WorldWideScience

Sample records for air injection reactors

  1. Nanostructured Catalytic Reactors for Air Purification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase I project proposes the development of lightweight compact nanostructured catalytic reactors for air purification from toxic gaseous organic...

  2. Nanostructured Catalytic Reactors for Air Purification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR Phase II project proposes the development of lightweight compact nanostructured catalytic reactors for air purification from toxic gaseous organic...

  3. Lake destratification induced by local air injection

    NARCIS (Netherlands)

    Kranenburg, C.

    1979-01-01

    Mathematical and physical modelling makes possible quantitative predictions regarding the destratification process brought about by the local injection of air at the bottom of a thermally stratified lake or reservoir. The mathematical model developed distinguishes between a near field and a far fiel

  4. Equation of Energy Injection to a Dielectric Barrier Discharge Reactor

    Science.gov (United States)

    Yao, Shuiliang; Weng, Shan; Jin, Qi; Han, Jingyi; Jiang, Boqiong; Wu, Zuliang

    2016-08-01

    The electric energy injection from a pulsed power supply to a planar type of dielectric barrier discharge (DBD) reactor at atmospheric pressure was studied. Relations of the energy injection with barrier materials, barrier thickness, peak voltage, gap distance, electrode area, and operation temperature were experimentally investigated. The energy injection is a function of relative permittivity, barrier thickness, peak voltage, gap distance, and electrode area. The influence of operation temperature on energy injection is slight in the range of 27-300 °C but becomes obvious in the range of 300-500 °C. A model was established using which the energy injection can be easily predicted. supported by National Natural Science Foundation of China (No. 11575159), Zhejiang Provincial Natural Science Foundation of China (No. LY13B070004), Program for Zhejiang Leading Team of S&T Innovation (No. 2013TD07), and National Natural Science Foundation of China (No. 51206146)

  5. Aging study of boiling water reactor high pressure injection systems

    Energy Technology Data Exchange (ETDEWEB)

    Conley, D.A.; Edson, J.L.; Fineman, C.F. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1995-03-01

    The purpose of high pressure injection systems is to maintain an adequate coolant level in reactor pressure vessels, so that the fuel cladding temperature does not exceed 1,200{degrees}C (2,200{degrees}F), and to permit plant shutdown during a variety of design basis loss-of-coolant accidents. This report presents the results of a study on aging performed for high pressure injection systems of boiling water reactor plants in the United States. The purpose of the study was to identify and evaluate the effects of aging and the effectiveness of testing and maintenance in detecting and mitigating aging degradation. Guidelines from the United States Nuclear Regulatory Commission`s Nuclear Plant Aging Research Program were used in performing the aging study. Review and analysis of the failures reported in databases such as Nuclear Power Experience, Licensee Event Reports, and the Nuclear Plant Reliability Data System, along with plant-specific maintenance records databases, are included in this report to provide the information required to identify aging stressors, failure modes, and failure causes. Several probabilistic risk assessments were reviewed to identify risk-significant components in high pressure injection systems. Testing, maintenance, specific safety issues, and codes and standards are also discussed.

  6. An emergency water injection system (EWIS) for future CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Andre L.F. [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil). E-mail: momarques@uol.com.br; Todreas, Neil E.; Driscoll, Michael J. [Massachusetts Inst.of Tech., Cambridge, MA (United States). Nuclear Engineering Dept.

    2000-07-01

    This paper deals with the investigation of the feasibility and effectiveness of water injection into the annulus between the calandria tubes and the pressure tubes of CANDU reactors. The purpose is to provide an efficient decay heat removal process that avoids permanent deformation of pressure tubes severe accident conditions, such as loss of coolant accident (LOCA). The water injection may present the benefit of cost reduction and better actuation of other related safety systems. The experimental work was conducted at the Massachusetts Institute of Technology (MIT), in a setup that simulated, as close as possible, a CANDU bundle annular configuration, with heat fluxes on the order of 90 kW/m{sup 2}: the inner cylinder simulates the pressure tube and the outer tube represents the calandria tube. The experimental matrix had three dimensions: power level, annulus water level and boundary conditions. The results achieved overall heat transfer coefficients (U), which are comparable to those required (for nominal accident progression) to avoid pressure tube permanent deformation, considering current CANDU reactor data. Nonetheless, future work should be carried out to investigate the fluid dynamics such as blowdown behavior, in the peak bundle, and the system lay-out inside the containment to provide fast water injection. (author)

  7. Evaluation of a subsurface oxygenation technique using colloidal gas aphron injections into packed column reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wills, R.A.; Coles, P.

    1991-11-01

    Bioremediation may be a remedial technology capable of decontaminating subsurface environments. The objective of this research was to evaluate the use of colloidal gas aphron (CGA) injection, which is the injection of micrometer-size air bubbles in an aqueous surfactant solution, as a subsurface oxygenation technique to create optimal growth conditions for aerobic bacteria. Along with this, the capability of CGAs to act as a soil-washing agent and free organic components from a coal tar-contaminated matrix was examined. Injection of CGAs may be useful for remediation of underground coal gasification (UCG) sites. Because of this, bacteria and solid material from a UCG site located in northeastern Wyoming were used in this research. Colloidal gas aphrons were generated and pumped through packed column reactors (PCRS) containing post-burn core materials. For comparison, PCRs containing sand were also studied. Bacteria from this site were tested for their capability to degrade phenol, a major contaminant at the UCG site, and were also used to bioaugment the PCR systems. In this study we examined: (1) the effect of CGA injection on dissolved oxygen concentrations in the PCR effluents, (2) the effect of CGA, H[sub 2]O[sub 2], and phenol injections on bacterial populations, (3) the stability and transport of CGAs over distance, and (4) CGA injection versus H[sub 2]O[sub 2] injection as an oxygenation technique.

  8. Evaluation of a subsurface oxygenation technique using colloidal gas aphron injections into packed column reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wills, R.A.; Coles, P.

    1991-11-01

    Bioremediation may be a remedial technology capable of decontaminating subsurface environments. The objective of this research was to evaluate the use of colloidal gas aphron (CGA) injection, which is the injection of micrometer-size air bubbles in an aqueous surfactant solution, as a subsurface oxygenation technique to create optimal growth conditions for aerobic bacteria. Along with this, the capability of CGAs to act as a soil-washing agent and free organic components from a coal tar-contaminated matrix was examined. Injection of CGAs may be useful for remediation of underground coal gasification (UCG) sites. Because of this, bacteria and solid material from a UCG site located in northeastern Wyoming were used in this research. Colloidal gas aphrons were generated and pumped through packed column reactors (PCRS) containing post-burn core materials. For comparison, PCRs containing sand were also studied. Bacteria from this site were tested for their capability to degrade phenol, a major contaminant at the UCG site, and were also used to bioaugment the PCR systems. In this study we examined: (1) the effect of CGA injection on dissolved oxygen concentrations in the PCR effluents, (2) the effect of CGA, H{sub 2}O{sub 2}, and phenol injections on bacterial populations, (3) the stability and transport of CGAs over distance, and (4) CGA injection versus H{sub 2}O{sub 2} injection as an oxygenation technique.

  9. Air injection vacuum blower noise control

    Energy Technology Data Exchange (ETDEWEB)

    Mose, Tyler L.A.; Faszer, Andrew C. [Noise Solutions Inc. (Canada)], email: tmose@noisesolutions.com, email: afaszer@noisesolutions.com

    2011-07-01

    Air injection vacuum blowers, with applications in waste removal, central vacuum systems, and aeration systems, are widely used when high vacuum levels are required. Noise generated by those blowers must be addressed for operator health and residential disturbance. This paper describes a project led by Noise Solutions Inc., to identify noise sources in a blower, and design and test a noise mitigation system. First the predominant noise sources in the blower must be determined, this is done with a sound level meter used to quantify the contribution of each individual noise source and the dominant tonal noise from the blower. Design of a noise abatement system must take into account constraints arising from blower mobile use, blower optimal performance, and the resulting overall vibration of the structure. The design was based on calculations from the sound attenuation of a reactive expansion chamber and two prototypes of custom silencers were then tested, showing a significant noise reduction both in total sound levels and tonal noise.

  10. Steady Thermal Field Simulation of Forced Air-cooled Column-type Air-core Reactor

    Institute of Scientific and Technical Information of China (English)

    DENG Qiu; LI Zhenbiao; YIN Xiaogen; YUAN Zhao

    2013-01-01

    Modeling the steady thermal field of the column-type air-core reactor,and further analyzing its distribution regularity,will help optimizing reactor design as well as improving its quality.The operation mechanism and inner insulation structure of a novel current limiting column-type air-core reactor is introduced in this paper.The finite element model of five encapsulation forced air-cooled column type air-core reactor is constructed using Fluent.Most importantly,this paper present a new method that,the steady thermal field of reactor working under forced air-cooled condition is simulated without arbitrarily defining the convection heat transfer coefficient for the initial condition; The result of the thermal field distribution shows that,the maximum steady temperature rise of forced air-cooled columntype air-core reactor happens approximately 5% to its top.The law of temperature distribution indicates:In the 1/3part of the reactor to its bottom,the temperature will rise rapidly to the increasing of height,yet the gradient rate is gradually decreasing; In the 5 % part of the reactor to its top,the temperature will drop rapidly to the increasing of height; In the part between,the temperature will rise slowly to the increasing of height.The conclusion draws that more thermal withstand capacity should be considered at the 5 % part of the reactor to its top to achieve optimal design solution.

  11. An Innovative Reactor Technology to Improve Indoor Air Quality

    Energy Technology Data Exchange (ETDEWEB)

    Rempel, Jane [TIAX LLC., Lexington, MA (United States)

    2013-03-30

    As residential buildings achieve tighter envelopes in order to minimize energy used for space heating and cooling, accumulation of indoor air pollutants such as volatile organic compounds (VOCs), becomes a major concern causing poor air quality and increased health risks. Current VOC removal methods include sorbents, ultraviolet photocatalytic oxidation (UVPCO), and increased ventilation, but these methods do not capture or destroy all VOCs or are prohibitively expensive to implement. TIAX's objective in this program was to develop a new VOC removal technology for residential buildings. This novel air purification technology is based on an innovative reactor and light source design along with UVPCO properties of the chosen catalyst to purify indoor air and enhance indoor air quality (IAQ). During the program we designed, fabricated and tested a prototype air purifier to demonstrate its feasibility and effectiveness. We also measured kinetics of VOC destruction on photocatalysts, providing deep insight into reactor design.

  12. Pneumomediastinum following high pressure air injection to the hand.

    LENUS (Irish Health Repository)

    Kennedy, J

    2012-02-01

    We present the case of a patient who developed pneumomediastinum after high pressure air injection to the hand. To our knowledge this is the first reported case of pneumomediastinum where the gas injection site was the thenar eminence. Fortunately the patient recovered with conservative management.

  13. Pneumomediastinum following high pressure air injection to the hand.

    LENUS (Irish Health Repository)

    Kennedy, J

    2010-04-01

    We present the case of a patient who developed pneumomediastinum after high pressure air injection to the hand. To our knowledge this is the first reported case of pneumomediastinum where the gas injection site was the thenar eminence. Fortunately the patient recovered with conservative management.

  14. DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Noonkester, J.; Jackson, D.; Jones, W.; Hyde, W.; Kohn, J.; Walker, R.

    2012-09-20

    Soil vapor extraction (SVE) and air injection well testing was performed at the Dynamic Underground Stripping (DUS) site located near the M-Area Settling Basin (referred to as DUS II in this report). The objective of this testing was to determine the effectiveness of continued operation of these systems. Steam injection ended on September 19, 2009 and since this time the extraction operations have utilized residual heat that is present in the subsurface. The well testing campaign began on June 5, 2012 and was completed on June 25, 2012. Thirty-two (32) SVE wells were purged for 24 hours or longer using the active soil vapor extraction (ASVE) system at the DUS II site. During each test five or more soil gas samples were collected from each well and analyzed for target volatile organic compounds (VOCs). The DUS II site is divided into four parcels (see Figure 1) and soil gas sample results show the majority of residual VOC contamination remains in Parcel 1 with lesser amounts in the other three parcels. Several VOCs, including tetrachloroethylene (PCE) and trichloroethylene (TCE), were detected. PCE was the major VOC with lesser amounts of TCE. Most soil gas concentrations of PCE ranged from 0 to 60 ppmv with one well (VEW-22A) as high as 200 ppmv. Air sparging (AS) generally involves the injection of air into the aquifer through either vertical or horizontal wells. AS is coupled with SVE systems when contaminant recovery is necessary. While traditional air sparging (AS) is not a primary component of the DUS process, following the cessation of steam injection, eight (8) of the sixty-three (63) steam injection wells were used to inject air. These wells were previously used for hydrous pyrolysis oxidation (HPO) as part of the DUS process. Air sparging is different from the HPO operations in that the air was injected at a higher rate (20 to 50 scfm) versus HPO (1 to 2 scfm). . At the DUS II site the air injection wells were tested to determine if air sparging affected

  15. Economics of water injected air screw compressor systems

    Science.gov (United States)

    Venu Madhav, K.; Kovačević, A.

    2015-08-01

    There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an investigation carried out to determine the current limitations of water injected screw compressor systems and how these could be overcome in the 15-315 kW power range and delivery pressures of 6-10 bar. Modern rotor profiles and approach to sealing and cooling allow reasonably inexpensive air end design. The prototype of the water injected screw compressor air system was built and tested for performance and reliability. The water injected compressor system was compared with the oil injected and oil free compressor systems of the equivalent size including the economic analysis based on the lifecycle costs. Based on the obtained results, it was concluded that water injected screw compressor systems could be designed to deliver clean air free of oil contamination with a better user value proposition than the oil injected or oil free screw compressor systems over the considered range of operations.

  16. Air Flow and Gassing Potential in Micro-injection Moulding

    DEFF Research Database (Denmark)

    Griffithsa, C.A.; Dimova, S.S.; Scholz, S.

    2011-01-01

    Process monitoring of micro injection moulding (μ-IM) is of crucial importance in understanding the effects of different parameter settings on the process, especially on its performance and consistency in regards to parts’ quality. Quality factors related to mould cavity air evacuation can provide...... valuable information about the process dynamics and also about the filling of a cavity by a polymer melt. In this paper, a novel experimental set-up is proposed to monitor maximum air flow and air flow work as an integral of the air flow over time by employing a MEMS gas sensor mounted inside the mould....... The influence of four μIM parameters, melt temperature, mould temperature, injection speed, and resistance to air evacuation, on two air flow-related output parameters is investigated by carrying out a design of experiment study. The results provide empirical evidence about the effects of process parameters...

  17. System and method for air temperature control in an oxygen transport membrane based reactor

    Science.gov (United States)

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  18. LOCA air-injection loads in BWR Mark II pressure suppression containment systems

    Energy Technology Data Exchange (ETDEWEB)

    Kukita, Y.; Shiba, M. (Japan Atomic Energy Research Inst., Tokai, Ibaraki); Namatame, K. (Institute of Nuclear Safety, Tokyo (Japan))

    1984-02-01

    Large-scale blowdown tests were conducted to investigate the thermal-hydrodynamic response of a boiling-water reactor (BWR) Mark II pressure suppression containment system to a postulated loss-of-coolant accident. This paper presents the test results on the early blowdown transients, where air in the drywell is injected into the pressure suppression pool and induces various hydrodynamic loads onto the containment pressure boundary and internal structures. The test data are compared to predictions by analytical models used for the licensing evaluation of the hydrodynamic loads to assess these models.

  19. Horizontal high-pressure air injection well construction and operation

    Energy Technology Data Exchange (ETDEWEB)

    Hume, J. [Continental Resources Inc., ND (United States)

    2005-07-01

    This paper discussed the design and operational challenges of a horizontal high-pressure air injection well currently in use at the Cedar Hill Red River B field in North Dakota. The field was developed in 1994, using horizontal wells oriented from the northeast to the southwest corners of each section on 640 acre spacing. In March of 2001, the field was unitized resulting in a horizontal waterflood project and a 320 acre horizontal high pressure air injection project. Extreme temperatures and pressures occurring in the reservoir from the combustion processes associated with high pressure air injection have resulted in several challenges. Reservoir and fluid properties of the field were presented, as well as a type log. Details of the Buffalo and Cedar Hills field were also provided, with a comparison of horizontal and vertical patterns. A light oil displacement process was reviewed, with details of tubing leak corrosion, packer seal and detonation failures. Burn front exposure to casing was discussed, and a wellbore diagram was provided. Various horizontal conversions were discussed. A description of the Cedar Hills Compressor Station and compression trains was provided. It was concluded that knowledge gained from 25 years of vertical high pressure air injection experience has been successfully incorporated to create a safe and durable design. 1 tab., 16 figs.

  20. Intensification of highly exothermic fast reaction by multi-injection microstructured reactor

    OpenAIRE

    Haber, Julien; Jiang, Bo; Maeder, Thomas; Borhani, Navid; Thome, John; Renken, Albert; Kiwi-Minsker, Lioubov

    2014-01-01

    Microstructured reactors (MSR) with characteristic dimensions below 100 μm are warranted to maintain close to isothermal conditions when carrying out quasi-instantaneous highly exothermic reactions. Unfortunately, such small dimensions increase the risk of clogging, create high pressure drop and are costly to number-up. The multi-injection (MI) MSR, where one of the reactants is added stepwise along the reactor length, allows working with larger dimensions (diameter >500 μm) while maintaining...

  1. Air injection test on a Kaplan turbine: prototype - model comparison

    Science.gov (United States)

    Angulo, M.; Rivetti, A.; Díaz, L.; Liscia, S.

    2016-11-01

    Air injection is a very well-known resource to reduce pressure pulsation magnitude in turbines, especially on Francis type. In the case of large Kaplan designs, even when not so usual, it could be a solution to mitigate vibrations arising when tip vortex cavitation phenomenon becomes erosive and induces structural vibrations. In order to study this alternative, aeration tests were performed on a Kaplan turbine at model and prototype scales. The research was focused on efficiency of different air flow rates injected in reducing vibrations, especially at the draft tube and the discharge ring and also in the efficiency drop magnitude. It was found that results on both scales presents the same trend in particular for vibration levels at the discharge ring. The efficiency drop was overestimated on model tests while on prototype were less than 0.2 % for all power output. On prototype, air has a beneficial effect in reducing pressure fluctuations up to 0.2 ‰ of air flow rate. On model high speed image computing helped to quantify the volume of tip vortex cavitation that is strongly correlated with the vibration level. The hydrophone measurements did not capture the cavitation intensity when air is injected, however on prototype, it was detected by a sonometer installed at the draft tube access gallery.

  2. Comparison of asymmetric with symmetric feed oil injection parameters in a riser reactor.

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, B. J.; Chang, S. L.; Lottes, S. A.; Zhou, C. Q.

    1999-04-20

    A computational fluid dynamic (CFD) computer code was used to determine the effects of product yields of three feed injection parameters in a fluidized catalytic cracking (FCC) riser reactor. This study includes the effects of both symmetrical and non-symmetrical injection parameters. All these parameters have significant effects on the feed oil spray distribution, vaporization rates and the resulting product yields. This study also indicates that optimum parameter ranges exist for the investigated parameters.

  3. Thermionic plasma injection for the Lockheed Martin T4 Compact Fusion Reactor experiment

    Science.gov (United States)

    Heinrich, Jonathon

    2015-11-01

    Lockheed Martin's Compact Fusion Reactor (CFR) concept relies on diamagnetic confinement in a magnetically encapsulated linear ring cusp geometry. Plasma injection into cusp field configurations requires careful deliberation. Previous work has shown that axial injection via a plasma gun is capable of achieving high-beta conditions in cusp configurations. We present a pulsed, high power thermionic plasma source and the associated magnetic field topology for plasma injection into the caulked-cusp magnetic field. The resulting plasma fueling and cross-field diffusion is discussed.

  4. Economics of water injected air screw compressor systems

    OpenAIRE

    Madhav, K. V.; Kovacevic, A.

    2015-01-01

    There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an in...

  5. Experimental Investigations of Micro Air Injection to Control Rotating Stall

    Institute of Scientific and Technical Information of China (English)

    Chaoqun Nie; Zhiting Tong; Shaojuan Geng; Junqiang Zhu; Weiguang Huang

    2007-01-01

    Steady discrete micro air injection at the tip region in front of the first compressor rotor has been proved to be an effective method to delay the inception of rotating stall in a low speed axial compressor. Considering the practical application a new type of micro injector was designed and described in this paper, which was imbedded in the casing and could be moved along the chord. In order to verify its feasibility to other cases, such as high subsonic axial compressor or centrifugal compressor, some other cases have been studied. Experimental results of the same low speed axial compressor showed that the new injector could possess many other advantages besides successfully stabilizing the compressor. Experiments performed on a high subsonic axial compressor confirmed the effectiveness of micro air injection when the relative velocity at the blade tip is high subsonic. Meanwhile in order to explore its feasibility in centrifugal compressor, a similar micro injector was designed and tested on a low speed centrifugal compressor with vaned diffuser. The injected mass flow was a bit larger than that used in axial compressors and the results showed micro injection could also delay the onset of rotating stall in the centrifugal compressor.

  6. Electroremediation of air pollution control residues in a continuous reactor

    DEFF Research Database (Denmark)

    Jensen, Pernille Erland; Ferreira, Célia M. D.; Hansen, Henrik K.

    2010-01-01

    Air pollution control (APC) residue from municipal solid waste incineration is considered hazardous waste due to its alkalinity and high content of salts and mobile heavy metals. Various solutions for the handling of APC-residue exist, however most commercial solutions involve landfilling. A demand...... were made with raw residue, water-washed residue, acid washed residue and acid-treated residue with emphasis on reduction of heavy metal mobility. Main results indicate that the reactor successfully removes toxic elements lead, copper, cadmium and zinc from the feed stream, suggesting...

  7. Generalized subcutaneous emphysema caused by injection of air into the penis for autoerotic purposes.

    Science.gov (United States)

    Ural, Y; Muthen, N; Engelmann, U; Wille, S

    2013-01-01

    The injection of air or water into the scrotum has been described only a few times so far in the literature. Injection of air into the penis and its consequences has not been described at all. Here, we present the case of a young man who, acting on his previously suppressed sexual fantasies, injected air into his penis and caused generalized subcutaneous emphysema.

  8. Emergency reactor core cooling water injection device for light water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Oda, Junro.

    1994-05-13

    A reactor pressure vessel is immersed in pool water of a reactor container. A control valve is interposed to a water supplying pipelines connecting pool water and a pressure vessel. A valve actuation means for opening/closing the control valve comprises a lifting tank. The inner side of the lifting tank and the inner side of the pressure vessel are connected by a communication pipeline (a syphon pipe) at upper and lower two portions. The lifting tank and the control valve are connected by a link mechanism. When a water level in the pressure vessel is lowered, the water level in the lifting tank is lowered to the same level as that in the pressure vessel. This reduces the weight of the lifting tank, the lifting tank is raised, to open the control valve by way of a link mechanism. As a result, liquid phase in the pressure vessel is in communication with the pool water, and the pool water flows down into the pressure vessel to maintain the reactor core in a flooded state. (I.N.).

  9. Volatile Elements Retention During Injection Casting of Metallic Fuel Slug for a Recycling Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong-Hwan; Song, Hoon; Kim, Hyung-Tae; Oh, Seok-Jin; Kuk, Seoung-Woo; Keum, Chang-Woon; Lee, Jung-Won; Kim, Ki-Hwan; Lee, Chan-Bock [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The as-cast fuels prepared by injection casting were sound and the internal integrities were found to be satisfactory through gamma-ray radiography. U and Zr were uniform throughout the matrix of the slug, and the impurities, i.e., oxygen, carbon, and nitrogen, satisfied the specification of the total impurities of less than 2000 ppm. The losses of the volatile Mn were effectively controlled using argon over pressures, and dynamic pumping for a period of time before injection showed no detrimental effect on the Mn loss by vaporization. This result suggests that volatile minor actinide-bearing fuels for SFRs can be prepared by improved injection methods. A practical process of metallic fuel fabrication for an SFR needs to be cost efficient, suitable for remote operation, and capable of mass production while reducing the amount of radioactive waste. Injection casting was chosen as the most promising technique, and this technique has been applied to fuel slug fabrication for the Experimental Breeder Reactor-II (EBR-II) driver and the Fast Flux Test Facility (FFTF) fuel pins. Because of the simplistic nature of the process and equipment, compared to other processes examined, this process has been successfully used in a remote operation environment for fueling of the EBR-II reactor. In this study, several injection casting methods were applied in order to prepare metallic fuel for an fast reactor that control the transport of volatile elements during fuel melting and casting. Mn was selected as a surrogate alloy since it possesses a total vapor pressure equivalent to that of a volatile minor actinide-bearing fuel. U.10Zr and U.10Zr.5Mn (wt%) metallic fuels were injection cast under various casting conditions and their soundness was characterized.

  10. Reactors

    CERN Document Server

    International Electrotechnical Commission. Geneva

    1988-01-01

    This standard applies to the following types of reactors: shunt reactors, current-limiting reactors including neutral-earthing reactors, damping reactors, tuning (filter) reactors, earthing transformers (neutral couplers), arc-suppression reactors, smoothing reactors, with the exception of the following reactors: small reactors with a rating generally less than 2 kvar single-phase and 10 kvar three-phase, reactors for special purposes such as high-frequency line traps or reactors mounted on rolling stock.

  11. Effect of injecting inert particles on coking prohibition and particle velocity uniformization in downer reactors

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.Y.; Zhu, Y.; Tian, Y.J.; Xie, K.C. [Fuzhou University, Fuzhou (China). Inst. of Chemical Engineering & Technology

    2007-02-15

    The coking observation and particle flow behaviour in both thermal plasma and cold plexiglas downers were investigated in a binary particle system formed by injecting coarse inert particles (carrying coke away and scouring wall) and fine coal powders into the downer reactor. The results demonstrate that this scheme is a rational selection to prevent coking on downer walls and improve particle velocity distribution along the radial direction. When injected coarse particles mixed with fine powders in downers, the fluctuation of local particle velocity in the radial direction becomes smaller and two peaks in the radial distribution of local particle velocity occur due to the improved dispersing character and flow structure, which are beneficial to the thermo-plasma coal cracking reaction and coking prevention.

  12. Air purification in a reverse-flow reactor: Model simulations vs. experiments

    NARCIS (Netherlands)

    Beld, van de L.; Westerterp, K.R.

    1996-01-01

    The behavior of a reverse-flow reactor was studied for the purification of polluted air by catalytic combustion. A heterogeneous one-dimensional model was extended with a heat balance for the reactor wall. An overall heat transport term is included to account for the small heat losses in radial dire

  13. Numerical Analysis of Magnetic Force of Dry-Type Air-Core Reactor

    Institute of Scientific and Technical Information of China (English)

    LIUZhi-gang; GENGYing-san; WANGJian-hua

    2004-01-01

    This paper presents a coupled magnetic-circuit method for computing the magnetic force of air-core reactor under short-time current. The current and the magnetic flux density are computed first and then the magnetic force is obtained. Thus, the dynamic stability performance of air-core reactor can be analyzed at the design stage to reduce experimental cost and shorten the lead-time of product development.

  14. Effects of Swirl Bubble Injection on Mass Transfer and Hydrodynamics for Bubbly Flow Reactors: A Concept Paper

    Directory of Open Access Journals (Sweden)

    Farooqi Ahmad Salam

    2017-01-01

    Full Text Available Bubble flow reactors (BFR are commonly used for various industrial processes in the field of oil and gas production, pharmaceutical industries, biochemical and environmental engineering etc. The operation and performance of these reactors rely heavily on a range of hydrodynamic parameters; prominent among them are geometric configurations including gas injection geometry, operating conditions, mass transfer etc. A huge body of literature is available to describe the optimum design and performance of bubbly flow reactors with conventional bubble injection. Attempts were made to modify gas injection for improved efficiency of BFR’s. However, here instead of modifying the geometry of the gas injection, an attempt has been made to generate swirl bubbles for gaining larger mass transfer between gas and liquid. Here an exceptionally well thought strategies have been used in our numerical simulations towards the design of swirl injection mechanism, whose paramount aspect is to inhibit the rotary liquid motion but facilitates the swirl movement for bubbles in nearly stationary liquid. Our comprehension here is that the swirl motion can strongly affect the performance of bubbly reactor by identifying the changes in hydrodynamic parameters as compared to the conventional bubbly flows. In order to achieve this bubbly flow, an experimental setup has been designed as well as computational fluid dynamic (CFD code was used with to highlight a provision of swirl bubble injection by rotating the sparger plate.

  15. Flow injection spectrophotometry coupled with a crushed barium sulfate reactor column for the determination of sulfate ion in water samples

    OpenAIRE

    Burakham,Rodjana; Higuchi, Keiro; Oshima, Mitsuko; Grudpan, Kate; Motomizu, Shoji

    2004-01-01

    A new type of a reactor column, a crushed BaSO4 reactor column used for the flow injection spectrophotometric determination of sulfate ion using the exchange reaction of sulfate ion and barium-dimethylsulfonazo III is proposed. The column is very simple and economical. It can be continuously used for 8 h before washing with water for repeated usage of at least 1 month. The procedure is sensitive. Application to various water samples was demonstrated.

  16. Air-bubbling, hollow-fiber reactor with cell bleeding and cross-flow filtration.

    Science.gov (United States)

    Nishii, K; Sode, K; Karube, I

    1990-05-01

    Continuous asymmetric reduction of dyhydrooxoisophorone (DOIP) to 4-hydroxy-2,2,6-trimethylcyclo-hexanone (4-HTMCH) was achieved by a thermophilic bacterium Bacillus stearothermophilus NK86-0151. Three reactors were used: an air-bubbling hollow-fiber reactor with cell bleeding and cross-flow filtration, an air-lift reactor, and a CSTR with PAA immobilized cells. The maximum cell concentration of 11.1 g dry wt L(-1) was obtained in an air-bubbling hollow-fiber reactor, while in the other reactors the cell densities were between 3.5 and 4.1 g dry wt L(-1) The optimum bleed ratio was 0.1 at the dilution rate 0.3 h(-1) in the hollow-fiber reactor. The highest viable cell concentration was maintained in the dilution range of 0.4-0.7 h(-1) by a combination of proper cell bleeding and cross-flow filtration. The maximum volumetric productivity of 4-HTMCH reached 826 mg L(-1) h(-1) at the dilution rate 0.54 h(-1). This value was 4 and 2 times higher than those in the air-lift reactor and CSTR, respectively. The increasing viable cell concentration increased the volumetric productivity of 4-HTMCH. A cell free product solution was continuously obtained by cross-flow filtration.

  17. Neutral beam injection in a D-{sup 3}He FRC reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, Hugo; Farengo, Ricardo [Centro Atomico Bariloche (CNEA) and Instituto Balseiro (UNC-CNEA) 8400 S. C. de Bariloche, RN (Argentina)

    2007-06-15

    The use of neutral beam injection (NBI) to sustain a fraction of the plasma current in a field reversed configuration (FRC) reactor operating with the D-{sup 3}He reaction is studied. A Monte Carlo code already used to study NBI in medium size FRCs is employed (Lifschitz A F, Farengo R and Arista N R 2002 Nucl. Fusion 42 863, Lifschitz A F, Farengo R and Arista N R 2002 Plasma Phys. Control. Fusion 44 1979, Lifschitz A F, Farengo R and Hoffman A L 2004 Nucl. Fusion 44 1015) and the plasma parameters are similar to those proposed in the ARTEMIS (Momota H, Ishida A, Kohzaki Y, Miley G, Ohi S, Ohnishi M, Sato K, Steinhauer L, Tomita Y and Tuszewki M 1992 Fusion Technol. 21 2307) conceptual reactor design. A simple analysis shows that the driven current cannot reach the values quoted in the ARTEMIS project and a procedure to search for plasma parameters that result in higher efficiencies is presented.

  18. Experimentally Measured Interfacial Area during Gas Injection into Saturated Porous Media: An Air Sparging Analogy

    Energy Technology Data Exchange (ETDEWEB)

    Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H., Bromhal, Grant

    2010-01-01

    The amount of interfacial area (awn) between air and subsurface liquids during air-sparging can limit the rate of site remediation. Lateral movement within porous media could be encountered during air-sparging operations when air moves along the bottom of a low-permeability lens. This study was conducted to directly measure the amount of awn between air and water flowing within a bench-scale porous flow cell during the lateral movement of air along the upper edge of the cell during air injections into an initially water-saturated flow cell. Four different cell orientations were used to evaluate the effect of air injection rates and porous media geometries on the amount of awn between fluids. Air was injected at flow rates that varied by three orders of magnitude, and for each flow cellover this range of injection rates little change in awn was noted. A wider variation in awn was observed when air moved through different regions for the different flow cell orientations. These results are in good agreement with the experimental findings of Waduge et al. (2007), who performed experiments in a larger sand-pack flow cell, and determined that air-sparging efficiency is nearly independent of flow rate but highly dependent on the porous structure. By directly measuring the awn, and showing that awn does not vary greatly with changes in injection rate, we show that the lack of improvement to remediation rates is because there is a weak dependence of the awn on the air injection rate.

  19. Air purification in a reverse-flow reactor: Model simulations vs. experiments

    OpenAIRE

    Beld, van de, L.; Westerterp, K.R.

    1996-01-01

    The behavior of a reverse-flow reactor was studied for the purification of polluted air by catalytic combustion. A heterogeneous one-dimensional model was extended with a heat balance for the reactor wall. An overall heat transport term is included to account for the small heat losses in radial direction. The calculations are compared to experimental data without using fit parameters. The agreement between simulations and experiments is generally good. Discrepancies can be explained mainly by...

  20. Evaluation of an accident management strategy of emergency water injection using fire engines in a typical pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soo Yong; Ahn, Kwang Il [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Following the Fukushima accident, a special safety inspection was conducted in Korea. The inspection results show that Korean nuclear power plants have no imminent risk for expected maximum potential earthquake or coastal flooding. However long- and short-term safety improvements do need to be implemented. One of the measures to increase the mitigation capability during a prolonged station blackout (SBO) accident is installing injection flow paths to provide emergency cooling water of external sources using fire engines to the steam generators or reactor cooling systems. This paper illustrates an evaluation of the effectiveness of external cooling water injection strategies using fire trucks during a potential extended SBO accident in a 1,000 MWe pressurized water reactor. With regard to the effectiveness of external cooling water injection strategies using fire engines, the strategies are judged to be very feasible for a long-term SBO, but are not likely to be effective for a short-term SBO.

  1. Biogas upgrading by injection of hydrogen in a two-stage Continuous Stirred-Tank Reactor system

    DEFF Research Database (Denmark)

    Bassani, Ilaria; Kougias, Panagiotis; Treu, Laura;

    An innovative method for biogas upgrading (i.e. CH4 content more than 90%) combines the coupling of H2, which could be produced by water electrolysis using surplus renewable electricity produced from wind mills, with the CO2 of the biogas. CO2 is biologically converted to CH4 by hydrogenotrophic...... methanogens. In this study, a novel serial biogas reactor system is presented, in which the produced biogas from the first stage reactor was introduced in the second stage, where also H2 was injected. The effects of the H2 addition on the process performance and on the microbial community were investigated...

  2. A refractory steerable nozzle for air and fuel injection in thermal plant boiler combustors

    Energy Technology Data Exchange (ETDEWEB)

    Peschard, J.

    1993-10-01

    The horizontal walls of the tiltable (downwards or upwards) nozzles are corrugated in such a way that they may undergo thermal expansion without cracking. The vertical walls are double-face designed with air flowing inside for cooling. The nozzle is made of refractory steel. Application to air injection with or without pulverized coal or gas, in thermal plants.

  3. STEAM INJECTION INTO FRACTURED LIMESTONE AT LORING AIR FORCE BASE

    Science.gov (United States)

    A research project on steam injection for the remediation of spent chlorinated solvents from fractured limestone was recently undertaken at the former Loring AFB in Limestone, ME. Participants in the project include the Maine Department of Environmental Protection, EPA Region I,...

  4. Comparative Research on Air Conditioner with Gas-injected Rotary Compressor through Injection Port on Blade

    OpenAIRE

    Xingru, Liu; Baolong, Wang; Wenxing, Shi

    2016-01-01

    Rotary compressors are widely utilized in air conditionders and heat pumps. However, when rotary compressors were applied in room air conditioners, VRFs and domestic water heaters, the systems will experience heavily degradation of the heating capacity and COP as the ambient temperature goes low. Aimed at these problems, considerable research has been carried out to raise a series of solutions, such as economizer technology, cascade-type vapor compression heat pump system and two stage coupli...

  5. Air Monitoring of Emissions from the Fukushima Daiichi Reactor

    Energy Technology Data Exchange (ETDEWEB)

    McNaughton, Michael [Los Alamos National Laboratory; Allen, Shannon P. [Los Alamos National Laboratory; Archuleta, Debra C. [Los Alamos National Laboratory; Brock, Burgandy [Los Alamos National Laboratory; Coronado, Melissa A. [Los Alamos National Laboratory; Dewart, Jean M. [Los Alamos National Laboratory; Eisele, William F. Jr. [Los Alamos National Laboratory; Fuehne, David P. [Los Alamos National Laboratory; Gadd, Milan S. [Los Alamos National Laboratory; Green, Andrew A. [Los Alamos National Laboratory; Lujan, Joan J. [Los Alamos National Laboratory; MacDonell, Carolyn [Los Alamos National Laboratory; Whicker, Jeffrey J. [Los Alamos National Laboratory

    2012-06-12

    In response to the disasters in Japan on March 11, 2011, and the subsequent emissions from Fukushima-Daiichi, we monitored the air near Los Alamos using four air-monitoring systems: the standard AIRNET samplers, the standard rad-NESHAP samplers, the NEWNET system, and high-volume air samplers. Each of these systems has advantages and disadvantages. In combination, they provide a comprehensive set of measurements of airborne radionuclides near Los Alamos during the weeks following March 11. We report air-monitoring measurements of the fission products released from the Fukushima-Daiichi nuclear-power-plant accident in 2011. Clear gamma-spectrometry peaks were observed from Cs-134, Cs-136, Cs-137, I-131, I132, Te-132, and Te-129m. These data, together with measurements of other radionuclides, are adequate for an assessment and assure us that radionuclides from Fukushima Daiichi did not present a threat to human health at or near Los Alamos. The data demonstrate the capabilities of the Los Alamos air-monitoring systems.

  6. Operation of Fusion Reactors in One Atmosphere of Air Instead of Vacuum Systems

    Science.gov (United States)

    Roth, J. Reece

    2009-07-01

    Engineering design studies of both magnetic and inertial fusion power plants have assumed that the plasma will undergo fusion reactions in a vacuum environment. Operation under vacuum requires an expensive additional major system for the reactor-a vacuum vessel with vacuum pumping, and raises the possibility of sudden unplanned outages if the vacuum containment is breached. It would be desirable in many respects if fusion reactors could be made to operate at one atmosphere with air surrounding the plasma, thus eliminating the requirement of a pressure vessel and vacuum pumping. This would have obvious economic, reliability, and engineering advantages for currently envisaged power plant reactors; it would make possible forms of reactor control not possible under vacuum conditions (i.e. adiabatic compression of the fusion plasma by increasing the pressure of surrounding gas); it would allow reactors used as aircraft engines to operate as turbojets or ramjets in the atmosphere, and it would allow reactors used as fusion rockets to take off from the surface of the earth instead of low earth orbit.

  7. Exogenous factors contributing to column bed heterogeneity: Part 1: Consequences of 'air' injections in liquid chromatography.

    Science.gov (United States)

    Samuelsson, Jörgen; Fornstedt, Torgny; Shalliker, Andrew

    2015-08-01

    It has been shown that not only the packing homogeneity, but also factors external to the column bed, such as, frits and distributors can have important effects on the column performance. This current communication is the first in a series focusing on the impact of exogenous factors on the column bed heterogeneity. This study is based on several observations by us and others that chromatographic runs often, for technical reasons, include more or less portions of air in the injections. It is therefore extremely important to find out the impact of air on the column performance, the reliability of the results derived from analyses where air was injected, and the effect on the column homogeneity. We used a photographic approach for visualising the air transport phenomena, and found that the air transport through the column is comprised of many different types of transport phenomena, such as laminal flow, viscous fingering like flows, channels and bulbs, and pulsations. More particularly, the air clouds within the column definitely interact in the adsorption, i.e. mobile phase adsorbed to the column surface is displaced. In addition, irrespective of the type of air transport phenomena, the air does not penetrate the column homogeneously. This process is strongly flow dependent. In this work we study air transport both in an analytical scale and a semi-prep column.

  8. Evaluation of Sulfide Control by Air-Injection in Sewer Force Mains: Field and Laboratory Study

    Directory of Open Access Journals (Sweden)

    Juan T. García

    2017-03-01

    Full Text Available Chemical and biological processes consume dissolved oxygen (DO in urban wastewater during transportation along sewer systems. Anaerobic conditions (DO < 0.2 mg/L are easily reached, leading to sulfide (S2− generation. Release of free sulfide, hydrogen sulfide gas (H2S, from the liquid to the gaseous phase, causes odor, corrosion of pipes and supposes a risk for health of people working in sewers. These issues get worse in force mains, due to inability to take oxygen from the gaseous phase of pipe. Air injection is a suggested practice to control H2S emission in force mains. That technique aims to keep aerobic conditions in wastewater in order to avoid sulfide generation and favor a decrease of Biochemical Organic Demand (BOD. However, several force mains with air injection are not achieving their goals due to a limited oxygen transfer. Field measurements of dissolved oxygen in urban wastewater are presented in an existing force main with air injection during the summer of 2014 in the southeast of Spain. A laboratory scale model is constructed to quantify two-phase flow conditions in pipe due to air injection for different incoming flows rates of water and air. Particularly, for the case of plug flow, also known as elongated bubble flow. Velocity field measurement of water phase in laboratory allows estimating turbulent diffusivity of oxygen in the water, Em, and inter-phase mass transfer coefficient KL(T. In the laboratory, flow and air depth, bubble length, water velocity field, pressure inside force main and water and airflow rates are determined experimentally. These variables are used to assess DO in water phase of force main by comparison with those obtained from field measurements. This work allows assessing air injection efficiency in wastewater, and, therefore, to predict DO in wastewater in force mains.

  9. Computational Fluid Dynamics Analyses on Very High Temperature Reactor Air Ingress

    Energy Technology Data Exchange (ETDEWEB)

    Chang H Oh; Eung S. Kim; Richard Schultz; David Petti; Hyung S. Kang

    2009-07-01

    A preliminary computational fluid dynamics (CFD) analysis was performed to understand density-gradient-induced stratified flow in a Very High Temperature Reactor (VHTR) air-ingress accident. Various parameters were taken into consideration, including turbulence model, core temperature, initial air mole-fraction, and flow resistance in the core. The gas turbine modular helium reactor (GT-MHR) 600 MWt was selected as the reference reactor and it was simplified to be 2-D geometry in modeling. The core and the lower plenum were assumed to be porous bodies. Following the preliminary CFD results, the analysis of the air-ingress accident has been performed by two different codes: GAMMA code (system analysis code, Oh et al. 2006) and FLUENT CFD code (Fluent 2007). Eventually, the analysis results showed that the actual onset time of natural convection (~160 sec) would be significantly earlier than the previous predictions (~150 hours) calculated based on the molecular diffusion air-ingress mechanism. This leads to the conclusion that the consequences of this accident will be much more serious than previously expected.

  10. Using cathode spacers to minimize reactor size in air cathode microbial fuel cells

    KAUST Repository

    Yang, Qiao

    2012-04-01

    Scaling up microbial fuel cells (MFCs) will require more compact reactor designs. Spacers can be used to minimize the reactor size without adversely affecting performance. A single 1.5mm expanded plastic spacer (S1.5) produced a maximum power density (973±26mWm -2) that was similar to that of an MFC with the cathode exposed directly to air (no spacer). However, a very thin spacer (1.3mm) reduced power by 33%. Completely covering the air cathode with a solid plate did not eliminate power generation, indicating oxygen leakage into the reactor. The S1.5 spacer slightly increased columbic efficiencies (from 20% to 24%) as a result of reduced oxygen transfer into the system. Based on operating conditions (1000ς, CE=20%), it was estimated that 0.9Lh -1 of air would be needed for 1m 2 of cathode area suggesting active air flow may be needed for larger scale MFCs. © 2012 Elsevier Ltd.

  11. Safety of 1000 CT-guided steroid injections with air used to localize the epidural space.

    Science.gov (United States)

    Chang, A; Pochert, S; Romano, C; Brook, A; Miller, T

    2011-10-01

    Historically, ESIs were performed without any imaging guidance, resulting in erroneous placement in up to 30% of injections. Fluoroscopic imaging is now used to guide most procedures. Recently, several reports have described the use of CT to guide ESIs instead of fluoroscopy. CT provides the ability to use air as contrast to localize the epidural space. This retrospective review will discuss findings in 1000 CT-guided ESIs with air localization.

  12. When Air is Injected into Mobile Liquid-saturated Porous Medium

    Science.gov (United States)

    Kong, X.-Z.; Kinzelbach, W.; Stauffer, F.

    2009-04-01

    The study of gas movement following injection into liquid saturated porous media is an active area of exploration for theoretical and practical reasons, e.g., in air-sparging, oil recovery, and bio-filter. Here, we report a set of two-dimensional laboratory visualization experiments by injecting air into a vertically placed granular medium. The medium is made of crushed fused silica glass and saturated with a glycerine-water solution for refractive-index-matching. We learn that: i) A previously unrecognized gas-flow instability was observed. The interaction of the injected air flow and the medium structure leads to mobilization of the medium and an instability, which causes the air channel to migrate. This instability is dominated by a dimensionless number α, which can be interpreted as a normalization of a critical velocity with a dipole velocity for saturated conditions. The channel migration appears as a sequence of previous channels collapsing and new channels opening. ii) The channel migration comes to a stop after some time, leaving one stable preferential channel for air flow. Furthermore, the grains' packing is compacted due to a rearrangement process. The compacted process is indicated by a set of tracing experiments. iii) Due to a mobilization of the granular medium, segregation on grain size occurs depending on a critical grain size, below which the coarser grains tend to accumulate at the downstream end of the preferred air pathway, and above which the finer grains tend to accumulate there.

  13. A Study of Performance Output of a Multivane Air Engine Applying Optimal Injection and Vane Angles

    Directory of Open Access Journals (Sweden)

    Bharat Raj Singh

    2012-01-01

    Full Text Available This paper presents a new concept of the air engine using compressed air as the potential power source for motorbikes, in place of an internal combustion engine. The motorbike is proposed to be equipped with an air engine, which transforms the energy of the compressed air into mechanical motion energy. A mathematical model is presented here, and performance evaluation is carried out on an air-powered novel air turbine engine. The maximum power output is obtained as 3.977 kW (5.50 HP at the different rotor to casing diameter ratios, optimal injection angle 60°, vane angle 45° for linear expansion (i.e., at minimum air consumption when the casing diameter is kept 100 mm, at injection pressure 6 bar (90 psi and speed of rotation 2500 rpm. A prototype air engine is built and tested in the laboratory. The experimental results are also seen much closer to the analytical values, and the performance efficiencies are recorded around 70% to 95% at the speed of rotation 2500–3000 rpm.

  14. Optimization of air injection parameters toward optimum fuel saving effect for ships

    Science.gov (United States)

    Lee, Inwon; Park, Seong Hyeon

    2016-11-01

    Air lubrication method is the most promising commercial strategy for the frictional drag reduction of ocean going vessels. Air bubbles are injected through the array of holes or the slots installed onto the flat bottom surface of vessel and a sufficient supply of air is required to ensure the formation of stable air layer by the by the coalescence of the bubbles. The air layer drag reduction becomes economically meaningful when the power gain through the drag reduction exceeds the pumping power consumption. In this study, a model ship of 50k medium range tanker is employed to investigate air lubrication method. The experiments were conducted in the 100m long towing tank facility at the Pusan National University. To create the effective air lubrication with lower air flow rate, various configurations including the layout of injection holes, employment of side fences and static trim have been tested. In the preliminary series of model tests, the maximum 18.13%(at 15kts) of reduction of model resistance was achieved. This research was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MEST) through GCRC-SOP (Grant No. 2011-0030013).

  15. Air trichloroethylene oxidation in a corona plasma-catalytic reactor

    Science.gov (United States)

    Masoomi-Godarzi, S.; Ranji-Burachaloo, H.; Khodadadi, A. A.; Vesali-Naseh, M.; Mortazavi, Y.

    2014-08-01

    The oxidative decomposition of trichloroethylene (TCE; 300 ppm) by non-thermal corona plasma was investigated in dry air at atmospheric pressure and room temperature, both in the absence and presence of catalysts including MnOx, CoOx. The catalysts were synthesized by a co-precipitation method. The morphology and structure of the catalysts were characterized by BET surface area measurement and Fourier Transform Infrared (FTIR) methods. Decomposition of TCE and distribution of products were evaluated by a gas chromatograph (GC) and an FTIR. In the absence of the catalyst, TCE removal is increased with increases in the applied voltage and current intensity. Higher TCE removal and CO2 selectivity is observed in presence of the corona and catalysts, as compared to those with the plasma alone. The results show that MnOx and CoOx catalysts can dissociate the in-plasma produced ozone to oxygen radicals, which enhances the TCE decomposition.

  16. Investigation of air entrapment and weld line defects in micro injection moulded thermoplastic elastomer micro rings

    DEFF Research Database (Denmark)

    Hasnaes, F.B.; Tosello, Guido; Calaon, Matteo;

    2015-01-01

    The micro injection moulding (μIM) process for the production of micro rings in thermoplastic elastomers (TPE) was investigated and optimized. The objective was to minimize the formation of air entrapments and the depth of micro weld line created on the surface of the TPE micro moulded rings...

  17. Multi-Dimensional Modeling of the Effects of Air Jet and Split Injection on Combustion and Emission of DirectInjection Diesel Engine

    Directory of Open Access Journals (Sweden)

    Mehdi Mansury

    2016-01-01

    Full Text Available One of the most important problems in reducing the emissions of diesel engines is to exchange between the oxides of nitrogen and soot emissions. Fuel multiple injection and air injection into combustion chamber are among the most powerful tools to concurrent reduction of these two emissions. In this research, the effect of multiple injection and air injection on combustion and emission parameters has been studied by AVL fire computational fluid dynamic software. Six states of base and modified combustion chamber have been studied in two different injection patterns including 90 (25 10 and 75 (25 25 mods. Results show that concurrent applying of both multiple injection and air injection methods has resulted in simultaneous reduction of oxide nitrogen and soot pollutants and a negligible loss is seen in the operational parameters of engine. Compression between six studied cases show that the 90 (25 10 mode of injection with modified combustion chamber is the optimum mode by decreasing of soot and oxides of nitrogen emissions about 29% and 20% respectively and 6% indicated power loss in compression to the base combustion chamber and single injection mode. The obtained results from the computational fluid dynamic code have been compared with the existing results in the technical literature and show acceptable behavior.

  18. Research on High Pressure Gas Injection As a Method of Fueling, Disruption Mitigation and Plasma Termination for Future Tokamak Reactors

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    High-pressure gas injection has proved to be an effective disruption mitigation technique in DⅢ-D tokamak experiments. If the method can be applied in future tokamak reactors not only for disruption mitigation but also for plasma termination and fueling, it will have an attractive advantage over the pellet and liquid injection from the viewpoint of economy and engineering design. In order to investigate the feasibility of this option, a study has been carried out with relevant parameters for conveying tubes of different geometrical sizes and for different gases.These parameters include pressure drop, lagger time after the valve's opening, gas diffusion in an ultra-high vacuum condition, and particle number contour.

  19. [Steam and air co-injection in removing TCE in 2D-sand box].

    Science.gov (United States)

    Wang, Ning; Peng, Sheng; Chen, Jia-Jun

    2014-07-01

    Steam and air co-injection is a newly developed and promising soil remediation technique for non-aqueous phase liquids (NAPLs) in vadose zone. In this study, in order to investigate the mechanism of the remediation process, trichloroethylene (TCE) removal using steam and air co-injection was carried out in a 2-dimensional sandbox with different layered sand structures. The results showed that co-injection perfectly improved the "tailing" effect compared to soil vapor extraction (SVE), and the remediation process of steam and air co-injection could be divided into SVE stage, steam strengthening stage and heat penetration stage. Removal ratio of the experiment with scattered contaminant area was higher and removal speed was faster. The removal ratios from the two experiments were 93.5% and 88.2%, and the removal periods were 83.9 min and 90.6 min, respectively. Steam strengthened the heat penetration stage. The temperature transition region was wider in the scattered NAPLs distribution experiment, which reduced the accumulation of TCE. Slight downward movement of TCE was observed in the experiment with TCE initially distributed in a fine sand zone. And such downward movement of TCE reduced the TCE removal ratio.

  20. Application of railgun principle to high-velocity hydrogen pellet injection for magnetic fusion reactor fueling

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.; Zhang, J.

    1992-01-01

    Three separate papers are included which report research progress during this period: (1) A new railgun configuration with perforated sidewalls, (2) development of a fuseless small-bore railgun for injection of high-speed hydrogen pellets into magnetically confined plasmas, and (3) controls and diagnostics on a fuseless railgun for solid hydrogen pellet injection.

  1. A new concept of high flow rate non-thermal plasma reactor for air treatment

    Energy Technology Data Exchange (ETDEWEB)

    Goujard, V.; Tatibouet, J.M. [Univ. de Poitiers, Poitiers (France). Centre national de la recherche scientifique, Laboratoire de Catalyse en Chimie Organique

    2010-07-01

    Although several non-thermal plasma reactors have been tested for air treatment at the laboratory scale, up-scaling to pilot or industrial scale remains a challenge because several parameters must be considered, such as hydrodynamic behaviour, maximum voltage in an industrial environment, and maintenance of the system. This paper presented a newly developed reactor which consists to a DBD plasma generated on individual supports that could be directly inserted in gas pipes where air flow must be treated. Elimination of 40 percent of 15 ppm of propene was obtained with a energy density as low as 10 J/L. The propene conversion increased when a manganese oxide based catalyst was used because the ozone produced by the plasma was used as an as an oxidant. A simple model of the plasma-catalyst reactor behaviour showed that more than 90 percent of propene conversion can be expected for an input energy density of 10 J/L and residual ozone concentration less than 100 ppb.

  2. Storage of LWR (light-water-reactor) spent fuel in air

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, L.E.; Charlot, L.A.; Coleman, J.E. (Pacific Northwest Lab., Richland, WA (USA)); Knoll, R.W. (Johnson Controls, Inc., Madison, WI (USA))

    1989-12-01

    An experimental program is being conducted at Pacific Northwest Laboratory (PNL) to determine the oxidation response of light-water-reactor (LWR) spent fuels under conditions appropriate to fuel storage in air. The program is designed to investigate several independent variables that might affect the oxidation behavior of spent fuel. Included are temperature (135 to 230{degree}C), fuel burnup (to about 34 MWd/kgM), reactor type (pressurized and boiling water reactors), moisture level in the air, and the presence of a high gamma field. In continuing tests with declad spent fuel and nonirradiated UO{sub 2} specimens, oxidation rates were monitored by weight-gain measurements and the microstructures of subsamples taken during the weighing intervals were characterized by several analytical methods. The oxidation behavior indicated by weight gain and time to form powder will be reported in Volume III of this series. The characterization results obtained from x-ray diffractometry, transmission electron microscopy, scanning electron microscopy, and Auger electron spectrometry of oxidized fuel samples are presented in this report. 28 refs., 21 figs., 3 tabs.

  3. Two Types of Novel Feedstock Injection Structures of the FCC Riser Reactor

    Institute of Scientific and Technical Information of China (English)

    范怡平; 蔡飞鹏; 时铭显; 徐春明

    2004-01-01

    Based on the analysis of flow characteristics of the FCC riser feedstock injection zone, two novel feedstock injection structures are put forward. By investigating three flow parameters in the feedstock injection zone under the three different structures (the traditional and the novel No. 1, No. 2 structures): the local density, the particle backmixng ratio, and the jet eigen-concentration, the flow feature under three structures were obtained. The experimental results demonstrate that the flow features under both proposed structures are obviously improved comparing with those under the traditional structure. Especially, the performance of the deflector-structured No. 2 is more desirable than that of No. 1.

  4. A PIV Study of Slotted Air Injection for Jet Noise Reduction

    Science.gov (United States)

    Henderson, Brenda S.; Wernet, Mark P.

    2012-01-01

    Results from acoustic and Particle Image Velocimetry (PIV) measurements are presented for single and dual-stream jets with fluidic injection on the core stream. The fluidic injection nozzles delivered air to the jet through slots on the interior of the nozzle at the nozzle trailing edge. The investigations include subsonic and supersonic jet conditions. Reductions in broadband shock noise and low frequency mixing noise were obtained with the introduction of fluidic injection on single stream jets. Fluidic injection was found to eliminate shock cells, increase jet mixing, and reduce turbulent kinetic energy levels near the end of the potential core. For dual-stream subsonic jets, the introduction of fluidic injection reduced low frequency noise in the peak jet noise direction and enhanced jet mixing. For dual-stream jets with supersonic fan streams and subsonic core streams, the introduction of fluidic injection in the core stream impacted the jet shock cell structure but had little effect on mixing between the core and fan streams.

