simple model is proposed which consists of a set of piecewise linear ordinary differential equations with only four independent parameters. (authors)

  17. Enhanced oil recovery: air injection in a Potiguar basin light oil reservoir

    International Nuclear Information System (INIS)

    The feasibility of air injection, at reservoir temperature and pressure, is studied with a view towards enhanced oil recovery from the Potiguar Basin (Brazil). The aim is to inject air in such a way that almost all oxygen is consumed and the residual gas, basically nitrogen, displaces the oil. In this work, the reactivity of crude oil samples is studied at conditions of Low Temperature Oxidation (LTO). As a first step, the kinetic and equilibrium properties are measured using a variable volume PVT glass equilibrium cell, which enabled to simultaneously observe the sample and measure the reaction rates and phase compositions, needed for estimating oxygen consumption. Different strategies are then studied for enhanced recovery by water and air injection, using a commercial reservoir simulator for thermal processes. The results show that it was possible to delineate an optimum strategy for LTO recovery of light crude oils. (author)

  18. Functional analysis of embolism induced by air injection in Acer rubrum and Salix nigra

    OpenAIRE

    Peter Jegsen Melcher; Maciej Andrzej Zwieniecki

    2013-01-01

    The goal of this study was to assess the effect of induced embolism with air injection treatments on the function of xylem in Acer rubrum L. and Salix nigra Marsh. Measurements made on mature trees of A. rubrum showed that pneumatic pressurization treatments that created a pressure gradient of 5.5 MPa across pit membranes (DPpit) had no effect on stomatal conductance or on branch-level sap flow. The same air injection treatments made on three year old potted A. rubrum plants also had no eff...

  19. Experiments on air bubbles injection into a vertical shell and coiled tube heat exchanger; exergy and NTU analysis

    International Nuclear Information System (INIS)

    Highlights: • Air bubbles injection was employed to enhance the performance of a vertical shell and coiled tube heat exchanger. • Air bubbles were injected into the shell side of heat exchanger via a new method at different conditions. • NTU enhancement and Exergy loss due to air bubbles injection were studied. • Present type of air bubble injection significantly increased the amount NTU and performance of heat exchanger. - Abstract: In this paper, attempts are made to increase the number of thermal units (NTU) and performance in a vertical shell and coiled tube heat exchanger via air bubble injection into the shell side of heat exchanger. Besides, exergy loss due to air bubble injection is investigated. Indeed, air bubble injection and bubbles mobility (because of buoyancy force) can intensify the NTU and exergy loss by mixing the thermal boundary layer and increasing the turbulence level of the fluid flow. Air bubbles were injected inside the heat exchanger via a special method and at new different conditions in this paper. It was demonstrated that the amount of NTU and effectiveness can be significantly improved due to air bubbles injection

  20. In-reactor simulation study of zinc injection to reduce radioactive corrosion product transport in PWRs

    International Nuclear Information System (INIS)

    Corrosion products containing transition metal elements that deposit in core become radioactive and then are released and redeposited on components such as steam generators, pumps, and coolant piping are a significant source of radiation exposure to workers in commercial power reactors. A number of strategies have been developed to reduce the buildup of radiation fields, including careful control of primary coolant chemistry. In pressurized water reactors (PWRs) it has been found that controlling pH between 7.2 and 7.4 (at 300 degrees C) results in much slower field buildup than is experienced at lower pH. However, the lithium hydroxide levels required to maintain this pH at the beginning of cycle when high-boron content is required for reactivity control have been implicated in primary-side stress corrosion cracking (PWSCC) of Inconel 600 steam generator tubing. Based on experience in boiling water reactors and laboratory tests, zinc injection has been proposed in PWRs to both control radiation field buildup more effectively than pH control alone and to reduce the incidence of PWSCC. This paper describes an in-pile simulation experiment designed to investigate the efficacy of zinc injection in reducing radiation field buildup

  1. Mitigation of tip vortex cavitation by means of air injection on a Kaplan turbine scale model

    International Nuclear Information System (INIS)

    Kaplan turbines operating at full-load conditions may undergo excessive vibration, noise and cavitation. In such cases, damage by erosion associated to tip vortex cavitation can be observed at the discharge ring. This phenomenon involves design features such as (1) overhang of guide vanes; (2) blade profile; (3) gap increasing size with blade opening; (4) suction head; (5) operation point; and (6) discharge ring stiffness, among others. Tip vortex cavitation may cause erosion at the discharge ring and draft tube inlet following a wavy pattern, in which the number of vanes can be clearly identified. Injection of pressurized air above the runner blade centerline was tested as a mean to mitigate discharge ring cavitation damage on a scale model. Air entrance was observed by means of a high-speed camera in order to track the air trajectory toward its mergence with the tip vortex cavitation core. Post-processing of acceleration signals shows that the level of vibration and the RSI frequency amplitude decrease proportionally with air flow rate injected. These findings reveal the potential mitigating effect of air injection in preventing cavitation damage and will be useful in further tests to be performed on prototype, aiming at determining the optimum air flow rate, size and distribution of the injectors

  2. A Study of Performance Output of a Multivane Air Engine Applying Optimal Injection and Vane Angles

    Directory of Open Access Journals (Sweden)

    Bharat Raj Singh

    2012-01-01

    Full Text Available This paper presents a new concept of the air engine using compressed air as the potential power source for motorbikes, in place of an internal combustion engine. The motorbike is proposed to be equipped with an air engine, which transforms the energy of the compressed air into mechanical motion energy. A mathematical model is presented here, and performance evaluation is carried out on an air-powered novel air turbine engine. The maximum power output is obtained as 3.977 kW (5.50 HP at the different rotor to casing diameter ratios, optimal injection angle 60°, vane angle 45° for linear expansion (i.e., at minimum air consumption when the casing diameter is kept 100 mm, at injection pressure 6 bar (90 psi and speed of rotation 2500 rpm. A prototype air engine is built and tested in the laboratory. The experimental results are also seen much closer to the analytical values, and the performance efficiencies are recorded around 70% to 95% at the speed of rotation 2500–3000 rpm.

  3. Ultrasonic measurement of gap between calandria tube and liquid injection nozzle in CANDU reactor

    International Nuclear Information System (INIS)

    Calandria tube wrapping each pressure tube is one of the key structural components of CANDU reactor(Calandria) which is consisted of many pressure tubes containing nuclear fuel assemblies. As the Calandria tube(made of zirconium alloy) is sagging due to its thermal and irradiation creep during the plant operation, ti possibly contacts with liquid injection nozzle crossing beneath the Calandria tube, which subsequently results in difficulties on the safe operation. It is therefore necessary to check the gap for the confirmation of no contacts between the two tubes, Calandria tube and liquid injection tube, with a proper measure during the life of plant. In this study, an ultrasonic measurement method was selected among several methods investigated. The ultrasonic device being developed for the measurement of the gap was introduced and its preliminary performance test results were presented here. The gap between LIN and CT at site was measured using by this ultrasonic device at site

  4. Sequential Injection Determination of D-Glucose by Chemiluminescence Using an Open Tubular Immobilised Enzyme Reactor

    DEFF Research Database (Denmark)

    Liu, Xuezhu; Hansen, Elo Harald

    1996-01-01

    A sequential injection analysis system is described that incorporates a nylon tubular reactor containing immobilised glucose oxidase, allowing determination of D-glucose by means of subsequent luminol chemiluminescence detection of the hydrogen peroxide generated in the enzymatic reaction. The...... operating parameters were optimised by fractional factorial screening and response surface modelling. The linear range of D-glucose determination was 30-600 mu M, With a detection limit of 15 mu M using a photodiode detector. The sampling frequency was 54 h(-1). Lower LOD (0.5 mu M D-glucose) could be...

  5. A simulation Model of the Reactor Hall Ventilation and air Conditioning Systems of ETRR-2

    International Nuclear Information System (INIS)

    Although the conceptual design for any system differs from one designer to another. each of them aims to achieve the function of the system required. the ventilation and air conditioning system of reactors hall is one of those systems that really differs but always dose its function for which it is designed. thus, ventilation and air conditioning in some reactor hall constitute only one system whereas in some other ones, they are separate systems. the Egypt Research Reactor-2 (ETRR-2)represents the second type. most studies conducted on ventilation and air conditioning simulation models either in traditional building or for research rectors show that those models were not designed similarly to the model of the hall of ETRR-2 in which ventilation and air conditioning constitute two separate systems.besides, those studies experimented on ventilation and air conditioning simulation models of reactor building predict the temperature and humidity inside these buildings at certain outside condition and it is difficult to predict when the outside conditions are changed . also those studies do not discuss the influences of reactor power changes. therefore, the present work deals with a computational study backed by infield experimental measurements of the performance of the ventilation and air conditioning systems of reactor hall during normal operation at different outside conditions as well as at different levels of reactor power

  6. Multi-Dimensional Modeling of the Effects of Air Jet and Split Injection on Combustion and Emission of DirectInjection Diesel Engine

    Directory of Open Access Journals (Sweden)

    Mehdi Mansury

    2016-01-01

    Full Text Available One of the most important problems in reducing the emissions of diesel engines is to exchange between the oxides of nitrogen and soot emissions. Fuel multiple injection and air injection into combustion chamber are among the most powerful tools to concurrent reduction of these two emissions. In this research, the effect of multiple injection and air injection on combustion and emission parameters has been studied by AVL fire computational fluid dynamic software. Six states of base and modified combustion chamber have been studied in two different injection patterns including 90 (25 10 and 75 (25 25 mods. Results show that concurrent applying of both multiple injection and air injection methods has resulted in simultaneous reduction of oxide nitrogen and soot pollutants and a negligible loss is seen in the operational parameters of engine. Compression between six studied cases show that the 90 (25 10 mode of injection with modified combustion chamber is the optimum mode by decreasing of soot and oxides of nitrogen emissions about 29% and 20% respectively and 6% indicated power loss in compression to the base combustion chamber and single injection mode. The obtained results from the computational fluid dynamic code have been compared with the existing results in the technical literature and show acceptable behavior.

  7. [Steam and air co-injection in removing TCE in 2D-sand box].

    Science.gov (United States)

    Wang, Ning; Peng, Sheng; Chen, Jia-Jun

    2014-07-01

    Steam and air co-injection is a newly developed and promising soil remediation technique for non-aqueous phase liquids (NAPLs) in vadose zone. In this study, in order to investigate the mechanism of the remediation process, trichloroethylene (TCE) removal using steam and air co-injection was carried out in a 2-dimensional sandbox with different layered sand structures. The results showed that co-injection perfectly improved the "tailing" effect compared to soil vapor extraction (SVE), and the remediation process of steam and air co-injection could be divided into SVE stage, steam strengthening stage and heat penetration stage. Removal ratio of the experiment with scattered contaminant area was higher and removal speed was faster. The removal ratios from the two experiments were 93.5% and 88.2%, and the removal periods were 83.9 min and 90.6 min, respectively. Steam strengthened the heat penetration stage. The temperature transition region was wider in the scattered NAPLs distribution experiment, which reduced the accumulation of TCE. Slight downward movement of TCE was observed in the experiment with TCE initially distributed in a fine sand zone. And such downward movement of TCE reduced the TCE removal ratio. PMID:25244869

  8. Laboratory investigation of air injection process for depleted light oil reservoirs

    International Nuclear Information System (INIS)

    Air injection into light oil reservoirs is now a proven field technique, because of its unlimited availability and low access cost of the injectant. Laboratory experimental set up was developed to understand air injection process, assess oxygen consumption and to sustain the combustion front for improving oil recovery from depleted light oil reservoirs. Non-Isothermal experiments from 40-500 degree C and a pressure of 300 and 500 psig were conducted. Unconsolidated formation impregnated with light crude oil was used in these experiments. Oxidation of the impregnated formation for sustaining the combustion front through the combustion cell carried out by injecting synthetic air (79% nitrogen and 21% oxygen). The produced combustion gases such as carbon dioxide, carbon monoxide, oxygen and nitrogen were analyzed using Gas Chromatograph with thermal conductivity detector. Higher consumption of oxygen was observed at a temperature immediately after an ignition of oil, generating high temperature oxidation zone. This also resulted more efficient carbon oxides, and created an oil bank ahead of thermal front. (author)

  9. High-Pressure Air Injection on a Low-Head Francis Turbine

    Science.gov (United States)

    von Fellenberg, S.; Häussler, W.; Michler, W.

    2014-03-01

    Birecik is a Turkish hydroelectric power plant located at the Euphrat River in the southeast of Turkey. During commissioning of the units, a vibration phenomenon was discovered, restricted to a small power band. The cone which supports the thrust bearing and which is braced against the turbine head cover started to vibrate at its natural frequency. Investigations showed the vibrations to be innocuous to the lifetime of the machine. Exhaustive vibration measurements on site pointed to hydraulic source for the vibration. Detailed flow simulations by means of computational fluid dynamics (CFD) were carried out. They permitted the detailed analysis of a variety of transient flow phenomena happening inside the machine. They revealed the presence of interblade vortices in the power and head range where the vibrations occurred. As a consequence, it was suggested to inject air downstream of the wicket gates through the head cover. In 2012, one unit of the Birecik power plant was equipped with such an air injection system. As soon as the air injection was turned on, the machine operated calmly in the small power band where vibrations had been observed before. The necessary air volume was considerably smaller than expected to be necessary for a calm operation.

  10. High-Pressure Air Injection on a Low-Head Francis Turbine

    International Nuclear Information System (INIS)

    Birecik is a Turkish hydroelectric power plant located at the Euphrat River in the southeast of Turkey. During commissioning of the units, a vibration phenomenon was discovered, restricted to a small power band. The cone which supports the thrust bearing and which is braced against the turbine head cover started to vibrate at its natural frequency. Investigations showed the vibrations to be innocuous to the lifetime of the machine. Exhaustive vibration measurements on site pointed to hydraulic source for the vibration. Detailed flow simulations by means of computational fluid dynamics (CFD) were carried out. They permitted the detailed analysis of a variety of transient flow phenomena happening inside the machine. They revealed the presence of interblade vortices in the power and head range where the vibrations occurred. As a consequence, it was suggested to inject air downstream of the wicket gates through the head cover. In 2012, one unit of the Birecik power plant was equipped with such an air injection system. As soon as the air injection was turned on, the machine operated calmly in the small power band where vibrations had been observed before. The necessary air volume was considerably smaller than expected to be necessary for a calm operation

  11. Passive core injection system with steam driven jet pump for next generation nuclear reactors

    International Nuclear Information System (INIS)

    The steam driven jet pump (SDJP) is a device without moving parts, in which steam is used as an energy source to pump cold water from a pressure much lower than the steam pressure to a pressure higher than the steam pressure. In this study, a design of a passive core injection system (PCIS) with SDJP is given for application to Boiling Water Reactor (BWR). The operation range of PCIS depends on the operation characteristics of the SDJP. Thus, the operation characteristics of the SDJP has been investigated in terms of independent parameters, such as water temperature, pressure, and steam inlet pressure which is the driving force of the SDJP to obtain a wide operation range. The water tank pressure is chosen as 320 kPa to increase the maximum operation pressure of the SDJP. The supply water temperature is chosen as 15 deg. C which is about room temperature, and the steam which comes from the reactor pressure vessel is assumed as saturated. The operation range of the SDJP in terms of the steam inlet pressure is obtained from 2 to 10.5 MPa. The study shows that when the discharge pressure increases, the discharge mass flow rate and the temperature increases as well. The probabilistic reliability of the PCIS with the SDJP is assessed as well. The reliability assessment of the PCIS with SDJP is investigated using a fault tree, and compared with the core injection system with turbine-driven pump. It is found that the PCIS with SDJP is more reliable than the core injection system with turbine-driven pump

  12. Computational Modeling and Simulations of Hydrodynamics for Air-Water External Loop Airlift Reactors

    OpenAIRE

    Law, Deify

    2010-01-01

    External loop airlift reactors are widely used for biochemical applications such as syngas fermentation and wastewater treatment. To further understand the inherent gas-liquid flow physics within the reactors, computational modeling and simulations of hydrodynamics for air-water external loop airlift reactors were investigated. The gas-liquid flow dynamics in a bubble column were simulated using a FORTRAN code developed by Los Alamos National Laboratory, CFDLib, which employs an Eulerian-Eule...

  13. Effect of double air injection on performance characteristics of centrifugal compressor

    Science.gov (United States)

    Hirano, Toshiyuki; Takano, Mizuki; Tsujita, Hoshio

    2015-02-01

    In the operation of a centrifugal compressor of turbocharger, instability phenomena such as rotating stall and surge are induced at a lower flow rate close to the maximum pressure ratio. In this study, for the suppression of surge phenomenon resulting in the extension of the stable operating range of centrifugal compressor to lower flow rate, the compressed air at the compressor exit was re-circulated and injected into the impeller inlet by using the double injection nozzle system. The experiments were performed to find out the optimum circumferential position of the second nozzle relative to the fixed first one and the optimum inner diameter of the injection nozzles, which are able to most effectively reduce the flow rate of surge inception. Moreover, in order to examine the universality of these optimum values, the experiments were carried out for two types of compressors.

  14. A DETAILED EXPERIMENTAL INVESTIGATION ON HOT AIR ASSISTED TURPENTINE DIRECT INJECTED COMPRESSION IGNITION ENGINE

    Directory of Open Access Journals (Sweden)

    KARTHIKEYAN.R,

    2010-10-01

    Full Text Available In the present investigation, a diesel engine modified for turpentine direct injection (TDI has been tested to study turpentine oil behavior in compression ignition engine. Since, turpentine possesses low cetane number fails to auto ignite while DI. Hence, the test engine was modified to supply hot air during suction stroke, whichhelps to auto-ignite the injected turpentine. The engine with this facility was operated using turpentine under various load conditions and at various intake temperatures. The results of the investigation were proved that turpentine could be direct injectable in a regular diesel engine after little engine modification. This method showed almost same BTE at full load compared to standard diesel operation. Except NOx emission other emissions were found closer to diesel baseline operation. This mode offered almost 50% smoke free operation at all loads compared to standard diesel operation. Also, this method successfully proved the complete replacement of diesel fuel by turpentine oil.

  15. Analysis of Incomplete Filling Defect for Injection-Molded Air Cleaner Cover Using Moldflow Simulation

    OpenAIRE

    Hyeyoung Shin; Eun-Soo Park

    2013-01-01

    A large-sized cover part for air cleaner was injection molded with ABS resin, and its incomplete filling defect was analyzed using commercial Moldflow software. To investigate the effect of processing temperature on incomplete filling defect, tensile properties, weight loss, and phase separation behavior of ABS resin were evaluated. The tensile properties of dumbbell samples were not changed up to 250°C and decreased significantly thereafter. SEM micrographs indicated no significant changes ...

  16. Removal of NAPLs from the unsaturated zone using steam: prevention of downward migration by injecting mixtures of steam and air

    DEFF Research Database (Denmark)

    Schmidt, R.; Gudbjerg, Jacob; Sonnenborg, Torben Obel;

    2002-01-01

    Steam injection for remediation of porous media contaminated by nonaqueous phase liquids has been shown to be a potentially efficient technology. There is, however, concern that the technique may lead to downward migration of separate phase contaminant. In this work, a modification of the steam...... injection technology is presented, where a mixture of steam and air was injected. In twodimensional experiments with unsaturated porous medium contaminated with nonaqueous phase liquids, it was demonstrated how injection of pure steam lead to severe downward migration. Similar experiments, where steam and...... air were injected simultaneously, resulted in practically no downward migration and still rapid cleanup was achieved. The processes responsible for the prevention of downward migration when injecting steam–air mixtures were analyzed using a nonisothermal multiphase flow and transport model. Hereby...

  17. Mixing of an Airblast-atomized Fuel Spray Injected into a Crossflow of Air

    Science.gov (United States)

    Leong, May Y.; McDonell, Vincent G.; Samuelsen, G. Scott

    2000-01-01

    The injection of a spray of fuel droplets into a crossflow of air provides a means of rapidly mixing liquid fuel and air for combustion applications. Injecting the liquid as a spray reduces the mixing length needed to accommodate liquid breakup, while the transverse injection of the spray into the air stream takes advantage of the dynamic mixing induced by the jet-crossflow interaction. The structure of the spray, formed from a model plain-jet airblast atomizer, is investigated in order to determine and understand the factors leading to its dispersion. To attain this goal, the problem is divided into the following tasks which involve: (1) developing planar imaging techniques that visualize fuel and air distributions in the spray, (2) characterizing the airblast spray without a crossflow, and (3) characterizing the airblast spray upon injection into a crossflow. Geometric and operating conditions are varied in order to affect the atomization, penetration, and dispersion of the spray into the crossflow. The airblast spray is first characterized, using imaging techniques, as it issues into a quiescent environment. The spray breakup modes are classified in a liquid Reynolds number versus airblast Weber number regime chart. This work focuses on sprays formed by the "prompt" atomization mode, which induces a well-atomized and well-dispersed spray, and which also produces a two-lobed liquid distribution corresponding to the atomizing air passageways in the injector. The characterization of the spray jet injected into the crossflow reveals the different processes that control its dispersion. Correlations that describe the inner and outer boundaries of the spray jet are developed, using the definition of a two-phase momentum-flux ratio. Cross-sections of the liquid spray depict elliptically-shaped distributions, with the exception of the finely-atomized sprays which show kidney-shaped distributions reminiscent of those obtained in gaseous jet in crossflow systems. A droplet

  18. Anticipated transient without scram analysis of the simplified boiling water reactor following main steam isolation valve closure with boron injection

    International Nuclear Information System (INIS)

    The simplified boiling water reactor (SBWR) operating in natural circulation is designed with many passive safety features. An anticipated transient without scram (ATWS) initiated by inadvertent closure of the main steam isolation valve (MSIV) in an SBWR has been analyzed using the RAMONA-4B code of Brookhaven National Laboratory. This analysis demonstrates the predicted performance of the SBWR during an MSIV closure ATWS, followed by shutdown of the reactor through injection of boron into the reactor core from the standby liquid control system

  19. Assessment of MARS for downcomer multi-dimensional thermal hydraulics during LBLOCA reflood using KAERI air-water direct vessel injection tests

    International Nuclear Information System (INIS)

    The MARS code has been assessed for the downcomer multi-dimensional thermal hydraulics during a large break loss-of-coolant accident (LBLOCA) reflood of Korean Next Generation Reactor (KNGR) that adopted an upper direct vessel injection (DVI) design. Direct DVI bypass and downcomer level sweep-out tests carried out at 1/50-scale air-water DVI test facility are simulated to examine the capability of MARS. Test conditions are selected such that they represent typical reflood conditions of KNGR, that is, DVI injection velocities of 1.0 ∼ 1.6 m/sec and air injection velocities of 18.0 ∼ 35.0 m/sec, for single and double DVI configurations. MARS calculation is first adjusted to the experimental DVI film distribution that largely affects air-water interaction in a scaled-down downcomer, then, the code is assessed for the selected test matrix. With some improvements of MARS thermal-hydraulic (T/H) models, it has been demonstrated that the MARS code is capable of simulating the direct DVI bypass and downcomer level sweep-out as well as the multi-dimensional thermal hydraulics in downcomer, where condensation effect is excluded. (authors)

  20. Air quality impact analysis in support of the new production reactor environmental impact statement

    International Nuclear Information System (INIS)

    The Pacific Northwest Laboratory (PNL) conducted this air quality impact analysis for the US Department of Energy (DOE). The purpose of this work was to provide Argonne National Laboratory (ANL) with the required estimates of ground-level concentrations of five criteria air pollutants at the Hanford Site boundary from each of the stationary sources associated with the new production reactor (NPR) and its supporting facilities. The DOE proposes to provide new production capacity for the primary production of tritium and secondary production of plutonium to support the US nuclear weapons program. Three alternative reactor technologies are being considered by DOE: the light-water reactor, the low-temperature, heavy-water reactor, and the modular high-temperature, gas-cooled reactor. In this study, PNL provided estimates of the impacts of the proposed action on the ground-level concentration of the criteria air pollutants for each of the alternative technologies. The criteria pollutants were sulfur dioxide, nitrogen dioxide, carbon monoxide, total suspended particulates, and particulates with a diameter of less than 10 microns. Ground-level concentrations were estimated for the peak construction phase activities expected to occur in 1997 and for the operational phase activities beginning in the year 2000. Ground-level concentrations of the primary air pollutants were estimated to be well below any of the applicable national or state ambient air quality standards. 12 refs., 19 tabs

  1. Hot air injection for removal of dense, non-aqueous-phase liquid contaminants from low-permeability soils

    Energy Technology Data Exchange (ETDEWEB)

    Payne, F.C.

    1996-08-01

    The performance of soil vapor extraction systems for the recovery of volatile and semi-volatile organic compounds is potentially enhanced by the injection of heated air to increase soil temperatures. The soil temperature increase is expected to improve soil vapor extraction (SVE) performance by increasing target compound vapor pressures and by increasing soil permeability through drying. The vapor pressure increase due to temperature rise relieves the vapor pressure limit on the feasibility of soil vapor extraction. However, the system still requires an air flow through the soil system to deliver heat and to recover mobilized contaminants. Although the soil permeability can be increased through drying, very low permeability soils and low permeability soils adjacent to high permeability air flow pathways will be treated slowly, if at all. AR thermal enhancement methods face this limitation. Heated air injection offers advantages relative to other thermal techniques, including low capital and operation costs. Heated air injection is at a disadvantage relative to other thermal techniques due to the low heat capacity of air. To be effective, heated air injection requires that higher air flows be established than for steam injection or radio frequency heating. Heated air injection is not economically feasible for the stratified soil system developed as a standard test for this document. This is due to the inability to restrict heated air flow to the clay stratum when a low-resistance air flow pathway is available in the adjoining sand. However, the technology should be especially attractive, both technically and economically, for low-volatile contaminant recovery from relatively homogeneous soil formations. 16 refs., 2 tabs.

  2. Steam and air co-injection in removing residual TCE in unsaturated layered sandy porous media

    Science.gov (United States)

    Peng, Sheng; Wang, Ning; Chen, Jiajun

    2013-10-01

    Steam and air co-injection is a promising technique for volatile and semi-volatile organic contaminant remediation in heterogeneous porous media. In this study, removal of trichloroethene (TCE) with steam-air co-injection was investigated through a series of 2D sandbox experiments with different layered sand structures, and through numerical simulations. The results show that a layered structure with coarse sand, in which steam and air convection are relatively rapid, resulted in a higher removal rate and a larger removal ratio than those observed in an experiment using finer sand; however, the difference was not significant, and the removal ratios from three experiments ranged from 85% to 94%. Slight downward movement of TCE was observed for Experiment 1 (TCE initially in a fine sand zone encased in a coarse sand), while no such movement was observed for Experiment 2 (TCE initially in two fine sand layers encased in a coarse sand) or 3 (TCE initially in a silty sand zone encased in a coarse sand). Simulations show accumulation of TCE at the interface of the layered sands, which indicates a capillary barrier effect in restraining the downward movement of TCE. This effect is illustrated further by a numerical experiment with homogeneous coarse sand, in which continuous downward TCE movement to the bottom of the sandbox was simulated. Another numerical experiment with higher water saturation was also conducted. The results illustrate a complicated influence of water saturation on TCE removal in a layered sand structure.

  3. Instability Suppression in a Swirl-Stabilized Combustor Using Microjet Air Injection

    KAUST Repository

    LaBry, Zachary

    2010-01-04

    In this study, we examine the effectiveness of microjet air injection as a means of suppressing thermoacoustic instabilities in a swirl-stabilized, lean-premixed propane/air combustor. High-speed stereo PIV measurements, taken to explore the mechanism of combustion instability, reveal that the inner recirculation zone plays a dominant role in the coupling of acoustics and heat release that leads to combustion instability. Six microjet injector configurations were designed to modify the inner and outer recirculation zones with the intent of decoupling the mechanism leading to instability. Microjets that injected air into the inner recirculation zone, swirling in the opposite sense to the primary swirl were effective in suppressing combustion instability, reducing the overall sound pressure level by up to 17 dB within a certain window of operating conditions. Stabilization was achieved near an equivalence ratio of 0.65, corresponding to the region where the combustor transitions from a 40 Hz instability mode to a 110 Hz instability mode. PIV measurements made of the stabilized flow revealed significant modification of the inner recirculation zone and substantial weakening of the outer recirculation zone.

  4. Novel use of epidural catheter: Air injection for neuroprotection during radiofrequency ablation of spinal osteoid osteoma.

    Science.gov (United States)

    Doctor, J R; Solanki, S L; Patil, V P; Divatia, J V

    2016-01-01

    Osteoid osteoma (OO) is a benign bone tumor, with a male-female ratio of approximately 2:1 and mainly affecting long bones. Ten percent of the lesions occur in the spine, mostly within the posterior elements. Treatment options for OO include surgical excision and percutaneous imaging-guided radiofrequency ablation (RFA). Lesions within the spine have an inherent risk of thermal damage to the vital structure because of proximity to the neural elements. We report a novel use of the epidural catheter for air injection for the neuroprotection of nerves close to the OO of the spine. A 12-year-old and 30 kg male child with an OO of the L3 vertebra was taken up for RFA. His preoperative examinations were within normal limits. The OO was very close to the L3 nerve root. Under general anesthesia, lumbar epidural catheter was placed in the L3-L4 space under imaging guidance. Ten ml of aliquots of air was injected under imaging guidance to avoid injury to the neural structures due to RFA. The air created a gap between neural elements and the tumor and served as an insulating material thereby protecting the neural elements from damage due to the RFA. Postoperatively, the patient did not develop any neurological deficit. PMID:27375396

  5. Analysis of Incomplete Filling Defect for Injection-Molded Air Cleaner Cover Using Moldflow Simulation

    Directory of Open Access Journals (Sweden)

    Hyeyoung Shin

    2013-01-01

    Full Text Available A large-sized cover part for air cleaner was injection molded with ABS resin, and its incomplete filling defect was analyzed using commercial Moldflow software. To investigate the effect of processing temperature on incomplete filling defect, tensile properties, weight loss, and phase separation behavior of ABS resin were evaluated. The tensile properties of dumbbell samples were not changed up to 250°C and decreased significantly thereafter. SEM micrographs indicated no significant changes in the status of polybutadiene rubber phase below 250°C. These different test results indicated that ABS resin little affected the thermal decomposition in processing temperature range. The Moldflow simulation was performed using measured thickness of molded cover and actual mold design with the defects. As expected, the cover part showed unbalanced filling and incomplete sections. To improve these defects, two possible cases of hot runner system have been simulated. When applying modified 5-gate system, the maximum injection pressure was decreased approximately 5.5% more than that of actual gate system. In case of 6-gate system, the maximum injection pressure reduced by 23%, and the injection pressure required to fill is well within the range of the molding equipment. The maximum clamping force of 6-gate system was also significantly reduced than that of actual and 5-gate system.

  6. Air-stepping in neonatal rats: A comparison of L-dopa injection and olfactory stimulation.

    Science.gov (United States)

    Jamon, M; Maloum, I; Riviere, G; Bruguerolle, B

    2002-12-01

    The kinematic parameters of air-stepping induced by 2 methods known to elicit locomotion (olfactory stimulation vs. L-dopa injection) were compared in 3-day-old rats. In the 1st stage, suspended pups were induced to step with an olfactory stimulus of soiled shavings from the nest. In the 2nd stage, they received a subcutaneous injection of L-dopa. Their movements were faster, with a larger amplitude and a phase delay in ipsilateral coupling. Third, the olfactory stimulus was presented in conjunction with L-dopa. The characteristics of locomotion returned to the same level as with the olfactory stimulus alone. These results suggest that olfactory stimulation involves higher nerve centers able to modulate the dopaminergic pathways. They are discussed in relation to the neural structure involved in locomotion. PMID:12492300

  7. Analysis of Fuel Injection and Atomization of a Hybrid Air-Blast Atomizer.

    Science.gov (United States)

    Ma, Peter; Esclape, Lucas; Buschhagen, Timo; Naik, Sameer; Gore, Jay; Lucht, Robert; Ihme, Matthias

    2015-11-01

    Fuel injection and atomization are of direct importance to the design of injector systems in aviation gas turbine engines. Primary and secondary breakup processes have significant influence on the drop-size distribution, fuel deposition, and flame stabilization, thereby directly affecting fuel conversion, combustion stability, and emission formation. The lack of predictive modeling capabilities for the reliable characterization of primary and secondary breakup mechanisms is still one of the main issues in improving injector systems. In this study, an unstructured Volume-of-Fluid method was used in conjunction with a Lagrangian-spray framework to conduct high-fidelity simulations of the breakup and atomization processes in a realistic gas turbine hybrid air blast atomizer. Results for injection with JP-8 aviation fuel are presented and compared to available experimental data. Financial support through the FAA National Jet Fuel Combustion Program is gratefully acknowledged.

  8. Experimental research on the gravity-driven boron injection system for a 200 MW nuclear heating reactor

    International Nuclear Information System (INIS)

    The gravity-driven boron injection system (GDBIS), designed by the Institute of Nuclear Energy Technology (INET) of the Tsinghua University, PR China, is a new type of passive system to be applied in the 200 MW nuclear heating reactor (NHR-200), also designed by INET. The function of this system is to shut down the reactor in an emergency, in case control rods do not operate properly. A borate water tank is located 10 m above the top of the pressure vessel. When the pressure of the reactor and the boron tank balances, the borate water will be driven by gravity to flow into the reactor, and thus shut down the reactor. The thermal hydraulic performances of the system for cold (room temperature nitrogen) and hot (mixture of hot steam and nitrogen) operating conditions, especially the response time of pressure and water injection, have been researched under different initial conditions. Firstly, several factors, e.g. orifice on steam lines, and the volume ratio of the gas-steam spaces of the reactor and the boron tank, have effects on the pressure and water injection response time and other thermal hydraulic performance of the system. Secondly, the steam and liquid communication modes, namely the acting time and sequence of the action of valves connecting steam and liquid lines, have great influences on the performance of the system. Thirdly, the limited pressure balance time (about 1.0 s) can be achieved under the cold condition. This investigation shows that GDBIS can be properly used in the 200 MW nuclear heating reactor

  9. Study on a decay heat removal system of light water reactors using air coolers

    International Nuclear Information System (INIS)

    In the present work, a passive decay heat removal system for light water reactors (LWRs) based on a new concept is studied referring to an air cooling system (ACS) of the fast breeder reactor Monju. The present study will contribute to the reduction of severe accident risks of nuclear power plants. In this system, a blower for an air cooler (AC) is operated using the rotation of a small steam turbine by generated steam in order to cool heat transfer tubes by forced convection of air. The purpose of the present work is to investigate the plant transient caused by a station blackout (SBO) using the plant system code NETFLOW++ and decay heat removal characteristics. A calculation model is the Advanced Boiling Water Reactor (ABWR) in Japan. (author)

  10. Preliminary Design of KAIST Micro Modular Reactor with Dry Air Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Seung Joon; Bae, Seong Jun; Kim, Seong Gu; Lee, Jeong Ik [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    KAIST research team recently proposed a Micro Modular Reactor (MMR) concept which integrates power conversion unit (PCU) with the reactor core in a single module. Using supercritical CO{sub 2} as a working fluid of cycle can achieve physically compact size due to small turbomachinery and heat exchangers. The objective of this project is to develop a concept that can operate at isolated area. The design focuses especially on the operation in the inland area where cooling water is insufficient. Thus, in this paper the potential for dry air cooling of the proposed reactor will be examined by sizing the cooling system with preliminary approach. The KAIST MMR is a recently proposed concept of futuristic SMR. The MMR size is being determined to be transportable with land transportation. Special attention is given to the MMR design on the dry cooling, which the cooling system does not depend on water. With appropriately designed air cooling heat exchanger, the MMR can operate autonomously. Two types of air cooling methods are suggested. One is using fan and the other is utilizing cooling tower for the air flow. With fan type air cooling method it consumes about 0.6% of generated electricity from the nuclear reactor. Cooling tower occupies an area of 227 m{sup 2} and 59.6 m in height. This design is just a preliminary estimation of the dry cooling method, and therefore more detailed and optimal design will be followed in the next phase.

  11. Preliminary Design of KAIST Micro Modular Reactor with Dry Air Cooling

    International Nuclear Information System (INIS)

    KAIST research team recently proposed a Micro Modular Reactor (MMR) concept which integrates power conversion unit (PCU) with the reactor core in a single module. Using supercritical CO2 as a working fluid of cycle can achieve physically compact size due to small turbomachinery and heat exchangers. The objective of this project is to develop a concept that can operate at isolated area. The design focuses especially on the operation in the inland area where cooling water is insufficient. Thus, in this paper the potential for dry air cooling of the proposed reactor will be examined by sizing the cooling system with preliminary approach. The KAIST MMR is a recently proposed concept of futuristic SMR. The MMR size is being determined to be transportable with land transportation. Special attention is given to the MMR design on the dry cooling, which the cooling system does not depend on water. With appropriately designed air cooling heat exchanger, the MMR can operate autonomously. Two types of air cooling methods are suggested. One is using fan and the other is utilizing cooling tower for the air flow. With fan type air cooling method it consumes about 0.6% of generated electricity from the nuclear reactor. Cooling tower occupies an area of 227 m2 and 59.6 m in height. This design is just a preliminary estimation of the dry cooling method, and therefore more detailed and optimal design will be followed in the next phase

  12. Biogas upgrading by injection of hydrogen in a two-stage Continuous Stirred-Tank Reactor system

    DEFF Research Database (Denmark)

    Bassani, Ilaria; Kougias, Panagiotis; Treu, Laura;

    methanogens. In this study, a novel serial biogas reactor system is presented, in which the produced biogas from the first stage reactor was introduced in the second stage, where also H2 was injected. The effects of the H2 addition on the process performance and on the microbial community were investigated......An innovative method for biogas upgrading (i.e. CH4 content more than 90%) combines the coupling of H2, which could be produced by water electrolysis using surplus renewable electricity produced from wind mills, with the CO2 of the biogas. CO2 is biologically converted to CH4 by hydrogenotrophic...

  13. Absorbed neutron doses in air holes of fast neutron fields at the RB reactor

    International Nuclear Information System (INIS)

    Different experimental fast neutron fields are created at the RB reactor. The absorbed neutron doses in their air holes are determined on the basis of intermediate and fast neutron spectra measurements. The obtained results are analyzed in connection with application of these fields. (author)

  14. Bruce NGS A/B assessment of reactor vault fans on air mixing patterns

    International Nuclear Information System (INIS)

    The development and results of numerical simulations of air mixing patterns in the CANDU Bruce Nuclear Generating Station reactor vault, as a function of vault cooling fan combinations, are presented. The results of this analysis will serve as a basis for selecting appropriate fan combination scenarios to consider in the upcoming post-LOCA (loss of coolant) hydrogen-air-steam mixing analysis. Following a severe reactor accident in which fuel cooling is impaired, a significant amount of hydrogen may be produced from the steam/Zircaloy reaction and subsequently released into containment. The hydrogen ignition system mitigates the consequences of hydrogen burns to within acceptable safety limits. Igniters deliberately initiate a burn of the hydrogen-air-steam mixture as it reaches its flammability limits. However without adequate mixing, the igniters may become blinded by a region of non-flammable hydrogen mixture while an unfavourable hydrogen mixture forms elsewhere. The vault cooling fans play an important role in promoting mixing in the vault atmosphere. To help assess the effects of vault cooling fans on air mixing, an analysis was carried out to identify the air mixing patterns as a function of different fan availability combinations. The three-dimensional containment code, GOTHIC, was used to model the Bruce containment with modelling emphasis on the reactor vault geometry and the vault cooling system fans. Twenty-five fan combination air mixing simulations and eight tracer gas fan dispersion simulations were performed. The results showed that air mixing patterns created by individual fans can be superimposed to determine the effects of various fan combinations, there was symmetry of flow patterns between the west and east vault halves, and there was a general absence of significant stagnant regions in the reactor vault. 8 refs., 7 figs., 3 tabs

  15. Application of railgun principle to high-velocity hydrogen pellet injection for magnetic fusion reactor refueling: Technical progress report

    International Nuclear Information System (INIS)

    This paper discusses the use of a railgun accelerator to inject hydrogen pellets into a magnetic fusion reactor for refueling purposes. Specific studies in this paper include: 1.5 mm-diameter two-stage fuseless plasma-arc-driven electromagnetic railgun, construction and testing of a 3.2 mm-diameter two-stage railgun and a theoretical analysis of the behavior of a railgun plasma-arc armature inside a railgun

  16. Air-lift reactor system for the treatment of waste-gas-containing monochlorobenzene.

    Science.gov (United States)

    Joshi, Pradnya R; Deshmukh, Sharvari C; Morone, Amruta P; Kanade, Gajanan; Pandey, R A

    2013-01-01

    An air-lift bioreactor (ALR) system, applied for the treatment of waste-gas-containing monochlorobenzene (MCB) was seeded with pure culture of Acinetobacter calcoaceticus, isolated from soil as a starter seed. It was found that MCB was biologically converted to chloride as chloride was mineralized in the ALR. After the built up of the biomass in the ALR, the reactor parameters which have major influence on the removal efficiency and elimination capacity were studied using response surface methodology. The data generated by running the reactor for 150 days at varying conditions were fed to the model with a target to obtain the removal efficiency above 95% and the elimination capacity greater than 60%. The data analysis indicated that inlet loading was the major parameter affecting the elimination capacity and removal efficiency of >95%. The reactor when operated at optimized conditions resulted in enhanced performance of the reactor. PMID:24617061

  17. Multi-dimensional modelling of spray, in-cylinder air motion and fuel–air mixing in a direct-injection engine

    Indian Academy of Sciences (India)

    N Abani; S Bakshi; R V Ravikrishna

    2007-10-01

    In this work, three-dimensional fuel–air mixing inside a conventional spark ignition engine cylinder is simulated under direct injection conditions. The motivation is to explore retrofitting of conventional engines for direct injection to take advantage of low emissions and high thermal efficiency of the direct injection concept. Fuel–air mixing is studied at different loads by developing and applying a model based on the Lagrangian-drop and Eulerian-fluid (LDEF) procedure for modelling the two-phase flow. The Taylor Analogy Breakup (TAB) model for modelling the hollow cone spray and appropriate models for droplet impingement, drag and evaporation are used. Moving boundary algorithm and two-way interaction between both phases are implemented. Fuel injection timing and quantity is varied with load. Results show that near-stoichiometric fuel–air ratio region is observed at different locations depending on the load. The model developed serves to predict the fuel–air mixing spatially and temporally, and hence is a useful tool in design and optimization of direct injection engines with regards to injector and spark plug locations. Simulations over a range of speed and load indicate the need for a novel ignition strategy involving dual spark plugs and also provide guidelines in deciding spark plug locations.

  18. Thermal shock studies associated with injection of emergency core coolant in pressurized water reactors

    International Nuclear Information System (INIS)

    The LOCA-ECC Thermal Shock Program was established to investigate the potential for flaw propagation in pressurized-water reactor (PWR) vessels during injection of emergency core coolant following a loss-of-coolant accident. Studies thus far have included fracture mechanics analysis of typical PWRs, the design and construction of a thermal shock test facility, determination of material properties for thermal shock test specimens, and three thermal shock experiments. A potential for flaw propagation exists because a LOCA-ECC thermal shock would induce high tensile stresses in the inner portion of the vessel wall, and because the reduced temperature and eventually the fast neutron fluence would reduce the material toughness in the same area (belt-line region). Calculations indicate that present generation PWR vessels are not likely to experience crack initiation. However, earlier vessels, which have a relatively high concentration of copper impurity and thus tend to suffer greater radiation damage, are subject to propagation of preexisting flaws. Thus, an experimental verification of the methods of analysis (linear elastic fracture mechanics) was in order. The test specimens were hollow cylinders with a 530 mm OD (21-in.) and 150 mm wall (6-in.). They were fabricated from A508 class 2 material, and radiation embrittlement was simulated to some extent by using a quench-only heat treatment. The desired thermal shock was achieved by suddenly pumping a low temperature coolant through the initially hot test specimen. Coolant temperatures as low as -230C (-100F) have been used with a test specimen initial temperature of 2880C (5500F). The fluid-film heat transfer coefficient was controlled by adjusting the coolant velocity

  19. Electric Field Effects on an Injected Air Bubble at Detachment in a Low Gravity Environment

    Science.gov (United States)

    Iacona, Estelle; Herman, Cila; Chang, Shinan

    2002-01-01

    The objective of the study is to investigate the behavior of individual air bubbles injected through an orifice into an electrically insulating liquid under the influence of a static and uniform electric field. Bubble formation and detachment were visualized and recorded in microgravity using a high-speed video camera. Bubble volume, dimensions and contact angle at detachment were measured. In addition to the experimental studies, a simple model, predicting bubble characteristics at detachment was developed. The model, based on thermodynamic considerations, accounts for the level of gravity as well as the magnitude of the uniform electric field. Measured data and model predictions show good agreement, and indicate that the level of gravity and the electric field magnitude significantly affect bubble shape, volume and dimensions.

  20. LIFAC sorbent injection desulfurization demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    LIFAC combines upper-furnace limestone injection followed by post-furnace humidification in an activation reactor located between the air preheater and the ESP. The process produces a dry and stable waste product that is partially removed from the bottom of the activation reactor and partially removed at the ESP.

  1. Behavior of reactor core-simulant aerosols during hydrogen/air combustion

    International Nuclear Information System (INIS)

    Just before ignition, three representative reactor core-simulant aerosols were dispersed into combustible hydrogen-air mixtures contained in 5.1 and 0.18 m3 chambers. Oxidic aerosols (Al2O3, Fe2O3) produced only minor changes in the burns. A metallic aerosol (Fe) ignited along with the hydrogen, producing more complete combustion of the hydrogen, and substantially increased overpressures and thermal effects compared to control experiments performed identically without the aerosols. CsI-containing aerosols generated substantial quantities of molecular iodine. The relationship of these observations to certain reactor safety issues is discussed

  2. Computational Fluid Dynamics Analyses on Very High Temperature Reactor Air Ingress

    International Nuclear Information System (INIS)

    A preliminary computational fluid dynamics (CFD) analysis was performed to understand density-gradient-induced stratified flow in a Very High Temperature Reactor (VHTR) air-ingress accident. Various parameters were taken into consideration, including turbulence model, core temperature, initial air mole-fraction, and flow resistance in the core. The gas turbine modular helium reactor (GT-MHR) 600 MWt was selected as the reference reactor and it was simplified to be 2-D geometry in modeling. The core and the lower plenum were assumed to be porous bodies. Following the preliminary CFD results, the analysis of the air-ingress accident has been performed by two different codes: GAMMA code (system analysis code, Oh et al. 2006) and FLUENT CFD code (Fluent 2007). Eventually, the analysis results showed that the actual onset time of natural convection (∼160 sec) would be significantly earlier than the previous predictions (∼150 hours) calculated based on the molecular diffusion air-ingress mechanism. This leads to the conclusion that the consequences of this accident will be much more serious than previously expected

  3. Using cathode spacers to minimize reactor size in air cathode microbial fuel cells

    KAUST Repository

    Yang, Qiao

    2012-04-01

    Scaling up microbial fuel cells (MFCs) will require more compact reactor designs. Spacers can be used to minimize the reactor size without adversely affecting performance. A single 1.5mm expanded plastic spacer (S1.5) produced a maximum power density (973±26mWm -2) that was similar to that of an MFC with the cathode exposed directly to air (no spacer). However, a very thin spacer (1.3mm) reduced power by 33%. Completely covering the air cathode with a solid plate did not eliminate power generation, indicating oxygen leakage into the reactor. The S1.5 spacer slightly increased columbic efficiencies (from 20% to 24%) as a result of reduced oxygen transfer into the system. Based on operating conditions (1000ς, CE=20%), it was estimated that 0.9Lh -1 of air would be needed for 1m 2 of cathode area suggesting active air flow may be needed for larger scale MFCs. © 2012 Elsevier Ltd.

  4. Simulation of reactivity control with boron injection for safety operation of a pressurized water reactor

    International Nuclear Information System (INIS)

    The boron concentration in the primary coolant loop, required for reactivity and reactor power control is predicted by a two dimensional neutronic code. The code is developed to calculate the boron concentration in a nuclear pressurized water reactor (PWR). In many countries a part of the overall electric power production is generated by nuclear power plants. Therefore part of the total daily load variations must be covered by the nuclear power stations. For rapid transients, control bundles must be used. But the use of control rods are limiting due to peaks in the neutron flux and hence to hot spots. Thus the operator must correct any departure from the operating point of the reactor by means of boric acid control system. Also extra borating system is designed to avoid reactor accidents. If the operational concentration of such poison reaches certain limits depend on reactor temperature the nuclear temperature coefficient of the moderator, which is highly negative in the absence of boron, attains positive values, through certain range of temperature and after that return negative again at higher operating temperature, this effect can be explained by the change of the temperature coefficient of disadvantage factor from negative to positive with increasing reactor temperature. Also borating the reactor coolant, prior opening of the reactor pressure vessel for refuelling, which keeps the cold de pressurized reactor safe subcritical even without control assemblies. The basic control principles of a PWR are based on reactivity balance the movement of control bundles and the changing of boron concentration are performed for reactivity compensation to : temperature effect. Core power effect, fuel burnup and xenon effect. The objective of the calculations is to find the magnitude of the control bundles and their equivalent boron concentration which must be included in the reactor at startup and at different reactor operating temperature to compensate for the excess fuel

  5. Final air test results for the 1/5-scale Mark I boiling water reactor pressure suppression experiment

    International Nuclear Information System (INIS)

    A loss-of-coolant accident (LOCA) in a boiling-water reactor (BWR) power plant has never occurred. However, because this type of accident is particularly severe, it is used as a principal basis for design. During a hypothetical LOCA in a Mark I BWR, air followed by steam is injected from a drywell into a toroidal wetwell about half-filled with water. A series of consistent, versatile, and accurate air-water tests simulating LOCA conditions was completed in the Lawrence Livermore Laboratory 1/5-Scale Mark I BWR Pressure Suppression Experimental Facility. Results from this test series were used to quantify the vertical loading function and to study the associated fluid dynamic phenomena. Detailed histories of vertical loads on the wetwell are shown. In particular, variations of hydrodynamic-generated vertical loads with changes in drywell pressurization rate, downcomer submergence, and the vent-line loss coefficient are established. Initial drywell overpressure, which partially preclears the downcomers of water, substantially reduces the peak vertical loads. Scaling relationships, developed from dimensional analysis and verified by bench-top experiments, allow the 1/5-scale results to be applied to a full-scale BWR power plant. This analysis leads to dimensionless groupings which are invariant. These groupongs show that if water is used as the working fluid, the magnitude of the forces in a scaled facility is reduced by the cube of the scale factor; the time when these forces occur is reduced by the square root of the scale factor

  6. Influence of Draft Tube Diameter on Operation Behaviorof Air Lift Loop Reactors

    Directory of Open Access Journals (Sweden)

    Laith S. S. Al-Kuffe

    2010-01-01

    Full Text Available The ratio of draft tube to reactor diameters is of decisive importance for the operation behavior of air lift loop reactors. The influence of draft tube geometry was investigated with respect to oxygen mass transfer and mixing time. The diameter ratio was varied between 0.33 and 0.80. The measurements were performed in two loop reactors with liquid capacities of 11.775 and 26.49 liters using aqueous with solutions of different coalescence behavior. The results show that there is no single diameter ratio which would produce most favorable conditions for the two process parameters. With respect to the more important requirements of aerobic cultures, i.e high oxygen mass transfer and efficient mixing, a diameter ratio between 0.5 and 0.6 is recommended. If high liquid velocities in the draft tube are required a ratio of 0.6 should be used.

  7. Numerical Modeling of Air-Water Flows in Bubble Columns and Airlift Reactors

    OpenAIRE

    Studley, Allison F

    2010-01-01

    Bubble columns and airlift reactors were modeled numerically to better understand the hydrodynamics and analyze the mixing characteristics for each configuration. An Eulerian-Eulerian approach was used to model air as the dispersed phase within a continuous phase of water using the commercial software FLUENT. The Schiller-Naumann drag model was employed along with virtual mass and the standard k-e turbulence model. The equations were discretized using the QUICK scheme and solved with the SIMP...

