WorldWideScience

Sample records for air drop

  1. Drop impact splashing and air entrapment

    KAUST Repository

    Thoraval, Marie-Jean

    2013-03-01

    Drop impact is a canonical problem in fluid mechanics, with numerous applications in industrial as well as natural phenomena. The extremely simple initial configuration of the experiment can produce a very large variety of fast and complex dynamics. Scientific progress was made in parallel with major improvements in imaging and computational technologies. Most recently, high-speed imaging video cameras have opened the exploration of new phenomena occurring at the micro-second scale, and parallel computing allowed realistic direct numerical simulations of drop impacts. We combine these tools to bring a new understanding of two fundamental aspects of drop impacts: splashing and air entrapment. The early dynamics of a drop impacting on a liquid pool at high velocity produces an ejecta sheet, emerging horizontally in the neck between the drop and the pool. We show how the interaction of this thin liquid sheet with the air, the drop or the pool, can produce micro-droplets and bubble rings. Then we detail how the breakup of the air film stretched between the drop and the pool for lower impact velocities can produce a myriad of micro-bubbles.

  2. Experimental Setup For Study of Drop Deformation In Air Flow

    Directory of Open Access Journals (Sweden)

    Basalaev Sergey

    2017-01-01

    Full Text Available Experimental study for study of deformation of drops in air flow is considered. Experimental setup includes a module for obtaining the drops, an air flow system and measuring system. Module for formation of drops is in the form of vertically arranged dropper with capillary with the possibility of formation of fixed drops. Air flow supply system comprises an air pump coupled conduit through a regulating valve with a cylindrical pipe, installed coaxially with dropper. The measuring system includes the video camera located with possibility of visualization of drop and the Pitot gage for measurement of flow rate of air located in the output section of branch pipe. This experimental setup allows to provide reliable and informative results of the investigation of deformation of drops in the air flow.

  3. Air-drop blood supply in the French Army.

    Science.gov (United States)

    Javaudin, Olivier; Baillon, A; Varin, N; Martinaud, C; Pouget, T; Civadier, C; Clavier, B; Sailliol, A

    2018-02-12

    Haemorrhagic shock remains the leading cause of preventable death in overseas and austere settings. Transfusion of blood components is critical in the management of this kind of injury. For French naval and ground military units, this supply often takes too long considering the short shelf-life of red blood cell concentrates (RBCs) and the limited duration of transport in cooling containers (five to six days). Air-drop supply could be an alternative to overcome these difficulties on the condition that air-drop does not cause damage to blood units. After a period of study and technical development of packaging, four air-drops at medium and high altitudes were performed with an aircraft of the French Air Force. After this, one air-drop was carried out at medium altitude with 10 RBCs and 10 French lyophilised plasma (FLYP). A second air-drop was performed with a soldier carrying one FLYP unit at 12 000 feet. For these air-drops real blood products were used, and quality control testing and temperature monitoring were performed. The temperatures inside the containers were within the normal ranges. Visual inspection indicated that transfusion packaging and dumped products did not undergo deterioration. The quality control data on RBCs and FLYP, including haemostasis, suggested no difference before and after air-drop. The operational implementation of the air-drop of blood products seems to be one of the solutions for the supply of blood products in military austere settings or far forward on battlefield, allowing safe and early transfusion. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Falling drops skating on a film of air

    Science.gov (United States)

    Rubinstein, Shmuel

    2012-02-01

    When a raindrop hits a window, the surface immediately becomes wet as the water spreads. Indeed, this common observation of a drop impacting a surface is ubiquitous in our everyday experience. I will show that the impact of a drop on a surface is a much richer, more complex phenomenon than our simple experience may suggests: To completely wet the surface the drop must first expel all the air beneath it; however, this does not happened instantaneously. Instead, a very thin film of air, only a few tens of nanometers thick, remains trapped between the falling drop and the surface as the fluid spreads. The thin film of air serves to lubricate the drop enabling the fluid to skate laterally outward at strikingly high velocities. Simultaneously, the wetting fluid spreads inward at a much slower velocity, trapping a bubble of air within the drop. However, these events occur at diminutive length scales and fleeting time scales; therefore, to visualize them we develop new imaging modalities that are sensitive to the behavior right at the surface and that have time resolution superior to even the very fastest cameras. These imaging techniques reveal that the ultimate wetting of the surface occurs through a completely new mechanism, the breakup of the thin film of air through a spinodal like dewetting process that breaks the cylindrical symmetry of the impact and drives an anomalously rapid spreading of a wetting front. These results are in accord with recent theoretical predictions and challenge the prevailing paradigm in which contact between the liquid and solid occurs immediately, and spreading is dominated by the dynamics of a single contact line.

  5. Air Entrapment and Drop Formation in Piezo Inkjet Printing

    NARCIS (Netherlands)

    van der Bos, J.A.

    2011-01-01

    Piezo drop-on-demand (DOD) inkjet printers are used in an increasing number of applications for their reliable deposition of droplets onto a substrate. Droplets of a few picoliters are ejected from an ink jet nozzle at a frequency of up to 50 kHz. However, entrapment of an air microbubble into the

  6. Impact of ultra-viscous drops: air-film gliding and extreme wetting

    KAUST Repository

    Langley, Kenneth; Li, Erqiang; Thoroddsen, Sigurdur T

    2017-01-01

    water drop, the viscous-dominated flow in the thin air layer counteracts the inertia of the drop liquid. For highly viscous drops the viscous stresses within the liquid also affect the interplay between the drop and the gas. Here the drop also forms a

  7. Air Flow and Pressure Drop Measurements Across Porous Oxides

    Science.gov (United States)

    Fox, Dennis S.; Cuy, Michael D.; Werner, Roger A.

    2008-01-01

    This report summarizes the results of air flow tests across eight porous, open cell ceramic oxide samples. During ceramic specimen processing, the porosity was formed using the sacrificial template technique, with two different sizes of polystyrene beads used for the template. The samples were initially supplied with thicknesses ranging from 0.14 to 0.20 in. (0.35 to 0.50 cm) and nonuniform backside morphology (some areas dense, some porous). Samples were therefore ground to a thickness of 0.12 to 0.14 in. (0.30 to 0.35 cm) using dry 120 grit SiC paper. Pressure drop versus air flow is reported. Comparisons of samples with thickness variations are made, as are pressure drop estimates. As the density of the ceramic material increases the maximum corrected flow decreases rapidly. Future sample sets should be supplied with samples of similar thickness and having uniform surface morphology. This would allow a more consistent determination of air flow versus processing parameters and the resulting porosity size and distribution.

  8. Skating on a Film of Air: Drops Impacting on a Surface

    Science.gov (United States)

    Kolinski, John M.; Rubinstein, Shmuel M.; Mandre, Shreyas; Brenner, Michael P.; Weitz, David A.; Mahadevan, L.

    2012-02-01

    The commonly accepted description of drops impacting on a surface typically ignores the essential role of the air that is trapped between the impacting drop and the surface. Here we describe a new imaging modality that is sensitive to the behavior right at the surface. We show that a very thin film of air, only a few tens of nanometers thick, remains trapped between the falling drop and the surface as the drop spreads. The thin film of air serves to lubricate the drop enabling the fluid to skate on the air film laterally outward at surprisingly high velocities, consistent with theoretical predictions. Eventually this thin film of air breaks down as the fluid wets the surface via a spinodal-like mechanism. Our results show that the dynamics of impacting drops are much more complex than previously thought, with a rich array of unexpected phenomena that require rethinking classic paradigms.

  9. Impact of ultra-viscous drops: air-film gliding and extreme wetting

    KAUST Repository

    Langley, Kenneth

    2017-01-23

    A drop impacting on a solid surface must push away the intervening gas layer before making contact. This entails a large lubricating air pressure which can deform the bottom of the drop, thus entrapping a bubble under its centre. For a millimetric water drop, the viscous-dominated flow in the thin air layer counteracts the inertia of the drop liquid. For highly viscous drops the viscous stresses within the liquid also affect the interplay between the drop and the gas. Here the drop also forms a central dimple, but its outer edge is surrounded by an extended thin air film, without contacting the solid. This is in sharp contrast with impacts of lower-viscosity drops where a kink in the drop surface forms at the edge of the central disc and makes a circular contact with the solid. Larger drop viscosities make the central air dimple thinner. The thin outer air film subsequently ruptures at numerous random locations around the periphery, when it reaches below 150 nm thickness. This thickness we measure using high-speed two-colour interferometry. The wetted circular contacts expand rapidly, at orders of magnitude larger velocities than would be predicted by a capillary-viscous balance. The spreading velocity of the wetting spots is independent of the liquid viscosity. This may suggest enhanced slip of the contact line, assisted by rarefied-gas effects, or van der Waals forces in what we call extreme wetting. Myriads of micro-bubbles are captured between the local wetting spots.

  10. Miniaturized Air Dropped Sensors for Environmental Monitoring of Heavy Metals in Water, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This NASA SBIR program would develop air-dropped wireless networked sensors using miniaturized chemical field effect transistors (ChemFET) for the detection and...

  11. Numerical modeling of aerosol particles scavenging by drops as a process of air depollution

    OpenAIRE

    Cherrier , Gaël

    2017-01-01

    This PhD-Thesis is dedicated to the numerical modeling of aerosol particles scavenging by drops. Investigated situations are about aerosol particles of aerodynamic diameter ranging from 1 nm to 100 µm captured in the air by water drops of diameter varying between 80 µm and 600 µm, with corresponding droplet Reynolds number ranging between 1 and 100. This air depollution modeling is achieved in two steps. The first step consists in obtaining a scavenging kernel predicting the flow rate of aero...

  12. An airbag for drops: high speed interferometry studies of air film lubrication in drop impact

    NARCIS (Netherlands)

    de Ruiter, J.

    2014-01-01

    The impact of droplets on solid surfaces is of wide-spread relevance in for example pesticide spraying, fluid coating, and ink-jet printing. The impact process includes the formation and spreading of an air film between the droplet and the surface before the droplet actually touches the surface.

  13. Monitoring Volcanoes by Use of Air-Dropped Sensor Packages

    Science.gov (United States)

    Kedar, Sharon; Rivellini, Tommaso; Webb, Frank; Blaes, Brent; Bracho, Caroline; Lockhart, Andrew; McGee, Ken

    2003-01-01

    Sensor packages that would be dropped from airplanes have been proposed for pre-eruption monitoring of physical conditions on the flanks of awakening volcanoes. The purpose of such monitoring is to gather data that could contribute to understanding and prediction of the evolution of volcanic systems. Each sensor package, denoted a volcano monitoring system (VMS), would include a housing with a parachute attached at its upper end and a crushable foam impact absorber at its lower end (see figure). The housing would contain survivable low-power instrumentation that would include a Global Positioning System (GPS) receiver, an inclinometer, a seismometer, a barometer, a thermometer, and CO2 and SO2 analyzers. The housing would also contain battery power, control, data-logging, and telecommunication subsystems. The proposal for the development of the VMS calls for the use of commercially available sensor, power, and telecommunication equipment, so that efforts could be focused on integrating all of the equipment into a system that could survive impact and operate thereafter for 30 days, transmitting data on the pre-eruptive state of a target volcano to a monitoring center. In a typical scenario, VMSs would be dropped at strategically chosen locations on the flanks of a volcano once the volcano had been identified as posing a hazard from any of a variety of observations that could include eyewitness reports, scientific observations from positions on the ground, synthetic-aperture-radar scans from aircraft, and/or remote sensing from aboard spacecraft. Once dropped, the VMSs would be operated as a network of in situ sensors that would transmit data to a local monitoring center. This network would provide observations as part of an integrated volcano-hazard assessment strategy that would involve both remote sensing and timely observations from the in situ sensors. A similar strategy that involves the use of portable sensors (but not dropping of sensors from aircraft) is

  14. Forced-air warming discontinued: periprosthetic joint infection rates drop

    Directory of Open Access Journals (Sweden)

    Scott D. Augustine

    2017-06-01

    Full Text Available Several studies have shown that the waste heat from forced-air warming (FAW escapes near the floor and warms the contaminated air resident near the floor. The waste heat then forms into convection currents that rise up and contaminate the sterile field above the surgical table. It has been shown that a single airborne bacterium can cause a periprosthetic joint infection (PJI following joint replacement surgery. We retrospectively compared PJI rates during a period of FAW to a period of air-free conductive fabric electric warming (CFW at three hospitals. Surgical and antibiotic protocols were held constant. The pooled multicenter data showed a decreased PJI rate of 78% following the discontinuation of FAW and a switch to air-free CFW (n=2034; P=0.002. The 78% reduction in joint implant infections observed when FAW was discontinued suggests that there is a link between the waste FAW heat and PJIs.

  15. Spume Drops: Their Potential Role in Air-Sea Gas Exchange

    Science.gov (United States)

    Monahan, Edward C.; Staniec, Allison; Vlahos, Penny

    2017-12-01

    After summarizing the time scales defining the change of the physical properties of spume and other droplets cast up from the sea surface, the time scales governing drop-atmosphere gas exchange are compared. Following a broad review of the spume drop production functions described in the literature, a subset of these functions is selected via objective criteria, to represent typical, upper bound, and lower bound production functions. Three complementary mechanisms driving spume-atmosphere gas exchange are described, and one is then used to estimate the relative importance, over a broad range of wind speeds, of this spume drop mechanism compared to the conventional, diffusional, sea surface mechanism in air-sea gas exchange. While remaining uncertainties in the wind dependence of the spume drop production flux, and in the immediate sea surface gas flux, preclude a definitive conclusion, the findings of this study strongly suggest that, at high wind speeds (>20 m s-1 for dimethyl sulfide and >30 m s-1 for gases such a carbon dioxide), spume drops do make a significant contribution to air-sea gas exchange.Plain Language SummaryThis paper evaluates the existing spume drop generation functions available to date and selects a reasonable upper, lower and mid range function that are reasonable for use in air sea exchange models. Based on these the contribution of spume drops to overall air sea gas exchange at different wind speeds is then evaluated to determine the % contribution of spume. Generally below 20ms-1 spume drops contribute <1% of gas exchange but may account for a significant amount of gas exchange at higher wind speeds.

  16. Double Contact During Drop Impact on a Solid Under Reduced Air Pressure

    KAUST Repository

    Li, Erqiang

    2017-11-20

    Drops impacting on solid surfaces entrap small bubbles under their centers, owing to the lubrication pressure which builds up in the thin intervening air layer. We use ultrahigh-speed interference imaging, at 5 Mfps, to investigate how this air layer changes when the ambient air pressure is reduced below atmospheric. Both the radius and the thickness of the air disc become smaller with reduced air pressure. Furthermore, we find the radial extent of the air disc bifurcates, when the compressibility parameter exceeds similar to 25. This bifurcation is also imprinted onto some of the impacts, as a double contact. In addition to the central air disc inside the first ring contact, this is immediately followed by a second ring contact, which entraps an outer toroidal strip of air, which contracts into a ring of bubbles. We find this occurs in a regime where Navier slip, due to rarefied gas effects, enhances the rate gas can escape from the path of the droplet.

  17. The air bubble entrapped under a drop impacting on a solid surface

    Science.gov (United States)

    Thoroddsen, S. T.; Etoh, T. G.; Takehara, K.; Ootsuka, N.; Hatsuki, Y.

    2005-12-01

    We present experimental observations of the disk of air caught under a drop impacting onto a solid surface. By imaging the impact through an acrylic plate with an ultra-high-speed video camera, we can follow the evolution of the air disk as it contracts into a bubble under the centre of the drop. The initial size and contraction speed of the disk were measured for a range of impact Weber and Reynolds numbers. The size of the initial disk is related to the bottom curvature of the drop at the initial contact, as measured in free-fall. The initial contact often leaves behind a ring of micro-bubbles, marking its location. The air disk contracts at a speed comparable to the corresponding air disks caught under a drop impacting onto a liquid surface. This speed also seems independent of the wettability of the liquid, which only affects the azimuthal shape of the contact line. For some impact conditions, the dynamics of the contraction leaves a small droplet at the centre of the bubble. This arises from a capillary wave propagating from the edges of the contracting disk towards the centre. As the wave converges its amplitude grows until it touches the solid substrate, thereby pinching off the micro-droplet at the plate, in the centre of the bubble. The effect of increasing liquid viscosity is to slow down the contraction speed and to produce a more irregular contact line leaving more micro-bubbles along the initial ring.

  18. Can an egg-dropping race enhance students' conceptual understanding of air resistance?

    Science.gov (United States)

    Lee, Yeung Chung; Kwok, Ping Wai

    2009-03-01

    Children are familiar with situations in which air resistance plays an important role, such as parachuting. However, it is not known whether they have any understanding about the concept of air resistance, how air resistance affects falling objects, and the differential effect it has on different objects. The literature reveals that there are misconceptions even among undergraduate physics students about how air resistance is affected by the mass and size of falling objects. A study was carried out in Hong Kong to explore Grade 6 students' (aged 11-12) conceptions of air resistance with respect to falling objects of different size and mass, and whether the subjects showed any change in their conceptual understanding after participating in an egg-dropping race. The findings show that students had a wide range of conceptions, which could be characterized into different levels. Their conceptions seem rather robust, and more structured interventions are required to bring about changes in students' conceptual understanding of air resistance.

  19. Bag breakup of low viscosity drops in the presence of a continuous air jet

    International Nuclear Information System (INIS)

    Kulkarni, V.; Sojka, P. E.

