WorldWideScience

Sample records for air flow rate

  1. Design and Implementation of Automatic Air Flow Rate Control System

    Science.gov (United States)

    Akbar, A.; Saputra, C.; Munir, M. M.; Khairurrijal

    2016-08-01

    Venturimeter is an apparatus that can be used to measure the air flow rate. In this experiment we designed a venturimeter which equipped with a valve that is used to control the air flow rate. The difference of pressure between the cross sections was measured with the differential pressure sensor GA 100-015WD which can calculate the difference of pressures from 0 to 3737.33 Pa. A 42M048C Z36 stepper motor was used to control the valve. The precision of this motor rotation is about 0.15 °. A Graphical User Interface (GUI) was developed to monitor and set the value of flow rate then an 8-bit microcontroller was used to process the control system In this experiment- the venturimeter has been examined to get the optimal parameter of controller. The results show that the controller can set the stable output air flow rate.

  2. Relationship between Formation Water Rate, Equivalent Penetration Rate and Volume Flow Rate of Air in Air Drilling

    Institute of Scientific and Technical Information of China (English)

    Wang Kexiong; Zhang Laibin; Jiang Hongwei

    2007-01-01

    Formation water invasion is the most troublesome problem associated with air drilling. However, it is not economical to apply mist drilling when only a small amount of water flows into wellbore from formation during air drilling. Formation water could be circulated out of the wellbore through increasing the gas injection rate. In this paper,the Angel model was modified by introducing Nikurade friction factor for the flow in coarse open holes and translating formation water rate into equivalent penetration rate. Thus the distribution of annular pressure and the relationship between minimum air injection rate and formation water rate were obtained. Real data verification indicated that the modified model is more accurate than the Angel model and can provide useful information for air drilling.

  3. Comparison of deliverable and exhaustible pressurized air flow rates in laboratory gloveboxes

    International Nuclear Information System (INIS)

    Calculations were performed to estimate the maximum credible flow rates of pressurized air into Plutonium Process Support Laboratories gloveboxes. Classical equations for compressible fluids were used to estimate the flow rates. The calculated maxima were compared to another's estimates of glovebox exhaust flow rates and corresponding glovebox internal pressures. No credible pressurized air flow rate will pressurize a glovebox beyond normal operating limits. Unrestricted use of the pressurized air supply is recommended

  4. Litter ammonia losses amplified by higher air flow rates

    Science.gov (United States)

    ABSTRACT Broiler litter utilization has largely been associated with land application as fertilizer. Reducing ammonia (NH3) released from litter enhances its fertilizer value and negates detrimental impacts to the environment. A laboratory study was conducted to quantify the effect of air flow var...

  5. Measurement and Modelling of Air Flow Rate in a Naturally Ventilated Double Skin Facade

    DEFF Research Database (Denmark)

    Heiselberg, Per; Kalyanova, Olena; Jensen, Rasmus Lund

    2008-01-01

    Air flow rate in a naturally ventilated double skin façade (DSF) is extremely difficult to measure due to the stochastic nature of wind, and as a consequence non-uniform and dynamic flow conditions. This paper describes the results of two different methods to measure the air flow in a full...... by the thermal simulation program, BSim, based on measured weather boundary conditions are compared to the measured air temperature, temperature gradient and mass flow rate in the DSF cavity. The results show that it is possible to predict the temperature distribution and airflow in the DSF although some...

  6. Effect of air-flow rate and turning frequency on bio-drying of dewatered sludge.

    Science.gov (United States)

    Zhao, Ling; Gu, Wei-Mei; He, Pin-Jing; Shao, Li-Ming

    2010-12-01

    Sludge bio-drying is an approach for biomass energy utilization, in which sludge is dried by means of the heat generated by aerobic degradation of its organic substances. The study aimed at investigating the interactive influence of air-flow rate and turning frequency on water removal and biomass energy utilization. Results showed that a higher air-flow rate (0.0909m(3)h(-1)kg(-1)) led to lower temperature than did the lower one (0.0455m(3)h(-1)kg(-1)) by 17.0% and 13.7% under turning per two days and four days. With the higher air-flow rate and lower turning frequency, temperature cumulation was almost similar to that with the lower air-flow rate and higher turning frequency. The doubled air-flow rate improved the total water removal ratio by 2.86% (19.5gkg(-1) initial water) and 11.5% (75.0gkg(-1) initial water) with turning per two days and four days respectively, indicating that there was no remarkable advantage for water removal with high air-flow rate, especially with high turning frequency. The heat used for evaporation was 60.6-72.6% of the total heat consumption (34,400-45,400kJ). The higher air-flow rate enhanced volatile solids (VS) degradation thus improving heat generation by 1.95% (800kJ) and 8.96% (3200kJ) with turning per two days and four days. With the higher air-flow rate, heat consumed by sensible heat of inlet air and heat utilization efficiency for evaporation was higher than the lower one. With the higher turning frequency, sensible heat of materials and heat consumed by turning was higher than lower one.

  7. Measurement of Air Flow Rate in a Naturally Ventilated Double Skin Facade

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Jensen, Rasmus Lund; Heiselberg, Per

    2007-01-01

    Air flow rate in a naturally ventilated space is extremely difficult to measure due to the stochastic nature of wind, and as a consequence non-uniform and dynamic flow conditions. This paper describes three different methods to measure the air flow in a full-scale outdoor test facility...... with a naturally ventilated double skin façade. In the first method, the air flow in the cavity is estimated on the basis of six measured velocity profiles. The second method is represented by constant injection of tracer gas and in the third method a measured relation in the laboratory is used to estimate...... the flow rate on the basis of continues measurement of the pressure difference between the surface pressure at the opening and inside pressure of the double skin façade. Although all three measurement methods are difficult to use under such dynamic air flow conditions, two of them show reasonable agreement...

  8. A study of pipe flow rate measurement using air-coupled ultrasound

    International Nuclear Information System (INIS)

    A non-contact flow meter employing air-coupled ultrasound is developed in this research. Ultrasonic flow meter is applied to the higher accuracy flow rate measurement, compared with pressure difference flow meter. However, ultrasonic flow meter has difficulty to measure in severe conditions such as in the condition of high temperature, high pressure condition, and radioactive materials in fluid. Especially, in high temperature condition, piezoelectric device in ultrasonic sensors lose the piezoelectricity, and it becomes difficult to transmit or detect ultrasound. Thus, in this research, ultrasonic sensors are fixed in the air. Ultrasonic sensors transmit and detect ultrasound through air, and measure the flow rate in the pipe. However, most of ultrasound is refracted and reflected at the boundaries between air and the pipe. And detected signals are weak. To increase the signal level, we developed focusing ultrasonic sensors that was optimized for the pipe flow measurement. And employing these focusing sensors the flow rate measurement has been done in order to evaluate the air-coupled ultrasonic flow meter by the ultrasonic beam focusing technique. (author)

  9. Air cleaning efficiency of deodorant materials under dynamic conditions: effect of air flow rate

    DEFF Research Database (Denmark)

    Mizutani, Chiyomi; Bivolarova, Mariya Petrova; Melikov, Arsen Krikor;

    2014-01-01

    was evaluated as deodorant materials neutralising ammonia in air. The deodorant material efficiency was tested in a special experimental set-up consisting of a straight pipe section, an ammonia gas generator, a fan and a textile frame. The deodorant materials, placed in the pipe, were exposed to a flow of air......Unpleasant odor is a serious problem in hospitals and elderly facilities. One of the unpleasant odors is ammonia originating from human urine and sweat. The air cleaning efficiency of porous activated carbon fiber fabric which has been treated with acid, and porous activated carbon fiber fabric...

  10. Influence of the mass flow rate of secondary air on the gas/particle flow characteristics in the near-burner region of a double swirl flow burner

    Energy Technology Data Exchange (ETDEWEB)

    Jing, J.P.; Li, Z.Q.; Wang, L.; Chen, Z.C.; Chen, L.Z.; Zhang, F.C. [Harbin Institute of Technology, Harbin (China)

    2011-06-15

    The influence of the mass flow rate of secondary air on the gas/particle flow characteristics of a double swirl flow burner, in the near-burner region, was measured by a three-component particle-dynamics anemometer, in conjunction with a gas/particle two-phase test facility. Velocities, particle volume flux profiles, and normalized particle number concentrations were obtained. The relationship between the gas/particle flows and the combustion characteristics of the burners was discussed. For different mass flow rates of secondary air, annular recirculation zones formed only in the region of r/d=0.3-0.6 at x/d=0.1-0.3. With an increasing mass flow rate of secondary air, the peaks of the root mean square (RMS) axial fluctuating velocities, radial mean velocities, RMS radial fluctuating velocities, and tangential velocities all increased, while the recirculation increased slightly. There was a low particle volume flux in the central zone of the burner. At x/d=0.1-0.7, the profiles of particle volume flux had two peaks in the secondary air flow zone near the wall. With an increasing mass flow rate of secondary air, the peak of particle volume flux in the secondary air flow zone decreased, but the peak of particle volume flux near the wall increased. In section x/d=0.1-0.5, the particle diameter in the central zone of the burner was always less than the particle diameter at other locations.

  11. Effects of Temperature, Humidity and Air Flow on Fungal Growth Rate on Loaded Ventilation Filters.

    Science.gov (United States)

    Tang, W; Kuehn, T H; Simcik, Matt F

    2015-01-01

    This study compares the fungal growth ratio on loaded ventilation filters under various temperature, relative humidity (RH), and air flow conditions in a controlled laboratory setting. A new full-size commercial building ventilation filter was loaded with malt extract nutrients and conidia of Cladosporium sphaerospermum in an ASHRAE Standard 52.2 filter test facility. Small sections cut from this filter were incubated under the following conditions: constant room temperature and a high RH of 97%; sinusoidal temperature (with an amplitude of 10°C, an average of 23°C, and a period of 24 hr) and a mean RH of 97%; room temperature and step changes between 97% and 75% RH, 97% and 43% RH, and 97% and 11% RH every 12 hr. The biomass on the filter sections was measured using both an elution-culture method and by ergosterol assay immediately after loading and every 2 days up to 10 days after loading. Fungal growth was detected earlier using ergosterol content than with the elution-culture method. A student's t-test indicated that Cladosporium sphaerospermum grew better at the constant room temperature condition than at the sinusoidal temperature condition. By part-time exposure to dry environments, the fungal growth was reduced (75% and 43% RH) or even inhibited (11% RH). Additional loaded filters were installed in the wind tunnel at room temperature and an RH greater than 95% under one of two air flow test conditions: continuous air flow or air flow only 9 hr/day with a flow rate of 0.7 m(3)/s (filter media velocity 0.15 m/s). Swab tests and a tease mount method were used to detect fungal growth on the filters at day 0, 5, and 10. Fungal growth was detected for both test conditions, which indicates that when temperature and relative humidity are optimum, controlling the air flow alone cannot prevent fungal growth. In real applications where nutrients are less sufficient than in this laboratory study, fungal growth rate may be reduced under the same operating conditions.

  12. Influence of air flow rate and backwashing on the hydraulic behaviour of a submerged filter.

    Science.gov (United States)

    Cobos-Becerra, Yazmin Lucero; González-Martínez, Simón

    2013-01-01

    The aim of this study was to evaluate backwashing effects on the apparent porosity of the filter media and on the hydraulic behaviour of a pilot scale submerged filter, prior to biofilm colonization, under different hydraulic retention times, and different air flow rates. Tracer curves were analysed with two mathematical models for ideal and non-ideal flow (axial dispersion and Wolf and Resnick models). The filter media was lava stones sieved to 4.5 mm. Backwashing causes attrition of media particles, decreasing the void volume of the filter media and, consequently, the tracer flow is more uniform. The eroded media presented lower dead volumes (79% for the filter with aeration and 8% for the filter without aeration) compared with the new media (83% for the filter with aeration and 22% for the filter without aeration). The flow patterns of eroded and new media were different because the more regular shape of the particles decreases the void volume of the filter media. The dead volume is attributed, in the case of the filter with aeration, to the turbulence caused by the air bubbles that generate preferential channelling of the bulk liquid along the filter media, creating large zones of stagnant liquid and, for the filter without aeration, to the channels formed due to the irregular shaped media.

  13. Effects of oblique air flow on burning rates of square ethanol pool fires.

    Science.gov (United States)

    Tao, Changfa; He, Yaping; Li, Yuan; Wang, Xishi

    2013-09-15

    The effects of downward airflow on the burning rate and/or burning intensity of square alcohol pool fires for different airflow speeds and directions have been studied experimentally in an inclined wind tunnel. An interesting flame-wrapping phenomenon, caused by impingement of air flow, was observed. The mass burning intensity was found to increase with the airflow speed and the impinging angle. The fuel pan rim temperatures were also measured to study the effect of wind direction and speed on heat transfer from the flame to the fuel source. A model based on heat transfer analysis was developed to correlate the burning intensity with the pan rim characteristic temperature. A good correlation was established between the model results and the experimental results.

  14. The influence of surface sorption and air flow rate on phthalate emissions from vinyl flooring: Measurement and modeling

    Science.gov (United States)

    Liang, Yirui; Xu, Ying

    2015-02-01

    This study investigated the influences of surface sorption and air flow rate on the emission of phthalates from building materials. Controlled tests were conducted in specially designed stainless steel and wood chambers, and the steady-state concentration in the stainless steel chamber was about 2-3 times higher than that in the wood chamber for di(2-ethylhexyl) phthalate (DEHP) and diisononyl phthalate (DINP). The emission rate of phthalates increased in the wood chamber due to the diffusion mass flow through the chamber wall (i.e., surface absorption). The adsorption isotherm of phthalates on the stainless steel surface and the absorption parameters (i.e., diffusion and partition coefficients) of phthalates on the wood surface were determined experimentally, and the values were comparable to those in the literature. The equilibration time scale for phthalates absorbed to the sink reservoir in actual indoor environments was estimated and can be substantial (approximately 80 years), indicating that surface absorption may continuously drive phthalates from their indoor sources to various sinks and thus significantly increase the emission rate of phthalates. The gas-phase concentration of DEHP was measured in two stainless steel chambers operated at flow rates of 300 mL/min and 3000 mL/min, respectively, which were both adjusted to 1000 mL/min after steady state was reached. The gas-phase concentration of DEHP in the chamber was very sensitive to the chamber air flow rate, and higher air flow rates resulted in lower concentration levels. However, the increased emission rate compensated for the dilution in the gas phase and made the DEHP concentration not drop substantially with an increase in the air flow rate. Independently measured or calculated parameters were used to validate a semi-volatile organic compounds (SVOCs) emission model that included absorptive surfaces and for a range of air flow rates, with excellent agreement between the model predictions and the

  15. Investigation of oil-air two-phase mass flow rate measurement using Venturi and void fraction sensor

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-jian; YUE Wei-ting; HUANG Zhi-yao

    2005-01-01

    Oil-air two-phase flow measurement was investigated with a Venturi and void fraction meters in this work. This paper proposes a new flow rate measurement correlation in which the effect of the velocity ratio between gas and liquid was considered.With the pressure drop across the Venturi and the void fraction that was measured by electrical capacitance tomography apparatus,both mixture flow rate and oil flow rate could be obtained by the correlation. Experiments included bubble-, slug-, wave and annular flow with the void fraction ranging from 15% to 83%, the oil flow rate ranging from 0.97 kg/s to 1.78 kg/s, the gas flow rate ranging up to 0.018 kg/s and quality ranging nearly up to 2.0%. The root-mean-square errors of mixture mass flow rate and that ofoil mass flow rate were less than 5%. Furthermore, coefficients of the correlation were modified based on flow regimes, with the results showing reduced root-mean-square errors.

  16. Influence of liquid and gas flow rates on sulfuric acid mist removal from air by packed bed tower

    Directory of Open Access Journals (Sweden)

    Jafari Mohammad Javad

    2012-12-01

    Full Text Available Abstract The possible emission of sulfuric acid mists from a laboratory scale, counter-current packed bed tower operated with a caustic scrubbing solution was studied. Acid mists were applied through a local exhaust hood. The emissions from the packed bed tower were monitored in three different categories of gas flow rate as well as three liquid flow rates, while other influencing parameters were kept almost constant. Air sampling and sulfuric acid measurement were carried out iso-kinetically using USEPA method 8. The acid mists were measured by the barium-thorin titration method. According to the results when the gas flow rate increased from 10 L/s to 30 L/s, the average removal efficiency increased significantly (p 3, respectively. L/G of 2–3 was recommended for designing purposes of a packed tower for sulfuric acid mists and vapors removal from contaminated air stream.

  17. Improvement of uniformity in cultivation environment and crop growth rate by hybrid control of air flow devices

    Institute of Scientific and Technical Information of China (English)

    BAEK Min-Seon; KWON Sook-Youn; LIM Jae-Hyun

    2015-01-01

    A complete control type plant factory has high efficiency in terms of cultivation area by constructing vertical multiple layered cultivation beds. However, it has a problem of irregular crop growth due to temperature deviation at upper and lower beds and increases in energy consumption by a prolonged cultivation period. In this work, air flow rate inside a facility was improved by a hybrid control of air flow devices like air conditioning and air circulation fan with an established wireless sensor network to minimize temperature deviations between upper and lower beds and to promote crop growth. The performance of proposed system was verified with an experimental environment or Case A wherein air conditioning device was operated without a control algorithm and Case B wherein air conditioning and circulation fans were alternatively operated based on the hybrid control algorithm. After planting leafy vegetables under each experimental condition, crops were cultivated for 21 days. As a result, Case B wherein AC (air conditioning) and ACF (air-circulation fan) were alternatively operated based on the hybrid control algorithm showed that fresh mass, number of leaves, and leaf length for the crops grown were increased by 40.6%, 41.1%, and 11.1%, respectively, compared to Case A.

  18. Gas phase dispersion in compost as a function of different water contents and air flow rates

    Science.gov (United States)

    Sharma, Prabhakar; Poulsen, Tjalfe G.

    2009-07-01

    Gas phase dispersion in a natural porous medium (yard waste compost) was investigated as a function of gas flow velocity and compost volumetric water content using oxygen and nitrogen as tracer gases. The compost was chosen because it has a very wide water content range and because it represents a wide range of porous media, including soils and biofilter media. Column breakthrough curves for oxygen and nitrogen were measured at relatively low pore gas velocities, corresponding to those observed in for instance soil vapor extraction systems or biofilters for air cleaning at biogas plants or composting facilities. Total gas mechanical dispersion-molecular diffusion coefficients were fitted from the breakthrough curves using a one-dimensional numerical solution to the advection-dispersion equation and used to determine gas dispersivities at different volumetric gas contents. The results showed that gas mechanical dispersion dominated over molecular diffusion with mechanical dispersion for all water contents and pore gas velocities investigated. Importance of mechanical dispersion increased with increasing pore gas velocity and compost water content. The results further showed that gas dispersivity was relatively constant at high values of compost gas-filled porosity but increased with decreasing gas-filled porosity at lower values of gas-filled porosity. Results finally showed that measurement uncertainty in gas dispersivity is generally highest at low values of pore gas velocity.

  19. The role of loading rate, backwashing, water and air velocities in an up-flow nitrifying tertiary filter.

    Science.gov (United States)

    Vigne, Emmanuelle; Choubert, Jean-Marc; Canler, Jean-Pierre; Heduit, Alain; Sørensen, Kim Helleshøj; Lessard, Paul

    2011-01-01

    The vertical distribution of nitrification performances in an up-flow biological aerated filter operated at tertiary nitrification stage is evaluated in this paper. Experimental data were collected from a semi-industrial pilot-plant under various operating conditions. The actual and the maximum nitrification rates were measured at different levels inside the up-flow biofilter. A nitrogen loading rate higher than 1.0 kg NH4-Nm(-3)_mediad(-1) is necessary to obtain nitrification activity over all the height of the biofilter. The increase in water and air velocities from 6 to 10 m h(-1) and 10 to 20 m h(-1) has increased the nitrification rate by 80% and 20% respectively. Backwashing decreases the maximum nitrification rate in the media by only 3-14%. The nitrification rate measured at a level of 0.5 m above the bottom of the filter is four times higher than the applied daily average volumetric nitrogen loading rate up to 1.5 kg NH4-N m(-3)_mediad(-1). Finally, it is shown that 58% of the available nitrification activity is mobilized in steady-state conditions while up to 100% is used under inflow-rate increase.

  20. Air and Water Flow Rate Optimisation For a Fan Coil Unit in Heat Pump Applications

    OpenAIRE

    Edwards, Killian C.; Finn, Donal

    2012-01-01

    The degradation in efficiency of auxiliary components in heating/cooling systems when operating at part load is frequently reported. Through the use of variable speed components, the supplied capacity can be reduced to match the required load and hence reduce unnecessary energy consumption. However, for fan coil units, difficulties can arisewhen optimizing fan and pump speeds at part load. Practicallylocating optimal water and air flowrates from readily available information and for varying s...

  1. Biodrying of sewage sludge: kinetics of volatile solids degradation under different initial moisture contents and air-flow rates.

    Science.gov (United States)

    Villegas, Manuel; Huiliñir, Cesar

    2014-12-01

    This study focuses on the kinetics of the biodegradation of volatile solids (VS) of sewage sludge for biodrying under different initial moisture contents (Mc) and air-flow rates (AFR). For the study, a 3(2) factorial design, whose factors were AFR (1, 2 or 3L/minkgTS) and initial Mc (59%, 68% and 78% w.b.), was used. Using seven kinetic models and a nonlinear regression method, kinetic parameters were estimated and the models were analyzed with two statistical indicators. Initial Mc of around 68% increases the temperature matrix and VS consumption, with higher moisture removal at lower initial Mc values. Lower AFRs gave higher matrix temperatures and VS consumption, while higher AFRs increased water removal. The kinetic models proposed successfully simulate VS biodegradation, with root mean square error (RMSE) between 0.007929 and 0.02744, and they can be used as a tool for satisfactory prediction of VS in biodrying.

  2. Influence of specimen size, tray inclination and air flow rate on the emission of gases from biomass combustion

    Science.gov (United States)

    Amorim, E. B.; Carvalho, J. A.; Soares Neto, T. G.; Anselmo, E.; Saito, V. O.; Dias, F. F.; Santos, J. C.

    2013-08-01

    Experiments of biomass combustion were performed to determine whether specimen size, tray inclination, or combustion air flow rate was the factor that most affects the emission of carbon dioxide, carbon monoxide, and methane. The chosen biomass was Eucalyptus citriodora, a very abundant species in Brazil, utilized in many industrial applications, including combustion for energy generation. Analyses by gas chromatograph and specific online instruments were used to determine the concentrations of the main emitted gases, and the following figures were found for the emission factors: 1400 ± 101 g kg-1 of CO2, 50 ± 13 g kg-1 of CO, and 3.2 ± 0.5 g kg-1 of CH4, which agree with values published in the literature for biomass from the Amazon rainforest. Statistical analysis of the experiments determined that specimen size most significantly affected the emission of gases, especially CO2 and CO.

  3. Effect of H2S Flow Rate and Concentration on Performance of H2S/Air Solid Oxide Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    钟理; 张腾云; 陈建军; WEIGuolin; LUOJingli; K.Chung

    2004-01-01

    A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2+NiS+Ag)/YSZ/Pt,air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850℃.Performance of the fuel cell was dependent on anode compartment H2S flow rate and concentration. The cell open-circuit voltage increased with increasing H2S flow rate. It was found that increasing both H2S flow rate and H2S concentration improved current-voltage and power density performance. This is resulted from improved gas diffusion in anode and increased concentration of anodic electroactive species. Operation at elevated H2S concentration improved the cell performance at a given gas flow rate. However, as low as 5% H2S in gas mixture can also be utilized as fuel feed to cells. Highest current and power densities, 1750mA·cm-2 and 200mW·cm-2,are obtained with pure H2S flow rate of 50 ml·min-1 and air flow rate of 100ml·min-1 at 850℃.

  4. Influence of air flow rate on emission of DEHP from vinyl flooring in the emission cell FLEC: Measurements and CFD simulation

    Science.gov (United States)

    Clausen, Per Axel; Liu, Zhe; Xu, Ying; Kofoed-Sørensen, Vivi; Little, John C.

    2010-07-01

    The emission of di-(2-ethylhexyl)phthalate (DEHP) from one type of vinyl flooring with ˜15% (w/w) DEHP as plasticizer was measured at 22 °C in five FLECs + one blank FLEC (Field and Laboratory Emission Cell). Initially, the flow through all FLECs was 450 ml min -1. After 689 days the flows were changed to 1000 ml min -1, 1600 ml min -1, 2300 ml min -1, and 3000 ml min -1, respectively, in four FLECs, and kept at 450 ml min -1 in one FLEC. Air samples were collected from the effluent air at regular intervals. After 1190 days the experiments were terminated and the interior surfaces of all six FLECs were rinsed with methanol to estimate the internal surface concentrations of DEHP. The DEHP air concentration and specific emission rate (SER) at steady state was estimated for the five different flow rates. The steady-state concentrations decreased slightly with increasing air flow with only the two highest flow rates resulting in significantly lower concentrations. In contrast, the SERs increased significantly. Despite large variation, the internal surface concentrations appeared to decrease slightly with increasing FLEC flow. Computational fluid dynamic (CFD) simulations suggest that the interior gas and surface concentrations were roughly uniform for the low flow case (450 ml min -1), under which, the partitioning between the FLEC internal surface and chamber air was examined. Although paired t-tests showed no difference between CFD and experimental results for DEHP air concentrations and SERs at steady-state conditions, CFD indicated that the experimental DEHP surface concentrations in the FLECs were underestimated. In conclusion, the experiments showed that the emission of DEHP from vinyl flooring is subject to "external" control and that the SER is strongly and positively dependent on the air exchange rate. However, the increased SER almost compensates for the decrease in gas-phase concentration caused by the increased air exchange.

  5. Characteristic of flotation deinking using bio and synthetic surfactant at different air flow rate

    Science.gov (United States)

    Trismawati, Wardana, I. N. G.; Hamidi, Nurkholis; Sasongko, Mega Nur

    2016-03-01

    Flotation deinking has industrially applied but several problems keep unsolved because limitations have to compete with several variables present. Flotation deinking is multi variables process, so studying flotation deinking is still interesting. In this research, the amount of variables was reduced and focused to the performance comparison between flotation deinking of old newspaper (ONP) using biodegradable fatty acid of morinda citrifolia as the raw bio surfactant (RBS) and biodegradable fatty acid of palm oil that had been converted to be commercial surfactant (CS). The flotation was done at laboratory flotation cell equipped with orifice at different diameter (orifice number 20, 40 and 60) with adjustable airflow rate. Brightness and Effective Residual Ink Concentration (ERIC) of the deinked pulp were measured. The best results were achieved on orifice number 40 with the highest brightness of 41.96 °ISO and 40.96 °ISO when using CS and RBS respectively, and lowest ERIC of 896.82 ppm and 1001.72 ppm when using CS and RBS respectively. The percentage delta of deinking power characteristic between CS and RBS was 2.36% and 11.70% for brightness and ERIC, respectively.

  6. Experimental study on burning rates of square/rectangular gasoline and methanol pool fires under longitudinal air flow in a wind tunnel.

    Science.gov (United States)

    Hu, L H; Liu, S; Peng, W; Huo, R

    2009-09-30

    Square pool fires with length of 5, 7.5, 10, 15, 20, 25 and 30 cm and rectangular pool fires with dimensions of 10 cm x 20 cm and 10 cm x 40 cm were burned in a wind tunnel, under a longitudinal air flow ranged from 0 to 3m/s with incremental change of about 0.5m/s. Methanol and gasoline were burned and compared, with results indicated that their burning rates showed different response to the longitudinal air flow. With the increase of the longitudinal air flow speed, the burning rates of methanol pool fires, except the 5 cm square one, first decreased and then increased, but those of the 5 cm methanol square one and the gasoline pool fires increased monotonously. The burning rate of smaller square pool fires increased more significantly than that of the larger ones, as well as the enlargement of their flame attachment length along the ground. The burning rate of a rectangular pool fire with longer rim parallel to the longitudinal flow increased faster, but the flame attachment length seemed to increase more gradually, with the increase of the longitudinal air flow speed than that perpendicular to.

  7. Effect of air flow rate on the polyphenols content and antioxidant capacity of convective dried cactus pear cladodes (Opuntia ficus indica).

    Science.gov (United States)

    Gallegos-Infante, José-Alberto; Rocha-Guzman, Nuria-Elizabeth; González-Laredo, Ruben-Francisco; Reynoso-Camacho, Rosalia; Medina-Torres, Luis; Cervantes-Cardozo, Veronica

    2009-01-01

    The interest in nopal has encouraged the use of dehydration; there are few studies about the effect of process parameters on the nopal polyphenol content and antioxidant activity. The objective of the present work was to evaluate the effect of air-drying flow rates on the amount and antioxidant capacity of extracts of Opuntia ficus indica cladodes. Nopal was dried at 45 degrees C and air flow rates of 3 and 5 m/sec. Samples were analyzed for moisture, total polyphenol, flavonoid, and flavonol contents, chain-breaking activity, inhibition of low-density lipoprotein and deoxyribose oxidation. Nopal drying at an air flow rate of 3 m/sec showed higher values of phenols, flavonoids and flavonols. The best value of low-density lipoprotein inhibition and deoxyribose was found at 1,000 microg/ml. The air flow rate affected the amount of polyphenols and the OH( . ) radical scavenging, but did not modify the chain-breaking activity and the low-density lipoprotein inhibition activity. PMID:19468951

  8. Effect of air flow rate on the polyphenols content and antioxidant capacity of convective dried cactus pear cladodes (Opuntia ficus indica).

    Science.gov (United States)

    Gallegos-Infante, José-Alberto; Rocha-Guzman, Nuria-Elizabeth; González-Laredo, Ruben-Francisco; Reynoso-Camacho, Rosalia; Medina-Torres, Luis; Cervantes-Cardozo, Veronica

    2009-01-01

    The interest in nopal has encouraged the use of dehydration; there are few studies about the effect of process parameters on the nopal polyphenol content and antioxidant activity. The objective of the present work was to evaluate the effect of air-drying flow rates on the amount and antioxidant capacity of extracts of Opuntia ficus indica cladodes. Nopal was dried at 45 degrees C and air flow rates of 3 and 5 m/sec. Samples were analyzed for moisture, total polyphenol, flavonoid, and flavonol contents, chain-breaking activity, inhibition of low-density lipoprotein and deoxyribose oxidation. Nopal drying at an air flow rate of 3 m/sec showed higher values of phenols, flavonoids and flavonols. The best value of low-density lipoprotein inhibition and deoxyribose was found at 1,000 microg/ml. The air flow rate affected the amount of polyphenols and the OH( . ) radical scavenging, but did not modify the chain-breaking activity and the low-density lipoprotein inhibition activity.

  9. Air Traffic Flow Management

    CERN Document Server

    Ganu, Hrishikesh V

    2008-01-01

    Air Traffic Flow Management is the regulation of air traffic in order to avoid exceeding airport or flight sector capacity in handling traffic, and to ensure that available capacity is used efficiently. We have tried to explore the logic behind the claims by Bertsimas et.al about integral solutions to the LP relaxation of the Traffic Flow Management Problem(TFMP). Polyhedral theory only indicates that the stronger TFMP formulation of Bertsimas et.al might lead to integral solutions in some cases. Our computations indicate that the encouraging results reported by Bertsimas et.al are not merely fortuitous or due to their specific data set. Indeed, we found that the TFMP had integral solutions even in case of artificial data sets generated to include severe conflicts in the flight schedules. In our limited tests with 4-5 scenarios, we obtained non-integral solutions only once. This is of significant practical importance because, the LP relaxation can be solved even on small machines with low memory and processor...

  10. Detectability and significance of 12 hr barometric tide in radon-222 signal, drip water flow rate, air temperature and carbon dioxide concentration in an underground tunnel

    International Nuclear Information System (INIS)

    Searching for small periodic signals, such as the 12 hr (S2) barometric tide, and monitoring their amplitude as a function of time, can provide important clues on the complex processes affecting fluid transport in unsaturated fractured media under multiple influences. Here, first, we show that a modified spectrogram analysis (MSA) is more efficient than simple Fourier transform to reveal weak periodic signals. Secondly, we show how transient periodic signals can be monitored as a function of time using spectrograms. These methods are applied to time-series of radon and carbon dioxide concentration, drip water flow rates and air temperature measured during several years in the Roselend dead-end tunnel, located in the French Alps near an artificial lake. A weak S2 line is evidenced in radon concentration, with enhanced amplitude during transient radon bursts. Similarly, the S2 line is observed using MSA in drip water flow rates which sample mainly fracture flow, as suggested by a hydrochemical analysis, while it is not seen in drip water flow rates sampling matrix flow. In the absence of a strong 24 hr line, the presence of a S2 line suggests sensitivity to barometric pressure, and thus a significant advective contribution in radon and some drip water transport. No S2 line is observed in the carbon dioxide time-series. The temporal structure of the S2 component, however, is not similar in the radon concentration and the drip water flow rates, suggesting, in particular, that drip water does not play a significant role in the generation of radon bursts. Temperature time-series exhibit a significant S2 contribution, induced by atmospheric pressure, spatially organised in the tunnel, decreasing vertically upwards. A remarkable transient temperature inversion during radon bursts suggests that the additional advective air contributions responsible for the radon bursts occur from the non-saturated rocks below the tunnel. (authors)

  11. Detectability and significance of 12 hr barometric tide in radon-222 signal, drip water flow rate, air temperature and carbon dioxide concentration in an underground tunnel

    Energy Technology Data Exchange (ETDEWEB)

    Richon, P.; Pili, E. [CEA Bruyeres le Chatel, Dept Analyse Surveillance Environm, 91 (France); Richon, P. [Inst Phys Globe, Equipe Geol Syst Volcan, UMR 7154, F-75252 Paris 05 (France); Perrier, F. [Univ Paris Diderot, Equipe Geomagnetisme, UMR 7154, Inst Phys Globe, F-75252 Paris 05 (France); Sabroux, J. Ch. [CEA Saclay, Inst Radioprotect and Surete Nucl, 91 - Gif-sur-Yvette (France)

    2009-03-15

    Searching for small periodic signals, such as the 12 hr (S{sub 2}) barometric tide, and monitoring their amplitude as a function of time, can provide important clues on the complex processes affecting fluid transport in unsaturated fractured media under multiple influences. Here, first, we show that a modified spectrogram analysis (MSA) is more efficient than simple Fourier transform to reveal weak periodic signals. Secondly, we show how transient periodic signals can be monitored as a function of time using spectrograms. These methods are applied to time-series of radon and carbon dioxide concentration, drip water flow rates and air temperature measured during several years in the Roselend dead-end tunnel, located in the French Alps near an artificial lake. A weak S{sub 2} line is evidenced in radon concentration, with enhanced amplitude during transient radon bursts. Similarly, the S{sub 2} line is observed using MSA in drip water flow rates which sample mainly fracture flow, as suggested by a hydrochemical analysis, while it is not seen in drip water flow rates sampling matrix flow. In the absence of a strong 24 hr line, the presence of a S{sub 2} line suggests sensitivity to barometric pressure, and thus a significant advective contribution in radon and some drip water transport. No S{sub 2} line is observed in the carbon dioxide time-series. The temporal structure of the S{sub 2} component, however, is not similar in the radon concentration and the drip water flow rates, suggesting, in particular, that drip water does not play a significant role in the generation of radon bursts. Temperature time-series exhibit a significant S{sub 2} contribution, induced by atmospheric pressure, spatially organised in the tunnel, decreasing vertically upwards. A remarkable transient temperature inversion during radon bursts suggests that the additional advective air contributions responsible for the radon bursts occur from the non-saturated rocks below the tunnel. (authors)

  12. Flow in air conditioned rooms

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    1974-01-01

    Flow in air conditioned r ooms is examined by means of model experiments . The different gearnetries giving unsteady, steady three- dimensional and steady twodimensional flow are determined . Velacity profiles and temperature profiles are measured in some of the geometries. A numerical solution...... of the flow equations is demonstrated and the flow in air conditioned rooms in case of steady two dimensional flow is predi cted. Compari son with measured results is shown i n the case of small Archimedes numbers, and predictions are shown at high Archimedes numbers. A numerical prediction of f low and heat...

  13. Phase Flow Rate Measurements of Annual Flows

    OpenAIRE

    Al-Yarubi, O.S.; Lucas, Gary

    2009-01-01

    The Annular flow regime makes measurement of the total liquid flow rate difficult. It is even more difficult to measure the individual flow rate of either the oil or the water. In a vertical Perspex tube (i.d. = 50 mm) using a newly-designed flow loop in the University of Huddersfield, annular flow was established and different measurements were carried out. One possible on-line measurement technique to achieve the oil volume fraction measurement is an automated bypass...

  14. Income and Exchange Rate Sensitivities of Cross-Border Freight Flows: Evidence from U.S.-Canada Exports and Imports by Truck, Rail, Air, and Pipeline

    OpenAIRE

    Chi, Junwook

    2014-01-01

    This paper aims to improve understanding of the long-run impacts of the gross domestic product (GDP), real exchange rate, and the producer price index (PPI) on U.S.-Canada bilateral freight flows in a dynamic framework. Special attention is given to cross-border exports and imports by truck, rail, pipeline, and air. Using the fully modified ordinary least squares (FM-OLS) approach, the paper finds that the GDP of the importing country is a pronounced factor influencing U.S.- Canada cross-bord...

  15. Assessment of the effects of flow rate and ionic strength on the performance of an air-cathode microbial fuel cell using electrochemical impedance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Aaron, D.; Tsouris, C. [School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Tsouris, C. [Nuclear Sciences and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Hamilton, Ch. Y. [The University of Tennessee, Knoxville, TN 37996 (United States); Borole, A. P. [BioSciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States)

    2010-07-01

    Impedance changes of the anode, cathode and solution were examined for an air-cathode microbial fuel cell (MFC) under varying conditions. An MFC inoculated with a pre-enriched microbial culture resulted in a startup time of less than ten days. Over this period, the anode impedance decreased below the cathode impedance, suggesting a cathode-limited power output. Increasing the anode flow rate did not impact the anode impedance significantly, but it decreased the cathode impedance by 65%. Increasing the anode-medium ionic strength also decreased the cathode impedance. These impedance results provide insight into electron and proton transport mechanisms and can be used to improve MFC performance. (author)

  16. Air flow in a collapsing cavity

    CERN Document Server

    Peters, Ivo R; Lohse, Detlef; van der Meer, Devaraj

    2013-01-01

    We experimentally study the airflow in a collapsing cavity created by the impact of a circular disk on a water surface. We measure the air velocity in the collapsing neck in two ways: Directly, by means of employing particle image velocimetry of smoke injected into the cavity and indirectly, by determining the time rate of change of the volume of the cavity at pinch-off and deducing the air flow in the neck under the assumption that the air is incompressible. We compare our experiments to boundary integral simulations and show that close to the moment of pinch-off, compressibility of the air starts to play a crucial role in the behavior of the cavity. Finally, we measure how the air flow rate at pinch-off depends on the Froude number and explain the observed dependence using a theoretical model of the cavity collapse.

  17. Natural Flow Air Cooled Photovoltaics

    Science.gov (United States)

    Tanagnostopoulos, Y.; Themelis, P.

    2010-01-01

    Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. We performed experiments using a prototype based on three silicon photovoltaic modules placed in series to simulate a typical sloping building roof with photovoltaic installation. In this system the air flows through a channel on the rear side of PV panels. The potential for increasing the heat exchange from the photovoltaic panel to the circulating air by the addition of a thin metal sheet (TMS) in the middle of air channel or metal fins (FIN) along the air duct was examined. The operation of the device was studied with the air duct closed tightly to avoid air circulation (CLOSED) and the air duct open (REF), with the thin metal sheet (TMS) and with metal fins (FIN). In each case the experiments were performed under sunlight and the operating parameters of the experimental device determining the electrical and thermal performance of the system were observed and recorded during a whole day and for several days. We collected the data and form PV panels from the comparative diagrams of the experimental results regarding the temperature of solar cells, the electrical efficiency of the installation, the temperature of the back wall of the air duct and the temperature difference in the entrance and exit of the air duct. The comparative results from the measurements determine the improvement in electrical performance of the photovoltaic cells because of the reduction of their temperature, which is achieved by the naturally circulating air.

  18. Cylindrical air flow reversal barrier

    Energy Technology Data Exchange (ETDEWEB)

    Woznica, C.; Rodziewicz, M.

    1988-06-01

    Describes an innovative design introduced in the ZMP mine in Zory for quick reversal of ventilation air flow. Geologic mining conditions at the 705 m deep horizon, where the barrier was built, are described. According to the design used until now, a reversal system consisted of safety barriers, ventilation air locks, a ventilation bridge and stopping needed in case of a fire when air flow direction must be reversed. Nine air locks and an expensive concrete ventilation bridge were needed and the air locks had to be operated at 8 points of the region to effect reversal. The new design consists of a 2-storey cylindrical barrier which also fulfills the function of a ventilation bridge. It can be manually or remotely operated by a mechanical or pneumatic system. Tests showed that the new barrier permits immediate air flow reversal while retaining 60% of the original air, which is important in the case of fire and methane hazards. It permits improved seam panelling and splitting of pillars and brings an economy of about 40 million zlotys in construction cost. Design and operation of the barrier is illustrated and ventilation air circulation is explained. 7 figs.

  19. Phase flow rate measurements of annular flows

    OpenAIRE

    Al-Yarubi, Qahtan

    2010-01-01

    In the international oil and gas industry multiphase annular flow in pipelines and wells is extremely important, but not well understood. This thesis reports the development of an efficient and cheap method for measuring the phase flow rates in two phase annular and annular mist flow, in which the liquid phase is electrically conducting, using ultrasonic and conductance techniques. The method measures changes in the conductance of the liquid film formed during annular flow and uses these to c...

  20. Assessment of the Effects of Flow Rate and Ionic Strength on the Performance of an Air-Cathode Microbial Fuel Cell Using Electrochemical Impedance Spectroscopy

    Directory of Open Access Journals (Sweden)

    Doug Aaron

    2010-03-01

    Full Text Available Impedance changes of the anode, cathode and solution were examined for an air-cathode microbial fuel cell (MFC under varying conditions. An MFC inoculated with a pre-enriched microbial culture resulted in a startup time of less than ten days. Over this period, the anode impedance decreased below the cathode impedance, suggesting a cathode-limited power output. Increasing the anode flow rate did not impact the anode impedance significantly, but it decreased the cathode impedance by 65%. Increasing the anode-medium ionic strength also decreased the cathode impedance. These impedance results provide insight into electron and proton transport mechanisms and can be used to improve MFC performance.

  1. Air flow management in raised floor data centers

    CERN Document Server

    Arghode, Vaibhav K

    2016-01-01

    The Brief discuss primarily two aspects of air flow management in raised floor data centers. Firstly, cooling air delivery through perforated tiles will be examined and influence of the tile geometry on flow field development and hot air entrainment above perforated tiles will be discussed. Secondly, the use of cold aisle containment to physically separate hot and cold regions, and minimize hot and cold air mixing will be presented. Both experimental investigations and computational efforts are discussed and development of computational fluid dynamics (CFD) based models for simulating air flow in data centers is included. In addition, metrology tools for facility scale air velocity and temperature measurement, and air flow rate measurement through perforated floor tiles and server racks are examined and the authors present thermodynamics-based models to gauge the effectiveness and importance of air flow management schemes in data centers.

  2. Influence of Irradiance, Flow Rate, Reactor Geometry, and Photopromoter Concentration in Mineralization Kinetics of Methane in Air and in Aqueous Solutions by Photocatalytic Membranes Immobilizing Titanium Dioxide

    Directory of Open Access Journals (Sweden)

    Ignazio Renato Bellobono

    2008-01-01

    Full Text Available Photomineralization of methane in air (10.0–1000 ppm (mass/volume of C at 100% relative humidity (dioxygen as oxygen donor was systematically studied at 318±3 K in an annular laboratory-scale reactor by photocatalytic membranes immobilizing titanium dioxide as a function of substrate concentration, absorbed power per unit length of membrane, reactor geometry, and concentration of a proprietary vanadium alkoxide as photopromoter. Kinetics of both substrate disappearance, to yield intermediates, and total organic carbon (TOC disappearance, to yield carbon dioxide, were followed. At a fixed value of irradiance (0.30 W⋅cm-1, the mineralization experiments in gaseous phase were repeated as a function of flow rate (4–400 m3⋅h−1. Moreover, at a standard flow rate of 300 m3⋅h−1, the ratio between the overall reaction volume and the length of the membrane was varied, substantially by varying the volume of reservoir, from and to which circulation of gaseous stream took place. Photomineralization of methane in aqueous solutions was also studied, in the same annular reactor and in the same conditions, but in a concentration range of 0.8–2.0 ppm of C, and by using stoichiometric hydrogen peroxide as an oxygen donor. A kinetic model was employed, from which, by a set of differential equations, four final optimised parameters, k1 and K1, k2 and K2, were calculated, which is able to fit the whole kinetic profile adequately. The influence of irradiance on k1 and k2, as well as of flow rate on K1 and K2, is rationalized. The influence of reactor geometry on k values is discussed in view of standardization procedures of photocatalytic experiments. Modeling of quantum yields, as a function of substrate concentration and irradiance, as well as of concentration of photopromoter, was carried out very satisfactorily. Kinetics of hydroxyl radicals reacting between themselves, leading to hydrogen peroxide, other than with substrate or

  3. Uncertainty Analysis on Air Flow Rate Measured by Multiple Nozzles in Chamber for Test Rig for Air Filter%空气过滤器性能试验台喷嘴流量测量误差分析

    Institute of Scientific and Technical Information of China (English)

    林忠平; 雷亚平

    2012-01-01

    The paper presents an uncertainty analysis on air flow rate measured by multiple nozzles in chamber for the test rig for air filter. The results show that the precision of the nozzles ' diameter is remarkable to the systematic uncertainty. Different nozzle combinations will result in different uncertainties. Adopting the appropriate nozzle with smaller diameter at the same air flow rate can reduce the measurement uncertainty effectively. The manufacturing precision of nozzles should be validated simultaneously. The accuracy of the instruments influences the measurement the most, while instruments for dry bulb temperature and atmospheric pressure influence little. It is recommended to use the instruments of higher accuracy. On the other hand, the static pressure gauge and relative hygrometer can meet the basic requirement for their insensitivity to the uncertainty of measurement results.%根据误差分析理论对空气过滤器性能试验装置的喷嘴流量测量进行了系统误差分析计算.分析结果表明:喷嘴直径加工精度对整个喷嘴流量测量装置的误差影响较大,在相同风量下喷嘴的开启组合方式对应产生的测量误差也不尽相同,应适当选用较小直径的喷嘴进行测量以减小误差,同时需要对喷嘴的加工精度进行验证;压力差仪器精度对喷嘴测量误差影响最大,因此应尽可能选用高精度的压力差计;相对而言,干球温度计与大气压力计的精度对喷嘴流量测量误差较小,宜选用稍高精度等级的干球温度计与大气压力计;静压力计与相对湿度的测量仪器的精度则要求不高.

  4. The corona discharge current in flowing air

    International Nuclear Information System (INIS)

    The DC corona discharge of both polarities, burning in flowing air (0.08-0.8 ms-1) was investigated. A cylindrical discharge tube consisting of five identical and electrically separated sections was used. A negligible effect of air flow on the positive corona properties and a conspicuous increase of the negative corona current with increasing flow velocity of the air were observed. A novel explanation of these effects is proposed. (author) 2 tabs., 6 figs., 10 refs

  5. Air pollution and human fertility rates

    NARCIS (Netherlands)

    Nieuwenhuijsen, Mark J.; Basagaña, Xavier; Dadvand, Payam; Martinez, David; Cirach, Marta; Beelen, Rob; Jacquemin, Bénédicte

    2014-01-01

    Background: Some reports have suggested effects of air pollution on semen quality and success rates of in vitro fertilization (IVF) in humans and lower fertility rates in mice. However, no studies have evaluated the impact of air pollution on human fertility rates. Aims: We assessed the association

  6. Sensitivity to draught in turbulent air flows

    Energy Technology Data Exchange (ETDEWEB)

    Todde, V.

    1998-09-01

    Even though the ventilation system is designed to supply air flows at constant low velocity and controlled temperature, the resulting air movement in rooms is strongly characterised by random fluctuations. When an air flow is supplied from an inlet, a shear layer forms between the incoming and the standstill air in the room, and large scale vortices develops by coalescence of the vorticity shed at the inlet of the air supply. After a characteristically downstream distance, large scale vortices loose their identity because of the development of cascading eddies and transition to turbulence. The interaction of these vortical structures will rise a complicated three dimensional air movement affected by fluctuations whose frequencies could vary from fractions of Hz to several KHz. The perception and sensitivity to the cooling effect enhanced by these air movements depend on a number of factors interacting with each other: physical properties of the air flow, part and extension of the skin surface exposed to the air flow, exposure duration, global thermal condition, gender and posture of the person. Earlier studies were concerned with the percentage of dissatisfied subjects as a function of air velocity and temperature. Recently, experimental observations have shown that also the fluctuations, the turbulence intensity and the direction of air velocity have an important impact on draught discomfort. Two experimental investigations have been developed to observe the human reaction to horizontal air movements on bared skin surfaces, hands and neck. Attention was concentrated on the effects of relative turbulence intensity of air velocity and exposure duration on perception and sensitivity to the air movement. The air jet flows, adopted for the draught experiment in the neck, were also the object of an experimental study. This experiment was designed to observe the centre-line velocity of an isothermal circular air jet, as a function of the velocity properties at the outlet

  7. Characteristics of Air Flow through Windows

    DEFF Research Database (Denmark)

    Heiselberg, Per; Dam, Henrik; Sørensen, Lars C.;

    This paper describes the first results of a series of laboratory investigations that is performed to characterise three different window types. The results show the air flow conditions for different ventilation strategies and temperature differences. For one of the windows values of the discharge...... coefficient are shown for both isothermal and non-isothermal flow conditions and the thermal comfort conditions are evaluated by measurements of velocity and temperature levels in the air flow in the occupied zone....

  8. Development of a flow rate monitoring method for the wearable ventricular assist device driver.

    Science.gov (United States)

    Ohnuma, Kentaro; Homma, Akihiko; Sumikura, Hirohito; Tsukiya, Tomonori; Takewa, Yoshiaki; Mizuno, Toshihide; Mukaibayashi, Hiroshi; Kojima, Koichi; Katano, Kazuo; Taenaka, Yoshiyuki; Tatsumi, Eisuke

    2015-06-01

    Our research institute has been working on the development of a compact wearable drive unit for an extracorporeal ventricular assist device (VAD) with a pneumatically driven pump. A method for checking the pump blood flow on the side of the drive unit without modifying the existing blood pump and impairing the portability of it will be useful. In this study, to calculate the pump flow rate indirectly from measuring the flow rate of the driving air of the VAD air chamber, we conducted experiments using a mock circuit to investigate the correlation between the air flow rate and the pump flow rate as well as its accuracy and error factors. The pump flow rate was measured using an ultrasonic flow meter at the inflow and outflow tube, and the air flow was measured using a thermal mass flow meter at the driveline. Similarity in the instantaneous waveform was confirmed between the air flow rate in the driveline and the pump flow rate. Some limitations of this technique were indicated by consideration of the error factors. A significant correlation was found between the average pump flow rate in the ejecting direction and the average air flow rate in the ejecting direction (R2 = 0.704-0.856), and the air flow rate in the filling direction (R2 = 0.947-0.971). It was demonstrated that the average pump flow rate was estimated exactly in a wide range of drive conditions using the air flow of the filling phase. PMID:25500948

  9. The air-liquid flow in a microfluidic airway tree.

    Science.gov (United States)

    Song, Yu; Baudoin, Michael; Manneville, Paul; Baroud, Charles N

    2011-09-01

    Microfluidic techniques are employed to investigate air-liquid flows in the lung. A network of microchannels with five generations is made and used as a simplified model of a section of the pulmonary airway tree. Liquid plugs are injected into the network and pushed by a flow of air; they divide at every bifurcation until they reach the exits of the network. A resistance, associated with the presence of one plug in a given generation, is defined to establish a linear relation between the driving pressure and the total flow rate in the network. Based on this resistance, good predictions are obtained for the flow of two successive plugs in different generations. The total flow rate of a two-plug flow is found to depend not only on the driving pressure and lengths of the plugs, but also the initial distance between them. Furthermore, long range interactions between daughters of a dividing plug are observed and discussed, particularly when the plugs are flowing through the bifurcations. These interactions lead to different flow patterns for different forcing conditions: the flow develops symmetrically when subjected to constant pressure or high flow rate forcing, while a low flow rate driving yields an asymmetric flow.

  10. Flow rate control method for liquid waste supply tank

    International Nuclear Information System (INIS)

    The present invention concerns a flow rate control method, in which an air purge type liquid level meter and an air lift pump are disposed to a liquid waste supply tank for supplying high level radioactive liquid wastes to a glass melting furnace. The flow rate of liquid wastes are sampled repeatedly on every predetermined time, the average flow rate on every predetermined time is calculated, and the average flow rate calculated newest and the average flow rate calculated formerly with a primary delay are compared with a set flow rate value respectively to determine each difference. Only when the values are of identical sign, the driving amount of the air lift pump is controlled. Since sampling is conducted for two different time points and only when the calculated values are of identical sign, the air lift pump is controlled, the fluctuation amount of the flow rate can be calculated exactly even undergoing external disturbance on liquid level by a stirrer. (N.H.)

  11. Measuring Outdoor Air Intake Rates into Existing Building

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

    2009-04-16

    Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10 percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15 percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100 percent, and were often greater than 25 percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

  12. NUMERICAL SIMULATION FOR AIR AND AIR-PM FLOW IN WALL FLOW DIESEL PARTICULATE FILTERS

    Institute of Scientific and Technical Information of China (English)

    Zhao Binjuan; Yuan Shouqi; Seizo Kato; Akira Nishimura

    2005-01-01

    Numerical simulations are performed both for the single airflow and air-PM two-phase flow in wall flow diesel particulate filters (DPF) for the first time. The calculation domain is divided into two regions. In the inlet and outlet flow channels, the simulations are performed for the steady and laminar flow; In the porous filtration walls, the calculation model for flow in porous media is used. The Lagrange two-phase flow model is used to calculate the air-PM flow in DPF, for the dispersed phase (PM), its flow tracks are obtained by the integrating of the Lagrange kinetic equation. The calculated velocity, pressure distribution and PM flow tracks in DPF are obtained, which exhibits the main flow characteristics in wall flow DPF and will be help for the optimal design and performance prediction of wall flow DPF.

  13. On the impact of entrapped air in infiltration under ponding conditions. Part a: Preferential air flow path effects on infiltration

    Science.gov (United States)

    Mizrahi, Guy; Weisbrod, Noam; Furman, Alex

    2015-04-01

    Entrapped air effects on infiltration under ponding conditions could be important for massive infiltration of managed aquifer recharge (MAR) or soil aquifer treatment (SAT) of treated wastewater. Earlier studies found that under ponding conditions, air is being entrapped and compressed until it reaches a pressure which will enable the air to escape (unstable air flow). They also found that entrapped air could reduce infiltration by 70-90%. Most studies have dealt with entrapped air effects when soil surface topography is flat. The objective of this study is to investigate, under ponding conditions, the effects of: (1) irregular surface topography on preferential air flow path development (stable air flow); (2) preferential air flow path on infiltration; and (3) hydraulic head on infiltration when air is trapped. Column experiments were used to investigate these particular effects. A 140 cm deep and 30 cm wide column packed with silica sand was used under two boundary conditions: in the first, air can only escape vertically upward through the soil surface; in the second, air is free to escape through 20 ports installed along the column perimeter. The surface was flooded with 13 liters of water, with ponding depth decreasing with time. Two soil surface conditions were tested: flat surface and irregular surface (high and low surface zones). Additionally, Helle-show experiments were conducted in order to obtain a visual observation of preferential air flow path development. The measurements were carried out using a tension meter, air pressure transducers, TDR and video cameras. It was found that in irregular surfaces, stable air flow through preferential paths was developed in the high altitude zones. Flat surface topography caused unstable air flow through random paths. Comparison between irregular and flat surface topography showed that the entrapped air pressure was lower and the infiltration rate was about 40% higher in the irregular surface topography than in the

  14. Air-cooled gas turbine cycles – Part 1: An analytical method for the preliminary assessment of blade cooling flow rates

    International Nuclear Information System (INIS)

    It is well known that, for a given compressor technology, gas turbine efficiency increases with the turbine inlet temperature (TIT): both modern aeronautical and land-based gas turbines operate at very high temperatures (1500–2000K) –and correspondingly high pressure ratios. As the TIT increases, the heat transferred from the expanding gas to the turbine blade also increases, and the need to extend the operational life make it necessary to adopt internal air cooling to reduce blade creep, oxidation and low-cycle fatigue. The cooling medium is usually air extracted from the high-pressure compressor stages, and since this extraction decreases the thermal efficiency and power output of the engine, it is important to bleed the minimum amount of coolant to attain a prescribed maximum material temperature in the blade with the maximum possible uniformity (lower thermal stresses): thence the need to properly model the cooling system for a given turbine blade geometry under realistic engine operating conditions. In the preliminary design of the first statoric and rotoric blading, it is essential for designers to rely on simple models that often neglect the small scales effects on the external flows and also by force adopt a much simplified treatment of the internal ones, and as a result attain a substantially lower degree of approximation than that offered by more complex and expensive numerical simulations. The goal in the design of a lumped model is therefore to make it both sufficiently general and accurate to analyze blade shapes and cooling channels structures that can be further refined by means of more accurate, but also more computationally intensive, models. This paper presents a simple, globally lumped thermodynamic model of blade cooling whose most important feature is its being analytical, so that the solution is devoid of numerical approximations and leads to closed-form expressions that can be easily manipulated to accommodate for different process

  15. Flow rate measuring devices for gas flows

    Science.gov (United States)

    Bonfig, K. W.

    1985-07-01

    Flowrate measuring devices are described: volume meter with fixed or mobile walls; turbine meter; throttling procedure; ultrasonic and Doppler methods; vortex method; rotary flowmeter; and swinging body flow measuring procedure. Flowrate can also be measured from the force exerted on bodies immersed in a fluid or based on thermodynamical principles. The characteristics and operating envelope of each device/method are given.