  8. Indirect air cooling techniques for control rod drives in the high temperature engineering test reactor

    International Nuclear Information System (INIS)

    The high temperature engineering test reactor (HTTR) is the first high-temperature gas-cooled reactor in Japan with reactor outlet gas temperature of 950 deg. C and thermal power of 30 MW. Sixteen pairs of control rods are employed for controlling the reactivity change of the HTTR. Each standpipe for a pair of the control rods, which is placed on the top head dome of the reactor pressure vessel, contains one control rod drive mechanism. The control rod drive mechanism may malfunction because of reduction of the electrical insulation of the electromagnetic clutch when the temperature exceeds 180 deg. C. Because 31 standpipes stand close together in the standpipe room, 16 standpipes for the control rods, which are located at the center, should be cooled effectively. Therefore, the control rod drives are cooled indirectly by forced air circulation through a pair of ring-ducts with proper air outlet nozzles and inlets. Based on analytical results, a pair of the ring-ducts was installed as one of structures in the standpipe room. Evaluation results through the rise-to-power test of the HTTR showed that temperatures of the electromagnetic clutch and the ambient helium gas inside the control rod standpipe should be below the limits of 180 and 75 deg. C, respectively, at full power operation and at the scram from the operation.

  9. Research reactor preparations for the air shipment of highly enriched uranium from Romania

    International Nuclear Information System (INIS)

    In June 2009 two air shipments transported both unirradiated (fresh) and irradiated (spent) Russian-origin highly enriched uranium (HEU) nuclear fuel from two research reactors in Romania to the Russian Federation (RF) for conversion to low enriched uranium (LEU). The Institute for Nuclear Research at Pitesti (SCN Pitesti) shipped 30.1 kg of HEU fresh fuel pellets to Dimitrovgrad, Russia and the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH) shipped 23.7 kilograms of HEU spent fuel assemblies from the VVR-S research reactor at Magurele, Romania, to Ozersk, Russia. Both HEU shipments were coordinated by the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), were managed in Romania by the National Commission for Nuclear Activities Control (CNCAN), and were conducted in cooperation with the Russian Federation State Corporation for Atomic Energy Rosatom and the International Atomic Energy Agency (IAEA). Both shipments were transported by truck to and from respective commercial airports in Romania and the Russian Federation and stored at secure nuclear facilities in Russia until the material is converted into low enriched uranium. These shipments resulted in Romania becoming the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the research reactor preparations and license approvals that were necessary to safely and securely complete these air shipments of nuclear fuel. (author)

  10. Research Reactor Preparations for the Air Shipment of Highly Enriched Uranium from Romania

    Energy Technology Data Exchange (ETDEWEB)

    K. J. Allen; I. Bolshinsky; L. L. Biro; M. E. Budu; N. V. Zamfir; M. Dragusin; C. Paunoiu; M. Ciocanescu

    2010-03-01

    In June 2009 two air shipments transported both unirradiated (fresh) and irradiated (spent) Russian-origin highly enriched uranium (HEU) nuclear fuel from two research reactors in Romania to the Russian Federation for conversion to low enriched uranium. The Institute for Nuclear Research at Pitesti (SCN Pitesti) shipped 30.1 kg of HEU fresh fuel pellets to Dimitrovgrad, Russia and the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH) shipped 23.7 kilograms of HEU spent fuel assemblies from the VVR S research reactor at Magurele, Romania, to Chelyabinsk, Russia. Both HEU shipments were coordinated by the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), were managed in Romania by the National Commission for Nuclear Activities Control (CNCAN), and were conducted in cooperation with the Russian Federation State Corporation Rosatom and the International Atomic Energy Agency. Both shipments were transported by truck to and from respective commercial airports in Romania and the Russian Federation and stored at secure nuclear facilities in Russia until the material is converted into low enriched uranium. These shipments resulted in Romania becoming the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the research reactor preparations and license approvals that were necessary to safely and securely complete these air shipments of nuclear fuel.

  11. Application of railgun principle to high-velocity hydrogen pellet injection for magnetic fusion reactor fueling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.; Zhang, J.

    1992-01-01

    Three separate papers are included which report research progress during this period: (1) A new railgun configuration with perforated sidewalls, (2) development of a fuseless small-bore railgun for injection of high-speed hydrogen pellets into magnetically confined plasmas, and (3) controls and diagnostics on a fuseless railgun for solid hydrogen pellet injection.

  12. Application of railgun principle to high-velocity hydrogen pellet injection for magnetic fusion reactor fueling

    International Nuclear Information System (INIS)

    Three separate papers are included which report research progress during this period: (1) A new railgun configuration with perforated sidewalls, (2) development of a fuseless small-bore railgun for injection of high-speed hydrogen pellets into magnetically confined plasmas, and (3) controls and diagnostics on a fuseless railgun for solid hydrogen pellet injection

  13. Issues in capsule fabrication and injection into a wet-walled IFE reactor

    International Nuclear Information System (INIS)

    Feasibility for mass production of high gain targets for a laser fusion reactor is discussed focusing on the capsule fabrication and the life of cryogenic targets heated with the latent heats of residual gas in the reactor. The model targets are (a) a solid DT layer in a relatively thick polystyrene capsule and (b) solid DT in a cryogenic DT foam ablator with a thin gas barrier. The latter target involved various issues concerning its fabrication process and both targets cannot survive in a conceptual laser fusion reactor KOYO

  14. Research on High Pressure Gas Injection As a Method of Fueling, Disruption Mitigation and Plasma Termination for Future Tokamak Reactors

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    High-pressure gas injection has proved to be an effective disruption mitigation technique in DⅢ-D tokamak experiments. If the method can be applied in future tokamak reactors not only for disruption mitigation but also for plasma termination and fueling, it will have an attractive advantage over the pellet and liquid injection from the viewpoint of economy and engineering design. In order to investigate the feasibility of this option, a study has been carried out with relevant parameters for conveying tubes of different geometrical sizes and for different gases.These parameters include pressure drop, lagger time after the valve's opening, gas diffusion in an ultra-high vacuum condition, and particle number contour.

  15. Pengaruh Penambahan Glukosa Sebagai Co-substrate dalam Pengolahan Air Limbah Minyak Solar Menggunakan Sistem High Rate Alga Reactor (HRAR)

    OpenAIRE

    Laksmisari Rakhma Putri; Agus Slamet; Joni Hermana

    2014-01-01

    Kandungan minyak dalam air limbah umumnya relatif sulit untuk diuraikan oleh mikroorganisme pada pengolahan air limbah secara biologis. Sistem alga dalam High Rate Alga Reactor (HRAR) telah banyak dikembangkan dan digunakan sebagai pengolah air limbah domestik dan industri. Aplikasi sistem alga dalam HRAR ini dicoba untuk diaplikasikan dalam pengolahan air limbah mengandung minyak solar. Penelitian dilakukan untuk mengkaji kemampuan HRAR dalam menurunkan kandungan minyak solar dengan penambah...

  16. Uncertainties in Air Exchange using Continuous-Injection, Long-Term Sampling Tracer-Gas Methods

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.; Walker, Iain S.; Lunden, Melissa M.

    2013-12-01

    The PerFluorocarbon Tracer (PFT) method is a low-cost approach commonly used for measuring air exchange in buildings using tracer gases. It is a specific application of the more general Continuous-Injection, Long-Term Sampling (CILTS) method. The technique is widely used but there has been little work on understanding the uncertainties (both precision and bias) associated with its use, particularly given that it is typically deployed by untrained or lightly trained people to minimize experimental costs. In this article we will conduct a first-principles error analysis to estimate the uncertainties and then compare that analysis to CILTS measurements that were over-sampled, through the use of multiple tracers and emitter and sampler distribution patterns, in three houses. We find that the CILTS method can have an overall uncertainty of 10-15percent in ideal circumstances, but that even in highly controlled field experiments done by trained experimenters expected uncertainties are about 20percent. In addition, there are many field conditions (such as open windows) where CILTS is not likely to provide any quantitative data. Even avoiding the worst situations of assumption violations CILTS should be considered as having a something like a ?factor of two? uncertainty for the broad field trials that it is typically used in. We provide guidance on how to deploy CILTS and design the experiment to minimize uncertainties.

  17. Reduction in TFTR [Tokamak Fusion Test Reactor] fusion reaction rate by unbalanced beam injection and rotation

    International Nuclear Information System (INIS)

    In TFTR plasmas at low to moderate density, the highest fusion energy gain Q/sub dd/ (D-D fusion power/injected power P/sub b/) is obtained with nearly balanced co- and counter-injection of neutral beams. For a given beam power, significantly unbalanced injection reduces Q/sub dd/ because the accompanying plasma rotation reduces the beam-target fusion reactivity, the fast-ion slowing-down time, and the beam-beam reaction rate, while and decrease from their maximum values. 9 refs., 3 figs., 1 tab

  18. Definition of radionuclides composition of water and air emission of the reactor WWR-SM

    International Nuclear Information System (INIS)

    Full text: For safe reactor operation it is necessary to determine the radio-nuclide composition of various environments of a reactor: water in the first contour, water in the storehouse for the spent fuel, air in the space above the reactor active zone. As it is known, fission products may get into the heat-carrier by means of three basic processes, such as, the recoils produced from nuclear fission may emit from the surface of fuel assembly, at the expense of diffusion of the fission products through the cavities and pores, and also due to washing out the fuel components into the heat-carrier. For definition of separate amendments, i.e. efficiency of measurement by the semiconductor detector, two standards from Eu-152 were made. One of them was dried up under an infrared lamp; the second target was measured in the form of solution. Both - dry and liquid preparation were consistently measured on radiometric installation in identical geometrical conditions. The photo efficiency of the semiconductor detector was determined by the value of specific activity of Eu-152 in the solution and dry preparation. The resolution of the spectrometer for the γ-radiation energy of 1332 keV was 6.5 keV. All measurements of the induced activity were made in 3 stages, 1 stage was in 60 minutes after selection of probe (so that to have time for disintegration of a number nuclides with rather short half-life periods), 2 stage was in a day, 3 stage was in 7-10 days. The concentration/content of gaseous fission products from uranium - 235 in the gas emission is interconnected with the activity of the heat-carrier of the first contour and enables to make the conclusion about the environmental condition around fuel elements while the reactor operation. For increasing the sensitivity of measurements, the tested probes of radioactive gas were undergone to preliminary enrichment by means of gas adsorption by the activated coal at the temperature of liquid nitrogen. As it is known, at the

  19. A new concept of high flow rate non-thermal plasma reactor for air treatment

    Energy Technology Data Exchange (ETDEWEB)

    Goujard, V.; Tatibouet, J.M. [Univ. de Poitiers, Poitiers (France). Centre national de la recherche scientifique, Laboratoire de Catalyse en Chimie Organique

    2010-07-01

    Although several non-thermal plasma reactors have been tested for air treatment at the laboratory scale, up-scaling to pilot or industrial scale remains a challenge because several parameters must be considered, such as hydrodynamic behaviour, maximum voltage in an industrial environment, and maintenance of the system. This paper presented a newly developed reactor which consists to a DBD plasma generated on individual supports that could be directly inserted in gas pipes where air flow must be treated. Elimination of 40 percent of 15 ppm of propene was obtained with a energy density as low as 10 J/L. The propene conversion increased when a manganese oxide based catalyst was used because the ozone produced by the plasma was used as an as an oxidant. A simple model of the plasma-catalyst reactor behaviour showed that more than 90 percent of propene conversion can be expected for an input energy density of 10 J/L and residual ozone concentration less than 100 ppb.

  20. Compressed air of water-injected screw compressors is clean; Druckluft von wassereingespritzten Schraubenkompressoren ist sauber

    Energy Technology Data Exchange (ETDEWEB)

    Thomassen, Volker

    2010-08-09

    The oil content of compressed air has become an issue in industrial compressed air supply, especially from the view of environmental protection and waste management. The article specifies requirements on compressed air systems that are to ensure clean compressed air supply. (orig.)

  1. Flow structures in a lean-premixed swirl-stabilized combustor with microjet air injection

    KAUST Repository

    LaBry, Zachary A.

    2011-01-01

    The major challenge facing the development of low-emission combustors is combustion instability. By lowering flame temperatures, lean-premixed combustion has the potential to nearly eliminate emissions of thermally generated nitric oxides, but the chamber acoustics and heat release rate are highly susceptible to coupling in ways that lead to sustained, high-amplitude pressure oscillations, known as combustion instability. At different operating conditions, different modes of instability are observed, corresponding to particular flame shapes and resonant acoustic modes. Here we show that in a swirl-stabilized combustor, these instability modes also correspond to particular interactions between the flame and the inner recirculation zone. Two stable and two unstable modes are examined. At lean equivalence ratios, a stable conical flame anchors on the upstream edge of the inner recirculation zone and extends several diameters downstream along the wall. At higher equivalence ratios, with the injection of counter-swirling microjet air flow, another stable flame is observed. This flame is anchored along the upstream edge of a stronger recirculation zone, extending less than one diameter downstream along the wall. Without the microjets, a stationary instability coupled to the 1/4 wave mode of the combustor shows weak velocity oscillations and a stable configuration of the inner and outer recirculation zones. Another instability, coupled to the 3/4 wave mode of the combustor, exhibits periodic vortex breakdown in which the core flow alternates between a columnar mode and a vortex breakdown mode. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  2. Turbulent Boundary Layer on a Finely Perforated Surface Under Conditions of Air Injection at the Expense of External Flow Resources

    Science.gov (United States)

    Kornilov, V. I.; Boiko, A. V.; Kavun, I. N.

    2015-11-01

    The characteristics of an incompressible turbulent boundary layer on a flat plate with air blown in though a finely perforated surface from an external confined flow through an input device, located on the "idle" side of the plate, have been investigated experimentally and numerically. A stable decrease in the local values of the coefficient of surface friction along the plate length that attains 85% at the end of the perforated portion is shown. The experimental and calculated data obtained point to the possibility of modeling, under earth conditions, the process of controlling a turbulent boundary layer with air injection by using the resources of an external confined flow.

  3. Simulation of the Two-Dimensional Gasdynamic, Temperature, and Concentration Fields in an Injection Reactor of Chemical Vapor Deposition for Synthesis of Carbon Nanotube Arrays

    Science.gov (United States)

    Futko, S. I.; Chornyi, A. D.; Shulitskii, B. G.; Labunov, V. A.

    2016-01-01

    The two-dimensional axisymmetric gasdynamic, concentration, and heat fields arising in an injection reactor of chemical vapor deposition in the process of synthesis of arrays of carbon nanotubes in it from hydrocarbons and organometallic compounds were numerically simulated for the purpose of investigating the features of these fields. It was established that, even in the case of laminar flow of a gas mixture over the surface of a substrate positioned in this reactor, in it there arise vortices introducing a significant heterogeneity into the gas flow. The influence of changes in the gasdynamic and temperature fields in the indicated reactor on the characteristics of an array of carbon nanotubes grown on the surface of the substrate was analyzed. Parametric calculations of the dependences of the velocity of the gas flow, the gas temperature, and the concentration of reagents in the reactor on the hydrocarbon flow rate, the temperature of the process, and the length of the injection needle have been performed. These calculations have shown that the regimes of heating and mixing of reagents in an injection reactor of chemical vapor deposition correspond to those of an ideal-mixing reactor. The results obtained can be used for determining the conditions necessary for the growth of homogeneous arrays of carbon nanotubes with a high rate on the surface of a substrate in a reactor of chemical vapor deposition.

  4. Interaction of Impurity (Li, Be, B and C)and Hydrogen Isotope Pellet Injection with Reactor-relevant Plasmas

    Institute of Scientific and Technical Information of China (English)

    Deng Baiquan(邓柏权); J.P.Allain; Peng Lilin(彭利林); Wang Xiaoyu(王晓宇); Chen Zhi(陈志); Yan Jiancheng(严建成)

    2005-01-01

    Based on the two-dimensional kinetic ablation theory of the hydrogen pellet ablation developed by Kuteev [B.V. Kuteev, Nuclear Fusion, 35 (1995) 431], an algorithm of erosion speed and ablation rate calculations for Li, Be, and B impurity pellets in reactor-relevant plasma has been derived. Results show compatibilities of lithium pellet injection used in α-particle diagnostics are positive in comparison with other solid impurity pellets (e.g. Be, B and C). Using the 2-D Kuteev lentil model, including kinetic effects, we find that currently existing pellet injection techniques will not meet core-fueling requirements for ITER-FEAT. A pressure as high as 254 MPa must be applied to a pellet accelerator with a 200 cm-long single-stage pneumatic gun, in order to accelerate a pellet with a radius rp0 =0.5 cm to a velocity of Vp0, 24×105 cm/s penetrating 100 cm into the ITER plasma core. Comparisons of pellet velocity- and radius-dependent penetration depth between the Neutral Gas Shielding and the Kuteev's models are made. However, we find that the isotopic effects can lead to a 33% lower pellet speed for solid DT, compared to an identical H2 pellet penetrating the same length in ITER-FEAT plasma, and our calculations show that HFS injection will much improve core fueling efficiency.

  5. Cleaning and air conditioning device for atmosphere in thermonuclear reactor chamber

    International Nuclear Information System (INIS)

    The device of the present invention removes tritium efficiently and attains ventilation and conditioning of a great amount of air flow. That is, there are disposed a humidity separator, a filter, a heater, a catalyst filled layer, a water jetting type humidifying heat insulation cooler and a cooler in this order from an inlet side (upstream) of contaminated room atmospheric gases. The catalyst filled layer, etc. are incorporated integrally into the ventilation air conditioning facility for ventilating air in the chamber of the thermonuclear reactor, to clean a tritium atmosphere at the same time. Accordingly, the device is made compact as a whole. A limit for the air flow rate owing to the use of the conventional catalyst tower and adsorbing tower is eliminated. Then a ventilating air conditioning for a great flow rate can be attained. Tritium is removed by cooling and dehumidification without using any adsorbent. Accordingly, an adsorbing tower is no more necessary and conventional regeneration operation is not required. As a result, space for installation is reduced, the system is simplified and the cost for construction and facility can be reduced. (I.S.)

  6. Measurement of the thermal performance of a Borehole Heat Exchanger while injecting air bubbles in the groundwater

    OpenAIRE

    Calzada i Oliveras, Eduard

    2012-01-01

    The most common way to exchange heat with the ground in Ground Source Heat Pump (GSHP) applications is with borehole heat exchangers (energy col-lectors in vertical wells). These boreholes contain the pipe with the secondary fluid of the GSHP and they are often filled with natural groundwater. It has been recently discovered that injecting air bubbles in the groundwater side of the boreholes increases the efficiency of the heat transfer. The aim of this thesis is to analyze the thermal change...

  7. The effects of reactor core-simulant aerosols on hydrogen/air combustion

    International Nuclear Information System (INIS)

    Three representative reactor core-simulant aerosols were dispersed, just before ignition, into combustible hydrogen-air mixtures contained in 5.1 and 0.18 m/sup 3/ chambers. Oxidic aerosols (Al/sub 2/O/sub 3/, Fe/sub 2/O/sub 3/) produced only minor changes in the burns. A metallic aerosol (Fe) ignited along with the hydrogen, producing more complete combustion of the hydrogen and substantially increased overpressures and thermal effects compared to control experiments performed identically without the aerosols

  8. Air-lift internal loop biofilm reactor for realized simultaneous nitrification and denitrification.

    Science.gov (United States)

    Zhang, Cuiyi; Wang, Lu; Yan, Ning; Zhang, Yongming; Liu, Rui

    2013-05-01

    Simultaneous nitrification and denitrification (SND) was realized by means of a novel air-lift internal loop biofilm reactor, in which aeration was set in middle of the reactor. During operation, the aeration was adjusted to get appropriate dissolve oxygen (DO) in bulk solution and let aerobic and anoxic zone coexist in one reactor. When aeration was at 0.6 and 0.2 L/min, corresponding to DO of 5.8 and 2.5 mg/L in bulk solution, ammonia nitrogen removal percentage reached about 80 and 90 %, but total nitrogen removal percentage was lower than 25 %. While the aeration was reduced to 0.1 L/min, aerobic and anoxic zones existed simultaneously in one reactor to get 75 % of ammonia nitrogen and 50 % of total nitrogen removal percentage. Biofilms were, respectively, taken from aerobic and anoxic zone to verify their function of nitrification and denitrification in two flasks, in which ammonia nitrogen was transferred into nitrate completely by aerobic biofilm, and nitrate was removed more than 80 % by anoxic biofilm. Microelectrode was used to measure the DO distribution inside biofilms in anoxic zone corresponding to different aerations. When aeration was at 0.6 and 0.2 L/min, DO inside biofilm was more than 1.5 mg/L, but the DO inside biofilm decreased to anoxic status with depth of biofilm increasing corresponding to aeration of 0.1 L/min. The experimental results indicated that SND could be realized because of simultaneous existence of aerobic and anoxic biofilms in one reactor. PMID:23001679

  9. HIGH VOLUME INJECTION FOR GCMS ANALYSIS OF PARTICULATE ORGANIC SPECIES IN AMBIENT AIR

    Science.gov (United States)

    Detection of organic species in ambient particulate matter typically requires large air sample volumes, frequently achieved by grouping samples into monthly composites. Decreasing the volume of air sample required would allow shorter collection times and more convenient sample c...

  10. Air ingestion into the external loops of a Savannah River Site reactor during a postulated LOCA

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, G.A.; Bollinger, J.S.

    1990-01-01

    The outlets to the external loops of a Savannah River Site reactor become exposed to air as the moderator tank drains during a postulated LOCA. When this happens the behavior of the pumps is adversely affected as is the flow through the core. The problems encountered in the simulation are those of the non-condensable gas being pulled through a free surface into the loops and the behavior of the pumps with the two-phase mixture. This paper presents the results of a LOCA simulation, the attempts made to model the air flow into the loops, and the modeling of the pump under two-phase conditions. 3 refs., 6 figs., 1 tab.

  11. The ecologically clear and safe nuclear reactor RUTA for aims of the thermal delivery, the seawater desalination and air conditioning

    International Nuclear Information System (INIS)

    Scientific research and design institute of energy technic (Moscow, Russia) works up the projects of thermal pool reactors RUTA with power 20 and 55 MW for heat delivery of apartment buildings and production premises. The reactors may be use as protected sources of energy for air conditioning or seawater desalination. Variant of underground siting of heat delivery atomic station with reactor RUTA is examined. Calculation studies of worked regimes confirms the high level of safety of heat delivery atomic station with the reactor RUTA. Work analysis of reactor installation RUTA in the central heat delivery systems is showing that for practically all space heating period this reactor is satisfying the standard requirements of heat delivery of buildings

  12. Hot-wire air flow meter for gasoline fuel-injection system. Calculation of air mass in cylinder during transient condition; Gasoline funsha system yo no netsusenshiki kuki ryuryokei. Kato untenji no cylinder juten kukiryo no keisan

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Y. [Hitachi Car Engineering, Ltd., Tokyo (Japan); Nishimura, Y.; Osuga, M.; Yamauchi, T. [Hitachi, Ltd., Tokyo (Japan)

    1997-10-01

    Air flow characteristics of hot-wire air flow meters for gasoline fuel-injection systems with supercharging and exhaust gas recycle during transient conditions were investigated to analyze a simple method for calculating air mass in cylinder. It was clarified that the air mass in cylinder could be calculated by compensating for the change of air mass in intake system by using aerodynamic models of intake system. 3 refs., 6 figs., 1 tab.

  13. Containment vessel, its auxiliary system and plant air conditioning system of advanced thermal reactor Fugen

    International Nuclear Information System (INIS)

    The functional requirement for, the design and the construction of, and the functional test on the containment vessel, its auxiliary system, the plant air conditioning and ventilation system of the advanced thermal reactor, Fugen, are described in detail. The main specifications of the containment vessel are as follows: The type enclosed cylinder, the maximum operating pressure 1.35 kg/cm2g, the maximum operating temperature 100 deg C, the leak rate 0.4%/day, the inner diameter 36 m. The height 64 m, the volume 40,900 m3, and the material JIS G3118, SGV-49. The containment vessel is provided with an hatch of 5 m diameter for carrying equipments in two air locks, many high and low voltage cable penetrations, pipe penetrations, a transfer shoot and isolation values. The functions and the specifications of the containment vessel and its auxiliary equipments are explained. The relating auxiliary systems are composed of the containment vessel spray system, the pool facility for steam blow-down, the recirculation system for the air in the vessel, the annulus evacuation system and its pressure control devices, the pressure measuring instruments and pressure relief valves and the temperature measuring devices for the containment vessel, and the object, function, layout and installation of these systems are explained. Concerning the air conditioning system, each main building has the special subsystem, and they are introduced. The progress stage of construction works and the procedure and results of the functional test at the site are described. (Nakai, Y.)

  14. Basis and concepts for the electromagnetic acceleration of pellets for injection into inertial confinement fusion reactor chambers

    International Nuclear Information System (INIS)

    The possibility of the electromagnetic acceleration of pellets for injection into inertial confinement fusion reactor chambers is investigated. The acceleration by a high gradient magnetic field is discussed for different types of driving bodies (non-ferromagnetic cylinder, ferromagnetic cylinder, superconducting coil) of the pellet carrier. Two accelerator concepts are described. Alternatively, pellet acceleration by a railgun is investigated. In all cases a 1 g-projectile can be accelerated to a reference velocity of 200 m/s over a distance of the order of 1 m which corresponds to an acceleration time of the order of 10 ms. For each of the methods investigated reference parameter lists are given as a basis of orientation for the technical design of an electromagnetic pellet accelerator. (orig.)

  15. Determination of hydrogen peroxide by micro-flow injection-chemiluminescence using a coupled flow cell reactor chemiluminometer.

    Science.gov (United States)

    Nozaki, O; Kawamoto, H

    2000-01-01

    A novel flow cell reactor was developed for micro-flow injection determination of hydrogen peroxide (H(2)O(2)) using horseradish peroxide (HRP)-catalysed luminol chemiluminescence. The newly developed flow cell reactor for a chemiluminometer allowed mixing of the chemiluminescent reagents in front of a photomultiplier for maximum detection of the emitted light. The rapid mixing allowed a decrease in the flow rate of the pump to 0.1-0.01 mL/min, resulting in increased sensitivity of detection of light. The flow cell reactor was made by packing HRP-immobilized gels into a flow cell (Teflon tube; 6 cm x 0.98 mm i.d.) located in the cell holder of a chemiluminometer (flow-through type). The HRP-immobilized gels were made by immobilizing HRP onto the Chitopearl gel by the periodate method. H(2)O(2) specimens (50 microL) were injected into a stream of water delivered at a flow rate of 0.1 mL/min and mixed with a luminol solution (0.56 mmol/L in Tricine buffer, pH 9.2) delivered at 0.1 mL/min in the flow cell reactor. Within-run reproducibility of the assay of H(2)O(2) was 2.4% (4.85 micromol/L; flow rate 0.1 mL/min, injection interval 10 min). The reproducibility of the H(2)O(2) assay was influenced by the flow rates and the injection intervals of the H(2)O(2) specimens. As the flow rates decreased, both the light intensity and the light duration increased. Optimal light intensity was obtained at a luminol concentration of 3-8 mmol/L, but 0.56 mmol/L was sufficient for assay of H(2)O(2) in clinical specimens. At a luminol concentration of 0.56 mmol/L, the regression equation of the standard curve for H(2)O(2) (0-9.7 micromol/L) was Y = 27.5 X(2) + 394 X + 58.9 (Y = light intensity; X = concentration of H(2)O(2)) and the detection limit of H(2)O(2) was 0.2 micromol/L. This method was used to assay glucose (2.7-16.7 mmol/L) based on a glucose oxidase (20 U/mL, pH 7.4) reaction. The standard curve for glucose was Y = 167 X(2) - 351 X + 1484 (Y = light intensity; X = glucose

  16. Efficiency Testing of the Air Cleaning System for a High Temperature Reactor

    International Nuclear Information System (INIS)

    The Los Alamos Ultra High Temperature Reactor Experiment (UHTREX) utilizes a helium-cooled, graphite-moderated reactor, employing refractory fuel elements. Under accident conditions, the effluent that may be released from this reactor requires an air-cleaning system capable of reducing radioactive gas and particulate contaminants to safe levels. Dioctyl phthalate and iodine-131 were used as test aerosols for the HEPA and activated carbon filters, respectively. Methods of aerosol generation and test procedures are detailed for the preinstallation tests of the carbon and in-place testing of the carbon and HEPA filters. The importance of visual inspection of the HEPA filters prior to installation and supervision of filter installation is discussed. In-place tests indicated desirable design changes which would (1) simplify in-place testing procedures, (2) expedite installation and future changing of the filters, and (3) ensure operation of a more efficient system. Problems encountered during in-place testing, recommendations for the design of similar systems, and acceptance criteria used at LASL are discussed. (author)

  17. Performance Estimation of Supercritical Co2 Micro Modular Reactor (MMR) for Varying Cooling Air Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Yoonhan; Kim, Seong Gu; Cho, Seong Kuk; Lee, Jeong Ik [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2015-05-15

    A Small Modular Reactor (SMR) receives interests for the various application such as electricity co-generation, small-scale power generation, seawater desalination, district heating and propulsion. As a part of SMR development, supercritical CO2 Micro Modular Reactor (MMR) of 36.2MWth in power is under development by the KAIST research team. To enhance the mobility, the entire system including the power conversion system is designed for the full modularization. Based on the preliminary design, the thermal efficiency is 31.5% when CO2 is sufficiently cooled to the design temperature. A supercritical CO2 MMR is designed to supply electricity to the remote regions. The ambient temperature of the area can influence the compressor inlet temperature as the reactor is cooled with the atmospheric air. To estimate the S-CO2 cycle performance for various environmental conditions, A quasi-static analysis code is developed. For the off design performance of S-CO2 turbomachineries, the experimental result of Sandia National Lab (SNL) is utilized.

  18. Experimental study on biomass gasification in a double air stage downdraft reactor

    International Nuclear Information System (INIS)

    This work presents an experimental study of the gasification of a wood biomass in a moving bed downdraft reactor with two-air supply stages. This configuration is considered as primary method to improve the quality of the producer gas, regarding its tar reduction. By varying the air flow fed to the gasifier and the distribution of gasification air between stages (AR), being the controllable and measurable variables for this type of gasifiers, measuring the CO, CH4 and H2 gas concentrations and through a mass and energy balance, the gas yield and its power, the cold efficiency of the process and the equivalence ratio (ER), as well as other performance variables were calculated. The gasifier produces a combustible gas with a CO, CH4 and H2 concentrations of 19.04, 0.89 and 16.78% v respectively, at a total flow of air of 20 Nm3 h-1 and an AR of 80%. For these conditions, the low heating value of the gas was 4539 kJ Nm-3. Results from the calculation model show a useful gas power and cold efficiency around 40 kW and 68%, respectively. The resulting ER under the referred operation condition is around 0.40. The results suggested a considerable effect of the secondary stage over the reduction of the CH4 concentration which is associated with the decreases of the tar content in the produced gas. Under these conditions the biomass devolatilization in the pyrolysis zone gives much lighter compounds which are more easily cracked when the gas stream passes through the combustion zone. -- Highlights: → Obtained results an important for a better phenomenological understanding of processes occurring in two stage gasification reactors. → The air flow is the fundamental parameter in the operation of downdraft gasifiers. → CH4 reduction is associated with a decreases in the tar content. → An enhancement in the thermal cracking of tar is carried out in the two-air downdraft gasifier.

  19. MHD plasma physics in rail accelerators for hydrogen-pellet injection in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Azzerboni, B.; Becherini, G.; Cardelli, E.; Tellini, A.

    1989-06-01

    In this paper the behavior of the electromagnetic and thermal qualitities in a plasma arc placed between two conducting rails is analyzed. The plasma hydrogen armature drives the hydrogen pellets for the refueling of magnetic fusion reactors. Considering the general equations of electromagnetic and of plasma fluid dynamics and assuming steady-state conditions in a frame which is moving at the same rate as the plasma arc armature, as monodimensional model is deduced. The effects of an applied magnetic field on the behavior of all flow variables are particularly investigated.

  20. MEASUREMENT OF FUGITIVE EMISSIONS AT A LANDFILL PRACTICING LEACHATE RECIRCULATION AND AIR INJECTION

    Science.gov (United States)

    Recently research has begun on operating bioreactor landfills. The bioreactor process involves the injection of liquid into the waste mass to accelerate waste degradation. Arcadis and EPA conducted a fugitive emissions characterization study at the Three Rivers Solid Waste Techno...

  1. The Influence of Slight Protuberances in a Micro-Tube Reactor on Methane/Moist Air Catalytic Combustion

    OpenAIRE

    Ruirui Wang; Jingyu Ran; Xuesen Du; Juntian Niu; Wenjie Qi

    2016-01-01

    The combustion characteristics of methane/moist air in micro-tube reactors with different numbers and shapes of inner wall protuberances are investigated in this paper. The micro-reactor with one rectangular protuberance (six different sizes) was studied firstly, and it is shown that reactions near the protuberance are mainly controlled by diffusion, which has little effect on the outlet temperature and methane conversion rate. The formation of cavities and recirculation zones in the vicinity...

  2. Detection of the contamination of air by tritiated water vapour around the reactor EL3

    International Nuclear Information System (INIS)

    The authors describe the apparatus used for the detection of the tritiated water vapour contamination in the air around the reactor EL 3. The apparatus consists of two air-circulation ionisation chambers; the air in one of these is dried by passage through a silica-gel column. By carrying out a differential measurement of the ionization currents, it is possible to measure the tritiated water vapour concentration. A theoretical study of the response of the chambers is carried out for two types of emission of the tritiated water vapour: continuous, or in bursts. The experimental work comprises: calibration in the measurement range employed; study of the selectivity for other active gases; study of typical accidents; the interpretation of the results in the case of discontinuous emission, taking into account the desorption from the walls of the measurement chamber, a phenomenon which is observed during the emptying process. The authors give finally actual examples of how to use the results. The apparatus built makes it possible to detect, in less than ten minutes, contamination by tritiated water vapour in the presence of other active gases, in a measurement range of between 3 and 2200 MPC, and with an accuracy of about 25 per cent. A transposition to calculations of the risk to workers should be made with the utmost caution; an envelope of this risk can be drawn up more or less accurately depending on particular cases. (authors)

  3. High-Yield Lithium-Injection Fusion-Energy (HYLIFE) reactor

    International Nuclear Information System (INIS)

    The High-Yield Lithium-Injection Fusion Energy (HYLIFE) concept to convent inertial confinement fusion energy into electric power has undergone intensive research and refinement at LLNL since 1978. This paper reports on the final HYLIFE design, focusing on five major areas: the HYLIFE reaction chamber (which includes neutronics, liquid-metal jet-array hydrocynamics, and structural design), supporting systems, primary steam system and balance of plant, safety and environmental protection, and costs. An annotated bibliography of reports applicable to HYLIFE is also provided. We conclude that HYLIFE is a particularly viable concept for the safe, clean production of electrical energy. The liquid-metal jet array, HYLIFE's key design feature, protects the surrounding structural components from x-rays, fusion fuel-pellet debris, neutron damage and activation, and high temperatures and stresses, allowing the structure to last for the plant's entire 30-year lifetime without being replaced. 127 refs., 18 figs

  4. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    Directory of Open Access Journals (Sweden)

    B. B. Palm

    2015-11-01

    Full Text Available Ambient air was oxidized by OH radicals in an oxidation flow reactor (OFR located in a montane pine forest during the BEACHON-RoMBAS campaign to study biogenic secondary organic aerosol (SOA formation and aging. High OH concentrations and short residence times allowed for semi-continuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq. atmospheric aging. A simple model is derived and used to account for the relative time scales of condensation of low volatility organic compounds (LVOCs onto particles, condensational loss to the walls, and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 4 μg m-3 when LVOC fate corrected compared to daytime (average 1 μg m-3 when LVOC fate corrected, with maximum formation observed at 0.4–1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene + p-cymene concentrations, including a substantial increase just after sunrise at 07:00 LT. Higher photochemical aging (> 10 eq. days led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254, similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic compounds, and net production at lower ages followed by net consumption of terpenoid oxidation products as photochemical age increased. New particle formation was observed in the reactor after oxidation, especially during times when precursor gas concentrations and SOA formation were largest. Approximately 6 times more SOA was formed in the reactor from OH

  5. Effect of pointed and diffused air injection on premixed flame confined in a Rijke tube

    Directory of Open Access Journals (Sweden)

    Nilaj N. Deshmukh

    2016-12-01

    Full Text Available The coupling between pressure fluctuations and unsteady heat release in a combustion systems results in acoustic oscillations inside the combustion system. These acoustic oscillations, when grow sufficiently, may cause serious structural damage thereby reducing the lifespan of jet engines, gas turbines, and industrial burners. The aim of the first part of study is to define acoustically stable and unstable regions. The second part is focused on studying the effect of change in pressure field near the flame on the amplitude and frequency of the oscillations of instability. This study is carried out for three-burner positions and equivalence ratio of 0.7 by varying heat supply and total flow rate. The results show two acoustically unstable regions for 0.1 and 0.2 burner positions and only one acoustically unstable region for 0.25 burner position. The effect of pointed injection and diffused injection over a premixed flame on the sound pressure level was studied. The results show for burner position of x/L = 0.2 there is 25 dB suppression is possible using pointed injection at higher total flow rate. The experiment of diffused injection shows sound amplification more than 12 dB was observed.

  6. Development of an emergency air-cleaning system for liquid-metal reactors

    International Nuclear Information System (INIS)

    A novel air cleaning concept has been developed for potential use in venting future commercial liquid metal fast breeder reactor containment buildings in the unlikely event of postulated core disruptive accidents. The passive concept consists of a submerged gravel bed to collect the bulk of particulate contaminates carried by the vented gas. A fibrous scrubber could be combined with the submerged gravel scrubber to enhance collection efficiencies for the smaller sized particles. The submerged gravel scrubber is unique in that water flow through the packed bed is induced by the gas flow, eliminating the need for an active liquid pump. In addition, design gas velocities through the packed bed are 10 to 20 times higher than for a conventional sand bed filter

  7. Deflagrations of lean and rich hydrogen-air-steam mixtures in nuclear reactor containments

    International Nuclear Information System (INIS)

    During a severe accident in a nuclear plant, hydrogen-air-steam explosions may occur. Sixty six tests in a 0.5 m3 containment were carried out to study the flammability and the deflagration of hypo- and hyper-stoichiometric mixtures. The data of these and another 848 tests which can be found in literature were elaborated, compared and interpreted. The hydrogen rich mixtures are more unlikely to be flammable and thus, it is simpler to prevent them from exploding. On the other hand, their deflagration at the flammability limits would cause greater overpressures in a closed containment. Taking into account scaling problems, a method of utilizing the data and the knowledge acquired in the laboratory is then suggested in order to assess hydrogen risks in nuclear reactor containments, and furthermore to check deliberate ignition as a system to reduce such risks. (author). 17 refs., 9 figs

  8. The reactivity of a central air gap in a bare reactor

    International Nuclear Information System (INIS)

    The reactivity of a central air gap in a bare reactor. Two methods axe presented for calculation of the reactivity equivalence of a central gap in a bare reactor with rectangular cross-section. The first is a perturbation theory and has been developed by Friedman in an unpublished paper. The second method is an application of variation calculus. In both cases the eigenvalue is solved for the transport equation in integral form. The principal difference between the two methods is in the assumption for the flux shape. In the perturbation theory, it is assumed that the flux is unperturbed and has the form A cos π x/L. The reactivity as a function of the gap width is expressed in closed form in one and two energy groups, but the expression is valid only for reactivity changes less than about 8%. The variation calculus is developed only for one energy group, but the accuracy is approximately independent of the gap width. This is obtained by varying the expression for the flux in order to optimize the functional integral. The results are compared with those obtained by Chernick and Kaplan by diffusion theoretical methods. (author)

  9. The Injection of Air/Oxygen Bubble into the Anterior Chamber of Rabbits as a Treatment for Hyphema in Patients with Sickle Cell Disease

    Directory of Open Access Journals (Sweden)

    Emre Ayintap

    2014-01-01

    Full Text Available Purpose. To investigate the changes of partial oxygen pressure (PaO2 in aqueous humour after injecting air or oxygen bubble into the anterior chamber in sickle cell hyphema. Methods. Blood samples were taken from the same patient with sickle cell disease. Thirty-two rabbits were divided into 4 groups. In group 1 (n=8, there was no injection. Only blood injection constituted group 2 (n=8, both blood and air bubble injection constituted group 3 (n=8, and both blood and oxygen bubble injection constituted group 4 (n=8. Results. The PaO2 in the aqueous humour after 10 hours from the injections was 78.45 ± 9.9 mmHg (Mean ± SD for group 1, 73.97 ± 8.86 mmHg for group 2, 123.35 ± 13.6 mmHg for group 3, and 306.47 ± 16.5 mmHg for group 4. There was statistically significant difference between group 1 and group 2, when compared with group 3 and group 4. Conclusions. PaO2 in aqueous humour was increased after injecting air or oxygen bubble into the anterior chamber. We offer to leave an air bubble in the anterior chamber of patients with sickle cell hemoglobinopathies and hyphema undergoing an anterior chamber washout.

  10. The influence of air-fuel ratio on mixture parameters in port fuel injection engines

    Directory of Open Access Journals (Sweden)

    Adrian Irimescu

    2008-10-01

    Full Text Available Nowadays, research in the internal combustion engine field is focusing on detailed understanding of the processes that take place in certain parts of the aggregate, and can have a great influence on the engine’s performance and pollution levels. Such research is developed in this paper, in which using a numerical method based on the i-x air-fuel diagram, one can simulate a series of values for pressure, temperature and intake air humidity before and after mixture formation takes place in a spark ignition engine inlet port. The aim is to evaluate the final temperature of the air-fuel mixture near the inlet valve and evaluating the main factors of influence on the homogeneity of the mixture.

  11. Radioiodine deposition losses from sample air containing particulate and gaseous iodine in nuclear reactor sample lines

    International Nuclear Information System (INIS)

    Mechanisms of radioiodine deposition from sample air containing both gaseous and particulate radioiodine in reactor sample lines are studied, and experimental methods are developed. A short half-lived radioiodine tracer, 128I (t1/2 = 25 min), is used in the chemical forms of molecular iodine and methyl iodide. An effort is made to investigate the type of particles for particulate iodine. Of the various types of particles tested, only tobacco smoke particles have a sufficiently high iodination rate to be used in these studies. The 609.6-cm (20-ft)-long sample lines of Types 316 and 304 stainless steel tube (2.29 cm i.d.) were tested for the sample flow rates of 28.3 ell/min (1 ft3/min) and 56.6 ell/min (2 ft3/min). In-tube measurements using a calibrated thin-walled Geiger tube are conducted to determine the penetration factor and space-dependent deposition velocity profile of radioiodine. Methyl iodide is not reactive for either the tube surfaces or aerosol particles. The overall deposition velocity of the mixture of the smoke particles and molecular iodine is higher than that of molecular iodine alone for similar sampling conditions. It is concluded that the high deposition rate of radioiodine in the sample air mixed with smoke particles and molecular iodine is caused by the different sample line surfaces that are contaminated with smoke particles

  12. Effects of reactor core-simulant aerosols on hydrogen/air combustion

    International Nuclear Information System (INIS)

    Three representative reactor core-simulant aerosols were dispersed, just before ignition, into combustible hydrogen-air mixtures contained in 5.1 and 0.18 m3 chambers. Oxidic aerosols (Al2O3, Fe2O3) produced only minor changes in the burns. A metallic aerosol (Fe) ignited along with the hydrogen, producing more complete combustion of the hydrogen and substantially increased overpressures and thermal effects compared to control experiments performed identically without the aerosols. We attempted to use the rule of Le Chatelier to correlate flammability limits in the iron aerosol-hydrogen-air system determined in both experimental chambers. We showed that the rule does not apply well to hybrid mixtures such as these. We also showed that results obtained in small-scale apparatus may be misleading for metallic aerosols, where the flame thicknesses (approx.1 m) may be larger than the vessel dimensions. We recommend that large-scale apparatus be used whenever possible when studying lean flammability limits of either aerosols alone or hybrid aerosol-gas mixtures. 3 refs., 2 figs

  13. Development of in-service inspection priorities for pressurized water reactor high-pressure injection system components

    International Nuclear Information System (INIS)

    The multiyear program entitled Nondestructive Evaluation Reliability for In-Service Inspection of Light Water Reactors, sponsored by the US Nuclear Regulatory Commission, is being conducted at the Pacific Northwest Laboratory. The goals of the program are to determine the reliability of current in-service inspection of pressure boundary systems and components and to develop recommendations that can ensure a suitably high inspection reliability. The long-term objective is to develop recommendations for improved in-service inspections. In meeting program objectives, a risk-based method has been developed to guide the development of inspection plans. The method uses results of probabilistic risk assessment and failure modes and effects analysis techniques to identify and prioritize the most risk-important systems and components for inspection at nuclear power plants. The Surry Nuclear Power Station Unit 1 was selected for demonstrating the methodology. The specific system addressed in this study was the high-pressure injection/recirculation (HPI/R) system. The results provide a risk-based ranking of components within the HPI/R system, which can be used to guide the development of improved inspection plans for nuclear power plants. This work will subsequently be used in supporting the revisions of the American Society of Mechanical Engineer's codes and standards

  14. Transit time of mixed high pressure injection water and primary loop water in pressurized water reactor cold legs

    International Nuclear Information System (INIS)

    During an overcooling transient in a pressurized water reactor, cold water from the high pressure injection (HPI) mixes with the hot primary coolant in the cold leg. The transit time is a gauge for the assessment of the time and the velocity of the mixed flow that passes through the cold leg to the downcomer. Existing data from mixing tests at the Electric Power Research Institute (EPRI)/CREARE and EPRI/SAI facilities are analyzed. By means of models for HPI jet entrainment as well as the propagation of a gravity current, dimensionless correlations have been developed for the transit time and cold water front velocity at stagnant loop flow conditions. Based on this transit time correlation for stagnant loop flow and the limiting condition for large loop flow, a general correlation has been developed to account for the loop flow effect on transit time. These correlations unify a wide range of data obtained from five geometrically different test sections with two fluids (pure water and saline solution). In addition to the geometric factors, the governing dimensionless parameters for the transit time are the HPI jet Froude number, the Froude number for the cold-leg channel, and the ratio of loop flow to HPI flow

  15. Numerical simulation of flow characteristics of lean jet to cross-flow in safety injection of reactor cooling system

    International Nuclear Information System (INIS)

    In the present work, a numerical simulation was performed to study the flow characteristics of lean jet to cross flow in a main tube in the safety injection of reactor cooling system. The influence scope and mixing characteristics of the confined lean jet in cross-flow were studied. It can be concluded that three basic flow regimes are marked, namely the attached lean jet, lift-off lean jet and impinging lean jet. The velocity ratio VR is the key factor in the flow state. The depth and region of jet to main flow are enhanced with the increase of the velocity ratio. The jet flow penetrates through the main flow with the increase of the velocity ratio. At higher velocity ratio, the jet flow strikes the main flow bottom and circumfluence happens in upriver of main flow. The vortex flow characteristics dominate the flow near region of jet to cross-flow and the mixture of jet to cross-flow. At different velocity ratio VR, the vortex grows from the same displacement, but the vortex type and the vortex is different. At higher velocity ratio, the vortex develops fleetly, wears off sharp and dies out sharp. The study is very important to the heat transfer experiments of cross-flow jet and thermal stress analysis in the designs of nuclear engineering. (authors)

  16. Numerical study of methanol–steam reforming and methanol–air catalytic combustion in annulus reactors for hydrogen production

    International Nuclear Information System (INIS)

    Highlights: ► Performance of mini-scale integrated annulus reactors for hydrogen production. ► Flow rates fed to combustor and reformer control the reactor performance. ► Optimum performance is found from balance of flow rates to combustor and reformer. ► Better performance can be found when shell side is designed as combustor. -- Abstract: This study presents the numerical simulation on the performance of mini-scale reactors for hydrogen production coupled with liquid methanol/water vaporizer, methanol/steam reformer, and methanol/air catalytic combustor. These reactors are designed similar to tube-and-shell heat exchangers. The combustor for heat supply is arranged as the tube or shell side. Based on the obtained results, the methanol/air flow rate through the combustor (in terms of gas hourly space velocity of combustor, GHSV-C) and the methanol/water feed rate to the reformer (in terms of gas hourly space velocity of reformer, GHSV-R) control the reactor performance. With higher GHSV-C and lower GHSV-R, higher methanol conversion can be achieved because of higher reaction temperature. However, hydrogen yield is reduced and the carbon monoxide concentration is increased due to the reversed water gas shift reaction. Optimum reactor performance is found using the balance between GHSV-C and GHSV-R. Because of more effective heat transfer characteristics in the vaporizer, it is found that the reactor with combustor arranged as the shell side has better performance compared with the reactor design having the combustor as the tube side under the same operating conditions.

  17. A theoretical model of air and steam co-injection to prevent the downward migration of DNAPLs during steam-enhanced extraction

    Science.gov (United States)

    Kaslusky, Scott F.; Udell, Kent S.

    2002-04-01

    When steam is injected into soil containing a dense volatile non-aqueous phase liquid contaminant the DNAPL vaporized within the heated soil region condenses and accumulates ahead of the steam condensation front. If enough DNAPL accumulates, gravitational forces can overcome trapping forces allowing the liquid contaminant to flow downward. By injecting air with steam, a portion of the DNAPL vapor remains suspended in equilibrium with the air, decreasing liquid contaminant accumulation ahead of the steam condensation front, and thus reducing the possibility of downward migration. In this work, a one-dimensional theoretical model is developed to predict the injection ratio of air to steam that will prevent the accumulation of volatile DNAPLs. The contaminated region is modeled as a one-dimensional homogeneous porous medium with an initially uniform distribution of a single component contaminant. Mass and energy balances are combined to determine the injection ratio of air to steam that eliminates accumulation of the contaminant ahead of the steam condensation front, and hence reduces the possibility of downward migration. The minimum injection ratio that eliminates accumulation is defined as the optimum injection ratio. Example calculations are presented for three DNAPLs, carbon tetrachloride (CCl 4), trichloroethylene (TCE), and perchloroethylene (PCE). The optimum injection ratio of air to steam is shown to depend on the initial saturation and the volatility of the liquid contaminant. Numerical simulation results are presented to validate the model, and to illustrate downward migration for ratios less than optimum. Optimum injection ratios determined from numerical simulations are shown to be in good agreement with the theoretical model.

  18. Purging of an air-filled vessel by horizontal injection of steam

    International Nuclear Information System (INIS)

    Reported here are results from an idealised 2D problem in which cold air is purged from a large vessel by a steam jet. The focus of the study is the prediction of the evolution of the flow regimes resulting from changes in the relative importance of buoyancy and inertia forces, and time histories of the temperature and concentration fields. Global parameters of interest are the mixture concentration at the vessel outlet and the total time taken to purge the air. The Computational Fluid Dynamics (CFD) code CFX-4 has been used to perform calculations for different inlet velocities, covering a range of (densimetric) Froude numbers from Fr=0.8 (buoyancy dominated) to Fr=7.1 (inertia dominated). Animations have been used to help understand the dynamics of the flow transitions, and temperature and concentration histories at specific monitoring points have been compared with coarse-mesh predictions obtained using the containment code GOTHIC. (authors)

  19. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    Science.gov (United States)

    Palm, Brett B.; Campuzano-Jost, Pedro; Ortega, Amber M.; Day, Douglas A.; Kaser, Lisa; Jud, Werner; Karl, Thomas; Hansel, Armin; Hunter, James F.; Cross, Eben S.; Kroll, Jesse H.; Peng, Zhe; Brune, William H.; Jimenez, Jose L.