    2014-01-01

    This work examines the breakup of a single drop of various low viscosity fluids as it deforms in the presence of continuous horizontal air jet. Such a fragmentation typically occurs after the bulk liquid has disintegrated upon exiting the atomizer and is in the form of an ensemble of drops which undergo further breakup. The drop deformation and its eventual disintegration is important in evaluating the efficacy of a particular industrial process, be it combustion in automobile engines or pesticide spraying in agricultural applications. The interplay between competing influences of surface tension and aerodynamic disruptive forces is represented by the Weber number, We, and Ohnesorge number, Oh, and used to describe the breakup morphology. The breakup pattern considered in our study corresponds to that of a bag attached to a toroidal ring which occurs from ∼12 2 ), is found to match well with experimental data ([L.-P. Hsiang and G. M. Faeth, Int. J. Multiphase Flow 21(4), 545–560 (1995)] and [R. S. Brodkey, “Formation of drops and bubbles,” in The Phenomena of Fluid Motions (Addison-Wesley, Reading, 1967)]). An exponential growth in the radial extent of the deformed drop and the streamline dimension of the bag is predicted by a theoretical model and confirmed by experimental findings. These quantities are observed to strongly depend on We. However, their dependence on Oh is weak

  20. Investigation of the quality of stored red blood cells after simulated air drop in the maritime environment.

    Science.gov (United States)

    Meli, Athinoula; Hancock, Vicky; Doughty, Heidi; Smedley, Steve; Cardigan, Rebecca; Wiltshire, Michael

    2018-02-01

    Maritime medical capability may be compromised by blood resupply. Air-dropped red blood cells (RBCs) is a possible mitigation factor. This study set out to evaluate RBC storage variables after a simulated parachute air drop into the sea, as limited data exist. The air load construction for the air drop of blood was subject to static drop assessment to simulate a worst-case parachute drop scenario. One control and two test Golden Hour shipping containers were each packaged with 10 RBC units. The control box was not dropped; Test Boxes 1 and 2 were further reinforced with waterproof boxes and underwent a simulated air drop on Day 7 or Day 8 postdonation, respectively. One day after the drop and once a week thereafter until Day 43 of storage, RBCs from each box were sampled and tested for full blood counts, hemolysis, adenosine triphosphate, 2,3-diphosphoglycerate, pH, extracellular potassium, glucose, lactate, deformability, and RBC microvesicles. The packaging configuration completed the air drop with no water ingress or physical damage. All units met UK specifications for volume, hemoglobin, and hemolysis. There were no significant differences for any of the variables studied between RBCs in the control box compared to RBCs in Test Boxes 1 and 2 combined over storage. The test proved that the packaging solution and the impact of a maritime air drop as performed in this study, on Day 7 or Day 8 postdonation, did not affect the in vitro quality of RBCs in SAGM over storage for 35 days. © 2017 AABB.

  1. Bag breakup of low viscosity drops in the presence of a continuous air jet

    Energy Technology Data Exchange (ETDEWEB)

    Kulkarni, V., E-mail: vkulkarn@purdue.edu; Sojka, P. E. [Maurice J. Zucrow Laboratories, Purdue University, West Lafayette, Indiana 47906 (United States)

    2014-07-15

    This work examines the breakup of a single drop of various low viscosity fluids as it deforms in the presence of continuous horizontal air jet. Such a fragmentation typically occurs after the bulk liquid has disintegrated upon exiting the atomizer and is in the form of an ensemble of drops which undergo further breakup. The drop deformation and its eventual disintegration is important in evaluating the efficacy of a particular industrial process, be it combustion in automobile engines or pesticide spraying in agricultural applications. The interplay between competing influences of surface tension and aerodynamic disruptive forces is represented by the Weber number, We, and Ohnesorge number, Oh, and used to describe the breakup morphology. The breakup pattern considered in our study corresponds to that of a bag attached to a toroidal ring which occurs from ∼12 < We < ∼16. We aim to address several issues connected with this breakup process and their dependence on We and Oh which have been hitherto unexplored. The We boundary at which breakup begins is theoretically determined and the expression obtained, We=12(1+2/3Oh{sup 2}), is found to match well with experimental data ([L.-P. Hsiang and G. M. Faeth, Int. J. Multiphase Flow 21(4), 545–560 (1995)] and [R. S. Brodkey, “Formation of drops and bubbles,” in The Phenomena of Fluid Motions (Addison-Wesley, Reading, 1967)]). An exponential growth in the radial extent of the deformed drop and the streamline dimension of the bag is predicted by a theoretical model and confirmed by experimental findings. These quantities are observed to strongly depend on We. However, their dependence on Oh is weak.

  2. The impact of mass flow and masking on the pressure drop of air filter in heavy-duty diesel engine

    Directory of Open Access Journals (Sweden)

    Gorji-Bandpy Mofid

    2012-04-01

    Full Text Available This paper presents a computational fluid dynamics (CFD calculation approach to predict and evaluate the impact of the mass-flow inlet on the pressure drop of turbocharger`s air filtfer in heavy-duty diesel engine. The numerical computations were carried out using a commercial CFD program whereas the inlet area of the air filter consisted of several holes connected to a channel. After entering through the channel, the air passes among the holes and enters the air filter. The effect of masking holes and hydraulic diameter is studied and investigated on pressure drop. The results indicate that pressure drop increase with decreasing of hydraulic diameter and masking of the holes has considerable affect on the pressure drop.

  3. Heat transfer and pressure drop for air-water mixtures in an isoflux vertical annulus

    International Nuclear Information System (INIS)

    Khattab, M.; El-Sallak, M.; Morcos, S.M.; Salama, A.

    1996-01-01

    Heat transfer and pressure drop in flows of air-water mixtures have been investigated experimentally in an isoflux vertical annulus. The superficial liquid Reynolds number, as a reference parameter, varied from 4500 to 30 000, at different values of gas-to-liquid superficial velocity ratios up to 20 and surface heat fluxes from 50 to 240 kW/m 2 . Enhancement of the two-phase heat transfer coefficient is pronounced particularly at low liquid superficial velocities. The results are correlated and compared with some models of two-phase, two-component flows for air-water mixtures within their range of validity. Satisfactory agreement is obtained from the trend of the experimental data. (orig.) [de

  4. Experimental study of heat transfer and pressure drop characteristics of air/water and air-steam/water heat exchange in a polymer compact heat exchanger

    NARCIS (Netherlands)

    Cheng, L.; Geld, van der C.W.M.

    2005-01-01

    Experiments of heat transfer and pressure drop in a polymer compact heat exchanger made of PolyVinyliDene-Fluoride were conducted under various conditions for air/water heat exchange and air-steam/water heat exchange, respectively. The overall heat transfer coefficients of air-steam/water heat

  5. Washable antimicrobial polyester/aluminum air filter with a high capture efficiency and low pressure drop.

    Science.gov (United States)

    Choi, Dong Yun; Heo, Ki Joon; Kang, Juhee; An, Eun Jeong; Jung, Soo-Ho; Lee, Byung Uk; Lee, Hye Moon; Jung, Jae Hee

    2018-06-05

    Here, we introduce a reusable bifunctional polyester/aluminum (PET/Al) air filter for the high efficiency simultaneous capture and inactivation of airborne microorganisms. Both bacteria of Escherichia coli and Staphylococcus epidermidis were collected on the PET/Al filter with a high efficiency rate (∼99.99%) via the electrostatic interactions between the charged bacteria and fibers without sacrificing pressure drop. The PET/Al filter experienced a pressure drop approximately 10 times lower per thickness compared with a commercial high-efficiency particulate air filter. As the Al nanograins grew on the fibers, the antimicrobial activity against airborne E. coli and S. epidermidis improved to ∼94.8% and ∼96.9%, respectively, due to the reinforced hydrophobicity and surface roughness of the filter. Moreover, the capture and antimicrobial performances were stably maintained during a cyclic washing test of the PET/Al filter, indicative of its reusability. The PET/Al filter shows great potential for use in energy-efficient bioaerosol control systems suitable for indoor environments. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Drop size distribution evolution after continuous or intermittent injection of butane or propane in a confined air flow

    NARCIS (Netherlands)

    Knubben, G.; Geld, van der C.W.M.

    1999-01-01

    Drop size distributions and velocities have been measured of n-butane and propane sprays, rapidly evaporating in air flowing at constant velocity, 15 m/s typically. The inlet air temperature has been found to be of main importance in the evaporation process. After a period of the order of the

  7. Time-resolved imaging of a compressible air disc under a drop impacting on a solid surface

    KAUST Repository

    Li, Erqiang; Thoroddsen, Sigurdur T

    2015-01-01

    When a drop impacts on a solid surface, its rapid deceleration is cushioned by a thin layer of air, which leads to the entrapment of a bubble under its centre. For large impact velocities the lubrication pressure in this air layer becomes large

  8. Time-resolved imaging of a compressible air disc under a drop impacting on a solid surface

    KAUST Repository

    Li, Erqiang

    2015-09-07

    When a drop impacts on a solid surface, its rapid deceleration is cushioned by a thin layer of air, which leads to the entrapment of a bubble under its centre. For large impact velocities the lubrication pressure in this air layer becomes large enough to compress the air. Herein we use high-speed interferometry, with 200 ns time-resolution, to directly observe the thickness evolution of the air layer during the entire bubble entrapment process. The initial disc radius and thickness shows excellent agreement with available theoretical models, based on adiabatic compression. For the largest impact velocities the air is compressed by as much as a factor of 14. Immediately following the contact, the air disc shows rapid vertical expansion. The radial speed of the surface minima just before contact, can reach 50 times the impact velocity of the drop.

  9. Pressure drop in packed beds of spherical particles at ambient and elevated air temperatures

    Directory of Open Access Journals (Sweden)

    Pešić Radojica

    2015-01-01

    Full Text Available The aim of this work was the experimental investigation of the particle friction factor for air flow through packed bed of particles at ambient and elevated temperatures. The experiments were performed by measuring the pressure drop across the packed bed, heated to the desired temperature by hot air. Glass spherical particles of seven different diameters were used. The temperature range of the air flowing through the packed bed was from 20ºC to 350ºC and the bed voidages were from 0.3574 to 0.4303. The obtained results were correlated using a number of available literature correlations. The overall best fit of all of the experimental data was obtained using Ergun [1] equation, with mean absolute deviation of 10.90%. Ergun`s equation gave somewhat better results in correlating the data at ambient temperature with mean absolute deviation of 9.77%, while correlation of the data at elevated temperatures gave mean absolute deviation of 12.38%. The vast majority of the correlations used gave better results when applied to ambient temperature data than to the data at elevated temperatures. Based on the results obtained, Ergun [1] equation is proposed for friction factor calculation both at ambient and at elevated temperatures. [Projekat Ministarstva nauke Republike Srbije, br. ON172022

  10. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles

    Science.gov (United States)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  11. Study of heat transfer and pressure drop characteristics of air heat exchanger using PCM for free cooling applications

    Directory of Open Access Journals (Sweden)

    Kalaiselvam Sivakumar

    2016-01-01

    Full Text Available Free cooling is the process of storing the cool energy available in the night ambient air and using it during the day. The heat exchanger used in this work is a modular type which is similar to the shell and tube heat exchanger. The shell side is filled with Phase Change Materials (PCM and air flow is through the tubes in the module. The modules of the heat exchanger are arranged one over other with air spacers in between each module. The air space provided in between the module in-creases the retention time of the air for better heat transfer. Transient Computational Fluid Dynamics modeling is carried out for single air passage in a modular heat exchanger. It shows that the PCM phase transition time in the module in which different shape of fins is adopted. The module with rectangular fins has 17.2 % reduction in solidification compared with the plain module. Then steady state numerical analysis is accomplished to the whole module having the fin of high heat transfer, so that pressure drop, flow and thermal characteristics across the module and the air spacers are deter-mined for various air inlet velocities of 0.4 to 1.6 m/s. To validate the computational results, experiments are carried out and the agreement was found to be good.

  12. Environmental Assessment of Proposed White Lakes Drop Zones for Kirtland Air Force Base

    Science.gov (United States)

    2005-09-01

    measuring 2’ X 3’, filled with rubber ballast (each weighing approximately 45 pounds [lbs]). Half of these drops would occur with parachutes...Santa Fe, NM Rayo McCollough Data Services Manager New Mexico Natural Heritage Program UNM Biology Dept. University of New Mexico Terry...5270 Mr. Rayo McCollough Information Coordinator Natural Heritage New Mexico UNM Biology Department MSC03 2020 1 University of New Mexico

  13. Double Contact During Drop Impact on a Solid Under Reduced Air Pressure

    KAUST Repository

    Li, Erqiang; Langley, Kenneth R.; Tian, Yuan Si; Hicks, Peter D.; Thoroddsen, Sigurdur T

    2017-01-01

    the compressibility parameter exceeds similar to 25. This bifurcation is also imprinted onto some of the impacts, as a double contact. In addition to the central air disc inside the first ring contact, this is immediately followed by a second ring contact, which

  14. Hanging drop: an in vitro air toxic exposure model using human lung cells in 2D and 3D structures.

    Science.gov (United States)

    Liu, Faye F; Peng, Cheng; Escher, Beate I; Fantino, Emmanuelle; Giles, Cindy; Were, Stephen; Duffy, Lesley; Ng, Jack C

    2013-10-15

    Using benzene as a candidate air toxicant and A549 cells as an in vitro cell model, we have developed and validated a hanging drop (HD) air exposure system that mimics an air liquid interface exposure to the lung for periods of 1h to over 20 days. Dose response curves were highly reproducible for 2D cultures but more variable for 3D cultures. By comparing the HD exposure method with other classically used air exposure systems, we found that the HD exposure method is more sensitive, more reliable and cheaper to run than medium diffusion methods and the CULTEX(®) system. The concentration causing 50% of reduction of cell viability (EC50) for benzene, toluene, p-xylene, m-xylene and o-xylene to A549 cells for 1h exposure in the HD system were similar to previous in vitro static air exposure. Not only cell viability could be assessed but also sub lethal biological endpoints such as DNA damage and interleukin expressions. An advantage of the HD exposure system is that bioavailability and cell concentrations can be derived from published physicochemical properties using a four compartment mass balance model. The modelled cellular effect concentrations EC50cell for 1h exposure were very similar for benzene, toluene and three xylenes and ranged from 5 to 15 mmol/kgdry weight, which corresponds to the intracellular concentration of narcotic chemicals in many aquatic species, confirming the high sensitivity of this exposure method. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. Filter for underground mining for suction of preferably full cut and part cut machines, to be provided with preheated air, to avoid dropping below the dew point

    Energy Technology Data Exchange (ETDEWEB)

    Hoelter, H.

    1976-10-28

    Particularly when cutting hard rock, the cutting room to be provided with suction is wetted with water from nozzles, which, when sucking out air containing dust with high humidity leads to encrustation in the filter cloth. In order to avoid this, it is proposed that the air should be heated, using heat from the motor driving the ventilator, so that one avoids dropping below the dew point in the filter.

  16. Mixture effects of benzene, toluene, ethylbenzene, and xylenes (BTEX) on lung carcinoma cells via a hanging drop air exposure system.

    Science.gov (United States)

    Liu, Faye F; Escher, Beate I; Were, Stephen; Duffy, Lesley; Ng, Jack C

    2014-06-16

    A recently developed hanging drop air exposure system for toxicity studies of volatile chemicals was applied to evaluate the cell viability of lung carcinoma A549 cells after 1 and 24 h of exposure to benzene, toluene, ethylbenzene, and xylenes (BTEX) as individual compounds and as mixtures of four or six components. The cellular chemical concentrations causing 50% reduction of cell viability (EC50) were calculated using a mass balance model and came to 17, 12, 11, 9, 4, and 4 mmol/kg cell dry weight for benzene, toluene, ethylbenzene, m-xylene, o-xylene, and p-xylene, respectively, after 1 h of exposure. The EC50 decreased by a factor of 4 after 24 h of exposure. All mixture effects were best described by the mixture toxicity model of concentration addition, which is valid for chemicals with the same mode of action. Good agreement with the model predictions was found for benzene, toluene, ethylbenzene, and m-xylene at four different representative fixed concentration ratios after 1 h of exposure, but lower agreement with mixture prediction was obtained after 24 h of exposure. A recreated car exhaust mixture, which involved the contribution of the more toxic p-xylene and o-xylene, yielded an acceptable, but lower quality, prediction as well.

  17. Environmental Assessment/Baseline Survey to Establish New Drop Zone (DZ) in Cadiz, Ohio, Pittsburgh Air Reserve Station, Coraopolis, Pennsylvania

    Science.gov (United States)

    2009-03-01

    International Airport LATN Low Altitude Tactical Navigation MACA Military Airspace Collision Avoidance µg/m3 microgram per cubic meter MSL mean sea...Drop Zone in Cadiz, OH The 911 AW has a Military Airspace Collision Avoidance ( MACA ) plan that includes procedures for clearing local airspace prior...existing MACA plan to include activities at the new drop zone. The MACA includes placing a radio call into the local airport to clear local traffic

  18. Numerical study on pressure drop and heat transfer for designing sodium-to-air heat exchanger tube banks on advanced sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Kang, Hie-Chan; Eoh, Jae-Hyuk; Cha, Jae-Eun; Kim, Seong-O.

    2013-01-01

    Highlights: ► Numerical simulation for the heat flow characteristic of the sodium-to-air heat exchanger (AHX) and tube banks. ► Parallelogram tube banks showed almost similar thermal and hydraulic characteristics to the rectangular tube banks. ► Pressure drop and heat transfer of the staggered and rectangular tube banks compared with Zhukauskas’ correlation. ► AHX was modeled as porous media and suggested design guide to enhance the performance. - Abstract: A numerical study is performed to investigate the thermal and hydraulic characteristics and build up design model of the AHX (sodium-to-air heat exchanger) unit of a sodium-cooled fast reactor. Helical-coiled tube banks in the AHX are modeled as porous media and simulated heat and momentum transfer by a commercial program. Two-dimensional flow characteristic appears differently at the inlet region of the AHX annulus, and the required length of the inlet region is shorter for an inlet having a 45 degree chamber or a round shape than for one with a perpendicular corner. Pressure drop and heat transfer coefficient for rectangular, parallelogram and staggered tube banks as the main components of the AHX are evaluated and discussed. Pressure drop and heat transfer shows similar trends and underestimated values, respectively, when compared with Zhukauskas empirical correlations. The parallelogram tube bank shows similar results to the rectangular arrangement.

  19. Pressure drop and heat transfer in the sodium to air heat exchanger tube banks on advanced sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Kang, H.; Eoh, J.; Cha, J.; Kim, S.