  16. Flow rate logging seepage meter

    Science.gov (United States)

    Reay, William G. (Inventor); Walthall, Harry G. (Inventor)

    1996-01-01

    An apparatus for remotely measuring and logging the flow rate of groundwater seepage into surface water bodies. As groundwater seeps into a cavity created by a bottomless housing, it displaces water through an inlet and into a waterproof sealed upper compartment, at which point, the water is collected by a collection bag, which is contained in a bag chamber. A magnet on the collection bag approaches a proximity switch as the collection bag fills, and eventually enables the proximity switch to activate a control circuit. The control circuit then rotates a three-way valve from the collection path to a discharge path, enables a data logger to record the time, and enables a pump, which discharges the water from the collection bag, through the three-way valve and pump, and into the sea. As the collection bag empties, the magnet leaves the proximity of the proximity switch, and the control circuit turns off the pump, resets the valve to provide a collection path, and restarts the collection cycle.

  17. 40 CFR 89.414 - Air flow measurement specifications.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method used must have a range large enough to accurately measure the air flow over the engine operating...

  18. 40 CFR 91.416 - Intake air flow measurement specifications.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the...

  19. Air flows measured in large openings in a horizontal partition

    Energy Technology Data Exchange (ETDEWEB)

    Klobut, K. [Valtion Teknillinen Tutkimuskeskus, Espoo (Finland). Building Technology, Indoor Environment and Systems; Siren, K. [Helsinki Univ. of Technology, Espoo (Finland). Lab. of Heating, Ventilating and Air Conditioning

    1994-12-31

    Laboratory experiments were carried out to explore, for the first time, the influence of several parameters on combined forced and density-driven air flows through large openings in a horizontal partition. Such flows may occur, for example, in a stairwell connecting two floors of a detached house. The two-way flows in the opening were monitored using a tracer gas technique. Variable parameters included the direction and rate of the net flow, the temperature difference between the zones, and the dimensions of the large opening. The results of the investigation are presented and discussed. (author)

  20. Imaging based optofluidic air flow meter with polymer interferometers defined by soft lithography.

    Science.gov (United States)

    Song, Wuzhou; Psaltis, Demetri

    2010-08-01

    We present an optofluidic chip with integrated polymer interferometers for measuring both the microfluidic air pressure and flow rate. The chip contains a microfluidic circuit and optical cavities on a polymer which was defined by soft lithography. The pressure can be read out by imaging the interference patterns of the cavities. The air flow rate was then calculated from the differential pressure across a microfluidic Venturi circuit. Air flow rate measurement in the range of 0-2mg/second was demonstrated. This device provides a simple and versatile way for in situ measuring the microscale air pressure and flow on chip.

  1. Air-segmented amplitude-modulated multiplexed flow analysis.

    Science.gov (United States)

    Inui, Koji; Uemura, Takeshi; Ogusu, Takeshi; Takeuchi, Masaki; Tanaka, Hideji

    2011-01-01

    Air-segmentation is applied to amplitude-modulated multiplexed flow analysis, which we proposed recently. Sample solutions, the flow rates of which are varied periodically, are merged with reagent and/or diluent solution. The merged stream is segmented by air-bubbles and, downstream, its absorbance is measured after deaeration. The analytes in the samples are quantified from the amplitudes of the respective wave components in the absorbance. The proposed method is applied to the determinations of a food dye, phosphate ions and nitrite ions. The air-segmentation is effective for limiting amplitude damping through the axial dispersion, resulting in an improvement in sensitivity. This effect is more pronounced at shorter control periods and longer flow path lengths.

  2. Nitric oxide flow tagging in unseeded air.

    Science.gov (United States)

    Dam, N; Klein-Douwel, R J; Sijtsema, N M; Meulen, J J

    2001-01-01

    A scheme for molecular tagging velocimetry is presented that can be used in air flows without any kind of seeding. The method is based on the local and instantaneous creation of nitric oxide (NO) molecules from N(2) and O(2) in the waist region of a focused ArF excimer laser beam. This NO distribution is advected by the flow and can be visualized any time later by laser-induced fluorescence in the gamma bands. The creation of NO is confirmed by use of an excitation spectrum. Two examples of the application of the new scheme for air-flow velocimetry are given in which single laser pulses are used for creation and visualization of NO. PMID:18033499

  3. Coriolis mass flow rate meters for low flows

    NARCIS (Netherlands)

    Mehendale, Aditya

    2008-01-01

    The accurate and quick measurement of small mass flow rates (~10 mg/s) of fluids is considered an "enabling technology" in semiconductor, fine-chemical, and food & drugs industries. Flowmeters based on the Coriolis effect offer the most direct sensing of the mass flow rate, and for this reason do no

  4. Exchange Flow Rate Measurement Technique in Density Different Gases

    Directory of Open Access Journals (Sweden)

    Motoo Fumizawa

    2012-04-01

    Full Text Available Buoyancy-driven exchange flows of helium-air through inclined a narrow tube was investigated. Exchange flows may occur following the opening of a window for ventilation, as well as when a pipe ruptures in a high temperature gas-cooled reactor. The experiment in this paper was carried out in a test chamber filled with helium and the flow was visualized using the smoke wire method. A high-speed camera recorded the flow behavior. The image of the flow was transferred to digital data, and the slow flow velocity, i.e. micro flow rate was measured by PIV software. Numerical simulation was carried out by the code of moving particle method with Lagrange method.

  5. A MEMS-Based Flow Rate and Flow Direction Sensing Platform with Integrated Temperature Compensation Scheme

    Directory of Open Access Journals (Sweden)

    Chia-Yen Lee

    2009-07-01

    Full Text Available This study develops a MEMS-based low-cost sensing platform for sensing gas flow rate and flow direction comprising four silicon nitride cantilever beams arranged in a cross-form configuration, a circular hot-wire flow meter suspended on a silicon nitride membrane, and an integrated resistive temperature detector (RTD. In the proposed device, the flow rate is inversely derived from the change in the resistance signal of the flow meter when exposed to the sensed air stream. To compensate for the effects of the ambient temperature on the accuracy of the flow rate measurements, the output signal from the flow meter is compensated using the resistance signal generated by the RTD. As air travels over the surface of the cross-form cantilever structure, the upstream cantilevers are deflected in the downward direction, while the downstream cantilevers are deflected in the upward direction. The deflection of the cantilever beams causes a corresponding change in the resistive signals of the piezoresistors patterned on their upper surfaces. The amount by which each beam deflects depends on both the flow rate and the orientation of the beam relative to the direction of the gas flow. Thus, following an appropriate compensation by the temperature-corrected flow rate, the gas flow direction can be determined through a suitable manipulation of the output signals of the four piezoresistors. The experimental results have confirmed that the resulting variation in the output signals of the integrated sensors can be used to determine not only the ambient temperature and the velocity of the air flow, but also its direction relative to the sensor with an accuracy of ± 7.5o error.

  6. Review of air flow measurement techniques

    Energy Technology Data Exchange (ETDEWEB)

    McWilliams, Jennifer

    2002-12-01

    Airflow measurement techniques are necessary to determine the most basic of indoor air quality questions: ''Is there enough fresh air to provide a healthy environment for the occupants of the building?'' This paper outlines airflow measurement techniques, but it does not make recommendations for techniques that should be used. The airflows that will be discussed are those within a room or zone, those between rooms or zones, such as through doorways (open or closed) or passive vents, those between the building and outdoors, and those through mechanical air distribution systems. Techniques that are highlighted include particle streak velocimetry, hot wire anemometry, fan pressurization (measuring flow at a given pressure), tracer gas, acoustic methods for leak size determination, the Delta Q test to determine duct leakage flows, and flow hood measurements. Because tracer gas techniques are widely used to measure airflow, this topic is broken down into sections as follows: decay, pulse injection, constant injection, constant concentration, passive sampling, and single and multiple gas measurements for multiple zones.

  7. Effect of H2S Flow Rate and Concentration on Performance of H2S/Air Solid Oxide Fuel Cell%不同硫化氢流率与浓度对硫化氢固体氧化物燃料电池性能影响

    Institute of Scientific and Technical Information of China (English)

    钟理; 张腾云; 陈建军; WEI Guolin; LUO Jingli; K. Chung

    2004-01-01

    A solid state H2S/air electrochemical cell having the configuration of H2S, (MoS2+NiS+Ag)/YSZ/Pt,air has been examined with different H2S flow rates and concentrations at atmospheric pressure and 750-850 ℃.Performance of the fuel cell was dependent on anode compartment H2S flow rate and concentration. The cell open-circuit voltage increased with increasing H2S flow rate. It was found that increasing both H2S flow rate and H2S concentration improved current-voltage and power density performance. This is resulted from improved gas diffusion in anode and increased concentration of anodic electroactive species. Operation at elevated H2S concentration improved the cell performance at a given gas flow rate. However, as low as 5% H2S in gas mixture can also be utilized as fuel feed to cells. Highest current and power densities, 1750mA.cm-2 and 200mW.cm-2,are obtained with pure H2S flow rate of 50ml.min-1 and air flow rate of 100ml.min-1 at 850℃.

  8. Optimum design of bipolar plates for separate air flow cooling system of PEM fuel cells stacks

    Science.gov (United States)

    Franco, Alessandro

    2015-12-01

    The paper discusses about thermal management of PEM fuel cells. The objective is to define criteria and guidelines for the design of the air flow cooling system of fuel cells stacks for different combination of power density, bipolar plates material, air flow rate, operating temperature It is shown that the optimization of the geometry of the channel permits interesting margins for maintaining the use of separate air flow cooling systems for high power density PEM fuel cells.

  9. Flow rate limitation in open capillary channel flows.

    Science.gov (United States)

    Haake, Dennis; Rosendahl, Uwe; Ohlhoff, Antje; Dreyer, Michael E

    2006-09-01

    This paper reports the experimental and theoretical investigations of forced liquid flows through open capillary channels under reduced gravity conditions. An open capillary channel is a structure that establishes a liquid flow path at low Bond numbers, when the capillary pressure caused by the surface tension force dominates in comparison to the hydrostatic pressure induced by gravitational or residual accelerations. In case of steady flow through the channel, the capillary pressure of the free surface balances the pressure difference between the liquid and the surrounding constant-pressure gas phase. Because of convective and viscous momentum transport, the pressure along the flow path decreases and causes the free surface to bend inward. The maximum flow rate is achieved when the free surface collapses and gas ingestion occurs at the outlet. This critical flow rate depends on the geometry of the channel and the properties of the liquid. In this paper we present a comparison of the theoretical and experimental critical flow rates and surface profiles for convective dominated flows. For the prediction of the critical flow rate a one-dimensional theoretical model taking into account the entrance pressure loss and the frictional pressure loss in the channel is developed.

  10. Recycling-flow rate control device

    International Nuclear Information System (INIS)

    Purpose: To make reactor-core-flow rate control excellent in stability, rapid response and transient response without using reactor-core-flow rate measuring signals in BWR type reactors. Constitution: The speed of internal pump is controlled during normal operation by the neutron flux controller (which performs proportional integration for the deviation between the reactor power setting value and the neutron flux feedback signal to output pump speed demand signal). Then, the control is carried out by the combination of the reactor-core-flow rate controller and the neutron flux controller only upon occurrence of transient changes in which reactor parameters vary rapidly. (Ikeda, J.)

  11. 30 CFR 57.22213 - Air flow (III mines).

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air flow (III mines). 57.22213 Section 57.22213... Methane in Metal and Nonmetal Mines Ventilation § 57.22213 Air flow (III mines). The quantity of air... longwall and continuous miner sections. The quantity of air across each face at a work place shall be...

  12. 40 CFR 90.416 - Intake air flow measurement specifications.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure...

  13. On the impact of entrapped air in infiltration under ponding conditions: Part a: Preferential air flow path effects on infiltration

    Science.gov (United States)

    Weisbord, N.; Mizrahi, G.; Furman, A.

    2015-12-01

    Entrapped air effects on infiltration under ponding conditions could be important for massive infiltration of managed aquifer recharge or soil aquifer treatment. Earlier studies found that under ponding conditions air could reduce infiltration by 70-90%. Most studies have dealt with entrapped air effects when soil surface topography is flat. The objective of this study is to investigate the effects of: (1) irregular surface topography on preferential air flow path development; (2) preferential air flow path on infiltration; and (3) hydraulic head on infiltration when air is trapped. Column experiments were used to investigate these particular effects. A 140 cm deep and 30 cm wide column packed with silica sand was used under two boundary conditions: in the first, air can only escape vertically upward through the soil surface; in the second, air is free to escape. The surface was flooded with 13 liters of water, with ponding depth decreasing with time. Two soil surface conditions were tested: flat surface and irregular. It was found that in irregular surfaces, stable air flow through preferential paths was developed in the high altitude zones. Flat surface topography caused unstable air flow through random paths. Comparison between irregular and flat surface topography showed that the entrapped air pressure was lower and the infiltration rate was about 40% higher in the irregular surface topography than in the flat surface topography. No difference of infiltration rate between flat and irregular surface topography was observed when air was free to escape along the infiltration path. It was also found that at the first stage of infiltration, higher hydraulic heads caused higher entrapped air pressures and lower infiltration rates. In contrast, higher hydraulic head results in higher infiltration rate, when air was free to escape. Our results suggest that during ponding conditions: (1) preferential air flow paths develop at high surface zones of irregular topography

  14. Flow rate measurements by means of tracers

    Energy Technology Data Exchange (ETDEWEB)

    Mosetti, F. (Trieste Univ. (Italy). Istituto di Geodesia e Geofisica)

    The application of some sources of diffusion for the flow rate measurement of water or other fluids is here presented. The laminar instantaneous source, obtained in practice with easy devices, is very useful in river or channel measurements. The analysis of the measurements could supply the flow rate and the presence of water losses or recharges. The section of the channel can also be determined by such a method.

  15. Coriolis mass flow rate meters for low flows

    OpenAIRE

    Mehendale, Aditya

    2008-01-01

    The accurate and quick measurement of small mass flow rates (~10 mg/s) of fluids is considered an "enabling technology" in semiconductor, fine-chemical, and food & drugs industries. Flowmeters based on the Coriolis effect offer the most direct sensing of the mass flow rate, and for this reason do not need complicated translation or linearization tables to compensate for other physical parameters (e.g. density, state, temperature, heat capacity, viscosity, etc.) of the medium that they measure...

  16. 40 CFR 1065.225 - Intake-air flow meter.

    Science.gov (United States)

    2010-07-01

    ... CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements § 1065.225 Intake-air... § 1065.205. This may include a laminar flow element, an ultrasonic flow meter, a subsonic venturi, a... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Intake-air flow meter....

  17. New sensor for measurement of low air flow velocity. Phase I final report

    International Nuclear Information System (INIS)

    The project described here is the Phase I feasibility study of a two-phase program to integrate existing technologies to provide a system for determining air flow velocity and direction in radiation work areas. Basically, a low air flow sensor referred to as a thermocouple flow sensor has been developed. The sensor uses a thermocouple as its sensing element. The response time of the thermocouple is measured using an existing in-situ method called the Loop Current Step Response (LCSR) test. The response time results are then converted to a flow signal using a response time-versus-flow correlation. The Phase I effort has shown that a strong correlation exists between the response time of small diameter thermocouples and the ambient flow rate. As such, it has been demonstrated that thermocouple flow sensors can be used successfully to measure low air flow rates that can not be measured with conventional flow sensors. While the thermocouple flow sensor developed in this project was very successful in determining air flow velocity, determining air flow direction was beyond the scope of the Phase I project. Nevertheless, work was performed during Phase I to determine how the new flow sensor can be used to determine the direction, as well as the velocity, of ambient air movements. Basically, it is necessary to use either multiple flow sensors or move a single sensor in the monitoring area and make flow measurements at various locations sweeping the area from top to bottom and from left to right. The results can then be used with empirical or physical models, or in terms of directional vectors to estimate air flow patterns. The measurements can be made continuously or periodically to update the flow patterns as they change when people and objects are moved in the monitoring area. The potential for using multiple thermocouple flow sensors for determining air flow patterns will be examined in Phase II

  18. Optimum solar collector fluid flow rates

    DEFF Research Database (Denmark)

    Furbo, Simon; Shah, Louise Jivan

    1996-01-01

    Experiments showed that by means of a standard electronically controlled pump, type UPE 2000 from Grundfos it is possible to control the flow rate in a solar collector loop in such a way that the flow rate is strongly influenced by the temperature of the solar collector fluid passing the pump...... the energy consumption of a normal ciculation pump in the solar heating system.Calculations showed that the highest thermal performances for small SDHW systems based on mantle tanks with constant volume flow rates in the solar collector loops are achieved if the flow rate is situated in the interval from 0.......2 to 0.3 l/min. per m^2 solar collector for combi tank systems and in the interval from 0.3 to 0.4 l/min. per m^2 solar collector for preheating systems. Further, calculations showed that by means of an advanced control strategy for the flow rate - for instance if the flow rate is directly proportional...

  19. Stability of flow focusing: The minimum attainable flow rate

    Science.gov (United States)

    Montanero, J. M.; Rebollo, N.; Acero, A.; Ferrera, C.; Herrada, M. A.; Ganan-Calvo, A. M.

    2011-11-01

    We analyze both theoretically and experimentally the stability of the steady jetting regime reached when liquid jets are focused by coaxial gas streams. In the low-viscosity case, viscous dissipation in the feeding capillary and liquid meniscus seem to be the origin of the instability. For high-viscosity liquids, the breakdown of the jetting regime takes place when the pressure drop cannot overcome the resistance force offered by surface tension. The characteristic flow rates for which the tapering menisci become unstable do not depend on the pressure drop applied to the system to produce the micro-jet. They increase (decrease) with viscosity for very low (high) viscosity liquids. Experiments confirmed the validity of the above conclusions. For each applied pressure drop, there is a minimum liquid flow rate below which the liquid meniscus drips. The minimum flow rates become practically independent of the applied pressure drop for sufficiently large values of this quantity. There exists an optimum value of the capillary-to-orifice distance for which the minimum flow rate attains a limiting value, which constitutes the lowest flow rate attainable with a given configuration in the steady jetting regime. A two-dimensional stability map with a high degree of validity is plotted on the plane defined by the Reynolds and capillary numbers based on the limiting flow rate.

  20. Ultrasonic rate measurement of multiphase flow

    Science.gov (United States)

    Dannert, David A.; Horne, Roland N.

    1993-01-01

    One of the most important tools in production logging and well testing is the downhole flowmeter. Unfortunately, existing tools are inaccurate outside of an idealized single phase flow regime. Spinner tools are inaccurate at extremely high or low flow rates and when the flow rate is variable. Radioactive tracer tools have similar inaccuracies and are extremely sensitive to the flow regime. Both tools completely fail in the presence of multiphase flow, whether for gas/oil, gas/water, or fluid/solid. Downhole flowmetering is important for locating producing zones and thief zones and monitoring production and injection rates. The effects of stimulation can also be determined. The goal of this project is the investigation of accurate downhole flowmetering techniques for all single phase flow regimes and multiphase flows. The measurement method investigated in this report is the use of ultrasound. There are two ways to use ultrasound for fluid velocity measurement. The first method, examined in Chapter 2, is the contrapropagation, or transit-time, method which compares travel times with and against fluid flow. Chapter 3 details the second method which measures the Doppler frequency shift of a reflected sound wave in the moving fluid. Both of these technologies need to be incorporated in order to build a true multiphase flowmeter. Chapter 4 describes the proposed downhole multiphase flowmeter.

  1. Decentralized and Tactical Air Traffic Flow Management

    Science.gov (United States)

    Bertsimas, Dimitris; Odoni, Amedeo R.

    1997-01-01

    This project dealt with the following topics: 1. Review and description of the existing air traffic flow management system (ATFM) and identification of aspects with potential for improvement. 2. Identification and review of existing models and simulations dealing with all system segments (enroute, terminal area, ground) 3. Formulation of concepts for overall decentralization of the ATFM system, ranging from moderate decentralization to full decentralization 4. Specification of the modifications to the ATFM system required to accommodate each of the alternative concepts. 5. Identification of issues that need to be addressed with regard to: determination of the way the ATFM system would be operating; types of flow management strategies that would be used; and estimation of the effectiveness of ATFM with regard to reducing delay and re-routing costs. 6. Concept evaluation through identification of criteria and methodologies for accommodating the interests of stakeholders and of approaches to optimization of operational procedures for all segments of the ATFM system.

  2. Optimization of recirculating laminar air flow in operating room air conditioning systems

    Directory of Open Access Journals (Sweden)

    Enver Yalcin

    2016-04-01

    Full Text Available The laminar flow air-conditioning system with 100% fresh air is used in almost all operating rooms without discrimination in Turkey. The laminar flow device which is working with 100% fresh air should be absolutely used in Type 1A operating rooms. However, there is not mandatory to use of 100% fresh air for Type 1B defined as places performed simpler operation. Compared with recirculating laminar flow, energy needs of the laminar flow with 100 % fresh air has been emerged about 40% more than re-circulated air flow. Therefore, when a recirculating laminar flow device is operated instead of laminar flow system with 100% fresh air in the Type 1B operating room, annual energy consumption will be reduced. In this study, in an operating room with recirculating laminar flow, optimal conditions have been investigated in order to obtain laminar flow form by analyzing velocity distributions at various supply velocities by using computational fluid dynamics method (CFD.

  3. Effect of air-flow on the evaluation of refractive surgery ablation patterns.

    Science.gov (United States)

    Dorronsoro, Carlos; Schumacher, Silvia; Pérez-Merino, Pablo; Siegel, Jan; Mrochen, Michael; Marcos, Susana

    2011-02-28

    An Allegretto Eye-Q laser platform (Wavelight GmbH, Erlangen, Germany) was used to study the effect of air-flow speed on the ablation of artificial polymer corneas used for testing refractive surgery patterns. Flat samples of two materials (PMMA and Filofocon A) were ablated at four different air flow conditions. The shape and profile of the ablated surfaces were measured with a precise non-contact optical surface profilometer. Significant asymmetries in the measured profiles were found when the ablation was performed with the clinical air aspiration system, and also without air flow. Increasing air-flow produced deeper ablations, improved symmetry, and increased the repeatability of the ablation pattern. Shielding of the laser pulse by the plume of smoke during the ablation of plastic samples reduced the central ablation depth by more than 40% with no-air flow, 30% with clinical air aspiration, and 5% with 1.15 m/s air flow. A simple model based on non-inertial dragging of the particles by air flow predicts no central shielding with 2.3 m/s air flow, and accurately predicts (within 2 μm) the decrease of central ablation depth by shielding. The shielding effects for PMMA and Filofocon A were similar despite the differences in the ablation properties of the materials and the different full-shielding transmission coefficient, which is related to the number of particles ejected and their associated optical behavior. Air flow is a key factor in the evaluation of ablation patterns in refractive surgery using plastic models, as significant shielding effects are found with typical air-flow levels used under clinical conditions. Shielding effects can be avoided by tuning the air flow to the laser repetition rate.

  4. Changes in air flow patterns using surfactants and thickeners during air sparging: Bench-scale experiments

    Science.gov (United States)

    Kim, Juyoung; Kim, Heonki; Annable, Michael D.

    2015-01-01

    Air injected into an aquifer during air sparging normally flows upward according to the pressure gradients and buoyancy, and the direction of air flow depends on the natural hydrogeologic setting. In this study, a new method for controlling air flow paths in the saturated zone during air sparging processes is presented. Two hydrodynamic parameters, viscosity and surface tension of the aqueous phase in the aquifer, were altered using appropriate water-soluble reagents distributed before initiating air sparging. Increased viscosity retarded the travel velocity of the air front during air sparging by modifying the viscosity ratio. Using a one-dimensional column packed with water-saturated sand, the velocity of air intrusion into the saturated region under a constant pressure gradient was inversely proportional to the viscosity of the aqueous solution. The air flow direction, and thus the air flux distribution was measured using gaseous flux meters placed at the sand surface during air sparging experiments using both two-, and three-dimensional physical models. Air flow was found to be influenced by the presence of an aqueous patch of high viscosity or suppressed surface tension in the aquifer. Air flow was selective through the low-surface tension (46.5 dyn/cm) region, whereas an aqueous patch of high viscosity (2.77 cP) was as an effective air flow barrier. Formation of a low-surface tension region in the target contaminated zone in the aquifer, before the air sparging process is inaugurated, may induce air flow through the target zone maximizing the contaminant removal efficiency of the injected air. In contrast, a region with high viscosity in the air sparging influence zone may minimize air flow through the region prohibiting the region from de-saturating.

  5. Changes in air flow patterns using surfactants and thickeners during air sparging: bench-scale experiments.

    Science.gov (United States)

    Kim, Juyoung; Kim, Heonki; Annable, Michael D

    2015-01-01

    Air injected into an aquifer during air sparging normally flows upward according to the pressure gradients and buoyancy, and the direction of air flow depends on the natural hydrogeologic setting. In this study, a new method for controlling air flow paths in the saturated zone during air sparging processes is presented. Two hydrodynamic parameters, viscosity and surface tension of the aqueous phase in the aquifer, were altered using appropriate water-soluble reagents distributed before initiating air sparging. Increased viscosity retarded the travel velocity of the air front during air sparging by modifying the viscosity ratio. Using a one-dimensional column packed with water-saturated sand, the velocity of air intrusion into the saturated region under a constant pressure gradient was inversely proportional to the viscosity of the aqueous solution. The air flow direction, and thus the air flux distribution was measured using gaseous flux meters placed at the sand surface during air sparging experiments using both two-, and three-dimensional physical models. Air flow was found to be influenced by the presence of an aqueous patch of high viscosity or suppressed surface tension in the aquifer. Air flow was selective through the low-surface tension (46.5 dyn/cm) region, whereas an aqueous patch of high viscosity (2.77 cP) was as an effective air flow barrier. Formation of a low-surface tension region in the target contaminated zone in the aquifer, before the air sparging process is inaugurated, may induce air flow through the target zone maximizing the contaminant removal efficiency of the injected air. In contrast, a region with high viscosity in the air sparging influence zone may minimize air flow through the region prohibiting the region from de-saturating.

  6. Investigation and numerical simulation of inner-flow of an axial mineflow fan under low flow rate conditions

    Institute of Scientific and Technical Information of China (English)

    LI Yi-min; ZHOU Zhong-ning

    2008-01-01

    Because of unstable properties of axial mine flow fans working under conditions of low flow rates, the safety and reli-ability of fans in their operational zone is reduced. At times, serious vibration may bring about the destruction of equipment or even jeopardize the safety of entire factories. By means of oil flow visualization techniques and numerical simulation, we have investi-gated the inner-flow of an axial mine flow fan working under low flow rate conditions. The fundamental reasons of complex flow phenomena of the inner-flow of the flow fan under these stated conditions were revealed. At the same time and in order to improve the inner-flow under conditions of low flow rates, a blade separator and air separator were designed. From our tests we found that the blade separator and air separator are two kinds efficient methods to improve the unstable working characteristics of the axial mine flow fan operating under low flow rate conditions. The effect of the improvement of the air separator is stronger than that of the blade separator.

  7. Cavity air flow behavior during filling in microinjection molding

    DEFF Research Database (Denmark)

    Griffiths, C.A.; Dimov, S.S.; Scholz, S.;

    2011-01-01

    valuable information about the process dynamics and also about the filling of a cavity by a polymer melt. In this paper, a novel experimental setup is proposed to monitor maximum air flow and air flow work as an integral of the air flow over time by employing a microelectromechanical system gas sensor...... mounted inside the mold. The influence of four μIM parameters, melt temperature, mold temperature, injection speed, and resistance to air evacuation, on two air flow-related output parameters is investigated by carrying out a design of experiment study. The results provide empirical evidences about...... the effects of process parameters on cavity air evacuation, and the influence of air evacuation on the part flow length. © 2011 American Society of Mechanical Engineers....

  8. Exchange Rate, Equity Prices and Capital Flows

    OpenAIRE

    Harald Hau; Helene Rey

    2002-01-01

    We develop an equilibrium model in which exchange rates, stock prices and capital flows are jointly determined under incomplete forex risk trading. Incomplete hedging of forex risk, documented for U.S. global mutual funds, has three important implications: 1) exchange rates are almost as volatile as equity prices when the forex liquidity supply is not infinitely price elastic; 2) higher returns in the home equity market relative to the foreign equity market are associated with a home currency...

  9. Exchange Rates, Equity Prices and Capital Flows

    OpenAIRE

    Hau, Harald; Rey, Hélène

    2003-01-01

    We develop an equilibrium model in which exchange rates, stock prices and capital flows are jointly determined under incomplete forex risk trading. Incomplete hedging of forex risk, documented for US global mutual funds, has three important implications: 1) exchange rates are almost as volatile as equity prices when the forex liquidity supply is not infinitely price elastic; 2) higher returns in the home equity market relative to the foreign equity market are associated with a home currency d...

  10. Exchange rates, equity returns and capital flows

    OpenAIRE

    Helene Rey; Harald Hau

    2004-01-01

    We develop an equilibrium model in which exchange rates, stock prices and capital flows are jointly determined under incomplete forex risk trading. Incomplete hedging of forex risk, documented for U.S. global mutual funds, has three important implications: 1) exchange rates are almost as volatile as equity prices when the forex liquidity supply is not infinitely price elastic; 2) higher returns in the home equity market relative to the foreign equity market are associated with a home currency...

  11. Groundwater remediation engineering--Study on the flow distribution of air sparging using acetylene

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yan-mei; ZHANG Ying; HUANG Guo-qiang; JIANG Bin; LI Xin-gang

    2005-01-01

    Air sparging(AS) is an emerging method to remove VOCs from saturated soils and groundwater. Air sparging performance highly depends on the air distribution resulting in the aquifer. In order to study gas flow characterization, a two-dimensional experimental chamber was designed and installed. In addition, the method by using acetylene as the tracer to directly image the gas distribution results of AS process has been put forward. Experiments were performed with different injected gas flow rates. The gas flow patterns were found to depend significantly on the injected gas flow rate, and the characterization of gas flow distributions in porous media was very different from the acetylene tracing study. Lower and higher gas flow rates generally yield more irregular in shape and less effective gas distributions.

  12. KINEMATIC STUDY OF THE AIR FLOW PRODUCED BY SOME SPRAYERS USED IN “TENDONE” VINEYARDS

    Directory of Open Access Journals (Sweden)

    Simone Pascuzzi

    2008-09-01

    Full Text Available A computerized measuring system to analyse the vector field of the air velocities in a volume surrounding the fan of air assisted sprayers usually used in tendone vineyards was designed and built. The performance of three different sprayers was tested: the first, a traditional air-convection sprayer, the other two, suitably designed for treatments in tendone vineyards. The air flow which exited through the discharge diffusers and moving towards the target sucked air from the surrounding environment that enlarged the flow rate on the target. The available flow was that which reached the vegetative and productive area, placed in a horizontal position respectively at 1.8 m and 2.0 m from the ground plane. The pneumatic sprayer produced an air flow clearly directed towards the top of the vines.

  13. Prototype Systems for Measuring Outdoor Air Intake Rates in Rooftop Air Handlers

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chan, Wanyu R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hotchi, Toshifumi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-01-01

    The widespread absence of systems for real-time measurement and feedback control, of minimum outdoor air intake rates in HVAC systems contributes to the poor control of ventilation rates in commercial buildings. Ventilation rates affect building energy consumption and influence occupant health. The project designed fabricated and tested four prototypes of systems for measuring rates of outdoor air intake into roof top air handlers. All prototypes met the ±20% accuracy target at low wind speeds, with all prototypes accurate within approximately ±10% after application of calibration equations. One prototype met the accuracy target without a calibration. With two of four prototype measurement systems, there was no evidence that wind speed or direction affected accuracy; however, winds speeds were generally below usually 3.5 m s-1 (12.6 km h-1) and further testing is desirable. The airflow resistance of the prototypes was generally less than 35 Pa at maximum RTU air flow rates. A pressure drop of this magnitude will increase fan energy consumption by approximately 4%. The project did not have resources necessary to estimate costs of mass produced systems. The retail cost of components and materials used to construct prototypes ranged from approximately $1,200 to $1,700. The test data indicate that the basic designs developed in this project, particularly the designs of two of the prototypes, have considerable merit. Further design refinement, testing, and cost analysis would be necessary to fully assess commercial potential. The designs and test results will be communicated to the HVAC manufacturing community.

  14. Simulation of the air flows in many industrial pleated filters

    International Nuclear Information System (INIS)

    The study presents results concerning the characterization of the charge loss and the air flow in nuclear and automobile type pleated filters. The experimental studies in correlation with the numerical models showed an homogenous distribution of the air flows in a THE nuclear type filter, whereas the distribution is heterogenous in the case of an automobile filter. (A.L.B.)

  15. Relative flow rates of explosive powders

    Energy Technology Data Exchange (ETDEWEB)

    Willson, V.P.

    1988-05-31

    A study was performed to determine the relative flow rates of various explosive powders and evaluate their adaptability for use in automated dispensing systems. Results showed that PBX 9407, LX-15, RX-26-BH, and HNAB are potential candidates for use in these systems. It was also shown that powders with graphite and stearate additives generated the least amount of static and were the easiest to handle.

  16. Centrifugal compressor flow instabilities at lowmass flow rate

    OpenAIRE

    Sundström, Elias

    2016-01-01

    Turbochargers play an important role in increasing the energetic efficiency andreducing emissions of modern power-train systems based on downsized recipro-cating internal combustion engines (ICE). The centrifugal compressor in tur-bochargers is limited at off-design operating conditions by the inception of flowinstabilities causing rotating stall and surge. They occur at reduced enginespeeds (low mass flow rates), i.e. typical operating conditions for a betterengine fuel economy, harming ICEs...

  17. The Piecewise Linear Reactive Flow Rate Model

    Energy Technology Data Exchange (ETDEWEB)

    Vitello, P; Souers, P C

    2005-07-22

    Conclusions are: (1) Early calibrations of the Piece Wise Linear reactive flow model have shown that it allows for very accurate agreement with data for a broad range of detonation wave strengths. (2) The ability to vary the rate at specific pressures has shown that corner turning involves competition between the strong wave that travels roughly in a straight line and growth at low pressure of a new wave that turns corners sharply. (3) The inclusion of a low pressure de-sensitization rate is essential to preserving the dead zone at large times as is observed.

  18. Tilted Micro Air Jet for Flow Control

    CERN Document Server

    Malapert, Julien; Zeggari, Rabah; Manceau, Jean-François

    2009-01-01

    In this paper, we present an interesting method to microfabricate a tilted micro air jet generator. We used the well-know deep reactive ion etching (DRIE) technique in order to realize in a silicon substrate a double side etching. For aircraft and cars, micro air jets will take an important place for fluid control. Micro air jets are characterized by their speed, frequency and tilt. Usually, this micro air jets are produced by fluidic microsystems. We presented experimental results about micro tilted air jets. A comparison between finite element method simulation, theory and experimental results are performed to define the microsystem geometry leading a specific air jet angle.

  19. Specific Properties of Air Flow Field Within the Grinding Zone

    Institute of Scientific and Technical Information of China (English)

    ZHENG Junyi; JIANG Zhengfeng; ZHAO Liang

    2006-01-01

    Air barrier of grinding means a boundary layer of air existing at the circumference of the rotating wheel, which hinders coolant from entry. This paper makes a research on air flow field of the grinding zone through experiments and numerical simulations, focusing on acquainting with the specific properties of the air flow field. Finite volume method is applied to analyze air flow field within grinding wheel in the course of numerical calculations. The test devices such as Hot-wire anemometer and Betz manometer are used during the experiments of testing the pressure and velocity within grinding zone. Results of experiments agree by and large with numerical results of calculations. The conclusions obtained in this paper, the distribution of wall pressure and the distribution of air flow velocity, are important and useful to navigate the delivery of coolant into the grinding zone. In conclusion, some recommendations are made for further study and practical applications in such field.

  20. Air Flow and Gassing Potential in Micro-injection Moulding

    DEFF Research Database (Denmark)

    Griffithsa, C.A.; Dimova, S.S.; Scholz, S.;

    2011-01-01

    valuable information about the process dynamics and also about the filling of a cavity by a polymer melt. In this paper, a novel experimental set-up is proposed to monitor maximum air flow and air flow work as an integral of the air flow over time by employing a MEMS gas sensor mounted inside the mould....... The influence of four μIM parameters, melt temperature, mould temperature, injection speed, and resistance to air evacuation, on two air flow-related output parameters is investigated by carrying out a design of experiment study. The results provide empirical evidence about the effects of process parameters......Process monitoring of micro injection moulding (μ-IM) is of crucial importance in understanding the effects of different parameter settings on the process, especially on its performance and consistency in regards to parts’ quality. Quality factors related to mould cavity air evacuation can provide...

  1. Research on Air Flow Measurement and Optimization of Control Algorithm in Air Disinfection System

    Science.gov (United States)

    Bing-jie, Li; Jia-hong, Zhao; Xu, Wang; Amuer, Mohamode; Zhi-liang, Wang

    2013-01-01

    As the air flow control system has the characteristics of delay and uncertainty, this research designed and achieved a practical air flow control system by using the hydrodynamic theory and the modern control theory. Firstly, the mathematical model of the air flow distribution of the system is analyzed from the hydrodynamics perspective. Then the model of the system is transformed into a lumped parameter state space expression by using the Galerkin method. Finally, the air flow is distributed more evenly through the estimation of the system state and optimal control. The simulation results show that this algorithm has good robustness and anti-interference ability

  2. Two-phase air-water stratified flow measurement using ultrasonic techniques

    Science.gov (United States)

    Fan, Shiwei; Yan, Tinghu; Yeung, Hoi

    2014-04-01

    In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable.

  3. Wall Shear Rates in Taylor Vortex Flow

    Directory of Open Access Journals (Sweden)

    V. Sobolik

    2011-01-01

    Full Text Available Wall shear rate and its axial and azimuthal components were evaluated in stable Taylor vortices. The measurements were carried out in a broad interval of Taylor numbers (52-725 and several gap width (R1/R2 = 0.5 – 0.8 by two three-segment electrodiffusion probes and three single probes flush mounted in the wall of the outer fixed cylinder. The axial distribution of wall shear rate components was obtained by sweeping the vortices along the probes using a slow axial flow. The experimental results were verified by CFD simulations. The knowledge of local wall shear rates and its fluctuations is of primordial interest for industrial applications like tangential filtration, membrane reactors and bioreactors containing shear sensitive cells.

  4. Laser sheet light flow visualization for evaluating room air flowsfrom Registers

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain S.; Claret, Valerie; Smith, Brian

    2006-04-01

    Forced air heating and cooling systems and whole house ventilation systems deliver air to individual rooms in a house via supply registers located on walls ceilings or floors; and occasionally less straightforward locations like toe-kicks below cabinets. Ideally, the air velocity out of the registers combined with the turbulence of the flow, vectoring of air by register vanes and geometry of register placement combine to mix the supply air within the room. A particular issue that has been raised recently is the performance of multiple capacity and air flow HVAC systems. These systems vary the air flow rate through the distribution system depending on the system load, or if operating in a ventilation rather than a space conditioning mode. These systems have been developed to maximize equipment efficiency, however, the high efficiency ratings do not include any room mixing effects. At lower air flow rates, there is the possibility that room air will be poorly mixed, leading to thermal stratification and reduced comfort for occupants. This can lead to increased energy use as the occupants adjust the thermostat settings to compensate and parts of the conditioned space have higher envelope temperature differences than for the well mixed case. In addition, lack of comfort can be a barrier to market acceptance of these higher efficiency systems To investigate the effect on room mixing of reduced air flow rates requires the measurement of mixing of supply air with room air throughout the space to be conditioned. This is a particularly difficult exercise if we want to determine the transient performance of the space conditioning system. Full scale experiments can be done in special test chambers, but the spatial resolution required to fully examine the mixing problem is usually limited by the sheer number of thermal sensors required. Current full-scale laboratory testing is therefore severely limited in its resolution. As an alternative, we used a water-filled scale model

  5. Calculation of flow distribution in air reverse circulation bit interior fluid field by simplifying air flow model

    Institute of Scientific and Technical Information of China (English)

    Shuqing HAO; Hongwei HUANG; Kun YIN

    2007-01-01

    By simplifying the characters in the air reverse circulation bit interior fluid field, the authors used air dynamics and fluid mechanics to calculate the air distribution in the bit and obtained an equation of flow distribution with a unique resolution. This study will provide help for making certain the bit parameters of the bit structure effectively and study the air reverse circulation bit interior fluid field character deeply.

  6. Polymer electrolyte fuel cells: flow field for efficient air operation

    Energy Technology Data Exchange (ETDEWEB)

    Buechi, F.N.; Tsukada, A.; Haas, O.; Scherer, G.G. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    A new flow field was designed for a polymer electrolyte fuel cell stack with an active area of 200 cm{sup 2} for operation at low air stoichiometry and low air over pressure. Optimum of gas flow and channel dimensions were calculated based on the required pressure drop in the fluid. Single cells and a bi-cell stack with the new flow field show an improved current/voltage characteristic when operated at low air stoichiometries as compared to that of the previous non optimized design. (author) 4 figs., 3 refs.

  7. Solids flow rate measurement in dense slurries

    Energy Technology Data Exchange (ETDEWEB)

    Porges, K.G.; Doss, E.D.

    1993-09-01

    Accurate and rapid flow rate measurement of solids in dense slurries remains an unsolved technical problem, with important industrial applications in chemical processing plants and long-distance solids conveyance. In a hostile two-phase medium, such a measurement calls for two independent parameter determinations, both by non-intrusive means. Typically, dense slurries tend to flow in laminar, non-Newtonian mode, eliminating most conventional means that usually rely on calibration (which becomes more difficult and costly for high pressure and temperature media). These issues are reviewed, and specific solutions are recommended in this report. Detailed calculations that lead to improved measuring device designs are presented for both bulk density and average velocity measurements. Cross-correlation, chosen here for the latter task, has long been too inaccurate for practical applications. The cause and the cure of this deficiency are discussed using theory-supported modeling. Fluid Mechanics are used to develop the velocity profiles of laminar non-Newtonian flow in a rectangular duct. This geometry uniquely allows the design of highly accurate `capacitive` devices and also lends itself to gamma transmission densitometry on an absolute basis. An absolute readout, though of less accuracy, is also available from a capacitive densitometer and a pair of capacitive sensors yields signals suitable for cross-correlation velocity measurement.

  8. A new method for the measurement of two-phase mass flow rate using average bi-directional flow tube

    International Nuclear Information System (INIS)

    Average bi-directional flow tube was suggested to apply in the air/steam-water flow condition. Its working principle is similar with Pitot tube, however, it makes it possible to eliminate the cooling system which is normally needed to prevent from flashing in the pressure impulse line of pitot tube when it is used in the depressurization condition. The suggested flow tube was tested in the air-water vertical test section which has 80mm inner diameter and 10m length. The flow tube was installed at 120 of L/D from inlet of test section. In the test, the pressure drop across the average bi-directional flow tube, system pressure and average void fraction were measured on the measuring plane. In the test, fluid temperature and injected mass flow rates of air and water phases were also measured by a RTD and two coriolis flow meters, respectively. To calculate the phasic mass flow rates : from the measured differential pressure and void fraction, Chexal drift-flux correlation was used. In the test a new correlation of momentum exchange factor was suggested. The test result shows that the suggested instrumentation using the measured void fraction and Chexal drift-flux correlation can predict the mass flow rates within 10% error of measured data

  9. Relationship between indoor radon concentrations and air exchange rate

    International Nuclear Information System (INIS)

    The indoor concentration of radon and the air exchange rate were simultaneously measured in four empty rooms, made of brick and cement, which were located in different floors of dwelling houses in Taiyuan, Shanxi, China. SF6 tracer gas decay method was used to measure the air exchange rate. Indoor radon was collected with the dimembrane method. When the ventilation rate increased, the concentration of radon dropped rapidly. Regression analysis indicated that the indoor concentration of radon was equal to the outdoor level of radon when the air exchange rate was greater than 3-4. SF6 decay method was an effective and convenient method for measuring the air exchange rate. There was no marked difference in measurements obtained in different locations of a room. (N.K.)

  10. Numerical Prediction of Buoyant Air Flow in Livestock Buildings

    DEFF Research Database (Denmark)

    Svidt, Kjeld

    not include the effect of room geometry, obstacles or heat sources. This paper describes the use of Computational Fluid Dynamics to predict air flow patterns and temperature distribution in a ventilated space. Good agreement is found when results of numerical predictions are compared with experimental data.......In modern livestock buildings air distribution and air quality are important parameters to animal welfare and to the health of full-tithe employees in animal production. Traditional methods for calculating air distribution in farm buildings are mainly based on formulas for air jets which do...

  11. Droplet detachment by air flow for microstructured superhydrophobic surfaces.

    Science.gov (United States)

    Hao, Pengfei; Lv, Cunjing; Yao, Zhaohui

    2013-04-30

    Quantitative correlation between critical air velocity and roughness of microstructured surface has still not been established systematically until the present; the dynamics of water droplet detachment by air flow from micropillar-like superhydrophobic surfaces is investigated by combining experiments and simulation comparisons. Experimental evidence demonstrates that the onset of water droplet detachment from horizontal micropillar-like superhydrophobic surfaces under air flow always starts with detachment of the rear contact lines of the droplets from the pillar tops, which exhibits a similar dynamic mechanism for water droplet motion under a gravity field. On the basis of theoretical analysis and numerical simulation, an explicit analytical model is proposed for investigating the detaching mechanism, in which the critical air velocity can be fully determined by several intrinsic parameters: water-solid interface area fraction, droplet volume, and Young's contact angle. This model gives predictions of the critical detachment velocity of air flow that agree well with the experimental measurements.

  12. On the use of various oscillatory air flow fields for characterization of biomimetic hair flow sensors

    NARCIS (Netherlands)

    Droogendijk, H.; Dagamseh, A.M.K.; Yntema, D.R.; Sanders, R.G.P.; Krijnen, G.J.M.

    2011-01-01

    To determine the characteristics of flow sensors, a suitable source for flow generation is required. We discuss three different sources for oscillating air flow, by considering their acoustic impedance, frequency range, velocity and ability to distinguish between flow and pressure. We discuss the im

  13. On the Use of Various Oscillatory Air Flow Fields for Characterization of Biomimetic Hair Flow Sensors

    NARCIS (Netherlands)

    Droogendijk, H.; Dagamseh, A.M.K.; Yntema, D.R.; Sanders, R.G.P.; Krijnen, G.J.M.

    2011-01-01

    To determine the characteristics of flow sensors, a suitable source for flow generation is required. We discuss three different sources for oscillating air flow, by considering their acoustic impedance, frequency range, velocity and ability to distinguish between flow and pressure. We discuss the im

  14. Relief, nocturnal cold-air flow and air quality in Kigali, Rwanda

    Science.gov (United States)

    Henninger, Sascha

    2013-04-01

    , this result is not reassuringly, because all measured residential districts in Kigali exceeded the recommendations of the WHO, too. This suggests that the inhabitants of Kigali are exposed to enormous levels of PM10 during most of their time outdoors. So PM10 levels are increasing in areas with high rates of traffic due to the exhaust of the vehicles and the stirring up of dust from the ground, but also in fact of burning wood for cooking etc. within the residential districts. Hazardous measuring trips could be detected for nighttime measurements. Because of high temperatures, high solar radiation and a non-typical missing cloud cover the urban surface could heat up extremely, which produced a cold-air flow from the ridges and the slopes down to the "Marais" at night. This cold-air flow takes away the suspended particulate matters, which tends to accumulate within the "Marais" on the bottom of the hills, the places where most residential neighborhoods could be found and agricultural fields were used. The distinctive relief caused an accumulation within small valleys. Unfortunately, these are the favourite places of living and agriculture and this tends to high indoor-air pollution.

  15. EXPERIMENTAL STUDY OF AIR-WATER TWO-PHASE FLOW IN PARALLEL HELICALLY COILED PIPES

    OpenAIRE

    Panella, Bruno

    2012-01-01

    The air-water two-phase flow in a 12 mm inner diameter parallel helically coiled pipes is investigated with three different coils diameters. Void fraction, flow rate distribution and two-phase pressure drops along the pipes in the parallel channels are measured. The test two-phase pressure drops are compared with theoretical ones, in terms of multipliers and friction factors. The instabilities arisen during the experimental tests are investigated and are related to the void fraction and flow ...

  16. Minimum detectable air velocity by thermal flow sensors.

    Science.gov (United States)

    Issa, Safir; Lang, Walter

    2013-08-19

    Miniaturized thermal flow sensors have opened the doors for a large variety of new applications due to their small size, high sensitivity and low power consumption. Theoretically, very small detection limits of air velocity of some micrometers per second are achievable. However, the superimposed free convection is the main obstacle which prevents reaching these expected limits. Furthermore, experimental investigations are an additional challenge since it is difficult to generate very low flows. In this paper, we introduce a physical method, capable of generating very low flow values in the mixed convection region. Additionally, we present the sensor characteristic curves at the zero flow case and in the mixed convection region. Results show that the estimated minimum detectable air velocity by the presented method is 0.8 mm/s. The equivalent air velocity to the noise level of the sensor at the zero flow case is about 0.13 mm/s.

  17. Aerosol sampler with remote air flow control and online radioactivity measurement above the filter

    International Nuclear Information System (INIS)

    The Czech national Radiation Monitoring Network is equipped with JL-150 aerosol samplers 150 m3/h air flow rate. An upgraded design of this system is proposed. The features of the upgraded aerosol sampler include remote air flow rate control via pump power, maintaining the adjusted flow rate constant, sending status information either on demand or automatically on any change, online gamma spectra acquisition above the aerosol filter and their automatic evaluation, comparison of selected regions of a spectrum with the reference levels and automatic signalling when they are exceeded. The minimum detectable activities of 131I and 137Cs, which may be present in the air in case of NPP accident, are at tenths of Bq/m3 for 1 hour measuring time. (orig.)

  18. Computational and experimental study of spin coater air flow

    Science.gov (United States)

    Zhu, Xiaoguang; Liang, Faqiu; Haji-Sheikh, A.; Ghariban, N.

    1998-06-01

    An extensive 2- and 3-D analysis of air flow in a POLARISTM 2200 Microlithography Cluster spin coater was conducted using FLUENTTM Computational Fluid Dynamics (CFD) software. To supplement this analysis, direct measurement of air flow velocity was also performed using a DantecTM Hot Wire Anemometer. Velocity measurements were made along two major planes across the entire flow field in the spin coater at various operating conditions. It was found that the flow velocity at the spin coater inlet is much lower than previously assumed and quite nonuniform. Based on this observation, a pressure boundary condition rather than a velocity boundary condition was used for subsequent CFD analysis. A comparison between calculated results and experimental data shows that the 3D model accurately predicts the air flow field in the spin coater. An added advantage of this approach is that the CFD model can be easily generated from the mechanical design database and used to analyze the effect of design changes. The modeled and measured results show that the flow pattern in the spin bowl is affected by interactions between the spinning wafer, exhaust flow, and the gap between the spin head and surrounding baffle. Different operating conditions such as spin speed, inlet pressure, and exhaust pressure were found to generate substantially different flow patterns. It was also found that backflow of air could be generated under certain conditions.

  19. Extreme variations of air dose rates in east Fukushima.

    Science.gov (United States)

    Akimoto, Kazuhiro

    2015-11-01

    This report analyses the data of air (ambient) dose rates measured at 164 points in eastern Fukushima during a period of half a year after 10 June 2011. It is found that at some locations the values decreased or increased extraordinarily although on average the overall dose rates decreased significantly faster than the theoretically predicted rate. Among them the nine most extreme points are selected and analysed. It is found that behind these extraordinary behaviours of air dose rates there exists the combination of wind/rain and artificial structures such as sloped pavements.

  20. 14 CFR 23.1095 - Carburetor deicing fluid flow rate.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Carburetor deicing fluid flow rate. 23.1095... Induction System § 23.1095 Carburetor deicing fluid flow rate. (a) If a carburetor deicing fluid system is used, it must be able to simultaneously supply each engine with a rate of fluid flow, expressed...

  1. Visualization of the air flow behind the automotive benchmark vent

    Science.gov (United States)

    Pech, Ondrej; Jedelsky, Jan; Caletka, Petr; Jicha, Miroslav

    2015-05-01

    Passenger comfort in cars depends on appropriate function of the cabin HVAC system. A great attention is therefore paid to the effective function of automotive vents and proper formation of the flow behind the ventilation outlet. The article deals with the visualization of air flow from the automotive benchmark vent. The visualization was made for two different shapes of the inlet channel connected to the benchmark vent. The smoke visualization with the laser knife was used. The influence of the shape of the inlet channel to the airflow direction, its enlargement and position of air flow axis were investigated.

  2. Visualization of the air flow behind the automotive benchmark vent

    Directory of Open Access Journals (Sweden)

    Pech Ondrej

    2015-01-01

    Full Text Available Passenger comfort in cars depends on appropriate function of the cabin HVAC system. A great attention is therefore paid to the effective function of automotive vents and proper formation of the flow behind the ventilation outlet. The article deals with the visualization of air flow from the automotive benchmark vent. The visualization was made for two different shapes of the inlet channel connected to the benchmark vent. The smoke visualization with the laser knife was used. The influence of the shape of the inlet channel to the airflow direction, its enlargement and position of air flow axis were investigated.

  3. Flow structure around high-speed train in open air

    Institute of Scientific and Technical Information of China (English)

    田红旗; 黄莎; 杨明智

    2015-01-01

    According to the analysis of the turbulent intensity level around the high-speed train, the maximum turbulent intensity ranges from 0.2 to 0.5 which belongs to high turbulent flow. The flow field distribution law was studied and eight types of flow regions were proposed. They are high pressure with air stagnant region, pressure decreasing with air accelerating region, low pressure with high air flow velocity region I, turbulent region, steady flow region, low pressure with high air flow velocity region II, pressure increasing with air decelerating region and wake region. The analysis of the vortex structure around the train shows that the vortex is mainly induced by structures with complex mutation and large curvature change. The head and rear of train, the underbody structure, the carriage connection section and the wake region are the main vortex generating sources while the train body with even cross-section has rare vortexes. The wake structure development law studied lays foundation for the train drag reduction.

  4. Influence of exhaled air on inhalation exposure delivered through a directed-flow nose-only exposure system.

    Science.gov (United States)

    Moss, O R; James, R A; Asgharian, B

    2006-01-01

    In order to conserve material that is available in limited quantities, "directed-flow" nose-only exposure systems have at times been run at flow rates close to the minute ventilation of the animal. Such low-flow-rate conditions can contribute to a decrease of test substance concentration in inhaled air; near the animal nose, exhaled air and the directed flow of exposure air move in opposite directions. With a Cannon "directed-flow" nose-only exposure system (Lab Products, Maywood, NJ), we investigated the extent to which exposure air plus exhaled air can be inhaled by an animal. A mathematical model and a mechanical simulation of respiration were adopted to predict for a male Fischer 344 rat the concentration of test substance in inhaled air. The mathematical model was based on the assumption of instantaneous mixing. The mechanical simulation of respiration used a Harvard respirator. When the system was operated at an exposure air flow rate greater than 2.5 times the minute ventilation of the animal, the concentration of test substance in the inhaled air was reduced by less than 10%. Under these conditions, the circular jet of air exiting the exposure air delivery tube tended to reach the animal's nose with little dispersion. For exposure air flow rates less than 2 times the minute ventilation, we predict that the interaction of exhaled air and exposure air can be minimized by proportionally reducing the delivery tube diameter. These findings should be applicable to similar "directed-flow" nose-only exposure systems.

  5. the nature of air flow near the inlets of blunt dust sampling probes

    Science.gov (United States)

    Vincent, J. H.; Hutson, D.; Mark, D.

    This paper sets out to describe the nature of air flow near blunt dust samplers in a way which allows a relatively simple assessment of their performances for collecting dust particles. Of particular importance is the shape of the limiting stream surface which divides the sampled air from that which passes outside the sampler, and how this is affected by the free-stream air velocity, the sampling flow rate, and the shape of the sampler body. This was investigated for two-dimensional and axially-symmetric sampler systems by means of complementary experiments using electrolytic tank potential flow analogues and a wind tunnel respectively. For extreme conditions the flow of air entering the sampling orifice may be wholly divergent or wholly convergent. For a wide range of intermediate conditions, however, the flow first diverges then converges, exhibiting a so-called "spring onion effect". Whichever of these applies for a particular situation, the flow may be considered to consist of two parts, the outer one dominated by the flow about the sampler body and the inner one dominated by the flow into the sampling orifice. Particle transport in this two-part flow may be assessed using ideas borrowed from thin-walled probe theory.

  6. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)] [and others

    1995-09-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within {plus_minus}8%.

  7. Greenhouse Gas Growth Rates from AIRS Hyperspectral Radiance Time Series

    Science.gov (United States)

    Strow, L. L.; Desouza-Machado, S. G.; Hannon, S.; Imbiriba, B.; Schou, P.

    2009-12-01

    The AIRS seven year hyperspectral radiance record provides an ideal platform for measurings growth rates of infrared active minor gases, especially carbon dioxide and methane. The largest changes in CLARREO radiances will likely be due to increasing carbon dioxide and other greenhouse gases. We have produced a 5+ year record of almost cloud-free AIRS radiances, from which we have derived the radiance anomaly and linear time rate of change. The source of these radiances are the L1b radiances corrected for small frequency drifts. Growth rates of carbon dioxide, nitrous oxide, methane, ozone, and CFC11 are simultaneously derived from zonal averages of these radiance rates for tropics, and mid-latitude northern and southern hemispheres. The effective linear rate of change of ~5 layers of water vapor and temperature, plus the surface temperature are also simultaneously derived with the minor gas rates. No model data or prior is needed and more than 1000 channels are used in the fit. Sampling issues may preclude the use of the mid-latitude temperature and water vapor rates for climate analysis, but possibly not for the tropics. The resulting greenhouse gas growth rates agree very well with in-situ measurements, which suggests high radiometric stability for AIRS. Radiance intercomparisons for climate analysis between IASI and AIRS will also be presented.

  8. Equipment for Measuring Air Flow, Air Temperature, Relative Humidity, and Carbon Dioxide in Schools. Technical Bulletin.

    Science.gov (United States)

    Jacobs, Bruce W.