    2016-03-01

    An oxidation flow reactor (OFR) is a vessel inside which the concentration of a chosen oxidant can be increased for the purpose of studying SOA formation and aging by that oxidant. During the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen-Rocky Mountain Biogenic Aerosol Study) field campaign, ambient pine forest air was oxidized by OH radicals in an OFR to measure the amount of SOA that could be formed from the real mix of ambient SOA precursor gases, and how that amount changed with time as precursors changed. High OH concentrations and short residence times allowed for semicontinuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq.) atmospheric aging. A simple model is derived and used to account for the relative timescales of condensation of low-volatility organic compounds (LVOCs) onto particles; condensational loss to the walls; and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 3 µg m-3 when LVOC fate corrected) compared to daytime (average 0.9 µg m-3 when LVOC fate corrected), with maximum formation observed at 0.4-1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene+p-cymene concentrations, including a substantial increase just after sunrise at 07:00 local time. Higher photochemical aging (> 10 eq. days) led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254-70), similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic

  20. Ozone generation by negative direct current corona discharges in dry air fed coaxial wire-cylinder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yehia, Ashraf [Department of Physics, Faculty of Science, Assiut University, Assiut 71516, Egypt and Department of Physics, College of Science and Humanitarian Studies in Alkharj, Salman bin Abdulaziz University, P.O. Box 83, Alkharj 11942 (Saudi Arabia); Mizuno, Akira [Department of Environmental and Life Sciences, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580 (Japan)

    2013-05-14

    An analytical study was made in this paper for calculating the ozone generation by negative dc corona discharges. The corona discharges were formed in a coaxial wire-cylinder reactor. The reactor was fed by dry air flowing with constant rates at atmospheric pressure and room temperature, and stressed by a negative dc voltage. The current-voltage characteristics of the negative dc corona discharges formed inside the reactor were measured in parallel with concentration of the generated ozone under different operating conditions. An empirical equation was derived from the experimental results for calculating the ozone concentration generated inside the reactor. The results, that have been recalculated by using the derived equation, have agreed with the experimental results over the whole range of the investigated parameters, except in the saturation range for the ozone concentration. Therefore, the derived equation represents a suitable criterion for expecting the ozone concentration generated by negative dc corona discharges in dry air fed coaxial wire-cylinder reactors under any operating conditions in range of the investigated parameters.

  1. Ozone generation by negative direct current corona discharges in dry air fed coaxial wire-cylinder reactors

    International Nuclear Information System (INIS)

    An analytical study was made in this paper for calculating the ozone generation by negative dc corona discharges. The corona discharges were formed in a coaxial wire-cylinder reactor. The reactor was fed by dry air flowing with constant rates at atmospheric pressure and room temperature, and stressed by a negative dc voltage. The current-voltage characteristics of the negative dc corona discharges formed inside the reactor were measured in parallel with concentration of the generated ozone under different operating conditions. An empirical equation was derived from the experimental results for calculating the ozone concentration generated inside the reactor. The results, that have been recalculated by using the derived equation, have agreed with the experimental results over the whole range of the investigated parameters, except in the saturation range for the ozone concentration. Therefore, the derived equation represents a suitable criterion for expecting the ozone concentration generated by negative dc corona discharges in dry air fed coaxial wire-cylinder reactors under any operating conditions in range of the investigated parameters.

  2. On detonation dynamics in hydrogen-air-steam mixtures: Theory and application to Olkiluoto reactor building

    International Nuclear Information System (INIS)

    This report consists of the literature study of detonation dynamics in hydrogen-air-steam mixtures, and the assessment of shock pressure loads in Olkiluoto 1 and 2 reactor building under detonation conditions using the computer program DETO developed during this work at VTT. The program uses a simple 1-D approach based on the strong explosion theory, and accounts for the effects of both the primary or incident shock and the first (oblique or normal) reflected shock from a wall structure. The code results are also assessed against a Balloon experiment performed at Germany, and the classical Chapman-Jouguet detonation theory. The whole work was carried out as a part of Nordic SOS-2.3 project, dealing with severe accident analysis. The initial conditions and gas distribution of the detonation calculations are based on previous severe accident analyses by MELCOR and FLUENT codes. According to DETO calculations, the maximum peak pressure in a structure of Olkiluoto reactor building room B60-80 after normal shock reflection was about 38.7 MPa if a total of 3.15 kg hydrogen was assumed to burned in a distance of 2.0 m from the wall structure. The corresponding pressure impulse was about 9.4 kPa-s. The results were sensitive to the distance used. Comparison of the results to classical C-J theory and the Balloon experiments suggested that DETO code represented a conservative estimation for the first pressure spike under the shock reflection from a wall in Olkiluoto reactor building. Complicated 3-D phenomena of shock wave reflections and focusing, nor the propagation of combustion front behind the shock wave under detonation conditions are not modeled in the DETO code. More detailed 3-D analyses with a specific detonation code are, therefore, recommended. In spite of the code simplifications, DETO was found to be a beneficial tool for simple first-order assessments of the structure pressure loads under the first reflection of detonation shock waves. The work on assessment

  3. Damage Curves of a Nuclear Reactor Structure exposed to Air Blast Loading

    International Nuclear Information System (INIS)

    Nuclear Power Plant (NPP) radiological hazards due to accidental failure or deliberated attacks are of most concern due to their destructive and global consequences: large area contaminations, injuries, exposure to ionizing radiation (which can cause death or illness, depends on the levels of exposure), loss of lives of both humans and animals, and severe damage to the environment. Prevention of such consequences is of a global importance and it has led to the definition of safety & design guidelines, and regulations by various authorities such as IAEA, U.S. NRC, etc. The guidelines define general requirements for the integrity of a NPP’s physical barriers (such as protective walls) when challenged by external events, for example human induced explosion. A more specific relation to the design of a NPP is that its structures and equipment (reactor building, fuel building, safeguards building, diesel-generator building, pumping station, nuclear auxiliaries building, and effluent treatment building) must function properly: shutdown the reactor, removal of decayed heat, storage of spent fuel, and treatment and containment of radioactive effluents) under external explosion. It requires that the NPP’s structures and equipment resistance to external explosion should be analyzed and verified. The air blast loading created by external explosion, as well as its effects & consequences on different kinds of structures are described in the literature. Structural elements response to the air blast can be analyzed in general by a Single Degree of Freedom (SDOF) system that converts a distributed mass, loads, and resistance to concentrated mass, force, and stiffness located at a representative point of the structure's element where the displacements are the highest one. Proper shielding should be designed if the explosion blast effects are greater than the resistance capacity.External explosion effects should be considered within the Screening Distance Value (SDV) of the NPP

  4. Spatial and energy distributions of skyshine neutron and gamma radiation from nuclear reactors on the ground-air boundary

    International Nuclear Information System (INIS)

    A set of measurements on skyshine radiation was conducted at two special research reactors. A broad range of detectors was used in the measurements to record neutron and gamma radiations. Dosimetric and radiometric field measurements of the neutrons and gamma quanta of the radiation scattered in the air were performed at distances of 50 to 1000 m from the reactor during different weather conditions. The neutron spectra in the energy range of 1 eV to 10 MeV and the gamma quanta spectra in the range of 0.1-10 MeV were measured. (author)

  5. Oxidative pyrolysis of kraft lignin in a bubbling fluidized bed reactor with air

    International Nuclear Information System (INIS)

    Fast pyrolysis of kraft lignin with partial (air) oxidation was studied in a bubbling fluidized bed reactor at reaction temperatures of 773 and 823 K. The bio-oil vapors were fractionated using a series of three condensers maintained at desired temperatures, providing a dry bio-oil with less than 1% water and over 96% of the total bio-oil energy. Oxygen feed was varied to study its effect on yield, composition, and energy recovery in the gas, char and oil products. The addition of oxygen to the pyrolysis process increased the production of gases such as CO and CO2. It also changed the dry bio-oil properties, reducing its heating value, increasing its oxygen content, reducing its average molecular weight and tar concentration, while increasing its phenolics concentration. The lower reaction temperature of 773 K was preferred for both dry bio-oil yield and quality. Autothermal operation of the pyrolysis process was achieved with an oxygen feed of 72 or 54 g per kg of biomass at the reaction temperatures of 773 and 823 K, respectively. Autothermal operation reduced both yield and total energy content of the dry bio-oil, with relative reductions of 24 and 20% for the yield, 28 and 23% for the energy content, at 773 and 823 K. - Highlights: • Autothermal pyrolysis of Kraft lignin is possible with introduction of air. • Under autothermal conditions, 24% of the dry bio-oil chemicals are lost at 773 K. • Partial oxidation helps produce more simple phenols and less pyrolytic lignin. • Bio-oil from lignin pyrolysis has a very high phenolics concentration

  6. Forecast of thermal-hydrological conditions and air injection test results of the single heater test at Yucca Mountain

    International Nuclear Information System (INIS)

    The heater in the Single Heater Test (SHT) in alcove 5 of the Exploratory Studies Facility (ESF) was turned on August 26, 1996. A large number of sensors are installed in the various instrumented boreholes to monitor the coupled thermal-hydrological-mechanical-chemical responses of the rock mass to the heat generated in the single heater. In this report the authors present the results of the modeling of both the heating and cooling phases of the Single Heater Test (SHT), with focus on the thermal-hydrological aspect of the coupled processes. Also in this report, the authors present simulations of air injection tests will be performed at different stages of the heating and cooling phase of the SHT

  7. Equivalent ambipolar carrier injection of electrons and holes with Au electrodes in air-stable field effect transistors

    International Nuclear Information System (INIS)

    Carrier injection from Au electrodes to organic thin-film active layers can be greatly improved for both electrons and holes by nano-structural surface control of organic semiconducting thin films using long-chain aliphatic molecules on a SiO2 gate insulator. In this paper, we demonstrate a stark contrast for a 2,5-bis(4-biphenylyl)bithiophene (BP2T) active semiconducting layer grown on a modified SiO2 dielectric gate insulator between two different modifications of tetratetracontane and poly(methyl methacrylate) thin films. Important evidence that the field effect transistor (FET) characteristics are independent of electrode metals with different work functions is given by the observation of a conversion of the metal-semiconductor contact from the Schottky limit to the Bardeen limit. An air-stable light emitting FET with an Au electrode is demonstrated

  8. Effect of secondary air injection on the combustion efficiency of sawdust in a fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    K. V. N. Srinivasa Rao

    2008-03-01

    Full Text Available Agricultural wastes like bagasse, paddy husks, sawdust and groundnut shells can be effectively used as fuels for fluidized bed combustion; otherwise these biomass fuels are difficult to handle due to high moisture and fines content. In the present work the possibility of using sawdust in the fluidized bed combustor, related combustion efficiencies and problems encountered in the combustion process are discussed. The temperature profiles for sawdust with an increase in fluidizing velocity along the vertical height above the distributor plate indicate that considerable burning of fuel particles is taking place in the freeboard zone rather than complete burning within the bed. Therefore, an enlarged disengagement section is provided to improve the combustion of fines. The temperature profiles along the bed height are observed at different feed rates. The feed rate of sawdust corresponding to the maximum possible temperature was observed to be 10.2 kg/h. It is observed that 50-60% excess air is optimal for reducing carbon loss during the burning of sawdust. The maximum possible combustion efficiency with sawdust is 99.2% and is observed with 65% excess air.

  9. Traitement in situ des HAPs par co-injection air-vapeur : mécanismes physico-chimiques et optimisation énergétique

    OpenAIRE

    Bordenave, Alexandre

    2015-01-01

    PAHs are the largest, ubiquitous and carcinogenic environmental chemical groups. In a context of polluted soil remediation, today it is still a challenge to reach an effective in situ treatment. This study aims to evaluate as an alternative way the potential of a technology combining a thermal process (injection of steam) and a chemical process (co-injection of air) in the saturated zone. A first introductory experimental section considers the influence of a single steam treatment on the rele...

  10. [Removal of Cr from tannery sludge by bioleaching in air-lift reactor: a pilot study].

    Science.gov (United States)

    Chen, Hao; Zhou, Li-xiang; Li, Chao

    2007-09-01

    A bioleaching process performed in 280 L air-lift reactor was developed for extracting Cr from tannery sludge. Cr removal efficiency under different aeration amount with a range from 1.0 m3/h to 3.0 m3/h was investigated. The results showed that the sludge could be homogeneous quickly for different aeration treatment even if aeration amount was as low as 1.0 m3/h. But the obvious effect of aeration amount on pH decrease and subsequent Cr dissolution in tannery sludge during bioleaching was observed. If the aeration amount was below 1.5 m3/h, it at least took 90 h to reach 80% Cr removal efficiency. In the light of Cr removal efficiency and energy consume, the aeration amount of 2.0 m3/h was considered as an optimum one for bioleaching in this trial. Cr removal efficiency could reach above 92.5% at 72 h. In the sludge bioleaching system dissolved oxygen increased obviously with the decrease of pH. Eventually, dissolved oxygen rised to 5 mg/L or more when aeration amount was maintained at 2.0 m3/h or more. Therefore, it was suggested that the aeration amount in ALR could be adjusted to a lower level in the late stage of tannery sludge bioleaching in order to save operation cost. PMID:17990555

  11. Calculations of sodium aerosol concentrations at breeder reactor air intake ports

    International Nuclear Information System (INIS)

    This report describes the methodology used and results obtained in efforts to estimate the sodium aerosol concentrations at air intake ports of a liquid-metal cooled, fast-breeder nuclear reactor. A range of wind speeds from 2 to 10 m/s is assumed, and an effort is made to include building wake effects which in many cases dominate the dispersal of aerosols near buildings. For relatively small release rates on the order of 1 to 10 kg/s, it is suggested that the plume rise will be small and that estimates of aerosol concentrations may be derived using the methodology of Wilson and Britter (1982), which describes releases from surface vents. For more acute releases with release rates on the order of 100 kg/s, much higher release velocities are expected, and plume rise must be considered. Both momentum-driven and density-driven plume rise are considered. An effective increase in release height is computed using the Split-H methodology with a parameterization suggested by Ramsdell (1983), and the release source strength was transformed to rooftop level. Evaluation of the acute release aerosol concentration was then based on the methodology for releases from a surface release of this transformed source strength

  12. Ventilation and air cleaning plant experience in fast reactor fuel cycle facilities at Dounreay

    International Nuclear Information System (INIS)

    This paper is about work to measure the quantity and quality of aerosols created in Fast Reactor Fuel Cycle Facilities. Such facilities typically contain large amounts of Pu, Actinides, Fission Products often in a dispersable form, which pose varied challenges to ventilation systems in general and clean up devices in particular. Fluidic (no moving part) devices have been used intensively for the past 5 years at Dounreay and their performance will be discussed. Of particular importance has been their use on small enclosures such as gloveboxes, where they have made an important contribution in minimising activity escape. A large amount of data on HEPA filter performance in various parts of the facility has now been accumulated. Testing experience, particularly in situ of HEPAs will be presented and the problems encountered discussed. Factors affecting HEPA life will be discussed. In the past the development of new filter housing and changing systems have been presented to the US ERDA Air Cleaning Conference. The performance of these devices under active conditions will be reported. Considerable work has been done on the estimation of residual alpha activity on used HEPAs by neutron counting and equipment developed to allow alpha activity to be detected down to very low levels. This can also be done for high gamma active filters inside lead shielding. System failures are discussed together with performance of safety equipment. (author)

  13. HYDRODYNAMIC BEHAVIOR AND ABSORPTION OF CARBON DIOXIDE BY CHEMICAL REACTION WITH GLUCOSAMINE IN AN AIR-LIFT REACTOR

    OpenAIRE

    Alicia García-Abuín; Diego Gómez-Díaz; Navaza, José M.; Isabel Vidal-Tato

    2010-01-01

    In this work, it has been studied the behavior of aqueous solutions of glucosamine used as absorbent phase in the carbon dioxide capture process using an air-lift reactor. The experimental results indicate that the reagent (glucosamine) shows a similar behavior related to absorption rate, than previously observed for aqueous solutions of other amines widely used for carbon dioxide capture. The value of mass transfer rate has been determined, as well as the effect of these operation conditions...

  14. Microalgae cultivation in air-lift reactors: modeling biomass yield and growth rate as a function of mixing frequency.

    Science.gov (United States)

    Barbosa, Maria J; Janssen, Marcel; Ham, Nienke; Tramper, Johannes; Wijffels, René H

    2003-04-20

    The slow development of microalgal biotechnology stems from the failure in the design of large-scale photobioreactors where light energy is efficiently utilized. Due to the light gradient inside the reactor and depending on the mixing properties, algae are subjected to certain light/dark cycles where the light period is characterized by a light gradient. These light/dark cycles will determine productivity and biomass yield on light energy. Air-lift reactors can be used for microalgae cultivation and medium-frequency light/dark cycles will be found in these systems. Light/dark cycles are associated with two basic parameters: first, the light fraction, i.e., the ratio between the light period and the cycle time and second, the frequency of the light/dark cycle. In the present work, light/dark cycles found in air-lift reactors were simulated taking into account the light gradient during the light period. The effect of medium-frequency cycle time (10-100 s) and light fraction (0.1-1) on growth rate and biomass yield on light energy of the microalgae Dunaliella tertiolecta was studied. The biomass yield and growth rates were mainly affected by the light fraction, while cycle time had little influence. Response surface methodology was used and a statistical model describing the effect of light fraction and cycle time on growth rate and biomass yield on light energy was developed. The use of the model as a reactor design criterion is discussed. PMID:12584758

  15. The use of CFD code for numerical simulation study on the air/water countercurrent flow limitation in nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Morghi, Youssef; Mesquita, Amir Zacarias; Santos, Andre Augusto Campagnole dos; Vasconcelos, Victor, E-mail: ymo@cdtn.br, E-mail: amir@cdtn.br, E-mail: aacs@cdtn.br, E-mail: vitors@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    For the experimental study on the air/water countercurrent flow limitation in Nuclear Reactors, were built at CDTN an acrylic test sections with the same geometric shape of 'hot leg' of a Pressurized Water Reactor (PWR). The hydraulic circuit is designed to be used with air and water at pressures near to atmospheric and ambient temperature. Due to the complexity of the CCFL experimental, the numerical simulation has been used. The aim of the numerical simulations is the validation of experimental data. It is a global trend, the use of computational fluid dynamics (CFD) modeling and prediction of physical phenomena related to heat transfer in nuclear reactors. The most used CFD codes are: FLUENT®, STAR- CD®, Open Foam® and CFX®. In CFD, closure models are required that must be validated, especially if they are to be applied to nuclear reactor safety. The Thermal- Hydraulics Laboratory of CDTN offers computing infrastructure and license to use commercial code CFX®. This article describes a review about CCFL and the use of CFD for numerical simulation of this phenomenal for Nuclear Rector. (author)

  16. The use of CFD code for numerical simulation study on the air/water countercurrent flow limitation in nuclear reactors

    International Nuclear Information System (INIS)

    For the experimental study on the air/water countercurrent flow limitation in Nuclear Reactors, were built at CDTN an acrylic test sections with the same geometric shape of 'hot leg' of a Pressurized Water Reactor (PWR). The hydraulic circuit is designed to be used with air and water at pressures near to atmospheric and ambient temperature. Due to the complexity of the CCFL experimental, the numerical simulation has been used. The aim of the numerical simulations is the validation of experimental data. It is a global trend, the use of computational fluid dynamics (CFD) modeling and prediction of physical phenomena related to heat transfer in nuclear reactors. The most used CFD codes are: FLUENT®, STAR- CD®, Open Foam® and CFX®. In CFD, closure models are required that must be validated, especially if they are to be applied to nuclear reactor safety. The Thermal- Hydraulics Laboratory of CDTN offers computing infrastructure and license to use commercial code CFX®. This article describes a review about CCFL and the use of CFD for numerical simulation of this phenomenal for Nuclear Rector. (author)

  17. Effect of air injection under subsurface drip irrigation on yield and water use efficiency of corn in a sandy clay loam soil

    OpenAIRE

    Mohamed Abuarab; Ehab Mostafa; Mohamed Ibrahim

    2013-01-01

    Subsurface drip irrigation (SDI) can substantially reduce the amount of irrigation water needed for corn production. However, corn yields need to be improved to offset the initial cost of drip installation. Air-injection is at least potentially applicable to the (SDI) system. However, the vertical stream of emitted air moving above the emitter outlet directly toward the surface creates a chimney effect, which should be avoided, and to ensure that there are adequate oxygen for root respiration...

  18. Effect of Aviation Fuel Type and Fuel Injection Conditions on the Spray Characteristics of Pressure Swirl and Hybrid Air Blast Fuel Injectors

    OpenAIRE

    Feddema, Rick Thomas

    2013-01-01

    Feddema, Rick T. M.S.M.E., Purdue University, December 2013. Effect of Aviation Fuel Type and Fuel Injection Conditions on the Spray Characteristics of Pressure Swirl and Hybrid Air Blast Fuel Injectors. Major Professor: Dr. Paul E. Sojka, School of Mechanical Engineering Spray performance of pressure swirl and hybrid air blast fuel injectors are central to combustion stability, combustor heat management, and pollutant formation in aviation gas turbine engines. Next generation aviation gas...

  19. Deep convective injection of boundary layer air into the lowermost stratosphere at midlatitudes

    Directory of Open Access Journals (Sweden)

    H. Fischer

    2002-11-01

    Full Text Available On 22 August 2001 a measurement flight was performed with the German research aircraft FALCON from Sardinia to Crete as part of the Mediterranean Oxidant Study (MINOS. Cruising at 8.2 km, the aircraft was forced to climb to 11.2 km over the southern tip of Italy to stay clear of the anvil of a large cumulonimbus tower. During ascent into the lowermost stratosphere in-situ measurements onboard the FALCON indicated several sharp increases in the concentrations of tropospheric trace gases, e.g. CO, acetone, methanol, benzene and acetonitrile, above the anvil. During one particular event deep in the stratosphere, at O3 concentrations exceeding 200 ppv, CO increased from about 60 to 90 ppv, while the concentration of acetone and methanol increased by more than a factor of 2 (0.7 to 1.8 ppv for acetone; 0.4 to 1.4 ppv for methanol. Enhancements for the short lived species benzene are even higher, increasing from 20 pptv in the stratosphere to approx. 130 pptv. The concentrations during the event were higher than background concentrations in the upper troposphere, indicating that polluted boundary layer air was directly mixed deep into the lowermost stratosphere.

  20. Analysis of streamer properties in air as function of pulse and reactor parameters by ICCD photography

    Energy Technology Data Exchange (ETDEWEB)

    Winands, G J J [HMVT, 6710 BD, Ede (Netherlands); Liu, Z; Pemen, A J M; Van Heesch, E J M [Eindhoven University of Technology, 5600 MB, Eindhoven (Netherlands); Yan, K [Zhejiang University, 310082, Hangzhou (China)

    2008-12-07

    Streamer properties such as their velocity, diameter, intensity and density, can be obtained by analysis of temporal and spatial resolved ICCD imaging. In this paper, experimental results on streamer generation and propagation as a function of several high-voltage pulse and reactor parameters are described. Experiments were performed on a large scale wire-plate reactor in ambient air. The set-up allows for independent variation of the parameters over wide ranges. The minimum gate time of the ICCD camera is 5 ns, allowing for a high temporal resolution. The camera can be triggered with a precision of 1 ns. Both negative and positive polarity pulses are investigated. The most important conclusions are as follows. (1) The streamer velocity ((0.5-2.5) x 10{sup 6} m s{sup -1}) increases if the applied electric field and/or the voltage rise rate is increased. (2) The same is true regarding the velocity ((0.2-1.2) x 10{sup 5} m s{sup -1}) with which the streamer diameter (0.7-3.0 mm) increases during propagation. (3) Typical properties (velocity, diameter, etc) of negative and positive polarity streamers vary less than 25%, especially when the applied electric field is high. (4) As long as the dc bias voltage is below the dc corona onset value it does not have a separate effect on the visual streamer properties. Only the total voltage (peak voltage + dc) is of importance. (5) A simple model was used to determine the electric field in the secondary streamer channel. It was found that in the light emitting part of the secondary streamer the electric field is approximately 21.5 kV cm{sup -1}. In the remainder (dark part) of the channel the electric field is around 6.5 kV cm{sup -1}. This paper shows mainly experimental findings. Not all observed relations and phenomena could be explained. This is partly caused by the fact that current theoretical and numerical models are not yet able to describe the experimental situation as used during this study.

  1. Effect of conditions of air-lift type reactor work on cadmium adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Filipkowska, Urszula; Szymczyk, Paula Szymczyk; Kuczajowska-Zadrozna, Malgorzata; Joezwiak, Tomasz [University of Warmia and Mazury in Olsztyn, Warszawska (Poland)

    2015-10-15

    We investigated cadmium sorption by activated sludge immobilized in 1.5% sodium alginate with 0.5% polyvinyl alcohol. Experiments were conducted in an air-lift type reactor at the constant concentration of biosorbent reaching 5 d.m./dm{sup 3}, at three flow rates: 0.1, 0.25 and 0.5 V/h, and at three concentrations of the inflowing cadmium solution: 10, 25 and 50mg/dm{sup 3}. Analyses determined adsorption capacity of activated sludge immobilized in alginate as well as reactor's work time depending on flow rate and initial concentration of the solution. Results achieved were described with the use of Thomas model. The highest adsorption capacity of the sorbent (determined from the Thomas model), i.e., 200.2mg/g d.m. was obtained at inflowing solution concentration of 50mg/dm{sup 3} and flow rate of 0.1V/h, whereas the lowest one reached 53.69mg/g d.m. at the respective values of 10mg/dm{sup 3} and 0.1 V/h. Analyses were also carried out to determine the degree of biosorbent adsorption capacity utilization at the assumed effectiveness of cadmium removal - at the breakthrough point (C=0.05*C{sub 0}) and at adsorption capacity depletion point (C−0.9*C0). The study demonstrated that the effectiveness of adsorption capacity utilization was influenced by both the concentration and flow rate of the inflowing solution. The highest degree of sorbent capacity utilization was noted at inflowing solution concentration of 50mg/dm{sup 3} and flow rate of 0.1 V/h, whereas the lowest one at the respective values of 10mg/dm{sup 3} and 0.1 V/h. The course of the process under dynamic conditions was evaluated using coefficients of tangent inclination - a, at point C/C{sub 0}=1/2. A distinct tendency was demonstrated in changes of tangent slope a as affected by the initial concentration of cadmium and flow rate of the solution. The highest values of a coefficient were achieved at the flow rate of 0.1 V/h and initial cadmium concentration of 50mg/dm{sup 3}.

  2. Effects of hydraulic retention time and nitrobenzene concentration on the performance of sequential upflow anaerobic filter and air lift reactors in treating nitrobenzene-containing wastewater

    DEFF Research Database (Denmark)

    Wu, Jinhua; Chen, Guocai; Gu, Jingjing;

    2014-01-01

    Sequential upflow anaerobic filter (UAF)/air lift (ALR) reactors were employed to investigate the effects of hydraulic retention time (HRT) and nitrobenzene (NB) concentration on treatment of NB-containing wastewater. The results showed that NB was effectively reduced to aniline (AN) with glucose...... as co-substrate in the UAF reactor. The AN and the remaining intermediates after the UAF reactor were then efficiently degraded in the ALR reactor. A removal efficiency of 100% and 96% was obtained for NB and chemical oxygen demand (COD), respectively, using sequential UAF/ALR reactors with an HRT of 8......-72 h in the UAF reactor and 2-18 h in the ALR reactor. The corresponding optimal influent NB concentration varied between 100 and 400 mg l super(-1) to achieve the optimal NB and COD removal. The NB removal efficiency decreased to 90% and to 97% if the HRT in the UAF reactor decreased from 8 to 2 h...

  3. Summary of air permeability data from single-hole injection tests in unsaturated fractured tuffs at the Apache Leap Research Site: Results of steady-state test interpretation

    International Nuclear Information System (INIS)

    This document summarizes air permeability estimates obtained from single hole pneumatic injection tests in unsaturated fractured tuffs at the Covered Borehole Site (CBS) within the larger apache Leap Research Site (ALRS). Only permeability estimates obtained from a steady state interpretation of relatively stable pressure and flow rate data are included. Tests were conducted in five boreholes inclined at 45 degree to the horizontal, and one vertical borehole. Over 180 borehole segments were tested by setting the packers 1 m apart. Additional tests were conducted in segments of lengths 0.5, 2.0, and 3.0 m in one borehole, and 2.0 m in another borehole, bringing the total number of tests to over 270. Tests were conducted by maintaining a constant injection rate until air pressure became relatively stable and remained so for some time. The injection rate was then incremented by a constant value and the procedure repeated. The air injection rate, pressure, temperature, and relative humidity were recorded. For each relatively stable period of injection rate and pressure, air permeability was estimated by treating the rock around each test interval as a uniform, isotropic porous medium within which air flows as a single phase under steady state, in a pressure field exhibiting prolate spheroidal symmetry. For each permeability estimate the authors list the corresponding injection rate, pressure, temperature and relative humidity. They also present selected graphs which show how the latter quantities vary with time; logarithmic plots of pressure versus time which demonstrate the importance of borehole storage effects during the early transient portion of each incremental test period; and semilogarithmic plots of pressure versus recovery time at the end of each test sequence

  4. LIFAC sorbent injection desulfurization demonstration project. Quarterly report No. 3, April--June 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    LIFAC combines upper-furnace limestone injection followed by post-furnace humidification in an activation reactor located between the air preheater and the ESP. The process produces a dry and stable waste product that is partially removed from the bottom of the activation reactor and partially removed at the ESP.

  5. Development of a Prototype Algal Reactor for Removing CO2 from Cabin Air

    Science.gov (United States)

    Patel, Vrajen; Monje, Oscar

    2013-01-01

    Controlling carbon dioxide in spacecraft cabin air may be accomplished using algal photobioreactors (PBRs). The purpose of this project was to evaluate the use of a commercial microcontroller, the Arduino Mega 2560, for measuring key photioreactor variables: dissolved oxygen, pH, temperature, light, and carbon dioxide. The Arduino platform is an opensource physical computing platform composed of a compact microcontroller board and a C++/C computer language (Arduino 1.0.5). The functionality of the Arduino platform can be expanded by the use of numerous add-ons or 'shields'. The Arduino Mega 2560 was equipped with the following shields: datalogger, BNC shield for reading pH sensor, a Mega Moto shield for controlling CO2 addition, as well as multiple sensors. The dissolved oxygen (DO) probe was calibrated using a nitrogen bubbling technique and the pH probe was calibrated via an Omega pH simulator. The PBR was constructed using a 2 L beaker, a 66 L box for addition of CO2, a micro porous membrane, a diaphragm pump, four 25 watt light bulbs, a MasterFiex speed controller, and a fan. The algae (wild type Synechocystis PCC6803) was grown in an aerated flask until the algae was dense enough to used in the main reactor. After the algae was grown, it was transferred to the 2 L beaker where CO2 consumption and O2 production was measured using the microcontroller sensor suite. The data was recorded via the datalogger and transferred to a computer for analysis.

  6. Neutronic analysis of water-steam injection accidents for generation 4 gas-cooled fast reactors - 201

    International Nuclear Information System (INIS)

    The present paper is addressing the static neutronic analysis, and a code-to-code validation, of water-steam injection accidents for three different Gas-cooled Fast Reactor (GFR) core designs. It is assumed that this type of accident can occur as consequence of either the rupture of a pipe in the main steam generator or a leak in the decay heat removal heat exchanger. The analysis is focused on fast-spectrum, helium-cooled systems currently being developed and investigated in the context of the Generation IV International Forum (GIF) and the 6. Framework Program of the European Union. More specifically, two 2400 MWth GFR cores and a small-size 50 MWth GFR demonstrator have been analyzed and systematically compared for a large range of water-steam densities from 0 (dry core) to 250 kg/m3 within the core. The neutronic analysis was performed using both the deterministic system code ERANOS-2.1 and the Monte Carlo method MCNPX-2.5 code, in association with modern nuclear data libraries, i.e. JEF-2.2 and ERALIB1 (adjusted library) for ERANOS, and JEF-2.2 for MCNPX. First, simulations were performed based on cell models and then with whole core representation, in order to ease the code-to-code comparison. Based on the core analysis, the keff-value for the two GFR core designs is seen to first increase with the water-steam density, and then, beyond 40-100 kg/m3, to decrease monotonically. On the contrary, for ETDR, the keff-value increases throughout the analyzed water-steam density range. Globally, a good agreement is obtained between the deterministic and stochastic results, the discrepancy being in the range of a few hundreds of pcm. Additional investigations have been conducted on effects such as the neutron spectrum softening, leakage reduction and the contribution of structural materials. It has been observed that non-conventional materials, such as tungsten, play a major role and help counteract the positive reactivity effect. Finally, the analysis has shown the

  7. Design considerations and experimental observations for the TAMU air-cooled reactor cavity cooling system for the VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, S. A., E-mail: shamsulamri@tamu.edu; Dominguez-Ontiveros, E. E., E-mail: elvisdom@tamu.edu; Alhashimi, T., E-mail: jbudd123@tamu.edu; Budd, J. L., E-mail: dubaiboy@tamu.edu; Matos, M. D., E-mail: mailgoeshere@gmail.com; Hassan, Y. A., E-mail: yhasssan@tamu.edu [Department of Nuclear Engineering, Texas A and M University, College Station, TX, 77843-3133 (United States)

    2015-04-29

    The Reactor Cavity Cooling System (RCCS) is a promising passive decay heat removal system for the Very High Temperature Reactor (VHTR) to ensure reliability of the transfer of the core residual and decay heat to the environment under all off-normal circumstances. A small scale experimental test facility was constructed at Texas A and M University (TAMU) to study pertinent multifaceted thermal hydraulic phenomena in the air-cooled reactor cavity cooling system (RCCS) design based on the General Atomics (GA) concept for the Modular High Temperature Gas-Cooled Reactor (MHTGR). The TAMU Air-Cooled Experimental Test Facility is ⅛ scale from the proposed GA-MHTGR design. Groundwork for experimental investigations focusing into the complex turbulence mixing flow behavior inside the upper plenum is currently underway. The following paper illustrates some of the chief design considerations used in construction of the experimental test facility, complete with an outline of the planned instrumentation and data acquisition methods. Computational Fluid Dynamics (CFD) simulations were carried out to furnish some insights on the overall behavior of the air flow in the system. CFD simulations assisted the placement of the flow measurement sensors location. Preliminary experimental observations of experiments at 120oC inlet temperature suggested the presence of flow reversal for cases involving single active riser at both 5 m/s and 2.25 m/s, respectively and four active risers at 2.25 m/s. Flow reversal may lead to thermal stratification inside the upper plenum by means of steady state temperature measurements. A Particle Image Velocimetry (PIV) experiment was carried out to furnish some insight on flow patterns and directions.

  8. Separate-effects experiments on the hydrodynamics of air ingress phenomena for the very high temperature reactor

    International Nuclear Information System (INIS)

    The present study performs scaled separate-effects experiments to investigate the hydrodynamics in the air-ingress phenomena following a Depressurized Condition Cooldown in the Very High Temperature Gas-Cooled Reactor. First, a scoping experiment using water and brine is performed. The volumetric exchange rate is measured using a hydrometer, and flow visualizations are performed. Next, Helium-air experiments are performed to obtain three-dimensional oxygen concentration transient data using an oxygen analyzer. It is found that there exists a critical density difference ratio, before which the ingress rate increases linearly with time and after which the ingress rate slows down significantly. In both the water-brine and Helium-air experiments, this critical ratio is found to be approximately 0.7. (author)

  9. Combined in-situ and ex-situ bioremediation of petroleum hydrocarbon contaminated soils by closed-loop soil vapor extraction and air injection

    International Nuclear Information System (INIS)

    Treatment and restoration of petroleum hydrocarbon contaminated soils at a bulk petroleum above-ground storage tank (AST) site in Michigan is being conducted through in-situ and ex-situ closed-loop soil vapor extraction (SVE), soil vapor treatment, and treated air injection (AI) processes. The soil vapor extraction process applies a vacuum through the petroleum hydrocarbon affected soils in the ex-situ bio-remediation pile (bio-pile) and along the perimeter of excavated area (in-situ area) to remove the volatile or light petroleum hydrocarbons. This process also draws ambient air into the ex-situ bio-pile and in-situ vadose zone soil along the perimeter of excavated area to enhance biodegradation of light and heavy petroleum hydrocarbons in the soil. The extracted soil vapor is treated using a custom-designed air bio-remediation filter (bio-filter) to degrade the petroleum hydrocarbon compounds in the soil vapor extraction air streams. The treated air is then injected into a flush grade soil bed in the backfill area to perform final polishing of the air stream, and to form a closed-loop air flow with the soil vapor extraction perforated pipes along the perimeter of the excavated area

  10. Pengaruh Penambahan Glukosa Sebagai Co-substrate dalam Pengolahan Air Limbah Minyak Solar Menggunakan Sistem High Rate Alga Reactor (HRAR

    Directory of Open Access Journals (Sweden)

    Laksmisari Rakhma Putri

    2014-09-01

    Full Text Available Kandungan minyak dalam air limbah umumnya relatif sulit untuk diuraikan oleh mikroorganisme pada pengolahan air limbah secara biologis. Sistem alga dalam High Rate Alga Reactor (HRAR telah banyak dikembangkan dan digunakan sebagai pengolah air limbah domestik dan industri. Aplikasi sistem alga dalam HRAR ini dicoba untuk diaplikasikan dalam pengolahan air limbah mengandung minyak solar. Penelitian dilakukan untuk mengkaji kemampuan HRAR dalam menurunkan kandungan minyak solar dengan penambahan glukosa sebagai co-substrate. Penambahan co-substrate diperkirakan dapat mendorong bakteri untuk memberikan suplai karbondioksida pada mikroalga. Penelitian ini dilakukan dengan dua variabel penelitian yaitu konsentrasi minyak solar sebesar 381 ppm dan 830 ppm dalam air limbah dan konsentrasi co-substrate berupa gula sebesar 5 gram, 7 gram, dan 10 gram ke dalam 18 Liter air pada reaktor. Setiap dua hari sekali selama 14 hari akan diambil sampel untuk kemudian dilakukan analisis masing-masing parameter. Hasil menunjukkan bahwa efisiensi tertinggi kinerja HRAR dalam menurunkan kandungan minyak solar adalah sebesar 84,27%. Efisiensi tertinggi ini didapatkan pada reaktor dengan variasi penambahan minyak solar 830 ppm dan co-substrate sebesar 10 gram ke dalam 18 Liter yang memiliki nilai COD 586,67 mg/L. Pada konsentrasi minyak solar sebesar 830 ppm, penambahan co-substrate memberikan pengaruh pada efisiensi penurunan kandungan minyak solar. Semakin besar penambahan co-substrate, semakin besar efisiensi penurunan kandungan minyak solar.

  11. Three-dimensional CFD simulation of bubble-melt two-phase flow with air injecting and melt stirring

    International Nuclear Information System (INIS)

    Highlights: → Gas-metallic turbulent flow induced by an impeller with an inclined shaft was studied. → A two-fluid model incorporated with the multiple reference frames method was used. → The bubble number density function was accounted for bubble breakup and coalescence. → Effects of gas flow rate and impeller speed on bubble size distribution were studied. - Abstract: This paper reports on progress in developing CFD simulations of gas bubble-metallic melt turbulent flows induced by a pitched-blade impeller with an inclined shaft. Foaming process of aluminum foams, in which air is injected into molten aluminum composites and the melt is mechanical stirred by the impeller, has been investigated. A two-fluid model, incorporated with the Multiple Reference Frames (MRF) method is used to predict the three-dimensional gas-liquid flow in the foaming tank, in which a stirring shaft is positioned inclined into the melt. Locally average bubble size is also predicted by additively solving a transport equation for the bubble number density function, which accounts for effects of bubble breakup and coalescence phenomena. The computed bubble sizes are compared with experimental data from our water model measurement and reasonable agreements are obtained. Further, simulated results show that the volume averaged total and local gas fractions are generally increased with rising impeller speed and gas flow rate. The local averaged bubble size increases with increasing gas flow rate and orifice diameter and decreasing liquid viscosity, and decreases also with rising rotation speed of the impeller.

  12. Three-dimensional CFD simulation of bubble-melt two-phase flow with air injecting and melt stirring

    Energy Technology Data Exchange (ETDEWEB)

    Liu Hong, E-mail: hongliu@dlut.edu.cn [School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024 (China); Xie Maozhao; Li Ke [School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024 (China); Wang Deqing [College of Material Science and Engineering, Dalian Jiaotong University, Dalian 116024 (China)

    2011-10-15

    Highlights: > Gas-metallic turbulent flow induced by an impeller with an inclined shaft was studied. > A two-fluid model incorporated with the multiple reference frames method was used. > The bubble number density function was accounted for bubble breakup and coalescence. > Effects of gas flow rate and impeller speed on bubble size distribution were studied. - Abstract: This paper reports on progress in developing CFD simulations of gas bubble-metallic melt turbulent flows induced by a pitched-blade impeller with an inclined shaft. Foaming process of aluminum foams, in which air is injected into molten aluminum composites and the melt is mechanical stirred by the impeller, has been investigated. A two-fluid model, incorporated with the Multiple Reference Frames (MRF) method is used to predict the three-dimensional gas-liquid flow in the foaming tank, in which a stirring shaft is positioned inclined into the melt. Locally average bubble size is also predicted by additively solving a transport equation for the bubble number density function, which accounts for effects of bubble breakup and coalescence phenomena. The computed bubble sizes are compared with experimental data from our water model measurement and reasonable agreements are obtained. Further, simulated results show that the volume averaged total and local gas fractions are generally increased with rising impeller speed and gas flow rate. The local averaged bubble size increases with increasing gas flow rate and orifice diameter and decreasing liquid viscosity, and decreases also with rising rotation speed of the impeller.

  13. REVIVING ABANDONED RESERVOIRS WITH HIGH-PRESSURE AIR INJECTION: APPLICATION IN A FRACTURED AND KARSTED DOLOMITE RESERVOIR

    Energy Technology Data Exchange (ETDEWEB)

    Robert Loucks; Steve Ruppel; Julia Gale; Jon Holder; Jon Olsen; Deanna Combs; Dhiraj Dembla; Leonel Gomez

    2003-06-01

    The Bureau of Economic Geology and Goldrus Producing Company have assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The characterization phase of the project is utilizing geoscientists and petroleum engineers from the bureau of Economic Geology and the Department of Petroleum Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. This model will be used to define a field deployment plant that Goldrus, a small independent oil company, will implement by drilling both vertical and horizontal wells during the demonstration phase of the project. Additional reservoir data are being gathered during the demonstration phase to improve the accuracy of the reservoir model. The results of the demonstration are being closely monitored to provide a basis for improving the design of the HPAI field deployment plan. The results of the reservoir characterization field demonstration and monitoring program will be documented and widely disseminated to facilitate adoption of this technology by oil operators in the Permian Basin and elsewhere in the US.

  14. Optimum cadmium reactor designs for colorimetric determination of nitrate with flow injection and gas-segmented continuous flow analyzers

    International Nuclear Information System (INIS)

    Cadmium reactor types can be grouped into four categories: packed bed; filamentous; open tubular; and planar. Packed bed cadmium reactors, in the form of cadmium filings, granules, powder, or electrolytically precipitated needles packed into glass or polymeric tubes, are by far the most widely used for both FIA and CFA methods. Surprisingly, filamentous cadmium reactors, in the form of cadmium wire slipped into flexible polymeric tubing, have been reported for CFA applications only. Open tubular cadmium reactors, in the form of small diameter cadmium tubing coiled into a helix, have been fully characterized and described for CFA applications. A preliminary description of planar cadmium reactors, in the form of cadmium foil sandwiched between continuous flow dialyzer blocks has also been reported. In this presentation, each reactor type is evaluated in terms of cost, ease of use, reduction efficiency, and long-term stability. Factors that make some reactors more applicable to FIA than to CFA (or the reverse) are also discussed, and experimental data are presented

  15. Pressurized thermal shock-mixing of a direct safety injection flow in a PWR reactor vessel downcomer - experimental and analytical results

    International Nuclear Information System (INIS)

    For Pressurized Thermal Shock (PTS) studies, the unusual case of direct Safety Injection into the reactor vessel downcomer increases the importance of the cold water 'mixing' with the warmer environment. To properly evaluate this effect, a twin approach was followed: development of a simple analytical mixing model, based on the fundamental conservation equations and semi-empirical 'entrainment' correlations (TRAMIX program) and design of a scale model test facility, in order to provide both a validation of the analytical tool and a direct insight of the phenomena. (orig.)

  16. Utility of copper(II) oxide as a packed reactor in flow injection assembly for rapid analysis of some angiotensin converting enzyme inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Emara, Samy; El-Gindy, Alaa; El-Shorbagi, Abdel-Nasser; Hadad, Ghada

    2003-08-11

    A new simple, sensitive, rapid and precise flow injection (FI) procedure based on the formation of copper complexes with some angiotensin converting enzyme (ACE) inhibitors has been developed and evaluated for the analysis of lisinopril (LN), enalapril maleate (EP), ramipril (RP) and perindopril tert-butylamine (PD). In this method, samples were injected into a flowing stream of distilled-deionized water, carried through the packed reactor of CuO for derivatization followed by ultraviolet (UV) detection. The flow rate was 1.5 ml min{sup -1} and column temperature was ambient (25 deg. C). Lisinopril was injected directly into the flowing stream and the detector response was measured at 262 nm. The hydrolysis products of enalapril maleate, ramipril and perindopril tert-butylamine in 0.2N NaOH were injected after neutralization with 1N HCl and the detector response was measured at 272, 265 and 252 nm, respectively. The developed method was successfully applied to the determination of tested drugs in pharmaceutical preparations at a sampling rate of 60 samples h{sup -1} and a recovery near 100% for all compounds.

  17. Study of air entrainment in high pressure spray: optics diagnostics and application to the Diesel injection; Etude de l'entrainement d'air dans un spray haute pression: diagnostics optiques et application a l'injection diesel

    Energy Technology Data Exchange (ETDEWEB)

    Arbeau, A.

    2004-12-15

    The actual development of the engine must reply to a will of fuel consumption reduction and to norms more and more strict concerning the pollutant emissions. Although the Diesel engines are efficient, the NO{sub x} and particle emissions mainly come from the existence of wealthy fuel zone preventing an optimal combustion. Therefore, the air / fuel mixing preparation, highly controlled by the air entrainment in spray, is essential. In this context, we have developed metrological tools in order to analyse the air entrainment mechanism in a dense spray. The Particle Image Velocimetry (PIV) technique is first applied to a conical spray with an injection pressure less than 100 bars to study the air entrainment in spray. A transfer of the methodologies allows then the characterisation and the understanding of the air entrainment mechanism in high pressure full spray (injection pressure less than 1600 bars) type Diesel one. The influence of injection parameters (injection pressure and back pressure) on the mixing rate is studied. The increase of the injection pressure from 800 to 1600 bars implies an increase of the mixing rate of 60 %. Moreover, the thermodynamic conditions of the ambient air, simulated by the chamber back pressure, widely favours the mixing rate. Actually, this latter increases of 350 % when the chamber back pressure varies from 1 to 7 bars. The experimental results do not follow classical laws of air entrainment in one-phase flow jet with variable density, but are in good agreement with an integral model for air entrainment in an axisymmetric full spray. Finally, the Fluorescence Particle Image Velocimetry (FPIV) is introduced in order to extend the PIV application field in dense two-phase flows. (author)

  18. Recuperation of the energy released in the G-1, an air-cooled graphite reactor core

    International Nuclear Information System (INIS)

    The CEA (in his five-year setting plan) has objective among others, the realization of the two first french reactors moderated with graphite. The construction of the G-1 reactor in Marcoule, first french plutonic core, is achieved so that it will diverge in the beginning of 1956 and reach its full power in the beginning of the second semester of the same year. In this report we will detail the specificities of the reactor and in particular its cooling and energy recuperation system. The G-1 reactor being essentially intended to allow the french technicians to study the behavior of an energy installation supply taking its heat in a nuclear source as early as possible. (M.B.)

  19. Dynamic simulation of the air-cooled decay heat removal system of the German KNK-II experimental breeder reactor

    International Nuclear Information System (INIS)

    A Dump Heat Exchanger and associated feedback control system models for decay heat removal in the German KNK-II experimental fast breeder reactor are presented. The purpose of the controller is to minimize temperature variations in the circuits and, hence, to prevent thermal shocks in the structures. The basic models for the DHX include the sodium-air thermodynamics and hydraulics, as well as a control system. Valve control models for the primary and intermediate sodium flow regulation during post shutdown conditions are also presented. These models have been interfaced with the SSC-L code. Typical results of sample transients are discussed

  20. Investigations on the aging of activated carbons in the exhaust air of a pressurized water reactor (PWR 4)

    International Nuclear Information System (INIS)

    Investigations were performed on the aging of five activated carbons in the containment exhaust air of a German pressurized water reactor to find out whether longer stay times can be obtained with activated carbons other than that usually employed (207B (KI)) in the Federal Republic of Germany. The aging with respect to the retention of methyl iodide (CH3131I) was smaller with activated carbons impregnated with KIsub(x) only than with those impregnated additionally or exclusively with a tertiary amine (e.g. TEDA). However, because of the better performance without aging, the best retention was found with the TEDA (only) impregnant. (orig.)

  1. Steam and hot air injection for thermal rehabilitation of contaminated sites; Wasserdampf- und Heissluftinjektion zur thermischen Sanierung kontaminierter Standorte

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.

    2001-07-01

    Thermal in situ rehabilitation technologies are a promising alternative to conventional methods of cleaning up contaminated sites. The fact that an increase in temperature changes the physical properties of materials makes it possible, in principle, to release large quantities of pollutants within short time periods. The use of pure steam or steam/air mixtures as fluid thermal carriers permits converting subterranean non-aqueous-phase pollutants into the gas phase through increased vapour pressure and transporting them to the surface by means of soil air aspiration for further treatment. The purpose of the present two-stage research project was to systematically develop a thermal in situ rehabilitation technology using steam as fluid heat carrier and use it for land rehabilitation operations on a pilot basis. In the first, fundamental project phase aspects of heat transport (Faerber, 1997) and pollutant behaviour (Betz, 1998)in homogenous porous media upon pure steam injection were explored at a laboratory and technical scale using containers of different sizes (1D, 2D, 3D). The results were used to derive application criteria for this technology. [German] Thermische In-situ-Sanierungstechnologien stellen bei der Reinigung kontaminierter Standorte eine vielversprechende Alternative zu konventionellen Verfahren dar. Die Veraenderung physikalischer Stoffeigenschaften mit steigender Temperatur ermoeglicht grundsaetzlich hohe Schadstoffaustraege innerhalb kurzer Zeitraeume. Beim Einsatz von reinem Wasserdampf oder Wasserdampf-Luft-Gemischen als Waermetraegerfluid koennen im Untergrund in nicht waessriger Phase vorliegende Schadstoffe hauptsaechlich wegen der erhoehten Dampfdruecke in die Gasphase ueberfuehrt, ueber eine Bodenluftabsaugung an die Oberflaeche transportiert und dann einer weiteren Behandlung zugefuehrt werden. Zielsetzung eines zweistufigen Forschungsvorhabens war die systematische Entwicklung einer thermischen In-situ-Sanierungstechnologie unter

  2. Characterizing the Amount and Chemistry of Biogenic SOA Formation from Pine Forest Air Using a Flow Reactor

    Science.gov (United States)

    Palm, B. B.; Ortega, A. M.; Campuzano Jost, P.; Day, D. A.; Fry, J.; Zarzana, K. J.; Draper, D. C.; Brown, S. S.; Kaser, L.; Karl, T.; Jud, W.; Hansel, A.; Hodzic, A.; Dube, W. P.; Wagner, N. L.; Brune, W. H.; Jimenez, J. L.