    2011-01-01

    A numerical study was performed to investigate the thermal and hydraulic characteristics and build up design model of the AHX (sodium-to-air heat exchanger) unit of a sodium-cooled fast reactor. Helical-coiled tube banks in the AHX were modeled as porous media and simulated heat and momentum transfer. Two-dimensional flow characteristic appeared at the most region of AHX annulus. Pressure drop and heat transfer coefficient for rectangular, parallelogram and staggered tube banks as the main components of the AHX were evaluated and compared with Zhukauskas empirical correlations. (author)

  20. How private vehicle use increases ambient air pollution concentrations at schools during the morning drop-off of children

    Science.gov (United States)

    Adams, Matthew D.; Requia, Weeberb J.

    2017-09-01

    A child's exposure to environmental pollutants can have life-long health effects. Thus it is critical to understand the potential exposure pathways. In this paper, we examine the increase in ambient PM2.5 concentrations at schools from private vehicle use for dropping children off at school. In North America, students are commonly driven to school in a private vehicle. Additionally, students walk or cycle, or take a school bus. Our vehicle surveys recorded between 23 and 116 personal vehicles at 25 schools, where enrolment ranged from 160 to 765 students. We fit a linear regression model to predict the number of vehicles at schools we did not observe within our study area, which explained 57% of the variation in our surveys. A microsimulation traffic model was created for each of the 86 schools we studied. Outputs from the traffic model were used to determine the emissions generated at each school. PM2.5 emissions varied from 0.14 to 6.38 g. Lastly, we dispersed the emissions produced by private vehicles dropping off students, which are emissions generated by unnecessary trips because students further than walking distance are provided transportation by the school board. At the drop-off location in front of the school, we found ambient concentration increases of at least 5 μg/m3, 10 μg/m3, 25 μg/m3 and 50 μg/m3 during 16.8%, 7.6%, 2.0% and 0.5% of the mornings, respectively. This research was conducted in a medium-sized North American city and should allow transferability to similar cities. We conclude that the use of private vehicles can significantly increase local concentrations, regardless of background conditions.

  1. Drop trampoline

    Science.gov (United States)

    Chantelot, Pierre; Coux, Martin; Clanet, Christophe; Quere, David

    2017-11-01

    Superhydrophobic substrates inspired from the lotus leaf have the ability to reflect impacting water drops. They do so very efficiently and contact lasts typically 10 ms for millimetric droplets. Yet unlike a lotus leaf most synthetic substrates are rigid. Focusing on the interplay between substrate flexibility and liquid repellency might allow us to understand the dynamic properties of natural surfaces. We perform liquid marbles impacts at velocity V onto thin ( 0.01 mm) stretched circular PDMS membranes. We obtain contact time reductions of up to 70%. The bouncing mechanism is drastically modified compared to that on a rigid substrate: the marble leaves the substrate while it is still spread in a disk shape as it is kicked upwards by the membrane. We show that the bouncing is controlled by an interplay between the dynamics of the drop and the membrane.

  2. Performance computation of window air conditioner with very low GWP near azeotropic refrigerant mixtures as a drop in Substitutes to R22

    Directory of Open Access Journals (Sweden)

    Vali Shaik Sharmas

    2018-01-01

    Full Text Available The principal objective of the present study is to compute the thermodynamic performance of window air conditioner based on standard vapour compression refrigeration cycle using R22, R407C and nineteen refrigerant mixtures. In this work nineteen R290/R1270 blends at different compositions are developed. A MATLAB code is developed to compute the thermodynamic performance parameters of all the studied refrigerants at condensing and evaporating temperatures of 54.4°C and 7.2°C respectively. The performance parameters are cooling effect, compressor work, COP, compressor discharge temperature, power per ton of refrigeration and volumetric cooling capacity respectively. Analytical results revealed that COP of new binary mixture R290/R1270 (90/10 by mass % is 2.82% higher among R22, R407C and nineteen studied refrigerants. Energy required by the compressor per ton of refrigeration for R290/R1270 (90/10 by mass % is 2.73% lower among R22, R407C and nineteen studied fluids. The discharge temperature of the compressor for all the nineteen investigated blends are reduced by 6.0-8.9oC compared to R22. Overall thermodynamic performance of window air conditioner with R290/R1270 (90/10 by mass % is better than R22 with significant savings in energy consumption and hence it is an energy efficient ecofriendly refrigerant mixture as a drop in substitute to R22.

  3. Pressure drop and heat transfer of a mercury single-phase flow and an air-mercury two-phase flow in a helical tube under a strong magnetic field

    International Nuclear Information System (INIS)

    Takahashi, Minoru; Momozaki, Yoichi

    2000-01-01

    For the reduction of a large magneto-hydrodynamic (MHD) pressure drop of a liquid metal single-phase flow, a liquid metal two-phase flow cooling system has been proposed. As a fundamental study, MHD pressure drops and heat transfer characteristics of a mercury single-phase flow and an air-mercury two-phase flow were experimentally investigated. A strong transverse magnetic field relevant to the fusion reactor conditions was applied to the mercury single-phase flow and the air-mercury two-phase flow in a helically coiled tube that was inserted in the vertical bore of a solenoidal superconducting magnet. It was found that MHD pressure drops of a mercury single-phase flow in the helically coiled tube were nearly equal to those in a straight tube. The Nusselt number at an outside wall was higher than that at an inside wall both in the mercury single-phase flow in the absence and presence of a magnetic field. The Nusselt number of the mercury single-phase flow decreased, increased and again decreased with an increase in the magnetic flux density. MHD pressure drops did not decrease appreciably by injecting air into a mercury flow and changing the mercury flow into the air-mercury two-phase flow. Remarkable heat transfer enhancement did not appear by the air injection. The injection of air into the mercury flow enhanced heat transfer in the ranges of high mercury flow rate and low magnetic flux density, possibly due to the agitation effect of air bubbles. The air injection deteriorated heat transfer in the range of low mercury flow rates possibly because of the occupation of air near heating wall

  4. Measurement of the Surface Dilatational Viscosity of an Insoluble Surfactant Monolayer at the Air/Water Interface Using a Pendant Drop Apparatus

    Science.gov (United States)

    Lorenzo, Jose; Couzis, Alex; Maldarelli, Charles; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    When a fluid interface with surfactants is at rest, the interfacial stress is isotropic (as given by the equilibrium interfacial tension), and is described by the equation of state which relates the surface tension to the surfactant surface concentration. When surfactants are subjected to shear and dilatational flows, flow induced interaction of the surfactants; can create interfacial stresses apart from the equilibrium surface tension. The simplest relationship between surface strain rate and surface stress is the Boussinesq-Scriven constitutive equation completely characterized by three coefficients: equilibrium interfacial tension, surface shear viscosity, and surface dilatational viscosity Equilibrium interfacial tension and surface shear viscosity measurements are very well established. On the other hand, surface dilatational viscosity measurements are difficult because a flow which change the surface area also changes the surfactant surface concentration creating changes in the equilibrium interfacial tension that must be also taken into account. Surface dilatational viscosity measurements of existing techniques differ by five orders of magnitude and use spatially damped surface waves and rapidly expanding bubbles. In this presentation we introduce a new technique for measuring the surface dilatational viscosity by contracting an aqueous pendant drop attached to a needle tip and having and insoluble surfactant monolayer at the air-water interface. The isotropic total tension on the surface consists of the equilibrium surface tension and the tension due to the dilation. Compression rates are undertaken slow enough so that bulk hydrodynamic stresses are small compared to the surface tension force. Under these conditions we show that the total tension is uniform along the surface and that the Young-Laplace equation governs the drop shape with the equilibrium surface tension replaced by the constant surface isotropic stress. We illustrate this technique using

  5. Dropped Ceiling

    OpenAIRE

    Tabet, Rayyane

    2012-01-01

    On December 2nd 1950 the first drop of Saudi oil arrived to Lebanon via the newly constructed Trans-Arabian Pipeline, the world's longest pipeline and the largest American private investment in a foreign land. The 30inch wide structure which spanned 1213 kilometers passing through Saudi Arabia, Jordan, and Syria to end in Lebanon had required 3 years of planning and surveying, 2 years of installation, the fabrication of 256,000 tons of steel tubes, the employment of 30,000 workers, the ratifi...

  6. Evaluation of browning ratio in an image analysis of apple slices at different stages of instant controlled pressure drop-assisted hot-air drying (AD-DIC).

    Science.gov (United States)

    Gao, Kun; Zhou, Linyan; Bi, Jinfeng; Yi, Jianyong; Wu, Xinye; Zhou, Mo; Wang, Xueyuan; Liu, Xuan

    2017-06-01

    Computer vision-based image analysis systems are widely used in food processing to evaluate quality changes. They are able to objectively measure the surface colour of various products since, providing some obvious advantages with their objectivity and quantitative capabilities. In this study, a computer vision-based image analysis system was used to investigate the colour changes of apple slices dried by instant controlled pressure drop-assisted hot air drying (AD-DIC). The CIE L* value and polyphenol oxidase activity in apple slices decreased during the entire drying process, whereas other colour indexes, including CIE a*, b*, ΔE and C* values, increased. The browning ratio calculated by image analysis increased during the drying process, and a sharp increment was observed for the DIC process. The change in 5-hydroxymethylfurfural (5-HMF) and fluorescent compounds (FIC) showed the same trend with browning ratio due to Maillard reaction. Moreover, the concentrations of 5-HMF and FIC both had a good quadratic correlation (R 2  > 0.998) with the browning ratio. Browning ratio was a reliable indicator of 5-HMF and FIC changes in apple slices during drying. The image analysis system could be used to monitor colour changes, 5-HMF and FIC in dehydrated apple slices during the AD-DIC process. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  7. Detailed pressure drop measurements in single-and two-phase adiabatic air-water turbulent flows in realistic BWR fuel assembly geometry with spacer grids

    International Nuclear Information System (INIS)

    Caraghiaur, Diana; Frid, Wiktor; Tillmark, Nils

    2004-01-01

    In recent years, advance numerical simulation tools based on CFD methods have been increasingly used in various multi-phase flow applications. One of these is two-phase flow in fuel assemblies of Boiling Water Reactors. The important and often missing aspect of this development is validation of CFD codes against proper experimental data. The purpose of the current paper is to present detailed pressure measurements over a spacer grid in low pressure adiabatic single- and bubbly two-phase flow, which will be used to further develop a CFD code for BWR fuel bundle analysis. The experiments have been carried out in a n asymmetric 24-rod sub-bundle, representing one quarter of a Westinghouse SVEA-96 nuclear reactor fuel assembly. Single-phase flow measurements have been performed at superficial velocities between 0.90-4.50 m/s and in the two-phase flow, which was simulated by air-water mixture, measurements have been performed at void fractions ranging from 4 to 12% and liquid superficial velocity of 4.50 m/s. In order to increase the number of measuring points, five pressure taps were drilled in one of the rods, which was easily moved vertically by a traversing system, covering most of the points in axial direction. Any of the rods in the bundle could be substitute by the pressure sensing rod and the measurements were made for five pressure taps facing-angles. A detailed pressure distribution comparison between single- and two-phase flows for different sub-channel positions and different flow conditions was performed over one of the spacers. In addition, single-phase pressure drop measurements in the upper part of the test section comprising two spacer grids have been carried out. (author)

  8. Interfacial behavior of N-nitrosodiethylamine/bovine serum albumin complexes at the air-water and the chloroform-water interfaces by axisymmetric drop tensiometry.

    Science.gov (United States)

    Juárez, J; Galaz, J G; Machi, L; Burboa, M; Gutiérrez-Millán, L E; Goycoolea, F M; Valdez, M A

    2007-03-15

    Interfacial properties of N-nitrosodiethylamine/bovine serum albumin (NDA/BSA) complexes were investigated at the air-water interface. The interfacial behavior at the chloroform-water interface of the interaction product of phospholipid 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), dissolved in the chloroform phase, and NDA/BSA complex, in the aqueous phase, were also analyzed by using a drop tensiometer. The secondary structure changes of BSA with different NDA concentrations were monitored by circular dichroism spectroscopy at different pH and the NDA/BSA interaction was probed by fluorescence spectroscopy. Different NDA/BSA mixtures were prepared from 0, 7.5 x 10(-5), 2.2 x 10(-4), 3.7 x 10(-4), 5 x 10(-4), 1.6 x 10(-3), and 3.1 x 10(-3) M NDA solutions in order to afford 0, 300/1, 900/1, 1 500/1, 2 000/1, 6 000/1, and 12 500/1 NDA/BSA molar ratios, respectively, in the aqueous solutions. Increments of BSA alpha-helix contents were obtained up to the 2 000/1 NDA/BSA molar ratio, but at ratios beyond this value, the alpha-helix content practically disappeared. These BSA structure changes produced an increment of the surface pressure at the air-water interface, as the alpha-helix content increased with the concentration of NDA. On the contrary, when alpha-helix content decreased, the surface pressure also appeared lower than the one obtained with pure BSA solutions. The interaction of DPPC with NDA/BSA molecules at the chloroform-water interface produced also a small, but measurable, pressure increment with the addition of NDA molecules. Dynamic light scattering measurements of the molecular sizes of NDA/BSA complex at pH 4.6, 7.1, and 8.4 indicated that the size of extended BSA molecules at pH 4.6 increased in a greater proportion with the increment in NDA concentration than at the other studied pH values. Diffusion coefficients calculated from dynamic surface tension values, using a short-term solution of the general adsorption model of Ward and Tordai

  9. Parametric resonance in acoustically levitated water drops

    International Nuclear Information System (INIS)

    Shen, C.L.; Xie, W.J.; Wei, B.

    2010-01-01

    Liquid drops can be suspended in air with acoustic levitation method. When the sound pressure is periodically modulated, the levitated drop is usually forced into an axisymmetric oscillation. However, a transition from axisymmetric oscillation into sectorial oscillation occurs when the modulation frequency approaches some specific values. The frequency of the sectorial oscillation is almost exactly half of the modulation frequency. It is demonstrated that this transition is induced by the parametric resonance of levitated drop. The natural frequency of sectorial oscillation is found to decrease with the increase of drop distortion extent.

  10. Parametric resonance in acoustically levitated water drops

    Energy Technology Data Exchange (ETDEWEB)

    Shen, C.L.; Xie, W.J. [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China); Wei, B., E-mail: bbwei@nwpu.edu.c [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2010-05-10

    Liquid drops can be suspended in air with acoustic levitation method. When the sound pressure is periodically modulated, the levitated drop is usually forced into an axisymmetric oscillation. However, a transition from axisymmetric oscillation into sectorial oscillation occurs when the modulation frequency approaches some specific values. The frequency of the sectorial oscillation is almost exactly half of the modulation frequency. It is demonstrated that this transition is induced by the parametric resonance of levitated drop. The natural frequency of sectorial oscillation is found to decrease with the increase of drop distortion extent.

  11. Dynamics of deforming drops

    OpenAIRE

    Bouwhuis, W.

    2015-01-01

    Liquid drops play a dominant role in numerous industrial applications, such as spray coating, spray painting, inkjet printing, lithography processes, and spraying/sprinkling in agriculture or gardening. In all of these examples, the generation, flight, impact, and spreading of drops are separate stages of the corresponding industrial processes, which are all thoroughly studied for many years. This thesis focuses on drop dynamics, impact phenomena, Leidenfrost drops, and pouring flows. Based o...

  12. Scanning drop sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jian; Xiang, Chengxiang; Gregoire, John

    2017-05-09

    Electrochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  13. Scanning drop sensor

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Jian; Xiang, Chengxiang; Gregoire, John M.; Shinde, Aniketa A.; Guevarra, Dan W.; Jones, Ryan J.; Marcin, Martin R.; Mitrovic, Slobodan

    2017-05-09

    Electrochemical or electrochemical and photochemical experiments are performed on a collection of samples by suspending a drop of electrolyte solution between an electrochemical experiment probe and one of the samples that serves as a test sample. During the electrochemical experiment, the electrolyte solution is added to the drop and an output solution is removed from the drop. The probe and collection of samples can be moved relative to one another so the probe can be scanned across the samples.

  14. Axisymmetric Liquid Hanging Drops

    Science.gov (United States)

    Meister, Erich C.; Latychevskaia, Tatiana Yu

    2006-01-01

    The geometry of drops hanging on a circular capillary can be determined by numerically solving a dimensionless differential equation that is independent on any material properties, which enables one to follow the change of the height, surface area, and contact angle of drops hanging on a particular capillary. The results show that the application…

  15. Turbulence, bubbles and drops

    NARCIS (Netherlands)

    van der Veen, Roeland

    2016-01-01

    In this thesis, several questions related to drop impact and Taylor-Couette turbulence are answered. The deformation of a drop just before impact can cause a bubble to be entrapped. For many applications, such as inkjet printing, it is crucial to control the size of this entrapped bubble. To study

  16. Drop Tower Physics

    Science.gov (United States)

    Dittrich, William A.

    2014-01-01

    The drop towers of yesteryear were used to make lead shot for muskets, as described in "The Physics Teacher" in April 2012. However, modern drop towers are essentially elevators designed so that the cable can "break" on demand, creating an environment with microgravity for a short period of time, currently up to nine seconds at…

  17. Dynamics of deforming drops

    NARCIS (Netherlands)

    Bouwhuis, W.