  5. Experimental Investigation of Flow Resistance in a Coal Mine Ventilation Air Methane Preheated Catalytic Oxidation Reactor

    Directory of Open Access Journals (Sweden)

    Bin Zheng

    2015-01-01

    Full Text Available This paper reports the results of experimental investigation of flow resistance in a coal mine ventilation air methane preheated catalytic oxidation reactor. The experimental system was installed at the Energy Research Institute of Shandong University of Technology. The system has been used to investigate the effects of flow rate (200 Nm3/h to 1000 Nm3/h and catalytic oxidation bed average temperature (20°C to 560°C within the preheated catalytic oxidation reactor. The pressure drop and resistance proportion of catalytic oxidation bed, the heat exchanger preheating section, and the heat exchanger flue gas section were measured. In addition, based on a large number of experimental data, the empirical equations of flow resistance are obtained by the least square method. It can also be used in deriving much needed data for preheated catalytic oxidation designs when employed in industry.

  6. Interaction of Impurity (Li, Be, B and C)and Hydrogen Isotope Pellet Injection with Reactor-relevant Plasmas

    Institute of Scientific and Technical Information of China (English)

    Deng Baiquan(邓柏权); J.P.Allain; Peng Lilin(彭利林); Wang Xiaoyu(王晓宇); Chen Zhi(陈志); Yan Jiancheng(严建成)

    2005-01-01

    Based on the two-dimensional kinetic ablation theory of the hydrogen pellet ablation developed by Kuteev [B.V. Kuteev, Nuclear Fusion, 35 (1995) 431], an algorithm of erosion speed and ablation rate calculations for Li, Be, and B impurity pellets in reactor-relevant plasma has been derived. Results show compatibilities of lithium pellet injection used in α-particle diagnostics are positive in comparison with other solid impurity pellets (e.g. Be, B and C). Using the 2-D Kuteev lentil model, including kinetic effects, we find that currently existing pellet injection techniques will not meet core-fueling requirements for ITER-FEAT. A pressure as high as 254 MPa must be applied to a pellet accelerator with a 200 cm-long single-stage pneumatic gun, in order to accelerate a pellet with a radius rp0 =0.5 cm to a velocity of Vp0, 24×105 cm/s penetrating 100 cm into the ITER plasma core. Comparisons of pellet velocity- and radius-dependent penetration depth between the Neutral Gas Shielding and the Kuteev's models are made. However, we find that the isotopic effects can lead to a 33% lower pellet speed for solid DT, compared to an identical H2 pellet penetrating the same length in ITER-FEAT plasma, and our calculations show that HFS injection will much improve core fueling efficiency.

  7. Design of an Air-Sparged Tubular Photocatalytic Reactor for the Degradation of Methylene Blue: Mass-Transfer Limitation Studies

    Directory of Open Access Journals (Sweden)

    Ramoso Patrick

    2016-01-01

    Full Text Available An alternative process for the removal of organic pollutants in aqueous systems is photocatalysis. The challenges hindering its industrial use are electron-hole recombination and mass-transfer limitations. In order to address these problems, the objective of this study is to introduce air by sparging, and design an air-sparged photocatalytic reactor using titanium dioxide immobilized on borosilicate glass. The performance of the reactor on the removal of the model pollutant, methylene blue (MB, was evaluated and compared against the reactor operated without sparging. The effect of mass-transfer limitations on reactor performance was also investigated by regression using a Langmuir-type model equation. The sparged photocatalytic reactor was able to degrade 57% MB in 2 hours, an improvement of 40% compared to no sparging, and is comparable to similar reactors in literature, but with the advantage of using less expensive materials of construction and simpler immobilization technique. Mass-transfer limitation studies showed a good fitting of the initial reaction rate r, with r = 0.1399Q / (0.6120 + Q for the sparged operation, and Q is the volumetric flowrate of water (L/min. The model also shows that the reactor operates near the reaction-limited regime, and that the extent of mass-transfer limitation effects was reduced by the present reactor.

  8. Diffusive-thermal oscillations of rich premixed hydrogen-air flames in a microflow reactor

    Science.gov (United States)

    Miroshnichenko, Taisia; Gubernov, Vladimir; Maruta, Kaoru; Minaev, Sergei

    2016-03-01

    In this paper the dynamics of rich hydrogen-air flames in a microflow reactor with controlled temperature of the walls is investigated numerically using the thermal-diffusion model with two-step kinetics in one spatial dimension. It is found that as the parameters of the system are varied the sequence of bifurcation occurs leading to the formation of complex spatio-temporal patterns. These include pulsating, chaotic, mixed-mode and FREI (Flames with Repetitive Extinction and Ignition) oscillations. The critical parameter values for the existence of different dynamical regimes are found in terms of equivalence ratio and flow velocity.

  9. Solid reactors in sequential injection analysis: Recent trends in the environmental field

    DEFF Research Database (Denmark)

    Miró, Manuel; Hansen, Elo Harald

    2006-01-01

    The second generation of flow injection analysis (FIA), so-called sequential injection (SI), has already been consolidated as an attractive flowing-stream approach in several analytical fields, with advantages over the first generation of FIA in terms of automation, miniaturization, and sample...... applications, aiming to facilitate on-line chemical derivatization, chromatographic separation of target species, removal of interfering matrix compounds, or determination of trace levels of analyte via sorptive preconcentration procedures. In this context, the concept of renewable surfaces, so-called SI......-bead injection (SI-BI), used in either the jet-ring or lab-on-valve configurations, is presented as a front-end to many detectors. This article also outlines recent trends focused on exploiting SI as an automated tool for handling solid samples of environmental concern and accommodating dynamic fractionation...

  10. Simulation Analysis of Sludge Disposal and Volatile Fatty Acids Production from Gravity Pressure Reactor via Wet Air Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gwon Woo [Biomass and Waste Energy Laboratory, KIER, Daejeon (Korea, Republic of); Seo, Tae Wan; Lee, Hong-Cheol; Hwang, In-Ju [Environmental and Plant Engineering Research Institute, KICT, Goyang (Korea, Republic of)

    2016-04-15

    Efficacious wastewater treatment is essential for increasing sewage sludge volume and implementing strict environmental regulations. The operation cost of sludge treatment amounts up to 50% of the total costs for wastewater treatment plants, therefore, an economical sludge destruction method is crucially needed. Amid several destruction methods, wet air oxidation (WAO) can efficiently treat wastewater containing organic pollutants. It can be used not only for sludge destruction but also for useful by-product production. Volatile fatty acids (VFAs), one of many byproducts, is considered to be an important precursor of biofuel and chemical materials. Its high reaction condition has instituted the study of gravity pressure reactor (GPR) for an economical process of WAO to reduce operation cost. Simulation of subcritical condition was conducted using Aspen Plus with predictive Soave-Redlich-Kwong (PSRK) equation of state. Conjointly, simulation analysis for GPR depth, oxidizer type, sludge flow rate and oxidizer injection position was carried out. At GPR depth of 1000m and flow rate of 2 ton/h, the conversion and yield of VFAs were 92.02% and 0.17g/g, respectively.

  11. Phase characteristics of rare earth elements in metallic fuel for a sodium-cooled fast reactor by injection casting

    Science.gov (United States)

    Kuk, Seoung Woo; Kim, Ki Hwan; Kim, Jong Hwan; Song, Hoon; Oh, Seok Jin; Park, Jeong-Yong; Lee, Chan Bock; Youn, Young-Sang; Kim, Jong-Yun

    2017-04-01

    Uranium-zirconium-rare earth (U-Zr-RE) fuel slugs for a sodium-cooled fast reactor were manufactured using a modified injection casting method, and investigated with respect to their uniformity, distribution, composition, and phase behavior according to RE content. Nd, Ce, Pr, and La were chosen as four representative lanthanide elements because they are considered to be major RE components of fuel ingots after pyroprocessing. Immiscible layers were found on the top layers of the melt-residue commensurate with higher fuel slug RE content. Scanning electron microscopy-energy-dispersive X-ray spectroscopy (SEM-EDS) data showed that RE elements in the melt-residue were distributed uniformly throughout the fuel slugs. RE element agglomeration did not contaminate the fuel slugs but strongly affected the RE content of the slugs.

  12. Analysis of cracked core spray injection line piping from the Quad Cities Units 1 and 2 boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Diercks, D.R.

    1983-12-01

    Elbow assemblies and adjacent piping from the loops A and B core spray injection lines of Quad Cities Units 1 and 2 Boiling Water Reactors have been examined in order to determine the nature and causes of coolant leakages and flaw indications detected during hydrostatic tests and subsequent ultrasonic inspections. The elbow assemblies were found to contain multiple intergranular cracks in the weld heat-affected zones. The cracking was predominantly axial in orientation in the forged elbow and wedge components, whereas mixed axial and circumferential cracking was seen in the wrought piping pieces. In at least two instances, axial cracks completely penetrated the circumferential weld joining adjacent components. Based upon the observations made in the present study, the failures were attributed to intergranular stress corrosion cracking caused by the weld-induced sensitized microstructure and residual stresses present; dissolved oxygen in the reactor coolant apparently served as the corrosive species. The predominantly axial orientation of the cracks present in the forged components is believed to be related to the banded microstructure present in these components. The metallographic studies reported are supplemented by x-radiography, chemical analysis and mechanical test results, determinations of the degree of sensitization present, and measurements of weld metal delta ferrite content.

  13. Oxygen air enrichment through composite membrane: application to an aerated biofilm reactor

    Directory of Open Access Journals (Sweden)

    A. C. Cerqueira

    2013-12-01

    Full Text Available A highly permeable composite hollow-fibre membrane developed for air separation was used in a membrane aerated biofilm reactor (MABR. The composite membrane consisted of a porous support layer covered with a thin dense film, which was responsible for oxygen enrichment of the permeate stream. Besides oxygen enrichment capability, dense membranes overcome major operational problems that occur when using porous membranes for oxygen transfer to biofilms. Air flow rate and oxygen partial pressure inside the fibres were the variables used to adjust the oxygen transfer rate. The membrane aerated biofilm reactor was operated with hydraulic retention times (HRT ranging from 1 to 4 hours. High organic load removal rates, like 6.5 kg.m-3.d-1, were achieved due to oxygen transfer rates as high as 107 kg.m-3.d-1. High COD removals, with improved oxygen transfer efficiency, indicate that a MABR is a compact alternative to the conventional activated sludge process and that the selected membrane is suitable for further applications.

  14. Hot air injection for removal of dense, non-aqueous-phase liquid contaminants from low-permeability soils

    Energy Technology Data Exchange (ETDEWEB)

    Payne, F.C.

    1996-08-01

    The performance of soil vapor extraction systems for the recovery of volatile and semi-volatile organic compounds is potentially enhanced by the injection of heated air to increase soil temperatures. The soil temperature increase is expected to improve soil vapor extraction (SVE) performance by increasing target compound vapor pressures and by increasing soil permeability through drying. The vapor pressure increase due to temperature rise relieves the vapor pressure limit on the feasibility of soil vapor extraction. However, the system still requires an air flow through the soil system to deliver heat and to recover mobilized contaminants. Although the soil permeability can be increased through drying, very low permeability soils and low permeability soils adjacent to high permeability air flow pathways will be treated slowly, if at all. AR thermal enhancement methods face this limitation. Heated air injection offers advantages relative to other thermal techniques, including low capital and operation costs. Heated air injection is at a disadvantage relative to other thermal techniques due to the low heat capacity of air. To be effective, heated air injection requires that higher air flows be established than for steam injection or radio frequency heating. Heated air injection is not economically feasible for the stratified soil system developed as a standard test for this document. This is due to the inability to restrict heated air flow to the clay stratum when a low-resistance air flow pathway is available in the adjoining sand. However, the technology should be especially attractive, both technically and economically, for low-volatile contaminant recovery from relatively homogeneous soil formations. 16 refs., 2 tabs.

  15. Novel use of epidural catheter: Air injection for neuroprotection during radiofrequency ablation of spinal osteoid osteoma

    Science.gov (United States)

    Doctor, JR; Solanki, SL; Patil, VP; Divatia, JV

    2016-01-01

    Osteoid osteoma (OO) is a benign bone tumor, with a male-female ratio of approximately 2:1 and mainly affecting long bones. Ten percent of the lesions occur in the spine, mostly within the posterior elements. Treatment options for OO include surgical excision and percutaneous imaging-guided radiofrequency ablation (RFA). Lesions within the spine have an inherent risk of thermal damage to the vital structure because of proximity to the neural elements. We report a novel use of the epidural catheter for air injection for the neuroprotection of nerves close to the OO of the spine. A 12-year-old and 30 kg male child with an OO of the L3 vertebra was taken up for RFA. His preoperative examinations were within normal limits. The OO was very close to the L3 nerve root. Under general anesthesia, lumbar epidural catheter was placed in the L3-L4 space under imaging guidance. Ten ml of aliquots of air was injected under imaging guidance to avoid injury to the neural structures due to RFA. The air created a gap between neural elements and the tumor and served as an insulating material thereby protecting the neural elements from damage due to the RFA. Postoperatively, the patient did not develop any neurological deficit. PMID:27375396

  16. Instability Suppression in a Swirl-Stabilized Combustor Using Microjet Air Injection

    KAUST Repository

    LaBry, Zachary

    2010-01-04

    In this study, we examine the effectiveness of microjet air injection as a means of suppressing thermoacoustic instabilities in a swirl-stabilized, lean-premixed propane/air combustor. High-speed stereo PIV measurements, taken to explore the mechanism of combustion instability, reveal that the inner recirculation zone plays a dominant role in the coupling of acoustics and heat release that leads to combustion instability. Six microjet injector configurations were designed to modify the inner and outer recirculation zones with the intent of decoupling the mechanism leading to instability. Microjets that injected air into the inner recirculation zone, swirling in the opposite sense to the primary swirl were effective in suppressing combustion instability, reducing the overall sound pressure level by up to 17 dB within a certain window of operating conditions. Stabilization was achieved near an equivalence ratio of 0.65, corresponding to the region where the combustor transitions from a 40 Hz instability mode to a 110 Hz instability mode. PIV measurements made of the stabilized flow revealed significant modification of the inner recirculation zone and substantial weakening of the outer recirculation zone.

  17. Steam and air co-injection in removing residual TCE in unsaturated layered sandy porous media.

    Science.gov (United States)

    Peng, Sheng; Wang, Ning; Chen, Jiajun

    2013-10-01

    Steam and air co-injection is a promising technique for volatile and semi-volatile organic contaminant remediation in heterogeneous porous media. In this study, removal of trichloroethene (TCE) with steam-air co-injection was investigated through a series of 2D sandbox experiments with different layered sand structures, and through numerical simulations. The results show that a layered structure with coarse sand, in which steam and air convection are relatively rapid, resulted in a higher removal rate and a larger removal ratio than those observed in an experiment using finer sand; however, the difference was not significant, and the removal ratios from three experiments ranged from 85% to 94%. Slight downward movement of TCE was observed for Experiment 1 (TCE initially in a fine sand zone encased in a coarse sand), while no such movement was observed for Experiment 2 (TCE initially in two fine sand layers encased in a coarse sand) or 3 (TCE initially in a silty sand zone encased in a coarse sand). Simulations show accumulation of TCE at the interface of the layered sands, which indicates a capillary barrier effect in restraining the downward movement of TCE. This effect is illustrated further by a numerical experiment with homogeneous coarse sand, in which continuous downward TCE movement to the bottom of the sandbox was simulated. Another numerical experiment with higher water saturation was also conducted. The results illustrate a complicated influence of water saturation on TCE removal in a layered sand structure.

  18. Analysis of Incomplete Filling Defect for Injection-Molded Air Cleaner Cover Using Moldflow Simulation

    Directory of Open Access Journals (Sweden)

    Hyeyoung Shin

    2013-01-01

    Full Text Available A large-sized cover part for air cleaner was injection molded with ABS resin, and its incomplete filling defect was analyzed using commercial Moldflow software. To investigate the effect of processing temperature on incomplete filling defect, tensile properties, weight loss, and phase separation behavior of ABS resin were evaluated. The tensile properties of dumbbell samples were not changed up to 250°C and decreased significantly thereafter. SEM micrographs indicated no significant changes in the status of polybutadiene rubber phase below 250°C. These different test results indicated that ABS resin little affected the thermal decomposition in processing temperature range. The Moldflow simulation was performed using measured thickness of molded cover and actual mold design with the defects. As expected, the cover part showed unbalanced filling and incomplete sections. To improve these defects, two possible cases of hot runner system have been simulated. When applying modified 5-gate system, the maximum injection pressure was decreased approximately 5.5% more than that of actual gate system. In case of 6-gate system, the maximum injection pressure reduced by 23%, and the injection pressure required to fill is well within the range of the molding equipment. The maximum clamping force of 6-gate system was also significantly reduced than that of actual and 5-gate system.

  19. Contingency power for small turboshaft engines using water injection into turbine cooling air

    Science.gov (United States)

    Biesiadny, Thomas J.; Berger, Brett; Klann, Gary A.; Clark, David A.

    1987-01-01

    Because of one engine inoperative requirements, together with hot-gas reingestion and hot day, high altitude takeoff situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stresses is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.

  20. Contingency power for a small turboshaft engine by using water injection into turbine cooling air

    Science.gov (United States)

    Biesiadny, Thomas J.; Klann, Gary A.

    1992-01-01

    Because of one-engine-inoperative (OEI) requirements, together with hot-gas reingestion and hot-day, high-altitude take-off situations, power augmentation for multiengine rotorcraft has always been of critical interest. However, power augmentation by using overtemperature at the turbine inlet will shorten turbine life unless a method of limiting thermal and mechanical stress is found. A possible solution involves allowing the turbine inlet temperature to rise to augment power while injecting water into the turbine cooling air to limit hot-section metal temperatures. An experimental water injection device was installed in an engine and successfully tested. Although concern for unprotected subcomponents in the engine hot section prevented demonstration of the technique's maximum potential, it was still possible to demonstrate increases in power while maintaining nearly constant turbine rotor blade temperature.

  1. Catalytic wet air oxidation of phenol over CeO2-TiO2 catalyst in the batch reactor and the packed-bed reactor.

    Science.gov (United States)

    Yang, Shaoxia; Zhu, Wanpeng; Wang, Jianbing; Chen, Zhengxiong

    2008-05-30

    CeO2-TiO2 catalysts are prepared by coprecipitation method, and the activity and stability in the catalytic wet air oxidation (CWAO) of phenol are investigated in a batch reactor and packed-bed reactor. CeO2-TiO2 mixed oxides show the higher activity than pure CeO2 and TiO2, and CeO2-TiO2 1/1 catalyst displays the highest activity in the CWAO of phenol. In a batch reactor, COD and TOC removals are about 100% and 77% after 120 min in the CWAO of phenol over CeO2-TiO2 1/1 catalyst at reaction temperature of 150 degrees C, the total pressure of 3 MPa, phenol concentration of 1000 mg/L, and catalyst dosage of 4 g/L. In a packed-bed reactor using CeO2-TiO2 1/1 particle catalyst, over 91% COD and 80% TOC removals are obtained at the reaction temperature of 140 degrees C, the air total pressure of 3.5 MPa, the phenol concentration of 1000 mg/L for 100 h continue reaction. Leaching of metal ions of CeO2-TiO2 1/1 particle catalyst is very low during the continuous reaction. CeO2-TiO2 1/1 catalyst exhibits the excellent activity and stability in the CWAO of phenol.

  2. Reactor

    Science.gov (United States)

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  3. In situ secondary organic aerosol formation from ambient pine forest air using an oxidation flow reactor

    Directory of Open Access Journals (Sweden)

    B. B. Palm

    2015-11-01

    Full Text Available Ambient air was oxidized by OH radicals in an oxidation flow reactor (OFR located in a montane pine forest during the BEACHON-RoMBAS campaign to study biogenic secondary organic aerosol (SOA formation and aging. High OH concentrations and short residence times allowed for semi-continuous cycling through a large range of OH exposures ranging from hours to weeks of equivalent (eq. atmospheric aging. A simple model is derived and used to account for the relative time scales of condensation of low volatility organic compounds (LVOCs onto particles, condensational loss to the walls, and further reaction to produce volatile, non-condensing fragmentation products. More SOA production was observed in the OFR at nighttime (average 4 μg m-3 when LVOC fate corrected compared to daytime (average 1 μg m-3 when LVOC fate corrected, with maximum formation observed at 0.4–1.5 eq. days of photochemical aging. SOA formation followed a similar diurnal pattern to monoterpenes, sesquiterpenes, and toluene + p-cymene concentrations, including a substantial increase just after sunrise at 07:00 LT. Higher photochemical aging (> 10 eq. days led to a decrease in new SOA formation and a loss of preexisting OA due to heterogeneous oxidation followed by fragmentation and volatilization. When comparing two different commonly used methods of OH production in OFRs (OFR185 and OFR254, similar amounts of SOA formation were observed. We recommend the OFR185 mode for future forest studies. Concurrent gas-phase measurements of air after OH oxidation illustrate the decay of primary VOCs, production of small oxidized organic compounds, and net production at lower ages followed by net consumption of terpenoid oxidation products as photochemical age increased. New particle formation was observed in the reactor after oxidation, especially during times when precursor gas concentrations and SOA formation were largest. Approximately 6 times more SOA was formed in the reactor from OH

  4. High-Yield Lithium-Injection Fusion-Energy (HYLIFE) reactor

    Energy Technology Data Exchange (ETDEWEB)

    Blink, J.A.; Hogam, W.J.; Hovingh, J.; Meier, E.R.; Pitts, J.H. (comps.)

    1985-12-23

    The High-Yield Lithium-Injection Fusion Energy (HYLIFE) concept to convent inertial confinement fusion energy into electric power has undergone intensive research and refinement at LLNL since 1978. This paper reports on the final HYLIFE design, focusing on five major areas: the HYLIFE reaction chamber (which includes neutronics, liquid-metal jet-array hydrocynamics, and structural design), supporting systems, primary steam system and balance of plant, safety and environmental protection, and costs. An annotated bibliography of reports applicable to HYLIFE is also provided. We conclude that HYLIFE is a particularly viable concept for the safe, clean production of electrical energy. The liquid-metal jet array, HYLIFE's key design feature, protects the surrounding structural components from x-rays, fusion fuel-pellet debris, neutron damage and activation, and high temperatures and stresses, allowing the structure to last for the plant's entire 30-year lifetime without being replaced. 127 refs., 18 figs.

  5. Surface-catalyzed air oxidation reactions of hydrazines: Tubular reactor studies

    Science.gov (United States)

    Kilduff, Jan E.; Davis, Dennis D.; Koontz, Steven L.

    1988-01-01

    The surface-catalyzed air oxidation reactions of hydrazine, monomethylhydrazine, unsymmetrical dimethylhydrazine, symmetrical dimethylhydrazine, trimethylhydrazine and tetramethylhydrazine were investigated in a metal-powder packed turbular flow reactor at 55 plus or minus 3 C. Hydrazine was completely reacted on all surfaces studied. The major products of monomethylhydrazine (MMH) oxidation were methanol, methane and methyldiazene. The di-, tri- and tetra-methyl hydrazines were essentially unreactive under these conditions. The relative catalytic reactivities toward MMH are: Fe greater than Al2O3 greater than Ti greater than Zn greater than 316 SS greater than Cr greater than Ni greater than Al greater than 304L SS. A kinetic scheme and mechanism involving adsorption, oxidative dehydrogenation and reductive elimination reactions on a metal oxide surface are proposed.

  6. Liquid Circulation in a Multi-tube Air-lift Loop Reactor

    Institute of Scientific and Technical Information of China (English)

    刘永民; 刘铮; 穆克; 袁乃驹

    2000-01-01

    A multi-tube air-lift loop reactor (MT-ALR) is presented in this paper. Based on the energy conservation, a mathematical model describing the liquid circulation flow rate was developed, which was determined by gas velocity, the cross areas of riser and downcomer, gas hold-up and the local frictional loss coefficient. The experimental data indicate that either increase of gas flow rate or reduction of the downcomer diameter contributes to higher liquid circulation rate. The correlation between total and the local frictional loss coefficients was also established.Effects of gas flowrate in two risers and diameter of downcomer on the liquid circulation rate were examined. The value of total frictional loss coefficient was measured as a function of the cross area of downcomer and independent of the gas flow rate. The calculated results of liquid circulation rates agreed well with the experimental data with an average relative error of 9.6%.

  7. Development of an emergency air-cleaning system for liquid-metal reactors

    Energy Technology Data Exchange (ETDEWEB)

    Owen, R.K.

    1980-11-01

    A novel air cleaning concept has been developed for potential use in venting future commercial liquid metal fast breeder reactor containment buildings in the unlikely event of postulated core disruptive accidents. The passive concept consists of a submerged gravel bed to collect the bulk of particulate contaminates carried by the vented gas. A fibrous scrubber could be combined with the submerged gravel scrubber to enhance collection efficiencies for the smaller sized particles. The submerged gravel scrubber is unique in that water flow through the packed bed is induced by the gas flow, eliminating the need for an active liquid pump. In addition, design gas velocities through the packed bed are 10 to 20 times higher than for a conventional sand bed filter.

  8. Combustion of olive cake and coal in a bubbling fluidized bed with secondary air injection

    Energy Technology Data Exchange (ETDEWEB)

    Murat Varol; Aysel T. Atimtay [Middle East Technical University, Ankara (Turkey). Department of Environmental Engineering

    2007-07-15

    Combustion performances and emission characteristics of olive cake and coal are investigated in a bubbling fluidized bed. Flue gas concentrations of O{sub 2}, CO, SO{sub 2}, NOx, and total hydrocarbons (C{sub m}H{sub n}) were measured during combustion experiments. Operational parameters (excess air ratio {lambda}, secondary air injection) were changed and variation of pollutant concentrations and combustion efficiency with these operational parameters were studied. The temperature profiles measured along the combustor column was found higher in the freeboard for olive cake than coal due to combustion of hydrocarbons mostly in the freeboard. Combustion efficiencies in the range of 83.6-90.1% were obtained for olive cake with {lambda} of 1.12-2.30. For the setup used in this study, the optimum operating conditions with respect to NOx and SO{sub 2} emissions were found as 1.2 for {lambda}, and 50 L/min for secondary air flowrate for the combustion of olive cake. 10 refs., 8 figs., 3 tabs.

  9. Multi-dimensional modelling of spray, in-cylinder air motion and fuel–air mixing in a direct-injection engine

    Indian Academy of Sciences (India)

    N Abani; S Bakshi; R V Ravikrishna

    2007-10-01

    In this work, three-dimensional fuel–air mixing inside a conventional spark ignition engine cylinder is simulated under direct injection conditions. The motivation is to explore retrofitting of conventional engines for direct injection to take advantage of low emissions and high thermal efficiency of the direct injection concept. Fuel–air mixing is studied at different loads by developing and applying a model based on the Lagrangian-drop and Eulerian-fluid (LDEF) procedure for modelling the two-phase flow. The Taylor Analogy Breakup (TAB) model for modelling the hollow cone spray and appropriate models for droplet impingement, drag and evaporation are used. Moving boundary algorithm and two-way interaction between both phases are implemented. Fuel injection timing and quantity is varied with load. Results show that near-stoichiometric fuel–air ratio region is observed at different locations depending on the load. The model developed serves to predict the fuel–air mixing spatially and temporally, and hence is a useful tool in design and optimization of direct injection engines with regards to injector and spark plug locations. Simulations over a range of speed and load indicate the need for a novel ignition strategy involving dual spark plugs and also provide guidelines in deciding spark plug locations.

  10. The Influence of Slight Protuberances in a Micro-Tube Reactor on Methane/Moist Air Catalytic Combustion

    Directory of Open Access Journals (Sweden)

    Ruirui Wang

    2016-05-01

    Full Text Available The combustion characteristics of methane/moist air in micro-tube reactors with different numbers and shapes of inner wall protuberances are investigated in this paper. The micro-reactor with one rectangular protuberance (six different sizes was studied firstly, and it is shown that reactions near the protuberance are mainly controlled by diffusion, which has little effect on the outlet temperature and methane conversion rate. The formation of cavities and recirculation zones in the vicinity of protuberances leads to a significant increase of the Arrhenius reaction rate of CH4 and gas velocity. Next, among the six different simulated conditions (0–5 rectangular protuberances, the micro-tube reactor with five rectangular protuberances shows the highest methane conversion rate. Finally, the effect of protuberance shape on methane/moist air catalytic combustion is confirmed, and it is found that the protuberance shape has a greater influence on methane conversion rate than the number of protuberances. The methane conversion rate in the micro-tube decreases progressively in the following order: five triangular slight protuberances > five rectangular protuberances > five trapezoidal protuberances > smooth tube. In all tests of methane/moist air combustion conditions, the micro-tube with five triangular protuberances has the peak efficiency and is therefore recommended for high efficiency reactors.

  11. Spatial and energy distributions of skyshine neutron and gamma radiation from nuclear reactors on the ground-air boundary

    Energy Technology Data Exchange (ETDEWEB)

    Orlov, Y.; Netecha, M.E.; Vasiliev, A.P.; Avaev, V.N.; Vasiliev, G.A. [Research and Development Institute of Power Engineering, Moscow (Russian Federation); Zelensky, D.I.; Istomin, Y.L.; Cherepnin, Y.S. [Institute of Atomic Energy of the National Nuclear Center of the Republic of Kazakhstan, Semipalatinsk-21 (Kazakhstan); Nomura, Y. [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2000-03-01

    A set of measurements on skyshine radiation was conducted at two special research reactors. A broad range of detectors was used in the measurements to record neutron and gamma radiations. Dosimetric and radiometric field measurements of the neutrons and gamma quanta of the radiation scattered in the air were performed at distances of 50 to 1000 m from the reactor during different weather conditions. The neutron spectra in the energy range of 1 eV to 10 MeV and the gamma quanta spectra in the range of 0.1-10 MeV were measured. (author)

  12. On detonation dynamics in hydrogen-air-steam mixtures: Theory and application to Olkiluoto reactor building

    Energy Technology Data Exchange (ETDEWEB)

    Silde, A.; Lindholm, I. [VTT Energy, Espoo (Finland)

    2000-02-01

    This report consists of the literature study of detonation dynamics in hydrogen-air-steam mixtures, and the assessment of shock pressure loads in Olkiluoto 1 and 2 reactor building under detonation conditions using the computer program DETO developed during this work at VTT. The program uses a simple 1-D approach based on the strong explosion theory, and accounts for the effects of both the primary or incident shock and the first (oblique or normal) reflected shock from a wall structure. The code results are also assessed against a Balloon experiment performed at Germany, and the classical Chapman-Jouguet detonation theory. The whole work was carried out as a part of Nordic SOS-2.3 project, dealing with severe accident analysis. The initial conditions and gas distribution of the detonation calculations are based on previous severe accident analyses by MELCOR and FLUENT codes. According to DETO calculations, the maximum peak pressure in a structure of Olkiluoto reactor building room B60-80 after normal shock reflection was about 38.7 MPa if a total of 3.15 kg hydrogen was assumed to burned in a distance of 2.0 m from the wall structure. The corresponding pressure impulse was about 9.4 kPa-s. The results were sensitive to the distance used. Comparison of the results to classical C-J theory and the Balloon experiments suggested that DETO code represented a conservative estimation for the first pressure spike under the shock reflection from a wall in Olkiluoto reactor building. Complicated 3-D phenomena of shock wave reflections and focusing, nor the propagation of combustion front behind the shock wave under detonation conditions are not modeled in the DETO code. More detailed 3-D analyses with a specific detonation code are, therefore, recommended. In spite of the code simplifications, DETO was found to be a beneficial tool for simple first-order assessments of the structure pressure loads under the first reflection of detonation shock waves. The work on assessment

  13. Experimental coupling and modelling of wet air oxidation and packed-bed biofilm reactor as an enhanced phenol removal technology.

    Science.gov (United States)

    Minière, Marine; Boutin, Olivier; Soric, Audrey

    2017-01-25

    Experimental coupling of wet air oxidation process and aerobic packed-bed biofilm reactor is presented. It has been tested on phenol as a model refractory compound. At 30 MPa and 250 °C, wet air oxidation batch experiments led to a phenol degradation of 97% and a total organic carbon removal of 84%. This total organic carbon was mainly due to acetic acid. To study the interest of coupling processes, wet air oxidation effluent was treated in a biological treatment process. This step was made up of two packed-bed biofilm reactors in series: the first one acclimated to phenol and the second one to acetic acid. After biological treatment, phenol and total organic carbon removal was 99 and 97% respectively. Thanks to parameters from literature, previous studies (kinetic and thermodynamic) and experimental data from this work (hydrodynamic parameters and biomass characteristics), both treatment steps were modelled. This modelling allows the simulation of the coupling process. Experimental results were finally well reproduced by the continuous coupled process model: relative error on phenol removal efficiency was 1 and 5.5% for wet air oxidation process and packed-bed biofilm reactor respectively.

  14. Determination of the Clean Air Delivery Rate (CADR) of Photocatalytic Oxidation (PCO) Purifiers for Indoor Air Pollutants Using a Closed-Loop Reactor. Part I: Theoretical Considerations.

    Science.gov (United States)

    Dumont, Éric; Héquet, Valérie

    2017-03-06

    This study demonstrated that a laboratory-scale recirculation closed-loop reactor can be an efficient technique for the determination of the Clean Air Delivery Rate (CADR) of PhotoCatalytic Oxidation (PCO) air purification devices. The recirculation closed-loop reactor was modeled by associating equations related to two ideal reactors: one is a perfectly mixed reservoir and the other is a plug flow system corresponding to the PCO device itself. Based on the assumption that the ratio between the residence time in the PCO device and the residence time in the reservoir τP/τR tends to 0, the model highlights that a lab closed-loop reactor can be a suitable technique for the determination of the efficiency of PCO devices. Moreover, if the single-pass removal efficiency is lower than 5% of the treated flow rate, the decrease in the pollutant concentration over time can be characterized by a first-order decay model in which the time constant is proportional to the CADR. The limits of the model are examined and reported in terms of operating conditions (experiment duration, ratio of residence times, and flow rate ranges).

  15. PREDICTION OF GAS HOLD-UP IN A COMBINED LOOP AIR LIFT FLUIDIZED BED REACTOR USING NEWTONIAN AND NON-NEWTONIAN LIQUIDS

    OpenAIRE

    2011-01-01

    Many experiments have been conducted to study the hydrodynamic characteristics of column reactors and loop reactors. In this present work, a novel combined loop airlift fluidized bed reactor was developed to study the effect of superficial gas and liquid velocities, particle diameter, fluid properties on gas holdup by using Newtonian and non-Newtonian liquids. Compressed air was used as gas phase. Water, 5% n-butanol, various concentrations of glycerol (60 and 80%) were used as Newtonian liqu...

  16. Effect of conditions of air-lift type reactor work on cadmium adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Filipkowska, Urszula; Szymczyk, Paula Szymczyk; Kuczajowska-Zadrozna, Malgorzata; Joezwiak, Tomasz [University of Warmia and Mazury in Olsztyn, Warszawska (Poland)

    2015-10-15

    We investigated cadmium sorption by activated sludge immobilized in 1.5% sodium alginate with 0.5% polyvinyl alcohol. Experiments were conducted in an air-lift type reactor at the constant concentration of biosorbent reaching 5 d.m./dm{sup 3}, at three flow rates: 0.1, 0.25 and 0.5 V/h, and at three concentrations of the inflowing cadmium solution: 10, 25 and 50mg/dm{sup 3}. Analyses determined adsorption capacity of activated sludge immobilized in alginate as well as reactor's work time depending on flow rate and initial concentration of the solution. Results achieved were described with the use of Thomas model. The highest adsorption capacity of the sorbent (determined from the Thomas model), i.e., 200.2mg/g d.m. was obtained at inflowing solution concentration of 50mg/dm{sup 3} and flow rate of 0.1V/h, whereas the lowest one reached 53.69mg/g d.m. at the respective values of 10mg/dm{sup 3} and 0.1 V/h. Analyses were also carried out to determine the degree of biosorbent adsorption capacity utilization at the assumed effectiveness of cadmium removal - at the breakthrough point (C=0.05*C{sub 0}) and at adsorption capacity depletion point (C−0.9*C0). The study demonstrated that the effectiveness of adsorption capacity utilization was influenced by both the concentration and flow rate of the inflowing solution. The highest degree of sorbent capacity utilization was noted at inflowing solution concentration of 50mg/dm{sup 3} and flow rate of 0.1 V/h, whereas the lowest one at the respective values of 10mg/dm{sup 3} and 0.1 V/h. The course of the process under dynamic conditions was evaluated using coefficients of tangent inclination - a, at point C/C{sub 0}=1/2. A distinct tendency was demonstrated in changes of tangent slope a as affected by the initial concentration of cadmium and flow rate of the solution. The highest values of a coefficient were achieved at the flow rate of 0.1 V/h and initial cadmium concentration of 50mg/dm{sup 3}.

  17. Uncertainties in Air Exchange using Continuous-Injection, Long-Term Sampling Tracer-Gas Methods

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.; Walker, Iain S.; Lunden, Melissa M.

    2013-12-01

    The PerFluorocarbon Tracer (PFT) method is a low-cost approach commonly used for measuring air exchange in buildings using tracer gases. It is a specific application of the more general Continuous-Injection, Long-Term Sampling (CILTS) method. The technique is widely used but there has been little work on understanding the uncertainties (both precision and bias) associated with its use, particularly given that it is typically deployed by untrained or lightly trained people to minimize experimental costs. In this article we will conduct a first-principles error analysis to estimate the uncertainties and then compare that analysis to CILTS measurements that were over-sampled, through the use of multiple tracers and emitter and sampler distribution patterns, in three houses. We find that the CILTS method can have an overall uncertainty of 10-15percent in ideal circumstances, but that even in highly controlled field experiments done by trained experimenters expected uncertainties are about 20percent. In addition, there are many field conditions (such as open windows) where CILTS is not likely to provide any quantitative data. Even avoiding the worst situations of assumption violations CILTS should be considered as having a something like a ?factor of two? uncertainty for the broad field trials that it is typically used in. We provide guidance on how to deploy CILTS and design the experiment to minimize uncertainties.

  18. Design considerations and experimental observations for the TAMU air-cooled reactor cavity cooling system for the VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Sulaiman, S. A., E-mail: shamsulamri@tamu.edu; Dominguez-Ontiveros, E. E., E-mail: elvisdom@tamu.edu; Alhashimi, T., E-mail: jbudd123@tamu.edu; Budd, J. L., E-mail: dubaiboy@tamu.edu; Matos, M. D., E-mail: mailgoeshere@gmail.com; Hassan, Y. A., E-mail: yhasssan@tamu.edu [Department of Nuclear Engineering, Texas A and M University, College Station, TX, 77843-3133 (United States)

    2015-04-29

    The Reactor Cavity Cooling System (RCCS) is a promising passive decay heat removal system for the Very High Temperature Reactor (VHTR) to ensure reliability of the transfer of the core residual and decay heat to the environment under all off-normal circumstances. A small scale experimental test facility was constructed at Texas A and M University (TAMU) to study pertinent multifaceted thermal hydraulic phenomena in the air-cooled reactor cavity cooling system (RCCS) design based on the General Atomics (GA) concept for the Modular High Temperature Gas-Cooled Reactor (MHTGR). The TAMU Air-Cooled Experimental Test Facility is ⅛ scale from the proposed GA-MHTGR design. Groundwork for experimental investigations focusing into the complex turbulence mixing flow behavior inside the upper plenum is currently underway. The following paper illustrates some of the chief design considerations used in construction of the experimental test facility, complete with an outline of the planned instrumentation and data acquisition methods. Computational Fluid Dynamics (CFD) simulations were carried out to furnish some insights on the overall behavior of the air flow in the system. CFD simulations assisted the placement of the flow measurement sensors location. Preliminary experimental observations of experiments at 120oC inlet temperature suggested the presence of flow reversal for cases involving single active riser at both 5 m/s and 2.25 m/s, respectively and four active risers at 2.25 m/s. Flow reversal may lead to thermal stratification inside the upper plenum by means of steady state temperature measurements. A Particle Image Velocimetry (PIV) experiment was carried out to furnish some insight on flow patterns and directions.

  19. Design considerations and experimental observations for the TAMU air-cooled reactor cavity cooling system for the VHTR

    Science.gov (United States)

    Sulaiman, S. A.; Dominguez-Ontiveros, E. E.; Alhashimi, T.; Budd, J. L.; Matos, M. D.; Hassan, Y. A.

    2015-04-01

    The Reactor Cavity Cooling System (RCCS) is a promising passive decay heat removal system for the Very High Temperature Reactor (VHTR) to ensure reliability of the transfer of the core residual and decay heat to the environment under all off-normal circumstances. A small scale experimental test facility was constructed at Texas A&M University (TAMU) to study pertinent multifaceted thermal hydraulic phenomena in the air-cooled reactor cavity cooling system (RCCS) design based on the General Atomics (GA) concept for the Modular High Temperature Gas-Cooled Reactor (MHTGR). The TAMU Air-Cooled Experimental Test Facility is ⅛ scale from the proposed GA-MHTGR design. Groundwork for experimental investigations focusing into the complex turbulence mixing flow behavior inside the upper plenum is currently underway. The following paper illustrates some of the chief design considerations used in construction of the experimental test facility, complete with an outline of the planned instrumentation and data acquisition methods. Computational Fluid Dynamics (CFD) simulations were carried out to furnish some insights on the overall behavior of the air flow in the system. CFD simulations assisted the placement of the flow measurement sensors location. Preliminary experimental observations of experiments at 120oC inlet temperature suggested the presence of flow reversal for cases involving single active riser at both 5 m/s and 2.25 m/s, respectively and four active risers at 2.25 m/s. Flow reversal may lead to thermal stratification inside the upper plenum by means of steady state temperature measurements. A Particle Image Velocimetry (PIV) experiment was carried out to furnish some insight on flow patterns and directions.

  20. Numerical study of cavitation and pinning effects due to gas injection through a bed of particles: application to a radial-flow moving-bed reactor

    Science.gov (United States)

    Vinay, Guillaume; Vasquez, Felaurys; Richard, Florence; Applied Mechanics Team

    2016-11-01

    In the petroleum and chemical industries, radial-flow moving-bed reactors are used to carry out chemical reactions such as catalytic reforming. Radial-flow reactors provide high capacity without increased pressure drop or greatly increased vessel dimensions. This is done by holding the catalyst in a basket forming an annular bed, and causing the gas to flow radially between the outer annulus and the central tube. Catalyst enter the top of the reactor, move through the vessel by gravity to the bottom where it is removed and then regenerated. Within the catalytic bed, the combined effects of particles motion and radial injection of the gas may lead to cavitation and pinning phenomenon that may clearly damage the reactor. We study both cavitation and pinning effects using an in-house numerical software, named PeliGRIFF (www.peligriff.com/), designed to simulate particulate flows at different scales; from the particle scale, where fluid/particle interactions are directly solved, to the particles suspension scale where the fluid/solid interactions are modeled. In the past, theoretical and experimental studies have already been conducted in order to understand the way cavitation and pinning occur. Here, we performed simulations involving a few thousands of particles aiming at reproducing experimental experiments. We will present comparisons between our numerical results and experimental results in terms of pressure drop, velocity, porosity.

  1. Development of a Prototype Algal Reactor for Removing CO2 from Cabin Air

    Science.gov (United States)

    Patel, Vrajen; Monje, Oscar

    2013-01-01

    Controlling carbon dioxide in spacecraft cabin air may be accomplished using algal photobioreactors (PBRs). The purpose of this project was to evaluate the use of a commercial microcontroller, the Arduino Mega 2560, for measuring key photioreactor variables: dissolved oxygen, pH, temperature, light, and carbon dioxide. The Arduino platform is an opensource physical computing platform composed of a compact microcontroller board and a C++/C computer language (Arduino 1.0.5). The functionality of the Arduino platform can be expanded by the use of numerous add-ons or 'shields'. The Arduino Mega 2560 was equipped with the following shields: datalogger, BNC shield for reading pH sensor, a Mega Moto shield for controlling CO2 addition, as well as multiple sensors. The dissolved oxygen (DO) probe was calibrated using a nitrogen bubbling technique and the pH probe was calibrated via an Omega pH simulator. The PBR was constructed using a 2 L beaker, a 66 L box for addition of CO2, a micro porous membrane, a diaphragm pump, four 25 watt light bulbs, a MasterFiex speed controller, and a fan. The algae (wild type Synechocystis PCC6803) was grown in an aerated flask until the algae was dense enough to used in the main reactor. After the algae was grown, it was transferred to the 2 L beaker where CO2 consumption and O2 production was measured using the microcontroller sensor suite. The data was recorded via the datalogger and transferred to a computer for analysis.

  2. Embedded computer controlled premixing inline injection system for air-assisted variable-rate sprayers

    Science.gov (United States)

    Improvements to reduce chemical waste and environmental pollution for variable-rate sprayers used in orchards and ornamental nurseries require inline injection techniques. A microprocessor controlled premixing inline injection system implementing a ceramic piston chemical metering pump and two small...

  3. Flow structures in a lean-premixed swirl-stabilized combustor with microjet air injection

    KAUST Repository

    LaBry, Zachary A.

    2011-01-01

    The major challenge facing the development of low-emission combustors is combustion instability. By lowering flame temperatures, lean-premixed combustion has the potential to nearly eliminate emissions of thermally generated nitric oxides, but the chamber acoustics and heat release rate are highly susceptible to coupling in ways that lead to sustained, high-amplitude pressure oscillations, known as combustion instability. At different operating conditions, different modes of instability are observed, corresponding to particular flame shapes and resonant acoustic modes. Here we show that in a swirl-stabilized combustor, these instability modes also correspond to particular interactions between the flame and the inner recirculation zone. Two stable and two unstable modes are examined. At lean equivalence ratios, a stable conical flame anchors on the upstream edge of the inner recirculation zone and extends several diameters downstream along the wall. At higher equivalence ratios, with the injection of counter-swirling microjet air flow, another stable flame is observed. This flame is anchored along the upstream edge of a stronger recirculation zone, extending less than one diameter downstream along the wall. Without the microjets, a stationary instability coupled to the 1/4 wave mode of the combustor shows weak velocity oscillations and a stable configuration of the inner and outer recirculation zones. Another instability, coupled to the 3/4 wave mode of the combustor, exhibits periodic vortex breakdown in which the core flow alternates between a columnar mode and a vortex breakdown mode. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  4. Removal of NAPLs from the unsaturated zone using steam: prevention of downward migration by injecting mixtures of steam and air

    DEFF Research Database (Denmark)

    Schmidt, R.; Gudbjerg, Jacob; Sonnenborg, Torben Obel

    2002-01-01

    Steam injection for remediation of porous media contaminated by nonaqueous phase liquids has been shown to be a potentially efficient technology. There is, however, concern that the technique may lead to downward migration of separate phase contaminant. In this work, a modification of the steam i......, three mechanisms were identified and it was demonstrated how the effectiveness of these mechanisms depended on the air-to-steam mixing ratio. D 2002 Elsevier Science B.V. All rights reserved....

  5. Pressurized air injection in an axial hydro-turbine model for the mitigation of tip leakage cavitation

    Science.gov (United States)

    Rivetti, A.; Angulo, M.; Lucino, C.; Liscia, S.

    2015-12-01

    Tip leakage vortex cavitation in axial hydro-turbines may cause erosion, noise and vibration. Damage due to cavitation can be found at the tip of the runner blades on the low pressure side and the discharge ring. In some cases, the erosion follows an oscillatory pattern that is related to the number of guide vanes. That might suggest that a relationship exists between the flow through the guide vanes and the tip vortex cavitating core that induces this kind of erosion. On the other hand, it is known that air injection has a beneficial effect on reducing the damage by cavitation. In this paper, a methodology to identify the interaction between guide vanes and tip vortex cavitation is presented and the effect of air injection in reducing this particular kind of erosion was studied over a range of operating conditions on a Kaplan scale model. It was found that air injection, at the expense of slightly reducing the efficiency of the turbine, mitigates the erosive potential of tip leakage cavitation, attenuates the interaction between the flow through the guide vanes and the tip vortex and decreases the level of vibration of the structural components.

  6. Hot-wire air flow meter for gasoline fuel-injection system. Calculation of air mass in cylinder during transient condition; Gasoline funsha system yo no netsusenshiki kuki ryuryokei. Kato untenji no cylinder juten kukiryo no keisan

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Y. [Hitachi Car Engineering, Ltd., Tokyo (Japan); Nishimura, Y.; Osuga, M.; Yamauchi, T. [Hitachi, Ltd., Tokyo (Japan)

    1997-10-01

    Air flow characteristics of hot-wire air flow meters for gasoline fuel-injection systems with supercharging and exhaust gas recycle during transient conditions were investigated to analyze a simple method for calculating air mass in cylinder. It was clarified that the air mass in cylinder could be calculated by compensating for the change of air mass in intake system by using aerodynamic models of intake system. 3 refs., 6 figs., 1 tab.

  7. Investigation of co-combustion of coal and olive cake in a bubbling fluidized bed with secondary air injection

    Energy Technology Data Exchange (ETDEWEB)

    Aysel T. Atimtay; Murat Varol [Middle East Technical University, Ankara (Turkey). Department of Environmental Engineering

    2009-06-15

    In this study, a bubbling fluidized bed of 102 mm inside diameter and 900 mm height was used to burn olive cake and coal mixtures. Tuncbilek lignite coal was used together with olive cake for the co-combustion tests. Combustion performances and emission characteristics of olive cake and coal mixtures were investigated. Various co-combustion tests of coal with olive cake were conducted with mixing ratios of 25%, 50%, and 75% of olive cake by weight in the mixture. Operational parameters (excess air ratio, secondary air injection) were changed and variation of pollutant concentrations and combustion efficiency with these operational parameters were studied. The results were compared with that of the combustion of olive cake and coal. Flue gas concentrations of O{sub 2}, CO, SO{sub 2}, NOx, and total hydrocarbons (CmHn) were measured during combustion tests. For the setup used in this study, the optimum operating conditions with respect to NOx and SO{sub 2} emissions were found to be 1.35 for excess air ratio, and 30 L/min for secondary air flowrate for the combustion of 75 wt% olive cake and 25 wt% coal mixture. The highest combustion efficiency of 99.8% was obtained with an excess air ratio of 1.7, secondary air flow rate of 40 L/min for the combustion of 25 wt% olive cake and 75 wt% coal mixture. 11 refs., 8 figs., 3 tabs.

  8. Catalytic wet-air oxidation of lignin in a three-phase reactor with aromatic aldehyde production

    Directory of Open Access Journals (Sweden)

    Sales F.G.

    2004-01-01

    Full Text Available In the present work a process of catalytic wet air oxidation of lignin obtained from sugar-cane bagasse is developed with the objective of producing vanillin, syringaldehyde and p-hydroxybenzaldehyde in a continuous regime. Palladium supported on g-alumina was used as the catalyst. The reactions in the lignin degradation and aldehyde production were described by a kinetic model as a system of complex parallel and series reactions, in which pseudo-first-order steps are found. For the purpose of producing aromatic aldehydes in continuous regime, a three-phase fluidized reactor was built, and it was operated using atmospheric air as the oxidizer. The best yield in aromatic aldehydes was of 12%. The experimental results were compatible with those values obtained by the pseudo-heterogeneous axial dispersion model (PHADM applied to the liquid phase.

  9. Determination of the Clean Air Delivery Rate (CADR) of Photocatalytic Oxidation (PCO) Purifiers for Indoor Air Pollutants Using a Closed-Loop Reactor. Part II: Experimental Results.

    Science.gov (United States)

    Héquet, Valérie; Batault, Frédéric; Raillard, Cécile; Thévenet, Frédéric; Le Coq, Laurence; Dumont, Éric

    2017-03-06

    The performances of a laboratory PhotoCatalytic Oxidation (PCO) device were determined using a recirculation closed-loop pilot reactor. The closed-loop system was modeled by associating equations related to two ideal reactors: a perfectly mixed reservoir with a volume of VR = 0.42 m³ and a plug flow system corresponding to the PCO device with a volume of VP = 5.6 × 10(-3) m³. The PCO device was composed of a pleated photocatalytic filter (1100 cm²) and two 18-W UVA fluorescent tubes. The Clean Air Delivery Rate (CADR) of the apparatus was measured under different operating conditions. The influence of three operating parameters was investigated: (i) light irradiance I from 0.10 to 2.0 mW·cm(-2); (ii) air velocity v from 0.2 to 1.9 m·s(-1); and (iii) initial toluene concentration C₀ (200, 600, 1000 and 4700 ppbv). The results showed that the conditions needed to apply a first-order decay model to the experimental data (described in Part I) were fulfilled. The CADR values, ranging from 0.35 to 3.95 m³·h(-1), were mainly dependent on the light irradiance intensity. A square root influence of the light irradiance was observed. Although the CADR of the PCO device inserted in the closed-loop reactor did not theoretically depend on the flow rate (see Part I), the experimental results did not enable the confirmation of this prediction. The initial concentration was also a parameter influencing the CADR, as well as the toluene degradation rate. The maximum degradation rate rmax ranged from 342 to 4894 ppbv/h. Finally, this study evidenced that a recirculation closed-loop pilot could be used to develop a reliable standard test method to assess the effectiveness of PCO devices.

  10. Assessment of RELAP5/MOD3.1 for gravity-driven injection experiment in the core makeup tank of the CARR Passive Reactor (CP-1300)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.I.; No, H.C. [Korea Advanced Inst. of Science and Technology, Yusung, Taejon (Korea, Republic of). Nuclear Engineering Dept.; Bang, Y.S.; Kim, H.J. [Korea Inst. of Nuclear Safety, Yusung Taejon (Korea, Republic of). Advanced Reactor Dept.

    1996-10-01

    The objective of the present work is to improve the analysis capability of RELAP5/MOD3.1 on the direct contact condensation in the core makeup tank (CMT) of passive high-pressure injection system (PHPIS) in the CARR Passive Reactor (CP-1300). The gravity-driven injection experiment is conducted by using a small scale test facility to identify the parameters having significant effects on the gravity-driven injection and the major condensation modes. It turns out that the larger the water subcooling is, the more initiation of injection is delayed, and the sparger and the natural circulation of the hot water from the steam generator accelerate the gravity-driven injection. The condensation modes are divided into three modes: sonic jet, subsonic jet, and steam cavity. RELAP5/MOD3.1 is chosen to evaluate the cod predictability on the direct contact condensation in the CMT. It is found that the predictions of MOD3.1 are in better agreement with the experimental data than those of MOD3.0. From the nodalization study of the test section, the 1-node model shows better agreement with the experimental data than the multi-node models. RELAP5/MOD3.1 identifies the flow regime of the test section as vertical stratification. However, the flow regime observed in the experiment is the subsonic jet with the bubble having the vertical cone shape. To accurately predict the direct contact condensation in the CMT with RELAP5/MOD3.1, it is essential that a new set of the interfacial heat transfer coefficients and a new flow regime map for direct contact condensation in the CMT be developed.

  11. Experimental study on thermal-hydraulic behaviors of a pressure balanced coolant injection system for a passive safety light water reactor JPSR

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, Takashi; Watanabe, Hironori; Araya, Fumimasa; Nakajima, Katsutoshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Iwamura, Takamichi; Murao, Yoshio

    1998-02-01

    A conceptual design study of a passive safety light water reactor JPSR has been performed at Japan Atomic Energy Research Institute JAERI. A pressure balanced coolant injection experiment has been carried out, with an objective to understand thermal-hydraulic characteristics of a passive coolant injection system which has been considered to be adopted to JPSR. This report summarizes experimental results and data recorded in experiment run performed in FY. 1993 and 1994. Preliminary experiments previously performed are also briefly described. As the results of the experiment, it was found that an initiation of coolant injection was delayed with increase in a subcooling in the pressure balance line. By inserting a separation device which divides the inside of core make-up tank (CMT) into several small compartments, a diffusion of a high temperature region formed just under the water surface was restrained and then a steam condensation was suppressed. A time interval from an uncovery of the pressure balance line to the initiation of the coolant injection was not related by a linear function with a discharge flow rate simulating a loss-of-coolant accident (LOCA) condition. The coolant was injected intermittently by actuation of a trial fabricated passive valve actuated by pressure difference for the present experiment. It was also found that the trial passive valve had difficulties in setting an actuation set point and vibrations noises and some fraction of the coolant was remained in CMT without effective use. A modification was proposed for resolving these problems by introducing an anti-closing mechanism. (author)

  12. Thermal-Hydraulic Analysis of an Experimental Reactor Cavity Cooling System with Air. Part I: Experiments; Part II: Separate Effects Tests and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Corradin, Michael [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Anderson, M. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Muci, M. [Univ. of Wisconsin, Madison, WI (United States). Dept. of Engineering Physics; Hassan, Yassin [Texas A & M Univ., College Station, TX (United States); Dominguez, A. [Texas A & M Univ., College Station, TX (United States); Tokuhiro, Akira [Univ. of Idaho, Moscow, ID (United States); Hamman, K. [Univ. of Idaho, Moscow, ID (United States)

    2014-10-15

    This experimental study investigates the thermal hydraulic behavior and the heat removal performance for a scaled Reactor Cavity Cooling System (RCCS) with air. A quarter-scale RCCS facility was designed and built based on a full-scale General Atomics (GA) RCCS design concept for the Modular High Temperature Gas Reactor (MHTGR). The GA RCCS is a passive cooling system that draws in air to use as the cooling fluid to remove heat radiated from the reactor pressure vessel to the air-cooled riser tubes and discharged the heated air into the atmosphere. Scaling laws were used to preserve key aspects and to maintain similarity. The scaled air RCCS facility at UW-Madison is a quarter-scale reduced length experiment housing six riser ducts that represent a 9.5° sector slice of the full-scale GA air RCCS concept. Radiant heaters were used to simulate the heat radiation from the reactor pressure vessel. The maximum power that can be achieved with the radiant heaters is 40 kW with a peak heat flux of 25 kW per meter squared. The quarter-scale RCCS was run under different heat loading cases and operated successfully. Instabilities were observed in some experiments in which one of the two exhaust ducts experienced a flow reversal for a period of time. The data and analysis presented show that the RCCS has promising potential to be a decay heat removal system during an accident scenario.