    2013-12-01

    The amount and chemistry of biogenic secondary organic aerosol (SOA) formation was characterized as a function of oxidant exposure using a Potential Aerosol Mass (PAM) oxidative flow reactor, sampling air in a terpene- and MBO-dominated pine forest during the 2011 BEACHON-RoMBAS field campaign at the U.S. Forest Service Manitou Forest Experimental Observatory in the Colorado Rocky Mountains. In the reactor, a chosen oxidant (OH, O3, or NO3) was generated and stepped over a range of values up to 10,000 times ambient levels, accelerating the gas-phase and heterogeneous oxidative aging of volatile organic compounds (VOCs), inorganic gases, and preexisting aerosol. The resulting SOA formation was measured using an Aerodyne HR-ToF-AMS, a TSI SMPS and a PTR-TOF-MS. Oxidative processing in the flow reactor was equivalent to a few hours up to ~20 days of atmospheric aging during the ~4-min reactor residence time. During BEACHON-RoMBAS, OH oxidation led to a net production of up to several μg/m3 of SOA at intermediate exposures (1-10 equivalent days) but resulted in net loss of OA mass (up to ~30%) at higher OH exposures (10-20 equivalent days), demonstrating the competing effects of functionalization/condensation vs. fragmentation/evaporation reactions as OH exposure increased. O3 and NO3 oxidation led to smaller (up to 0.5 μg/m3) SOA production, and loss of SOA mass due to fragmentation reactions was not observed. OH oxidation resulted in f44 vs. f43 and Van Krevelen diagram (H:C vs. O:C) slopes similar to ambient oxidation, suggesting the flow reactor oxidation pathways are similar to those in ambient air. Organic nitrate SOA production was observed from NO3 radical oxidation only. New particle formation was observed from OH oxidation, but not O3 or NO3 oxidation under our experimental conditions. An enhancement of SOA production under the influence of anthropogenic pollution (Denver) was also observed. High-resolution AMS measurements showed that the O:C and H

  3. Catalytic wet-air oxidation of lignin in a three-phase reactor with aromatic aldehyde production

    Directory of Open Access Journals (Sweden)

    Sales F.G.

    2004-01-01

    Full Text Available In the present work a process of catalytic wet air oxidation of lignin obtained from sugar-cane bagasse is developed with the objective of producing vanillin, syringaldehyde and p-hydroxybenzaldehyde in a continuous regime. Palladium supported on g-alumina was used as the catalyst. The reactions in the lignin degradation and aldehyde production were described by a kinetic model as a system of complex parallel and series reactions, in which pseudo-first-order steps are found. For the purpose of producing aromatic aldehydes in continuous regime, a three-phase fluidized reactor was built, and it was operated using atmospheric air as the oxidizer. The best yield in aromatic aldehydes was of 12%. The experimental results were compatible with those values obtained by the pseudo-heterogeneous axial dispersion model (PHADM applied to the liquid phase.

  4. Cycle-by-cycle Variations in a Direct Injection Hydrogen Enriched Compressed Natural Gas Engine Employing EGR at Relative Air-Fuel Ratios.

    Directory of Open Access Journals (Sweden)

    Olalekan Wasiu Saheed

    2014-07-01

    Full Text Available Since the pressure development in a combustion chamber is uniquely related to the combustion process, substantial variations in the combustion process on a cycle-by-cycle basis are occurring. To this end, an experimental study of cycle-by-cycle variation in a direct injection spark ignition engine fueled with natural gas-hydrogen blends combined with exhaust gas recirculation at relative air-fuel ratios was conducted. The impacts of relative air-fuel ratios (i.e. λ = 1.0, 1.2, 1.3 and 1.4 which represent stoichiometric, moderately lean, lean and very lean mixtures respectively, hydrogen fractions and EGR rates were studied. The results showed that increasing the relative air-fuel ratio increases the COVIMEP. The behavior is more pronounced at the larger relative air-fuel ratios. More so, for a specified EGR rate; increasing the hydrogen fractions decreases the maximum COVIMEP value just as increasing in EGR rates increases the maximum COVIMEP value. (i.e. When percentage EGR rates is increased from 0% to 17% and 20% respectively. The maximum COVIMEP value increases from 6.25% to 6.56% and 8.30% respectively. Since the introduction of hydrogen gas reduces the cycle-by-cycle combustion variation in engine cylinder; thus it can be concluded that addition of hydrogen into direct injection compressed natural gas engine employing EGR at various relative air-fuel ratios is a viable approach to obtain an improved combustion quality which correspond to lower coefficient of variation in imep, (COVIMEP in a direct injection compressed natural gas engine employing EGR at relative air-fuel ratios.

  5. Assessment of RELAP5/MOD3.1 for gravity-driven injection experiment in the core makeup tank of the CARR Passive Reactor (CP-1300)

    International Nuclear Information System (INIS)

    The objective of the present work is to improve the analysis capability of RELAP5/MOD3.1 on the direct contact condensation in the core makeup tank (CMT) of passive high-pressure injection system (PHPIS) in the CARR Passive Reactor (CP-1300). The gravity-driven injection experiment is conducted by using a small scale test facility to identify the parameters having significant effects on the gravity-driven injection and the major condensation modes. It turns out that the larger the water subcooling is, the more initiation of injection is delayed, and the sparger and the natural circulation of the hot water from the steam generator accelerate the gravity-driven injection. The condensation modes are divided into three modes: sonic jet, subsonic jet, and steam cavity. RELAP5/MOD3.1 is chosen to evaluate the cod predictability on the direct contact condensation in the CMT. It is found that the predictions of MOD3.1 are in better agreement with the experimental data than those of MOD3.0. From the nodalization study of the test section, the 1-node model shows better agreement with the experimental data than the multi-node models. RELAP5/MOD3.1 identifies the flow regime of the test section as vertical stratification. However, the flow regime observed in the experiment is the subsonic jet with the bubble having the vertical cone shape. To accurately predict the direct contact condensation in the CMT with RELAP5/MOD3.1, it is essential that a new set of the interfacial heat transfer coefficients and a new flow regime map for direct contact condensation in the CMT be developed

  6. Reactors

    International Nuclear Information System (INIS)

    Purpose: To provide a spray cooling structure wherein the steam phase in a bwr reactor vessel can sufficiently be cooled and the upper cap and flanges in the vessel can be cooled rapidly which kept from direct contaction with cold water. Constitution: An apertured shielding is provided in parallel spaced apart from the inner wall surface at the upper portion of a reactor vessel equipped with a spray nozzle, and the lower end of the shielding and the inner wall of the vessel are closed to each other so as to store the cooling water. Upon spray cooling, cooling water jetting out from the nozzle cools the vapor phase in the vessel and then hits against the shielding. Then the cooling water mostly falls as it is, while partially enters through the apertures to the back of the shielding plate, abuts against stoppers and falls down. The stoppers are formed in an inverted L shape so that the spray water may not in direct contaction with the inner wall of the vessel. (Horiuchi, T.)

  7. Improvement of emissions and performance by using of air jet, exhaust gas re-circulation and insulation methods in a direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Jafarmadara S.

    2013-01-01

    Full Text Available This article investigates the improvement of operation characteristics and emissions reduction by means of creating an air-cell inside the piston body, exhaust gases recirculating and insulating combustion chamber in a direct injection diesel engine simultaneously. The engine considered is a caterpillar 3401 which was modeled with an air-cell included as part of the piston geometry. This air-cell demonstrates that air injection in late combustion period can be effective in a significant reduction of Soot emission while cold EGR can be effective in reduction of NOx emission. Also for increasing of performance parameters, combustion chamber with air-cell is insulated. The analyses are carried out at part (75% of full load and full load conditions at the same engine speed 1600 rpm. The obtained results indicate that creating the air-cell has a slight effect on improvement of performance parameters and it has significantly effect on Soot reduction. The air-cell decreases the Soot pollutant as a factor of two at both part and full load conditions. Also, the adding 5% of cold EGR in inlet air decreases NOx by about half and insulating the engine increases the power and IMEP by about 7.7% and 8.5% and decreases the ISFC by about 7.5% at part load and increases power and IMEP by 8.5%, 8.5% and decreases ISFC by 8% at full load condition, respectively. Using this method, it was possible to control emissions formation and increase performance parameters simultaneously. The predicted results for mean in-cylinder pressure and emissions are compared to the corresponding experimental results and show good agreements.

  8. Effect of aviation fuel type and fuel injection conditions on the spray characteristics of pressure swirl and hybrid air blast fuel injectors

    Science.gov (United States)

    Feddema, Rick

    Feddema, Rick T. M.S.M.E., Purdue University, December 2013. Effect of Aviation Fuel Type and Fuel Injection Conditions on the Spray Characteristics of Pressure Swirl and Hybrid Air Blast Fuel Injectors. Major Professor: Dr. Paul E. Sojka, School of Mechanical Engineering Spray performance of pressure swirl and hybrid air blast fuel injectors are central to combustion stability, combustor heat management, and pollutant formation in aviation gas turbine engines. Next generation aviation gas turbine engines will optimize spray atomization characteristics of the fuel injector in order to achieve engine efficiency and emissions requirements. Fuel injector spray atomization performance is affected by the type of fuel injector, fuel liquid properties, fuel injection pressure, fuel injection temperature, and ambient pressure. Performance of pressure swirl atomizer and hybrid air blast nozzle type fuel injectors are compared in this study. Aviation jet fuels, JP-8, Jet A, JP-5, and JP-10 and their effect on fuel injector performance is investigated. Fuel injector set conditions involving fuel injector pressure, fuel temperature and ambient pressure are varied in order to compare each fuel type. One objective of this thesis is to contribute spray patternation measurements to the body of existing drop size data in the literature. Fuel droplet size tends to increase with decreasing fuel injection pressure, decreasing fuel injection temperature and increasing ambient injection pressure. The differences between fuel types at particular set conditions occur due to differences in liquid properties between fuels. Liquid viscosity and surface tension are identified to be fuel-specific properties that affect the drop size of the fuel. An open aspect of current research that this paper addresses is how much the type of aviation jet fuel affects spray atomization characteristics. Conventional aviation fuel specifications are becoming more important with new interest in alternative

  9. Cycle-by-cycle Variations in a Direct Injection Hydrogen Enriched Compressed Natural Gas Engine Employing EGR at Relative Air-Fuel Ratios.

    OpenAIRE

    Olalekan Wasiu Saheed; Rashid A.A.; Baharom Masri

    2014-01-01

    Since the pressure development in a combustion chamber is uniquely related to the combustion process, substantial variations in the combustion process on a cycle-by-cycle basis are occurring. To this end, an experimental study of cycle-by-cycle variation in a direct injection spark ignition engine fueled with natural gas-hydrogen blends combined with exhaust gas recirculation at relative air-fuel ratios was conducted. The impacts of relative air-fuel ratios (i.e. λ = 1.0, 1.2, 1.3 and 1.4 whi...

  10. Penambahan Urea sebagai Co-Substrat pada Sistem High Rate Algae Reactor (HRAR untuk Pengolahan Air Limbah Tercemar Minyak Solar

    Directory of Open Access Journals (Sweden)

    Ayu Syarifa Darwinastwantya

    2014-09-01

    Full Text Available Kebutuhan bahan bakar minyak di Indonesia semakin meningkat. Peningkatan tersebut mengakibatkan eksplorasi dan pengolahan secara berlebihan. Eksplorasi dan pengolahan berlebihan akan memberikan dampak buruk bagi lingkungan, yaitu limbah. Limbah minyak bumi biasanya langsung dibuang ke lingkungan yang dapat menyebakan pencemaran lingkungan, misalnya air. Pengolahan limbah menggunakan alga dapat digunakan sebagai pengolahan lanjutan tanpa menimbulkan polusi tambahan. Penelitian ini bertujuan untuk mengkaji pengaruh penambahan urea sebagai co-substrat terhadap kinerja High Rate Algae Reactor (HRAR dalam menurunkan kandungan minyak dalam air limbah minyak bumi. Variabel penelitian adalah konsentrasi minyak solar dalam air limbah dan konsentrasi urea yang digunakan. Konsentrasi minyak solar yang dipakai berasal penelitian pendahuluan sebesar 346 ppm dan 692 ppm untuk 18 L alga. Penelitian utama dilakukan dengan menambahkan 3 konsentrasi urea yang berbeda. Penelitian dilakukan selama 14 hari setiap dua hari sekali untuk semua parameter. Parameter yang digunakan dalam penelitian adalah kandungan Oil and Grease, Chemical Oxygen Demand (COD, klorofil a, Dissolved Oxygen (DO, pH, nitrogen-amonia, temperatur, dan Mixed Liquor Suspended Solid (MLSS. Dalam penelitian utama, menunjukkan bahwa sistem HRAR dapat mengolah air limbah mengandung minyak solar. Efisiensi penyisihan minyak solar paling optimal oleh sistem HRAR untuk variasi penambahan minyak solar 346 ppm adalah dengan penambahan urea 0,1 gr/L sebesar 83,33% sedangkan untuk variasi penambahan minyak solar 692 ppm menggunakan penambahan urea sebesar 0,3 gr/L sebesar 85,05%.

  11. Effects of fuel and air mixing on WOT output in direct injection gasoline engine; Chokufun gasoline kikan ni okeru nenryo to kuki no kongo to shutsuryoku seino

    Energy Technology Data Exchange (ETDEWEB)

    Noda, T.; Iriya, Y.; Naito, K.; Mitsumoto, H.; Iiyama, A. [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    The effects of in-cylinder charge motion and the characteristics of the fuel spray and piston crown shape on WOT output in a direct injection gasoline engine are investigated. The fuel and air mixing process in a cylinder is analyzed by computer simulation and LIF method visualization. As a result, the technical factors to achieve enough mixing in a DI gasoline engine equipped with bowl in piston optimized for stratified combustion are clarified. 7 refs., 9 figs., 1 tab.

  12. Effects of air-lift reactor dimensions on its hydrodinamic characteristics

    Directory of Open Access Journals (Sweden)

    Milivojević Milan M.

    2010-01-01

    Full Text Available In this study the hydrodynamic characteristics of the external loop airlift bioreactors were investigated. The influence of reactor height and solid particles concentration on the mean liquid circulation velocity was examined. Also, the possibility of theoretical prediction of this liquid circulation velocity was assessed. The correlation originally proposed by Glennon et al. (Chem. Eng. Commun. 121 (1993 183-192 for two phase system liquid velocity prediction was extended and corrected for application to three phase systems. The accuracy of this new correlation was tested on our experimental data. The corrected correlation shows higher accuracy than the originally proposed one. In addition, the influence of reactor geometry and solid loading on reactor working performances was established.

  13. Vapor-air plum by explosion of nuclear power plant reactor at atomic submarine

    International Nuclear Information System (INIS)

    Scenario of hypothetic accident with nuclear submarine is given. Equations for calculating gas-dynamic, geometrical and concentrational characteristics of the formed short vapor-air plum are presented. Example for calculating vapor-air plum during hypothetic accident with nuclear submarine is given. 3 refs., 6 figs

  14. Fonctionnement transitoire et controle de la richesse des moteurs à allumage commandé à injection multipoint Transient Operation and Air-Fuel Ratio Control of Spark-Ignition Port-Injected Engines

    Directory of Open Access Journals (Sweden)

    Le Moyne L.

    2006-12-01

    Full Text Available Sur les moteurs à allumage commandé à injection multipoint on observe des désadaptations de richesse lors de fonctionnement transitoire. Ces désadaptations sont dues au dépôt, sous forme de film liquide, du carburant injecté dans le collecteur. Elles peuvent être compensées par une gestion adéquate de la masse injectée. Ainsi, afin d'obtenir la masse de carburant qui maintient la richesse constante, nous avons développé un modèle bidimensionnel des écoulements dans le collecteur au cours du cycle moteur. Ce modèle décrit l'écoulement des gaz frais, des gouttes injectées, des gaz brûlés refoulés vers l'admission et du film sur les parois, sur le principe de la séparation des phases. Nous montrons que le modèle reproduit correctement le signal de richesse et comment il permet de supprimer les désadaptations. La mesure de richesse est faite à l'échappement avec une sonde à oxygène dont nous validons le fonctionnement en transitoire avec une corrélation à la pression maximale du cycle dans le cylindre. Air-fuel ratio excursions are observed on port-injected spark ignition engines during transients. This excursions result from the liquid fuel film deposited on intake port. They can be compensated by controlling the injected fuel mass. In order to have the amount of fuel that keeps air-fuel ratio constant, we have developed a 2D model of flows in the intake port during engine cycle. This separate phases model describes the flow of fresh gases, injected droplets, hot burned gases and film on port walls. We show that the model effectively predicts the equivalence ratio and how it allows to eliminate excursions. Equivalence ratio measures are made with an oxygen sensor which functioning is validated during transients by correlating it to maximal pressure during engine cycle.

  15. Catalytic Partial Oxidation of Methane with Air to Syngas in a Pilot-Plant-Scale Spouted Bed Reactor

    Institute of Scientific and Technical Information of China (English)

    魏伟胜; 徐建; 方大伟; 鲍晓军

    2003-01-01

    On the basis of hydrodynamic and scaling-up studies, a pilot-plant-scale thermal spouted bed reactor (50 mm in ID and 1500 mm in height) was designed and fabricated by scaling-down cold simulators. It was tested for making syngas via catalytic partial oxidation (CPO) of methane by air. The effects of various operating conditions such as operating pressure and temperature, feed composition, and gas flowrate etc. on the CPO process were investigated. CH4 conversion of 92.20% and selectivity of 92.3% and 83.30/0 to CO and H2, respectively, were achieved at the pressure of 2.1 MPa. It was found that when the spouted bed reactor was operated within the stable spouting flow regime, the temperature profiles along the bed axis were much more uniform than those operated within the fixed-bed regime. The CH4 conversion and syngas selectivity were found to be close to thermodynamic equilibrium limits. The results of the present investigation showed that spouted bed could be considered as a potential type of chemical reactor for the CPO process of methane.

  16. Determination of neutron flux distribution across the RB reactor with large central air hol

    International Nuclear Information System (INIS)

    The need for the irradiation of large samples in the fast neutron field was led to design of a strongly heterogeneous core at the RB heavy water reactor. This configuration, operates as the internal fast neutron converter, introduces many difficulties in reactor safety and criticality analysis. In this paper, the collision probability method in two-dimensional r-z geometry, implemented in the VEGA code is applied. The neutron flux calculated by the VEGA code is compared to the results obtained by the MCNP sup T sup M continuous-energy Monte Carlo code and to the measured distribution. Results of VEGA and MCNP codes show good agreement with measured values. (author)

  17. Secondary Organic Aerosol Formation from Ambient Air in an Oxidation Flow Reactor at GoAmazon2014/5

    Science.gov (United States)

    Palm, Brett B.; de Sa, Suzane S.; Campuzano-Jost, Pedro; Day, Douglas A.; Hu, Weiwei; Seco, Roger; Park, Jeong-Hoo; Guenther, Alex; Kim, Saewung; Brito, Joel; Wurm, Florian; Artaxo, Paulo; Yee, Lindsay; Isaacman-VanWertz, Gabrial; Goldstein, Allen; Newburn, Matt K.; Lizabeth Alexander, M.; Martin, Scot T.; Brune, William H.; Jimenez, Jose L.

    2016-04-01

    During GoAmazon2014/5, ambient air was exposed to controlled concentrations of OH or O3 in situ using an oxidation flow reactor (OFR). Oxidation ranged from hours-several weeks of aging. Oxidized air was sampled by several instruments (e.g., HR-AMS, ACSM, PTR-TOF-MS, SMPS, CCN) at both the T3 site (IOP1: Feb 1-Mar 31, 2014, and IOP2: Aug 15-Oct 15, 2014) and T2 site (between IOPs and into 2nd IOP). The oxidation of ambient air in the OFR led to substantial and variable secondary organic aerosol (SOA) formation from any SOA-precursor gases, known and unknown, that entered the OFR. In general, more SOA was produced during the nighttime than daytime, suggesting that SOA-precursor gases were found in relatively higher concentrations at night. Similarly, more SOA was formed in the dry season (IOP2) than wet season (IOP1). The maximum amount of SOA produced during nighttime from OH oxidation ranged from less than 1 μg/m3 on some nights to greater than 10 μg/m3 on other nights. O3 oxidation of ambient air also led to SOA formation, although several times less than from OH oxidation. The amount of SOA formation sometimes, but not always, correlated with measured gas-phase biogenic and/or anthropogenic SOA precursors (e.g., SV-TAG sesquiterpenes, PTR-TOFMS aromatics, isoprene, and monoterpenes). The SOA mass formed in the OFR from OH oxidation was up to an order of magnitude larger than could be explained from aerosol yields of measured primary VOCs. This along with measurements from previous campaigns suggests that most SOA was formed from intermediate S/IVOC sources (e.g., VOC oxidation products, evaporated POA, or direct emissions). To verify the SOA yields of VOCs under OFR experimental conditions, atmospherically-relevant concentrations of several VOCs were added individually into ambient air in the OFR and oxidized by OH or O3. SOA yields in the OFR were similar to published chamber yields. Preliminary PMF factor analysis showed production of secondary factors in

  18. Thermal-Hydraulic Analysis of an Experimental Reactor Cavity Cooling System with Air. Part I: Experiments; Part II: Separate Effects Tests and Modeling

    International Nuclear Information System (INIS)

    This experimental study investigates the thermal hydraulic behavior and the heat removal performance for a scaled Reactor Cavity Cooling System (RCCS) with air. A quarter-scale RCCS facility was designed and built based on a full-scale General Atomics (GA) RCCS design concept for the Modular High Temperature Gas Reactor (MHTGR). The GA RCCS is a passive cooling system that draws in air to use as the cooling fluid to remove heat radiated from the reactor pressure vessel to the air-cooled riser tubes and discharged the heated air into the atmosphere. Scaling laws were used to preserve key aspects and to maintain similarity. The scaled air RCCS facility at UW-Madison is a quarter-scale reduced length experiment housing six riser ducts that represent a 9.5° sector slice of the full-scale GA air RCCS concept. Radiant heaters were used to simulate the heat radiation from the reactor pressure vessel. The maximum power that can be achieved with the radiant heaters is 40 kW with a peak heat flux of 25 kW per meter squared. The quarter-scale RCCS was run under different heat loading cases and operated successfully. Instabilities were observed in some experiments in which one of the two exhaust ducts experienced a flow reversal for a period of time. The data and analysis presented show that the RCCS has promising potential to be a decay heat removal system during an accident scenario.

  19. Thermal-Hydraulic Analysis of an Experimental Reactor Cavity Cooling System with Air. Part I: Experiments; Part II: Separate Effects Tests and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Corradin, Michael [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Anderson, M. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Muci, M. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Hassan, Yassin [Texas A & M Univ., College Station, TX (United States); Dominguez, A. [Texas A & M Univ., College Station, TX (United States); Tokuhiro, Akira [Univ. of Idaho, Moscow, ID (United States); Hamman, K. [Univ. of Idaho, Moscow, ID (United States)

    2014-10-15

    This experimental study investigates the thermal hydraulic behavior and the heat removal performance for a scaled Reactor Cavity Cooling System (RCCS) with air. A quarter-scale RCCS facility was designed and built based on a full-scale General Atomics (GA) RCCS design concept for the Modular High Temperature Gas Reactor (MHTGR). The GA RCCS is a passive cooling system that draws in air to use as the cooling fluid to remove heat radiated from the reactor pressure vessel to the air-cooled riser tubes and discharged the heated air into the atmosphere. Scaling laws were used to preserve key aspects and to maintain similarity. The scaled air RCCS facility at UW-Madison is a quarter-scale reduced length experiment housing six riser ducts that represent a 9.5° sector slice of the full-scale GA air RCCS concept. Radiant heaters were used to simulate the heat radiation from the reactor pressure vessel. The maximum power that can be achieved with the radiant heaters is 40 kW with a peak heat flux of 25 kW per meter squared. The quarter-scale RCCS was run under different heat loading cases and operated successfully. Instabilities were observed in some experiments in which one of the two exhaust ducts experienced a flow reversal for a period of time. The data and analysis presented show that the RCCS has promising potential to be a decay heat removal system during an accident scenario.

  20. Simulation of the pebble bed modular reactor natural air convection passive heat removal system

    International Nuclear Information System (INIS)

    Cooling of the Pebble Bed Nuclear Reactor under evaluation in South Africa is primarily effected by the flow of helium through the cavity which contains the nuclear fuel. However, apart from this, a certain amount of heat flows from the reactor cavity, through the graphite barrel and reactor vessel to the containment building and ultimately to the environment During normal operation this passive heat loss represents approximately 1MW for a 100MW reactor and constitutes an undesirable loss of power. In the event of a shutdown or loss of main coolant, however, this passive heat removal is relied upon to remove the decay heat from the core. A study was initiated to simulate the process of this heat removal to provide an indication of the maximum vessel temperature and power transfers after shutdown. However, there is a lack of precise data indicating values for thermal conductivity, heat transfer coefficients, heat capacities or even densities. This paper describes the assumptions made and the manner in which these data were estimated so as to provide what is hoped to be a reasonably accurate estimate of the behaviour of the passive heat removal process. (author)

  1. Analysis of two phase natural circulation flow in the reactor cavity under external reactor vessel cooling

    International Nuclear Information System (INIS)

    As part of a study on a two-phase natural circulation flow between the outer reactor vessel and the insulation material in the reactor cavity under an external reactor vessel cooling of APR (Advanced Power Reactor) 1400, a K-HERMES-HALF (Hydraulic Evaluation of Reactor cooling Mechanism by External Self-induced flow-HALF scale) experiment was performed at KAERI (Korea Atomic Energy Research Institute) using an air injection method. This experiment was analyzed to verify and evaluate the experimental results using the RELAP5/MOD3 computer code. In addition, the geometry scaling on full height & full sector, and a material scaling between air-water and steam-water two phase natural circulation flow, have been performed for an application of the experimental results to an actual APR1400. The RELAP5/MOD3 results on the water circulation mass flow rate are very similar to the experimental results, in general. The water circulation mass flow rate of the full height & full sector case is approximately 7.6-times higher than that of the K-HERMEL-HALF case. The water circulation mass flow rate of the air injection case is 20-50 % higher than that of the steam injection case at 20 % of the injection rate. (author)

  2. Air sampling system for evaluating the thyroid dose commitment due to fission products released from reactor containment. Final report

    International Nuclear Information System (INIS)

    Accidental releases of radioactivity from fission reactors will consist of active vapors and aerosols. Composition of the released plume or cloud will depend on the energy of release and fission product volatility. In accidents at Windscale and SL-1, 131I was the predominant isotope present in both the initial cloud and later release. Thus an air sampling system was developed for efficient radioiodine collection. The air sampling, readout, and dose assessment system was developed to be used in the environment after loss of containment accidents. The system can detect less than 1 rem dose commitments to thyroids of 5 year old children for immersion times of 10 hours or less. The air mover can be operated on either 110V ac power or 12V dc power available from vehicles with cigar lighter sockets. An inorganic silver loaded silica gel adsorber was developed for high mehyl iodine, HOI, and elemental iodine efficiency and low noble gas efficiency. A peal away high efficiency particulate filter permits the gaseous and particulate sample fractions to be evaluated separately. Predicted particulate iodine is combined with the adsorbed component to account for the total radioiodine in a given sample

  3. Effect of geometric factors on performance of a sodium to air heat exchanger in a fast breeder reactor

    International Nuclear Information System (INIS)

    Highlights: • A heat exchanger analysis (HE) before scale up reduces excess heat transfer area. • Representative Elementary Volume analysis of a HE speeds up the solution. • The error in air temperature rise prediction by numerical across HE is within 5%. • When both pitches are reduced, the maximum increase in heat flux is experienced. • The experience has resulted in better design of next level heat exchangers. - Abstract: Prototype fast breeder reactor (PFBR) has a safety grade decay heat removal system whose performance depends on the effective functioning of natural convection heat exchangers called sodium to air heat exchangers. The development of Representative Elementary Volume (REV) model for the sodium to air heat exchanger is necessary to envisage its design and to study the effect of various factors for continuous improvement in design. With a Representative Elementary Volume, the hydrodynamic and heat transfer characteristics of the heat exchanger was studied and the results agree well with experimental data. The effect of longitudinal pitch and transverse pitch on the heat exchanger performance has been studied and an improvement of 22% in heat transfer is predicted

  4. Determination of contamination in the air of reactor containment. Sampling and measuring techniques

    International Nuclear Information System (INIS)

    For the purposes of radiological safety work, the most important elements emerging from the primary circuit and responsible for contamination of the containment are noble gases due to fission or activation, iodine in different physico-chemical forms, and tritium. Sampling and measuring techniques used in studies conducted on in-service reactors (pressurized-water and fast reactor plants) are described, together with the results obtained. The method used for measuring the activity of iodine in its different forms (penetrating or non-penetrating) is to trap the iodine by means of a selective sampling device. The measurements are then made by gamma spectrometry. The technique used for measuring the noble gases is to enrich the carrier gas by means of cold traps, and then to make measurements with an ionization chamber or by gamma spectrometry. Tritium is trapped by bubbling through water and its activity measured with a liquid scintillation detector or proportional counter. (author)

  5. Drift Flux Distribution Parameter in Three-Phase Air-Lift Reactors

    OpenAIRE

    Popovic, M.K.; Wulfes, C.; Bajpai, R.K.

    2007-01-01

    Gas hold-up and liquid circulation velocity data in a three-phase system involving alginate beads in an internal-loop airlift reactor, reported by Lu et al. (1995), have been analyzed to evaluate the distribution parameter in drift flux model. The calculated distribution parameter values were significantly greater than 1.0 (the value used by Lu et al. in their modeling) and also affected by the solid volume fraction. An empirical correlation of this effect has been presented.

  6. Effects of air-lift reactor dimensions on its hydrodinamic characteristics

    OpenAIRE

    Milivojević Milan M.; Andrejić Danijela S.; Bugarski Branko M.

    2010-01-01

    In this study the hydrodynamic characteristics of the external loop airlift bioreactors were investigated. The influence of reactor height and solid particles concentration on the mean liquid circulation velocity was examined. Also, the possibility of theoretical prediction of this liquid circulation velocity was assessed. The correlation originally proposed by Glennon et al. (Chem. Eng. Commun. 121 (1993) 183-192) for two phase system liquid velocity prediction was extended and corrected for...

  7. Simulation of Thermal and Chemical Relaxation in a Post-Discharge Air Corona Reactor

    OpenAIRE

    Meziane, M.; Eichwald, O.; Ducasse, O.; Yousfi, M

    2016-01-01

    In a DC point-to-plane corona discharge reactor, the mono filamentary streamers cross the inter electrode gap with a natural repetition frequency of some tens of kHz. The discharge phase (including the primary and the secondary streamers development) lasts only some hundred of nanoseconds while the post-discharge phases occurring between two successive discharge phases last some tens of microseconds. From the point of view of chemical activation, the discharge phases create radical and excite...

  8. New techniques for the measurement of tritium activity releases in the air in heavy water reactors

    International Nuclear Information System (INIS)

    Tritium constitutes the principal potential source of ionizing radiation in heavy water reactors, playing the role of the dominant radionuclide of concern. In such reactors, the tritium hazard under normal working conditions is as important as all other radionuclide hazards combined. This calls for the employment of tritium monitoring systems capable of giving information about any releases in the shortest possible time so that immediate corrective measures could be adopted and operating personnel informed before they receive doses greater than permissible. Monitoring of tritium becomes complicated because of very low energy of tritium betas and presence of large concentrations of interfering activity and high background gamma fields inside the reactors. At the Rajasthan Atomic Power Station, for example, gamma compensated ionization chamber type of tritium monitors have been used but they have not been found entirely satisfactory. In this way, a period at least 30 minutes elapses before the level of tritium release could be known. This time delay in assessing the containment levels can prove critical in the event of acute releases and can result in excessive exposure to the operating personnel from tritium contamination. The need to undertake the present work arose. 4

  9. An experimental study of constant-pressure steam injection and transient condensing flow in an air-saturated porous medium

    OpenAIRE

    Brouwers, H.J.H.

    1996-01-01

    In this paper the unsteady process of constant pressure steam injection into an air–saturated porous medium is studied experimentally. To this end, vertical glass tubes are packed with dry quartz sand and injected with dry steam. The propagation of the steam front appears to be proportional to t. It is observed that the water saturation is homogeneously distributed and remains below the irreducible water saturation. Furthermore, the theoretical model of Brouwers and Li (1994) of the process i...

  10. AIR SHIPMENT OF SPENT NUCLEAR FUEL FROM THE BUDAPEST RESEARCH REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Dewes, J.

    2014-02-24

    The shipment of spent nuclear fuel is usually done by a combination of rail, road or sea, as the high activity of the SNF needs heavy shielding. Air shipment has advantages, e.g. it is much faster than any other shipment and therefore minimizes the transit time as well as attention of the public. Up to now only very few and very special SNF shipments were done by air, as the available container (TUK6) had a very limited capacity. Recently Sosny developed a Type C overpack, the TUK-145/C, compliant with IAEA Standard TS-R-1 for the VPVR/M type Skoda container. The TUK-145/C was first used in Vietnam in July 2013 for a single cask. In October and November 2013 a total of six casks were successfully shipped from Hungary in three air shipments using the TUK-145/C. The present paper describes the details of these shipments and formulates the lessons learned.

  11. Effects of aging in containment spray injection system of PWR reactor containment; Efeitos do envelhecimento no sistema de injecao de borrifo da contencao de reatores a agua pressurizada

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Diogo da S.; Lava, Deise D.; Affonso, Renato R.W.; Guimaraes, Antonio C.F.; Moreira, Maria de L., E-mail: diogosb@outlook.com, E-mail: deise_dy@hotmail.com, E-mail: raoniwa@yahoo.com.br, E-mail: tony@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    This paper presents a contribution to the study of the components aging process in commercial plants of Pressurized Water Reactors (PWR). The analysis is done by applying the method of Fault trees, Monte Carlo Method and Fussell-Vesely Importance Measurement. The study on the aging of nuclear plants, is related to economic factors involved directly with the extent of their operational life, and also provides important data on issues of safety. The most recent case involving the process of extending the life of a PWR plant can be seen in Angra 1 Nuclear Power Plant by investing $ 27 million in the installation of a new reactor cover. The corrective action generated an extension of the useful life of Angra 1 estimated in twenty years, and a great savings compared to the cost of building a new plant and the decommissioning of the first, if it had reached the operation time out 40 years. The extension of the lifetime of a nuclear power plant must be accompanied by special attention from the most sensitive components of the systems to the aging process. After the application of the methodology (aging analysis of Containment Spray Injection System (CSIS)) proposed in this paper, it can be seen that increasing the probability of failure of each component, due to the aging process, generate an increased general unavailability of the system that contains these basic components. The final results obtained were as expected and can contribute to the maintenance policy, preventing premature aging in nuclear power systems.

  12. Analysis and Verification of Direct Vessel Injection Line Break event tree for AP1000 reactor with TRACE code

    Energy Technology Data Exchange (ETDEWEB)

    Queral, C.; Montero-Mayorga, J.; Gonzalez-Cadelo, J.

    2013-07-01

    The AP1000 PRA thermal hydraulic simulations were performed with MAAP code, which allows simulating sequences with low computational efforts. On the other hand, the use of best estimate codes allows verifying PRA results as well as obtaining a greater knowledge of the phenomenology of such sequences. The initiating event with the greatest contribution to core damage is Direct Vessel Injection Line Break (DVILB). This paper presents a review of DVILB sequences of AP1000 with TRACE code for verifying sequences previously analyzed by Westinghouse with MAAP code. The sequences which configure the DVILB event tree during short term have been simulated. The results obtained confirm the ones obtained in AP1000 PRA.

  13. Biocatalytic desulfurization of diesel oil in an air-lift reactor with immobilized Gordonia nitida CYKS1 cells.

    Science.gov (United States)

    Lee, In Su; Bae, Hee-Sung; Ryu, Hee Wook; Cho, Kyung-Suk; Chang, Yong Keun

    2005-01-01

    A new type of air-lift reactor with immobilized Gordonia nitida CYKS1 cells on a fibrous support was designed and used for the biocatalytic desulfurization (BDS) of diesel oil. Its performance was evaluated at different phase ratios of the oil to the aqueous medium (or oil phase fractions) and different sucrose concentrations. When the reaction mixture contained 10% diesel oil (v/v), 61-67% of sulfur was removed as the sulfur content decreased from 202-250 to 76-90 mg L(-1) in 72 h. The sulfur content did not decrease any further because the remaining sulfur compounds were recalcitrant to BDS. During the desulfurization, the strain CYKS1 consumed hydrocarbons in the diesel oil, mainly n-alkanes with 10-26 carbons, as carbon source even though an easily available carbon source, sucrose, was supplied. PMID:15932256

  14. Use of controlled thermonuclear reactor fusion power for the production of synthetic methanol fuel from air and water

    International Nuclear Information System (INIS)

    Methanol synthesis from carbon dioxide, water and nuclear fusion energy is extensively investigated. The entire system is analyzed from the point of view of process design and economic evaluation of various processes. The main potential advantage of a fusion reactor (CTR) for this purpose is that it provides a large source of low cost environmentally acceptable electric power based on an abundant fuel source. Carbon dioxide is obtained by extraction from the atomsphere or from sea water. Hydrogen is obtained by electrolysis of water. Methanol is synthesized by the catalytic reaction of carbon dioxide and hydrogen. The water electrolysis and methanol synthesis units are considered to be technically and commercially available. The benefit of using air or sea water as a source of carbon dioxide is to provide an essentially unlimited renewable and environmentally acceptabe source of hydrocarbon fuel. Extraction of carbon dioxide from the atmosphere also allows a high degree of freedom in plant siting. (U.S.)

  15. Preparation, characterization, and photocatalytic studies on anatase nano-TiO{sub 2} at internal air lift circulating photocatalytic reactor

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hang, E-mail: xhinbj@126.com; Li, Mei; Jun, Zhang

    2013-09-01

    Graphical abstract: The micro morphological structure of the nano-TiO{sub 2} particles was also observed with TEM, as shown in figure. The TEM images clearly exhibited the homogeneous microstructure of particles with a size of around 10–15 nm. - Highlights: • Nano-TiO{sub 2} was prepared by complex techniques of sol–gel, micro-emulsion and solvent thermal. • The size of TiO{sub 2} was nano level and uniformity. • Nano-TiO{sub 2} exhibited high photo-catalytic activity at internal air lift circulating reactor. • The best nano-TiO{sub 2} dosage was obtained. - Abstract: Anatase nano-titania (TiO{sub 2}) powder was prepared by using a sol–gel process mediated in reverse microemulsion combined with a solvent thermal technique. The structures of the obtained TiO{sub 2} were characterized by TG-DSC, XRD, TEM. The photocatalytic decomposition of methylene blue (MB) on nano-TiO{sub 2} was studied by using an internal air lift circulating photocatalytic reactor. The results show that the anatase structure appears in the calcination temperature range of 400–510 °C, while the transformation of anatase into rutile takes place above 510 °C. The homogeneous microstructure of nano-TiO{sub 2} particles was obtained with a size of around 10–15 nm. In the photocatalytic performance, degradation process follows pseudo first order kinetics with different dosages of photocatalyst and initial MB concentrations and optimal TiO{sub 2} dosage is 0.1 g/L with neutral medium.

  16. Preparation, characterization, and photocatalytic studies on anatase nano-TiO2 at internal air lift circulating photocatalytic reactor

    International Nuclear Information System (INIS)

    Graphical abstract: The micro morphological structure of the nano-TiO2 particles was also observed with TEM, as shown in figure. The TEM images clearly exhibited the homogeneous microstructure of particles with a size of around 10–15 nm. - Highlights: • Nano-TiO2 was prepared by complex techniques of sol–gel, micro-emulsion and solvent thermal. • The size of TiO2 was nano level and uniformity. • Nano-TiO2 exhibited high photo-catalytic activity at internal air lift circulating reactor. • The best nano-TiO2 dosage was obtained. - Abstract: Anatase nano-titania (TiO2) powder was prepared by using a sol–gel process mediated in reverse microemulsion combined with a solvent thermal technique. The structures of the obtained TiO2 were characterized by TG-DSC, XRD, TEM. The photocatalytic decomposition of methylene blue (MB) on nano-TiO2 was studied by using an internal air lift circulating photocatalytic reactor. The results show that the anatase structure appears in the calcination temperature range of 400–510 °C, while the transformation of anatase into rutile takes place above 510 °C. The homogeneous microstructure of nano-TiO2 particles was obtained with a size of around 10–15 nm. In the photocatalytic performance, degradation process follows pseudo first order kinetics with different dosages of photocatalyst and initial MB concentrations and optimal TiO2 dosage is 0.1 g/L with neutral medium

  17. Optimal DO Setpoint Decision and Electric Cost Saving in Aerobic Reactor Using Respirometer and Air Blower Control

    International Nuclear Information System (INIS)

    Main objects for wastewater treatment operation are to maintain effluent water quality and minimize operation cost. However, the optimal operation is difficult because of the change of influent flow rate and concentrations, the nonlinear dynamics of microbiology growth rate and other environmental factors. Therefore, many wastewater treatment plants are operated for much more redundant oxygen or chemical dosing than the necessary. In this study, the optimal control scheme for dissolved oxygen (DO) is suggested to prevent over-aeration and the reduction of the electric cost in plant operation while maintaining the dissolved oxygen (DO) concentration for the metabolism of microorganisms in oxic reactor. The oxygen uptake rate (OUR) is real-time measured for the identification of influent characterization and the identification of microorganisms' oxygen requirement in oxic reactor. Optimal DO set-point needed for the micro-organism is suggested based on real-time measurement of oxygen uptake of micro-organism and the control of air blower. Therefore, both stable effluent quality and minimization of electric cost are satisfied with a suggested optimal set-point decision system by providing the necessary oxygen supply requirement to the micro-organisms coping with the variations of influent loading

  18. Optimal DO Setpoint Decision and Electric Cost Saving in Aerobic Reactor Using Respirometer and Air Blower Control

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Su; Yoo, Changkyoo [Kyung Hee University, Yongin (Korea, Republic of); Kim, Minhan [Pangaea21 Ltd., Seongnam (Korea, Republic of); Kim, Jongrack [UnUsoft Ltd., Seoul (Korea, Republic of)

    2014-10-15

    Main objects for wastewater treatment operation are to maintain effluent water quality and minimize operation cost. However, the optimal operation is difficult because of the change of influent flow rate and concentrations, the nonlinear dynamics of microbiology growth rate and other environmental factors. Therefore, many wastewater treatment plants are operated for much more redundant oxygen or chemical dosing than the necessary. In this study, the optimal control scheme for dissolved oxygen (DO) is suggested to prevent over-aeration and the reduction of the electric cost in plant operation while maintaining the dissolved oxygen (DO) concentration for the metabolism of microorganisms in oxic reactor. The oxygen uptake rate (OUR) is real-time measured for the identification of influent characterization and the identification of microorganisms' oxygen requirement in oxic reactor. Optimal DO set-point needed for the micro-organism is suggested based on real-time measurement of oxygen uptake of micro-organism and the control of air blower. Therefore, both stable effluent quality and minimization of electric cost are satisfied with a suggested optimal set-point decision system by providing the necessary oxygen supply requirement to the micro-organisms coping with the variations of influent loading.

  19. The development and use of a laboratory scale reactor to study aspects of gasification in an air blown fluidised bed

    Energy Technology Data Exchange (ETDEWEB)

    Cousins, A.; Zhuo, Y.; Reed, G.P.; Paterson, N.; Dugwell, D.R.; Kandiyoti, R. [Imperial College London, London (United Kingdom). Dept of Chemical Engineering

    2006-07-01

    A laboratory scale reactor has been used to study aspects of air blown, spouted bed gasifiers. The effects of operating conditions on the release of fuel-N has been studied using both coal and sewage sludge. The work has clarified the reactions involved and shown that steam has an important effect on the formation of NH{sub 3} from both volatile-N and char-N. The HCN concentration depends strongly on the residence time at temperature and on the presence (and depth) of a char bed. Trace element results indicate that bed temperatures above 900{sup o}C enhanced depletion of Ba, Pb and Zn from the bed residue and their enrichment in the fines. Mercury and selenium were released and their subsequent capture required low temperature filters operating below 120{sup o}C. The reactor was modified to enable char samples to be prepared and collected under controlled conditions. Results show the decreasing reactivity of the char with increasing temperature, time, pressure and particle size. There appears to be an initial decrease in reactivity during pyrolysis and a further longer- term decrease caused by graphitisation. 10 refs., 8 figs., 6 tabs.

  20. Reviving Abandoned Reservoirs with High-Pressure Air Injection: Application in a Fractured and Karsted Dolomite Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Robert Loucks; Stephen C. Ruppel; Dembla Dhiraj; Julia Gale; Jon Holder; Jeff Kane; Jon Olson; John A. Jackson; Katherine G. Jackson

    2006-09-30

    Despite declining production rates, existing reservoirs in the United States contain vast volumes of remaining oil that is not being effectively recovered. This oil resource constitutes a huge target for the development and application of modern, cost-effective technologies for producing oil. Chief among the barriers to the recovery of this oil are the high costs of designing and implementing conventional advanced recovery technologies in these mature, in many cases pressure-depleted, reservoirs. An additional, increasingly significant barrier is the lack of vital technical expertise necessary for the application of these technologies. This lack of expertise is especially notable among the small operators and independents that operate many of these mature, yet oil-rich, reservoirs. We addressed these barriers to more effective oil recovery by developing, testing, applying, and documenting an innovative technology that can be used by even the smallest operator to significantly increase the flow of oil from mature U.S. reservoirs. The Bureau of Economic Geology and Goldrus Producing Company assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The Permian Basin, the largest oil-bearing basin in North America, contains more than 70 billion barrels of remaining oil in place and is an ideal venue to validate this technology. We have demonstrated the potential of HPAI for oil-recovery improvement in preliminary laboratory tests and a reservoir pilot project. To more completely test the technology, this project emphasized detailed characterization of reservoir properties, which were integrated to access the effectiveness and economics of HPAI. The characterization phase of the project utilized geoscientists and petroleum engineers from the Bureau of Economic Geology and the Department of Petroleum

  1. Attempt of lean burn of a 4 cycle gasoline engine by the aid of low pressure air assisted in-cylinder injection; Tonai kuki nenryo funsha ni yoru lean burn no kokoromi

    Energy Technology Data Exchange (ETDEWEB)

    Hatakeyama, S.; Kondo, M.; Sekiya, Y.; Murayama, T. [Hokkaido Automotive Engineering College, Hokkaido (Japan)

    1997-10-01

    Comparable performance and exhaust emission with conventional carburetor was obtained by a low Pressure air assisted in-cylinder injection system. And lean burn of idling and light load operation till A/F=70 was realized by installing a spark Plug and a reed type injection nozzle in a divided combustion chambaer of a 4 cycle gasoline engine. 2 refs., 10 figs.

  2. Simulation of Thermal and Chemical Relaxation in a Post-Discharge Air Corona Reactor

    CERN Document Server

    Meziane, M; Ducasse, O; Yousfi, M

    2016-01-01

    In a DC point-to-plane corona discharge reactor, the mono filamentary streamers cross the inter electrode gap with a natural repetition frequency of some tens of kHz. The discharge phase (including the primary and the secondary streamers development) lasts only some hundred of nanoseconds while the post-discharge phases occurring between two successive discharge phases last some tens of microseconds. From the point of view of chemical activation, the discharge phases create radical and excited species located inside the very thin discharge filaments while during the post-discharge phases these radical and excited species induce a chemical kinetics that diffuse in a part of the reactor volume. From the point of view of hydrodynamics activation, the discharge phases induce thermal shock waves and the storage of vibrational energy which relaxes into thermal form only during the post-discharge phase. Furthermore, the glow corona discharges that persist during the post-discharge phases induce the so called electri...

  3. Hydrodynamic study of an internal airlift reactor for microalgae culture.

    Science.gov (United States)

    Rengel, Ana; Zoughaib, Assaad; Dron, Dominique; Clodic, Denis

    2012-01-01

    Internal airlift reactors are closed systems considered today for microalgae cultivation. Several works have studied their hydrodynamics but based on important solid concentrations, not with biomass concentrations usually found in microalgae cultures. In this study, an internal airlift reactor has been built and tested in order to clarify the hydrodynamics of this system, based on microalgae typical concentrations. A model is proposed taking into account the variation of air bubble velocity according to volumetric air flow rate injected into the system. A relationship between riser and downcomer gas holdups is established, which varied slightly with solids concentrations. The repartition of solids along the reactor resulted to be homogenous for the range of concentrations and volumetric air flow rate studied here. Liquid velocities increase with volumetric air flow rate, and they vary slightly when solids are added to the system. Finally, liquid circulation time found in each section of the reactor is in concordance with those employed in microalgae culture. PMID:21710261

  4. Air oxidation behavior of fuel for the high temperature engineering test reactor (HTTR)

    Energy Technology Data Exchange (ETDEWEB)

    Kikuchi, Hironobu; Hayashi, Kimio; Fukuda, Kousaku (Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment)

    1992-08-01

    The oxidation behavior of the HTTR fuel was studied with respect to the scenario of an air ingress accident which had been assessed in the HTTR safety analysis. The coated fuel particles were heated under a sufficient air flow in the temperature range of 900-1400degC for maximum duration of 600 h (at 1300degC). Failure fractions of the SiC coating layer after the heat treatments remained within the fraction at the fuel production. And the failure behavior of the SiC layer did not depend on such heating conditions as the temperature and the duration in the present experiment. It was confirmed by scanning electron microscopy (SEM), X-ray diffraction and laser Raman spectroscopy that a thin oxide film was formed on the SiC layer by the heat treatments. (author).

  5. Air oxidation behavior of fuel for the high temperature engineering test reactor (HTTR)

    International Nuclear Information System (INIS)

    The oxidation behavior of the HTTR fuel was studied with respect to the scenario of an air ingress accident which had been assessed in the HTTR safety analysis. The coated fuel particles were heated under a sufficient air flow in the temperature range of 900-1400degC for maximum duration of 600 h (at 1300degC). Failure fractions of the SiC coating layer after the heat treatments remained within the fraction at the fuel production. And the failure behavior of the SiC layer did not depend on such heating conditions as the temperature and the duration in the present experiment. It was confirmed by scanning electron microscopy (SEM), X-ray diffraction and laser Raman spectroscopy that a thin oxide film was formed on the SiC layer by the heat treatments. (author)

  6. Design and preliminary tests of a blade tip air mass injection system for vortex modification and possible noise reduction on a full-scale helicopter rotor

    Science.gov (United States)

    Pegg, R. J.; Hosier, R. N.; Balcerak, J. C.; Johnson, H. K.

    1975-01-01

    Full-scale tests were conducted on the Langley helicopter rotor test facility as part of a study to evaluate the effectiveness of a turbulent blade tip air mass injection system in alleviating the impulsive noise (blade slap) caused by blade-vortex interaction. Although blade-slap conditions could not be induced during these tests, qualitative results from flow visualization studies using smoke showed that the differential velocity between the jet velocity and the rotor tip speed was a primary parameter controlling the vortex modification.

  7. An evaluation of the performance and optimization of a new wastewater treatment technology: the air suction flow-biofilm reactor.