    2015-01-01

    Liquid drops play a dominant role in numerous industrial applications, such as spray coating, spray painting, inkjet printing, lithography processes, and spraying/sprinkling in agriculture or gardening. In all of these examples, the generation, flight, impact, and spreading of drops are separate

  18. Drop size measurements in Venturi scrubbers

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Alonso, D.; Azzopardi, B.J. [Nottingham Univ. (United Kingdom). Dept. of Chemical Engineering; Goncalves, J.A.S.; Coury, J.R. [Universidade Federal de Sao Carlos (Brazil). Departamento de Engenharia Quimica

    2001-07-01

    Venturi scrubbers are high efficiency gas cleaners in which suspended particles are removed from gas streams by drops formed by liquid atomisation, usually in the Venturi throat. The size of the drops formed are of fundamental importance to the performance of the equipment, both in terms of pressure drop and dust removal efficiency. In this study, drop sizes in a cylindrical laboratory-scale Venturi scrubber were measured using a laser diffraction technique. Gas velocity and liquid to gas ratios varied from 50 to 90 m/s and 0.5 to 2.0 1/m{sup 3}, respectively. Water was injected using two different arrangements: either as jets in the throat or as a film just upstream of the convergence. Drop size measurements were performed at three positions in the case of jet injection: two located along the throat, and the last one at the end of the diffuser. The present data shows that the Sauter mean diameter of the spray can be well correlated by the equation of Boll et al. (J. Air Pollut. Control Assoc. 24 (1974) 932). Drop size distributions are satisfactorily represented by a Rosin-Rammler function. This paper also provides a simple method for calculating the parameters of the Rosin-Rammler function. As a result of this work, drop sizes in Venturi scrubbers can be estimated with much higher accuracy. (Author)

  19. Levitation of a drop over a film flow

    Science.gov (United States)

    Sreenivas, K. R.; de, P. K.; Arakeri, Jaywant H.

    1999-02-01

    A vertical jet of water impinging on a horizontal surface produces a radial film flow followed by a circular hydraulic jump. We report a phenomenon where fairly large (1 ml) drops of liquid levitate just upstream of the jump on a thin air layer between the drop and the film flow. We explain the phenomenon using lubrication theory. Bearing action both in the air film and the water film seems to be necessary to support large drops. Horizontal support is given to the drop by the hydraulic jump. A variety of drop shapes is observed depending on the volume of the drop and liquid properties. We show that interaction of the forces due to gravity, surface tension, viscosity and inertia produces these various shapes.

  20. Bubble and Drop Nonlinear Dynamics (BDND)

    Science.gov (United States)

    Trinh, E. H.; Leal, L. Gary; Thomas, D. A.; Crouch, R. K.

    1998-01-01

    Free drops and bubbles are weakly nonlinear mechanical systems that are relatively simple to characterize experimentally in 1-G as well as in microgravity. The understanding of the details of their motion contributes to the fundamental study of nonlinear phenomena and to the measurement of the thermophysical properties of freely levitated melts. The goal of this Glovebox-based experimental investigation is the low-gravity assessment of the capabilities of a modular apparatus based on ultrasonic resonators and on the pseudo- extinction optical method. The required experimental task is the accurate measurements of the large-amplitude dynamics of free drops and bubbles in the absence of large biasing influences such as gravity and levitation fields. A single-axis levitator used for the positioning of drops in air, and an ultrasonic water-filled resonator for the trapping of air bubbles have been evaluated in low-gravity and in 1-G. The basic feasibility of drop positioning and shape oscillations measurements has been verified by using a laptop-interfaced automated data acquisition and the optical extinction technique. The major purpose of the investigation was to identify the salient technical issues associated with the development of a full-scale Microgravity experiment on single drop and bubble dynamics.

  1. Impact of granular drops

    KAUST Repository

    Marston, J. O.

    2013-07-15

    We investigate the spreading and splashing of granular drops during impact with a solid target. The granular drops are formed from roughly spherical balls of sand mixed with water, which is used as a binder to hold the ball together during free-fall. We measure the instantaneous spread diameter for different impact speeds and find that the normalized spread diameter d/D grows as (tV/D)1/2. The speeds of the grains ejected during the “splash” are measured and they rarely exceed twice that of the impact speed.

  2. Impact of granular drops

    KAUST Repository

    Marston, J. O.; Mansoor, Mohammad M.; Thoroddsen, Sigurdur T

    2013-01-01

    We investigate the spreading and splashing of granular drops during impact with a solid target. The granular drops are formed from roughly spherical balls of sand mixed with water, which is used as a binder to hold the ball together during free-fall. We measure the instantaneous spread diameter for different impact speeds and find that the normalized spread diameter d/D grows as (tV/D)1/2. The speeds of the grains ejected during the “splash” are measured and they rarely exceed twice that of the impact speed.

  3. Liquid-gas mass transfer at drop structures

    DEFF Research Database (Denmark)

    Matias, Natércia; Nielsen, Asbjørn Haaning; Vollertsen, Jes

    2017-01-01

    -water mass transfer, little is known about hydrogen sulfide emission under highly turbulent conditions (e.g., drop structures, hydraulic jumps). In this study, experimental work was carried out to analyze the influence of characteristics of drops on reaeration. Physical models were built, mimicking typical...... sewer drop structures and allowing different types of drops, drop heights, tailwater depths and flow rates. In total, 125 tests were performed. Based on their results, empirical expressions translating the relationship between the mass transfer of oxygen and physical parameters of drop structures were...... established. Then, by applying the two-film theory with two-reference substances, the relation to hydrogen sulfide release was defined. The experiments confirmed that the choice of the type of drop structure is critical to determine the uptake/emission rates. By quantifying the air-water mass transfer rates...

  4. Two secondary drops

    Indian Academy of Sciences (India)

    Figure shows formation of two secondary drops of unequal size and their merger. The process is same as the earlier process until t= 0.039 Tc with necking occurring at two places, one at the bottom of the column and the other at the middle. The necking at the middle of the liquid column is due to Raleigh instability.

  5. Lambda-dropping

    DEFF Research Database (Denmark)

    Danvy, Olivier; Schultz, Ulrik Pagh

    1997-01-01

    Lambda-lifting a functional program transforms it into a set of recursive equations. We present the symmetric transformation: lambda-dropping. Lambda-dropping a set of recursive equations restores block structure and lexical scope.For lack of scope, recursive equations must carry around all...... the parameters that any of their callees might possibly need. Both lambda-lifting and lambda-dropping thus require one to compute a transitive closure over the call graph:• for lambda-lifting: to establish the Def/Use path of each free variable (these free variables are then added as parameters to each...... of the functions in the call path);• for lambda-dropping: to establish the Def/Use path of each parameter (parameters whose use occurs in the same scope as their definition do not need to be passed along in the call path).Without free variables, a program is scope-insensitive. Its blocks are then free...

  6. Ultrasonic characterization of single drops of liquids

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Dipen N. (Los Alamos, NM)

    1998-01-01

    Ultrasonic characterization of single drops of liquids. The present invention includes the use of two closely spaced transducers, or one transducer and a closely spaced reflector plate, to form an interferometer suitable for ultrasonic characterization of droplet-size and smaller samples without the need for a container. The droplet is held between the interferometer elements, whose distance apart may be adjusted, by surface tension. The surfaces of the interferometer elements may be readily cleansed by a stream of solvent followed by purified air when it is desired to change samples. A single drop of liquid is sufficient for high-quality measurement. Examples of samples which may be investigated using the apparatus and method of the present invention include biological specimens (tear drops; blood and other body fluid samples; samples from tumors, tissues, and organs; secretions from tissues and organs; snake and bee venom, etc.) for diagnostic evaluation, samples in forensic investigations, and detection of drugs in small quantities.

  7. Drop impact entrapment of bubble rings

    KAUST Repository

    Thoraval, M.-J.

    2013-04-29

    We use ultra-high-speed video imaging to look at the initial contact of a drop impacting on a liquid layer. We observe experimentally the vortex street and the bubble-ring entrapments predicted numerically, for high impact velocities, by Thoraval et al. (Phys. Rev. Lett., vol. 108, 2012, article 264506). These dynamics mainly occur within 50 -s after the first contact, requiring imaging at 1 million f.p.s. For a water drop impacting on a thin layer of water, the entrapment of isolated bubbles starts through azimuthal instability, which forms at low impact velocities, in the neck connecting the drop and pool. For Reynolds number Re above -12 000, up to 10 partial bubble rings have been observed at the base of the ejecta, starting when the contact is -20% of the drop size. More regular bubble rings are observed for a pool of ethanol or methanol. The video imaging shows rotation around some of these air cylinders, which can temporarily delay their breakup into micro-bubbles. The different refractive index in the pool liquid reveals the destabilization of the vortices and the formation of streamwise vortices and intricate vortex tangles. Fine-scale axisymmetry is thereby destroyed. We show also that the shape of the drop has a strong influence on these dynamics. 2013 Cambridge University Press.

  8. High-Speed Interferometry Under Impacting Drops

    KAUST Repository

    Langley, Kenneth R.; Li, Erqiang; Thoroddsen, Sigurdur T

    2017-01-01

    Over the last decade the rapid advances in high-speed video technology, have opened up to study many multi-phase fluid phenomena, which tend to occur most rapidly on the smallest length-scales. One of these is the entrapment of a small bubble under a drop impacting onto a solid surface. Here we have gone from simply observing the presence of the bubble to detailed imaging of the formation of a lubricating air-disc under the drop center and its subsequent contraction into the bubble. Imaging the full shape-evolution of the air-disc has required μm and sub-μs space and time resolutions. Time-resolved 200 ns interferometry with monochromatic light, has allowed us to follow individual fringes to obtain absolute air-layer thicknesses, based on the eventual contact with the solid. We can follow the evolution of the dimple shape as well as the compression of the gas. The improved imaging has also revealed new levels of detail, like the nature of the first contact which produces a ring of micro-bubbles, highlighting the influence of nanometric surface roughness. Finally, for impacts of ultra-viscous drops we see gliding on ~100 nm thick rarified gas layers, followed by extreme wetting at numerous random spots.

  9. High-Speed Interferometry Under Impacting Drops

    KAUST Repository

    Langley, Kenneth R.

    2017-08-31

    Over the last decade the rapid advances in high-speed video technology, have opened up to study many multi-phase fluid phenomena, which tend to occur most rapidly on the smallest length-scales. One of these is the entrapment of a small bubble under a drop impacting onto a solid surface. Here we have gone from simply observing the presence of the bubble to detailed imaging of the formation of a lubricating air-disc under the drop center and its subsequent contraction into the bubble. Imaging the full shape-evolution of the air-disc has required μm and sub-μs space and time resolutions. Time-resolved 200 ns interferometry with monochromatic light, has allowed us to follow individual fringes to obtain absolute air-layer thicknesses, based on the eventual contact with the solid. We can follow the evolution of the dimple shape as well as the compression of the gas. The improved imaging has also revealed new levels of detail, like the nature of the first contact which produces a ring of micro-bubbles, highlighting the influence of nanometric surface roughness. Finally, for impacts of ultra-viscous drops we see gliding on ~100 nm thick rarified gas layers, followed by extreme wetting at numerous random spots.

  10. The Drop Tower Bremen -Experiment Operation

    Science.gov (United States)

    Könemann, Thorben; von Kampen, Peter; Rath, Hans J.

    The idea behind the drop tower facility of the Center of Applied Space Technology and Micro-gravity (ZARM) in Bremen is to provide an inimitable technical opportunity of a daily access to short-term weightlessness on earth. In this way ZARM`s european unique ground-based microgravity laboratory displays an excellent economic alternative for research in space-related conditions at low costs comparable to orbital platforms. Many national and international ex-perimentalists motivated by these prospects decide to benefit from the high-quality and easy accessible microgravity environment only provided by the Drop Tower Bremen. Corresponding experiments in reduced gravity could open new perspectives of investigation methods and give scientists an impressive potential for a future technology and multidisciplinary applications on different research fields like Fundamental Physics, Astrophysics, Fluid Dynamics, Combus-tion, Material Science, Chemistry and Biology. Generally, realizing microgravity experiments at ZARM`s drop tower facility meet new requirements of the experimental hardware and may lead to some technical constraints in the setups. In any case the ZARM Drop Tower Operation and Service Company (ZARM FAB mbH) maintaining the drop tower facility is prepared to as-sist experimentalists by offering own air-conditioned laboratories, clean rooms, workshops and consulting engineers, as well as scientific personal. Furthermore, ZARM`s on-site apartment can be used for accommodations during the experiment campaigns. In terms of approaching drop tower experimenting, consulting of experimentalists is mandatory to successfully accomplish the pursued drop or catapult capsule experiment. For this purpose there will be a lot of expertise and help given by ZARM FAB mbH in strong cooperation to-gether with the experimentalists. However, in comparison to standard laboratory setups the drop or catapult capsule setup seems to be completely different at first view. While defining a

  11. Dropping out of school

    Directory of Open Access Journals (Sweden)

    M. Teneva

    2017-09-01

    Full Text Available The modern technological society needs educated people who, through their high professionalism, are called upon to create its progress. In this aspect, a serious problem stands out – the dropout from school of a large number of children, adolescents and young people. The object of the research is the premature interruption of training for a large number of Bulgarian students. The subject of the study is the causes that provoke the students’ dropping out of school. The aim is to differentiate the negative factors leading to dropping out of school, and to identify the motivating factors that encourage the individual to return to the educational environment. In order to realize the so set target, a specially designed test-questionnaire has been used. The survey was conducted among students attending evening courses who have left their education for various reasons and are currently back to the school institution. The contingent of the study includes 120 students from the evening schools. The results indicate that the reasons which prompted the students to leave school early differentiate into four groups: family, social, economic, educational, personal. The motivation to return to school has been dictated in the highest degree by the need for realization of the person on the labor market, followed by the possibility for full social functioning.

  12. Air

    International Nuclear Information System (INIS)

    Gugele, B.; Scheider, J.; Spangl, W.

    2001-01-01

    In recent years several regulations and standards for air quality and limits for air pollution were issued or are in preparation by the European Union, which have severe influence on the environmental monitoring and legislation in Austria. This chapter of the environmental control report of Austria gives an overview about the legal situation of air pollution control in the European Union and in specific the legal situation in Austria. It gives a comprehensive inventory of air pollution measurements for the whole area of Austria of total suspended particulates, ozone, volatile organic compounds, nitrogen oxides, sulfur dioxide, carbon monoxide, heavy metals, benzene, dioxin, polycyclic aromatic hydrocarbons and eutrophication. For each of these pollutants the measured emission values throughout Austria are given in tables and geographical charts, the environmental impact is discussed, statistical data and time series of the emission sources are given and legal regulations and measures for an effective environmental pollution control are discussed. In particular the impact of fossil-fuel power plants on the air pollution is analyzed. (a.n.)

  13. Probing the nanoscale: the first contact of an impacting drop

    KAUST Repository

    Li, Erqiang; Vakarelski, Ivan Uriev; Thoroddsen, Sigurdur T

    2015-01-01

    When a drop impacts onto a solid surface, the lubrication pressure in the air deforms its bottom into a dimple. This makes the initial contact with the substrate occur not at a point but along a ring, thereby entrapping a central disc of air. We use

  14. Drop shape visualization and contact angle measurement on curved surfaces.

    Science.gov (United States)

    Guilizzoni, Manfredo

    2011-12-01

    The shape and contact angles of drops on curved surfaces is experimentally investigated. Image processing, spline fitting and numerical integration are used to extract the drop contour in a number of cross-sections. The three-dimensional surfaces which describe the surface-air and drop-air interfaces can be visualized and a simple procedure to determine the equilibrium contact angle starting from measurements on curved surfaces is proposed. Contact angles on flat surfaces serve as a reference term and a procedure to measure them is proposed. Such procedure is not as accurate as the axisymmetric drop shape analysis algorithms, but it has the advantage of requiring only a side view of the drop-surface couple and no further information. It can therefore be used also for fluids with unknown surface tension and there is no need to measure the drop volume. Examples of application of the proposed techniques for distilled water drops on gemstones confirm that they can be useful for drop shape analysis and contact angle measurement on three-dimensional sculptured surfaces. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Drop jumping. II. The influence of dropping height on the biomechanics of drop jumping

    NARCIS (Netherlands)

    Bobbert, M F; Huijing, P A; van Ingen Schenau, G J

    In the literature, athletes preparing for explosive activities are recommended to include drop jumping in their training programs. For the execution of drop jumps, different techniques and different dropping heights can be used. This study was designed to investigate for the performance of bounce

  16. Controlling charge on levitating drops.

    Science.gov (United States)

    Hilger, Ryan T; Westphall, Michael S; Smith, Lloyd M

    2007-08-01

    Levitation technologies are used in containerless processing of materials, as microscale manipulators and reactors, and in the study of single drops and particles. Presented here is a method for controlling the amount and polarity of charge on a levitating drop. The method uses single-axis acoustic levitation to trap and levitate a single, initially neutral drop with a diameter between 400 microm and 2 mm. This drop is then charged in a controllable manner using discrete packets of charge in the form of charged drops produced by a piezoelectric drop-on-demand dispenser equipped with a charging electrode. The magnitude of the charge on the dispensed drops can be adjusted by varying the voltage applied to the charging electrode. The polarity of the charge on the added drops can be changed allowing removal of charge from the trapped drop (by neutralization) and polarity reversal. The maximum amount of added charge is limited by repulsion of like charges between the drops in the trap. This charging scheme can aid in micromanipulation and the study of charged drops and particles using levitation.

  17. First drop dissimilarity in drop-on-demand inkjet devices

    International Nuclear Information System (INIS)

    Famili, Amin; Palkar, Saurabh A.; Baldy, William J. Jr.

    2011-01-01

    As inkjet printing technology is increasingly applied in a broader array of applications, careful characterization of its method of use is critical due to its inherent sensitivity. A common operational mode in inkjet technology known as drop-on-demand ejection is used as a way to deliver a controlled quantity of material to a precise location on a target. This method of operation allows ejection of individual or a sequence (burst) of drops based on a timed trigger event. This work presents an examination of sequences of drops as they are ejected, indicating a number of phenomena that must be considered when designing a drop-on-demand inkjet system. These phenomena appear to be driven by differences between the first ejected drop in a burst and those that follow it and result in a break-down of the linear relationship expected between driving amplitude and drop mass. This first drop, as quantified by high-speed videography and subsequent image analysis, can be different in morphology, trajectory, velocity, and volume from subsequent drops within a burst. These findings were confirmed orthogonally by both volume and mass measurement techniques which allowed quantitation down to single drops.