    Information on equipment and techniques that school facility personnel may use to evaluate IAQ conditions are discussed. Focus is placed on the IAQ parameters of air flow, air temperature, relative humidity, as well as carbon dioxide and the equipment used to measure these factors. Reasons for measurement and for when the measurement of these…

  9. Numerical simulation of air flow field in high-pressure fan with splitter blades

    Institute of Scientific and Technical Information of China (English)

    Jianfeng LI; Junfu LU; Hai ZHANG; Qing LIU; Guangxi YUE

    2008-01-01

    For a deeper understanding of the flow char-acteristics in the high-pressure centrifugal blower of a fan of Model 9-26 with splitter blades, a three dimensional (3-D) numerical simulation of air flows in the fan was con-ducted with FLUENT software. The standard k-ε tur-bulent model and unstructured grids were used. The computational fluid dynamics (CFD) results showed that the performance of a fan could be improved by adding the splitter blades in the channel among the leaf blades. Under operational conditions, with the presence of splitter blades, the air flow rate of the fan increased about 5% and the total pressure at the outlet of the fan increased about 10% on average. It was also found that the length of the splitter blades affected the air flow and pressure drop. There is an optimal value for the length. The simulation results provide helpful information for improving the fan performance.

  10. Pumping and remote method of measurements of radioactive solutions flow rates

    International Nuclear Information System (INIS)

    A pumping and metering system of solutions is described which meets the conditions of reliability, precision and repeatability required for operation in shielded cells. Flow rates are controlled by air or vacuum pulses commanded from outside the cells. The described are used to feed mini mixer-settlers used for R and D work for solvent extraction processes requiring a precise control of flow rates comprised between 30 and 500 cc/hr. (author)

  11. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Air flow measurement specifications... Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement method used must have a range large enough to accurately measure the air flow over the engine...

  12. Countercurrent flow limitations in horizontal stratified flows of air and water

    International Nuclear Information System (INIS)

    During a postulated loss-of-coolant-accident (LOCA) in a pressurized water reactor (PWR) it is of vital importance that the reactor core remains properly cooled. The emergency core cooling system (ECCS) in German PWRs compensates the loss of coolant with injection of additional coolant into the cold legs as well as into the hot legs. While the coolant is injected in the cold legs through nozzles, the hot leg injection is performed by means of a secondary pipe placed at the bottom of the pipe of the primary circuit. The subject of this thesis concerns the latter case. The liquid injected into the hot leg flows directly into the core from its upper part and constitutes a rapid delivery of coolant into the reactor core at high mass flow rate. However, saturated steam is generated in the reactor core due to depressurization of the primary system and flows out of the reactor pressure vessel (RPV) into the hot leg. Therefore, a countercurrent stratified flow of injected coolant and saturated steam occurs along one and a half meter inside the hot leg before the coolant reaches the RPV. This horizontal stratified countercurrent flow of coolant and steam is only stable for a certain range of coolant and steam mass flow rates. Even if the coolant is injected at very high velocities and high Froude numbers, there is always a threshold steam velocity above which the cooling of the reactor core can be reduced or complete interrupted. This phenomenon is known in two-phase flow science as countercurrent flow limitation (CCFL), since there is a limitation of liquid delivery due to the presence of a gas phase flowing countercurrently to the liquid phase. CCFL in reflux condensation cooling was more investigated than in ECC in the hot leg. For this purpose, the test facility WENKA was built at Forschungszentrum Karlsruhe GmbH (Germany) to investigate for which flow conditions CCFL poses a safety risk during hot leg injection and to provide experimental data to support the analysis

  13. Flow-rate Characteristics Measurement of Regulators Based on the Pressure Response in an Isothermal Tank

    Institute of Scientific and Technical Information of China (English)

    FAN Wei; ZHANG Hongli; WANG Tao; PENG Guangzheng; ONEYAMA Naotake

    2009-01-01

    Regulators are important components in pneumatic system, and their flow-rate characteristics are the key parameters for designers. According to the correlatively international standard and national standard of China, which describe the flow-rate characteristics measurement method of pneumatic regulators, the pressure and the flow are measured point by point, and then the flow-rate characteristics curve is plotted point to point. This method has some disadvantages, such as equipment complexity, much air consumption, and low efficiency. To settle the problems presented above, this paper puts forward a new high efficient and energy saving flow-rate characteristics measurement method of regulators, which is based on the pressure response when charging and discharging to an isothermal tank without any flow meters. The measurement principle, the system and the steps are introduced. And the tracking differentiator is used for the data processing of the pressure difference. Two typical kinds of regulators were experimentally investigated, and their flow-rate characteristics curves were obtained with the new and the conventional method, respectively. Comparatively, it's proved that this new method is feasible because it is not only able to meet the demand of the measurement precision, but also to save energy and improve efficiency. Compared to the conventional method, the new method takes only about 1/10 amount of time and consumes about only 1/30 amount of air. Hopefully it will be able to serve as an international standard of flow-rate characteristics measurement method of regulators.

  14. Air flow characteristics in an industrial wood pallet drying kiln

    OpenAIRE

    Tzempelikos, Dimitrios; Filios, Andronikos; Margaris, Dionisios

    2013-01-01

    The improvement and optimization of air-distribution systems in drying kilns contributes to the preservation of the quality, safety and shelf life of perishable products. The present study reports on the numerical solution of airflow within a two dimensional drying kiln enclosure loaded with wooden pallets. The performance of air flow field is examined with and without supply of wooden pallets. Different arrangements of the supplied wooden pallets are investigated as well as the use of a ...

  15. A coupled surface/subsurface flow model accounting for air entrapment and air pressure counterflow

    DEFF Research Database (Denmark)

    Delfs, Jens Olaf; Wang, Wenqing; Kalbacher, Thomas;

    2013-01-01

    This work introduces the soil air system into integrated hydrology by simulating the flow processes and interactions of surface runoff, soil moisture and air in the shallow subsurface. The numerical model is formulated as a coupled system of partial differential equations for hydrostatic (diffusive...... wave) shallow flow and two-phase flow in a porous medium. The simultaneous mass transfer between the soil, overland, and atmosphere compartments is achieved by upgrading a fully established leakance concept for overland-soil liquid exchange to an air exchange flux between soil and atmosphere. In a new...... algorithm, leakances operate as a valve for gas pressure in a liquid-covered porous medium facilitating the simulation of air out-break events through the land surface. General criteria are stated to guarantee stability in a sequential iterative coupling algorithm and, in addition, for leakances to control...

  16. 3-dimensional Simulation of an Air-lift Pump from Bubbly to Slug Flow

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hongrae; Jo, Daeseong [Kyungpook National Univ, Daegu (Korea, Republic of)

    2015-10-15

    The air-lift pump has been used in various applications with its merit that it can pump up without any moving parts. E.g. coffee percolator, petroleum industry, suction dredge, OTEC i.e. ocean thermal energy conversion and so on. By the merit, it has high durability for high temperature water or vapor, and fluid-solid mixture like waste water, muddy water and crude, which cause problems when it's pumped up with general pumps. In this regard, the air-lift pump has been one of the most desirable technology. A typical air-lift pump configuration is illustrated in Figure 01. The principle of this pump is very simple. When air is injected from the injector at bottom of a submerged tube, i.e., air bubbles are suspended in the liquid, the average density of the mixture in the tube is less than that of the surrounding fluid in the reservoir. Then hydrostatic pressure over the length of the tube is decreased. This buoyancy force causes a pumping action. The comparison of the simulated results, experimental result, and theoretical result is been able by data shown as Figure 04. They have similar trends but they also have a little differences because there are some limits of simulating the flow regimes. At the different flow condition, different coefficients for friction factor or pressure drop should be used, but this simulation uses a laminar condition and the theoretical equations are valid only for slug regime where the air flow rate is lower than the other regimes. From these causes, the differences has arisen, and difference comes bigger as the air flow rate increases, i.e., becoming annular flow regime or churn flow regime.

  17. Thin-Film Air-Mass-Flow Sensor of Improved Design Developed

    Science.gov (United States)

    Fralick, Gustave C.; Wrbanek, John D.; Hwang, Danny P.

    2003-01-01

    Researchers at the NASA Glenn Research Center have developed a new air-mass-flow sensor to solve the problems of existing mass flow sensor designs. NASA's design consists of thin-film resistors in a Wheatstone bridge arrangement. The resistors are fabricated on a thin, constant-thickness airfoil to minimize disturbance to the airflow being measured. The following photograph shows one of NASA s prototype sensors. In comparison to other air-mass-flow sensor designs, NASA s thin-film sensor is much more robust than hot wires, causes less airflow disturbance than pitot tubes, is more accurate than vane anemometers, and is much simpler to operate than thermocouple rakes. NASA s thin-film air-mass-flow sensor works by converting the temperature difference seen at each leg of the thin-film Wheatstone bridge into a mass-flow rate. The following figure shows a schematic of this sensor with air flowing around it. The sensor operates as follows: current is applied to the bridge, which increases its temperature. If there is no flow, all the arms are heated equally, the bridge remains in balance, and there is no signal. If there is flow, the air passing over the upstream legs of the bridge reduces the temperature of the upstream legs and that leads to reduced electrical resistance for those legs. After the air has picked up heat from the upstream legs, it continues and passes over the downstream legs of the bridge. The heated air raises the temperature of these legs, increasing their electrical resistance. The resistance difference between the upstream and downstream legs unbalances the bridge, causing a voltage difference that can be amplified and calibrated to the airflow rate. Separate sensors mounted on the airfoil measure the temperature of the airflow, which is used to complete the calculation for the mass of air passing by the sensor. A current application for air-mass-flow sensors is as part of the intake system for an internal combustion engine. A mass-flow sensor is

  18. Flow sensitive actuators for micro-air vehicles

    International Nuclear Information System (INIS)

    A macrofiber piezoelectric composite has been developed for boundary layer management of micro-air vehicles (MAVs). Specifically, a piezoelectric composite that is capable of self-sensing and controlling flow has been modeled, designed, fabricated, and tested in wind tunnel studies to quantify performance characteristics, such as the velocity field response to actuation, which is relevant for actively managing boundary layers (laminar and transition flow control). A nonlinear piezoelectric plate model was utilized to design the active structure for flow control. The dynamic properties of the piezoelectric composite actuator were also evaluated in situ during wind tunnel experiments to quantify sensing performance. Results based on velocity field measurements and unsteady pressure measurements show that these piezoelectric macrofiber composites can sense the state of flow above the surface and provide sufficient control authority to manipulate the flow conditions for transition from laminar to turbulent flow

  19. FLOW CURVES OF AN ADSORBED PROTEIN LAYER AT THE SALIVA-AIR INTERFACE

    NARCIS (Netherlands)

    HOLTERMAN, HJ; SGRAVENMADE, EJ; WATERMAN, HA; BLOM, C; Mellema, J.

    1990-01-01

    At the air-liquid interface of human saliva a protein layer is absorbed. An apparatus is described with which a flow curve of this layer was measured. In the majority of samples the viscosity of the surface layer changed gradually and could be described by a power-law dependence on the shear rate. T

  20. Development of energy-efficient comfort ventilation plants with air quality controlled volume flow rate and continuous detection of the status of the windows aperture. Part 3. Final report with documentation of the field test; Entwicklung energieeffizienter Komfortlueftungsanlagen mit luftqualitaetsgefuehrter Volumenstromregelung und kontinuierlicher Erfassung des Fensteroeffnungszustandes. Teilbericht 3. Endbericht mit Dokumentation des Feldtests

    Energy Technology Data Exchange (ETDEWEB)

    Grossklos, Marc; Hacke, Ulrike [Institut Wohnen und Umwelt GmbH, Darmstadt (Germany)

    2012-10-25

    Residential ventilation systems with a heat recovery contribute to the improvement of the air quality and to the reduction of heat losses caused by ventilation. An additional opening of the windows in residential buildings results in a clearly increasing consumption of thermal heat because the thermal heat of the out coming air cannot be utilized furthermore. Continuous information on the energetic effects of the opening of windows is helpful. Under this aspect, the authors of the contribution under consideration report on the development of energy efficient comfort ventilation systems with an air quality controlled volume flow rate and continuous detection of the status of the windows aperture. The contribution under consideration is the third part of a project concerning to this theme. This part encompasses a field test with four single-family houses in which the air quality control as well as the detection of the status of the windows aperture is tested and optimized for a long period. This contribution also contains the results of the second part of the project. The second project investigate the technical implementation of a air quality regulation at prototypes and test facilities.

  1. An open-access modeled passenger flow matrix for the global air network in 2010.

    Science.gov (United States)

    Huang, Zhuojie; Wu, Xiao; Garcia, Andres J; Fik, Timothy J; Tatem, Andrew J

    2013-01-01

    The expanding global air network provides rapid and wide-reaching connections accelerating both domestic and international travel. To understand human movement patterns on the network and their socioeconomic, environmental and epidemiological implications, information on passenger flow is required. However, comprehensive data on global passenger flow remain difficult and expensive to obtain, prompting researchers to rely on scheduled flight seat capacity data or simple models of flow. This study describes the construction of an open-access modeled passenger flow matrix for all airports with a host city-population of more than 100,000 and within two transfers of air travel from various publicly available air travel datasets. Data on network characteristics, city population, and local area GDP amongst others are utilized as covariates in a spatial interaction framework to predict the air transportation flows between airports. Training datasets based on information from various transportation organizations in the United States, Canada and the European Union were assembled. A log-linear model controlling the random effects on origin, destination and the airport hierarchy was then built to predict passenger flows on the network, and compared to the results produced using previously published models. Validation analyses showed that the model presented here produced improved predictive power and accuracy compared to previously published models, yielding the highest successful prediction rate at the global scale. Based on this model, passenger flows between 1,491 airports on 644,406 unique routes were estimated in the prediction dataset. The airport node characteristics and estimated passenger flows are freely available as part of the Vector-Borne Disease Airline Importation Risk (VBD-Air) project at: www.vbd-air.com/data. PMID:23691194

  2. An open-access modeled passenger flow matrix for the global air network in 2010.

    Directory of Open Access Journals (Sweden)

    Zhuojie Huang

    Full Text Available The expanding global air network provides rapid and wide-reaching connections accelerating both domestic and international travel. To understand human movement patterns on the network and their socioeconomic, environmental and epidemiological implications, information on passenger flow is required. However, comprehensive data on global passenger flow remain difficult and expensive to obtain, prompting researchers to rely on scheduled flight seat capacity data or simple models of flow. This study describes the construction of an open-access modeled passenger flow matrix for all airports with a host city-population of more than 100,000 and within two transfers of air travel from various publicly available air travel datasets. Data on network characteristics, city population, and local area GDP amongst others are utilized as covariates in a spatial interaction framework to predict the air transportation flows between airports. Training datasets based on information from various transportation organizations in the United States, Canada and the European Union were assembled. A log-linear model controlling the random effects on origin, destination and the airport hierarchy was then built to predict passenger flows on the network, and compared to the results produced using previously published models. Validation analyses showed that the model presented here produced improved predictive power and accuracy compared to previously published models, yielding the highest successful prediction rate at the global scale. Based on this model, passenger flows between 1,491 airports on 644,406 unique routes were estimated in the prediction dataset. The airport node characteristics and estimated passenger flows are freely available as part of the Vector-Borne Disease Airline Importation Risk (VBD-Air project at: www.vbd-air.com/data.

  3. Evolutionary Concepts for Decentralized Air Traffic Flow Management

    Science.gov (United States)

    Adams, Milton; Kolitz, Stephan; Milner, Joseph; Odoni, Amedeo

    1997-01-01

    Alternative concepts for modifying the policies and procedures under which the air traffic flow management system operates are described, and an approach to the evaluation of those concepts is discussed. Here, air traffic flow management includes all activities related to the management of the flow of aircraft and related system resources from 'block to block.' The alternative concepts represent stages in the evolution from the current system, in which air traffic management decision making is largely centralized within the FAA, to a more decentralized approach wherein the airlines and other airspace users collaborate in air traffic management decision making with the FAA. The emphasis in the discussion is on a viable medium-term partially decentralized scenario representing a phase of this evolution that is consistent with the decision-making approaches embodied in proposed Free Flight concepts for air traffic management. System-level metrics for analyzing and evaluating the various alternatives are defined, and a simulation testbed developed to generate values for those metrics is described. The fundamental issue of modeling airline behavior in decentralized environments is also raised, and an example of such a model, which deals with the preservation of flight bank integrity in hub airports, is presented.

  4. Aeolian processes across transverse dunes. I: Modelling the air flow

    NARCIS (Netherlands)

    J.H. van Boxel; S.M. Arens; P.M. van Dijk

    1999-01-01

    This paper discusses a two-dimensional second-order closure model simulating air flow and turbulence across transverse dunes. Input parameters are upwind wind speed, topography of the dune ridge and surface roughness distribution over the ridge. The most important output is the distribution of the f

  5. A Study of the Gas Flow through Air Jet Loom

    Institute of Scientific and Technical Information of China (English)

    Heuy-Dong Kim; Chae-Min Lim; Ho-Joon Lee; Doo-Hwan Chun

    2007-01-01

    Air jet loom, as one of the shuttleless looms, transports a yarn into warps using viscosity and kinetic energy of an air jet. Performance of this picking system depends on the ability of instantaneous inhalation/exhaust, configuration of nozzle, operation characteristics of a check valve, etc. In the recent past, many studies have been reported on the air jet discharged from a nozzle exit, but studies for understanding the flow field characteristics associated with shear layer and shock wave/boundary layer interaction in the nozzle were not conducted enough. In this paper, a computational study was performed to explain the flow field in the air jet nozzle with an acceleration tube and validated with previous experimental data available. The results obtained from the computational study show that, in the supersonic flow regime, the flow field depends significantly on the length of acceleration tube. As nozzle pressure ratio increases, drag force acting on the string also increases. For a longer acceleration tube, the total pressure loss is large, owing to the frictional loss.

  6. Glow Discharge Characteristics in Transverse Supersonic Air Flow

    International Nuclear Information System (INIS)

    A low pressure glow discharge in a transverse supersonic gas flow of air at pressures of the order 1 torr has been experimentally studied for the case where the flow only partially fills the inter electrode gap. It is shown that the space region with supersonic gas flow has a higher concentration of gas particles and, therefore, works as a charged particle generator. The near electrode regions of glow discharge are concentrated specifically in this region. This structure of glow discharge is promising for plasma deposition of coatings under ultralow pressures

  7. Countercurrent air/water and steam/water flow above a perforated plate. Report for October 1978-October 1979

    International Nuclear Information System (INIS)

    The perforated plate weeping phenomena have been studied in both air/water and steam/cold water systems. The air/water experiment is designed to investigate the effect of geometric factors of the perforated plate on the rate of weeping. A new dimensionless flow rate in the form of H star is suggested. The data obtained are successfully correlated by this H star scaling in the conventional flooding equation. The steam/cold water experiment is concentrated on locating the boundary between weeping and no weeping. The effects of water subcooling, water inlet flow rate, and position of water spray are investigated. Depending on the combination of these factors, several types of weeping were observed. The data obtained at high water spray position can be related to the air/water flooding correlation by replacing the stream flow rate to an effective stream flow rate, which is determined by the mixing efficiency above the plate

  8. Overheat Instability in an Ascending Moist Air Flow as a Mechanism of Hurricane Formation

    CERN Document Server

    Nechayev, Andrei

    2011-01-01

    The universal instability mechanism in an ascending moist air flow is theoretically proposed and analyzed. Its origin comes to the conflict between two processes: the increasing of pressure forcing applied to the boundary layer and the decelerating of the updraft flow due to air heating. It is shown that the intensification of tropical storm with the redistribution of wind velocities, pressure and temperature can result from the reorganization of the dissipative structure which key parameters are the moist air lifting velocity and the temperature of surrounding atmosphere. This reorganization can lead to formation of hurricane eye and inner ring of convection. A transition of the dissipative structure in a new state can occur when the temperature lapse rate in a zone of air lifting reaches certain critical value. The accordance of observational data with the proposed theoretical description is shown.

  9. A Market for Air Traffic Flow Management

    CERN Document Server

    Vazirani, Vijay V

    2011-01-01

    The two somewhat conflicting requirements of efficiency and fairness make ATFM an unsatisfactorily solved problem, despite its overwhelming importance. In this paper, we present an economics motivated solution that is based on the notion of a free market. Our contention is that in fact the airlines themselves are the best judge of how to achieve efficiency and our market-based solution gives them the ability to pay, at the going rate, to buy away the desired amount of delay on a per flight basis. The issue of fairness is simply finessed away by our solution -- whoever pays gets smaller delays. We show how our solution has the potential of enabling travelers from a large spectrum of affordability and punctuality requirements to achieve an end that is most desirable to them. Our market model is particularly simple, requiring only one parameter per flight from the airline company. Furthermore, we show that it admits a combinatorial, strongly polynomial algorithm for computing an equilibrium landing schedule and ...

  10. Air-flow sensitive hairs: boundary layers in oscillatory flows around arthropod appendages

    NARCIS (Netherlands)

    Steinmann, T.; Casas, J.; Krijnen, G.J.M.; Dangles, O.

    2006-01-01

    The aim of this work is to characterize the boundary layer over small appendages in insects in longitudinal and transverse oscillatory flows. The problem of immediate interest is the early warning system in crickets perceiving flying predators using air-flow-sensitive hairs on cerci, two long append

  11. Calculation of the dynamic air flow resistivity of fibre materials

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    1997-01-01

    The acoustic attenuation of acoustic fiber materials is mainly determined by the dynamic resistivity to an oscillating air flow. The dynamic resistance is calculated for a model with geometry close to the geometry of real fibre material. The model constists of parallel cylinders placed randomly.......The second procedure is an extension to oscillating air flow of the Brinkman self-consistent procedure for dc flow. The procedures are valid for volume concentrations of cylinders less than 0.1. The calculations show that for the density of fibers of interest for acoustic fibre materials the simple self......-consistent procedure gives the same results as the more complicated procedure based on average over Voronoi cells. Graphs of the dynamic resistivity versus frequency are given for fiber densities and diameters typical for acoustic fiber materials....

  12. Relating water and air flow characteristics in coarse granular materials

    DEFF Research Database (Denmark)

    Andreasen, Rune Røjgaard; Canga, Eriona; Poulsen, Tjalfe Gorm;

    2013-01-01

    Water pressure drop as a function of velocity controls w 1 ater cleaning biofilter operation 2 cost. At present this relationship in biofilter materials must be determined experimentally as no 3 universal link between pressure drop, velocity and filter material properties have been established. 4...... from air flow data. The objective of this study was, therefore, to investigate if this approach is valid 8 also for coarse granular biofilter media which usually consists of much larger particles than soils. In 9 this paper the connection between the pressure drop – velocity relationships for air...... and water flow was 10 investigated using a common biofilter medium, Leca® consisting of rounded porous particles of 2 – 16 11 mm diameter. Pressure drop – velocity relations for water flow were measured for 14 different Leca ® 12 particle size fractions and compared to measurements of the pressure drop...

  13. A novel concept of measuring mass flow rates using flow induced stresses

    Indian Academy of Sciences (India)

    P I Jagad; B P Puranik; A W Date

    2015-08-01

    Measurement of mass flow rate is important for automatic control of the mass flow rate in many industries such as semiconductor manufacturing and chemical industry (for supply of catalyst to a reaction). In the present work, a new concept for direct measurement of mass flow rates which does not depend on the volumetric flow rate measurement and obviates the need for the knowledge of density is proposed from the measurement of the flow induced stresses in a substrate. The concept is formulated by establishing the relationship between the mass flow rate and the stress in the substrate. To this end, the flow field and the stress field in the substrate are evaluated simultaneously using a numerical procedure and the necessary correlations are derived. A least squares based procedure is used to derive the mass flow rate from the correlations as a function of the stress in the substrate.

  14. Practical guidebook on the modulation of ventilation flow rates; Guide pratique sur la modulation des debits de ventilation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The modulation of ventilation flow rates aims at adapting the flow rate of ventilation systems to the real occupancy of rooms, at maintaining a good indoor air quality and at mastering the energy expenses due to air renewing in rooms. This technical guidebook presents the design of modulated ventilation systems (definition of occupancy areas in buildings, choice of presence sensors (CO{sub 2}, hygrometry, temperature, CO, VOC and other specific probes)), their principle and implementation. (J.S.)

  15. Flow characteristics of an inclined air-curtain range hood in a draft.

    Science.gov (United States)

    Chen, Jia-Kun

    2015-01-01

    The inclined air-curtain technology was applied to build an inclined air-curtain range hood. A draft generator was applied to affect the inclined air-curtain range hood in three directions: lateral (θ=0°), oblique (θ=45°), and front (θ=90°). The three suction flow rates provided by the inclined air-curtain range hood were 10.1, 10.9, and 12.6 m(3)/min. The laser-assisted flow visualization technique and the tracer-gas test method were used to investigate the performance of the range hood under the influence of a draft. The results show that the inclined air-curtain range hood has a strong ability to resist the negative effect of a front draft until the draft velocity is greater than 0.5 m/s. The oblique draft affected the containment ability of the inclined air-curtain range hood when the draft velocity was larger than 0.3 m/s. When the lateral draft effect was applied, the capture efficiency of the inclined air-curtain range hood decreased quickly in the draft velocity from 0.2 m/s to 0.3 m/s. However, the capture efficiencies of the inclined air-curtain range hood under the influence of the front draft were higher than those under the influence of the oblique draft from 0.3 m/s to 0.5 m/s.

  16. Migration of Air Flow in Non-Fixed Saturated Porous Medium

    Science.gov (United States)

    Kong, X.; Fritz, S.; Kinzelbach, W.

    2008-12-01

    Two phase flow in porous media is of importance in a number of processes relevant in environmental engineering. The study of gas movement following injection into liquid saturated porous media is an active area of exploration for theoretical and practical reasons, e.g., in air-sparging, oil recovery, and bio-filter. A set of two-dimensional laboratory visualization experiments reveals a previously unrecognized gas-flow instability in a liquid-saturated porous medium packed by its own weight. The medium is made of crushed fused silica glass and saturated with a glycerine-water solution for refractive-index-matching. The interaction of the air flow injected at the bottom and the matrix (porous medium) structure leads to mobilization of the matrix and an instability, which causes the air channel to migrate. The instability of air-channel migration differs significantly from the gas-flow instability in a fixed matrix described in previous research. The migration of the air channel appears as a sequence of former channels collapsing and new channels opening. This process is characterized by the reorganization of the matrix, and the switching between channelized flow and pulsating slug flow. The channel migration comes to a stop after some time, leaving one thin and stable channel. The process is studied by calculating the cumulated lateral movement distance of channel and the lateral width of the area affected by the migration. A dimensionless number is defined to describe the migration. It is observed to be a function of grain size, height of bed, and air flow rate.

  17. Simplified model for a ventilated glass window under forced air flow conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ismail, K.A.R. [Depto. de Engenharia Termica e de Fluidos-FEM-UNICAMP CP: 6122 CEP 13083-970 Campinas, SP (Brazil); Henriquez, J.R. [Depto. de Eng. Mecanica-DEMEC, UFPE Av. Academico Helio Ramos, S/N CEP 50740-530, Recife, PE (Brazil)

    2006-02-01

    This paper presents a study on a ventilated window composed of two glass sheets separated by a spacing through which air is forced to flow. The proposed model is one dimensional and unsteady based upon global energy balance over the glass sheets and the flowing fluid. The external glass sheet of the cavity is subjected to variable heat flow due to the solar radiation as well as variable external ambient temperature. The exchange of radiation energy (infrared radiation) between the glass sheets is also included in the formulation. Effects of the spacing between the glass sheets, variation of the forced mass flow rate on the total heat gain and the shading coefficients are investigated. The results show that the effect of the increase of the mass flow rate is found to reduce the mean solar heat gain and the shading coefficients while the increase of the fluid entry temperature is found to deteriorate the window thermal performance. (author)

  18. Simplified model for a ventilated glass window under forced air flow conditions

    International Nuclear Information System (INIS)

    This paper presents a study on a ventilated window composed of two glass sheets separated by a spacing through which air is forced to flow. The proposed model is one dimensional and unsteady based upon global energy balance over the glass sheets and the flowing fluid. The external glass sheet of the cavity is subjected to variable heat flow due to the solar radiation as well as variable external ambient temperature. The exchange of radiation energy (infrared radiation) between the glass sheets is also included in the formulation. Effects of the spacing between the glass sheets, variation of the forced mass flow rate on the total heat gain and the shading coefficients are investigated. The results show that the effect of the increase of the mass flow rate is found to reduce the mean solar heat gain and the shading coefficients while the increase of the fluid entry temperature is found to deteriorate the window thermal performance

  19. Continuum modeling of rate-dependent granular flows in SPH

    Science.gov (United States)

    Hurley, Ryan C.; Andrade, José E.

    2016-09-01

    We discuss a constitutive law for modeling rate-dependent granular flows that has been implemented in smoothed particle hydrodynamics (SPH). We model granular materials using a viscoplastic constitutive law that produces a Drucker-Prager-like yield condition in the limit of vanishing flow. A friction law for non-steady flows, incorporating rate-dependence and dilation, is derived and implemented within the constitutive law. We compare our SPH simulations with experimental data, demonstrating that they can capture both steady and non-steady dynamic flow behavior, notably including transient column collapse profiles. This technique may therefore be attractive for modeling the time-dependent evolution of natural and industrial flows.

  20. Influence of impactor operating flow rate on particle size distribution of four jet nebulizers.

    Science.gov (United States)

    Zhou, Yue; Brasel, Trevor L; Kracko, Dean; Cheng, Yung-Sung; Ahuja, Amitkumar; Norenberg, Jeffrey P; Kelly, H William

    2007-01-01

    When a nebulizer is evaluated by the Andersen Cascade Impactor (ACI), the flow rate is generally maintained at 28.3 L/min, as recommended by the manufacturer. However, the nebulizer flow rate that a patient inhales is only around 18 L/min. Because the drive flow of a nebulizer is approximately 6-8 L/min, the nebulized drug is mixed with outside air when delivered. Evaluating impactor performance at the 28.3 L/min flow rate is less than ideal because an additional 10 L/min of outside air is mixed with the drug, thereby affecting the drug size distribution and dose before inhalation and deposition in the human lung. In this study we operated the ACI at an 18.0 L/min flow rate to test whether the effect of the changing ambient humidity was being exaggerated by the 28.3 L/min flow rate. The study was carried out at three different relative humidity levels and two different impactor flow rates with four commercially available nebulizers. The mass median aerodynamic diameter (MMAD) and the geometric standard deviation (GSD) of the droplets were found to increase when the impactor was operated at a flow rate of 18 L/min compared to that of 28.3 L/min. The higher MMAD and GSD could cause the patient to inhale less of the drug than expected if the nebulizer was evaluated by the ACI at the operating flow rate of 28.3 L/min. PMID:17763140

  1. Acoustic tomographic imaging of temperature and flow fields in air

    International Nuclear Information System (INIS)

    Acoustic travel-time tomography is a remote sensing technique that uses the dependence of sound speed in air on temperature and wind speed along the sound propagation path. Travel-time measurements of acoustic signals between several sound sources and receivers travelling along different paths through a measuring area give information on the spatial distribution of temperature and flow fields within the area. After a separation of the two influences, distributions of temperature and flow can be reconstructed using inverse algorithms. As a remote sensing method, one advantage of acoustic travel-time tomography is its ability to measure temperature and flow field quantities without disturbing the area under investigation due to insertion of sensors. Furthermore, the two quantities—temperature and flow velocity—can be recorded simultaneously with this measurement method. In this paper, an acoustic tomographic measurement system is introduced which is capable of resolving three-dimensional distributions of temperature and flow fields in air within a certain volume (1.3 m × 1.0 m × 1.2 m) using 16 acoustic transmitter–receiver pairs. First, algorithms for the 3D reconstruction of distributions from line-integrated measurements are presented. Moreover, a measuring apparatus is introduced which is suited for educational purposes, for demonstration of the method as well as for indoor investigations. Example measurements within a low-speed wind tunnel with different incident flow situations (e.g. behind bluff bodies) using this system are shown. Visualizations of the flow illustrate the plausibility of the tomographically reconstructed flow structures. Furthermore, alternative individual measurement methods for temperature and flow speed provide comparable results

  2. 40 CFR 1065.642 - SSV, CFV, and PDP molar flow rate calculations.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false SSV, CFV, and PDP molar flow rate calculations. 1065.642 Section 1065.642 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.642...

  3. Responses of prawn to water flow rates

    Energy Technology Data Exchange (ETDEWEB)

    Vascotto, G.L.; Nilas, P.U.

    1987-05-28

    An aquarium study to determine the responses of postlarval macrobrachium rosenbergii to varying water changes was carried out. Six week old postlarvae were raised in glass aquaria receiving 0, 1.15, 7.2 and 14.4 water changes per day over a 12 week period. The treatments had significant influences on survival, biomass, and average size of the animals. Maximum survival and highest biomass were found in the 1.15 water turnover treatment; however, this treatment also produced the smallest average size animals. Early high mortalities were attributed to poor growing conditions in the high and low flow treatments, while later mortality appeared to be biomass dependent.

  4. Particle-streak-velocimetry for room air flows

    Energy Technology Data Exchange (ETDEWEB)

    Scholzen, F.; Moser, A.; Suter, P. [Swiss Federal Inst. of Technology, Zurich (Switzerland). Energy Systems Lab.

    1994-12-31

    This paper presents a measurement technique to perform quantitative visualization of room air flows. The visualization is done by discrete particles, namely helium-filled soap bubbles, illuminated in a plane light sheet generated by a point light source in combination with a special lens. The recording is done stereoscopically with 3 standard cameras by streak photography. The scanned negatives are analysed digitally. The method is able to give the three-dimensional instantaneous velocity field of room air movements, also in real-scale. (author)

  5. The Effects of Air Pollution on Ischemic Stroke Admission Rate.

    Science.gov (United States)

    Alimohammadi, Hossein; Fakhri, Sara; Derakhshanfar, Hojjat; Hosseini-Zijoud, Seyed-Mostafa; Safari, Saeed; Hatamabadi, Hamid Reza

    2016-01-01

    The present study aimed to determine the relationship between the level of air pollutants and the rate of ischemic stroke (IS) admissions to hospitals. In this retrospective cross-sectional study, stroke admissions (January-March 2012 and 2013) to an emergency department and air pollution and meteorological data were gathered. The relationship between air pollutant levels and hospital admission rates were evaluated using the generalize additive model. In all 379 patients with IS were referred to the hospital (52.5% male; mean age 68.2±13.3 years). Both transient (p<0.001) and long-term (p<0.001) rises in CO level increases the risk of IS. Increased weekly (p<0.001) and monthly (p<0.001) average O3 levels amplifies this risk, while a transient increase in NO2 (p<0.001) and SO2 (p<0.001) levels has the same effect. Long-term changes in PM10 (p<0.001) and PM2.5 (p<0.001) also increase the risk of IS. The findings showed that the level of air pollutants directly correlates with the number of stroke admissions to the emergency department. PMID:26866000

  6. Two-phase air-water flows:Scale effects in physical modeling

    Institute of Scientific and Technical Information of China (English)

    PFISTER Michael; CHANSON Hubert

    2014-01-01

    Physical modeling represents probably the oldest design tool in hydraulic engineering together with analytical approaches. In free surface flows, the similitude based upon a Froude similarity allows for a correct representation of the dominant forces, namely gravity and inertia. As a result fluid flow properties such as the capillary forces and the viscous forces might be incorrectly reproduced, affecting the air entrainment and transport capacity of a high-speed model flow. Small physical models operating under a Froude similitude systematically underestimate the air entrainment rate and air-water interfacial properties. To limit scale effects, minimal values of Reynolds or Weber number have to be respected. The present article summarizes the physical background of such limitations and their combination in terms of the Morton number. Based upon a literature review, the existing limits are presented and discussed, resulting in a series of more conservative recommendations in terms of air concentration scaling. For other air-water flow parameters, the selection of the criteria to assess scale effects is critical because some parameters (e.g., bubble sizes, turbulent scales) can be affected by scale effects, even in relatively large laboratory models.

  7. Interrelationships of petiole air canal architecture, water depth and convective air flow in Nymphaea odorata (Nymphaeaceae)

    Science.gov (United States)

    Premise of the study--Nymphaea odorata grows in water up to 2 m deep, producing fewer, larger leaves in deeper water. This species has a convective flow system that moves gases from younger leaves through submerged parts to older leaves, aerating submerged parts. Petiole air canals are in the conv...

  8. COMPUTATIONAL FLOW RATE FEEDBACK AND CONTROL METHOD IN HYDRAULIC ELEVATORS

    Institute of Scientific and Technical Information of China (English)

    Xu Bing; Ma Jien; Lin Jianjie

    2005-01-01

    The computational flow rate feedback and control method, which can be used in proportional valve controlled hydraulic elevators, is discussed and analyzed. In a hydraulic elevator with this method, microprocessor receives pressure information from the pressure transducers and computes the flow rate through the proportional valve based on pressure-flow conversion real time algorithm. This hydraulic elevator is of lower cost and energy consumption than the conventional closed loop control hydraulic elevator whose flow rate is measured by a flow meter. Experiments are carried out on a test rig which could simulate the load of hydraulic elevator. According to the experiment results, the means to modify the pressure-flow conversion algorithm are pointed out.

  9. Vision and air flow combine to streamline flying honeybees.

    Science.gov (United States)

    Taylor, Gavin J; Luu, Tien; Ball, David; Srinivasan, Mandyam V

    2013-01-01

    Insects face the challenge of integrating multi-sensory information to control their flight. Here we study a 'streamlining' response in honeybees, whereby honeybees raise their abdomen to reduce drag. We find that this response, which was recently reported to be mediated by optic flow, is also strongly modulated by the presence of air flow simulating a head wind. The Johnston's organs in the antennae were found to play a role in the measurement of the air speed that is used to control the streamlining response. The response to a combination of visual motion and wind is complex and can be explained by a model that incorporates a non-linear combination of the two stimuli. The use of visual and mechanosensory cues increases the strength of the streamlining response when the stimuli are present concurrently. We propose this multisensory integration will make the response more robust to transient disturbances in either modality.

  10. Cooling rates of living and killed chicken and quail eggs in air and in helium-oxygen gas mixture.

    Science.gov (United States)

    Tazawa, H; Turner, J S; Paganelli, C V

    1988-01-01

    1. In a helium atmosphere, heat is dissipated from a surface 3.5 times faster than it is in air. Eggs in a helium-oxygen atmosphere cool only 1.4 times faster than they cool in air. This signifies that internal resistance to heat flow is a significant factor in the cooling rates of eggs. 2. Heat flow occurs inside an egg in two ways: by conduction through the tissues and in flowing blood. Killing an embryo stops the latter, but not the former. Eggs cool more slowly after they have been killed, signifying that blood flow can be an important component in an egg's internal flows of heat. 3. Blood flow should be a relatively more important component of heat flow in large eggs than in small eggs. The difference in conductance between living and killed eggs is larger in 60 g chicken eggs than it is in 10 g quail eggs. PMID:2900113

  11. EFFECT OF SUCTION PIPE DIAMETER AND SUBMERGENCE RATIO ON AIR LIFT PUMPING RATE

    Directory of Open Access Journals (Sweden)

    Salam J. AlMaliky

    2013-05-01

    Full Text Available The increasingly importance for the uses of the air lift pump in widespread list of fields (mining, nuclear industries, agricultural uses, petroleum industries...etc. makes it very interested for the researchers to find tools to raise the performance outcome of such pumps.An air lift pump system is setup to study the effect of the suction pipe diameter and submergence ratio on the liquid (water pumping rate. The system has a lift pipe of (0.021 m diameter and (1.25 m length. Five diameters for the suction pipe (0.021, 0.027, 0.033, 0.048 and 0.063 m with  a fixed length of (0.3 m, are tested for each of the submergence ratios (0.2, 0.3, 0.4, 0.5 respectively.        Results indicate that the higher the diameter of suction pipe is the higher the pumping rate for a fixed submergence ratio. From another side, the higher the submergence ratio is the higher the pumping rate for a fixed suction pipe diameter. Also, under high submergence ratios, high pumping rates are achieved by the use of lower air flow rates compared with those used with lower submergence ratios. The experimental results show good compatibility with the model suggested by Stenning and Martin for the performance of an air lift pump.

  12. Measurement of air distribution and void fraction of an upwards air-water flow using electrical resistance tomography and a wire-mesh sensor

    Science.gov (United States)

    Olerni, Claudio; Jia, Jiabin; Wang, Mi

    2013-03-01

    Measurements on an upwards air-water flow are reported that were obtained simultaneously with a dual-plane electrical resistance tomograph (ERT) and a wire-mesh sensor (WMS). The ultimate measurement target of both ERT and WMS is the same, the electrical conductivity of the medium. The ERT is a non-intrusive device whereas the WMS requires a net of wires that physically crosses the flow. This paper presents comparisons between the results obtained simultaneously from the ERT and the WMS for evaluation and calibration of the ERT. The length of the vertical testing pipeline section is 3 m with an internal diameter of 50 mm. Two distinct sets of air-water flow rate scenarios, bubble and slug regimes, were produced in the experiments. The fast impedance camera ERT recorded the data at an approximate time resolution of 896 frames per second (fps) per plane in contrast with the 1024 fps of the wire-mesh sensor WMS200. The set-up of the experiment was based on well established knowledge of air-water upwards flow, particularly the specific flow regimes and wall peak effects. The local air void fraction profiles and the overall air void fraction were produced from two systems to establish consistency for comparison of the data accuracy. Conventional bulk flow measurements in air mass and electromagnetic flow metering, as well as pressure and temperature, were employed, which brought the necessary calibration to the flow measurements. The results show that the profiles generated from the two systems have a certain level of inconsistency, particularly in a wall peak and a core peak from the ERT and WMS respectively, whereas the two tomography instruments achieve good agreement on the overall air void fraction for bubble flow. For slug flow, when the void fraction is over 30%, the ERT underestimates the void fraction, but a linear relation between ERT and WMS is still observed.

  13. Controlling hydrophilicity of polymer film by altering gas flow rate in atmospheric-pressure homogeneous plasma

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Controlling hydrophilicity of polymer film by varying gas flow rate is proposed in atmospheric-pressure homogeneous plasma treatment. • Without employing additional reactive gas, requiring more plasma power and longer treatment time, hydrophilicity of polyimide films was improved after the low-gas-flow plasma treatment. • The gas flow rate affects the hydrophilic properties of polymer surface by changing the discharge atmosphere in the particular geometry of the reactor developed. • Low-gas-flow induced wettability control suggests effective and economical plasma treatment. - Abstract: This paper reports on controlling the hydrophilicity of polyimide films using atmospheric-pressure homogeneous plasmas by changing only the gas flow rate. The gas flow changed the discharge atmosphere by mixing the feed gas with ambient air because of the particular geometry of the reactor developed for the study, and a low gas flow rate was found to be favorable because it generated abundant nitrogen or oxygen species that served as sources of hydrophilic functional groups over the polymer surface. After low-gas-flow plasma treatment, the polymer surface exhibited hydrophilic characteristics with increased surface roughness and enhanced chemical properties owing to the surface addition of functional groups. Without adding any reactive gases or requiring high plasma power and longer treatment time, the developed reactor with low-gas-flow operation offered effective and economical wettability control of polyimide films

  14. Vitreous flow rates through dual pneumatic cutters: effects of duty cycle and cut rate

    Directory of Open Access Journals (Sweden)

    Abulon DJK

    2015-02-01

    Full Text Available Dina Joy K Abulon Medical Affairs, Alcon Research, Ltd, Lake Forest, CA, USA Purpose: We aimed to investigate effects of instrument settings on porcine vitreous flow rates through dual pneumatic high-speed vitrectomy probes. Methods: The CONSTELLATION® Vision System was tested with 250, 450, and 650 mmHg of vacuum using six ULTRAVIT® vitrectomy probes of each diameter (25+®, 25, 23, and 20 gauge operated from 500 cuts per minute (cpm up to 5,000 cpm. Duty cycle modes tested included biased open, 50/50, and biased closed. Flow rates were calculated by assessing the change in weight of porcine eyes during vitreous aspiration. Volumetric flow rate was measured with a computer-connected electronic scale. Results: At lower cut rates, the biased open mode produced higher flow than did the 50/50 mode, which produced higher flow than did the biased closed mode. In the biased closed and 50/50 modes, vitreous flow rates tended to increase with increasing cut rate. Vitreous flow rates in the biased open duty cycle mode remained relatively constant across cut rates. Conclusion: Vitreous flow rates through dual pneumatic vitrectomy probes could be manipulated by changing the duty cycle modes on the vitrectomy system. Differences in duty cycle behavior suggest that high-speed cut rates of 5,000 cpm may optimize vitreous aspiration. Keywords: enhanced 25-gauge vitrectomy, 25-gauge vitrectomy, 20-gauge vitrectomy, 23-gauge vitrectomy, aspiration, Constellation Vision System

  15. Turbine flow sensor for volume-flow rate verification in MR.

    Science.gov (United States)

    Frayne, R; Holdsworth, D W; Smith, R F; Kasrai, R; Larsen, J P; Rutt, B K

    1994-09-01

    A turbine flow sensor for MR flow experiments has been evaluated using reference volume-flow rate measurements obtained using an electromagnetic (EM) flow meter measurements and simultaneous phase contrast (PC) MR acquisitions. After calibration, the device was found to have accuracy (compared with the EM flow meter), linearity, and precision of better than +/- 1%, +/- 3.5%, 3.5%, respectively, in constant flow mode (0 to 30 ml s-1). The frequency response of the flow sensor was flat (within +/- 10%) up to 13.9 Hz. Volume-flow rate measurements on constant and simulated physiologic flow waveforms were in close agreement with both the electromagnetic (EM) flow meter and the gated MR PC estimates. PMID:7984075

  16. Transition from slug to annular flow in horizontal air-water flow

    International Nuclear Information System (INIS)

    The transition from slug to annular flow in horizontal air-water and steam-water flow was investigated. Test sections of 50; 66.6 and 80 mm ID were used. The system pressure was 0.2 and 0.5 MPa in the air-water experiments and 2.5; 5; 7.5 and 10 MPa in the steam-water experiments. For flow pattern detection local impedance probes were used. This method was compared in a part of the experiments with differential pressure and gamma-beam measurements. The flow regime boundary is shifting strongly to smaller values of the superficial gas velocity with increasing pressure. Correlations from literature fit unsatisfactorily the experimental results. A new correlation is presented. (orig.)

  17. Thermistor based, low velocity isothermal, air flow sensor

    International Nuclear Information System (INIS)

    The semiconductor thermistor technology is applied as a flow sensor to measure low isothermal air velocities (<2 ms−1). The sensor is subjected to heating and cooling cycles controlled by a multifunctional timer. In the heating stage, the alternating current of a main AC power supply source guarantees a uniform thermistor temperature distribution. The conditioning circuit assures an adequate increase of the sensors temperature and avoids the thermal disturbance of the flow. The power supply interruption reduces the consumption from the source and extends the sensors life time. In the cooling stage, the resistance variation of the flow sensor is recorded by the measuring chain. The resistive sensor parameters proposed vary significantly and feature a high sensitivity to the flow velocity. With the aid of a computer, the data transfer, storage and analysis provides a great advantage over the traditional local anemometer readings. The data acquisition chain has a good repeatability and low standard uncertainties. The proposed method measures isothermal air mean velocities from 0.1 ms−1 to 2 ms−1 with a standard uncertainty error less than 4%. (paper)

  18. Analysis of flow maldistribution in fin-and-tube evaporators for residential air-conditioning systems

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl

    cases are standard tube circuitry designs and these results are thus tube circuitry specific. In addition, a novel method of compensating flow maldistribution is analyzed, i.e. the discontinuous liquid injection principle. The method is based upon the recently developed EcoFlowTM valve by Danfoss A......This thesis is concerned with the effects of flow maldistribution in fin-and-tube A-coil evaporators for residential air-conditioning and compensation potentials with regards to system performance. The goal is to create a better understanding of flow maldistribution and the involved physical...... superheat by distributing individual channel mass flow rate continuously (perfect control). The compensation method is compared to the use of a larger evaporator in order to study their trade-off in augmenting system performance (cooling capacity and COP). The studies are performed by numerical modeling...

  19. eaf tissue flows in ryegrass managed under different stocking rates

    Directory of Open Access Journals (Sweden)

    Mônique Foggiato da Silva

    2015-05-01

    Full Text Available Morphogenetic, structural variables and leaf biomass flows of Italian ryegrass (Lolium multiflorum Lam. were evaluated under two stocking rates: ‘Low’ and ‘High’. These rates were determined by heifers exclusively on pasture or on pasture and supplemented with corn grain. The experimental design was completely randomized following a repeated measure arrangement, two stocking rates, two and four replications of area for the stocking rates ‘low’ and ‘high’, respectively. The morphogenetic variables, the number of green leaves and tiller density were similar in both stocking rates. Leaf senescence rate was higher with low stocking rate. Heifers grazed with similar intensity and frequency in both stocking rates. The increase by 33.6% in the stocking rate caused by the use of supplement does not change the leaf biomass flow of Italian ryegrass, but alters its potential efficiency of use near the reproductive stage of the plant.

  20. The air-kerma rate constant of 192Ir.

    Science.gov (United States)

    Ninković, M M; Raiĉevìć, J J

    1993-01-01

    The air-kerma rate constant gamma delta (and its precursors), as one of the basic radiation characteristics of 192Ir, was determined by many authors. Analysis of accessible data on this quantity led us to the conclusion that published data strongly disagree. That is the reason we calculated this quantity on the basis of our and many other authors' gamma-ray spectral data and the latest data for mass energy-transfer coefficients for air. In this way, a value was obtained for gamma delta of 30.0 +/- 0.9 a Gy m2 s-1 Bq-1 for an unshielded 192Ir source and 27.8 +/- 0.9 a Gy m2s -1Bq-1 for a standard packaged radioactive source taking into account attenuation of gamma rays in the platinum source wall. PMID:8416220

  1. 30 CFR 75.152 - Tests of air flow; qualified person.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of air flow; qualified person. 75.152....152 Tests of air flow; qualified person. A person is a qualified person within the meaning of the provisions of Subpart D—Ventilation of this part requiring that tests of air flow be made by a...

  2. 7 CFR 28.603 - Procedures for air flow tests of micronaire reading.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Procedures for air flow tests of micronaire reading... of the United States for Fiber Fineness and Maturity § 28.603 Procedures for air flow tests of...) Air flow instrument complete with accessories to measure the fineness and maturity, in combination,...

  3. SIMPLIFIED MODELING OF AIR FLOW DYNAMICS IN SSD RADON MITIGATION SYSTEMS FOR RESIDENCES WITH GRAVEL BEDS

    Science.gov (United States)

    In an attempt to better understand the dynamics of subslab air flow, the report suggests that subslab air flow induced by a central suction point be treated as radial air flow through a porous bed contained between two impermeable disks. (NOTE: Many subslab depressurization syste...

  4. Effectiveness of horizontal air flow fans supporting natural ventilation in a Mediterranean multi-span greenhouse

    Directory of Open Access Journals (Sweden)

    Alejandro López

    2013-08-01

    Full Text Available Natural ventilation is the most important method of climate control in Mediterranean greenhouses. In this study, the microclimate and air flow inside a Mediterranean greenhouse were evaluated by means of sonic anemometry. Experiments were carried out in conditions of moderate wind (≈ 4.0 m s-1, and at low wind speed (≈ 1.8 m s-1 the natural ventilation of the greenhouse was supplemented by two horizontal air flow fans. The greenhouse is equipped with a single roof vent opening to the windward side and two side vents, the windward one being blocked by another greenhouse close to it, while the leeward one is free of obstacles. When no fans are used, air enters through the roof vent and exits through both side vents, thus flowing contrary to the thermal effect which causes hot air to rise and impairing the natural ventilation of the greenhouse. Using fans inside the greenhouse helps the air to circulate and mix, giving rise to a more homogeneous inside temperature and increasing the average value of normalized air velocity by 365 %. These fans also increase the average values of kinetic turbulence energy inside the greenhouse by 550 % compared to conditions of natural ventilation. As the fans are placed 4 m away from the side vents, their effect on the entrance of outside air is insufficient and they do not help to reduce the inside temperature on hot days with little wind. It is therefore recommended to place the fans closer to the side vents to allow an additional increase of the air exchange rate of greenhouses.

  5. Studies on pressure losses and flow rate optimization in vanadium redox flow battery

    Science.gov (United States)

    Tang, Ao; Bao, Jie; Skyllas-Kazacos, Maria

    2014-02-01

    Premature voltage cut-off in the operation of the vanadium redox flow battery is largely associated with the rise in concentration overpotential at high state-of-charge (SOC) or state-of-discharge (SOD). The use of high constant volumetric flow rate will reduce concentration overpotential, although potentially at the cost of consuming excessive pumping energy which in turn lowers system efficiency. On the other hand, any improper reduction in flow rate will also limit the operating SOC and lead to deterioration in battery efficiency. Pressure drop losses are further exacerbated by the need to reduce shunt currents in flow battery stacks that requires the use of long, narrow channels and manifolds. In this paper, the concentration overpotential is modelled as a function of flow rate in an effort to determine an appropriate variable flow rate that can yield high system efficiency, along with the analysis of pressure losses and total pumping energy. Simulation results for a 40-cell stack under pre-set voltage cut-off limits have shown that variable flow rates are superior to constant flow rates for the given system design and the use of a flow factor of 7.5 with respect to the theoretical flow rate can reach overall high system efficiencies for different charge-discharge operations.

  6. The Effects of Bottom Blowing Gas Flow Rate Distribution During the Steelmaking Converter Process on Mixing Efficiency

    Science.gov (United States)

    Chu, Kuan-Yu; Chen, Hsing-Hao; Lai, Po-Han; Wu, Hsuan-Chung; Liu, Yung-Chang; Lin, Chi-Cheng; Lu, Muh-Jung

    2016-04-01

    Featuring the advantages of top-blown and bottom-blown oxygen converters, top and bottom combined blown converters are mainstream devices used in steelmaking converter. This study adopted the FLUENT software to develop a numerical model that simulates 3D multiphase flows of gas (air and argon), liquid steel, and slag. Ten numerical experiments were conducted to analyze the effects that the bottom blowing gas flow rate distribution patterns (uniform, linear fixed total flow rate, linear fixed maximal flow rate, and V-type) and bottom blowing gas flow distribution gradients of combined blown converters exert on slag surface stirring heights, flow field patterns, simulation system dynamic pressures, mixing time, and liquid steel-slag interface velocity. The simulation results indicated that the mixing efficiency was highest for the linear fixed total flow rate, followed by the linear fixed maximal flow rate, V-type, and uniform patterns. The bottom blowing gas flow rate distribution exhibited linear patterns and large gradients, and high bottom blowing total flow rates increased the mixing efficiency substantially. In addition, the results suggested that even when bottom blowing total flow rate was reduced, adopting effective bottom blowing gas flow rate distribution patterns and gradients could improve the mixing efficiency.

  7. Pricing and Unresponsive Flows Purging for Global Rate Enhancement

    OpenAIRE

    Abbas, G.; Nagar, A. K.; Tawfik, H.; Goulermas, J. Y.

    2010-01-01

    Pricing-based Active Queue Management (AQM), such as Random Exponential Marking (REM), outperforms other probabilistic counterpart techniques, like Random Early Detection (RED), in terms of both high utilization and negligible loss and delay. However, the pricing-based protocols do not take account of unresponsive flows that can significantly alter the subsequent rate allocation. This letter presents Purge (Pricing and Un-Responsive flows purging for Global rate Enhancement) that extends the ...

  8. Influence of Gas Flow Rate on the Deposition Rate on Stainless Steel 202 Substrates

    Directory of Open Access Journals (Sweden)

    M.A. Chowdhury

    2012-12-01

    Full Text Available Solid thin films have been deposited on stainless steel 202 (SS 202 substrates at different flow rates of natural gas using a hot filament thermal chemical vapor deposition (CVD reactor. In the experiments, the variations of thin film deposition rate with the variation of gas flow rate have been investigated. The effects of gap between activation heater and substrate on the deposition rate have also been observed. Results show that deposition rate on SS 202 increases with the increase in gas flow rate within the observed range. It is also found that deposition rate increases with the decrease in gap between activation heater and substrate. In addition, friction coefficient and wear rate of SS 202 sliding against SS 304 under different sliding velocities are also investigated before and after deposition. The experimental results reveal that improved friction coefficient and wear rate is obtained after deposition than that of before deposition.

  9. Modeling of Air Temperature for Heat Exchange due to Vertical Turbulence and Horizontal Air Flow

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lei; MENG Qing-lin

    2009-01-01

    In order to calculate the air temperature of the near surface layer in urban environment,the Sur-face layer air was divided into several layers in the vertical direction,and some energy bakmce equations were de-veloped for each air layer,in which the heat exchange due to vertical turbulence and horizontal air flow was tak-en into account.Then,the vertical temperature distribution of the surface layer air was obtained through the coupled calculation using the energy balance equations of underlying surfaces and building walls.Moreover,the measured air temperatures in a small area (with a horizontal scale of less than 500 m) and a large area (with ahorizontal scale of more than 1000 m) in Guangzhou in summer were used to validate the proposed model.The calculated results agree well with the measured ones,with a maximum relative error of 4.18%.It is thus con-cluded that the proposed model is a high-accuracy method to theoretically analyze the urban heat island and the thermal environment.

  10. A Numerical Assessment of the Air Flow Behaviour in a Conventional Compact Dry Kiln

    Directory of Open Access Journals (Sweden)

    Paulo Zdanski

    2015-01-01

    Full Text Available Convective drying is the most common drying strategy used in timber manufacturing industries in the developing world. In convective drying, the reduction rate of the moisture content is directly affected by the flow topology in the inlet and exit plenums and the air flow velocity in the channels formed by timber layers.Turbulence, boundary layer separation, vortex formation and recirculation regions are flow features that are intrinsically associated with the kiln geometry, which in turn dictate the flow velocity across the timber stack and, ultimately, the drying rate. Within this framework, this work presents a numerical study of the effects of the plenum width and inlet flow velocity in a compact dry kiln aiming to establish design recommendations to ensure the highest possible level of flow uniformity across the lumber stack. The numerical solution of the mathematical model is obtained through the finite-volume based Ansys CFX R flow solver. Validation of the numerical approximation is performed by comparing numerical and experimental flow velocities for a scale model of a kiln available in the literature.