    Science.gov (United States)

    Forde, P; Kennelly, C; Gerrity, S; Collins, G; Clifford, Eoghan

    2015-01-01

    In this laboratory study, a novel wastewater treatment technology, the air suction flow-biofilm reactor (ASF-BR) - a sequencing batch biofilm reactor technology with a passive aeration mechanism - was investigated for its efficiency in removing organic carbon, nitrogen and phosphorus, from high-strength synthetic wastewaters. A laboratory-scale ASF-BR comprising 2 reactors, 350 mm in diameter and 450 mm in height, was investigated over 2 studies (Studies 1 and 2) for a total of 430 days. Study 1 lasted a total of 166 days and involved a 9-step sequence alternating between aeration, anoxic treatment and settlement. The cycle time was 12.1 h and the reactors were operated at a substrate loading rate of 3.60 g filtered chemical oxygen demand (CODf)/m2 media/d, 0.28 g filtered total nitrogen (TNf)/m2 media/d, 0.24 g ammonium-nitrogen (NH4-N)/m2 media/d and 0.07 g ortho-phosphate (PO4-P)/m2 media/d. The average removal rates achieved during Study 1 were 98% CODf, 88% TNf, 97% NH4-N and 35% PO4-P. During Study 2 (264 days), the unit was operated at a loading rate of 2.49 g CODf/m2 media/d, 0.24 g TNf/m2 media/d, 0.20 g NH4-N/m2 media/d and 0.06 PO4-P/m2 media/d. The energy requirement during this study was reduced by modifying the treatment cycle in include fewer pumping cycles. Removal rates in Study 2 averaged 97% CODf, 86% TNf, 99% NH4-N and 76% PO4-P. The excess sludge production of the system was evaluated and detailed analyses of the treatment cycles were carried out. Biomass yields were estimated at 0.09 g SS/g CODf, removed and 0.21 g SS/g CODf, removed for Studies 1 and 2, respectively. Gene analysis showed that the use of a partial vacuum did not affect the growth of ammonia-oxidizing bacteria. The results indicate that the ASF-BR and passive aeration technologies can offer efficient alternatives to existing technologies. PMID:25413003

  8. The HIV/AIDS epidemic and changes in injecting drug use in Buenos Aires, Argentina La epidemia de VIH/SIDA y los cambios en el uso inyectable de drogas en Buenos Aires, Argentina

    Directory of Open Access Journals (Sweden)

    Diana Rossi

    2006-04-01

    Full Text Available This article discusses the changes in injecting drug use from 1998 to 2003 in Buenos Aires, Argentina. The Rapid Situation Assessment and Response methodology was used to obtain the information. Quantitative and qualitative techniques were triangulated: 140 current IDUs and 35 sex partners of injection drug users (IDUs were surveyed; 17 in-depth interviews with the surveyed IDUs and 2 focus groups were held, as well as ethnographic observations. The way in which risk and care practices among injecting drug users changed and the influence of the HIV/ AIDS epidemic on this process are described. In recent years, the frequency of injection practices and sharing of injecting equipment has decreased, while injecting drug use is a more hidden practice in a context of increasing impact of the disease in the injecting drug use social networks and changes in the price and quality of drugs. Knowledge about these changes helps build harm reduction activities oriented to IDUs in their particular social context.Este artículo refleja los cambios en el uso inyectable de drogas producidos entre 1998 y 2003 en Buenos Aires, Argentina. Para obtener la información se empleó la metodología de Evaluación y Respuesta Rápida, triangulando técnicas cuantitativas y cualitativas. Durante 2003-2004 se realizaron encuestas a 140 usuarios de drogas inyectables (UDIs actuales y a 35 parejas sexuales de UDIs. De este universo, 17 UDIs fueron entrevistados en profundidad; se formaron dos grupos de discusión y observaciones etnográficas. Se describe el modo en que cambiaron las prácticas de cuidado y riesgo en el uso inyectable y la influencia de la epidemia de VIH/SIDA en este proceso. En los últimos años disminuyó la frecuencia de uso y del uso compartido de material de inyección, se incrementó el ocultamiento del uso inyectable; en un contexto de fuerte impacto de la enfermedad en el entorno cercano a los UDIs y de un cambio en la relación precio-calidad de

  9. Spectral emissivity of candidate alloys for very high temperature reactors in high temperature air environment

    International Nuclear Information System (INIS)

    Emissivity measurements for candidate alloys for very high temperature reactors were carried out in a custom-built experimental facility, capable of both efficient and reliable measurements of spectral emissivities of multiple samples at high temperatures. The alloys studied include 304 and 316 austenitic stainless steels, Alloy 617, and SA508 ferritic steel. The oxidation of alloys plays an important role in dictating emissivity values. The higher chromium content of 304 and 316 austenitic stainless steels, and Alloy 617 results in an oxide layer only of sub-micron thickness even at 700 °C and consequently the emissivity of these alloys remains low. In contrast, the low alloy SA508 ferritic steel which contains no chromium develops a thicker oxide layer, and consequently exhibits higher emissivity values

  10. Spectral emissivity of candidate alloys for very high temperature reactors in high temperature air environment

    Energy Technology Data Exchange (ETDEWEB)

    Cao, G., E-mail: gcao@wisc.edu; Weber, S.J.; Martin, S.O.; Sridharan, K.; Anderson, M.H.; Allen, T.R.

    2013-10-15

    Emissivity measurements for candidate alloys for very high temperature reactors were carried out in a custom-built experimental facility, capable of both efficient and reliable measurements of spectral emissivities of multiple samples at high temperatures. The alloys studied include 304 and 316 austenitic stainless steels, Alloy 617, and SA508 ferritic steel. The oxidation of alloys plays an important role in dictating emissivity values. The higher chromium content of 304 and 316 austenitic stainless steels, and Alloy 617 results in an oxide layer only of sub-micron thickness even at 700 °C and consequently the emissivity of these alloys remains low. In contrast, the low alloy SA508 ferritic steel which contains no chromium develops a thicker oxide layer, and consequently exhibits higher emissivity values.

  11. Effect of Hydraulic Retention Time on Nitrification in an AirLift Biological Reactor

    Directory of Open Access Journals (Sweden)

    Furtado A.A.L.

    1998-01-01

    Full Text Available The occurrence of nitrogenous compounds in industrial effluents at concentration levels above legal limits, is a well-known and serious pollution problem for the receiving body. The biological process for the removal of these substances, commonly referred to as ammoniacal nitrogen, is known as nitrification. Bacteria involved are mainly of the genuses Nitrosomonas and Nitrobacter. The aim of the present work was to study the effect of the hydraulic retention time (HRT on the efficiency of ammonia removal from a petroleum refinery effluent using activated carbon particles as a biofilm support in an airlift bioreactor. The experiments were carried out using HRTs, equal to six, eight and ten hours. The results show that HRT equal to 8 and 10 hours were enough to reduce ammoniacal nitrogen concentration to levels below permited legal limits (5mg/L NH3-N. The reactor nitrifying performance was maximized at 85% removal of ammoniacal nitrogen, for a HRT equal to 10 hours.

  12. Modeling the discontinuous individual channel injection into fin-and-tube evaporators for residential air-conditioning

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Elmegaard, Brian

    2012-01-01

    In this paper a working principle based upon the novel expansion and distributor device EcoFlowTM is analyzed. The device enables compensation of flow maldistribution by control of individual channel superheat. The working principle is discontinuous liquid injection (pulsating flow) into each ind...

  13. Simplified Modelling of the Infrared Heating Involving the Air Convection Effect before the Injection Stretch Blowing Moulding of PET Preform

    OpenAIRE

    Luo, Y; Chevalier, Luc; Utheza, Françoise; Nicolas, Xavier

    2014-01-01

    International audience Initial heating conditions and temperature effects (heat transfer with air and mould, self-heating, conduction) have important influence during the ISBM process of PET preforms. The numerical simulation of infrared (IR) heating taking into account the air convection around a PET preform is very time-consuming even for 2D modelling. This work proposes a simplified approach of the coupled heat transfers (conduction, convection and radiation) in the ISBM process based o...

  14. Reliability analysis of air recirculation and-refrigeration systems of Angra-1 reactor containment

    International Nuclear Information System (INIS)

    A reliability analysis of the air refrigeration and recirculation containment systems (ARRCS) of Angra-1 nuclear power plants, were done. The fault tree analysis was used. The failure primary data were taken out of Wash-1400 and IEEE. These data were processed by these following computer codes : Prep-Kitt, Sample, Trebil, Cressex and Streusl for the two stages of ARRCS operation. The design bases accident studied was a LOCA (loss of coolant). The component that more contribution give to the non-availability of ARRCS is the motor of the ARRCS. (E.G.)

  15. Measurement of airborne 131I, 134Cs, and 137Cs nuclides due to the Fukushima reactors accident in air particulate in Milan (Italy)

    CERN Document Server

    Clemenza, Massimiliano; Previtali, Ezio; Sala, Elena

    2011-01-01

    After the earthquake and the tsunami occurred in Japan on 11th March 2011, four of the Fukushima reactors had released in air a large amount of radioactive isotopes that had been diffused all over the world. The presence of airborne 131I, 134Cs, and 137Cs in air particulate due to this accident has been detected and measured in the Low Radioactivity Laboratory operating in the Department of Environmental Sciences of the University of Milano-Bicocca. The sensitivity of the detecting apparatus is of 0.2 \\mu Bq/m3 of air. Concentration and time distribution of these radionuclides were determined and some correlations with the original reactor releases were found. Radioactive contaminations ranging from a few to 400 \\mu Bq/m3 for the 131I and of a few tens of \\mu Bq/m3 for the 137Cs and 134Cs have been detected

  16. Improvements in D2O leakage detection in restricted areas of Reactor Building during operation and tritium in air monitoring during outages

    International Nuclear Information System (INIS)

    This report describes the air sampling lines required for the improvement of simultaneous sampling for tritium in air monitoring in restricted areas of Reactor Building during operation. These sampling lines require penetrations equipped with containment sealing solenoid valves. It also describes the equipment used and the experience gained from some D2O leakages since Plant commissioning. By taking into account the current tendencies, improvements in gathering all data related to tritium concentrations in Reactor Building in Health Physicist's office, room S - 307 were made. Air samples were analyzed either by a liquid scintillation detector and/or by a proportional counter simultaneously, instead of the former single samples. These improvements also gave the possibility of a quicker detection of D2O leakage, thus contributing to keep low personnel dose, according to ALARA principles, as 'in situ' monitoring have proved to be not justifiable. (authors)

  17. Application of railgun principle to high-velocity hydrogen pellet injection for magnetic fusion reactor refueling: Technical progress report

    International Nuclear Information System (INIS)

    A detailed experimental study successfully demonstrates the acceleration of frozen hydrogen pellets by means of a fuseless two-stage electromagnetic railgun system. This system consists of a pneumatic hydrogen pellet injector, which freezes and pneumatically pre-accelerates (with high-pressure helium as the propellant gas) cylindrical 1.6-mm-dia by 2.15-mm-long hydrogen pellets, and a 60-cm-long, 1.6-mm-dia circular-bore electromagnetic railgun. The pellet is introduced into the railgun by means of a coupling piece, and a plasma-arc armature is created from the propellant gas by means of a very unique, fuseless, arc-initiation scheme. Railgun-accelerated hydrogen pellet velocities in excess of 1.6 km/s are achieved from pneumatically accelerated injection velocities of 800 m/s. Streak-camera and current-probe data show that the plasma-arc armature moves at a velocity proportional to the railgun current, I. Insight to this I-dependence is gained through the use of streak photography and current probes for varying bore geometries and gas pressures

  18. Sodium hydroxide injection passivation work for the reactor water clean-up system in a new ABWR plant

    International Nuclear Information System (INIS)

    Several studies have identified that Co-58 and Co-60 as the primary source of radiation build up on out-of-core components in new BWR plants. The deposition rate of Co on stainless steel and carbon steel is shown to be controlled mainly by the thickness of oxide films and its morphology formed through pretreatment. The passivation treatment was implemented accordingly at Lungmen unit 1 in an ABWR plant in September 2010. It is determined that the passivation conditions should be maintained at the temperature of 180∼230 deg. C, pH of 8.0∼8.5 and dissolved oxygen content over 400 ppb. The films would provide effective protection against radioactive deposition. The application of the pre-filming process on piping before the pre-operation is done during the flow induced vibration test (FIV) period. The protectiveness of stable magnetite can be increased by the pH control under the specific condition. The pre-filming control process and evaluation of passivation effectiveness is discussed in detail based on the surface analysis of the passivated specimens. Many efforts have been devoted to sodium hydroxide injection method for pH control of the system through the filter demineralizer under smooth operation. A comparison of test specimens on the properties of oxide film formed between laboratory and in-plant tests through alkaline treatment are also shown in this report. (authors)

  19. Air gasification of rice husk in bubbling fluidized bed reactor with bed heating by conventional charcoal.

    Science.gov (United States)

    Makwana, J P; Joshi, Asim Kumar; Athawale, Gaurav; Singh, Dharminder; Mohanty, Pravakar

    2015-02-01

    An experimental study of air gasification of rice husk was conducted in a bench-scale fluidized bed gasifier (FBG) having 210 mm diameter and 1600 mm height. Heating of sand bed material was performed using conventional charcoal fuel. Different operating conditions like bed temperature, feeding rate and equivalence ratio (ER) varied in the range of 750-850 °C, 25-31.3 kg/h, and 0.3-0.38, respectively. Flow rate of air was kept constant (37 m(3)/h) during FBG experiments. The carbon conversion efficiencies (CCE), cold gas efficiency, and thermal efficiency were evaluated, where maximum CCE was found as 91%. By increasing ER, the carbon conversion efficiency was decreased. Drastic reduction in electric consumption for initial heating of gasifier bed with charcoal compared to ceramic heater was ∼45%. Hence rice husk is found as a potential candidate to use directly (without any processing) in FBG as an alternative renewable energy source from agricultural field. PMID:25446789

  20. Air

    Science.gov (United States)

    ... house) Industrial emissions (like smoke and chemicals from factories) Household cleaners (spray cleaners, air fresheners) Car emissions (like carbon monoxide) *All of these things make up “particle pollution.” They mostly come from cars, trucks, buses, and ...

  1. Adsorption of hexavalent chromium by crosslinked chitosan-iron(III) in an air-lift reactor.

    Science.gov (United States)

    Demarchi, Carla Albertina; Rodrigues, Clóvis Antonio

    2016-01-01

    Column experiments were conducted in an airlift reactor containing a certain amount of crosslinked chitosan-iron(III) (Ch-Fe), to examine the effects of adsorbent mass, flow rate, and influent concentrations on Cr(VI) removal. The breakthrough time increased with an increase in Ch-Fe mass, but decreased with an increase in initial Cr(VI) concentration. The exhaustion time decreased with an increase in initial Cr(VI) concentration. The capacity at the breakthrough point increased with an increase in Ch-Fe mass, flow rate, and initial Cr(VI) concentration. The capacity at the exhaustion point increased with an increase in flow rate, but showed no specific trend with an increase in initial Cr(VI) concentration. The bed volumes at breakthrough point increased with an increase in Ch-Fe, flow rate and Cr(VI) concentration. The adsorbent exhaustion decreased with an increase in flow rate and Ch-Fe, but increased with an increase in initial Cr(VI) concentration. Columns with large amounts of Ch-Fe are preferable for obtaining optimal results during the adsorption process. The higher the flow velocity, the better the column performance. The Thomas, Clark and Yoon-Nelson models were applied to the experimental results. Good agreement was observed between the predicted theoretical breakthrough curves and the experimental results. PMID:26901729

  2. Study of a transaugmented two-stage small circular-bore railgun for injection of hypervelocity hydrogen pellets as a fusion reactor refueling mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Tompkins, M.W.; Anderson, M.A.; Feng, Q.; Zhang, J.; Kim, K. [Univ. of Illinois, Urbana, IL (United States)

    1997-01-01

    Injection of hypervelocity hydrogen pellets has become widely accepted as the most effective means of refueling magnetically confined fusion reactors. Pellet velocities on the order of 10 km/s are desired and hydrogen pellet erosion during acceleration must be minimized. It is important to maintain uniform bore surfaces during repetitive shots, implying that, if a railgun is to be used to accelerate the pellets, damage to the sidewalls and rails of the railgun due to local heating must be limited. In order to reduce the amount of power dissipated within the bore and increase the propulsive force generated by the plasma-arc armature while minimizing losses due to pellet, rail, and sidewall ablation, the authors have employed a magnetic field transaugmentation mechanism consisting of a two-turn pulsed electromagnet. The two-stage gun consists of a light-gas gun which accelerates a 4- to 5-mg pellet to a speed around 1.2 km/s and injects it into the plasma-arc armature railgun. Currently, they have achieved a final output velocity for a hydrogen pellet of 2.11 km/s with a time-averaged acceleration of 4,850 km/s{sup 2} using a 58-cm railgun pulsed with a peak rail current of 9.2 kA and 28.0 kA of transaugmentation current. This paper will present a description of the hydrogen-pellet-injector railgun system, a discussion of the data on hydrogen pellet acceleration, and projections for future systems.

  3. The O2-enriched air gasification of coal, plastics and wood in a fluidized bed reactor

    International Nuclear Information System (INIS)

    Highlights: ► The effect of the O2 in the gasification stream of a BFB gasifier has been studied. ► Main advantage of the O2-enriched air is the increasing of the bed temperature.► No remarkable effects on tar reduction. Decreasing of recognized PAHs. ► Gasification reactions completed inside the dense bed and splashing zone. ► Polycondensation reactions occur mainly in the freeboard region. - Abstract: The effect of oxygen-enriched air during fluidized bed co-gasification of a mixture of coal, plastics and wood has been investigated. The main components of the obtained syngas were measured by means of on-line analyzers and a gas chromatograph while those of the condensate phase were off-line analysed by means of a gas chromatography–mass spectrometer (GC–MS). The characterization of condensate phase as well as that of the water used as scrubbing medium completed the performed diagnostics. The experimental results were further elaborated in order to provide material and substances flow analyses inside the plant boundaries. These analyses allowed to obtain the main substance distribution between solid, gaseous and condensate phases and to estimate the conversion efficiency of carbon and hydrogen but also to easily visualise the waste streams produced by the process. The process performance was then evaluated on the basis of parameters related to the conversion efficiency of fuels into valuable products (i.e. by considering tar and particulate as process losses) as well as those related to the energy recovery.

  4. Containment Performance Evaluation of a Sodium Fire Event Due to Air Ingress into the Cover Gas Region of the Reactor Vessel in the PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sang June; Chang, Won-Pyo; Kang, Seok Hun; Choi, Chi-Woong; Yoo, Jin; Lee, Kwi Lim; Jeong, Jae-Ho; Lee, Seung Won; Jeong, Taekyeong; Ha, Kwi-Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Comparing with the light water reactor, sodium as a reactor coolant violently reacts with oxygen in the containment atmosphere. Due to this chemical reaction, heat generated from the combustion heat increases the temperature and pressure in the containment atmosphere. The structural integrity of the containment building which is a final radiological defense barrier is threaten. A sodium fire event in the containment due to air ingress into the cover gas region in the reactor vessel is classified as one of the design basis events in the PGSFR. This event comes from a leak or crack on the reactor upper closure header surface. It accompanys an event of the radiological fission products release to the inside the containment. In this paper, evaluation for the sodium fire and radiological influence due to air ingress into the cover gas region of the reactor vessel is described. To evaluate this event, the CONTAIN-LMR, MACCS-II and OR-IGEN-II codes are used. For the sodium pool fire event in the containment, the performance evaluation and radiological influence are carried out. In the thermal hydraulic aspects, the 1 cell containment yields the most conservative result. In this event, the maximum temperature and pressure in the containment are calculated 0.185 MPa, 280.0 .deg. C, respectively. The radiological dose at the EAB and LPZ are below the acceptance criteria specified in the 10CFR100.

  5. Containment Performance Evaluation of a Sodium Fire Event Due to Air Ingress into the Cover Gas Region of the Reactor Vessel in the PGSFR

    International Nuclear Information System (INIS)

    Comparing with the light water reactor, sodium as a reactor coolant violently reacts with oxygen in the containment atmosphere. Due to this chemical reaction, heat generated from the combustion heat increases the temperature and pressure in the containment atmosphere. The structural integrity of the containment building which is a final radiological defense barrier is threaten. A sodium fire event in the containment due to air ingress into the cover gas region in the reactor vessel is classified as one of the design basis events in the PGSFR. This event comes from a leak or crack on the reactor upper closure header surface. It accompanys an event of the radiological fission products release to the inside the containment. In this paper, evaluation for the sodium fire and radiological influence due to air ingress into the cover gas region of the reactor vessel is described. To evaluate this event, the CONTAIN-LMR, MACCS-II and OR-IGEN-II codes are used. For the sodium pool fire event in the containment, the performance evaluation and radiological influence are carried out. In the thermal hydraulic aspects, the 1 cell containment yields the most conservative result. In this event, the maximum temperature and pressure in the containment are calculated 0.185 MPa, 280.0 .deg. C, respectively. The radiological dose at the EAB and LPZ are below the acceptance criteria specified in the 10CFR100

  6. Inherently safe pool-type reactor as a generator of low-grade heat for district heating, air conditioning and salt water desalination

    International Nuclear Information System (INIS)

    The society has a heavy demand for low-grade heat to satisfy its various needs. Different factors govern the expediency of applying nuclear reactors for these purposes. The required capacity of heat sources varies in a very wide range. In a majority of cases heat sources have to be located in the immediate vicinity of the users, therefore, nuclear reactors to be used for heat generation must feature enhanced safety. Pool-type reactors can be successfully used for producing low-grade heat. Owing to their design they feature a very high safety level. The absence of positive pressure excludes the possibility of a sudden rupture of reactor tank (vessel) or a fast loss of coolant. The availability of a large amount of water in the tank ensures long-term accumulation of residual heat. The adopted integral layout of equipment, as well as natural circulation of primary coolant improve reactor reliability and safety even further. Negative temperature coefficients of reactivity provide for reactor self-protection against reactivity accidents. Pool-type reactors can be used in newly established heat supply systems and can be built in the operation systems as well, which allows to reduce fossil fuel consumption by 80-90% depending on local conditions. Pool-type reactor heat can be used for desalinating salt water and for cooling water in absorption refrigerating machines with subsequent utilization of cold water for air conditioning, cooling of special premises, and the like. Pool-type reactors can also generate electric power to their in-house needs as well as household power requirements of a neighboring town. (orig.)

  7. Effect of Air Injection Quantity on Spray Characteristics of an Air-Assisted Direct Injector%空气喷射量对空气辅助喷射喷雾特性的影响

    Institute of Scientific and Technical Information of China (English)

    白洪林; 胡春明; 李志军; 侯圣智; 刘娜

    2016-01-01

    利用激光粒度仪分析了空气辅助喷射喷雾索特平均直径(Sauter mean diameter,SMD)的变化规律,并且分别在定容弹及光学发动机上开展了喷雾特性(喷雾锥角和贯穿距离)的试验研究,引入喷雾半锥角(α角和β角)的概念用以分析在有进气气流时空气喷射量对喷雾特性的影响.结果表明,增加空气喷射量可以改善燃油的雾化效果,特别是当喷雾燃空比γ小于0.8时,喷雾的SMD会有明显降低;在定容弹内空气喷射量的增大会使喷雾锥角减小,但对贯穿距离的影响不大;在光学发动机内由于进气气流的影响,空气喷射量的增加会使喷雾锥角增大,贯穿距离变小,同时喷雾锥角随时间的变化趋势也明显不同于定容弹内的试验结果.%The variation law of Sauter mean diameter(SMD)of the air-assisted injection was researched by using laser particle size analyzer. Spray characteristics(spray angle and penetration)were studied by experiments which were completed using a constant volume bomb and an optical engine. In order to analyze the effect of air injection quantity on spray characteristics in the condition of airflow motion,the semi-angle of spray(α andβ)was defined. The results show that the performance of atomization is improved as the air injection quantity increases,and the SMD becomes smaller obviously when the spray fuel-air ratio(γ)is less than 0.8. In the constant volume bomb,spray angle de-creases with the increasing of air injection quantity,while spray penetration has no significant variation. In the optical engine,because of the influence of intake airflow,spray angle enlarges and spray penetration reduces as the air in-jection quantity increases. In addition,the variation tendency of spray angle is markedly different from the experi-mental results in the constant volume bomb.

  8. Injection of lightning-produced NOx, water vapor, wildfire emissions, and stratospheric air to the UT/LS as observed from DC3 measurements

    Science.gov (United States)

    Huntrieser, H.; Lichtenstern, M.; Scheibe, M.; Aufmhoff, H.; Schlager, H.; Pucik, T.; Minikin, A.; Weinzierl, B.; Heimerl, K.; Pollack, I. B.; Peischl, J.; Ryerson, T. B.; Weinheimer, A. J.; Honomichl, S.; Ridley, B. A.; Biggerstaff, M. I.; Betten, D. P.; Hair, J. W.; Butler, C. F.; Schwartz, M. J.; Barth, M. C.

    2016-06-01

    During the Deep Convective Clouds and Chemistry (DC3) experiment in summer 2012, airborne measurements were performed in the anvil inflow/outflow of thunderstorms over the Central U.S. by three research aircraft. A general overview of Deutsches Zentrum für Luft- und Raumfahrt (DLR)-Falcon in situ measurements (CO, O3, SO2, CH4, NO, NOx, and black carbon) is presented. In addition, a joint flight on 29 May 2012 in a convective line of isolated supercell storms over Oklahoma is described based on Falcon, National Science Foundation/National Center for Atmospheric Research Gulfstream-V (NSF/NCAR-GV), and NASA-DC8 trace species in situ and lidar measurements. During DC3 some of the largest and most destructive wildfires in New Mexico and Colorado state's history were burning, which strongly influenced air quality in the DC3 thunderstorm inflow and outflow region. Lofted biomass burning (BB) plumes were frequently observed in the mid- and upper troposphere (UT) in the vicinity of deep convection. The impact of lightning-produced NOx (LNOx) and BB emissions was analyzed on the basis of mean vertical profiles and tracer-tracer correlations (CO-NOx and O3-NO). On a regular basis DC3 thunderstorms penetrated the tropopause and injected large amounts of LNOx into the lower stratosphere (LS). Inside convection, low O3 air (~80 nmol mol-1) from the lower troposphere was rapidly transported to the UT/LS region. Simultaneously, O3-rich stratospheric air masses (~100-200 nmol mol-1) were present around and below the thunderstorm outflow and enhanced UT-O3 mixing ratios significantly. A 10 year global climatology of H2O data from the Aura Microwave Limb Sounder confirmed that the Central U.S. is a preferred region for convective injection into the LS.

  9. Air and water pollution remediation. A fixed bed reactor made of UV lamps and glass fiber plates coated with TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Esterkin, C.R.; Negro, A.C.; Alfano, O.M.; Cassano, A.E. [Inst. de Desarrollo Tecnologico para la Industria Quimica, INTEC (UNL-CONICET), Santa Fe (Argentina)

    2003-07-01

    In a previous paper, the modeling and experimental verification of the radiation field inside a reactor made up of TiO{sub 2} coated, parallel, flat glass fiber meshes, bilaterally UV irradiated was accomplished. In this work, we study the degradation of tricloroethylene (TCE) in an air stream with different values of the pollutant feed concentration, under operating conditions where kinetic control of the process is established. A langmuir-hinshelwood type kinetic expression is proposed and the kinetic parameters are estimated. The results show good agreement between predictions derived from the kinetic expression and the experimental concentrations of TCE data at the exit of the reactor. (orig.)

  10. Air

    International Nuclear Information System (INIS)

    In recent years several regulations and standards for air quality and limits for air pollution were issued or are in preparation by the European Union, which have severe influence on the environmental monitoring and legislation in Austria. This chapter of the environmental control report of Austria gives an overview about the legal situation of air pollution control in the European Union and in specific the legal situation in Austria. It gives a comprehensive inventory of air pollution measurements for the whole area of Austria of total suspended particulates, ozone, volatile organic compounds, nitrogen oxides, sulfur dioxide, carbon monoxide, heavy metals, benzene, dioxin, polycyclic aromatic hydrocarbons and eutrophication. For each of these pollutants the measured emission values throughout Austria are given in tables and geographical charts, the environmental impact is discussed, statistical data and time series of the emission sources are given and legal regulations and measures for an effective environmental pollution control are discussed. In particular the impact of fossil-fuel power plants on the air pollution is analyzed. (a.n.)

  11. Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area

    Directory of Open Access Journals (Sweden)

    A. M. Ortega

    2015-08-01

    Full Text Available Field studies in polluted areas over the last decade have observed large formation of secondary organic aerosol (SOA that is often poorly captured by models. The study of SOA formation using ambient data is often confounded by the effects of advection, vertical mixing, emissions, and variable degrees of photochemical aging. An Oxidation Flow Reactor (OFR was deployed to study SOA formation in real-time during the CalNex campaign in Pasadena, CA, in 2010. A high-resolution aerosol mass spectrometer (AMS and a scanning mobility particle sizer (SMPS alternated sampling ambient and reactor-aged air. The reactor produced OH concentrations up to 4 orders of magnitude higher than in ambient air, achieving equivalent atmospheric aging from hours up to several weeks in 3 min of processing. OH radical concentration was continuously stepped, obtaining measurements of real-time SOA formation and oxidation at multiple equivalent ages from 0.8 days–6.4 weeks. Enhancement of OA from aging showed a maximum net SOA production between 0.8–6 days of aging with net OA mass loss beyond 2 weeks. Reactor SOA mass peaked at night, in the absence of ambient photochemistry, and correlated with trimethylbenzene concentrations. Reactor SOA formation was inversely correlated with ambient SOA and Ox, which along with the short-lived VOC correlation, indicates the importance of relatively reactive (τOH ∼ 0.3 day SOA precursors in the LA-Basin. Evolution of the elemental composition in the reactor was similar to trends observed in the atmosphere (O : C vs. H : C slope ∼ -0.65. Oxidation state of carbon (OSC in reactor SOA increased steeply with age and remained elevated (OSC ∼ 2 at the highest photochemical ages probed. The ratio of OA in the reactor output to excess CO (ΔCO, ambient CO above regional background vs. photochemical age is similar to previous studies at low to moderate ages and also extends to higher ages where OA loss dominates. The mass added at low

  12. Feasibility study of an optical resonator for applications in neutral-beam injection systems for the next generation of nuclear fusion reactors

    International Nuclear Information System (INIS)

    This work is part of a larger project called SIPHORE (Single gap Photo-neutralizer energy Recovery injector), which aims to enhance the overall efficiency of one of the mechanisms through which the plasma is heated, in a nuclear fusion reactor, i.e. the Neutral Beam Injection (NBI) system. An important component of a NBI system is the neutralizer of high energetic ion beams. SIPHORE proposes to substitute the gas cell neutralizer, used in the current NBI systems, with a photo-neutralizer exploiting the photo-detachment process within Fabry Perot cavities. This mechanism should allow a relevant NBI global efficiency of η≥ 60%, significantly higher than the one currently possible (η≤25% for ITER). The present work concerns the feasibility study of an optical cavity with suitable properties for applications in NBI systems. Within this context, the issue of the determination of an appropriated optical cavity design has been firstly considered and the theoretical and experimental analysis of a particular optical resonator has been carried on. The problems associated with the high levels of intracavity optical power (∼3 MW) required for an adequate photo-neutralization rate have then been faced. In this respect, we addressed both the problem of the thermal effects on the cavity mirrors due to their absorption of intra-cavity optical power (∼1 W) and the one associated to the necessity of a high powerful input laser beam (∼1 kW) to feed the optical resonator. (author)

  13. Determination of Noncovalent Binding Using a Continuous Stirred Tank Reactor as a Flow Injection Device Coupled to Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Santos, Inês C.; Waybright, Veronica B.; Fan, Hui; Ramirez, Sabra; Mesquita, Raquel B. R.; Rangel, António O. S. S.; Fryčák, Petr; Schug, Kevin A.

    2015-07-01

    Described is a new method based on the concept of controlled band dispersion, achieved by hyphenating flow injection analysis with ESI-MS for noncovalent binding determinations. A continuous stirred tank reactor (CSTR) was used as a FIA device for exponential dilution of an equimolar host-guest solution over time. The data obtained was treated for the noncovalent binding determination using an equimolar binding model. Dissociation constants between vancomycin and Ac-Lys(Ac)-Ala-Ala-OH peptide stereoisomers were determined using both the positive and negative ionization modes. The results obtained for Ac- L-Lys(Ac)- D-Ala- D-Ala (a model for a Gram-positive bacterial cell wall) binding were in reasonable agreement with literature values made by other mass spectrometry binding determination techniques. Also, the developed method allowed the determination of dissociation constants for vancomycin with Ac- L-Lys(Ac)- D-Ala- L-Ala, Ac- L-Lys(Ac)- L-Ala- D-Ala, and Ac- L-Lys(Ac)- L-Ala- L-Ala. Although some differences in measured binding affinities were noted using different ionization modes, the results of each determination were generally consistent. Differences are likely attributable to the influence of a pseudo-physiological ammonium acetate buffer solution on the formation of positively- and negatively-charged ionic complexes.

  14. Simulation of the injection system of cooling water to low pressure (Lpci) for a boiling water reactor (BWR) based on RELAP

    International Nuclear Information System (INIS)

    The present article describes the modeling and simulation of the Injection System of Cooling Water to Low Pressure (Lpci) for the nuclear power plant of Laguna Verde. Is very important to be able to predict the behavior of the nuclear plant in the case of an emergency stop, and while nearer to the reality are the results of a simulation, better is the safety protocol that can be devised. In the Engineering Faculty of the UNAM at the present is had logical models of the safety systems, but due to the nature of the same, these simulations do not provide of the quantity of enough information to be able to reproduce with more accuracy the behavior of the Lpci in the case of a severe accident. For this reason, the RELAP code was used for the flows modeling, components and structures of heat transfers in relation to the system Lpci. The modeling of the components is carried out with base on technical information of the nuclear plant and the results will be corroborated with information in reference documents as the Rasp (the Reactor analysis support package) and the Fsar (Final safety analysis report) for the nuclear power plant of Laguna Verde. (Author)

  15. Damage evaluation of 500 MWe Indian pressurized heavy water reactor nuclear containment for air craft impact

    International Nuclear Information System (INIS)

    Non-linear transient dynamic analysis of 500 MWe Indian Pressurized Heavy Water Reactor (PHWR) nuclear containment has been carried out for the impact of Boeing and Airbus category of aircraft operated in India. The impulsive load time history is generated based on the momentum transfer of the crushable aircraft (soft missiles) of Boeing and Airbus families on the containment structure. The case studies include the analyses of outer containment wall (OCW) single model and the combined model with outer and inner containment wall (ICW) for impulsive loading due to aircraft impact. Initially the load is applied on OCW single model and subsequently the load is transferred to ICW after the local perforation of the OCW is noticed in the transient simulation. In the first stage of the analysis it is demonstrated that the OCW would suffer local perforation with a peak local deformation of 117 mm for impact due to B707-320 and 196 mm due to impact of A300B4 without loss of the overall integrity. However, this first barrier (OCW) cannot absorb the full impulsive load. In the second stage of the analysis of the combined model, the ICW is subjected to lower impulse duration as the load is transferred after 0.19 sec for B707-320 and 0.24 sec for A300B4 due to the local perforation of OCW. This results in the local deformation of approx. 115 mm for B707-320 and 124 mm for A300B4 in ICW and together both the structures (OCW and ICW) are capable of absorbing the full impulsive load. The analysis methodology evolved in the present work would be useful for studying the behaviour of double containment walls and multi barrier structural configurations for aircraft impact with higher energies. The present analysis illustrates that with the provision of double containments for Indian nuclear power plants, adequate reserve strength is available for the case of an extremely low probability event of missile impact generated due commercial aircraft operated in India. (author)

  16. Inyección de aire secundario caliente en calderas de vapor bagaceras y su influencia en el rendimiento térmico Injection of heated secondary air in steam bagasse boilers and its influence on thermal efficiency

    Directory of Open Access Journals (Sweden)

    Marcos A. Golato

    2005-12-01

    Full Text Available Como alternativa para aumentar la eficiencia térmica de calderas bagaceras productoras de vapor, se evalúa la inyección de aire secundario al hogar, previamente calentado. Además, se reúne información sobre la combustión y los factores que influyen en dicho fenómeno. Se calculó el rendimiento térmico en una caldera bagacera con inyección de aire secundario frío, mediante el empleo de balances de masa y energía con datos de ensayos experimentales. Se planteó luego un modelo teórico para el caso de calentar todo este aire secundario, y se determinó el nuevo rendimiento térmico. Finalmente se realizó un análisis técnico-económico para evaluar la rentabilidad del uso de esta tecnología, teniendo en cuenta el ahorro de bagazo y su equivalente en gas natural. Para el caso analizado, los resultados mostraron: aumento del rendimiento térmico de la caldera (1,62 puntos; mejora del índice de generación de vapor (2,27%; reducción del consumo de bagazo (2,45%; aceptable periodo de repago de la inversión (114 días de zafra.Previously heated secondary air injection is evaluated as an alternative to increase thermal efficiency of bagasse steam boilers. Aspects regarding the combustion process and the factors affecting it are also described. Tests were made in a bagasse boiler of a sugar mill. Thermal efficiency of the bagasse boiler with cold secondary air injection was determined by solving mass and energy balances. A new thermal efficiency for the case in which all secondary air is pre-heated with hot gases was determined afterwards. Finally, a technical-economic analysis was made to evaluate the yield of this technology, taking into account bagasse saving and its equivalent in natural gas. For the analyzed case, the results showed: an increase in the thermal efficiency of the boiler (1,62 points; a higher steam production index (2,27%; a reduction in bagasse consumption (2,45%; an acceptable payback period of the investment (114

  17. Effect of air infiltration in the reactor refrigerant on the radiation measurement systems of gaseous effluents treatment

    International Nuclear Information System (INIS)

    The system of treatment of gassy effluents of the CLV, well-known as the off-gas this gifted one in turn of a mensuration system and registration (monitoring) that consists of diverse established radiation monitors in the discharge point to the atmosphere and in other intermediate points of the process. The purpose of the monitoring system is to maintain continually informed to the operators about the effectiveness of the treatment system, to take registrations of the total quantity of liberated radioactive materials and to give warning by means of an alarm system of any abnormal situation that could end in an approach to the limits marked by the technical specifications. In September 1989 an event happened in the one that the high alarms corresponding to the post-treatment of the off-gas were activated. For this situation the personnel proceeded to diminish the power of the reactor to be able to investigate the causes that gave place to the event. It was observed that the alarms of the monitor were activated by significant infiltrations of air in the primary circuit of the refrigerant, for what it was proceeded to enlarge the scales of the implied monitor or to reduce the sensibility of their readings

  18. Epicoccum nigrum and Cladosporium sp. for the treatment of oily effluent in an air-lift reactor

    Directory of Open Access Journals (Sweden)

    Daniel Delgado Queissada

    2013-01-01

    Full Text Available The metalworking industry is responsible for one of the most complex and difficult to handle oily effluents. These effluents consist of cutting fluids, which provide refrigeration and purification of metallic pieces in the machining system. When these effluents are biologically treated, is important to do this with autochthonous microorganisms; the use of these microorganisms (bioaugmentation tends to be more efficient because they are already adapted to the existing pollutants. For this purpose, this study aimed to use two indigenous microorganisms, Epicoccum nigrum and Cladosporium sp. for metalworking effluent treatment using an air-lift reactor; the fungus Aspergillus niger (laboratory strain was used as a reference microorganism. The original effluent characterization presented considerable pollutant potential. The color of the effluent was 1495 mg Pt/L, and it contained 59 mg/L H2O2, 53 mg/L total phenols, 2.5 mgO2/L dissolved oxygen (DO, and 887 mg/L oil and grease. The COD was 9147 mgO2/L and the chronic toxicity factor was 1667. Following biotreatment, the fungus Epicoccum nigrum was found to be the most efficient in reducing (effective reduction the majority of the parameters (26% COD, 12% H2O2, 59% total phenols, and 40% oil and grease, while Cladosporium sp. was more efficient in color reduction (77%.

  19. Epicoccum nigrum and Cladosporium sp. for the treatment of oily effluent in an air-lift reactor.

    Science.gov (United States)

    Queissada, Daniel Delgado; da Silva, Flávio Teixeira; Penido, Juliana Sundfeld; Siqueira, Carolina Dell'Aquila; de Paiva, Tereza Cristina Brazil

    2013-01-01

    The metalworking industry is responsible for one of the most complex and difficult to handle oily effluents. These effluents consist of cutting fluids, which provide refrigeration and purification of metallic pieces in the machining system. When these effluents are biologically treated, is important to do this with autochthonous microorganisms; the use of these microorganisms (bioaugmentation) tends to be more efficient because they are already adapted to the existing pollutants. For this purpose, this study aimed to use two indigenous microorganisms, Epicoccum nigrum and Cladosporium sp. for metalworking effluent treatment using an air-lift reactor; the fungus Aspergillus niger (laboratory strain) was used as a reference microorganism. The original effluent characterization presented considerable pollutant potential. The color of the effluent was 1495 mg Pt/L, and it contained 59 mg/L H2O2, 53 mg/L total phenols, 2.5 mgO2/L dissolved oxygen (DO), and 887 mg/L oil and grease. The COD was 9147 mgO2/L and the chronic toxicity factor was 1667. Following biotreatment, the fungus Epicoccum nigrum was found to be the most efficient in reducing (effective reduction) the majority of the parameters (26% COD, 12% H2O2, 59% total phenols, and 40% oil and grease), while Cladosporium sp. was more efficient in color reduction (77%). PMID:24294260

  20. GASPAR-II, Radiation Exposure to Man from Air Releases of Reactor Effluents

    International Nuclear Information System (INIS)

    1 - Description of program or function: GASPAR implements the air release dose models of the NRC Regulatory Guide 1.109 for noble gases (semi-infinite plume only) and the radioiodine and particulate emissions. GASPAR computes both population (ALARA-As Low As Reasonably Achievable and NEPA-National Environmental Policy Act) and individual doses. Site data, meteorological data, radionuclide release source terms, and location meteorological data for selected individuals are specified as input data. The site data includes population data and milk, meat, and vegetation production. The meteorological data includes dispersion X/Q, X/Q decayed, X/Q decayed and depleted, and deposition. Population doses, individual doses, and cost benefit tables are calculated. 2 - Method of solution: There are two basic types of calculations, the population dose calculation and the individual dose calculation; however, both may be combined in a single GASPAR execution. There are usually several source terms corresponding to several release points. As the dose is computed for each source term it is accumulated so that the dose printed for the first source term is the actual dose for that term. For all subsequent source terms the dose printed is the accumulated dose with the dose printed for the last source term, the grand total for the problem. For the cost benefit table, individual source term doses are generated. Seven pathways by which the nuclides travel to man are considered. These are plume, ground, inhalation, vegetation, cows' milk, goats' milk, and meat. For the individual dose calculations, man is subdivided into the four age groups of infant (0 to 1 year), child (1-11 years), teenager (12-18 years) and adult (over 18 years). Each of these calculations take into account eight body organs - T. body, G.I. track, bone, liver, kidney, thyroid, lung, and skin. 3 - Restrictions on the complexity of the problem: None noted

  1. Three-dimensional numerical simulation of settling and resuspension of solids in storage tanks with air injection recirculators

    International Nuclear Information System (INIS)

    Transient three-dimensional finite-difference numerical modeling of flow with settling solids in a 3.7 x 103 m3 tank was performed. The number-average diameter of the particles was 15μm and nominal volumetric concentration was 24 percent. Using dilute suspension, concentration dependent viscosity, and settling velocity assumption, modeled air lift circulators were shown to be sufficient to maintain solids in suspension during normal operation. Resuspension of solids was also shown to be accomplished by impulsive circulator startup in the absence of particle agglomeration. Settling velocity was shown to be a dominant parameter under the assumptions made

  2. Experimental Investigation on the Emission Characteristics of a Dual – Fuel Micro Gas Turbine by Injecting Ethanol into Compressor Inlet Air

    Directory of Open Access Journals (Sweden)

    Authors: Suhad A. R. Al-Jumaily

    2014-03-01

    Full Text Available Pollutants generation is strongly dependant on the firing temperature and reaction rates of the gaseous reactants in the gas turbine combustion chamber. An experimental study is conducted on a two-shaft T200D micro-gas turbine engine in order to evaluate the impact of injecting ethanol directly into the compressor inlet air on the exhaust emissions. The study is carried out in constant speed and constant load engine tests. Generally, the results showed that when ethanol was added in a concentration of 20% by volume of fuel flow; NOx emission was reduced by the half, while CO and UHC emissions were almost doubled with respect to their levels when burning conventional LPG fuel alone.

  3. Experiments on the transfer of heat and mass as a result of natural convection in the event of an air ingress accident in a high-temperature reactor

    International Nuclear Information System (INIS)

    To facilitate nuclear technology with high-temperature reactors without any risk of serious accidents, it is necessary to ensure that even the largest accidents will not have any significant effect on the area around the power station. In this case, it is vital to ensure the chemical stability of those reactors if there is an ingress of air as a result of an accident. A large-scale test installation is currently in operation at the Institute of Safety Research and Reactor Technology in the Research Centre Juelich. It is used to investigate the sequence of events and consequences of air ingress accidents of that kind. The experiments are designed to ascertain what the possible extent of the damage will be in certain scenarios and also to develop possible concepts for counteracting the damage and safeguarding the chemical stability of the system. Numerous experiments have been conducted on flow and mass transfer in the course of this study. These experiments describe the individual physical processes within the test installation. The findings derived from this on plant-specific loss of pressure, transfer of heat and material allow to interpret accident simulation experiments reliably and ensure that this data can be applied to the situation in high-temperature reactors using computer programs. (orig.)

  4. Analysis of transient flows in gasoline direct injection systems: effects on unsteady air entrainment by the spray; Analyse des ecoulements transitoires dans les systemes d'injection directe essence: effets sur l'entrainement d'air instationnaire du spray

    Energy Technology Data Exchange (ETDEWEB)

    Delay, G.

    2005-03-15

    The aim of this study is to determine instantaneous liquid flow rate oscillations effect on non stationary air entrainment of an injector conical spray (Gasoline Direct Injection). The tools we use are either experimental or numerical ones. An instantaneous flow rate determination method is used. It is based on pulsated flows physics and only requires the velocity at the centerline of a pipe mounted just before the injector. So, it is possible to 'rebuild' the instantaneous velocity distributions and then to get the instantaneous liquid flow rate (Laser Doppler Anemometry measurements). A mechanical and hydraulics modeling software (AMESim) is necessary to get injector outlet flow rate. Simulations are validated by both 'rebuilding' method results and common rail pressure measurements. Fluorescent Particle Image Velocimetry (FPIV), suited to dense two -phase flows, is used to measure air flow around and inside the conical spray. Velocity measurements close to the spray frontier are used to compute instantaneous air entrainment. Considering droplets momentum exchange with air and thanks to droplets diameters and liquid velocities measurements at the nozzle exit, a transient air entrainment model is proposed according to FPIV measurements. (author)

  5. Air-source heat pump coupled with economized vapor injection scroll compressor and ejector:Design and experimental research

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Ejector can utilize high pressure energy from liquid mechanism,it can be used in heat pump system coupled with economized vapor injection(EVI)scroll compressor.When running under low temperature conditions,the performance of the EVI system with ejector can be improved further.In this paper,the design method of the heat pump system with ejector is presented,and the process for designing the heat pump with ejector(EVIe)was summarized.One prototype heat pump was designed under the condition of the evaporation temperature of -20oC,and an experimental setup was established to test the prototype.The measured results demonstrated that the heating EER(energy efficiency ratio)of the EVIe could reach about 4%higher than that of the system without the ejector when the heating capacity remained nearly constant.The design method is helpful to development of a heat pump system coupled with scroll compressor and ejector.

  6. Air gasification of empty fruit bunch for hydrogen-rich gas production in a fluidized-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, M.A.A.; Salmiaton, A.; Wan Azlina, W.A.K.G.; Mohammad Amran, M.S.; Fakhru' l-Razi, A. [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2011-02-15

    A study on gasification of empty fruit bunch (EFB), a waste of the palm oil industry, was investigated. The composition and particle size distribution of feedstock were determined and the thermal degradation behaviour was analysed by a thermogravimetric analysis (TGA). Then fluidized bed bench scale gasification unit was used to investigate the effect of the operating parameters on EFB air gasification namely reactor temperature in the range of 700-1000 C, feedstock particle size in the range of 0.3-1.0 mm and equivalence ratio (ER) in the range of 0.15-0.35. The main gas species generated, as identified by a gas chromatography (GC), were H{sub 2}, CO, CO{sub 2} and CH{sub 4}. With temperature increasing from 700 C to 1000 C, the total gas yield was enhanced greatly and reached the maximum value ({proportional_to}92 wt.%, on the raw biomass sample basis) at 1000 C with big portions of H{sub 2} (38.02 vol.%) and CO (36.36 vol.%). Feedstock particle size showed an influence on the upgrading of H{sub 2}, CO and CH{sub 4} yields. The feedstock particle size of 0.3-0.5 mm, was found to obtain a higher H{sub 2} yield (33.93 vol.%), and higher LHV of gas product (15.26 MJ/m{sup 3}). Equivalence ratio (ER) showed a significant influence on the upgrading of hydrogen production and product distribution. The optimum ER (0.25) was found to attain a higher H{sub 2} yield (27.31 vol.%) at 850 C. Due to the low efficiency of bench scale gasification unit the system needs to be scaling-up. The cost analysis for scale-up EFB gasification unit showed that the hydrogen supply cost is RM 6.70/kg EFB (2.11/kg = 0.18/Nm{sup 3}). (author)

  7. Air gasification of empty fruit bunch for hydrogen-rich gas production in a fluidized-bed reactor

    International Nuclear Information System (INIS)

    A study on gasification of empty fruit bunch (EFB), a waste of the palm oil industry, was investigated. The composition and particle size distribution of feedstock were determined and the thermal degradation behaviour was analysed by a thermogravimetric analysis (TGA). Then fluidized bed bench scale gasification unit was used to investigate the effect of the operating parameters on EFB air gasification namely reactor temperature in the range of 700-1000 oC, feedstock particle size in the range of 0.3-1.0 mm and equivalence ratio (ER) in the range of 0.15-0.35. The main gas species generated, as identified by a gas chromatography (GC), were H2, CO, CO2 and CH4. With temperature increasing from 700 oC to 1000 oC, the total gas yield was enhanced greatly and reached the maximum value (∼92 wt.%, on the raw biomass sample basis) at 1000 oC with big portions of H2 (38.02 vol.%) and CO (36.36 vol.%). Feedstock particle size showed an influence on the upgrading of H2, CO and CH4 yields. The feedstock particle size of 0.3-0.5 mm, was found to obtain a higher H2 yield (33.93 vol.%), and higher LHV of gas product (15.26 MJ/m3). Equivalence ratio (ER) showed a significant influence on the upgrading of hydrogen production and product distribution. The optimum ER (0.25) was found to attain a higher H2 yield (27.31 vol.%) at 850 oC. Due to the low efficiency of bench scale gasification unit the system needs to be scaling-up. The cost analysis for scale-up EFB gasification unit showed that the hydrogen supply cost is RM 6.70/kg EFB ($2.11/kg = $0.18/Nm3).

  8. Results from Geothermal Logging, Air and Core-Water Chemistry Sampling, Air Injection Testing and Tracer Testing in the Northern Ghost Dance Fault, YUCCA Mountain, Nevada, November 1996 to August 1998

    International Nuclear Information System (INIS)

    Geothermal logging, air and core-water chemistry sampling, air-injection testing, and tracer testing were done in the northern Ghost Dance Fault at Yucca Mountain, Nevada, from November 1996 to August 1998. The study was done by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy. The fault-testing drill room and test boreholes were located in the crystal-poor, middle nonlithophysal zone of the Topopah Spring Tuff, a tuff deposit of Miocene age. The drill room is located off the Yucca Mountain underground Exploratory Studies Facility at about 230 meters below ground surface. Borehole geothermal logging identified a temperature decrease of 0.1 degree Celsius near the Ghost Dance Fault. The temperature decrease could indicate movement of cooler air or water, or both, down the fault, or it may be due to drilling-induced evaporative or adiabatic cooling. In-situ pneumatic pressure monitoring indicated that barometric pressure changes were transmitted from the ground surface to depth through the Ghost Dance Fault. Values of carbon dioxide and delta carbon-13 from gas samples indicated that air from the underground drill room had penetrated the tuff, supporting the concept of a well-developed fracture system. Uncorrected carbon-14-age estimates from gas samples ranged from 2,400 to 4,500 years. Tritium levels in borehole core water indicated that the fault may have been a conduit for the transport of water from the ground surface to depth during the last 100 years

  9. Results from Geothermal Logging, Air and Core-Water Chemistry Sampling, Air Injection Testing and Tracer Testing in the Northern Ghost Dance Fault, YUCCA Mountain, Nevada, November 1996 to August 1998

    Energy Technology Data Exchange (ETDEWEB)

    Lecain, G.D.; Anna, L.O.; Fahy, M.F.

    1998-08-01

    Geothermal logging, air and core-water chemistry sampling, air-injection testing, and tracer testing were done in the northern Ghost Dance Fault at Yucca Mountain, Nevada, from November 1996 to August 1998. The study was done by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy. The fault-testing drill room and test boreholes were located in the crystal-poor, middle nonlithophysal zone of the Topopah Spring Tuff, a tuff deposit of Miocene age. The drill room is located off the Yucca Mountain underground Exploratory Studies Facility at about 230 meters below ground surface. Borehole geothermal logging identified a temperature decrease of 0.1 degree Celsius near the Ghost Dance Fault. The temperature decrease could indicate movement of cooler air or water, or both, down the fault, or it may be due to drilling-induced evaporative or adiabatic cooling. In-situ pneumatic pressure monitoring indicated that barometric pressure changes were transmitted from the ground surface to depth through the Ghost Dance Fault. Values of carbon dioxide and delta carbon-13 from gas samples indicated that air from the underground drill room had penetrated the tuff, supporting the concept of a well-developed fracture system. Uncorrected carbon-14-age estimates from gas samples ranged from 2,400 to 4,500 years. Tritium levels in borehole core water indicated that the fault may have been a conduit for the transport of water from the ground surface to depth during the last 100 years.