  18. Hanging drop crystal growth apparatus

    Science.gov (United States)

    Naumann, Robert J. (Inventor); Witherow, William K. (Inventor); Carter, Daniel C. (Inventor); Bugg, Charles E. (Inventor); Suddath, Fred L. (Inventor)

    1990-01-01

    This invention relates generally to control systems for controlling crystal growth, and more particularly to such a system which uses a beam of light refracted by the fluid in which crystals are growing to detect concentration of solutes in the liquid. In a hanging drop apparatus, a laser beam is directed onto drop which refracts the laser light into primary and secondary bows, respectively, which in turn fall upon linear diode detector arrays. As concentration of solutes in drop increases due to solvent removal, these bows move farther apart on the arrays, with the relative separation being detected by arrays and used by a computer to adjust solvent vapor transport from the drop. A forward scattering detector is used to detect crystal nucleation in drop, and a humidity detector is used, in one embodiment, to detect relative humidity in the enclosure wherein drop is suspended. The novelty of this invention lies in utilizing angular variance of light refracted from drop to infer, by a computer algorithm, concentration of solutes therein. Additional novelty is believed to lie in using a forward scattering detector to detect nucleating crystallites in drop.

  19. Ultrasonic characterization of single drops of liquids

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, D.N.

    1998-04-14

    Ultrasonic characterization of single drops of liquids is disclosed. The present invention includes the use of two closely spaced transducers, or one transducer and a closely spaced reflector plate, to form an interferometer suitable for ultrasonic characterization of droplet-size and smaller samples without the need for a container. The droplet is held between the interferometer elements, whose distance apart may be adjusted, by surface tension. The surfaces of the interferometer elements may be readily cleansed by a stream of solvent followed by purified air when it is desired to change samples. A single drop of liquid is sufficient for high-quality measurement. Examples of samples which may be investigated using the apparatus and method of the present invention include biological specimens (tear drops; blood and other body fluid samples; samples from tumors, tissues, and organs; secretions from tissues and organs; snake and bee venom, etc.) for diagnostic evaluation, samples in forensic investigations, and detection of drugs in small quantities. 5 figs.

  20. Vortex-ring-induced large bubble entrainment during drop impact

    KAUST Repository

    Thoraval, Marie-Jean

    2016-03-29

    For a limited set of impact conditions, a drop impacting onto a pool can entrap an air bubble as large as its own size. The subsequent rise and rupture of this large bubble plays an important role in aerosol formation and gas transport at the air-sea interface. The large bubble is formed when the impact crater closes up near the pool surface and is known to occur only for drops that are prolate at impact. Herein we use experiments and numerical simulations to show that a concentrated vortex ring, produced in the neck between the drop and the pool, controls the crater deformations and pinchoff. However, it is not the strongest vortex rings that are responsible for the large bubbles, as they interact too strongly with the pool surface and self-destruct. Rather, it is somewhat weaker vortices that can deform the deeper craters, which manage to pinch off the large bubbles. These observations also explain why the strongest and most penetrating vortex rings emerging from drop impacts are not produced by oblate drops but by more prolate drop shapes, as had been observed in previous experiments.

  1. Vertical vibration dynamics of acoustically levitated drop containing two immiscible liquids

    Science.gov (United States)

    Zang, Duyang; Zhai, Zhicong; Li, Lin; Lin, Kejun; Li, Xiaoguang; Geng, Xingguo

    2016-09-01

    We have studied the levitation and oscillation dynamics of complex drops containing two immiscible liquids. Two types of drops, core-shell drop and abnormal-shaped drop, have been obtained depending on the levitation procedures. The oscillation dynamics of the drops have been studied using a high speed camera. It has been found that the oscillation of the abnormal-shaped drop has a longer oscillation period and decays much faster than that of the core-shell drop, which cannot be accounted for by the air resistance itself. The acoustic streaming induced by ultrasound may bring an additional force against the motion of the drop due to the Bernoulli effect. This is responsible for the enhanced damping during the oscillation in acoustic levitation.

  2. Propelling a water drop with the vapor-mediated Marangoni effect

    Science.gov (United States)

    Kim, Seungho; Kim, Ho-Young

    2013-11-01

    We show that a water drop on solid surfaces can be propelled just by placing a volatile alcohol drop nearby. It is found to be because the water-air interface near the alcohol drop mixes with alcohol vapor, thereby locally lowering the surface tension. The surface-tension-gradient induces the motion of the water drop, enabling the trajectory control of water drops through the motion of remote alcohol drops. This vapor-mediated Marangoni effect also gives rise to other interesting interfacial flow phenomena, such as nucleation of holes on a water film and ballooning of a water drop hanging from a syringe needle with the approach of an alcohol drop. We visualize such interfacial dynamics with a high-speed camera and rationalize their salient features by scaling analysis. This work was supported by the National Research Foundation of Korea (grant no. 2012-008023).

  3. 45-FOOT HIGH DROP TOWER

    Data.gov (United States)

    Federal Laboratory Consortium — The Drop Tower is used to simulate and measure the impact shocks that are exerted on parachute loads when they hit the ground. It is also used for HSL static lift to...

  4. Drop Spreading with Random Viscosity

    Science.gov (United States)

    Xu, Feng; Jensen, Oliver

    2016-11-01

    Airway mucus acts as a barrier to protect the lung. However as a biological material, its physical properties are known imperfectly and can be spatially heterogeneous. In this study we assess the impact of these uncertainties on the rate of spreading of a drop (representing an inhaled aerosol) over a mucus film. We model the film as Newtonian, having a viscosity that depends linearly on the concentration of a passive solute (a crude proxy for mucin proteins). Given an initial random solute (and hence viscosity) distribution, described as a Gaussian random field with a given correlation structure, we seek to quantify the uncertainties in outcomes as the drop spreads. Using lubrication theory, we describe the spreading of the drop in terms of a system of coupled nonlinear PDEs governing the evolution of film height and the vertically-averaged solute concentration. We perform Monte Carlo simulations to predict the variability in the drop centre location and width (1D) or area (2D). We show how simulation results are well described (at much lower computational cost) by a low-order model using a weak disorder expansion. Our results show for example how variability in the drop location is a non-monotonic function of the solute correlation length increases. Engineering and Physical Sciences Research Council.

  5. Thermocapillary reorientation of Janus drops

    Science.gov (United States)

    Rosales, Rodolfo; Saenz, Pedro

    2017-11-01

    Janus drops, named after the Ancient Roman two-faced god, are liquid drops formed from two immiscible fluids. Experimental observations indicate that a Janus drop may re-orientate in response to an applied external thermal gradient due to the Marangoni effect. Depending on the angle between the interior interface and the direction of the temperature gradient, disparities in the physical properties of the constituent liquids may lead to asymmetries in the thermocapillary flow. As a result, the drop will move along a curved path until a torque-free configuration is achieved, point after which it will continue on a straight trajectory. Here, we present the results of a theoretical investigation of this realignment phenomenon in the Stokes regime and in the limit of non-deformable interfaces. A 3D semi-analytical method in terms of polar spherical harmonics is developed to characterize and rationalize the hydrodynamic response (forces and torques), flow (velocity and temperature distribution) and trajectory of a Janus drop moving during the temperature-driven reorientation process. Furthermore, we discuss how this phenomenon may be exploited to develop dynamically reconfigurable micro-lenses. This work was partially supported by the US National Science Foundation through Grants DMS-1614043 and DMS-1719637.

  6. Combustion of Drops and Sprays of Heavy Fuel Oils and Their Emulsions.

    Science.gov (United States)

    1980-12-01

    Variation of the Flame Length of Drop with Time (Pure No. 4 Oil) ...... ..................... .... 154 15. Variation of the Flame Length of Drop with Time...No. 4 Oil-Water Emulsion, W = 0.08) ............. .... 155 16. Variation of the Flame Length of Drop with Time (No. 4 Oil-Water Emulsion, W = 0.15...detailed study of the effects of preheating the fuel, atomizing air-flow rate, and fuel flow 10 rate on flame properties such as flame length , radiation

  7. Interfacial Instabilities in Evaporating Drops

    Science.gov (United States)

    Moffat, Ross; Sefiane, Khellil; Matar, Omar

    2007-11-01

    We study the effect of substrate thermal properties on the evaporation of sessile drops of various liquids. An infra-red imaging technique was used to record the interfacial temperature. This technique illustrates the non-uniformity in interfacial temperature distribution that characterises the evaporation process. Our results also demonstrate that the evaporation of methanol droplets is accompanied by the formation of wave-trains in the interfacial temperature field; similar patterns, however, were not observed in the case of water droplets. More complex patterns are observed for FC-72 refrigerant drops. The effect of substrate thermal conductivity on the structure of the complex pattern formation is also elucidated.

  8. A Mathematical Scheme for Calculating Flows and Pressure Drops in Lit and Unlit Cigarettes

    Directory of Open Access Journals (Sweden)

    Dwyer RW

    2014-12-01

    Full Text Available A computational methodology is presented for evaluating the flows and pressure drops in both lit and unlit cigarettes. The flows and pressure drops across rows of tipping-paper perforations are considered explicitly, as are the locations and relative sizes of the ventilation holes. The flows and pressure drops across air-permeable cigarette papers are included. The influence of plugwrappermeabilities on filter ventilation is developed. Lit cigarettes are mimicked by adding a “coal” pressure drop to the upstream end of the cigarette. The computational scheme is used to predict the effects of tobacco-rod length, puff volume, and vent blocking on cigarette ventilation and pressure drop. A derivation of the pressure-drop and flow equations for a cigarette with an upstream pressure drop is included in an appendix.

  9. Antibubbles and fine cylindrical sheets of air

    KAUST Repository

    Beilharz, D.

    2015-08-14

    Drops impacting at low velocities onto a pool surface can stretch out thin hemispherical sheets of air between the drop and the pool. These air sheets can remain intact until they reach submicron thicknesses, at which point they rupture to form a myriad of microbubbles. By impacting a higher-viscosity drop onto a lower-viscosity pool, we have explored new geometries of such air films. In this way we are able to maintain stable air layers which can wrap around the entire drop to form repeatable antibubbles, i.e. spherical air layers bounded by inner and outer liquid masses. Furthermore, for the most viscous drops they enter the pool trailing a viscous thread reaching all the way to the pinch-off nozzle. The air sheet can also wrap around this thread and remain stable over an extended period of time to form a cylindrical air sheet. We study the parameter regime where these structures appear and their subsequent breakup. The stability of these thin cylindrical air sheets is inconsistent with inviscid stability theory, suggesting stabilization by lubrication forces within the submicron air layer. We use interferometry to measure the air-layer thickness versus depth along the cylindrical air sheet and around the drop. The air film is thickest above the equator of the drop, but thinner below the drop and up along the air cylinder. Based on microbubble volumes, the thickness of the cylindrical air layer becomes less than 100 nm before it ruptures.

  10. Antibubbles and fine cylindrical sheets of air

    KAUST Repository

    Beilharz, D.; Guyon, A.; Li, E.  Q.; Thoraval, M.-J.; Thoroddsen, Sigurdur T

    2015-01-01

    Drops impacting at low velocities onto a pool surface can stretch out thin hemispherical sheets of air between the drop and the pool. These air sheets can remain intact until they reach submicron thicknesses, at which point they rupture to form a myriad of microbubbles. By impacting a higher-viscosity drop onto a lower-viscosity pool, we have explored new geometries of such air films. In this way we are able to maintain stable air layers which can wrap around the entire drop to form repeatable antibubbles, i.e. spherical air layers bounded by inner and outer liquid masses. Furthermore, for the most viscous drops they enter the pool trailing a viscous thread reaching all the way to the pinch-off nozzle. The air sheet can also wrap around this thread and remain stable over an extended period of time to form a cylindrical air sheet. We study the parameter regime where these structures appear and their subsequent breakup. The stability of these thin cylindrical air sheets is inconsistent with inviscid stability theory, suggesting stabilization by lubrication forces within the submicron air layer. We use interferometry to measure the air-layer thickness versus depth along the cylindrical air sheet and around the drop. The air film is thickest above the equator of the drop, but thinner below the drop and up along the air cylinder. Based on microbubble volumes, the thickness of the cylindrical air layer becomes less than 100 nm before it ruptures.

  11. Filter aids influence on pressure drop across a filtration system

    Science.gov (United States)

    Hajar, S.; Rashid, M.; Nurnadia, A.; Ammar, M. R.; Hasfalina, C. M.

    2017-06-01

    Filter aids is commonly used to reduce pressure drop across air filtration system as it helps to increase the efficiency of filtration of accumulated filter cake. Filtration velocity is one of the main parameters that affect the performance of filter aids material. In this study, a formulated filter aids consisting of PreKot™ and activated carbon mixture (designated as PrekotAC) was tested on PTFE filter media under various filtration velocities of 5, 6, and 8 m/min at a constant material loading of 0.2 mg/mm2. Results showed that pressure drop is highly influenced by filtration velocity where higher filtration velocity leads to a higher pressure drop across the filter cake. It was found that PrekotAC performed better in terms of reducing the pressure drop across the filter cake even at the highest filtration velocity. The diversity in different particle size distribution of non-uniform particle size in the formulated PrekotAC mixture presents a higher permeability causes a lower pressure drop across the accumulated filter cake. The finding suggests that PrekotAC is a promising filter aids material that helps reducing the pressure drop across fabric filtration system.

  12. Hanging colloidal drop: A new photonic crystal synthesis route

    Science.gov (United States)

    Sandu, Ion; Dumitru, Marius; Fleaca, Claudiu Teodor; Dumitrache, Florian

    2018-05-01

    High-quality photonic crystals (hundreds of micrometres in thickness) were grown by the free evaporation of a colloidal drop consisting of silica and polystyrene nanospheres with dimensions of 300 nm, 500 nm, and 1000 nm. The essence of experimental findings is that the drop has to hang on a pillar. This leads to the inhibition of the droplet spreading, the minimisation of the convective force, and the zeroing of the static frictional force between nanospheres and the liquid/air interface, where the first layer is formed. The theoretical essence is the continuous adjustment of nanospheres positions during the growth of photonic crystal, a key condition of the self-assembling phenomenon.

  13. Fluid flow in drying drops

    NARCIS (Netherlands)

    Gelderblom, Hanneke

    2013-01-01

    When a suspension drop evaporates, it leaves behind a drying stain. Examples of these drying stains encountered in daily life are coffee or tea stains on a table top, mineral rings on glassware that comes out of the dishwasher, or the salt deposits on the streets in winter. Drying stains are also

  14. Pressure drop in contraction flow

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz

    This note is a supplement to Dynamic of Polymeric Liquids (DPL) page 178. DPL gives an equation for the pressure drop in a tapered (and circular) contraction, valid only at low angles. Here the general definition of contraction flow (the Bagley correction) and a more general method to find...

  15. Load drop evaluation for TWRS FSAR

    Energy Technology Data Exchange (ETDEWEB)

    Julyk, L.J.; Ralston, G.L.

    1996-09-30

    Operational or remediation activities associated with existing underground high-level waste storage tank structures at the Hanford Site often require the installation/removal of various equipment items. To gain tank access for installation or removal of this equipment, large concrete cover blocks must be removed and reinstalled in existing concrete pits above the tanks. An accidental drop of the equipment or cover blocks while being moved over the tanks that results in the release of contaminants to the air poses a potential risk to onsite workers or to the offsite public. To minimize this potential risk, the use of critical lift hoisting and rigging procedures and restrictions on lift height are being considered during development of the new tank farm Basis for Interim Operation and Final Safety Analysis Report. The analysis contained herein provides information for selecting the appropriate lift height restrictions for these activities.

  16. Probing the nanoscale with high-speed interferometry of an impacting drop

    KAUST Repository

    Thoroddsen, Sigurdur T; Li, Erqiang; Vakarelski, Ivan Uriev; Langley, Kenneth

    2017-01-01

    The simple phenomenon of a water drop falling onto a glass plate may seem like a trivial fluid mechanics problem. However, detailed imaging has shown that this process is highly complex and a small air-bubble is always entrapped under the drop when it makes contact with the solid. This bubble can interfere with the uniformity of spray coatings and degrade inkjet fabrication of displays etc. We will describe how we use high-speed interferometry at 5 million frames per second to understand the details of this process. As the impacting drop approaches the solid, the dynamics are characterized by a balance between the lubrication pressure in the thin air layer and the inertia of the bot-tom of the drop. This deforms the drop, forming a dimple at its bottom and making the drop touch the surface along a ring, thereby entrapping the air-layer, which is typically 1-3 mu m thick. This air-layer can be highly compressed and the deceleration of the bottom of the drop can be as large as 300,000 g. We describe how the thicknessevolution of the lubricating air-layer is extracted from following the interference fringes between frames. Two-color interferometry is also used to extract absolute layer thicknesses. Finally, we identify the effects of nanometric surface roughness on the first contact of the drop with the substrate. Here we need to resolve the 100 nm thickness changes occurring during 200 ns intervals, requiring these state of the art high-speed cameras. Surprisingly, we see a ring of micro-bubbles marking the first contact of the drop with the glass, only for microscope slides, which have a typical roughness of 20 nm, while such rings are absent for drop impacts onto molecularly smooth mica surfaces.

  17. Probing the nanoscale with high-speed interferometry of an impacting drop

    KAUST Repository

    Thoroddsen, Sigurdur T.

    2017-02-28

    The simple phenomenon of a water drop falling onto a glass plate may seem like a trivial fluid mechanics problem. However, detailed imaging has shown that this process is highly complex and a small air-bubble is always entrapped under the drop when it makes contact with the solid. This bubble can interfere with the uniformity of spray coatings and degrade inkjet fabrication of displays etc. We will describe how we use high-speed interferometry at 5 million frames per second to understand the details of this process. As the impacting drop approaches the solid, the dynamics are characterized by a balance between the lubrication pressure in the thin air layer and the inertia of the bot-tom of the drop. This deforms the drop, forming a dimple at its bottom and making the drop touch the surface along a ring, thereby entrapping the air-layer, which is typically 1-3 mu m thick. This air-layer can be highly compressed and the deceleration of the bottom of the drop can be as large as 300,000 g. We describe how the thicknessevolution of the lubricating air-layer is extracted from following the interference fringes between frames. Two-color interferometry is also used to extract absolute layer thicknesses. Finally, we identify the effects of nanometric surface roughness on the first contact of the drop with the substrate. Here we need to resolve the 100 nm thickness changes occurring during 200 ns intervals, requiring these state of the art high-speed cameras. Surprisingly, we see a ring of micro-bubbles marking the first contact of the drop with the glass, only for microscope slides, which have a typical roughness of 20 nm, while such rings are absent for drop impacts onto molecularly smooth mica surfaces.