  11. Pricing and Unresponsive Flows Purging for Global Rate Enhancement

    Directory of Open Access Journals (Sweden)

    G. Abbas

    2010-01-01

    Full Text Available Pricing-based Active Queue Management (AQM, such as Random Exponential Marking (REM, outperforms other probabilistic counterpart techniques, like Random Early Detection (RED, in terms of both high utilization and negligible loss and delay. However, the pricing-based protocols do not take account of unresponsive flows that can significantly alter the subsequent rate allocation. This letter presents Purge (Pricing and Un-Responsive flows purging for Global rate Enhancement that extends the REM framework to regulate unresponsive flows. We show that Purge is effective at providing fairness and requires small memory and low-complexity operations.

  12. STUDY OF FLOW IN AIR-INTAKE SYSTEM FOR A SINGLE-CYLINDER GO-KART ENGINE

    Directory of Open Access Journals (Sweden)

    S. A. Sulaiman

    2010-06-01

    Full Text Available Intake-air manifolds have a major effect on a vehicle’s engine performance and emission of noise and pollutants. Differences in engine outputs and applications require different designs of intake-air manifolds in order to achieve the best volumetric efficiency and thus the best engine performance. In the present work, the flow characteristics of air flowing in various designs of air-intake manifold of a 200-cc four-stroke Go-Kart engine are studied. The study is done by three dimensional simulations of the flow of air within six designs of air-intake manifold into the combustion chamber by using commercial CFD software, Fluent version 6.2. The simulation results are validated by an experimental study performed using a flow bench. The study reveals that the variations in the geometry of the air-intake system can result in a difference of up to 20% in the mass flow rate of air entering the combustion chamber.

  13. Flow Rate Calculation in the Auto Air Leakage Volume Test System Based on Constant Pressure Method%基于恒压法的汽车整车漏风量测试系统流量计算

    Institute of Scientific and Technical Information of China (English)

    李亚; 赵鑫; 李振亮; 许玮

    2013-01-01

    An auto air leakage volume test system based on constant pressure method was designed. Using standard orifice plate as throttle device,after testing some original data such as the differential pressure between both sides of the throttle device,temperature of the dry-bulb and the wet-bulb,and so on,the auto air leakage volume can be calculated. The formulas and methods involved were demonstrated in detail and the experiment was designed based on an analysis of the measurement theory. According to the result of the experiment,this method proved stable and reliable and can satisfy the requirement of the measurement.%  设计了基于恒压法的汽车整车漏风量测试系统。采用标准孔板作为节流件,通过测量节流件上下游的压力差、干球温度和湿球温度等基础数据,经过计算可得到整车漏风量。在分析测量原理的基础上,详细给出了计算漏风量的公式和方法,并进行了实验。实验结果表明,该计算方法稳定可靠,可满足测量要求。

  14. Effect of solar chimney inclination angle on space flow pattern and ventilation rate

    Energy Technology Data Exchange (ETDEWEB)

    Bassiouny, Ramadan; Korah, Nader S.A. [Department of Mechanical Power Engineering and Energy, Minia University, Minia 61111 (Egypt)

    2009-02-15

    The solar chimney is a simple and practical idea that is applied to enhance space natural ventilation. The chimney could be vertical or inclined. The chimney inclination angle is an important parameter that greatly affects space flow pattern and ventilation rate. In the present study, the effect of chimney inclination angle on air change per hour and indoor flow pattern was numerically and analytically investigated. A numerical simulation using Ansys, a FEM-based code, was used to predict flow pattern. Then the results were compared with published experimental measurements. A FORTRAN program was developed to iteratively solve the mathematical model that was obtained through an overall energy balance on the solar chimney. The analytical results showed that an optimum air flow rate value was achieved when the chimney inclination is between 45 and 70 for latitude of 28.4 . The numerically predicted flow pattern inside the space supports this finding. Moreover, in the present study a correlation to predict the air change per hour was developed. The correlation was tested within a solar intensity greater than or equal to 500 W/m{sup 2}, and chimney width from 0.1 m to 0.35 m for different inclination angles with acceptable values. (author)

  15. Prediction of critical grout parameters: critical flow rate

    International Nuclear Information System (INIS)

    Waste disposal is rapidly becoming one of the most important technological endeavors of our time and fixation of waste in cement-based materials is an important part of the endeavor. Investigations of given wastes are usually individually conducted and reported. In this study, data obtained from investigation of critical flow rates for three distinctly different wastes are correlated with apparent viscosity data via a single empirical equation. Critical flow rate, which is an important variable in waste grout work, is defined as the flow rate at which a grout must be pumped through a reference pipe to obtain turbulent flow. It is important that the grout flow be turbulent since laminar flow allows caking on pipe walls and causes eventual plugging. The three wastes used in this study can be characterized as containing: (1) high nitrate, carbonate, and sulfate; (2) high phosphate; and (3) high fluoride, ammonium, and suspended solids waste. The measurements of apparent viscosity (grouts are non-Newtonian fluids) and other measurements to obtain data to calculate the critical flow rates were made using a Fann-Direct Reading Viscometer, Model 35A

  16. The effects of ambient conditions on the calibration of air flow plate standards

    Directory of Open Access Journals (Sweden)

    Miao Qian

    2013-01-01

    Full Text Available The volume flow rate measured by air flow plate is influenced by the ambient conditions during the calibration. A series of numerical examples are conducted for the relationship and the outcomes demonstrated that the calibration is quite sensitive to the atmospheric pressure and the ambient temperature, but insensitive to relative humidity. The experiment model has been applied to calibration results with wide ranging ambient conditions. In conclusion, the results of this study demonstrate the benefits to calibration data of minimizing the effects of ambient conditions.

  17. Fluid Flow Behaviour under Different Gases and Flow Rate during Gas Metal Arc Welding

    OpenAIRE

    Jaison Peter

    2013-01-01

    Gas metal arc welding (GMAW) is a highly efficient and fast process for fabricating high quality weld. High quality welds are fabricated by proper selection of consumable includes gas and filler metals. The optimum flow rate of gas will ensure the proper quality of weld. In this project, a fluid flow behavior of different flow rate is modeled and the change quality will be studied.

  18. Air flow paths and porosity/permeability change in a saturated zone during in situ air sparging.

    Science.gov (United States)

    Tsai, Yih-Jin

    2007-04-01

    This study develops methods to estimate the change in soil characteristics and associated air flow paths in a saturated zone during in situ air sparging. These objectives were achieved by performing combined in situ air sparging and tracer testing, and comparing the breakthrough curves obtained from the tracer gas with those obtained by a numerical simulation model that incorporates a predicted change in porosity that is proportional to the air saturation. The results reveal that revising the porosity and permeability according to the distribution of gas saturation is helpful in breakthrough curve fitting, however, these changes are unable to account for the effects of preferential air flow paths, especially in the zone closest to the points of air injection. It is not known the extent to which these preferential air flow paths were already present versus created, increased, or reduced as a result of the air sparging experiment. The transport of particles from around the sparging well could account for the overall increase in porosity and permeability observed in the study. Collection of soil particles in a monitoring well within 2m of the sparging well provided further evidence of the transport of particles. Transport of particles from near the sparging well also appeared to decrease the radius of influence (ROI). Methods for predicting the effects of pressurized air injection and water flow on the creation or modification of preferential air flow paths are still needed to provide a full description of the change in soil conditions that accompany air sparging.

  19. Onsite survey on the mechanism of passive aeration and air flow path in a semi-aerobic landfill.

    Science.gov (United States)

    Matsuto, Toshihiko; Zhang, Xin; Matsuo, Takayuki; Yamada, Shuhei

    2015-02-01

    The semi-aerobic landfill is a widely accepted landfill concept in Japan because it promotes stabilization of leachates and waste via passive aeration without using any type of mechanical equipment. Ambient air is thought to be supplied to the landfill through a perforated pipe network made of leachate collection pipe laid along the bottom and a vertically erected gas vent. However, its underlying air flow path and driving forces are unclear because empirical data from real-world landfills is inadequate. The objective of this study is to establish scientific evidence about the aeration mechanisms and air flow path by an on-site survey of a full-scale, semi-aerobic landfill. First, all passive vents located in the landfill were monitored with respect to temperature level and gas velocity in different seasons. We found a linear correlation between the outflow rate and gas temperature, suggesting that air flow is driven by a buoyancy force caused by the temperature difference between waste in the landfill and the ambient temperature. Some vents located near the landfill bottom acted as air inflow vents. Second, we conducted a tracer test to determine the air flow path between two vents, by injecting tracer gas from an air sucking vent. The resulting slowly increasing gas concentration at the neighboring vent suggested that fresh air flow passes through the waste layer toward the gas vents from leachate collection pipes, as well as directly flowing through the pipe network. Third, we monitored the temperature of gas flowing out of a vent at night. Since the temperature drop of the gas was much smaller than that of the environment, the air collected at the gas vents was estimated to flow mostly through the waste layer, i.e., the semi-aerobic landfill has considerable aeration ability under the appropriate conditions.

  20. The influence of the flow rate on periodic flow unsteadiness behaviors in a sewage centrifugal pump

    Institute of Scientific and Technical Information of China (English)

    裴吉; 袁寿其; 袁建平; 王文杰

    2013-01-01

    To design a single-blade pump with a good performance in a wide operational range and to increase the pump reliability in the multi-conditional hydraulic design process, an understanding of the unsteady flow behaviors as related with the flow rate is very important. However, the traditional design often considers only a single design condition, and the unsteady flow behaviors have not been well studied for single-blade pumps under different conditions. A comparison analysis of the flow unsteadiness behaviors at di-fferent flow rates within the whole flow passage of the pump is carried out in this paper by solving the three-dimensional unsteady Reynolds-averaged Navier-Stokes equations with the Shear Stress Transport (SST) turbulence model. A definition of the unsteadi-ness in the pump is made and applied to analyze the unsteady intensity distributions, and the flow rate effect on the complex unsteady flow in the pump is studied quantitatively while the flow mechanism is also analyzed. The CFD results are validated by experimental data collected at the laboratory. It is shown that a significant flow rate effect on the time-averaged unsteadiness and the turbulence in-tensity distribution can be observed in both rotor and stator domains including the side chamber. The findings would be useful to re-duce the flow unsteadiness and to increase the pump reliability under multi-conditions.

  1. Numerical study on flow rate limitation of open capillary channel flow through a wedge

    Directory of Open Access Journals (Sweden)

    Ting-Ting Zhang

    2016-04-01

    Full Text Available The flow characteristics of slender-column flow in wedge-shaped channel under microgravity condition are investigated in this work. The one-dimensional theoretical model is applied to predict the critical flow rate and surface contour of stable flow. However, the one-dimensional model overestimates the critical flow rate for not considering the extra pressure loss. Then, we develop a three-dimensional simulation method with OpenFOAM, a computational fluid dynamics tool, to simulate various phenomena in wedge channels with different lengths. The numerical results are verified with the capillary channel flow experimental data on the International Space Station. We find that the three-dimensional simulation perfectly predicts the critical flow rates and surface contours under various flow conditions. Meanwhile, the general behaviors in subcritical, critical, and supercritical flow are studied in three-dimensional simulation considering variations of flow rate and open channel length. The numerical techniques for three-dimensional simulation is validated for a wide range of configurations and is hopeful to provide valuable guidance for capillary channel flow experiment and efficient liquid management in space.

  2. Measuring OutdoorAir Intake Rates Using Electronic Velocity Sensors at Louvers and Downstream of Airflow Straighteners

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

    2008-10-01

    Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100percent, and were often greater than 25percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

  3. Experimental investigation of air bubble flows in a water pool

    International Nuclear Information System (INIS)

    This paper presents experimental results on rising bubbles in the wetwell of a boiling water reactor (BWR) in a loss-of-coolant accident in the pressure suppression pool (PSP). This accident scenario includes three processes: blowdown and associated water slug phenomena, bubble dynamics and related water flow during continuous release of gases and development of a thermal stratification. The paper covers the middle phase where air is fed through a downcomer. The developments of bubble formation and bubble flow are investigated by means of high speed videos. Diameter, velocity, formation frequency and breakup distance of bubbles are evaluated using automated image evaluation procedures. The experiments have been performed in the cylindrical vessel of the THAI test facility with a height of 9.2 m and a diameter of 3.2 m. (author)

  4. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain; Stratton, Chris

    2015-07-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent).

  5. Ozone concentrations in air flowing into New York State

    Science.gov (United States)

    Aleksic, Nenad; Kent, John; Walcek, Chris

    2016-09-01

    Ozone (O3) concentrations measured at Pinnacle State Park (PSPNY), very close to the southern border of New York State, are used to estimate concentrations in air flowing into New York. On 20% of the ozone season (April-September) afternoons from 2004 to 2015, mid-afternoon 500-m back trajectories calculated from PSPNY cross New York border from the south and spend less than three hours in New York State, in this area of negligible local pollution emissions. One-hour (2p.m.-3p.m.) O3 concentrations during these inflowing conditions were 46 ± 13 ppb, and ranged from a minimum of 15 ppb to a maximum of 84 ppb. On average during 2004-2015, each year experienced 11.8 days with inflowing 1-hr O3 concentrations exceeding 50 ppb, 4.3 days with O3 > 60 ppb, and 1.5 days had O3 > 70 ppb. During the same period, 8-hr average concentrations (10a.m. to 6p.m.) exceeded 50 ppb on 10.0 days per season, while 3.9 days exceeded 60 ppb, and 70 ppb was exceeded 1.2 days per season. Two afternoons of minimal in-state emission influences with high ozone concentrations were analyzed in more detail. Synoptic and back trajectory analysis, including comparison with upwind ozone concentrations, indicated that the two periods were characterized as photo-chemically aged air containing high inflowing O3 concentrations most likely heavily influenced by pollution emissions from states upwind of New York including Pennsylvania, Tennessee, West Virginia, and Ohio. These results suggest that New York state-level attempts to comply with National Ambient Air Quality Standards by regulating in-state O3 precursor NOx and organic emissions would be very difficult, since air frequently enters New York State very close to or in excess of Federal Air Quality Standards.

  6. Liquid Steel at Low Pressure: Experimental Investigation of a Downward Water Air Flow

    Science.gov (United States)

    Thumfart, Maria

    2016-07-01

    In the continuous casting of steel controlling the steel flow rate to the mould is critical because a well-defined flow field at the mould level is essential for a good quality of the cast product. The stopper rod is a commonly used device to control this flow rate. Agglomeration of solid material near the stopper rod can lead to a reduced cross section and thus to a decreased casting speed or even total blockage (“clogging”). The mechanisms causing clogging are still not fully understood. Single phase considerations of the flow in the region of the stopper rod result in a low or even negative pressure at the smallest cross section. This can cause degassing of dissolved gases from the melt, evaporation of alloys and entrainment of air through the porous refractory material. It can be shown that the degassing process in liquid steel is taking place mainly at the stopper rod tip and its surrounding. The steel flow around the stopper rod tip is highly turbulent. In addition refractory material has a low wettability to liquid steel. So the first step to understand the flow situation and transport phenomena which occur near the stopper is to understand the behaviour of this two phase (steel, gas) flow. To simulate the flow situation near the stopper rod tip, water experiments are conducted using a convergent divergent nozzle with three different wall materials and three different contact angles respectively. These experiments show the high impact of the wettability of the wall material on the actual flow structure at a constant gas flow rate.

  7. Simulation analysis of air flow and turbulence statistics in a rib grit roughened duct.

    Science.gov (United States)

    Vogiatzis, I I; Denizopoulou, A C; Ntinas, G K; Fragos, V P

    2014-01-01

    The implementation of variable artificial roughness patterns on a surface is an effective technique to enhance the rate of heat transfer to fluid flow in the ducts of solar air heaters. Different geometries of roughness elements investigated have demonstrated the pivotal role that vortices and associated turbulence have on the heat transfer characteristics of solar air heater ducts by increasing the convective heat transfer coefficient. In this paper we investigate the two-dimensional, turbulent, unsteady flow around rectangular ribs of variable aspect ratios by directly solving the transient Navier-Stokes and continuity equations using the finite elements method. Flow characteristics and several aspects of turbulent flow are presented and discussed including velocity components and statistics of turbulence. The results reveal the impact that different rib lengths have on the computed mean quantities and turbulence statistics of the flow. The computed turbulence parameters show a clear tendency to diminish downstream with increasing rib length. Furthermore, the applied numerical method is capable of capturing small-scale flow structures resulting from the direct solution of Navier-Stokes and continuity equations.

  8. Simulation Analysis of Air Flow and Turbulence Statistics in a Rib Grit Roughened Duct

    Directory of Open Access Journals (Sweden)

    I. I. Vogiatzis

    2014-01-01

    Full Text Available The implementation of variable artificial roughness patterns on a surface is an effective technique to enhance the rate of heat transfer to fluid flow in the ducts of solar air heaters. Different geometries of roughness elements investigated have demonstrated the pivotal role that vortices and associated turbulence have on the heat transfer characteristics of solar air heater ducts by increasing the convective heat transfer coefficient. In this paper we investigate the two-dimensional, turbulent, unsteady flow around rectangular ribs of variable aspect ratios by directly solving the transient Navier-Stokes and continuity equations using the finite elements method. Flow characteristics and several aspects of turbulent flow are presented and discussed including velocity components and statistics of turbulence. The results reveal the impact that different rib lengths have on the computed mean quantities and turbulence statistics of the flow. The computed turbulence parameters show a clear tendency to diminish downstream with increasing rib length. Furthermore, the applied numerical method is capable of capturing small-scale flow structures resulting from the direct solution of Navier-Stokes and continuity equations.

  9. Intraoral air pressure and oral air flow under different bleed and bite-block conditions.

    Science.gov (United States)

    Putnam, A H; Shelton, R L; Kastner, C U

    1986-03-01

    Intraoral pressures and oral flows were measured as normal talkers produced /p lambda/ and /si/ under experimental conditions that perturbed the usual aeromechanical production characteristics of the consonants. A translabial pressure-release device was used to bleed off intraoral pressure during /p/. Bite-blocks were used to open the anterior bite artificially during /s/. For /p/, intraoral pressure decreased and translabial air leakage increased as bleed orifice area increased. For /s/, flow increased as the area of sibilant constriction increased, but differential pressure across the /s/ oral constriction did not vary systematically with changes in its area. Flow on postconsonantal vowels /lambda/ and /i/ did not vary systematically across experimental conditions. The data imply that maintenance of perturbed intraoral pressure was more effective when compensatory options included opportunity for increased respiratory drive and structural adjustments at the place of consonant articulation rather than increased respiratory drive alone.

  10. A model of particle removal in a dissolved air flotation tank: importance of stratified flow and bubble size.

    Science.gov (United States)

    Lakghomi, B; Lawryshyn, Y; Hofmann, R

    2015-01-01

    An analytical model and a computational fluid dynamic model of particle removal in dissolved air flotation were developed that included the effects of stratified flow and bubble-particle clustering. The models were applied to study the effect of operating conditions and formation of stratified flow on particle removal. Both modeling approaches demonstrated that the presence of stratified flow enhanced particle removal in the tank. A higher air fraction was shown to be needed at higher loading rates to achieve the same removal efficiency. The model predictions showed that an optimum bubble size was present that increased with an increase in particle size.

  11. Influence of Visitors' Flows on Indoor Air Quality of Museum Premises

    Science.gov (United States)

    Dovgaliuk, Volodymyr; Lysak, Pavlo

    2012-06-01

    The article considers the influence of visitors' flows on indoor air quality of museum premises and work of ventilation and air conditioning systems. The article provides the analysis of the heat input from visitors, the results of mathematical simulation of visitors flow influence on indoor air quality. Several advice options are provided on application of variable air volume systems for provision of constant indoor air quality.

  12. Air flow assisted ionization for remote sampling of ambient mass spectrometry and its application.

    Science.gov (United States)

    He, Jiuming; Tang, Fei; Luo, Zhigang; Chen, Yi; Xu, Jing; Zhang, Ruiping; Wang, Xiaohao; Abliz, Zeper

    2011-04-15

    Ambient ionization methods are an important research area in mass spectrometry (MS) analysis. Under ambient conditions, the gas flow and atmospheric pressure significantly affect the transfer and focusing of ions. The design and implementation of air flow assisted ionization (AFAI) as a novel and effective, remote sampling method for ambient mass spectrometry are described herein. AFAI benefits from a high extracting air flow rate. A systematic investigation of the extracting air flow in the AFAI system has been carried out, and it has been demonstrated not only that it plays a role in the effective capture and remote transport of charged droplets, but also that it promotes desolvation and ion formation, and even prevents ion fragmentation during the ionization process. Moreover, the sensitivity of remote sampling ambient MS analysis was improved significantly by the AFAI method. Highly polar and nonpolar molecules, including dyes, pharmaceutical samples, explosives, drugs of abuse, protein and volatile compounds, have been successfully analyzed using AFAI-MS. The successful application of the technique to residue detection on fingers, large object analysis and remote monitoring in real time indicates its potential for the analysis of a variety of samples, especially large objects. The ability to couple this technique with most commercially available MS instruments with an API interface further enhances its broad applicability.

  13. Investigation of the specific mass flow rate distribution in pipes supplied with a pulsating flow

    Energy Technology Data Exchange (ETDEWEB)

    Olczyk, Aleksander [Institute of Turbomachinery, Technical University of Lodz, Wolczanska 219/223, 90-924 Lodz (Poland)], E-mail: aolczyk@p.lodz.pl

    2009-08-15

    A pulsating flow is typical of inlet and exhaust pipes of internal combustion engines and piston compressors. Unsteady flow phenomena are especially important in the case of turbocharged engines, because dynamic effects occurring in the exhaust pipe can affect turbine operation conditions and performance. One of the basic parameters describing the unsteady flow is a transient mass flow rate related to the instantaneous flow velocity, which is usually measured by means of hot-wire anemometers. For the flowing gas, it is more appropriate to analyze the specific mass flow rate {phi}{sub m} = {rho}v, which takes into account also variations in the gas density. In order to minimize the volume occupied by measuring devices in the control section, special double-wire sensors for the specific mass flow rate (CTA) and temperature (CCT) measurement were applied. The article describes procedures of their calibration and measurement. Different forms of calibration curves are analyzed as well in order to match the approximation function to calibration points. Special attention is paid to dynamic phenomena related to the resonance occurring in a pipe for characteristic frequencies depending on the pipe length. One of these phenomena is a reverse flow, which makes it difficult to interpret properly the recorded CTA signal. Procedures of signal correction are described in detail. To verify the measurements, a flow field investigation was carried out by displacing probes radially and determining the profiles of the specific mass flow rate under the conditions of a steady and pulsating flow. The presence and general features of a reverse flow, which was identified experimentally, were confirmed by 1-D unsteady flow calculations.

  14. Graphical User Interface Development for Representing Air Flow Patterns

    Science.gov (United States)

    Chaudhary, Nilika

    2004-01-01

    In the Turbine Branch, scientists carry out experimental and computational work to advance the efficiency and diminish the noise production of jet engine turbines. One way to do this is by decreasing the heat that the turbine blades receive. Most of the experimental work is carried out by taking a single turbine blade and analyzing the air flow patterns around it, because this data indicates the sections of the turbine blade that are getting too hot. Since the cost of doing turbine blade air flow experiments is very high, researchers try to do computational work that fits the experimental data. The goal of computational fluid dynamics is for scientists to find a numerical way to predict the complex flow patterns around different turbine blades without physically having to perform tests or costly experiments. When visualizing flow patterns, scientists need a way to represent the flow conditions around a turbine blade. A researcher will assign specific zones that surround the turbine blade. In a two-dimensional view, the zones are usually quadrilaterals. The next step is to assign boundary conditions which define how the flow enters or exits one side of a zone. way of setting up computational zones and grids, visualizing flow patterns, and storing all the flow conditions in a file on the computer for future computation. Such a program is necessary because the only method for creating flow pattern graphs is by hand, which is tedious and time-consuming. By using a computer program to create the zones and grids, the graph would be faster to make and easier to edit. Basically, the user would run a program that is an editable graph. The user could click and drag with the mouse to form various zones and grids, then edit the locations of these grids, add flow and boundary conditions, and finally save the graph for future use and analysis. My goal this summer is to create a graphical user interface (GUI) that incorporates all of these elements. I am writing the program in

  15. Oxidation rate of K-Basin spent nuclear fuel in moist air

    International Nuclear Information System (INIS)

    Experiments have been conducted by Pacific Northwest National Laboratory to determine the oxidation rate of damaged/corroded N-Reactor fuel material in moist air. Five SNF pieces (with regular geometrical shapes) sectioned from a damaged element stored in the K-West Basin were oxidized in flowing air containing moisture. The SNF oxidation behavior in moist air at a temperature of 198 C can best be fitted by parabolic oxidation kinetics. A linear rate equation gave the best fit to the oxidation data at 250 C and above. The results within the temperature range studied, therefore, show a transition from parabolic oxidation kinetics to linear oxidation kinetics. The transition temperature is somewhere between 198 C and 250 C. The tests at approximately 300 C gave results that were very different from the other tests at temperatures of 198 C, 250 C, and 349 C. The SNF sample weight change at this temperature showed erratic behavior. Visual examination indicated the sample fragmented into small pieces and powder as a result of rapid oxidation and hydration. Additional tests at temperatures close to 300 C (i.e., 300 ± 10 C) are recommended in order to fully understand the oxidation behavior of the damaged/corroded SNF samples in moist air at about 300 C

  16. Relativistic collision rate calculations for electron-air interactions

    International Nuclear Information System (INIS)

    The most recent data available on differential cross sections for electron-air interactions are used to calculate the avalanche, momentum transfer, and energy loss rates that enter into the fluid equations. Data for the important elastic, inelastic, and ionizing processes are generally available out to electron energies of 1--10 kev. Prescriptions for extending these cross sections to the relativistic regime are presented. The angular dependence of the cross sections is included where data is available as is the doubly differential cross section for ionizing collisions. The collision rates are computed by taking moments of the Boltzmann collision integrals with the assumption that the electron momentum distribution function is given by the Juettner distribution function which satisfies the relativistic H- theorem and which reduces to the familiar Maxwellian velocity distribution in the nonrelativistic regime. The distribution function is parameterized in terms of the electron density, mean momentum, and thermal energy and the rates are therefore computed on a two-dimensional grid as a function of mean kinetic energy and thermal energy

  17. Relationship between salivary flow rates and Candida albicans counts.

    Science.gov (United States)

    Navazesh, M; Wood, G J; Brightman, V J

    1995-09-01

    Seventy-one persons (48 women, 23 men; mean age, 51.76 years) were evaluated for salivary flow rates and Candida albicans counts. Each person was seen on three different occasions. Samples of unstimulated whole, chewing-stimulated whole, acid-stimulated parotid, and candy-stimulated parotid saliva were collected under standardized conditions. An oral rinse was also obtained and evaluated for Candida albicans counts. Unstimulated and chewing-stimulated whole flow rates were negatively and significantly (p or = 500 count. Differences in stimulated parotid flow rates were not significant among different levels of Candida counts. The results of this study reveal that whole saliva is a better predictor than parotid saliva in identification of persons with high Candida albicans counts.

  18. Flow Rate of He Ⅱ Liquid-Vapor Phase Separator

    Institute of Scientific and Technical Information of China (English)

    Xingen YU; Qing LI; Qiang LI; Zhengyu LI

    2005-01-01

    Experimental results are presented for superfluld (He Ⅱ) flow through porous plug liquid-vapor phase separators.Tests have been performed on seven porous plugs with different thicknesses or different permeabilities. The temperature was measured from 1.5K to 1.9K. Two flow regions were observed in small and large pressure and temperature differences regions respectively. The experimental data are compared with theoretical predictions.The performance and applicability of the basic theory are discussed. Hysteresis of the flow rate is also observed and discussed.

  19. Numerical simulation on internal and external flow field of a SCAL indirect air cooling tower

    Institute of Scientific and Technical Information of China (English)

    TIAN Songfeng; CHAI Yanqin; XIANG Tongqiong; ZHOU Guangsha

    2014-01-01

    According to the actual size of cooling tube bundle and the arrangement of cooling triangle of a surface condenser aluminum exchangers (SCAL)natural draft cooling tower,the geometric model of heat transfer elements at the tower bottom was established.On the basis of the RNG k-εturbulence model and porous medium model,three-dimensional numerical simulation was carried out for the inner and external flow field of the air cooling tower,to investigate the influence of environmental conditions on the tower's operation performance.The results show that,with an increase in ambient wind speed,the inlet air speed at windward side of the tower increases gradually,while that at crosswind side and lee side decreases and tends to be obvious;the tower ventilation rate and outlet air speed increases at first and then decreases,and their maximum values appear when the wind speed is 2 m/s.

  20. Tracheal compliance and limit flow rate changes in a urine model of asthma

    Institute of Scientific and Technical Information of China (English)

    TENG ZhongZhao; WANG YiQin; LI FuFeng; YAN HaiXia; LIU ZhaoRong

    2008-01-01

    Trachea is the unique passage for air to flow in and out. Its tone is of importance for the respiration system. However, investigation on how tracheal tone changes due to asthma is limited. Aiming at studying how the mechanical property changes due to asthma as well as the compliance and flow limitation, the following methods are adopted. Static and passive pressure-volume tests of rats' trachea of the asthmatic and control groups are carried out and a new type of tube law is formulated to fit the experimental data, based on which changes of compliance and limit flow rate are investigated. In order to give explanation to such changes, histological examinations with tracheal soft tissues are made. The results show that compliance, limit flow rate and material constants included in the tube law largely depend on the longitudinal stretching ratio. Compared with the control group, the tracheal compliance of asthmatic animals decreases significantly, which results in an increased limit flow rate. Histological studies indicate that asthma can lead to hyperplasia/hypertrophy of smooth muscle cells, and increase elastin and collagen fibres in the muscular membrane. Though decreasing compliance increases sta-bility, during the onset of asthma, limit flow rate is much smaller due to the lower transmural pressure. Asthma leads to a stiffer trachea and the obtained results reveal some aspects relevant to asthma-induced tracheal remodelling.

  1. Tracheal compliance and limit flow rate changes in a murine model of asthma

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Trachea is the unique passage for air to flow in and out. Its tone is of importance for the respiration system. However, investigation on how tracheal tone changes due to asthma is limited. Aiming at studying how the mechanical property changes due to asthma as well as the compliance and flow limitation, the following methods are adopted. Static and passive pressure-volume tests of rats’ trachea of the asthmatic and control groups are carried out and a new type of tube law is formulated to fit the experimental data, based on which changes of compliance and limit flow rate are investigated. In order to give explanation to such changes, histological examinations with tracheal soft tissues are made. The results show that compliance, limit flow rate and material constants included in the tube law largely depend on the longitudinal stretching ratio. Compared with the control group, the tracheal compliance of asthmatic animals decreases significantly, which results in an increased limit flow rate. Histological studies indicate that asthma can lead to hyperplasia/hypertrophy of smooth muscle cells, and increase elastin and collagen fibres in the muscular membrane. Though decreasing compliance increases sta- bility, during the onset of asthma, limit flow rate is much smaller due to the lower transmural pressure. Asthma leads to a stiffer trachea and the obtained results reveal some aspects relevant to asthma-induced tracheal remodelling.

  2. Impact of increased flow rate on specific growth rate of juvenile turbot (Scophthalmus maximus, Rafinesque 1810)

    NARCIS (Netherlands)

    Schram, E.; Verdegem, M.C.J.; Widjaja, R.T.O.B.H.; Kloet, C.J.; Foss, A.; Schelvis-Smit, A.A.M.

    2009-01-01

    The effect of flow rate on growth was investigated in juvenile turbot. Fish with a mean (SD) initial weight of 102 (10.4) g were reared at 6 different flow rates, equaling 1, 2, 3, 4, 6 or 8 tank volumes/h in 196 L tanks during 29 days at 18 ± 0.29 °C, a salinity of 18.0 ± 0.77¿ and a pH ranging fro

  3. 42 CFR 84.148 - Type C supplied-air respirator, continuous flow class; minimum requirements.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Type C supplied-air respirator, continuous flow... RESPIRATORY PROTECTIVE DEVICES Supplied-Air Respirators § 84.148 Type C supplied-air respirator, continuous flow class; minimum requirements. (a) Respirators tested under this section shall be approved only...

  4. Pressure drop and heat transfer of a mercury single-phase flow and an air-mercury two-phase flow in a helical tube under a strong magnetic field

    International Nuclear Information System (INIS)

    For the reduction of a large magneto-hydrodynamic (MHD) pressure drop of a liquid metal single-phase flow, a liquid metal two-phase flow cooling system has been proposed. As a fundamental study, MHD pressure drops and heat transfer characteristics of a mercury single-phase flow and an air-mercury two-phase flow were experimentally investigated. A strong transverse magnetic field relevant to the fusion reactor conditions was applied to the mercury single-phase flow and the air-mercury two-phase flow in a helically coiled tube that was inserted in the vertical bore of a solenoidal superconducting magnet. It was found that MHD pressure drops of a mercury single-phase flow in the helically coiled tube were nearly equal to those in a straight tube. The Nusselt number at an outside wall was higher than that at an inside wall both in the mercury single-phase flow in the absence and presence of a magnetic field. The Nusselt number of the mercury single-phase flow decreased, increased and again decreased with an increase in the magnetic flux density. MHD pressure drops did not decrease appreciably by injecting air into a mercury flow and changing the mercury flow into the air-mercury two-phase flow. Remarkable heat transfer enhancement did not appear by the air injection. The injection of air into the mercury flow enhanced heat transfer in the ranges of high mercury flow rate and low magnetic flux density, possibly due to the agitation effect of air bubbles. The air injection deteriorated heat transfer in the range of low mercury flow rates possibly because of the occupation of air near heating wall

  5. Implementation of Models for Building Envelope Air Flow Fields in a Whole Building Hygrothermal Simulation Tool

    DEFF Research Database (Denmark)

    Sørensen, Karl Grau; Rode, Carsten

    2009-01-01

    phenomena that occur. However, there is still room for further development of such tools. This paper will present an attempt to integrate modelling of air flows in building envelopes into a whole building hygrothermal simulation tool. Two kinds of air flows have been considered: (1) Air flow in a ventilated...... cavity such as behind the exterior cladding of a building envelope, i.e. a flow which is parallel to the construction plane. (2) Infiltration/exfiltration of air through the building envelope, i.e. a flow which is perpendicular to the constructionplane. The paper presents the models and how they have...

  6. Efficiencies of flat plate solar collectors at different flow rates

    DEFF Research Database (Denmark)

    Chen, Ziqian; Furbo, Simon; Perers, Bengt;

    2012-01-01

    Two flat plate solar collectors for solar heating plants from Arcon Solvarme A/S are tested in a laboratory test facility for solar collectors at Technical University of Denmark (DTU). The collectors are designed in the same way. However, one collector is equipped with an ETFE foil between...... the absorber and the cover glass and the other is without ETFE foil. The efficiencies for the collectors are tested at different flow rates. On the basis of the measured efficiencies, the efficiencies for the collectors as functions of flow rate are obtained. The calculated efficiencies are in good agreement...

  7. Electro-Hydrodynamics and Kinetic Modeling of Dry and Humid Air Flows Activated by Corona Discharges

    Institute of Scientific and Technical Information of China (English)

    J.P.SARRETTE; O.EICHWALD; F.MARCHAL; O.DUCASSE; M.YOUSFI

    2016-01-01

    The present work is devoted to the 2D simulation of a point-to-plane Atmospheric Corona Discharge Reactor (ACDR) powered by a DC high voltage supply.The corona reactor is periodically crossed by thin mono filamentary streamers with a natural repetition frequency of some tens of kHz.The study compares the results obtained in dry air and in air mixed with a small amount of water vapour (humid air).The simulation involves the electro-dynamics,chemical kinetics and neutral gas hydrodynamics phenomena that influence the kinetics of the chemical species transformation.Each discharge lasts about one hundred of a nanosecond while the post-discharge occurring between two successive discharges lasts one hundred of a microsecond.The ACDR is crossed by a lateral dry or humid air flow initially polluted with 400 ppm of NO.After 5 ms,the time corresponding to the occurrence of 50 successive discharge/post-discharge phases,a higher NO removal rate and a lower ozone production rate are found in humid air.This change is due to the presence of the HO2 species formed from the H primary radical in the discharge zone.

  8. Electro-Hydrodynamics and Kinetic Modeling of Dry and Humid Air Flows Activated by Corona Discharges

    Science.gov (United States)

    P. Sarrette, J.; Eichwald, O.; Marchal, F.; Ducasse, O.; Yousfi, M.

    2016-05-01

    The present work is devoted to the 2D simulation of a point-to-plane Atmospheric Corona Discharge Reactor (ACDR) powered by a DC high voltage supply. The corona reactor is periodically crossed by thin mono filamentary streamers with a natural repetition frequency of some tens of kHz. The study compares the results obtained in dry air and in air mixed with a small amount of water vapour (humid air). The simulation involves the electro-dynamics, chemical kinetics and neutral gas hydrodynamics phenomena that influence the kinetics of the chemical species transformation. Each discharge lasts about one hundred of a nanosecond while the post-discharge occurring between two successive discharges lasts one hundred of a microsecond. The ACDR is crossed by a lateral dry or humid air flow initially polluted with 400 ppm of NO. After 5 ms, the time corresponding to the occurrence of 50 successive discharge/post-discharge phases, a higher NO removal rate and a lower ozone production rate are found in humid air. This change is due to the presence of the HO2 species formed from the H primary radical in the discharge zone.

  9. A simple analytical method to estimate all exit parameters of a cross-flow air dehumidifier using liquid desiccant

    Science.gov (United States)

    Bassuoni, M.M.

    2013-01-01

    The dehumidifier is a key component in liquid desiccant air-conditioning systems. Analytical solutions have more advantages than numerical solutions in studying the dehumidifier performance parameters. This paper presents the performance results of exit parameters from an analytical model of an adiabatic cross-flow liquid desiccant air dehumidifier. Calcium chloride is used as desiccant material in this investigation. A program performing the analytical solution is developed using the engineering equation solver software. Good accuracy has been found between analytical solution and reliable experimental results with a maximum deviation of +6.63% and −5.65% in the moisture removal rate. The method developed here can be used in the quick prediction of the dehumidifier performance. The exit parameters from the dehumidifier are evaluated under the effects of variables such as air temperature and humidity, desiccant temperature and concentration, and air to desiccant flow rates. The results show that hot humid air and desiccant concentration have the greatest impact on the performance of the dehumidifier. The moisture removal rate is decreased with increasing both air inlet temperature and desiccant temperature while increases with increasing air to solution mass ratio, inlet desiccant concentration, and inlet air humidity ratio. PMID:25685485

  10. A simple analytical method to estimate all exit parameters of a cross-flow air dehumidifier using liquid desiccant.

    Science.gov (United States)

    Bassuoni, M M

    2014-03-01

    The dehumidifier is a key component in liquid desiccant air-conditioning systems. Analytical solutions have more advantages than numerical solutions in studying the dehumidifier performance parameters. This paper presents the performance results of exit parameters from an analytical model of an adiabatic cross-flow liquid desiccant air dehumidifier. Calcium chloride is used as desiccant material in this investigation. A program performing the analytical solution is developed using the engineering equation solver software. Good accuracy has been found between analytical solution and reliable experimental results with a maximum deviation of +6.63% and -5.65% in the moisture removal rate. The method developed here can be used in the quick prediction of the dehumidifier performance. The exit parameters from the dehumidifier are evaluated under the effects of variables such as air temperature and humidity, desiccant temperature and concentration, and air to desiccant flow rates. The results show that hot humid air and desiccant concentration have the greatest impact on the performance of the dehumidifier. The moisture removal rate is decreased with increasing both air inlet temperature and desiccant temperature while increases with increasing air to solution mass ratio, inlet desiccant concentration, and inlet air humidity ratio.

  11. Measuring gas flow rates in the Milky Way

    Science.gov (United States)

    Wakker, Bart

    2010-09-01

    Gas flows out of and into the Milky Way are a crucial element in its evolution. Supernovae heat gas in the disk and lift it into the halo. Tidal streams and instabilities in the hot Galactic corona result in an inflow of low-metallicity gas. These flows can be observed in the form of the high-velocity clouds {HVCs}. Their location, brightness, distances, ionization structure and metallicities can be used to determine the conditions in the gaseous disk and halo as well as the rate of mass flow corresponding to the different processes. So far, sufficient information to derive an associated mass flow rate is available for just 5 HVCs. We propose to observe 20 AGNs toward most of the other HVC complexes as well as toward a few small clouds, in order to derive a metallicity for almost every HVC complex, which will complement distance measurements that have been or will be obtained in our ongoing program. Combining all the data, we can derive {a} the rate of the circulation of gas between disk and halo, constraining the Galactic supernova rate and {b} the accretion rate of low-metallicity material that feeds star formation over 10 Gyr, which will constrain both models of galactic chemical evolution and models of the conditions in the hot galactic corona.

  12. Miniaturized microDMFC using silicon microsystems techniques: performances at low fuel flow rates

    International Nuclear Information System (INIS)

    This paper reports the design, fabrication and characterization of high performance miniaturized micro direct methanol fuel cells (microDMFC) functioning at room temperature under a forced low input fuel flow rate (−1) fabricated using silicon microsystems techniques. A room temperature maximum power output of 12.5 mW cm−2 has been measured at a fuel flow rate of 5.52 µL min−1 for a fuel cell surface area as small as 0.3 cm2 (corresponding to a fuel use efficiency of 14.1% at 300 K). At a lower flow rate of 1.38 µL min−1, the fuel use efficiency rises to 20.1% although the power density falls to 4.3 mW cm−2. The study revealed that improved room temperature cell performances in terms of power density can be achieved at low flow rates (−1) by (i) reducing the fuel cell area and (ii) reducing the microchannel cross-section. The study also revealed that higher fuel use efficiencies are obtained at lower fuel flow rates. Fuel (methanol) for the anode and an oxidant (air) for the cathode are supplied via a compact serpentine network of micron-size microfluidic and gas microchannels; by using silicon microsystems techniques we also render the fuel cell compatible with other silicon technologies such as microelectronics and micro- and nanoelectromechanical systems (MEMS/NEMS)

  13. Investigating the air oxidation of V(II) ions in a vanadium redox flow battery

    Science.gov (United States)

    Ngamsai, Kittima; Arpornwichanop, Amornchai

    2015-11-01

    The air oxidation of vanadium (V(II)) ions in a negative electrolyte reservoir is a major side reaction in a vanadium redox flow battery (VRB), which leads to electrolyte imbalance and self-discharge of the system during long-term operation. In this study, an 80% charged negative electrolyte solution is employed to investigate the mechanism and influential factors of the reaction in a negative-electrolyte reservoir. The results show that the air oxidation of V(II) ions occurs at the air-electrolyte solution interface area and leads to a concentration gradient of vanadium ions in the electrolyte solution and to the diffusion of V(II) and V(III) ions. The effect of the ratio of the electrolyte volume to the air-electrolyte solution interface area and the concentrations of vanadium and sulfuric acid in an electrolyte solution is investigated. A higher ratio of electrolyte volume to the air-electrolyte solution interface area results in a slower oxidation reaction rate. The high concentrations of vanadium and sulfuric acid solution also retard the air oxidation of V(II) ions. This information can be utilized to design an appropriate electrolyte reservoir for the VRB system and to prepare suitable ingredients for the electrolyte solution.

  14. Effects of Bell Speed and Flow Rate on Evaporation of Water Spray from a Rotary Bell Atomizer

    Directory of Open Access Journals (Sweden)

    Rajan Ray

    2015-05-01

    Full Text Available A phase doppler anemometer (PDA was used to determine the effects of evaporation on water spray for three rotary bell atomizer operational variable parameters: shaping air, bell speed and liquid flow. Shaping air was set at either 200 standard liters per minute (L/min or 300 L/min, bell speed was set to 30, 40 or 50 thousand rotations per minute (krpm and water flow rate was varied between 100, 200 or 300 cubic centimeters per minute (cm3/min. The total evaporation between 22.5 and 37.5 cm from the atomizer (cm3/s was calculated for all the combinations of those variables. Evaporation rate increased with higher flow rate and bell speed but no statistically significant effects were obtained for variable shaping air on interactions between parameters.

  15. 40 CFR 1065.240 - Dilution air and diluted exhaust flow meters.

    Science.gov (United States)

    2010-07-01

    ...) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Measurement Instruments Flow-Related Measurements... dilution system, you may use a laminar flow element, an ultrasonic flow meter, a subsonic venturi, a... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Dilution air and diluted exhaust...

  16. THE PATTERN OF AIR FLOW OUT OF THE MOUTH DURING SPEECH.

    Science.gov (United States)

    LANE, H.; AND OTHERS

    SINCE THE 19TH CENTURY, KYMOGRAPHIC RECORDING OF TOTAL AIR FLOW OUT OF THE MOUTH HAS BEEN USED TO DIAGNOSE THE VARYING DURATIONS AND DEGREES OF CONSTRICTIONS OF THE VOCAL TRACT DURING SPEECH. THE PRESENT PROJECT ATTEMPTS TO INTRODUCE A SECOND DIMENSION TO RECORDINGS OF AIR FLOW OUT OF THE MOUTH--NAMELY, CROSS-SECTIONAL AREA OF FLOW--ON THE…

  17. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    International Nuclear Information System (INIS)

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10−4 m3/s (18.0 l/min) for the mono-directional sensor and a measurement range of ±3.00 × 10−4 m3/s (±18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the

  18. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    Science.gov (United States)

    Battista, L.; Sciuto, S. A.; Scorza, A.

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10-4 m3/s (18.0 l/min) for the mono-directional sensor and a measurement range of ±3.00 × 10-4 m3/s (±18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the

  19. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    Energy Technology Data Exchange (ETDEWEB)

    Battista, L.; Sciuto, S. A.; Scorza, A. [Department of Engineering, ROMA TRE University, via della Vasca Navale 79/81, Rome (Italy)

    2013-03-15

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s (18.0 l/min) for the mono-directional sensor and a measurement range of {+-}3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s ({+-}18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed

  20. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique.

    Science.gov (United States)

    Battista, L; Sciuto, S A; Scorza, A

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10(-4) m(3)∕s (18.0 l∕min) for the mono-directional sensor and a measurement range of ±3.00 × 10(-4) m(3)∕s (±18.0 l∕min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono

  1. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique.

    Science.gov (United States)

    Battista, L; Sciuto, S A; Scorza, A

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10(-4) m(3)∕s (18.0 l∕min) for the mono-directional sensor and a measurement range of ±3.00 × 10(-4) m(3)∕s (±18.0 l∕min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono

  2. Simultaneous imaging of two-dimensional electron density and air-flow distribution over air-blast decaying arc

    International Nuclear Information System (INIS)

    Sensitive Shack–Hartmann type laser wavefront sensors were applied to simultaneous imaging of two-dimensional electron density and air-flow distributions over decaying arc channels under air blasting with several pressures. Our experimental results showed that higher blasting pressures facilitated the rapid reduction of arc diameters and an increase in the electron densities around the gap centre due not only to the thermal pinch effect but also to air-flow disturbances, although there were no significant effects of the air blasting on the arc conductance. (paper)

  3. FLOW CHARACTERISTICS OF WALL-FLOW DIESEL PARTICULATE FILTER SYSTEM WITH REVERSE PULSE AIR REGENERATION

    Institute of Scientific and Technical Information of China (English)

    Yao Chunde; Shao Yuping; Zhang Chunrun; Zi XinYun; Jiang Dahai; Deng Chenglin

    2005-01-01

    To simulate steady airflows inside of wall-flow diesel particulate filters (DPF) with different reverse blowing pipes collocation, a mathematical model of the flow in a DPF is established by an equivalent continuum approach. The experimental results agree well with the theoretical values calculated from the model. Simulation shows that the velocity and the pressure distribution of the filters in the regenerative process are key factors to the filter's regeneration. How to decrease the mal-distribution of the flow in the filter and how to achieve the better regenerative performance at the least cost of air consumption in the regenerative process are the ultimate goals of the study. Calculation and experiments show that the goals can be realized through adjusting the angle of two reverse blowing pipes and their relative location suitably.

  4. Impact of two-way air flow due to temperature difference on preventing the entry of outdoor particles using indoor positive pressure control method.

    Science.gov (United States)

    Chen, Chun; Zhao, Bin; Yang, Xudong

    2011-02-28

    Maintaining positive pressure indoors using mechanical ventilation system is a popular control method for preventing the entry of outdoor airborne particles. The idea is, as long as the supply air flow rate is larger than return air flow rate, the pressure inside the ventilated room should be positive since the superfluous air flow must exfiltrate from air leakages or other openings of the room to the outdoors. Based on experimental and theoretical analyses this paper aims to show the impact of two-way air flow due to indoor/outdoor temperature difference on preventing the entry of outdoor particles using positive pressure control method. The indoor positive pressure control method is effective only when the size of the opening area is restricted to a certain level, opening degree less than 30° in this study, due to the two-way air flow effect induced by differential temperature. The theoretical model was validated using the experimental data. The impacts of two-way air flow due to temperature difference and the supply air flow rate were also analyzed using the theoretical model as well as experimental data. For real houses, it seems that the idea about the positive pressure control method for preventing the entry of outdoor particles has a blind side.

  5. Patterns of a slow air-water flow in a semispherical container

    DEFF Research Database (Denmark)

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A.;

    2016-01-01

    This numerical study analyzes the development of eddies in a slow steady axisymmetric air-water flow in a sealed semispherical container, driven by a rotating top disk. As the water height, Hw, increases, new flow cells emerge in both water and air. First, an eddy emerges near the axis......-bottom intersection. Then this eddy expands and reaches the interface, inducing a new cell in the air flow. This cell appears as a thin near-axis layer which then expands and occupies the entire air domain. As the disk rotation intensifies at Hw = 0.8, the new air cell shrinks to the axis and disappears. The bulk...... water circulation becomes separated from the interface by a thin layer of water counter-circulation. These changes in the flow topology occur due to (a) competing effects of the air meridional flow and swirl, which drive meridional motions of opposite directions in water, and (b) feedback of water flow...

  6. Test of the EG and G two-phase mass flow rate instrumentation at Kernforschungszentrum Karlsruhe

    International Nuclear Information System (INIS)

    This report presents the data analyses of experiments designed to understand the behavior of a free field drag disc turbine transducer (DTT) and a three beam γ densitometer in steady-state horizontal steam-water and air-water flow. The pressure was varied between 2 and 75 bars, the experiments were made at a mass flow rate and void fraction range where various quite separated flow regimes occurred. Two different test sections with 103 mm ID (5' pipe) and 66 mm ID (3' pipe) were used. Information on flow regime and phase distribution in the cross section was obtained with local impedance probes, measurements of the axial distribution of phase velocities in the test section piping were made with the radiotracer technique. The best overall accuracy of mass flow rate determined by combining two of the three available instruments is obtained by the combination of γ-densitometer and drag disc. From the experiments, single calibration factors are determined which depend only on the γ-densitometer reading. A time averaged separated two-phase model for the DTT is postulated which shows that the DTT measures the local parameters. To obtain the pipe averaged mass flux, a density correction is proposed. For some experiments the radiotracer technique combined with the γ-densitometer for measuring the mass flow rate was tested. (orig./HP) 891 HP/orig.- 892 HIS

  7. Mechanistic understanding of monosaccharide-air flow battery electrochemistry

    Science.gov (United States)

    Scott, Daniel M.; Tsang, Tsz Ho; Chetty, Leticia; Aloi, Sekotilani; Liaw, Bor Yann

    Recently, an inexpensive monosaccharide-air flow battery configuration has been demonstrated to utilize a strong base and a mediator redox dye to harness electrical power from the partial oxidation of glucose. Here the mechanistic understanding of glucose oxidation in this unique glucose-air power source is further explored by acid-base titration experiments, 13C NMR, and comparison of results from chemically different redox mediators (indigo carmine vs. methyl viologen) and sugars (fructose vs. glucose) via studies using electrochemical techniques. Titration results indicate that gluconic acid is the main product of the cell reaction, as supported by evidence in the 13C NMR spectra. Using indigo carmine as the mediator dye and fructose as the energy source, an abiotic cell configuration generates a power density of 1.66 mW cm -2, which is greater than that produced from glucose under similar conditions (ca. 1.28 mW cm -2). A faster transition from fructose into the ene-diol intermediate than from glucose likely contributed to this difference in power density.

  8. Numerical Study of Water Production from Compressible Moist-Air Flow

    Directory of Open Access Journals (Sweden)

    sabah hamidi

    2016-01-01

    Full Text Available In this research a numerical study of water production from compressible moist-air flow by condensing of the vapor component of the atmospheric air through a converging-diverging nozzle is performed. The atmospheric air can be sucked by a vacuum compressor. The geographical conditions represent a hot and humid region, for example Bandar Abbas, Iran, with coordinates, 270 11 ’ N and 560 16’ E and summer climate conditions of about 40℃and relative humidity above 80%. Parametric studies are performed for the atmospheric-air temperature between, 40℃ to 50℃, and relative humidity between49.6% to 100.%. For these ranges of operating conditions and a nozzle with the area ratio of 1.17, the liquid mass flow rates falls in the range 0.272 to 0.376 kg/s. The results show that, the energy consumed by the compressor for production 1 kg of water will be 1.279 kWh. The price of 1 kWh is 372 Rials, therefore the price for the production of 1 kg liquid water will be 475.8 Rials, therefore, the scheme is economically suitable.

  9. 30 CFR 57.22211 - Air flow (I-A mines).

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air flow (I-A mines). 57.22211 Section 57.22211... Methane in Metal and Nonmetal Mines Ventilation § 57.22211 Air flow (I-A mines). The average air velocity... openings nearest the face, shall be at least 40 feet per minute. The velocity of air ventilating each...

  10. Flow rate dependency of critical wall shear stress in a radial-flow cell

    DEFF Research Database (Denmark)

    Detry, J.G.; Jensen, Bo Boye Busk; Sindic, M.;

    2009-01-01

    In the present work, a radial-flow cell was used to study the removal of starch particle aggregates from several solid substrates (glass, stainless steel, polystyrene and PTFE) in order to determine the critical wall shear stress value for each case. The particle aggregates were formed by aspersion...... of a water or ethanol suspension of starch granules on the surfaces. Depending on the substrate and on the suspending liquid, the aggregates differed in size and shape. Aggregate removal was studied at two flow rates. At the lower flow rate (Re-inlet = 955), the values of critical wall shear stress...

  11. Design parameters of a low flow rate sidestream capnograph.

    Science.gov (United States)

    Fudge, Brian M

    2005-01-01

    The use of sidestream capnometers, with a sampling rate of 150-250 cc/min, as a means of measuring a patient's expired CO2 (ETCO2) and respiratory rate, has been a common practice for many years. However, in recent years, there has been a focus on lower flow rate sampling sidestream systems due to the benefits of less loss of tidal volume for patients, such as infants or neonates. When developing a sidestream system, four principle issues must be considered; 1) The signal fidelity of the gas sample must be sufficiently maintained from the sampling site to the measurement site. 2) Condensate from a patient's breath, as well as blood, mucus, or other contaminates often pose problems for sidestream systems and requires mitigation. 3) The mechanics of transporting a gas sample at a constant flow rate through the sampling system, regardless of atmospheric or clinical conditions must be developed. 4) The physics of handling CO2 gas throughout the transport process must be understood in order to ensure accurate readings. These issues lead to a complex web of interrelations that are explored in the development of a low flow rate sidestream capnometer. PMID:15850097

  12. Proposed method for measurement of flow rate in turbulent periodic pipe flow

    Science.gov (United States)

    Werzner, E.; Ray, S.; Trimis, D.

    2011-12-01

    The present investigation deals with a previously proposed flow metering technique for laminar, fully-developed, time-periodic pipe flow. Employing knowledge of the pulsation frequency-dependent relationship between the mass flow rate and the pressure gradient, the method allows reconstruction of the instantaneous mass flow rate on the basis of a recorded pressure gradient time series. In order to explore if the procedure can be extended for turbulent flows, numerical simulations for turbulent, fully-developed, sinusoidally pulsating pipe flow with low pulse amplitude have been carried out using a ν2-f turbulence model. The study covers pulsation frequencies, ranging from the quasi-steady up to the inertia-dominated frequency regime, and three cycle-averaged Reynolds numbers of 4360, 9750 and 15400. After providing the theoretical background of the flow rate reconstruction principle, the numerical model and an experimental facility for the verification of simulations are explained. The obtained results, presented in time and frequency domain, show good agreement with each other and indicate a frequency dependence, similar to that used for the signal reconstruction for laminar flows. A modified dimensionless frequency definition has been introduced, which allows a generalised representation of the results considering the influence of Reynolds number.