  10. Air system in the hot cell for injectable radiopharmaceutical production: requirements for personnel and environment safety and protection of the product

    International Nuclear Information System (INIS)

    Radiopharmaceuticals are applied in Nuclear Medicine in diagnostic and therapeutic procedures and must be manufactured in accordance with the basic principles of Good Manufacturing Practices (GMP) for sterile pharmaceutical products. In order to prevent the uncontrolled spread of radioactive contamination, the processing of radioactive materials requires an exhausted and shielded special enclosure called hot cell. The quality of air inside the hot cell must be controlled in order to prevent the contamination of the product with particulate material or microorganisms. On the other hand, the hot cell must prevent external contamination with radioactive material. The aim of this work is to discuss the special requirements for hot cells taking in account the national rules for injectable pharmaceutical products and international standards available. Ventilation of radiopharmaceutical production facilities should meet the requirement to prevent the contamination of products and the exposure of working personnel to radioactivity. Positive pressure areas should be used to process sterile products. In general, any radioactivity should handle within specifically designed areas maintained under negative pressures. The production of sterile radioactive products should therefore be carried out under negative pressure surrounded by a positive pressure zone ensuring that appropriate air quality requirements are met. Some of the recent developments in the use of radioisotopes in medical field have also significantly impacted on the evolution of handling facilities. Application of pharmaceutical GMP requirements for air quality and processing conditions in the handling facilities of radioactive pharmaceuticals has led to significant improvements in the construction of isolator-like hot cells and clean rooms with HEPA filtered ventilation and air conditioning (HVAC) systems. Clean grade A (class 100) air quality hot cells are now available commercially, but in a high cost

  11. Air system in the hot cell for injectable radiopharmaceutical production: requirements for personnel and environment safety and protection of the product

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Fabio E.; Araujo, Elaine B., E-mail: fecampos@ipen.b, E-mail: ebaraujo@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2009-07-01

    Radiopharmaceuticals are applied in Nuclear Medicine in diagnostic and therapeutic procedures and must be manufactured in accordance with the basic principles of Good Manufacturing Practices (GMP) for sterile pharmaceutical products. In order to prevent the uncontrolled spread of radioactive contamination, the processing of radioactive materials requires an exhausted and shielded special enclosure called hot cell. The quality of air inside the hot cell must be controlled in order to prevent the contamination of the product with particulate material or microorganisms. On the other hand, the hot cell must prevent external contamination with radioactive material. The aim of this work is to discuss the special requirements for hot cells taking in account the national rules for injectable pharmaceutical products and international standards available. Ventilation of radiopharmaceutical production facilities should meet the requirement to prevent the contamination of products and the exposure of working personnel to radioactivity. Positive pressure areas should be used to process sterile products. In general, any radioactivity should handle within specifically designed areas maintained under negative pressures. The production of sterile radioactive products should therefore be carried out under negative pressure surrounded by a positive pressure zone ensuring that appropriate air quality requirements are met. Some of the recent developments in the use of radioisotopes in medical field have also significantly impacted on the evolution of handling facilities. Application of pharmaceutical GMP requirements for air quality and processing conditions in the handling facilities of radioactive pharmaceuticals has led to significant improvements in the construction of isolator-like hot cells and clean rooms with HEPA filtered ventilation and air conditioning (HVAC) systems. Clean grade A (class 100) air quality hot cells are now available commercially, but in a high cost

  12. Characterization of bacterial and archaeal communities in air-cathode microbial fuel cells, open circuit and sealed-off reactors

    KAUST Repository

    Chehab, Noura A.

    2013-06-18

    A large percentage of organic fuel consumed in a microbial fuel cell (MFC) is lost as a result of oxygen transfer through the cathode. In order to understand how this oxygen transfer affects the microbial community structure, reactors were operated in duplicate using three configurations: closed circuit (CC; with current generation), open circuit (OC; no current generation), and sealed off cathodes (SO; no current, with a solid plate placed across the cathode). Most (98 %) of the chemical oxygen demand (COD) was removed during power production in the CC reactor (maximum of 640 ± 10 mW/m 2), with a low percent of substrate converted to current (coulombic efficiency of 26.5 ± 2.1 %). Sealing the cathode reduced COD removal to 7 %, but with an open cathode, there was nearly as much COD removal by the OC reactor (94.5 %) as the CC reactor. Oxygen transfer into the reactor substantially affected the composition of the microbial communities. Based on analysis of the biofilms using 16S rRNA gene pyrosequencing, microbes most similar to Geobacter were predominant on the anodes in the CC MFC (72 % of sequences), but the most abundant bacteria were Azoarcus (42 to 47 %) in the OC reactor, and Dechloromonas (17 %) in the SO reactor. Hydrogenotrophic methanogens were most predominant, with sequences most similar to Methanobacterium in the CC and SO reactor, and Methanocorpusculum in the OC reactors. These results show that oxygen leakage through the cathode substantially alters the bacterial anode communities, and that hydrogenotrophic methanogens predominate despite high concentrations of acetate. The predominant methanogens in the CC reactor most closely resembled those in the SO reactor, demonstrating that oxygen leakage alters methanogenic as well as general bacterial communities. © 2013 Springer-Verlag Berlin Heidelberg.

  13. Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area

    Science.gov (United States)

    Ortega, Amber M.; Hayes, Patrick L.; Peng, Zhe; Palm, Brett B.; Hu, Weiwei; Day, Douglas A.; Li, Rui; Cubison, Michael J.; Brune, William H.; Graus, Martin; Warneke, Carsten; Gilman, Jessica B.; Kuster, William C.; de Gouw, Joost; Gutiérrez-Montes, Cándido; Jimenez, Jose L.

    2016-06-01

    Field studies in polluted areas over the last decade have observed large formation of secondary organic aerosol (SOA) that is often poorly captured by models. The study of SOA formation using ambient data is often confounded by the effects of advection, vertical mixing, emissions, and variable degrees of photochemical aging. An oxidation flow reactor (OFR) was deployed to study SOA formation in real-time during the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign in Pasadena, CA, in 2010. A high-resolution aerosol mass spectrometer (AMS) and a scanning mobility particle sizer (SMPS) alternated sampling ambient and reactor-aged air. The reactor produced OH concentrations up to 4 orders of magnitude higher than in ambient air. OH radical concentration was continuously stepped, achieving equivalent atmospheric aging of 0.8 days-6.4 weeks in 3 min of processing every 2 h. Enhancement of organic aerosol (OA) from aging showed a maximum net SOA production between 0.8-6 days of aging with net OA mass loss beyond 2 weeks. Reactor SOA mass peaked at night, in the absence of ambient photochemistry and correlated with trimethylbenzene concentrations. Reactor SOA formation was inversely correlated with ambient SOA and Ox, which along with the short-lived volatile organic compound correlation, indicates the importance of very reactive (τOH ˜ 0.3 day) SOA precursors (most likely semivolatile and intermediate volatility species, S/IVOCs) in the Greater Los Angeles Area. Evolution of the elemental composition in the reactor was similar to trends observed in the atmosphere (O : C vs. H : C slope ˜ -0.65). Oxidation state of carbon (OSc) in reactor SOA increased steeply with age and remained elevated (OSC ˜ 2) at the highest photochemical ages probed. The ratio of OA in the reactor output to excess CO (ΔCO, ambient CO above regional background) vs. photochemical age is similar to previous studies at low to moderate ages and also extends to

  14. Failure Status Design of the Air Operated Valves and Solenoid Valves of Hot Water Layer System in the Open-pool Type Research Reactor

    International Nuclear Information System (INIS)

    Since the HWLS has ion exchangers, ionized radionuclides in the hot water layer are also purified. Thus the dose at the pool top should be maintained as low as reasonably achievable when the reactor is in normal operation. The HWLS consists of pumps, ion exchangers, heaters, flow meter orifices, all the necessary inter-connecting pipes, valves, and instruments, located in the HWLS equipment room as shown in Fig. 1. Each component, such as the pump, ion exchanger, strainer, and heater has 100% capacity to ensure that failure of one component does not result in the functional failure of the whole system. The suction line is split to the inlet of each pump to take the pool water to the ion exchangers. The design flow rate passes through the ion exchanger to remove the radioactive ions and impurities, and then go to the heater. The coolant is heated up to the desired temperature and flows back to the upper part of the reactor pool. Demineralized water is also supplied to the reactor pool by the HWLS when the pool water level drops to low level by an evaporation loss in order to maintain the normal pool water level. Operability of the HWLS will be maintained when all valves are fully opened. And, opening status of the valve in the demi-water make-up line has no impact the reactor operation. There are results of the failure status design of the air operated valves and solenoid valves

  15. Flow-injection spectrophotometric determination of captopril in pharmaceutical formulations using a new solid-phase reactor containing AgSCN immobilized in a polyurethane resin

    Directory of Open Access Journals (Sweden)

    Fernando Campanhã Vicentini

    2012-06-01

    Full Text Available A simple flow-injection analysis procedure was developed for determining captopril in pharmaceutical formulations employing a novel solid-phase reactor containing silver thiocyanate immobilized in a castor oil derivative polyurethane resin. The method was based on silver mercaptide formation between the captopril and Ag(I in the solid-phase reactor. During such a reaction, the SCN- anion was released and reacted with Fe3+, which generated the FeSCN2+ complex that was continuously monitored at 480 nm. The analytical curve was linear in the captopril concentration range from 3.0 × 10-4 mol L-1 to 1.1 × 10-3 mol L-1 with a detection limit of 8.0 × 10-5 mol L-1. Recoveries between 97.5% and 103% and a relative standard deviation of 2% for a solution containing 6.0 × 10-4 mol L-1 captopril (n = 12 were obtained. The sample throughput was 40 h-1 and the results obtained for captopril in pharmaceutical formulations using this procedure and those obtained using a pharmacopoeia procedure were in agreement at a 95% confidence level.Um procedimento simples de análise por injeção em fluxo foi desenvolvido para a determinação de captopril em formulações farmacêuticas empregando um novo reator em fase sólida contendo tiocianato de prata imobilizado em resina poliuretana obtida a partir de óleo de mamona. O método foi baseado na formação de um mercapto composto de prata, no reator em fase sólida, obtido entre o captopril e Ag (I imobilizada. Durante a reação, íons SCN- eram liberados e reagiam com Fe3+, gerando o complexo FeSCN2+, que foi continuamente monitorado em 480 nm. A curva analítica foi linear no intervalo de concentração de captopril entre 3,0 × 10-4 a 1,1 × 10-3 mol L-1 com um limite de detecção de 8,0 × 10-5 mol L-1. Recuperações entre 97,5-103% e desvio padrão relativo de 2% para uma solução contendo 6,0 × 10-4 mol L-1 de captopril (n = 12 foram obtidos. A frequência de amostragem foi de 40 h-1 e os resultados

  16. Light water type reactor

    International Nuclear Information System (INIS)

    The nuclear reactor of the present invention prevents disruption of a reactor core even in a case of occurrence of entire AC power loss event, and even if a reactor core disruption should occur, it prevents a rupture of the reactor container due to excess heating. That is, a high pressure water injection system and a low pressure water injection system operated by a diesel engine are disposed in the reactor building in addition to an emergency core cooling system. With such a constitution, even if an entire AC power loss event should occur, water can surely be injected to the reactor thereby enabling to prevent the rupture of the reactor core. Even if it should be ruptured, water can be sprayed to the reactor container by the low pressure water injection system. Further, if each of water injection pumps of the high pressure water injection system and the low pressure water injection system can be driven also by motors in addition to the diesel engine, the pump operation can be conducted more certainly and integrally. (I.S.)

  17. Field Performance Test of an Air-Cleaner with Photocatalysis-Plasma Synergistic Reactors for Practical and Long-Term Use

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Ochiai

    2014-10-01

    Full Text Available A practical and long-term usable air-cleaner based on the synergy of photocatalysis and plasma treatments has been developed. A field test of the air-cleaner was carried out in an office smoking room. The results were compared to previously reported laboratory test results. Even after a treatment of 12,000 cigarettes-worth of tobacco smoke, the air-cleaner maintained high-level air-purification activity (98.9% ± 0.1% and 88% ± 1% removal of the total suspended particulate (TSP and total volatile organic compound (TVOC concentrations, respectively at single-pass conditions. Although the removal ratio of TSP concentrations was 98.6% ± 0.2%, the ratio of TVOC concentrations was 43.8% after a treatment of 21,900 cigarettes-worth of tobacco smoke in the field test. These results indicate the importance of suitable maintenance of the reactors in the air-cleaner during field use.

  18. Experimental investigations of graphite corrosion and aerosol formation during air ingress into the core of a high temperature pebble bed reactor

    International Nuclear Information System (INIS)

    A High Temperature Reactor can be designed to remove the decay heat without using any active systems. For most accident scenarios a release of radioactive fission products can be excluded by design. However, during operation of a HTR some accidents are principally possible, which can result in a release of fission products out of the fuel elements and of the reactor system. One of these accidents is a hypothetical massive air ingress into the hot graphite reactor core. After a pressure drop caused by leakages in the primary circuit a gas mass flow may be able to stream through the core according to free natural convection leading to a corrosion of the graphite fuel elements and reflector structures. With the VELUNA-experiment a testing device was installed, which allows to investigate the corrosion process on parts of a reactor core under real accident conditions. With regard to the experimental results already existing equations to calculate the chemical reaction rate in a pebble bed were modified and the applicability was demonstrated. These equations consider the chemical reaction in the porous graphite as well as diffusion processes to the graphite surface. Equivalent correlations were developed for different flow geometries and for the graphite material of the bottom reflector. The corrosion process forms an aerosol, which consists of graphite particles and a reaction gas phase. The formatted aerosol was characterized concerning its chemical and physical properties. Because the aerosol particles can support the release of fission products, measurements of aerosol parameters like particle mass concentration and particle size distribution provide important information to estimate the radiologic consequences of such an hypothetical air ingress accident. (orig.)

  19. REACTOR AND SHIELD PHYSICS. Comprehensive Technical Report, General Electric Direct-Air-Cycle, Aircraft Nuclear Propulsion Program.

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, W.E.; Simpson, J.D.

    1962-01-01

    This volume is one of twenty-one summarizing the Aircraft Nuclear Propulsion Program of the General Electric Company. This volume describes the experimental and theoretical work accomplished in the areas of reactor and shield physics.

  20. Contamination of the air and other environmental samples of the Ulm region by radioactive fission products after the accident of the Chernobyl reactor

    International Nuclear Information System (INIS)

    Since April 30, 1986, the radioactivity of the fission products released by the accident of the Chernobyl reactor has been measured in the air of the city of Ulm. The airborne dust samples were collected with flow calibrated samplers on cellulose acetate membrane filters and counted with a high resolution gamma ray spectrometer. Later on, the radioactivity measurements were expanded to other relevant environmental samples contaminated by radioactive atmospheric precipitates including grass, spruce needles, mosses, lichens, various kinds of food, drinking water, asphalt and concrete surface layers, municipal sewage sludge and sewage sludge ash. This paper reports the obtained results. (orig.)

  1. Pressure drop and heat transfer in the sodium to air heat exchanger tube banks on advanced sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    A numerical study was performed to investigate the thermal and hydraulic characteristics and build up design model of the AHX (sodium-to-air heat exchanger) unit of a sodium-cooled fast reactor. Helical-coiled tube banks in the AHX were modeled as porous media and simulated heat and momentum transfer. Two-dimensional flow characteristic appeared at the most region of AHX annulus. Pressure drop and heat transfer coefficient for rectangular, parallelogram and staggered tube banks as the main components of the AHX were evaluated and compared with Zhukauskas empirical correlations. (author)

  2. Application of railgun principle to high-velocity hydrogen pellet injection for magnetic fusion reactor fueling. Progress report, August 16, 1991--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.; Zhang, J.

    1992-12-01

    Three separate papers are included which report research progress during this period: (1) A new railgun configuration with perforated sidewalls, (2) development of a fuseless small-bore railgun for injection of high-speed hydrogen pellets into magnetically confined plasmas, and (3) controls and diagnostics on a fuseless railgun for solid hydrogen pellet injection.

  3. PREDICTION OF GAS HOLD-UP IN A COMBINED LOOP AIR LIFT FLUIDIZED BED REACTOR USING NEWTONIAN AND NON-NEWTONIAN LIQUIDS

    Directory of Open Access Journals (Sweden)

    Sivakumar Venkatachalam

    2011-09-01

    Full Text Available Many experiments have been conducted to study the hydrodynamic characteristics of column reactors and loop reactors. In this present work, a novel combined loop airlift fluidized bed reactor was developed to study the effect of superficial gas and liquid velocities, particle diameter, fluid properties on gas holdup by using Newtonian and non-Newtonian liquids. Compressed air was used as gas phase. Water, 5% n-butanol, various concentrations of glycerol (60 and 80% were used as Newtonian liquids, and different concentrations of carboxy methyl cellulose aqueous solutions (0.25, 0.6 and 1.0% were used as non-Newtonian liquids. Different sizes of spheres, Bearl saddles and Raschig rings were used as solid phases. From the experimental results, it was found that the increase in superficial gas velocity increases the gas holdup, but it decreases with increase in superficial liquid velocity and viscosity of liquids. Based on the experimental results a correlation was developed to predict the gas hold-up for Newtonian and non-Newtonian liquids for a wide range of operating conditions at a homogeneous flow regime where the superficial gas velocity is approximately less than 5 cm/s

  4. The effect of clay particles on the activity of suspended autotrophic nitrifying bacteria and on the performance of an air-lift reactor.

    Science.gov (United States)

    Vieira, M J; Pacheco, A P; Pinho, I A; Melo, L F

    2001-02-01

    Clay minerals have some properties, namely a high surface area and the ability of ion exchange that may exert some effects on microbial systems. It is often difficult to know the way the clay is exerting its influence and whether its presence improves a given metabolic process. The present work concerns the study of the effect of the addition of powdered kaolin to autotrophic nitrification systems, and includes the study of the effects of the particles on the activity of a suspended nitrifying bacteria consortium and on the performance of an air-lift biofilm reactor used for tertiary nitrification. Concerning the suspended culture, kaolin particles produced stimulation on the specific endogenous and exogenous respiration rates of the bacteria, probably due to a nutritional effect supplied by the clay. This effect was more pronounced for the ammonia oxidation rates, although nitrite oxidation was also enhanced but to a lesser extent. In respect to the presence of kaolin particles in the air-lift reactor, the results obtained indicate that the clay particles become incorporated in the biofilm pellets, but do not change significantly their thickness or their shape. However, nitrate production decreased when the concentration of particles increased. The low adsorption of ammonia by the kaolin indicated that the clay particles embedded in the biofilm did not probably retain the ions. Although it was not proved, precipitation of salts may have occurred. PMID:11349371

  5. Oxacillin Injection

    Science.gov (United States)

    Oxacillin injection is used to treat infections caused by certain bacteria. Oxacillin injection is in a class of medications called ... It works by killing bacteria.Antibiotics such as oxacillin injection will not work for colds, flu, or ...

  6. Studies of heat transfer having relevance to nuclear reactor containment cooling by buoyancy-driven air flow

    International Nuclear Information System (INIS)

    Two separate effects experiments concerned with buoyancy-influenced convective heat transfer in vertical passages which have relevance to the problem of nuclear reactor containment cooling by means of buoyancy-driven airflow are described. A feature of each is that local values of heat transfer coefficient are determined on surfaces maintained at uniform temperature. Experimental results are presented which highlight the need for buoyancy-induced impairment of turbulent convective heat transfer to be accounted for in the design of such passive cooling systems. A strategy is presented for predicting the heat removal by combined convective and radiative heat transfer from a full scale nuclear reactor containment shell using such experimental results

  7. Design of Water Injection System for Reactor Effluent of Hydrogenation unit%加氢装置反应流出物注水系统的设计

    Institute of Scientific and Technical Information of China (English)

    龙钰; 张星; 刘艳苹

    2011-01-01

    The formation of ammonium salts (mainly NH4HS and NH4Cl) in hydroprocessing effluent and the necessity of water injection were introduced. The design of water injection system for hydroprocessing effluent was described through analyzing wash water quality, quantity, injection mode and injection position.%介绍了加氢装置反应流出物中铵盐(主要是NH4HS和NH4Cl)形成的原因和注水的必要性,并通过对注水水质要求、注水用量、注水方式以及注水点几个方面的分析,详细阐述了加氢装置反应流出物注水系统设计的要点和相关的设计计算方法.

  8. In-air and pressurized water reactor environment fatigue experiments of 316 stainless steel to study the effect of environment on cyclic hardening

    Science.gov (United States)

    Mohanty, Subhasish; Soppet, William K.; Majumdar, Saurindranath; Natesan, Krishnamurti

    2016-05-01

    Argonne National Laboratory (ANL), under the sponsorship of Department of Energy's Light Water Reactor Sustainability (LWRS) program, is trying to develop a mechanistic approach for more accurate life estimation of LWR components. In this context, ANL has conducted many fatigue experiments under different test and environment conditions on type 316 stainless steel (316 SS) material which is widely used in the US reactors. Contrary to the conventional S ∼ N curve based empirical fatigue life estimation approach, the aim of the present DOE sponsored work is to develop an understanding of the material ageing issues more mechanistically (e.g. time dependent hardening and softening) under different test and environmental conditions. Better mechanistic understanding will help develop computer-based advanced modeling tools to better extrapolate stress-strain evolution of reactor components under multi-axial stress states and hence help predict their fatigue life more accurately. Mechanics-based modeling of fatigue such as by using finite element (FE) tools requires the time/cycle dependent material hardening properties. Presently such time-dependent material hardening properties are hardly available in fatigue modeling literature even under in-air conditions. Getting those material properties under PWR environment, are even harder. Through this work we made preliminary attempt to generate time/cycle dependent stress-strain data both under in-air and PWR water conditions for further study such as for possible development of material models and constitutive relations for FE model implementation. Although, there are open-ended possibility to further improve the discussed test methods and related material estimation techniques we anticipate that the data presented in this paper will help the metal fatigue research community particularly, the researchers who are dealing with mechanistic modeling of metal fatigue such as using FE tools. In this paper the fatigue experiments

  9. Numerical study of the behavior of methane-hydrogen/air pre-mixed flame in a micro reactor equipped with catalytic segmented bluff body

    International Nuclear Information System (INIS)

    In this work, combustion characteristics of premixed methane-hydrogen/air in a micro reactor equipped with a catalytic bluff body is investigated numerically. In this regard, the detailed chemistry schemes for gas phase (homogeneous) and the catalyst surface (heterogeneous) are used. The applied catalytic bluff body is coated with a thin layer of platinum (Pt) on its surface. Also, the lean reactive mixture is entered to the reactor with equivalence ratio 0.9. The results of this study showed that the use of catalytic bluff body in the center of a micro reactor can significantly increase the flame stability, especially at high velocities. Moreover, it is found that a catalytic bluff body with several cavities on its surface and also high thermal conductivity improves the flame stability more than a catalytic bluff body without cavities and low thermal conductivity. Finally, it is maintained that the most advantage of using the catalytic bluff body is its easy manufacturing process as compared to the catalytic wall. This matter seems to be more prevalent when we want to create several cavities with various sizes on the bluff-body. - Highlights: • Presence of a bluff body in a micro reactor can move the flame towards the upstream. • Catalytic bluff body can significantly increase flame stability at high velocities. • Creating non-catalytic cavities on the bluff body promotes homogeneous reactions. • Segmented catalytic bluff body improves the flame stability more than a simple one. • Creating the segments on a bluff body is easier compared to a wall

  10. Radial lean direct injection burner

    Science.gov (United States)

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  11. Research on 3-D base isolation system applied to new power reactor 3-D seismic isolation device with rolling seal type air spring: Pt.2

    International Nuclear Information System (INIS)

    A three dimensional seismic base isolation device was developed for heavy structures and buildings such as nuclear power reactor buildings. The device realizes 3-D isolation by combining a LRB (laminated rubber bearing) for horizontal isolation with an air spring for vertical isolation in series. In this study, scale models of the 3-D base isolation device were made and were tested to examine the dynamic properties and ultimate strengths of the device. The performance of the device under earthquake excitation was examined through shaking table tests of 1/7 scale models. As the results, it was confirmed that the device worked smoothly under the horizontal and vertical excitations, and that the theoretical formulae of the orifice damping could explain the test results. The high-pressure air springs of trial production were forced to burst to find out which factor influenced ultimate strength. It was confirmed from results of the burst test that the strength of the air spring depended upon the diameter of rolling part of the bellows and the number of layers of the reinforcing fibers. Judging from the results of the shaking table test and the burst test, the developed 3-D base isolation device was applicable to a nuclear power plant building. (authors)

  12. Response of fuel, fuel elements and gas cooled reactor cores under accidental air or water ingress conditions. Proceedings of a technical committee meeting held in Beijing, China, 25-27 October 1993

    International Nuclear Information System (INIS)

    The meeting was convened by the IAEA on the recommendation of the IAEA's International Working Group on Gas Cooled Reactors. It was attended by participants from China, France, Germany, Japan, Netherlands, Switzerland, the Russian Federation, the United Kingdom and the United States of America. The meeting covered the following topics: experimental investigations of the effects of air and water ingress; predicted response of fuel, graphite and other reactor components; options for minimizing or mitigating the effects of air or water ingress. 19 papers were presented at the meeting. A separate abstract was prepared for each of these papers. Refs, figs and tabs

  13. A liquid-metal reactor/air Brayton-cycle option for a multimegawatt terrestrial power (MTP) plant

    International Nuclear Information System (INIS)

    The LMR/ABC concept presented provides a simple and safe approach to secure nuclear power generation to fulfill possible military requirements for 10-MWc terrestrial applications. The system utilizes an inherently safe liquid metal reactor and a simple, closed-cycle gas turbine power conversion system. The concept incorporates many passive safety features, and it exhibits operating characteristics that ensure the maximum protection against postulated nuclear accidents

  14. Selecção de suportes para nitrificação biológica em reactores do tipo "air-lift"

    OpenAIRE

    Teixeira, P.; Oliveira, Rosário

    1996-01-01

    Este trabalho teve como objectivo a selecção do tipo de suporte que permita uma melhor imobilização dos microrganismos e uma actividade mais eficiente, para ser usado em nitrificação biológica em reactores "air-lift". Utilizou-se areia, calcário, basalto, pedra pomes e poraver (vidro expandido) com duas gamas de diâmetros das partículas: de 0.25mm a 0.3mm e de 0.4mm a 0.5mm. Foram ainda testados: pedra pomes com um diâmetro de 0.8 a 1.3mm, poraver com um diâmetro de 1 a 2mm e carvão activado ...

  15. Penambahan Urea sebagai Co-Substrat pada Sistem High Rate Algae Reactor (HRAR) untuk Pengolahan Air Limbah Tercemar Minyak Solar

    OpenAIRE

    Ayu Syarifa Darwinastwantya; Agus Slamet; Joni Hermana

    2014-01-01

    Kebutuhan bahan bakar minyak di Indonesia semakin meningkat. Peningkatan tersebut mengakibatkan eksplorasi dan pengolahan secara berlebihan. Eksplorasi dan pengolahan berlebihan akan memberikan dampak buruk bagi lingkungan, yaitu limbah. Limbah minyak bumi biasanya langsung dibuang ke lingkungan yang dapat menyebakan pencemaran lingkungan, misalnya air. Pengolahan limbah menggunakan alga dapat digunakan sebagai pengolahan lanjutan tanpa menimbulkan polusi tambahan. Penelitian ini bertujuan u...

  16. Ultrasonic methodology measurement of two-phase (air-water) flows in cooling systems of nuclear reactor

    International Nuclear Information System (INIS)

    An ultrasonic methodology is proposed for the measurement for two phase (air-water) flow parameters. Ultrasonic backscattered signals were used to analyze the following parameters: average number of bubbles, interfacial area and void fraction. The results show a strong correlation between the parameters and the ultrasonic power signal obtained. (author)

  17. Mark I Containment Program. Scaling analysis for modeling initial air clearing caused by reactor safety/relief valve discharge

    International Nuclear Information System (INIS)

    A generalized method of similitude is introduced and applied to develop scaling relationships for a General Electric Mark I suppression pool. A scale model is proposed to model suppression pool wall loads due to air flow through a T-quencher discharge device. The scaling relationships developed provide the means for relating scale model parameters (i.e., pressure, velocity,) to full scale

  18. Air scaling and modeling studies for the 1/5-scale mark I boiling water reactor pressure suppression experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lai, W.; McCauley, E.W.

    1978-01-04

    Results of table-top model experiments performed to investigate pool dynamics effects due to a postulated loss-of-coolant accident (LOCA) for the Peach Bottom Mark I boiling water reactor containment system guided subsequent conduct of the 1/5-scale torus experiment and provided new insight into the vertical load function (VLF). Pool dynamics results were qualitatively correct. Experiments with a 1/64-scale fully modeled drywell and torus showed that a 90/sup 0/ torus sector was adequate to reveal three-dimensional effects; the 1/5-scale torus experiment confirmed this.

  19. Control method for water quality of BWR type reactor

    International Nuclear Information System (INIS)

    The present invention provides a method of suppressing radiation exposure upon periodical inspection of a BWR type reactor, suppressing leaching of radioactive materials deposited and activated on fuels, and reducing radioactive deposition on pipelines and equipments made of a carbon steel and austenite stainless steel. Namely, control of water quality described below is conducted under the conditions that the Ni metal ion concentration is from 2 to 10ppb and the Zn metal ion concentration of from 3 to 15ppb in reactor water. (1) controlling the water quality based on neutral/purified water during normal operation and upon injection of hydrogen, (2) using fuels having spring members made of a Ni based alloy processed by aging hardening in atmospheric air, (3) using reactor water recycling pipelines made of an electrolyzed and polished austenite stainless steel, and (4) using carbon steel or low alloy steel for pipelines and equipments of a reactor system. (I.S.)

  20. Teduglutide Injection

    Science.gov (United States)

    Teduglutide injection is used to treat short bowel syndrome in people who need additional nutrition or fluids from intravenous (IV) therapy. Teduglutide injection is in a class of medications called ...

  1. Levofloxacin Injection

    Science.gov (United States)

    Levofloxacin injection is used to treat infections such as pneumonia; chronic bronchitis; and sinus, urinary tract, kidney, prostate (a male reproductive gland), and skin infections. Levofloxacin injection is also used to prevent anthrax (a ...

  2. Estrogen Injection

    Science.gov (United States)

    The estradiol cypionate and estradiol valerate forms of estrogen injection are used to treat hot flushes (hot ... should consider a different treatment. These forms of estrogen injection are also sometimes used to treat the ...

  3. Ziprasidone Injection

    Science.gov (United States)

    ... of interest in life, and strong or inappropriate emotions). Ziprasidone is in a class of medications called ... alcoholic beverages while you are receiving ziprasidone injection. Alcohol can make the side effects from ziprasidone injection ...

  4. Leucovorin Injection

    Science.gov (United States)

    ... injection is used to prevent harmful effects of methotrexate (Rheumatrex, Trexall; cancer chemotherapy medication) when methotrexate is used to to treat certain types of cancer. Leucovorin injection is used to treat people who ...

  5. Paclitaxel Injection

    Science.gov (United States)

    Paclitaxel injection manufactured with human albumin is used to treat breast cancer that has not improved or ... has come back after treatment with other medications. Paclitaxel injection manufactured with polyoxyethylated castor oil is used ...

  6. Denosumab Injection

    Science.gov (United States)

    ... injection is in a class of medications called RANK ligand inhibitors. It works by decreasing bone breakdown ... months. When denosumab injection (Xgeva) is used to reduce fractures from cancer that has spread to the ...

  7. Sumatriptan Injection

    Science.gov (United States)

    ... the brain, and blocking the release of certain natural substances that cause pain, nausea, and other symptoms ... or upper arm. Do not inject sumatriptan through clothing. Never inject sumatriptan into a vein or muscle. ...

  8. Dexamethasone Injection

    Science.gov (United States)

    Dexamethasone injection is used to treat severe allergic reactions. It is used in the management of certain ... tissues,) gastrointestinal disease, and certain types of arthritis. Dexamethasone injection is also used for diagnostic testing. Dexamethasone ...

  9. Ferumoxytol Injection

    Science.gov (United States)

    Ferumoxytol injection is used to treat iron-deficiency anemia (a lower than normal number of red blood ... are pregnant, plan to become pregnant, or are breastfeeding. If you become pregnant while receiving ferumoxytol injection, ...

  10. Golimumab Injection

    Science.gov (United States)

    ... appears damaged, and do not use an auto-injection device if the security seal is broken. Look through the viewing window on the prefilled syringe or auto-injection device. The liquid inside should be clear and ...

  11. Cyclosporine Injection

    Science.gov (United States)

    ... injection is used with other medications to prevent transplant rejection (attack of the transplanted organ by the immune system of the person receiving the organ) in people who have received kidney, liver, and heart transplants. Cyclosporine injection should only ...

  12. Doxycycline Injection

    Science.gov (United States)

    Doxycycline injection is used to treat or prevent bacterial infections, including pneumonia and other respiratory tract infections. ... certain skin, genital, intestine, and urinary system infections. Doxycycline injection may be used to treat or prevent ...

  13. Oxygen influence on water chemistry and steel corrosion in its injection in the low temperature part of the condensate/feed train of NPS with a RBMK-1000 reactor

    International Nuclear Information System (INIS)

    Injection of gaseous oxygen in condensate reduces steel corrosion. However, the information is lacking on possible influence of oxygen on the corrosion of steels with different chrome content and water iron concentration in the low-temperature part of the condensate/feedwater train of NPS with a RBMK-1000 reactor. A 1600 h.test experiment was carried out at the Leningrad NPS with water oxygen concentration of 200 mg/kg, and conductivity not higher than 0.2 ms/cm. All the steels tested demonstrated the 10-fold reduction of corrosion and release of corrosion products into water. The 2.5% chrome alloying of steel results in strong reduction (in respect to steel 20) of corrosion product release. (author)

  14. Characterizing the effects of elevated temperature on the air void pore structure of advanced gas-cooled reactor pressure vessel concrete using x-ray computed tomography

    International Nuclear Information System (INIS)

    X-ray computed tomography (X-ray CT) has been applied to nondestructively characterise changes in the microstructure of a concrete used in the pressure vessel structure of Advanced Gas-cooled Reactors (AGR) in the UK. Concrete specimens were conditioned at temperatures of 105 C and 250 C, to simulate the maximum thermal load expected to occur during a loss of coolant accident (LOCA). Following thermal treatment, these specimens along with an unconditioned control sample were characterised using micro-focus X-ray CT with a spatial resolution of 14.6 microns. The results indicate that the air void pore structure of the specimens experienced significant volume changes as a result of the increasing temperature. The increase in the porous volume was more prevalent at 250 C. Alterations in air void size distributions were characterized with respect to the unconditioned control specimen. These findings appear to correlate with changes in the uni-axial compressive strength of the conditioned concrete. (authors)

  15. Subcutaneous Injections

    DEFF Research Database (Denmark)

    Thomsen, Maria

    at the injection site was influenced by the needle length and the injected volume. Several imaging analysis tools were optimized for the characterization, and these tools were implemented also on subcutaneous injections in rats, visualized by low dose μCT, and used for characterization of the morphology in mouse...

  16. Application of Enhanced Vapor Injection Air Source Heat Pump in Northern Cold Area%喷气增焓空气源热泵在北方寒冷地区的应用

    Institute of Scientific and Technical Information of China (English)

    刘畅; 刘强; 秦岩

    2015-01-01

    Based on the policies of reducing air pollution, the enhanced vapor injection (EVI) air source heat pump has been proved to be a good solution. It can be extensively applied in the northern cold area due to its high heat capacity, high heat efficiency and extensive application area. Some typical examples were analyzed to point out the application advantages of the enhanced vapor injection air source heat pump in northern China.%基于当前国内改善空气污染的政策,喷气增焓低环境温度空气源热泵是一个很好的解决方案。由于它具有高制热量、高制热能效、大应用范围的特点,适于在北方寒冷区域推广应用。通过典型应用实例,指出喷气增焓低环境温度空气源热泵在北方区域的应用优势。

  17. Hydrogen injection system

    International Nuclear Information System (INIS)

    In a BWR type reactor, a corrosion potential of materials on a bottom of the reactor is measured. A developing rate of cracks of the material is determined based on the measured value. A dose rate of a main steam system is measured, and the hydrogen concentration of a feedwater system is controlled so that the corrosion potential and the dose rate of the main steam system are within predetermined ranges respectively. In addition, the concentration of oxidant in the reactor is determined based on the hydrogen concentration of the feedwater system, and the corrosion potential of the materials on the bottom of the reactor is determined based on the value. The dose rate of the main steam system is measured, and the hydrogen concentration of the feedwater system is controlled so that the corrosion potential and the dose rate are within predetermined ranges respectively. The amount of hydrogen injected to the feedwater system is determined based on the previously obtained correlation, whereby the corrosion circumference on the bottom of the reactor is directly improved within a predetermined range. Accordingly, the water quality can be controlled appropriately for the equipments on the bottom of the reactor, and the developing rate of the cracks of the material can be lowered without increasing the dose rate of the main steam system thereby enabling to extend the working life. (N.H.)

  18. Kinetics of the microbial degradation of oil in soil slurry reactors. Doctoral thesis; Kinetiek van de microbieele afbraak van olie in grondslurry-reactoren

    Energy Technology Data Exchange (ETDEWEB)

    Geerdink, M.J.

    1995-01-30

    In recent years biological decontamination of water and soil has become increasingly popular. Several processes have been designed using this technique. One of these techniques is the soil slurry process designed at the department of Biochemical Engineering at the Delft University of Technology. The slurry process makes use of the so called DITS (Dual Injected Turbulent Suspension) reactor and one or more air agitated suspension reactors. The need for a more fundamental knowledge of the microbial oil degredation in the reactors was the starting point of the thesis. The main aim of this research project was to predict required residence times of oil contaminated soils during microbial remediation in a slurry reactor.

  19. Research Nuclear Reactors

    International Nuclear Information System (INIS)

    Published in English and in French, this large report first proposes an overview of the use and history of research nuclear reactors. It discusses their definition, and presents the various types of research reactors which can be either related to nuclear power (critical mock-ups, material test reactors, safety test reactors, training reactors, prototypes), or to research (basic research, industry, health), or to specific particle physics phenomena (neutron diffraction, isotope production, neutron activation, neutron radiography, semiconductor doping). It reports the history of the French research reactors by distinguishing the first atomic pile (ZOE), and the activities and achievements during the fifties, the sixties and the seventies. It also addresses the development of instrumentation for research reactors (neutron, thermal, mechanical and fission gas release measurements). The other parts of the report concern the validation of neutronics calculations for different reactors (the EOLE water critical mock-up, the MASURCA air critical mock-up dedicated to fast neutron reactor study, the MINERVE water critical mock-up, the CALIBAN pulsed research reactor), the testing of materials under irradiation (OSIRIS reactor, laboratories associated with research reactors, the Jules Horowitz reactor and its experimental programs and related devices, irradiation of materials with ion beams), the investigation of accident situations (on the CABRI, Phebus, Silene and Jules Horowitz reactors). The last part proposes a worldwide overview of research reactors

  20. Catalytic wet-air oxidation of lignin in a three-phase reactor with aromatic aldehyde production

    OpenAIRE

    Sales F.G.; Abreu C.A.M.; Pereira J. A. F. R.

    2004-01-01

    In the present work a process of catalytic wet air oxidation of lignin obtained from sugar-cane bagasse is developed with the objective of producing vanillin, syringaldehyde and p-hydroxybenzaldehyde in a continuous regime. Palladium supported on g-alumina was used as the catalyst. The reactions in the lignin degradation and aldehyde production were described by a kinetic model as a system of complex parallel and series reactions, in which pseudo-first-order steps are found. For the purpose o...

  1. Comparative analysis on characteristics in non-thermal plasma reactor with oxygen and air%氧气/空气源低温等离子体发生器的性能对比分析

    Institute of Scientific and Technical Information of China (English)

    李小华; 李伟俊; 蔡忆昔; 施蕴曦; 徐辉; 顾林波; 濮晓宇

    2016-01-01

    . As a solution, diesel particular filter (DPF) has become a mainstay in PM control. However, there are some problems with DPF regeneration technologies, such as thermal damage, sulfur poisoning of the catalyst and low regeneration efficiency. So it is meaningful to find out a new regeneration method. Recently, non-thermal plasma (NTP) has become a research focus in the field of diesel emission control with its high efficiency, safety, no secondary pollution and a wide range of application. The active materials, mainly including O3,NO2,OH and O, can start complex chemical reactions, which is impossible in a conventional condition. So, it can be used to remove PM deposits in DPF and realize DPF regeneration. In term of NTP reactor, dielectric barrier discharge is widely used in the laboratory and industry for its simple type, safety and reliability. There are many influence factors concerning discharge, such as discharge voltage and frequency, gas type and flow, materials of barrier and electrode type. In this paper, a coaxial type NTP reactor was designed. In order to have a detailed recognition of NTP reactor, comparative analysis on oxygen and air dielectric discharge were investigated, with the studies on the influence of discharge electrode area (SE), peak-peak voltage (Up-p) and volume flow rate (qv) on discharge power (P), charge flux (Q), ozone concentration, ozone output and ozone output efficiency.SEwas changed by the length of wire tightly wrapped around the barrier,Up-pwas adjusted by a plasma source andqv was controlled by gas valves and flow meters. The results indicated thatSEhad a similar effect both on oxygen and air dielectric discharge. With the increase ofSE,P andQhad a linear growth but there were lower values and growth rate in air discharge. Ozone concentration increased asSE increased while its output efficiency decreased both in oxygen and air discharge.Up-phad remarkably positive impacts onP and Q, both of which had a rising growth rate. Ozone

  2. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices

    Science.gov (United States)

    Pilan, N.; Antoni, V.; De Lorenzi, A.; Chitarin, G.; Veltri, P.; Sartori, E.

    2016-02-01

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF6 instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  3. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices

    Energy Technology Data Exchange (ETDEWEB)

    Pilan, N., E-mail: nicola.pilan@igi.cnr.it; Antoni, V.; De Lorenzi, A.; Chitarin, G.; Veltri, P.; Sartori, E. [Consorzio RFX—Associazione EURATOM-ENEA per la Fusione, Corso Stati Uniti 4, 35127 Padova (Italy)

    2016-02-15

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF{sub 6} instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming.

  4. A new deflection technique applied to an existing scheme of electrostatic accelerator for high energy neutral beam injection in fusion reactor devices

    International Nuclear Information System (INIS)

    A scheme of a neutral beam injector (NBI), based on electrostatic acceleration and magneto-static deflection of negative ions, is proposed and analyzed in terms of feasibility and performance. The scheme is based on the deflection of a high energy (2 MeV) and high current (some tens of amperes) negative ion beam by a large magnetic deflector placed between the Beam Source (BS) and the neutralizer. This scheme has the potential of solving two key issues, which at present limit the applicability of a NBI to a fusion reactor: the maximum achievable acceleration voltage and the direct exposure of the BS to the flux of neutrons and radiation coming from the fusion reactor. In order to solve these two issues, a magnetic deflector is proposed to screen the BS from direct exposure to radiation and neutrons so that the voltage insulation between the electrostatic accelerator and the grounded vessel can be enhanced by using compressed SF6 instead of vacuum so that the negative ions can be accelerated at energies higher than 1 MeV. By solving the beam transport with different magnetic deflector properties, an optimum scheme has been found which is shown to be effective to guarantee both the steering effect and the beam aiming

  5. Chaotic behavior in a system simulating the pressure balanced injection system. Analysis of passive safety reactor behavior. JAERI's nuclear research promotion program, H12-012 (Contract research)

    Energy Technology Data Exchange (ETDEWEB)

    Madarame, Haruki; Okamoto, Koji; Tanaka, Gentaro; Morimoto, Yuichiro [Tokyo Univ., School of Engineering, Tokyo (Japan); Sato, Akira [Yamagata Univ., Faculty of Engineering, Yonezawa, Yamagata (Japan); Kondou, Masaya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The pressure Balanced Injection System (PBIS) was proposed in a passive safety reactor. Pressurizing Line (PL) connects the Reactor Vessel (RV) and the gas area in the Contain Vessel (CV), and Injected Line (IL) connects two vessels at relatively lower position. In an accident, the two lines are passively opened. The vapor generated by the residual heat pressed downward the water level in the RV. When the level is lower than the inlet of the PL, vapor is ejected into the CV through the PL attaining the pressure balance between the vessels. Then boron water in the CV is injected into the RV through the IL by the static head. This process is repeated by the succeeding vapor generation. In an experiment, the oscillating system was replaced by water column in a U-shaped duct. The vapor generation was simulated by cover gas supply to one end of the duct, while the other end was open to the atmosphere. When the water level reached a certain level, electromagnetic valves opened and the cover gas was ejected. The gas pressure decreased rapidly, resulting in a surface rise. When the water level reached another level, the valves closed. The cover gas pressure increased again, thus, gas ejection occurred intermittently. The interval of the gas ejection was not constant but fluctuated widely. Mere stochastic noise could hardly explain the large amplitude. Then was expressed the system using a set of linear equations. Various types of piecewise linear model were developed to examine the cause of the fluctuation. There appeared tangential bifurcation, period-doubling bifurcation, period-adding bifurcation and so on. The calculated interval exhibited chaotic features. Thus the cause of the fluctuation can be attributed to chaotic features of the system having switching. Since the piecewise linear model was highly simplified the behavior, a quantitative comparison between the calculation and the experiment was difficult. Therefore, numerical simulation code considering nonlinear

  6. Partial nitrification in an air-lift reactor with long-term feeding of increasing ammonium concentrations.

    Science.gov (United States)

    Chai, Li-Yuan; Ali, Mohammad; Min, Xiao-Bo; Song, Yu-Xia; Tang, Chong-Jian; Wang, Hai-Ying; Yu, Cheng; Yang, Zhi-Hui

    2015-06-01

    The partial nitrification (PN) performance under high ammonium concentrations was evaluated in an airlift reactor (ALR). The ALR was operated for 253days with stepwise elevation of ammonium concentration to 1400mg/L corresponding nitrogen loading rate of 2.1kg/m(3)/d. The ammonium removal rate was finally developed to 2.0kg/m(3)/d with average removal efficiency above 91% and nitrite accumulation percentage of 80%. Results showed that the combined effect of limited DO, high bicarbonate, pH and free ammonia (FA) contributed to the stable nitrite accumulation substantially. The biomass in the ALR was improved with the inception of granulation. Precipitates on biomass surface was unexpectedly experienced which might improve the settleability of PN biomass. Organic functional groups attached to the PN biomass suggested the possible absorbability to different types of pollutant. The results provided important evidence for the possibility of applying an ALR to treat high strength ammonium wastewater. PMID:25768415

  7. Automatic reactor power control device

    International Nuclear Information System (INIS)

    Anticipated transient without scram (ATWS) of a BWR type reactor is judged to generate a signal based on a reactor power signal and a scram actuation demand signal. The ATWS signal and a predetermined water level signal to be generated upon occurrence of ATWS are inputted, and an injection water flow rate signal exhibiting injection water flow rate optimum to reactor flooding and power suppression is outputted. In addition, a reactor pressure setting signal is outputted based on injection performance of a high pressure water injection system or a lower pressure water injection system upon occurrence of ATWS. Further, the reactor pressure setting signal is inputted to calculate opening/closing setting pressure of a main steam relief valve and output an opening setting pressure signal and a closure setting pressure signal for the main steam relief valve. As a result, the reactor power and the reactor water level can be automatically controlled even upon occurrence of ATWS due to failure of insertion of all of the control rods thereby enabling to maintain integrity and safety of the reactor, the reactor pressure vessel and the reactor container. (N.H.)

  8. Pressurized air supply device

    International Nuclear Information System (INIS)

    Ventilation air-conditioning facilities in a nuclear reactor building are adapted to suck clean external air not containing radioactivity through air supply filters disposed at an air intake port of the nuclear reactor building by means of an air supply blower and then supply the sucked air through an air supply duct and an air supply port to the inside of the power plant. Futher, pipeways for supplying sucked air to a compressor is branched from the air supply duct, through which air is supplied to an air compressor for instrumentation and an air compressor used in the power plant. The air sucked and compressed in the air compressor for instrumentation is further supplied by way of pipeways for supplying air for instrumentation to air-actuated valves, instruments, etc. Further, air sucked and compressed in the air compressor used in the power plant is further supplied by way of air supply pipeways for the power plant to a reservoir, air mask, etc. By supplying clean compressed air in this way, operators exposure dose can be reduced. (T.M.)

  9. Catalytic wet air oxidation of phenol over active carbon in fixed bed reactor: steady state and periodic operation

    OpenAIRE

    Habtu, Nigus Gabbiye

    2011-01-01

    La rápida industrialización y urbanización mundial ha creado un sin número de contaminantes para los medios acuosos tóxicos y peligrosos, los cuales en su gran mayoría son difícil de degradar de forma natural. Los fenoles son algunos de estos compuestos tóxicos que se encuentran con frecuencia en muchos efluentes industriales. Revisión literaria específica que la oxidación catalítica en aire húmedo utilizando carbón activado podría ser una solución prometedora para la destrucción de estos con...

  10. Migration of 137Cs from air to soil and plants in the Gulsvik area, Norway after the Chernobyl reactor accident

    International Nuclear Information System (INIS)

    The migration of 137Cs from air to soil and vegetation after the Chernobyl accident has been studied using the concentrations measured in the Gulsvik area in Norway. The major part of the 137Cs deposition seems to be in the soil. An uptake of 137Cs from soil to plants through their root system is not a rapid process. Only a few percent of the deposition can be traced in plants. This seems to suggest that as far as 137Cs is concerned, an effect of the Chernobyl releases is not an acute but a long-term phenomenon. The 137Cs accumulation in soils is rather high, but doses not result in 137Cs levels in plants and diet higher than acceptable in Norway

  11. Substitution of the old console with a fully computerized one. Major maintenance and enhancements of the ventilation and air conditioning system of the reactor building. Research activities at the TRIGA L.E.N.A. plant in Pavia, Italy

    International Nuclear Information System (INIS)

    The TRIGA Mark II reactor of the University of Pavia was operated in the last two years on a routine basis accomplishing different purposes: - Development of B.N.C.T. for diffused tumours of liver; - Neutron activation analysis in matrix of geochemistry, archaeology and environment interest; - Electron spin resonance (ESR) study of radical processes; - Study of trace elements impact in environmental matrix and human health; - High purity control on electronic samples-microchips; - Fast neutron radiation damage investigation; - Certification of standard reference materials and data quality assurance by neutron activation analysis; - Age evaluation by Ar-K method in geological matrix; - Trace elements determination for provenience studies in archaeology; - Basic experiments on fission of Am-242 layers for the space nuclear engine project; - In field search of explosive using prompt gamma emission induced by neutron capture on nitrates. In the period of time between July 1998 and June 2000 the reactor was operated at full power (i.e. 250 kW) for a total amount of 1375 hours. The total fuel element burn-up was 15.07 MWD. During this period of time two major upgrading activities were planned: the installation of a new Instrumentation and Control System (ICS) for the reactor and the installation of a new Air Conditioning and Filtering System (ACFS) for the reactor building. The new ICS is a microprocessor-based design, incorporating the use of one logarithmic wide range neutron flux monitoring channel (NLW-1000), two current mode neutron monitoring safety channels (NP-1000 and NPP-1000) and a linear multi-range neutron flux monitoring channel (Keithley 485). The ICS configuration was personalized by General Atomic according to the requirements and to the technical prescriptions of the Pavia reactor, especially for what concerns the SCRAM inputs and the detectors architecture. Besides, since one the two safety channels, the NPP-1000, has been developed as an advanced

  12. Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hogerton, John

    1964-01-01

    This pamphlet describes how reactors work; discusses reactor design; describes research, teaching, and materials testing reactors; production reactors; reactors for electric power generation; reactors for supply heat; reactors for propulsion; reactors for space; reactor safety; and reactors of tomorrow. The appendix discusses characteristics of U.S. civilian power reactor concepts and lists some of the U.S. reactor power projects, with location, type, capacity, owner, and startup date.