  18. Effects of Evaporation/Condensation on Spreading and Contact Angle of a Volatile Liquid Drop

    Science.gov (United States)

    Zhang, Nengli; Chao, David F.; Singh, Bhim S. (Technical Monitor)

    2000-01-01

    Effects of evaporation/condensation on spreading and contact angle were experimentally studied. A sessile drop of R-113 was tested at different vapor environments to determine the effects of evaporation/condensation on the evolution of contact diameter and contact angle of the drop. Condensation on the drop surface occurs at both the saturated and a nonsaturated vapor environments and promotes the spreading. When the drop is placed in the saturated vapor environment it tends to completely wetting and spreads rapidly. In a nonsaturated vapor environment, the evolution of the sessile drop is divided three stages: condensation-spreading stage, evaporation-retracting stage and rapid contracting stage. In the first stage the drop behaves as in the saturated environment. In the evaporation -retracting stage, the competition between spreading and evaporation of the drop determines the evolution characteristics of the contact diameter and the contact angle. A lower evaporation rate struggles against the spreading power to turn the drop from spreading to retracting with a continuous increase of the contact angle. The drop placed in open air has a much higher evaporation rate. The strong evaporation suppresses the spreading and accelerates the retraction of the drop with a linear decrease of the contact diameter. The contraction of the evaporating drops is gradually accelerated when the contact diameter decreases to 3 min and less till drying up, though the evaporation rate is gradually slowing down.

  19. From nuclei to liquid drops

    Energy Technology Data Exchange (ETDEWEB)

    Menchaca-Rocha, A.; Huidobro, F.; Michaelian, K.; Perez, A.; Rodriguez, V. [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Fisica; Carjan, N. [Bordeaux-1 Univ., 33 - Gradignan (France). Centre d`Etudes Nucleaires

    1995-12-31

    Collisions of symmetric mercury-drop pairs have been studied experimentally as a function of impact parameter, in a relative-velocity range going from a coalescence-dominated region to interactions yielding several residues. The experiments are compared with predictions of a dynamical model used in nuclear physics. The time evolution of the shapes is well reproduced by the simulation. (authors). 8 refs., 3 figs.

  20. The dynamics of Leidenfrost drops

    OpenAIRE

    van Limbeek, Michiel Antonius Jacobus

    2017-01-01

    Temperature control is omnipresent in today’s life: from keeping your fridge cold, maintaining a room at a pleasant temperature or preventing your computer from overheating. Efficient ways of heat transfer are often based on phase change, making use of the high latent heat of evaporation. In the context of spray cooling, liquid drops are impacting a hot plate to ensure a rapid cooling. At some temperature however, no contact occurs between the liquid and the plate, and the heat transfer rate ...

  1. Device for making liquid drops

    International Nuclear Information System (INIS)

    Yamada, Masao; Fukuda, Fumito; Nishikawa, Masana; Ishii, Takeshi.

    1976-01-01

    Object: To provide a device for producing liquid drops in the form of liquefied gases indispensable to make deuterium and tritium ice pellets used as a fusion fuel in a tokamak type fusion reactor. Structure: First, pressure P 1 at the upper surface of liquefied gas in a container and outlet pressure P 2 of a nozzle disposed at the lower part of the container are adjusted into the state of P 1 >= P 2 , and it is preset so that even under such conditions, the liquefied gas from the nozzle is not naturally flown out. Next, a vibration plate disposed within the container is rapidly downwardly advanced toward the nozzle through a predetermined distance. As a result, pressure of the liquefied gas within a depression under the vibration plate rises instantaneously or in a pulse fashion to dissatisfy the aforesaid set condition whereby the liquefied gas may be flown out from the nozzle in the form of liquid drops. In accordance with the present device, it is possible to produce a suitable number of drops at a suitable point. (Yoshihara, H.)

  2. Probing the nanoscale: the first contact of an impacting drop

    KAUST Repository

    Li, Erqiang

    2015-11-16

    When a drop impacts onto a solid surface, the lubrication pressure in the air deforms its bottom into a dimple. This makes the initial contact with the substrate occur not at a point but along a ring, thereby entrapping a central disc of air. We use ultra-high-speed imaging, with 200 ns time resolution, to observe the structure of this first contact between the liquid and a smooth solid surface. For a water drop impacting onto regular glass we observe a ring of microbubbles, due to multiple initial contacts just before the formation of the fully wetted outer section. These contacts are spaced by a few microns and quickly grow in size until they meet, thereby leaving behind a ring of microbubbles marking the original air-disc diameter. On the other hand, no microbubbles are left behind when the drop impacts onto molecularly smooth mica sheets. We thereby conclude that the localized contacts are due to nanometric roughness of the glass surface, and the presence of the microbubbles can therefore distinguish between glass with 10 nm roughness and perfectly smooth glass. We contrast this entrapment topology with the initial contact of a drop impacting onto a film of extremely viscous immiscible liquid, where the initial contact appears to be continuous along the ring. Here, an azimuthal instability occurs during the rapid contraction at the triple line, also leaving behind microbubbles. For low impact velocities the nature of the initial contact changes to one initiated by ruptures of a thin lubricating air film.

  3. Vortex flow in acoustically levitated drops

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Z.L.; Xie, W.J. [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China); Wei, B., E-mail: bbwei@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2011-08-29

    The internal flow of acoustically levitated water drops is investigated experimentally. This study reveals a kind of vortex flow which rotates in the meridional plane of the levitated drop. The magnitude of fluid velocity is nearly vanishing at the drop center, whereas it increases toward the free surface of a levitated drop until the maximum value of about 80 mm/s. A transition of streamline shapes from concentric circles to ellipses takes place at the distance of about 1.2 mm from the drop center. The fluid velocity distribution is plotted as a function of polar angle for seven characteristic streamlines. -- Highlights: → We experimentally observe the internal flow of acoustically levitated water drops. → We present a fascinating structure of vortex flow inside the levitated water drop. → This vortex flow rotates around the drop center in the meridional plane. → Velocity distribution information of this vortex flow is quantitatively analyzed.

  4. Vortex flow in acoustically levitated drops

    International Nuclear Information System (INIS)

    Yan, Z.L.; Xie, W.J.; Wei, B.

    2011-01-01

    The internal flow of acoustically levitated water drops is investigated experimentally. This study reveals a kind of vortex flow which rotates in the meridional plane of the levitated drop. The magnitude of fluid velocity is nearly vanishing at the drop center, whereas it increases toward the free surface of a levitated drop until the maximum value of about 80 mm/s. A transition of streamline shapes from concentric circles to ellipses takes place at the distance of about 1.2 mm from the drop center. The fluid velocity distribution is plotted as a function of polar angle for seven characteristic streamlines. -- Highlights: → We experimentally observe the internal flow of acoustically levitated water drops. → We present a fascinating structure of vortex flow inside the levitated water drop. → This vortex flow rotates around the drop center in the meridional plane. → Velocity distribution information of this vortex flow is quantitatively analyzed.

  5. The smallest jet drops produced by bursting bubbles

    Science.gov (United States)

    Brasz, Frederik; Bartlett, Casey; Walls, Peter; Flynn, Elena; Bird, James

    2017-11-01

    Aerosol droplets are produced from the breakup of jets formed when small air bubbles burst at an air-liquid interface. These jet drops transfer sea salt and organic matter from the oceans to the atmosphere, where they act as cloud condensation nuclei and can spread pathogens. The smallest aerosols persist the longest in the air and advect the furthest from their source, but because they are too small to be observed directly, little is known about what size ocean bubbles create them or how their formation depends on seawater properties. We show, both experimentally and numerically, that the minimum size of primary jet drops is set by the interplay between viscous and inertial-capillary forces and is significantly smaller than previous estimates. We find that viscous stresses modify both the shape of the collapsing bubble and the breakup of the resulting jet, leading to a non-monotonic size relationship between the bubble and primary jet drop. Supported by the National Science Foundation under Grant No. 1351466.

  6. Drag and drop display & builder

    Energy Technology Data Exchange (ETDEWEB)

    Bolshakov, Timofei B.; Petrov, Andrey D.; /Fermilab

    2007-12-01

    The Drag and Drop (DnD) Display & Builder is a component-oriented system that allows users to create visual representations of data received from data acquisition systems. It is an upgrade of a Synoptic Display mechanism used at Fermilab since 2002. Components can be graphically arranged and logically interconnected in the web-startable Project Builder. Projects can be either lightweight AJAX- and SVG-based web pages, or they can be started as Java applications. The new version was initiated as a response to discussions between the LHC Controls Group and Fermilab.

  7. CANFLEX fuel bundle junction pressure drop

    International Nuclear Information System (INIS)

    Chung, H. J.; Chung, C. H.; Jun, J. S.; Hong, S. D.; Chang, S. K.; Kim, B. D.

    1996-11-01

    This report describes the junction pressure drop test results which are to used to determine the alignment angle between bundles to achieve the most probable fuel string pressure drop for randomly aligned bundles for use in the fuel string total pressure drop test. (author). 4 tabs., 17 figs

  8. CANFLEX fuel bundle junction pressure drop

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H. J.; Chung, C. H.; Jun, J. S.; Hong, S. D.; Chang, S. K.; Kim, B. D.

    1996-11-01

    This report describes the junction pressure drop test results which are to used to determine the alignment angle between bundles to achieve the most probable fuel string pressure drop for randomly aligned bundles for use in the fuel string total pressure drop test. (author). 4 tabs., 17 figs.

  9. 49 CFR 178.603 - Drop test.

    Science.gov (United States)

    2010-10-01

    ... used for the hydrostatic pressure or stacking test. Exceptions for the number of steel and aluminum..., non-resilient, flat and horizontal surface. (e) Drop height. Drop heights, measured as the vertical... than flat drops, the center of gravity of the test packaging must be vertically over the point of...

  10. Electrohydrodynamics of a viscous drop with inertia.

    Science.gov (United States)

    Nganguia, H; Young, Y-N; Layton, A T; Lai, M-C; Hu, W-F

    2016-05-01

    Most of the existing numerical and theoretical investigations on the electrohydrodynamics of a viscous drop have focused on the creeping Stokes flow regime, where nonlinear inertia effects are neglected. In this work we study the inertia effects on the electrodeformation of a viscous drop under a DC electric field using a novel second-order immersed interface method. The inertia effects are quantified by the Ohnesorge number Oh, and the electric field is characterized by an electric capillary number Ca_{E}. Below the critical Ca_{E}, small to moderate electric field strength gives rise to steady equilibrium drop shapes. We found that, at a fixed Ca_{E}, inertia effects induce larger deformation for an oblate drop than a prolate drop, consistent with previous results in the literature. Moreover, our simulations results indicate that inertia effects on the equilibrium drop deformation are dictated by the direction of normal electric stress on the drop interface: Larger drop deformation is found when the normal electric stress points outward, and smaller drop deformation is found otherwise. To our knowledge, such inertia effects on the equilibrium drop deformation has not been reported in the literature. Above the critical Ca_{E}, no steady equilibrium drop deformation can be found, and often the drop breaks up into a number of daughter droplets. In particular, our Navier-Stokes simulations show that, for the parameters we use, (1) daughter droplets are larger in the presence of inertia, (2) the drop deformation evolves more rapidly compared to creeping flow, and (3) complex distribution of electric stresses for drops with inertia effects. Our results suggest that normal electric pressure may be a useful tool in predicting drop pinch-off in oblate deformations.

  11. Capillary Thinning of Particle-laden Drops

    Science.gov (United States)

    Wagoner, Brayden; Thete, Sumeet; Jahns, Matt; Doshi, Pankaj; Basaran, Osman

    2015-11-01

    Drop formation is central in many applications such as ink-jet printing, microfluidic devices, and atomization. During drop formation, a thinning filament is created between the about-to-form drop and the fluid hanging from the nozzle. Therefore, the physics of capillary thinning of filaments is key to understanding drop formation and has been thoroughly studied for pure Newtonian fluids. The thinning dynamics is, however, altered completely when the fluid contains particles, the physics of which is not well understood. In this work, we explore the impact of solid particles on filament thinning and drop formation by using a combination of experiments and numerical simulations.

  12. Vibration-Induced Climbing of Drops

    Science.gov (United States)

    Brunet, P.; Eggers, J.; Deegan, R. D.

    2007-10-01

    We report an experimental study of liquid drops moving against gravity, when placed on a vertically vibrating inclined plate, which is partially wetted by the drop. The frequency of vibrations ranges from 30 to 200 Hz, and, above a threshold in vibration acceleration, drops experience an upward motion. We attribute this surprising motion to the deformations of the drop, as a consequence of an up or down symmetry breaking induced by the presence of the substrate. We relate the direction of motion to contact angle measurements. This phenomenon can be used to move a drop along an arbitrary path in a plane, without special surface treatments or localized forcing.

  13. Who is dropping your course?

    Science.gov (United States)

    Storrs, Alex; Ghent, C.; Labattaglia, R.

    2011-01-01

    We present an analysis of pre and post instruction instruments in a basic astronomy course. This analysis is built on the Light and Spectroscopy Concept Inventory (LSCI, Bardar et al. 2007). In addition to assessing our student's gain in knowledge of this fundamental topic, we have added some demographic questions. While the primary purpose is to compare the gain in knowledge during a semester of instruction to changes in instruction, we also look at the demographics of students who take the pretest but not the posttest. These students are usually excluded from this type of analysis. We look for trends in the demographic information among students who drop the course, and suggest ways to make the course more palatable. References: Bardar et al., 2007: "Development and Validation of the Light and Spectroscopy Concept Inventory", Astr. Ed. Rev. 5(2), 103-113

  14. Magnetically focused liquid drop radiator

    Science.gov (United States)

    Botts, Thomas E.; Powell, James R.; Lenard, Roger

    1986-01-01

    A magnetically focused liquid drop radiator for application in rejecting rgy from a spacecraft, characterized by a magnetizable liquid or slurry disposed in operative relationship within the liquid droplet generator and its fluid delivery system, in combination with magnetic means disposed in operative relationship around a liquid droplet collector of the LDR. The magnetic means are effective to focus streams of droplets directed from the generator toward the collector, thereby to assure that essentially all of the droplets are directed into the collector, even though some of the streams may be misdirected as they leave the generator. The magnetic focusing means is also effective to suppress splashing of liquid when the droplets impinge on the collector.

  15. Visualization, granulometry and evaporation of drops and sprays - Study in close and pressurized atmosphere

    International Nuclear Information System (INIS)

    Lassauce, Aurelia

    2011-01-01

    The objective of this thesis is to determine the influence of ambient pressure between 100 and 600 KPa on the evaporation of a drop, and on the evaporation of a spray in the same conditions. The first step is to study the influence of ambient pressure on the evolution of the shape, the diameter, the speed and the evaporation rate of a drop of liquid in free fall. Then, an optical measurement technique has been used and a methodology was developed to calibrate this measurement technique and minimize measurement errors on the particle size. In parallel, an analytical model of evaporation of falling drops has been developed: a particular attention was paid to the determination of an appropriate correlation for the drag coefficient to take into account changes in the shape of drops during their fall. This model of evaporation of drop is compared with a spray evaporation model (taking into account the training of air, the vapor concentration away from the drop and the influence of the pressure to show the limits of this drop evaporation model when applied to the evaporation of a spray. The second phase of the study was to apply the measurement techniques and analysis developed previously to study the drop size of a spray to characterize the influence of three parameters: ambient pressure, injection pressure of the liquid and nature of the liquid. The analysis of the results allowed developing a statistical model to determine the size of the drops of these sprays [fr

  16. Fragment size distribution in viscous bag breakup of a drop

    Science.gov (United States)

    Kulkarni, Varun; Bulusu, Kartik V.; Plesniak, Michael W.; Sojka, Paul E.

    2015-11-01

    In this study we examine the drop size distribution resulting from the fragmentation of a single drop in the presence of a continuous air jet. Specifically, we study the effect of Weber number, We, and Ohnesorge number, Oh on the disintegration process. The regime of breakup considered is observed between 12 phase Doppler anemometry. Both the number and volume fragment size probability distributions are plotted. The volume probability distribution revealed a bi-modal behavior with two distinct peaks: one corresponding to the rim fragments and the other to the bag fragments. This behavior was suppressed in the number probability distribution. Additionally, we employ an in-house particle detection code to isolate the rim fragment size distribution from the total probability distributions. Our experiments showed that the bag fragments are smaller in diameter and larger in number, while the rim fragments are larger in diameter and smaller in number. Furthermore, with increasing We for a given Ohwe observe a large number of small-diameter drops and small number of large-diameter drops. On the other hand, with increasing Oh for a fixed We the opposite is seen.

  17. Dynamics of the central entrapped bubble during drop impact

    Science.gov (United States)

    Jian, Zhen; Channa, Murad Ali; Thoraval, Marie-Jean

    2017-11-01

    When a drop impacts onto a liquid surface, it entraps a thin central air disk. The air is then brought towards the axis of symmetry by surface tension. This contraction dynamics is very challenging to capture, due to the small length scales (a few micrometers thin air disk) and time scales (contracting in a few hundred microseconds). We use the open source two-phase flow codes Gerris and Basilisk to study this air entrapment phenomenon. The effects of liquid properties such as viscosity and surface tension, and of the impact velocity were investigated. We focus on the morphology of the contracting air disk. The bubble is expected to contract into a single spherical bubble. However, in some cases, the air can be stretched vertically by the liquid inertia and split into two smaller bubbles. The convergence of capillary waves on the air disk towards the axis of symmetry can also make it rupture at the center, thus forming a toroidal bubble. In other cases, vorticity shedding can deform the contracting bubble, leading to more complex structures. A parameter space analysis based on the Reynolds and Weber numbers was then done to classify the different regimes and explain the transitions. Full affiliation:State Key Laboratory for Strength and Vibration of Mechanical Structures,Shaanxi Key Laboratory of Environment and Control for Flight Vehicle,International Center for Applied Mechanics,School of Aerospace,Xi'an Jiaotong University.