  13. Development of pulse ultrasonic doppler method for flow rate measurement in power plant. Multilines flow rate measurement on metal pipe

    International Nuclear Information System (INIS)

    Ultrasonic Doppler method for a flow metering system has been developed. The method has the capability to obtain instantaneous velocity profiles along the ultrasonic beam. Our purpose is to apply the ultrasonic Doppler method to a flow rate measurement of feed- or recirculation- water in power plants. The principle of the flow measurement method is based on the integration of an instantaneous velocity profile over a pipe diameter. Hence, it is expected to eliminate installation problems such as entry length, also to follow transient flow rate precisely by increasing ultrasonic trans-ducers. In this paper, we report that the errors are less than 1% just below a bend and sudden expansion pipe employing three measuring lines. And then, for constructing a basic system of a flow rate measurement in power plants, a transmission of ultrasound through a metallic wall is investigated, at first. Afterward, since there is no ultrasonic reflectors in the feedwater in power plants, cavitation bubbles are induced as ultrasonic reflectors and the results are appeared that cavitation bubbles are effective when the pipe material is metallic. (author)

  14. Define and Quantify the Physics of Air Flow, Pressure Drop and Aerosol Collection in Nuclear Grade HEPA Filters

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Murray E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-02-23

    Objective: Develop a set of peer-review and verified analytical methods to adjust HEPA filter performance to different flow rates, temperatures and altitudes. Experimental testing will measure HEPA filter flow rate, pressure drop and efficiency to verify the analytical approach. Nuclear facilities utilize HEPA (High Efficiency Particulate Air) filters to purify air flow for workspace ventilation. However, the ASME AG-1 technical standard (Code on Nuclear Air and Gas Treatment) does not adequately describe air flow measurement units for HEPA filter systems. Specifically, the AG-1 standard does not differentiate between volumetric air flow in ACFM (actual cubic feet per minute)compared to mass flow measured in SCFM (standard cubic feet per minute). More importantly, the AG-1 standard has an overall deficiency for using HEPA filter devices at different air flow rates, temperatures, and altitudes. Technical Approach: The collection efficiency and pressure drops of 18 different HEPA filters will be measured over a range of flow rates, temperatures and altitudes. The experimental results will be compared to analytical scoping calculations. Three manufacturers have allocated six HEPA filters each for this effort. The 18 filters will be tested at two different flow rates, two different temperatures and two different altitudes. The 36 total tests will be conducted at two different facilities: the ATI Test facilities (Baltimore MD) and the Los Alamos National Laboratory (Los Alamos NM). The Radiation Protection RP-SVS group at Los Alamos has an aerosol wind tunnel that was originally designed to evaluate small air samplers. In 2010, modifications were started to convert the wind tunnel for HEPA filter testing. (Extensive changes were necessary for the required aerosol generators, HEPA test fixtures, temperature control devices and measurement capabilities.) To this date, none of these modification activities have been funded through a specific DOE or NNSA program. This is

  15. Calculation and test of core flow rate distribution of CEFR

    International Nuclear Information System (INIS)

    The hydraulic design, test and verification of CEFR primary coolant system were performed based on the requirements of design criteria. The results of calculations and test for core flow rate distribution in CEFR are presented in this paper. A series of pressure drop tests for subassemblies, primary pumps and reactor components were implemented in different test rigs. Based on these tests data and empirical formulas, a steady-state thermal hydraulic analysis code CEFR-DAEMON was developed to calculate primary pumps, core and bypass channels flow rate in several steady states. In CEFR commissioning stage, the test for a mock-up core was performed with a permanent-magnet sodium flow meter of range 5 kg/s. The numerical results of code CEFR-DAEMON showed good agreement with the test data. The test results also proved that pressure drop in the grid plate was very small. A revised edition of this code has been developed to calculate core flow rate reduction or reallocation in other transient states. (author)

  16. Helium-air exchange flow through an opening with a partition

    International Nuclear Information System (INIS)

    The helium-air exchange flow through a small vertical opening with a partition was experimentally investigated. The vertical partition was aligned with the center line of the small opening to evaluate the effects of the multiple openings. The dimensionless exchange flow rates, i.e., Froude numbers, were experimentally obtained with several opening ratios (H1/Df), i.e., the ratio of the height to the effective diameter of the opening. In the case of low opening ratios (H1/Df 1/Df ≥ 0.75), the measured Froude numbers for the multiple openings were larger than those for the single opening, because the upward and downward flows were separated by the vertical partition. Based on the balance between the pressure losses in the openings and the driving force due to density difference, the exchange flow rate was calculated, and found to agree qualitatively with the measured Froude numbers. The effect of the upward and downward flow interaction at the exit of the opening was found to play an important role in the prediction of the Froude number. (author)

  17. Dynamic model of counter flow air to air heat exchanger for comfort ventilation with condensation and frost formation

    DEFF Research Database (Denmark)

    Nielsen, Toke Rammer; Rose, Jørgen; Kragh, Jesper

    2009-01-01

    must be calculated under conditions with condensation and freezing. This article presents a dynamic model of a counter flow air to air heat exchanger taking into account condensation and freezing and melting of ice. The model is implemented in Simulink and results are compared to measurements...

  18. Age related flow rate nomograms in a normal pediatric population.

    Science.gov (United States)

    Gaum, L D; Wese, F X; Liu, T P; Wong, A K; Hardy, B E; Churchill, B M

    1989-01-01

    Uroflow studies in a normal pediatric population were analysed statistically. Single studies for 511 subjects (272 boys and 239 girls) were reviewed. Nomograms relating peak flow to volume voided and age were established. An acceptable lower limit for peak flow was obtained from the data and a volume voided range was calculated so that both criteria could be used with 90% probability to define the normal voiding situation. The mean values of peak flow rate increased with volume voided in both sexes and also with age in the male population. Different sets of nomograms, which are necessary for daily clinical evaluation, are given. They define the normal values in the normal population. PMID:2763925

  19. Numerical study of the air-flow in an oscillating water column wave energy converter

    Energy Technology Data Exchange (ETDEWEB)

    Paixao Conde, J.M. [Department of Mechanical and Industrial Engineering, Faculty of Sciences and Technology, New University of Lisbon, Monte de Caparica, 2829-516 Caparica (Portugal); IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, 1049-001 Lisboa (Portugal); Gato, L.M.C. [IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, 1049-001 Lisboa (Portugal)

    2008-12-15

    The paper presents a numerical study of the air-flow in a typical pneumatic chamber geometry of an oscillating water column (OWC)-type wave energy converter (WEC), equipped with two vertical-axis air turbines, asymmetrically placed on the top of the chamber. Outwards and inwards, steady and periodic, air-flow calculations were performed to investigate the flow distribution at the turbines' inlet sections, as well as the properties of the air-jet impinging on the water free-surface. The original design of the OWC chamber is likely to be harmful for the operation of the turbines due to the possible air-jet-produced water-spray at the water free-surface subsequently ingested by the turbine. A geometry modification of the air chamber, using a horizontal baffle-plate to deflect the air from the turbines, is proposed and proved to be very effective in reducing the risk of water-spray production from the inwards flow. The flow distribution at the turbines' inlet sections for the outwards flow was found to be fairly uniform for the geometries considered, providing good inlet flow conditions for the turbines. Steady flow was found to be an acceptable model to study the air-flow inside the pneumatic chamber of an OWC-WEC. (author)

  20. Investigation of Countercurrent Helium-Air Flows in Air-ingress Accidents for VHTRs

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiaodong; Christensen, Richard; Oh, Chang

    2013-10-03

    The primary objective of this research is to develop an extensive experimental database for the air- ingress phenomenon for the validation of computational fluid dynamics (CFD) analyses. This research is intended to be a separate-effects experimental study. However, the project team will perform a careful scaling analysis prior to designing a scaled-down test facility in order to closely tie this research with the real application. As a reference design in this study, the team will use the 600 MWth gas turbine modular helium reactor (GT-MHR) developed by General Atomic. In the test matrix of the experiments, researchers will vary the temperature and pressure of the helium— along with break size, location, shape, and orientation—to simulate deferent scenarios and to identify potential mitigation strategies. Under support of the Department of Energy, a high-temperature helium test facility has been designed and is currently being constructed at Ohio State University, primarily for high- temperature compact heat exchanger testing for the VHTR program. Once the facility is in operation (expected April 2009), this study will utilize high-temperature helium up to 900°C and 3 MPa for loss-of-coolant accident (LOCA) depressurization and air-ingress experiments. The project team will first conduct a scaling study and then design an air-ingress test facility. The major parameter to be measured in the experiments is oxygen (or nitrogen) concentration history at various locations following a LOCA scenario. The team will use two measurement techniques: 1) oxygen (or similar type) sensors employed in the flow field, which will introduce some undesirable intrusiveness, disturbing the flow, and 2) a planar laser-induced fluorescence (PLIF) imaging technique, which has no physical intrusiveness to the flow but requires a transparent window or test section that the laser beam can penetrate. The team will construct two test facilities, one for high-temperature helium tests with

  1. THE OPTIMIZATION OF FLOW RATES OF AN EXTRUDER

    Directory of Open Access Journals (Sweden)

    I.O. Popoola

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: The article addresses how the flow rates of an extruder can be optimized. It mentions the plastic recycling industry as an example, which is only one of many solid waste recycling industries. The literature on flow rates is reviewed to demonstrate a gap that the current study aims to fills, in the hope that it will stimulate further research in a fertile area.

    AFRIKAANSE OPSOMMING: Die artikel adresseer die vraagstuk van vloeitempo van ‘n ekstrusieproses. Dit handel met ‘n voorbeeld van ‘n plastiekherwinningsproses wat spruit uit soliede afvalverwerking. ‘n Literatuurstudie toon hoedat die navorsing verdere areas wat braak lê, aanspreek in die hoop dat verdere studie gestimuleer sal word.

  2. Dynamic stochastic optimization models for air traffic flow management

    Science.gov (United States)

    Mukherjee, Avijit

    This dissertation presents dynamic stochastic optimization models for Air Traffic Flow Management (ATFM) that enables decisions to adapt to new information on evolving capacities of National Airspace System (NAS) resources. Uncertainty is represented by a set of capacity scenarios, each depicting a particular time-varying capacity profile of NAS resources. We use the concept of a scenario tree in which multiple scenarios are possible initially. Scenarios are eliminated as possibilities in a succession of branching points, until the specific scenario that will be realized on a particular day is known. Thus the scenario tree branching provides updated information on evolving scenarios, and allows ATFM decisions to be re-addressed and revised. First, we propose a dynamic stochastic model for a single airport ground holding problem (SAGHP) that can be used for planning Ground Delay Programs (GDPs) when there is uncertainty about future airport arrival capacities. Ground delays of non-departed flights can be revised based on updated information from scenario tree branching. The problem is formulated so that a wide range of objective functions, including non-linear delay cost functions and functions that reflect equity concerns can be optimized. Furthermore, the model improves on existing practice by ensuring efficient use of available capacity without necessarily exempting long-haul flights. Following this, we present a methodology and optimization models that can be used for decentralized decision making by individual airlines in the GDP planning process, using the solutions from the stochastic dynamic SAGHP. Airlines are allowed to perform cancellations, and re-allocate slots to remaining flights by substitutions. We also present an optimization model that can be used by the FAA, after the airlines perform cancellation and substitutions, to re-utilize vacant arrival slots that are created due to cancellations. Finally, we present three stochastic integer programming

  3. Effect of Coolant Water Flow Rate on Aluminum Alloys Corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Golosov, O.A. [Institute of Nuclear Materials, Zarechny, Sverdlovsk region, 624250 (Russian Federation)

    2011-07-01

    One of the most important factors limiting a life-time of fuel elements in high-flux research reactors are a corrosion rate of fuel cladding material and a formation rate of oxide film. This study presents the results of the corrosion tests with and without irradiation. The aluminum alloys systems Al-Fe-Ni, Al-Fe-Ni-Cu-Mg and Al-Mg-Si-Cu were irradiated in the water flow of a velocity from 1.3 to 14.2m/s at 200 {sup o}C for time within 570 to 2000 hours. (author)

  4. A correction to collision rates of droplets in turbulent flows

    CERN Document Server

    Zhang, Huang

    2016-01-01

    This paper makes a correction to the collision rates of small droplets in turbulent fluid derived by Saffman and Turner(1956). Not only the distortion but also the rotation of the fluid is taken into account between two close droplets. A rotation reference is fixed on one drop, and the fluxes of the other drops moving towards the fixed one are carried out based on this new reference. The behaviors of turbulent flow are analyzed within the smallest eddies under the rotation reference, and a correction is made to the collision rates by multiplying a factor sqrt(2).

  5. A review of reaction rates and thermodynamic and transport properties for the 11-species air model for chemical and thermal nonequilibrium calculations to 30000 K

    Science.gov (United States)

    Gupta, Roop N.; Yos, Jerrold M.; Thompson, Richard A.

    1989-01-01

    Reaction rate coefficients and thermodynamic and transport properties are provided for the 11-species air model which can be used for analyzing flows in chemical and thermal nonequilibrium. Such flows will likely occur around currently planned and future hypersonic vehicles. Guidelines for determining the state of the surrounding environment are provided. Approximate and more exact formulas are provided for computing the properties of partially ionized air mixtures in such environments.

  6. Flow Field Characteristics of the Rotor Cage in Turbo Air Classifiers

    Institute of Scientific and Technical Information of China (English)

    GUO Lijie; LIU Jiaxiang; LIU Shengzhao

    2009-01-01

    The turbo air classifier is widely used powder classification equipment in a variety of fields. The flow field characteristics of the turbo air classifier are important basis for the improvement of the turbo air classifier's structural design. The flow field characteristics of the rotor cage in turbo air classifiers were investigated under different operating conditions by laser Doppler velocimeter(LDV), and a measure diminishing the axial velocity is proposed. The investigation results show that the tangential velocity of the air flow inside the rotor cage is different from the rotary speed of the rotor cage on the same measurement point due to the influences of both the negative pressure at the exit and the rotation of the rotor cage. The tangential velocity of the air flow likewise decreases as the radius decreases in the case of the rotor cage's low rotary speed. In contrast, the tangential velocity of the air flow increases as the radius decreases in the case of the rotor cage's high rotary speed. Meanwhile, the vortex inside the rotor cage is found to occur near the pressure side of the blade when the rotor cage's rotary speed is less than the tangential velocity of air flow. On the contrary, the vortex is found to occur near the blade suction side once the rotor cage's rotary speed is higher than the tangential velocity of air flow. Inside the rotor cage, the axial velocity could not be disregarded and is largely determined by the distances between the measurement point and the exit.

  7. A flux monitoring method for easy and accurate flow rate measurement in pressure-driven flows.

    Science.gov (United States)

    Siria, Alessandro; Biance, Anne-Laure; Ybert, Christophe; Bocquet, Lydéric

    2012-03-01

    We propose a low-cost and versatile method to measure flow rate in microfluidic channels under pressure-driven flows, thereby providing a simple characterization of the hydrodynamic permeability of the system. The technique is inspired by the current monitoring method usually employed to characterize electro-osmotic flows, and makes use of the measurement of the time-dependent electric resistance inside the channel associated with a moving salt front. We have successfully tested the method in a micrometer-size channel, as well as in a complex microfluidic channel with a varying cross-section, demonstrating its ability in detecting internal shape variations.

  8. Effect of treadmill training on peak expiratory flow rate and resting pulse rate among young adult

    Directory of Open Access Journals (Sweden)

    SUKANYA BARDHAN

    2013-01-01

    Full Text Available The present was designed to find out the effect of treadmill training on peak expiratory flow rate and resting pulse rate among young adult boys. The random group design was adopted for this study. Participants were randomly assigned to experimental and control groups. For this purpose, Ten (N = 10 male students of B.A., B.C.A and B.Com from Post Graduate Government College, Sector-11, Chandigarh aged 19-25 years participate in the study. The subjects were being randomly divided into two groups: A (N = 05; Experimental and B (N = 05; Control. Paired "t" test was employed to identify significant differences between the pretest and post-test mean of the two groups through Medical Calculation Version 12.5. To test the hypotheses, the level of significance was set at 0.05. It is concluded that insignificant difference has been found between pre-test and post test (Experimental Group scores of Peak Expiratory Flow Rate (PEFR among young adult boys. No significant difference has been found between the pre-test and post-test(Control Group scores of Peak Expiratory Flow Rate (PEFR among young adult boys. No significant difference has been found between the pre-test and post-test (Experimental Group scores of Resting Pulse Rate among young adult boys. No significant difference has been found between the pre-test and post-test (Control Group scores of Resting Pulse Rate among young adult boys.

  9. HAZARDOUS AIR POLLUTANTS: WET REMOVAL RATES AND MECHANISMS

    Science.gov (United States)

    Fourteen hazardous organic air pollutants were evaluated for their potentials to be wet deposited by precipitation scavenging. This effort included a survey of solubilities (Henry's Law constants) in the literature, measurement of solubilities of three selected species, developme...

  10. Impact of extracorporeal blood flow rate on blood pressure, pulse rate and cardiac output during haemodialysis

    DEFF Research Database (Denmark)

    Schytz, Philip Andreas; Mace, Maria Lerche; Soja, Anne Merete Boas;

    2015-01-01

    BACKGROUND: If blood pressure (BP) falls during haemodialysis (HD) [intradialytic hypotension (IDH)] a common clinical practice is to reduce the extracorporeal blood flow rate (EBFR). Consequently the efficacy of the HD (Kt/V) is reduced. However, only very limited knowledge on the effect of redu...

  11. An experimental setup for the study of the steady air flow in a diesel engine chamber

    OpenAIRE

    Montanero José María; Marcos Alberto; Castilla Alejandro; Vega Emilio José; Fernández Joaquín; Barrio Raúl

    2012-01-01

    We present an experimental setup for studying the steady air flow in a diesel engine chamber. An engine block containing the inlet manifold was placed on a test bench. A steady air stream crossed the inlet manifold and entered a glass chamber driven by a fan. A PIV system was set up around the bench to measure the in-chamber flow. An air spray gun was used as seed generator to producing sub-millimeter droplets, easily dragged by the air stream. Images of the in-flow chamber were acquired in t...

  12. High temperature air-blown woody biomass gasification model for the estimation of an entrained down-flow gasifier.

    Science.gov (United States)

    Kobayashi, Nobusuke; Tanaka, Miku; Piao, Guilin; Kobayashi, Jun; Hatano, Shigenobu; Itaya, Yoshinori; Mori, Shigekatsu

    2009-01-01

    A high temperature air-blown gasification model for woody biomass is developed based on an air-blown gasification experiment. A high temperature air-blown gasification experiment on woody biomass in an entrained down-flow gasifier is carried out, and then the simple gasification model is developed based on the experimental results. In the experiment, air-blown gasification is conducted to demonstrate the behavior of this process. Pulverized wood is used as the gasification fuel, which is injected directly into the entrained down-flow gasifier by the pulverized wood banner. The pulverized wood is sieved through 60 mesh and supplied at rates of 19 and 27kg/h. The oxygen-carbon molar ratio (O/C) is employed as the operational condition instead of the air ratio. The maximum temperature achievable is over 1400K when the O/C is from 1.26 to 1.84. The results show that the gas composition is followed by the CO-shift reaction equilibrium. Therefore, the air-blown gasification model is developed based on the CO-shift reaction equilibrium. The simple gasification model agrees well with the experimental results. From calculations in large-scale units, the cold gas is able to achieve 80% efficiency in the air-blown gasification, when the woody biomass feedrate is over 1000kg/h and input air temperature is 700K.

  13. Importance of flow stratification and bubble aggregation in the separation zone of a dissolved air flotation tank.

    Science.gov (United States)

    Lakghomi, B; Lawryshyn, Y; Hofmann, R

    2012-09-15

    The importance of horizontal flow patterns and bubble aggregation on the ability of dissolved air flotation (DAF) systems to improve bubble removal during drinking water treatment were explored using computational fluid dynamics (CFD) modeling. Both analytical and CFD analyses demonstrated benefits to horizontal flow. Two dimensional CFD modeling of a DAF system showed that increasing the amount of air in the system improved the bubble removal and generated a beneficial stratified horizontal flow pattern. Loading rates beyond a critical level disrupted the horizontal flow pattern, leading to significantly lower bubble removal. The results also demonstrated that including the effects of bubble aggregation in CFD modeling of DAF systems is an essential component toward achieving realistic modeling results.

  14. Modeling Air Bubble Transport in Hydraulic Jump Flows using Population Balance Approach

    Directory of Open Access Journals (Sweden)

    Min Xiang

    2016-01-01

    Full Text Available This paper proposed a numerical model aiming at coupling the MUltiple-SIze-Group (MUSIG with the semiempirical air entrainment model based on the Euler-Euler two-fluid framework to handle the bubble transport in hydraulic jump flows. The internal flow structure including the recirculation region, the shear layer region and the jet region was accurately predicted. The flow parameters such as the water velocity and void fraction distributions were examined and compared with the experimental data, validating the effectiveness of the numerical model. Prediction of the Sauter mean bubble diameter distributions by the population balance approach at different axial locations confirmed the dominance of breakage due to the high turbulent intensity in the shear layer region which led to the generation of small gas bubbles at high void fraction. Comparison between different cases indicates that high Froude number not only give rise to longer recirculation region and higher void fraction due to larger air entrainment rate, but also generate larger bubble number density and smaller bubble size because of the stronger turbulence intensity in the same axial position.

  15. Heat Transfer Investigation of Air Flow in Microtubes-Part II: Scale and Axial Conduction Effects.

    Science.gov (United States)

    Lin, Ting-Yu; Kandlikar, Satish G

    2013-03-01

    In this paper, the scale effects are specifically addressed by conducting experiments with air flow in different microtubes. Three stainless steel tubes of 962, 308, and 83 μm inner diameter (ID) are investigated for friction factor, and the first two are investigated for heat transfer. Viscous heating effects are studied in the laminar as well as turbulent flow regimes by varying the air flow rate. The axial conduction effects in microtubes are experimentally explored for the first time by comparing the heat transfer in SS304 tube with a 910 μm ID/2005 μm outer diameter nickel tube specifically fabricated using an electrodeposition technique. After carefully accounting for the variable heat losses along the tube length, it is seen that the viscous heating and the axial conduction effects become more important at microscale and the present models are able to predict these effects accurately. It is concluded that neglecting these effects is the main source of discrepancies in the data reported in the earlier literature.

  16. Episodic fluid flow in the Nankai accretionary complex: Timescale, geochemistry, flow rates, and fluid budget

    Science.gov (United States)

    Saffer, D.M.; Bekins, B.A.

    1998-01-01

    Down-hole geochemical anomalies encountered in active accretionary systems can be used to constrain the timing, rates, and localization of fluid flow. Here we combine a coupled flow and solute transport model with a kinetic model for smectite dehydration to better understand and quantify fluid flow in the Nankai accretionary complex offshore of Japan. Compaction of sediments and clay dehydration provide fluid sources which drive the model flow system. We explicitly include the consolidation rate of underthrust sediments in our calculations to evaluate the impact that variations in this unknown quantity have on pressure and chloride distribution. Sensitivity analysis of steady state pressure solutions constrains bulk and flow conduit permeabilities. Steady state simulations with 30% smectite in the incoming sedimentary sequence result in minimum chloride concentrations at site 808 of 550 mM, but measured chlorinity is as low as 447 mM. We simulate the transient effects of hydrofracture or a strain event by assuming an instantaneous permeability increase of 3-4 orders of magnitude along a flow conduit (in this case the de??collement), using steady state results as initial conditions. Transient results with an increase in de??collement permeability from 10-16 m2 to 10-13 m2 and 20% smectite reproduce the observed chloride profile at site 808 after 80-160 kyr. Modeled chloride concentrations are highly sensitive to the consolidation rate of underthrust sediments, such that rapid compaction of underthrust material leads to increased freshening. Pressures within the de??collement during transient simulations rise rapidly to a significant fraction of lithostatic and remain high for at least 160 kyr, providing a mechanism for maintaining high permeability. Flow rates at the deformation front for transient simulations are in good agreement with direct measurements, but steady state flow rates are 2-3 orders of magnitude smaller than observed. Fluid budget calculations

  17. Macroscopic Model and Simulation Analysis of Air Traffic Flow in Airport Terminal Area

    OpenAIRE

    Honghai Zhang; Yan Xu; Lei Yang; Hao Liu

    2014-01-01

    We focus on the spatiotemporal characteristics and their evolvement law of the air traffic flow in airport terminal area to provide scientific basis for optimizing flight control processes and alleviating severe air traffic conditions. Methods in this work combine mathematical derivation and simulation analysis. Based on cell transmission model the macroscopic models of arrival and departure air traffic flow in terminal area are established. Meanwhile, the interrelationship and influential fa...

  18. Experimental study on the flow regimes and pressure gradients of air-oil-water three-phase flow in horizontal pipes.

    Science.gov (United States)

    Al-Hadhrami, Luai M; Shaahid, S M; Tunde, Lukman O; Al-Sarkhi, A

    2014-01-01

    An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20 °C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed.

  19. Experimental study on the flow regimes and pressure gradients of air-oil-water three-phase flow in horizontal pipes.

    Science.gov (United States)

    Al-Hadhrami, Luai M; Shaahid, S M; Tunde, Lukman O; Al-Sarkhi, A

    2014-01-01

    An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20 °C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy), elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed. PMID:24523645

  20. Experimental Study on the Flow Regimes and Pressure Gradients of Air-Oil-Water Three-Phase Flow in Horizontal Pipes

    Directory of Open Access Journals (Sweden)

    Luai M. Al-Hadhrami

    2014-01-01

    Full Text Available An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20°C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity varied from 0.29 m/s to 52.5 m/s to cover wide range of flow patterns. The experiments were performed for 10% to 90% water cuts. The flow patterns were observed and recorded using high speed video camera while the pressure drops were measured using pressure transducers and U-tube manometers. The flow patterns show strong dependence on water fraction, gas velocities, and liquid velocities. The observed flow patterns are stratified (smooth and wavy, elongated bubble, slug, dispersed bubble, and annular flow patterns. The pressure gradients have been found to increase with the increase in gas flow rates. Also, for a given superficial gas velocity, the pressure gradients increased with the increase in the superficial liquid velocity. The pressure gradient first increases and then decreases with increasing water cut. In general, phase inversion was observed with increase in the water cut. The experimental results have been compared with the existing unified Model and a good agreement has been noticed.

  1. Dynamics, OH distributions and UV emission of a gliding arc at various flow-rates investigated by optical measurements

    DEFF Research Database (Denmark)

    Zhu, Jiajian; Sun, Zhiwei; Li, Zhongshan;

    2014-01-01

    emission of the gliding arc were investigated by optical methods. High-speed photography was utilized to reveal flow-rate dependent dynamics such as ignitions, propagation, short-cutting events, extinctions and conversions of the discharge from glowtype to spark-type. Short-cutting events and ignitions...... hundreds of microseconds after being electronically short-cut by a newly ignited arc. The extinction time decreases with the increase of the flow rate. The frequency of the conversion of a discharge from glow-type to spark-type increases with the flow rate. Additionally, spatial distributions of ground......-state OH were investigated using planar laser-induced fluorescence. The results show that the shape, height, intensity and thickness of ground-state OH distribution vary significantly with air flow rates. Finally, UV emission of the gliding arc is measured using optical emission spectroscopy...

  2. Experimental study for flow regime of downward air-water two-phase flow in a vertical narrow rectangular channel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. H.; Yun, B. J.; Jeong, J. H. [Pusan National University, Geunjeong-gu, Busan (Korea, Republic of)

    2015-05-15

    Studies were mostly about flow in upward flow in medium size circular tube. Although there are great differences between upward and downward flow, studies on vertical upward flow are much more active than those on vertical downward flow in a channel. In addition, due to the increase of surface forces and friction pressure drop, the pattern of gas-liquid two-phase flow bounded to the gap of inside the rectangular channel is different from that in a tube. The downward flow in a rectangular channel is universally applicable to cool the plate type nuclear fuel in research reactor. The sub-channel of the plate type nuclear fuel is designed with a few millimeters. Downward air-water two-phase flow in vertical rectangular channel was experimentally observed. The depth, width, and length of the rectangular channel is 2.35 mm, 66.7 mm, and 780 mm, respectively. The test section consists of transparent acrylic plates confined within a stainless steel frame. The flow patterns of the downward flow in high liquid velocity appeared to be similar to those observed in previous studies with upward flow. In downward flow, the transition lines for bubbly-slug and slug-churn flow shift to left in the flow regime map constructed with abscissa of the superficial gas velocity and ordinate of the superficial liquid velocity. The flow patterns observed with downward flow at low liquid velocity are different from those with upward flow.

  3. Seasonal Variation in Monthly Average Air Change Rates Using Passive Tracer Gas Measurements

    DEFF Research Database (Denmark)

    Frederiksen, Marie; Bergsøe, Niels Christian; Kolarik, Barbara;

    2011-01-01

    Indoor air quality in dwellings is largely determined by the air change rate (ACR) and the magnitude of indoor air pollution sources. Concurrently, great efforts are made to make buildings energy efficient, which may result in low ACRs. In the present study, the monthly ACR averages were measured...

  4. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  5. Effects of sulfur chemistry and flow rate on fatigue crack growth rates in LWR environments

    International Nuclear Information System (INIS)

    Fatigue crack growth rate tests, at a load ratio of 0.2, have been conducted on steels of low, medium and high sulfur contents (0.004%, 0.013% and 0.025%) in PWR water at both low and high flow rates. Crack growth rates show no dependence on flow rate, but are strongly dependent on sulfur content, with a large proportion of environmental assistance for the highest sulfur contents. Tests of low and high sulfur content steels at a load ratio of 0.7 show relatively little environmental assistance in either case. The fractography of these specimens shows the usual brittle appearance for environmentally-assisted fatigue crack growth. In addition, the opposing fracture surfaces match perfectly, indicating that little or no dissolution of the metal matrix has occurred, and there is very little plastic flow associated with the fatigue cracking process. The x-ray photoelectron emission examination of the fracture surface oxides shows that FeS and FeS2 coexist in the oxide layer, suggesting that the conditions within the crack enclave involved near-neutral pH and cathodic potentials

  6. Numerical simulation of air-water two-phase flow over stepped spillways

    Institute of Scientific and Technical Information of China (English)

    CHENG; Xiangju; CHEN; Yongcan

    2006-01-01

    Stepped spillways for significant energy dissipation along the chute have gained interest and popularity among researchers and dam engineers. Due to the complexity of air-water two-phase flow over stepped spillways, the finite volume computational fluid dynamics module of the FLUENT software was used to simulate the main characteristics of the flow. Adopting the RNG k-ε turbulence model, the mixture flow model for air-water two-phase flow was used to simulate the flow field over stepped spillway with the PISO arithmetic technique. The numerical result successfully reproduced the complex flow over a stepped spillway of an experiment case, including the interaction between entrained air bubbles and cavity recirculation in the skimming flow regime, velocity distribution and the pressure profiles on the step surface as well. The result is helpful for understanding the detailed information about energy dissipation over stepped spillways.

  7. The wall shear rate in non-Newtonian turbulent pipe flow

    CERN Document Server

    Trinh, K T

    2010-01-01

    This paper presents a method for calculating the wall shear rate in pipe turbulent flow. It collapses adequately the data measured in laminar flow and turbulent flow into a single flow curve and gives the basis for the design of turbulent flow viscometers. Key words: non-Newtonian, wall shear rate, turbulent, rheometer

  8. Unsteady Unidirectional MHD Flow of Voigt Fluids Moving between Two Parallel Surfaces for Variable Volume Flow Rates

    OpenAIRE

    Wei-Fan Chen; Hsin-Yi Lai; Cha'o-Kuang Chen

    2012-01-01

    The velocity profile and pressure gradient of an unsteady state unidirectional MHD flow of Voigt fluids moving between two parallel surfaces under magnetic field effects are solved by the Laplace transform method. The flow motion between parallel surfaces is induced by a prescribed inlet volume flow rate that varies with time. Four cases of different inlet volume flow rates are considered in this study including (1) constant acceleration piston motion, (2) suddenly started flow, (3) linear ac...

  9. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns for New Instrument Standards

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stratton, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  10. THE IMPACT OF THE EXCHANGE RATE ON THE COMMERCIALS FLOWS

    Directory of Open Access Journals (Sweden)

    Mihaela IAVORSCHI

    2015-04-01

    Full Text Available The liberalization of capital movements between states and of the trade of goods and services, are one of the most important phenomena in the current world economy. The purpose of the present study, in the case of Romania, is to answer the question whether the interventions by means of the exchange rate of the national currency contributes to the fluidization and improvement of the commercial trades. The study demonstrates that the leu devaluation does not lead to a substantial increase of the exports. As a mechanism of influence of the commercials flows, the exchange rate has a short-term influence and the economy requires structural reforms, meant to stimulate the growth of the economic competitiveness.

  11. Experimental study of humid air reverse diffusion combustion in a turbulent flow field

    Institute of Scientific and Technical Information of China (English)

    GE Bing; ZANG Shusheng; GU Xin

    2007-01-01

    Experiments were performed to investigate the differences between the propane/air turbulent diffusion reactive flows past bluff-body and the propane/humid air turbulent diffusion reactive flows in the same conditions.The velocity distributions of the non-humid reactive flow fields and the humid reactive flow fields were measured by particle image velocimetry (PIV) techniques.The temperature fields were measured by high temperature thermocouples,and NOx distributions were obtained by using gas detection instruments.The results show that although humid air reactive flow fields are similar to non-humid flow fields in general,there are some differences in the humid air combustion flow field comparing with the non-humid combustion flow field:the center of the reversed-flow region goes forward;the dimension of the reversed-flow region is smaller;the peak temperature and NOx formation are reduced.It is suggested that humid air combustion is helpful to shorten the axial length of combustors,and reduce the formation of pollutants.

  12. Plant pneumatics: stem air flow is related to embolism - new perspectives on methods in plant hydraulics.

    Science.gov (United States)

    Pereira, Luciano; Bittencourt, Paulo R L; Oliveira, Rafael S; Junior, Mauro B M; Barros, Fernanda V; Ribeiro, Rafael V; Mazzafera, Paulo

    2016-07-01

    Wood contains a large amount of air, even in functional xylem. Air embolisms in the xylem affect water transport and can determine plant growth and survival. Embolisms are usually estimated with laborious hydraulic methods, which can be prone to several artefacts. Here, we describe a new method for estimating embolisms that is based on air flow measurements of entire branches. To calculate the amount of air flowing out of the branch, a vacuum was applied to the cut bases of branches under different water potentials. We first investigated the source of air by determining whether it came from inside or outside the branch. Second, we compared embolism curves according to air flow or hydraulic measurements in 15 vessel- and tracheid-bearing species to test the hypothesis that the air flow is related to embolism. Air flow came almost exclusively from air inside the branch during the 2.5-min measurements and was strongly related to embolism. We propose a new embolism measurement method that is simple, effective, rapid and inexpensive, and that allows several measurements on the same branch, thus opening up new possibilities for studying plant hydraulics.

  13. Design and construction of a novel Coriolis mass flow rate meter

    OpenAIRE

    Mehendale, Aditya; Zwikker, Rini; Jouwsma, Wybren

    2009-01-01

    The Coriolis principle for measuring flow rates has great advantages compared to other flow measurement principles, the most important being that mass flow is measured directly. Up to now the measurement of low flow rates posed a great challenge. In a joint research project, the University of Twente and mechatronics company DEMCON worked on the mechatronic design and construction of a novel Coriolis mass flow meter for low flow rates. Innovations included shape and fixation of the meter tube,...

  14. [Effects of carrier liquid and flow rate on the separation in gravitational field-flow fractionation].

    Science.gov (United States)

    Guo, Shuang; Zhu, Chenqi; Gao-Yang, Yaya; Qiu, Bailing; Wu, Di; Liang, Qihui; He, Jiayuan; Han, Nanyin

    2016-02-01

    Gravitational field-flow fractionation is the simplest field-flow fractionation technique in terms of principle and operation. The earth' s gravity is its external field. Different sized particles are injected into a thin channel and carried by carrier fluid. The different velocities of the carrier liquid in different places results in a size-based separation. A gravitational field-flow fractionation (GrFFF) instrument was designed and constructed. Two kinds of polystyrene (PS) particles with different sizes (20 µm and 6 µm) were chosen as model particles. In this work, the separation of the sample was achieved by changing the concentration of NaN3, the percentage of mixed surfactant in the carrier liquid and the flow rate of carrier liquid. Six levels were set for each factor. The effects of these three factors on the retention ratio (R) and plate height (H) of the PS particles were investigated. It was found that R increased and H decreased with increasing particle size. On the other hand, the R and H increased with increasing flow rate. The R and H also increased with increasing NaN3 concentration. The reason was that the electrostatic repulsive force between the particles and the glass channel wall increased. The force allowed the samples approach closer to the channel wall. The results showed that the resolution and retention time can be improved by adjusting the experimental conditions. These results can provide important values to the further applications of GrFFF technique. PMID:27382718

  15. Development of high-frame rate neutron radiography and quantitative measurement method for multiphase flow research

    International Nuclear Information System (INIS)

    Neutron radiography (NR) is one of the radiographic techniques which makes use of the difference in attenuation characteristics of neutrons in materials. Fluid measurement using the NR technique is a non-intrusive method which enables visualization of dynamic images of multiphase flow of opaque fluids and/or in a metallic duct. To apply the NR technique to multiphase flow research, high frame-rate NR was developed by combining up-to-date technologies for neutron sources, scintillator, high-speed video and image intensifier. This imaging system has several advantages such as a long recording time (up to 21 minutes), high-frame-rate (up to 1000 frames/s) imaging and there is no need for a triggering signal. Visualization studies of air-water two-phase flow in a metallic duct and molten metal-water interaction were performed at recording speeds of 250, 500 and 1000 frames/s. The qualities of the consequent images were sufficient to observe the flow pattern and behavior. It was also demonstrated that some characteristics of two-phase flow could be measured from these images in collaboration with image processing techniques. By utilizing geometrical information extracted from NR images, data on flow regime, bubble rise velocity, and wave height and interfacial area in annular flow were obtained. By utilizing attenuation characteristics of neutrons in materials, measurements of void profile and average void fraction were performed. It was confirmed that this new technique may have significant advantages both in visualizing and measuring high-speed fluid phenomena when other methods, such as an optical method and X-ray radiography, cannot be applied. (author)

  16. Quasi-steady-state model of a counter flow air-to-air heat exchanger with phase change

    DEFF Research Database (Denmark)

    Rose, Jørgen; Nielsen, Toke Rammer; Kragh, Jesper;

    2008-01-01

    -exchanger. Developing highly efficient heat-exchangers and strategies to avoid/remove frost formation implies the use of detailed models to predict and evaluate different heat-exchanger designs and strategies. This paper presents a quasi-steady-state model of a counter-flow air-to-air heat-exchanger that takes...... European and arctic climate conditions. (C) 2007 Elsevier Ltd. All rights reserved....

  17. Macroscopic Model and Simulation Analysis of Air Traffic Flow in Airport Terminal Area

    Directory of Open Access Journals (Sweden)

    Honghai Zhang

    2014-01-01

    Full Text Available We focus on the spatiotemporal characteristics and their evolvement law of the air traffic flow in airport terminal area to provide scientific basis for optimizing flight control processes and alleviating severe air traffic conditions. Methods in this work combine mathematical derivation and simulation analysis. Based on cell transmission model the macroscopic models of arrival and departure air traffic flow in terminal area are established. Meanwhile, the interrelationship and influential factors of the three characteristic parameters as traffic flux, density, and velocity are presented. Then according to such models, the macro emergence of traffic flow evolution is emulated with the NetLogo simulation platform, and the correlativity of basic traffic flow parameters is deduced and verified by means of sensitivity analysis. The results suggest that there are remarkable relations among the three characteristic parameters of the air traffic flow in terminal area. Moreover, such relationships evolve distinctly with the flight procedures, control separations, and ATC strategies.

  18. Implementation of Models for Building Envelope Air Flow Fields in a Whole Building Hygrothermal Simulation Tool

    DEFF Research Database (Denmark)

    Rode, Carsten; Grau, Karl

    2009-01-01

    Simulation tools are becoming available which predict the heat and moisture conditions in the indoor environment as well as in the envelope of buildings, and thus it has become possible to consider the important interaction between the different components of buildings and the different physical...... phenomena which occur. However, there is still room for further development of such tools. This paper will present an attempt to integrate modelling of air flows in building envelopes into a whole building hygrothermal simulation tool. Two kinds of air flows have been considered: 1. Air flow in ventilated...... cavity such as in the exterior cladding of building envelopes, i.e. a flow which is parallel to the construction plane. 2. Infiltration/exfiltration of air through the building envelope, i.e. a flow which is perpendicular to the construction plane. The new models make it possible to predict the thermal...

  19. Effect of Size of Heated Obstruction within Room on Three Dimensional Air Flow Characteristics

    Directory of Open Access Journals (Sweden)

    Abduljabbar M. Ahmed

    2010-01-01

    Full Text Available Problem statement: This study reported a numerical investigation of three-dimensional turbulent buoyant recirculating flow within a room with heated obstruction. Approach: The study involved the solution of partial differential equations for the conservation of mass, momentum, energy, concentration, turbulent energy and its dissipation rate. These equations were solved together with algebraic expressions for the turbulent viscosity and the heat diffusivity, using k-ε turbulence model. Results: The present study demonstrated the flow behavior, thermal distribution and CO2 concentration inside the room in the presence of heat flux obstruction with respect to three sizes of obstruction. Conclusion: The energy usage coefficient (efficiency of ventilation increases with decrease in size of obstruction. Concentration of CO2 is very often used as an indicator for the control of air flow rate to the building. For the largest size of obstruction, the concentration of CO2 is maximum above the obstruction and reduces with the reduction in the size of the obstruction.

  20. Vitreous flow rates through dual pneumatic cutters: effects of duty cycle and cut rate

    OpenAIRE

    Abulon DJK

    2015-01-01

    Dina Joy K Abulon Medical Affairs, Alcon Research, Ltd, Lake Forest, CA, USA Purpose: We aimed to investigate effects of instrument settings on porcine vitreous flow rates through dual pneumatic high-speed vitrectomy probes. Methods: The CONSTELLATION® Vision System was tested with 250, 450, and 650 mmHg of vacuum using six ULTRAVIT® vitrectomy probes of each diameter (25+®, 25, 23, and 20 gauge) operated from 500 cuts per minute (cpm) up to 5,000 cpm. Duty cycle mo...

  1. Flow rate estimation using acoustic field distortions caused by turbulent flows: time-reversal approach

    Science.gov (United States)

    Zimmermann, A. L.; Pérez, N.; Adamowski, J. C.

    2011-05-01

    A new acoustic technique for flow rate estimation is proposed here. This technique is based on the traditional ultrasonic cross-correlation flow meter, but instead of using a continuous wave or pulse trains in each transmitter-receiver pair, the acoustic time-reversal technique is applied. The system relies on the principle that a turbulent flow with multiple vortices will cause random distortions in a given acoustic field; hence, analyzing this noise caused in the ultrasound signal by the turbulence over time allows a "signature" or "tag" of the flow to be defined. In other words, the vortices modify the frequency response function of the flowing system uniquely, since the distortion is assumed to be random. The use of the time-reversal procedure in the cross-correlation flow meter provides improvements in several aspects: it simplifies the signal processing needed after the reception of the signals, avoiding the use of a demodulator to obtain the signature of the vortex; the signal is focused at the position of the reception transducer and; the sensitivity is also increased because the wave travels twice in the acoustic channel. The method is theoretically discussed showing its limitations and improvements. Experimental results in a laboratory water tank are also presented.

  2. Estimation of Uncertainty in Tracer Gas Measurement of Air Change Rates

    Directory of Open Access Journals (Sweden)

    Atsushi Iizuka

    2010-12-01

    Full Text Available Simple and economical measurement of air change rates can be achieved with a passive-type tracer gas doser and sampler. However, this is made more complex by the fact many buildings are not a single fully mixed zone. This means many measurements are required to obtain information on ventilation conditions. In this study, we evaluated the uncertainty of tracer gas measurement of air change rate in n completely mixed zones. A single measurement with one tracer gas could be used to simply estimate the air change rate when n = 2. Accurate air change rates could not be obtained for n ≥ 2 due to a lack of information. However, the proposed method can be used to estimate an air change rate with an accuracy of

  3. Analytical expressions for optimum flow rates in evaporators and condensers of heat pumping systems

    Energy Technology Data Exchange (ETDEWEB)

    Granryd, E. [Dept. of Energy Technology, Royal Institute of Technology, KTH, Stockholm (Sweden)

    2010-11-15

    The flow velocities on the air or liquid side of evaporators and condensers in refrigerating or heat pump systems affect the system performance considerably. Furthermore the velocity can often be chosen rather freely without obvious first cost implications. The purpose of the paper is to show analytical relations indicating possible optimum operating conditions. Considering a base case where the design data are known, simple analytical relations are deduced for optimum flow rates that will result in highest overall COP of the system when energy demand for the compressor as well as pumps or fans are included. This optimum is equivalent to the solution for minimum total energy demand of the system for a given cooling load. It is also shown that a different (and higher) flow rate will result in maximum net cooling capacity for a refrigerating system with fixed compressor speed. The expressions can be used for design purposes as well as for checking suitable flow velocities in existing plants. The relations may also be incorporated in algorithms for optimal operation of systems with variable speed compressors. (author)

  4. Influences of gas flow rates on melting of particles of HVOF sprayed CoCrW coating and coating properties

    Institute of Scientific and Technical Information of China (English)

    YANG Zhongyuan

    2004-01-01

    This paper discussed influences of flow rates of O2, C3H8, and compressed air on the melting degree of particles during HVOF (high velocity oxy-fuel) sprayed CoCrW coating. The O2 flow rate has the maximal effect on the melting of particles, the C3H8 flow rate has the second, and the compressed air flow rate has the minimal effect. The bond strength of the HVOF sprayed CoCrW coating is over 54 MPa. The porosity ratio of the HVOF sprayed CoCrW coating after optimization of gas flow rates is less than 2%. The average microhardness of the coating is up to HV0.1 545. The oxidation amount per unit area of the HVOF sprayed CoCrW coating increases with the holding time increasing at 800°C. In the same way,the oxidation amount of the coating increases as the temperature increases. Particularly, the oxidation of the coating drastically increases over 850°C.

  5. Test of the EG and G two-phase mass flow rate instrumentation at Kernforschungszentrum Karlsruhe

    International Nuclear Information System (INIS)

    For many experiments which investigate the Loss-of-Coolant Accident (LOCA) in nuclear reactors, proper measurement of the two-phase mass flow is of great importance. This report presents the experimental description and the data of experiments designed to understand the behaviour of a free field drag disc turbine transducer (DTT) and a three beam gamma densitometer in steady-state horizontal steam-water and air-water flow. The pressure was varied between 2 and 75 bars, the experiments were made at a mass flow rate and void fraction range where various quite separated flow regimes occurred. Two different test sections with 103 mm ID (5 pipe) and 66 mm ID (3 pipe) were used. Information on flow regime and phase distribution in the cross section was obtained with local impedance probes, measurements of the axial distribution of phase velocities in the test section piping were made with the radiotracer technique. These techniques are of great help for the physical interpretation of the single instrument readings. The results of detailed data analyses are given in another report. (orig.)

  6. Quantification of methane in humid air and exhaled breath using selected ion flow tube mass spectrometry.

    Science.gov (United States)

    Dryahina, Kseniya; Smith, D; Spanel, P

    2010-05-15

    In selected ion flow tube mass spectrometry, SIFT-MS, analyses of humid air and breath, it is essential to consider and account for the influence of water vapour in the media, which can be profound for the analysis of some compounds, including H(2)CO, H(2)S and notably CO(2). To date, the analysis of methane has not been considered, since it is known to be unreactive with H(3)O(+) and NO(+), the most important precursor ions for SIFT-MS analyses, and it reacts only slowly with the other available precursor ion, O(2) (+). However, we have now experimentally investigated methane analysis and report that it can be quantified in both air and exhaled breath by exploiting the slow O(2) (+)/CH(4) reaction that produces CH(3)O(2) (+) ions. We show that the ion chemistry is significantly influenced by the presence of water vapour in the sample, which must be quantified if accurate analyses are to be performed. Thus, we have carried out a study of the loss rate of the CH(3)O(2) (+) analytical ion as a function of sample humidity and deduced an appropriate kinetics library entry that provides an accurate analysis of methane in air and breath by SIFT-MS. However, the associated limit of detection is rather high, at 0.2 parts-per-million, ppm. We then measured the methane levels, together with acetone levels, in the exhaled breath of 75 volunteers, all within a period of 3 h, which shows the remarkable sample throughput rate possible with SIFT-MS. The mean methane level in ambient air is seen to be 2 ppm with little spread and that in exhaled breath is 6 ppm, ranging from near-ambient levels to 30 ppm, with no significant variation with age and gender. Methane can now be included in the wide ranging analyses of exhaled breath that are currently being carried out using SIFT-MS.

  7. LABORATORY EVALUATION OF AIR FLOW MEASUREMENT METHODS FOR RESIDENTIAL HVAC RETURNS

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain; Stratton, Chris

    2015-02-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent). Because manufacturers’ accuracy estimates for their equipment do not include many of the sources of error found in actual field measurements (and replicated in the laboratory testing in this study) it is essential for a test method that could be used to determine the actual uncertainty in this specific application. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  8. 42 CFR 84.155 - Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type CE...

    Science.gov (United States)

    2010-10-01

    ... respirator, continuous flow class and Type CE supplied-air respirator; minimum requirements. 84.155 Section... Respirators § 84.155 Airflow resistance test; Type C supplied-air respirator, continuous flow class and Type... shall not exceed 25 mm. (1 inch) of water-column height when the air flow into the...

  9. Experimental investigation of thermal performance of a double-flow solar air heater having aluminium cans

    Energy Technology Data Exchange (ETDEWEB)

    Ozgen, Filiz; Esen, Mehmet; Esen, Hikmet [Department of Mechanical Education, Faculty of Technical Education, Firat University, 23119 Elazig (Turkey)

    2009-11-15

    This study experimentally investigates a device for inserting an absorbing plate made of aluminium cans into the double-pass channel in a flat-plate solar air heater (SAH). This method substantially improves the collector efficiency by increasing the fluid velocity and enhancing the heat-transfer coefficient between the absorber plate and air. These types of collectors had been designed as a proposal to use aluminium materials to build absorber plates of SAHs at a suitable cost. The collector had been covered with a 4-mm single glass plate, in order to reduce convective loses to the atmosphere. Three different absorber plates had been designed and tested for experimental study. In the first type (Type I), cans had been staggered as zigzag on absorber plate, while in Type II they were arranged in order. Type III is a flat plate (without cans). Experiments had been performed for air mass flow rates of 0.03 kg/s and 0.05 kg/s. The highest efficiency had been obtained for Type I at 0.05 kg/s. Also, comparison between the thermal efficiency of the SAH tested in this study with the ones reported in the literature had been presented, and a good agreement had been found. (author)

  10. Two-phase numerical study of the flow field formed in water pump sump: influence of air entrainment

    International Nuclear Information System (INIS)

    In a pump sump it is imperative that the amount of non-homogenous flow and entrained air be kept to a minimum. Free air-core vortex occurring at a water-intake pipe is an important problem encountered in hydraulic engineering. These vortices reduce pump performances, may have large effects on the operating conditions and lead to increase plant operating costs.This work is an extended study starting from 2006 in LML and published by ISSA and al. in 2008, 2009 and 2010. Several cases of sump configuration have been numerically investigated using two specific commercial codes and based on the initial geometry proposed by Constantinescu and Patel. Fluent and Star CCM+ codes are used in the previous studies. The results, obtained with a structured mesh, were strongly dependant on main geometrical sump configuration such as the suction pipe position, the submergence of the suction pipe on one hand and the turbulence model on the other hand. Part of the results showed a good agreement with experimental investigations already published. Experiments, conducted in order to select best positions of the suction pipe of a water-intake sump, gave qualitative results concerning flow disturbances in the pump-intake related to sump geometries and position of the pump intake. The purpose of this paper is to reproduce the flow pattern of experiments and to confirm the geometrical parameter that influences the flow structure in such a pump. The numerical model solves the Reynolds averaged Navier-Stokes (RANS) equations and VOF multiphase model. STAR CCM+ with an adapted mesh configuration using hexahedral mesh with prism layer near walls was used. Attempts have been made to calculate two phase unsteady flow for stronger mass flow rates and stronger submergence with low water level in order to be able to capture air entrainment. The results allow the knowledge of some limits of numerical models, of mass flow rates and of submergences for air entrainment. In the validation of this

  11. Energy dissipation rate limits for flow through rough channels and tidal flow across topography

    CERN Document Server

    Kerswell, R R

    2016-01-01

    An upper bound on the energy dissipation rate per unit mass, $\\epsilon$, for pressure-driven flow through a channel with rough walls is derived for the first time. For large Reynolds numbers, $Re$, the bound - $\\epsilon \\,\\leq \\, c\\, U^3/h$ where $U$ is the mean flow through the channel, $h$ the channel height and $c$ a numerical prefactor - is independent of $Re$ (i.e. the viscosity) as in the smooth channel case but the numerical prefactor $c$, which is only a function of the surface heights and surface gradients (i.e. not higher derivatives), is increased. Crucially, this new bound captures the correct scaling law of what is observed in rough pipes and demonstrates that while a smooth pipe is a singular limit of the Navier-Stokes equations (data suggests $\\epsilon \\, \\sim \\, 1/(\\log Re)^2\\, U^3/h$ as $Re \\rightarrow \\infty$), it is a regular limit for current bounding techniques. As an application, the bound is extended to oscillatory flow to estimate the energy dissipation rate for tidal flow across botto...

  12. Studies with the USF/NASA toxicity screening test method - Effect of air flow and effect of fabric dye

    Science.gov (United States)

    Hilado, C. J.; Lopez, M. T.

    1976-01-01

    One sample each of commercial polyurethane and polychloroprene flexible foams were evaluated using the USF/NASA toxicity screening test method. Air flow rates of 0, 0.16, 16, and 48 ml/sec were used to determine the effect of air flow on relative toxicity. Time to first sign of incapacitation and time to death were substantially reduced with both polyurethane and polychloroprene flexible foams by the introduction of 16 to 48 ml/sec air flow. The relative toxicity rankings of these materials were not altered by changes in air flow. Under these test conditions, the polyurethane foam consistently appeared more toxic than the polychloroprene foam. Samples of six different colors from the same fabric were evaluated separately, using the USF/NASA toxicity screening test method, to determine the effect of fabric dye, if any. The material was an upholstery fabric, consisting of 46 percent cotton, 33 percent wool, and 21 percent nylon. There appeared to be no significant effect of fabric dye on relative toxicity, for this material under these test conditions.

  13. Determining Flow Type and Shear Rate in Magmas From Bubble Shapes and Orientations

    Science.gov (United States)

    Rust, A. C.; Manga, M.; Cashman, K. V.

    2001-12-01

    To compare bubble geometries in obsidian to bubbles deformed under known conditions, we measure the deformation of air bubbles in corn syrup in simple shear. We use these experimental data and results of theoretical, numerical and experimental studies to interpret the shear environments that formed the textures preserved in obsidian samples. In particular, we use the shapes and orientations of bubbles in obsidian to estimate shear rates and assess flow type (simple vs. pure shear). This technique can be used to determine shear rates in volcanic conduits, the origin of pyroclastic obsidian, and the emplacement history and dynamics of obsidian flows. The deformation of a bubble is governed by the competing stresses from shearing that deforms, and surface tension that rerounds. The ratio of these stresses is the capillary number, Ca. An initially spherical bubble placed in a low Reynolds number, steady flow field deforms with a time-dependent shape and orientation until it reaches a steady geometry or breaks into smaller bubbles. A useful measure of the magnitude of flow-induced bubble deformation is the dimensionless parameter, D=(l-b)/(l+b) where l and b are the semi-major and semi-minor axes of the sheared bubble. For small deformations (Cadiversity in origin and texture. Two of the samples have low crystallinities and banding defined by layers of different vesicularity. Bubble geometries indicate that a sample from a spatter-fed obsidian flow was deformed by pure shear whereas a juvenile obsidian clast from a pyroclastic fall deposit records predominantly simple shear. There is no significant shear localization, but the component of pure shear in the pyroclastic sample is inversely related to layer vesicularity. A third sample from an obsidian flow shows banding marked by variable concentrations of microlites. For the same bubble radii, bubbles in the higher crystallinity bands are more deformed than in the lower crystallinity bands. We attribute this to higher

  14. Numerical Simulation of the Air Jet Flow Field in the Melt Blowing Process

    Institute of Scientific and Technical Information of China (English)

    CHEN Ting; HUANG Xiu-bao

    2002-01-01

    The theoretical model of the flow field of the dual slot die in melt blowing process is founded. The model is solved numerically with finite difference method. The distributions of the air velocity component in x direction along x-axis and y-axis and the air temperature distributions along x-axis and y-axis are obtained via numerical computation. The computation results coincide with the experimental data given by Harpham and Shambaugh. The distributions of the air velocity and air temperature are introduced into the air drag model of melt blowing. The model prediction of the fiber diameter agrees with the experimental data well.

  15. Transient Flow in Rapidly Filling Air-Entrapped Pipelines with Moving Boundaries

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yongliang; K. Vairavamoorthy

    2006-01-01

    A mathematical model is presented for transient flow in a rapidly filling pipeline with an entrapped air pocket. The influence of transient shear stress between the pipe wall and the flowing fluid is taken into account. A coordinate transformation technique is employed to generate adaptive moving meshes for the multiphase flow system as images of the time-independent computational meshes in auxiliary domains. The method of characteristics is used to reduce the coupled nonlinear hyperbolic partial differential equations governing the motion of the filling fluid, entrapped air, and blocking fluid to ordinary differential equations.Numerical solution of resulting equations shows that the transient shear stresses have only a small damping effect on the pressure fluctuations. The peak pressure in the entrapped air pocket decreases significantly with increasing initial entrapped air volume, but decreases slightly with increasing initial entrapped air pressure.

  16. Flow rate calibration for absolute cell counting rationale and design.

    Science.gov (United States)

    Walker, Clare; Barnett, David

    2006-05-01

    There is a need for absolute leukocyte enumeration in the clinical setting, and accurate, reliable (and affordable) technology to determine absolute leukocyte counts has been developed. Such technology includes single platform and dual platform approaches. Derivations of these counts commonly incorporate the addition of a known number of latex microsphere beads to a blood sample, although it has been suggested that the addition of beads to a sample may only be required to act as an internal quality control procedure for assessing the pipetting error. This unit provides the technical details for undertaking flow rate calibration that obviates the need to add reference beads to each sample. It is envisaged that this report will provide the basis for subsequent clinical evaluations of this novel approach. PMID:18770842

  17. Experimental study on bi-phase flow Air-Oil in Water Emulsion

    Science.gov (United States)

    Arnone, Davide; Poesio, Pietro

    2015-11-01

    Bi-phase slug flow oil-in-water emulsion [5%-20%] and air through a horizontal pipe (inner diameter 22mm) is experimentally studied. A test with water and air has been performed as comparison. First we create and analyze the flow pattern map to identify slug flow liquid and air inlet conditions. Flow maps are similar for all the used liquid. A video analysis procedure using an high speed camera has been created to obtain all the characteristics of unit slugs: slug velocity, slug length, bubble velocity, bubbles length and slug frequency. We compare translational velocity and frequency with models finding a good agreement. We calculate the pdfs of the lengths to find the correlations between mean values and STD on different air and liquid superficial velocities. We also perform pressure measurements along the pipe. We conclude that the percentage of oil-in- water has no influence on results in terms of velocity, lengths, frequency and pressure drop.

  18. Parametric analysis of air–water heat recovery concept applied to HVAC systems: Effect of mass flow rates

    Directory of Open Access Journals (Sweden)

    Mohamad Ramadan

    2015-09-01

    Full Text Available In the last three decades, the world has experienced enormous increases in energy and fuel consumption as a consequence of the economic and population growth. This causes renewable energy and energy recovery to become a requirement in building designs rather than option. The present work concerns a coupling between energy recovery and Heating, Ventilating and Air Conditioning HVAC domains and aims to apply heat recovery concepts to HVAC applications working on refrigeration cycles. It particularly uses the waste energy of the condenser hot air to heat/preheat domestic water. The heat exchanger considered in the recovery system is concentric tube heat exchanger. A thermal modeling of the complete system as well as a corresponding iterative code are developed and presented. Calculations with the code are performed and give pertinent magnitude orders of energy saving and management in HVAC applications. A parametric analysis based on several water and air flow rates is carried out. It was shown that water can be heated from 25 to 70 °C depending on the mass flow rates and cooling loads of the HVAC system. The most efficient configurations are obtained by lowering the air flow rate of the condenser fan.