  13. CDF modeling of flow and transport processes in the reactor core of a modular high temperature reactor during an air ingress accident; CFD-Modellierung der Stroemungs- und Transportprozesse im Reaktorkern eines modularen Hochtemperaturreaktors waehrend eines Lufteinbruchstoerfalls

    Energy Technology Data Exchange (ETDEWEB)

    Baggemann, Johannes

    2015-05-22

    Generation IV of reactor design is supposed to include inherent safety systems that allow accident management using passive processes (without external energy). The VTR (very high temperature reactor) is graphite moderated with helium cooling. The design concept assumes that in any operational situation the after heat is removed by thermal conduction and radiation. Air ingress is beyond-design accident assuming a leak in the primary circuit triggering oxygen reaction with the hot graphite that could damage the barriers for fission product release. Using 3D CFD (computational fluid dynamics) codes the air ingress scenario is simulated, the flow and transport processes in the reactor core are analyzed. For validation of the modeling heat transport processes were investigated in specific test facilities.

  14. Secondary Organic Aerosol Formation from Ambient Air in an Oxidation Flow Reactor at GoAmazon2014/5

    Science.gov (United States)

    Palm, Brett B.; de Sa, Suzane S.; Campuzano-Jost, Pedro; Day, Douglas A.; Hu, Weiwei; Seco, Roger; Park, Jeong-Hoo; Guenther, Alex; Kim, Saewung; Brito, Joel; Wurm, Florian; Artaxo, Paulo; Yee, Lindsay; Isaacman-VanWertz, Gabrial; Goldstein, Allen; Newburn, Matt K.; Lizabeth Alexander, M.; Martin, Scot T.; Brune, William H.; Jimenez, Jose L.

    2016-04-01

    During GoAmazon2014/5, ambient air was exposed to controlled concentrations of OH or O3 in situ using an oxidation flow reactor (OFR). Oxidation ranged from hours-several weeks of aging. Oxidized air was sampled by several instruments (e.g., HR-AMS, ACSM, PTR-TOF-MS, SMPS, CCN) at both the T3 site (IOP1: Feb 1-Mar 31, 2014, and IOP2: Aug 15-Oct 15, 2014) and T2 site (between IOPs and into 2nd IOP). The oxidation of ambient air in the OFR led to substantial and variable secondary organic aerosol (SOA) formation from any SOA-precursor gases, known and unknown, that entered the OFR. In general, more SOA was produced during the nighttime than daytime, suggesting that SOA-precursor gases were found in relatively higher concentrations at night. Similarly, more SOA was formed in the dry season (IOP2) than wet season (IOP1). The maximum amount of SOA produced during nighttime from OH oxidation ranged from less than 1 μg/m3 on some nights to greater than 10 μg/m3 on other nights. O3 oxidation of ambient air also led to SOA formation, although several times less than from OH oxidation. The amount of SOA formation sometimes, but not always, correlated with measured gas-phase biogenic and/or anthropogenic SOA precursors (e.g., SV-TAG sesquiterpenes, PTR-TOFMS aromatics, isoprene, and monoterpenes). The SOA mass formed in the OFR from OH oxidation was up to an order of magnitude larger than could be explained from aerosol yields of measured primary VOCs. This along with measurements from previous campaigns suggests that most SOA was formed from intermediate S/IVOC sources (e.g., VOC oxidation products, evaporated POA, or direct emissions). To verify the SOA yields of VOCs under OFR experimental conditions, atmospherically-relevant concentrations of several VOCs were added individually into ambient air in the OFR and oxidized by OH or O3. SOA yields in the OFR were similar to published chamber yields. Preliminary PMF factor analysis showed production of secondary factors in

  15. Hydrogen sulfide removal from air by Acidithiobacillus thiooxidans in a trickle bed reactor.

    Science.gov (United States)

    Ramirez, M; Gómez, J M; Cantero, D; Páca, J; Halecký, M; Kozliak, E I; Sobotka, M

    2009-09-01

    A strain of Acidithiobacillus thiooxidans immobilized in polyurethane foam was utilized for H(2)S removal in a bench-scale trickle-bed reactor, testing the limits of acidity and SO(4) (2-) accumulation. The use of this acidophilic strain resulted in remarkable stability in the performance of the system. The reactor maintained a >98-99 % H(2)S removal efficiency for c of up to 66 ppmv and empty bed residence time 98 % H(2)S was achieved under steady-state conditions, over the pH range of 0.44-7.30. Despite the accumulation of acidity and SO(4) (2-) (up to 97 g/L), the system operated without inhibition.

  16. Fluidized bed coal combustion reactor

    Science.gov (United States)

    Moynihan, P. I.; Young, D. L. (Inventor)

    1981-01-01

    A fluidized bed coal reactor includes a combination nozzle-injector ash-removal unit formed by a grid of closely spaced open channels, each containing a worm screw conveyor, which function as continuous ash removal troughs. A pressurized air-coal mixture is introduced below the unit and is injected through the elongated nozzles formed by the spaces between the channels. The ash build-up in the troughs protects the worm screw conveyors as does the cooling action of the injected mixture. The ash layer and the pressure from the injectors support a fluidized flame combustion zone above the grid which heats water in boiler tubes disposed within and/or above the combustion zone and/or within the walls of the reactor.

  17. Effects of aging in containment spray injection system of PWR reactor containment; Efeitos do envelhecimento no sistema de injecao de borrifo da contencao de reatores a agua pressurizada

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Diogo da S.; Lava, Deise D.; Affonso, Renato R.W.; Guimaraes, Antonio C.F.; Moreira, Maria de L., E-mail: diogosb@outlook.com, E-mail: deise_dy@hotmail.com, E-mail: raoniwa@yahoo.com.br, E-mail: tony@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    This paper presents a contribution to the study of the components aging process in commercial plants of Pressurized Water Reactors (PWR). The analysis is done by applying the method of Fault trees, Monte Carlo Method and Fussell-Vesely Importance Measurement. The study on the aging of nuclear plants, is related to economic factors involved directly with the extent of their operational life, and also provides important data on issues of safety. The most recent case involving the process of extending the life of a PWR plant can be seen in Angra 1 Nuclear Power Plant by investing $ 27 million in the installation of a new reactor cover. The corrective action generated an extension of the useful life of Angra 1 estimated in twenty years, and a great savings compared to the cost of building a new plant and the decommissioning of the first, if it had reached the operation time out 40 years. The extension of the lifetime of a nuclear power plant must be accompanied by special attention from the most sensitive components of the systems to the aging process. After the application of the methodology (aging analysis of Containment Spray Injection System (CSIS)) proposed in this paper, it can be seen that increasing the probability of failure of each component, due to the aging process, generate an increased general unavailability of the system that contains these basic components. The final results obtained were as expected and can contribute to the maintenance policy, preventing premature aging in nuclear power systems.

  18. Effect of pointed and diffused air injection on premixed flame confined in a Rijke tube

    Directory of Open Access Journals (Sweden)

    Nilaj N. Deshmukh

    2016-12-01

    Full Text Available The coupling between pressure fluctuations and unsteady heat release in a combustion systems results in acoustic oscillations inside the combustion system. These acoustic oscillations, when grow sufficiently, may cause serious structural damage thereby reducing the lifespan of jet engines, gas turbines, and industrial burners. The aim of the first part of study is to define acoustically stable and unstable regions. The second part is focused on studying the effect of change in pressure field near the flame on the amplitude and frequency of the oscillations of instability. This study is carried out for three-burner positions and equivalence ratio of 0.7 by varying heat supply and total flow rate. The results show two acoustically unstable regions for 0.1 and 0.2 burner positions and only one acoustically unstable region for 0.25 burner position. The effect of pointed injection and diffused injection over a premixed flame on the sound pressure level was studied. The results show for burner position of x/L = 0.2 there is 25 dB suppression is possible using pointed injection at higher total flow rate. The experiment of diffused injection shows sound amplification more than 12 dB was observed.

  19. The Injection of Air/Oxygen Bubble into the Anterior Chamber of Rabbits as a Treatment for Hyphema in Patients with Sickle Cell Disease

    Directory of Open Access Journals (Sweden)

    Emre Ayintap

    2014-01-01

    Full Text Available Purpose. To investigate the changes of partial oxygen pressure (PaO2 in aqueous humour after injecting air or oxygen bubble into the anterior chamber in sickle cell hyphema. Methods. Blood samples were taken from the same patient with sickle cell disease. Thirty-two rabbits were divided into 4 groups. In group 1 (n=8, there was no injection. Only blood injection constituted group 2 (n=8, both blood and air bubble injection constituted group 3 (n=8, and both blood and oxygen bubble injection constituted group 4 (n=8. Results. The PaO2 in the aqueous humour after 10 hours from the injections was 78.45 ± 9.9 mmHg (Mean ± SD for group 1, 73.97 ± 8.86 mmHg for group 2, 123.35 ± 13.6 mmHg for group 3, and 306.47 ± 16.5 mmHg for group 4. There was statistically significant difference between group 1 and group 2, when compared with group 3 and group 4. Conclusions. PaO2 in aqueous humour was increased after injecting air or oxygen bubble into the anterior chamber. We offer to leave an air bubble in the anterior chamber of patients with sickle cell hemoglobinopathies and hyphema undergoing an anterior chamber washout.

  20. Optimal DO Setpoint Decision and Electric Cost Saving in Aerobic Reactor Using Respirometer and Air Blower Control

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwang Su; Yoo, Changkyoo [Kyung Hee University, Yongin (Korea, Republic of); Kim, Minhan [Pangaea21 Ltd., Seongnam (Korea, Republic of); Kim, Jongrack [UnUsoft Ltd., Seoul (Korea, Republic of)

    2014-10-15

    Main objects for wastewater treatment operation are to maintain effluent water quality and minimize operation cost. However, the optimal operation is difficult because of the change of influent flow rate and concentrations, the nonlinear dynamics of microbiology growth rate and other environmental factors. Therefore, many wastewater treatment plants are operated for much more redundant oxygen or chemical dosing than the necessary. In this study, the optimal control scheme for dissolved oxygen (DO) is suggested to prevent over-aeration and the reduction of the electric cost in plant operation while maintaining the dissolved oxygen (DO) concentration for the metabolism of microorganisms in oxic reactor. The oxygen uptake rate (OUR) is real-time measured for the identification of influent characterization and the identification of microorganisms' oxygen requirement in oxic reactor. Optimal DO set-point needed for the micro-organism is suggested based on real-time measurement of oxygen uptake of micro-organism and the control of air blower. Therefore, both stable effluent quality and minimization of electric cost are satisfied with a suggested optimal set-point decision system by providing the necessary oxygen supply requirement to the micro-organisms coping with the variations of influent loading.

  1. Classical physics impossibility of magnetic fusion reactor with neutral beam injection at thermonuclear energies below 200 KeV

    Science.gov (United States)

    Maglich, Bogdan; Hester, Timothy; Vaucher, Alexander

    2016-10-01

    Lawson criterion was specifically derived for inertial fusion and DT gas of stable lifetime without ions and magnetic fields. It was revised with realistic parametrers. To account for the losses of unstable ions against neutralization with lifetime τ, n (t) = nτ [ 1 - exp (- t / - tτ τ) ] -> nτ for τ CT resonance regime below critical energy To, τ 10-5 , and Lawson requirement ntL 1021 i.e. not realistic. Luminosity (reaction rate for σ = 1) is that of two unstable particles each with lifetime τ: L =n2(t)v12 =n2t2v12 . In subcritical regime, L =10-10n2 forn =1014cm-3 , v 109 cms-1 = L =1027 . Which is negligible and implies a negative power flow reactor. But above T0 , atTD = 725 KeV , τ = 20 s was observed implying L =1039 i.e. massive fusion energy production.

  2. The influence of air-fuel ratio on mixture parameters in port fuel injection engines

    Directory of Open Access Journals (Sweden)

    Adrian Irimescu

    2008-10-01

    Full Text Available Nowadays, research in the internal combustion engine field is focusing on detailed understanding of the processes that take place in certain parts of the aggregate, and can have a great influence on the engine’s performance and pollution levels. Such research is developed in this paper, in which using a numerical method based on the i-x air-fuel diagram, one can simulate a series of values for pressure, temperature and intake air humidity before and after mixture formation takes place in a spark ignition engine inlet port. The aim is to evaluate the final temperature of the air-fuel mixture near the inlet valve and evaluating the main factors of influence on the homogeneity of the mixture.

  3. Simulation of Thermal and Chemical Relaxation in a Post-Discharge Air Corona Reactor

    CERN Document Server

    Meziane, M; Ducasse, O; Yousfi, M

    2016-01-01

    In a DC point-to-plane corona discharge reactor, the mono filamentary streamers cross the inter electrode gap with a natural repetition frequency of some tens of kHz. The discharge phase (including the primary and the secondary streamers development) lasts only some hundred of nanoseconds while the post-discharge phases occurring between two successive discharge phases last some tens of microseconds. From the point of view of chemical activation, the discharge phases create radical and excited species located inside the very thin discharge filaments while during the post-discharge phases these radical and excited species induce a chemical kinetics that diffuse in a part of the reactor volume. From the point of view of hydrodynamics activation, the discharge phases induce thermal shock waves and the storage of vibrational energy which relaxes into thermal form only during the post-discharge phase. Furthermore, the glow corona discharges that persist during the post-discharge phases induce the so called electri...

  4. Effect of inlet temperature on the performance of a catalytic reactor. [air pollution control

    Science.gov (United States)

    Anderson, D. N.

    1978-01-01

    A 12 cm diameter by 15 cm long catalytic reactor was tested with No. 2 diesel fuel in a combustion test rig at inlet temperatures of 700, 800, 900, and 1000 K. Other test conditions included pressures of 3 and 6 x 10 to the 5th power Pa, reference velocities of 10, 15, and 20 m/s, and adiabatic combustion temperatures in the range 1100 to 1400 K. The combustion efficiency was calculated from measurements of carbon monoxide and unburned hydrocarbon emissions. Nitrogen oxide emissions and reactor pressure drop were also measured. At a reference velocity of 10 m/s, the CO and unburned hydrocarbons emissions, and, therefore, the combustion efficiency, were independent of inlet temperature. At an inlet temperature of 1000 K, they were independent of reference velocity. Nitrogen oxides emissions resulted from conversion of the small amount (135 ppm) of fuel-bound nitrogen in the fuel. Up to 90 percent conversion was observed with no apparent effect of any of the test variables. For typical gas turbine operating conditions, all three pollutants were below levels which would permit the most stringent proposed automotive emissions standards to be met.

  5. Analysis and Verification of Direct Vessel Injection Line Break event tree for AP1000 reactor with TRACE code

    Energy Technology Data Exchange (ETDEWEB)

    Queral, C.; Montero-Mayorga, J.; Gonzalez-Cadelo, J.

    2013-07-01

    The AP1000 PRA thermal hydraulic simulations were performed with MAAP code, which allows simulating sequences with low computational efforts. On the other hand, the use of best estimate codes allows verifying PRA results as well as obtaining a greater knowledge of the phenomenology of such sequences. The initiating event with the greatest contribution to core damage is Direct Vessel Injection Line Break (DVILB). This paper presents a review of DVILB sequences of AP1000 with TRACE code for verifying sequences previously analyzed by Westinghouse with MAAP code. The sequences which configure the DVILB event tree during short term have been simulated. The results obtained confirm the ones obtained in AP1000 PRA.

  6. Design and Operation of Laboratory Combustion Cell for Air Injection into Light Oil Reservoirs: Potential Application in Sindh Field

    Directory of Open Access Journals (Sweden)

    Abdul Haque Tunio

    2011-01-01

    Full Text Available Historical experimental work on the combustion oil recovery processes consists of both laboratory and field studies. Although field experiments are the ultimate test of any oil recovery process, they are costly, time consuming and difficult to analyze quantitatively. Laboratory CC (Combustion Cell experiments are cost effective and less time consuming, but are subject to scaling and interpretation challenges. Experimental set up has been developed to understand air injection process for improving oil recovery from light oil reservoirs taking into account the sand pack petro physical and fluid properties. Some important design problems; operational criteria and considerations important to interpretation of results are pointed out. To replicate subsurface reservoir conditions or pressure and temperature, experiments up to 6895 KPa, at non-isothermal conditions with 5oC/min ramp-up are performed on unconsolidated cores with reservoir oil samples. Correlations were obtained for low temperature oxidation rate of oil, the fuel deposition rate and the rate of burning fuel as a fuel concentration. Various parameters such as (sand pack, pressure, oil saturation and flow rate/air flux were changed to investigate their impact on reaction and chemical nature of the fuel burned. To determine the importance of distribution and pyrolysis on these reactions, the hydrogen-carbon ratio and m-ratio was calculated. For further confirmation Arrhenius graphs were drawn by assuming 1.0 order of reaction with carbon concentration which is also confirmed.This research will contribute to the overall understanding of air injection process;help to determine the most appropriate

  7. AIR SHIPMENT OF SPENT NUCLEAR FUEL FROM THE BUDAPEST RESEARCH REACTOR

    Energy Technology Data Exchange (ETDEWEB)

    Dewes, J.

    2014-02-24

    The shipment of spent nuclear fuel is usually done by a combination of rail, road or sea, as the high activity of the SNF needs heavy shielding. Air shipment has advantages, e.g. it is much faster than any other shipment and therefore minimizes the transit time as well as attention of the public. Up to now only very few and very special SNF shipments were done by air, as the available container (TUK6) had a very limited capacity. Recently Sosny developed a Type C overpack, the TUK-145/C, compliant with IAEA Standard TS-R-1 for the VPVR/M type Skoda container. The TUK-145/C was first used in Vietnam in July 2013 for a single cask. In October and November 2013 a total of six casks were successfully shipped from Hungary in three air shipments using the TUK-145/C. The present paper describes the details of these shipments and formulates the lessons learned.

  8. Efficacy of Vitrectomy Combined with Subretinal rtPA Injection with Gas or Air Tamponade.

    Science.gov (United States)

    Waizel, M; Todorova, M G; Rickmann, A; Blanke, B R; Szurman, P

    2017-01-31

    Background Functional and anatomical outcome after vitrectomy with rtPA combined with gas or air tamponade. Patients and methods Retrospective analysis of pseudophakic patients treated with subretinal rtPA and gas or air tamponade. The primary endpoint was displacement of haemorrhage six months after surgery. The secondary endpoints were visual acuity (BCVA), haemorrhage diameter (MHD) and central macular thickness (CMT), as measured by SD-OCT. Results 53 of 85 eyes were pseudophakic. 27 of these eyes were treated with air tamponade and 26 with gas tamponade. For patients with air tamponade, the mean BCVA improved from 20/530 to 20/355 (p = 0.01). MHD and CMT decreased from 6386 ± 2281 µm to 3805 ± 2397 µm (p tamponade, the mean BCVA improved only slightly, from 20/471 to 20/394 (p = 0.17). MHD and CMT exhibited statistically significant decreases from 6759 ± 1773 µm to 3525 ± 1548 µm (p tamponade.

  9. Los Alamos Air Monitoring Data Related to the Fukushima Daiichi Reactor

    Energy Technology Data Exchange (ETDEWEB)

    McNaughton, Michael [Los Alamos National Laboratory

    2011-01-01

    In response to the disasters in Japan on March 11, 2011, Los Alamos National Laboratory (LANL) is collecting air data and analyzing the data for fission products. At present, we report preliminary data from three high-volume air samplers and one stack sampler. Iodine-131 (I-131) is not optimally measured by our standard polypropylene filters. In addition to the filter data, we have one measurement obtained from a charcoal cartridge. These data, together with measurements of other radionuclides are adequate for a preliminary assessment and assure us that radionuclides from Fukushima Daiichi do not present a threat to human health at or near Los Alamos.

  10. Catalytic wet air oxidation of coke-plant wastewater on ruthenium-based eggshell catalysts in a bubbling bed reactor.

    Science.gov (United States)

    Yang, M; Sun, Y; Xu, A H; Lu, X Y; Du, H Z; Sun, C L; Li, C

    2007-07-01

    Catalytic wet air of coke-plant wastewater was studied in a bubbling bed reactor. Two types of supported Ru-based catalysts, eggshell and uniform catalysts, were employed. Compared with the results in the wet air oxidation of coke-plant wastewater, supported Ru uniform catalysts showed high activity for chemical oxygen demand (COD) and ammonia/ammonium compounds (NH3-N) removal at temperature of 250 degrees C and pressure of 4.8 MPa, and it has been demonstrated that the catalytic activity of uniform catalyst depended strongly on the distribution of active sites of Ru on catalyst. Compared to the corresponding uniform catalysts with the same Ru loading (0.25 wt.% and 0.1 wt.%, respectively), the eggshell catalysts showed higher activities for CODcr removal and much higher activities for NH3-N degradation. The high activity of eggshell catalyst for treatment of coke-plant wastewater can be attributed to the higher density of active Ru sites in the shell layer than that of the corresponding uniform catalyst with the same Ru loading. It has been also evidenced that the active Ru sites in the internal core of uniform catalyst have very little or no contribution to CODcr and NH3-N removal in the total oxidation of coke-plant wastewater.

  11. Effect of Hydraulic Retention Time on Nitrification in an AirLift Biological Reactor

    Directory of Open Access Journals (Sweden)

    Furtado A.A.L.

    1998-01-01

    Full Text Available The occurrence of nitrogenous compounds in industrial effluents at concentration levels above legal limits, is a well-known and serious pollution problem for the receiving body. The biological process for the removal of these substances, commonly referred to as ammoniacal nitrogen, is known as nitrification. Bacteria involved are mainly of the genuses Nitrosomonas and Nitrobacter. The aim of the present work was to study the effect of the hydraulic retention time (HRT on the efficiency of ammonia removal from a petroleum refinery effluent using activated carbon particles as a biofilm support in an airlift bioreactor. The experiments were carried out using HRTs, equal to six, eight and ten hours. The results show that HRT equal to 8 and 10 hours were enough to reduce ammoniacal nitrogen concentration to levels below permited legal limits (5mg/L NH3-N. The reactor nitrifying performance was maximized at 85% removal of ammoniacal nitrogen, for a HRT equal to 10 hours.

  12. Measurement of airborne 131I, 134Cs, and 137Cs nuclides due to the Fukushima reactors accident in air particulate in Milan (Italy)

    CERN Document Server

    Clemenza, Massimiliano; Previtali, Ezio; Sala, Elena

    2011-01-01

    After the earthquake and the tsunami occurred in Japan on 11th March 2011, four of the Fukushima reactors had released in air a large amount of radioactive isotopes that had been diffused all over the world. The presence of airborne 131I, 134Cs, and 137Cs in air particulate due to this accident has been detected and measured in the Low Radioactivity Laboratory operating in the Department of Environmental Sciences of the University of Milano-Bicocca. The sensitivity of the detecting apparatus is of 0.2 \\mu Bq/m3 of air. Concentration and time distribution of these radionuclides were determined and some correlations with the original reactor releases were found. Radioactive contaminations ranging from a few to 400 \\mu Bq/m3 for the 131I and of a few tens of \\mu Bq/m3 for the 137Cs and 134Cs have been detected

  13. Containment Performance Evaluation of a Sodium Fire Event Due to Air Ingress into the Cover Gas Region of the Reactor Vessel in the PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Sang June; Chang, Won-Pyo; Kang, Seok Hun; Choi, Chi-Woong; Yoo, Jin; Lee, Kwi Lim; Jeong, Jae-Ho; Lee, Seung Won; Jeong, Taekyeong; Ha, Kwi-Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Comparing with the light water reactor, sodium as a reactor coolant violently reacts with oxygen in the containment atmosphere. Due to this chemical reaction, heat generated from the combustion heat increases the temperature and pressure in the containment atmosphere. The structural integrity of the containment building which is a final radiological defense barrier is threaten. A sodium fire event in the containment due to air ingress into the cover gas region in the reactor vessel is classified as one of the design basis events in the PGSFR. This event comes from a leak or crack on the reactor upper closure header surface. It accompanys an event of the radiological fission products release to the inside the containment. In this paper, evaluation for the sodium fire and radiological influence due to air ingress into the cover gas region of the reactor vessel is described. To evaluate this event, the CONTAIN-LMR, MACCS-II and OR-IGEN-II codes are used. For the sodium pool fire event in the containment, the performance evaluation and radiological influence are carried out. In the thermal hydraulic aspects, the 1 cell containment yields the most conservative result. In this event, the maximum temperature and pressure in the containment are calculated 0.185 MPa, 280.0 .deg. C, respectively. The radiological dose at the EAB and LPZ are below the acceptance criteria specified in the 10CFR100.

  14. Air radioactivity levels following the Fukushima reactor accident measured at the Laboratoire Souterrain de Modane, France.

    Science.gov (United States)

    Loaiza, P; Brudanin, V; Piquemal, F; Reyss, J-L; Stekl, I; Warot, G; Zampaolo, M

    2012-12-01

    The radioactivity levels in the air of the radionuclides released by the Fukushima accident were measured at the Laboratoire Souterrain de Modane, in the South-East of France, during the period 25 March-18 April 2011. Air-filters from the ventilation system exposed for one or two days were measured using low-background gamma-ray spectrometry. In this paper we present the activity concentrations obtained for the radionuclides (131)I, (132)Te, (134)Cs, (137)Cs, (95)Nb, (95)Zr, (106)Ru, (140)Ba/La and (103)Ru. The activity concentration of (131)I was of the order of 100 μBq/m(3), more than 100 times higher than the activities of other fission products. The highest activities of (131)I were measured as a first peak on 30 March and a second peak on 3-4 April. The activity concentrations of (134)Cs and (137)Cs varied from 5 to 30 μBq/m(3). The highest activity concentration recorded for Cs corresponded to the same period as for (131)I, with a peak on 2-3 April. The results of the radioactivity concentration levels in grass and mushrooms exposed to the air in the Modane region were also measured. Activity concentrations of (131)I of about 100 mBq/m(2) were found in grass.

  15. Equivalent ambipolar carrier injection of electrons and holes with Au electrodes in air-stable field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kanagasekaran, Thangavel, E-mail: kanagasekaran@gmail.com, E-mail: Shimotani@m.tohoku.ac.jp, E-mail: tanigaki@m.tohoku.ac.jp; Ikeda, Susumu; Kumashiro, Ryotaro [WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577 (Japan); Shimotani, Hidekazu, E-mail: kanagasekaran@gmail.com, E-mail: Shimotani@m.tohoku.ac.jp, E-mail: tanigaki@m.tohoku.ac.jp; Shang, Hui [Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578 (Japan); Tanigaki, Katsumi, E-mail: kanagasekaran@gmail.com, E-mail: Shimotani@m.tohoku.ac.jp, E-mail: tanigaki@m.tohoku.ac.jp [WPI-Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, 2-1-1 Katahira, Aoba, Sendai 980-8577 (Japan); Department of Physics, Graduate School of Science, Tohoku University, 6-3 Aoba, Aramaki, Aoba, Sendai 980-8578 (Japan)

    2015-07-27

    Carrier injection from Au electrodes to organic thin-film active layers can be greatly improved for both electrons and holes by nano-structural surface control of organic semiconducting thin films using long-chain aliphatic molecules on a SiO{sub 2} gate insulator. In this paper, we demonstrate a stark contrast for a 2,5-bis(4-biphenylyl)bithiophene (BP2T) active semiconducting layer grown on a modified SiO{sub 2} dielectric gate insulator between two different modifications of tetratetracontane and poly(methyl methacrylate) thin films. Important evidence that the field effect transistor (FET) characteristics are independent of electrode metals with different work functions is given by the observation of a conversion of the metal-semiconductor contact from the Schottky limit to the Bardeen limit. An air-stable light emitting FET with an Au electrode is demonstrated.

  16. Effects of hydraulic retention time and nitrobenzene concentration on the performance of sequential upflow anaerobic filter and air lift reactors in treating nitrobenzene-containing wastewater

    DEFF Research Database (Denmark)

    Wu, Jinhua; Chen, Guocai; Gu, Jingjing;

    2014-01-01

    Sequential upflow anaerobic filter (UAF)/air lift (ALR) reactors were employed to investigate the effects of hydraulic retention time (HRT) and nitrobenzene (NB) concentration on treatment of NB-containing wastewater. The results showed that NB was effectively reduced to aniline (AN) with glucose...... and the influent NB concentration increased from 400 to 800 mg l super(-1), respectively. The results showed that sequential UAF/ALR system can be operated at low HRTs and high NB concentrations without significantly affecting the removal efficiency of NB in the reactor system. The UAF/ALR system can provide...... an effective yet low cost method for treatment of NB-containing industrial wastewater....

  17. Observation of abrupt changes associated with air injection into the ground by the time lapse experiment using an ultra-stable seismic source

    Science.gov (United States)

    Kasahara, J.; Ito, S.; Fujiwara, T.; Hasada, Y.; Tsuruga, K.; Ikuta, R.; Fujii, N.; Yamaoka, K.; Nishigami, K.; Ito, K.

    2011-12-01

    To prove the temporal change of seismic waves due to the injection of air into the ground, we carried out a field test near the Nojima Earthquake Fault in Awaji Island using an ultra-stable and conscious seismic source and a seismic array. The newly built seismic ACROSS was installed horizontally as the rotational axis of weight-mass was horizontal. We used 10-35Hz. We injected 80 tons air into the Okasa formation at 100 m depth. We analyzed 31 3-component seismometer records and one 3-component borehole seismometer record at 800m depth. Applying source signature deoconvolution to the filed records, we obtained the transfer function between the source and each receiver. All transfer function associated with injection revealed very large changes of waveforms immediately after the beginning of injection of air at some sites. However the station #7 at 100m from the injection well showed extremely large change at 1 day after the injection. The delay times for appearance of waveform change vary place to place and the differential waveform characteristics for each station are quite different one by one. We explain possible causes of waveform change.

  18. Subcutaneous Injections

    DEFF Research Database (Denmark)

    Thomsen, Maria

    This thesis is about visualization and characterization of the tissue-device interaction during subcutaneous injection. The tissue pressure build-up during subcutaneous injections was measured in humans. The insulin pen FlexTouchr (Novo Nordisk A/S) was used for the measurements and the pressure...... build-up was evaluated indirectly from the changes in the flow rate between subcutaneous injections and air injections. This method enabled the tissue counter pressure to be evaluated without a formal clinical study approval. The measurements were coupled to a model for the pressure evolution...

  19. Study of a transaugmented two-stage small circular-bore railgun for injection of hypervelocity hydrogen pellets as a fusion reactor refueling mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Tompkins, M.W.; Anderson, M.A.; Feng, Q.; Zhang, J.; Kim, K. [Univ. of Illinois, Urbana, IL (United States)

    1997-01-01

    Injection of hypervelocity hydrogen pellets has become widely accepted as the most effective means of refueling magnetically confined fusion reactors. Pellet velocities on the order of 10 km/s are desired and hydrogen pellet erosion during acceleration must be minimized. It is important to maintain uniform bore surfaces during repetitive shots, implying that, if a railgun is to be used to accelerate the pellets, damage to the sidewalls and rails of the railgun due to local heating must be limited. In order to reduce the amount of power dissipated within the bore and increase the propulsive force generated by the plasma-arc armature while minimizing losses due to pellet, rail, and sidewall ablation, the authors have employed a magnetic field transaugmentation mechanism consisting of a two-turn pulsed electromagnet. The two-stage gun consists of a light-gas gun which accelerates a 4- to 5-mg pellet to a speed around 1.2 km/s and injects it into the plasma-arc armature railgun. Currently, they have achieved a final output velocity for a hydrogen pellet of 2.11 km/s with a time-averaged acceleration of 4,850 km/s{sup 2} using a 58-cm railgun pulsed with a peak rail current of 9.2 kA and 28.0 kA of transaugmentation current. This paper will present a description of the hydrogen-pellet-injector railgun system, a discussion of the data on hydrogen pellet acceleration, and projections for future systems.

  20. Determination of mercury(II) traces in drinking water by inhibition of an urease reactor in a flow injection analysis (FIA) system

    Energy Technology Data Exchange (ETDEWEB)

    Shi, R. [Dept. of Non-Timber Forest, Central-South Forestry Univ., Hunan (China); Stein, K.; Schwedt, G. [Inst. of Inorganic and Analytical Chemistry, TU Clausthal, Clausthal-Zellerfeld (Germany)

    1997-03-01

    The integration of an urease reactor into a gas diffusion flow injection system was investigated for the determination of urease inhibitors. The enzyme was immobilized by entrapping in polyacrylamide gel. Besides copper and silver ions mercury ions inhibit the conversion of urea to carbon dioxide and ammonia catalysed by urease. The pH change of the carrier solution caused by the ammonia released was measured potentiometrically with a pH electrode. The inhibition behaviour of Hg(II) ions was investigated. A linear range from 2 to 20 {mu}g L{sup -1} Hg(II) was obtained after a 90 s inhibition, with a correlation coefficient of r=0.9997. The relative standard deviation was 1.4% for five measurements of 2 {mu}g L{sup -1}Hg(II). A sample frequency of 7 h{sup -1} was achieved. The inhibited enzyme can be reactivated. The method was applied to the determination of Hg(II) in two drinking water samples. (orig.) With 4 figs., 2 tabs.

  1. Determination of Noncovalent Binding Using a Continuous Stirred Tank Reactor as a Flow Injection Device Coupled to Electrospray Ionization Mass Spectrometry

    Science.gov (United States)

    Santos, Inês C.; Waybright, Veronica B.; Fan, Hui; Ramirez, Sabra; Mesquita, Raquel B. R.; Rangel, António O. S. S.; Fryčák, Petr; Schug, Kevin A.

    2015-07-01

    Described is a new method based on the concept of controlled band dispersion, achieved by hyphenating flow injection analysis with ESI-MS for noncovalent binding determinations. A continuous stirred tank reactor (CSTR) was used as a FIA device for exponential dilution of an equimolar host-guest solution over time. The data obtained was treated for the noncovalent binding determination using an equimolar binding model. Dissociation constants between vancomycin and Ac-Lys(Ac)-Ala-Ala-OH peptide stereoisomers were determined using both the positive and negative ionization modes. The results obtained for Ac- L-Lys(Ac)- D-Ala- D-Ala (a model for a Gram-positive bacterial cell wall) binding were in reasonable agreement with literature values made by other mass spectrometry binding determination techniques. Also, the developed method allowed the determination of dissociation constants for vancomycin with Ac- L-Lys(Ac)- D-Ala- L-Ala, Ac- L-Lys(Ac)- L-Ala- D-Ala, and Ac- L-Lys(Ac)- L-Ala- L-Ala. Although some differences in measured binding affinities were noted using different ionization modes, the results of each determination were generally consistent. Differences are likely attributable to the influence of a pseudo-physiological ammonium acetate buffer solution on the formation of positively- and negatively-charged ionic complexes.

  2. Microlith-Based Catalytic Reactor for Air Quality and Trace Contaminant Control Applications

    Science.gov (United States)

    Vilekar, Saurabh; Hawley, Kyle; Junaedi, Christian; Crowder, Bruce; Prada, Julian; Mastanduno, Richard; Perry, Jay L.; Kayatin, Matthew J.

    2015-01-01

    Traditionally, gaseous compounds such as methane, carbon monoxide, and trace contaminants have posed challenges for maintaining clean air in enclosed spaces such as crewed spacecraft cabins as they are hazardous to humans and are often difficult to remove by conventional adsorption technology. Catalytic oxidizers have provided a reliable and robust means of disposing of even trace levels of these compounds by converting them into carbon dioxide and water. Precision Combustion, Inc. (PCI) and NASA - Marshall (MSFC) have been developing, characterizing, and optimizing high temperature catalytic oxidizers (HTCO) based on PCI's patented Microlith® technology to meet the requirements of future extended human spaceflight explorations. Current efforts have focused on integrating the HTCO unit with a compact, simple recuperative heat exchanger to reduce the overall system size and weight while also reducing its energy requirements. Previous efforts relied on external heat exchangers to recover the waste heat and recycle it to the oxidizer to minimize the system's power requirements; however, these units contribute weight and volume burdens to the overall system. They also result in excess heat loss due to the separation of the HTCO and the heat recuperator, resulting in lower overall efficiency. Improvements in the recuperative efficiency and close coupling of HTCO and heat recuperator lead to reductions in system energy requirements and startup time. Results from testing HTCO units integrated with heat recuperators at a variety of scales for cabin air quality control and heat melt compactor applications are reported and their benefits over previous iterations of the HTCO and heat recuperator assembly are quantified in this paper.

  3. Deep convective injection of boundary layer air into the lowermost stratosphere at midlatitudes

    Directory of Open Access Journals (Sweden)

    H. Fischer

    2002-11-01

    Full Text Available On 22 August 2001 a measurement flight was performed with the German research aircraft FALCON from Sardinia to Crete as part of the Mediterranean Oxidant Study (MINOS. Cruising at 8.2 km, the aircraft was forced to climb to 11.2 km over the southern tip of Italy to stay clear of the anvil of a large cumulonimbus tower. During ascent into the lowermost stratosphere in-situ measurements onboard the FALCON indicated several sharp increases in the concentrations of tropospheric trace gases, e.g. CO, acetone, methanol, benzene and acetonitrile, above the anvil. During one particular event deep in the stratosphere, at O3 concentrations exceeding 200 ppv, CO increased from about 60 to 90 ppv, while the concentration of acetone and methanol increased by more than a factor of 2 (0.7 to 1.8 ppv for acetone; 0.4 to 1.4 ppv for methanol. Enhancements for the short lived species benzene are even higher, increasing from 20 pptv in the stratosphere to approx. 130 pptv. The concentrations during the event were higher than background concentrations in the upper troposphere, indicating that polluted boundary layer air was directly mixed deep into the lowermost stratosphere.

  4. Research progress of numerical simulating air-lift loop reactor%气升式环流反应器数值模拟研究进展

    Institute of Scientific and Technical Information of China (English)

    袁春昱; 刘永民

    2012-01-01

    The applications of computational fluid dynamics in the gas-liquid and gas-liquid-solid air-lift loop reactors are introduced. The recent results of 2- and 3-dimentional numerical simulating on the gas holdup and the liquid recirculation velocity in the air-lift loop reactor are summarized and presented. The further research works on the simulating are proposed.%介绍了计算流体力学在气升式环流反应器(二相、三相)中的应用,汇总并介绍了气升式环流反应器的气含率和循环液速的二维与三维数值模拟结果,提出今后进一步的研究方向.

  5. Catalytic Wet Air Oxidation of Oxalic Acid using Platinum Catalysts in Bubble Column Reactor: A Review

    Directory of Open Access Journals (Sweden)

    A. K. Saroha

    2010-01-01

    Full Text Available Wastewater treatment and re-use of industrial process water are critical issue for the development of human activities andenvironment conservation. Catalytic wet air oxidation (CWAO is an attractive and useful technique for treatment of effluentswhere the concentrations of organic pollutants are too low, for the incineration and other pollution control techniquesto be economically feasible and when biological treatments are ineffective, e.g. in the case of toxic effluents. In CWAO,combustion takes place on a Pt/Al2O3 catalysts usually at temperatures several degrees below those required forthermal incineration. In CWAO process, the organic contaminants dissolved in water are either partially degraded by meansof an oxidizing agent into biodegradable intermediates or mineralized into innocuous inorganic compounds such as CO2,H2O and inorganic salts, which remain in the aqueous phase. In contrast to other thermal processes CWAO produces no NOx,SO2, HCl, dioxins, furans, fly ash, etc. This review paper presents the application of platinum catalysts in bubble columnreactor for CWAO of oxalic acid.

  6. Design of single-winding energy-storage reactors for dc-to-dc converters using air-gapped magnetic-core structures

    Science.gov (United States)

    Ohri, A. K.; Wilson, T. G.; Owen, H. A., Jr.

    1977-01-01

    A procedure is presented for designing air-gapped energy-storage reactors for nine different dc-to-dc converters resulting from combinations of three single-winding power stages for voltage stepup, current stepup and voltage stepup/current stepup and three controllers with control laws that impose constant-frequency, constant transistor on-time and constant transistor off-time operation. The analysis, based on the energy-transfer requirement of the reactor, leads to a simple relationship for the required minimum volume of the air gap. Determination of this minimum air gap volume then permits the selection of either an air gap or a cross-sectional core area. Having picked one parameter, the minimum value of the other immediately leads to selection of the physical magnetic structure. Other analytically derived equations are used to obtain values for the required turns, the inductance, and the maximum rms winding current. The design procedure is applicable to a wide range of magnetic material characteristics and physical configurations for the air-gapped magnetic structure.

  7. NSGA-II Algorithm with a Local Search Strategy for Multiobjective Optimal Design of Dry-Type Air-Core Reactor

    Directory of Open Access Journals (Sweden)

    Chengfen Zhang

    2015-01-01

    Full Text Available Dry-type air-core reactor is now widely applied in electrical power distribution systems, for which the optimization design is a crucial issue. In the optimization design problem of dry-type air-core reactor, the objectives of minimizing the production cost and minimizing the operation cost are both important. In this paper, a multiobjective optimal model is established considering simultaneously the two objectives of minimizing the production cost and minimizing the operation cost. To solve the multi-objective optimization problem, a memetic evolutionary algorithm is proposed, which combines elitist nondominated sorting genetic algorithm version II (NSGA-II with a local search strategy based on the covariance matrix adaptation evolution strategy (CMA-ES. NSGA-II can provide decision maker with flexible choices among the different trade-off solutions, while the local-search strategy, which is applied to nondominated individuals randomly selected from the current population in a given generation and quantity, can accelerate the convergence speed. Furthermore, another modification is that an external archive is set in the proposed algorithm for increasing the evolutionary efficiency. The proposed algorithm is tested on a dry-type air-core reactor made of rectangular cross-section litz-wire. Simulation results show that the proposed algorithm has high efficiency and it converges to a better Pareto front.

  8. Air-based coal gasification in a two-chamber gas reactor with circulating fluidized bed

    Science.gov (United States)

    Dubinin, A. M.; Tuponogov, V. G.; Kagramanov, Y. A.

    2017-01-01

    During the bed gasification of solid fuels, the process temperature in the reaction zone is not high enough for reaching the maximum rate of the chemical efficiency factor of the gasification process. In order to increase the chemical efficiency factor, it is necessary to supply extra heat to the reaction zone to increase the reaction temperature. In this article, coal gasification in a chamber with forced fluidized bed is considered and it is proposed to supply extra heat with a circulating flow of an inert particulate heat transfer agent. Circulating inert particulate material is successively heated by coal combustion in a cone chamber with bubbling fluidized bed and in a combustion chamber with a spherical nozzle that inhibits the forced fluidized bed. After that, the heat transfer agent heated to 930-950°C enters first in a gasification chamber with bubbling bed and then in a chamber with forced fluidized bed, where it transfers the physical heat to the air fuel mixture. The experiments conducted with crushed Borodinsky coal and inert particulate heat transfer agent (electrocorundum) showed the temperature rise in a gasification chamber with from 760 to 870°C and the increase in the combustible component (CO) concentration in the gasification products by 5.5%. Based on the kinetic equations of the fuel combustion reactions and the CO2 reduction to CO and on the thermal balance equations of combustion and gasification chambers, the simulation model for the gas composition and the temperature rate calculated by the height of reaction chambers was developed. The experimental temperature rates and product gas compositions are in good agreement with the simulation results based on the proposed kinetic gasification model.

  9. Numerical Analysis on the Influence of Thermal Effects on Oil Flow Characteristic in High-Pressure Air Injection (HPAI Process

    Directory of Open Access Journals (Sweden)

    Hu Jia

    2012-01-01

    Full Text Available In previous laboratory study, we have shown the thermal behavior of Keke Ya light crude oil (Tarim oilfield, branch of CNPC for high-pressure air injection (HPAI application potential study. To clarify the influences of thermal effects on oil production, in this paper, we derived a mathematical model for calculating oil flow rate, which is based on the heat conduction property in porous media from the combustion tube experiment. Based on remarkably limited knowledge consisting of very global balance arguments and disregarding all the details of the mechanisms in the reaction zone, the local governing equations are formulated in a dimensionless form. We use finite difference method to solve this model and address the study by way of qualitative analysis. The time-space dimensionless oil flow rate (qD profiles are established for comprehensive studies on the oil flow rate characteristic affected by thermal effects. It also discusses how these findings will impact HPAI project performances, and several guidelines are suggested.

  10. REVIVING ABANDONED RESERVOIRS WITH HIGH-PRESSURE AIR INJECTION: APPLICATION IN A FRACTURED AND KARSTED DOLOMITE RESERVOIR

    Energy Technology Data Exchange (ETDEWEB)

    Robert Loucks; Steve Ruppel; Julia Gale; Jon Holder; Jon Olsen; Deanna Combs; Dhiraj Dembla; Leonel Gomez

    2003-06-01

    The Bureau of Economic Geology and Goldrus Producing Company have assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The characterization phase of the project is utilizing geoscientists and petroleum engineers from the bureau of Economic Geology and the Department of Petroleum Engineering (both at The University of Texas at Austin) to define the controls on fluid flow in the reservoir as a basis for developing a reservoir model. This model will be used to define a field deployment plant that Goldrus, a small independent oil company, will implement by drilling both vertical and horizontal wells during the demonstration phase of the project. Additional reservoir data are being gathered during the demonstration phase to improve the accuracy of the reservoir model. The results of the demonstration are being closely monitored to provide a basis for improving the design of the HPAI field deployment plan. The results of the reservoir characterization field demonstration and monitoring program will be documented and widely disseminated to facilitate adoption of this technology by oil operators in the Permian Basin and elsewhere in the US.

  11. Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hogerton, John

    1964-01-01

    This pamphlet describes how reactors work; discusses reactor design; describes research, teaching, and materials testing reactors; production reactors; reactors for electric power generation; reactors for supply heat; reactors for propulsion; reactors for space; reactor safety; and reactors of tomorrow. The appendix discusses characteristics of U.S. civilian power reactor concepts and lists some of the U.S. reactor power projects, with location, type, capacity, owner, and startup date.

  12. Characterization of bacterial and archaeal communities in air-cathode microbial fuel cells, open circuit and sealed-off reactors

    KAUST Repository

    Chehab, Noura A.

    2013-06-18

    A large percentage of organic fuel consumed in a microbial fuel cell (MFC) is lost as a result of oxygen transfer through the cathode. In order to understand how this oxygen transfer affects the microbial community structure, reactors were operated in duplicate using three configurations: closed circuit (CC; with current generation), open circuit (OC; no current generation), and sealed off cathodes (SO; no current, with a solid plate placed across the cathode). Most (98 %) of the chemical oxygen demand (COD) was removed during power production in the CC reactor (maximum of 640 ± 10 mW/m 2), with a low percent of substrate converted to current (coulombic efficiency of 26.5 ± 2.1 %). Sealing the cathode reduced COD removal to 7 %, but with an open cathode, there was nearly as much COD removal by the OC reactor (94.5 %) as the CC reactor. Oxygen transfer into the reactor substantially affected the composition of the microbial communities. Based on analysis of the biofilms using 16S rRNA gene pyrosequencing, microbes most similar to Geobacter were predominant on the anodes in the CC MFC (72 % of sequences), but the most abundant bacteria were Azoarcus (42 to 47 %) in the OC reactor, and Dechloromonas (17 %) in the SO reactor. Hydrogenotrophic methanogens were most predominant, with sequences most similar to Methanobacterium in the CC and SO reactor, and Methanocorpusculum in the OC reactors. These results show that oxygen leakage through the cathode substantially alters the bacterial anode communities, and that hydrogenotrophic methanogens predominate despite high concentrations of acetate. The predominant methanogens in the CC reactor most closely resembled those in the SO reactor, demonstrating that oxygen leakage alters methanogenic as well as general bacterial communities. © 2013 Springer-Verlag Berlin Heidelberg.

  13. Air gasification of empty fruit bunch for hydrogen-rich gas production in a fluidized-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mohammed, M.A.A.; Salmiaton, A.; Wan Azlina, W.A.K.G.; Mohammad Amran, M.S.; Fakhru' l-Razi, A. [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia)

    2011-02-15

    A study on gasification of empty fruit bunch (EFB), a waste of the palm oil industry, was investigated. The composition and particle size distribution of feedstock were determined and the thermal degradation behaviour was analysed by a thermogravimetric analysis (TGA). Then fluidized bed bench scale gasification unit was used to investigate the effect of the operating parameters on EFB air gasification namely reactor temperature in the range of 700-1000 C, feedstock particle size in the range of 0.3-1.0 mm and equivalence ratio (ER) in the range of 0.15-0.35. The main gas species generated, as identified by a gas chromatography (GC), were H{sub 2}, CO, CO{sub 2} and CH{sub 4}. With temperature increasing from 700 C to 1000 C, the total gas yield was enhanced greatly and reached the maximum value ({proportional_to}92 wt.%, on the raw biomass sample basis) at 1000 C with big portions of H{sub 2} (38.02 vol.%) and CO (36.36 vol.%). Feedstock particle size showed an influence on the upgrading of H{sub 2}, CO and CH{sub 4} yields. The feedstock particle size of 0.3-0.5 mm, was found to obtain a higher H{sub 2} yield (33.93 vol.%), and higher LHV of gas product (15.26 MJ/m{sup 3}). Equivalence ratio (ER) showed a significant influence on the upgrading of hydrogen production and product distribution. The optimum ER (0.25) was found to attain a higher H{sub 2} yield (27.31 vol.%) at 850 C. Due to the low efficiency of bench scale gasification unit the system needs to be scaling-up. The cost analysis for scale-up EFB gasification unit showed that the hydrogen supply cost is RM 6.70/kg EFB (2.11/kg = 0.18/Nm{sup 3}). (author)

  14. Study of air entrainment in high pressure spray: optics diagnostics and application to the Diesel injection; Etude de l'entrainement d'air dans un spray haute pression: diagnostics optiques et application a l'injection diesel

    Energy Technology Data Exchange (ETDEWEB)

    Arbeau, A.

    2004-12-15

    The actual development of the engine must reply to a will of fuel consumption reduction and to norms more and more strict concerning the pollutant emissions. Although the Diesel engines are efficient, the NO{sub x} and particle emissions mainly come from the existence of wealthy fuel zone preventing an optimal combustion. Therefore, the air / fuel mixing preparation, highly controlled by the air entrainment in spray, is essential. In this context, we have developed metrological tools in order to analyse the air entrainment mechanism in a dense spray. The Particle Image Velocimetry (PIV) technique is first applied to a conical spray with an injection pressure less than 100 bars to study the air entrainment in spray. A transfer of the methodologies allows then the characterisation and the understanding of the air entrainment mechanism in high pressure full spray (injection pressure less than 1600 bars) type Diesel one. The influence of injection parameters (injection pressure and back pressure) on the mixing rate is studied. The increase of the injection pressure from 800 to 1600 bars implies an increase of the mixing rate of 60 %. Moreover, the thermodynamic conditions of the ambient air, simulated by the chamber back pressure, widely favours the mixing rate. Actually, this latter increases of 350 % when the chamber back pressure varies from 1 to 7 bars. The experimental results do not follow classical laws of air entrainment in one-phase flow jet with variable density, but are in good agreement with an integral model for air entrainment in an axisymmetric full spray. Finally, the Fluorescence Particle Image Velocimetry (FPIV) is introduced in order to extend the PIV application field in dense two-phase flows. (author)

  15. Real-time measurements of secondary organic aerosol formation and aging from ambient air in an oxidation flow reactor in the Los Angeles area

    Science.gov (United States)

    Ortega, Amber M.; Hayes, Patrick L.; Peng, Zhe; Palm, Brett B.; Hu, Weiwei; Day, Douglas A.; Li, Rui; Cubison, Michael J.; Brune, William H.; Graus, Martin; Warneke, Carsten; Gilman, Jessica B.; Kuster, William C.; de Gouw, Joost; Gutiérrez-Montes, Cándido; Jimenez, Jose L.

    2016-06-01

    Field studies in polluted areas over the last decade have observed large formation of secondary organic aerosol (SOA) that is often poorly captured by models. The study of SOA formation using ambient data is often confounded by the effects of advection, vertical mixing, emissions, and variable degrees of photochemical aging. An oxidation flow reactor (OFR) was deployed to study SOA formation in real-time during the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign in Pasadena, CA, in 2010. A high-resolution aerosol mass spectrometer (AMS) and a scanning mobility particle sizer (SMPS) alternated sampling ambient and reactor-aged air. The reactor produced OH concentrations up to 4 orders of magnitude higher than in ambient air. OH radical concentration was continuously stepped, achieving equivalent atmospheric aging of 0.8 days-6.4 weeks in 3 min of processing every 2 h. Enhancement of organic aerosol (OA) from aging showed a maximum net SOA production between 0.8-6 days of aging with net OA mass loss beyond 2 weeks. Reactor SOA mass peaked at night, in the absence of ambient photochemistry and correlated with trimethylbenzene concentrations. Reactor SOA formation was inversely correlated with ambient SOA and Ox, which along with the short-lived volatile organic compound correlation, indicates the importance of very reactive (τOH ˜ 0.3 day) SOA precursors (most likely semivolatile and intermediate volatility species, S/IVOCs) in the Greater Los Angeles Area. Evolution of the elemental composition in the reactor was similar to trends observed in the atmosphere (O : C vs. H : C slope ˜ -0.65). Oxidation state of carbon (OSc) in reactor SOA increased steeply with age and remained elevated (OSC ˜ 2) at the highest photochemical ages probed. The ratio of OA in the reactor output to excess CO (ΔCO, ambient CO above regional background) vs. photochemical age is similar to previous studies at low to moderate ages and also extends to

  16. Cycle-by-cycle Variations in a Direct Injection Hydrogen Enriched Compressed Natural Gas Engine Employing EGR at Relative Air-Fuel Ratios.

    Directory of Open Access Journals (Sweden)

    Olalekan Wasiu Saheed

    2014-07-01

    Full Text Available Since the pressure development in a combustion chamber is uniquely related to the combustion process, substantial variations in the combustion process on a cycle-by-cycle basis are occurring. To this end, an experimental study of cycle-by-cycle variation in a direct injection spark ignition engine fueled with natural gas-hydrogen blends combined with exhaust gas recirculation at relative air-fuel ratios was conducted. The impacts of relative air-fuel ratios (i.e. λ = 1.0, 1.2, 1.3 and 1.4 which represent stoichiometric, moderately lean, lean and very lean mixtures respectively, hydrogen fractions and EGR rates were studied. The results showed that increasing the relative air-fuel ratio increases the COVIMEP. The behavior is more pronounced at the larger relative air-fuel ratios. More so, for a specified EGR rate; increasing the hydrogen fractions decreases the maximum COVIMEP value just as increasing in EGR rates increases the maximum COVIMEP value. (i.e. When percentage EGR rates is increased from 0% to 17% and 20% respectively. The maximum COVIMEP value increases from 6.25% to 6.56% and 8.30% respectively. Since the introduction of hydrogen gas reduces the cycle-by-cycle combustion variation in engine cylinder; thus it can be concluded that addition of hydrogen into direct injection compressed natural gas engine employing EGR at various relative air-fuel ratios is a viable approach to obtain an improved combustion quality which correspond to lower coefficient of variation in imep, (COVIMEP in a direct injection compressed natural gas engine employing EGR at relative air-fuel ratios.

  17. Improvement of emissions and performance by using of air jet, exhaust gas re-circulation and insulation methods in a direct injection diesel engine

    Directory of Open Access Journals (Sweden)

    Jafarmadara S.

    2013-01-01

    Full Text Available This article investigates the improvement of operation characteristics and emissions reduction by means of creating an air-cell inside the piston body, exhaust gases recirculating and insulating combustion chamber in a direct injection diesel engine simultaneously. The engine considered is a caterpillar 3401 which was modeled with an air-cell included as part of the piston geometry. This air-cell demonstrates that air injection in late combustion period can be effective in a significant reduction of Soot emission while cold EGR can be effective in reduction of NOx emission. Also for increasing of performance parameters, combustion chamber with air-cell is insulated. The analyses are carried out at part (75% of full load and full load conditions at the same engine speed 1600 rpm. The obtained results indicate that creating the air-cell has a slight effect on improvement of performance parameters and it has significantly effect on Soot reduction. The air-cell decreases the Soot pollutant as a factor of two at both part and full load conditions. Also, the adding 5% of cold EGR in inlet air decreases NOx by about half and insulating the engine increases the power and IMEP by about 7.7% and 8.5% and decreases the ISFC by about 7.5% at part load and increases power and IMEP by 8.5%, 8.5% and decreases ISFC by 8% at full load condition, respectively. Using this method, it was possible to control emissions formation and increase performance parameters simultaneously. The predicted results for mean in-cylinder pressure and emissions are compared to the corresponding experimental results and show good agreements.

  18. Steam and hot air injection for thermal rehabilitation of contaminated sites; Wasserdampf- und Heissluftinjektion zur thermischen Sanierung kontaminierter Standorte

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.