  13. Removal of gasoline volatile organic compounds via air biofiltration

    International Nuclear Information System (INIS)

    Volatile organic compounds (VOCs) generated by vapor extraction and air-stripping systems can be biologically treated in an air biofiltration unit. An air biofilter consists of one or more beds of packing material inoculated with heterotrophic microorganisms capable of degrading the organic contaminant of concern. Waste gases and oxygen are passed through the inoculated packing material, where the microorganisms will degrade the contaminant and release CO2 + H2O. Based on data obtained from a treatability study, a full-scale unit was designed and constructed to be used for treating gasoline vapors generated by a vapor-extraction and groundwater-treatment system at a site in California. The unit is composed of two cylindrical reactors with a total packing volume of 3 m3. Both reactors are packed with sphagnum moss and inoculated with hydrocarbon-degrading microorganisms of Pseudomonas and Arthrobacter spp. The two reactors are connected in series for air-flow passage. Parallel lines are used for injection of water, nutrients, and buffer to each reactor. Data collected during the startup program have demonstrated an air biofiltration unit with high organic-vapor-removal efficiency

  14. Utilization of research reactor to the environmental application in Thailand. Air quality study in Saraburi Province, central Thailand

    International Nuclear Information System (INIS)

    Saraburi Province is facing difficulties due to high dust generating Industries which is the major economy of the area. Thus, the elemental composition of SPMs in Tumbon Na Phra Lan, Saraburi Province is being monitored. The samples were collected in each quarter from May 2005 to March 2006. Soil as well as fine particles from stacks of some selected manufacturers were also analyzed. The average weight of SPM was found lowest in wet season and highest in the middle of dry season. The average weight of SPM is also high in dry season and low in wet season. The elements found in the samples are Na, Mg, Al, As, Sr, Br, Si, P, S, Cl, K, Ca, Ti, V, Mn, Fe, Co, Cu, and Zn. Calcium is selected as the key elements since most postulated source of pollution is due industrial utilization of the limestone deposit. It is observed that the fine partials form stack are quite low which mean an effective emission control of fine particles form the selected manufacturers. The data is being utilized by the Pollution Control Department, Ministry of Natural Resources and Environment, the environmental authority in Thailand. The authority will use this data to find possible solution for air quality improvement of the area. Future collaboration with environmental authority will be on the study of Thalenoi conservation area in the southern part of Thailand. (author)

  15. Dexamethasone Injection

    Science.gov (United States)

    ... lines under the skin skin depressions at the injection site increased body fat or movement to different areas of your body inappropriate happiness difficulty falling asleep or staying asleep extreme ... increased appetite injection site pain or redness Some side effects can ...

  16. Paliperidone Injection

    Science.gov (United States)

    Paliperidone extended-release injections (Invega® Sustenna, Invega® Trinza) are used to treat schizophrenia (a mental illness that ... interest in life, and strong or inappropriate emotions). Paliperidone extended-release injection (Invega® Sustenna) is also used ...

  17. A pilot study on lignocelluloses to ethanol and fish feed using NMMO pretreatment and cultivation with zygomycetes in an air-lift reactor.

    Science.gov (United States)

    Lennartsson, Patrik R; Niklasson, Claes; Taherzadeh, Mohammad J

    2011-03-01

    A complete process for the production of bioethanol and fungal biomass from spruce and birch was investigated. The process included milling, pretreatment with N-methylmorpholine-N-oxide (NMMO), washing of the pretreated wood, enzymatic hydrolysis, and cultivation of the zygomycetes fungi Mucor indicus. Investigated factors included wood chip size (0.5-16 mm), pretreatment time (1-5h), and scale of the process from bench-scale to 2m high air-lift reactor. Best hydrolysis yields were achieved from wood chips below 2mm after 5h of pretreatment. Ethanol yields (mg/g wood) of 195 and 128 for spruce, and 175 and 136 for birch were achieved from bench-scale and airlift, respectively. Fungal biomass yields (mg/g wood) of 103 and 70 for spruce, and 86 and 66 for birch from bench scale and airlift respectively were simultaneously achieved. NMMO pretreatment and cultivation with M. indicus appear to be a good alternative for ethanol production from birch and spruce. PMID:21247759

  18. Enhanced Cr bioleaching efficiency from tannery sludge with coinoculation of Acidithiobacillus thiooxidans TS6 and Brettanomyces B65 in an air-lift reactor.

    Science.gov (United States)

    Fang, Di; Zhou, Li-Xiang

    2007-09-01

    Bioleaching process has been demonstrated to be an effective technology in removing Cr from tannery sludge, but a large quantity of dissolved organic matter (DOM) present in tannery sludge often exhibits a marked toxicity to chemolithoautotrophic bioleaching bacteria such as Acidithiobacillus thiooxidans. The purpose of the present study was therefore to enhance Cr bioleaching efficiencies through introducing sludge DOM-degrading heterotrophic microorganism into the sulfur-based sludge bioleaching system. An acid-tolerant DOM-degrading yeast strain Brettanomyces B65 was successfully isolated from a local Haining tannery sludge and it could metabolize sludge DOM as a source of energy and carbon for growth. A combined bioleaching experiment (coupling Brettanomyces B65 and A. thiooxidans TS6) performed in an air-lift reactor indicated that the rates of sludge pH reduction and ORP increase were greatly improved, resulting in enhanced Cr solubilization. Compared with the 5 days required for maximum solubilization of Cr for the control (single bioleaching process without inoculation of Brettanomyces B65), the bioleaching period was significantly shorten to 3 days for the combined bioleaching system. Moreover, little nitrogen and phosphorous were lost and the content of Cr was below the permitted levels for land application after 3 days of bioleaching treatment. PMID:17537479

  19. Modeling-based optimization of a fixed-bed industrial reactor for oxidative dehydrogenation of propane

    Institute of Scientific and Technical Information of China (English)

    Ali Darvishi; Razieh Davand; Farhad Khorasheh; Moslem Fattahi

    2016-01-01

    An industrial scale propylene production via oxidative dehydrogenation of propane (ODHP) in multi-tubular re-actors was modeled. Multi-tubular fixed-bed reactor used for ODHP process, employing 10000 of smal diameter tubes immersed in a shel through a proper coolant flows. Herein, a theory-based pseudo-homogeneous model to describe the operation of a fixed bed reactor for the ODHP to correspondence olefin over V2O5/γ-Al2O3 catalyst was presented. Steady state one dimensional model has been developed to identify the operation parameters and to describe the propane and oxygen conversions, gas process and coolant temperatures, as well as other pa-rameters affecting the reactor performance such as pressure. Furthermore, the applied model showed that a double-bed multitubular reactor with intermediate air injection scheme was superior to a single-bed design due to the increasing of propylene selectivity while operating under lower oxygen partial pressures resulting in propane conversion of about 37.3%. The optimized length of the reactor needed to reach 100%conversion of the oxygen was theoretically determined. For the single-bed reactor the optimized length of 11.96 m including 0.5 m of inert section at the entrance region and for the double-bed reactor design the optimized lengths of 5.72 m for the first and 7.32 m for the second reactor were calculated. Ultimately, the use of a distributed oxygen feed with limited number of injection points indicated a significant improvement on the reactor performance in terms of propane conversion and propylene selectivity. Besides, this concept could overcome the reactor run-away temperature problem and enabled operations at the wider range of conditions to obtain enhanced propyl-ene production in an industrial scale reactor.

  20. Natural convection type reactor

    International Nuclear Information System (INIS)

    In a natural convection type nuclear reactor, a reactor core is disposed such that the top of the reactor core is always situated in a flooded position even if pipelines connected to the pressure vessel are ruptured and the level at the inside of the reactor vessel is reduced due to flashing. Further, a lower dry well situated below the pressure vessel is disposed such that it is in communication with a through hole to a pressure suppression chamber situated therearound and the reactor core is situated at the level lower than that of the through hole. If pipelines connected to the pressure vessel are ruptured to cause loss of water, although the water level is lowered after the end of the flashing, the reactor core is always flooded till the operation of a pressure accummulation water injection system to prevent the top of the reactor core even from temporary exposure. Further, injected water is discharged to the outside of the pressure vessel, transferred to the lower dry well, and flows through the through hole to the pressure control chamber and cools the surface of the reactor pressure vessel from the outside. Accordingly, the reactor core is cooled to surely and efficiently remove the after-heat. (N.H.)

  1. Injection of Helium 3 and SF6 in a lake for the determination of gaseous exchange rates at the water-air interface: implementation, analysis and experimental results

    International Nuclear Information System (INIS)

    In order to study the hypothesis of an under-rating of the exchange velocity at the ocean-atmosphere interface that could explain the lack of CO2 in the global CO2 balance, an experiment was carried out in two lakes at the Kerguelen Islands where strong winds are common, in order to evaluate precisely the relation between the transfer coefficient and the wind velocity: 3He and SF6 tracers were injected in the lakes; concentration evolutions were recorded and results are shown to validate the above assumption. 6 figs., 1 tab., 9 refs

  2. Aripiprazole Injection

    Science.gov (United States)

    ... pressure, seizures, difficulty swallowing, a high level of fats (cholesterol and triglycerides) in your blood, or a medical condition that may affect you receiving an injection in your arm or buttocks. Tell your doctor ...

  3. Nafcillin Injection

    Science.gov (United States)

    ... injection is in a class of medications called penicillins. It works by killing bacteria.Antibiotics such as ... and pharmacist if you are allergic to nafcillin; penicillins; cephalosporin antibiotics such as cefaclor, cefadroxil, cefazolin, cefdinir, ...

  4. Oxacillin Injection

    Science.gov (United States)

    ... injection is in a class of medications called penicillins. It works by killing bacteria.Antibiotics such as ... and pharmacist if you are allergic to oxacillin; penicillins; cephalosporin antibiotics such as cefaclor, cefadroxil, cefazolin, cefdinir, ...

  5. Ampicillin Injection

    Science.gov (United States)

    ... injection is in a class of medications called penicillins. It works by killing bacteria.Antibiotics such as ... and pharmacist if you are allergic to ampicillin; penicillins; cephalosporin antibiotics such as cefaclor, cefadroxil, cefazolin (Ancef, ...

  6. Olanzapine Injection

    Science.gov (United States)

    ... of interest in life, and strong or inappropriate emotions). Olanzapine injection is used to treat episodes of ... this medication affects you.you should know that alcohol can add to the drowsiness caused by this ...

  7. Aripiprazole Injection

    Science.gov (United States)

    ... of interest in life, and strong or inappropriate emotions). Aripiprazole injection (Abilify) is used to treat episodes ... street drugs or have overused prescription medication or alcohol or has or has ever had diabetes, obsessive ...

  8. Haloperidol Injection

    Science.gov (United States)

    ... of interest in life, and strong or inappropriate emotions). Haloperidol injection is also used to control motor ... this medication affects you.you should know that alcohol can add to the drowsiness caused by this ...

  9. Testosterone Injection

    Science.gov (United States)

    Testosterone cypionate (Depo-Testosterone), testosterone enanthate (Delatestryl), testosterone undecanoate (Aveed), and testosterone pellet (Testopel) are forms of testosterone injection used to treat symptoms of low testosterone in men who have hypogonadism (a ...

  10. Ketorolac Injection

    Science.gov (United States)

    ... of ketorolac by intravenous (into a vein) or intramuscular (into a muscle) injection in a hospital or ... aspirin) such as ketorolac may have a higher risk of having a heart attack or a stroke ...

  11. Busulfan Injection

    Science.gov (United States)

    ... marrow and cancer cells in preparation for a bone marrow transplant. Busulfan is in a class of medications called ... days (for a total of 16 doses) before bone marrow transplant.Busulfan injection may cause seizures during therapy with ...

  12. Fludarabine Injection

    Science.gov (United States)

    ... also sometimes used to treat non-Hodgkin's lymphoma (NHL; cancer that begins in a type of white ... this medication. You should not plan to have children while receiving fludarabine injection or for at least ...

  13. Gemcitabine Injection

    Science.gov (United States)

    ... with surgery. Gemcitabine is also used to treat cancer of the pancreas that has spread to other parts of the ... 4 weeks. When gemcitabine is used to treat cancer of pancreas it may be injected once every week. The ...

  14. Ixekizumab Injection

    Science.gov (United States)

    ... ixekizumab solution before injecting it. Check that the expiration date has not passed and that the liquid ... fever, sweats, or chills, muscle aches, shortness of breath, warm, red, or painful skin or sores on ...

  15. Tesamorelin Injection

    Science.gov (United States)

    ... is colored, cloudy, contains particles, or if the expiration date on the bottle has passed.Never reuse ... swelling of the face or throat shortness of breath difficulty breathing fast heartbeat dizziness fainting Tesamorelin injection ...

  16. Secukinumab Injection

    Science.gov (United States)

    ... secukinumab solution before injecting it. Check that the expiration date has not passed and that the liquid ... fever, sweats, or chills, muscle aches, shortness of breath, warm, red, or painful skin or sores on ...

  17. Basiliximab Injection

    Science.gov (United States)

    ... used with other medications to prevent immediate transplant rejection (attack of the transplanted organ by the immune system of the person receiving the organ) in people who are receiving kidney transplants. Basiliximab injection is in a class of medications ...

  18. Tacrolimus Injection

    Science.gov (United States)

    ... is used along with other medications to prevent rejection (attack of the transplanted organ by the transplant recipient's immune system) in people who have received kidney, liver, or heart transplants. Tacrolimus injection should only ...

  19. Belatacept Injection

    Science.gov (United States)

    ... used in combination with other medications to prevent rejection (attack of a transplanted organ by the immune system of a person receiving the organ) of kidney transplants. Belatacept injection is in a class of medications ...

  20. Ciprofloxacin Injection

    Science.gov (United States)

    ... described in the IMPORTANT WARNING section, stop using ciprofloxacin injection and call your doctor immediately or get emergency medical help: rash hives itching peeling or blistering of the skin ...

  1. Aflibercept Injection

    Science.gov (United States)

    ... diabetes that can lead to vision loss), and diabetic retinopathy (damage to the eyes caused by diabetes). Aflibercept ... your doctor about how long you should continue treatment with aflibercept injection.

  2. Tacrolimus Injection

    Science.gov (United States)

    ... prescribed for other uses; ask your doctor or pharmacist for more information. ... Before receiving tacrolimus injection,tell your doctor and pharmacist if you are allergic to tacrolimus, any other ...

  3. Basiliximab Injection

    Science.gov (United States)

    ... prescribed for other uses; ask your doctor or pharmacist for more information. ... Ask your pharmacist any questions you have about basiliximab injection.It is important for you to keep a written list of ...

  4. Nuclear reactor

    International Nuclear Information System (INIS)

    Cover gas spaces for primary coolant vessel, such as a reactor container, a pump vessel and an intermediate heat exchanger vessel are in communication with each other by an inverted U-shaped pressure conduit. A transmitter and a receiver are disposed to the pressure conduit at appropriate positions. If vibration frequencies (pressure vibration) from low frequency to high frequency are generated continuously from the transmitter to the inside of the communication pipe, a resonance phenomenon (air-column resonance oscillation) is caused by the inherent frequency or the like of the communication pipe. The frequency of the air-column resonance oscillation is changed by the inner diameter and the clogged state of the pipelines. Accordingly, by detecting the change of the air-column oscillation characteristics by the receiver, the clogged state of the flow channels in the pipelines can be detected even during the reactor operation. With such procedures, steams of coolants flowing entrained by the cover gases can be prevented from condensation and coagulation at a low temperature portion of the pipelines, otherwise it would lead clogging in the pipelines. (I.N.)

  5. Nuclear reactors

    International Nuclear Information System (INIS)

    Disclosed is a nuclear reactor cooled by a freezable liquid has a vessel for containing said liquid and comprising a structure shaped as a container, and cooling means in the region of the surface of said structure for effecting freezing of said liquid coolant at and for a finite distance from said surface for providing a layer of frozen coolant on and supported by said surface for containing said liquid coolant. In a specific example, where the reactor is sodium-cooled, the said structure is a metal-lined concrete vault, cooling is effected by closed cooling loops containing NaK, the loops extending over the lined surface of the concrete vault with outward and reverse pipe runs of each loop separated by thermal insulation, and air is flowed through cooling pipes embedded in the concrete behind the metal lining. 7 claims, 3 figures

  6. 喷氢量对氢-空气混合及燃烧过程的影响%Effects of Hydrogen Injection on Hydrogen Air Mixture and Combustion Process

    Institute of Scientific and Technical Information of China (English)

    杨亚坤; 陈威昌

    2015-01-01

    氢能源以其储量丰富、来源广泛、可再生、清洁等优点被众多内燃机学者认为是传统内燃机的理想替代能源.本研究使用CONVERGE软件建立进气道燃料喷射氢发动机的三维仿真模型,研究氢气的进气、混合过程以及在进气道内喷氢量对氢内燃机进气和压缩过程中压力场、温度场和混合气分布等的影响,同时,对喷氢过多时,氢气是否会将进气门堵塞,而导致空气无法进入,造成熄火的现象进行了模拟.三维仿真模型的初始设置喷射时刻、喷射压力、初始温度都是固定的,过量空气系数分别设为1.0、1.2、1.4、1.6、1.8,混合气浓度由浓到稀,由此研究混合气浓度对燃烧过程的影响.%Hydrogen energy is considered as an ideal alternative energy for the traditional internal combustion engine with its rich reserves, wide source, renewable and clean and other advantages. In this paper, the three-dimensional simulation model of the intake port fuel injection hydrogen engine is established by using CONVERGE software. The influences of the inlet and mixing process of hydrogen gas and hydrogen injection in the inlet on the inlet of hydro?geninternal combustion engineand the pressure field, the temperature field and the mixture distribution are studied. Meanwhile, when the hydrogen injection is excessive, The initial set of injection time, injection pressure, initial tem?perature are fixed, the excess air coefficients are set to 1, 1.2, 1.4, 1.8, 1.6, mixed gas concentration reduces, thus studying the effects of mixed gas concentration on the combustion process.

  7. Effect of the yaw injection angle on the ECC bypass in comparison with the horizontal DVI

    International Nuclear Information System (INIS)

    The comparison tests for the direct emergency core cooling (ECC) bypass fraction were experimentally performed with a typical direct vessel injection (DVI) nozzle and an ECC column nozzle having a yaw injection angle to the gravity axis. The ECC yaw injection nozzle is newly introduced to make an ECC water column in the downcomer region. The yaw injection angle of the ECC water relative to the gravity axis is varied from 0 to (±)90 deg. stepped by 45 deg. . The tests are performed in the air-water separate effect test facility (direct injection visualization and analysis (DIVA)), which is a 1/7.07 linearly scaled-down model of the APR1400 nuclear reactor. The test results show that (1) if the ECC water column is injected into the wake region which is induced by the hot leg blunt body in the downcomer annulus, the ECC bypass fraction is greatly reduced compared with the typical horizontal ECC injection which makes ECC film on the downcomer wall. At the same time, the ECC penetration toward the lower downcomer region becomes larger than those of a typical horizontal type of direct vessel injection on the downcomer wall vertically. (2) If the ECC water column is injected near the broken cold leg, the ECC water is directly bypassed. Thus, the ECC penetration fraction is greatly reduced compared with a typical film type of the horizontal ECC injection. (3) In order to minimize the ECC bypass fraction, the ECC water should be injected toward the wake region of the hot leg blunt bodies

  8. Inyección de aire secundario caliente en calderas de vapor bagaceras y su influencia en el rendimiento térmico Injection of heated secondary air in steam bagasse boilers and its influence on thermal efficiency

    OpenAIRE

    Marcos A. Golato; Gustavo Aso; Dora Paz; Gerónimo J. Cárdenas

    2005-01-01

    Como alternativa para aumentar la eficiencia térmica de calderas bagaceras productoras de vapor, se evalúa la inyección de aire secundario al hogar, previamente calentado. Además, se reúne información sobre la combustión y los factores que influyen en dicho fenómeno. Se calculó el rendimiento térmico en una caldera bagacera con inyección de aire secundario frío, mediante el empleo de balances de masa y energía con datos de ensayos experimentales. Se planteó luego un modelo teórico para el cas...

  9. On-line solid-phase enrichment coupled to packed reactor flow injection analysis in a green analytical procedure to determine low levels of folic acid using fluorescence detection

    Directory of Open Access Journals (Sweden)

    Emara Samy

    2012-12-01

    Full Text Available Abstract Background Analysis of folic acid (FA is not an easy task because of its presence in lower concentrations, its lower stability under acidic conditions, and its sensitiveness against light and high temperature. The present study is concerned with the development and validation of an automated environmentally friendly pre-column derivatization combined by solid-phase enrichment (SPEn to determine low levels of FA. Results Cerium (IV trihydroxyhydroperoxide (CTH as a packed oxidant reactor has been used for oxidative cleavage of FA into highly fluorescent product, 2-amino-4-hydroxypteridine-6-carboxylic acid. FA was injected into a carrier stream of 0.04 M phosphate buffer, pH 3.4 at a flow-rate of 0.25 mL/min. The sample zone containing the analyte was passed through the CTH reactor thermostated at 40°C, and the fluorescent product was trapped and enriched on a head of small ODS column (10 mm x 4.6 mm i.d., 5 μm particle size. The enriched product was then back-flush eluted by column-switching from the small ODS column to the detector with a greener mobile phase consisting of ethanol and phosphate buffer (0.04M, pH 3.4 in the ratio of 5:95 (v/v. The eluent was monitored fluorimetrically at emission and excitation wavelengths of 463 and 367 nm, respectively. The calibration graph was linear over concentrations of FA in the range of 1.25-50 ng/mL, with a detection limit of 0.49 ng/mL. Conclusion A new simple and sensitive green analytical procedure including on-line pre-column derivatization combined by SPEn has been developed for the routine quality control and dosage form assay of FA at very low concentration level. The method was a powerful analytical technique that had excellent sensitivity, sufficient accuracy and required relatively simple and inexpensive instrumentation.

  10. Alirocumab Injection

    Science.gov (United States)

    ... feeding. If you become pregnant while using alirocumab injection, call your doctor. ... Eat a low-fat, low-cholesterol diet. Be sure to follow all exercise and dietary ... at: http://www.nhlbi.nih.gov/health/public/heart/chol/chol_tlc.pdf.

  11. Medroxyprogesterone Injection

    Science.gov (United States)

    ... injection when you are a teenager or young adult. Tell your doctor if you or anyone in your family has osteoporosis; if you have or have ever had any other bone disease or anorexia nervosa (an eating disorder); or if you drink a ...

  12. Botox Injections

    Science.gov (United States)

    ... Contact Us Shopping Cart American Academy of Facial Plastic and Reconstructive Surgery Home Meetings & Courses Find a Surgeon Physicians’ Buyers ... Portal Botox Injections The American Academy of Facial Plastic and Reconstructive Surgery recommends persons considering Botox® treatment to: Check the ...

  13. Ibritumomab Injection

    Science.gov (United States)

    ... have received ibritumomab injection.do not have any vaccinations without talking to your doctor.you should know ... cells) and myelodysplastic syndrome (condition in which blood cells do not ... online (http://www.fda.gov/Safety/MedWatch) or by phone (1-800-332-1088).

  14. Tositumomab Injection

    Science.gov (United States)

    ... have received tositumomab injection.do not have any vaccinations without talking to your doctor.you should know ... blood cells), myelodysplastic syndrome (condition in which blood cells do not ... online (http://www.fda.gov/Safety/MedWatch) or by phone (1-800-332-1088).

  15. Oxytocin Injection

    Science.gov (United States)

    ... provider immediately: chest pain or difficulty breathing confusion fast or irregular heartbeat severe headache irritation at the injection site If you experience a serious side effect, you or your doctor may send a report to the Food and Drug Administration's (FDA) MedWatch Adverse Event Reporting ...

  16. Infliximab Injection

    Science.gov (United States)

    ... injection is also sometimes used to treat Behcet's syndrome (ulcers in the mouth and on the genitals and inflammation of various ... runny nose back pain white patches in the mouth vaginal itching, burning, and pain, or other signs of a yeast ...

  17. 蜂窝状催化剂反应器中氢气/空气燃烧的二维模拟%Two-dimensional Simulation for Hydrogen/Air Combustion in a Monolith Reactor

    Institute of Scientific and Technical Information of China (English)

    洪若瑜; 丁剑敏; Vlachos D G

    2005-01-01

    Recent studies on hydrogen combustion were reviewed briefly. The laminar flow and combustion of premixed hydrogen/air mixture in a cylindrical channel of a monolith reactor with and without catalytic wall was numerically modeled by solving two-dimensional (2-D) Navier-Stokes (N-S) equations, energy equation, and species equations. Eight gas species and twenty reversible gas reactions were considered. The control volume technique and the SIMPLE algorithm were used to solve the partial differential equations. The streamlines of the flow field, temperature contours, the entrance length, and the concentration fields were computed. It is found that the entrance zone plays an important role on flow and temperature as well as species distribution. Therefore, the flow cannot be assumed either as fully developed or as plug flow. There is a small but strong thermal expansion zone between the wall and the entrance. Both diffusion and convection affect the heat and mass transfer processes in the expansion zone. Thus the equations of momentum, energy and species conservations should be used to describe hydrogen/air combustion in the monolith reactor. The hot-spot location and concentration field of the homogeneous combustion is strongly influenced by the inlet velocity and temperature, and the equivalence ratio. The catalytic combustion of premixed hydrogen/air mixture over platinum catalyst-coated wall in a cylindrical channel was also simulated.

  18. The atmospheric distribution of contaminated air masses from the reactors in Fukushima Daiichi - nuclide spectra and dose reduction; Die atmosphaerische Ausbreitung kontaminierter Luftmassen aus den Reaktoren von Fukushima Daiichi - Nuklidspektrum und Dosisrekonstruktion

    Energy Technology Data Exchange (ETDEWEB)

    Zaehringer, Matthias [Bundesamt fuer Strahlenschutz, Freiburg (Germany); Gering, Florian [Bundesamt fuer Strahlenschutz, Oberschleissheim (Germany). Abt. Notfallschutz

    2015-06-01

    The compiled information is based on the data from the United Nations scientific committee on the effects of atomic radiation (UNSCEAR). Due to the earthquake and tsunami only few measurements have been performed during the first days after the reactor accidents in Fukushima Daiichi. In the vicinity of the nuclear power plant no radiation monitoring network comparable to the German IMIS was installed. There are only few data on the air contamination are available. Worldwide in CTBT stations measured activity data of Te-132 and Cs-137 are correlated with estimated data from reactor inventories. It is assumed that the complete rare earth inventories were released - available data of Xe-133 and Kr-85 are analyzed. The UNSCEAR estimation on radiological consequences has to use estimated source terms reconstructed data for the radionuclide migration.

  19. Design of a natural draft air-cooled condenser and its heat transfer characteristics in the passive residual heat removal system for 10 MW molten salt reactor experiment

    International Nuclear Information System (INIS)

    As one of the Generation IV reactors, Molten Salt Reactor (MSR) has its superiorities in satisfying the requirements on safety. In order to improve its inherent safety, a concept of passive residual heat removal system (PRHRS) for the 10 MW Molten Salt Reactor Experiment (MSRE) was put forward, which mainly consisted of a fuel drain tank, a feed water tank and a natural draft air-cooled condenser (NDACC). Besides, several valves and pipes are also included in the PRHRS. A NDACC for the PRHRS was preliminarily designed in this paper, which contained a finned tube bundle and a chimney. The tube bundle was installed at the bottom of the chimney for increasing the velocity of the air across the bundle. The heat transfer characteristics of the NDACC were investigated by developing a model of the PRHRS using C++ code. The effects of the environmental temperature, finned tube number and chimney height on heat removal capacity of the NDACC were analyzed. The results show that it has sufficient heat removal capacity to meet the requirements of the residual heat removal for MSRE. The effects of these three factors are obvious. With the decay heat reducing, the heat dissipation power declines after a short-time rise in the beginning. The operation of the NDACC is completely automatic without the need of any external power, resulting in a high safety and reliability of the reactor, especially once the accident of power lost occurs to the power plant. - Highlights: • A model to study the heat transfer characteristics of the NDACC was developed. • The NDACC had sufficient heat removal capacity to remove the decay heat of MSRE. • NDACC heat dissipation power depends on outside temperature and condenser geometry. • As time grown, the effects of outside temperature and condenser geometry diminish. • The NDACC could automatically adjust its heat removal capacity

  20. Chemical species injection system for nuclear power plant

    International Nuclear Information System (INIS)

    A sample preparation device is disposed to injection pipelines of each system of a BWR type power plant, and a control device is connected to an electrolysis device and the sample preparation device respectively. An injection water analyzing device is connected to the exit of the sample preparation device, a sampling pipeline is connected to a reactor coolant cleanup system or a reactor recycling system, and a reactor water analyzing rack is connected to the sampling pipeline. The reactor water analyzing rack is connected to a signal processing system from a radiation concentration measuring device in reactor water, and the output of the signal processing system is connected to the control device. Chemical species for controlling water quality are formed from metal or metal compounds in a water solution by electrolysis. The concentration of each of the products is controlled and injected from a primary system or accompanied sampling systems of a reactor to the reactor. Parameters such as injection system concentration, reactor primary system concentration, radiation concentration in reactor water and corrosion potential are measured, to control injection, an amount of electrolysis or an injection concentration for the species. (N.H.)

  1. Natural and gas-injection enhanced circulation in a loop with variable friction

    International Nuclear Information System (INIS)

    The paper describes an experimental and computational activity related to passive circulation in a simple loop. Both natural circulation, driven by thermal buoyancy, and gas-injection enhanced circulation, as in air-lift reactors, are addressed. The problem is relevant for accelerator driven nuclear reactor systems (ADS), which are presently being considered as a viable means for transmutation of long lived wastes from nuclear reactors. The experimental facility consists of a roughly 4 m tall, 1 m wide rectangular loop made of 1 1/2 I.D. pipes. Electric heating (up to 5 kW) and gas injection are both available. Experimental tests have been performed with water as a working fluid at different heating powers and gas-injection flow rates, also varying loop friction by adjusting the closure of a spherical valve located on one of the branches. Obtained data are compared with predictions by the RELAP5 code, drawing conclusions about the observed phenomena and the capability of the code in describing them. (author)

  2. 催化型低温等离子体反应器净化废气研究进展%Advances in catalysis non-thermal plasma reactor for air pollution control

    Institute of Scientific and Technical Information of China (English)

    刘跃旭; 王少波; 原培胜; 赵瀛

    2009-01-01

    催化型低温等离子体反应器可有效地提高废气治理的能量效率和净化效果.现有数据表明,在一定能量密度下,催化型低温等离子体反应器比传统低温等离子体反应器能量效率有1.1~12倍的提高,这和污染物种类,反应器构型及催化剂参数有关.本文介绍了反应机理、反应器构型及催化剂参数选择等对反应器性能的影响,并指出今后研究的发展方向.%Catalysis non-thermal plasma reactor has been demonstrated to be effective in improving the energy efficiency and purification for air pollution control. According to the available experimental data, for a given specific energy density, the energy efficiency for gaseous pollutant abatement obtained with catalysis non-thermal plasma reactor could be improved with 1.1-12 times as compared to that of conventional reactors depending on the type of pollutants, reactor geometry and catalyst used. The influences of reaction mechanism, reactor geometry and catalyst parameters on the performance for gaseous pollutant removal are comprehensively discussed, and the further development trend of this technology is proposed.

  3. Simulation of the injection system of cooling water to low pressure (Lpci) for a boiling water reactor (BWR) based on RELAP; Simulacion del sistema de inyeccion de agua de refrigeracion a baja presion (LPCI) para un reactor de agua en ebullicion (BWR) basado en RELAP

    Energy Technology Data Exchange (ETDEWEB)

    Delgado C, R. A.; Lopez S, E.; Chavez M, C., E-mail: renedelgado2015@hotmail.com [UNAM, Facultad de Ingenieria, Circuito Interior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2012-10-15

    The present article describes the modeling and simulation of the Injection System of Cooling Water to Low Pressure (Lpci) for the nuclear power plant of Laguna Verde. Is very important to be able to predict the behavior of the nuclear plant in the case of an emergency stop, and while nearer to the reality are the results of a simulation, better is the safety protocol that can be devised. In the Engineering Faculty of the UNAM at the present is had logical models of the safety systems, but due to the nature of the same, these simulations do not provide of the quantity of enough information to be able to reproduce with more accuracy the behavior of the Lpci in the case of a severe accident. For this reason, the RELAP code was used for the flows modeling, components and structures of heat transfers in relation to the system Lpci. The modeling of the components is carried out with base on technical information of the nuclear plant and the results will be corroborated with information in reference documents as the Rasp (the Reactor analysis support package) and the Fsar (Final safety analysis report) for the nuclear power plant of Laguna Verde. (Author)

  4. High-Compression-Ratio; Atkinson-Cycle Engine Using Low-Pressure Direct Injection and Pneumatic-Electronic Valve Actuation Enabled by Ionization Current and Foward-Backward Mass Air Flow Sensor Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Harold Schock; Farhad Jaberi; Ahmed Naguib; Guoming Zhu; David Hung

    2007-12-31

    This report describes the work completed over a two and one half year effort sponsored by the US Department of Energy. The goal was to demonstrate the technology needed to produce a highly efficient engine enabled by several technologies which were to be developed in the course of the work. The technologies included: (1) A low-pressure direct injection system; (2) A mass air flow sensor which would measure the net airflow into the engine on a per cycle basis; (3) A feedback control system enabled by measuring ionization current signals from the spark plug gap; and (4) An infinitely variable cam actuation system based on a pneumatic-hydraulic valve actuation These developments were supplemented by the use of advanced large eddy simulations as well as evaluations of fuel air mixing using the KIVA and WAVE models. The simulations were accompanied by experimental verification when possible. In this effort a solid base has been established for continued development of the advanced engine concepts originally proposed. Due to problems with the valve actuation system a complete demonstration of the engine concept originally proposed was not possible. Some of the highlights that were accomplished during this effort are: (1) A forward-backward mass air flow sensor has been developed and a patent application for the device has been submitted. We are optimistic that this technology will have a particular application in variable valve timing direct injection systems for IC engines. (2) The biggest effort on this project has involved the development of the pneumatic-hydraulic valve actuation system. This system was originally purchased from Cargine, a Swedish supplier and is in the development stage. To date we have not been able to use the actuators to control the exhaust valves, although the actuators have been successfully employed to control the intake valves. The reason for this is the additional complication associated with variable back pressure on the exhaust valves when

  5. Measurements of plume geometry and argon-41 radiation field at the BR1 reactor in Mol, Belgium

    International Nuclear Information System (INIS)

    An atmospheric dispersion experiment was conducted using a visible tracer along with the routine releases of 41Ar from the BR1 air-cooled research reactor in Mol. In the experiment, simultaneous measurements of the radiation field from the 41Ar decay, the meteorology, the 41Ar source term and plume geometry were performed. The visible tracer was injected into the reactor emission stack, and the plume cross section determined by Lidar scanning of the released aerosols. The data collected in the exercise provide a valuable resource for atmospheric dispersion and dose rate modeling. (au)

  6. Catalytic Partial Oxidation of Methane with Air to Syngas in a Pilot-Plant-Scale Spouted Bed Reactor%甲烷空气部分氧化制合成气喷动床反应器的研究

    Institute of Scientific and Technical Information of China (English)

    魏伟胜; 徐建; 方大伟; 鲍晓军

    2003-01-01

    On the basis of hydrodynamic and scaling-up studies, a pilot-plant-scale thermal spouted bed reactor (50 mm in ID and 1500 mm in height) was designed and fabricated by scaling-down cold simulators. It was tested for making syngas via catalytic partial oxidation (CPO) of methane by air. The effects of various operating conditions such as operating pressure and temperature, feed composition, and gas fiowrate etc. on the CPO process were investigated. CH4 conversion of 92.2% and selectivity of 92.3% and 83.3% to CO and H2, respectively, were achieved at the pressure of 2.1 MPa. It was found that when the spouted bed reactor was operated within the stable spouting flow regime, the temperature profiles along the bed axis were much more uniform than those operated within the fixed-bed regime. The CH4 conversion and syngas selectivity were found to be close to thermodynamic equilibrium limits. The results of the present investigation showed that spouted bed could be considered as a potential type of chemical reactor for the CPO process of methane.

  7. ITER Neutral Beam Injection System

    International Nuclear Information System (INIS)

    A Japanese design proposal of the ITER Neutral Beam Injection System (NBS) which is consistent with the ITER common design requirements is described. The injection system is required to deliver a neutral deuterium beam of 75MW at 1.3MeV to the reactor plasma and utilized not only for plasma heating but also for current drive and current profile control. The injection system is composed of 9 modules, each of which is designed so as to inject a 1.3MeV, 10MW neutral beam. The most important point in the design is that the injection system is based on the utilization of a cesium-seeded volume negative ion source which can produce an intense negative ion beam with high current density at a low source operating pressure. The design value of the source is based on the experimental values achieved at JAERI. The utilization of the cesium-seeded volume source is essential to the design of an efficient and compact neutral beam injection system which satisfies the ITER common design requirements. The critical components to realize this design are the 1.3MeV, 17A electrostatic accelerator and the high voltage DC acceleration power supply, whose performances must be demonstrated prior to the construction of ITER NBI system. (author)

  8. User's guide to GASPAR code (a computer program for calculating radiation exposure to man from routine air releases of nuclear reactor effluents). Technical report

    International Nuclear Information System (INIS)

    The document is a user's guide for the GASPAR code, a computer program written for the evaluation of radiological impacts due to the release of radioactive material to the atmosphere during normal operation of light water reactors. The GASPAR code implements the radiological impact models of NRC Regulatory Guide 1.109, Revision 1, for atmospheric releases. The code is currently used by NRC in reactor licensing evaluations to estimate (1) the collective or population dose to the population within a 50-mile radius of a facility, (2) the total collective dose to the U.S. population, and (3) the maximum individual doses at selected locations in the vicinity of the plant

  9. RA reactor operation and maintenance

    International Nuclear Information System (INIS)

    This volume includes the final report on RA reactor operation and utilization of the experimental facilities in 1962, detailed analysis of the system for heavy water distillation and calibration of the system for measuring the activity of the air

  10. N Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The last of Hanfordqaodmasdkwaspemas7ajkqlsmdqpakldnzsdflss nine plutonium production reactors to be built was the N Reactor.This reactor was called a dual purpose...

  11. Pilot plant testing of Illinois coal for blast furnace injection. Quarterly report, 1 December 1994--28 February 1995

    Energy Technology Data Exchange (ETDEWEB)

    Crelling, J.C.

    1995-12-31

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of Illinois coal in the blast furnace injection process in a new and unique pilot plant test facility. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it is the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. This proposal is a follow-up to one funded for the 1993--94 period. It is intended to complete the study already underway with the Armco and Inland steel companies and to demonstrate quantitatively the suitability of both the Herrin No. 6 and Springfield No. 5 coals for blast furnace injection. The main feature of the current work is the testing of Illinois coals at CANMET`s (Canadian Centre for Mineral and Energy Technology) pilot plant coal combustion facility. This facility simulates blowpipe-tuyere conditions in an operating blast furnace, including blast temperature (900{degrees}C), flow pattern (hot velocity 200 m/s), geometry, gas composition, coal injection velocity (34 m/s) and residence time (20 ms). The facility is fully instrumented to measure air flow rate, air temperature, temperature in the reactor, wall temperature, preheater coil temperature and flue gas analysis. During this quarter there were two major accomplishments.

  12. 下行床反应器中惰性颗粒射入对结焦抑止和颗粒速度均匀化的影响%Effect of Injecting Inert Particles on Coking Prohibition and Particle Velocity Uniformization in Downer Reactors

    Institute of Scientific and Technical Information of China (English)

    张济宇; 祝媛; 田亚峻; 谢克昌

    2007-01-01

    The coking observation and particle flow behaviour in both thermal plasma and cold plexiglas downers were investigated in a binary particle system formed by injecting coarse inert particles (carrying coke away and scouring wall) and fine coal powders into the downer reactor. The results demonstrate that this scheme is a rational selection to prevent coking on downer walls and improve particle velocity distribution along the radial direction.When injected coarse particles mixed with fine powders in downers, the fluctuation of local particle velocity in the radial direction becomes smaller and two peaks in the radial distribution of local particle velocity occur due to the improved dispersing character and flow structure, which are beneficial to the thermo-plasma coal cracking reaction and coking prevention.

  13. Analysis of Air-Water Two Phase Flow for K-HERMES-HALF Experiment using RELAP5/MOD3

    Energy Technology Data Exchange (ETDEWEB)

    Park, Rae Joon; Ha, Kwang Soon; Kim, Sang Baik; Hong, Seong Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Heo, Sun [KHNP Nuclear Engineering and Technology Institute, Daejeon (Korea, Republic of)

    2011-05-15

    The IVR (In-Vessel corium Retention) through the ERVC (External Reactor Vessel Cooling) is known to be an effective means for maintaining the integrity of the reactor pressure vessel during a severe accident in a nuclear power plant. This measure has been adopted in some low-power reactors such as the AP600, AP1000, and the Loviisa nuclear power plants as a design feature, and in the high-power reactor of the APR (Advanced Power Reactor) 1400 as an accident management strategy for severe accident mitigation. As part of a study on two-phase flow in the reactor cavity under external reactor vessel cooling in the APR1400, K-HERMES-HALF experiment (Hydraulic Evaluation of Reactor cooling Mechanism by External Self-induced flow-HALF scale) had performed at KAERI. This large-scale experiment using a half-height and half-sector model of the APR1400 uses the non-heating method of the air injection. In this research, K-HERMES-HALF test results had been evaluated by using RELAP5/MOD3 computer code to observe and evaluate the two-phase natural circulation phenomena through the annulus gap between the outer reactor vessel and the vessel insulation material

  14. Development of an Internally Circulating Fluidized Bed Membrane Reactor for Hydrogen Production from Natural Gas

    Institute of Scientific and Technical Information of China (English)

    XIE Dong-lai; GRACE John R; LIM C Jim

    2006-01-01

    An innovative Internally Circulating Fluidized Bed Membrane Reactor (ICFBMR) was designed and operated for ultra-pure hydrogen production from natural gas. The reactor includes internal catalyst solids circulation for conveying heat between a reforming zone and an oxidation zone. In the reforming zone, catalyst particles are transported upwards by reactant gas where steam reforming reactions are taking place and hydrogen is permeating through the membrane surfaces. Air is injected into the oxidation zone to generate heat which is carried by catalyst particles to the reforming zone supporting the endothermic steam reforming reaction. The technology development process is introduced: cold model test,pilot plant and industrial demonstration unit. The process flow diagram and key components of each unit are described.The ICFBMR process has the potential to provide improved performance relative to conventional SMR fixed-bed tubular reactors.

  15. Design of H- injection system for FFAG accelerator at KURRI

    International Nuclear Information System (INIS)

    In Kyoto University Research Reactor Institute (KURRI), a neutron source based on the accelerator driven subcritical reactor (ADSR) concept has been proposed in 1996. Aiming to demonstrate the basic feasibility of ADSR, proton Fixed Field Alternating Gradient (FFAG) accelerator complex as a neutron production driver has been constructed and the ADSR experiment has been started in March 2009. In order to upgrade beam intensity, multi-turn charge exchange injection system for scaling FFAG accelerator is being studied. The injection scheme is converted from orbit shift single-turn injection to H- multi-turn injection. The method to escape the stripping foil is orbit shift by rf acceleration. The 11 MeV H- beam is injected from linac and is accelerated up to 100MeV in FFAG main ring. In this paper, the detail of injection system is described and feasibility of such a low energy H- injection system is discussed. (author)

  16. Injection molding ceramics to high green densities

    Science.gov (United States)

    Mangels, J. A.; Williams, R. M.

    1983-01-01

    The injection molding behavior of a concentrated suspension of Si powder in wax was studied. It was found that the injection molding behavior was a function of the processing techniques used to generate the powder. Dry ball-milled powders had the best molding behavior, while air classified and impact-milled powders demonstrated poorer injection moldability. The relative viscosity of these molding batches was studied as a function of powder properties: distribution shape, surface area, packing density, and particle morphology. The experimental behavior, in all cases, followed existing theories. The relative viscosity of an injection molding composition composed of dry ball-milled powders could be expressed using Farris' relation.

  17. Automatic control device for feedwater flow rate into reactor

    International Nuclear Information System (INIS)

    In automatic control for a water injection flow rate, an anticipated transient without screw (ATWS) signal is outputted upon judgement of the occurrence of ATWS event based on a reactor power signal and a scram demand signal, and a high pressure water injection system inactivation signal is outputted upon detection for the inactivation of a high pressure water injection system. An ATWS/high pressure water injection system inactivation judging section outputs a high pressure water injection system inactivation signal. A reactor pressure capable of water injection and a pressure change signal for setting opening/closing of a main steam relief valve corresponding thereto are calculated to output the same to a pressure control section for setting opening/closing of the main steam relief valve. Even if insertion of the entire control rods should fail upon scram by the loss of reactor water to disable the scram, and high pressure water injection system is not operated, the reactor pressure and the water level of the reactor are automatically controlled, and water is injected from a low pressure water injection system with no trouble, to suppress the reactor power. Then, the integrity of the reactor pressure vessel and the reactor container can be maintained. (N.H.)

  18. Flowing gas, non-nuclear experiments on the gas core reactor

    Science.gov (United States)

    Kunze, J. F.; Cooper, C. G.; Macbeth, P. J.

    1973-01-01

    Variations in cavity wall and injection configurations of the gas core reactor were aimed at establishing flow patterns that give a maximum of the nuclear criticality eigenvalue. Correlation with the nuclear effect was made using multigroup diffusion theory normalized by previous benchmark critical experiments. Air was used to simulate the hydrogen propellant in the flow tests, and smoked air, argon, or Freon to simulate the central nuclear fuel gas. Tests were run both in the down-firing and upfiring directions. Results showed that acceptable flow patterns with volume fraction for the simulated nuclear fuel gas and high flow rate ratios of propellant to fuel can be obtained. Using a point injector for the fuel, good flow patterns are obtained by directing the outer gas at high velocity long the cavity wall, using louvered injection schemes. Recirculation patterns were needed to stabilize the heavy central gas when different gases are used.

  19. A theoretical analysis of the response of an air-cored eddy current coil for remote oxide thickness measurements on reactor components

    International Nuclear Information System (INIS)

    It is shown how the impedance of an air-cored eddy current coil in close proximity to an oxidised steel component may be calculated. Representative values were selected for the oxide thickness, lift off, operating frequency, conductivities and permeabilities of the oxide coating and steel base. The values of these parameters in the calculations were allowed to vary between suitable limits to quantify the effect of each one on coil impedance. The results of the calculations are used to determine the most suitable conditions for the measurement of oxide thickness on steel components using an air-cored eddy current probe. (author)

  20. Reactor water sampling device

    International Nuclear Information System (INIS)

    The present invention concerns a reactor water sampling device for sampling reactor water in an in-core monitor (neutron measuring tube) housing in a BWR type reactor. The upper end portion of a drain pipe of the reactor water sampling device is attached detachably to an in-core monitor flange. A push-up rod is inserted in the drain pipe vertically movably. A sampling vessel and a vacuum pump are connected to the lower end of the drain pipe. A vacuum pump is operated to depressurize the inside of the device and move the push-up rod upwardly. Reactor water in the in-core monitor housing flows between the drain pipe and the push-up rod and flows into the sampling vessel. With such a constitution, reactor water in the in-core monitor housing can be sampled rapidly with neither opening the lid of the reactor pressure vessel nor being in contact with air. Accordingly, operator's exposure dose can be reduced. (I.N.)

  1. COMPORTAMIENTO HIDRODINÁMICO Y ABSORCIÓN DE DIÓXIDO DE CARBONO MEDIANTE REACCIÓN QUÍMICA CON GLUCOSAMINA EN UN REACTOR AIR-LIFT

    Directory of Open Access Journals (Sweden)

    Alicia García-Abuín

    2010-01-01

    Full Text Available En el presente trabajo se ha estudiado el comportamiento de disoluciones acuosas de glucosamina como absorbente para la captura de dióxido de carbono, empleando un reactorair-lift”. Los resultados experimentales indican que este reactivo (glucosamina muestra un comportamiento similar al observado para otras disoluciones acuosas de aminas ampliamente utilizadas para la captura de dióxido de carbono, en relación a la velocidad a la cual se produce la absorción. El valor de la velocidad de transferencia de masa ha sido determinado, así como el efecto de distintas condiciones de operación sobre el valor de este parámetro y del área interfacial gas-líquido, tales como concentración de amina, pH o caudal de gas alimentado.

  2. Deuterium pellet injection in the TFR Tokamak

    International Nuclear Information System (INIS)

    Injecting fresh fuel deep inside the plasma of a thermonuclear reactor appears to be necessary; the only way to do that is to inject fast solid deuterium pellets. The existing theoretical, technical and experimental aspects of this method are presented. The experiments on TFR have confirmed that injecting pellets is technically feasible; a new kind of injector is presented. The injection does not degrade stability nor confinement of the plasma. The study of the transient phenomena occuring during the injection has proved to be an efficient way to investigate particles and energy transport in the discharge; in particular, a fast transport phenomenon, similar to those occuring during disruptions, has been studied in details. Conclusions about disruptions are drawn. (Ref 101)

  3. Reactor Physics

    International Nuclear Information System (INIS)

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised

  4. Reactor Physics

    International Nuclear Information System (INIS)

    SCK-CEN's Reactor Physics and MYRRHA Department offers expertise in various areas of reactor physics, in particular in neutron and gamma calculations, reactor dosimetry, reactor operation and control, reactor code benchmarking and reactor safety calculations. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 materials testing reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2001 are summarised

  5. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  6. Flow injection on-line preconcentration of low levels of Cr(VI) with detection by ETAAS

    DEFF Research Database (Denmark)

    Som-aum, Waraporn; Liawruangrath, Saisunee; Hansen, Elo Harald

    2002-01-01

    A flow injection (FI) on-line sorption preconcentration procedure utilizing a packed column reactor and combined with electrothermal atomic absorption spectrometry (ETAAS) is proposed for the determination of low levels of Cr(VI) in water samples. Polytetrafluoroethylene (PTFE) beads packed in a...... mini-column is used as sorbent material. The complex formed between Cr(VI) and ammonium pyrrolidine dithiocarbamate (APDC) is sorbed on the PTFE beads, and is subsequently eluted by an air-monosegmented discrete zone of absolute ethanol (35mul), the analyte being quantified by ETAAS. The......(VI)-reference materials and by recovery measurements on spiked samples....

  7. Penicillin G Procaine Injection

    Science.gov (United States)

    Penicillin G procaine injection is used to treat certain infections caused by bacteria. Penicillin G procaine injection should not be used to ... early in the treatment of certain serious infections. Penicillin G procaine injection is in a class of ...

  8. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  9. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    2013-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  10. Modal analysis of an ECC duct for APR+ reactor barrel

    International Nuclear Information System (INIS)

    Advanced Power Reactor Plus (APR+) provides four Direct Vessel Injection (DVI) ducts on the reactor barrel to enhance the performance of Emergency Core Cooling System (ECCS). Several studies on safety analysis have verified the excellent performance of the DVI duct. In this study, from the viewpoint of mechanical integrity, modal analyses of two full-scaled DVI ducts have been presented; both numerical analysis and modal tests have been performed in air and water. It was found that the numerical simulation and modal test coincide with each other. The DVI duct is a thin shell of 5 mm thickness, so that harmonic responses to RCP blade passing frequencies should be checked. The dominant passing frequencies are known to be 20, 40, 60, 120 and 240 Hz. In addition, an interesting thing in this study is that added mass effect by coolant seems to be so significant that the natural frequency of the ducts under water could be considerably low as compared with those in air; the natural frequency under water is 60 % lower than that in air. (author)

  11. Plasma-gun fueling for tokamak reactors

    International Nuclear Information System (INIS)

    In light of the uncertain extrapolation of gas puffing for reactor fueling and certain limitations to pellet injection, the snowplow plasma gun has been studied as a fueling device. Based on current understanding of gun and plasma behavior a design is proposed, and its performance is predicted in a tokamak reactor environment

  12. Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Frederick H. [Argonne National Laboratory; Jacobson, Norman H.