  19. Modeling of Kinetics of Air Entrainment in Water Produced by Vertically Falling Water Flow

    Directory of Open Access Journals (Sweden)

    Adelė VAIDELIENĖ

    2014-09-01

    Full Text Available This study analyzes the process of air entrainment in water caused by vertically falling water flow in the free water surface. The new kinetic model of air entrainment in water was developed. This model includes the process of air entrapment, as well as air removal, water sputtering and resorption. For the experimental part of this study a new method based on digital image processing was developed. Theoretical and experimental methods were used for determining air concentration and its distribution in water below the air-water interface. A new presented mathematical model of air entrainment process allows determining of air bubbles and water droplets concentrations distribution. The obtained theoretical and experimental results were in good agreement. DOI: http://dx.doi.org/10.5755/j01.ms.20.3.4871

  20. Efficient algorithms for optimal arrival scheduling and air traffic flow management

    Science.gov (United States)

    Saraf, Aditya

    The research presented in this dissertation is motivated by the need for new, efficient algorithms for the solution of two important problems currently faced by the air-traffic control community: (i) optimal scheduling of aircraft arrivals at congested airports, and (ii) optimal National Airspace System (NAS) wide traffic flow management. In the first part of this dissertation, we present an optimal airport arrival scheduling algorithm, which works within a hierarchical scheduling structure. This structure consists of schedulers at multiple points along the arrival-route. Schedulers are linked through acceptance-rate constraints, which are passed up from downstream metering-points. The innovation in this scheduling algorithm is that these constraints are computed by using an Eulerian model-based optimization scheme. This rate computation removes inefficiencies introduced in the schedule through ad hoc acceptance-rate computations. The scheduling process at every metering-point uses its optimal acceptance-rate as a constraint and computes optimal arrival sequences by using a combinatorial search-algorithm. We test this algorithm in a dynamic air-traffic environment, which can be customized to emulate different arrival scenarios. In the second part of this dissertation, we introduce a novel two-level control system for optimal traffic-flow management. The outer-level control module of this two-level control system generates an Eulerian-model of the NAS by aggregating aircraft into interconnected control-volumes. Using this Eulerian model of the airspace, control strategies like Model Predictive Control are applied to find the optimal inflow and outflow commands for each control-volume so that efficient flows are achieved in the NAS. Each control-volume has its separate inner-level control-module. The inner-level control-module takes in the optimal inflow and outflow commands generated by the outer control-module as reference inputs and uses hybrid aircraft models to

  1. Association among salivary flow rate, caries risk and nutritional status in pre-schoolers.

    Science.gov (United States)

    Rodríguez, Patricia N; Martínez Reinoso, Josefina; Gamba, Carlota A; Salgado, Pablo A; Mateo, María Teresa; Manto, María del Carmen; Molgatini, Susana L; Iglesias, Verónica; Argentieri, Ángela B

    2015-01-01

    Modeer T. et al.(2011) claim that there is association between decreased salivary flow rate and caries in obese adolescents. The aim of this study was to determine the association among nutritional status, salivary flow rate and caries risk in preschoolers. The study comprised 60 children aged 3 to 6 years attending kindergartens in areas immediately adjacent to Buenos Aires City, Argentina. Body weight and height of the children were determined. Body mass index was calculated and the population was classified anthropometrically according to the WHO 2007 (WHO Anthro. Program). Caries risk was determined. Saliva was collected in sterile graduated widemouth containers, without stimulation and without food restrictions. Salivary flow rate (SFR) was determined. Statistical analysis was performed using Pearson's test. It was found that 56.7% (IC95%: 37.7-74.0) of anthropometrically adequate children (Ad) and 37.0% (IC95%: 20.1-57.5) of overweight and obese children (OW/Ob) had caries. The odds ratio for caries (OR=3.78; IC95%: 1.2-11.8, p=0.02) was almost 4 times higher in adequate children than in the others. SFR was 0.534 0.318 ml/min in Ad and 0.439 } 0.234 ml/min in OW/Ob. Pearson's test showed no correlation between SFR and nutritional status (r= 0.004592, p= 0.5977). Although the presence of caries was lower in overweight and obese children, no correlation was found between nutritional status and salivary flow rate. PMID:26355891

  2. Convective heat transfer characteristics of laminar pulsating pipe air flow

    Science.gov (United States)

    Habib, M. A.; Attya, A. M.; Eid, A. I.; Aly, A. Z.

    Heat transfer characteristics to laminar pulsating pipe flow under different conditions of Reynolds number and pulsation frequency were experimentally investigated. The tube wall of uniform heat flux condition was considered. Reynolds number was varied from 780 to 1987 while the frequency of pulsation ranged from 1 to 29.5Hz. The results showed that the relative mean Nusselt number is strongly affected by pulsation frequency while it is slightly affected by Reynolds number. The results showed enhancements in the relative mean Nusselt number. In the frequency range of 1-4Hz, an enhancement up to 30% (at Reynolds number of 1366 and pulsation frequency of 1.4Hz) was obtained. In the frequency range of 17-25Hz, an enhancement up to 9% (at Reynolds number of 1366 and pulsation frequency of 17.5Hz) was indicated. The rate of enhancement of the relative mean Nusselt number decreased as pulsation frequency increased or as Reynolds number increased. A reduction in relative mean Nusselt number occurred outside these ranges of pulsation frequencies. A reduction in relative mean Nusselt number up to 40% for pulsation frequency range of 4.1-17Hz and a reduction up to 20% for pulsation frequency range of 25-29.5Hz for Reynolds numbers range of 780-1987 were considered. This reduction is directly proportional to the pulsation frequency. Empirical dimensionless equations have been developed for the relative mean Nusselt number that related to Reynolds number (750

  3. Convective heat transfer characteristics of laminar pulsating pipe air flow

    Energy Technology Data Exchange (ETDEWEB)

    Habib, M.A. [King Fahd University of Petroleum and Minerals, Dhahran (Saudi Arabia); Attya, A.M.; Eid, A.I.; Aly, A.Z. [Department of Mechanical Engineering, Cairo Univ. (Egypt)

    2002-02-01

    Heat transfer characteristics to laminar pulsating pipe flow under different conditions of Reynolds number and pulsation frequency were experimentally investigated. The tube wall of uniform heat flux condition was considered. Reynolds number was varied from 780 to 1987 while the frequency of pulsation ranged from 1 to 29.5 Hz. The results showed that the relative mean Nusselt number is strongly affected by pulsation frequency while it is slightly affected by Reynolds number. The results showed enhancements in the relative mean Nusselt number. In the frequency range of 1-4 Hz, an enhancement up to 30% (at Reynolds number of 1366 and pulsation frequency of 1.4 Hz) was obtained. In the frequency range of 17-25 Hz, an enhancement up to 9% (at Reynolds number of 1366 and pulsation frequency of 17.5 Hz) was indicated. The rate of enhancement of the relative mean Nusselt number decreased as pulsation frequency increased or as Reynolds number increased. A reduction in relative mean Nusselt number occurred outside these ranges of pulsation frequencies. A reduction in relative mean Nusselt number up to 40% for pulsation frequency range of 4.1-17 Hz and a reduction up to 20% for pulsation frequency range of 25-29.5 Hz for Reynolds numbers range of 780-1987 were considered. This reduction is directly proportional to the pulsation frequency. Empirical dimensionless equations have been developed for the relative mean Nusselt number that related to Reynolds number (750

  4. Bioinspired carbon nanotube fuzzy fiber hair sensor for air-flow detection.

    Science.gov (United States)

    Maschmann, Matthew R; Ehlert, Gregory J; Dickinson, Benjamin T; Phillips, David M; Ray, Cody W; Reich, Greg W; Baur, Jeffery W

    2014-05-28

    Artificial hair sensors consisting of a piezoresistive carbon-nanotube-coated glass fiber embedded in a microcapillary are assembled and characterized. Individual sensors resemble a hair plug that may be integrated in a wide range of host materials. The sensors demonstrate an air-flow detection threshold of less than 1 m/s with a piezoresistive sensitivity of 1.3% per m/s air-flow change.

  5. Design and construction of a novel Coriolis mass flow rate meter

    NARCIS (Netherlands)

    Mehendale, Aditya; Zwikker, Rini; Jouwsma, Wybren

    2009-01-01

    The Coriolis principle for measuring flow rates has great advantages compared to other flow measurement principles, the most important being that mass flow is measured directly. Up to now the measurement of low flow rates posed a great challenge. In a joint research project, the University of Twente

  6. Evolutionary air traffic flow management for large 3D-problems

    NARCIS (Netherlands)

    Kemenade, C.H.M. van; Akker, J.M. van den; Kok, J.N.

    1996-01-01

    We present an evolutionary tool to solve free-route Air Traffic Flow Management problems within a three-dimensional air space. This is the first evolutionary tool which solves free-route planning problems involving a few hundred aircraft. We observe that the importance of the recombination operator

  7. Measurement of the resistivity of porous materials with an alternating air-flow method.

    Science.gov (United States)

    Dragonetti, Raffaele; Ianniello, Carmine; Romano, Rosario A

    2011-02-01

    Air-flow resistivity is a main parameter governing the acoustic behavior of porous materials for sound absorption. The international standard ISO 9053 specifies two different methods to measure the air-flow resistivity, namely a steady-state air-flow method and an alternating air-flow method. The latter is realized by the measurement of the sound pressure at 2 Hz in a small rigid volume closed partially by the test sample. This cavity is excited with a known volume-velocity sound source implemented often with a motor-driven piston oscillating with prescribed area and displacement magnitude. Measurements at 2 Hz require special instrumentation and care. The authors suggest an alternating air-flow method based on the ratio of sound pressures measured at frequencies higher than 2 Hz inside two cavities coupled through a conventional loudspeaker. The basic method showed that the imaginary part of the sound pressure ratio is useful for the evaluation of the air-flow resistance. Criteria are discussed about the choice of a frequency range suitable to perform simplified calculations with respect to the basic method. These criteria depend on the sample thickness, its nonacoustic parameters, and the measurement apparatus as well. The proposed measurement method was tested successfully with various types of acoustic materials.

  8. Improving flow and spillage characteristics of range hoods by using an inclined air-curtain technique.

    Science.gov (United States)

    Huang, Rong Fung; Nian, You-Cyun; Chen, Jia-Kun; Peng, Kuan-Lin

    2011-03-01

    The current study developed a new type of range hood, which was termed an 'inclined air-curtain range hood', in order to improve the flow and performance of the conventionally used wall-mounted range hood. The flow characteristics and oil mist spillages of air-curtain and conventional range hoods under the influences of both a mannequin presence and a simulated walk-by motion were experimentally examined. The study examined flow patterns by using a laser-light-sheet-assisted smoke-flow visualization technique and diagnosed spillages by using the tracer gas concentration test method. A mannequin presented in front of the conventional hood induced turbulent dispersion of oil mists toward the chest and nose of the mannequin owing to the complex interaction among the suction, wake, and wall effect, while the inclined air-curtain hood presented excellent hood performance by isolating the oil mists from the mannequin with an air curtain and therefore could reduce spillages out into the atmosphere and the mannequin's breathing zone. Both flow visualization and the tracer gas test indicated that the air-curtain hood had excellent 'robustness' over the conventional hood in resisting the influence of walk-by motion. The air-curtain technique could drastically improve the flow characteristics and performance of the range hood by consuming less energy.

  9. Controls on matrix flow, preferential flow and deep drainage rates in an alluvial Vertisol.

    Science.gov (United States)

    Arnold, Sven; Larsen, Joshua; Reading, Lucy; Finch, Warren; Bulovic, Nevenka; McIntyre, Neil

    2016-04-01

    Deep drainage is the process that describes water percolating from the land surface to a depth below the root zone where it may contribute to groundwater recharge. Quantitative estimation of deep drainage through Vertisols is challenging, largely due to the unknown relative contributions from: (i) flow through the soil matrix; and (ii) flow along preferential pathways in particular soil cracks, and how to model the transience of the relative contributions. The Condamine River Alluvium, a significant aquifer in semi-arid eastern Australia, is mostly covered by uniform dark cracking clays such as Black and Grey Vertisols. The aim of this study was to identify the environmental conditions (rainfall, antecedent soil moisture, etc) controlling matrix and preferential flow in selected Vertisol profiles at the time scale of individual rainfall events. Field experiments (including 16 probes recording soil moisture at one hour intervals across eight depths between 100 mm and 4000 mm) provide extensive soil moisture data, supplemented by weather station data collected at 15-minute intervals. In addition, laboratory experiments were used to infer the water retention curves. These data were used to (i) derive deep drainage rates using the zero-flux plane method, and (ii) calibrate a soil moisture balance model that represents both matrix and preferential flow. The model was used to estimate the parts of the vertical water flux attributed to soil matrix and preferential flow. High antecedent soil moisture was associated with low fluxes at shallow depths, however at deeper depths both low and high antecedent soil moisture were associated with larger fluxes. Further, both rainfall amount and intensity controlled the interplay between matrix and preferential flow. The results reveal new insights into deep drainage processes in Vertisols and provide the basis for developing a practical approach for deep drainage estimation.

  10. Temperature, humidity and air flow in the emplacement drifts using convection and dispersion transport models

    Energy Technology Data Exchange (ETDEWEB)

    Danko, G.; Birkholzer, J.T.; Bahrami, D.; Halecky, N.

    2009-10-01

    A coupled thermal-hydrologic-airflow model is developed, solving for the transport processes within a waste emplacement drift and the surrounding rockmass together at the proposed nuclear waste repository at Yucca Mountain. Natural, convective air flow as well as heat and mass transport in a representative emplacement drift during post-closure are explicitly simulated, using the MULTIFLUX model. The conjugate, thermal-hydrologic transport processes in the rockmass are solved with the TOUGH2 porous-media simulator in a coupled way to the in-drift processes. The new simulation results show that large-eddy turbulent flow, as opposed to small-eddy flow, dominate the drift air space for at least 5000 years following waste emplacement. The size of the largest, longitudinal eddy is equal to half of the drift length, providing a strong axial heat and moisture transport mechanism from the hot to the cold drift sections. The in-drift results are compared to those from simplified models using a surrogate, dispersive model with an equivalent dispersion coefficient for heat and moisture transport. Results from the explicit, convective velocity simulation model provide higher axial heat and moisture fluxes than those estimated from the previously published, simpler, equivalent-dispersion models, in addition to showing differences in temperature, humidity and condensation rate distributions along the drift length. A new dispersive model is also formulated, giving a time- and location-variable function that runs generally about ten times higher in value than the highest dispersion coefficient currently used in the Yucca Mountain Project as an estimate for the equivalent dispersion coefficient in the emplacement drift. The new dispersion coefficient variation, back-calculated from the convective model, can adequately describe the heat and mass transport processes in the emplacement drift example.

  11. Unsteady flow characteristic of low-specific-speed centrifugal pump under different flow-rate conditions

    Science.gov (United States)

    Cui, Baoling; Chen, Desheng; Xu, Wenjing; Jin, Yingzi; Zhu, Zuchao

    2015-02-01

    To investigate the unsteady flow characteristics in centrifugal pump, the flow field in a low-specific-speed centrifugal pump with complex impeller is numerically simulated under different conditions. The RNG κ-ɛ turbulence model and sliding mesh are adopted during the process of computation. The results show that the interaction between impeller and volute results in the unstable flow of the fluid, which causes the uneven distribution of pressure fluctuations around the circumference of volute. Besides the main frequency and its multiple frequency of pressure fluctuations in the centrifugal pump, the frequency caused by the long blades of complex impeller also plays a dominant role in the low-frequency areas. Furthermore, there exists biggish fluctuation phenomenon near the tongue. The composition of static pressure fluctuations frequency on the volute wall and blade outlet is similar except that the fluctuation amplitude near the volute wall reduces. In general, the different flow rates mainly have influence on the amplitude of fluctuation frequency in the pump, while have little effect on the frequency composition.

  12. Dependence of Selected Water Quality Parameters on Flow Rates in River Profiles in the Czech Republic

    Directory of Open Access Journals (Sweden)

    Eduard Hanslík

    2016-06-01

    The results show that in the monitored profiles, there is a direct relationship with flow rate in case of N-NO3-, suspended solids and O2. Temperature shows an inverse relationship with the flow rate. Other parameters show different relationship with the flow rate in individual monitored profiles or do not show statistically significant relation.

  13. Atmospheric pressure plasma chemical vapor deposition reactor for 100 mm wafers, optimized for minimum contamination at low gas flow rates

    Science.gov (United States)

    Anand, Venu; Nair, Aswathi R.; Shivashankar, S. A.; Mohan Rao, G.

    2015-08-01

    Gas discharge plasmas used for thinfilm deposition by plasma-enhanced chemical vapor deposition (PECVD) must be devoid of contaminants, like dust or active species which disturb the intended chemical reaction. In atmospheric pressure plasma systems employing an inert gas, the main source of such contamination is the residual air inside the system. To enable the construction of an atmospheric pressure plasma (APP) system with minimal contamination, we have carried out fluid dynamic simulation of the APP chamber into which an inert gas is injected at different mass flow rates. On the basis of the simulation results, we have designed and built a simple, scaled APP system, which is capable of holding a 100 mm substrate wafer, so that the presence of air (contamination) in the APP chamber is minimized with as low a flow rate of argon as possible. This is examined systematically by examining optical emission from the plasma as a function of inert gas flow rate. It is found that optical emission from the plasma shows the presence of atmospheric air, if the inlet argon flow rate is lowered below 300 sccm. That there is minimal contamination of the APP reactor built here, was verified by conducting an atmospheric pressure PECVD process under acetylene flow, combined with argon flow at 100 sccm and 500 sccm. The deposition of a polymer coating is confirmed by infrared spectroscopy. X-ray photoelectron spectroscopy shows that the polymer coating contains only 5% of oxygen, which is comparable to the oxygen content in polymer deposits obtained in low-pressure PECVD systems.

  14. Vortex flow formation during dielectric barrier discharge initiation in quiescent air

    NARCIS (Netherlands)

    Golub, V. V.; Saveliev, A. S.

    2010-01-01

    The structure of vortex flows generated by dielectric barrier discharge initiated in quiescent air at atmospheric pressure has been studied by the methods of particle image velocimetry and schlieren photography. The flow parameters have been measured as functions of the time past the electric discha

  15. Flammability limits in flowing ethene-air-nitrogen mixtures: an experimental study

    NARCIS (Netherlands)

    Bolk, J.W.; Siccama, N.B.; Westerterp, K.R.

    1996-01-01

    A large pilot plant was constructed to study the upper flammability limit of ethene-air-nitrogen mixtures under conditions of flow. The gas mixtures flowed through an explosion tube with a length of 3.0 m and a diameter of 21 mm. An electrically heated wire was used as ignition source. Experiments w

  16. Internal flow characteristics of a rectangular ramjet air intake

    NARCIS (Netherlands)

    Moerel, J.-L.; Veraar, R.G.; Halswijk, W.H.C.; Pimentel, R.; Corriveau, D.; Hamel, N.; Lesage, F.; Vos, J.B.

    2009-01-01

    Two research institutes TNO Defence, Security and Safety and DRDC-Valcartier have worked together on the improvement of modeling and simulation tools for the functioning of supersonic air intakes for realistic ramjet engines of tactical missiles. The emphasis laid on complex rectangular intake desig

  17. Temperature distribution of air source heat pump barn with different air flow

    Science.gov (United States)

    He, X.; Li, J. C.; Zhao, G. Q.

    2016-08-01

    There are two type of airflow form in tobacco barn, one is air rising, the other is air falling. They are different in the structure layout and working principle, which affect the tobacco barn in the distribution of temperature field and velocity distribution. In order to compare the temperature and air distribution of the two, thereby obtain a tobacco barn whose temperature field and velocity distribution are more uniform. Taking the air source heat pump tobacco barn as the investigated subject and establishing relevant mathematical model, the thermodynamics of the two type of curing barn was analysed and compared based on Fluent. Provide a reasonable evidence for chamber arrangement and selection of outlet for air source heat pump tobacco barn.

  18. Monte Carlo calculation of 60Co γ-ray's albedo-dose rate from the air

    International Nuclear Information System (INIS)

    The Monte Carlo calculation of 60Co γ-ray's albedo-dose rate from the air is reported. A formula is presented with which the relations of the albedo-doserate with some parameters are simulated and fitted

  19. Three-dimensional CFD simulation of bubble-melt two-phase flow with air injecting and melt stirring

    Energy Technology Data Exchange (ETDEWEB)

    Liu Hong, E-mail: hongliu@dlut.edu.cn [School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024 (China); Xie Maozhao; Li Ke [School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024 (China); Wang Deqing [College of Material Science and Engineering, Dalian Jiaotong University, Dalian 116024 (China)

    2011-10-15

    Highlights: > Gas-metallic turbulent flow induced by an impeller with an inclined shaft was studied. > A two-fluid model incorporated with the multiple reference frames method was used. > The bubble number density function was accounted for bubble breakup and coalescence. > Effects of gas flow rate and impeller speed on bubble size distribution were studied. - Abstract: This paper reports on progress in developing CFD simulations of gas bubble-metallic melt turbulent flows induced by a pitched-blade impeller with an inclined shaft. Foaming process of aluminum foams, in which air is injected into molten aluminum composites and the melt is mechanical stirred by the impeller, has been investigated. A two-fluid model, incorporated with the Multiple Reference Frames (MRF) method is used to predict the three-dimensional gas-liquid flow in the foaming tank, in which a stirring shaft is positioned inclined into the melt. Locally average bubble size is also predicted by additively solving a transport equation for the bubble number density function, which accounts for effects of bubble breakup and coalescence phenomena. The computed bubble sizes are compared with experimental data from our water model measurement and reasonable agreements are obtained. Further, simulated results show that the volume averaged total and local gas fractions are generally increased with rising impeller speed and gas flow rate. The local averaged bubble size increases with increasing gas flow rate and orifice diameter and decreasing liquid viscosity, and decreases also with rising rotation speed of the impeller.

  20. Flow and containment characteristics of an air-curtain fume hood operated at high temperatures.

    Science.gov (United States)

    Chen, Jia-Kun; Huang, Rong Fung; Hsin, Pei-Yi; Hsu, Ching Min; Chen, Chun-Wann

    2012-01-01

    The flow and leakage characteristics of the air-curtain fume hood under high temperature operation (between 100°C and 250°C) were studied. Laser-assisted flow visualization technique was used to reveal the hot plume movements in the cabinet and the critical conditions for the hood-top leakage. The sulfur hexafluoride tracer-gas concentration test method was employed to examine the containment spillages from the sash opening and the hood top. It was found that the primary parameters dominating the behavior of the flow field and hood performance are the sash height and the suction velocity as an air-curtain hood is operated at high temperatures. At large sash height and low suction velocity, the air curtain broke down and accompanied with three-dimensional flow in the cabinet. Since the suction velocity was low and the sash opening was large, the makeup air drawn down from the hood top became insufficient to counter act the rising hot plume. Under this situation, containment leakage from the sash opening and the hood top was observed. At small sash opening and high suction velocity, the air curtain presented robust characteristics and the makeup air flow from the hood top was sufficiently large. Therefore the containment leakages from the sash opening and the hood top were not observed. According to the results of experiments, quantitative operation sash height and suction velocity corresponding to the operation temperatures were suggested.

  1. Influence of air flow, temperature and agitation speed in the batch acetification process to obtain orange vinegar (Citrus sinensis var.W. Navel

    Directory of Open Access Journals (Sweden)

    María Ferreyra

    2012-03-01

    Full Text Available This paper describes the influence of process variables to produce orange vinegar. Orange juice was fermented with Saccharomyces cerevisiae until reach 14% v/v. The biooxidation was carried out with Acetobacter sp., in submerge culture using a laboratory scale fermentor. In order to avoid the inhibitory effect of ethanol on acetic acid bacteria, the orange wine was diluted to 6% v/v with a mineral solution. It was performed a factorial design 2k to study the influence of variables. It was studied air flow rate/agitation at levels of 0.3-0.6 vvm and 200-400 rpm and the effect of air flow rate/temperature at 0.4-0.6 vvm and 25- 30°C, respectively. Duplicate treatments were carried out and the results were evaluated in terms of productivity and fermentation yield. Statistical design (p-value<0.05 was analyzed using Statgraphics Centurion XV Corporate software. Treatments performed at 200 rpm and different air flow levels, did not show significant differences on acetification rate. At higher agitation speed and air flow rates, the productivity was high. The best yields were obtained at lower air flows levels and higher agitation speed. Temperature did not present statistically differences on studied variables. The best yield was obtained at 400 rpm and 0.3 vvm at 25°C. It can be concluded that agitation speed plays an important role for a better acetification rate however higher air flow rates causes less yields.

  2. Accuracy of flow convergence estimates of mitral regurgitant flow rates obtained by use of multiple color flow Doppler M-mode aliasing boundaries: an experimental animal study.

    Science.gov (United States)

    Zhang, J; Jones, M; Shandas, R; Valdes-Cruz, L M; Murillo, A; Yamada, I; Kang, S U; Weintraub, R G; Shiota, T; Sahn, D J

    1993-02-01

    The proximal flow convergence method of multiplying color Doppler aliasing velocity by flow convergence surface area has yielded a new means of quantifying flow rate by noninvasively derived measurements. Unlike previous methods of visualizing the turbulent jet of mitral regurgitation on color flow Doppler mapping, flow convergence methods are less influenced by machine factors because of the systematic structure of the laminar flow convergence region. However, recent studies have demonstrated that the flow rate calculated from the first aliasing boundary of color flow Doppler imaging is dependent on orifice size, flow rate, aliasing velocity and therefore on the distance from the orifice chosen for measurement. In this study we calculated the regurgitant flow rates acquired by use of multiple proximal aliasing boundaries on color Doppler M-mode traces and assessed the effect of distances of measurement and aliasing velocities on the calculated regurgitant flow rate. Six sheep with surgically induced mitral regurgitation were studied. The distances from the mitral valve leaflet M-mode line to the first, second, and third sequential aliasing boundaries on color Doppler M-mode traces were measured and converted to the regurgitant flow rates calculated by applying the hemispheric flow equation and averaging instantaneous flow rates throughout systole. The flow rates that were calculated from the first, second, and third aliasing boundaries correlated well with the actual regurgitant flow rates (r = 0.91 to 0.96). The mean percentage error from the actual flow rates were 151% for the first aliasing boundary, 7% for the second aliasing boundary, and -43% for the third aliasing boundary; and the association between aliasing velocities and calculated flow rates indicates an inverse relationship, which suggests that in this model, there were limited velocity-distance combinations that fit with a hemispheric assumption for flow convergence geometry. The second aliasing

  3. Two-phase air-water flows: Scale effects in physical modelling

    OpenAIRE

    Pfister, Michael; Chanson, Hubert

    2014-01-01

    Physical modeling represents probably the oldest design tool in hydraulic engineering together with analytical approaches. In free surface flows, the similitude based upon a Froude similarity allows for a correct representation of the dominant forces, namely gravity and inertia. As a result fluid flow properties such as the capillary forces and the viscous forces might be incorrectly reproduced, affecting the air entrainment and transport capacity of a high-speed model flow. Small physical mo...

  4. Bifurcations of a creeping air-water flow in a conical container

    Science.gov (United States)

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A.; Shtern, Vladimir N.

    2016-10-01

    This numerical study describes the eddy emergence and transformations in a slow steady axisymmetric air-water flow, driven by a rotating top disk in a vertical conical container. As water height Hw and cone half-angle β vary, numerous flow metamorphoses occur. They are investigated for β =30°, 45°, and 60°. For small Hw, the air flow is multi-cellular with clockwise meridional circulation near the disk. The air flow becomes one cellular as Hw exceeds a threshold depending on β . For all β , the water flow has an unbounded number of eddies whose size and strength diminish as the cone apex is approached. As the water level becomes close to the disk, the outmost water eddy with clockwise meridional circulation expands, reaches the interface, and induces a thin layer with anticlockwise circulation in the air. Then this layer expands and occupies the entire air domain. The physical reasons for the flow transformations are provided. The results are of fundamental interest and can be relevant for aerial bioreactors.

  5. Numerical investigation of air-entrainment in skimming flow over stepped spillways

    Directory of Open Access Journals (Sweden)

    Jiemin Zhan

    2016-05-01

    Full Text Available As a widely used flood energy dissipator, the stepped spillway can significantly dissipate the kinetic or hydraulic energy due to the air-entrainment in skimming flow over the steps. The free-surface aeration involves the sharp deformation of the free surface and the complex turbulent shear flows. In this study, the volume of fluid (VOF, mixture, and Eulerian methods are utilized to simulate the air-entrainment by coupling with the Reynolds-averaged Navier–Stokes/large eddy simulation (RANS/LES turbulence models. The free surface deformation, air volume fraction, pressure, and velocity are compared for the three different numerical methods. Only the Eulerian+RANS method fails to capture the free-surface aeration. The air volume fraction predicted by the VOF+LES method best matches the experimental measurement, while the mixture+LES method predicts the inception point of the air entrainment more accurately.

  6. Impacts of Ventilation Ratio and Vent Balance on Cooling Load and Air Flow of Naturally Ventilated Attics

    Directory of Open Access Journals (Sweden)

    Zhigang Shen

    2012-08-01

    Full Text Available The impacts of ventilation ratio and vent balance on cooling load and air flow of naturally ventilated attics are studied in this paper using an unsteady computational fluid dynamics (CFD model. Buoyancy-driven turbulent ventilations in attics of gable-roof residential buildings are simulated for typical summer conditions. Ventilation ratios from 1/400 to 1/25 combined with both balanced and unbalanced vent configurations are investigated. The modeling results show that the air flows in the attics are steady and exhibit a general streamline pattern that is qualitatively insensitive to the variations in ventilation ratio and vent configuration. The predicted temperature fields are characterized by thermal stratification, except for the soffit regions. It is demonstrated that an increase in ventilation ratio will reduce attic cooling load. Compared with unbalanced vent configurations, balanced attic ventilation is shown to be the optimal solution in both maximizing ventilating flow rate and minimizing cooling load for attics with ventilation ratio lower than 1/100. For attics with ventilation ratios greater than 1/67, a configuration of large ridge vent with small soffit vent favors ventilating air flow enhancement, while a configuration of small ridge vent with large soffit vent results in the lowest cooling energy consumption.

  7. Minor Losses During Air Flow into Granular Porous Media

    DEFF Research Database (Denmark)

    Poulsen, Tjalfe; Minelgaite, Greta; Bentzen, Thomas Ruby;

    2013-01-01

    Pressure gradients during uniform fluid flow in porous media are traditionally assumed to be linear. Thus pressure loss across a sample of porous medium is assumed directly proportional to the thickness of the sample. In this study, measurements of pressure gradients inside coarse granular (2 – 18...... mm particle size) porous media during steady gas flow were carried out. The results showed that pressure variation with distance in the porous media were nonlinear near the inlet (where pressure gradients were higher) but became linear at greater distances (with a lower gradient). This indicates...... that pressure loss in porous media consists of two components: (1) a linear pressure gradient and (2) an initial pressure loss near the inlet. This initial pressure loss is also known from hydraulics in tubes as a minor loss and is associated with abrupt changes in the flow field such as narrowings and bends...

  8. Influence of impeller blade angles of centrifugal pump on air/water two-phase flow performance. Enshin pump haneguruma no hanekaku ga kieki nisoryu seino ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Sato, S. (Tsuyama National College of Technology, Okayama (Japan)); Furukawa, A. (Kyushu University, Fukuoka (Japan). Faculty of Engineering); Takamatsu, Y. (Ariake National College of Technology, Fukuoka (Japan))

    1993-11-25

    An air/water two-phase flow experiment was carried out on the impellers of a centrifugal pump to study the lifting performance and the flow aspect of gas phase. In the experiment, pressurized air is fed to the blowing pipe of a vertical-shaft type pump through a compressor. Transparent acryl resin was used to form the side wall, etc. of the casing through which a video picture of the flowing aspect of the gas phase was taken. The results showed the flowing aspect suddenly changes due to the increase of air flow rate in a low flow rate region where the angle of incidence of flow is large, and the negative pressure sides of impellers were covered with gas. At this time, the lift lowers sharply and discontinuously and then gradually with extension of the gas residence region. This effect appeared more clearly as the outlet angle of the impeller increased. The experimental result agrees roughly with that of the air-bubble calculation in the region where the gas-liquid ratio is so low that a fine air-bubble flow is maintained, but not in the region where the lift lowers sharply, approaching the result of separate flow calculation. The lift after the gas residence region occurs decreases gradually with the increase of air flow rate, showing the same tendency as the result of separate-flow calculation. 13 refs., 14 figs., 1 tab.

  9. Unsteady Unidirectional MHD Flow of Voigt Fluids Moving between Two Parallel Surfaces for Variable Volume Flow Rates

    Directory of Open Access Journals (Sweden)

    Wei-Fan Chen

    2012-01-01

    Full Text Available The velocity profile and pressure gradient of an unsteady state unidirectional MHD flow of Voigt fluids moving between two parallel surfaces under magnetic field effects are solved by the Laplace transform method. The flow motion between parallel surfaces is induced by a prescribed inlet volume flow rate that varies with time. Four cases of different inlet volume flow rates are considered in this study including (1 constant acceleration piston motion, (2 suddenly started flow, (3 linear acceleration piston motion, and (4 oscillatory piston motion. The solution for each case is elaborately derived, and the results of associated velocity profile and pressure gradients are presented in analytical forms.

  10. Characterization of a silicon nanowire-based cantilever air-flow sensor

    International Nuclear Information System (INIS)

    Silicon nanowire (SiNW)-based cantilever flow sensors with three different cantilever sizes (10 × 50, 20 × 90 and 40 × 100 µm2) and various SiNW lengths (2, 5 and 10 µm) have been designed for air velocity sensing. The total device thickness is around 3 µm, which consists of the bottom SiO2 layer (0.5 µm) and the top SiNx layer (2.5 µm). In addition, the SiNx layer is used to compensate the initial stress and also enhance the device immunity to air-flow-induced vibrations significantly. To experience the maximum strain induced by the air flow, SiNWs are embedded at the clamp point where the cantilever is anchored to the substrate. Taking advantage of the superior properties of SiNWs, the reported flow sensor shows outstanding air-flow-sensing capability in terms of sensitivity, linearity and hysteresis. With only a supply voltage of 0.1 V and the high initial resistance of the piezoresistive SiNWs, significant energy saving is reached in contrast to the thermal-based flow sensors as well as other recently reported piezoresistive designs. Last but not least, the significant size reduction of our device demonstrates the great scalability of SiNW-based flow sensors. (paper)

  11. Estimating airflow rates in air-handling units from actuator control signals

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Huiling; Dexter, Arthur [University of Oxford (United Kingdom). Department of Engineering Science

    2006-10-15

    The design and accuracy of simple airflow estimators that are based on actuator control signals are investigated. A computer simulation of the air-circuits of a variable-air-volume air-conditioning system is developed and validated experimentally. The simulation is used to examine the relationship between the supply airflow, the extract airflow and the inlet airflow, and the control signals for the fans and the mixing-box dampers in the air-handling unit (AHU). Based on the simulation results, linear estimators are proposed for the estimation of airflow rates in AHUs. The accuracy of the linear estimators, which are calibrated using measured data collected from the air-conditioning system during testing and balancing, is examined using data collected from a full-scale air-conditioning system. The results show that the estimation errors are less than 8% of full-scale. (author)

  12. Unsteady unidirectional flow of a Voigt fluid in the circular duct with different prescribed volume flow rate conditions

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.I. [I-Shou University, 1, Section 1, Department of Industrial Engineering and Management, Dashu Shiang, Kaohsiung County, Taiwan, 840, R.O.C (Taiwan); Chen, C.K.; Yang, Y.T. [Cheng Kung University, Department of Mechanical Engineering National, Tainan (Taiwan)

    2004-11-01

    In the present study, the velocity profile and pressure gradient of the unsteady state unidirectional flow of a Voigt fluid in a circular duct with different prescribed volume flow rate are investigated. The flow motion in the duct is induced by a prescribed inlet volume flow rate which varies with time. Based on the flow conditions prescribed, two basic flow situations are solved; these are a suddenly started, and a constant accelerated, flow respectively. These two results are then applied to a practical case that is a trapezoidal motion which contains three phases of piston motion, the constant acceleration from the rest to a fixed velocity, then maintaining at this velocity, following with the constant deceleration to a stop. In addition, oscillatory flow is also considered. (orig.)

  13. Air flow over foredunes and implications for sand transport

    NARCIS (Netherlands)

    S.M. Arens; H.M.E. van Kaam-Peters; J.H. van Boxel

    1995-01-01

    More than 4000 hourly wind profiles measured on three topographically different foredunes are analysed and discussed. Wind flow over the foredunes is studied by means of the relative wind speed: the ratio between wind speed at a certain location and the reference wind speed at the same height. Relat

  14. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    Directory of Open Access Journals (Sweden)

    Sabanskis A.

    2016-04-01

    Full Text Available Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  15. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    Science.gov (United States)

    Sabanskis, A.; Virbulis, J.

    2016-04-01

    Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  16. Energy transfer model and its applications of ultrasonic gas flow-meter under static and dynamic flow rates

    Science.gov (United States)

    Fang, Min; Xu, Ke-Jun; Zhu, Wen-Jiao; Shen, Zi-Wen

    2016-01-01

    Most of the ultrasonic gas flow-meters measure the gas flow rate by calculating the ultrasonic transmission time difference between the downstream and upstream. Ultrasonic energy attenuation occurs in the processes of the ultrasonic generation, conversion, transmission, and reception. Additionally, at the same time, the gas flow will also affect the ultrasonic propagation during the measurement, which results in the ultrasonic energy attenuation and the offset of ultrasonic propagation path. Thus, the ultrasonic energy received by the transducer is weaker. When the gas flow rate increases, this effect becomes more apparent. It leads to the measurement accuracy reduced, and the measurement range narrowed. An energy transfer model, where the ultrasonic gas flow-meter under without/with the gas flow, is established by adopting the statistical analysis and curve fitting based on a large amount of experimental data. The static sub model without the gas flow expresses the energy conversion efficiency of ultrasonic gas transducers, and the dynamic sub model with the gas flow reflects the energy attenuation pattern following the flow rate variations. The mathematical model can be used to determine the minimum energy of the excitation signal for meeting the requirement of specific measurement range, and predict the maximum measurable flow rate in the case of fixed energy of excitation signal. Based on the above studies, a method to enhance the excitation signal energy is proposed under the output power of the transmitting circuit being a finite value so as to extend the measurement rage of ultrasonic gas flow-meter.

  17. Air flow patterns and noise analysis inside high speed angular contact ball bearings

    Institute of Scientific and Technical Information of China (English)

    翟强; 闫柯; 张优云; 朱永生; 王亚泰

    2015-01-01

    The vortex formed around the rolling ball and the high pressure region formed around the ball−raceway contact zone are the principle factors that barricades the lubricant entering the bearing cavity, and further causes improper lubrication. The investigation of the air phase flow inside the bearing cavity is essential for the optimization of the oil−air two-phase lubrication method. With the revolutionary reference frame describing the bearing motion, a highly precise air phase flow model inside the angular contact ball bearing cavity was build up. Comprehensive factors such as bearing revolution, ball rotation, and cage structure were considered to investigate the influences on the air phase flow and heat transfer efficiency. The aerodynamic noise was also analyzed. The result shows that the ball spinning leads to the pressure rise and uneven pressure distribution. The air phase velocity, pressure and cage heat transfer efficiency increase as the revolving speed increases. The operating noise is largely due to the impact of the high speed external flow on the bearing. When the center of the oil−air outlet fixes near the inner ring, the aerodynamic noise is reduced. The position near the inner ring on the bigger axial side is the ideal position to fix the lubricating device for the angular contact ball bearing.

  18. Prediction of Air Flow and Temperature Distribution Inside a Yogurt Cooling Room Using Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    A Surendhar

    2015-01-01

    Full Text Available Air flow and heat transfer inside a yogurt cooling room were analysed using Computational Fluid Dynamics. Air flow and heat transfer models were based on 3D, unsteady state, incompressible, Reynolds-averaged Navier-Stokes equations and energy equations. Yogurt cooling room was modelled with the measured geometry using 3D design tool AutoCAD. Yogurt cooling room model was exported into the flow simulation software by specifying properties of inlet air, yogurt, pallet and walls of the room. Packing material was not considered in this study because of less thickness (cup-0.5mm, carton box-1.5mm and negligible resistance created in the conduction of heat. 3D Computational domain was meshed with hexahedral cells and governing equations were solved using explicit finite volume method. Air flow pattern inside the room and the temperature distribution in the bulk of palletized yogurt were predicted. Through validation, the variation in the temperature distribution and velocity vector from the measured value was found to be 2.0oC (maximum and 30% respectively. From the simulation and the measured value of the temperature distribution, it was observed that the temperature was non-uniform over the bulk of yogurt. This might be due to refrigeration capacity, air flow pattern, stacking of yogurt or geometry of the room. Required results were achieved by changing the location of the cooling fan.

  19. Hydraulics of natural convection flows in building walling with air gap (rus

    Directory of Open Access Journals (Sweden)

    Petrochenko M.V.

    2011-12-01

    Full Text Available Natural convection flow in vertical flat ducts with heated face is used to intensify the transfer in technical systems, such as ventilated gaps of facade designs. Understanding of physical processes that accompany the air flow in vertical flat parallel-plate ducts gives ameliorating the structures designing process and increasing its operating characteristics.The aim of this work is evaluation the average speed of natural convection air flow in vertical parallel-plate duct with different temperature of walls. It is enough for barotropic natural convection flow in the vertical parallel-plate ducts that the polytropic index in the barotropic state do not exceed the polytropic index in the equilibrium state. Polytropic index in the uniform and barotropic natural convection flow is almost proportional to the length of the channel. It is established that the shorter the channel, the greater must be the heat flux that creates vertical traction, and vice versa.

  20. Experimental and numerical investigations on reliability of air barrier on oil containment in flowing water.

    Science.gov (United States)

    Lu, Jinshu; Xu, Zhenfeng; Xu, Song; Xie, Sensen; Wu, Haoxiao; Yang, Zhenbo; Liu, Xueqiang

    2015-06-15

    Air barriers have been recently developed and employed as a new type of oil containment boom. This paper presents systematic investigations on the reliability of air barriers on oil containments with the involvement of flowing water, which represents the commonly-seen shearing current in reality, by using both laboratory experiments and numerical simulations. Both the numerical and experimental investigations are carried out in a model scale. In the investigations, a submerged pipe with apertures is installed near the bottom of a tank to generate the air bubbles forming the air curtain; and, the shearing water flow is introduced by a narrow inlet near the mean free surface. The effects of the aperture configurations (including the size and the spacing of the aperture) and the location of the pipe on the effectiveness of the air barrier on preventing oil spreading are discussed in details with consideration of different air discharges and velocities of the flowing water. The research outcome provides a foundation for evaluating and/or improve the reliability of a air barrier on preventing spilled oil from further spreading.

  1. Exposure Due to Interacting Air flows Between Two Persons

    DEFF Research Database (Denmark)

    Bjørn, Erik; Nielsen, Peter V.

    The contaminant concentration inhaled by an occupant (ie. the personal exposure) is usually less than the return concentration in displacement ventilated rooms. Two main questions are investigated: 1) Does the exhalation from one person penetrate the breathing zone of another person placed nearby......, thus leading to larger personal exposure? 2) When two persons are placed close to each other, do the convective boundary layer flows interact so that the personal exposure to an ambient concentration field is altered?...

  2. Numerical simulation and analysis of the internal flow in a Francis turbine with air admission

    Science.gov (United States)

    Yu, A.; Luo, X. W.; Ji, B.

    2015-01-01

    In case of hydro turbines operated at part-load condition, vortex ropes usually occur in the draft tube, and consequently generate violent pressure fluctuation. This unsteady flow phenomenon is believed harmful to hydropower stations. This paper mainly treats the internal flow simulation in the draft tube of a Francis turbine. In order to alleviate the pressure fluctuation induced by the vortex rope, air admission from the main shaft center is applied, and the water-air two phase flow in the entire flow passage of a model turbine is simulated based on a homogeneous flow assumption and SST k-ω turbulence model. It is noted that the numerical simulation reasonably predicts the pressure fluctuations in the draft tube, which agrees fairly well with experimental data. The analysis based on the vorticity transport equation shows that the vortex dilation plays a major role in the vortex evolution with air admission in the turbine draft tube, and there is large value of vortex dilation along the vortex rope. The results show that the aeration with suitable air volume fraction can depress the vortical flow, and alleviate the pressure fluctuation in the draft tube.

  3. High-frame rate, fast neutron imaging of two-phase flow in a thin rectangular channel

    CERN Document Server

    Zboray, R; Dangendorf, V; Stark, M; Tittelmeier, K; Cortesi, M; Adams, R

    2015-01-01

    We have demonstrated the feasibility of performing high-frame-rate, fast neutron radiography of air-water two-phase flows in a thin channel with rectangular cross section. The experiments have been carried out at the accelerator facility of the Physikalisch-Technische Bundesanstalt. A polychromatic, high-intensity fast neutron beam with average energy of 6 MeV was produced by 11.5 MeV deuterons hitting a thick Be target. Image sequences down to 10 millisecond exposure times were obtained using a fast-neutron imaging detector developed in the context of fast-neutron resonance imaging. Different two-phase flow regimes such as bubbly slug and churn flows have been examined. Two phase flow parameters like the volumetric gas fraction, bubble size and bubble velocities have been measured. The first results are promising, improvements for future experiments are also discussed.

  4. Flow and performance of an air-curtain biological safety cabinet.

    Science.gov (United States)

    Huang, Rong Fung; Chou, Chun I

    2009-06-01

    Using laser-assisted smoke flow visualization and tracer gas concentration detection techniques, this study examines aerodynamic flow properties and the characteristics of escape from containment, inward dispersion, and cross-cabinet contamination of a biological safety cabinet installed with an air curtain across the front aperture. The experimental method partially simulates the NSF/ANSI 49 standards with the difference that the biological tracer recommended by these standards is replaced by a mixture of 10% SF(6) in N(2). The air curtain is set up across the cabinet aperture plane by means of a narrow planar jet issued from the lower edge of the sash and a suction flow going through a suction slot installed at the front edge of the work surface. Varying the combination of jet velocity, suction flow velocity, and descending flow velocity reveals three types of characteristic flow modes: 'straight curtain', 'slightly concave curtain', and 'severely concave curtain'. Operating the cabinet in the straight curtain mode causes the air curtain to impinge on the doorsill and therefore induces serious escape from containment. In the severely concave curtain mode, drastically large inward dispersion and cross-cabinet contamination were observed because environmental air entered into the cabinet and a three-dimensional vortical flow structure formed in the cabinet. The slightly concave curtain mode presents a smooth and two-dimensional flow pattern with an air curtain separating the outside atmosphere from the inside space of the cabinet, and therefore exhibited negligibly small escape from containment, inward dispersion, and cross-cabinet contamination.

  5. Investigation on Plasma Jet Flow Phenomena During DC Air Arc Motion in Bridge-Type Contacts

    Institute of Scientific and Technical Information of China (English)

    ZHAI Guofu; BO Kai; CHEN Mo; ZHOU Xue; QIAO Xinlei

    2016-01-01

    Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit.We characterized the arc plasma jet flow appearance at different currents by using high-speed photography,and two polished contacts were used to search for the relationship between roughness and plasma jet flow.Then,to make the nature of arc plasma jet flow phenomena clear,a simplified model based on magnetohydrodynamic (MHD) theory was established and calculated.The simulated DC arc plasma was presented with the temperature distribution and the current density distribution.Furthermore,the calculated arc flow vclocity field showed that the circular vortex was an embodiment of the arc plasma jet flow progress.The combined action of volume force and contact surface was the main reason of the arc jet flow.

  6. Effect of Nonequilibrium Condensation of Moist Air on Transonic Flow Fields

    Institute of Scientific and Technical Information of China (English)

    KatsumiShimamoto

    2000-01-01

    When condensation occurs in a supersonic flow field,the flow in affected by the latent heat released.In the present study,a condensing flow was produced by an expansion of moist air in nozzle with circular bump odels and shock waves occurred in the supersonic parts of the flow fields.The expereimental investigations were carried out to show the effects of initial conditions in the reservoir and nozzle geometries on the shock wave characteristics and the turbulences in the flow fields.Furthermore,in order to clarify the effect of condensation on the flow fields with shock waves,navier-Stokes equations were solved numerically using a 3rd-order MUSCL type TVD finite-difference scheme with a second order fractional step for time integraton,As a result,the effect of condensation on the aspect of flow field has been clarified.

  7. Investigation on Plasma Jet Flow Phenomena During DC Air Arc Motion in Bridge-Type Contacts

    Science.gov (United States)

    Zhai, Guofu; Bo, Kai; Chen, Mo; Zhou, Xue; Qiao, Xinlei

    2016-05-01

    Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit. We characterized the arc plasma jet flow appearance at different currents by using high-speed photography, and two polished contacts were used to search for the relationship between roughness and plasma jet flow. Then, to make the nature of arc plasma jet flow phenomena clear, a simplified model based on magnetohydrodynamic (MHD) theory was established and calculated. The simulated DC arc plasma was presented with the temperature distribution and the current density distribution. Furthermore, the calculated arc flow velocity field showed that the circular vortex was an embodiment of the arc plasma jet flow progress. The combined action of volume force and contact surface was the main reason of the arc jet flow. supported by National Natural Science Foundation of China (Nos. 51307030, 51277038)

  8. Implications of Air Ingress Induced by Density-Difference Driven Stratified Flow

    International Nuclear Information System (INIS)

    One of the design basis accidents for the Next Generation Nuclear Plant (NGNP), a high temperature gas-cooled reactor, is air ingress subsequent to a pipe break. Following a postulated double-ended guillotine break in the hot duct, and the subsequent depressurization to nearly reactor cavity pressure levels, air present in the reactor cavity will enter the reactor vessel via density-gradient-driven-stratified flow. Because of the significantly higher molecular weight and lower initial temperature of the reactor cavity air-helium mixture, in contrast to the helium in the reactor vessel, the air-helium mixture in the cavity always has a larger density than the helium discharging from the reactor vessel through the break into the reactor cavity. In the later stages of the helium blowdown, the momentum of the helium flow decreases sufficiently for the heavier cavity air-helium mixture to intrude into the reactor vessel lower plenum through the lower portion of the break. Once it has entered, the heavier gas will pool at the bottom of the lower plenum. From there it will move upwards into the core via diffusion and density-gradient effects that stem from heating the air-helium mixture and from the pressure differences between the reactor cavity and the reactor vessel. This scenario (considering density-gradient-driven stratified flow) is considerably different from the heretofore commonly used scenario that attributes movement of air into the reactor vessel and from thence to the core region via diffusion. When density-gradient-driven stratified flow is considered as a contributing phenomena for air ingress into the reactor vessel, the following factors contribute to a much earlier natural circulation-phase in the reactor vessel: (a) density-gradient-driven stratified flow is a much more rapid mechanism (at least one order of magnitude) for moving air into the reactor vessel lower plenum than diffusion, and consequently, (b) the diffusion dominated phase begins with a

  9. Implications of Air Ingress Induced by Density-Difference Driven Stratified Flow

    Energy Technology Data Exchange (ETDEWEB)

    Chang Oh; Eung Soo Kim; Richard Schultz; David Petti; C. P. Liou

    2008-06-01

    One of the design basis accidents for the Next Generation Nuclear Plant (NGNP), a high temperature gas-cooled reactor, is air ingress subsequent to a pipe break. Following a postulated double-ended guillotine break in the hot duct, and the subsequent depressurization to nearly reactor cavity pressure levels, air present in the reactor cavity will enter the reactor vessel via density-gradient-driven-stratified flow. Because of the significantly higher molecular weight and lower initial temperature of the reactor cavity air-helium mixture, in contrast to the helium in the reactor vessel, the air-helium mixture in the cavity always has a larger density than the helium discharging from the reactor vessel through the break into the reactor cavity. In the later stages of the helium blowdown, the momentum of the helium flow decreases sufficiently for the heavier cavity air-helium mixture to intrude into the reactor vessel lower plenum through the lower portion of the break. Once it has entered, the heavier gas will pool at the bottom of the lower plenum. From there it will move upwards into the core via diffusion and density-gradient effects that stem from heating the air-helium mixture and from the pressure differences between the reactor cavity and the reactor vessel. This scenario (considering density-gradient-driven stratified flow) is considerably different from the heretofore commonly used scenario that attributes movement of air into the reactor vessel and from thence to the core region via diffusion. When density-gradient-driven stratified flow is considered as a contributing phenomena for air ingress into the reactor vessel, the following factors contribute to a much earlier natural circulation-phase in the reactor vessel: (a) density-gradient-driven stratified flow is a much more rapid mechanism (at least one order of magnitude) for moving air into the reactor vessel lower plenum than diffusion, and consequently, (b) the diffusion dominated phase begins with a

  10. Air flow phenomena in the model of the blind drift

    Directory of Open Access Journals (Sweden)

    Jaszczur Marek

    2016-01-01

    Full Text Available In the presented paper, Particle Image Velocimetry (PIV has been used to investigate flow pattern and turbulent structure in the model of blind drift. The presented model exist in mining, and has been analyzed to resolve ventilation issues. Blind region is particularly susceptible to unsafe methane accumulation. The measurement system allows us to evaluate all components of the velocity vector in channel cross-section simultaneously. First order and second order statistic of the velocity fields from different channel cross-section are computed and analyzed.

  11. Optical diagnostics study of air flow and powder fluidisation in Nexthaler®--Part I: Studies with lactose placebo formulation.

    Science.gov (United States)

    Pasquali, I; Merusi, C; Brambilla, G; Long, E J; Hargrave, G K; Versteeg, H K

    2015-12-30

    Effective drug delivery to the lungs by a DPI device requires the air-stream through the device to have sufficient power to aerosolise the powder. Furthermore, sufficient turbulence must be induced, along with particle-wall and particle-particle collisions, in order to de-aggregate small drug particles from large carrier particles. As a result, the emitted and the fine particle doses produced by many commercially available DPI devices tend to be strongly affected by the natural inter-patient variability of the inhaled air flow. The Nexthaler® is a multi-dose breath-actuated dry-powder inhaler with minimum drug delivery-flow rate dependency and incorporating a dose protector. The actuation mechanism of the dose-protector ensures that the dose is only exposed to the inhaled air flow if the flow has sufficient power to cause complete aerosolisation. For this study, a proprietary lactose placebo powder blend was filled into "transparent" Nexthaler® to allow application of high-speed imaging and particle image velocimetry (PIV) techniques to successfully interrogate and reveal details of the powder entrainment and emission processes coupled with characterisation of the flow environment in the vicinity of the mouthpiece exit. The study showed that fluidisation of the bulk of the powder occurs very quickly (∼20ms) after withdrawal of the dose protector followed by powder emission from the device within ∼50ms thereafter. The bulk of the metered placebo dose was emitted within 100-200ms. The visualisation study also revealed that a very small fraction of powder fines is emitted whilst the dose protector still covers the dosing cup as the flow rate through the device accelerates. The PIV results show that the flow exiting the device is highly turbulent with a rotating flow structure, which forces the particles to follow internal paths having a high probability of wall impacts, suggesting that the flow environment inside the Nexthaler® DPI will be very beneficial for

  12. In vitro validation of endovascular Doppler-derived flow rates in models of the cerebral circulation.

    Science.gov (United States)

    McGah, P M; Nerva, J D; Morton, R P; Barbour, M C; Levitt, M R; Mourad, P D; Kim, L J; Aliseda, A

    2015-11-01

    This study presents validation of endovascular Doppler velocimetry-based volumetric flow rate measurements conducted in a pulsatile flow loop simulating conditions in both the internal carotid and basilar artery. In vitro models of cerebral vessels, each containing an aneurysm, were fabricated from patient anatomies extracted from 3D rotational angiography. Flow velocity measurements were collected with three different experimental techniques: an endovascular Doppler wire, Particle Image Velocimetry, and a time-resolved ultrasonic flow meter. Womersley's theory of pulsatile flow in a cylindrical vessel was used to compute time-resolved volumetric flow rates from the endovascular Doppler velocity. The volumetric flow rates computed from the Doppler measurements were compared to those from the Particle Image Velocimetry profile measurements, and the direct measurements from the ultrasonic flow meter. The study establishes confidence intervals for any systematic or random errors associated with the wire-derived flow rates as benchmarked to the other two modalities. There is an approximately 10% random error in the Doppler-derived peak and time-averaged flow rates. There is a measurable uniform bias, about 15% too low, in the time-averaged Doppler-derived flow rates. There is also a small proportional bias in the peak systolic Doppler-derived flow rates. Potential sources of error are also discussed. PMID:26450643

  13. Entrainment Rate in Shallow Cumuli: Dependence on Entrained Dry Air Sources and Probability Density Functions

    Science.gov (United States)

    Lu, C.; Liu, Y.; Niu, S.; Vogelmann, A. M.

    2012-12-01

    In situ aircraft cumulus observations from the RACORO field campaign are used to estimate entrainment rate for individual clouds using a recently developed mixing fraction approach. The entrainment rate is computed based on the observed state of the cloud core and the state of the air that is laterally mixed into the cloud at its edge. The computed entrainment rate decreases when the air is entrained from increasing distance from the cloud core edge; this is because the air farther away from cloud edge is drier than the neighboring air that is within the humid shells around cumulus clouds. Probability density functions of entrainment rate are well fitted by lognormal distributions at different heights above cloud base for different dry air sources (i.e., different source distances from the cloud core edge). Such lognormal distribution functions are appropriate for inclusion into future entrainment rate parameterization in large scale models. To the authors' knowledge, this is the first time that probability density functions of entrainment rate have been obtained in shallow cumulus clouds based on in situ observations. The reason for the wide spread of entrainment rate is that the observed clouds are affected by entrainment mixing processes to different extents, which is verified by the relationships between the entrainment rate and cloud microphysics/dynamics. The entrainment rate is negatively correlated with liquid water content and cloud droplet number concentration due to the dilution and evaporation in entrainment mixing processes. The entrainment rate is positively correlated with relative dispersion (i.e., ratio of standard deviation to mean value) of liquid water content and droplet size distributions, consistent with the theoretical expectation that entrainment mixing processes are responsible for microphysics fluctuations and spectral broadening. The entrainment rate is negatively correlated with vertical velocity and dissipation rate because entrainment

  14. Air segmented amplitude modulated multiplexed flow analysis with software-based phase recognition: determination of phosphate ion.