  18. Sepsis from dropped clips at laparoscopic cholecystectomy

    International Nuclear Information System (INIS)

    Hussain, Sarwat

    2001-01-01

    We report seven patients in whom five dropped surgical clips and two gallstones were visualized in the peritoneal cavity, on radiological studies. In two, subphrenic abscesses and empyemas developed as a result of dropped clips into the peritoneal cavity during or following laparoscopic cholecystectomy. In one of these two, a clip was removed surgically from the site of an abscess. In two other patients dropped gallstones, and in three, dropped clips led to no complications. These were seen incidentally on studies done for other indications. Abdominal abscess secondary to dropped gallstones is a well-recognized complication of laparoscopic cholecystectomy (LC). We conclude that even though dropped surgical clips usually do not cause problems, they should be considered as a risk additional to other well-known causes of post-LC abdominal sepsis

  19. Hydrothermal waves in evaporating sessile drops

    OpenAIRE

    Brutin, D.; Rigollet, F.; Niliot, C. Le

    2009-01-01

    Drop evaporation is a simple phenomena but still unclear concerning the mechanisms of evaporation. A common agreement of the scientific community based on experimental and numerical work evidences that most of the evaporation occurs at the triple line. However, the rate of evaporation is still empirically predicted due to the lack of knowledge on the convection cells which develop inside the drop under evaporation. The evaporation of sessile drop is more complicated than it appears due to the...

  20. Antibubbles and fine cylindrical sheets of air

    NARCIS (Netherlands)

    Beilharz, D.; Guyon, A.; Li, E.Q.; Thoraval, Marie-Jean; Thoroddsen, S.T.

    2015-01-01

    Drops impacting at low velocities onto a pool surface can stretch out thin hemispherical sheets of air between the drop and the pool. These air sheets can remain intact until they reach submicron thicknesses, at which point they rupture to form a myriad of microbubbles. By impacting a

  1. Security for the Mythical Air-Dropped Sensor Network

    NARCIS (Netherlands)

    Gamage, C.D.; Bicakci, K.; Crispo, B.; Tanenbaum, A.S.

    2006-01-01

    The research area of very large scale wireless sensor networks made of low-cost sensors is gaining a lot of interest as witnessed by the large number of published papers. The security aspects of such networks are addressed as well, and in particular many security papers investigating the security

  2. Nonlinear oscillations of inviscid free drops

    Science.gov (United States)

    Patzek, T. W.; Benner, R. E., Jr.; Basaran, O. A.; Scriven, L. E.

    1991-01-01

    The present analysis of free liquid drops' inviscid oscillations proceeds through solution of Bernoulli's equation to obtain the free surface shape and of Laplace's equation for the velocity potential field. Results thus obtained encompass drop-shape sequences, pressure distributions, particle paths, and the temporal evolution of kinetic and surface energies; accuracy is verified by the near-constant drop volume and total energy, as well as the diminutiveness of mass and momentum fluxes across drop surfaces. Further insight into the nature of oscillations is provided by Fourier power spectrum analyses of mode interactions and frequency shifts.

  3. Drop "impact" on an airfoil surface.

    Science.gov (United States)

    Wu, Zhenlong

    2018-05-17

    Drop impact on an airfoil surface takes place in drop-laden two-phase flow conditions such as rain and icing, which are encountered by wind turbines or airplanes. This phenomenon is characterized by complex nonlinear interactions that manifest rich flow physics and pose unique modeling challenges. In this article, the state of the art of the research about drop impact on airfoil surface in the natural drop-laden two-phase flow environment is presented. The potential flow physics, hazards, characteristic parameters, droplet trajectory calculation, drop impact dynamics and effects are discussed. The most key points in establishing the governing equations for a drop-laden flow lie in the modeling of raindrop splash and water film. The various factors affecting the drop impact dynamics and the effects of drop impact on airfoil aerodynamic performance are summarized. Finally, the principle challenges and future research directions in the field as well as some promising measures to deal with the adverse effects of drop-laden flows on airfoil performance are proposed. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Soft drop jet mass measurement

    CERN Document Server

    Roloff, Jennifer Kathryn; The ATLAS collaboration

    2018-01-01

    Calculations of jet substructure observables that are accurate beyond leading-logarithm accuracy have recently become available. Such observables are significant not only for probing the collinear regime of QCD that is largely unexplored at a hadron collider, but also for improving the understanding of jet substructure properties that are used in many studies at the Large Hadron Collider. This poster documents a measurement of the first jet substructure quantity at a hadron collider to be calculated at next-to-next-to-leading-logarithm accuracy. The normalized, differential cross-section is measured as a function of log( ρ^2), where ρ is the ratio of the soft-drop mass to the ungroomed jet transverse momentum. This quantity is measured in dijet events from 32.9 ifb of sqrt(s) = 13 TeV proton-proton collisions recorded by the ATLAS detector. The data are unfolded to correct for detector effects and compared to precise QCD calculations and leading-logarithm particle-level Monte Carlo simulations.

  5. Heat transfer and pressure drop amidst frost layer presence for the full geometry of fin-tube heat exchanger

    International Nuclear Information System (INIS)

    Kim, Sung Jool; Choi, Ho Jin; Ha, Man Yeong; Kim, Seok Ro; Bang, Seon Wook

    2010-01-01

    The present study numerically solves the flow and thermal fields in the full geometry of heat exchanger modeling with frost layer presence on the heat exchanger surface. The effects of air inlet velocity, air inlet temperature, frost layer thickness, fin pitch, fin thickness, and heat exchanger shape on the thermo-hydraulic performance of a fin-tube heat exchanger are investigated. Heat transfer rate rises with increasing air inlet velocity and temperature, and decreasing frost layer thickness and fin pitch. Pressure drop rises with increasing air inlet velocity and frost layer thickness, and decreasing fin pitch. The effect of fin thickness on heat transfer and pressure drop is negligible. Based on the present results, we derived the correlations, which express pressure drop and temperature difference between air inlet and outlet as a function of air inlet velocity and temperature, as well as frost layer thickness

  6. Drop Impact Dynamics with Sessile Drops and Geometries: Spreading, Jetting, and Fragmentation

    Science.gov (United States)

    Tilger, Christopher F.

    The tendency of surface tension to cause small parcels of fluid to form into drops allows convenient packaging, transport, dispersal of liquid phase matter. Liquid drop impacts with solids, liquids, and other drops have realized and additional future applications in biological, manufacturing, heat transfer, and combustion systems. Experiments were conducted to investigate the dynamics of multiple drop collisions, rather than the most-studied phenomenon of single drop impacts. Additional drop impacts were performed on rigid hemispheres representing sessile drops, angled substrates, and into the vertex of two tilted surfaces arranged into a vee shape. A qualitative inspection of drop-sessile drop impacts shows distinct post-impact shapes depending on the offset distance between the drops. At intermediate offset distances, distinct jets issue from the overlap region between the two drops projected areas. These jets are observed to reach their maximum extent at a critical offset distance ratio, epsilon epsilon ˜ 0.75-0.80, with substrate contact angle and W e having a lesser effect. Capillary waves that traverse the sessile drop after collision cause a lower aspect ratio liquid column to emanate from the sessile drop opposite the impact. In order to better understand the jetting phenomenon seen in the offset drop-sessile drop impacts, simpler solid geometries are investigated that elicit a similar behavior. Solid hemispheres do not show the singular jetting observed in the fluidic case, however, a simple vee formed by two intersection planar substrates do jet in a similar fashion to the fluidic case. A geometric model with partnered experiments is developed to describe the bisymmetric spread of an impacting drop on an angled substrate. This geometric model is used to guide a time of arrival based model for various features of the drop impact, which is used to predict jetting in various vee channel experiments.

  7. Many Drops Make a Lake

    Directory of Open Access Journals (Sweden)

    Chaitanya S. Mudgal

    2014-03-01

    greater knowledge, better skills and disseminate this knowledge through this journal to influence as many physicians and their patients as possible. They have taken the knowledge of their teachers, recognized their giants and are now poised to see further than ever before. My grandmother often used to quote to me a proverb from India, which when translated literally means “Many drops make a lake”. I cannot help but be amazed by the striking similarities between the words of Newton and this Indian saying. Therefore, while it may seem intuitive, I think it must be stated that it is vital for the betterment of all our patients that we recognize our own personal lakes to put our drops of knowledge into. More important is that we recognize that it is incumbent upon each and every one of us to contribute to our collective lakes of knowledge such as ABJS. And finally and perhaps most importantly we need to be utterly cognizant of never letting such lakes of knowledge run dry.... ever.

  8. Drop test facility available to private industry

    International Nuclear Information System (INIS)

    Shappert, L.B.; Box, W.D.

    1983-01-01

    In 1978, a virtually unyielding drop test impact pad was constructed at Oak Ridge National Laboratory's (ORNL's) Tower Shielding Facility (TSF) for the testing of heavy shipping containers designed for transporting radioactive materials. Because of the facility's unique capability for drop-testing large, massive shipping packages, it has been identified as a facility which can be made available for non-DOE users

  9. University Drop-Out: An Italian Experience

    Science.gov (United States)

    Belloc, Filippo; Maruotti, Antonello; Petrella, Lea

    2010-01-01

    University students' drop-out is a crucial issue for the universities' efficiency evaluation and funding. In this paper, we analyze the drop-out rate of the Economics and Business faculty of Sapienza University of Rome. We use administrative data on 9,725 undergraduates students enrolled in three-years bachelor programs from 2001 to 2007 and…

  10. Total Site Heat Integration Considering Pressure Drops

    Directory of Open Access Journals (Sweden)

    Kew Hong Chew

    2015-02-01

    Full Text Available Pressure drop is an important consideration in Total Site Heat Integration (TSHI. This is due to the typically large distances between the different plants and the flow across plant elevations and equipment, including heat exchangers. Failure to consider pressure drop during utility targeting and heat exchanger network (HEN synthesis may, at best, lead to optimistic energy targets, and at worst, an inoperable system if the pumps or compressors cannot overcome the actual pressure drop. Most studies have addressed the pressure drop factor in terms of pumping cost, forbidden matches or allowable pressure drop constraints in the optimisation of HEN. This study looks at the implication of pressure drop in the context of a Total Site. The graphical Pinch-based TSHI methodology is extended to consider the pressure drop factor during the minimum energy requirement (MER targeting stage. The improved methodology provides a more realistic estimation of the MER targets and valuable insights for the implementation of the TSHI design. In the case study, when pressure drop in the steam distribution networks is considered, the heating and cooling duties increase by 14.5% and 4.5%.

  11. Why Do Students Drop Advanced Mathematics?

    Science.gov (United States)

    Horn, Ilana

    2004-01-01

    Students, especially black, Latino and Native American youth and students of low socio-economic status drop out of advanced mathematics. Teachers must coordinate their expectations, their knowledge of students and their teaching practices in order to stop struggling students from dropping out of advanced math classes.

  12. Wetting and evaporation of binary mixture drops.

    Science.gov (United States)

    Sefiane, Khellil; David, Samuel; Shanahan, Martin E R

    2008-09-11

    Experimental results on the wetting behavior of water, methanol, and binary mixture sessile drops on a smooth, polymer-coated substrate are reported. The wetting behavior of evaporating water/methanol drops was also studied in a water-saturated environment. Drop parameters (contact angle, shape, and volume) were monitored in time. The effects of the initial relative concentrations on subsequent evaporation and wetting dynamics were investigated. Physical mechanisms responsible for the various types of wetting behavior during different stages are proposed and discussed. Competition between evaporation and hydrodynamic flow are evoked. Using an environment saturated with water vapor allowed further exploration of the controlling mechanisms and underlying processes. Wetting stages attributed to differential evaporation of methanol were identified. Methanol, the more volatile component, evaporates predominantly in the initial stage. The data, however, suggest that a small proportion of methanol remained in the drop after the first stage of evaporation. This residual methanol within the drop seems to influence subsequent wetting behavior strongly.

  13. CPAS Preflight Drop Test Analysis Process

    Science.gov (United States)

    Englert, Megan E.; Bledsoe, Kristin J.; Romero, Leah M.

    2015-01-01

    Throughout the Capsule Parachute Assembly System (CPAS) drop test program, the CPAS Analysis Team has developed a simulation and analysis process to support drop test planning and execution. This process includes multiple phases focused on developing test simulations and communicating results to all groups involved in the drop test. CPAS Engineering Development Unit (EDU) series drop test planning begins with the development of a basic operational concept for each test. Trajectory simulation tools include the Flight Analysis and Simulation Tool (FAST) for single bodies, and the Automatic Dynamic Analysis of Mechanical Systems (ADAMS) simulation for the mated vehicle. Results are communicated to the team at the Test Configuration Review (TCR) and Test Readiness Review (TRR), as well as at Analysis Integrated Product Team (IPT) meetings in earlier and intermediate phases of the pre-test planning. The ability to plan and communicate efficiently with rapidly changing objectives and tight schedule constraints is a necessity for safe and successful drop tests.

  14. Pressure drop in ET-RR-1

    International Nuclear Information System (INIS)

    Khattab, M.; Mina, A.R.

    1990-01-01

    Measurements of pressure drop through a bundle comprising 16 rods and their lower arrangement grid as well as orifices similar to those of ET-RR-1 core have been done. Experiments are carried out under adiabatic turbulent flow conditions at about 35 degree C. Bundle Reynolds number range is 4 x 10 -2 x 10. Orifices of diameters 4.5, 3.25 or 2.5 cm. are mounted underneath the bundle. The bundle and lower grid pressure drop coefficients are 3.75 and 1.8 respectively. Orifices pressure drop coefficients are 2.65, 19.67 and 53.55 respectively. The ratio of bundle pressure drop to that of 4.5 cm. Orifice diameter is 1.415. The pressure drop coefficients are utilizer to calculate flow through bundles. The flow rate per bundle is 39.1, 20.4 or 13.1 m 3 /hr. Depending on orifice diameter

  15. "Self-Shaping" of Multicomponent Drops.

    Science.gov (United States)

    Cholakova, Diana; Valkova, Zhulieta; Tcholakova, Slavka; Denkov, Nikolai; Smoukov, Stoyan K

    2017-06-13

    In our recent study we showed that single-component emulsion drops, stabilized by proper surfactants, can spontaneously break symmetry and transform into various polygonal shapes during cooling [ Denkov Nature 2015 , 528 , 392 - 395 ]. This process involves the formation of a plastic rotator phase of self-assembled oil molecules beneath the drop surface. The plastic phase spontaneously forms a frame of plastic rods at the oil drop perimeter which supports the polygonal shapes. However, most of the common substances used in industry appear as mixtures of molecules rather than pure substances. Here we present a systematic study of the ability of multicomponent emulsion drops to deform upon cooling. The observed trends can be summarized as follows: (1) The general drop-shape evolution for multicomponent drops during cooling is the same as with single-component drops; however, some additional shapes are observed. (2) Preservation of the particle shape upon freezing is possible for alkane mixtures with chain length difference Δn ≤ 4; for greater Δn, phase separation within the droplet is observed. (3) Multicomponent particles prepared from alkanes with Δn ≤ 4 plastify upon cooling due to the formation of a bulk rotator phase within the particles. (4) If a compound, which cannot induce self-shaping when pure, is mixed with a certain amount of a compound which induces self-shaping, then drops prepared from this mixture can also self-shape upon cooling. (5) Self-emulsification phenomena are also observed for multicomponent drops. In addition to the three recently reported mechanisms of self-emulsification [ Tcholakova Nat. Commun. 2017 , ( 8 ), 15012 ], a new (fourth) mechanism is observed upon freezing for alkane mixtures with Δn > 4. It involves disintegration of the particles due to a phase separation of alkanes upon freezing.

  16. Thyrotoxicosis Presenting as Unilateral Drop Foot.

    Science.gov (United States)

    Hara, Kenju; Miyata, Hajime; Motegi, Takahide; Shibano, Ken; Ishiguro, Hideaki

    2017-01-01

    Neuromuscular disorders associated with hyperthyroidism have several variations in their clinical phenotype, such as ophthalmopathy, periodic paralysis, and thyrotoxic myopathy. We herein report an unusual case of thyrotoxic myopathy presenting as unilateral drop foot. Histopathological examinations of the left tibialis anterior muscle showed marked variation in the fiber size, mild inflammatory cell infiltration, and necrotic and regenerated muscle fibers with predominantly type 1 fiber atrophy. Medical treatment with propylthiouracil resulted in complete improvement of the left drop foot. This case expands the phenotype of thyrotoxicosis and suggests that thyrotoxicosis be considered as a possible cause of unilateral drop foot.

  17. Preparation and characterisation of superheated drop detectors

    International Nuclear Information System (INIS)

    Krishnamoorthy, P.

    1989-01-01

    Basic mechanism of bubble nucleation in superheated drops with respect to minimum energy of radiation and temperature is discussed. Experimental details and techniques for the preparation of Superheated Drop Detectors (SDDs) is explained. For the sample preparation, homogeneous composition of polymer (Morarfloc) and glycerine was used as the host medium and three different refrigerants Mafron-21, Mafron-12 and Mafron-11/12 (50:50) were chosen as the sensitive liquids. A pressure reactor developed at Health and Safety Laboratory is used for dispersing the sensitive liquid drops in the homogeneous composition under pressure. Some of the imporatant detector characteristics were studied. (author). 26 refs., 9 figs., 1 tab

  18. Electric air filtration movie

    International Nuclear Information System (INIS)

    Bergman, W.; Jaeger, R.