    2001-07-01

    Thermal in situ rehabilitation technologies are a promising alternative to conventional methods of cleaning up contaminated sites. The fact that an increase in temperature changes the physical properties of materials makes it possible, in principle, to release large quantities of pollutants within short time periods. The use of pure steam or steam/air mixtures as fluid thermal carriers permits converting subterranean non-aqueous-phase pollutants into the gas phase through increased vapour pressure and transporting them to the surface by means of soil air aspiration for further treatment. The purpose of the present two-stage research project was to systematically develop a thermal in situ rehabilitation technology using steam as fluid heat carrier and use it for land rehabilitation operations on a pilot basis. In the first, fundamental project phase aspects of heat transport (Faerber, 1997) and pollutant behaviour (Betz, 1998)in homogenous porous media upon pure steam injection were explored at a laboratory and technical scale using containers of different sizes (1D, 2D, 3D). The results were used to derive application criteria for this technology. [German] Thermische In-situ-Sanierungstechnologien stellen bei der Reinigung kontaminierter Standorte eine vielversprechende Alternative zu konventionellen Verfahren dar. Die Veraenderung physikalischer Stoffeigenschaften mit steigender Temperatur ermoeglicht grundsaetzlich hohe Schadstoffaustraege innerhalb kurzer Zeitraeume. Beim Einsatz von reinem Wasserdampf oder Wasserdampf-Luft-Gemischen als Waermetraegerfluid koennen im Untergrund in nicht waessriger Phase vorliegende Schadstoffe hauptsaechlich wegen der erhoehten Dampfdruecke in die Gasphase ueberfuehrt, ueber eine Bodenluftabsaugung an die Oberflaeche transportiert und dann einer weiteren Behandlung zugefuehrt werden. Zielsetzung eines zweistufigen Forschungsvorhabens war die systematische Entwicklung einer thermischen In-situ-Sanierungstechnologie unter

  19. DEVELOPMENT OF CONSTRUCTION OF A CATALYTIC REACTOR FOR METHANE OXIDISING IN VENTILATION AIR IN COAL MINES AND THE RESEARCH ON INTEGRATED “HEAT PIPE” RECUPERATOR

    Directory of Open Access Journals (Sweden)

    Lech Hys

    2013-04-01

    Full Text Available The article presents the analysis whose result is the selection of appropriate design and construction of a monolithic CMR reactor intended for oxidising methane from ventilation air in coal mines. The description of “heat-pipe” recuperator cooperating with the reactor was also presented. The research was mainly aimed at verifying the compliance with the work of autothermity premise obtained by the return of part of heat from catalytic reaction. The result of research was to define the range volumetric fume expense ensuring autothermity and the definition of maximum recuperator efficiency. The range of volumetric expense was 18–25 m3/h and maximum value of efficiency coefficient was η = 0.50 for the volumetric expense of 18 m3/h.

  20. Flow-injection spectrophotometric determination of captopril in pharmaceutical formulations using a new solid-phase reactor containing AgSCN immobilized in a polyurethane resin

    Directory of Open Access Journals (Sweden)

    Fernando Campanhã Vicentini

    2012-06-01

    Full Text Available A simple flow-injection analysis procedure was developed for determining captopril in pharmaceutical formulations employing a novel solid-phase reactor containing silver thiocyanate immobilized in a castor oil derivative polyurethane resin. The method was based on silver mercaptide formation between the captopril and Ag(I in the solid-phase reactor. During such a reaction, the SCN- anion was released and reacted with Fe3+, which generated the FeSCN2+ complex that was continuously monitored at 480 nm. The analytical curve was linear in the captopril concentration range from 3.0 × 10-4 mol L-1 to 1.1 × 10-3 mol L-1 with a detection limit of 8.0 × 10-5 mol L-1. Recoveries between 97.5% and 103% and a relative standard deviation of 2% for a solution containing 6.0 × 10-4 mol L-1 captopril (n = 12 were obtained. The sample throughput was 40 h-1 and the results obtained for captopril in pharmaceutical formulations using this procedure and those obtained using a pharmacopoeia procedure were in agreement at a 95% confidence level.Um procedimento simples de análise por injeção em fluxo foi desenvolvido para a determinação de captopril em formulações farmacêuticas empregando um novo reator em fase sólida contendo tiocianato de prata imobilizado em resina poliuretana obtida a partir de óleo de mamona. O método foi baseado na formação de um mercapto composto de prata, no reator em fase sólida, obtido entre o captopril e Ag (I imobilizada. Durante a reação, íons SCN- eram liberados e reagiam com Fe3+, gerando o complexo FeSCN2+, que foi continuamente monitorado em 480 nm. A curva analítica foi linear no intervalo de concentração de captopril entre 3,0 × 10-4 a 1,1 × 10-3 mol L-1 com um limite de detecção de 8,0 × 10-5 mol L-1. Recuperações entre 97,5-103% e desvio padrão relativo de 2% para uma solução contendo 6,0 × 10-4 mol L-1 de captopril (n = 12 foram obtidos. A frequência de amostragem foi de 40 h-1 e os resultados

  1. Influence of alternating air injection on the color and “alambrado” of natural black olives cv. Arauco, as compared with the traditional Argentine method

    OpenAIRE

    2015-01-01

    Ripe black olives cv. Arauco were processed under different conditions to evaluate the effects of alternating air injection (AI) on the color of olives and on spoilage known as “alambrado”, using a system based on the one patented by the “Instituto de la Grasa” (Sevilla, Spain), as compared with the traditional Argentine processing method, which consists of drying the olives in natural air (“extendido”) for 24 hours at 7, 14 and 21 days of fermentation. Four types of fermentation were used: b...

  2. Extension of Surveillance Test Interval of Safety Injection Pump for APR-1400 Reactors to Improve Reliability and Availability of the Pump

    Energy Technology Data Exchange (ETDEWEB)

    Osama, A. Rezk; Jung, J. C.; Lee, Yong-Kwan [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-10-15

    The safety features function to localize, control, mitigate, and terminate such incidents and to hold exposure levels below applicable limits. The safety injection system is comprised of four independent mechanical trains without any tie line among the injection paths and two electrical divisions. Each train has one active Safety Injection Pump (SIP) and one passive Safety Injection Tank (SIT) equipped with a Fluidic Device (FD), each train provides 50% of the minimum injection flow rate for breaks larger than the size of a direct vessel injection line. For breaks equal to or smaller than the size of a direct vessel injection line, each train has 100% of the required capacity. The low pressure injection pumps with common header installed in the conventional design are eliminated, and the functions for safety injection and shutdown cooling are separated. The arrangement of safety injection system for APR-1400 as shown in figure (1). The results obtained in this work show that STI extensions for the SIS feasible without any unacceptable increase in the plant total risk, STI extensions are acceptable for safety injection system to provide plant operational flexibility in the performance of both corrective and preventive maintenance for the safety injection system.

  3. REACTOR AND SHIELD PHYSICS. Comprehensive Technical Report, General Electric Direct-Air-Cycle, Aircraft Nuclear Propulsion Program.

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, W.E.; Simpson, J.D.

    1962-01-01

    This volume is one of twenty-one summarizing the Aircraft Nuclear Propulsion Program of the General Electric Company. This volume describes the experimental and theoretical work accomplished in the areas of reactor and shield physics.

  4. Effects of fuel and air mixing on WOT output in direct injection gasoline engine; Chokufun gasoline kikan ni okeru nenryo to kuki no kongo to shutsuryoku seino

    Energy Technology Data Exchange (ETDEWEB)

    Noda, T.; Iriya, Y.; Naito, K.; Mitsumoto, H.; Iiyama, A. [Nissan Motor Co. Ltd., Tokyo (Japan)

    1997-10-01

    The effects of in-cylinder charge motion and the characteristics of the fuel spray and piston crown shape on WOT output in a direct injection gasoline engine are investigated. The fuel and air mixing process in a cylinder is analyzed by computer simulation and LIF method visualization. As a result, the technical factors to achieve enough mixing in a DI gasoline engine equipped with bowl in piston optimized for stratified combustion are clarified. 7 refs., 9 figs., 1 tab.

  5. Fonctionnement transitoire et controle de la richesse des moteurs à allumage commandé à injection multipoint Transient Operation and Air-Fuel Ratio Control of Spark-Ignition Port-Injected Engines

    Directory of Open Access Journals (Sweden)

    Le Moyne L.

    2006-12-01

    Full Text Available Sur les moteurs à allumage commandé à injection multipoint on observe des désadaptations de richesse lors de fonctionnement transitoire. Ces désadaptations sont dues au dépôt, sous forme de film liquide, du carburant injecté dans le collecteur. Elles peuvent être compensées par une gestion adéquate de la masse injectée. Ainsi, afin d'obtenir la masse de carburant qui maintient la richesse constante, nous avons développé un modèle bidimensionnel des écoulements dans le collecteur au cours du cycle moteur. Ce modèle décrit l'écoulement des gaz frais, des gouttes injectées, des gaz brûlés refoulés vers l'admission et du film sur les parois, sur le principe de la séparation des phases. Nous montrons que le modèle reproduit correctement le signal de richesse et comment il permet de supprimer les désadaptations. La mesure de richesse est faite à l'échappement avec une sonde à oxygène dont nous validons le fonctionnement en transitoire avec une corrélation à la pression maximale du cycle dans le cylindre. Air-fuel ratio excursions are observed on port-injected spark ignition engines during transients. This excursions result from the liquid fuel film deposited on intake port. They can be compensated by controlling the injected fuel mass. In order to have the amount of fuel that keeps air-fuel ratio constant, we have developed a 2D model of flows in the intake port during engine cycle. This separate phases model describes the flow of fresh gases, injected droplets, hot burned gases and film on port walls. We show that the model effectively predicts the equivalence ratio and how it allows to eliminate excursions. Equivalence ratio measures are made with an oxygen sensor which functioning is validated during transients by correlating it to maximal pressure during engine cycle.

  6. Localized corrosion studies on materials proposed for a safety-grade sodium-to- air decay-heat removal system for fast breeder reactors

    Science.gov (United States)

    Kamachi Mudali, U.; Khatak, H. S.; Dayal, R. K.; Gnanamoorthy, J. B.

    1993-02-01

    The present investigation was carried out to assess the localized corrosion resistance of materials proposed for the construction of the safety-grade sodium-to-air decay-heat removal system for fast breeder reactors. The materials, such as Alloy 800,9Cr-lMo steel, and type 316LN stainless steel, in different microstructural conditions were assessed for pitting and stress-corrosion cracking resistances in a chloride medium. The results indicated that 9Cr-lMo steel in the normalized and tempered condition can be considered for the above application from the standpoint of corrosion resistance.

  7. Field Performance Test of an Air-Cleaner with Photocatalysis-Plasma Synergistic Reactors for Practical and Long-Term Use

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Ochiai

    2014-10-01

    Full Text Available A practical and long-term usable air-cleaner based on the synergy of photocatalysis and plasma treatments has been developed. A field test of the air-cleaner was carried out in an office smoking room. The results were compared to previously reported laboratory test results. Even after a treatment of 12,000 cigarettes-worth of tobacco smoke, the air-cleaner maintained high-level air-purification activity (98.9% ± 0.1% and 88% ± 1% removal of the total suspended particulate (TSP and total volatile organic compound (TVOC concentrations, respectively at single-pass conditions. Although the removal ratio of TSP concentrations was 98.6% ± 0.2%, the ratio of TVOC concentrations was 43.8% after a treatment of 21,900 cigarettes-worth of tobacco smoke in the field test. These results indicate the importance of suitable maintenance of the reactors in the air-cleaner during field use.

  8. An experimental study of constant-pressure steam injection and transient condensing flow in an air-saturated porous medium

    NARCIS (Netherlands)

    Brouwers, H.J.H.

    1996-01-01

    In this paper the unsteady process of constant pressure steam injection into an air–saturated porous medium is studied experimentally. To this end, vertical glass tubes are packed with dry quartz sand and injected with dry steam. The propagation of the steam front appears to be proportional to t. It

  9. PREDICTION OF GAS HOLD-UP IN A COMBINED LOOP AIR LIFT FLUIDIZED BED REACTOR USING NEWTONIAN AND NON-NEWTONIAN LIQUIDS

    Directory of Open Access Journals (Sweden)

    Sivakumar Venkatachalam

    2011-09-01

    Full Text Available Many experiments have been conducted to study the hydrodynamic characteristics of column reactors and loop reactors. In this present work, a novel combined loop airlift fluidized bed reactor was developed to study the effect of superficial gas and liquid velocities, particle diameter, fluid properties on gas holdup by using Newtonian and non-Newtonian liquids. Compressed air was used as gas phase. Water, 5% n-butanol, various concentrations of glycerol (60 and 80% were used as Newtonian liquids, and different concentrations of carboxy methyl cellulose aqueous solutions (0.25, 0.6 and 1.0% were used as non-Newtonian liquids. Different sizes of spheres, Bearl saddles and Raschig rings were used as solid phases. From the experimental results, it was found that the increase in superficial gas velocity increases the gas holdup, but it decreases with increase in superficial liquid velocity and viscosity of liquids. Based on the experimental results a correlation was developed to predict the gas hold-up for Newtonian and non-Newtonian liquids for a wide range of operating conditions at a homogeneous flow regime where the superficial gas velocity is approximately less than 5 cm/s

  10. In-air and pressurized water reactor environment fatigue experiments of 316 stainless steel to study the effect of environment on cyclic hardening

    Science.gov (United States)

    Mohanty, Subhasish; Soppet, William K.; Majumdar, Saurindranath; Natesan, Krishnamurti

    2016-05-01

    Argonne National Laboratory (ANL), under the sponsorship of Department of Energy's Light Water Reactor Sustainability (LWRS) program, is trying to develop a mechanistic approach for more accurate life estimation of LWR components. In this context, ANL has conducted many fatigue experiments under different test and environment conditions on type 316 stainless steel (316 SS) material which is widely used in the US reactors. Contrary to the conventional S ∼ N curve based empirical fatigue life estimation approach, the aim of the present DOE sponsored work is to develop an understanding of the material ageing issues more mechanistically (e.g. time dependent hardening and softening) under different test and environmental conditions. Better mechanistic understanding will help develop computer-based advanced modeling tools to better extrapolate stress-strain evolution of reactor components under multi-axial stress states and hence help predict their fatigue life more accurately. Mechanics-based modeling of fatigue such as by using finite element (FE) tools requires the time/cycle dependent material hardening properties. Presently such time-dependent material hardening properties are hardly available in fatigue modeling literature even under in-air conditions. Getting those material properties under PWR environment, are even harder. Through this work we made preliminary attempt to generate time/cycle dependent stress-strain data both under in-air and PWR water conditions for further study such as for possible development of material models and constitutive relations for FE model implementation. Although, there are open-ended possibility to further improve the discussed test methods and related material estimation techniques we anticipate that the data presented in this paper will help the metal fatigue research community particularly, the researchers who are dealing with mechanistic modeling of metal fatigue such as using FE tools. In this paper the fatigue experiments

  11. Application of railgun principle to high-velocity hydrogen pellet injection for magnetic fusion reactor fueling. Progress report, August 16, 1991--September 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.; Zhang, J.

    1992-12-01

    Three separate papers are included which report research progress during this period: (1) A new railgun configuration with perforated sidewalls, (2) development of a fuseless small-bore railgun for injection of high-speed hydrogen pellets into magnetically confined plasmas, and (3) controls and diagnostics on a fuseless railgun for solid hydrogen pellet injection.

  12. Attempt of lean burn of a 4 cycle gasoline engine by the aid of low pressure air assisted in-cylinder injection; Tonai kuki nenryo funsha ni yoru lean burn no kokoromi

    Energy Technology Data Exchange (ETDEWEB)

    Hatakeyama, S.; Kondo, M.; Sekiya, Y.; Murayama, T. [Hokkaido Automotive Engineering College, Hokkaido (Japan)

    1997-10-01

    Comparable performance and exhaust emission with conventional carburetor was obtained by a low Pressure air assisted in-cylinder injection system. And lean burn of idling and light load operation till A/F=70 was realized by installing a spark Plug and a reed type injection nozzle in a divided combustion chambaer of a 4 cycle gasoline engine. 2 refs., 10 figs.

  13. Two Types of Novel Feedstock Injection Structures of the FCC Riser Reactor%FCC升降式反应器的两种新式进料结构

    Institute of Scientific and Technical Information of China (English)

    范怡平; 蔡飞鹏; 时铭显; 徐春明

    2004-01-01

    Based on the analysis of flow characteristics of the FCC riser feedstock injection zone, two novel feedstock injection structures are put forward. By investigating three flow parameters in the feedstock injection zone under the three different structures (the traditional and the novel No. 1, No. 2 structures): the local density, the particle backmixng ratio, and the jet eigen-concentration, the flow feature under three structures were obtained. The experimental results demonstrate that the flow features under both proposed structures are obviously improved comparing with those under the traditional structure. Especially, the performance of the deflector-structured No. 2is more desirable than that of No. 1.

  14. Reviving Abandoned Reservoirs with High-Pressure Air Injection: Application in a Fractured and Karsted Dolomite Reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Robert Loucks; Stephen C. Ruppel; Dembla Dhiraj; Julia Gale; Jon Holder; Jeff Kane; Jon Olson; John A. Jackson; Katherine G. Jackson

    2006-09-30

    Despite declining production rates, existing reservoirs in the United States contain vast volumes of remaining oil that is not being effectively recovered. This oil resource constitutes a huge target for the development and application of modern, cost-effective technologies for producing oil. Chief among the barriers to the recovery of this oil are the high costs of designing and implementing conventional advanced recovery technologies in these mature, in many cases pressure-depleted, reservoirs. An additional, increasingly significant barrier is the lack of vital technical expertise necessary for the application of these technologies. This lack of expertise is especially notable among the small operators and independents that operate many of these mature, yet oil-rich, reservoirs. We addressed these barriers to more effective oil recovery by developing, testing, applying, and documenting an innovative technology that can be used by even the smallest operator to significantly increase the flow of oil from mature U.S. reservoirs. The Bureau of Economic Geology and Goldrus Producing Company assembled a multidisciplinary team of geoscientists and engineers to evaluate the applicability of high-pressure air injection (HPAI) in revitalizing a nearly abandoned carbonate reservoir in the Permian Basin of West Texas. The Permian Basin, the largest oil-bearing basin in North America, contains more than 70 billion barrels of remaining oil in place and is an ideal venue to validate this technology. We have demonstrated the potential of HPAI for oil-recovery improvement in preliminary laboratory tests and a reservoir pilot project. To more completely test the technology, this project emphasized detailed characterization of reservoir properties, which were integrated to access the effectiveness and economics of HPAI. The characterization phase of the project utilized geoscientists and petroleum engineers from the Bureau of Economic Geology and the Department of Petroleum

  15. Modeling-based optimization of a fixed-bed industrial reactor for oxidative dehydrogenation of propane

    Institute of Scientific and Technical Information of China (English)

    Ali Darvishi; Razieh Davand; Farhad Khorasheh; Moslem Fattahi

    2016-01-01

    An industrial scale propylene production via oxidative dehydrogenation of propane (ODHP) in multi-tubular re-actors was modeled. Multi-tubular fixed-bed reactor used for ODHP process, employing 10000 of smal diameter tubes immersed in a shel through a proper coolant flows. Herein, a theory-based pseudo-homogeneous model to describe the operation of a fixed bed reactor for the ODHP to correspondence olefin over V2O5/γ-Al2O3 catalyst was presented. Steady state one dimensional model has been developed to identify the operation parameters and to describe the propane and oxygen conversions, gas process and coolant temperatures, as well as other pa-rameters affecting the reactor performance such as pressure. Furthermore, the applied model showed that a double-bed multitubular reactor with intermediate air injection scheme was superior to a single-bed design due to the increasing of propylene selectivity while operating under lower oxygen partial pressures resulting in propane conversion of about 37.3%. The optimized length of the reactor needed to reach 100%conversion of the oxygen was theoretically determined. For the single-bed reactor the optimized length of 11.96 m including 0.5 m of inert section at the entrance region and for the double-bed reactor design the optimized lengths of 5.72 m for the first and 7.32 m for the second reactor were calculated. Ultimately, the use of a distributed oxygen feed with limited number of injection points indicated a significant improvement on the reactor performance in terms of propane conversion and propylene selectivity. Besides, this concept could overcome the reactor run-away temperature problem and enabled operations at the wider range of conditions to obtain enhanced propyl-ene production in an industrial scale reactor.

  16. Analysis of Air Gap Value in Iron Core Reactor Design%铁心电抗器设计中气隙取值的分析

    Institute of Scientific and Technical Information of China (English)

    吴红波

    2016-01-01

    基于产品计算和制造实际经验,介绍了一种铁心电抗器设计中气隙数量的取值方法,通过气隙数量的计算分析和对铁饼工艺偏差、气隙排布等情况的分析,得到相对合理的气隙取值。结果表明该取值方法有助于提高铁心电抗器电抗值的一次性合格率和提高生产效率。%Based on product calculation and practical experience of manufacture, this paper introduced a kind of air gap valuing method in iron core reactor design. After calculation analysis of air gap value, discus technology bias and gas conifguration, this paper obtained the relative reasonable air gap value. The results show that this method helps to improve the disposable pass rates of reactance value and production efif-ciency.

  17. The HIV/AIDS epidemic and changes in injecting drug use in Buenos Aires, Argentina La epidemia de VIH/SIDA y los cambios en el uso inyectable de drogas en Buenos Aires, Argentina

    Directory of Open Access Journals (Sweden)

    Diana Rossi

    2006-04-01

    Full Text Available This article discusses the changes in injecting drug use from 1998 to 2003 in Buenos Aires, Argentina. The Rapid Situation Assessment and Response methodology was used to obtain the information. Quantitative and qualitative techniques were triangulated: 140 current IDUs and 35 sex partners of injection drug users (IDUs were surveyed; 17 in-depth interviews with the surveyed IDUs and 2 focus groups were held, as well as ethnographic observations. The way in which risk and care practices among injecting drug users changed and the influence of the HIV/ AIDS epidemic on this process are described. In recent years, the frequency of injection practices and sharing of injecting equipment has decreased, while injecting drug use is a more hidden practice in a context of increasing impact of the disease in the injecting drug use social networks and changes in the price and quality of drugs. Knowledge about these changes helps build harm reduction activities oriented to IDUs in their particular social context.Este artículo refleja los cambios en el uso inyectable de drogas producidos entre 1998 y 2003 en Buenos Aires, Argentina. Para obtener la información se empleó la metodología de Evaluación y Respuesta Rápida, triangulando técnicas cuantitativas y cualitativas. Durante 2003-2004 se realizaron encuestas a 140 usuarios de drogas inyectables (UDIs actuales y a 35 parejas sexuales de UDIs. De este universo, 17 UDIs fueron entrevistados en profundidad; se formaron dos grupos de discusión y observaciones etnográficas. Se describe el modo en que cambiaron las prácticas de cuidado y riesgo en el uso inyectable y la influencia de la epidemia de VIH/SIDA en este proceso. En los últimos años disminuyó la frecuencia de uso y del uso compartido de material de inyección, se incrementó el ocultamiento del uso inyectable; en un contexto de fuerte impacto de la enfermedad en el entorno cercano a los UDIs y de un cambio en la relación precio-calidad de

  18. Catalytic wet air oxidation of bisphenol A solution in a batch-recycle trickle-bed reactor over titanate nanotube-based catalysts.

    Science.gov (United States)

    Kaplan, Renata; Erjavec, Boštjan; Senila, Marin; Pintar, Albin

    2014-10-01

    Catalytic wet air oxidation (CWAO) is classified as an advanced oxidation process, which proved to be highly efficient for the removal of emerging organic pollutant bisphenol A (BPA) from water. In this study, BPA was successfully removed in a batch-recycle trickle-bed reactor over bare titanate nanotube-based catalysts at very short space time of 0.6 min gCAT g(-1). The as-prepared titanate nanotubes, which underwent heat treatment at 600 °C, showed high activity for the removal of aqueous BPA. Liquid-phase recycling (5- or 10-fold recycle) enabled complete BPA conversion already at 200 °C, together with high conversion of total organic carbon (TOC), i.e., 73 and 98 %, respectively. The catalyst was chemically stable in the given range of operating conditions for 189 h on stream.

  19. Influence of Irradiance, Flow Rate, Reactor Geometry, and Photopromoter Concentration in Mineralization Kinetics of Methane in Air and in Aqueous Solutions by Photocatalytic Membranes Immobilizing Titanium Dioxide

    Directory of Open Access Journals (Sweden)

    Ignazio Renato Bellobono

    2008-01-01

    Full Text Available Photomineralization of methane in air (10.0–1000 ppm (mass/volume of C at 100% relative humidity (dioxygen as oxygen donor was systematically studied at 318±3 K in an annular laboratory-scale reactor by photocatalytic membranes immobilizing titanium dioxide as a function of substrate concentration, absorbed power per unit length of membrane, reactor geometry, and concentration of a proprietary vanadium alkoxide as photopromoter. Kinetics of both substrate disappearance, to yield intermediates, and total organic carbon (TOC disappearance, to yield carbon dioxide, were followed. At a fixed value of irradiance (0.30 W⋅cm-1, the mineralization experiments in gaseous phase were repeated as a function of flow rate (4–400 m3⋅h−1. Moreover, at a standard flow rate of 300 m3⋅h−1, the ratio between the overall reaction volume and the length of the membrane was varied, substantially by varying the volume of reservoir, from and to which circulation of gaseous stream took place. Photomineralization of methane in aqueous solutions was also studied, in the same annular reactor and in the same conditions, but in a concentration range of 0.8–2.0 ppm of C, and by using stoichiometric hydrogen peroxide as an oxygen donor. A kinetic model was employed, from which, by a set of differential equations, four final optimised parameters, k1 and K1, k2 and K2, were calculated, which is able to fit the whole kinetic profile adequately. The influence of irradiance on k1 and k2, as well as of flow rate on K1 and K2, is rationalized. The influence of reactor geometry on k values is discussed in view of standardization procedures of photocatalytic experiments. Modeling of quantum yields, as a function of substrate concentration and irradiance, as well as of concentration of photopromoter, was carried out very satisfactorily. Kinetics of hydroxyl radicals reacting between themselves, leading to hydrogen peroxide, other than with substrate or

  20. Injection of lightning-produced NOx, water vapor, wildfire emissions, and stratospheric air to the UT/LS as observed from DC3 measurements

    Science.gov (United States)

    Huntrieser, H.; Lichtenstern, M.; Scheibe, M.; Aufmhoff, H.; Schlager, H.; Pucik, T.; Minikin, A.; Weinzierl, B.; Heimerl, K.; Pollack, I. B.; Peischl, J.; Ryerson, T. B.; Weinheimer, A. J.; Honomichl, S.; Ridley, B. A.; Biggerstaff, M. I.; Betten, D. P.; Hair, J. W.; Butler, C. F.; Schwartz, M. J.; Barth, M. C.

    2016-06-01

    During the Deep Convective Clouds and Chemistry (DC3) experiment in summer 2012, airborne measurements were performed in the anvil inflow/outflow of thunderstorms over the Central U.S. by three research aircraft. A general overview of Deutsches Zentrum für Luft- und Raumfahrt (DLR)-Falcon in situ measurements (CO, O3, SO2, CH4, NO, NOx, and black carbon) is presented. In addition, a joint flight on 29 May 2012 in a convective line of isolated supercell storms over Oklahoma is described based on Falcon, National Science Foundation/National Center for Atmospheric Research Gulfstream-V (NSF/NCAR-GV), and NASA-DC8 trace species in situ and lidar measurements. During DC3 some of the largest and most destructive wildfires in New Mexico and Colorado state's history were burning, which strongly influenced air quality in the DC3 thunderstorm inflow and outflow region. Lofted biomass burning (BB) plumes were frequently observed in the mid- and upper troposphere (UT) in the vicinity of deep convection. The impact of lightning-produced NOx (LNOx) and BB emissions was analyzed on the basis of mean vertical profiles and tracer-tracer correlations (CO-NOx and O3-NO). On a regular basis DC3 thunderstorms penetrated the tropopause and injected large amounts of LNOx into the lower stratosphere (LS). Inside convection, low O3 air (~80 nmol mol-1) from the lower troposphere was rapidly transported to the UT/LS region. Simultaneously, O3-rich stratospheric air masses (~100-200 nmol mol-1) were present around and below the thunderstorm outflow and enhanced UT-O3 mixing ratios significantly. A 10 year global climatology of H2O data from the Aura Microwave Limb Sounder confirmed that the Central U.S. is a preferred region for convective injection into the LS.

  1. Effects of diluent admissions and intake air temperature in exhaust gas recirculation on the emissions of an indirect injection dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Alla, G.H.; Soliman, H.A.; Badr, O.A.; Abd-Rabbo, M.F. [Zagazig University, Cairo (Egypt). Shoubra Faculty of Engineering

    2001-05-01

    The operation of Diesel engines on gaseous fuels, commonly known as dual fuel engines, uses Diesel fuel as the pilot fuel and gaseous fuel (methane and sometimes propane in the present work) as the main fuel. The gaseous fuel was inducted in the intake manifold to mix with the intake air. The investigation was conducted on a high speed indirect injection (Ricardo-E6) dual fuel engine and was concerned with the effects of exhaust gas recirculation (EGR) on the dual fuel engine combustion and emissions, in particular, the effects of intake air temperature and diluent admissions (N{sub 2} and CO{sub 2}) on combustion and emissions. The use of diluents to displace oxygen (O{sub 2}) in the intake air resulted in a reduction in the O{sub 2} supplied to the engine, increased the inlet charge thermal capacity (thermal effect) and, potentially, CO{sub 2} and N{sub 2} participated in the combustion process (chemical effect). In a separate series of tests, the temperature of the engine inlet charge was raised gradually in order to simulate the effect of mixing hot EGR with the engine inlet gaseous fuel air mixture. It was found that the admission of diluents resulted in reductions in the exhaust oxides of nitrogen (NO{sub x}). Higher inlet charge temperature increases the exhaust NO{sub x} but reduces the unburned hydrocarbon emissions. Finally, when carbon dioxide was added to the inlet gaseous fuel air charge, large reductions in NO{sub x} were observed. (author)

  2. Mark I Containment Program. Scaling analysis for modeling initial air clearing caused by reactor safety/relief valve discharge. [BWR

    Energy Technology Data Exchange (ETDEWEB)

    Schrum, R.W.

    1978-02-01

    A generalized method of similitude is introduced and applied to develop scaling relationships for a General Electric Mark I suppression pool. A scale model is proposed to model suppression pool wall loads due to air flow through a T-quencher discharge device. The scaling relationships developed provide the means for relating scale model parameters (i.e., pressure, velocity,) to full scale.

  3. Inyección de aire secundario caliente en calderas de vapor bagaceras y su influencia en el rendimiento térmico Injection of heated secondary air in steam bagasse boilers and its influence on thermal efficiency

    Directory of Open Access Journals (Sweden)

    Marcos A. Golato

    2005-12-01

    Full Text Available Como alternativa para aumentar la eficiencia térmica de calderas bagaceras productoras de vapor, se evalúa la inyección de aire secundario al hogar, previamente calentado. Además, se reúne información sobre la combustión y los factores que influyen en dicho fenómeno. Se calculó el rendimiento térmico en una caldera bagacera con inyección de aire secundario frío, mediante el empleo de balances de masa y energía con datos de ensayos experimentales. Se planteó luego un modelo teórico para el caso de calentar todo este aire secundario, y se determinó el nuevo rendimiento térmico. Finalmente se realizó un análisis técnico-económico para evaluar la rentabilidad del uso de esta tecnología, teniendo en cuenta el ahorro de bagazo y su equivalente en gas natural. Para el caso analizado, los resultados mostraron: aumento del rendimiento térmico de la caldera (1,62 puntos; mejora del índice de generación de vapor (2,27%; reducción del consumo de bagazo (2,45%; aceptable periodo de repago de la inversión (114 días de zafra.Previously heated secondary air injection is evaluated as an alternative to increase thermal efficiency of bagasse steam boilers. Aspects regarding the combustion process and the factors affecting it are also described. Tests were made in a bagasse boiler of a sugar mill. Thermal efficiency of the bagasse boiler with cold secondary air injection was determined by solving mass and energy balances. A new thermal efficiency for the case in which all secondary air is pre-heated with hot gases was determined afterwards. Finally, a technical-economic analysis was made to evaluate the yield of this technology, taking into account bagasse saving and its equivalent in natural gas. For the analyzed case, the results showed: an increase in the thermal efficiency of the boiler (1,62 points; a higher steam production index (2,27%; a reduction in bagasse consumption (2,45%; an acceptable payback period of the investment (114

  4. H Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The H Reactor was the first reactor to be built at Hanford after World War II.It became operational in October of 1949, and represented the fourth nuclear reactor on...

  5. Analysis of transient flows in gasoline direct injection systems: effects on unsteady air entrainment by the spray; Analyse des ecoulements transitoires dans les systemes d'injection directe essence: effets sur l'entrainement d'air instationnaire du spray

    Energy Technology Data Exchange (ETDEWEB)

    Delay, G.

    2005-03-15

    The aim of this study is to determine instantaneous liquid flow rate oscillations effect on non stationary air entrainment of an injector conical spray (Gasoline Direct Injection). The tools we use are either experimental or numerical ones. An instantaneous flow rate determination method is used. It is based on pulsated flows physics and only requires the velocity at the centerline of a pipe mounted just before the injector. So, it is possible to 'rebuild' the instantaneous velocity distributions and then to get the instantaneous liquid flow rate (Laser Doppler Anemometry measurements). A mechanical and hydraulics modeling software (AMESim) is necessary to get injector outlet flow rate. Simulations are validated by both 'rebuilding' method results and common rail pressure measurements. Fluorescent Particle Image Velocimetry (FPIV), suited to dense two -phase flows, is used to measure air flow around and inside the conical spray. Velocity measurements close to the spray frontier are used to compute instantaneous air entrainment. Considering droplets momentum exchange with air and thanks to droplets diameters and liquid velocities measurements at the nozzle exit, a transient air entrainment model is proposed according to FPIV measurements. (author)

  6. Chaotic behavior in a system simulating the pressure balanced injection system. Analysis of passive safety reactor behavior. JAERI's nuclear research promotion program, H12-012 (Contract research)

    Energy Technology Data Exchange (ETDEWEB)

    Madarame, Haruki; Okamoto, Koji; Tanaka, Gentaro; Morimoto, Yuichiro [Tokyo Univ., School of Engineering, Tokyo (Japan); Sato, Akira [Yamagata Univ., Faculty of Engineering, Yonezawa, Yamagata (Japan); Kondou, Masaya [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    The pressure Balanced Injection System (PBIS) was proposed in a passive safety reactor. Pressurizing Line (PL) connects the Reactor Vessel (RV) and the gas area in the Contain Vessel (CV), and Injected Line (IL) connects two vessels at relatively lower position. In an accident, the two lines are passively opened. The vapor generated by the residual heat pressed downward the water level in the RV. When the level is lower than the inlet of the PL, vapor is ejected into the CV through the PL attaining the pressure balance between the vessels. Then boron water in the CV is injected into the RV through the IL by the static head. This process is repeated by the succeeding vapor generation. In an experiment, the oscillating system was replaced by water column in a U-shaped duct. The vapor generation was simulated by cover gas supply to one end of the duct, while the other end was open to the atmosphere. When the water level reached a certain level, electromagnetic valves opened and the cover gas was ejected. The gas pressure decreased rapidly, resulting in a surface rise. When the water level reached another level, the valves closed. The cover gas pressure increased again, thus, gas ejection occurred intermittently. The interval of the gas ejection was not constant but fluctuated widely. Mere stochastic noise could hardly explain the large amplitude. Then was expressed the system using a set of linear equations. Various types of piecewise linear model were developed to examine the cause of the fluctuation. There appeared tangential bifurcation, period-doubling bifurcation, period-adding bifurcation and so on. The calculated interval exhibited chaotic features. Thus the cause of the fluctuation can be attributed to chaotic features of the system having switching. Since the piecewise linear model was highly simplified the behavior, a quantitative comparison between the calculation and the experiment was difficult. Therefore, numerical simulation code considering nonlinear

  7. Microbial community changes during different empty bed residence times and operational fluctuations in an air diffusion reactor for odor abatement.

    Science.gov (United States)

    Rodríguez, Elisa; García-Encina, Pedro A; Muñoz, Raúl; Lebrero, Raquel

    2017-03-08

    The succession of bacterial and fungal populations was assessed in an activated sludge (AS) diffusion bioreactor treating a synthetic malodorous emission containing H2S, toluene, butanone and alpha-pinene. Microbial community characteristics (bacterial and fungal diversity, richness, evenness and composition) and bioreactor function relationships were evaluated at different empty bed residence times (EBRTs) and after process fluctuations and operational failures (robustness test). For H2S, butanone and toluene, the bioreactor showed a stable and efficient abatement performance regardless of the EBRT and fluctuations applied, while low alpha-pinene removals were observed. While no clear positive or negative relationship between community characteristics and bioreactor functions was observed, ecological parameters such as evenness and community dynamics seemed to be of importance for maintaining reactor stability. The optimal degree of evenness of the inoculum likely contributed to the high robustness of the system towards the fluctuations imposed. Actinobacteria, Proteobacteria and Fungi (Hypocreales, Chaeatothyriales) were the most abundant groups retrieved from the AS system with a putative key role in the degradation of butanone and toluene. Typical H2S and alpha-pinene degraders were not retrieved from the system. The inoculation of P. fluorescens, a known alpha-pinene degrader, to the system did not result in the enhancement of the degradation of this compound. This strain was likely outcompeted by the microorganisms already adapted to the AS environment.

  8. Almost twenty years' search of transuranium isotopes in effluents discharged to air from nuclear power plants with VVER reactors.

    Science.gov (United States)

    Hölgye, Z; Filgas, R

    2006-04-01

    Airborne effluents of 5 stacks (stacks 1-5) of three nuclear power plants, with 9 pressurized water reactors VVER of 4,520 MWe total power, were searched for transuranium isotopes in different time periods. The search started in 1985. The subject of this work is a presentation of discharge data for the period of 1998-2003 and a final evaluation. It was found that 238Pu, 239,240Pu, 241Am, 242Cm, and 244Cm can be present in airborne effluents. Transuranium isotope contents in most of the quarterly effluent samples from stacks 2, 4 and 5 were not measurable. Transuranium isotopes were present in the effluents from stack l during all 9 years of the study and from stack 3 since the 3rd quarter of 1996 as a result of a defect in the fuel cladding. A relatively high increase of transuranium isotopes in effluents from stack 3 occurred in the 3rd quarter of 1999, and a smaller increase occurred in the 3rd quarter of 2003. In each instance 242Cm prevailed in the transuranium isotope mixtures. 238Pu/239,240Pu, 241Am/239,240Pu, 242Cm/239,240Pu, and 244Cm/239,240Pu ratios in fuel for different burn-up were calculated, and comparison of these ratios in fuel and effluents was performed.

  9. Comparative analysis on characteristics in non-thermal plasma reactor with oxygen and air%氧气/空气源低温等离子体发生器的性能对比分析

    Institute of Scientific and Technical Information of China (English)

    李小华; 李伟俊; 蔡忆昔; 施蕴曦; 徐辉; 顾林波; 濮晓宇

    2016-01-01

    . As a solution, diesel particular filter (DPF) has become a mainstay in PM control. However, there are some problems with DPF regeneration technologies, such as thermal damage, sulfur poisoning of the catalyst and low regeneration efficiency. So it is meaningful to find out a new regeneration method. Recently, non-thermal plasma (NTP) has become a research focus in the field of diesel emission control with its high efficiency, safety, no secondary pollution and a wide range of application. The active materials, mainly including O3,NO2,OH and O, can start complex chemical reactions, which is impossible in a conventional condition. So, it can be used to remove PM deposits in DPF and realize DPF regeneration. In term of NTP reactor, dielectric barrier discharge is widely used in the laboratory and industry for its simple type, safety and reliability. There are many influence factors concerning discharge, such as discharge voltage and frequency, gas type and flow, materials of barrier and electrode type. In this paper, a coaxial type NTP reactor was designed. In order to have a detailed recognition of NTP reactor, comparative analysis on oxygen and air dielectric discharge were investigated, with the studies on the influence of discharge electrode area (SE), peak-peak voltage (Up-p) and volume flow rate (qv) on discharge power (P), charge flux (Q), ozone concentration, ozone output and ozone output efficiency.SEwas changed by the length of wire tightly wrapped around the barrier,Up-pwas adjusted by a plasma source andqv was controlled by gas valves and flow meters. The results indicated thatSEhad a similar effect both on oxygen and air dielectric discharge. With the increase ofSE,P andQhad a linear growth but there were lower values and growth rate in air discharge. Ozone concentration increased asSE increased while its output efficiency decreased both in oxygen and air discharge.Up-phad remarkably positive impacts onP and Q, both of which had a rising growth rate. Ozone

  10. From Bench Top to Market: Growth of Multi-Walled Carbon Nanotubes by Injection CVD Using Fe Organometallics - Production of a Commercial Reactor

    Science.gov (United States)

    Rowsell, J.; Hepp, A. F.; Harris, J. D.; Raffaelle, R. P.; Cowen, J. C.; Scheiman, D. A.; Flood, D. M.; Flood, D. J.

    2009-01-01

    Preferential oriented multiwalled carbon nanotubes were prepared by the injection chemical vapor deposition (CVD) method using either cyclopentadienyliron dicarbonyl dimer or cyclooctatetraene iron tricarbonyl as the iron catalyst source. The catalyst precursors were dissolved in toluene as the carrier solvent for the injections. The concentration of the catalyst was found to influence both the growth (i.e., MWNT orientation) of the nanotubes, as well as the amount of iron in the deposited material. As deposited, the multiwalled carbon nanotubes contained as little as 2.8% iron by weight. The material was deposited onto tantalum foil and fused silica substrates. The nanotubes were characterized by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and thermogravimetric analysis. This synthetic route provides a simple and scalable method to deposit MWNTs with a low defect density, low metal content and a preferred orientation. Subsequently, a small start-up was founded to commercialize the deposition equipment. The contrast between the research and entrepreneurial environments will be discussed.

  11. Cartilage tissue engineering application of injectable gelatin hydrogel with in situ visible-light-activated gelation capability in both air and aqueous solution.

    Science.gov (United States)

    Lin, Hang; Cheng, Anthony Wai-Ming; Alexander, Peter G; Beck, Angela M; Tuan, Rocky S

    2014-09-01

    Chondroprogenitor cells encapsulated in a chondrogenically supportive, three-dimensional hydrogel scaffold represents a promising, regenerative approach to articular cartilage repair. In this study, we have developed an injectable, biodegradable methacrylated gelatin (mGL)-based hydrogel capable of rapid gelation via visible light (VL)-activated crosslinking in air or aqueous solution. The mild photocrosslinking conditions permitted the incorporation of cells during the gelation process. Encapsulated human-bone-marrow-derived mesenchymal stem cells (hBMSCs) showed high, long-term viability (up to 90 days) throughout the scaffold. To assess the applicability of the mGL hydrogel for cartilage tissue engineering, we have evaluated the efficacy of chondrogenesis of the encapsulated hBMSCs, using hBMSCs seeded in agarose as control. The ability of hBMSC-laden mGL constructs to integrate with host tissues after implantation was further investigated utilizing an in vitro cartilage repair model. The results showed that the mGL hydrogel, which could be photopolymerized in air and aqueous solution, supports hBMSC growth and TGF-β3-induced chondrogenesis. Compared with agarose, mGL constructs laden with hBMSCs are mechanically stronger with time, and integrate well with native cartilage tissue upon implantation based on push-out mechanical testing. VL-photocrosslinked mGL scaffold thus represents a promising scaffold for cell-based repair and resurfacing of articular cartilage defects.

  12. Air-source heat pump coupled with economized vapor injection scroll compressor and ejector:Design and experimental research

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Ejector can utilize high pressure energy from liquid mechanism,it can be used in heat pump system coupled with economized vapor injection(EVI)scroll compressor.When running under low temperature conditions,the performance of the EVI system with ejector can be improved further.In this paper,the design method of the heat pump system with ejector is presented,and the process for designing the heat pump with ejector(EVIe)was summarized.One prototype heat pump was designed under the condition of the evaporation temperature of -20oC,and an experimental setup was established to test the prototype.The measured results demonstrated that the heating EER(energy efficiency ratio)of the EVIe could reach about 4%higher than that of the system without the ejector when the heating capacity remained nearly constant.The design method is helpful to development of a heat pump system coupled with scroll compressor and ejector.

  13. Enhanced Cr bioleaching efficiency from tannery sludge with coinoculation of Acidithiobacillus thiooxidans TS6 and Brettanomyces B65 in an air-lift reactor.

    Science.gov (United States)

    Fang, Di; Zhou, Li-Xiang

    2007-09-01

    Bioleaching process has been demonstrated to be an effective technology in removing Cr from tannery sludge, but a large quantity of dissolved organic matter (DOM) present in tannery sludge often exhibits a marked toxicity to chemolithoautotrophic bioleaching bacteria such as Acidithiobacillus thiooxidans. The purpose of the present study was therefore to enhance Cr bioleaching efficiencies through introducing sludge DOM-degrading heterotrophic microorganism into the sulfur-based sludge bioleaching system. An acid-tolerant DOM-degrading yeast strain Brettanomyces B65 was successfully isolated from a local Haining tannery sludge and it could metabolize sludge DOM as a source of energy and carbon for growth. A combined bioleaching experiment (coupling Brettanomyces B65 and A. thiooxidans TS6) performed in an air-lift reactor indicated that the rates of sludge pH reduction and ORP increase were greatly improved, resulting in enhanced Cr solubilization. Compared with the 5 days required for maximum solubilization of Cr for the control (single bioleaching process without inoculation of Brettanomyces B65), the bioleaching period was significantly shorten to 3 days for the combined bioleaching system. Moreover, little nitrogen and phosphorous were lost and the content of Cr was below the permitted levels for land application after 3 days of bioleaching treatment.

  14. ENGINEERING DEVELOPMENT OF SLURRY BUBBLE COLUMN REACTOR (SBCR) TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Bernard A. Toseland

    2000-12-31

    The major technical objectives of this program are threefold: (1) to develop the design tools and a fundamental understanding of the fluid dynamics of a slurry bubble column reactor to maximize reactor productivity, (2) to develop the mathematical reactor design models and gain an understanding of the hydrodynamic fundamentals under industrially relevant process conditions, and (3) to develop an understanding of the hydrodynamics and their interaction with the chemistries occurring in the bubble column reactor. Successful completion of these objectives will permit more efficient usage of the reactor column and tighter design criteria, increase overall reactor efficiency, and ensure a design that leads to stable reactor behavior when scaling up to large-diameter reactors. Washington University's work during the reporting period involved the implementation of the automated calibration device, which will provide an advanced method of determining liquid and slurry velocities at high pressures. This new calibration device is intended to replace the original calibration setup, which depended on fishing lines and hooks to position the radioactive particle. The report submitted by Washington University contains a complete description of the new calibration device and its operation. Improvements to the calibration program are also discussed. Iowa State University utilized air-water bubble column simulations in an effort to determine the domain size needed to represent all of the flow scales in a gas-liquid column at a high superficial velocity. Ohio State's report summarizes conclusions drawn from the completion of gas injection phenomena studies, specifically with respect to the characteristics of bubbling-jetting at submerged single orifices in liquid-solid suspensions.

  15. Piezoelectric Injection Systems

    Science.gov (United States)

    Mock, R.; Lubitz, K.

    The origin of direct injection can be doubtlessly attributed to Rudolf Diesel who used air assisted injection for fuel atomisation in his first self-ignition engine. Although it became apparent already at that time that direct injection leads to reduced specific fuel consumption compared to other methods of fuel injection, it was not used in passenger cars for the moment because of its disadvantageous noise generation as the requirements with regard to comfort were seen as more important than a reduced specific consumption.

  16. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  17. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    1962-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  18. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  19. Reactor Neutrinos

    OpenAIRE

    Soo-Bong Kim; Thierry Lasserre; Yifang Wang

    2013-01-01

    We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very ...

  20. Pentamidine Injection

    Science.gov (United States)

    Pentamidine injection is used to treat pneumonia caused by a fungus called Pneumocystis carinii. It is in ... Pentamidine injection comes as powder to be mixed with liquid to be injected intramuscularly (into a muscle) ...

  1. Fluid dynamics of the shock wave reactor

    Science.gov (United States)

    Masse, Robert Kenneth

    2000-10-01

    High commercial incentives have driven conventional olefin production technologies to near their material limits, leaving the possibility of further efficiency improvements only in the development of entirely new techniques. One strategy known as the Shock Wave Reactor, which employs gas dynamic processes to circumvent limitations of conventional reactors, has been demonstrated effective at the University of Washington. Preheated hydrocarbon feedstock and a high enthalpy carrier gas (steam) are supersonically mixed at a temperature below that required for thermal cracking. Temperature recovery is then effected via shock recompression to initiate pyrolysis. The evolution to proof-of-concept and analysis of experiments employing ethane and propane feedstocks are presented. The Shock Wave Reactor's high enthalpy steam and ethane flows severely limit diagnostic capability in the proof-of-concept experiment. Thus, a preliminary blow down supersonic air tunnel of similar geometry has been constructed to investigate recompression stability and (especially) rapid supersonic mixing necessary for successful operation of the Shock Wave Reactor. The mixing capabilities of blade nozzle arrays are therefore studied in the air experiment and compared with analytical models. Mixing is visualized through Schlieren imaging and direct photography of condensation in carbon dioxide injection, and interpretation of visual data is supported by pressure measurement and flow sampling. The influence of convective Mach number is addressed. Additionally, thermal behavior of a blade nozzle array is analyzed for comparison to data obtained in the course of succeeding proof-of-concept experiments. Proof-of-concept is naturally succeeded by interest in industrial adaptation of the Shock Wave Reactor, particularly with regard to issues involving the scaling and refinement of the shock recompression. Hence, an additional, variable geometry air tunnel has been constructed to study the parameter

  2. On-line solid-phase enrichment coupled to packed reactor flow injection analysis in a green analytical procedure to determine low levels of folic acid using fluorescence detection

    Directory of Open Access Journals (Sweden)

    Emara Samy

    2012-12-01

    Full Text Available Abstract Background Analysis of folic acid (FA is not an easy task because of its presence in lower concentrations, its lower stability under acidic conditions, and its sensitiveness against light and high temperature. The present study is concerned with the development and validation of an automated environmentally friendly pre-column derivatization combined by solid-phase enrichment (SPEn to determine low levels of FA. Results Cerium (IV trihydroxyhydroperoxide (CTH as a packed oxidant reactor has been used for oxidative cleavage of FA into highly fluorescent product, 2-amino-4-hydroxypteridine-6-carboxylic acid. FA was injected into a carrier stream of 0.04 M phosphate buffer, pH 3.4 at a flow-rate of 0.25 mL/min. The sample zone containing the analyte was passed through the CTH reactor thermostated at 40°C, and the fluorescent product was trapped and enriched on a head of small ODS column (10 mm x 4.6 mm i.d., 5 μm particle size. The enriched product was then back-flush eluted by column-switching from the small ODS column to the detector with a greener mobile phase consisting of ethanol and phosphate buffer (0.04M, pH 3.4 in the ratio of 5:95 (v/v. The eluent was monitored fluorimetrically at emission and excitation wavelengths of 463 and 367 nm, respectively. The calibration graph was linear over concentrations of FA in the range of 1.25-50 ng/mL, with a detection limit of 0.49 ng/mL. Conclusion A new simple and sensitive green analytical procedure including on-line pre-column derivatization combined by SPEn has been developed for the routine quality control and dosage form assay of FA at very low concentration level. The method was a powerful analytical technique that had excellent sensitivity, sufficient accuracy and required relatively simple and inexpensive instrumentation.

  3. Radial lean direct injection burner

    Science.gov (United States)

    Khan, Abdul Rafey; Kraemer, Gilbert Otto; Stevenson, Christian Xavier

    2012-09-04

    A burner for use in a gas turbine engine includes a burner tube having an inlet end and an outlet end; a plurality of air passages extending axially in the burner tube configured to convey air flows from the inlet end to the outlet end; a plurality of fuel passages extending axially along the burner tube and spaced around the plurality of air passage configured to convey fuel from the inlet end to the outlet end; and a radial air swirler provided at the outlet end configured to direct the air flows radially toward the outlet end and impart swirl to the air flows. The radial air swirler includes a plurality of vanes to direct and swirl the air flows and an end plate. The end plate includes a plurality of fuel injection holes to inject the fuel radially into the swirling air flows. A method of mixing air and fuel in a burner of a gas turbine is also provided. The burner includes a burner tube including an inlet end, an outlet end, a plurality of axial air passages, and a plurality of axial fuel passages. The method includes introducing an air flow into the air passages at the inlet end; introducing a fuel into fuel passages; swirling the air flow at the outlet end; and radially injecting the fuel into the swirling air flow.

  4. Influence of alternating air injection on the color and “alambrado” of natural black olives cv. Arauco, as compared with the traditional Argentine method

    Directory of Open Access Journals (Sweden)

    Juarez Romero, J. A.

    2015-06-01

    Full Text Available Ripe black olives cv. Arauco were processed under different conditions to evaluate the effects of alternating air injection (AI on the color of olives and on spoilage known as “alambrado”, using a system based on the one patented by the “Instituto de la Grasa” (Sevilla, Spain, as compared with the traditional Argentine processing method, which consists of drying the olives in natural air (“extendido” for 24 hours at 7, 14 and 21 days of fermentation. Four types of fermentation were used: brine at 2% NaCl plus AI; brine at 2% NaCl plus three “extendidos”; brine at 9% NaCl plus three “extendidos”; and brine at 9% NaCl plus AI and one “extendido”. As previously observed in other varieties by other authors, we noticed that lower pH values were achieved in 2% NaCl fermentations vs. 9% NaCl fermentations. AI prevented the “alambrado” whereas brine at 2% NaCl reduced this spoilage as compared with brine at 9% NaCl. The darkest color of olives was obtained with three “extendidos”, but 83% of brightness reduction was achieved with only one “extendido”. The “extendido” process decreased the texture. We conclude that the combination of AI and “extendido” can add benefits to natural black olives of the Arauco variety.Se elaboraron aceitunas negras maduras variedad Arauco en distintas condiciones para evaluar la inyección alternante de aire (IA con un sistema basado en el patentado por el Instituto de la Grasa, en comparación con la elaboración tradicional argentina donde se realiza exposición al aire en seco (“extendido” de los frutos durante 24 h, en tres momentos de la fermentación (después de 7, 14 y 21 días. Se hicieron cuatro tipos de fermentaciones: en salmuera al 2% con IA; en salmuera al 2% y 9% con tres “extendidos” y salmuera 9% con IA y un “extendido”. Se alcanzaron los valores mas bajos de pH en fermentaciones con el 2% de NaCl versus las de 9%. La IA evita el defecto de

  5. Measurements of plume geometry and argon-41 radiation field at the BR1 reactor in Mol, Belgium

    Energy Technology Data Exchange (ETDEWEB)

    Drews, M.; Joergensen, H.; Lauritzen, Bent; Mikkelsen, T. [Risoe National Lab. (Denmark); Aage, H.K.; Korsbech, U. [Technical Univ. of Denmark (Denmark); Bargholz, K. [Danish Emergency Management Agency (Denmark); Rojas-Palma, C.; Ammel, R. van [Belgian Nuclear Res. Center (Belgium)

    2002-02-01

    An atmospheric dispersion experiment was conducted using a visible tracer along with the routine releases of {sup 41}Ar from the BR1 air-cooled research reactor in Mol. In the experiment, simultaneous measurements of the radiation field from the {sup 41}Ar decay, the meteorology, the {sup 41}Ar source term and plume geometry were performed. The visible tracer was injected into the reactor emission stack, and the plume cross section determined by Lidar scanning of the released aerosols. The data collected in the exercise provide a valuable resource for atmospheric dispersion and dose rate modeling. (au)

  6. The atmospheric distribution of contaminated air masses from the reactors in Fukushima Daiichi - nuclide spectra and dose reduction; Die atmosphaerische Ausbreitung kontaminierter Luftmassen aus den Reaktoren von Fukushima Daiichi - Nuklidspektrum und Dosisrekonstruktion

    Energy Technology Data Exchange (ETDEWEB)

    Zaehringer, Matthias [Bundesamt fuer Strahlenschutz, Freiburg (Germany); Gering, Florian [Bundesamt fuer Strahlenschutz, Oberschleissheim (Germany). Abt. Notfallschutz

    2015-06-01

    The compiled information is based on the data from the United Nations scientific committee on the effects of atomic radiation (UNSCEAR). Due to the earthquake and tsunami only few measurements have been performed during the first days after the reactor accidents in Fukushima Daiichi. In the vicinity of the nuclear power plant no radiation monitoring network comparable to the German IMIS was installed. There are only few data on the air contamination are available. Worldwide in CTBT stations measured activity data of Te-132 and Cs-137 are correlated with estimated data from reactor inventories. It is assumed that the complete rare earth inventories were released - available data of Xe-133 and Kr-85 are analyzed. The UNSCEAR estimation on radiological consequences has to use estimated source terms reconstructed data for the radionuclide migration.