    Science.gov (United States)

    Ogusu, Takeshi; Uchimoto, Katsuya; Takeuchi, Masaki; Tanaka, Hideji

    2014-01-01

    Amplitude modulated multiplexed flow analysis (AMMFA) has been improved by introducing air segmentation and software-based phase recognition. Sample solutions, the flow rates of which are respectively varied at different frequencies, are merged. Air is introduced to the merged liquid stream in order to limit the dispersion of analytes within each liquid segment separated by air bubbles. The stream is led to a detector with no physical deaeration. Air signals are distinguished from liquid signals through the analysis of detector output signals, and are suppressed down to the level of liquid signals. Resulting signals are smoothed based on moving average computation. Thus processed signals are analyzed by fast Fourier transform. The analytes in the samples are respectively determined from the amplitudes of the corresponding wave components obtained. The developed system has been applied to the simultaneous determinations of phosphate ions in water samples by a Malachite Green method. The linearity of the analytical curve (0.0-31.0 μmol dm(-3)) is good (r(2)>0.999) and the detection limit (3.3 σ) at the modulation period of 30s is 0.52 μmol dm(-3). Good recoveries around 100% have been obtained for phosphate ions spiked into real water samples.

  15. Towards Multiphase Periodic Boundary Conditions with Flow Rate Constraint

    Science.gov (United States)

    Sawko, Robert; Thompson, Chris P.

    2011-09-01

    This paper presents the development of a solver for a two-phase, stratified flow with periodic boundary conditions. Governing equations are supplemented with a specification of constant mass fluxes for each phase. The method allows an estimate steady state phase fraction and pressure drop in the streamwise direction. The analytical solution for two-phase laminar flow is presented and serves as a validation of the numerical technique. For turbulent conditions, Reynolds-Averaged Navier-Stokes equations are employed and closed with a two-equation model. Experimental data is taken as a reference for the purpose of validation. In both flow conditions the method delivers accurate results although in the case of turbulent flow it requires the specification of interfacial viscosity showing that a direct generalisation of two-equation model is unsatisfactory. Further research avenues are outlined.

  16. Physical modelling and scale effects of air-water flows on stepped spillways

    Institute of Scientific and Technical Information of China (English)

    CHANSON Hubert; GONZALEZ Carlos A.

    2005-01-01

    During the last three decades, the introduction of new construction materials (e.g. RCC (Roller Compacted Concrete),strengthened gabions) has increased the interest for stepped channels and spillways. However stepped chute hydraulics is not simple, because of different flow regimes and importantly because of very-strong interactions between entrained air and turbulence. In this study, new air-water flow measurements were conducted in two large-size stepped chute facilities with two step heights in each facility to study experimental distortion caused by scale effects and the soundness of result extrapolation to prototypes. Experimental data included distributions of air concentration, air-water flow velocity, bubble frequency, bubble chord length and air-water flow turbulence intensity. For a Froude similitude, the results implied that scale effects were observed in both facilities, although the geometric scaling ratio was only Lr=2 in each case. The selection of the criterion for scale effects is a critical issue. For example, major differences (i.e. scale effects) were observed in terms of bubble chord sizes and turbulence levels although little scale effects were seen in terms of void fraction and velocity distributions. Overall the findings emphasize that physical modelling of stepped chutes based upon a Froude similitude is more sensitive to scale effects than classical smooth-invert chute studies, and this is consistent with basic dimensional analysis developed herein.

  17. A Predictive Model for Vehicle Air Exchange Rates based on a Large, Representative Sample

    OpenAIRE

    Fruin, Scott A.; Hudda, Neelakshi; Sioutas, Constantinos; Delfino, Ralph J.

    2011-01-01

    The in-vehicle microenvironment is an important route of exposure to traffic-related pollutants, particularly ultrafine particles. However, significant particle losses can occur under conditions of low air exchange rate (AER) when windows are closed and air is recirculating. AERs are lower for newer vehicles and at lower speeds. Despite the importance of AER in affecting in-vehicle particle exposures, few studies have characterized AER and all have tested only a small number of cars. One reas...

  18. A MEMS-based Air Flow Sensor with a Free-standing Micro-cantilever Structure

    OpenAIRE

    Che-Ming Chiang; Chia-Yen Lee; Yu-Hsiang Wang

    2007-01-01

    This paper presents a micro-scale air flow sensor based on a free-standing cantilever structure. In the fabrication process, MEMS techniques are used to deposit a silicon nitride layer on a silicon wafer. A platinum layer is deposited on the silicon nitride layer to form a piezoresistor, and the resulting structure is then etched to create a freestanding micro-cantilever. When an air flow passes over the surface of the cantilever beam, the beam deflects in the downward direction, resulting in...

  19. 30 CFR 57.22212 - Air flow (I-C, II-A, and V-A mines).

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air flow (I-C, II-A, and V-A mines). 57.22212... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22212 Air flow (I-C, II-A, and V-A mines). Air flow across each working face shall be sufficient to carry away any accumulation of methane,...

  20. Call-centre occupant response to new and used filters at two outdoor air supply rates

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Wyon, David; Nielsen, J.;

    2002-01-01

    A 2x2 replicaterd field intervention experiment was conducted in a call-centre providing a public telephone directory service: outdoor air supply rate was 8% or 80% of the total airflow of 430 L/s providing 3.5 h-1; and the supply air filters were either new or used (i.e. used in place for 6 mont......). Each of these 4 conditions was maintained for a full working week at a time. Room temperature and humidity averaged 24 deg.C and 27% RH. The 26 operators were blind to conditions and assessed perceived air quality (PAQ), the intensity of Sick Building Syndrome (SBS) symnptoms and self...

  1. On the '-1' scaling of air temperature spectra in atmospheric surface layer flows

    Science.gov (United States)

    Li, D.; Katul, G. G.; Gentine, P.

    2015-12-01

    The spectral properties of scalar turbulence at high wavenumbers have been extensively studied in turbulent flows, and existing theories explaining the k-5/3 scaling within the inertial subrange appear satisfactory at high Reynolds numbers. Equivalent theories for the low wavenumber range have been comparatively lacking because boundary conditions prohibit attainment of such universal behavior. A number of atmospheric surface layer (ASL) experiments reported a k-1 scaling in air temperature spectra ETT(k) at low wavenumbers but other experiments did not. Here, the occurrence of a k-1 scaling in ETT(k) in an idealized ASL flow across a wide range of atmospheric stability regimes is investigated theoretically and experimentally. Experiments reveal a k-1 scaling persisted across different atmospheric stability parameter values (ζ) ranging from mildly unstable to mildly stable conditions (-0.1budget models and upon using a Heisenberg eddy viscosity as a closure to the spectral flux transfer term, conditions promoting a k-1 scaling are identified. Existence of a k-1 scaling is shown to be primarily linked to an imbalance between the production and dissipation rates of half the temperature variance. The role of the imbalance between the production and dissipation rates of half the temperature variance in controlling the existence of a '-1' scaling suggests that the '-1' scaling in ETT(k) does not necessarily concur with the '-1' scaling in the spectra of longitudinal velocity Euu(k). This finding explains why some ASL experiments reported k-1 in Euu(k) but not ETT(k). It also differs from prior arguments derived from directional-dimensional analysis that lead to simultaneous k-1 scaling in Euu(k) and ETT(k) at low wavenumbers in a neutral ASL.

  2. Cooling Rates of Humans in Air and in Water: An Experiment

    Science.gov (United States)

    Bohren, Craig F.

    2012-12-01

    In a previous article I analyzed in detail the physical factors resulting in greater cooling rates of objects in still water than in still air, emphasizing cooling of the human body. By cooling rate I mean the rate of decrease of core temperature uncompensated by metabolism. I concluded that the "correct ratio for humans is closer to 2 than to 10." To support this assertion I subsequently did experiments, which I report following a digression on hypothermia.

  3. Experimental studies of active and passive flow control techniques applied in a twin air-intake.

    Science.gov (United States)

    Paul, Akshoy Ranjan; Joshi, Shrey; Jindal, Aman; Maurya, Shivam P; Jain, Anuj

    2013-01-01

    The flow control in twin air-intakes is necessary to improve the performance characteristics, since the flow traveling through curved and diffused paths becomes complex, especially after merging. The paper presents a comparison between two well-known techniques of flow control: active and passive. It presents an effective design of a vortex generator jet (VGJ) and a vane-type passive vortex generator (VG) and uses them in twin air-intake duct in different combinations to establish their effectiveness in improving the performance characteristics. The VGJ is designed to insert flow from side wall at pitch angle of 90 degrees and 45 degrees. Corotating (parallel) and counterrotating (V-shape) are the configuration of vane type VG. It is observed that VGJ has the potential to change the flow pattern drastically as compared to vane-type VG. While the VGJ is directed perpendicular to the side walls of the air-intake at a pitch angle of 90 degree, static pressure recovery is increased by 7.8% and total pressure loss is reduced by 40.7%, which is the best among all other cases tested for VGJ. For bigger-sized VG attached to the side walls of the air-intake, static pressure recovery is increased by 5.3%, but total pressure loss is reduced by only 4.5% as compared to all other cases of VG.

  4. Performance prediction and flow analysis in the vaned distributor of a pump turbine under low flow rate in pump mode

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The main goal of this work is to investigate the possible different flow patterns existing in pump turbine under off-design conditions in pump mode. Numerical simulations by solving the Navier-Stokes equation, coupled with the "SST k-ω" turbulence model, were carried out. Flow characteristics were assumed to be stalled in the appropriate region of ?ow rate levels of Q/QD=0.15–0.61. The simulation result was compared with experimental data and they showed good agreement. Consequently, velocity fields in three axial locations in stay vanes and guide vanes were analysed in details. It was shown that "jet-wake" flow pattern exists near the band, which changes little in the whole shape with flow rate increasing; to the middle location of vanes, reverse flow begins to appear on the interface between the runner and guide vanes, which will disappear gradually as the flow rate increases; massive reverse flow is captured near the crown, whose intensity will be weakened as the flow rate increases. Ultimately, it was found that the special head-flow profile can be ascribed to the special hydraulic loss characteristics of the stay vanes and guide vanes.

  5. Tolerance Levels of Roadside Trees to Air Pollutants Based on Relative Growth Rate and Air Pollution Tolerance Index

    Directory of Open Access Journals (Sweden)

    SULISTIJORINI

    2008-09-01

    Full Text Available Motor vehicles release carbon monoxide, nitrogen dioxide, sulphur dioxide, and particulate matters to the air as pollutants. Vegetation can absorb these pollutants through gas exchange processes. The objective of this study was to examine the combination of the relative growth rate (RGR and physiological responses in determining tolerance levels of plant species to air pollutants. Physiological responses were calculated as air pollution tolerance index (APTI. Eight roadside tree species were placed at polluted (Jagorawi highway and unpolluted (Sindangbarang field area. Growth and physiological parameters of the trees were recorded, including plant height, leaf area, total ascorbate, total chlorophyll, leaf-extract pH, and relative water content. Scoring criteria for the combination of RGR and APTI method was given based on means of the two areas based on two-sample t test. Based on the total score of RGR and APTI, Lagerstroemia speciosa was categorized as a tolerant species; and Pterocarpus indicus, Delonix regia, Swietenia macrophylla were categorized as moderately tolerant species. Gmelina arborea, Cinnamomum burmanii, and Mimusops elengi were categorized as intermediate tolerant species. Lagerstroemia speciosa could be potentially used as roadside tree. The combination of RGR and APTI value was better to determinate tolerance level of plant to air pollutant than merely APTI method.

  6. Viscous Potential Flow Analysis of Electroaerodynamic Instability of a Liquid Sheet Sprayed with an Air Stream

    Directory of Open Access Journals (Sweden)

    Mukesh Kumar Awasthi

    2013-01-01

    Full Text Available The instability of a thin sheet of viscous and dielectric liquid moving in the same direction as an air stream in the presence of a uniform horizontal electric field has been carried out using viscous potential flow theory. It is observed that aerodynamic-enhanced instability occurs if the Weber number is much less than a critical value related to the ratio of the air and liquid stream velocities, viscosity ratio of two fluids, the electric field, and the dielectric constant values. Liquid viscosity has stabilizing effect in the stability analysis, while air viscosity has destabilizing effect.

  7. Experimental investigation on the droplet entrainment from interfacial waves in air-water horizontal stratified flow

    International Nuclear Information System (INIS)

    It was mainly due to the fact that droplet entrainment affects the Peak Cladding Temperature (PCT) of the nuclear fuel rod in the Postulated accident conditions of NPP. Recently, droplet entrainment in the horizontally arranged primary piping system for the NPP is of interest because it affects directly the steam binding phenomena in the steam generators. Pan and Hanratty correlation is the only applicable one for the droplet entrainment rate model for horizontal flow. Moreover, there are no efforts for the model development on the basis of the droplet entrainment principal and physics phenomena. More recently, Korea Atomic Energy Research Institute (KAERI) proposed a new mechanistic droplet generation model applicable in the horizontal pipe for the SPACE code. However, constitutive relations in this new model require three model coefficients which have not yet been decided. The purpose of present work is determining three model coefficients by visualization experiment. For these model coefficients, the major physical parameters regarding the interfacial disturbance wave should be measured in this experiments. There are the wave slope, liquid fraction, wave hypotenuse length, wave velocity, wave frequency, and wavelength in the major physical parameters. The experiment was conducted at an air water horizontal rectangular channel with the PIV system. In this study, the experimental conditions were stratified-way flow during the droplet generation. Three coefficients were determined based on several data related to the interfacial wave. Additionally, we manufactured the parallel wire conductance probe to measure the fluctuating water level over time, and compared the wave height measured by the parallel wire conductance probe and image processing from images taken by high speed camera. Experimental investigation was performed for droplet entrainment from phase interface wave in an air-water stratified flow. In the experiments, we measured major physical parameters

  8. Experimental investigation on the droplet entrainment from interfacial waves in air-water horizontal stratified flow

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Byeong Geon; Yun, Byong Jo [Pusan national Univ., Pusan (Korea, Republic of); Kim, Kyoung Du [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    It was mainly due to the fact that droplet entrainment affects the Peak Cladding Temperature (PCT) of the nuclear fuel rod in the Postulated accident conditions of NPP. Recently, droplet entrainment in the horizontally arranged primary piping system for the NPP is of interest because it affects directly the steam binding phenomena in the steam generators. Pan and Hanratty correlation is the only applicable one for the droplet entrainment rate model for horizontal flow. Moreover, there are no efforts for the model development on the basis of the droplet entrainment principal and physics phenomena. More recently, Korea Atomic Energy Research Institute (KAERI) proposed a new mechanistic droplet generation model applicable in the horizontal pipe for the SPACE code. However, constitutive relations in this new model require three model coefficients which have not yet been decided. The purpose of present work is determining three model coefficients by visualization experiment. For these model coefficients, the major physical parameters regarding the interfacial disturbance wave should be measured in this experiments. There are the wave slope, liquid fraction, wave hypotenuse length, wave velocity, wave frequency, and wavelength in the major physical parameters. The experiment was conducted at an air water horizontal rectangular channel with the PIV system. In this study, the experimental conditions were stratified-way flow during the droplet generation. Three coefficients were determined based on several data related to the interfacial wave. Additionally, we manufactured the parallel wire conductance probe to measure the fluctuating water level over time, and compared the wave height measured by the parallel wire conductance probe and image processing from images taken by high speed camera. Experimental investigation was performed for droplet entrainment from phase interface wave in an air-water stratified flow. In the experiments, we measured major physical parameters

  9. Experimental and Numerical Investigation of Flow Properties of Supersonic Helium-Air Jets

    Science.gov (United States)

    Miller, Steven A. E.; Veltin, Jeremy

    2010-01-01

    Heated high speed subsonic and supersonic jets operating on- or off-design are a source of noise that is not yet fully understood. Helium-air mixtures can be used in the correct ratio to simulate the total temperature ratio of heated air jets and hence have the potential to provide inexpensive and reliable flow and acoustic measurements. This study presents a combination of flow measurements of helium-air high speed jets and numerical simulations of similar helium-air mixture and heated air jets. Jets issuing from axisymmetric convergent and convergent-divergent nozzles are investigated, and the results show very strong similarity with heated air jet measurements found in the literature. This demonstrates the validity of simulating heated high speed jets with helium-air in the laboratory, together with the excellent agreement obtained in the presented data between the numerical predictions and the experiments. The very close match between the numerical and experimental data also validates the frozen chemistry model used in the numerical simulation.

  10. Creep crack growth behaviour of AISI 304 stainless steel and its weldments in air and flowing sodium

    International Nuclear Information System (INIS)

    Creep crack growth measurements have been carried out in flowing sodium at a temperature of 823K for austenitic stainless steel type AISI 304 and its weldments. The crack growth rates were measured using indirect methods involving measurement of load line displacements and notch region extension. For weldments average crack growth rates were used. Oxygen and carbon in sodium were controlled below 2 ppm and 0.1 ppm respectively. The comparison of results with air data indicated that sodium does not influence creep crack growth behaviour of both base metal and weldment. The results expressed in terms of stress intensity factor (Ksub(I)) net section stress (σsub(net)) and energy rate integral (Csup(*)) indicate that Csup(*) is better parameter for characterising creep crack growth rates. (author). 16 refs., 10 figs

  11. Air Distribution in Rooms with Ceiling-mounted Obstacles and Three-Dimensional Isothermal Flow

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Evensen, Louis; Grabau, Peter;

    The air supply openings in ventilated rooms are often placed close to the ceiling. A recirculating flow is generated in the room, and the region between the ceiling and the occupied zone serves as an entrainment and velocity decay area for the wall jets. Ceiling-mounted obstacles may disturb...... this flow and, in particular, certain dimensions and positions of the obstacles cause a downward deflection of the jets into the occupied zone resulting in reduced thermal comfort for the inhabitants....

  12. Stratified Flow in a Room with Displacement Ventilation and Wall-Mounted Air Terminal devices

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    This paper describes experiments with wall-mounted air terminal devices. The stratified flow in the room is analyzed, and the influence of stratification and the influence of room dimensions on the velocity level and on the length scale are proved. The velocity level in the occupied zone can...... be described by a single equation based partly on stratified flow theory and partly on measurements....

  13. Numerical investigation and thermodynamic analysis of the effect of electrolyte flow rate on performance of all vanadium redox flow batteries

    Science.gov (United States)

    Khazaeli, Ali; Vatani, Ali; Tahouni, Nassim; Panjeshahi, Mohammad Hassan

    2015-10-01

    In flow batteries, electrolyte flow rate plays a crucial role on the minimizing mass transfer polarization which is at the compensation of higher pressure drop. In this work, a two-dimensional numerical method is applied to investigate the effect of electrolyte flow rate on cell voltage, maximum depth of discharge and pressure drop a six-cell stack of VRFB. The results show that during the discharge process, increasing electrolyte flow rate can raise the voltage of each cell up to 50 mV on average. Moreover, the maximum depth of discharge dramatically increases with electrolyte flow rate. On the other hand, the pressure drop also positively correlates with electrolyte flow rate. In order to investigate all these effects simultaneously, average energy and exergy efficiencies are introduced in this study for the transient process of VRFB. These efficiencies give insight into choosing an appropriate strategy for the electrolyte flow rate. Finally, the energy efficiency of electricity storage using VRFB is investigated and compared with other energy storage systems. The results illustrate that this kind of battery has at least 61% storage efficiency based on the second law of thermodynamics, which is considerably higher than that of their counterparts.

  14. Acute Short-Term Mental Stress Does Not Influence Salivary Flow Rate Dynamics

    OpenAIRE

    Naumova, Ella A; Sandulescu, Tudor; Al Khatib, Philipp; Thie, Michael; Lee, Wing-Kee; Zimmer, Stefan; Arnold, Wolfgang H.

    2012-01-01

    Background: Results of studies that address the influence of stress on salivary flow rate and composition are controversial. The aim of this study was to reveal the influence of stress vulnerability and different phases of stress reactivity on the unstimulated and stimulated salivary flow rate. We examined that acute mental stress does not change the salivary flow rate. In addition, we also examined the salivary cortisol and protein level in relation to acute mental stress stimuli. Methods: S...

  15. Temperature and flow rate effects on mass median diameters of thermally generated malathion and naled fogs.

    Science.gov (United States)

    Brown, J R; Chew, V; Melson, R O

    1993-06-01

    The effects of temperature and flow rate on mass median diameters (mmds) of thermally generated aerosol clouds were studied. Number 2 fuel oil alone, undiluted and diluted malathion 91, and undiluted naled were examined. There was a significant flow rate x temperature interaction on the mmds of diluted malathion fogs: i.e., differences among flow rates depended on temperature and vice versa. PMID:8350082

  16. Simulation of Air Flow under the Hood of a Passenger Car Using Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Reza Nimtan

    2013-12-01

    Full Text Available In this study, a method to solve the passing air flow through under-hood by finite volume method is discussed. The flow field existing around a car or passing through it is going to play an important role from different viewpoints. Lateral flow has an important role in fuel consumption, lower emissions, directional sustainability and the wind sound. On the other hand, the internal flow is important from the viewpoint of the good performance of heating systems, air conditioning systems for reducing the temperature of components and thus increasing the life and better performance of components and also engine cooling systems. The study of internal flow is the subject under consideration in the present study. The ultimate goal of this study is to improve the performance of the engine cooling system and decrease the temperature of the components in the space under the hood. In order to achieve the demands, a commercial CFD code for the simulation of air flow under the hood of a passenger car is utilized and finally the method and results of this study are shown.

  17. Methodology for uncertainty calculation of net total cooling effect estimation for rating room air conditioners and packaged terminal air conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca Diaz, Nestor [Universidad Tecnologica de Pereira, Facultad de Ingenieria Mecanica, Pereira (Colombia); University of Liege, Campus du Sart Tilman, Bat: B49, P33, B-4000 Liege (Belgium)

    2009-09-15

    This article presents the general procedure for uncertainty calculation of net total cooling effect estimation for rating room air conditioners and packaged terminal air conditioners, by means of measurements carried out in a test bench specially designed for this purpose. The uncertainty analysis presented in this work looks for establishing a confidence degree or certainty of experimental results. It is particularly important considering that international standards related to this type of analysis are too ambiguous when treating this subject. The uncertainty analysis is on the other hand an indispensable requirement to international standard ISO 17025 [ISO, 2005. International Standard. 17025. General Requirement to Test and Calibration Laboratories Competences. International Organization for Standardization, Geneva.], which must be applied to obtain the required quality levels according to the Word Trade Organization WTO. (author)

  18. Influence of ambient air on the flowing afterglow of an atmospheric pressure Ar/O2 radiofrequency plasma

    CERN Document Server

    Duluard, C Y; Hubert, J; Reniers, F

    2016-01-01

    The influence of ambient air on the flowing afterglow of an atmospheric pressure Ar/O2 radiofrequency plasma has been investigated experimentally. Spatially resolved mass spectrometry and laser induced fluorescence on OH radicals were used to estimate the intrusion of air in between the plasma torch and the substrate as a function of the torch-to-substrate separation distance. No air is detected, within the limits of measurement uncertainties, for separation distances smaller than 5 mm. For larger distances, the effect of ambient air can no longer be neglected, and radial gradients in the concentrations of species appear. The Ar 4p population, determined through absolute optical emission spectroscopy, is seen to decrease with separation distance, whereas a rise in emission from the N2(C--B) system is measured. The observed decay in Ar 4p and N2(C) populations for separation distances greater than 9mm is partly assigned to the increasing collisional quenching rate by N2 and O2 molecules from the entrained air....

  19. Air pollutant emission rates for sources at the Deaf Smith County repository site

    Energy Technology Data Exchange (ETDEWEB)

    1985-11-01

    This document summarizes the air-quality source terms used for the Deaf Smith County, Texas environmental assessment report and explains their derivation. The engineering data supporting these source terms appear as appendixes to this report and include summary equipment lists for the repository and detailed equipment lists for the exploratory shaft. Although substantial work has been performed in establishing the current repository design, a greater effort will be required for the final design. Consequently, the repository emission rates presented here should be considered as preliminary estimates. Another set of air pollution emission rates will be calculated after design data are more firmly established. 18 refs., 15 tabs.

  20. Air pollutant emission rates for sources at the Deaf Smith County repository site

    International Nuclear Information System (INIS)

    This document summarizes the air-quality source terms used for the Deaf Smith County, Texas environmental assessment report and explains their derivation. The engineering data supporting these source terms appear as appendixes to this report and include summary equipment lists for the repository and detailed equipment lists for the exploratory shaft. Although substantial work has been performed in establishing the current repository design, a greater effort will be required for the final design. Consequently, the repository emission rates presented here should be considered as preliminary estimates. Another set of air pollution emission rates will be calculated after design data are more firmly established. 18 refs., 15 tabs

  1. Flow propagation velocity is not a simple index of diastolic function in early filling. A comparative study of early diastolic strain rate and strain rate propagation, flow and flow propagation in normal and reduced diastolic function

    Directory of Open Access Journals (Sweden)

    Skjaerpe Terje

    2003-04-01

    Full Text Available Abstract Background Strain Rate Imaging shows the filling phases of the left ventricle to consist of a wave of myocardial stretching, propagating from base to apex. The propagation velocity of the strain rate wave is reduced in delayed relaxation. This study examined the relation between the propagation velocity of strain rate in the myocardium and the propagation velocity of flow during early filling. Methods 12 normal subjects and 13 patients with treated hypertension and normal systolic function were studied. Patients and controls differed significantly in diastolic early mitral flow measurements, peak early diastolic tissue velocity and peak early diastolic strain rate, showing delayed relaxation in the patient group. There were no significant differences in EF or diastolic diameter. Results Strain rate propagation velocity was reduced in the patient group while flow propagation velocity was increased. There was a negative correlation (R = -0.57 between strain rate propagation and deceleration time of the mitral flow E-wave (R = -0.51 and between strain rate propagation and flow propagation velocity and there was a positive correlation (R = 0.67 between the ratio between peak mitral flow velocity / strain rate propagation velocity and flow propagation velocity. Conclusion The present study shows strain rate propagation to be a measure of filling time, but flow propagation to be a function of both flow velocity and strain rate propagation. Thus flow propagation is not a simple index of diastolic function in delayed relaxation.

  2. Quasi-steady-state model of a counter-flow air-to-air heat-exchanger with phase change

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Joergen; Nielsen, Toke Rammer; Kragh, Jesper; Svendsen, Svend [Department of Civil Engineering, Technical University of Denmark, Brovej, Building 118, DK-2800 Kgs. Lyngby (Denmark)

    2008-05-15

    Using mechanical ventilation with highly efficient heat-recovery in northern European or arctic climates is a very efficient way of reducing the energy use for heating in buildings. However, it also presents a series of problems concerning condensation and frost formation in the heat-exchanger. Developing highly efficient heat-exchangers and strategies to avoid/remove frost formation implies the use of detailed models to predict and evaluate different heat-exchanger designs and strategies. This paper presents a quasi-steady-state model of a counter-flow air-to-air heat-exchanger that takes into account the effects of condensation and frost formation. The model is developed as an Excel spreadsheet, and specific results are compared with laboratory measurements. As an example, the model is used to determine the most energy-efficient control strategy for a specific heat-exchanger under northern European and arctic climate conditions. (author)

  3. Wind energy harvesting and self-powered flow rate sensor enabled by contact electrification

    Science.gov (United States)

    Su, Yuanjie; Xie, Guangzhong; Xie, Tao; Zhang, Hulin; Ye, Zongbiao; Jing, Qingshen; Tai, Huiling; Du, Xiaosong; Jiang, Yadong

    2016-06-01

    We have developed a free-standing-mode based triboelectric nanogenerator (F-TENG) that consists of indium tin oxide (ITO) foils and a polytetrafluoroethylene (PTFE) thin film. By utilizing the wind-induced resonance vibration of a PTFE film between two ITO electrodes, the F-TENG delivers an open-circuit voltage up to 37 V and a short-circuit current of 6.2 μA, which can be used as a sustainable power source to simultaneously and continuously light up tens of light emitting diodes (LEDs) and charge capacitors. Moreover, uniform division of the electrode into several parallel units efficiently suppresses the inner counteracting effect of undulating film and leads to an enhancement of output current by 95%. The F-TENG holds prominent durability and an excellent linear relationship between output current and flow rate, revealing its feasibility as a self-powered sensor for detecting wind speed. This work demonstrates potential applications of the triboelectric generator in gas flow harvesters, self-powered air navigation, self-powered gas sensors and wind vector sensors.

  4. Role of mixed boundaries on flow in open capillary channels with curved air-water interfaces.

    Science.gov (United States)

    Zheng, Wenjuan; Wang, Lian-Ping; Or, Dani; Lazouskaya, Volha; Jin, Yan

    2012-09-01

    Flow in unsaturated porous media or in engineered microfluidic systems is dominated by capillary and viscous forces. Consequently, flow regimes may differ markedly from conventional flows, reflecting strong interfacial influences on small bodies of flowing liquids. In this work, we visualized liquid transport patterns in open capillary channels with a range of opening sizes from 0.6 to 5.0 mm using laser scanning confocal microscopy combined with fluorescent latex particles (1.0 μm) as tracers at a mean velocity of ∼0.50 mm s(-1). The observed velocity profiles indicate limited mobility at the air-water interface. The application of the Stokes equation with mixed boundary conditions (i.e., no slip on the channel walls and partial slip or shear stress at the air-water interface) clearly illustrates the increasing importance of interfacial shear stress with decreasing channel size. Interfacial shear stress emerges from the velocity gradient from the adjoining no-slip walls to the center where flow is trapped in a region in which capillary forces dominate. In addition, the increased contribution of capillary forces (relative to viscous forces) to flow on the microscale leads to increased interfacial curvature, which, together with interfacial shear stress, affects the velocity distribution and flow pattern (e.g., reverse flow in the contact line region). We found that partial slip, rather than the commonly used stress-free condition, provided a more accurate description of the boundary condition at the confined air-water interface, reflecting the key role that surface/interface effects play in controlling flow behavior on the nanoscale and microscale.

  5. Experimental Study on the Flow Regimes and Pressure Gradients of Air-Oil-Water Three-Phase Flow in Horizontal Pipes

    OpenAIRE

    2014-01-01

    An experimental investigation has been carried out to study the flow regimes and pressure gradients of air-oil-water three-phase flows in 2.25 ID horizontal pipe at different flow conditions. The effects of water cuts, liquid and gas velocities on flow patterns and pressure gradients have been studied. The experiments have been conducted at 20°C using low viscosity Safrasol D80 oil, tap water and air. Superficial water and oil velocities were varied from 0.3 m/s to 3 m/s and air velocity vari...

  6. Co-current air-water flow in downward sloping pipes: Transport of capacity reducing gas pockets in wastewater mains

    OpenAIRE

    Pothof, I.W.M.

    2011-01-01

    Air-water flow is an undesired condition in many systems for the transportation of water or wastewater. Air in storm water tunnels may get trapped and negatively affect the system. Air pockets in hydropower tunnels or sewers may cause blow-back events and inadmissible pressure spikes. Water pipes and wastewater pressure mains in particular are subject to air pocket formation in downward-sloping reaches, such as inverted siphons or terrain slopes. Air pocket accumulation causes energy losses a...

  7. Optical Diagnostics of Air Flows Induced in Surface Dielectric Barrier Discharge Plasma Actuator

    Science.gov (United States)

    Kobatake, Takuya; Deguchi, Masanori; Suzuki, Junya; Eriguchi, Koji; Ono, Kouichi

    2014-10-01

    A surface dielectric barrier discharge (SDBD) plasma actuator has recently been intensively studied for the flow control over airfoils and turbine blades in the fields of aerospace and aeromechanics. It consists of two electrodes placed on both sides of the dielectric, where one is a top powered electrode exposed to the air, and the other is a bottom grounded electrode encapsulated with an insulator. The unidirectional gas flow along the dielectric surfaces is induced by the electrohydrodynamic (EHD) body force. It is known that the thinner the exposed electrode, the greater the momentum transfer to the air is, indicating that the thickness of the plasma is important. To analyze plasma profiles and air flows induced in the SDBD plasma actuator, we performed time-resolved and -integrated optical emission and schlieren imaging of the side view of the SDBD plasma actuator in atmospheric air. We applied a high voltage bipolar pulse (4-8 kV, 1-10 kHz) between electrodes. Experimental results indicated that the spatial extent of the plasma is much smaller than that of the induced flows. Experimental results further indicated that in the positive-going phase, a thin and long plasma is generated, where the optical emission is weak and uniform; on the other hand, in the negative-going phase, a thick and short plasma is generated, where a strong optical emission is observed near the top electrode.

  8. Wind Tunnel Evaluation of Vegetative Buffer Effects on Air Flow near Swine Production Facilities

    Science.gov (United States)

    Increasing concerns about generation and transport of swine odor constituents have substantiated wind tunnel simulation studies on air flow dynamics near swine production facilities. A possible odor mitigation strategy is a forest vegetative buffer as a windbreak barrier near swine facilities becaus...

  9. Measured anisotropic air flow resistivity and sound attenuation of glass wool

    DEFF Research Database (Denmark)

    Tarnow, Viggo

    2002-01-01

    Department of Mechanical Engineering, Technical University of Denmark, Bygning 358, DK 2800 Lyngby, Denmark The air flow resistivity of glass wool has been measured in different directions. The glass wool was delivered from the manufacturer as slabs measuring 100×600×900 mm3, where the surface 600...

  10. Air purification in a reverse-flow reactor: Model simulations vs. experiments

    NARCIS (Netherlands)

    Beld, van de L.; Westerterp, K.R.

    1996-01-01

    The behavior of a reverse-flow reactor was studied for the purification of polluted air by catalytic combustion. A heterogeneous one-dimensional model was extended with a heat balance for the reactor wall. An overall heat transport term is included to account for the small heat losses in radial dire

  11. High enthalpy, hypervelocity flows of air and argon in an expansion tube

    Science.gov (United States)

    Neely, A. J; Stalker, R. J.; Paull, A.

    1991-01-01

    An expansion tube with a free piston driver has been used to generate quasi-steady hypersonic flows in argon and air at flow velocities in excess of 9 km/s. Irregular test flow unsteadiness has limited the performance of previous expansion tubes, and it has been found that this can be avoided by attention to the interaction between the test gas accelerating expansion and the contact surface in the primary shock tube. Test section measurements of pitot pressure, static pressure and flat plate heat transfer are reported. An approximate analytical theory has been developed for predicting the velocities achieved in the unsteady expansion of the ionizing or dissociating test gas.

  12. Air Distribution in a Room and Design Considerations of Mixing Ventilation by Flow Elements

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Jensen, Rasmus Lund; Pedersen, D. N.;

    2001-01-01

    The paper shows detailed measurements of the air distribution in a room ventilated by mixing ventilation according to the specifications given by the International Energy Agency work. (Energy Conservation in Buildings and Community Systems Programme, Annex 20). It describes a number of flow...... elements and how they are used as design tools. The flow elements are the throw of an isothermal jet and the change in jet velocity when the jet moves from the upper to the lower part of the room. A third flow element is the penetration length of a non-isothermal wall jet....

  13. The effects of outdoor air supply rate and supply air filter condition in classrooms on the performance of schoolwork by children (RP-1257)

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Wyon, David Peter

    2007-01-01

    Two independent field intervention experiments were carried out in mechanically ventilated classrooms receiving 100% outdoor air. Outdoor air supply rate and filter condition were manipulated to modify indoor air quality, and the performance of schoolwork was measured The conditions were...... scales to indicate their environmental perceptions and the intensity of any symptoms. The children indicated that the air was fresher but otherwise perceived little difference when the outdoor air supply rate increased from 3.0 to 8.5 L/s (6.4-18 cfm) per person, while the speed at which they performed...... two numerical and two language-based tasks improved significantly. A significant effect of ventilation rate was observed in 70% of all the statistical tests for an effect on work rate, but there were no significant effects on errors. The effects were probably due to improved air quality...

  14. Structure of air-water two-phase flow in helically coiled tubes

    International Nuclear Information System (INIS)

    Air-water two-phase flow in helically coiled tubes is investigated experimentally to elucidate the effects of centrifugal acceleration on the flow regime map and the spatial and the temporal flow structure distribution. Three kinds of test tubes with 20 mm inner diameters including a straight tube are used to compare the turbulent flow structure. Superficial velocities up to 6 m/s are tested so that the centrifugal Froude number covers a range from 0 to 3. The interfacial structure is photographed from two directions by a high-speed video system with synchronized measurement of local pressure fluctuations. The results reveal that the flow transition line alters due to centrifugal force acting on the liquid phase in the tube. In particular, the bubbly flow regime is narrowed significantly. The pressure fluctuation amplitude gets large relatively to the average pressure loss as void fraction increases. The frequency spectra of the pressure fluctuation have plural peaks in the case of strong curvature, implying that the periodicity of slugging two-phase flow is collapsed by an internal secondary flow activated inside the liquid phase. Moreover, under large Froude number conditions, the substantial velocity of the gas phase that biases to the inner side of the helical coil is slower than the total superficial velocity because the liquid flow is allowed to pass through the outer side and so resembles a radial stratified flow

  15. NUMERICAL STUDY ON AIR FLOW AROUND AN OPENING WITH LARGE EDDY SIMULATION

    Institute of Scientific and Technical Information of China (English)

    Fan Hong-ming; Ren Hong-ze; Li Xian-ting; Yi Jiang

    2003-01-01

    Jet characteristics of air supply opening in a ventilating or an air-conditioning system is primarily decided by the folw state in the duct connected to the opening. It is valuable to study the opening jet characteristics and the flow state in a duct. In this study, the Large Eddy Simulation (LES) technique combined with the Tarlor-Galerkin Finite Element Method (FEM) in Computational Fluid Dynamics (CFD) was applied to the problem. The 3-D flow fields in ducts around air supply opening under typical conditions were investigated by numerical simulation as well as experimental measurements. Numerical results agree well with the available experimental data. It indicates that the LES method is available under the conditions with complicated boundaries and inner accompanied by anisotropic large-scale eddies, and it is credible to predict the jet deflection characteristics around an opening.

  16. Calibration of a system for measuring low air flow velocity in a wind tunnel

    Science.gov (United States)

    Krach, Andrzej; Kruczkowski, Janusz

    2016-08-01

    This article presents the calibration of a system for measuring air flow velocity in a wind tunnel with a multiple-hole orifice. The comparative method was applied for the calibration. The method consists in equalising the air flow velocity in a test section of the tunnel with that of the hot-wire anemometer probe which should then read zero value. The hot-wire anemometer probe moves reciprocally in the tunnel test section with a constant velocity, aligned and opposite to the air velocity. Air velocity in the tunnel test section is adjusted so that the minimum values of a periodic hot-wire anemometer signal displayed on an oscilloscope screen reach the lowest position (the minimum method). A sinusoidal component can be superimposed to the probe constant velocity. Then, the air flow velocity in the tunnel test section is adjusted so that, when the probe moves in the direction of air flow, only the second harmonic of the periodically variable velocity superimposed on the constant velocity (second harmonic method) remains at the output of the low-pass filter to which the hot-wire anemometer signal, displayed on the oscilloscope screen, is supplied. The velocity of the uniform motion of the hot-wire anemometer probe is measured with a magnetic linear encoder. The calibration of the system for the measurement of low air velocities in the wind tunnel was performed in the following steps: 1. Calibration of the linear encoder for the measurement of the uniform motion velocity of the hot-wire anemometer probe in the test section of the tunnel. 2. Calibration of the system for measurement of low air velocities with a multiple-hole orifice for the velocities of 0.1 and 0.25 m s‑1: - (a) measurement of the probe movement velocity setting; - (b) measurement of air velocity in the tunnel test section with comparison according to the second harmonic method; - (c) measurement of air velocity in the tunnel with comparison according to the minimum method. The calibration

  17. Simulation of regional-scale groundwater flow in the Azul River basin, Buenos Aires Province, Argentina

    Science.gov (United States)

    Varni, Marcelo R.; Usunoff, Eduardo J.

    A three-dimensional modular model (MODFLOW) was used to simulate groundwater flow in the Azul River basin, Buenos Aires Province, Argentina, in order to assess the correctness of the conceptual model of the hydrogeological system. Simulated heads satisfactorily match observed heads in the regional water-table aquifer. Model results indicate that: (1) groundwater recharge is not uniform throughout the region but is best represented by three recharge rates, decreasing downgradient, similar to the distribution of soils and geomorphological characteristics; and (2) evapotranspiration rates are larger than previous estimates, which were made by using the Thornthwaite-Mather method. Evapotranspiration rates estimated by MODFLOW agree with results of independent studies of the region. Model results closely match historical surface-flow records, thereby suggesting that the model description of the aquifer-river relationship is correct. Résumé Un modèle modulaire tridimensionnel (MODFLOW) a été utilisé pour simuler les écoulements souterrains dans le bassin de la rivière Azul (Province de Buenos Aires, Argentine), dans le but d'évaluer la justesse du modèle conceptuel du système hydrogéologique. La piézométrie simulée s'ajuste de façon satisfaisante à celle observée pour l'ensemble de la nappe. Les résultats du modèle indiquent que: (1) la recharge de la nappe n'est pas uniforme sur toute la région, mais qu'elle est mieux approchée par trois valeurs différentes, décroissant vers l'aval-gradient, en suivant la même distribution que les sols et les caractéristiques géomorphologiques et (2) l'évapotranspiration est nettement plus importante que prévu initialement à partir de la méthode de Thornthwaite-Mather. Les valeurs d'évapotranspiration fournies par MODFLOW concordent bien avec les résultats d'autres études portant sur la région. Les résultats du modèle reproduisent convenablement les chroniques de débit des écoulements de surface

  18. Mass flow rate measurements in two-phase mixtrues with stagnation probes. [PWR

    Energy Technology Data Exchange (ETDEWEB)

    Fincke, J.R.; Deason, V.A.

    1979-01-01

    Applications of stagnation probes to the measurement of mass flow rate in two-phase flows are discussed. Descriptions of several stagnation devices, which have been evaluated at the Idaho National Engineering Laboratory, are presented along with modeling techniques and two-phase flow data.

  19. Can Portfolio Rebalancing Explain the Dynamics of Equity Returns, Equity Flows, and Exchange Rates?

    OpenAIRE

    Harald Hau; Hélène Rey

    2004-01-01

    We explore whether the pattern of international equity returns, equity portfolio flows, and exchange rate returns are consistent with the hypothesis that (unhedged) global investors rebalance their portfolio in order to limit their exchange rate exposure when there are (1) relative equity return; and (2) exchange rate shocks. We also explore whether (3) equity flow shocks influence the exchange rates and relative equity prices. In the estimation of the VAR system we do not impose any causal o...

  20. Dimensionless study on outlet flow characteristics of an air-driven booster

    Institute of Scientific and Technical Information of China (English)

    Yan SHI; Mao-lin CAI

    2012-01-01

    Air-driven boosters are widely used to obtain high-pressure gas.Through analysis of the boosting process of an air-driven booster,the basic mathematical model of working processes can be set up.By selecting the appropriate reference values,the basic mathematical model is transformed to a dimensionless expression.Using MATLAB/Simulink for simulation and studying the booster experimentally,the dimensionless outlet flow characteristics of the booster were obtained and the simulation results agree well with the experimental results.Through analysis,it can be seen that the dimensionless outlet flow of the booster is mainly determined by the dimensionless input pressure of the driving chamber,the dimensionless outlet condition pressure of the booster and the dimensionless area of the piston in the driving chamber.The dimensionless average outlet flow becomes larger with an increasing dimensionless input pressure of the driving chamber,but it becomes smaller with an increase in the dimensionless outlet condition pressure of the booster.Especially when the dimensionless outlet condition pressure is approximately 1.4,the dimensionless average outlet flow reaches zero.With an increase in the dimensionless area of the piston in the driving chamber,the dimensionless average outlet flow increases and peaks at approximately 1.89,and after this peak,it starts to decrease.This research can be referred to in the design of air-driven boosters.

  1. Ultrasonic Measurement of Water Layer Thickness by Flow Pattern Profile in a Horizontal Air Water Loop

    International Nuclear Information System (INIS)

    Ultrasonic methods have the advantage, compared to other water layer thickness measurement techniques, of applicability to large volume objects, since most radiation techniques are limited by the thickness of the pipe and plate walls. The ultrasonic experiment was performed to do an analysis for cooling performance in a complete test channel by the investigation of the two phase flow that develops in an inclined gap with heating from the top. This ultrasonic technique for measuring water layer thickness measurement employ the higher relative acoustic impedance of air with respect to that of liquids. By this method it is possible to determine both liquid water distance, void fraction in a gas-liquid two-phase flow. Instantaneous measurement of the water layer thickness is useful in understanding heat and mass transfer characteristics in a two-phase separated flow. An ultrasonic measurement technique for determining water layer thickness in the wavy and slug flow regime of horizontal tube flow has been produced

  2. Flow structures in a lean-premixed swirl-stabilized combustor with microjet air injection

    KAUST Repository

    LaBry, Zachary A.

    2011-01-01

    The major challenge facing the development of low-emission combustors is combustion instability. By lowering flame temperatures, lean-premixed combustion has the potential to nearly eliminate emissions of thermally generated nitric oxides, but the chamber acoustics and heat release rate are highly susceptible to coupling in ways that lead to sustained, high-amplitude pressure oscillations, known as combustion instability. At different operating conditions, different modes of instability are observed, corresponding to particular flame shapes and resonant acoustic modes. Here we show that in a swirl-stabilized combustor, these instability modes also correspond to particular interactions between the flame and the inner recirculation zone. Two stable and two unstable modes are examined. At lean equivalence ratios, a stable conical flame anchors on the upstream edge of the inner recirculation zone and extends several diameters downstream along the wall. At higher equivalence ratios, with the injection of counter-swirling microjet air flow, another stable flame is observed. This flame is anchored along the upstream edge of a stronger recirculation zone, extending less than one diameter downstream along the wall. Without the microjets, a stationary instability coupled to the 1/4 wave mode of the combustor shows weak velocity oscillations and a stable configuration of the inner and outer recirculation zones. Another instability, coupled to the 3/4 wave mode of the combustor, exhibits periodic vortex breakdown in which the core flow alternates between a columnar mode and a vortex breakdown mode. © 2010 Published by Elsevier Inc. on behalf of The Combustion Institute. All rights reserved.

  3. Passive flow-rate regulators using pressure-dependent autonomous deflection of parallel membrane valves.

    Science.gov (United States)

    Doh, Il; Cho, Young-Ho

    2009-07-21

    We present passive flow-rate regulators using an autonomous deflection of parallel membrane valves, capable to maintain a constant flow-rate at varying inlet pressure supplied from micropumps. The previous passive flow-rate regulators are difficult to integrate with micropumps, not only because of the complex multi-layer structures, but also because of the high threshold inlet pressure required for flow-rate regulation. In this study, we present passive flow-rate regulators using parallel membrane valves, capable of achieving flow-rate regulation function at the minimum threshold inlet pressure as low as 15 kPa with simple structure formed by a single mask process. The parallel membranes in a flow-rate regulator are designed to deflect and adjust flow resistance autonomously according to the inlet pressure, thus maintaining a constant flow-rate independent of the inlet pressure variation. We designed the four different prototypes of W20, W30, W40, and W50, having parallel membrane widths of 20, 30, 40 and 50 microm, respectively. We estimated the flow-rate based on both analytical and numerical models. In an experimental study, we observed the deformation of parallel membranes and the flow-rate depending on the inlet pressure. The fabricated prototypes achieved the constant flow-rate of 6.09 +/- 0.32 microl s(-1) (W20 fabricated by 10 : 1 PDMS (PolyDiMethylSiloxane)) over an inlet pressure of 20 kPa. We also observed that prototypes fabricated by 20 : 1 PDMS, having lower Young's modulus than normal 10 : 1 PDMS, showed a lower threshold pressure and higher regulated flow-rate than prototypes fabricated by 10 : 1 PDMS. W40 fabricated by 20 : 1 PDMS showed a constant flow-rate of 14.53 +/- 0.51 microl s(-1) over inlet pressure of 15 kPa. The present passive flow-rate regulators have strong potential for applications in integrated microfluidic systems. PMID:19568677

  4. Numerical simulation of gas-liquid two-phase jet flow in air-bubble generator

    Institute of Scientific and Technical Information of China (English)

    陈文义; 王静波; 姜楠; 赵斌; 王振东

    2008-01-01

    Air-bubble generator is the key part of the self-inspiration type swirl flotation machines,whose flow field structure has a great effect on flotation.The multiphase volume of fluid(VOF),standard k-ε turbulent model and the SIMPLE method were chosen to simulate the present model;the first order upwind difference scheme was utilized to perform a discrete solution for momentum equation.The distributing law of the velocity,pressure,turbulent kinetic energy of every section along the flow direction of air-bubble generator was analyzed.The results indicate that the bubbles are heavily broken up in the middle cross section of throat sect and the entrance of diffuser sect along the flow direction,and the turbulent kinetic energy of diffuser sect is larger than the entrance of throat sect and mixing chamber.

  5. Asymptotic analysis of simple ionization kinetics of air flows at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Degond, Pierre [Mathematiques pour l' Industrie et la Physique, UFR MIG, Universite Paul Sabatier Toulouse 3, 118, route de Narbonne, 31 062 Toulouse cedex 4 (France); Quinio, Geraldine [Mathematiques pour l' Industrie et la Physique, UFR MIG, Universite Paul Sabatier Toulouse 3, 118, route de Narbonne, 31 062 Toulouse cedex 4 (France); Rogier, Francois [Onera centre de Toulouse, Departement Traitement de l' Information et Modelisation, 2, avenue Edouard Belin, 31055 Toulouse cedex (France)

    2005-05-07

    The purpose of this paper is to propose and analyse a simplified model for plasma generation in air flows at atmospheric pressure. The starting point is a model previously proposed by Lowke (1992 J. Phys. D: Appl. Phys. 25 202-10), enriched with a loss term which schematically takes into account the drag of the metastable and ionized species by the flow. An asymptotic analysis of this model confirmed by numerical simulations is proposed and shows that plasma generation is a two or three time scale process (depending on the electric field value). Eventually, the existence of the plasma over long time scales depends on the value of the flow velocity relative to a threshold value, which can be approximately computed analytically. A procedure for generating a plasma at atmospheric pressure in air at low energetic cost is also suggested.

  6. Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)

    Science.gov (United States)

    Forbes, John C.; Xenofos, George D.; Farrow, John L.; Tyler, Tom; Williams, Robert; Sargent, Scott; Moharos, Jozsef

    2004-01-01

    To support development of the Boeing-Rocketdyne RS84 rocket engine, a full-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrumentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors.

  7. Experimental investigation of air flows through large openings in a horizontal partition

    Energy Technology Data Exchange (ETDEWEB)

    Klobut, K.; Siren, K.

    1994-01-01

    Attempts have been made to predict the evolution of concentrations by modelling the flows of air and contaminant in buildings. Several computer programs, different in degree of sophistication and capabilities, have been developed for this purpose. Large apertures between the rooms, and communication openings between the floors in a building, play an important role as paths for air and contaminants to move between the spaces. The flows in such openings are difficult to be mathematically modelled, because they often occur simultaneously, as countercurrent flows, in the opposite directions through different parts of the opening. The following report, covering the first phase of the project, reports on laboratory-made measurements focused on systematic exploration of the impact of several parameters on the phenomenon.

  8. A Technical Basis for Employing Facility Ventilation Air Exchange Rates in the Decision to Downpost

    CERN Document Server

    Mantooth, D S

    2001-01-01

    Utilizing the ventilation exchange rate as a basis for the decision to downpost a location within a facility from an airborne radiation area (ARA) based on initial air count(DAC). Not used in the case of a confirmed or suspected contamination release.

  9. Influence of Reduced Mass Flow Rate and Chamber Backpressure on Swirl Injector Fluid Mechanics

    Science.gov (United States)

    Kenny, R Jeremy; Hulka, James R.

    2008-01-01

    Industry interest in variable-thrust liquid rocket engines places a demand on engine injector technology to operate over a wide range of liquid mass flow rates and chamber backpressures. One injection technology of current interest for variable thrust applications is an injector design with swirled fluids. Current swirl injector design methodologies do not take into account how swirl injector design parameters respond to elevated chamber backpressures at less than design mass flow rates. The current work was created to improve state-of-the-art swirl injector design methods in this area. The specific objective was to study the effects of elevated chamber backpressure and off-design mass flow rates on swirl injector fluid mechanics. Using a backpressure chamber with optical access, water was flowed through a swirl injector at various combinations of chamber backpressure and mass flow rates. The film thickness profile down the swirl injector nozzle section was measured through a transparent nozzle section of the injector. High speed video showed measurable increases in the film thickness profile with application of chamber backpressure and mass flow rates less than design. At prescribed combinations of chamber backpressure and injected mass flow rate, a discrete change in the film thickness profile was observed. Measured injector discharge coefficient values showed different trends with increasing chamber backpressure at low mass flow rates as opposed to near-design mass flow rates. Downstream spray angles showed classic changes in morphology as the mass flow rate was decreased below the design value. Increasing chamber backpressure decreased the spray angle at any injection mass flow rate. Experimental measurements and discussion of these results are reported in this paper.

  10. Incorporating a Time Horizon in Rate-of-Return Estimations: Discounted Cash Flow Model in Electric Transmission Rate Cases

    International Nuclear Information System (INIS)

    Electric transmission and other rate cases use a form of the discounted cash flow model with a single long-term growth rate to estimate rates of return on equity. It cannot incorporate information about the appropriate time horizon for which analysts' estimates of earnings growth have predictive powers. Only a non-constant growth model can explicitly recognize the importance of the time horizon in an ROE calculation. (author)

  11. 42 CFR 84.162 - Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air...

    Science.gov (United States)

    2010-10-01

    ..., continuous-flow class and Type CE supplied-air respirators; test requirements. 84.162 Section 84.162 Public....162 Man test for gases and vapors; Type C respirators, continuous-flow class and Type CE supplied-air... acetate-free air. (b) The minimum flow of air required to maintain a positive pressure in the...

  12. A Novel Microfluidic Flow Rate Detection Method Based on Surface Plasmon Resonance Temperature Imaging.

    Science.gov (United States)

    Deng, Shijie; Wang, Peng; Liu, Shengnan; Zhao, Tianze; Xu, Shanzhi; Guo, Mingjiang; Yu, Xinglong

    2016-01-01

    A novel microfluidic flow rate detection method based on surface plasmon resonance (SPR) temperature imaging is proposed. The measurement is performed by space-resolved SPR imaging of the flow induced temperature variations. Theoretical simulations and analysis were performed to demonstrate a proof of concept using this approach. Experiments were implemented and results showed that water flow rates within a wide range of tens to hundreds of μL/min could be detected. The flow rate sensor is resistant to disturbances and can be easily integrated into microfluidic lab-on-chip systems. PMID:27347960

  13. Comparison of whole saliva flow rates and mucin concentrations in healthy Caucasian young and aged adults.

    Science.gov (United States)

    Navazesh, M; Mulligan, R A; Kipnis, V; Denny, P A; Denny, P C

    1992-06-01

    Unstimulated and chewing-stimulated whole saliva samples were obtained from 42 healthy Caucasians; 21 were between 18 and 35 years of age, and 21 between 65 and 83 years of age. The unstimulated salivary flow rate was significantly lower in the aged group, but the stimulated flow rate was significantly higher in the aged than in the young group. Both groups showed significantly increased flow during salivary stimulation. MG1 and MG2 concentrations in unstimulated and stimulated saliva samples were significantly lower in the aged group. There were no significant correlations between salivary flow rates and MG1 and MG2 concentrations.

  14. Modeling Flow Rate to Estimate Hydraulic Conductivity in a Parabolic Ceramic Water Filter

    OpenAIRE

    Ileana Wald

    2012-01-01

    In this project we model volumetric flow rate through a parabolic ceramic water filter (CWF) to determine how quickly it can process water while still improving its quality. The volumetric flow rate is dependent upon the pore size of the filter, the surface area, and the height of water in the filter (hydraulic head). We derive differential equations governing this flow from the conservation of mass principle and Darcy's Law and find the flow rate with respect to time. We then use methods of ...

  15. Distributed measurement of flow rate in conduits using heated fiber optic distributed temperature sensing

    Science.gov (United States)

    Sánchez, Raúl; Zubelzu, Sergio; Rodríguez-Sinobas, Leonor; Juana, Luis

    2016-04-01

    In some cases flow varies along conduits, such as in irrigated land drainage pipes and channels, irrigation laterals and others. Detailed knowledge of flow rate along the conduit makes possible analytical evaluation of water distribution and collection systems performance. Flow rate can change continuously in some systems, like in drainage pipes and channels, or abruptly, like in conduits bifurcations or emitter insertions. A heat pulse along the conduit makes possible to get flow rate from continuity and heat balance equations. Due to the great value of specific heat of water, temperature changes along conduit are smaller than the noise that involves the measurement process. This work presents a methodology that, dealing with the noise of distributed temperature measurements, leads to flow rate determination along pressurized pipes or open channel flows.

  16. Experimental Investigation of Entrainment Rate by Debris Flows: from Shear Stress to Granular Temperature

    Science.gov (United States)

    Hill, K. M.; Longjas, A.; Moberly, D.

    2015-12-01

    Debris flows - flows of boulders, gravel, sand, fine particles, and fluids - erode sediment from steep hillsides and deposit them at lower slopes. Current model frameworks for erosion by debris flow vary significantly and include those that consider macroscopic fields such as excess shear stresses, similar to traditional models of bedload transport, to those that consider the "granular" physics, from force chains (related to bed fabric) to granular temperatures (related to random kinetic energy of the flow). We perform experiments to investigate the underlying mechanics associated with entrainment of bed materials by overlying flows in an instrumented laboratory debris flow flume. In particular, we investigate how the erosion rate of a flowing mass impinging on an erodible bed of particles depends on boundary conditions, dynamics of the flow, and the state of the bed. Using high speed imaging to capture average and instantaneous particle dynamics simultaneously with bed stress measurements, we investigate the effectiveness of a variety of model frameworks for capturing the relationships between flow dynamics and erosion rates. We find no correlation between the bed shear stress associated with the mass of the flow and erosion rate. Similarly, we found no correlation between the erosion rate and a Reynolds stress, that is, the stress associated with correlations between downstream and vertical velocity fluctuations. On the other hand, we found that granular temperature is well-correlated with entrainment rate during particular phases of our experimental debris flow. In particular, we found the instantaneous entrainment rate ɛ is linearly dependent on the ratio of the granular temperature Tg to the kinetic energy associated with the average flow velocity u: ɛ ~ (Tg / ρm u2) where ρm is the local instantaneous density of the flow. We present these results and discuss how they vary with the state of the flow, boundary conditions, and particle mixtures.