    1968-09-01

    This booklet discusses research reactors - reactors designed to provide a source of neutrons and/or gamma radiation for research, or to aid in the investigation of the effects of radiation on any type of material.

  13. Oxygen injection method for BWR type power plant

    International Nuclear Information System (INIS)

    Upon injection of hydrogen to reactor water for reducing dissolved oxygen, oxygen is injected to remove excessive hydrogen. In this case, oxygen is injected to a steam phase in an upper portion of a reactor pressure vessel or a steam phase in a main steam pipe, by more than 1/2 molar amount to that of the injected hydrogen. With such procedure, the oxygen concentration in main steams does not substantially change by injection of hydrogen. Accordingly, no reducing atmosphere is formed in main steams and a condensate system thereby capable of forming enough oxidation membranes for carbon steel or like other material, to suppress amorphous iron rusts of small grain size. Accordingly, corrosion of materials can be prevented and the oxygen concentration in the entire systems of the main steams and the condensate system can be maintained satisfactorily about at the same level as in a normal operation where hydrogen injection is not conducted. (T.M.)

  14. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    Vivek V Ranade

    2014-03-01

    Catalytic reactions are ubiquitous in chemical and allied industries. A homogeneous or heterogeneous catalyst which provides an alternative route of reaction with lower activation energy and better control on selectivity can make substantial impact on process viability and economics. Extensive studies have been conducted to establish sound basis for design and engineering of reactors for practising such catalytic reactions and for realizing improvements in reactor performance. In this article, application of recent (and not so recent) developments in engineering reactors for catalytic reactions is discussed. Some examples where performance enhancement was realized by catalyst design, appropriate choice of reactor, better injection and dispersion strategies and recent advances in process intensification/ multifunctional reactors are discussed to illustrate the approach.

  15. Reactor water spontaneous circulation structure in reactor pressure vessel

    International Nuclear Information System (INIS)

    The gap between the inner wall of a reactor pressure vessel of a BWR type reactor and a reactor core shroud forms a down comer in which reactor water flows downwardly. A feedwater jacket to which feedwater at low temperature is supplied is disposed at the outer circumference of the pressure vessel just below a gas/water separator. The reactor water at the outer circumferential portion just below the air/water separator is cooled by the feedwater jacket, and the feedwater after cooling is supplied to the feedwater entrance disposed below the feedwater jacket by way of a feedwater introduction line to supply the feedwater to the lower portion of the down comer. This can cool the reactor water in the down comer to increase the reactor water density in the down comer thereby forming strong downward flows and promote the recycling of the reactor water as a whole. With such procedures, the reactor water can be recycled stably only by the difference of the specific gravity of the reactor water without using an internal pump. In addition, the increase of the height of the pressure vessel can be suppressed. (I.N.)

  16. Operating manual for the High Flux Isotope Reactor: operating procedures

    International Nuclear Information System (INIS)

    Procedures are presented for reactor operation; instrumentation and control; reactor components; research facilities; cooling systems; containment heating, venting, and air conditioning; emergency procedures; waste systems; on-site utilities; records and data accumulation; auxiliary equipment; and technical specification requirements

  17. Reactor coolant cleanup facility

    International Nuclear Information System (INIS)

    A depressurization device is disposed in pipelines upstream of recycling pumps of a reactor coolant cleanup facility to reduce a pressure between the pressurization device and the recycling pump at the downstream, thereby enabling high pressure coolant injection from other systems by way of the recycling pumps. Upon emergency, the recycling pumps of the coolant cleanup facility can be used in common to an emergency reactor core cooling facility and a reactor shutdown facility. Since existent pumps of the emergency reactor core cooling facility and the reactor shutdown facility which are usually in a stand-by state can be removed, operation confirmation test and maintenance for equipments in both of facilities can be saved, so that maintenance and reliability of the plant are improved and burdens on operators can also be mitigated. Moreover, low pressure design can be adopted for a non-regenerative heat exchanger and recycling coolant pumps, which enables to improve the reliability and economical property due to reduction of possibility of leakage. (N.H.)

  18. Research reactors

    International Nuclear Information System (INIS)

    This article proposes an overview of research reactors, i.e. nuclear reactors of less than 100 MW. Generally, these reactors are used as neutron generators for basic research in matter sciences and for technological research as a support to power reactors. The author proposes an overview of the general design of research reactors in terms of core size, of number of fissions, of neutron flow, of neutron space distribution. He outlines that this design is a compromise between a compact enough core, a sufficient experiment volume, and high enough power densities without affecting neutron performance or its experimental use. The author evokes the safety framework (same regulations as for power reactors, more constraining measures after Fukushima, international bodies). He presents the main characteristics and operation of the two families which represent almost all research reactors; firstly, heavy water reactors (photos, drawings and figures illustrate different examples); and secondly light water moderated and cooled reactors with a distinction between open core pool reactors like Melusine and Triton, pool reactors with containment, experimental fast breeder reactors (Rapsodie, the Russian BOR 60, the Chinese CEFR). The author describes the main uses of research reactors: basic research, applied and technological research, safety tests, production of radio-isotopes for medicine and industry, analysis of elements present under the form of traces at very low concentrations, non destructive testing, doping of silicon mono-crystalline ingots. The author then discusses the relationship between research reactors and non proliferation, and finally evokes perspectives (decrease of the number of research reactors in the world, the Jules Horowitz project)

  19. Reactor physics and reactor computations

    International Nuclear Information System (INIS)

    Mathematical methods and computer calculations for nuclear and thermonuclear reactor kinetics, reactor physics, neutron transport theory, core lattice parameters, waste treatment by transmutation, breeding, nuclear and thermonuclear fuels are the main interests of the conference

  20. Research reactors

    International Nuclear Information System (INIS)

    There are currently 284 research reactors in operation, and 12 under construction around the world. Of the operating reactors, nearly two-thirds are used exclusively for research, and the rest for a variety of purposes, including training, testing, and critical assembly. For more than 50 years, research reactor programs have contributed greatly to the scientific and educational communities. Today, six of the world's research reactors are being shut down, three of which are in the USA. With government budget constraints and the growing proliferation concerns surrounding the use of highly enriched uranium in some of these reactors, the future of nuclear research could be impacted

  1. Reactor container

    International Nuclear Information System (INIS)

    Object: To provide a jet and missile protective wall of a configuration being inflated toward the center of a reactor container on the inside of a body of the reactor container disposed within a biological shield wall to thereby increase safety of the reactor container. Structure: A jet and missile protective wall comprised of curved surfaces internally formed with a plurality of arch inflations filled with concrete between inner and outer iron plates and shape steel beam is provided between a reactor container surrounded by a biological shield wall and a thermal shield wall surrounding the reactor pressure vessel, and an adiabatic heat insulating material is filled in space therebetween. (Yoshino, Y.)

  2. Pellet injection into ASDEX upgrade plasmas

    International Nuclear Information System (INIS)

    This work comprises results obtained using the new centrifuge injection system for the two first years of pellet injection experiments at Asdex Upgrade until the end of the 1995 experimental campaign. The main aim of the pellet injection investigation is to develop scenarios allowing for a more flexible plasma density control means of injection of cryogenic solid hydrogen pellets. Efforts have been made to develop scenarios allowing more flexible plasma density control by injecting cryogenic solid hydrogen pellets. While the injection of pellets during ohmic discharges was found to be most efficient and also improves the plasma performance, increasing the auxiliary heating power causes a detoriation of the pellet fuelling efficiency. A further strong reduction of the pellet fuelling efficiency by an additional process was observed for the more reactor-relevant conditions of shallow particle deposition during H-mode phases. With injection during type I ELMy H-mode phases, each pellet was found to trigger the release of an ELM and therefore cause particle losses mainly from the edge region. In the type I ELMy H-mode, only sufficient pellet penetration allowed noticeable, persistent particle deposition in the plasma by the pellets. Applying adequate pellet injection conditions and favourable scenarios using combined pellet/gas puff refuelling, significant density ramp-up to densities exceeding the empirical Greenwald limit by up to a factor of two was achieved even for strongly heated H-mode plasmas. (orig.)

  3. Ammonia oxidizing bacteria and archaea in horizontal flow biofilm reactors treating ammonia-contaminated air at 10 °C.

    Science.gov (United States)

    Gerrity, Seán; Clifford, Eoghan; Kennelly, Colm; Collins, Gavin

    2016-05-01

    The objective of this study was to demonstrate the feasibility of novel, Horizontal Flow Biofilm Reactor (HFBR) technology for the treatment of ammonia (NH3)-contaminated airstreams. Three laboratory-scale HFBRs were used for remediation of an NH3-containing airstream at 10 °C during a 90-d trial to test the efficacy of low-temperature treatment. Average ammonia removal efficiencies of 99.7 % were achieved at maximum loading rates of 4.8 g NH3 m(3) h(-1). Biological nitrification of ammonia to nitrite (NO2 (-)) and nitrate (NO3 (-)) was mediated by nitrifying bacterial and archaeal biofilm populations. Ammonia-oxidising bacteria (AOB) were significantly more abundant than ammonia-oxidising archaea (AOA) vertically at each of seven sampling zones along the vertical HFBRs. Nitrosomonas and Nitrosospira, were the two most dominant bacterial genera detected in the HFBRs, while an uncultured archaeal clone dominated the AOA community. The bacterial community composition across the three HFBRs was highly conserved, although variations occurred between HFBR zones and were driven by physicochemical variables. The study demonstrates the feasibility of HFBRs for the treatment of ammonia-contaminated airstreams at low temperatures; identifies key nitrifying microorganisms driving the removal process; and provides insights for process optimisation and control. The findings are significant for industrial applications of gas oxidation technology in temperate climates. PMID:26879980

  4. An experimental study on the two-phase natural circulation flow through the gap between reactor vessel and insulation under ERVC

    International Nuclear Information System (INIS)

    As part of a study on a two-phase natural circulation flow between the outer reactor vessel and the insulation material in the reactor cavity under an external reactor vessel cooling of APR1400, T-HERMES-SMALL and HERMES-HALF experiments have been performed. For the T-HERMES-SMALL experiments, an 1/21.6 scaled experimental facility was prepared utilizing the results of a scaling analysis to simulate the APR1400 reactor and insulation system. The liquid mass flow rates driven by natural circulation loop were measured by varying the wall heat flux, upper outlet area and configuration, and water head condition. The experimental data were also compared with numerical ones given by simple loop analysis. And non-heating small-scaled experiments have also been performed to certify the hydraulic similarity of the heating experiments by injecting air equivalent to the steam generated in the heating experimental condition. The HERMES-HALF experiment is a half-scaled / non-heating experimental study on the two-phase natural circulation through the annular gap between the reactor vessel and the insulation. The behaviors of the two-phase natural circulation flow in the insulation gap were observed, and the liquid mass flow rates driven by natural circulation loop were measured by varying the air injection rate, the coolant inlet area and configuration, and the outlet area and also the water head condition of coolant reservoir. From the experimental flow observation, the recirculation flows in the near region of the shear key were identified. At a higher air injection rate condition, higher recirculation flows and choking phenomenon in the near region of the shear key were observed. As the water inlet areas increased, the natural circulation mass flow rates asymptotically increased, that is, they converged at a specific value. And the experimental correlations for the natural circulation mass flow rates along with a variation of the inlet / outlet area and wall heat flux were

  5. A concept of JAERI passive safety light water reactor system (JPSR)

    Energy Technology Data Exchange (ETDEWEB)

    Murao, Y.; Araya, F.; Iwamura, T. [Japan Atomic Energy Research Institute, Tokai-mura (Japan)

    1995-09-01

    The Japan Atomic Energy Research Institute (JAERI) proposed a passive safety reactor system concept, JPSR, which was developed for reducing manpower in operation and maintenance and influence of human errors on reactor safety. In the concept the system was extremely simplified. The inherent matching nature of core generation and heat removal rate within a small volume change of the primary coolant is introduced by eliminating chemical shim and adopting in-vessel control rod drive mechanism units, a low power density core and once-through steam generators. In order to simplify the system, a large pressurizer, canned pumps, passive engineered-safety-features-system (residual heat removal system and coolant injection system) are adopted and the total system can be significantly simplified. The residual heat removal system is completely passively actuated in non-LOCAs and is also used for depressurization of the primary coolant system to actuate accumulators in small break LOCAs and reactor shutdown cooling system in normal operation. All of systems for nuclear steam supply system are built in the containment except for the air coolers as a the final heat sink of the passive residual heat removal system. Accordingly the reliability of the safety system and the normal operation system is improved, since most of residual heat removal system is always working and a heat sink for normal operation system is {open_quotes}safety class{close_quotes}. In the passive coolant injection system, depressurization of the primary cooling system by residual heat removal system initiates injection from accumulators designed for the MS-600 in medium pressure and initiates injection from the gravity driven coolant injection pool at low pressure. Analysis with RETRAN-02/MOD3 code demonstrated the capability of passive load-following, self-power-controllability, cooling and depressurization.

  6. Fusion Reactor Materials

    International Nuclear Information System (INIS)

    SCK-CEN's programme on fusion reactor materials includes studies (1) to investigate fracture mechanics of neutron-irradiated beryllium; (2) to describe the helium behaviour in irradiated beryllium at atomic scale; (3) to define the kinetics of beryllium reacting with air or steam; (3) to perform a feasibility study for the testing of integrated blanket modules under neutron irradiation. Progress and achievements in 1997 are reported

  7. Counter-current flow limitation experiments in a model of the hot leg of a pressurised water reactor. Comparison between low pressure air/water experiments and high pressure steam/water experiments

    International Nuclear Information System (INIS)

    In order to investigate the two-phase flow behaviour in a complex reactor-typical geometry and to supply suitable data for CFD code validation, a model of the hot leg of a pressurized water reactor was built at Forschungszentrum Dresden-Rossendorf (FZD). The hot leg model is devoted to optical measurement techniques, therefore, a flat test section design was chosen and equipped with large windows. In order to enable the operation at high pressures, the test section is installed in the pressure chamber of the TOPFLOW test facility of FZD, which is used to perform the experiments under pressure equilibrium with the inside atmosphere. Counter-current flow limitation (CCFL) experiments were performed, simulating the reflux-condenser cooling mode appearing in small break LOCA scenarios. The fluids used were air and water at room temperature and pressures of up to 3.0 bar, as well as steam and water at pressures of up to 50 bar and the corresponding saturation temperature of 264degC. One selected 50 bar experiment is presented in detail: the observed behaviour is analysed and illustrated by typical high-speed camera images of the flow. Furthermore, the flooding characteristic obtained from the different experimental runs are presented in terms of the Wallis parameter and Kutateladze number, which are commonly used in the literature. However, both parameters fail to properly correlate the data: a discrepancy is observed between the air/water and steam/water series. Therefore, a modified Wallis parameter is proposed, which takes into account the effect of the fluid viscosities on the CCFL. The new parameter is validated against comparable data found in the literature, even though no data was found with such a large range of viscosities. This analysis points out that the effect of the dynamic viscosity on flooding has already been observed, but not identified. Furthermore, it is shown that the proposed modification of the Wallis parameter allows a significant improvement

  8. Monitoring air sparging using resistivity tomography

    International Nuclear Information System (INIS)

    Air sparging is a relatively new technique for the remediation of ground water contaminated with petroleum hydrocarbons. In this technique, air is injected below the water table, beneath the contaminated soil. Remediation occurs by a combination of contaminant partitioning into the vapor phase and enhanced biodegradation. The air is usually removed by vacuum extraction in the vadose zone. The efficiency of remediation from air sparging is a function of the air flow pattern, although the distribution of the injected air is still poorly understood. Cross-borehole resistivity surveys were performed at a former service station in Florence, Oregon, to address this unknown. The resistivity measurements were made using six wells, one of which was the sparge well. Data were collected over a two-week period during and after several air injections, or sparge events. Resistivity images were calculated between wells using an algorithm that assumes axially symmetric structures. The movement of the injected air through time was defined by regions of large increases in resistivity, greater than 100 percent from the background. During early sparge times, air moved outward and upward from the injection point as it ascended to the unsaturated zone. At later sparge times, the air flow reached a somewhat stable cone-shaped pattern radiating out and up from the injection point. Two days after sparging was discontinued, a residue of entrained air remained in the saturated zone, as indicated by a zone of 60 to 80 percent water saturation

  9. CFD code validation against stratified air-water flow experimental data

    International Nuclear Information System (INIS)

    Pressurized Thermal Shock (PTS) modelling has been identified as one of the most important industrial needs related to nuclear reactor safety. A severe PTS scenario limiting the Reactor Pressure Vessel (RPV) lifetime is the cold water Emergency Core Cooling (ECC) injection into the cold leg during a Loss of Coolant Accident (LOCA). Since it represents a big challenge for numerical simulations, this scenario was selected within the NURESIM (European Platform for Nuclear Reactor Simulations) Integrated Project as a reference two-phase problem for CFD code validation. This paper presents a CFD analysis of a stratified air-water flow experimental investigation performed at the Institut de Mecanique des Fluides de Toulouse in 1985 [1], which shares some common physical features with the ECC injection in PWR cold leg. Numerical simulations have been carried out with two commercial codes (Fluent and Ansys CFX), and a research code NEPTUNECFD (developed by EDF and CEA). The aim of this work, carried out at the University of Pisa within the NURESIM IP, is to validate the free surface flow model implemented in the codes against the available experimental data, and to perform code to code benchmarking. Obtained results suggest the relevance of three-dimensional effects and stress the importance of a suitable interface drag coefficient modelling. A relevant improvement of results has been achieved with 3D simulations, even if the air velocity profile was still significantly underestimated. (author)

  10. On Maximal Injectivity

    Institute of Scientific and Technical Information of China (English)

    Ming Yi WANG; Guo ZHAO

    2005-01-01

    A right R-module E over a ring R is said to be maximally injective in case for any maximal right ideal m of R, every R-homomorphism f : m → E can be extended to an R-homomorphism f' : R → E. In this paper, we first construct an example to show that maximal injectivity is a proper generalization of injectivity. Then we prove that any right R-module over a left perfect ring R is maximally injective if and only if it is injective. We also give a partial affirmative answer to Faith's conjecture by further investigating the property of maximally injective rings. Finally, we get an approximation to Faith's conjecture, which asserts that every injective right R-module over any left perfect right self-injective ring R is the injective hull of a projective submodule.

  11. Annual report on JEN-1 reactor

    International Nuclear Information System (INIS)

    In the annual report on the JEN-1 reactor the main features of the reactor operations and maintenance are described. The reactor has been critical for 1831 hours, what means 65,8% of the total working time. Maintenance and pool water contamination have occupied the rest of the time. The maintenance schedule is shown in detail according to three subjects. The main failures and reactor scrams are also described. The daily maximum values of the water activity are given so as the activity of the air in the reactor hall. (Author)

  12. Pilot plant testing of Illinois coal for blast furnace injection. Technical report, September 1--November 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Crelling, J.C. [Southern Illinois Univ., Carbondale, IL (United States). Dept. of Geology

    1994-12-31

    The purpose of this study is to evaluate the combustion of Illinois coal in the blast furnace injection process in a new and unique pilot plant test facility. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it is the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. It is intended to complete the study already underway with the Armco and Inland steel companies and to demonstrate quantitatively the suitability of both the Herrin No. 6 and Springfield No. 5 coals for blast furnace injection. The main feature of the current work is the testing of Illinois coals at CANMET`s (Canadian Centre for Mineral and Energy Technology) pilot plant coal combustion facility. This facility simulates blowpipe-tuyere conditions in an operating blast furnace, including blast temperature (900 C), flow pattern (hot velocity 200 m/s), geometry, gas composition, coal injection velocity (34 m/s) and residence time (20 ms). The facility is fully instrumented to measure air flow rate, air temperature, temperature in the reactor, wall temperature, preheater coil temperature and flue gas analysis. During this quarter a sample of the Herrin No. 6 coal (IBCSP 112) was delivered to the CANMET facility and testing is scheduled for the week of 11 December 1994. Also at this time, all of the IBCSP samples are being evaluated for blast furnace injection using the CANMET computer model.

  13. Reactor building

    International Nuclear Information System (INIS)

    The whole reactor building is accommodated in a shaft and is sealed level with the earth's surface by a building ceiling, which provides protection against penetration due to external effects. The building ceiling is supported on walls of the reactor building, which line the shaft and transfer the vertical components of forces to the foundations. The thickness of the walls is designed to withstand horizontal pressure waves in the floor. The building ceiling has an opening above the reactor, which must be closed by cover plates. Operating equipment for the reactor can be situated above the building ceiling. (orig./HP)

  14. Heterogeneous reactors

    International Nuclear Information System (INIS)

    The microscopic study of a cell is meant for the determination of the infinite multiplication factor of the cell, which is given by the four factor formula: K(infinite) = n(epsilon)pf. The analysis of an homogeneous reactor is similar to that of an heterogeneous reactor, but each factor of the four factor formula can not be calculated by the formulas developed in the case of an homogeneous reactor. A great number of methods was developed for the calculation of heterogeneous reactors and some of them are discussed. (Author)

  15. Primary chemistry response to initial zinc injection

    International Nuclear Information System (INIS)

    As of June 2009, fifty-seven pressurized water reactor (PWR) units were adding zinc to their primary coolant systems. This represents about 22% of the world's PWR units. Zinc injection is used in at least six different countries and in essentially all major Nuclear Steam Supply System (NSSS) designs. Plant-specific strategies for injection of zinc are now tailored with respect to concentrations, injection location, injection timing, and monitoring protocols. At least 14 additional plants are expected to begin zinc injection within the next two years and many more plants are investigating options for injecting zinc. A principal concern regarding the plant response to initial injection is that dissolved zinc will interact with ex-core oxide films in a manner that causes a release of nickel to the primary coolant system. It is possible that nickel released by this mechanism could deposit in the core and challenge fuel performance. In this work primary system chemistry data (principally nickel concentrations and radiocobalt activities) were evaluated for the cycles in which zinc was first injected. Assessments included comparisons of concentrations and activities before and after zinc injection as well as comparison of these periods to similar times in previous cycles. The mass of nickel released during shutdown, an imperfect indicator of the mass deposited on the fuel during the cycle, was also assessed. While the analyses presented in this work are not a complete analysis of plant response to zinc injection (for example, direct observations of surface film modification were not included) they represent a significant addition to the understanding of the way in which zinc interacts with the PWR primary system. (author)

  16. Stabilized Spheromak Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T

    2007-04-03

    The U.S. fusion energy program is focused on research with the potential for studying plasmas at thermonuclear temperatures, currently epitomized by the tokamak-based International Thermonuclear Experimental Reactor (ITER) but also continuing exploratory work on other plasma confinement concepts. Among the latter is the spheromak pursued on the SSPX facility at LLNL. Experiments in SSPX using electrostatic current drive by coaxial guns have now demonstrated stable spheromaks with good heat confinement, if the plasma is maintained near a Taylor state, but the anticipated high current amplification by gun injection has not yet been achieved. In future experiments and reactors, creating and maintaining a stable spheromak configuration at high magnetic field strength may require auxiliary current drive using neutral beams or RF power. Here we show that neutral beam current drive soon to be explored on SSPX could yield a compact spheromak reactor with current drive efficiency comparable to that of steady state tokamaks. Thus, while more will be learned about electrostatic current drive in coming months, results already achieved in SSPX could point to a productive parallel development path pursuing auxiliary current drive, consistent with plans to install neutral beams on SSPX in the near future. Among possible outcomes, spheromak research could also yield pulsed fusion reactors at lower capital cost than any fusion concept yet proposed.

  17. IncobotulinumtoxinA Injection

    Science.gov (United States)

    ... injection is used to relieve the symptoms of cervical dystonia (spasmodic torticollis; uncontrollable tightening of the neck ... is injected into a muscle, it blocks the nerve signals that cause uncontrollable tightening and movements of ...

  18. RimabotulinumtoxinB Injection

    Science.gov (United States)

    (rim a bott' you lye num bee)RimabotulinumtoxinB injection may spread from the area of injection and ... Event Reporting program online (http://www.fda.gov/Safety/MedWatch) or by phone (1-800-332-1088).

  19. Sodium Ferric Gluconate Injection

    Science.gov (United States)

    Sodium ferric gluconate injection is used to treat iron-deficiency anemia (a lower than normal number of ... are also receiving the medication epoetin (Epogen, Procrit). Sodium ferric gluconate injection is in a class of ...

  20. Zoledronic Acid Injection

    Science.gov (United States)

    ... experience a reaction during the first few days after you receive a dose of zoledronic acid injection. Symptoms ... symptoms may begin during the first 3 days after you receive a dose of zoledronic acid injection and ...

  1. Urinary incontinence - injectable implant

    Science.gov (United States)

    Injectable implants are injections of material into the urethra to help control urine leakage ( urinary incontinence ) caused by a ... into the tissue next to the sphincter. The implant procedure is usually done in the hospital. Or ...

  2. Iodine release characteristic in reactor accidents

    International Nuclear Information System (INIS)

    The author describes the chemical behavior for the iodine release from the fuel element in nuclear reactor accidents, partition coefficient in the water and air and the release characteristic in time. The research of the iodine release was suggested

  3. Beam injection into RHIC

    International Nuclear Information System (INIS)

    During the RHIC sextant test in January 1997 beam was injected into a sixth of one of the rings for the first time. The authors describe the injection zone and its bottlenecks. They report on the commissioning of the injection system, on beam based measurements of the kickers and the application program to steer the beam

  4. Plasma reactor

    OpenAIRE

    Molina Mansilla, Ricardo; Erra Serrabasa, Pilar; Bertrán Serra, Enric

    2008-01-01

    [EN] A plasma reactor that can operate in a wide pressure range, from vacuum and low pressures to atmospheric pressure and higher pressures. The plasma reactor is also able to regulate other important settings and can be used for processing a wide range of different samples, such as relatively large samples or samples with rough surfaces.

  5. Reactor physics

    International Nuclear Information System (INIS)

    Progress in research on reactor physics in 1997 at the Belgian Nuclear Research Centre SCK/CEN is described. Activities in the following four domains are discussed: core physics, ex-core neutron transport, experiments in Materials Testing Reactors, international benchmarks

  6. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL

    Energy Technology Data Exchange (ETDEWEB)

    Gary M. Blythe

    2004-01-01

    The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two

  7. A comparison of two depot injection techniques.

    Science.gov (United States)

    Mac Gabhann, L

    In the study reported in this article, the researchers attempted to raise awareness among practitioners of the importance of intramuscular drug administration technique in reducing injection site complications following antipsychotic depot injections. They also aimed to improve and expand the scope of present practice by comparing the effect of two accepted techniques, the 'air bubble' and 'Z-track' on these complications, and demonstrate that the air bubbles technique is more effective in reducing seepage and causes less discomfort. A 'within subjects' design was used, and Likert scales for scoring subjective and objective assessment of complications were established and scored at each injection. The study showed that there was no significant difference between the effects of either technique. PMID:9732632

  8. A Logic of Injectivity

    CERN Document Server

    Adamek, J; Souza, L

    2007-01-01

    Injectivity of objects with respect to a set $\\ch$ of morphisms is an important concept of algebra, model theory and homotopy theory. Here we study the logic of injectivity consequences of $\\ch$, by which we understand morphisms $h$ such that injectivity with respect to $\\ch$ implies injectivity with respect to $h$. We formulate three simple deduction rules for the injectivity logic and for its finitary version where \\mor s between finitely ranked objects are considered only, and prove that they are sound in all categories, and complete in all "reasonable" categories.

  9. Water shielding nuclear reactor container

    International Nuclear Information System (INIS)

    The reactor container of the present invention contains a reactor pressure vessel, and has double steel plate walls endurable to elevated inner pressure and keeping airtightness, and shielding water is filled inside from a water injection port. It is endurable to a great inner pressure satisfactorily and keep airtightness by the two spaced relatively thin steel plates. It exhibits radiation shielding effect by filling water substantially the same as that of a conventional reactor container made of iron reinforced concretes. Then, it is no more necessary to use concretes for the construction of the reactor container, which shortens the term of the construction, and saves the construction cost. In addition, a cooling effect for the reactor container is provided. Syphons are disposed contiguously to a water injection port and the top end of the syphon is immersed in an equipment temporarily storage pool, and further, pipelines are connected to the double steel plate walls or the syphons for supplying shielding water to enhance the cooling effect. (N.H.)

  10. Air Pollution

    Science.gov (United States)

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, dust, ... a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  11. Air Pollution

    Science.gov (United States)

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, dust, pollen and ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, ...

  12. Comparative Performance of Engines Using a Carburetor, Manifold Injection, and Cylinder Injection

    Science.gov (United States)

    Schey, Oscar W; Clark, J Denny

    1939-01-01

    The comparative performance was determined of engines using three methods of mixing the fuel and the air: the use of a carburetor, manifold injection, and cylinder injection. The tests were made of a single-cylinder engine with a Wright 1820-G air-cooled cylinder. Each method of mixing the fuel and the air was investigated over a range of fuel-air ratios from 0.10 to the limit of stable operation and at engine speeds of 1,500 and 1,900 r.p.m. The comparative performance with a fuel-air ratio of 0.08 was investigated for speeds from 1,300 to 1,900 r.p.m. The results show that the power obtained with each method closely followed the volumetric efficiency; the power was therefore the highest with cylinder injection because this method had less manifold restriction. The values of minimum specific fuel consumption obtained with each method of mixing of fuel and air were the same. For the same engine and cooling conditions, the cylinder temperatures are the same regardless of the method used for mixing the fuel and the air.

  13. The reactor Cabri

    International Nuclear Information System (INIS)

    It has become necessary to construct in France a reactor which would permit the investigation of the conditions of functioning of future installations, the choice, the testing and the development of safety devices to be adopted. A water reactor of a type corresponding to the latest CEA constructions in the field of laboratory or university reactors was decided upon: it appeared important to be able to evaluate the risks entailed and to study the possibilities of increasing the power, always demanded by the users; on the other hand, it is particularly interesting to clarify the phenomena of power oscillation and the risks of burn out. The work programme for CABRI will be associated with the work carried out on the American Sperts of the same type, during its construction, very useful contacts were made with the American specialists who designed the se reactors. A brief description of the reactor is given in the communication as well as the work programme for the first years with respect to the objectives up to now envisaged. Rough description of the reactor. CABRI is an open core swimming-pool reactor without any lateral protection, housed in a reinforced building with controlled leakage, in the Centre d'Etudes Nucleaires de Cadarache. It lies alone in the middle of an area whose radius is 300 meters long. Control and measurements equipment stand out on the edge of that zone. It consumes MTR fuel elements. The control-safety rods are propelled by compressed air. The maximum flow rate of cooling circuit is 1500 m3/h. Transient measurements are recorded in a RW330 unit. Aims and work programme. CABRI is meant for: - studies on the safety of water reactors - for the definition of the safety margins under working conditions: research of maximum power at which a swimming-pool reactor may operate with respect to a cooling accident, of local boiling effect on the nuclear behaviour of the reactor, performances of the control and safety instruments under exceptional

  14. PITR: Princeton Ignition Test Reactor

    International Nuclear Information System (INIS)

    The principal objectives of the PITR - Princeton Ignition Test Reactor - are to demonstrate the attainment of thermonuclear ignition in deuterium-tritium, and to develop optimal start-up techniques for plasma heating and current induction, in order to determine the most favorable means of reducing the size and cost of tokamak power reactors. This report describes the status of the plasma and engineering design features of the PITR. The PITR geometry is chosen to provide the highest MHD-stable values of beta in a D-shaped plasma, as well as ease of access for remote handling and neutral-beam injection

  15. Coatings for fusion reactor environments

    International Nuclear Information System (INIS)

    The internal surfaces of a tokamak fusion reactor control the impurity injection and gas recycling into the fusion plasma. Coating of internal surfaces may provide a desirable and possibly necessary design flexibility for achieving the temperatures, ion densities and containment times necessary for net energy production from fusion reactions to take place. In this paper the reactor environments seen by various componentare reviewed along with possible materials responses. Characteristics of coating-substrate systems, important to fusion applications, are delineated and the present status of coating development for fusion applications is reviewed. Coating development for fusion applications is just beginning and poses a unique and important challenge for materials development

  16. PITR: Princeton Ignition Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    The principal objectives of the PITR - Princeton Ignition Test Reactor - are to demonstrate the attainment of thermonuclear ignition in deuterium-tritium, and to develop optimal start-up techniques for plasma heating and current induction, in order to determine the most favorable means of reducing the size and cost of tokamak power reactors. This report describes the status of the plasma and engineering design features of the PITR. The PITR geometry is chosen to provide the highest MHD-stable values of beta in a D-shaped plasma, as well as ease of access for remote handling and neutral-beam injection.

  17. Compact Reactor

    International Nuclear Information System (INIS)

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date

  18. Gas injection laboratory experiments on Opalinus Clay

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. Understanding gas transport processes is one of the key issues in the assessment of radioactive waste repository performance and is the focus of this research. If the gas production rate (generated by the anaerobic corrosion of the ferrous metal liner) exceeds the rate of diffusion of gas in the host rock pore water, gas would continue to accumulate and pressure increase until it becomes sufficiently large to create pathways. Despite its importance, information at laboratory scale on gas pressure-induced pathways and breakthrough pressures in geological barriers under controlled gas volume rate and stress conditions is rather scarce. To this aim, the present study was started with the following specific objectives. 1) To develop and calibrate an experimental set-up to perform controlled volume-rate gas injection experiments using a high-pressure triaxial cell to apply isotropic/anisotropic stress states. 2) To carry out a series of tests on Opalinus clay OPA samples to study the conditions under which gas breakthrough processes occur, to analyse the influence of the gas injection rate, the stress state, the orientation of rock discontinuities and other relevant hydro-mechanical variables (porosity and degree of saturation); as well as the observation of the induced desaturation (pore water displacement by gas), in-going and outgoing gas fluxes, and aperture and preferential paths created. For example, local desaturation is a critical issue, since previous tests performed on compacted clay barriers evidenced that no significant water displacement occurred inside the specimen, despite the fact that the observed breakthrough pressure appeared to be higher than the air entry pressure of the material. An instrumented high-pressure triaxial cell was used, which was specifically designed to apply isotropic/ anisotropic stress states (up to a maximum of 20 MPa) while injecting gas at controlled volume rate. Each cap of the

  19. Fuel efficient hydrodynamic containment for gas core fission reactor rocket propulsion. Final report, September 30, 1992--May 31, 1995

    International Nuclear Information System (INIS)

    Gas core reactors can form the basis for advanced nuclear thermal propulsion (NTP) systems capable of providing specific impulse levels of more than 2,000 sec., but containment of the hot uranium plasma is a major problem. The initial phase of an experimental study of hydrodynamic confinement of the fuel cloud in a gas core fission reactor by means of an innovative application of a base injection stabilized recirculation bubble is presented. The development of the experimental facility, a simulated thrust chamber approximately 0.4 m in diameter and 1 m long, is described. The flow rate of propellant simulant (air) can be varied up to about 2 kg/sec and that of fuel simulant (air, air-sulfur hexafluoride) up to about 0.2 kg/sec. This scale leads to chamber Reynolds numbers on the same order of magnitude as those anticipated in a full-scale nuclear rocket engine. The experimental program introduced here is focused on determining the size, geometry, and stability of the recirculation region as a function of the bleed ratio, i.e. the ratio of the injected mass flux to the free stream mass flux. A concurrent CFD study is being carried out to aid in demonstrating that the proposed technique is practical

  20. Monitoring system of ECCS injection system upon periodical inspection

    International Nuclear Information System (INIS)

    An ECCS reactor injection system is automatically monitored upon periodical inspection. That is, a memory device stores information of the stand-by state of the ECCS reactor injection system upon periodical inspection. A data input means inputs monitoring item data in the present state. A required monitoring target is designated by the input means. A judging means compares the data of the monitoring target with the stand-by state information successively, to judge whether or not the monitoring target is in a predetermined stand-by state. A display means displays the result of the judgment. In the present system thus constituted, since it can be automatically judged whether or not the ECCS reactor injection system, as a monitoring target, is in the predetermined stand-by state, it is possible to reduce the operator's burden and improve the safety. (I.S.)

  1. Pulsed gas injection: A minimum effort approach for enhanced natural attenuation of chlorobenzene in contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Balcke, Gerd Ulrich, E-mail: gerd.balcke@metanomics.d [Department of Hydrogeology, UFZ Helmholtz Centre for Environmental Research, Theodor-Lieser-Strasse 4, D-06120 Halle/Saale (Germany); Paschke, Heidrun [Department of Groundwater Remediation, UFZ Helmholtz Centre for Environmental Research, Permoserstrasse 15, D-04318 Leipzig (Germany); Vogt, Carsten [Department of Isotope Biogeochemistry, UFZ Helmholtz Centre for Environmental Research, Permoserstrasse 15, D-04318 Leipzig (Germany); Schirmer, Mario [EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Department of Water Resources and Drinking Water, Ueberlandstrasse 133, 8600 Duebendorf (Switzerland)

    2009-07-15

    Chlorobenzene-contaminated groundwater was used to assess pulsed gas sparging as a minimum effort aeration strategy to enhance intrinsic natural attenuation. In contrast to existing biosparging operations, oxygen was supplied at minimum rate by reducing the gas injection frequency to 0.33 day{sup -1}. Field tests in a model aquifer were conducted in a 12 m long reactor, filled with indigenous aquifer material and continuously recharged with polluted groundwater over 3 years. The closed arrangement allowed yield balances, cost accounting as well as the investigation of spatial distributions of parameters which are sensitive to the biodegradation process. Depending on the injection frequency and on the gas chosen for injection (pure oxygen or air) oxygen-deficient conditions prevailed in the aquifer. Despite the limiting availability of dissolved oxygen in the groundwater, chlorobenzene degradation under oxygen-deficient conditions proved to be more effective than under conditions with dissolved oxygen being available in high concentrations. - Minimum rate gas sparging resulted in sustained biodegradation of chlorobenzene in a polluted groundwater aquifer.

  2. Pulsed gas injection: A minimum effort approach for enhanced natural attenuation of chlorobenzene in contaminated groundwater

    International Nuclear Information System (INIS)

    Chlorobenzene-contaminated groundwater was used to assess pulsed gas sparging as a minimum effort aeration strategy to enhance intrinsic natural attenuation. In contrast to existing biosparging operations, oxygen was supplied at minimum rate by reducing the gas injection frequency to 0.33 day-1. Field tests in a model aquifer were conducted in a 12 m long reactor, filled with indigenous aquifer material and continuously recharged with polluted groundwater over 3 years. The closed arrangement allowed yield balances, cost accounting as well as the investigation of spatial distributions of parameters which are sensitive to the biodegradation process. Depending on the injection frequency and on the gas chosen for injection (pure oxygen or air) oxygen-deficient conditions prevailed in the aquifer. Despite the limiting availability of dissolved oxygen in the groundwater, chlorobenzene degradation under oxygen-deficient conditions proved to be more effective than under conditions with dissolved oxygen being available in high concentrations. - Minimum rate gas sparging resulted in sustained biodegradation of chlorobenzene in a polluted groundwater aquifer.

  3. Urine Pretreat Injection System

    Science.gov (United States)

    1995-01-01

    A new method of introducing the OXONE (Registered Trademark) Monopersulfate Compound for urine pretreat into a two-phase urine/air flow stream has been successfully tested and evaluated. The feasibility of this innovative method has been established for purposes of providing a simple, convenient, and safe method of handling a chemical pretreat required for urine processing in a microgravity space environment. Also, the Oxone portion of the urine pretreat has demonstrated the following advantages during real time collection of 750 pounds of urine in a Space Station design two-phase urine Fan/Separator: Eliminated urine precipitate buildup on internal hardware and plumbing; Minimized odor from collected urine; and Virtually eliminated airborne bacteria. The urine pretreat, as presently defined for the Space Station program for proper downstream processing of urine, is a two-part chemical treatment of 5.0 grams of Oxone and 2.3 ml of H2SO4 per liter of urine. This study program and test demonstrated only the addition of the proper ratio of Oxone into the urine collection system upstream of the Fan/Separator. This program was divided into the following three major tasks: (1) A trade study, to define and recommend the type of Oxone injection method to pursue further; (2) The design and fabrication of the selected method; and (3) A test program using high fidelity hardware and fresh urine to demonstrate the method feasibility. The trade study was conducted which included defining several methods for injecting Oxone in different forms into a urine system. Oxone was considered in a liquid, solid, paste and powered form. The trade study and the resulting recommendation were presented at a trade study review held at Hamilton Standard on 24-25 October 94. An agreement was reached at the meeting to continue the solid tablet in a bag concept which included a series of tablets suspended in the urine/air flow stream. These Oxone tablets would slowly dissolve at a controlled rate

  4. LBB application in the US operating and advanced reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wichman, K.; Tsao, J.; Mayfield, M.

    1997-04-01

    The regulatory application of leak before break (LBB) for operating and advanced reactors in the U.S. is described. The U.S. Nuclear Regulatory Commission (NRC) has approved the application of LBB for six piping systems in operating reactors: reactor coolant system primary loop piping, pressurizer surge, safety injection accumulator, residual heat removal, safety injection, and reactor coolant loop bypass. The LBB concept has also been applied in the design of advanced light water reactors. LBB applications, and regulatory considerations, for pressurized water reactors and advanced light water reactors are summarized in this paper. Technology development for LBB performed by the NRC and the International Piping Integrity Research Group is also briefly summarized.

  5. Annual report on JEN-1 reactor; Informe periodico del Reactor JEN-1 correspondiente al ano 1971

    Energy Technology Data Exchange (ETDEWEB)

    Montes, J.

    1972-07-01

    In the annual report on the JEN-1 reactor the main features of the reactor operations and maintenance are described. The reactor has been critical for 1831 hours, what means 65,8% of the total working time. Maintenance and pool water contamination have occupied the rest of the time. The maintenance schedule is shown in detail according to three subjects. The main failures and reactor scrams are also described. The daily maximum values of the water activity are given so as the activity of the air in the reactor hall. (Author)

  6. Epidural injections for back pain

    Science.gov (United States)

    ESI; Spinal injection for back pain; Back pain injection; Steroid injection - epidural; Steroid injection - back ... pillow under your stomach. If this position causes pain, you either sit up or lie on your ...

  7. NEUTRONIC REACTOR

    Science.gov (United States)

    Anderson, H.L.

    1960-09-20

    A nuclear reactor is described comprising fissionable material dispersed in graphite blocks, helium filling the voids of the blocks and the spaces therebetween, and means other than the helium in thermal conductive contact with the graphite for removing heat.

  8. NUCLEAR REACTOR

    Science.gov (United States)

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  9. Nuclear reactors

    International Nuclear Information System (INIS)

    This draft chart contains graphical symbols from which the type of (nuclear) reactor can be seen. They will serve as illustrations for graphical sketches. Important features of the individual reactor types are marked out graphically. The user can combine these symbols to characterize a specific reactor type. The basic graphical symbol is a square with a point in the centre. Functional groups can be depicted for closer specification. If two functional groups are not clearly separated, this is symbolized by a dotted line or a channel. Supply and discharge lines for coolant, moderator and fuel are specified in accordance with DIN 2481 and can be further specified by additional symbols if necessary. The examples in the paper show several different reactor types. (orig./AK)

  10. Experimental determination of lower plenum ECC injection effectiveness

    International Nuclear Information System (INIS)

    The effectiveness of lower plenum emergency core coolant (ECC) injection during a double ended offset shear cold leg break loss-of-coolant accident (LOCA) was investigated experimentally in a small-scale model of a pressurized water reactor (PWR). In order to determine relative merit of the lower plenum injection concept to mitigate the severity of a large break LOCA, data from lower plenum injection experiments were compared to data from an experiment in the Semiscale Mod-3 sytem in which cold leg ECC injection was utilized. The results indicated that lower plenum injection was extremely effective in initiating early reflooding of the core and earlier rod quenching than was observed in the cold leg injection experiment

  11. Air ingress behavior during a primary-pipe rupture accident of HTGR

    International Nuclear Information System (INIS)

    The inherent properties of a HTGR facilitates the design with high degree of passive safe performances, compared to other type. However, it is still not clear if the present HTGR can maintain a passive safe function during a primary-pipe rupture accident, or what would be design criteria to guarantee the HTGR with the high degree of passive safe performances during the accident. To investigate safe characteristics, the study has been performed experimentally and analytically on the air ingress behavior during the accident. It was indicated that there are two stages in the accident of the HTGR having a reverse U-shaped channel. In the first stage, an air ingress process limits molecular diffusion and natural circulation of the gas mixture having a very slow velocity. In the second stage, the air ingress process limits the ordinary natural circulation of air throughout the reactor. A numerical calculation code has been developed to analyze thermal-hydraulic behavior during the first stage. This code provides a numerical method for analyzing a transport phenomena in a multi-component gas system by solving one-dimensional basic equations and using a flow network model. It was possible to predict or analyze the air ingress process regarding the density of the gas mixture, concentration of each gas species and duration of the first stage of the accident. It was indicated that the safe characteristics of the HTGR from the present experiment as follows. The safety cooling rate that the air ingress process terminates during the first stage exists in the HTGR having the reverse U-shaped channel. Moreover, the ordinary natural circulation of air can not produce in the second stage by injecting helium from the bottom of the pressure vessel corresponding the low-temperature side channel. Therefore, it was found that the idea of helium injection is one of useful methods for the prevention of air ingress and of graphite corrosion in the future HTGRs. (J.P.N.). 74 refs

  12. Multifunctional reactors

    OpenAIRE

    Westerterp, K.R.

    1992-01-01

    Multifunctional reactors are single pieces of equipment in which, besides the reaction, other functions are carried out simultaneously. The other functions can be a heat, mass or momentum transfer operation and even another reaction. Multifunctional reactors are not new, but they have received much emphasis in research in the last decade. A survey is given of modern developments and the first successful applications on a large scale. It is explained why their application in many instances is ...

  13. NUCLEAR REACTOR

    Science.gov (United States)

    Anderson, C.R.

    1962-07-24

    A fluidized bed nuclear reactor and a method of operating such a reactor are described. In the design means are provided for flowing a liquid moderator upwardly through the center of a bed of pellets of a nentron-fissionable material at such a rate as to obtain particulate fluidization while constraining the lower pontion of the bed into a conical shape. A smooth circulation of particles rising in the center and falling at the outside of the bed is thereby established. (AEC)

  14. Nuclear reactor

    International Nuclear Information System (INIS)

    In order to reduce neutron embrittlement of the pressue vessel of an LWR, blanked off elements are fitted at the edge of the reactor core, with the same dimensions as the fuel elements. They are parallel to each other, and to the edge of the reactor taking the place of fuel rods, and are plates of neutron-absorbing material (stainless steel, boron steel, borated Al). (HP)

  15. Breeder reactors

    International Nuclear Information System (INIS)

    The reasons for the development of fast reactors are briefly reviewed (a propitious neutron balance oriented towards a maximum uranium burnup) and its special requirements (cooling, fissile material density and reprocessing) discussed. The three stages in the French program of fast reactor development are outlined with Rapsodie at Cadarache, Phenix at Marcoule, and Super Phenix at Creys-Malville. The more specific features of the program of research and development are emphasized: kinetics and the core, the fuel and the components

  16. IVO/AIR-WATER-CCFL, Air/water countercurrent flow limitation experiments with full-scale fuel bundle structures

    International Nuclear Information System (INIS)

    1 - Description of test facility: The test facility consists of a vertical flow channel with different internals. The test section was principally made of transparent acrylic material to allow visual observations. One fuel bundle top area structure of the Soviet-type pressurized water reactors VVER-1000 and VVER-440 in full scale was the principal test section. In order to get experimental data on the effects of different parameters on the CCFL behaviour, various configurations of the principal test sections were studied. Plate 1 corresponds to the perforated upper tie plate in full scale of the reactor VVER-1000 and plate 12 to the upper tie plate in full scale of the reactor VVER-440. 2 - Description of test: The procedure of the model tests consisted of establishing the air inlet flow rate and then increasing the water flow rate so that the given liquid head above the perforated plate, or above the fuel rod bundle when the flow channel provided only with the bundle was reached. After the stationary conditions maintained for a prolonged period, the injected water and air flows, and the average height of the mixture level above the perforated plate were registered. All reported air and water flow rates are average values at each test point. The distance of the water inlet from the perforated plate was 2000 mm, and the water level in the water collection chamber was kept constant. Small-size plates were tested. Also the effect of the unheated fuel rod bundle and the size of the free flow channel on the CCFL behaviour were studied

  17. Sciatic nerve injection injury.

    Science.gov (United States)

    Jung Kim, Hyun; Hyun Park, Sang

    2014-06-11

    Nerve injury is a common complication following intramuscular injection and the sciatic nerve is the most frequently affected nerve, especially in children, the elderly and underweight patients. The neurological presentation may range from minor transient pain to severe sensory disturbance and motor loss with poor recovery. Management of nerve injection injury includes drug treatment of pain, physiotherapy, use of assistive devices and surgical exploration. Early recognition of nerve injection injury and appropriate management are crucial in order to reduce neurological deficit and to maximize recovery. Sciatic nerve injection injury is a preventable event. Total avoidance of intramuscular injection is recommended if other administration routes can be used. If the injection has to be administered into the gluteal muscle, the ventrogluteal region (gluteal triangle) has a more favourable safety profile than the dorsogluteal region (the upper outer quadrant of the buttock). PMID:24920643

  18. Simulation of a large break loss of coolant (LBLOCA), without actuation of the emergency injection systems (ECCS) for a BWR-5; Simulacion de un escenario de perdida de refrigerante grande (LBLOCA), sin actuacion de los sistemas de inyeccion de emergencia (ECCS) para un reactor BWR-5

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas V, J.; Mugica R, C. A.; Lopez M, R., E-mail: jaime.cardenas@cnsns.gob.mx [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan 779, Col. Narvarte, 03020 Ciudad de Mexico (Mexico)

    2015-09-15

    In this paper the analysis of scenario for the loss of coolant case was realized with break at the bottom of a recirculation loop of a BWR-5 with containment type Mark II and a thermal power of 2317 MWt considering that not have coolant injection. This in order to observe the speed of progression of the accident, the phenomenology of the scenario, the time to reach the limit pressure of containment venting and the amount of radionuclides released into the environment. This simulation was performed using the MELCOR code version 2.1. The scenario posits a break in one of the shear recirculation loops. The emergency core cooling system (ECCS) and the reactor core isolation cooling (Rcic) have not credit throughout the event, which allowed achieve greater severity on scenario. The venting of the primary containment was conducted via valve of 30 inches instead of the line of 24 inches of wet well, this in order to have a larger area of exhaust of fission products directly to the reactor building. The venting took place when the pressure in the primary containment reached the 4.5 kg/cm{sup 2} and remained open for the rest of the scenario to maximize the amount released of radionuclides to the atmosphere. The safety relief valves were considered functional they do not present mechanical failure or limit their ability to release pressure due to the large number of performances in safety mode. The results of the analysis covers about 48 hours, time at which the accident evolution was observed; behavior of level, pressure in the vessel and the fuel temperature profile was analyzed. For progression of the scenario outside the vessel, the pressure and temperature of the primary containment, level and temperature of the suppression pool, the hydrogen accumulation in the container and the radionuclides mass released into the atmosphere were analyzed. (Author)

  19. Urinary incontinence - injectable implant

    Science.gov (United States)

    ... repair; ISD repair; Injectable bulking agents for stress urinary incontinence ... Blaivas JM, Gormley EA, et al. Female Stress Urinary Incontinence Update Panel of the American Urological Association Education ...

  20. Injection moulding antireflective nanostructures

    DEFF Research Database (Denmark)

    Christiansen, Alexander Bruun; Clausen, Jeppe Sandvik; Mortensen, N. Asger;

    2014-01-01

    We present a method for injection moulding antireflective nanostructures on large areas, for high volume production. Nanostructured black silicon masters were fabricated by mask-less reactive ion etching, and electroplated with nickel. The nickel shim was antistiction coated and used in an...... injection moulding process, to fabricate the antireflective surfaces. The cycle-time was 35 s. The injection moulded structures had a height of 125 nm, and the visible spectrum reflectance of injection moulded black polypropylene surfaces was reduced from 4.5±0.5% to 2.5±0.5%. The gradient of the refractive...