  7. Engineering reactors for catalytic reactions

    Indian Academy of Sciences (India)

    Vivek V Ranade

    2014-03-01

    Catalytic reactions are ubiquitous in chemical and allied industries. A homogeneous or heterogeneous catalyst which provides an alternative route of reaction with lower activation energy and better control on selectivity can make substantial impact on process viability and economics. Extensive studies have been conducted to establish sound basis for design and engineering of reactors for practising such catalytic reactions and for realizing improvements in reactor performance. In this article, application of recent (and not so recent) developments in engineering reactors for catalytic reactions is discussed. Some examples where performance enhancement was realized by catalyst design, appropriate choice of reactor, better injection and dispersion strategies and recent advances in process intensification/ multifunctional reactors are discussed to illustrate the approach.

  8. Turbulence Characteristics of Swirling Reacting Flow in a Combustor with Staged Air Injection%分级进风燃烧室内旋流反应流的湍流特性

    Institute of Scientific and Technical Information of China (English)

    张健; 普勇; 周力行

    2006-01-01

    This paper presents an experimental investigation of the turbulent reacting flow in a swirl combustor with staged air injection. The air injected into the combustor is composed of the primary swirling jet and the secondary non-swirling jet. A three dimension-laser particle dynamic analyzer (PDA) was employed to measure the instantaneous gas velocity. The probability density functions (PDF) for the instantaneous gas axial and tangential velocities at each measuring location, as well as the radial profiles of the root mean square of fluctuating gas axial and tangential velocities and the second-order moment for the fluctuating gas axial and tangential velocities are obtained. The measured results delineate the turbulence properties of the swirling reacting flow under the conditions of staged combustion.

  9. 蜂窝状催化剂反应器中氢气/空气燃烧的二维模拟%Two-dimensional Simulation for Hydrogen/Air Combustion in a Monolith Reactor

    Institute of Scientific and Technical Information of China (English)

    洪若瑜; 丁剑敏; Vlachos D G

    2005-01-01

    Recent studies on hydrogen combustion were reviewed briefly. The laminar flow and combustion of premixed hydrogen/air mixture in a cylindrical channel of a monolith reactor with and without catalytic wall was numerically modeled by solving two-dimensional (2-D) Navier-Stokes (N-S) equations, energy equation, and species equations. Eight gas species and twenty reversible gas reactions were considered. The control volume technique and the SIMPLE algorithm were used to solve the partial differential equations. The streamlines of the flow field, temperature contours, the entrance length, and the concentration fields were computed. It is found that the entrance zone plays an important role on flow and temperature as well as species distribution. Therefore, the flow cannot be assumed either as fully developed or as plug flow. There is a small but strong thermal expansion zone between the wall and the entrance. Both diffusion and convection affect the heat and mass transfer processes in the expansion zone. Thus the equations of momentum, energy and species conservations should be used to describe hydrogen/air combustion in the monolith reactor. The hot-spot location and concentration field of the homogeneous combustion is strongly influenced by the inlet velocity and temperature, and the equivalence ratio. The catalytic combustion of premixed hydrogen/air mixture over platinum catalyst-coated wall in a cylindrical channel was also simulated.

  10. Simulation of the injection system of cooling water to low pressure (Lpci) for a boiling water reactor (BWR) based on RELAP; Simulacion del sistema de inyeccion de agua de refrigeracion a baja presion (LPCI) para un reactor de agua en ebullicion (BWR) basado en RELAP

    Energy Technology Data Exchange (ETDEWEB)

    Delgado C, R. A.; Lopez S, E.; Chavez M, C., E-mail: renedelgado2015@hotmail.com [UNAM, Facultad de Ingenieria, Circuito Interior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico)

    2012-10-15

    The present article describes the modeling and simulation of the Injection System of Cooling Water to Low Pressure (Lpci) for the nuclear power plant of Laguna Verde. Is very important to be able to predict the behavior of the nuclear plant in the case of an emergency stop, and while nearer to the reality are the results of a simulation, better is the safety protocol that can be devised. In the Engineering Faculty of the UNAM at the present is had logical models of the safety systems, but due to the nature of the same, these simulations do not provide of the quantity of enough information to be able to reproduce with more accuracy the behavior of the Lpci in the case of a severe accident. For this reason, the RELAP code was used for the flows modeling, components and structures of heat transfers in relation to the system Lpci. The modeling of the components is carried out with base on technical information of the nuclear plant and the results will be corroborated with information in reference documents as the Rasp (the Reactor analysis support package) and the Fsar (Final safety analysis report) for the nuclear power plant of Laguna Verde. (Author)

  11. 催化型低温等离子体反应器净化废气研究进展%Advances in catalysis non-thermal plasma reactor for air pollution control

    Institute of Scientific and Technical Information of China (English)

    刘跃旭; 王少波; 原培胜; 赵瀛

    2009-01-01

    催化型低温等离子体反应器可有效地提高废气治理的能量效率和净化效果.现有数据表明,在一定能量密度下,催化型低温等离子体反应器比传统低温等离子体反应器能量效率有1.1~12倍的提高,这和污染物种类,反应器构型及催化剂参数有关.本文介绍了反应机理、反应器构型及催化剂参数选择等对反应器性能的影响,并指出今后研究的发展方向.%Catalysis non-thermal plasma reactor has been demonstrated to be effective in improving the energy efficiency and purification for air pollution control. According to the available experimental data, for a given specific energy density, the energy efficiency for gaseous pollutant abatement obtained with catalysis non-thermal plasma reactor could be improved with 1.1-12 times as compared to that of conventional reactors depending on the type of pollutants, reactor geometry and catalyst used. The influences of reaction mechanism, reactor geometry and catalyst parameters on the performance for gaseous pollutant removal are comprehensively discussed, and the further development trend of this technology is proposed.

  12. Development of an Internally Circulating Fluidized Bed Membrane Reactor for Hydrogen Production from Natural Gas

    Institute of Scientific and Technical Information of China (English)

    XIE Dong-lai; GRACE John R; LIM C Jim

    2006-01-01

    An innovative Internally Circulating Fluidized Bed Membrane Reactor (ICFBMR) was designed and operated for ultra-pure hydrogen production from natural gas. The reactor includes internal catalyst solids circulation for conveying heat between a reforming zone and an oxidation zone. In the reforming zone, catalyst particles are transported upwards by reactant gas where steam reforming reactions are taking place and hydrogen is permeating through the membrane surfaces. Air is injected into the oxidation zone to generate heat which is carried by catalyst particles to the reforming zone supporting the endothermic steam reforming reaction. The technology development process is introduced: cold model test,pilot plant and industrial demonstration unit. The process flow diagram and key components of each unit are described.The ICFBMR process has the potential to provide improved performance relative to conventional SMR fixed-bed tubular reactors.

  13. Doxycycline Injection

    Science.gov (United States)

    Doxycycline injection is used to treat or prevent bacterial infections, including pneumonia and other respiratory tract infections. ... certain skin, genital, intestine, and urinary system infections. Doxycycline injection may be used to treat or prevent ...

  14. Pembrolizumab Injection

    Science.gov (United States)

    Pembrolizumab injection is used to treat melanoma (a type of skin cancer) that cannot be treated with ... who have a specific type of melanoma tumor. Pembrolizumab injection is also used to treat a certain ...

  15. Lacosamide Injection

    Science.gov (United States)

    ... injection is in a class of medications called anticonvulsants. It works by decreasing abnormal electrical activity in ... older (about 1 in 500 people) who took anticonvulsants like lacosamide injection to treat various conditions during ...

  16. Paclitaxel Injection

    Science.gov (United States)

    ... with other medications. Paclitaxel injection manufactured with polyoxyethylated castor oil is used to treat ovarian cancer (cancer that ... cancer, and lung cancer. Paclitaxel injection with polyoxyethylated castor oil is also used to treat Kaposi's sarcoma (a ...

  17. Obinutuzumab Injection

    Science.gov (United States)

    Obinutuzumab injection is used with chlorambucil (Leukeran) to treat chronic lymphocytic leukemia (CLL; a type of cancer of the white blood cells). Obinutuzumab injection is in a class of medications called ...

  18. Moxifloxacin Injection

    Science.gov (United States)

    ... Moxifloxacin injection may also be used to treat bronchitis or sinus infections but should not be used for these conditions if there are other treatment options available.Moxifloxacin injection is in a class ...

  19. Temozolomide Injection

    Science.gov (United States)

    Temozolomide is used to treat certain types of brain tumors. Temozolomide is in a class of medications called alkylating ... Temozolomide injection comes as a powder to be added to fluid and injected over 90 minutes intravenously ( ...

  20. Midazolam Injection

    Science.gov (United States)

    ... injection is in a class of medications called benzodiazepines. It works by slowing activity in the brain ... breast-feeding.talk to your doctor about the risks and benefits of receiving midazolam injection if you ...

  1. Methotrexate Injection

    Science.gov (United States)

    Methotrexate injection is used alone or in combination with other medications to treat gestational trophoblastic tumors (a ... in bones) after surgery to remove the tumor. Methotrexate injection is also used to treat severe psoriasis ( ...

  2. Doripenem Injection

    Science.gov (United States)

    ... injection is in a class of medications called carbapenem antibiotics. It works by killing bacteria.Antibiotics such ... if you are allergic to doripenem injection; other carbapenem antibiotics such as imipenem/cilastatin (Primaxin) or meropenem ( ...

  3. Cefotaxime Injection

    Science.gov (United States)

    Cefotaxime injection is used to treat certain infections caused by bacteria including pneumonia and other lower respiratory ... skin, blood, bone, joint, and urinary tract infections. Cefotaxime injection may also be used before surgery, and ...

  4. Bendamustine Injection

    Science.gov (United States)

    Bendamustine injection is used to treat chronic lymphocytic leukemia (CLL; a type of cancer of the white ... injection. You should use birth control to prevent pregnancy in yourself or your partner during your treatment ...

  5. Caspofungin Injection

    Science.gov (United States)

    Caspofungin injection is used in adults and children 3 months of age and older to treat yeast ... people with a weakened ability to fight infection. Caspofungin injection is in a class of antifungal medications ...

  6. Estrogen Injection

    Science.gov (United States)

    The estradiol cypionate and estradiol valerate forms of estrogen injection are used to treat hot flushes (hot ... should consider a different treatment. These forms of estrogen injection are also sometimes used to treat the ...

  7. Multifunctional reactors

    NARCIS (Netherlands)

    Westerterp, K.R.

    1992-01-01

    Multifunctional reactors are single pieces of equipment in which, besides the reaction, other functions are carried out simultaneously. The other functions can be a heat, mass or momentum transfer operation and even another reaction. Multifunctional reactors are not new, but they have received much

  8. Ranitidine Injection

    Science.gov (United States)

    Ranitidine injection comes as a solution (liquid) to be mixed with another fluid and injected intravenously (into a vein) over 5 to 20 minutes. Ranitidine may also be injected into a muscle. It is usually given every 6 to 8 hours, but may also be given ...

  9. Ustekinumab Injection

    Science.gov (United States)

    ... Do not inject into an area where the skin is tender, bruised, red, or hard or where you have scars or stretch marks.Your doctor or pharmacist will ... injection.you should know that ustekinumab injection may decrease your ability ... new or changing skin lesions, minor infections (such as open cuts or ...

  10. Analysis of Discharge Fault in 35 kV Dry-type Air-Core Reactor%一起35 kV干式空心电抗器放电故障分析

    Institute of Scientific and Technical Information of China (English)

    张宁; 李洪伟

    2014-01-01

    本文介绍了一起500 kV变电站35 kV干式空心电抗器在运行当中发生放电烧损的故障情况,通过现场检查、试验,结合故障电抗器的解体检查结果,对故障原因进行了深入分析,发现故障的主要原因是由于在强磁场下涡流产生温升,破坏了电抗器本身绝缘,本文对防止同类故障的发生具有一定的借鉴意义。%In this paper, a fault of burn-out of 35 kV dry-type air-core reactor due to discharge in the operation at 500 kV substation is introduced. The reason of the fault is analyzed through site inspec-tion, test and disassembly inspection result of the faulty reactor. It is caused by high temperature rise caused by eddy current at strong magnetic field resulting to insulation damage of the reactor it-self. The analysis result has a definite reference to similar fault to be prevented.

  11. Test and Coupling Calculation of Temperature Field for UHV Dry-Type Air-Core Smoothing Reactor%特高压干式空心平波电抗器温度场耦合计算与试验

    Institute of Scientific and Technical Information of China (English)

    姜志鹏; 文习山; 王羽; 陈瑞珍; 曹继丰; 陈图腾

    2015-01-01

    为了研究特高压干式空心平波电抗器的温升分布特性,该文基于计算流体力学和传热学理论,建立了电抗器稳态流体与固体耦合温度场的数学计算模型.采用有限容积法对三维模型进行稳态流体场与温度场直接求解,获得其温度场分布特性,研究了包封轴向及径向温度分布规律.最后采用光纤测温法对自然对流下的电抗器进行温升测量.对比分析表明,计算与试验结果吻合较好,验证温度场数值计算的合理性和准确性,为特高压干式空心平波电抗器温升监测提供参考.%To research the distribution characteristics of temperature rise for UHV dry-type air-core smoothing reactor, according to computational fluid dynamics and heat transfer theory, this paper presented the mathematical model of temperature field coupling steady fluid and solid for the reactor. The finite volume method was employed to solve the steady flow and temperature fields of 3D model directly, and the temperature distribution characteristics of the reactor were obtained. Then the axial and radial temperature distributions of encapsulations were studied separately. Finally, optical fiber temperature measurement method was used to test temperature rise for the reactor under natural convection condition. Comparative analysis shows that the calculated results are in good agreement with the experiment, which verifies the rationality and accuracy of the temperature field numerical calculation. And it can provide references for the temperature rise monitoring of UHV dry-type air-core smoothing reactor.

  12. Detection and excision of non-palpable breast lesions by radio guided surgery and air injection for radiological control; Deteccao e exerese de lesoes mamarias nao palpaveis orientadas por cirurgia radioguiada com injecao de ar para controle radiologico

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Rafael Henrique Szymanski [Universidade Federal (UFRJ), Rio de Janeiro, RJ (Brazil). Dept. de Radiologia]. E-mail: raffaszymanski@yahoo.com.br; Oliveira, Afranio Coelho de [Universidade Federal (UFRJ), Rio de Janeiro, RJ (Brazil). Hospital Universitario Clementino Fraga Filho; Rocha, Augusto Cesar Peixoto [Universidade Federal (UFRJ), Rio de Janeiro, RJ (Brazil). Dept. de Ginecologia e Obstetricia; Souza, Sergio Augusto Lopes de; Martins, Flavia Paiva Proenca [Universidade Federal (UFRJ), Rio de Janeiro, RJ (Brazil); Gutfilen, Bianca; Fonseca, Lea Mirian Barbosa da [Universidade Federal (UFRJ), Rio de Janeiro, RJ (Brazil). Dept. de Radiologia]. E-mail: lmirian@globo.com

    2005-11-15

    Purpose: to asses the efficiency of the radioguided localization and removal of occult breast lesions using radiopharmaceuticals injected directly into the lesions or close to them with posterior air injection as a radiological control. Methods: twenty-nine consecutive patients with thirty-two occult breast lesions detected mammographically or by ultrasound, and categorized 3, 4 and 5 BI-RADS, were included in this observational study with results expressed in percentages. The radiopharmaceutical used was human serum albumin labeled with {sup 99m}Tc-HSA injected inside or close to the lesion using mammographic or ultrasonographic guidance. The injection of the radiopharmaceutical was followed immediately by air injection through the needle used for stereotaxis as a radiological control of the radiopharmaceutical placement. The excision biopsy was carried out with the aid of a hand-held gamma-detecting probe and the entire removal of the lesion was verified by X-ray of the surgical specimens or by intraoperative frozen section examination. Results: breast cancer was found in 10.0% (1/10) of the 3 BI-RADS lesions, in 31.5% (6/19) of the 4 BI-RADS and in 66.6% (2/3) of the 5 BI-RADS. The radiotracer was correctly positioned in 96.8% of the specimens (31/32) allowing the removal of also 96.8% of the studied non-palpable breast lesions. To show the entire removal, X-ray was used in 23 cases (71.8%), intraoperative frozen section study in 21.8% (7/32) and both methods in 6.2% (2/32). Conclusions: radioguided surgery showed to be an important tool in the removal of non-palpable breast lesions, as a simple, fast and feasible method that can be implemented in the clinical routine of these patients. (author)

  13. Physical aspects of liquid-impelled loop reactors.

    NARCIS (Netherlands)

    Sonsbeek, van H.M.

    1992-01-01

    The liquid-impelled loop reactor (LLR) is a reactor that consists of two parts : the main tube and the circulation tube. Both parts are in open connection at the bottom and at the top. The reactor is filled with a liquid phase: the continuous phase. Another liquid phase is injected in the main tube

  14. Experimental characterization and modeling for the growth rate of oxide coatings from liquid solutions of metalorganic precursors by ultrasonic pulsed injection in a cold-wall low-pressure reactor

    Science.gov (United States)

    Krumdieck, Susan Pran

    Several years ago, a method for depositing ceramic coatings called the Pulsed-MOCVD system was developed by the Raj group at Cornell University in association with Dr. Harvey Berger and Sono-Tek Corporation. The process was used to produce epitaxial thin films of TiO2 on sapphire substrates under conditions of low pressure, relatively high temperature, and very low growth rate. The system came to CU-Boulder when Professor Raj moved here in 1997. It is quite a simple technique and has several advantages over typical CVD systems. The purpose of this dissertation is two-fold; (1) understand the chemical processes, thermodynamics, and kinetics of the Pulsed-MOCVD technique, and (2) determine the possible applications by studying the film structure and morphology over the entire range of deposition conditions. Polycrystalline coatings of ceramic materials were deposited on nickel in the low-pressure, cold-wall reactor from metalorganic precursors, titanium isopropoxide, and a mixture of zirconium isopropoxide and yttria isopropoxide. The process utilized pulsed liquid injection of a dilute precursor solution with atomization by ultrasonic nozzle. Thin films (less than 1mum) with fine-grained microstructure and thick coatings (up to 1mum) with columnar-microstructure were deposited on heated metal substrates by thermal decomposition of a single liquid precursor. The influence of each of the primary deposition parameters, substrate temperature, total flow rate, and precursor concentration on growth rate, conversion efficiency and morphology were investigated. The operating conditions were determined for kinetic, mass transfer, and evaporation process control regimes. Kinetic controlled deposition was found to produce equiaxed morphology while mass transfer controlled deposition produced columnar morphology. A kinetic model of the deposition process was developed and compared to data for deposition of TiO2 from Ti(OC3H7) 4 precursor. The results demonstrate that growth

  15. 斜接管射流流动特性数值模拟%Numerical Simulation of Flow Characteristics of Lean Jet to Cross-Flow in Safety Injection of Reactor Cooling System

    Institute of Scientific and Technical Information of China (English)

    王海军; 王为术; 贺慧宁; 罗毓珊

    2011-01-01

    In the present work, a numerical simulation was performed to study the flow characteristics of lean jet to cross-flow in a main tube in the safety injection of reactor cooling system. The influence scope and mixing characteristics of the confined lean jet in cross-flow were studied. It can be concluded that three basic flow regimes are marked, namely the attached lean jet, lift-off lean jet and impinging lean jet. The velocity ratio VR is the key factor in the flow state. The depth and region of jet to main flow are enhanced with the increase of the velocity ratio. The jet flow penetrates through the main flow with the increase of the velocity ratio. At higher velocity ratio, the jet flow strikes the main flow bottom and circumfluence happens in upriver of main flow. The vortex flow characteristics dominate the flow near region of jet to cross-flow and the mixture of jet to cross-flow. At different velocity ratio VR, the vortex grows from the same displacement, but the vortex type and the vortex is different. At higher velocity ratio, the vortex develops fleetly, wears off sharp and dies out sharp. The study is very important to the heat transfer experiments of cross-flow jet and thermal stress analysis in the designs of nuclear engineering.%采用数值模拟方法对受限斜射流的流动特性、射流发展影响区域、射流发展关键因素及射流涡特性进行研究.研究表明:受限斜射流存在附壁斜射流、离升斜射流和冲击斜射流3种基本流型.流速比(V)是斜接管射流流动特性的关键特征参数;射流影响区域随V的增大而越大;在高V下,射流强烈冲击主管底面,并在上游形成明显回流区.射流涡特性决定斜射流近区域流场特性和射流的混合;V越大,射流涡强度越大,射流涡发展、破碎和耗散越快.

  16. Reactor vessel

    OpenAIRE

    Makkee, M.; Kapteijn, F.; Moulijn, J.A

    1999-01-01

    A reactor vessel (1) comprises a reactor body (2) through which channels (3) are provided whose surface comprises longitudinal inwardly directed parts (4) and is provided with a catalyst (6), as well as buffer bodies (8, 12) connected to the channels (3) on both sides of the reactor body (2) and comprising connections for supplying (9, 10, 11) and discharging (13, 14, 15) via the channels (3) gases and/or liquids entering into a reaction with each other and substances formed upon this reactio...

  17. NUCLEAR REACTOR

    Science.gov (United States)

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  18. Reactor Neutrinos

    Directory of Open Access Journals (Sweden)

    Soo-Bong Kim

    2013-01-01

    Full Text Available We review the status and the results of reactor neutrino experiments. Short-baseline experiments have provided the measurement of the reactor neutrino spectrum, and their interest has been recently revived by the discovery of the reactor antineutrino anomaly, a discrepancy between the reactor neutrino flux state of the art prediction and the measurements at baselines shorter than one kilometer. Middle and long-baseline oscillation experiments at Daya Bay, Double Chooz, and RENO provided very recently the most precise determination of the neutrino mixing angle θ13. This paper provides an overview of the upcoming experiments and of the projects under development, including the determination of the neutrino mass hierarchy and the possible use of neutrinos for society, for nonproliferation of nuclear materials, and geophysics.

  19. Chemical Reactors.

    Science.gov (United States)

    Kenney, C. N.

    1980-01-01

    Describes a course, including content, reading list, and presentation on chemical reactors at Cambridge University, England. A brief comparison of chemical engineering education between the United States and England is also given. (JN)

  20. 过渡型艇微气泡减阻喷缝尺度影响数值计算%Numerical Calculation on the Influence of the Slot Size of Air Injection on Micro Bubbles Drag Reduction for Transitional Craft

    Institute of Scientific and Technical Information of China (English)

    王家楣; 张玲

    2011-01-01

    针对一优良过渡型艇,为喷气需要进行船底断阶,采用有限体积法、SIMPLEC算法和k-ε两方程湍流模型,不计自由面影响,计及气泡与水的相对运动,数值求解包含气液两相流的雷诺平均控制方程组.获得不同喷缝宽度、不同傅汝德数和相对喷气速度下的船舶的阻力特性和气泡浓度分布规律并与模型实验结果进行对比分析.结果显示:在获得高减阻率条件下,Cn随Fr增加而呈非线性增加,当Fr=0.779时,Cn达到最大值;在获得25%减阻率的条件下,Fr=0.973时相对喷缝宽度为0.112所需喷气量最小即喷气所消耗功率最小.计算结果可为高速气泡船喷缝参数设计提供参考.%The two-phase flow around a fine transitional with step for injecting air is figured out numerically under the condition of neglecting influences of free-surface. The drag characteristic of the ship and the distribution of the volume fraction of micro bubble are got at different air jet slot size,Fr and relative air injection velocity. The results show that at Cn=25% and Fr=0.973, the air flow rate could reach minimum if non-dimension jet slot size is 0.112. The calculation result will provide reference on the parametric design of air injection slot of High-Speed Air Cavity Craft.

  1. Reactor Neutrinos

    OpenAIRE

    Lasserre, T.; Sobel, H.W.

    2005-01-01

    We review the status and the results of reactor neutrino experiments, that toe the cutting edge of neutrino research. Short baseline experiments have provided the measurement of the reactor neutrino spectrum, and are still searching for important phenomena such as the neutrino magnetic moment. They could open the door to the measurement of coherent neutrino scattering in a near future. Middle and long baseline oscillation experiments at Chooz and KamLAND have played a relevant role in neutrin...

  2. 下行床反应器中惰性颗粒射入对结焦抑止和颗粒速度均匀化的影响%Effect of Injecting Inert Particles on Coking Prohibition and Particle Velocity Uniformization in Downer Reactors

    Institute of Scientific and Technical Information of China (English)

    张济宇; 祝媛; 田亚峻; 谢克昌

    2007-01-01

    The coking observation and particle flow behaviour in both thermal plasma and cold plexiglas downers were investigated in a binary particle system formed by injecting coarse inert particles (carrying coke away and scouring wall) and fine coal powders into the downer reactor. The results demonstrate that this scheme is a rational selection to prevent coking on downer walls and improve particle velocity distribution along the radial direction.When injected coarse particles mixed with fine powders in downers, the fluctuation of local particle velocity in the radial direction becomes smaller and two peaks in the radial distribution of local particle velocity occur due to the improved dispersing character and flow structure, which are beneficial to the thermo-plasma coal cracking reaction and coking prevention.

  3. Injection MD

    CERN Document Server

    Bartmann, W; Bracco, C; Drosdal, L; Gianfelice, E; Goddard, B; Kain, V; Papaphilippou, Y; Vanbavinckhove, G

    2012-01-01

    This note summarizes the results obtained at injection during the 2nd MD block and the floating MD block in July. Highlights are presented for injection in the LHC with the Q20 SPS optics, influence of the supercycle and injection with 25 ns bunch spacing. Beams were successfully injected into the LHC using the Q20 optics [1, 3]. Small corrections were needed to steer the beam in the transfer lines. Dispersion measurements were conducted for both beams. The horizontal normalized dispersion in TI2 was a factor 2 smaller for Q20 with respect to Q26, for TI8 on the other hand the opposite was observed. The results for injection loss dependency on super cycle composition show only a small increase in losses for beam 2. The losses observed must therefore mainly come from other sources such as shot-by-shot stability or quality of scraping. For the injection with 25 ns bunch spacing bunches were injected for both beams. For B1 up to the maximum of 288 bunches. For B2 on the other only up to 144 bunches were injected...

  4. Annual report on JEN-1 reactor; Informe periodico del Reactor JEN-1 correspondiente al ano 1971

    Energy Technology Data Exchange (ETDEWEB)

    Montes, J.

    1972-07-01

    In the annual report on the JEN-1 reactor the main features of the reactor operations and maintenance are described. The reactor has been critical for 1831 hours, what means 65,8% of the total working time. Maintenance and pool water contamination have occupied the rest of the time. The maintenance schedule is shown in detail according to three subjects. The main failures and reactor scrams are also described. The daily maximum values of the water activity are given so as the activity of the air in the reactor hall. (Author)

  5. Optimization of working parameters for double-dielectric non-thermal plasma reactor and spectrography analysis of air discharge%双介质低温等离子体反应器工作参数优化及空气放电光谱分析

    Institute of Scientific and Technical Information of China (English)

    王军; 李超; 唐炜; 何涛; 王兴华

    2015-01-01

    The working principal of selective catalytic reduction (SCR) system is that urea solution, whose mass fraction is 32.5%, is injected into exhaust pipe. NH3 and HNCO are generated and mixed with NOx under the condition of high-temperature exhaust. Finally, N2 and H2O are generated in the catalytic reduction reaction of NH3 and NOx. In the case that NO accounts for 90% or even more in NOxof the diesel engine exhaust, the standard SCR reaction plays a dominant role when using SCR system to deal with NOx of the diesel engine exhaust. This reaction can provide high reduction efficiency when the exhaust temperature is between 300 and 450℃. However, the reduction efficiency of NOx will drop rapidly at lower exhaust temperature. So how to improve the reduction efficiency of NOx at lower exhaust temperature is an urgent problem to be solved. Non-thermal plasma (NTP) technology combined with SCR system is one of the most effective means to solve this problem. Active substances, generated in NTP reactor, can oxidize the part of NO from diesel exhaust to NO2 and improve the conversion efficiency of NOx at lower exhaust temperature. The ideal working parameters selected in experiment, can not only increase the concentration of active substances, but also avoid combining main gas components in exhaust such as N2 and O2. A test system of a double-dielectric non-thermal plasma reactor was established to conduct the air discharge test. To study the effect of working parameters on the performance of double-dielectric non-thermal plasma reactor, the changing rules of the volume fractions of NO and NO2 with several parameters such as discharge voltage peak-peak value, discharge frequency and air flow were researched. The results showed that, discharge frequency had great influence on the volume fractions of NO and NO2. Reaction mechanism of air discharge in the NTP reactor changed as discharge frequency changed. The volume fractions of NO and NO2 grew linearly as discharge voltage

  6. System and method for temperature control in an oxygen transport membrane based reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M.

    2017-02-21

    A system and method for temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  7. PITR: Princeton Ignition Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    The principal objectives of the PITR - Princeton Ignition Test Reactor - are to demonstrate the attainment of thermonuclear ignition in deuterium-tritium, and to develop optimal start-up techniques for plasma heating and current induction, in order to determine the most favorable means of reducing the size and cost of tokamak power reactors. This report describes the status of the plasma and engineering design features of the PITR. The PITR geometry is chosen to provide the highest MHD-stable values of beta in a D-shaped plasma, as well as ease of access for remote handling and neutral-beam injection.

  8. COMPORTAMIENTO HIDRODINÁMICO Y ABSORCIÓN DE DIÓXIDO DE CARBONO MEDIANTE REACCIÓN QUÍMICA CON GLUCOSAMINA EN UN REACTOR AIR-LIFT

    Directory of Open Access Journals (Sweden)

    Alicia García-Abuín

    2010-01-01

    Full Text Available En el presente trabajo se ha estudiado el comportamiento de disoluciones acuosas de glucosamina como absorbente para la captura de dióxido de carbono, empleando un reactorair-lift”. Los resultados experimentales indican que este reactivo (glucosamina muestra un comportamiento similar al observado para otras disoluciones acuosas de aminas ampliamente utilizadas para la captura de dióxido de carbono, en relación a la velocidad a la cual se produce la absorción. El valor de la velocidad de transferencia de masa ha sido determinado, así como el efecto de distintas condiciones de operación sobre el valor de este parámetro y del área interfacial gas-líquido, tales como concentración de amina, pH o caudal de gas alimentado.

  9. Silica-Immobilized Enzyme Reactors

    Science.gov (United States)

    2007-08-01

    immobilized artificial membrane chromatography and lysophospholipid micellar electrokinetic chromatography . J. Chromatogr. A 1998, 810, 95-103. 50...Journal of Liquid Chromatography and Related Technologies. Air Force Research Laboratory Materials and Manufacturing Directorate Airbase...immobilized enzyme reactors (IMERs) can also be integrated directly to further analytical methods such as liquid chromatography or mass spectrometry.[6] In

  10. Oxytocin Injection

    Science.gov (United States)

    Oxytocin injection is used to begin or improve contractions during labor. Oxytocin also is used to reduce bleeding after childbirth. ... other medications or procedures to end a pregnancy. Oxytocin is in a class of medications called oxytocic ...

  11. Cidofovir Injection

    Science.gov (United States)

    Cidofovir injection is used along with another medication (probenecid) to treat cytomegaloviral retinitis (CMV retinitis) in people with acquired immunodeficiency syndrome (AIDS). Cidofovir is in a class of medications called antivirals. ...

  12. Brivaracetam Injection

    Science.gov (United States)

    ... older. Brivaracetam in a class of medications called anticonvulsants. It works by decreasing abnormal electrical activity in ... older (about 1 in 500 people) who took anticonvulsants like brivaracetam injection to treat various conditions during ...

  13. Fluconazole Injection

    Science.gov (United States)

    ... and fungal infections of the eye, prostate (a male reproductive organ), skin and nails. Fluconazole injection is ... Motrin, others) and naproxen (Aleve, Anaprox, Naprelan); oral contraceptives (birth control pills); oral medication for diabetes such ...

  14. Certolizumab Injection

    Science.gov (United States)

    ... and swelling and scales on the skin), active ankylosing spondylitis (a condition in which the body attacks the ... continues. When certolizumab injection is used to treat ankylosing spondylitis, it is usually given every 2 weeks for ...

  15. Butorphanol Injection

    Science.gov (United States)

    ... not understand the directions.Butorphanol injection may be habit-forming. Do not use a larger dose, use ... tiredness difficulty falling asleep or staying asleep unusual dreams headache constipation stomach pain feeling hot flushing pain, ...

  16. Dexamethasone Injection

    Science.gov (United States)

    ... body tissues,) gastrointestinal disease, and certain types of arthritis. Dexamethasone injection is also used for diagnostic testing. ... effects.tell your doctor if you have a fungal infection (other than on your skin or nails). ...

  17. Hydrocortisone Injection

    Science.gov (United States)

    ... own organs), gastrointestinal disease, and certain types of arthritis. Hydrocortisone injection is also used to treat certain ... effects.tell your doctor if you have a fungal infection (other than on your skin or nails). ...

  18. Methylprednisolone Injection

    Science.gov (United States)

    ... own organs), gastrointestinal disease, and certain types of arthritis. Methylprednisolone injection is also used to treat certain ... effects.tell your doctor if you have a fungal infection (other than on your skin or nails). ...

  19. Ciprofloxacin Injection

    Science.gov (United States)

    ... attack) . Ciprofloxacin may also be used to treat bronchitis and sinus infections, but should not be used for these conditions if there are other treatment options available. Ciprofloxacin injection is in a class ...

  20. Golimumab Injection

    Science.gov (United States)

    Golimumab injection is used alone or with other medications to relieve the symptoms of certain autoimmune disorders ( ... did not help or could not be tolerated. Golimumab is in a class of medications called tumor ...

  1. Evolocumab Injection

    Science.gov (United States)

    ... autoinjector in hot water, microwave, or place in sunlight.Before you use evolocumab injection, look at the ... chills pain or burning during urination muscle or back pain dizziness stomach pain Some side effects can be ...

  2. Glatiramer Injection

    Science.gov (United States)

    ... To inject glatiramer, follow these steps: Remove one blister pack from the carton of glatiramer syringes and place ... paper label and remove the syringe from the blister pack. Check your prefilled syringe to be sure it ...

  3. Insulin Injection

    Science.gov (United States)

    ... or buttocks. Do not inject insulin into muscles, scars, or moles. Use a different site for each ... you are using insulin.Alcohol may cause a decrease in blood sugar. Ask your doctor about the ...

  4. Tigecycline Injection

    Science.gov (United States)

    ... in a person who was not in the hospital), skin infections, and infections of the abdomen (area between the ... that developed in people who were in a hospital or foot infections in people who have diabetes. Tigecycline injection is ...

  5. Fludarabine Injection

    Science.gov (United States)

    Fludarabine injection is used to treat chronic lymphocytic leukemia (CLL; a type of cancer of the white ... a reliable method of birth control to prevent pregnancy during this time. Talk to your doctor for ...

  6. Ferumoxytol Injection

    Science.gov (United States)

    Ferumoxytol injection is used to treat iron-deficiency anemia (a lower than normal number of red blood ... pharmacist what other prescription and nonprescription medications, vitamins, nutritional supplements, and herbal products you are taking or ...

  7. Alemtuzumab Injection

    Science.gov (United States)

    Alemtuzumab injection is used to treat B-cell chronic lymphocytic leukemia (a slowly developing cancer in which ... of white blood cell accumulate in the body). Alemtuzumab is in a class of medications called monoclonal ...

  8. Alirocumab Injection

    Science.gov (United States)

    ... further decrease the amount of low-density lipoprotein (LDL) cholesterol ('bad cholesterol') in the blood. Alirocumab injection is ... antibodies. It works by blocking the production of LDL cholesterol in the body to decrease the amount of ...

  9. Chloramphenicol Injection

    Science.gov (United States)

    ... an arm or leg sudden changes in vision pain with eye movement Chloramphenicol injection may cause a condition called gray syndrome in premature and newborn infants. There have also been reports of gray ...

  10. The effects of engine speed and injection characteristics on the flow field and fuel/air mixing in motored two-stroke diesel engines

    Science.gov (United States)

    Nguyen, H. L.; Carpenter, M. H.; Ramos, J. I.

    1987-01-01

    A numerical analysis is presented on the effects of the engine speed, injection angle, droplet distribution function, and spray cone angle on the flow field, spray penetration and vaporization, and turbulence in a turbocharged motored two-stroke diesel engine. The results indicate that the spray penetration and vaporization, velocity, and turbulence kinetic energy increase with the intake swirl angle. Good spray penetration, vaporization, and mixing can be achieved by injecting droplets of diameters between 50 and 100 microns along a 120-deg cone at about 315 deg before top-dead-center for an intake swirl angle of 30 deg. The spray penetration and vaporization were found to be insensitive to the turbulence levels within the cylinder. The results have also indicated that squish is necessary in order to increase the fuel vaporization rate and mixing.

  11. LBB application in the US operating and advanced reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wichman, K.; Tsao, J.; Mayfield, M.

    1997-04-01

    The regulatory application of leak before break (LBB) for operating and advanced reactors in the U.S. is described. The U.S. Nuclear Regulatory Commission (NRC) has approved the application of LBB for six piping systems in operating reactors: reactor coolant system primary loop piping, pressurizer surge, safety injection accumulator, residual heat removal, safety injection, and reactor coolant loop bypass. The LBB concept has also been applied in the design of advanced light water reactors. LBB applications, and regulatory considerations, for pressurized water reactors and advanced light water reactors are summarized in this paper. Technology development for LBB performed by the NRC and the International Piping Integrity Research Group is also briefly summarized.

  12. 偏心空气射流搅拌器中流体混沌混合的 Kolmogorov 熵分析%Kolmogorov entropy of fluid chaotic mixing in eccentric air jet-stirred reactors

    Institute of Scientific and Technical Information of China (English)

    刘仁龙; 廖军; 刘作华; 陈南雄; 陶长元; 王运东

    2012-01-01

      With the LabVIEW and MATLAB software, we investigated the variation of Kolmogorov entropy of pressure fluctuation signals on the wall of the eccentric air jet-stirred reactors with double impellers. The results showed that Kolmogorov entropy was affected by both agitation speed and air flow rate. At low agitation speeds (32.5-130 r/min), the speed and air flow rate had little effect on Kolmogorov entropy; at a range of of 130-260 r/min, Kolmogorov entropy increased logarithmically with the speed and air flow rate; at a range of 260-325 r/min, Kolmogorov entropy decreased exponentially.%  运用LabVIEW和MATLAB软件,实验研究了偏心空气射流双层桨搅拌反应器内壁的压力脉动信号的Kolmogorov熵值的变化规律.结果表明,Kolmogorov熵受到搅拌转速和空气速率的共同作用:在低转速段(32.5~130.00 r/min)时,Kolmogorov熵值基本不随搅拌转速和空气速率变化;在转速为130.00~260.00 r/min时,随搅拌转速和空气速率的增加,Kolmogorov熵值呈对数函数型增大;在高转速段(260.00~325.00 r/min)时,随搅拌转速和空气速率的增加,Kolmogorov熵值呈指数函数型减小

  13. A concept of JAERI passive safety light water reactor system (JPSR)

    Energy Technology Data Exchange (ETDEWEB)

    Murao, Y.; Araya, F.; Iwamura, T. [Japan Atomic Energy Research Institute, Tokai-mura (Japan)

    1995-09-01

    The Japan Atomic Energy Research Institute (JAERI) proposed a passive safety reactor system concept, JPSR, which was developed for reducing manpower in operation and maintenance and influence of human errors on reactor safety. In the concept the system was extremely simplified. The inherent matching nature of core generation and heat removal rate within a small volume change of the primary coolant is introduced by eliminating chemical shim and adopting in-vessel control rod drive mechanism units, a low power density core and once-through steam generators. In order to simplify the system, a large pressurizer, canned pumps, passive engineered-safety-features-system (residual heat removal system and coolant injection system) are adopted and the total system can be significantly simplified. The residual heat removal system is completely passively actuated in non-LOCAs and is also used for depressurization of the primary coolant system to actuate accumulators in small break LOCAs and reactor shutdown cooling system in normal operation. All of systems for nuclear steam supply system are built in the containment except for the air coolers as a the final heat sink of the passive residual heat removal system. Accordingly the reliability of the safety system and the normal operation system is improved, since most of residual heat removal system is always working and a heat sink for normal operation system is {open_quotes}safety class{close_quotes}. In the passive coolant injection system, depressurization of the primary cooling system by residual heat removal system initiates injection from accumulators designed for the MS-600 in medium pressure and initiates injection from the gravity driven coolant injection pool at low pressure. Analysis with RETRAN-02/MOD3 code demonstrated the capability of passive load-following, self-power-controllability, cooling and depressurization.

  14. 气升-射流式多段环流反应器的流体力学和传质特性%Jet Associated Multi-Stage Air-Lift Loop Reactor: Hydrodynamics and Mass Transfer

    Institute of Scientific and Technical Information of China (English)

    王于杰; 蒋国强; 丁富新

    2011-01-01

    气升式环流反应器在气液或气液固三相反应以及分离过程应用广泛,为提高气液分布和传质性能,在气升式多段环流反应器的第2段引入射流,开发一种气升-射流式多段环流反应器.在160 L的实验装置中,以水-空气体系,研究了气升-射流式多段环流反应器的流体力学和传质特性.射流可减小上升气泡的弦长,提高总体气含率,改善下降段气液分布,增加环流液速,并最终使气液体积传质系数显著提高.射流液体量、射流角度、空气量及其分配对射流效果影响不同,选择射流角不大于45°,射流通气量占总通气量的比例不大于40%,且在能耗经济范围内提高射流量和通气量,可获得更理想的流体力学特性和高传质速率.%Air-lift loop reactor (ALR) is widely used for the gas-liquid/gas-liquid-solid multi-phase reaction or separation. In order to improve the gas distribution and to enhance the mass transfer in ALR and based on the conventional multi-stage air-lift loop reactor (MALR), the jet associated multi-stage air-lift loop reactor (MJALR) was developed by introducing a jet into the second stage of the MALR in present study. The hydrodynamics and mass transfer characteristics of the proposed MJALR were studied by using a MJALR of 160 L with water/air as working system. The experimental results show that introduction of the jet associated air-lift loop leads to the decrease of the raising bubble size, the increase of the total gas hold-up, the promotion of gas-liquid distribution in downcomer and the acceleration of loop flow. It was found that all these effects depend on the jet volume, jet incidence angle, inlet gas volume and gas allocation. Under the conditions as follows, the jet incidence angle is not larger than 45 ° and the gas allocation to the jet is not more than 40% of the total gas volume, the hydrodynamics and mass transfer characteristics of the MALR can be highly improved by introducing

  15. Sonochemical Reactors.

    Science.gov (United States)

    Gogate, Parag R; Patil, Pankaj N

    2016-10-01

    Sonochemical reactors are based on the generation of cavitational events using ultrasound and offer immense potential for the intensification of physical and chemical processing applications. The present work presents a critical analysis of the underlying mechanisms for intensification, available reactor configurations and overview of the different applications exploited successfully, though mostly at laboratory scales. Guidelines have also been presented for optimum selection of the important operating parameters (frequency and intensity of irradiation, temperature and liquid physicochemical properties) as well as the geometric parameters (type of reactor configuration and the number/position of the transducers) so as to maximize the process intensification benefits. The key areas for future work so as to transform the successful technique at laboratory/pilot scale into commercial technology have also been discussed. Overall, it has been established that there is immense potential for sonochemical reactors for process intensification leading to greener processing and economic benefits. Combined efforts from a wide range of disciplines such as material science, physics, chemistry and chemical engineers are required to harness the benefits at commercial scale operation.

  16. 喷氢量对氢-空气混合及燃烧过程的影响%Effects of Hydrogen Injection on Hydrogen Air Mixture and Combustion Process

    Institute of Scientific and Technical Information of China (English)

    杨亚坤; 陈威昌

    2015-01-01

    氢能源以其储量丰富、来源广泛、可再生、清洁等优点被众多内燃机学者认为是传统内燃机的理想替代能源.本研究使用CONVERGE软件建立进气道燃料喷射氢发动机的三维仿真模型,研究氢气的进气、混合过程以及在进气道内喷氢量对氢内燃机进气和压缩过程中压力场、温度场和混合气分布等的影响,同时,对喷氢过多时,氢气是否会将进气门堵塞,而导致空气无法进入,造成熄火的现象进行了模拟.三维仿真模型的初始设置喷射时刻、喷射压力、初始温度都是固定的,过量空气系数分别设为1.0、1.2、1.4、1.6、1.8,混合气浓度由浓到稀,由此研究混合气浓度对燃烧过程的影响.%Hydrogen energy is considered as an ideal alternative energy for the traditional internal combustion engine with its rich reserves, wide source, renewable and clean and other advantages. In this paper, the three-dimensional simulation model of the intake port fuel injection hydrogen engine is established by using CONVERGE software. The influences of the inlet and mixing process of hydrogen gas and hydrogen injection in the inlet on the inlet of hydro?geninternal combustion engineand the pressure field, the temperature field and the mixture distribution are studied. Meanwhile, when the hydrogen injection is excessive, The initial set of injection time, injection pressure, initial tem?perature are fixed, the excess air coefficients are set to 1, 1.2, 1.4, 1.8, 1.6, mixed gas concentration reduces, thus studying the effects of mixed gas concentration on the combustion process.

  17. Dexrazoxane Injection

    Science.gov (United States)

    ... are used to treat or prevent certain side effects that may be caused by chemotherapy medications. Dexrazoxane injection (Zinecard) is used to prevent ... this medication.If you experience a serious side effect, you or your doctor ... (FDA) MedWatch Adverse Event Reporting program online (http://www.fda.gov/ ...

  18. Fluorouracil Injection

    Science.gov (United States)

    ... of a doctor who is experienced in giving chemotherapy medications for cancer. Treatment with fluorouracil injection may cause serious side effects. ... this medication.If you experience a serious side effect, you or your doctor ... (FDA) MedWatch Adverse Event Reporting program online (http://www.fda.gov/ ...

  19. Cyanocobalamin Injection

    Science.gov (United States)

    ... used to treat inherited conditions that decrease the absorption of vitamin B12 from the intestine. Cyanocobalamin injection is also sometimes used to treat methylmalonic aciduria (an inherited disease in which the body cannot break down protein) and is sometimes given to unborn babies to ...

  20. Lanreotide Injection

    Science.gov (United States)

    Lanreotide injection is used to treat people with acromegaly (condition in which the body produces too much growth hormone, causing enlargement of the hands, feet, and facial features; joint pain; and other symptoms) who have not successfully, or cannot be treated ...

  1. PERFORMANCE, EMISSION AND COMBUSTION CHARACTERISTICS OF A METHYL ESTER SUNFLOWER OILEUCALYPTUS OIL IN A SINGLE CYLINDER AIR COOLED AND DIRECT INJECTION DIESEL ENGINE

    Directory of Open Access Journals (Sweden)

    TAMILVENDHAN.D,

    2011-03-01

    Full Text Available Biomass derived fuels are preferred as alternative fuels for IC engine due to its abundant availability and renewable nature. In the present work the performance, emission and combustion characteristics of a single cylinder constant speed , direct injection diesel engine using methyl ester of sun flower oil – eucalyptus oil blend as an alternative fuel were studied and the results are compared with thestandard diesel fuel operation. Result indicated that 50% reduction in smoke, 34% reduction in HC emission and a 37.5% reduction in CO emission for the MeS50Eu50 blend with 2.8 % increase in NOx emission at full load. Brake thermal efficiency was increased 2.7 % for eS50Eu50 blend.

  2. Rotating biological contactor reactor with biofilm promoting mats for treatment of benzene and xylene containing wastewater.

    Science.gov (United States)

    Sarayu, K; Sandhya, S

    2012-12-01

    A novel rotating biological contactor (RBC) bioreactor immobilized with microorganisms was designed to remove volatile organic compounds (VOC), such as benzene and xylene from emissions, and its performance was investigated. Gas-phase VOCs stripped by air injection were 98 % removed in the RBC when the superficial air flow rate was 375 ml/h (1,193 and 1,226 mg/l of benzene and xylene, respectively). The maximum removal rate was observed to be 1,007 and 1,872 mg/m(3)/day for benzene and xylene, respectively. The concentration profile of benzene and xylene along the RBC was dependent on the air flow rate and the degree of microbial adaptation. Air flow rate and residence time were found to be the most important operational parameters for the RBC reactor. By manipulating these operational parameters, the removal efficiency and capacity of the bioreactor could be enhanced. The kinetic constant K (s) demonstrated a linear relationship that indicated the maximum removal of benzene and xylene in RBC reactor. The phylogenic profile shows the presence of bacterium like Pseudomonas sp., Bacillus sp., and Enterococcus sp., which belonged to the phylum Firmicutes, and Proteobacteria that were responsible for the 98 % organic removal in the RBC.

  3. 气升式反应器超声破碎海带提取硫酸酯多糖%Extraction of Sulfate Radical Polysaccharide from Laminaria Japonica Enhanced by Ultrasonic Wave in an Air-lift Reactor

    Institute of Scientific and Technical Information of China (English)

    王谦; 黄猛; 赵兵; 王玉春; 欧阳藩; 伍志春

    2001-01-01

    在内径8 cm、有效容积为1 L的气升式循环超声破碎浸提装置中, 进行了超声波强化海带硫酸酯多糖浸提实验. 在pH 5.0、提取温度40oC、液固比45、提取时间25 min、通气量75 L/h 、超声功率120 W、超声作用时间百分比为100%的工艺条件下,硫酸酯多糖的提取率可达1.86%, 比传统水提法高,且极大地缩短了提取时间,比相同条件下不用超声时的提取率(1.11%)高得多. 此法所得多糖的SO42- 含量(26.5%)比水法浸提(20.8%)和相同条件下不用超声时(21.3%)都要高,显示出超声波在强化海带硫酸酯多糖浸提方面的良好应用前景.%The extraction of sulfate radical polysaccharide from Laminaria Japonica enhanced by ultrasonic wave in an air-lift reactor was reported. The optimal experimental conditions in this reactor (diameter 8 cm, working volume 1 liter) were pH 5.0, operation temperature 40oC, mass ratio of liquid to solid 45, extraction time 25 min, air flow rate 75 L/h, ultrasonic power 120 W, ultrasonic duty cycle 100%. Under the above conditions, the extraction ratio of sulfate radical polysaccharide reached 1.86%, higher than that by treatment for 3 h in water at 100oC and that under the same conditions without ultrasonic wave applied. The content of SO42- in sulfate radical polysaccharide of the former was 5.7% higher due to application of ultrasonic wave. The experimental results showed that this novel extraction process is prospective in the extraction of polysaccharide from seaweed.

  4. 基于缩痕最小的空调面框注塑成型工艺参数优化%Optimization of Injection Molding Process Parameters for Air Conditioning Plane Frame Based on Minimization of Sink Index

    Institute of Scientific and Technical Information of China (English)

    胡邓平; 泽军; 吴爱华; 刘湛

    2015-01-01

    针对带有网格的框形薄壁注塑件容易出现缩痕的问题,开展基于缩痕最小的空调面框注塑成型工艺参数优化研究。首先构建空调面框三维几何模型,设计浇道系统和冷却流道,在运用Moldflow数值模拟和四水平正交试验L16(45)的基础上,以注射时间、模具温度、熔体温度、相对保压压力、保压时间为设计变量,采用极差分析和方差分析得到各参数对缩痕指数的影响程度,并获得了最优的工艺参数组合,其缩痕指数降低为2.159%,最后通过注塑成型试验验证该方法的有效性。这为框形薄壁注塑件低成本高质量设计提供了一种新的途径。%Aimed at the problem that the sink marks is easy to appear in the frame thin-wall plastic products with grid,the research on the optimization of injection molding process parameters for air conditioning plane frame based on the minimization of sink indexis was carried out. First,the 3D model of air conditioning plane frame was built,the gating system and cooling flow channel were designed. Based on the use of moldflow simulation and four levels orthogonal experimentL16(45),injection time, mold temperature,melt temperature,relative packing pressure and packing time were designed as variables. The influence of various parameters on the sink mark index were obtained by using the range analysis and variance analysis,and the optimal process parameters combination were obtained,the sink mark index was decreased to 2.159%. Finally the method was confirmed to be effective by using injection molding experiments. It provides a new way of low-cost and high-quality design for the frame thin-wall plastic products.

  5. Homopolar Gun for Pulsed Spheromak Fusion Reactors II

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T

    2004-06-14

    A homopolar gun is discussed that could produce the high currents required for pulsed spheromak fusion reactors even with unit current amplification and open field lines during injection, possible because close coupling between the gun and flux conserver reduces gun losses to acceptable levels. Example parameters are given for a gun compatible with low cost pulsed reactors and for experiments to develop the concept.

  6. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T. (Inventor); Sahimi, Muhammad (Inventor); Fayyaz-Najafi, Babak (Inventor); Harale, Aadesh (Inventor); Park, Byoung-Gi (Inventor); Liu, Paul K. T. (Inventor)

    2011-01-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  7. D and DR Reactors

    Data.gov (United States)

    Federal Laboratory Consortium — The world's second full-scale nuclear reactor was the D Reactor at Hanford which was built in the early 1940's and went operational in December of 1944.D Reactor ran...

  8. Hybrid adsorptive membrane reactor

    Science.gov (United States)

    Tsotsis, Theodore T.; Sahimi, Muhammad; Fayyaz-Najafi, Babak; Harale, Aadesh; Park, Byoung-Gi; Liu, Paul K. T.

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  9. Coal gasification characteristics in a downer reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y.J.; Lee, S.H.; Kim, S.D. [Korea Advanced Institute of Science and Technology, Taejon (Republic of Korea). Dept. of Chemical Engineering and Energy & Environmental Research Center

    2001-10-26

    Subbituminous coal (Shenwha) was gasified at atmospheric pressure in a downer reactor (0.1 m.I.D. x 5.0 high). The effects of reaction temperature (750-850{degree}C), steam/coal mass ratio (0.23 - 0.86), O{sub 2}/H{sub 2}O mole ratio (0.81) and coal feeding rate (5.3-9.0 kg h{sup -1}) on the composition of product gas, carbon conversion, cold gas efficiency, gas yield and calorific value have been determined. In the case of steam injection into the loop-seal, compositions of the product gas (vol. %; N{sub 2} free basis) in the gasification ration are H{sub 2}, CH{sub 4}, CO, CO{sub 2}, C{sub 2}H{sub 4}, C{sub 2}H{sub 6}, C{sub 3}H{sub 6} and C{sub 3}H{sub 8} with a calorific value of 13.0-15.2 MJ/m{sup 3}. By changing the reactant gas supplied into the loop-seal for solid circulating from steam to air, product gas yield and carbon conversion increase, whereas calorific value of the product gas decreases from 13.0-15.2 to 6.3-10.6 with reaction temperature. 22 refs., 12 figs., 1 tab.

  10. Thermonuclear Reflect AB-Reactor

    CERN Document Server

    Bolonkin, Alexander

    2008-01-01

    The author offers a new kind of thermonuclear reflect reactor. The remarkable feature of this new reactor is a three net AB reflector, which confines the high temperature plasma. The plasma loses part of its energy when it contacts with the net but this loss can be compensated by an additional permanent plasma heating. When the plasma is rarefied (has a small density), the heat flow to the AB reflector is not large and the temperature in the triple reflector net is lower than 2000 - 3000 K. This offered AB-reactor has significantly less power then the currently contemplated power reactors with magnetic or inertial confinement (hundreds-thousands of kW, not millions of kW). But it is enough for many vehicles and ships and particularly valuable for tunnelers, subs and space apparatus, where air to burn chemical fuel is at a premium or simply not available. The author has made a number of innovations in this reactor, researched its theory, developed methods of computation, made a sample computation of typical pr...

  11. Research on Energy Efficiency Specific Gravity of Air Cooling System for Oil Injection Screw Air Compressor%喷油螺杆空压机风冷却系统能效比重研究

    Institute of Scientific and Technical Information of China (English)

    谭强; 沈坤华; 肖银娥; 朱海峰; 郑鹏程; 章正峰

    2013-01-01

    根据当前螺杆空压机能效标准和产品标准的规定,结合螺杆空压机实际应用的具体条件,依据物质能量守恒定律,推导出螺杆空压机风冷却系统能效比重的计算公式,得出具体的计算结果,供风冷却螺杆空压机设计、节能管理、标准化工作者参考.%According to the specifications of current energy and product standards for screw compressor,combined with the concrete conditions of practical application of screw compressor,the calculating formula for energy efficiency specific gravity of air cooling system for screw compressor is deduced and the concrete calculating results are obtained based on law of energy conservation,which provides references for design,energy-saving management and standardization staff of air cooling screw compressor.

  12. A nanoliter-scale open chemical reactor.

    Science.gov (United States)

    Galas, Jean-Christophe; Haghiri-Gosnet, Anne-Marie; Estévez-Torres, André

    2013-02-01

    An open chemical reactor is a container that exchanges matter with the exterior. Well-mixed open chemical reactors, called continuous stirred tank reactors (CSTR), have been instrumental for investigating the dynamics of out-of-equilibrium chemical processes, such as oscillations, bistability, and chaos. Here, we introduce a microfluidic CSTR, called μCSTR, that reduces reagent consumption by six orders of magnitude. It consists of an annular reactor with four inlets and one outlet fabricated in PDMS using multi-layer soft lithography. A monolithic peristaltic pump feeds fresh reagents into the reactor through the inlets. After each injection the content of the reactor is continuously mixed with a second peristaltic pump. The efficiency of the μCSTR is experimentally characterized using a bromate, sulfite, ferrocyanide pH oscillator. Simulations accounting for the digital injection process are in agreement with experimental results. The low consumption of the μCSTR will be advantageous for investigating out-of-equilibrium dynamics of chemical processes involving biomolecules. These studies have been scarce so far because a miniaturized version of a CSTR was not available.