  17. A novel air flow sensor from printed PEDOT micro-hairs

    International Nuclear Information System (INIS)

    We report the creation of a low flow rate sensor from PEDOT micro-hairs. The hairs are printed as pipette-defined depositions using a nanopositioning system. The printing technique was developed for fabricating structures in 2D and 3D. Here micro-hairs with diameters of 4.4 μm were repeatedly extruded with constant heights. These hairs were then applied to produce a prototype flow rate sensor, which was shown to detect flows of 3.5 l min−1. Structural analysis was performed to demonstrate that the design can be modified to potentially observe flows as low as 0.5 l min−1. The results are extended to propose a practical digital flow rate sensor. (fast track communication)

  18. Nocturnal variations in peripheral blood flow, systemic blood pressure, and heart rate in humans

    DEFF Research Database (Denmark)

    Sindrup, J H; Kastrup, J; Christensen, H;

    1991-01-01

    Subcutaneous adipose tissue blood flow rate, together with systemic arterial blood pressure and heart rate under ambulatory conditions, was measured in the lower legs of 15 normal human subjects for 12-20 h. The 133Xe-washout technique, portable CdTe(Cl) detectors, and a portable data storage unit...... were used for measurement of blood flow rates. An automatic portable blood pressure recorder and processor unit was used for measurement of systolic blood pressure, diastolic blood pressure, and heart rate every 15 min. The change from upright to supine position at the beginning of the night period...... was associated with a 30-40% increase in blood flow rate and a highly significant decrease in mean arterial blood pressure and heart rate (P less than 0.001 for all). Approximately 100 min after the subjects went to sleep an additional blood flow rate increment (mean 56%) and a simultaneous significant decrease...

  19. Rate Dependence of Serrated Flow and Its Effect on Shear Stability of Bulk Metallic Glasses

    Institute of Scientific and Technical Information of China (English)

    Bao-an SUN; Chain-tsuan LIU; Yong YANG

    2016-01-01

    The rate dependence of serrated flow and its effects on the stability of shear banding were systematically investigated in a prototypic bulk metallic glass.It was found that with the increase of external strain rate,the serra-ted flow is gradually suppressed and could completely disappear at a critical strain rate.The serration size,character-ized by the mean stress drop amplitude,decreases inversely with the strain rate,while the waiting time for serration decreases with the strain rate in a power-law manner.The rate dependence of the serrated flow has important effects on the dynamics and stability of shear banding process,and leads to an optimal plasticity achieved around the critical strain rate for the disappearance of serrated flow.These results are discussed and interpreted in terms of the mi-croscopic deformation theory and the stick-slip dynamics of shear banding for bulk metallic glasses.

  20. Using color intensity projections to visualize air flow in operating theaters with the goal of reducing infections

    Science.gov (United States)

    Cover, Keith S.; van Asperen, Niek; de Jong, Joost; Verdaasdonk, Rudolf M.

    2013-03-01

    Infection following neurosurgery is all too common. One possible source of infection is the transportation of dust and other contaminates into the open wound by airflow within the operating theatre. While many modern operating theatres have a filtered, uniform and gentle flow of air cascading down over the operating table from a large area fan in the ceiling, many obstacles might introduce turbulence into the laminar flow including lights, equipment and personal. Schlieren imaging - which is sensitive to small disturbances in the laminar flow such as breathing and turbulence caused by air warmed by a hand at body temperature - was used to image the air flow due to activities in an operating theatre. Color intensity projections (CIPs) were employed to reduce the workload of analyzing the large amount of video data. CIPs - which has been applied to images in angiography, 4D CT, nuclear medicine and astronomy - summarizes the changes over many gray scale images in a single color image in a way which most interpreters find intuitive. CIPs uses the hue, saturation and brightness of the color image to encode the summary. Imaging in an operating theatre showed substantial disruptions to the airflow due to equipment such as the lighting. When these disruptions are combined with such minor factors as heat from the hand, reversal of the preferred airflow patterns can occur. These reversals of preferred airflow patterns have the potential to transport contaminates into the open wound. Further study is required to understand both the frequency of the reversed airflow patterns and the impact they may have on infection rates.

  1. Effect of flow obstacle on droplet sizes in vertical annular air-water flow in a small diameter pipe

    International Nuclear Information System (INIS)

    Droplet size distributions have been measured for air-water annular-mist flow in a vertical 12.0 mm diameter pipe at atmospheric pressure. A laser diffraction technique has been employed using a Malvern Spraytec instrument. The test section was specially designed for meticulous measurement in the present experiment: any optical windows were not used to avoid problems arose from glass contamination by sucking the liquid film through the wall just below the measurement elevation. Sauter mean diameters measured in this work decreased simply with an increase of air superficial velocity, whereas the dependence on water superficial velocity showed complicated dependency on air velocity. The effect of a flow obstacle on droplet size distribution was also investigated. A small tube was placed in the centerline of the test section as an obstacle. Three obstacles having different blockage ratio were tested. It is found through the present experiments that the obstacle effect is not so significant for the blockage ratio of up to 0.3, and the droplet diameter decreases to approximately 80% in average. Based on the data, an empirical correlation to predict Sauter diameter was developed by modifying the existing correlation. A hydraulic equivalent diameter that takes account of the blockage ratio is applied to the characteristic length in the correlation. (author)

  2. Impact of catheter on uroflow rate in pressure-flow study

    Institute of Scientific and Technical Information of China (English)

    张鹏; 武治津; 高居忠

    2004-01-01

    @@ The importance of a pressure-flow study in the diagnostic work-up of patients suffering from benign prostatic hyperplasia (BPH) has been recognized. However, there is still uncertainty regarding the role the catheter might play in affecting uroflow rate during a pressure-flow study. In this present study, we retrospectively analyzed voiding data from pressure-flow studies taken before and after catheterization in 44 patients suffering from BPH to investigate whether catheterization has an effect on uroflow rate.

  3. An Extension of the Internal Rate of Return to Stochastic Cash Flows

    OpenAIRE

    Gordon Hazen

    2009-01-01

    The internal rate of return (IRR) is a venerable technique for evaluating deterministic cash flow streams. Part of the difficulty in extending this measure to stochastic cash flows is the lack of coherent methods for accounting for multiple or nonexistent internal rates of return in deterministic streams. Recently such a coherent theory has been developed, and we examine its implications for stochastic cash flows. We devise an extension of the deterministic IRR, which we call the stochastic r...

  4. Numerical Simulation and Experimental Studies of Air Treatment Process with Water Spray of One Row Counter Flow

    Institute of Scientific and Technical Information of China (English)

    倪波

    2001-01-01

    The present work is focused on heat and mass transfer in a direct evaporative air cooler of one row counter flow spray. Models of the two-phase flow in such a air treatment system have been developed. The fields of temperature and relative humidity in spray chamber, as well as the trajectories of sprayed drops have been obtained by numerical method. Experiments aiming at quantifying the system performance and its influence factors have been conducted. It indicates that the increase of air velocity and water/air ratio while the decrease of nozzle density are favorable. The performance of the system of parallel flow spray and counter flow spray have been compared by means of humidifying efficiency. Comparison between numerical simulation and experimental results demonstrate good agreement for outlet air temperature with a maximum error of 8% observed for air relative humidity.

  5. Air flows in big cavity, building aeraulics; ecoulements de l`air en grande cavite, aeraulique des batiments

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This workshop day was jointly organized by the French society of thermal engineers (SFT) and the university group of thermal engineers (GUT). This compilation of proceedings comprises 10 papers dealing with: the use of zonal models for the prediction of the temperature field inside buildings; prediction of the natural ventilation air renewing inside a cavity with a single big aperture using a finite-difference code; experimental validation of the EOL-3D code in industrial ventilating; precise numerical modeling of flows inside ventilated or not-ventilated cavities with pollutant species using a finite difference field code; building aeraulics at Electricite de France (EdF): from the basic research to field applications; experimental study of a heavy vertical jet, influence on the thermal comfort inside a air-conditioned room; study of non-isothermal 3-D free jets: comparison of measurement results with field code modeling; natural air-conditioning of accommodations in humid tropical climate; natural ventilating in humid tropical climate, proposition for a method of evaluation of the velocity coefficients; comparison between measurements and calculations concerning the atmosphere of occupied rooms. (J.S.)

  6. CFD model of air movement in ventilated façade: comparison between natural and forced air flow

    Directory of Open Access Journals (Sweden)

    Miguel Mora Pérez, Gonzalo López Patiño, P. Amparo López Jiménez

    2013-01-01

    Full Text Available This study describes computational fluid dynamics (CFD modeling of ventilated façade. Ventilated façades are normal façade but it has an extra channel between the concrete wall and the (double skin façade. Several studies found in the literature are carried out with CFD simulations about the behavior of the thermodynamic phenomena of the double skin façades systems. These studies conclude that the presence of the air gap in the ventilated façade affects the temperature in the building skin, causing a cooling effect, at least in low-rise buildings. One of the most important factors affecting the thermal effects of ventilated façades is the wind velocity. In this contribution, a CFD analysis applied on two different velocity assumptions for air movement in the air gap of a ventilated façade is presented. A comparison is proposed considering natural wind induced velocity with forced fan induced velocity in the gap. Finally, comparing temperatures in the building skin, the differences between both solutions are described determining that, related to the considered boundary conditions, there is a maximum height in which the thermal effect of the induced flow is significantly observed.

  7. Co-current air-water flow in downward sloping pipes: Transport of capacity reducing gas pockets in wastewater mains

    NARCIS (Netherlands)

    Pothof, I.W.M.

    2011-01-01

    Air-water flow is an undesired condition in many systems for the transportation of water or wastewater. Air in storm water tunnels may get trapped and negatively affect the system. Air pockets in hydropower tunnels or sewers may cause blow-back events and inadmissible pressure spikes. Water pipes an

  8. Application of Lorentz force techniques for flow rate measurement

    Science.gov (United States)

    Ebert, Reschad Johann; Resagk, Christian

    2014-11-01

    We report on the progress of the Lorentz force velocimetry (LFV): a contactless non-invasive flow velocity measurement technique. This method has been developed and demonstrated for various applications in our institute and in industry. At applications for weakly conducting fluids such as electrolytes with conductivities in the range of 1 - 10 S/m the challenging bottleneck is the detection of the tiny Lorentz forces in the noisy environment of the test channel. For the force measurement a state-of-the-art electromagnetic force compensation balance is used. Due to this device the mass of the Lorentz force generating magnets is limited. For enabling larger magnet systems and for higher force signals we have developed and tested a buoyancy based weight force compensation method which will be presented here. Additionally, results of LFV measurements at non-symmetric fluid profiles will be shown. By that an evaluation of the feasibility of this measurement principle for disturbed fluid profiles that are relevant for developing the LFV for weakly conducting fluids towards industrial applications can be made. Additionally a prospective setup for using the LFV for molten salt flows will be explained.

  9. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    OpenAIRE

    Sabanskis A.; Virbulis J.

    2016-01-01

    Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Result...

  10. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    Energy Technology Data Exchange (ETDEWEB)

    Othman, M. N. K., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Zuradzman, M. Razlan, E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Hazry, D., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Khairunizam, Wan, E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Shahriman, A. B., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Yaacob, S., E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my; Ahmed, S. Faiz, E-mail: najibkhir86@gmail.com, E-mail: zuradzman@unimap.edu.my, E-mail: hazry@unimap.edu.my, E-mail: khairunizam@unimap.edu.my, E-mail: shahriman@unimap.edu.my, E-mail: s.yaacob@unimap.edu.my, E-mail: syedfaiz@unimap.edu.my, E-mail: abadal@unimap.edu.my [Centre of Excellence for Unmanned Aerial Systems, Universiti Malaysia Perlis, 01000 Kangar, Perlis (Malaysia); and others

    2014-12-04

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  11. CFD analyses of flow structures in air-ingress and rod bundle problems

    Science.gov (United States)

    Wei, Hong-Chan

    Two topics from nuclear engineering field are included in this dissertation. One study is the air-ingress phenomenon during a loss of coolant accident (LOCA) scenario, and the other is a 5-by-5 bundle assembly with a PWR design. The objectives were to investigate the Kelvin-Helmholtz instability of the gravity-driven stratified flows inside a coaxial pipe and the effects caused by two types of spacers at the downstream of the rod bundle. Richardson extrapolation was used for the grid independent study. The simulation results show good agreements with the experiments. Wavelet analysis and Proper Orthogonal Decomposition (POD) were used to study the flow behaviors and flow patterns. For the air-ingress phenomenon, Brunt-Vaisala frequency, or buoyancy frequency, predicts a frequency of 2.34 Hz; this is confirmed by the dominant frequency of 2.4 Hz obtained from the wavelet analysis between times 1.2 s and 1.85 s. For the rod bundle study, the dominant frequency at the center of the subchannel was determined to be 2.4 Hz with a secondary dominant frequency of 4 Hz and a much minor frequency of 6 Hz. Generally, wavelet analysis has much better performance than POD, in the air-ingress phenomenon, for a strongly transient scenario; they are both appropriate for the rod bundle study. Based on this study, when the fluid pair in a real condition is used, the time which air intrudes into the reactor is predictable.

  12. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    International Nuclear Information System (INIS)

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity

  13. Simultaneous determination of nitrite and nitrate ions by air-segmented amplitude-modulated multiplexed flow analysis.

    Science.gov (United States)

    Yoshida, Haruka; Inui, Koji; Takeuchi, Masaki; Tanaka, Hideji

    2012-01-01

    The concept of amplitude-modulated multiplexed flow analysis has been extended to the simultaneous determination of multiple analytes in a sample. A sample solution containing nitrite and nitrate ions is delivered from two channels, but the flow rates are varied at different frequencies. One of the channels has a reduction column for converting nitrate ions to nitrite ions. Downstream, the absorbance of the diazo-coupling product is monitored after the merging of both solutions with a Griess reagent. The signal is analyzed by a fast Fourier transform (FFT) in real time. From the thus-obtained amplitude, a µmol dm(-3) level of the ions can be determined. The introduction of air bubbles is effective to reduce any axial dispersion, and hence to improve the sensitivity.

  14. Relationship between recycling rate and air pollution: Waste management in the state of Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Giovanis, Eleftherios, E-mail: giovanis95@gmail.com

    2015-06-15

    Highlights: • This study examines the relationship between recycling rate of solid waste and air pollution. • Fixed effects Stochastic Frontier Analysis model with panel data are employed. • The case study is a waste municipality survey in the state of Massachusetts during 2009–2012. • The findings support that a negative relationship between air pollution and recycling. - Abstract: This study examines the relationship between recycling rate of solid waste and air pollution using data from a waste municipality survey in the state of Massachusetts during the period 2009–2012. Two econometric approaches are applied. The first approach is a fixed effects model, while the second is a Stochastic Frontier Analysis (SFA) with fixed effects model. The advantage of the first approach is the ability of controlling for stable time invariant characteristics of the municipalities, thereby eliminating potentially large sources of bias. The second approach is applied in order to estimate the technical efficiency and rank of each municipality accordingly. The regressions control for various demographic, economic and recycling services, such as income per capita, population density, unemployment, trash services, Pay-as-you-throw (PAYT) program and meteorological data. The findings support that a negative relationship between particulate particles in the air 2.5 μm or less in size (PM{sub 2.5}) and recycling rate is presented. In addition, the pollution is increased with increases on income per capita up to $23,000–$26,000, while after this point income contributes positively on air quality. Finally, based on the efficiency derived by the Stochastic Frontier Analysis (SFA) model, the municipalities which provide both drop off and curbside services for trash, food and yard waste and the PAYT program present better performance regarding the air quality.

  15. Relationship between recycling rate and air pollution: Waste management in the state of Massachusetts

    International Nuclear Information System (INIS)

    Highlights: • This study examines the relationship between recycling rate of solid waste and air pollution. • Fixed effects Stochastic Frontier Analysis model with panel data are employed. • The case study is a waste municipality survey in the state of Massachusetts during 2009–2012. • The findings support that a negative relationship between air pollution and recycling. - Abstract: This study examines the relationship between recycling rate of solid waste and air pollution using data from a waste municipality survey in the state of Massachusetts during the period 2009–2012. Two econometric approaches are applied. The first approach is a fixed effects model, while the second is a Stochastic Frontier Analysis (SFA) with fixed effects model. The advantage of the first approach is the ability of controlling for stable time invariant characteristics of the municipalities, thereby eliminating potentially large sources of bias. The second approach is applied in order to estimate the technical efficiency and rank of each municipality accordingly. The regressions control for various demographic, economic and recycling services, such as income per capita, population density, unemployment, trash services, Pay-as-you-throw (PAYT) program and meteorological data. The findings support that a negative relationship between particulate particles in the air 2.5 μm or less in size (PM2.5) and recycling rate is presented. In addition, the pollution is increased with increases on income per capita up to $23,000–$26,000, while after this point income contributes positively on air quality. Finally, based on the efficiency derived by the Stochastic Frontier Analysis (SFA) model, the municipalities which provide both drop off and curbside services for trash, food and yard waste and the PAYT program present better performance regarding the air quality

  16. Long-term dynamics of death rates of emphysema, asthma, and pneumonia and improving air quality

    Directory of Open Access Journals (Sweden)

    Kravchenko J

    2014-06-01

    Full Text Available Julia Kravchenko,1 Igor Akushevich,2 Amy P Abernethy,3 Sheila Holman,4 William G Ross Jr,5 H Kim Lyerly1,6 1Department of Surgery, 2Center for Population Health and Aging, 3Duke Clinical Research Institute, Duke University Medical Center, Duke University, Durham, 4Division of Air Quality, North Carolina Department of Environment and Natural Resources, Raleigh, 5Nicholas School of the Environment, 6Department of Pathology, Duke University Medical Center, Duke University, Durham, NC, USA Background: The respiratory tract is a major target of exposure to air pollutants, and respiratory diseases are associated with both short- and long-term exposures. We hypothesized that improved air quality in North Carolina was associated with reduced rates of death from respiratory diseases in local populations. Materials and methods: We analyzed the trends of emphysema, asthma, and pneumonia mortality and changes of the levels of ozone, sulfur dioxide (SO2, nitrogen dioxide (NO2, carbon monoxide (CO, and particulate matters (PM2.5 and PM10 using monthly data measurements from air-monitoring stations in North Carolina in 1993–2010. The log-linear model was used to evaluate associations between air-pollutant levels and age-adjusted death rates (per 100,000 of population calculated for 5-year age-groups and for standard 2000 North Carolina population. The studied associations were adjusted by age group-specific smoking prevalence and seasonal fluctuations of disease-specific respiratory deaths. Results: Decline in emphysema deaths was associated with decreasing levels of SO2 and CO in the air, decline in asthma deaths–with lower SO2, CO, and PM10 levels, and decline in pneumonia deaths–with lower levels of SO2. Sensitivity analyses were performed to study potential effects of the change from International Classification of Diseases (ICD-9 to ICD-10 codes, the effects of air pollutants on mortality during summer and winter, the impact of approach when only

  17. Effect of outside air ventilation rate on VOC concentrations and emissions in a call center

    International Nuclear Information System (INIS)

    A study of the relationship between outside air ventilation rate and concentrations of VOCs generated indoors was conducted in a call center. Ventilation rates were manipulated in the building's four air handling units (AHUs). Concentrations of VOCs in the AHU returns were measured on 7 days during a 13-week period. Indoor minus outdoor concentrations and emission factors were calculated. The emission factor data was subjected to principal component analysis to identify groups of co-varying compounds based on source type. One vector represented emissions of solvents from cleaning products. Another vector identified occupant sources. Direct relationships between ventilation rate and concentrations were not observed for most of the abundant VOCs. This result emphasizes the importance of source control measures for limiting VOC concentrations in buildings

  18. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.; Lowenstein, A.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by first overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.

  19. EFFECT OF SUCTION PIPE DIAMETER AND SUBMERGENCE RATIO ON AIR LIFT PUMPING RATE

    OpenAIRE

    Salam J. AlMaliky; Hayder A. AlAjawi

    2013-01-01

    The increasingly importance for the uses of the air lift pump in widespread list of fields (mining, nuclear industries, agricultural uses, petroleum industries...etc.) makes it very interested for the researchers to find tools to raise the performance outcome of such pumps.An air lift pump system is setup to study the effect of the suction pipe diameter and submergence ratio on the liquid (water) pumping rate. The system has a lift pipe of (0.021 m) diameter and (1.25 m) length. Five diameter...

  20. Rate constants for chemical reactions in high-temperature nonequilibrium air

    Science.gov (United States)

    Jaffe, R. L.

    1986-01-01

    In the nonequilibrium atmospheric chemistry regime that will be encountered by the proposed Aeroassisted Orbital Transfer Vehicle in the upper atmosphere, where air density is too low for thermal and chemical equilibrium to be maintained, the detailed high temperature air chemistry plays a critical role in defining radiative and convective heating loads. Although vibrational and electronic temperatures remain low (less than 15,000 K), rotational and translational temperatures may reach 50,000 K. Attention is presently given to the effects of multiple temperatures on the magnitudes of various chemical reaction rate constants, for the cases of both bimolecular exchange reactions and collisional excitation and dissociation reactions.

  1. Transonic flow of moist air around an NACA 0012 airfoil with non-equilibrium condensation

    Institute of Scientific and Technical Information of China (English)

    LI Liang; SUN Xiuling; FENG Zhenping; LI Guojun

    2005-01-01

    The classical condensation model of water vapor is coupled with the Euler equations to calculate transonic flows of moist air with non-equilibrium condensation. By means of this model, numerical computations are implemented to investigate the aerodynamic characteristics of an NACA 0012 airfoil in transonic flows of moist air at various angles of attack and relative humidities, and the results are compared with those in dry air flows. For different angles of attack considered at 50 % relative humidity, the lift decreases 30 % -40 %.The pressure drag increases when the angle of attack is smaller than 1.4° and decreases when higher than 1.4°. At zero angle of attack,with the relative humidity rising from zero to 90 %, the pressure drag increases exponentially. At 90 % relative humidity, the pressure drag increases 160 %, and self-oscillation takes place periodically and alternately over the upper and lower surfaces of the airfoil. The oscillation is caused by the interactions of local supersonic flow and heat release in the condensation process.

  2. High flow rate nozzle system with production of uniform size droplets

    Science.gov (United States)

    Stockel, Ivar H.

    1990-01-01

    Method steps for production of substantially uniform size droplets from a flow of liquid include forming the flow of liquid, periodically modulating the momentum of the flow of liquid in the flow direction at controlled frequency, generating a cross flow direction component of momentum and modulation of the cross flow momentum of liquid at substantially the same frequency and phase as the modulation of flow direction momentum, and spraying the so formed modulated flow through a first nozzle outlet to form a desired spray configuration. A second modulated flow through a second nozzle outlet is formed according to the same steps, and the first and second modulated flows impinge upon each other generating a liquid sheet. Nozzle apparatus for modulating each flow includes rotating valving plates interposed in the annular flow of liquid. The plates are formed with radial slots. Rotation of the rotating plates is separably controlled at differential angular velocities for a selected modulating frequency to achieve the target droplet size and production rate for a given flow. The counter rotating plates are spaced to achieve a desired amplitude of modulation in the flow direction, and the angular velocity of the downstream rotating plate is controlled to achieve the desired amplitude of modulation of momentum in the cross flow direction. Amplitude of modulation is set according to liquid viscosity.

  3. Single-pulse dynamics and flow rates of inertial micropumps

    CERN Document Server

    Govyadinov, A N; Markel, D P; Torniainen, E D

    2015-01-01

    Bubble-driven inertial pumps are a novel method of moving liquids through microchannels. We combine high-speed imaging, computational fluid dynamics (CFD) simulations and an effective one-dimensional model to study the fundamentals of inertial pumping. Single-pulse flow through 22 x 17 um2 U-shaped channels containing 4-um polystyrene tracer beads has been imaged with a high-speed camera. The results are used to calibrate the CFD and one-dimensional models to extract an effective bubble strength. Then the frequency dependence of inertial pumping is studied both experimentally and numerically. The pump efficiency is found to gradually decrease once the successive pulses start to overlap in time.

  4. A model for droplet entrainment rate in horizontal stratified flow

    International Nuclear Information System (INIS)

    This work proposes an original approach for modeling the entrainment of droplets in a horizontal stratified two-phase wavy flows. This mechanistic model is based on the ripple-waves breakout and entrainment phenomenon by estimating the liquid mass pulled off the wave crests during their fragmentation. The paper presents the modeling procedure for estimating the wavelength of these ripples and the related entrained liquid volume. In regards to these parameters, it is shown that a relatively simple methodology can be obtained to ease the implementation in a system code. This work aims at substituting the current existing empirical correlations in the system code CATHARE 3 by using a flowfield for a liquid dispersed phase. (author)

  5. Measuring Infiltration Rates in Homes as a Basis for Understanding Indoor Air Quality

    Science.gov (United States)

    Jerz, G. G.; Lamb, B. K.; Pressley, S. N.; O'Keeffe, P.; Fuchs, M.; Kirk, M.

    2015-12-01

    Infiltration rates, or the rate of air exchange, of houses are important to understand because ventilation can be a dominate factor in determining indoor air quality. There are chemicals that are emitted from surfaces or point sources inside the home which are harmful to humans; these chemicals come from various objects including furniture, cleaning supplies, building materials, gas stoves, and the surrounding environment. The use of proper ventilation to cycle cleaner outdoor air into the house can be crucial for maintaining healthy living conditions in the home. At the same time, there can also be outdoor pollutants which infiltrate the house and contribute to poor indoor air quality. In either case, it is important to determine infiltration rates as a function of outdoor weather conditions, the house structure properties and indoor heating and cooling systems. In this work, the objective is to measure ventilation rates using periodic releases of a tracer gas and measuring how quickly the tracer concentration decays. CO2 will be used as the tracer gas because it is inert and harmless at low levels. An Arduino timer is connected to a release valve which controls the release of 9.00 SLPM of CO2 into the uptake vent within the test home. CO2 will be released until there is at least a 200 to 300 ppm increase above ambient indoor levels. Computers with CO2 sensors and temperature/pressure sensors attached will be used to record data from different locations within the home which will continuously record data up to a week. The results from these periodic ventilation measurements will be analyzed with respect to outdoor wind and temperature conditions and house structure properties. The data will be used to evaluate an established indoor air quality model.

  6. Measurement of HOx· production rate due to radon decay in air

    International Nuclear Information System (INIS)

    Radon in indoor air may cause the exposure of the public to excessive radioactivity. Radiolysis of water vapor in indoor air due to radon decay could produce (·OH and HO2 ·) that may convert atmospheric constituents to compounds of lower vapor pressure. These lower vapor pressure compounds might then nucleate to form new particles in the indoor atmosphere. Chemical amplification was used to determine HOx· production rate in indoor air caused by radon decay. Average HOx· production rate was found to be (4.31±0.07) x 105 HOx· per Rn decay per second (Bq) 3.4 to 55.0% at 22C. This work provided G(HOx·)-value, 7.86±0.13 No./100 eV in air by directly measuring [HOx·] formed from the radiolysis procedure. This G value implies that HOx· produced by radon decay in air might be formed by multiple processes and may be result of positive ion-molecule reactions, primary radiolysis, and radical reactions. There is no obvious relation between HOx· production rate and relative humidity. A laser-induced fluorescence (LIF) system has been used for ·OH production rate measurement; it consists of an excimer laser, a dye laser, a frequency doubler, a gaseous fluorescence chamber, and other optical and electronic parts. This system needs to be improved to eliminate the interferences of light scattering and artificial ·OH produced from the photolysis of O3/H2O

  7. Air mass flow estimation in turbocharged diesel engines from in-cylinder pressure measurement

    Energy Technology Data Exchange (ETDEWEB)

    Desantes, J.M.; Galindo, J.; Guardiola, C.; Dolz, V. [CMT - Motores Termicos, Universidad Politecnica de Valencia (Spain)

    2010-01-15

    Air mass flow determination is needed for the control of current internal combustion engines. Current methods are based on specific sensors (as hot wire anemometers) or indirect estimation through manifold pressure. With the availability of cylinder pressure sensors for engine control, methods based on them can be used for replacing or complementing standard methods. Present paper uses in cylinder pressure increase during the intake stroke for inferring the trapped air mass. The method is validated on two different turbocharged diesel engines and compared with the standard methods. (author)

  8. Numerical simulation of slug flow regime for an air water two-phase flow in horizontal pipes

    International Nuclear Information System (INIS)

    Slug flow is a quite common multiphase flow regime in horizontal pipelines and channels, which can be potentially hazardous to the structure of the pipe system or to apparatus and processes following the slug flow pipe section due to the strong oscillating pressure levels formed behind liquid slugs. Areas of application are in the chemical and process industry as well as in safety research and thermo-hydraulic engineering for nuclear power plants. The intended paper deals with the feasibility and accuracy of CFD simulations for an air-water slug flow in a horizontal circular pipe of diameter D = 0.054 m and a pipe length of up to 8 m. In the past most investigations of the slug flow regime in horizontal pipelines and channels have been carried out on experimental test rigs. Due to the transient and three-dimensional character of slug flow regime and the resulting numerical effort only a few attempts of numerical simulation have been made. In principal three different computational approaches can be applied for the simulation of horizontal slug flows: - 'frozen slug' in a domain with moving wall boundaries, where the absolute value of the prescribed wall velocity is equal to the slug propagation velocity in the pipe. The slug propagation velocity and the slug length/period has to be known in advance. - Transient 3-D simulation in a short computational domain with periodic boundary conditions. A driving pressure force has to be prescribed to compensate the kinetic energy losses due to wall friction. Furthermore it has to be ensured, that the geometrical dimensions of the computational domain do not affect the computed slug flow length and time scales. - Transient 3. simulation of slug flow in a long pipe segment with inlet/outlet boundary conditions. The later of the three computational approaches provides the highest predictive capability, also it is the most computational intensive approach. The presented paper will discuss the general aspects of feasibility

  9. The effect of ventilation aperture location of input airflow rates on the stratified flow

    International Nuclear Information System (INIS)

    The distribution of the stratified flow along and across the flow direction was investigated. The effect of input airflow rates on the stratified flow was conducted. Also both effects of hot and cold airflow rate variations were studied. The flow rates studied were in the ranges of Qh = 1.0-5.0 m3/min for hot airflow, and Qc = 0.0-8.0 m3/min for cold airflow. These ranges could be useful for studying both stratified and mixed flow. It covers all ranges of Richardson number Ri (from 0.67 to 200). The higher of the input vertical location the higher of the interface level height, where different heights of input vertical locations will results in different levels of stratification. The using of warm jet is more effective, compared with the cold jet flow, because of the effect of bouncy variations on the stratified layer

  10. High-frame rate, fast neutron imaging of two-phase flow in a thin rectangular channel

    OpenAIRE

    Zboray, R.; Mor, I.; Dangendorf, V.; Stark, M.; Tittelmeier, K.; Cortesi, M.; Adams, R.

    2015-01-01

    We have demonstrated the feasibility of performing high-frame-rate, fast neutron radiography of air-water two-phase flows in a thin channel with rectangular cross section. The experiments have been carried out at the accelerator facility of the Physikalisch-Technische Bundesanstalt. A polychromatic, high-intensity fast neutron beam with average energy of 6 MeV was produced by 11.5 MeV deuterons hitting a thick Be target. Image sequences down to 10 millisecond exposure times were obtained usin...

  11. Current Flow in Uniform Ferromagnets: Bulk and Surface Heating Rates

    OpenAIRE

    Sears, Matthew R.; Saslow, Wayne M.

    2011-01-01

    With spintronics applications in mind, we use irreversible thermodynamics to derive the rates of entropy production and heating near an interface when heat current, electric current, and spin current cross it. Associated with these currents are apparent discontinuities in temperature (\\Delta T), electrochemical potential (\\Delta \\tilde {\\mu}), and spin-dependent "magnetoelectrochemical potential" (\\Delta \\bar \\mu_{\\uparrow,\\downarrow}). This work applies to magnetic semiconductors and insulat...

  12. Developments in the research of air-water two-phase flows in turbomachinery

    International Nuclear Information System (INIS)

    Recently, engineering problems associated with two-phase flows in turbomachinery have become increasingly important in relation to the safety analysis of nuclear reactors or the usage of low quality energy resources; the research on this subject has been promoted. It is a really knotty problem caused by the multiform flow patterns as well as the variety of its applications. However, the mechanics in two-phase machines may involve similar phenomena. In this paper, developments of the research of air-water mixtures in turbomachinery will be briefly reviewed, and the mechanics of two-phase flows in rotating flow fields and the prediction methods of the performance of turbomachinery based on some analytical models are discussed. (author)

  13. Numerical Simulation and Experimental Studies of Air Treatment Process with Water Spray of One Row Parallel Flow

    Institute of Scientific and Technical Information of China (English)

    倪波

    2001-01-01

    The main purpose of the present work is to make a further insight into the procedure of heat and mass transfer between water droplets sprayed and air stream in a direct evaporative air cooler used in air-conditioning system in textile mills. The thermodynamic models of the two-phase flow in such a air treatment system have been developed for one row parallel flow spray.The fields of temperature and relative humidity in spraylchamber, as well as the trajectories of sprayed drops have been obtained by calculation. A series of experiment aiming at quantifying the system performance and its influence factors have been conducted. It indicates that the increases of air velocity and water/air ratio while the decrease of nozzle density are favorable. Finally, the comparison between numerical simulation and experimental results have been carried out. Good agreements have been found for outlet air temperaturewhile a maximum error of 10% has been observed for air relative humidity.

  14. Flow rate-pressure drop relation for deformable shallow microfluidic channels

    Science.gov (United States)

    Christov, Ivan C.; Cognet, Vincent; Stone, Howard A.

    2013-11-01

    Laminar flow in devices fabricated from PDMS causes deformation of the passage geometry, which affects the flow rate-pressure drop relation. Having an accurate flow rate-pressure drop relation for deformable microchannels is of importance given that the flow rate for a given pressure drop can be as much as 500% of the flow rate predicted by Poiseuille's law for a rigid channel. proposed a successful model of the latter phenomenon by heuristically coupling linear elasticity with the lubrication approximation for Stokes flow. However, their model contains a fitting parameter that must be found for each channel shape by performing an experiment. We present a perturbative derivation of the flow rate-pressure drop relation in a shallow deformable microchannel using Kirchoff-Love theory of isotropic quasi-static plate bending and Stokes' equations under a ``double lubrication'' approximation (i.e., the ratio of the channel's height to its width and of the channel's width to its length are both assumed small). Our result contains no free parameters and confirms Gervais et al.'s observation that the flow rate is a quartic polynomial of the pressure drop. ICC was supported by NSF Grant DMS-1104047 and the U.S. DOE through the LANL/LDRD Program; HAS was supported by NSF Grant CBET-1132835.

  15. Effect of inlet azimuthal flow rate nonuniformity on the coolant flow in a nuclear reactor cylindrical manifold

    International Nuclear Information System (INIS)

    A technique for numerical solution of two-dimensional equations of liquid motion with flow-off among porous disks, simulating distributing header of nuclear reactor is presented. The equations were obtained by integrating Navier-Stokes equations according to header height. Liquid distribution for symmetrical flows withour rotation is of continuous character, described by asymptotic cubic parabola, which is supported by experimental data. The distributions result in qualitative distortion of the picture of averaged liquid flow in distributing headers. The occurrence of vortexes, which intensity can achieve considerable values and result in large decrease of selection rate in vortex region is noted. The selection rate can assume negative values (reverse flows) for the definite parameters of the header and intensive disturbances. It was concluded that the distributing header represents the intensifier of inlet hydraulic nonuniformity in wide range of header parameters and Reynolds numbers Vortex formation was not revealed in collecting header for time radial liquid outlet

  16. Measurement of the Air Chance Rate and Ventilation Characteristics During Short Term Transient Phenomena

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Perino, M.

    2004-01-01

    is assured throughout the test. However, due to the relatively slow response of the gas analysers, none of these procedures can usually be applied to fast transient phenomena that last 15 minutes or less. Moreover in many cases of natural ventilation strategies, the continuous mixing of the indoor air would...... compromise and interfere with the ongoing ventilation process. In this work, a modified tracer gas technique that is suitable to experimentally assess the transient features of the ventilation performances during these phenomena is proposed and tested for the case of buoyancy driven single-sided natural......Different measurement procedures are available for the experimental assessment of air change rates inside ventilated enclosures. These mainly consist of tracer gas techniques and can usually be applied to steady-state or moderately transient conditions and when a continous mixing of the indoor air...

  17. Modelling Air and Water Two-Phase Annular Flow in a Small Horizontal Pipe

    Science.gov (United States)

    Yao, Jun; Yao, Yufeng; Arini, Antonino; McIiwain, Stuart; Gordon, Timothy

    2016-06-01

    Numerical simulation using computational fluid dynamics (CFD) has been carried out to study air and water two-phase flow in a small horizontal pipe of an inner diameter of 8.8mm, in order to investigate unsteady flow pattern transition behaviours and underlying physical mechanisms. The surface liquid film thickness distributions, determined by either wavy or full annular flow regime, are shown in reasonable good agreement with available experimental data. It was demonstrated that CFD simulation was able to predict wavy flow structures accurately using two-phase flow sub-models embedded in ANSYS-Fluent solver of Eulerian-Eulerian framework, together with a user defined function subroutine ANWAVER-UDF. The flow transient behaviours from bubbly to annular flow patterns and the liquid film distributions revealed the presence of gas/liquid interferences between air and water film interface. An increase of upper wall liquid film thickness along the pipe was observed for both wavy annular and full annular scenarios. It was found that the liquid wavy front can be further broken down to form the water moisture with liquid droplets penetrating upwards. There are discrepancies between CFD predictions and experimental data on the liquid film thickness determined at the bottom and the upper wall surfaces, and the obtained modelling information can be used to assist further 3D user defined function subroutine development, especially when CFD simulation becomes much more expense to model full 3D two-phase flow transient performance from a wavy annular to a fully developed annular type.

  18. Polyurethane foam (PUF) disks passive air samplers: Wind effect on sampling rates

    International Nuclear Information System (INIS)

    Different passive sampler housings were evaluated for their wind dampening ability and how this might translate to variability in sampler uptake rates. Polyurethane foam (PUF) disk samplers were used as the sampling medium and were exposed to a PCB-contaminated atmosphere in a wind tunnel. The effect of outside wind speed on PUF disk sampling rates was evaluated by exposing polyurethane foam (PUF) disks to a PCB-contaminated air stream in a wind tunnel over air velocities in the range 0 to 1.75 m s-1. PUF disk sampling rates increased gradually over the range 0-0.9 m s-1 at ∼4.5-14.6 m3 d-1 and then increased sharply to ∼42 m3 d-1 at ∼1.75 m s-1 (sum of PCBs). The results indicate that for most field deployments the conventional 'flying saucer' housing adequately dampens the wind effect and will yield approximately time-weighted air concentrations. - Passive sampler housings dampen wind speed and reduce the variability in sampling rates

  19. Flow control of a centrifugal fan in a commercial air conditioner

    Science.gov (United States)

    Kim, Jiyu; Bang, Kyeongtae; Choi, Haecheon; Seo, Eung Ryeol; Kang, Yonghun

    2015-11-01

    Air-conditioning fans require a low noise level to provide user comfort and quietness. The aerodynamic noise sources are generated by highly unsteady, turbulent structures near the fan blade. In this study, we investigate the flow characteristics of a centrifugal fan in an air-conditioner indoor unit and suggest control ideas to develop a low noise fan. The experiment is conducted at the operation condition where the Reynolds number is 163000 based on the blade tip velocity and chord length. Intermittent separation occurs at the blade leading edge and thus flow significantly fluctuates there, whereas vortex shedding occurs at the blade trailing edge. Furthermore, the discharge flow observed in the axial plane near the shroud shows low-frequency intermittent behaviors, resulting in high Reynolds stresses. To control these flow structures, we modify the shapes of the blade leading edge and shroud of the centrifugal fan and obtain noise reduction. The flow characteristics of the base and modified fans will be discussed. Supported by 0420-20130051.

  20. Air entrainment in transient flows in closed water pipes: a two-layer approach

    CERN Document Server

    Bourdarias, Christian; Gerbi, Stéphane

    2009-01-01

    In this paper, we first construct a model for transient free surface flows that takes into account the air entrainment by a sytem of 4 partial differential equations. We derive it by taking averaged values of gas and fluid velocities on the cross surface flow in the Euler equations (incompressible for the fluid and compressible for the gas). Then, we propose a mathematical kinetic interpretation of this system to finally construct a well-balanced kinetic scheme having the properties of conserving the still water steady state and possesing an energy. Finally, numerical tests on closed uniforms water pipes are performed and discussed.

  1. Effects of Temperature and Flow Rates of Ozone Generator on the DBD by Varying Various Electrical Parameters

    Directory of Open Access Journals (Sweden)

    Lakshminarayanan Vaduganathan

    2012-01-01

    Full Text Available This study rationale a high voltage power supply which varies of (O-5 kV with the variable frequency of 50 Hz-5 kHz. The power supply is used in the dielectric barrier discharge tube for the ionization process to yield concentration of ozone.This setup points the development of small and high efficient ozone generators using corona discharge method. Ozone generation was carried out by varying parameters including voltage, frequency, flow rate and temperature to yield high concentration of ozone. The feeding gas composition greatly affected the ozone generation rate, which was increased in order of ambient air to dry air. With increase in temperature, ozone concentration is increased while ozone generation rate is enhanced. In the experiments, a maximum ozone concentration of approximately 83 ppm is obtained, the peak value of applied voltage of about 5kV and gap of electrode is 4.3mm respectively. Dry air is used as feeding gas with residence time of 10.58 sec."

  2. Effect of Various Sugary Beverages on Salivary pH, Flow Rate, and Oral Clearance Rate amongst Adults

    OpenAIRE

    Rinki Hans; Susan Thomas; Bharat Garla; Dagli, Rushabh J.; Manoj Kumar Hans

    2016-01-01

    Introduction. Diet is a major aetiological factor for dental caries and enamel erosion. This study was undertaken with the aim of assessing the effect of selected locally available beverages on salivary pH, flow rate, and oral clearance rate amongst adults. Materials and Method. This clinical trial comprised 120 subjects. Test beverages undertaken were pepsi, fruit drink, coffee, and sweetened milk. Statistical analysis was carried out using SPSS version 17. Descriptive statistics, one-way AN...

  3. Novel approach for evaluation of air change rate in naturally ventilated occupied spaces based on metabolic CO2 time variation

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Markov, Detelin G.

    2014-01-01

    , air-tight space, constant indoor pressure and temperature. The proposed approach for ACR evaluation can be applied to time intervals with any length, even with varying parameters of both indoor and outdoor air, in which metabolic CO2 generation rate is known and constant. This approach makes possible......IAQ in many residential buildings relies on non-organized natural ventilation. Accurate evaluation of air change rate (ACR) in this situation is difficult due to the nature of the phenomenon - intermittent infiltration-exfiltration periods of mass exchange between the room air and the outdoor air...

  4. Dependence of charge transfer phenomena during solid-air two-phase flow on particle disperser

    Science.gov (United States)

    Tanoue, Ken-ichiro; Suedomi, Yuuki; Honda, Hirotaka; Furutani, Satoshi; Nishimura, Tatsuo; Masuda, Hiroaki

    2012-12-01

    An experimental investigation of the tribo-electrification of particles has been conducted during solid-air two-phase turbulent flow. The current induced in a metal plate by the impact of polymethylmethacrylate (PMMA) particles in a high-speed air flow was measured for two different plate materials. The results indicated that the contact potential difference between the particles and a stainless steel plate was positive, while for a nickel plate it was negative. These results agreed with theoretical contact charge transfer even if not only the particle size but also the kind of metal plate was changed. The specific charge of the PMMA particles during solid-air two-phase flow using an ejector, a stainless steel branch pipe, and a stainless steel straight pipe was measured using a Faraday cage. Although the charge was negative in the ejector, the particles had a positive specific charge at the outlet of the branch pipe, and this positive charge increased in the straight pipe. The charge decay along the flow direction could be reproduced by the charging and relaxation theory. However, the proportional coefficients in the theory changed with the particle size and air velocity. Therefore, an unexpected charge transfer occurred between the ejector and the branch pipe, which could not be explained solely by the contact potential difference. In the ejector, an electrical current in air might have been produced by self-discharge of particles with excess charge between the nickel diffuser in the ejector and the stainless steel nozzle or the stainless steel pipe due to a reversal in the contact potential difference between the PMMA and the stainless steel. The sign of the current depended on the particle size, possibly because the position where the particles impacted depended on their size. When dual coaxial glass pipes were used as a particle disperser, the specific charge of the PMMA particles became more positive along the particle flow direction due to the contact

  5. 40 CFR 53.53 - Test for flow rate accuracy, regulation, measurement accuracy, and cut-off.

    Science.gov (United States)

    2010-07-01

    ... successfully pass the flow rate regulation test, the calculated coefficient of variation for the certified flow... paragraph (g)(3) shall not exceed 2 percent. (4) Flow rate coefficient of variation measurement accuracy. (i) Using the flow rate coefficient of variation indicated by the candidate test sampler at the...

  6. 77 FR 485 - Wind Plant Performance-Public Meeting on Modeling and Testing Needs for Complex Air Flow...

    Science.gov (United States)

    2012-01-05

    ... Testing Needs for Complex Air Flow Characterization AGENCY: Office of Energy Efficiency and Renewable... validation techniques for complex flow phenomena in and around off- shore and on-shore utility-scale wind... in regards to complex flow modeling and experimental validation. Ultimately, research in this...

  7. Effects of oscillating air flow on the rheological properties and clearability of mucous gel simulants.

    Science.gov (United States)

    Tomkiewicz, R P; Biviji, A; King, M

    1994-01-01

    This in vitro study addressed the question of clearance-related changes in the physical properties of mucous gel simulants (MGS) subjected to oscillating air flow. Delineating some of the possible mechanisms of action for the reported beneficial effects of high-frequency chest compression (HFCC) therapy constituted the rationale. The rheological variables measured were spinnability by filancemeter and viscoelasticity (mechanical impedance, G*, and loss tangent, tan delta) by magnetic microrheometry. Two derivative parameters, mucociliary clearability index (MCI) and cough clearability index (CCI), were computed from the rheological variables, based on relationships established from model studies of clearance. Two ranges of air flow oscillation frequencies used previously in animal and clinical studies, i.e., 12-13 Hz or 22-23 Hz, were applied. The measurements were made after application of oscillating air flow for 15, 30 and 60 minutes, and compared with those at baseline and negative control. A significant decrease in log G* with administration of oscillations was observed (p = 0.06 at 30 minutes, p < 0.01 at 60 minutes, for G* measured at 1 rad/s). Spinnability also decreased by 19.3% and 30.7% after 15 minutes; 32.9% and 41.1% after 30 minutes; 36.4% and 50.5% after 60 minutes, for 12 Hz and 22 Hz, respectively (all significantly different from baseline). There was a positive correlation between viscoelasticity and spinnability, and a negative correlation between spinnability and CCI, but no correlation between spinnability and MCI. Oscillating air flow seemed to act as a physical "mucolytic" that affected mostly the cough clearability of the mucus simulant.

  8. Study on law of negative corona discharge in microparticle-air two-phase flow media

    OpenAIRE

    Bo He; Tianwei Li; Yaping Xiu; Heng Zhao; Zongren Peng; Yongpeng Meng

    2016-01-01

    To study the basic law of negative corona discharge in solid particle-air two-phase flow, corona discharge experiments in a needle-plate electrode system at different voltage levels and different wind speed were carried out in the wind tunnel. In this paper, the change law of average current and current waveform were analyzed, and the observed phenomena were systematically explained from the perspectives of airflow, particle charging, and particle motion with the help of PIV (particle image v...

  9. Free-surface Flow Interface And Air-Entrainment Modelling Using OpenFOAM

    OpenAIRE

    Lopes, Pedro

    2013-01-01

    The use of hydraulic structures to control flooding has a history of long practice within civil engineering infrastructure. Hydraulic structures under turbulent flow conditions frequently involve free surface fl ow and interactions between air and water. This can be observed in different kinds of structures, e.g. gullies, manholes or stepped spillways. In this doctoral program, Computational Fluid Dynamics numerical models will be used to simulate...

  10. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, James [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Withers, Charles [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Martin, Eric [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States); Moyer, Neil [Building America Partnership for Improved Residential Construction (BA-PIRC), Cocoa, FL (United States)

    2012-10-01

    This report is a revision of an earlier report titled: Measure Guideline: Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single-Family Homes. Revisions include: Information in the text box on page 1 was revised to reflect the most accurate information regarding classifications as referenced in the 2012 International Residential Code. “Measure Guideline” was dropped from the title of the report. An addition was made to the reference list.

  11. Liquid mean velocity and turbulence in a horizontal air-water bubbly flow

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The liquid phase turbulent structure of an air-water bubbly horizontal flow in a circular pipe has been investigated experimentally. Three-dimensional measurements were implemented with two "X" type probes oriented in different planes, and local liquid-phase velocities and turbulent stresses were simultaneously obtained. Systematic measurements were conducted covering a range of local void fraction from 0 to 11.7%. The important experiment results and parametric trends are summarized and discussed.

  12. Study on the air flow field of the drawing conduit in the spunbonding process

    Directory of Open Access Journals (Sweden)

    Wu Li-Li

    2015-01-01

    Full Text Available The air flow field of the drawing conduit in the spunbonding process has a great effect on the polymer drawing, the filament diameter and orientation. A numerical simulation of the process is carried out, and the results are compared with the experimental data, showing good accuracy of the numerical prediction. This research lays an important foundation for the optimal design of the drawing conduit in the spunbonding process.

  13. High accuracy acoustic relative humidity measurement in duct flow with air

    OpenAIRE

    Cees van der Geld; Twan Wernaart; Mart Grooten; Wilhelm van Schaik

    2010-01-01

    An acoustic relative humidity sensor for air-steam mixtures in duct flow is designed and tested. Theory, construction, calibration, considerations on dynamic response and results are presented. The measurement device is capable of measuring line averaged values of gas velocity, temperature and relative humidity (RH) instantaneously, by applying two ultrasonic transducers and an array of four temperature sensors. Measurement ranges are: gas velocity of 0–12 m/s with an error of ±0.13 m/s, temp...

  14. Spatial flow influence factor: A novel concept for indoor air pollutant control

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    This paper puts forward a novel concept, the spatial flow influence factor (SFIF), which provides a new insight into the airflow structure. This concept is very helpful in the control of indoor air pollutants since: (1) for a given indoor airflow and given sources of volatile organic compounds (VOCs), the optimal arrangement of the VOC sources can easily be obtained; (2) for given positions of VOC sources and occupied regions (or target regions), the optimal indoor airflow pattern or organization can be determined; (3) the SFIF for an indoor space can also be regarded as the indoor air safety index of that space. To illustrate this concept, we present several examples of applying a SFIF to indoor air VOC control.

  15. Experiments probing the influence of air exchange rates on secondary organic aerosols derived from indoor chemistry

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Shields, H.C.

    2003-01-01

    of their particle size distributions. The experiments were performed in a manipulated office setting containing a constant source of d-limonene and an ozone generator that was remotely turned "on" or "off" at 6h intervals. The particle number concentrations were monitored using an optical particle counter...... in these studies, at an air exchange rate of 1.6h $+-1$/ particle number concentration in the 0.1-0.2$mu@m size-range peaked 1.2h after the ozone generator was switched on. In the ensuing 4.8h particle counts increased in successive size-ranges up to the 0.5-0.7$mu@m diameter range. At higher air exchange rates...

  16. Pengaruh Penambahan Glukosa Sebagai Co-substrate dalam Pengolahan Air Limbah Minyak Solar Menggunakan Sistem High Rate Alga Reactor (HRAR)

    OpenAIRE

    Laksmisari Rakhma Putri; Agus Slamet; Joni Hermana

    2014-01-01

    Kandungan minyak dalam air limbah umumnya relatif sulit untuk diuraikan oleh mikroorganisme pada pengolahan air limbah secara biologis. Sistem alga dalam High Rate Alga Reactor (HRAR) telah banyak dikembangkan dan digunakan sebagai pengolah air limbah domestik dan industri. Aplikasi sistem alga dalam HRAR ini dicoba untuk diaplikasikan dalam pengolahan air limbah mengandung minyak solar. Penelitian dilakukan untuk mengkaji kemampuan HRAR dalam menurunkan kandungan minyak solar dengan penambah...

  17. [Estimation of average traffic emission factor based on synchronized incremental traffic flow and air pollutant concentration].

    Science.gov (United States)

    Li, Run-Kui; Zhao, Tong; Li, Zhi-Peng; Ding, Wen-Jun; Cui, Xiao-Yong; Xu, Qun; Song, Xian-Feng

    2014-04-01

    On-road vehicle emissions have become the main source of urban air pollution and attracted broad attentions. Vehicle emission factor is a basic parameter to reflect the status of vehicle emissions, but the measured emission factor is difficult to obtain, and the simulated emission factor is not localized in China. Based on the synchronized increments of traffic flow and concentration of air pollutants in the morning rush hour period, while meteorological condition and background air pollution concentration retain relatively stable, the relationship between the increase of traffic and the increase of air pollution concentration close to a road is established. Infinite line source Gaussian dispersion model was transformed for the inversion of average vehicle emission factors. A case study was conducted on a main road in Beijing. Traffic flow, meteorological data and carbon monoxide (CO) concentration were collected to estimate average vehicle emission factors of CO. The results were compared with simulated emission factors of COPERT4 model. Results showed that the average emission factors estimated by the proposed approach and COPERT4 in August were 2.0 g x km(-1) and 1.2 g x km(-1), respectively, and in December were 5.5 g x km(-1) and 5.2 g x km(-1), respectively. The emission factors from the proposed approach and COPERT4 showed close values and similar seasonal trends. The proposed method for average emission factor estimation eliminates the disturbance of background concentrations and potentially provides real-time access to vehicle fleet emission factors.

  18. Practical Strategies for Stable Operation of HFF-QCM in Continuous Air Flow

    Directory of Open Access Journals (Sweden)

    Siegfried R. Waldvogel

    2013-09-01

    Full Text Available Currently there are a few fields of application using quartz crystal microbalances (QCM. Because of environmental conditions and insufficient resolution of the microbalance, chemical sensing of volatile organic compounds in an open system was as yet not possible. In this study we present strategies on how to use 195 MHz fundamental quartz resonators for a mobile sensor platform to detect airborne analytes. Commonly the use of devices with a resonant frequency of about 10 MHz is standard. By increasing the frequency to 195 MHz the frequency shift increases by a factor of almost 400. Unfortunately, such kinds of quartz crystals tend to exhibit some challenges to obtain a reasonable signal-to-noise ratio. It was possible to reduce the noise in frequency in a continuous air flow of 7.5 m/s to 0.4 Hz [i.e., σ(τ = 2 × 10−9] by elucidating the major source of noise. The air flow in the vicinity of the quartz was analyzed to reduce turbulences. Furthermore, we found a dependency between the acceleration sensitivity and mechanical stress induced by an internal thermal gradient. By reducing this gradient, we achieved reduction of the sensitivity to acceleration by more than one decade. Hence, the resulting sensor is more robust to environmental conditions such as temperature, acceleration and air flow.

  19. Extinction characterization of soot produced by laser ablating carbon fiber composite materials in air flow

    Science.gov (United States)

    Liu, Weiping; Ma, Zhiliang; Zhang, Zhenrong; Zhou, Menglian; Wei, Chenghua

    2015-05-01

    In order to research the dynamic process of energy coupling between an incident laser and a carbon fiber/epoxy resin composite material, an extinction characterization analysis of soot, which is produced by laser ablating and located in an air flow that is tangential to the surface of the composite material, is carried out. By the theory analyses, a relationship of mass extinction coefficient and extinction cross section of the soot is derived. It is obtained that the mass extinction coefficients of soot aggregates are the same as those of the primary particles when they contain only a few primary particles. This conclusion is significant when the soot is located in an air flow field, where the generations of the big soot aggregates are suppressed. A verification experiment is designed. The experiment employs Laser Induced Incandescence technology and laser extinction method for the soot synchronization diagnosis. It can derive a temporal curve of the mass extinction coefficient from the soot concentration and laser transmittance. The experiment results show that the mass extinction coefficient becomes smaller when the air flow velocity is higher. The reason is due to the decrease of the scatter effects of the soot particles. The experiment results agree with the theory analysis conclusion.

  20. Hybridized electromagnetic-triboelectric nanogenerator for scavenging air-flow energy to sustainably power temperature sensors.

    Science.gov (United States)

    Wang, Xue; Wang, Shuhua; Yang, Ya; Wang, Zhong Lin

    2015-04-28

    We report a hybridized nanogenerator with dimensions of 6.7 cm × 4.5 cm × 2 cm and a weight of 42.3 g that consists of two triboelectric nanogenerators (TENGs) and two electromagnetic generators (EMGs) for scavenging air-flow energy. Under an air-flow speed of about 18 m/s, the hybridized nanogenerator can deliver largest output powers of 3.5 mW for one TENG (in correspondence of power per unit mass/volume: 8.8 mW/g and 14.6 kW/m(3)) at a loading resistance of 3 MΩ and 1.8 mW for one EMG (in correspondence of power per unit mass/volume: 0.3 mW/g and 0.4 kW/m(3)) at a loading resistance of 2 kΩ, respectively. The hybridized nanogenerator can be utilized to charge a capacitor of 3300 μF to sustainably power four temperature sensors for realizing self-powered temperature sensor networks. Moreover, a wireless temperature sensor driven by a hybridized nanogenerator charged Li-ion battery can work well to send the temperature data to a receiver/computer at a distance of 1.5 m. This work takes a significant step toward air-flow energy harvesting and its potential applications in self-powered wireless sensor networks.