  13. Oxidation performance of graphite material in reactors

    Institute of Scientific and Technical Information of China (English)

    Xiaowei LUO; Xinli YU; Suyuan YU

    2008-01-01

    Graphite is used as a structural material and moderator for high temperature gas-cooled reactors (HTGR). When a reactor is in operation, graphite oxida-tion influences the safety and operation of the reactor because of the impurities in the coolant and/or the acci-dent conditions, such as water ingress and air ingress. In this paper, the graphite oxidation process is introduced, factors influencing graphite oxidation are analyzed and discussed, and some new directions for further study are pointed out.

  14. Reactor and method of operation

    Science.gov (United States)

    Wheeler, John A.

    1976-08-10

    A nuclear reactor having a flattened reactor activity curve across the reactor includes fuel extending over a lesser portion of the fuel channels in the central portion of the reactor than in the remainder of the reactor.

  15. Numerical Simulation of Crude Oil Vapor Explosion in Air Injection Pipe%注空气管内原油蒸气爆炸过程数值分析

    Institute of Scientific and Technical Information of China (English)

    周轶; 刘振翼; 钱新明; 李浩; 潘振祥; 邹贵福

    2012-01-01

    The air injection is an issue much studied and with a large amount of field practice experience, as it is an efficient way for oil recovery from the oil-gas reservoirs with low permeability. The flammable gas explosion should be considered during the process. In order to study the explosion scope and the explosion intensity, numerical simulations on the crude oil vapor explosion in the air injection pipeline under 30MPa with different initial temperatures were conducted with the help of software AutoReaGas. The model is established according to an air injection pipe in an oilfield. The initial conditions are the typical parameters in the production process, such as the pressure 30MPa, the temperatures 20℃,45℃and 90℃. The explosion temperature and the overpressure are analyzed as the two important parameters. It is found that after the explosion, the overpressure will reach 450MPa and the temperature will reach 2400 K, which will do a great harm to the oil pipe and the Christmas Tree. The overpressure in the pipe is closely related to the initial temperature. The overpressure decreases when the initial temperature increases before the superposition of the explosive wave and the reflected wave, while the overpressure increases evidently when the initial temperature increases after the superposition area. However, the overpressure in the area more than 750m away will almost be zero. The initial temperature has little effect on the explosive temperature. When the initial pressure is 30MPa, the temperature in the pipe will be back to the initial temperature in the area more than 600m away no matter how high the initial temperature is. It is concluded that only in the area filled with gas and the nearby area, the pressure and the temperature will rise after the explosion, the far away areas are little influenced.%在注空气采油生产过程中,必须高度重视可燃油蒸气的爆炸问题.本文借助AutoReaGas气体爆炸模拟软件对注空气管

  16. Flow injection on-line preconcentration of low levels of Cr(VI) with detection by ETAAS

    DEFF Research Database (Denmark)

    Som-aum, Waraporn; Liawruangrath, Saisunee; Hansen, Elo Harald

    2002-01-01

    A flow injection (FI) on-line sorption preconcentration procedure utilizing a packed column reactor and combined with electrothermal atomic absorption spectrometry (ETAAS) is proposed for the determination of low levels of Cr(VI) in water samples. Polytetrafluoroethylene (PTFE) beads packed...... in a mini-column is used as sorbent material. The complex formed between Cr(VI) and ammonium pyrrolidine dithiocarbamate (APDC) is sorbed on the PTFE beads, and is subsequently eluted by an air-monosegmented discrete zone of absolute ethanol (35mul), the analyte being quantified by ETAAS....... The preconcentration procedure using the proposed column significantly enhances the preconcentration efficiency as compared with the preconcentration approach incorporating an open tubular PTFE knotted reactor (KR). Comparing the two procedure for equal surface sorption area, the advantages of using a packed column...

  17. Study on Variable Volume and Gas Injection DC Inverter Air Conditioner Compressor%变频变容喷气增焓空调压缩机的理论与实验研究

    Institute of Scientific and Technical Information of China (English)

    向卫民

    2016-01-01

    The lower heating capacity in low ambient temperature is the defect of the air-conditioner. Some schemes have been proposed to solve the problem, but they can't improve the quantity of heat more than 50%in low ambient tem-perature and improve efficiency in general temperature at the same time. This paper proposes a vapor-injection varicap compressor, and studies its heating capacity and efficiency properties. The experimental results show that the APF of the air-conditioner increased by 6%when using the vapor-injection varicap compressor, and the quantity of heat increased by 85%, at the same time.%低温制热能力不足问题一直是空调的诟病,研发人员在前期也提出过几种解决温制热量的方案,但都以难满足APF工况下的能效提升和低温-15℃环境温度下高制热量的两个目标。针对这一难题,提出一种集变频技术、变容技术和喷气增焓技术为一体的压缩机设计方案,通过原理分析进行了样机的结构设计,研究其性能及低温能力特性,经验证,搭载空调系统测试时,喷气能力能效提升效果明显,在喷气情况下,搭载系统APF比基准机型提高了约6%,同时,搭载系统的低温-15℃的制热能力相对基准机提升了约85%,效果显著。

  18. The Feasibility of Pellet Re-Fuelling of a Fusion Reactor

    DEFF Research Database (Denmark)

    Chang, Tinghong; Jørgensen, L. W.; Nielsen, P.

    1980-01-01

    The feasibility of re-fuelling a fusion reactor by injecting pellets of frozen hydrogen isotopes is reviewed. First a general look is taken of the dominant energy fluxes received by the pellet, the re-fuelling rate required and the relation between pellet size, injection speed and frequency....... Current available theories of pellet ablation are then discussed. For a given penetration depth inside the reactor, the necessary pellet injection speed is examined in terms of the ablation theory adopted and the temperature and density profiles of the reactor plasma. The interaction between the injected...

  19. High-Compression-Ratio; Atkinson-Cycle Engine Using Low-Pressure Direct Injection and Pneumatic-Electronic Valve Actuation Enabled by Ionization Current and Foward-Backward Mass Air Flow Sensor Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Harold Schock; Farhad Jaberi; Ahmed Naguib; Guoming Zhu; David Hung

    2007-12-31

    This report describes the work completed over a two and one half year effort sponsored by the US Department of Energy. The goal was to demonstrate the technology needed to produce a highly efficient engine enabled by several technologies which were to be developed in the course of the work. The technologies included: (1) A low-pressure direct injection system; (2) A mass air flow sensor which would measure the net airflow into the engine on a per cycle basis; (3) A feedback control system enabled by measuring ionization current signals from the spark plug gap; and (4) An infinitely variable cam actuation system based on a pneumatic-hydraulic valve actuation These developments were supplemented by the use of advanced large eddy simulations as well as evaluations of fuel air mixing using the KIVA and WAVE models. The simulations were accompanied by experimental verification when possible. In this effort a solid base has been established for continued development of the advanced engine concepts originally proposed. Due to problems with the valve actuation system a complete demonstration of the engine concept originally proposed was not possible. Some of the highlights that were accomplished during this effort are: (1) A forward-backward mass air flow sensor has been developed and a patent application for the device has been submitted. We are optimistic that this technology will have a particular application in variable valve timing direct injection systems for IC engines. (2) The biggest effort on this project has involved the development of the pneumatic-hydraulic valve actuation system. This system was originally purchased from Cargine, a Swedish supplier and is in the development stage. To date we have not been able to use the actuators to control the exhaust valves, although the actuators have been successfully employed to control the intake valves. The reason for this is the additional complication associated with variable back pressure on the exhaust valves when

  20. Leak detection capability in CANDU reactors

    Energy Technology Data Exchange (ETDEWEB)

    Azer, N.; Barber, D.H.; Boucher, P.J. [and others

    1997-04-01

    This paper addresses the moisture leak detection capability of Ontario Hydro CANDU reactors which has been demonstrated by performing tests on the reactor. The tests confirmed the response of the annulus gas system (AGS) to the presence of moisture injected to simulate a pressure tube leak and also confirmed the dew point response assumed in leak before break assessments. The tests were performed on Bruce A Unit 4 by injecting known and controlled rates of heavy water vapor. To avoid condensation during test conditions, the amount of moisture which could be injected was small (2-3.5 g/hr). The test response demonstrated that the AGS is capable of detecting and annunciating small leaks. Thus confidence is provided that it would alarm for a growing pressure tube leak where the leak rate is expected to increase to kg/hr rapidly. The measured dew point response was close to that predicted by analysis.

  1. Severe Accident Analysis of Core Cooling by Passive Cavity Injection System for Small Modular Reactor%模块式小型堆非能动堆腔注水冷却堆芯的严重事故分析

    Institute of Scientific and Technical Information of China (English)

    毛辉辉; 陈树; 邓坚; 向清安; 肖红

    2015-01-01

    以模块式小型堆为研究对象,使用MELCOR程序建立了电厂模型.选取安注管线双端剪切断裂严重事故为保守事故序列,非能动堆腔注水系统(Passive Cavity Injection System,PCIS)投入后,分析堆芯热量通过吊篮和压力容器壁进入堆腔水的传热过程,并评价燃料棒结构状态.计算结果表明,堆芯支承板保持支撑燃料组件,堆芯大部分燃料组件包壳保持棒状结构状态,PCIS冷却压力容器外壁面带出堆芯热量实现堆芯冷却.

  2. Design, characterization and application of the Multiple Air-lift Loop bioreactor.

    NARCIS (Netherlands)

    Bakker, W.A.M.

    1995-01-01

    A new bioreactor is introduced: the Multiple Air-lift Loop reactor (MAL). The MAL consists of a series of air-lift loop reactors within one vessel. With the MAL, a new type of geometry for air-lift reactors with an internal loop is introduced. This new geometry was characterized with respect to hydr

  3. Transients in reactors for power systems compensation

    Science.gov (United States)

    Abdul Hamid, Haziah

    This thesis describes new models and investigations into switching transient phenomena related to the shunt reactors and the Mechanically Switched Capacitor with Damping Network (MSCDN) operations used for reactive power control in the transmission system. Shunt reactors and MSCDN are similar in that they have reactors. A shunt reactor is connected parallel to the compensated lines to absorb the leading current, whereas the MSCDN is a version of a capacitor bank designed as a C-type filter for use in the harmonic-rich environment. In this work, models have been developed and transient overvoltages due to shunt reactor deenergisation were estimated analytically using MathCad, a mathematical program. Computer simulations used the ATP/EMTP program to reproduce both single-phase and three-phase shunt reactor switching at 275 kV operational substations. The effect of the reactor switching on the circuit breaker grading capacitor was also examined by considering various switching conditions.. The main original achievement of this thesis is the clarification of failure mechanisms occurring in the air-core filter reactor due to MSCDN switching operations. The simulation of the MSCDN energisation was conducted using the ATP/EMTP program in the presence of surge arresters. The outcome of this simulation shows that extremely fast transients were established across the air-core filter reactor. This identified transient event has led to the development of a detailed air-core reactor model, which accounts for the inter-turn RLC parameters as well as the stray capacitances-to-ground. These parameters are incorporated into the transient simulation circuit, from which the current and voltage distribution across the winding were derived using electric field and equivalent circuit modelling. Analysis of the results has revealed that there are substantial dielectric stresses imposed on the winding insulation that can be attributed to a combination of three factors. (i) First, the

  4. Injection of Helium 3 and SF{sub 6} in a lake for the determination of gaseous exchange rates at the water-air interface: implementation, analysis and experimental results; Injection d`helium-3 et SF{sub 6} en lac pour la determination des coefficients gazeux a l`interface eau-air: deploiement, analyse et resultats experimentaux

    Energy Technology Data Exchange (ETDEWEB)

    Poisson, A. [Paris-6 Univ., 75 (France); Jean-Baptiste, P. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Direction des Sciences de la Matiere

    1994-12-31

    In order to study the hypothesis of an under-rating of the exchange velocity at the ocean-atmosphere interface that could explain the lack of CO{sub 2} in the global CO{sub 2} balance, an experiment was carried out in two lakes at the Kerguelen Islands where strong winds are common, in order to evaluate precisely the relation between the transfer coefficient and the wind velocity: {sup 3}He and SF{sub 6} tracers were injected in the lakes; concentration evolutions were recorded and results are shown to validate the above assumption. 6 figs., 1 tab., 9 refs.

  5. Conduction heat transfer in a cylindrical dielectric barrier discharge reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sadat, H. [Laboratoire d' Etudes Thermiques, Universite de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers (France)], E-mail: hamou.sadat@univ-poitiers.fr; Dubus, N. [Laboratoire d' Etudes Thermiques, Universite de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers (France); Pinard, L.; Tatibouet, J.M.; Barrault, J. [Laboratoire en catalyse et chimie organique, Universite de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers (France)

    2009-04-15

    The thermal behaviour of a dielectric barrier discharge reactor is studied. The experimental tests are performed on a laboratory reactor with two working fluids: helium and air. A simple heat conduction model for calculating the heat loss is developed. By using temperature measurements in the internal and external electrodes, a thermal resistance of the reactor is defined. Finally, the percentage of the input power that is dissipated to the environment is given.

  6. Simulation of a large break loss of coolant (LBLOCA), without actuation of the emergency injection systems (ECCS) for a BWR-5; Simulacion de un escenario de perdida de refrigerante grande (LBLOCA), sin actuacion de los sistemas de inyeccion de emergencia (ECCS) para un reactor BWR-5

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas V, J.; Mugica R, C. A.; Lopez M, R., E-mail: jaime.cardenas@cnsns.gob.mx [Comision Nacional de Seguridad Nuclear y Salvaguardias, Dr. Barragan 779, Col. Narvarte, 03020 Ciudad de Mexico (Mexico)

    2015-09-15

    In this paper the analysis of scenario for the loss of coolant case was realized with break at the bottom of a recirculation loop of a BWR-5 with containment type Mark II and a thermal power of 2317 MWt considering that not have coolant injection. This in order to observe the speed of progression of the accident, the phenomenology of the scenario, the time to reach the limit pressure of containment venting and the amount of radionuclides released into the environment. This simulation was performed using the MELCOR code version 2.1. The scenario posits a break in one of the shear recirculation loops. The emergency core cooling system (ECCS) and the reactor core isolation cooling (Rcic) have not credit throughout the event, which allowed achieve greater severity on scenario. The venting of the primary containment was conducted via valve of 30 inches instead of the line of 24 inches of wet well, this in order to have a larger area of exhaust of fission products directly to the reactor building. The venting took place when the pressure in the primary containment reached the 4.5 kg/cm{sup 2} and remained open for the rest of the scenario to maximize the amount released of radionuclides to the atmosphere. The safety relief valves were considered functional they do not present mechanical failure or limit their ability to release pressure due to the large number of performances in safety mode. The results of the analysis covers about 48 hours, time at which the accident evolution was observed; behavior of level, pressure in the vessel and the fuel temperature profile was analyzed. For progression of the scenario outside the vessel, the pressure and temperature of the primary containment, level and temperature of the suppression pool, the hydrogen accumulation in the container and the radionuclides mass released into the atmosphere were analyzed. (Author)

  7. Chemical looping reactor system design double loop circulating fluidized bed (DLCFB)

    Energy Technology Data Exchange (ETDEWEB)

    Bischi, Aldo

    2012-05-15

    Chemical looping combustion (CLC) is continuously gaining more importance among the carbon capture and storage (CCS) technologies. It is an unmixed combustion process which takes place in two steps. An effective way to realize CLC is to use two interconnected fluidized beds and a metallic powder circulating among them, acting as oxygen carrier. The metallic powder oxidizes at high temperature in one of the two reactors, the air reactor (AR). It reacts in a highly exothermic reaction with the oxygen of the injected fluidising air. Afterwards the particles are sent to the other reactor where the fuel is injected, the fuel reactor (FR). There, they transport heat and oxygen necessary for the reaction with the injected fuel to take place. At high temperatures, the particle's oxygen reacts with the fuel producing Co2 and steam, and the particles are ready to start the loop again. The overall reaction, the sum of the enthalpy changes of the oxygen carrier oxidation and reduction reactions, is the same as for the conventional combustion. Two are the key features, which make CLC promising both for costs and capture efficiency. First, the high inherent irreversibility of the conventional combustion is avoided because the energy is utilized stepwise. Second, the Co2 is intrinsically separated within the process; so there is in principle no need either of extra carbon capture devices or of expensive air separation units to produce oxygen for oxy-combustion. A lot of effort is taking place worldwide on the development of new chemical looping oxygen carrier particles, reactor systems and processes. The current work is focused on the reactor system: a new design is presented, for the construction of an atmospheric 150kWth prototype working with gaseous fuel and possibly with inexpensive oxygen carriers derived from industrial by-products or natural minerals. It consists of two circulating fluidized beds capable to operate in fast fluidization regime; this will increase the

  8. Effect of Jet Injection Angle and Number of Jets on Mixing and Emissions From a Reacting Crossflow at Atmospheric Pressure

    Science.gov (United States)

    St.John, D.; Samuelsen, G. S.

    2000-01-01

    The mixing of air jets into hot, fuel-rich products of a gas turbine primary zone is an important step in staged combustion. Often referred to as "quick quench," the mixing occurs with chemical conversion and substantial heat release. An experiment has been designed to simulate and study this process, and the effect of varying the entry angle (0 deg, 22.5 deg and 45 deg from normal) and number of the air jets (7, 9, and 11) into the main flow, while holding the jet-to-crossflow mass-low ratio, MR, and momentum-flux ratio, J, constant (MR = 2.5;J = 25). The geometry is a crossflow confined in a cylindrical duct with side-wall injection of jets issuing from orifices equally spaced around the perimeter. A specially designed reactor, operating on propane, presents a uniform mixture to a module containing air jet injection tubes that can be changed to vary orifice geometry. Species concentrations of O2, CO, CO2, NO(x) and HC were obtained one duct diameter upstream (in the rich zone), and primarily one duct radius downstream. From this information, penetration of the jet, the spatial extent of chemical reaction, mixing, and the optimum jet injection angle and number of jets can be deduced.

  9. Water-oil model for slag injection from vacuum vessel in RH reactor%RH真空室加渣对熔池内渣钢间传质影响的水力学模拟

    Institute of Scientific and Technical Information of China (English)

    薛利强; 何平; 张贵; 贺庆

    2012-01-01

    As the slag is located in the dead zone of RH,the mass transfer between slag and metal is very weak.To enhance the refining efficiency between slag and metal,a cold model in which water and oil are used to simulate metal and slag respectively and benzoic acid is employed to simulate the solute has been developed.This model is adopted to study the effect of operational parameters(V,Q,H) on volumetric transfer coefficient between slag and metal.The results indicate that combined with the oil injected from the ladle surface,the volumetric transfer coefficient has been increased 60-130 times.It means that when the slag injected from vacuum,the speed of mass transfer can be improved obviously.%在RH真空精炼中,覆盖渣处于大包熔池内的弱搅拌区,渣钢反应很弱,对依靠渣钢反应去除硫等有害元素或吸附钢水中夹杂物有很大的影响,降低了精炼效率。为了提高除硫等精炼效率,利用水模拟钢水,机油模拟渣,苯甲酸模拟渣-钢间传输物质来研究RH装置真空室内加渣时的加渣量、吹气量和浸渍管插入深度对渣钢传质的影响。试验结果表明,采用真空室内加渣方法渣钢之间的容量传质系数提高了60~130倍,大大提高了渣钢传质速度,为实际生产中通过真空室内加渣加强渣钢传质以提高除硫等精炼操作提供了理论依据。

  10. Management of research reactor; dynamic characteristics analysis for reactor structures related with vibration of HANARO fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Chang Kee; Shim, Joo Sup [Shinwa Technology Information, Seoul (Korea)

    2001-04-01

    The objective of this study is to deduce the dynamic correlation between the fuel assembly and the reactor structure. Dynamic characteristics analyses for reactor structure related with vibration of HANARO fuel assembly have been performed For the dynamic characteristic analysis, the in-air models of the round and hexagonal flow tubes, 18-element and 36-element fuel assemblies, and reactor structure were developed. By calculating the hydrodynamic mass and distributing it on the in-air models, the in-water models of the flow tubes, the fuel assemblies, and the reactor structure were developed. Then, modal analyses for developed in-air and in-water models have been performed. Especially, two 18-element fuel assemblies and three 36-element fuel assemblies were included in the in-water reactor models. For the verification of the modal analysis results, the natural frequencies and the mode shapes of the fuel assembly were compared with those obtained from the experiment. Finally the analysis results of the reactor structure were compared with them performed by AECL Based on the reactor model without PCS piping, the in-water reactor model including the fuel assemblies was developed, and its modal analysis was performed. The analysis results demonstrate that there are no resonance between the fuel assembly and the reactor structures. 26 refs., 419 figs., 85 tabs. (Author)

  11. Bioactive Foamed Emulsion Reactor: A New Technology for Biotreatment of Airborne Volatile Organic Compound

    Directory of Open Access Journals (Sweden)

    F. Ghorbani Shahna

    2010-04-01

    Full Text Available Introduction & Objective: Biological treatment is a new established technology for the air pollutants. This technology can be an alternative for physical and chemical treatment methods. Among bioreators, the Bioactive Foamed Emulsion Reactor (BFER is a new alternative that has not the problems of the conventional ones. In this reactor bed clogging in the conventional bioreactor was resolved by bioactive foam as a substitute of packing bed. The pollutant absorption has been increased using biocompatible organic phase in liquid .This reactor can be used for higher inlet toluene concentration. The objective of this study was designing and optimizing the operational parameters of BFER for toluene treatment.Materials & Methods: In the first step of this experimental-analytic study, the toluene degradation microorganisms were identified, extracted and concentrated for injection to bioreactor. Then the effect of several parameters such as Kind and concentration of organic phase,and residence time oxygen content on bioreactor performance were studied and the optimum conditions were selected for continuous operation. The continuous operation of bioreactor was monitored at the optimum conditions.Results: Experimental results showed that the residence time of 15s, oxygen content of 40%, and the 4 % (v/v n-hexadecane as organic phase were the optimum conditions. The average elimination capacity (EC and removal efficiency of bioreactor were 231.68 g/m3h and 88.44% respectively for the inlet concentration about of 1 g/m3. The statistical developed model predicted that the maximum EC of this reactor could reach to 426.21 g/m3h.Conclusion: Since the elimination capacity of this reactor is several times more than the other bioreactors, it has the potential to be applied instead of biofilters and biotrickling filters.

  12. Unusual nuclide concentrations in air after the 1986 Chernobyl event

    Energy Technology Data Exchange (ETDEWEB)

    Faller, S.H.; Kuroda, P.K. (Environmental Protection Agency, Las Vegas, NV (USA). Environmental Monitoring Systems Lab.)

    1990-01-01

    Concentrations of 1.0-year {sup 106}Ru, 2.8-year {sup 125}Sb, 2.1-year {sup 134}Cs, and 30-year {sup 137}Cs were measured for a total of 39 air filter samples collected at Chico, California, and Reno, Nevada, during the month of May 1986. Radioactive debris in which {sup 106}Ru, {sup 125}Sb, and {sup 134}Cs were enriched relative to {sup 137}Cs reached the west coast of the United States during the first week of May 1986. The air mass that carried this debris seems to have circled the world and reached the west coast for the second time 3 weeks later during the last week of May 1986. Results obtained in this study indicate that the initial release of nuclear debris from the Chernobyl reactor took place in a manner similar to the atmospheric injection of radionuclides from a nuclear weapon's test. (orig.).

  13. Experimental Study of the APR+ Direct ECC Bypass in the Air-water Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kihwan; Choi, Hae-Seob; Park, Kil-won; Kwon, Tae-Soon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The APR+ is an improved Korean Nuclear Power Reactor, which has been developed as a two loop evolutionary PWR (Pressure Water Reactor) with a number of advanced design features to enhance safety based on the APR-1400 technology. The emergency core cooling system (ECC) of the APR+ is different with that of the APR-1400, though the APR+ adopted a direct vessel injection (DVI) system which is the same design features of the APR-14000. The main difference of the DVI+ is the emergency core barrel duct (ECBD) which is designed to increase the amount of the injection water to the core region. The performance of the DVI system has been an important issues for past decades, and many researchers have studied the related thermal-hydraulic technical issues such as the ECC bypass fraction, the steam condensation effect, temperature distribution, sub-cooling margin, and etc. However, the previous research cannot be directly applicable to the APR+ owing to the unique features of the DVI+. The current study will elaborate on the experimental evaluation of the direct ECC bypass performance. The 1/5 ECC bypass test facility which is designed with a linearly reduced 1/5 scale referring to the APR+ was used to investigate the effect of the DVI+ injection nozzle location and the broken cold leg velocity on the direct ECC bypass fraction. However, air is used as a working fluid to simulate the steam flow induced from the broken cold leg, and thus, the direct contact condensation effect is not considered in this study. Experimental study for the direct ECC bypass phenomena has been carryout out with various the injection mode and air velocity conditions. The tests were performed in the 1/5 scale ECC bypass test facility, and the test condition was defined using a scaling law referring to the APR+ reactor. Test results showed that the direct ECC bypass fraction was greatly enhanced compared with the reference test (w/o ECBD)

  14. Reactor Physics Programme

    Energy Technology Data Exchange (ETDEWEB)

    De Raedt, C

    2000-07-01

    The Reactor Physics and Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis on reactor fuel. This expertise is applied within the Reactor Physics and MYRRHA Research Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments. Progress and achievements in 1999 in the following areas are reported on: (1) investigations on the use of military plutonium in commercial power reactors; (2) neutron and gamma calculations performed for BR-2 and for other reactors; (3) the updating of neutron and gamma cross-section libraries; (4) the implementation of reactor codes; (6) the management of the UNIX workstations; and (6) fuel cycle studies.

  15. Energy Dissipation Distribution in a Draft Tube-lifted Gas-Solid Air Loop Reactor%中心气升式气固环流反应器中的能耗分布

    Institute of Scientific and Technical Information of China (English)

    沈志远; 杨利军; 刘梦溪; 卢春喜

    2012-01-01

    Based on the energy balance, an energy dissipation rate model of different regions of a draft tube-lifted gas-solid air loop reactor (GSALR) was established. The local particle velocity, bed density and pressure drop were measured in a cold model GSALR and the model parameters were obtained based on the experimental data. The predictions agree with experimental data. The predicted results show that nearly 40% and 30% of the energy dissipation rate occur in the annulus and gas-solid separation regions, while that in the draft tube and gas distributors region is relatively small, reaching a sum of nearly 30%. With increasing of the draft tube gas velocity, the ratio of individual region to global reactor energy dissipation rate decreases for the annulus region, increases for the gas-solid separation region, and basically remains constant for the draft tube and gas distributor affecting regions. Compared with that obtained in an annulus-lifted GSALR, the location of gas distributor has a significant influence on energy dissipation, the flow resistance is smaller in the draft tube-lifted GSALR.%基于能量平衡,推导出计算中心气升式气固环流反应器中不同区域内气固混合物流动能耗的理论模型,测量了不同区域内固相颗粒速度、气固混合物密度及床层压降,并根据实验数据确定出相应的模型参数,模型计算与实验结果吻合较好.模型计算表明,中心气升式气固环流反应器内环隙区和气固分离区的能耗分别占反应器总能耗的近40%和30%,颗粒环流受到的阻力主要集中在这2个区域;而导流筒区及分布器影响区能耗较小,共占总能耗的近30%.随导流筒区表观气速增加,环隙区能耗占总能耗的比重减小,气固分离区能耗所占比重增大,导流筒区和分布器影响区能耗基本保持不变.气体分布器的安装位置对反应器内能量消耗的分布影响较大,中心气升式气固环流反应器内流动阻力更小.

  16. Penicillin G Procaine Injection

    Science.gov (United States)

    Penicillin G procaine injection is used to treat certain infections caused by bacteria. Penicillin G procaine injection should not be used to treat ... in the treatment of certain serious infections. Penicillin G procaine injection is in a class of medications ...

  17. LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kawakami, Hiroto

    1995-02-07

    A reactor container of the present invention has a structure that the reactor container is entirely at the same temperature as that at the inlet of the reactor and, a hot pool is incorporated therein, and the reactor container has is entirely at the same temperature and has substantially uniform temperature follow-up property transiently. Namely, if the temperature at the inlet of the reactor core changes, the temperature of the entire reactor container changes following this change, but no great temperature gradient is caused in the axial direction and no great heat stresses due to axial temperature distribution is caused. Occurrence of thermal stresses caused by the axial temperature distribution can be suppressed to improve the reliability of the reactor container. In addition, since the laying of the reactor inlet pipelines over the inside of the reactor is eliminated, the reactor container is made compact and the heat shielding structures above the reactor and a protection structure of container walls are simplified. Further, secondary coolants are filled to the outside of the reactor container to simplify the shieldings. The combined effects described above can improve economical property and reliability. (N.H.).

  18. Risks of nuclear energy technology safety concepts of light water reactors

    CERN Document Server

    Kessler, Günter; Schlüter, Franz-Hermann

    2014-01-01

    The book analyses the risks of nuclear power stations. The security concept of reactors is explained. Measures against the spread of radioactivity after a severe accident, accidents of core melting and a possible crash of an air plane on?reactor containment are discussed. The book covers three scientific subjects of the safety concepts of Light Water Reactors: ? A first part describes the basic safety design concepts of operating German Pressurized Water Reactors and Boiling Water Reactors including accident management measures introduced after the reactor accidents of Three Mile Island and Ch

  19. Iron Dextran Injection

    Science.gov (United States)

    ... allergic to iron dextran injection; any other iron injections such as ferric carboxymaltose (Injectafer), ferumoxytol (Feraheme), iron sucrose (Venofer), or sodium ferric gluconate (Ferrlecit);any other ...

  20. Thyristor Controlled Reactor for Power Factor Improvement

    Directory of Open Access Journals (Sweden)

    Sheila Mahapatra

    2014-04-01

    Full Text Available Power factor improvement is the essence of any power sector for reliable operation. This paper provides Thyristor Controlled Reactor regulated by programmed microcontroller which aids in improving power factor and retaining it close to unity under various loading conditions. The implementation is done on 8051 microcontrollerwhich isprogrammed using Keil software. To determine time lag between current and voltage PSpice softwareis used and to display power factor according tothe variation in loadProteus software is used. Whenever a capacitive load is connected to the transmission linea shunt reactor is connected which injects lagging reactive VARs to the power system. As a result the power factor is improved. The results given in this paper provides suitable microcontroller based reactive power compensation and power factor improvement technique using a Thyristor Controlled Reactor module.

  1. Light water reactor safety

    CERN Document Server

    Pershagen, B

    2013-01-01

    This book describes the principles and practices of reactor safety as applied to the design, regulation and operation of light water reactors, combining a historical approach with an up-to-date account of the safety, technology and operating experience of both pressurized water reactors and boiling water reactors. The introductory chapters set out the basic facts upon which the safety of light water reactors depend. The central section is devoted to the methods and results of safety analysis. The accidents at Three Mile Island and Chernobyl are reviewed and their implications for light wate

  2. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  3. Spinning fluids reactor

    Science.gov (United States)

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  4. Experimental Study of the Effect of Graphite Dispersion on the Heat Transfer Phenomena in a Reactor Cavity Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Vaghetto, Rodolfo; Capone, Luigi; Hassan, Yassin A

    2011-05-31

    An experimental activity was performed to observe and study the effects of graphite dispersion and deposition on thermal-hydraulic phenomena in a reactor cavity cooling system (RCCS). The small-scale RCCS experimental facility (16.5 x 16.5 x 30.4 cm) used for this activity represents half of the reactor cavity with an electrically heated vessel. Water flowing through five vertical pipes removes the heat produced in the vessel and releases it into the environment by mixing with cold water in a large tank. The particle image velocimetry technique was used to study the velocity field of the air inside the cavity. A set of 52 thermocouples was installed in the facility to monitor the temperature profiles of the vessel, pipe walls, and air. Ten grams of a fine graphite powder (average particle size 2 m) was injected into the cavity through a spraying nozzle placed at the bottom of the vessel. The temperatures and air velocity field were recorded and compared with the measurements obtained before the graphite dispersion, showing a decrease of the temperature surfaces that was related to an increase in their emissivity. The results contribute to the understanding of RCCS capability in an accident scenario.

  5. Entrained Flow Reactor Test of Potassium Capture by Kaolin

    DEFF Research Database (Denmark)

    Wang, Guoliang; Jensen, Peter Arendt; Wu, Hao

    2015-01-01

    In the present study a method to simulate the reaction between gaseous KCl and kaolin at suspension fired condition was developed using a pilot-scale entrained flow reactor (EFR). Kaolin was injected into the EFR for primary test of this method. By adding kaolin, KCl can effectively be captured......-bed reactor. The method using the EFR developed in this study will be applied for further systematic investigation of different additives....

  6. Chemical looping combustion in a rotating bed reactor--finding optimal process conditions for prototype reactor.

    Science.gov (United States)

    Håkonsen, Silje Fosse; Blom, Richard

    2011-11-15

    A lab-scale rotating bed reactor for chemical looping combustion has been designed, constructed, and tested using a CuO/Al(2)O(3) oxygen carrier and methane as fuel. Process parameters such as bed rotating frequency, gas flows, and reactor temperature have been varied to find optimal performance of the prototype reactor. Around 90% CH(4) conversion and >90% CO(2) capture efficiency based on converted methane have been obtained. Stable operation has been accomplished over several hours, and also--stable operation can be regained after intentionally running into unstable conditions. Relatively high gas velocities are used to avoid fully reduced oxygen carrier in part of the bed. Potential CO(2) purity obtained is in the range 30 to 65%--mostly due to air slippage from the air sector--which seems to be the major drawback of the prototype reactor design. Considering the prototype nature of the first version of the rotating reactor setup, it is believed that significant improvements can be made to further avoid gas mixing in future modified and up-scaled reactor versions.

  7. 喷气增焓空气源热泵热性能评价及预测%Thermal performance evaluation and prediction of enhanced vapor injection air source heat pump

    Institute of Scientific and Technical Information of China (English)

    张东; 李金平; 刘伟; 南军虎; 王林军

    2014-01-01

    喷气增焓空气源热泵系统可显著提高系统低温性能,应用在寒冷地区时冬季环境温度普遍在−5℃以下,而且全年温度波动范围非常大,仅以名义工况(干球温度为7℃)评价系统性能,难以准确有效反映系统真实节能效果。为此在兰州地区建立了喷气增焓空气源热泵实验系统,实测不同环境温湿度条件下系统性能,结果表明系统COP在喷气电磁阀关闭时基本呈线性变化关系,瞬时COP可达6.5,在喷气电磁阀开启时COP衰减更为缓慢,瞬时COP在2.0左右;据此分段拟合出热泵COP的经验关联式,确定其适用范围,并进行实验验证,与本实验系统相比其平均相对误差在3%以内。%The enhanced vapor injection air source heat pump (EVI-ASHP) has better thermal performance at a low temperature, which has received much attention to supply hot water in cold region in recent years due to the growing space heating load and concern for environmental degradation. Environmental temperature is often below−5℃ in winter in cold region of China, and changes greatly throughout the year. Thus coefficient of performance (COP) under nominal working conditions (dry-bulb temperature of 7℃) is difficult to accurately reflect the actual energy-saving effect of the system. So, a set-up of EVI-ASHP system was built in Lanzhou, and thermal performance at different environmental temperatures and humidities was determined. COP of the EVI-ASHP system could reach above 6.5 when electromagnetic valve for vapor injection was off, and linear change of COP was observed. At a low temperature, when electromagnetic valve was on, COP was about 2.0. The fitting equations of the experimental data were obtained and verified, with average relative error below 3% compared with the experimental data from the set-up. An effective prediction method was established for thermal performance of the EVI-ASHP system at changeable environmental

  8. LMFBR type reactor and power generation system using the same

    Energy Technology Data Exchange (ETDEWEB)

    Otsubo, Akira.

    1994-02-25

    A reactor core void reactivity of a reactor main body is set to negative or zero. A heat insulation structure is disposed on the inner wall surface of a reactor container. Oxide fuels or nitride fuels are used. A fuel pin cladding tube has a double walled structure having an outer side of stainless steel and an inner side of niobium alloy. Upon imaginary event, boiling is allowed. Even if boiling of coolants should occur by temperature elevation of fuels upon imaginary event, since reactor core fuels comprises oxides or nitrides, they have a heat resistance, further, and since the fuel pin cladding tube has super heat resistance, it has a high temperature strength, so that it is not ruptured and durable to the coolant boiling temperature. Since the reactor core void reactivity is negative or zero, the reactor core is in a subcritical state by the boiling, and the reactor core power is reduced to several % of the rated power. Accordingly, boiling and non-boiling are repeated substantially permanently in the reactor core, during which safety can be kept with no operator's handling. Further, heat generated in the reactor core is gradually removed by an air cooling system for the reactor container. (N.H.).

  9. Sipuleucel-T Injection

    Science.gov (United States)

    Sipuleucel-T injection is used to treat certain types of advanced prostate cancer. Sipuleucel-T injection is in a class of medications called ... Sipuleucel-T injection comes as a suspension (liquid) to be injected over about 60 minutes into a vein ...

  10. Reactor Vessel Surveillance Program for Advanced Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kyeong-Hoon; Kim, Tae-Wan; Lee, Gyu-Mahn; Kim, Jong-Wook; Park, Keun-Bae; Kim, Keung-Koo

    2008-10-15

    This report provides the design requirements of an integral type reactor vessel surveillance program for an integral type reactor in accordance with the requirements of Korean MEST (Ministry of Education, Science and Technology Development) Notice 2008-18. This report covers the requirements for the design of surveillance capsule assemblies including their test specimens, test block materials, handling tools, and monitors of the surveillance capsule neutron fluence and temperature. In addition, this report provides design requirements for the program for irradiation surveillance of reactor vessel materials, a layout of specimens and monitors in the surveillance capsule, procedures of installation and retrieval of the surveillance capsule assemblies, and the layout of the surveillance capsule assemblies in the reactor.

  11. Synthesis of ZnO particles in a quench-cooled flame reactor

    DEFF Research Database (Denmark)

    Hansen, Jens Peter; Jensen, Joakim Reimer; Livbjerg, Hans

    2001-01-01

    . At the highest tested production rate, the specific surface area of the ZnO particles increases from 20 to 60 m(2)/g when quenching is employed. The particles are characterized by BET surface area measurements, TEM images, and the size distributions of particle aggregates are measured by a scanning mobility......The quench cooling of a flame by injection of cold air was studied in a flame reactor for the formation of ZnO particles in a premixed flame with a precursor jet. A rapid temperature drop downstream from the temperature peak is advantageous for the attainment of a large specific surface area....... Computational fluid dynamics simulations were used to design a quench ring with nozzles directed slightly upward and at a small tangential angle from the direct line to the center. This novel design avoids distortion of the flow pattern below the quenching plane and effectively cools the flame immediately above...

  12. Determination of Free Choline in Citicoline Sodium Injection by HPLC with Electrochemical Detection Combined with a Post-Column Immobilized Enzyme Reactor%HPLC-电化学法测定胞磷胆碱钠注射液中游离胆碱含量

    Institute of Scientific and Technical Information of China (English)

    黄晓舞; 刘俊; 徐江; 沈娟

    2012-01-01

    目的 建立胞磷胆碱钠注射液中游离胆碱含量测定方法.方法 采用高效液相色谱电化学检测法,专用色谱柱(ESA ACH-3,250 mm×3 mm ID)和固相胆碱氧化酶反应器(ESA ACH-SPR,3 cm),M5040分析电极和5300型电化学检测器,柱温:35C,流速:0.35 m-1 ·min-1.结果 游离胆碱在0.12 ~2.89 μg.ml-1范围内呈良好线性关系,r=0.9999,平均回收率为100.0%,RSD为2.7%(n=6).结论 该方法简便可行,重复性好,可用于胞磷胆碱钠注射剂中游离胆碱含量测定.%Objective To determine free choline in citicoline sodium injection. Methods HPLC was used together with electrochemical detection combined with a post-column immobilized enzyme reactor (IMER). This assay was based on the separation of choline on a polymer gel column(ESA ACH-3,250 mm×3 mm ID) followed by the passage of the effluent through an IMER (ESA ACH-SPR,3 cm) ,on which the separated choline reacted respectively to give each stoichiometric yield of hydrogen peroxide, which was detected electrochemically at an electrode ( ESA M5040, E1: + 300 mV). The flow rate was 0. 35 ml·min-1 ,and the column temperature was 35℃. Results The linear range of free choline was 0. 12-2. 89 μg·ml-1 ( r =0. 9999) ,The average recovery was 100. 0% and RSD was 1.6%. Conclusion This method can be used for quality control of free choline in citicoline sodium injection.

  13. Chemical looping reactor system design double loop circulating fluidized bed (DLCFB)

    Energy Technology Data Exchange (ETDEWEB)

    Bischi, Aldo

    2012-05-15

    Chemical looping combustion (CLC) is continuously gaining more importance among the carbon capture and storage (CCS) technologies. It is an unmixed combustion process which takes place in two steps. An effective way to realize CLC is to use two interconnected fluidized beds and a metallic powder circulating among them, acting as oxygen carrier. The metallic powder oxidizes at high temperature in one of the two reactors, the air reactor (AR). It reacts in a highly exothermic reaction with the oxygen of the injected fluidising air. Afterwards the particles are sent to the other reactor where the fuel is injected, the fuel reactor (FR). There, they transport heat and oxygen necessary for the reaction with the injected fuel to take place. At high temperatures, the particle's oxygen reacts with the fuel producing Co2 and steam, and the particles are ready to start the loop again. The overall reaction, the sum of the enthalpy changes of the oxygen carrier oxidation and reduction reactions, is the same as for the conventional combustion. Two are the key features, which make CLC promising both for costs and capture efficiency. First, the high inherent irreversibility of the conventional combustion is avoided because the energy is utilized stepwise. Second, the Co2 is intrinsically separated within the process; so there is in principle no need either of extra carbon capture devices or of expensive air separation units to produce oxygen for oxy-combustion. A lot of effort is taking place worldwide on the development of new chemical looping oxygen carrier particles, reactor systems and processes. The current work is focused on the reactor system: a new design is presented, for the construction of an atmospheric 150kWth prototype working with gaseous fuel and possibly with inexpensive oxygen carriers derived from industrial by-products or natural minerals. It consists of two circulating fluidized beds capable to operate in fast fluidization regime; this will increase the

  14. Investigation of Multiphase Flow in a Packed Bed Reactor Under Microgravity Conditions

    Science.gov (United States)

    Lian, Yongsheng; Motil, Brian; Rame, Enrique

    2016-01-01

    In this paper we study the two-phase flow phenomena in a packed bed reactor using an integrated experimental and numerical method. The cylindrical bed is filled with uniformly sized spheres. In the experiment water and air are injected into the bed simultaneously. The pressure distribution along the bed will be measured. The numerical simulation is based on a two-phase flow solver which solves the Navier-Stokes equations on Cartesian grids. A novel coupled level set and moment of fluid method is used to construct the interface. A sequential method is used to position spheres in the cylinder. Preliminary experimental results showed that the tested flow rates resulted in pulse flow. The numerical simulation revealed that air bubbles could merge into larger bubbles and also could break up into smaller bubbles to pass through the pores in the bed. Preliminary results showed that flow passed through regions where the porosity is high. Comparison between the experimental and numerical results in terms of pressure distributions at different flow injection rates will be conducted. Comparison of flow phenomena under terrestrial gravity and microgravity will be made.

  15. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL

    Energy Technology Data Exchange (ETDEWEB)

    Gary M. Blythe

    2004-01-01

    The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two

  16. SNTP program reactor design

    Science.gov (United States)

    Walton, Lewis A.; Sapyta, Joseph J.

    1993-06-01

    The Space Nuclear Thermal Propulsion (SNTP) program is evaluating the feasibility of a particle bed reactor for a high-performance nuclear thermal rocket engine. Reactors operating between 500 MW and 2,000 MW will produce engine thrusts ranging from 20,000 pounds to 80,000 pounds. The optimum reactor arrangement depends on the power level desired and the intended application. The key components of the reactor have been developed and are being tested. Flow-to-power matching considerations dominate the thermal-hydraulic design of the reactor. Optimal propellant management during decay heat cooling requires a three-pronged approach. Adequate computational methods exist to perform the neutronics analysis of the reactor core. These methods have been benchmarked to critical experiment data.

  17. Fast Spectrum Reactors

    CERN Document Server

    Todd, Donald; Tsvetkov, Pavel

    2012-01-01

    Fast Spectrum Reactors presents a detailed overview of world-wide technology contributing to the development of fast spectrum reactors. With a unique focus on the capabilities of fast spectrum reactors to address nuclear waste transmutation issues, in addition to the well-known capabilities of breeding new fuel, this volume describes how fast spectrum reactors contribute to the wide application of nuclear power systems to serve the global nuclear renaissance while minimizing nuclear proliferation concerns. Readers will find an introduction to the sustainable development of nuclear energy and the role of fast reactors, in addition to an economic analysis of nuclear reactors. A section devoted to neutronics offers the current trends in nuclear design, such as performance parameters and the optimization of advanced power systems. The latest findings on fuel management, partitioning and transmutation include the physics, efficiency and strategies of transmutation, homogeneous and heterogeneous recycling, in addit...

  18. Hybrid reactors. [Fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Moir, R.W.

    1980-09-09

    The rationale for hybrid fusion-fission reactors is the production of fissile fuel for fission reactors. A new class of reactor, the fission-suppressed hybrid promises unusually good safety features as well as the ability to support 25 light-water reactors of the same nuclear power rating, or even more high-conversion-ratio reactors such as the heavy-water type. One 4000-MW nuclear hybrid can produce 7200 kg of /sup 233/U per year. To obtain good economics, injector efficiency times plasma gain (eta/sub i/Q) should be greater than 2, the wall load should be greater than 1 MW.m/sup -2/, and the hybrid should cost less than 6 times the cost of a light-water reactor. Introduction rates for the fission-suppressed hybrid are usually rapid.

  19. Annular core liquid-salt cooled reactor with multiple fuel and blanket zones

    Science.gov (United States)

    Peterson, Per F.

    2013-05-14

    A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.

  20. CFD Code Validation against Stratified Air-Water Flow Experimental Data

    Directory of Open Access Journals (Sweden)

    F. Terzuoli

    2008-01-01

    Full Text Available Pressurized thermal shock (PTS modelling has been identified as one of the most important industrial needs related to nuclear reactor safety. A severe PTS scenario limiting the reactor pressure vessel (RPV lifetime is the cold water emergency core cooling (ECC injection into the cold leg during a loss of coolant accident (LOCA. Since it represents a big challenge for numerical simulations, this scenario was selected within the European Platform for Nuclear Reactor Simulations (NURESIM Integrated Project as a reference two-phase problem for computational fluid dynamics (CFDs code validation. This paper presents a CFD analysis of a stratified air-water flow experimental investigation performed at the Institut de Mécanique des Fluides de Toulouse in 1985, which shares some common physical features with the ECC injection in PWR cold leg. Numerical simulations have been carried out with two commercial codes (Fluent and Ansys CFX, and a research code (NEPTUNE CFD. The aim of this work, carried out at the University of Pisa within the NURESIM IP, is to validate the free surface flow model implemented in the codes against experimental data, and to perform code-to-code benchmarking. Obtained results suggest the relevance of three-dimensional effects and stress the importance of a suitable interface drag modelling.

  1. On Maximal Injectivity

    Institute of Scientific and Technical Information of China (English)

    Ming Yi WANG; Guo ZHAO

    2005-01-01

    A right R-module E over a ring R is said to be maximally injective in case for any maximal right ideal m of R, every R-homomorphism f : m → E can be extended to an R-homomorphism f' : R → E. In this paper, we first construct an example to show that maximal injectivity is a proper generalization of injectivity. Then we prove that any right R-module over a left perfect ring R is maximally injective if and only if it is injective. We also give a partial affirmative answer to Faith's conjecture by further investigating the property of maximally injective rings. Finally, we get an approximation to Faith's conjecture, which asserts that every injective right R-module over any left perfect right self-injective ring R is the injective hull of a projective submodule.

  2. Multi purpose research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Raina, V.K. [Research Reactor Design and Projects Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)]. E-mail: vkrain@magnum.barc.ernet.in; Sasidharan, K. [Research Reactor Design and Projects Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Sengupta, Samiran [Research Reactor Design and Projects Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Singh, Tej [Research Reactor Services Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2006-04-15

    At present Dhruva and Cirus reactors provide the majority of research reactor based facilities to cater to the various needs of a vast pool of researchers in the field of material sciences, physics, chemistry, bio sciences, research and development work for nuclear power plants and production of radio isotopes. With a view to further consolidate and expand the scope of research and development in nuclear and allied sciences, a new 20 MWt multi purpose research reactor is being designed. This paper describes some of the design features and safety aspects of this reactor.

  3. INVAP's Research Reactor Designs

    Directory of Open Access Journals (Sweden)

    Eduardo Villarino

    2011-01-01

    Full Text Available INVAP, an Argentine company founded more than three decades ago, is today recognized as one of the leaders within the research reactor industry. INVAP has participated in several projects covering a wide range of facilities, designed in accordance with the requirements of our different clients. For complying with these requirements, INVAP developed special skills and capabilities to deal with different fuel assemblies, different core cooling systems, and different reactor layouts. This paper summarizes the general features and utilization of several INVAP research reactor designs, from subcritical and critical assemblies to high-power reactors.

  4. LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kanbe, Mitsuru

    1997-04-04

    An LMFBR type reactor comprises a plurality of reactor cores in a reactor container. Namely, a plurality of pot containing vessels are disposed in the reactor vessel and a plurality of reactor cores are formed in a state where an integrated-type fuel assembly is each inserted to a pot, and a coolant pipeline is connected to each of the pot containing-vessel to cool the reactor core respectively. When fuels are exchanged, the integrated-type fuel assembly is taken out together with the pot from the reactor vessel in a state where the integrated-type fuel assembly is immersed in the coolants in the pot as it is. Accordingly, coolants are supplied to each of the pot containing-vessel connected with the coolant pipeline and circulate while cooling the integrated-type fuel assembly for every pot. Then, when the fuels are exchanged, the integrated type fuel assembly is taken out to the outside of the reactor together with the pot by taking up the pot from the pot-containing vessel. Then, neutron economy is improved to thereby improve reactor power and the breeding ratio. (N.H.)

  5. Rotary Bed Reactor for Chemical-Looping Combustion with Carbon Capture. Part 1: Reactor Design and Model Development

    KAUST Repository

    Zhao, Zhenlong

    2013-01-17

    Chemical-looping combustion (CLC) is a novel and promising technology for power generation with inherent CO2 capture. Currently, almost all of the research has been focused on developing CLC-based interconnected fluidized-bed reactors. In this two-part series, a new rotary reactor concept for gas-fueled CLC is proposed and analyzed. In part 1, the detailed configuration of the rotary reactor is described. In the reactor, a solid wheel rotates between the fuel and air streams at the reactor inlet and exit. Two purging sectors are used to avoid the mixing between the fuel stream and the air stream. The rotary wheel consists of a large number of channels with copper oxide coated on the inner surface of the channels. The support material is boron nitride, which has high specific heat and thermal conductivity. Gas flows through the reactor at elevated pressure, and it is heated to a high temperature by fuel combustion. Typical design parameters for a thermal capacity of 1 MW have been proposed, and a simplified model is developed to predict the performances of the reactor. The potential drawbacks of the rotary reactor are also discussed. © 2012 American Chemical Society.

  6. Carbon-14 production in fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Scheele, R.D.; Burger, L.L.

    1976-09-01

    Calculations based on existing composition data were performed to estimate the order of magnitude and the final location of /sup 14/C in fusion reactors. These calculations indicate that approximately 8 Ci/day, formed principally by /sup 14/N activation, will be produced in the UWMAK-II reference reactor (5,000 MWth). If Nb-1 percent Zr is used as the structural material instead of stainless steel 316 this quantity will be more than doubled. No information is available on the form of the /sup 14/C produced, but reduced forms such as carbides, hydrocarbons and perhaps CO may be produced. Most of the /sup 14/C may remain fixed in structural and other reactor materials until the material is reclaimed. Activation of air in the plasma chamber would be an immediate concern.

  7. On-line dynamic fractionation and automatic determination of inorganic phosphorous in environmental solid substrates exploiting sequential injection microcolumn extraction and flow injection analysi

    DEFF Research Database (Denmark)

    Buanuam, Janya; Miró, Manuel; Hansen, Elo Harald;

    2006-01-01

    Sequential injection microcolumn extraction (SI-MCE) based on the implementation of a soil containing microcartridge as external reactor in a sequential injection network is, for the first time, proposed for dynamic fractionation of macronutrients in environmental solids, as exemplified by the pa...... atomic absorption spectrometry....

  8. Model description and kinetic parameter analysis of MTBE biodegradation in a packed bed reactor

    DEFF Research Database (Denmark)

    Waul, Christopher Kevin; Arvin, Erik; Schmidt, Jens Ejbye

    2008-01-01

    A dynamic modeling approach was used to estimate in-situ model parameters, which describe the degradation of methyl tert-butyl ether (MTBE) in a laboratory packed bed reactor. The measured dynamic response of MTBE pulses injected at the reactor's inlet was analyzed by least squares and parameter...

  9. Sodium Ferric Gluconate Injection

    Science.gov (United States)

    Sodium ferric gluconate injection is used to treat iron-deficiency anemia (a lower than normal number of ... are also receiving the medication epoetin (Epogen, Procrit). Sodium ferric gluconate injection is in a class of ...

  10. Calcitonin Salmon Injection

    Science.gov (United States)

    Calcitonin salmon injection is used to treat osteoporosis in postmenopausal women. Osteoporosis is a disease that causes bones to weaken and break more easily. Calcitonin salmon injection is also used to treat Paget's disease ...

  11. Intracytoplasmic sperm injection

    Science.gov (United States)

    Intracytoplasmic sperm injection, or ICSI, is a form of in vitro fertilization in which fertilization occurs outside of the ... laboratory dish. Within a few hours, a single sperm is injected through a fine needle into the ...

  12. Other Injectable Medications

    Science.gov (United States)

    ... July 17, 2013 Last Edited: February 22, 2017 Articles from Diabetes Forecast® magazine: cg-infusion-sets,meds-bg-injectables,cg-injection-aids, In this section Treatment and Care Medication Insulin & ...

  13. Injection losses and protection

    CERN Document Server

    Bartmann, W; Baudrenghien, P; Bracco, C; Dehning, B; Di Mauro, A; Drosdal, L; Emery, J; Goddard, B; Holzer, E B; Höfle, W; Kain, V; Meddahi, M; Radaelli, S; Shaposhnilova, E; Uythoven, J; Valuch, D; Wenninger, J; Zamantzas, C; Gianfelice-Wendt, E

    2012-01-01

    Injection losses are compared for 2010 and 2011 operation. Mitigation techniques which were put in place in 2010 to reduce losses at injection are described. Issues in 2011 operation, their potential improvements and the performance reach for 2012 are shown.

  14. Iron Sucrose Injection

    Science.gov (United States)

    Iron sucrose injection is used treat iron-deficiency anemia (a lower than normal number of red blood cells due ... and may cause the kidneys to stop working). Iron sucrose injection is in a class of medications called iron ...

  15. Oil Oxidation Pyrolysis Analysis of Oil Reservoir Air Injection in the Presence of Cutting%岩屑存在下油藏注空气原油的氧化热解分析

    Institute of Scientific and Technical Information of China (English)

    刘鹏刚; 蒲万芬; 贾虎; 刘哲知; 赵帅; 李林林; 刘国栋; 杨金川

    2015-01-01

    采用静态氧化管实验结合热分析方法(TG/DTG/DTA)分别从原油氧化速率、组分变化及热重放热角度,考察了油藏岩屑存在下原油氧化热解特性及反应机理.并通过 TG/DTG/DTA 分析测试结果与多孔介质中原油氧化实验的结论进行对比分析,判断两种方法用于原油氧化热解机理研究方面是否具有一致性.结果表明,黏土对原油氧化有较好的催化效果,其含量越高,原油耗氧速率和碳键剥离速率越大;氧化反应后,原油中重组分(C22+)含量降低,中、轻质组分(C7~21)含量上升;热重分析显示,原油经历了低温氧化、燃料沉积及高温氧化 3 个阶段;原油在低温氧化阶段一般呈现吸热趋势,质量损失越高,吸热量越大.%In order to expand the enhanced oil recovery(EOR)technology of air injection to light oil reservoir, experiments were conducted using static oil oxidation tube and by thermal analysis methods such as TG/DTGand DTA. The oxidation pyrolysis characteristics and oxidation reaction mechanism of crude oil in the presence ofcutting were analyzed from the perspectives of crude oil oxidation rate(relative oxygen consumption rate and relative carbon bond broken rate),change of crude oil components,thermogravimetry and heat release.At last,the resultsof thermal analysis methods and static oil oxidation tube experiment in porous media were compared to ascertain whether the two methods are consistent in low temperature oil oxidation mechanism,aiming at comparing and analyzing the similarities and differences of the two researching methods.Results show thatclay has a good catalytic effect on crude oil oxidation. The higher the content of clay in cutting is,the greater the rate of oxygen consumption and carbon bond peeling will be.Besides,the content of heavy fractions(C22+)in crude oil decreases while that of middle and light fractions(C7~21)in crude oil increases after several days' oxidation reaction.Thermal analysis

  16. Light water reactor program

    Energy Technology Data Exchange (ETDEWEB)

    Franks, S.M.

    1994-12-31

    The US Department of Energy`s Light Water Reactor Program is outlined. The scope of the program consists of: design certification of evolutionary plants; design, development, and design certification of simplified passive plants; first-of-a-kind engineering to achieve commercial standardization; plant lifetime improvement; and advanced reactor severe accident program. These program activities of the Office of Nuclear Energy are discussed.

  17. Space Nuclear Reactor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Poston, David Irvin [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-03-06

    We needed to find a space reactor concept that could be attractive to NASA for flight and proven with a rapid turnaround, low-cost nuclear test. Heat-pipe-cooled reactors coupled to Stirling engines long identified as the easiest path to near-term, low-cost concept.

  18. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2001-04-01

    The activities of the Reactor Materials Research Department of the Belgian Nuclear Research Centre SCK-CEN in 2000 are summarised. The programmes within the department are focussed on studies concerning (1) fusion, in particular mechanical testing; (2) Irradiation Assisted Stress Corrosion Cracking (IASCC); (3) nuclear fuel; and (4) Reactor Pressure Vessel Steel (RPVS)

  19. Beam injection into RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, W.; Hahn, H.; MacKay, W.W.; Satogata, T.; Tsoupas, N.; Zhang, W.

    1997-07-01

    During the RHIC sextant test in January 1997 beam was injected into a sixth of one of the rings for the first time. The authors describe the injection zone and its bottlenecks. They report on the commissioning of the injection system, on beam based measurements of the kickers and the application program to steer the beam.

  20. Nuclear reactor design

    CERN Document Server

    2014-01-01

    This book focuses on core design and methods for design and analysis. It is based on advances made in nuclear power utilization and computational methods over the past 40 years, covering core design of boiling water reactors and pressurized water reactors, as well as fast reactors and high-temperature gas-cooled reactors. The objectives of this book are to help graduate and advanced undergraduate students to understand core design and analysis, and to serve as a background reference for engineers actively working in light water reactors. Methodologies for core design and analysis, together with physical descriptions, are emphasized. The book also covers coupled thermal hydraulic core calculations, plant dynamics, and safety analysis, allowing readers to understand core design in relation to plant control and safety.

  1. Status of French reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ballagny, A. [Commissariat a l`Energie Atomique, Saclay (France)

    1997-08-01

    The status of French reactors is reviewed. The ORPHEE and RHF reactors can not be operated with a LEU fuel which would be limited to 4.8 g U/cm{sup 3}. The OSIRIS reactor has already been converted to LEU. It will use U{sub 3}Si{sub 2} as soon as its present stock of UO{sub 2} fuel is used up, at the end of 1994. The decision to close down the SILOE reactor in the near future is not propitious for the start of a conversion process. The REX 2000 reactor, which is expected to be commissioned in 2005, will use LEU (except if the fast neutrons core option is selected). Concerning the end of the HEU fuel cycle, the best option is reprocessing followed by conversion of the reprocessed uranium to LEU.

  2. Computational Analysis of Safety Injection Tank Performance

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jai Oan; Nietiadia, Yohanes Setiawan; Lee, Jeong Ik [KAIST, Daejeon (Korea, Republic of); Addad, Yacine; Yoon, Ho Joon [Khalifa University of Science Technology and Research, Abu Dhabi (United Arab Emirates)

    2015-10-15

    The APR 1400 is a large pressurized water reactor (PWR). Just like many other water reactors, it has an emergency core cooling system (ECCS). One of the most important components in the ECCS is the safety injection tank (SIT). Inside the SIT, a fluidic device is installed, which passively controls the mass flow of the safety injection and eliminates the need for low pressure safety injection pumps. As more passive safety mechanisms are being pursued, it has become more important to understand flow structure and the loss mechanism within the fluidic device. Current computational fluid dynamics (CFD) calculations have had limited success in predicting the fluid flow accurately. This study proposes to find a more exact result using CFD and more realistic modeling. The SIT of APR1400 was analyzed using MARS and CFD. CFD calculation was executed first to obtain the form loss factor. Using the two form loss factors from the vendor and calculation, calculation using MARS was performed to compare with experiment. The accumulator model in MARS was quite accurate in predicting the water level. The pipe model showed some difference with the experimental data in the water level.

  3. Slurry reactor design studies

    Energy Technology Data Exchange (ETDEWEB)

    Fox, J.M.; Degen, B.D.; Cady, G.; Deslate, F.D.; Summers, R.L. (Bechtel Group, Inc., San Francisco, CA (USA)); Akgerman, A. (Texas A and M Univ., College Station, TX (USA)); Smith, J.M. (California Univ., Davis, CA (USA))

    1990-06-01

    The objective of these studies was to perform a realistic evaluation of the relative costs of tublar-fixed-bed and slurry reactors for methanol, mixed alcohols and Fischer-Tropsch syntheses under conditions where they would realistically be expected to operate. The slurry Fischer-Tropsch reactor was, therefore, operated at low H{sub 2}/CO ratio on gas directly from a Shell gasifier. The fixed-bed reactor was operated on 2.0 H{sub 2}/CO ratio gas after adjustment by shift and CO{sub 2} removal. Every attempt was made to give each reactor the benefit of its optimum design condition and correlations were developed to extend the models beyond the range of the experimental pilot plant data. For the methanol design, comparisons were made for a recycle plant with high methanol yield, this being the standard design condition. It is recognized that this is not necessarily the optimum application for the slurry reactor, which is being proposed for a once-through operation, coproducing methanol and power. Consideration is also given to the applicability of the slurry reactor to mixed alcohols, based on conditions provided by Lurgi for an Octamix{trademark} plant using their standard tubular-fixed reactor technology. 7 figs., 26 tabs.

  4. Continuous aerobic treatment of dairy waste waters. Supported reactor; Depuracion aerobia de aguas residuales de industrias lacteas en regimen continuo. Reactor con soporte

    Energy Technology Data Exchange (ETDEWEB)

    Carta, F.; Romeero, F.; Pereda, J.; Alvarez, P. [Universidad de Sevilla (Spain)

    1998-12-31

    Experiences in continuous flow been carried out to achieve effluents with low COD and a minimum ammonium nitrogen concentration. A 80 liter reactor with rectangular cross-section (width 25 cm and depth 30 cm) and length 150 cm was used thermostated. The system was aerated by air injection the air passed through perforated tubes settled at the bottom and covered by a plastic mesh. The liquor (water and milk) temperature was near 30 degree centigree Mixtures of milk and water, with pH of 11 and containing 3500 mg COD/1 (as sewage from Dairy Center`s) were fed into the reactor. A mixed cultive constituted of cultives isolated from Dairy Center`s effluent adapted to 30 degree centigree for 19 days, and mixed with sludge from a domestic wastewater treatment plant was used as inoculum. The influent flow rates were 81/d, 101/d and 12,6 L/d. The experiences went on up to stationary-state. In all the experience, the pH values become stabilized over 8,5 and the nitrite and nitrate nitrogen concentrations were insignificant. It was observed that when flow rate rises, the average COD values and the ammonium nitrogen concentrations (achieved at the end of experiences) decreased in a parallel way up to a certain flow rate value at which they are almost constant with the increase of the flow rate. The sludge analysis showed a composition of 5,4 gN and 2,4 gP in 100 g biomass. (Author) 16 refs.

  5. Application of heat pipe air heat exchanger in steam injection boiler%热管式空气换热器在注汽锅炉上的应用

    Institute of Scientific and Technical Information of China (English)

    张伟

    2015-01-01

    本文针对油田专用注汽锅炉的特殊性采取了多项措施,更适用于油田注汽锅炉尾部烟气的余热回收。%Resolutions are adopted i this paer for steam injection boilrn oilfld, and for heat recoveryf tail flue gas.

  6. Gas cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1972-06-01

    Although most of the development work on fast breeder reactors has been devoted to the use of liquid metal cooling, interest has been expressed for a number of years in alternative breeder concepts using other coolants. One of a number of concepts in which interest has been retained is the Gas-Cooled Fast Reactor (GCFR). As presently envisioned, it would operate on the uranium-plutonium mixed oxide fuel cycle, similar to that used in the Liquid Metal Fast Breeder Reactor (LMFBR), and would use helium gas as the coolant.

  7. Microfluidic electrochemical reactors

    Science.gov (United States)

    Nuzzo, Ralph G [Champaign, IL; Mitrovski, Svetlana M [Urbana, IL

    2011-03-22

    A microfluidic electrochemical reactor includes an electrode and one or more microfluidic channels on the electrode, where the microfluidic channels are covered with a membrane containing a gas permeable polymer. The distance between the electrode and the membrane is less than 500 micrometers. The microfluidic electrochemical reactor can provide for increased reaction rates in electrochemical reactions using a gaseous reactant, as compared to conventional electrochemical cells. Microfluidic electrochemical reactors can be incorporated into devices for applications such as fuel cells, electrochemical analysis, microfluidic actuation, pH gradient formation.

  8. Fast Breeder Reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.; Kittel, J.H.; Fauske, H.K.; Lineberry, M.J.; Stevenson, M.G.; Amundson, P.I.; Dance, K.D.

    1980-07-01

    This report is a compilation of Fast Breeder Reactor (FBR) resource documents prepared to provide the technical basis for the US contribution to the International Nuclear Fuel Cycle Evaluation. The eight separate parts deal with the alternative fast breeder reactor fuel cycles in terms of energy demand, resource base, technical potential and current status, safety, proliferation resistance, deployment, and nuclear safeguards. An Annex compares the cost of decommissioning light-water and fast breeder reactors. Separate abstracts are included for each of the parts.

  9. Epidural injections for back pain

    Science.gov (United States)

    ESI; Spinal injection for back pain; Back pain injection; Steroid injection - epidural; Steroid injection - back ... be pregnant What medicines you are taking, including herbs, supplements, and other drugs you bought without a ...

  10. Reactor BR2. Introduction

    Energy Technology Data Exchange (ETDEWEB)

    Gubel, P

    2001-04-01

    The BR2 is a materials testing reactor and is still one of SCK-CEN's important nuclear facilities. After an extensive refurbishment to compensate for the ageing of the installation, the reactor was restarted in April 1997. During the last three years, the availability of the installation was maintained at an average level of 97.6 percent. In the year 2000, the reactor was operated for a total of 104 days at a mean power of 56 MW. In 2000, most irradiation experiments were performed in the CALLISTO PWR loop. The report describes irradiations achieved or under preparation in 2000, including the development of advanced facilities and concept studies for new programmes. An overview of the scientific irradiation programmes as well as of the R and D programme of the BR2 reactor in 2000 is given.

  11. Reactor Neutrino Spectra

    CERN Document Server

    Hayes, A C

    2016-01-01

    We present a review of the antineutrino spectra emitted from reactors. Knowledge of these and their associated uncertainties are crucial for neutrino oscillation studies. The spectra used to-date have been determined by either conversion of measured electron spectra to antineutrino spectra or by summing over all of the thousands of transitions that makeup the spectra using modern databases as input. The uncertainties in the subdominant corrections to beta-decay plague both methods, and we provide estimates of these uncertainties. Improving on current knowledge of the antineutrino spectra from reactors will require new experiments. Such experiments would also address the so-called reactor neutrino anomaly and the possible origin of the shoulder observed in the antineutrino spectra measured in recent high-statistics reactor neutrino experiments.

  12. New reactor type proposed

    CERN Multimedia

    2003-01-01

    "Russian scientists at the Research Institute of Nuclear Power Engineering in Moscow are hoping to develop a new reactor that will use lead and bismuth as fuel instead of uranium and plutonium" (1/2 page).

  13. Screw Extruder for Pellet Injection System

    Directory of Open Access Journals (Sweden)

    Sharadkumar K. Chhantbar

    2014-05-01

    Full Text Available Solid hydrogenic pellets are used as fuel for fusion energy reactor. A technique for continuous production of solid hydrogen and its isotopes by a screw extruder is suggested for the production of an unlimited number of pellets. The idea was developed and patented by PELIN laboratories, Inc. (Canada. A Gifford McMahon cryocooler is used for the generation of solid hydrogenic fluid pellets. Requirements of the pellets is depends upon the energy to be produced by tokamak. This review paper focuses on the model for the screw extruder for solidification of hydrogen ice having high injection reliability.

  14. Helias reactor studies

    Energy Technology Data Exchange (ETDEWEB)

    Beidler, C.D. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Grieger, G. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Harmeyer, E. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Kisslinger, J. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Karulin, N. [Nuclear Fusion Institute, Moscow (Russian Federation); Maurer, W. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany); Nuehrenberg, J. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Rau, F. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Sapper, J. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany); Wobig, H. [Max-Planck-Institut fuer Plasmaphysik, Garching (Germany)

    1995-10-01

    The present status of Helias reactor studies is characterised by the identification and investigation of specific issues which result from the particular properties of this type of stellarator. On the technical side these are issues related to the coil system, while physics studies have concentrated on confinement, alpha-particle behaviour and ignition conditions. The usual assumptions have been made in those fields which are common to all toroidal fusion reactors: blanket and shield, refuelling and exhaust, safety and economic aspects. For blanket and shield sufficient space has been provided, a detailed concept will be developed in future. To date more emphasis has been placed on scoping and parameter studies as opposed to fixing a specific set of parameters and providing a detailed point study. One result of the Helias reactor studies is that physical dimensions are on the same order as those of tokamak reactors. However, it should be noticed that this comparison is difficult in view of the large spectrum of tokamak reactors ranging from a small reactor like Aries, to a large device such as SEAFP. The notion that the large aspect ratio of 10 or more in Helias configurations also leads to large reactors is misleading, since the large major radius of 22 m is compensated by the average plasma radius of 1.8 m and the average coil radius of 5 m. The plasma volume of 1400 m{sup 3} is about the same as the ITER reactor and the magnetic energy of the coil system is about the same or even slightly smaller than envisaged in ITER. (orig.)

  15. Future Reactor Experiments

    OpenAIRE

    He, Miao

    2013-01-01

    The measurement of the neutrino mixing angle $\\theta_{13}$ opens a gateway for the next generation experiments to measure the neutrino mass hierarchy and the leptonic CP-violating phase. Future reactor experiments will focus on mass hierarchy determination and the precision measurement of mixing parameters. Mass hierarchy can be determined from the disappearance of reactor electron antineutrinos based on the interference effect of two separated oscillation modes. Relative and absolute measure...

  16. Reactor Neutrino Experiments

    OpenAIRE

    Cao, Jun

    2007-01-01

    Precisely measuring $\\theta_{13}$ is one of the highest priority in neutrino oscillation study. Reactor experiments can cleanly determine $\\theta_{13}$. Past reactor neutrino experiments are reviewed and status of next precision $\\theta_{13}$ experiments are presented. Daya Bay is designed to measure $\\sin^22\\theta_{13}$ to better than 0.01 and Double Chooz and RENO are designed to measure it to 0.02-0.03. All are heading to full operation in 2010. Recent improvements in neutrino moment measu...

  17. Department of Reactor Technology

    DEFF Research Database (Denmark)

    Risø National Laboratory, Roskilde

    The general development of the Department of Reactor Technology at Risø during 1981 is presented, and the activities within the major subject fields are described in some detail. Lists of staff, publications, and computer programs are included.......The general development of the Department of Reactor Technology at Risø during 1981 is presented, and the activities within the major subject fields are described in some detail. Lists of staff, publications, and computer programs are included....

  18. Moon base reactor system

    Science.gov (United States)

    Chavez, H.; Flores, J.; Nguyen, M.; Carsen, K.

    1989-01-01

    The objective of our reactor design is to supply a lunar-based research facility with 20 MW(e). The fundamental layout of this lunar-based system includes the reactor, power conversion devices, and a radiator. The additional aim of this reactor is a longevity of 12 to 15 years. The reactor is a liquid metal fast breeder that has a breeding ratio very close to 1.0. The geometry of the core is cylindrical. The metallic fuel rods are of beryllium oxide enriched with varying degrees of uranium, with a beryllium core reflector. The liquid metal coolant chosen was natural lithium. After the liquid metal coolant leaves the reactor, it goes directly into the power conversion devices. The power conversion devices are Stirling engines. The heated coolant acts as a hot reservoir to the device. It then enters the radiator to be cooled and reenters the Stirling engine acting as a cold reservoir. The engines' operating fluid is helium, a highly conductive gas. These Stirling engines are hermetically sealed. Although natural lithium produces a lower breeding ratio, it does have a larger temperature range than sodium. It is also corrosive to steel. This is why the container material must be carefully chosen. One option is to use an expensive alloy of cerbium and zirconium. The radiator must be made of a highly conductive material whose melting point temperature is not exceeded in the reactor and whose structural strength can withstand meteor showers.

  19. Ferric Carboxymaltose Injection

    Science.gov (United States)

    ... pharmacist if you are allergic to ferric carboxymaltose injection, ferumoxytol (Feraheme), iron dextran (Dexferrum, Infed), iron sucrose (Venofer), or sodium ferric gluconate (Ferrlecit); any other ...

  20. BIOVENTING - Groundwater Aeration by Discontinuous Oxygen Gas Pulse Injections

    Science.gov (United States)

    Schirmer, M.

    2003-12-01

    Groundwater aeration by discontinuous oxygen gas pulse injections appears to be a promising concept for enhanced natural attenuation of dissolved contaminants that are susceptible for oxygenase enzyme attacks. Oxygen amendments facilitate indigenous microbiota to catabolize groundwater pollutants, such as aromatics, that are considered to be recalcitrant in absence of dissolved oxygen. As a rule, natural attenuation of many pollutants under aerobic conditions is considerably faster than under anaerobic conditions. Thus, enhancing the dissolved oxygen level appears to be worthwhile. In situ aeration of groundwater has been accomplished by air sparging, H2O2-supply, or by utilization of oxygen release compounds. However, continuous aeration of previously anaerobic groundwater is not desirable for several reasons: (a) economic efforts too high, (b) pollutant dislocation towards surface (desired only in air sparging), (c) risk of aquifer clogging (gas clogging, oxidation of ferrous iron, formation of bioslimes). In contrast, discontinuous oxygen gas sparging provides only for periodical groundwater aeration which is followed by microaerobic and suboxic conditions. Microaerobic conditions can prevail spatially (e.g., at plume fringes or within biofilms) or temporarily (e.g., at discontinuous bioventing). They still allow adapted bacteria to transform environmental pollutants to less toxic compounds, e.g., aromatic ring cleavage after dioxygenasis attack. Ring cleavage products, on the other hand, may be degraded more easily by anaerobic consortia than the initial aromatic compounds, making oxygen depletion periods highly intriguing in regard to an initiation of natural attenuation processes at plume fringes. In our work we outline the effect of oxygen depletion conditions on biodegradation of monchlorobenzene (MCB) as they occur subsequently to temporary aeration periods. For microaerobic conditions, relative to the oxygen supply, a stoichiometric transformation of MCB

  1. Successful displacement of a traumatic submacular hemorrhage in a 13-year-old boy treated by vitrectomy, subretinal injection of tissue plasminogen activator and intravitreal air tamponade: a case report

    OpenAIRE

    Doi, Shinichiro; Kimura, Shuhei; Morizane, Yuki; Shiode, Yusuke; Hosokawa, Mio; Hirano, Masayuki; Hosogi, Mika; Fujiwara, Atsushi; Miyamoto, Kazuhisa; Shiraga, Fumio

    2015-01-01

    Background The natural course of submacular hemorrhage resulting from traumatic choroidal rupture generally has a poor outcome unless treated. The intravitreal injection of gas only or gas with recombinant tissue plasminogen activator (rt-PA) has been reported to be effective, but has also been reported to induce severe complications such as retinal detachment and vitreous hemorrhage. Recently, we reported a safe and effective procedure for treating submacular hemorrhage due to polypoidal cho...

  2. Simulation of a Reverse Flow Reactor for the Catalytic Combustion of Lean Methane Emissions

    Institute of Scientific and Technical Information of China (English)

    Jiajin Zhang; Zhigang Lei; Jianwei Li; Biaohua Chen

    2014-01-01

    This work is focused on the performance prediction of pilot scale catalytic reverse flow reactors used for combustion of lean methane-air mixtures. An unsteady one-dimensional heterogeneous model for the reactor was established to account for the influence of the reactor wal on the heat transfer. Results of the simulation indicate that feed concentration, switch time and compensatory temperature impose important influence on the performance of the reactor. The amount of the heat extracted from the mid-section of the reactor can be optimized via adjusting the parameters mentioned above. At the optimal operating conditions, i.e. switching time of 400 s, feed concentration of 1%(by volume), and insulation layer temperature of 343 K, the axial temperature of the reactor revealed a comparatively symmetrical“saddle”distribution, indicating a favorable operating status of the catalytic reverse flow reactor.

  3. An Account of Oak Ridge National Laboratory's Thirteen Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rosenthal, Murray Wilford [ORNL

    2009-08-01

    The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

  4. The catalytic combustion of natural gas in a membrane reactor with separate feed of reactants

    NARCIS (Netherlands)

    Neomagus, H.W.J.P.; Saracco, G.; Wessel, H.F.W.; Versteeg, G.F.

    2000-01-01

    This paper provides an experimental and modelling analysis of the performance of a membrane reactor with separate feed of reactants for the combustion of methane. In this reactor concept methane and air streams are fed at opposite sides of a Pt/γ-Al2O3-activated porous membrane which hosts their rea

  5. Reactor modeling and process analysis for partial oxidation of natural gas

    NARCIS (Netherlands)

    Albrecht, Bogdan Alexandru

    2004-01-01

    This thesis analyses a novel process of partial oxidation of natural gas and develops a numerical tool for the partial oxidation reactor modeling. The proposed process generates syngas in an integrated plant of a partial oxidation reactor, a syngas turbine and an air separation unit. This is called

  6. Reactor Safety Planning for Prometheus Project, for Naval Reactors Information

    Energy Technology Data Exchange (ETDEWEB)

    P. Delmolino

    2005-05-06

    The purpose of this letter is to submit to Naval Reactors the initial plan for the Prometheus project Reactor Safety work. The Prometheus project is currently developing plans for cold physics experiments and reactor prototype tests. These tests and facilities may require safety analysis and siting support. In addition to the ground facilities, the flight reactor units will require unique analyses to evaluate the risk to the public from normal operations and credible accident conditions. This letter outlines major safety documents that will be submitted with estimated deliverable dates. Included in this planning is the reactor servicing documentation and shipping analysis that will be submitted to Naval Reactors.

  7. REACTOR GROUT THERMAL PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Steimke, J.; Qureshi, Z.; Restivo, M.; Guerrero, H.

    2011-01-28

    Savannah River Site has five dormant nuclear production reactors. Long term disposition will require filling some reactor buildings with grout up to ground level. Portland cement based grout will be used to fill the buildings with the exception of some reactor tanks. Some reactor tanks contain significant quantities of aluminum which could react with Portland cement based grout to form hydrogen. Hydrogen production is a safety concern and gas generation could also compromise the structural integrity of the grout pour. Therefore, it was necessary to develop a non-Portland cement grout to fill reactors that contain significant quantities of aluminum. Grouts generate heat when they set, so the potential exists for large temperature increases in a large pour, which could compromise the integrity of the pour. The primary purpose of the testing reported here was to measure heat of hydration, specific heat, thermal conductivity and density of various reactor grouts under consideration so that these properties could be used to model transient heat transfer for different pouring strategies. A secondary purpose was to make qualitative judgments of grout pourability and hardened strength. Some reactor grout formulations were unacceptable because they generated too much heat, or started setting too fast, or required too long to harden or were too weak. The formulation called 102H had the best combination of characteristics. It is a Calcium Alumino-Sulfate grout that contains Ciment Fondu (calcium aluminate cement), Plaster of Paris (calcium sulfate hemihydrate), sand, Class F fly ash, boric acid and small quantities of additives. This composition afforded about ten hours of working time. Heat release began at 12 hours and was complete by 24 hours. The adiabatic temperature rise was 54 C which was within specification. The final product was hard and displayed no visible segregation. The density and maximum particle size were within specification.

  8. 2D simulation of active species and ozone production in a multi-tip DC air corona discharge

    Science.gov (United States)

    Meziane, M.; Eichwald, O.; Sarrette, J. P.; Ducasse, O.; Yousfi, M.

    2011-11-01

    The present paper shows for the first time in the literature a complete 2D simulation of the ozone production in a DC positive multi-tip to plane corona discharge reactor crossed by a dry air flow at atmospheric pressure. The simulation is undertaken until 1 ms and involves tens of successive discharge and post-discharge phases. The air flow is stressed by several monofilament corona discharges generated by a maximum of four anodic tips distributed along the reactor. The nonstationary hydrodynamics model for reactive gas mixture is solved using the commercial FLUENT software. During each discharge phase, thermal and vibrational energies as well as densities of radical and metastable excited species are locally injected as source terms in the gas medium surrounding each tip. The chosen chemical model involves 10 neutral species reacting following 24 reactions. The obtained results allow us to follow the cartography of the temperature and the ozone production inside the corona reactor as a function of the number of high voltage anodic tips.

  9. Injection of Deuterium Pellets

    DEFF Research Database (Denmark)

    Sørensen, H.; Andersen, P.; Andersen, S. A.

    1984-01-01

    A pellet injection system made for the TFR tokamak at Fontenay-aux-Roses, Paris is described. 0.12-mg pellets are injected with velocities of around 600-700 m/s through a 5-m long guide tube. Some details of a new light gas gun are given; with this gun, hydrogen pellets are accelerated...

  10. Separably injective Banach spaces

    CERN Document Server

    Avilés, Antonio; Castillo, Jesús M F; González, Manuel; Moreno, Yolanda

    2016-01-01

    This monograph contains a detailed exposition of the up-to-date theory of separably injective spaces: new and old results are put into perspective with concrete examples (such as l∞/c0 and C(K) spaces, where K is a finite height compact space or an F-space, ultrapowers of L∞ spaces and spaces of universal disposition). It is no exaggeration to say that the theory of separably injective Banach spaces is strikingly different from that of injective spaces. For instance, separably injective Banach spaces are not necessarily isometric to, or complemented subspaces of, spaces of continuous functions on a compact space. Moreover, in contrast to the scarcity of examples and general results concerning injective spaces, we know of many different types of separably injective spaces and there is a rich theory around them. The monograph is completed with a preparatory chapter on injective spaces, a chapter on higher cardinal versions of separable injectivity and a lively discussion of open problems and further lines o...

  11. [Intra-articular injections].

    Science.gov (United States)

    Chapelle, Ch

    2015-09-01

    It is not unusual for a specialist or general practitioner to be presented with a pathology which necessitates the use of an intra-articular injection of corticosteroids, hyaluronic acid or a local anaesthetic. It would seem to be interesting to update and to precise the techniques and methods of intraarticular injections which have appeared in recent international publications, when we know that 30 % of the injections given into the knee and so called "dry" are incorrect and, therefore, inefficient. The indication of an articular injection depends, firstly, on the diagnosis which should be done with great care; after which should be an objective analysis complete with secondary effects linked to both the injection and the product used. The conditions of asepsis, the choice of needles and quantities of the injection and even the ways of the injections should be reviewed in detail. The last studies clearly question the secondary effects of the cartilage degradations of the cortisone given as an intra-articular injection and shows its efficiency on the pain and inflammatory phenomonen in osteoarthritis. Studies on hyaluronic acid are often contradictory going from a modest result to an important pain relief but it is necessary to be aware that the objective criteria are difficult to interpret. The use of local anaesthetics in intra-articular is limited by the few indications in view of the major risk of aggravating the pre-existing lesions by the disappearing signs of pain.

  12. Corticotropin, Repository Injection

    Science.gov (United States)

    H.P. Acthar Gel® ... Corticotropin repository injection comes as a long acting gel to inject under the skin or into a ... prescription and nonprescription medications, vitamins, nutritional supplements, or herbal products you are taking or plan to take. ...

  13. Injection moulding antireflective nanostructures

    DEFF Research Database (Denmark)

    Christiansen, Alexander Bruun; Clausen, Jeppe Sandvik; Mortensen, N. Asger

    2014-01-01

    We present a method for injection moulding antireflective nanostructures on large areas, for high volume production. Nanostructured black silicon masters were fabricated by mask-less reactive ion etching, and electroplated with nickel. The nickel shim was antistiction coated and used in an inject...

  14. Scaleable, High Efficiency Microchannel Sabatier Reactor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A Microchannel Sabatier Reactor System (MSRS) consisting of cross connected arrays of isothermal or graded temperature reactors is proposed. The reactor array...

  15. Gas and liquid fuel injection into an enclosed swirling flow

    Science.gov (United States)

    Ahmad, N. T.; Andrews, G. E.

    1984-06-01

    The use of swirler air for atomization has been tested with direct central propane injection and with direct central kerosene and gas oil injection, and its results have been compared with those for nonswirling flow systems under the same conditions. Direct propane injection results in a major extension of stability limits, by comparison to results for premixing, while with liquid fuel injection the stability limits are generally worse than for premixed fuel and air. This may be due to the action of the centrifugal forces on the liquid droplets in the swirl flow, which results in outer swirl flow vaporization and weaker mixtures in the core recirculation region than would be the case for propane injection. A comparison with nonswirling system performance indicated that all emission levels were higher with swirl for propane.

  16. Air Pollution

    Science.gov (United States)

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, dust, ... a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  17. Death by a Thousand Cuts: Micro-Air Vehicles (MAV) in the Service of Air Force Missions

    Science.gov (United States)

    2001-04-01

    exotic approaches as air suction/injection along the wing surface (which might require micro -valves and micro - pumps ), wall heat transfer, or...AU/AWC/___/2001-4 AIR WAR COLLEGE AIR UNIVERSITY DEATH BY A THOUSAND CUTS: MICRO -AIR VEHICLES (MAV) IN THE SERVICE OF AIR FORCE MISSIONS by...Dates Covered (from... to) - Title and Subtitle Death by a thousand Cuts: Micro -Air Vehicles (MAV) in the Service of Air Force Missions Contract

  18. LMFBR type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Takeshi; Iida, Masaaki; Moriki, Yasuyuki

    1994-10-18

    A reactor core is divided into a plurality of coolants flowrate regions, and electromagnetic pumps exclusively used for each of the flowrate regions are disposed to distribute coolants flowrates in the reactor core. Further, the flowrate of each of the electromagnetic pumps is automatically controlled depending on signals from a temperature detector disposed at the exit of the reactor core, so that the flowrate of the region can be controlled optimally depending on the burning of reactor core fuels. Then, the electromagnetic pumps disposed for every divided region are controlled respectively, so that the coolants flowrate distribution suitable to each of the regions can be attained. Margin for fuel design is decreased, fuels are used effectively, as well as an operation efficiency can be improved. Moreover, since the electromagnetic pump has less flow resistance compared with a mechanical type pump, and flow resistance of the reactor core flowrate control mechanism is eliminated, greater circulating flowrate can be ensured after occurrence of accident in a natural convection using a buoyancy of coolants utilizable for after-heat removal as a driving force. (N.H.).

  19. Reactor Structural Materials: Reactor Pressure Vessel Steels

    Energy Technology Data Exchange (ETDEWEB)

    Chaouadi, R

    2000-07-01

    The objectives of SCK-CEN's R and D programme on Rector Pressure Vessel (RPV) Steels are:(1) to complete the fracture toughness data bank of various reactor pressure vessel steels by using precracked Charpy specimens that were tested statically as well as dynamically; (2) to implement the enhanced surveillance approach in a user-friendly software; (3) to improve the existing reconstitution technology by reducing the input energy (short cycle welding) and modifying the stud geometry. Progress and achievements in 1999 are reported.

  20. Thermionic Reactor Design Studies

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1994-08-01

    Paper presented at the 29th IECEC in Monterey, CA in August 1994. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their (thermionic reactor) performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling.

  1. Nuclear Rocket Engine Reactor

    CERN Document Server

    Lanin, Anatoly

    2013-01-01

    The development of a nuclear rocket engine reactor (NRER ) is presented in this book. The working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, high energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K is displayed. Design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials like carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented. Technological aspects of strength and thermal strength resistance of materials are considered. The design procedure of possible emergency processes in the NRER is developed and risks for their origination are evaluated. Prospects of the NRER development for pilotless space devices and piloted interplanetary ships are viewed.

  2. Operation of Reactor

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    3.1 Annual Report of SPR Operation Chu Shaochu Having overseen by National Nuclear Safety Administration and specialists, the reactor restarted up successfully after Safety renovation on April 16, 1996. In August 1996 the normal operation of SPR was approved by the authorities of Naitonal Nuclear Safety Administration. 1 Operation status In 1996, the reactor operated safely for 40 d and the energy released was about 137.3 MW·d. The operation status of SPR is shown in table 1. The reactor started up to higher power (power more than 1 MW) and lower power (for physics experiments) 4 times and 14 times respectively. Measurement of control rod efficiency and other measurement tasks were 2 times and 5 times respectively.

  3. An Overview of Reactor Concepts, a Survey of Reactor Designs.

    Science.gov (United States)

    1985-02-01

    Public Affairs Office and is releasaole to the National Technical Information Services (NTIS). At NTIS, it will be available to the general public...Reactors that use deu- terium (heavy water) as a coolant can use natural uranium as a fuel. The * Canadian reactor, CANDU , utilizes this concept...reactor core at the top and discharged at the Dotton while the reactor is in operation. The discharged fuel can then b inspected to see if it can De used

  4. Oscillatory flow chemical reactors

    Directory of Open Access Journals (Sweden)

    Slavnić Danijela S.

    2014-01-01

    Full Text Available Global market competition, increase in energy and other production costs, demands for high quality products and reduction of waste are forcing pharmaceutical, fine chemicals and biochemical industries, to search for radical solutions. One of the most effective ways to improve the overall production (cost reduction and better control of reactions is a transition from batch to continuous processes. However, the reactions of interests for the mentioned industry sectors are often slow, thus continuous tubular reactors would be impractically long for flow regimes which provide sufficient heat and mass transfer and narrow residence time distribution. The oscillatory flow reactors (OFR are newer type of tube reactors which can offer solution by providing continuous operation with approximately plug flow pattern, low shear stress rates and enhanced mass and heat transfer. These benefits are the result of very good mixing in OFR achieved by vortex generation. OFR consists of cylindrical tube containing equally spaced orifice baffles. Fluid oscillations are superimposed on a net (laminar flow. Eddies are generated when oscillating fluid collides with baffles and passes through orifices. Generation and propagation of vortices create uniform mixing in each reactor cavity (between baffles, providing an overall flow pattern which is close to plug flow. Oscillations can be created by direct action of a piston or a diaphragm on fluid (or alternatively on baffles. This article provides an overview of oscillatory flow reactor technology, its operating principles and basic design and scale - up characteristics. Further, the article reviews the key research findings in heat and mass transfer, shear stress, residence time distribution in OFR, presenting their advantages over the conventional reactors. Finally, relevant process intensification examples from pharmaceutical, polymer and biofuels industries are presented.

  5. Influence of high injection pressure on fuel injection perfomances and diesel engine worcking process

    Directory of Open Access Journals (Sweden)

    Shatrov Mikhail G.

    2015-01-01

    Full Text Available In MADI, investigations are carried out in the field of diesel engine working process perfection for complying with prospective ecological standards such as Euro-6 and Tier-4. The article describes the results of the first stage of experimental research of the influence of injection pressure up to 3000 bar on working processes of diesel engine and its fuel system. Justification of the design of a Common Rail injector for fuel injection under 3000 bar pressure is presented. The influence of raising injection pressure (up to 3000 bar on the fuel spray propagation dynamics is demonstrated. The combined influence of injection pressure (up to 3000 bar and air boost pressure on fuel spray propagation dynamics is shown, including on engine emission and noise.

  6. Perspectives on reactor safety

    Energy Technology Data Exchange (ETDEWEB)

    Haskin, F.E. [New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering; Camp, A.L. [Sandia National Labs., Albuquerque, NM (United States)

    1994-03-01

    The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

  7. Reactor Materials Research

    Energy Technology Data Exchange (ETDEWEB)

    Van Walle, E

    2002-04-01

    The activities of SCK-CEN's Reactor Materials Research Department for 2001 are summarised. The objectives of the department are: (1) to evaluate the integrity and behaviour of structural materials used in nuclear power industry; (2) to conduct research to unravel and understand the parameters that determine the material behaviour under or after irradiation; (3) to contribute to the interpretation, the modelling of the material behaviour and to develop and assess strategies for optimum life management of nuclear power plant components. The programmes within the department are focussed on studies concerning (1) Irradiation Assisted Stress Corrosion Cracking (IASCC); (2) nuclear fuel; and (3) Reactor Pressure Vessel Steel.

  8. Common injections in musculoskeletal medicine.

    Science.gov (United States)

    Monseau, Aaron J; Nizran, Parminder Singh

    2013-12-01

    Musculoskeletal injections are a common procedure in primary care and sports medicine but can be intimidating for some clinicians. This article addresses current evidence for corticosteroid injections, and common injection indications and techniques, namely knee, subacromial bursa, glenohumeral joint, lateral epicondyle, de Quervain tenosynovitis, and greater trochanteric bursa injections. Preparation for injections and some evidence for ultrasound guidance are also reviewed.

  9. Important problems of future thermonuclear reactors*

    Directory of Open Access Journals (Sweden)

    Sadowski Marek J.

    2015-06-01

    Full Text Available This paper concerns important and difficult problems connected with a design and construction of thermonuclear reactors, which have to use nuclear fusion reactions of heavy isotopes of hydrogen, i.e., deuterium (D and tritium (T. There are described conditions in which such reactions can occur, and different methods of a high-temperature plasma generation, i.e., high-current electrical discharges, intense microwave pulses, and injection of energetic neutral atoms (NBI. There are also presented experimental facilities which can contain hot plasma for an appropriate period, and particularly so-called tokamaks. The second part presents the technical problems which must be solved in order to build a thermonuclear reactor, that might be used for energetic purposes. There are considered problems connected with a choice of constructional materials for a vacuum chamber, its internal parts, external windings generating a magnetic field, and necessary shields. The next part considers the handling of radioactive tritium; the using of alpha particles (4He for additional heating of plasma; recuperation of hydrogen isotopes absorbed in the tokamak internal parts, and a removal of a helium excess. There is presented a scheme of a future thermonuclear power plant and critical comments on a road map which should enable the construction of an industrial thermonuclear reactor (DEMO.

  10. Electrochemistry of Water-Cooled Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, Dgiby; Urquidi-Macdonald, Mirna; Pitt, Jonathan

    2006-08-08

    This project developed a comprehensive mathematical and simulation model for calculating thermal hydraulic, electrochemical, and corrosion parameters, viz. temperature, fluid flow velocity, pH, corrosion potential, hydrogen injection, oxygen contamination, stress corrosion cracking, crack growth rate, and other important quantities in the coolant circuits of water-cooled nuclear power plants, including both Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). The model is being used to assess the three major operational problems in Pressurized Water Reactors (PWR), which include mass transport, activity transport, and the axial offset anomaly, and provide a powerful tool for predicting the accumulation of SCC damage in BWR primary coolant circuits as a function of operating history. Another achievement of the project is the development of a simulation tool to serve both as a training tool for plant operators and as an engineering test-bed to evaluate new equipment and operating strategies (normal operation, cold shut down and others). The development and implementation of the model allows us to estimate the activity transport or "radiation fields" around the primary loop and the vessel, as a function of the operating parameters and the water chemistry.

  11. Reactor operation environmental information document

    Energy Technology Data Exchange (ETDEWEB)

    Haselow, J.S.; Price, V.; Stephenson, D.E.; Bledsoe, H.W.; Looney, B.B.

    1989-12-01

    The Savannah River Site (SRS) produces nuclear materials, primarily plutonium and tritium, to meet the requirements of the Department of Defense. These products have been formed in nuclear reactors that were built during 1950--1955 at the SRS. K, L, and P reactors are three of five reactors that have been used in the past to produce the nuclear materials. All three of these reactors discontinued operation in 1988. Currently, intense efforts are being extended to prepare these three reactors for restart in a manner that protects human health and the environment. To document that restarting the reactors will have minimal impacts to human health and the environment, a three-volume Reactor Operations Environmental Impact Document has been prepared. The document focuses on the impacts of restarting the K, L, and P reactors on both the SRS and surrounding areas. This volume discusses the geology, seismology, and subsurface hydrology. 195 refs., 101 figs., 16 tabs.

  12. High Flux Isotope Reactor (HFIR)

    Data.gov (United States)

    Federal Laboratory Consortium — The HFIR at Oak Ridge National Laboratory is a light-water cooled and moderated reactor that is the United States’ highest flux reactor-based neutron source. HFIR...

  13. Mouse bladder wall injection.

    Science.gov (United States)

    Fu, Chi-Ling; Apelo, Charity A; Torres, Baldemar; Thai, Kim H; Hsieh, Michael H

    2011-07-12

    Mouse bladder wall injection is a useful technique to orthotopically study bladder phenomena, including stem cell, smooth muscle, and cancer biology. Before starting injections, the surgical area must be cleaned with soap and water and antiseptic solution. Surgical equipment must be sterilized before use and between each animal. Each mouse is placed under inhaled isoflurane anesthesia (2-5% for induction, 1-3% for maintenance) and its bladder exposed by making a midline abdominal incision with scissors. If the bladder is full, it is partially decompressed by gentle squeezing between two fingers. The cell suspension of interest is intramurally injected into the wall of the bladder dome using a 29 or 30 gauge needle and 1 cc or smaller syringe. The wound is then closed using wound clips and the mouse allowed to recover on a warming pad. Bladder wall injection is a delicate microsurgical technique that can be mastered with practice.

  14. Epoetin Alfa Injection

    Science.gov (United States)

    ... a medication used to treat human immunodeficiency virus (HIV). Epoetin alfa injection is also used before and ... record book.If you are being treated with dialysis (treatment to remove waste from the blood when ...

  15. Reactor operation safety information document

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

  16. Analyse de l'entraînement d'air induit par le développement instationnaire d'un spray conique creux. Application à l'injection directe essence

    OpenAIRE

    Prosperi, Brice

    2008-01-01

    Les travaux présentés s'inscrivent dans l'étude générale de la mise au point des moteurs à injection directe essence de deuxième génération. Ces moteurs présentent un gain potentiel de réduction de la consommation de carburant dans un fonctionnement en mode de combustion en mélange pauvre et stratifié. Pour accroître le gain, l'application de ce mode de fonctionnement doit être étendue des bas régimes et faibles charges du moteur jusqu'aux régimes intermédiaires et charges partielles. La tech...

  17. Injection and Dump Systems

    CERN Document Server

    Bracco, C; Barnes, M J; Carlier, E; Drosdal, L N; Goddard, B; Kain, V; Meddahi, M; Mertens, V; Uythoven, J

    2012-01-01

    Performance and failures of the LHC injection and ex- traction systems are presented. In particular, a comparison with the 2010 run, lessons learnt during operation with high intensity beams and foreseen upgrades are described. UFOs, vacuum and impedance problems related to the injection and extraction equipment are analysed together with possible improvements and solutions. New implemented features, diagnostics, critical issues of XPOC and IQC applications are addressed.

  18. PS injection area

    CERN Multimedia

    1974-01-01

    To the right is the PS ring viewed along the direction of the protons. At the left the injection line coming from the 50 MeV Linac 1 (bottom) and going towards the 800 MeV booster, or deflected to the right to be injected directly into straight section 16. The drumlike element behind the (blue) dipole magnet is a 'debuncher' (a 200 MHz cavity). See photos 7409014X and 7409009.

  19. Water spray interaction with air-steam mixtures under containment spray conditions: experimental study in the TOSQAN facility

    Energy Technology Data Exchange (ETDEWEB)

    Porcheron, E.; Lemaitre, P.; Malet, J.; Nuboer, A.; Brun, P.; Bouilloux, L.; Vendel, J. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Direction de la Surete des Usines, des laboratoires, des transports et des dechets, Saclay, BP 68 - 91192 Gif-sur-Yvette cedex (France)

    2005-07-01

    Full text of publication follows: During the course of an hypothetical severe accident in a Pressurized Water Reactor (PWR), hydrogen can be produced by the reactor core oxidation and distributed into the reactor containment according to convection flows and steam wall condensation. In order to assess the risk of detonation generated by a high local hydrogen concentration, hydrogen distribution in the containment has to be known. The TOSQAN experimental program has been created to simulate typical accidental thermal hydraulic flow conditions in the reactor containment. The present work is devoted to study the interaction of a water spray injection used as a mitigation mean in order to reduce containment pressure and to produce a mixing of air, steam and hydrogen induced by spray entrainment and condensation on droplet. In order to have a better understanding of physical phenomena, we need to make a detailed characterization of the spray and the gas. The TOSQAN facility that is highly instrumented with non-intrusive diagnostics consists in a closed cylindrical vessel (7 m{sup 3} volume, 4 m high, 1.5 m i.d.) into which steam is injected. Water droplets size is measured in the vessel by the Interferometric Laser Imaging for Droplet Sizing technique. Droplet velocity is obtained by Particle Image Velocimetry and Laser Doppler Velocimetry, and droplet temperature is measured by global rainbow refractometry. Gas concentration measurements are performed by Spontaneous Raman Scattering. The walls of the vessel are thermostatically controlled by heated oil circulation. Inner spray system that is located on the top of the enclosure on the vertical axis, is composed of a single nozzle producing a full cone water spray. Spray test scenario consists of water spray injection in TOSQAN that is first pressurized with a steam injection (steam injection is stopped before spray injection). Water spray falling into the sump is removed to avoid accumulation and evaporation

  20. Use of Surfactants to Decrease Air-Water Interfacial Tension During Sparging

    Science.gov (United States)

    Air sparging is a remediation procedure of injecting air into polluted ground water. The primary intention of air sparging is to promote biodegradation of volatile organic compounds (VOCs) in the groundwater passing through the treatment sector. Sparging treatment efficiency dep...

  1. Use of Surfactants to Decrease Air-Water Interfacial Tension During Sparging (OKC, OK)

    Science.gov (United States)

    Air sparging is a remediation procedure of injecting air into polluted ground water. The primary intention of air sparging is to promote biodegradation of volatile organic compounds (VOCs) in the groundwater passing through the treatment sector. Sparging treatment efficiency dep...

  2. Thermal Reactor Safety

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  3. Chromatographic and Related Reactors.

    Science.gov (United States)

    1988-01-07

    special information about effects of surface heteroge- neity in the methanation reaction. Studies of an efficient multicolumn assembly for measuring...of organic basic catalysts such as pyridine and 4-methylpicoline. It was demonstrated that the chromatographic reactor gave special information about...Programmed Reaction to obtain special information about surface heterogeneity in the methanation reaction. Advantages of stopped flow over steady state

  4. Nuclear Reactors and Technology

    Energy Technology Data Exchange (ETDEWEB)

    Cason, D.L.; Hicks, S.C. [eds.

    1992-01-01

    This publication Nuclear Reactors and Technology (NRT) announces on a monthly basis the current worldwide information available from the open literature on nuclear reactors and technology, including all aspects of power reactors, components and accessories, fuel elements, control systems, and materials. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past month. Also included are US information obtained through acquisition programs or interagency agreements and international information obtained through the International Energy Agency`s Energy Technology Data Exchange or government-to-government agreements. The digests in NRT and other citations to information on nuclear reactors back to 1948 are available for online searching and retrieval on the Energy Science and Technology Database and Nuclear Science Abstracts (NSA) database. Current information, added daily to the Energy Science and Technology Database, is available to DOE and its contractors through the DOE Integrated Technical Information System. Customized profiles can be developed to provide current information to meet each user`s needs.

  5. Fusion reactor materials

    Energy Technology Data Exchange (ETDEWEB)

    none,

    1989-01-01

    This paper discuses the following topics on fusion reactor materials: irradiation, facilities, test matrices, and experimental methods; dosimetry, damage parameters, and activation calculations; materials engineering and design requirements; fundamental mechanical behavior; radiation effects; development of structural alloys; solid breeding materials; and ceramics.

  6. WATER BOILER REACTOR

    Science.gov (United States)

    King, L.D.P.

    1960-11-22

    As its name implies, this reactor utilizes an aqueous solution of a fissionable element salt, and is also conventional in that it contains a heat exchanger cooling coil immersed in the fuel. Its novelty lies in the utilization of a cylindrical reactor vessel to provide a critical region having a large and constant interface with a supernatant vapor region, and the use of a hollow sleeve coolant member suspended from the cover assembly in coaxial relation with the reactor vessel. Cool water is circulated inside this hollow coolant member, and a gap between its outer wall and the reactor vessel is used to carry off radiolytic gases for recombination in an external catalyst chamber. The central passage of the coolant member defines a reflux condenser passage into which the externally recombined gases are returned and condensed. The large and constant interface between fuel solution and vapor region prevents the formation of large bubbles and minimizes the amount of fuel salt carried off by water vapor, thus making possible higher flux densities, specific powers and power densities.

  7. The First Reactor.

    Science.gov (United States)

    Department of Energy, Washington, DC.

    On December 2, 1942, in a racquet court underneath the West Stands of Stagg Field at the University of Chicago, a team of scientists led by Enrico Fermi created the first controlled, self-sustaining nuclear chain reaction. This updated and revised story of the first reactor (or "pile") is based on postwar interviews (as told to Corbin…

  8. MULTISTAGE FLUIDIZED BED REACTOR

    Science.gov (United States)

    Jonke, A.A.; Graae, J.E.A.; Levitz, N.M.

    1959-11-01

    A multistage fluidized bed reactor is described in which each of a number of stages is arranged with respect to an associated baffle so that a fluidizing gas flows upward and a granular solid downward through the stages and baffles, whereas the granular solid stopsflowing downward when the flow of fluidizing gas is shut off.

  9. In-Well Air Stripping/Bioventing Study at Tyndall Air Force Base, Florida

    Science.gov (United States)

    2012-08-30

    GROUND SURFACE " ^TT AIR LINE PIEZOMETER UPPER SCREEN WATER SAMPLING PROBE PACKER CONDUCTOR PIPE/AIR STRIPPING REACTOR LOWER SCREEN |—] SAND...calibrated according to the manufacturer’s directions using the provided calibration sleeve, and the electrolyte and membrane were replaced as needed

  10. Brazilian multipurpose reactor

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Brazilian Multipurpose Reactor (RMB) Project is an action of the Federal Government, through the Ministry of Science Technology and Innovation (MCTI) and has its execution under the responsibility of the Brazilian National Nuclear Energy Commission (CNEN). Within the CNEN, the project is coordinated by the Research and Development Directorate (DPD) and developed through research units of this board: Institute of Nuclear Energy Research (IPEN); Nuclear Engineering Institute (IEN); Centre for Development of Nuclear Technology (CDTN); Regional Center of Nuclear Sciences (CRCN-NE); and Institute of Radiation Protection and Dosimetry (IRD). The Navy Technological Center in Sao Paulo (CTMSP) and also the participation of other research centers, universities, laboratories and companies in the nuclear sector are important and strategic partnerships. The conceptual design and the safety analysis of the reactor and main facilities, related to nuclear and environmental licensing, are performed by technicians of the research units of DPD / CNEN. The basic design was contracted to engineering companies as INTERTHECNE from Brazil and INVAP from Argentine. The research units from DPD/CNEN are also responsible for the design verification on all engineering documents developed by the contracted companies. The construction and installation should be performed by specific national companies and international partnerships. The Nuclear Reactor RMB will be a open pool type reactor with maximum power of 30 MW and have the OPAL nuclear reactor of 20 MW, built in Australia and designed by INVAP, as reference. The RMB reactor core will have a 5x5 configuration, consisting of 23 elements fuels (EC) of U{sub 3}Si{sub 2} dispersion-type Al having a density of up to 3.5 gU/cm{sup 3} and enrichment of 19.75% by weight of {sup 23{sup 5}}U. Two positions will be available in the core for materials irradiation devices. The main objectives of the RMB Reactor and the other nuclear and radioactive

  11. Modeling Chemical Reactors I: Quiescent Reactors

    CERN Document Server

    Michoski, C E; Schmitz, P G

    2010-01-01

    We introduce a fully generalized quiescent chemical reactor system in arbitrary space $\\vdim =1,2$ or 3, with $n\\in\\mathbb{N}$ chemical constituents $\\alpha_{i}$, where the character of the numerical solution is strongly determined by the relative scaling between the local reactivity of species $\\alpha_{i}$ and the local functional diffusivity $\\mathscr{D}_{ij}(\\alpha)$ of the reaction mixture. We develop an operator time-splitting predictor multi-corrector RK--LDG scheme, and utilize $hp$-adaptivity relying only on the entropy $\\mathscr{S}_{\\mathfrak{R}}$ of the reactive system $\\mathfrak{R}$. This condition preserves these bounded nonlinear entropy functionals as a necessarily enforced stability condition on the coupled system. We apply this scheme to a number of application problems in chemical kinetics; including a difficult classical problem arising in nonequilibrium thermodynamics known as the Belousov-Zhabotinskii reaction where we utilize a concentration-dependent diffusivity tensor $\\mathscr{D}_{ij}(...

  12. Alternative approaches to fusion. [reactor design and reactor physics for Tokamak fusion reactors

    Science.gov (United States)

    Roth, R. J.

    1976-01-01

    The limitations of the Tokamak fusion reactor concept are discussed and various other fusion reactor concepts are considered that employ the containment of thermonuclear plasmas by magnetic fields (i.e., stellarators). Progress made in the containment of plasmas in toroidal devices is reported. Reactor design concepts are illustrated. The possibility of using fusion reactors as a power source in interplanetary space travel and electric power plants is briefly examined.

  13. Advanced High-Temperature, High-Pressure Transport Reactor Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Michael L. Swanson

    2005-08-30

    The transport reactor development unit (TRDU) was modified to accommodate oxygen-blown operation in support of a Vision 21-type energy plex that could produce power, chemicals, and fuel. These modifications consisted of changing the loop seal design from a J-leg to an L-valve configuration, thereby increasing the mixing zone length and residence time. In addition, the standpipe, dipleg, and L-valve diameters were increased to reduce slugging caused by bubble formation in the lightly fluidized sections of the solid return legs. A seal pot was added to the bottom of the dipleg so that the level of solids in the standpipe could be operated independently of the dipleg return leg. A separate coal feed nozzle was added that could inject the coal upward into the outlet of the mixing zone, thereby precluding any chance of the fresh coal feed back-mixing into the oxidizing zone of the mixing zone; however, difficulties with this coal feed configuration led to a switch back to the original downward configuration. Instrumentation to measure and control the flow of oxygen and steam to the burner and mix zone ports was added to allow the TRDU to be operated under full oxygen-blown conditions. In total, ten test campaigns have been conducted under enriched-air or full oxygen-blown conditions. During these tests, 1515 hours of coal feed with 660 hours of air-blown gasification and 720 hours of enriched-air or oxygen-blown coal gasification were completed under this particular contract. During these tests, approximately 366 hours of operation with Wyodak, 123 hours with Navajo sub-bituminous coal, 143 hours with Illinois No. 6, 106 hours with SUFCo, 110 hours with Prater Creek, 48 hours with Calumet, and 134 hours with a Pittsburgh No. 8 bituminous coal were completed. In addition, 331 hours of operation on low-rank coals such as North Dakota lignite, Australian brown coal, and a 90:10 wt% mixture of lignite and wood waste were completed. Also included in these test campaigns was

  14. Steam-air mixture condensation in a subcooled water pool

    Science.gov (United States)

    Norman, Timothy Linhurst

    2007-12-01

    In any conceptual reactor design under postulated accidental conditions, one parameter that is considered as being highly ranked in determining the thermal-hydraulic conditions of the reactor safety components is the system pressure. To obtain a satisfactory prediction of steam partial pressure, within reasonable uncertainty in the gas space of a confined SP (suppression pool) bounded to the steam source of the break flow, one must establish a means by which local phenomena associated with steam direct contact condensation in the subcooled water pool can be fully addressed to predict the global component thermal response. For this purpose a scaled down, reduced pressure, suppression pool was designed and built to study condensation and mixing phenomena. The scaled test facility represented an idealized trapezoidal cross section, 1/10 sector of the SP with scaled height ratio of 1/4.5 and volume ratio of 1/400. The design and test conditions were based on a hierarchical scaling principle that preserves the transfer of mass, momentum, energy and condensation phenomena. Distributed thermocouples within the pool provided a means to quantify the pool thermal response. The test loop was not only instrumented with thermocouples for monitoring pool stratification but also with high speed photography for flow visualization from which to build a comprehensive database to identify the regions of the pool that were thermally stratified or mixed. Data were obtained for different pool initial subcooling and steam/air mixture flow rates. Dimensionless boundary maps were plotted from several experimental runs of pure steam injection to determine conditions when the pool transits from being homogeneously mixed to being thermally stratified. Steam-air mixture injection cases for single horizontal venting indicated that above a pool temperature of 40°C with airmass flow rates below 0.1 g/s the pool can attain thermal stratification. Models of a single phase liquid

  15. Design, characterization and application of the Multiple Air-lift Loop bioreactor.

    OpenAIRE

    Bakker, W.A.M.

    1995-01-01

    A new bioreactor is introduced: the Multiple Air-lift Loop reactor (MAL). The MAL consists of a series of air-lift loop reactors within one vessel. With the MAL, a new type of geometry for air-lift reactors with an internal loop is introduced. This new geometry was characterized with respect to hydrodynamics, mixing and oxygen transfer. The hydrodynamics were described by an existing model. Hydrodynamics, mixing and oxygen transfer in the new reactor configuration were comparable to that in c...

  16. NOx reduction by ozone injection and direct plasma treatment

    DEFF Research Database (Denmark)

    Stamate, Eugen; Salewski, Mirko

    2012-01-01

    NOx reduction by ozone injection and direct plasma treatment is investigated for different process parameters in a 6 m long serpentine reactor. Several aspects including the role of mixing scheme, water vapours, steep temperature gradient and time dependet NOx levels are taken into consideration....... The process chemistry is monitored by FTIR, chemiluminiscence and absorbtion spectroscopy. The kinetic mechanism is also investigated in 3D simulations....

  17. Effects of injection angle and pressure on mixing performance of fuel injection via various geometries for upstream-fuel-injected scramjets

    Science.gov (United States)

    Ogawa, Hideaki

    2016-11-01

    Effective fuel injection and mixing is of crucial importance for reliable operation of scramjet engines, where fuel must be injected into high-speed crossflow and mixed with air at an extremely short timescale. This paper presents the results of a numerical study that investigates the effects of the injection angle and pressure for various orifice shapes on fuel mixing characteristics into hypersonic airflow at Mach 5, aiming at the application to scramjet operation with upstream fuel injection at Mach 10. The mixing performance has been evaluated with respect to the mixing efficiency, total pressure recovery, fuel penetration, and streamwise circulation. Significant influence of the injection angle and intensity on the mixing has been observed in conjunction with the geometric features of the injector orifice. An additional performance parameter, namely the mixing vorticity effectiveness, has been found to be an effective measure to quantify the contribution of the streamwise vorticity in mixing enhancement.

  18. The belt-shaped screw-pinch reactor

    Science.gov (United States)

    Bustraan, M.; Brandt, B.; Damstra, G. C.; Hoekzema, J. A.; Klippel, H. T.; Lievense, K.; Schuurman, W.; Veringa, H. J.; Verschuur, K. A.

    1981-12-01

    Economic and technical aspects of a BSPRIL are considered. Force-free currents in a low density outer plasma envelope enable beta to rise to values on the order of 50%. Reactor operation consists of the formation, heating and ignition of a very small amount of the fuel to be burnt in one pulse by the fields generated by normal or superconducting coils. Then follows injection of the greater part of the fuel by DT pellets and consequent plasma heating and expansion by nuclear reactions without undue disturbing of the plasma current configuration. Technical requirements include an insulating first wall and fast rising magnetic fields produced by superconducting coils. A BSPRIL with pulsed superconducting coils is an economically attrative alternative to other toroidal pinch reactors and Tokamaks.. A BSPRIL with normal conducting copper coils is not much more expensive than reactors with stationary superconducting coils.

  19. Reactor monitoring using antineutrino detectors

    Science.gov (United States)

    Bowden, N. S.

    2011-08-01

    Nuclear reactors have served as the antineutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Measurements made with antineutrino detectors could therefore offer an alternative means for verifying the power history and fissile inventory of a reactor as part of International Atomic Energy Agency (IAEA) and/or other reactor safeguards regimes. Several efforts to develop this monitoring technique are underway worldwide.

  20. Reactor vessel support system. [LMFBR

    Science.gov (United States)

    Golden, M.P.; Holley, J.C.

    1980-05-09

    A reactor vessel support system includes a support ring at the reactor top supported through a box ring on a ledge of the reactor containment. The box ring includes an annular space in the center of its cross-section to reduce heat flow and is keyed to the support ledge to transmit seismic forces from the reactor vessel to the containment structure. A coolant channel is provided at the outside circumference of the support ring to supply coolant gas through the keyways to channels between the reactor vessel and support ledge into the containment space.

  1. Direct injection of superheated steam for continuous hydrolysis reaction

    KAUST Repository

    Wang, Weicheng

    2012-09-01

    The primary intent for previous continuous hydrolysis studies was to minimize the reaction temperature and reaction time. In this work, hydrolysis is the first step of a proprietary chemical process to convert lipids to sustainable, drop-in replacements for petroleum based fuels. To improve the economics of the process, attention is now focused on optimizing the energy efficiency of the process, maximizing the reaction rate, and improving the recovery of the glycerol by-product. A laboratory-scale reactor system has been designed and built with this goal in mind.Sweet water (water with glycerol from the hydrolysis reaction) is routed to a distillation column and heated above the boiling point of water at the reaction pressure. The steam pressure allows the steam to return to the reactor without pumping. Direct injection of steam into the hydrolysis reactor is shown to provide favorable equilibrium conditions resulting in a high quality of FFA product and rapid reaction rate, even without preheating the inlet water and oil and with lower reactor temperatures and lower fresh water demand. The high enthalpy of the steam provides energy for the hydrolysis reaction. Steam injection offers enhanced conditions for continuous hydrolysis of triglycerides to high-purity streams of FFA and glycerol. © 2012 Elsevier B.V.

  2. Methanogenesis in Thermophilic Biogas Reactors

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær

    1995-01-01

    Methanogenesis in thermophilic biogas reactors fed with different wastes is examined. The specific methanogenic activity with acetate or hydrogen as substrate reflected the organic loading of the specific reactor examined. Increasing the loading of thermophilic reactors stabilized the process...... as indicated by a lower concentration of volatile fatty acids in the effluent from the reactors. The specific methanogenic activity in a thermophilic pilot-plant biogas reactor fed with a mixture of cow and pig manure reflected the stability of the reactor. The numbers of methanogens counted by the most...... against Methanothrix soehngenii or Methanothrix CALS-I in any of the thermophilic biogas reactors examined. Studies using 2-14C-labeled acetate showed that at high concentrations (more than approx. 1 mM) acetate was metabolized via the aceticlastic pathway, transforming the methyl-group of acetate...

  3. UV-visible digital imaging of split injection in a Gasoline Direct Injection engine

    Directory of Open Access Journals (Sweden)

    Merola Simona Silvia

    2015-01-01

    Full Text Available Ever tighter limits on pollutant emissions and the need to improve energy conversion efficiency have made the application of gasoline direct injection (GDI feasible for a much wider scale of spark ignition engines. Changing the way fuel is delivered to the engine has thus provided increased flexibility but also challenges, such as higher particulate emissions. Therefore, alternative injection control strategies need to be investigated in order to obtain optimum performance and reduced environmental impact. In this study, experiments were carried out on a single-cylinder GDI optical engine fuelled with commercial gasoline in lean-burn conditions. The single-cylinder was equipped with the head of a commercial turbocharged engine with similar geometrical specifications (bore, stroke, compression ratio and wall guided fuel injection. Optical accessibility was ensured through a conventional elongated hollow Bowditch piston and an optical crown, accommodating a fused-silica window. Experimental tests were performed at fixed engine speed and injection pressure, whereas the injection timing and the number of injections were adjusted to investigate their influence on combustion and emissions. UV-visible digital imaging was applied in order to follow the combustion process, from ignition to the late combustion phase. All the optical data were correlated with thermodynamic analysis and measurements of exhaust emissions. Split injection strategies (i.e. two injections per cycle with respect to single injection increased combustion efficiency and stability thanks to an improvement of fuel air mixing. As a consequence, significant reduction in soot formation and exhaust emission with acceptable penalty in terms of HC and NOx were measured.

  4. Syringe-injectable electronics.

    Science.gov (United States)

    Liu, Jia; Fu, Tian-Ming; Cheng, Zengguang; Hong, Guosong; Zhou, Tao; Jin, Lihua; Duvvuri, Madhavi; Jiang, Zhe; Kruskal, Peter; Xie, Chong; Suo, Zhigang; Fang, Ying; Lieber, Charles M

    2015-07-01

    Seamless and minimally invasive three-dimensional interpenetration of electronics within artificial or natural structures could allow for continuous monitoring and manipulation of their properties. Flexible electronics provide a means for conforming electronics to non-planar surfaces, yet targeted delivery of flexible electronics to internal regions remains difficult. Here, we overcome this challenge by demonstrating the syringe injection (and subsequent unfolding) of sub-micrometre-thick, centimetre-scale macroporous mesh electronics through needles with a diameter as small as 100 μm. Our results show that electronic components can be injected into man-made and biological cavities, as well as dense gels and tissue, with >90% device yield. We demonstrate several applications of syringe-injectable electronics as a general approach for interpenetrating flexible electronics with three-dimensional structures, including (1) monitoring internal mechanical strains in polymer cavities, (2) tight integration and low chronic immunoreactivity with several distinct regions of the brain, and (3) in vivo multiplexed neural recording. Moreover, syringe injection enables the delivery of flexible electronics through a rigid shell, the delivery of large-volume flexible electronics that can fill internal cavities, and co-injection of electronics with other materials into host structures, opening up unique applications for flexible electronics.

  5. Hydrogen Gas as a Fuel in Direct Injection Diesel Engine

    Science.gov (United States)

    Dhanasekaran, Chinnathambi; Mohankumar, Gabriael

    2016-04-01

    Hydrogen is expected to be one of the most important fuels in the near future for solving the problem caused by the greenhouse gases, for protecting environment and saving conventional fuels. In this study, a dual fuel engine of hydrogen and diesel was investigated. Hydrogen was conceded through the intake port, and simultaneously air and diesel was pervaded into the cylinder. Using electronic gas injector and electronic control unit, the injection timing and duration varied. In this investigation, a single cylinder, KIRLOSKAR AV1, DI Diesel engine was used. Hydrogen injection timing was fixed at TDC and injection duration was timed for 30°, 60°, and 90° crank angles. The injection timing of diesel was fixed at 23° BTDC. When hydrogen is mixed with inlet air, emanation of HC, CO and CO2 decreased without any emission (exhaustion) of smoke while increasing the brake thermal efficiency.

  6. Hybrid Plasma Reactor/Filter for Transportable Collective Protection Systems

    Energy Technology Data Exchange (ETDEWEB)

    Josephson, Gary B.; Tonkyn, Russell G.; Frye, J. G.; Riley, Brian J.; Rappe, Kenneth G.

    2011-04-06

    Pacific Northwest National Laboratory (PNNL) has performed an assessment of a Hybrid Plasma/Filter system as an alternative to conventional methods for collective protection. The key premise of the hybrid system is to couple a nonthermal plasma (NTP) reactor with reactive adsorption to provide a broader envelope of protection than can be provided through a single-solution approach. The first step uses highly reactive species (e.g. oxygen radicals, hydroxyl radicals, etc.) created in a nonthermal plasma (NTP) reactor to destroy the majority (~75% - 90%) of an incoming threat. Following the NTP reactor an O3 reactor/filter uses the O3 created in the NTP reactor to further destroy the remaining organic materials. This report summarizes the laboratory development of the Hybrid Plasma Reactor/Filter to protect against a ‘worst-case’ simulant, methyl bromide (CH3Br), and presents a preliminary engineering assessment of the technology to Joint Expeditionary Collective Protection performance specifications for chemical vapor air purification technologies.

  7. MEANS FOR COOLING REACTORS

    Science.gov (United States)

    Wheeler, J.A.

    1957-11-01

    A design of a reactor is presented in which the fuel elements may be immersed in a liquid coolant when desired without the necessity of removing them from the reactor structure. The fuel elements, containing the fissionable material are in plate form and are disposed within spaced slots in a moderator material, such as graphite to form the core. Adjacent the core is a tank containing the liquid coolant. The fuel elements are mounted in spaced relationship on a rotatable shaft which is located between the core and the tank so that by rotation of the shaft the fuel elements may be either inserted in the slots in the core to sustain a chain reaction or immersed in the coolant.

  8. Compact fusion reactors

    CERN Document Server

    CERN. Geneva

    2015-01-01

    Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lawrenceville Plasma Physics and Lockheed Martin. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given.

  9. Reactor Neutrino Spectra

    OpenAIRE

    Hayes, A. C.; Vogel, Petr

    2016-01-01

    We present a review of the antineutrino spectra emitted from reactors. Knowledge of these spectra and their associated uncertainties is crucial for neutrino oscillation studies. The spectra used to date have been determined either by converting measured electron spectra to antineutrino spectra or by summing over all of the thousands of transitions that make up the spectra, using modern databases as input. The uncertainties in the subdominant corrections to β-decay plague both methods, and we ...

  10. REACTOR MODERATOR STRUCTURE

    Science.gov (United States)

    Greenstreet, B.L.

    1963-12-31

    A system for maintaining the alignment of moderator block structures in reactors is presented. Integral restraining grids are placed between each layer of blocks in the moderator structure, at the top of the uppermost layer, and at the bottom of the lowermost layer. Slots are provided in the top and bottom surfaces of the moderator blocks so as to provide a keying action with the grids. The grids are maintained in alignment by vertical guiding members disposed about their peripheries. (AEC)

  11. BOILER-SUPERHEATED REACTOR

    Science.gov (United States)

    Heckman, T.P.

    1961-05-01

    A nuclear power reactor of the type in which a liquid moderator-coolant is transformed by nuclear heating into a vapor that may be used to drive a turbo- generator is described. The core of this reactor comprises a plurality of freely suspended tubular fuel elements, called fuel element trains, within which nonboiling pressurized liquid moderator-coolant is preheated and sprayed through orifices in the walls of the trains against the outer walls thereof to be converted into vapor. Passage of the vapor ovcr other unwetted portions of the outside of the fuel elements causes the steam to be superheated. The moderatorcoolant within the fuel elements remains in the liqUid state, and that between the fuel elements remains substantiaily in the vapor state. A unique liquid neutron-absorber control system is used. Advantages expected from the reactor design include reduced fuel element failure, increased stability of operation, direct response to power demand, and circulation of a minimum amount of liquid moderatorcoolant. (A.G.W.)

  12. Collaboration in air particulate analysis through sharing of regional resources

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Flora L. [Philippine Nuclear Research Institute, Diliman, Quezon (Philippines)

    2003-03-01

    The air pollution research program of the Philippine Nuclear Research Institute is being pursued in support of the 1999 Clean Air Act. This is being undertaken as part of the RCA/IAEA subproject, 'Air Pollution and Its Trends'. Since the PNRI research reactor (PRR-I) has been on extended shut down for the past 18 years, the PNRI depends solely on X-ray Fluorescence (XRF) spectrometry for elemental characterization of air particulate samples. NAA is a powerful and efficient tool in air particulate characterization and is used in many national programs in the region. Collaboration in air pollution studies through exchange of samples between XRF and NAA groups will widen the range of elements that could be detected by one group. In the RCA/IAEA RAS/4/020, 'Improvement of Research Reactor Operation and Utilization' sharing of research reactor facilities is encouraged. Working out of mechanisms for such sharing will be advantageous to research groups without operational research reactors. This could take the form of exchange of samples or fellowship at a regional host institution. This will allow training of technical staff from countries without research reactors, thus ensuring continuing expertise in NAA even after long periods of reactor shutdown. (author)

  13. Shale fracturing injections at Oak Ridge National Laboratory: 1977-1979 series

    Energy Technology Data Exchange (ETDEWEB)

    Weeren, H.O.

    1980-09-01

    Intermediate-level waste solution generated at ORNL is periodically mixed with a cement-base blend of dry solids and injected into an impermeable shale formation at an approximate depth of 240 m (800 ft). The grout mix sets shortly after the injection, permanently fixing the radionuclides in the shale formation. A series of four injections of intermediate-level waste solution was made between 1977 and 1979. A total of 1.2 million l (314,000 gal) of waste solution containing 81,780 Ci of radionuclides was injected. This report is an account of this injection series - preparations, injections, results, and conclusions. The volumes and activities that were injected are summarized. In Injection ILW-15 a small leak of grout to the waste pit eroded the drain valves and forced a shutdown of the injection while repairs were made. The injection was completed 2 days later. Injection ILW-16 was terminated about two-thirds through the injection when the diesel drive of the injection pump blew a connecting rod through the block. The facility and well were washed down with the standby pump. Prior to Injection ILW-17, air pads were installed on all bulk solids storage bins. All subsequent injections have been marked by a much more even flow of solids and a resulting improvement in the mix ratio control. Injections ILW-17 and ILW-18 were made without notable incidents. Logs of the observation wells indicated that all grout sheets were within the disposal zone.

  14. Nuclear research reactors in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Cota, Anna Paula Leite; Mesquita, Amir Zacarias, E-mail: aplc@cdtn.b, E-mail: amir@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The rising concerns about global warming and energy security have spurred a revival of interest in nuclear energy, giving birth to a 'nuclear power renaissance' in several countries in the world. Particularly in Brazil, in the recent years, the nuclear power renaissance can be seen in the actions that comprise its nuclear program, summarily the increase of the investments in nuclear research institutes and the government target to design and build the Brazilian Multipurpose research Reactor (BMR). In the last 50 years, Brazilian research reactors have been used for training, for producing radioisotopes to meet demands in industry and nuclear medicine, for miscellaneous irradiation services and for academic research. Moreover, the research reactors are used as laboratories to develop technologies in power reactors, which are evaluated today at around 450 worldwide. In this application, those reactors become more viable in relation to power reactors by the lowest cost, by the operation at low temperatures and, furthermore, by lower demand for nuclear fuel. In Brazil, four research reactors were installed: the IEA-R1 and the MB-01 reactors, both at the Instituto de Pesquisas Energeticas Nucleares (IPEN, Sao Paulo); the Argonauta, at the Instituto de Engenharia Nuclear (IEN, Rio de Janeiro) and the IPR-R1 TRIGA reactor, at the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN, Belo Horizonte). The present paper intends to enumerate the characteristics of these reactors, their utilization and current academic research. Therefore, through this paper, we intend to collaborate on the BMR project. (author)

  15. Safe operation and maintenance of research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Munsorn, S. [Reactor Operation Division, Office of Atomic Energy for Peace, Chatuchak, Bangkok (Thailand)

    1999-10-01

    The first Thai Research Reactor (TRR-1) was established in 1961 at the Office of Atomic Energy for Peace (OAEP), Bangkok. The reactor was light water moderated and cooled, using HEU plate-type with U{sub 3}O{sub 8}- Al fuel meat and swimming pool type. The reactor went first critical on October 27, 1962 and had been licensed to operate at 1 MW (thermal). On June 30, 1975 the reactor was shutdown for modification and the core and control system was disassemble and replaced by that of TRIGA Mark III type while the pool cooling system, irradiation facilities and other were kept. Thus the name TRR-1/M1' has been designed due to this modification the fuel has been changed from HEU plate type to Uranium Zirconium Hydride (UZrH) Low Enrichment Uranium (LEU) which include 4 Fuel Follower Control Rods and 1 Air Follower Control Rod. The TRR-1/M1 went critical on November 7, 1977 and the purpose of the operation are training, isotope production and research. Nowadays the TRR-1/M1 has been operated with core loading No.12 which released power of 1,056 MWD. (as of October 1998). The TRR-1/M1 has been operated at the power of 1.2 MW, three days a week with 34 hours per week, Shut-down on Monday for weekly maintenance and Tuesday for special experiment. The everage energy released is about 40.8 MW-hour per week. Every year, the TRR-1/M1 is shut-down about 2 months between February to March for yearly maintenance. (author)

  16. On-line sample-pre-treatment schemes for trace-level determinations of metals by coupling flow injection or sequential injection with ICP-MS

    DEFF Research Database (Denmark)

    Wang, Jianhua; Hansen, Elo Harald

    2003-01-01

    a polytetrafluoroethylene (PTFE) knotted reactor (KR), solvent extraction-back extraction and hydride/vapor generation. It also addresses a novel, robust approach, whereby the protocol of SI-LOV-bead injection (BI) on-line separation and pre-concentration of ultra-trace levels of metals by a renewable microcolumn...

  17. Collagenase Clostridium Histolyticum Injection

    Science.gov (United States)

    ... to treat your condition.If you are receiving treatment for Dupuytren's contracture, do not bend or straighten the fingers of ... injection is used to treat to treat Dupuytren's contracture it can cause injury to the hand that may require surgical treatment or can be permanent. Call your doctor right ...

  18. Water injection dredging

    NARCIS (Netherlands)

    Verhagen, H.J.

    2000-01-01

    Some twenty years ago WIS-dredging has been developed in the Netherlands. By injecting water into the mud layer, the water content of the mud becomes higher, it becomes fluid mud and will start to flow. The advantages of this system are that there is no need of transporting the mud in a hopper, and

  19. Intracytoplasmic Sperm Injection (ICSI)

    Science.gov (United States)

    ... sperm must attach to the outside of the egg. Once attached, the sperm pushes through the outer layer to the inside ... in vitro fertilization (IVF) to help fertilize the egg. During ICSI, a single sperm is injected directly into the cytoplasm the egg. ...

  20. RimabotulinumtoxinB Injection

    Science.gov (United States)

    ... uncontrollable tightening of the neck muscles that may cause neck pain and abnormal head positions). RimabotulinumtoxinB injection is in a class of medications called neurotoxins. It works by blocking the nerve signals that cause uncontrollable tightening and movement of the muscles.

  1. AbobotulinumtoxinA Injection

    Science.gov (United States)

    ... uncontrollable tightening of the neck muscles that may cause neck pain and abnormal head positions). AbobotulinumtoxinA injection is also used to temporarily smooth frown lines (wrinkles between the eyebrows). ... signals that cause uncontrollable tightening and movement of the muscles.

  2. Thermionic Reactor Design Studies

    Energy Technology Data Exchange (ETDEWEB)

    Schock, Alfred

    1994-06-01

    During the 1960's and early 70's the author performed extensive design studies, analyses, and tests aimed at thermionic reactor concepts that differed significantly from those pursued by other investigators. Those studies, like most others under Atomic Energy Commission (AEC and DOE) and the National Aeronautics and Space Administration (NASA) sponsorship, were terminated in the early 1970's. Some of this work was previously published, but much of it was never made available in the open literature. U.S. interest in thermionic reactors resumed in the early 80's, and was greatly intensified by reports about Soviet ground and flight tests in the late 80's. This recent interest resulted in renewed U.S. thermionic reactor development programs, primarily under Department of Defense (DOD) and Department of Energy (DOE) sponsorship. Since most current investigators have not had an opportunity to study all of the author's previous work, a review of the highlights of that work may be of value to them. The present paper describes some of the author's conceptual designs and their rationale, and the special analytical techniques developed to analyze their performance. The basic designs, first published in 1963, are based on single-cell converters, either double-ended diodes extending over the full height of the reactor core or single-ended diodes extending over half the core height. In that respect they are similar to the thermionic fuel elements employed in the Topaz-2 reactor subsequently developed in the Soviet Union, copies of which were recently imported by the U.S. As in the Topaz-2 case, electrically heated steady-state performance tests of the converters are possible before fueling. Where the author's concepts differed from the later Topaz-2 design was in the relative location of the emitter and the collector. Placing the fueled emitter on the outside of the cylindrical diodes permits much higher axial conductances to reduce ohmic

  3. Injectable Premixed Cement of Nanoapatite and Polyamide Composite

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new type of injectable premixed bone cement consisting of nano-hydroxyapatite (n-HA) and polyamide 66(PA66) composite is investigated. This cement can be handled as paste and easily shaped, which can set in air, in physiological saline solution and in blood. The setting time, injectability and compressive strength of the cement largely depend on the ratio of liquid to powder (L/P). Moreover, the content of n-HA in composite also affects the compressive strength and injectability of the cement. The premixed composite cement can remain stable in the package for a long period and harden only after delivery to the defects site. The results suggest that injectable premixed cement has a reasonable setting time, reasonable viscosity for injecting, excellent washout resistance and high mechanical strength, which can be developed for root canal filling, sealing and various bone defects augmentation.

  4. Biofilm membrane reactor for the aerobic treatment of waste water; Reactores biomembrana para la depuracion biologica aerobia de las aguas residuales

    Energy Technology Data Exchange (ETDEWEB)

    Tejero, I.; Eguia, E.; Vidart, T.; Osa, J.; Lorda, I. [Universidad de Cantabria (Spain); Jacome, A. [Universidad de La Coruna (Spain)

    1998-04-01

    Various biofilm membranes reactors using flat membrane (Eguia, 1991 and Vidart, 1992), hollow fiber membrane (jacome, 1995), and tubular membrane (Osa, 1995), for wastewater treatment, developed by the Biofilm Group of the University of Cantabria, Spain, are herein described. All reactors worked with synthetic wastewater based on glucose, and aeration based on pure oxygen, pressurized air and air at atmospheric pressure. In this reactors, a membrane is used as substratum and aeration device at the same time. Several authors have studied this process, and have developed different configurations: Timberlake et al. (1988), Omishi et al. (1982), Abdel-Warith et al. (1990) and Wilderer (1995). The performance of the flat membrane reactor is very high, reaching organic load removal up to 180 g COD/m``2, d, showing removal kinetics according to Monod and Blackman type. The reactor has been operated under organic loadings up to 600 g COD/m``2, d, but at organic loads over 200 g COD/m``2, d, better performance is not reached. When using pressurized air and pure o{sub 2}, COD removal up to 75 and 90% can be reached respectively. This reactor has also achieved nitrification rates of 47 g NH4+m``2, d, While operating with pure oxygen, nitrification rates were observed at 11 g NH4+m``2, d. (Author) 21 refs.

  5. Tritium pellet injection sequences for TFTR

    Energy Technology Data Exchange (ETDEWEB)

    Houlberg, W.A.; Milora, S.L.; Attenberger, S.E.; Singer, C.E.; Schmidt, G.L.

    1983-01-01

    Tritium pellet injection into neutral deuterium, beam heated deuterium plasmas in the Tokamak Fusion Test Reactor (TFTR) is shown to be an attractive means of (1) minimizing tritium use per tritium discharge and over a sequence of tritium discharges; (2) greatly reducing the tritium load in the walls, limiters, getters, and cryopanels; (3) maintaining or improving instantaneous neutron production (Q); (4) reducing or eliminating deuterium-tritium (D-T) neutron production in non-optimized discharges; and (5) generally adding flexibility to the experimental sequences leading to optimal Q operation. Transport analyses of both compression and full-bore TFTR plasmas are used to support the above observations and to provide the basis for a proposed eight-pellet gas gun injector for the 1986 tritium experiments.

  6. Turning points in reactor design

    Energy Technology Data Exchange (ETDEWEB)

    Beckjord, E.S.

    1995-09-01

    This article provides some historical aspects on nuclear reactor design, beginning with PWR development for Naval Propulsion and the first commercial application at Yankee Rowe. Five turning points in reactor design and some safety problems associated with them are reviewed: (1) stability of Dresden-1, (2) ECCS, (3) PRA, (4) TMI-2, and (5) advanced passive LWR designs. While the emphasis is on the thermal-hydraulic aspects, the discussion is also about reactor systems.

  7. Fast reactor programme in India

    Indian Academy of Sciences (India)

    P Chellapandi; P R Vasudeva Rao; Prabhat Kumar

    2015-09-01

    Role of fast breeder reactor (FBR) in the Indian context has been discussed with appropriate justification. The FBR programme since 1985 till 2030 is highlighted focussing on the current status and future direction of fast breeder test reactor (FBTR), prototype fast breeder reactor (PFBR) and FBR-1 and 2. Design and technological challenges of PFBR and design and safety targets with means to achieve the same are the major highlights of this paper.

  8. Acceptability of reactors in space

    Energy Technology Data Exchange (ETDEWEB)

    Buden, D.

    1981-04-01

    Reactors are the key to our future expansion into space. However, there has been some confusion in the public as to whether they are a safe and acceptable technology for use in space. The answer to these questions is explored. The US position is that when reactors are the preferred technical choice, that they can be used safely. In fact, it dies not appear that reactors add measurably to the risk associated with the Space Transportation System.

  9. Spiral-shaped disinfection reactors

    KAUST Repository

    Ghaffour, Noreddine

    2015-08-20

    This disclosure includes disinfection reactors and processes for the disinfection of water. Some disinfection reactors include a body that defines an inlet, an outlet, and a spiral flow path between the inlet and the outlet, in which the body is configured to receive water and a disinfectant at the inlet such that the water is exposed to the disinfectant as the water flows through the spiral flow path. Also disclosed are processes for disinfecting water in such disinfection reactors.

  10. Hydrogen Production in Fusion Reactors

    OpenAIRE

    Sudo, S.; Tomita, Y.; Yamaguchi, S.; Iiyoshi, A.; Momota, H; Motojima, O.; Okamoto, M.; Ohnishi, M.; Onozuka, M; Uenosono, C.

    1993-01-01

    As one of methods of innovative energy production in fusion reactors without having a conventional turbine-type generator, an efficient use of radiation produced in a fusion reactor with utilizing semiconductor and supplying clean fuel in a form of hydrogen gas are studied. Taking the candidates of reactors such as a toroidal system and an open system for application of the new concepts, the expected efficiency and a concept of plant system are investigated.

  11. Multiobjective Design of Turbo Injection Mode for Axial Flux Motor in Plastic Injection Molding Machine by Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Jian-Long Kuo

    2015-01-01

    Full Text Available This paper proposes a turbo injection mode (TIM for an axial flux motor to apply onto injection molding machine. Since the injection molding machine requires different speed and force parameters setting when finishing a complete injection process. The interleaved winding structure in the motor provides two different injection levels to provide enough injection forces. Two wye-wye windings are designed to switch two control modes conveniently. Wye-wye configuration is used to switch two force levels for the motor. When only one set of wye-winding is energized, field weakening function is achieved. Both of the torque and speed increase under field weakening operation. To achieve two control objectives for torque and speed of the motor, fuzzy based multiple performance characteristics index (MPCI with particle swarm optimization (PSO is used to find out the multiobjective optimal design solution. Both of the torque and speed are expected to be maximal at the same time. Three control factors are selected as studied factors: winding diameter, winding type, and air-gap. Experimental results show that both of the torque and speed increase under the optimal condition. This will provide enough large torque and speed to perform the turbo injection mode in injection process for the injection molding machine.

  12. Neutrino Oscillation Studies with Reactors

    CERN Document Server

    Vogel, Petr; Zhang, Chao

    2015-01-01

    Nuclear reactors are one of the most intense, pure, controllable, cost-effective, and well-understood sources of neutrinos. Reactors have played a major role in the study of neutrino oscillations, a phenomenon that indicates that neutrinos have mass and that neutrino flavors are quantum mechanical mixtures. Over the past several decades reactors were used in the discovery of neutrinos, were crucial in solving the solar neutrino puzzle, and allowed the determination of the smallest mixing angle $\\theta_{13}$. In the near future, reactors will help to determine the neutrino mass hierarchy and to solve the puzzling issue of sterile neutrinos.

  13. Advances in process intensification through multifunctional reactor engineering.

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, Marcia A.; Miller, James Edward; O' Hern, Timothy John; Gill, Walter; Evans, Lindsey R.

    2011-02-01

    A multifunctional reactor is a chemical engineering device that exploits enhanced heat and mass transfer to promote production of a desired chemical, combining more than one unit operation in a single system. The main component of the reactor system under study here is a vertical column containing packing material through which liquid(s) and gas flow cocurrently downward. Under certain conditions, a range of hydrodynamic regimes can be achieved within the column that can either enhance or inhibit a desired chemical reaction. To study such reactors in a controlled laboratory environment, two experimental facilities were constructed at Sandia National Laboratories. One experiment, referred to as the Two-Phase Experiment, operates with two phases (air and water). The second experiment, referred to as the Three-Phase Experiment, operates with three phases (immiscible organic liquid and aqueous liquid, and nitrogen). This report describes the motivation, design, construction, operational hazards, and operation of the both of these experiments. Data and conclusions are included.

  14. Reactor modeling in heterogeneous photocatalysis: toxicity and biodegradability assessment.

    Science.gov (United States)

    Satuf, M L; José, S; Paggi, J C; Brandi, R J; Cassano, A E; Alfano, O M

    2010-01-01

    Photocatalysis employing titanium dioxide is a useful method to degrade a wide variety of organic and inorganic pollutants from water and air. However, the application of this advanced oxidation process at industrial scale requires the development of mathematical models to design and scale-up photocatalytic reactors. In the present work, intrinsic kinetic expressions previously obtained in a laboratory reactor are employed to predict the performance of a bench scale reactor of different configuration and operating conditions. 4-Chlorophenol was chosen as the model pollutant. The toxicity and biodegradability of the irradiated mixture in the bench photoreactor was also assessed. Good agreement was found between simulation and experimental data. The root mean square error of the estimations was 9.9%. The photocatalytic process clearly enhances the biodegradability of the reacting mixture, and the initial toxicity of the pollutant was significantly reduced by the treatment.

  15. Analysis of barium hydroxide and calcium hydroxide slurry carbonation reactors

    Energy Technology Data Exchange (ETDEWEB)

    Patch, K.D.; Hart, R.P.; Schumacher, W.A.

    1980-05-01

    The removal of CO/sub 2/ from air was investigated by using a continuous-agitated-slurry carbonation reactor containing either barium hydroxide (Ba(OH)/sub 2/) or calcium hydroxide (Ca(OH)/sub 2/). Such a process would be applied to scrub /sup 14/CO/sub 2/ from stack gases at nuclear-fuel reprocessing plants. Decontamination factors were characterized for reactor conditions which could alter hydrodynamic behavior. An attempt was made to characterize reactor performance with models assuming both plug flow and various degrees of backmixing in the gas phase. The Ba(OH)/sub 2/ slurry enabled increased conversion, but apparently the process was controlled under some conditions by phenomena differing from those observed for carbonation by Ca(OH)/sub 2/. Overall reaction mechanisms are postulated.

  16. Passive heat-transfer means for nuclear reactors. [LMFBR

    Science.gov (United States)

    Burelbach, J.P.

    1982-06-10

    An improved passive cooling arrangement is disclosed for maintaining adjacent or related components of a nuclear reactor within specified temperature differences. Specifically, heat pipes are operatively interposed between the components, with the vaporizing section of the heat pipe proximate the hot component operable to cool it and the primary condensing section of the heat pipe proximate the other and cooler component operable to heat it. Each heat pipe further has a secondary condensing section that is located outwardly beyond the reactor confinement and in a secondary heat sink, such as air ambient the containment, that is cooler than the other reactor component. By having many such heat pipes, an emergency passive cooling system is defined that is operative without electrical power.

  17. FAST NEUTRONIC REACTOR

    Science.gov (United States)

    Snell, A.H.

    1957-12-01

    This patent relates to a reactor and process for carrying out a controlled fast neutron chain reaction. A cubical reactive mass, weighing at least 920 metric tons, of uranium metal containing predominantly U/sup 238/ and having a U/sup 235/ content of at least 7.63% is assembled and the maximum neutron reproduction ratio is limited to not substantially over 1.01 by insertion and removal of a varying amount of boron, the reactive mass being substantially freed of moderator.

  18. Biparticle fluidized bed reactor

    Science.gov (United States)

    Scott, C.D.

    1993-12-14

    A fluidized bed reactor system which utilizes a fluid phase, a retained fluidized primary particulate phase, and a migratory second particulate phase is described. The primary particulate phase is a particle such as a gel bead containing an immobilized biocatalyst. The secondary particulate phase, continuously introduced and removed in either cocurrent or countercurrent mode, acts in a secondary role such as a sorbent to continuously remove a product or by-product constituent from the fluid phase. Introduction and removal of the sorbent phase is accomplished through the use of feed screw mechanisms and multivane slurry valves. 3 figures.

  19. Injection-controlled laser resonator

    Science.gov (United States)

    Chang, J.J.

    1995-07-18

    A new injection-controlled laser resonator incorporates self-filtering and self-imaging characteristics with an efficient injection scheme. A low-divergence laser signal is injected into the resonator, which enables the injection signal to be converted to the desired resonator modes before the main laser pulse starts. This injection technique and resonator design enable the laser cavity to improve the quality of the injection signal through self-filtering before the main laser pulse starts. The self-imaging property of the present resonator reduces the cavity induced diffraction effects and, in turn, improves the laser beam quality. 5 figs.

  20. Advances in Process Intensification through Multifunctional Reactor Engineering

    Energy Technology Data Exchange (ETDEWEB)

    O' Hern, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Engineering Sciences Center; Evans, Lindsay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Materials Sciences and Engineering Center; Miller, Jim [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Materials Sciences and Engineering Center; Cooper, Marcia [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Energetic Components Realization Center; Torczynski, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pena, Donovan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gill, Walt [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Engineering Sciences Center

    2011-02-01

    This project was designed to advance the art of process intensification leading to a new generation of multifunctional chemical reactors utilizing pulse flow. Experimental testing was performed in order to fully characterize the hydrodynamic operating regimes associated with pulse flow for implementation in commercial applications. Sandia National Laboratories (SNL) operated a pilot-scale multifunctional reactor experiment for operation with and investigation of pulse flow operation. Validation-quality data sets of the fluid dynamics, heat and mass transfer, and chemical kinetics were acquired and shared with Chemical Research and Licensing (CR&L). Experiments in a two-phase air-water system examined the effects of bead diameter in the packing, and viscosity. Pressure signals were used to detect pulsing. Three-phase experiments used immiscible organic and aqueous liquids, and air or nitrogen as the gas phase. Hydrodynamic studies of flow regimes and holdup were performed for different types of packing, and mass transfer measurements were performed for a woven packing. These studies substantiated the improvements in mass transfer anticipated for pulse flow in multifunctional reactors for the acid-catalyzed C4 paraffin/olefin alkylation process. CR&L developed packings for this alkylation process, utilizing their alkylation process pilot facilities in Pasadena, TX. These packings were evaluated in the pilot-scale multifunctional reactor experiments established by Sandia to develop a more fundamental understanding of their role in process intensification. Lummus utilized the alkylation technology developed by CR&L to design and optimize the full commercial process utilizing multifunctional reactors containing the packings developed by CR&L and evaluated by Sandia. This hydrodynamic information has been developed for multifunctional chemical reactors utilizing pulse flow, for the acid-catalyzed C4 paraffin/olefin alkylation process, and is now accessible for use in

  1. SPS injection kicker magnet

    CERN Multimedia

    1975-01-01

    One of the first-generation SPS injection kicker magnets, view of the complete tank. First proton beam from the PS was injected into the SPS in 1976, at a beam momentum of 10 GeV/c. These kickers served until the end of 1979 and were replaced at the beginning of 1980 by stronger ones, in preparation for the SPS as a proton-antiproton collider. For this, transfer momentum from the PS to the SPS was raised to 26 GeV/c, so as to avoid acceleration of the dense p and pbar bunches through SPS transition energy. Bearded Roland Tröhler is at the left, Giacomo Busetta smiles at the right. See also 7502073X, 7502074X and Annual Report 1975, 162.

  2. Licensed reactor nuclear safety criteria applicable to DOE reactors

    Energy Technology Data Exchange (ETDEWEB)

    1991-04-01

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC (Nuclear Regulatory Commission) licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor.

  3. PS injection area

    CERN Multimedia

    1974-01-01

    Looking against the direction of protons in the main ring (left): the beam coming from the linac 1 either goes to the booster (on the right) or is deflected towards the PS to be directly injected into section 26 (facing the camera). Also shown the start of the TT2 line, ejected from straight section 16 to go towards the ISR passing over the beam line from the linac. (see Photo Archive 7409009)

  4. Injection moulding antireflective nanostructures

    DEFF Research Database (Denmark)

    Christiansen, Alexander Bruun; Clausen, Jeppe Sandvik; Mortensen, N. Asger;

    We present a method for injection moulding antireflective nanostructures on large areas, for high volume production. Nanostructured black silicon masters were fabricated by mask-less reactive ion etching, and electroplated with nickel. The nickel shim was antistiction coated and used...... index of the nanostructured surfaces was estimated from atomic force micrographs and the theoretical reflectance was calculated using the transfer matrix method and effective medium theory. The measured reflectance shows good agreement with the theory of graded index antireflective nanostructures...

  5. Injection-induced earthquakes.

    Science.gov (United States)

    Ellsworth, William L

    2013-07-12

    Earthquakes in unusual locations have become an important topic of discussion in both North America and Europe, owing to the concern that industrial activity could cause damaging earthquakes. It has long been understood that earthquakes can be induced by impoundment of reservoirs, surface and underground mining, withdrawal of fluids and gas from the subsurface, and injection of fluids into underground formations. Injection-induced earthquakes have, in particular, become a focus of discussion as the application of hydraulic fracturing to tight shale formations is enabling the production of oil and gas from previously unproductive formations. Earthquakes can be induced as part of the process to stimulate the production from tight shale formations, or by disposal of wastewater associated with stimulation and production. Here, I review recent seismic activity that may be associated with industrial activity, with a focus on the disposal of wastewater by injection in deep wells; assess the scientific understanding of induced earthquakes; and discuss the key scientific challenges to be met for assessing this hazard.

  6. Injection-induced earthquakes

    Science.gov (United States)

    Ellsworth, William L.

    2013-01-01

    Earthquakes in unusual locations have become an important topic of discussion in both North America and Europe, owing to the concern that industrial activity could cause damaging earthquakes. It has long been understood that earthquakes can be induced by impoundment of reservoirs, surface and underground mining, withdrawal of fluids and gas from the subsurface, and injection of fluids into underground formations. Injection-induced earthquakes have, in particular, become a focus of discussion as the application of hydraulic fracturing to tight shale formations is enabling the production of oil and gas from previously unproductive formations. Earthquakes can be induced as part of the process to stimulate the production from tight shale formations, or by disposal of wastewater associated with stimulation and production. Here, I review recent seismic activity that may be associated with industrial activity, with a focus on the disposal of wastewater by injection in deep wells; assess the scientific understanding of induced earthquakes; and discuss the key scientific challenges to be met for assessing this hazard.

  7. Reactor Physics Analysis Models for a CANDU Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok

    2007-10-15

    Canada deuterium uranium (CANDU) reactor physics analysis is typically performed in three steps. At first, macroscopic cross-sections of the reference lattice is produced by modeling the reference fuel channel. Secondly macroscopic cross-sections of reactivity devices in the reactor are generated. The macroscopic cross-sections of a reactivity device are calculated as incremental cross-sections by subtracting macroscopic cross-sections of a three-dimensional lattice without reactivity device from those of a three-dimensional lattice with a reactivity device. Using the macroscopic cross-sections of the reference lattice and incremental cross-sections of the reactivity devices, reactor physics calculations are performed. This report summarizes input data of typical CANDU reactor physics codes, which can be utilized for the future CANDU reactor physics analysis.

  8. Moderator configuration options for a low-enriched uranium fueled Kilowatt-class Space Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    King, Jeffrey C., E-mail: kingjc@mines.edu [Nuclear Science and Engineering Program, Colorado School of Mines (CSM), Golden, CO (United States); Mencarini, Leonardo de Holanda; Guimaraes, Lamartine N. F., E-mail: guimaraes@ieav.cta.br, E-mail: mencarini@ieav.cta.br [Instituto de Estudos Avancados (IEAV), Sao Jose dos Campos, SP (Brazil). Divisao de Energia Nuclear

    2015-07-01

    The Brazilian Air Force, through its Institute for Advanced Studies (Instituto de Estudos Avancados, IEAv/DCTA), and the Colorado School of Mines (CSM) are studying the feasibility of a space nuclear reactor with a power of 1-5 kW{sub e} and fueled with Low-Enriched Uranium (LEU). This type of nuclear reactor would be attractive to signatory countries of the Non-Proliferation Treaty (NPT) or commercial interests. A LEU-fueled space reactor would avoid the security concerns inherent with Highly Enriched Uranium (HEU) fuel. As an initial step, the HEU-fueled Kilowatt Reactor Using Stirling Technology (KRUSTY) designed by the Los Alamos National Laboratory serves as a basis for a similar reactor fueled with LEU fuel. Using the computational code MCNP6 to predict the reactor neutronics performance, the size of the resulting reactor fueled with 19.75 wt% enriched uranium-10 wt% molybdenum alloy fuel is adjusted to match the excess reactivity of KRUSTY. Then, zirconium hydride moderator is added to the core to reduce the size of the reactor. This work presents the preliminary results of the computational modeling, with special emphasis on the comparison between homogeneous and heterogeneous moderator systems, in terms of the core diameter required to meet a specific multiplication factor (k{sub eff} = 1.035). This comparison illustrates the impact of moderator configuration on the size and performance of a LEU-fueled kilowatt-class space nuclear reactor. (author)

  9. The Radon Monitoring System in Daya Bay Reactor Neutrino Experiment

    CERN Document Server

    Chu, M C; Kwok, M W; Kwok, T; Leung, J K C; Leung, K Y; Lin, Y C; Luk, K B; Pun, C S J

    2016-01-01

    We developed a highly sensitive, reliable and portable automatic system (H$^{3}$) to monitor the radon concentration of the underground experimental halls of the Daya Bay Reactor Neutrino Experiment. H$^{3}$ is able to measure radon concentration with a statistical error less than 10\\% in a 1-hour measurement of dehumidified air (R.H. 5\\% at 25$^{\\circ}$C) with radon concentration as low as 50 Bq/m$^{3}$. This is achieved by using a large radon progeny collection chamber, semiconductor $\\alpha$-particle detector with high energy resolution, improved electronics and software. The integrated radon monitoring system is highly customizable to operate in different run modes at scheduled times and can be controlled remotely to sample radon in ambient air or in water from the water pools where the antineutrino detectors are being housed. The radon monitoring system has been running in the three experimental halls of the Daya Bay Reactor Neutrino Experiment since November 2013.

  10. Effect of airflow on biodrying of gardening wastes in reactors

    Institute of Scientific and Technical Information of China (English)

    F.J.Colomer-Mendoza; L.Herrera-Prats; F.Robles-Martínez; A.Gallardo-Izquierdo; A.B.Pi(n)a-Guzmán

    2013-01-01

    Biodrying consists of reducing moisture by using the heat from aerobic bio-degradation.The parameters that control the process are:aeration,temperature during the process,initial moisture of biowaste,and temperature and relative humidity of the input air.Lawn mowing and garden waste from the gardens of the University Jaume I,Castellón (Spain) were used as a substrate.Biodrying was performed in 10 reactors with known air volumes from 0.88 to 6.42 L/(min·kg dry weight).To promote aeration,5 of the reactors had 15% of a bulking agent added.The experiment lasted 20 days.After the experiments it was found that the bulking agent led to greater weight loss.However,the increased airflow rate was not linearly proportional to the weight loss.

  11. Experimental Study of a Photocatalytic Reactor for Trace Formaldehyde Removal

    Institute of Scientific and Technical Information of China (English)

    LIU Hong-min; LIAN Zhi-wei; YE Xiao-jiang; SHANG-GUAN Wen-feng

    2005-01-01

    Formaldehyde is the key contaminant influencing building occupants' health in indoor environment. In order to reduce occupants' exposures to formaldehyde, a newly designed photocatalytic reactor was applied in a dynamic HVAC(heating, ventilation and air conditioning) system. The experiments were carried out for the removal of formaldehyde present in air at low parts per million (ppm) concentrations.The initial formaldehyde concentrations were set as1.59 ppm and 0.27 ppm respectively, based on the formaldehyde levels in the polluted places. Experimental results show that the photocatalytic reactor is effective on formaldehyde photodegradation, causes a low pressure drop, and does not make the second pollution of ozone. The kinetic analysis indicates that the kinetics for oxidation processes can be fitted well by a pseudo-first-order kinetic model deduced from Langmuir - Hinshelwood (L-H) model.

  12. Effect of airflow on biodrying of gardening wastes in reactors.

    Science.gov (United States)

    Colomer-Mendoza, F J; Herrera-Prats, L; Robles-Martínez, F; Gallardo-Izquierdo, A; Piña-Guzmán, A B

    2013-05-01

    Biodrying consists of reducing moisture by using the heat from aerobic bio-degradation. The parameters that control the process are: aeration, temperature during the process, initial moisture of biowaste, and temperature and relative humidity of the input air. Lawn mowing and garden waste from the gardens of the University Jaume I, Castellón (Spain) were used as a substrate. Biodrying was performed in 10 reactors with known air volumes from 0.88 to 6.42 L/(min x kg dry weight). To promote aeration, 5 of the reactors had 15% of a bulking agent added. The experiment lasted 20 days. After the experiments it was found that the bulking agent led to greater weight loss. However, the increased airflow rate was not linearly proportional to the weight loss.

  13. Interfacial reaction using particle-immobilized reagents in a fluidized reactor. Determination of glycerol in biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Shishov, Andrey, E-mail: andrey.shishov.rus@gmail.com [Institute of Chemistry, Saint Petersburg State University, RU–198504 Saint Petersburg (Russian Federation); Zabrodin, Andrey; Moskvin, Leonid [Institute of Chemistry, Saint Petersburg State University, RU–198504 Saint Petersburg (Russian Federation); Andruch, Vasil [Department of Analytical Chemistry, University of P.J. Šafárik, SK-04154 Košice (Slovakia); Bulatov, Andrey [Institute of Chemistry, Saint Petersburg State University, RU–198504 Saint Petersburg (Russian Federation)

    2016-03-31

    A novel fluidized beads strategy for utilization of particle-immobilized reagents in flow analysis was developed in this study. The performance of the suggested strategy was demonstrated by the determination of glycerol in biodiesel. This analytical task was used as a proof-of-concept example. The method is based on on-line extraction of glycerol from biodiesel into aqueous stationary phase of extraction-chromatographic column, followed by elution and spectrophotometric determination in the form of copper glycerate formed in a fluidized reactor of stepwise injection system. The floating of cation exchange resin Dowex{sup ®} 50WX4, saturated with Cu(II) ions in liquid phase, was accomplished by air-bubbling. The linear range was from 100 to 1000 mg kg{sup −1}, and the limit of detection, calculated as 3s of a blank test (n = 5), was found to be 30 mg kg{sup −1}. The method was successfully applied to the analysis of biodiesel and biodiesel-blend (B 20) samples. - Highlights: • Novel fluidized beds strategy for utilization of particle-immobilized reagents. • First application of fluidized beds condition in SWIA. • Novel approach based on interfacial formation of copper glycerate. • Automated method for glycerol determination in biodiesel.

  14. Interfacial reaction using particle-immobilized reagents in a fluidized reactor. Determination of glycerol in biodiesel.

    Science.gov (United States)

    Shishov, Andrey; Zabrodin, Andrey; Moskvin, Leonid; Andruch, Vasil; Bulatov, Andrey

    2016-03-31

    A novel fluidized beads strategy for utilization of particle-immobilized reagents in flow analysis was developed in this study. The performance of the suggested strategy was demonstrated by the determination of glycerol in biodiesel. This analytical task was used as a proof-of-concept example. The method is based on on-line extraction of glycerol from biodiesel into aqueous stationary phase of extraction-chromatographic column, followed by elution and spectrophotometric determination in the form of copper glycerate formed in a fluidized reactor of stepwise injection system. The floating of cation exchange resin Dowex(®) 50WX4, saturated with Cu(II) ions in liquid phase, was accomplished by air-bubbling. The linear range was from 100 to 1000 mg kg(-1), and the limit of detection, calculated as 3s of a blank test (n = 5), was found to be 30 mg kg(-1). The method was successfully applied to the analysis of biodiesel and biodiesel-blend (B 20) samples.

  15. Validation of Reactor Physics-Thermal hydraulics Calculations for Research Reactors Cooled by the Laminar Flow of Water

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, K. A.; Schubring, D. [Univ. of Florida, Florida (United States); Girardin, G.; Pautz, A. [Swiss Federal Institute of Technology, Zuerich (Switzerland)

    2013-07-01

    A collaboration between the University of Florida and the Swiss Federal Institute of Technology, Lausanne (EPFL) has been formed to develop and validate detailed coupled multiphysics models of the zero-power (100 W) CROCUS reactor at EPFL and the 100 kW University of Florida Training Reactor, for the comprehensive analysis of the reactor behavior under transient (neutronic or thermal-hydraulic induced) conditions. These two reactors differ significantly in the core design and thermal power output, but share unique heat transfer and flow characteristics. They are characterized by single-phase laminar water flow at near-atmospheric pressures in complex geometries with the possibility of mechanically entrained air bubbles. Validation experiments will be designed to expand the validation domain of these existing models, computational codes and techniques. In this process, emphasis will be placed on validation of the coupled models developed to gain confidence in their applicability for safety analysis. EPFL is responsible for the design and implementation of transient experiments to generate a database of reactor parameters (flow distribution, power profile, and power evolution) to be used to validate against code predictions. The transient experiments performed at EPFL will be simulated on the basis of developed models for these tasks. Comparative analysis will be performed with SERPENT and MCNPX reference core models. UF focuses on the generation of the coupled neutron kinetics and thermal-hydraulic models, including implementation of a TRACE/PARCS reactor simulator model, a PARET model, and development of full-field computational fluid dynamics models (using OpenFOAM) for refined thermal-hydraulics physics treatments. In this subtask of the project, the aim is to verify by means of CFD the validity of TRACE predictions for near-atmospheric pressure water flow in the presence of mechanically entrained air bubbles. The scientific understanding of these multiphysics

  16. Automated dual capillary electrophoresis system with hydrodynamic injection for the concurrent determination of cations and anions

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Thi Thanh Thuy; Mai, Thanh Duc [University of Basel, Department of Chemistry, Spitalstrasse 51, Basel 4056 (Switzerland); Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Nguyen, Thanh Dam [Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Sáiz, Jorge [Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering – University of Alcalá, Ctra. Madrid-Barcelona km 33.6, Alcalá de Henares, Madrid 28871 (Spain); Pham, Hung Viet, E-mail: phamhungviet@hus.edu.vn [Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Nguyen Trai Street 334, Hanoi (Viet Nam); Hauser, Peter C., E-mail: Peter.Hauser@unibas.ch [University of Basel, Department of Chemistry, Spitalstrasse 51, Basel 4056 (Switzerland)

    2014-09-02

    Highlights: • Concurrent determination of cations and anions was carried out by electrophoretic separation. • Optimized conditions for each class of analystes was possible by using separate capillaries. • Simultaneous hydrodynamic injection was carried out. • Pneumatic actuation was used for flushing and sample handling. • The denitrification of drinking water was successfully demonstrated. - Abstract: The capillary electrophoresis instrument developed for the concurrent determination of cations and anions features two separate capillaries and individual detectors to allow independent optimization for each group of ions. The capillaries are joined in a common injector block. The sample is drawn into the injector with a small membrane pump and automated simultaneous injection into both capillaries is achieved by pressurization of the fluid with compressed air. Flushing of the injector and of the capillaries with the background electrolyte is also carried out automatically by the same means. The buffer consisted of 12 mM histidine and 2 mM 18-crown-6 adjusted to pH 4 with acetic acid and was suitable for the contactless conductivity detection employed. The system was optimized for the determination of cationic NH{sub 4}{sup +} and anionic NO{sub 3}{sup −} and NO{sub 2}{sup −}, and linear calibration curves from about 20 μM up to about 1.5 mM were obtained for these ions. In a test run over 8 h, the reproducibility for the peak areas was within ±7%. For demonstration, the instrument was successfully applied to the concurrent monitoring of the concentrations of the three ions during the biological removal of ammonium from contaminated groundwater in a sequencing batch reactor, where NO{sub 3}{sup −} and NO{sub 2}{sup −} are formed as intermediate products.

  17. The effect of injection pressure on spread of the jet, formation of the mixture and engine parameters of a direct injection Diesel engine. Einfluss des Einspritzdruckes auf Strahlausbreitung, Gemischbildung und Motorkennwerte eines direkt einspritzenden Dieselmotors

    Energy Technology Data Exchange (ETDEWEB)

    Binder, K.

    1992-07-31

    By increasing the injection pressure, the air/fuel ratio in the fuel jet is raised. The increased air supply in the injected jet, together with a drop spectrum displaced in the direction of smaller fuel drops leads to a quicker evaporation of the fuel. As the injection retardation is simultaneously reduced, one can achieve lower emission of nitrogen oxide without disadvantage in the fuel consumption. (orig./HW).

  18. Amphotericin B Lipid Complex Injection

    Science.gov (United States)

    Amphotericin B lipid complex injection is used to treat serious, possibly life-threatening fungal infections in people who did not respond ... to tolerate conventional amphotericin B therapy. Amphotericin B lipid complex injection is in a class of medications ...

  19. COUNTERCURRENT FLOW LIMITATION EXPERIMENTS AND MODELING FOR IMPROVED REACTOR SAFETY

    Energy Technology Data Exchange (ETDEWEB)

    Vierow, Karen

    2008-09-26

    This project is investigating countercurrent flow and “flooding” phenomena in light water reactor systems to improve reactor safety of current and future reactors. To better understand the occurrence of flooding in the surge line geometry of a PWR, two experimental programs were performed. In the first, a test facility with an acrylic test section provided visual data on flooding for air-water systems in large diameter tubes. This test section also allowed for development of techniques to form an annular liquid film along the inner surface of the “surge line” and other techniques which would be difficult to verify in an opaque test section. Based on experiences in the air-water testing and the improved understanding of flooding phenomena, two series of tests were conducted in a large-diameter, stainless steel test section. Air-water test results and steam-water test results were directly compared to note the effect of condensation. Results indicate that, as for smaller diameter tubes, the flooding phenomena is predominantly driven by the hydrodynamics. Tests with the test sections inclined were attempted but the annular film was easily disrupted. A theoretical model for steam venting from inclined tubes is proposed herein and validated against air-water data. Empirical correlations were proposed for air-water and steam-water data. Methods for developing analytical models of the air-water and steam-water systems are discussed, as is the applicability of the current data to the surge line conditions. This report documents the project results from July 1, 2005 through June 30, 2008.

  20. Brookhaven leak reactor to close

    CERN Multimedia

    MacIlwain, C

    1999-01-01

    The DOE has announced that the High Flux Beam Reactor at Brookhaven is to close for good. Though the news was not unexpected researchers were angry the decision had been taken before the review to assess the impact of reopening the reactor had been concluded (1 page).