    1984-01-01

    The use of electrostatics to improve the performance of conventional air filters has gained considerable attention in recent years. This interest is due to the higher efficiency and reduced pressure drop of electrically enhanced filters compared to conventional fibrous filters. This 30-minute movie presents a state of the art review of electric air filters in the United States with major illustrations provided by the research and development program at the Lawrence Livermore National Laboratory sponsored by the Department of Energy. The electric air filters described in this movie are mechanical air filters to which electrical forces have been added

  19. Micro-splashing by drop impacts

    KAUST Repository

    Thoroddsen, Sigurdur T; Takehara, Kohsei; Etoh, Takeharugoji

    2012-01-01

    We use ultra-high-speed video imaging to observe directly the earliest onset of prompt splashing when a drop impacts onto a smooth solid surface. We capture the start of the ejecta sheet travelling along the solid substrate and show how it breaks up immediately upon emergence from the underneath the drop. The resulting micro-droplets are much smaller and faster than previously reported and may have gone unobserved owing to their very small size and rapid ejection velocities, which approach 100 m s-1, for typical impact conditions of large rain drops. We propose a phenomenological mechanism which predicts the velocity and size distribution of the resulting microdroplets. We also observe azimuthal undulations which may help promote the earliest breakup of the ejecta. This instability occurs in the cusp in the free surface where the drop surface meets the radially ejected liquid sheet. © 2012 Cambridge University Press.

  20. Micro-splashing by drop impacts

    KAUST Repository

    Thoroddsen, Sigurdur T.

    2012-07-18

    We use ultra-high-speed video imaging to observe directly the earliest onset of prompt splashing when a drop impacts onto a smooth solid surface. We capture the start of the ejecta sheet travelling along the solid substrate and show how it breaks up immediately upon emergence from the underneath the drop. The resulting micro-droplets are much smaller and faster than previously reported and may have gone unobserved owing to their very small size and rapid ejection velocities, which approach 100 m s-1, for typical impact conditions of large rain drops. We propose a phenomenological mechanism which predicts the velocity and size distribution of the resulting microdroplets. We also observe azimuthal undulations which may help promote the earliest breakup of the ejecta. This instability occurs in the cusp in the free surface where the drop surface meets the radially ejected liquid sheet. © 2012 Cambridge University Press.

  1. Influence of dispersion degree of water drops on efficiency of extinguishing of flammable liquids

    Directory of Open Access Journals (Sweden)

    Korolchenko Dmitriy

    2016-01-01

    Full Text Available Depending on the size of water drops, process of fire extinguishing is focused either in a zone of combustion or on a burning liquid surface. This article considers two alternate solutions of a heat balance equation. The first solution allows us to trace decrease of temperature of a flammable liquid (FL surface to a temperature lower than fuel flash point at which combustion is stopped. And the second solution allows us to analyze decrease of burnout rate to a negligible value at which steam-air mixture becomes nonflammable. As a result of solve of a heat balance equation it was made the following conclusion: water drops which size is equal to 100 μm will completely evaporate in a zone of combustion with extent of 1 m if the flying speed of drops is even 16 mps (acc. to Stokes v = 3 mps; whereas drops of larger size will evaporate only partially.

  2. Blood drop patterns: Formation and applications.

    Science.gov (United States)

    Chen, Ruoyang; Zhang, Liyuan; Zang, Duyang; Shen, Wei

    2016-05-01

    The drying of a drop of blood or plasma on a solid substrate leads to the formation of interesting and complex patterns. Inter- and intra-cellular and macromolecular interactions in the drying plasma or blood drop are responsible for the final morphologies of the dried patterns. Changes in these cellular and macromolecular components in blood caused by diseases have been suspected to cause changes in the dried drop patterns of plasma and whole blood, which could be used as simple diagnostic tools to identify the health of humans and livestock. However, complex physicochemical driving forces involved in the pattern formation are not fully understood. This review focuses on the scientific development in microscopic observations and pattern interpretation of dried plasma and whole blood samples, as well as the diagnostic applications of pattern analysis. Dried drop patterns of plasma consist of intricate visible cracks in the outer region and fine structures in the central region, which are mainly influenced by the presence and concentration of inorganic salts and proteins during drying. The shrinkage of macromolecular gel and its adhesion to the substrate surface have been thought to be responsible for the formation of the cracks. Dried drop patterns of whole blood have three characteristic zones; their formation as functions of drying time has been reported in the literature. Some research works have applied engineering treatment to the evaporation process of whole blood samples. The sensitivities of the resultant patterns to the relative humidity of the environment, the wettability of the substrates, and the size of the drop have been reported. These research works shed light on the mechanisms of spreading, evaporation, gelation, and crack formation of the blood drops on solid substrates, as well as on the potential applications of dried drop patterns of plasma and whole blood in diagnosis. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  3. Pressure drop in flashing flow through obstructions

    International Nuclear Information System (INIS)

    Weinle, M.E.; Johnston, B.S.

    1985-01-01

    An experiment was designed to investigate the pressure drop for flashing flow across obstructions of different geometries at various flow rates. Tests were run using two different orifices to determine if the two-phase pressure drop could be characterized by the single phase loss coefficient and the general behavior of the two-phase multiplier. For the geometries studied, it was possible to correlate the multiplier in a geometry-independent fashion

  4. Pressure drop in T's in concentric ducts

    International Nuclear Information System (INIS)

    Shock, R.A.W.

    1983-02-01

    A set of experiments has been carried out to measure the pressure drop characteristics of single-phase flow in dividing and joining right-angled T's in a concentric ducting system. These have been compared with measured pressure drops in a simple round tube system. In most tests with the concentric system the number of velocity heads lost is either similar to, or more than, the value for the round tubes. (author)

  5. Hanging drop crystal growth apparatus and method

    Science.gov (United States)

    Carter, Daniel C. (Inventor); Smith, Robbie E. (Inventor)

    1989-01-01

    An apparatus (10) is constructed having a cylindrical enclosure (16) within which a disc-shaped wicking element (18) is positioned. A well or recess (22) is cut into an upper side (24) of this wicking element, and a glass cover plate or slip (28) having a protein drop disposed thereon is sealably positioned on the wicking element (18), with drop (12) being positioned over well or recess (22). A flow of control fluid is generated by a programmable gradient former (16), with this control fluid having a vapor pressure that is selectively variable. This flow of control fluid is coupled to the wicking element (18) where control fluid vapor diffusing from walls (26) of the recess (22) is exposed to the drop (12), forming a vapor pressure gradient between the drop (12) and the control fluid vapor. Initially, this gradient is adjusted to draw solvent from the drop (12) at a relatively high rate, and as the critical supersaturation point is approached (the point at which crystal nucleation occurs), the gradient is reduced to more slowly draw solvent from the drop (12). This allows discrete protein molecules more time to orient themselves into an ordered crystalline lattice, producing protein crystals which, when processed by X-ray crystallography, possess a high degree of resolution.

  6. Free drop impact analysis of shipping cask

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Kennedy, J.M.

    1989-01-01

    The WHAMS-2D and WHAMS-3D codes were used to analyze the dynamic response of the RAS/TREAT shielded shipping cask subjected to transient leadings for the purpose of assessing potential damage to the various components that comprise the the cask. The paper describes how these codes can be used to provide and intermediate level of detail between full three-dimensional finite element calculations and hand calculations which are cost effective for design purposes. Three free drops were adressed: (1) a thirty foot axial drop on either end; (2) a thirty foot oblique angle drop with the cask having several different orientations from the vertical with impact on the cask corner; and (3) a thirty foot side drop with simultaneous impact on the lifting trunnion and the bottom end. Results are presented for two models of the side and oblique angle drops; one model includes only the mass of the lapped sleeves of depleted uranium (DU) while the other includes the mass and stiffness of the DU. The results of the end drop analyses are given for models with and without imperfections in the cask. Comparison of the analysis to hand calculations and simplified analyses are given. (orig.)

  7. Drop Performance Test of CRDMs for JRTR

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Myoung-Hwan; Cho, Yeong-Garp; Chung, Jong-Ha [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Jung-Hyun [POSCO Plandtec Co. Ltd, Ulsan (Korea, Republic of); Lee, Kwan-Hee [RIST, Pohang (Korea, Republic of)

    2015-10-15

    The drop test results of CRDMs with AC-type electromagnet show that the initial delay times are not satisfied with the requirement, 0.15 seconds. After the replacement of the electromagnet from AC-type to DCtype, the drop times of CARs and accelerations due to the impact of moving parts are satisfied with all requirements. As a result, it is found that four CRDMs to be installed at site have a good drop performance, and meet all performance requirements. A control rod drive mechanism (CRDM) is a device to control the position of a control absorber rod (CAR) in the core by using a stepping motor which is commanded by the reactor regulating system (RRS) to control the reactivity during the normal operation of the reactor. The top-mounted CRDM driven by the stepping motor for Jordan Research and Training Reactor (JRTR) has been developed in KAERI. The CRDM for JRTR has been optimized by the design improvement based on that of the HANARO. It is necessary to verify the performances such as the stepping, drop, endurance, vibration, seismic and structural integrity for active components. Especially, the CAR drop curves are important data for the safety analysis. This paper describes the test results to demonstrate the drop performances of a prototype and 4 CRDMs to be installed at site. The tests are carried out at a test rig simulating the actual reactor's conditions.

  8. Control of stain geometry by drop evaporation of surfactant containing dispersions.

    Science.gov (United States)

    Erbil, H Yildirim

    2015-08-01

    Control of stain geometry by drop evaporation of surfactant containing dispersions is an important topic of interest because it plays a crucial role in many applications such as forming templates on solid surfaces, in ink-jet printing, spraying of pesticides, micro/nano material fabrication, thin film coatings, biochemical assays, deposition of DNA/RNA micro-arrays, and manufacture of novel optical and electronic materials. This paper presents a review of the published articles on the diffusive drop evaporation of pure liquids (water), the surfactant stains obtained from evaporating drops that do not contain dispersed particles and deposits obtained from drops containing polymer colloids and carbon based particles such as carbon nanotubes, graphite and fullerenes. Experimental results of specific systems and modeling attempts are discussed. This review also has some special subtopics such as suppression of coffee-rings by surfactant addition and "stick-slip" behavior of evaporating nanosuspension drops. In general, the drop evaporation process of a surfactant/particle/substrate system is very complex since dissolved surfactants adsorb on both the insoluble organic/inorganic micro/nanoparticles in the drop, on the air/solution interface and on the substrate surface in different extends. Meanwhile, surfactant adsorbed particles interact with the substrate giving a specific contact angle, and free surfactants create a solutal Marangoni flow in the drop which controls the location of the particle deposition together with the rate of evaporation. In some cases, the presence of a surfactant monolayer at the air/solution interface alters the rate of evaporation. At present, the magnitude of each effect cannot be predicted adequately in advance and consequently they should be carefully studied for any system in order to control the shape and size of the final deposit. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. The evaporation of the charged and uncharged water drops

    Indian Academy of Sciences (India)

    Drop evaporation; ventilation coefficient; evaporation-effect of electrical forces. ... to study the effect of ventilation on the rate of evaporation of the millimeter sized ... a ventilated drop to reach its equilibrium temperature increases with the drop ...

  10. X-38 Drop Model: Landing Sequence Collage from Cessna Drop Test

    Science.gov (United States)

    1995-01-01

    This sequence of photographs shows a 4-foot-long model of NASA's X-38 gliding to earth after being dropped from a Cessna aircraft in late 1995. The model was used to test the ram-air parafoil landing system, which could allow for accurate and controlled landings of an emergency Crew Return Vehicle spacecraft returning to earth. The X-38 Crew Return Vehicle (CRV) research project is designed to develop the technology for a prototype emergency crew return vehicle, or lifeboat, for the International Space Station. The project is also intended to develop a crew return vehicle design that could be modified for other uses, such as a joint U.S. and international human spacecraft that could be launched on the French Ariane-5 Booster. The X-38 project is using available technology and off-the-shelf equipment to significantly decrease development costs. Original estimates to develop a capsule-type crew return vehicle were estimated at more than $2 billion. X-38 project officials have estimated that development costs for the X-38 concept will be approximately one quarter of the original estimate. Off-the-shelf technology is not necessarily 'old' technology. Many of the technologies being used in the X-38 project have never before been applied to a human-flight spacecraft. For example, the X-38 flight computer is commercial equipment currently used in aircraft and the flight software operating system is a commercial system already in use in many aerospace applications. The video equipment for the X-38 is existing equipment, some of which has already flown on the space shuttle for previous NASA experiments. The X-38's primary navigational equipment, the Inertial Navigation System/Global Positioning System, is a unit already in use on Navy fighters. The X-38 electromechanical actuators come from previous joint NASA, U.S. Air Force, and U.S. Navy research and development projects. Finally, an existing special coating developed by NASA will be used on the X-38 thermal tiles to

  11. [Optimize dropping process of Ginkgo biloba dropping pills by using design space approach].

    Science.gov (United States)

    Shen, Ji-Chen; Wang, Qing-Qing; Chen, An; Pan, Fang-Lai; Gong, Xing-Chu; Qu, Hai-Bin

    2017-07-01

    In this paper, a design space approach was applied to optimize the dropping process of Ginkgo biloba dropping pills. Firstly, potential critical process parameters and potential process critical quality attributes were determined through literature research and pre-experiments. Secondly, experiments were carried out according to Box-Behnken design. Then the critical process parameters and critical quality attributes were determined based on the experimental results. Thirdly, second-order polynomial models were used to describe the quantitative relationships between critical process parameters and critical quality attributes. Finally, a probability-based design space was calculated and verified. The verification results showed that efficient production of Ginkgo biloba dropping pills can be guaranteed by operating within the design space parameters. The recommended operation ranges for the critical dropping process parameters of Ginkgo biloba dropping pills were as follows: dropping distance of 5.5-6.7 cm, and dropping speed of 59-60 drops per minute, providing a reference for industrial production of Ginkgo biloba dropping pills. Copyright© by the Chinese Pharmaceutical Association.

  12. Cavity optomechanics in a levitated helium drop

    Science.gov (United States)

    Childress, L.; Schmidt, M. P.; Kashkanova, A. D.; Brown, C. D.; Harris, G. I.; Aiello, A.; Marquardt, F.; Harris, J. G. E.

    2017-12-01

    We describe a proposal for a type of optomechanical system based on a drop of liquid helium that is magnetically levitated in vacuum. In the proposed device, the drop would serve three roles: its optical whispering-gallery modes would provide the optical cavity, its surface vibrations would constitute the mechanical element, and evaporation of He atoms from its surface would provide continuous refrigeration. We analyze the feasibility of such a system in light of previous experimental demonstrations of its essential components: magnetic levitation of mm-scale and cm-scale drops of liquid He , evaporative cooling of He droplets in vacuum, and coupling to high-quality optical whispering-gallery modes in a wide range of liquids. We find that the combination of these features could result in a device that approaches the single-photon strong-coupling regime, due to the high optical quality factors attainable at low temperatures. Moreover, the system offers a unique opportunity to use optical techniques to study the motion of a superfluid that is freely levitating in vacuum (in the case of 4He). Alternatively, for a normal fluid drop of 3He, we propose to exploit the coupling between the drop's rotations and vibrations to perform quantum nondemolition measurements of angular momentum.

  13. Drop Testing Representative Multi-Canister Overpacks

    Energy Technology Data Exchange (ETDEWEB)

    Snow, Spencer D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Morton, Dana K. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    The objective of the work reported herein was to determine the ability of the Multi- Canister Overpack (MCO) canister design to maintain its containment boundary after an accidental drop event. Two test MCO canisters were assembled at Hanford, prepared for testing at the Idaho National Engineering and Environmental Laboratory (INEEL), drop tested at Sandia National Laboratories, and evaluated back at the INEEL. In addition to the actual testing efforts, finite element plastic analysis techniques were used to make both pre-test and post-test predictions of the test MCOs structural deformations. The completed effort has demonstrated that the canister design is capable of maintaining a 50 psig pressure boundary after drop testing. Based on helium leak testing methods, one test MCO was determined to have a leakage rate not greater than 1x10-5 std cc/sec (prior internal helium presence prevented a more rigorous test) and the remaining test MCO had a measured leakage rate less than 1x10-7 std cc/sec (i.e., a leaktight containment) after the drop test. The effort has also demonstrated the capability of finite element methods using plastic analysis techniques to accurately predict the structural deformations of canisters subjected to an accidental drop event.

  14. Liquid toroidal drop under uniform electric field

    Science.gov (United States)

    Zabarankin, Michael

    2017-06-01

    The problem of a stationary liquid toroidal drop freely suspended in another fluid and subjected to an electric field uniform at infinity is addressed analytically. Taylor's discriminating function implies that, when the phases have equal viscosities and are assumed to be slightly conducting (leaky dielectrics), a spherical drop is stationary when Q=(2R2+3R+2)/(7R2), where R and Q are ratios of the phases' electric conductivities and dielectric constants, respectively. This condition holds for any electric capillary number, CaE, that defines the ratio of electric stress to surface tension. Pairam and Fernández-Nieves showed experimentally that, in the absence of external forces (CaE=0), a toroidal drop shrinks towards its centre, and, consequently, the drop can be stationary only for some CaE>0. This work finds Q and CaE such that, under the presence of an electric field and with equal viscosities of the phases, a toroidal drop having major radius ρ and volume 4π/3 is qualitatively stationary-the normal velocity of the drop's interface is minute and the interface coincides visually with a streamline. The found Q and CaE depend on R and ρ, and for large ρ, e.g. ρ≥3, they have simple approximations: Q˜(R2+R+1)/(3R2) and CaE∼3 √{3 π ρ / 2 } (6 ln ⁡ρ +2 ln ⁡[96 π ]-9 )/ (12 ln ⁡ρ +4 ln ⁡[96 π ]-17 ) (R+1 ) 2/ (R-1 ) 2.

  15. Investigation of pressure drop in capillary tube for mixed refrigerant Joule-Thomson cryocooler

    International Nuclear Information System (INIS)

    Ardhapurkar, P. M.; Sridharan, Arunkumar; Atrey, M. D.

    2014-01-01

    A capillary tube is commonly used in small capacity refrigeration and air-conditioning systems. It is also a preferred expansion device in mixed refrigerant Joule-Thomson (MR J-T) cryocoolers, since it is inexpensive and simple in configuration. However, the flow inside a capillary tube is complex, since flashing process that occurs in case of refrigeration and air-conditioning systems is metastable. A mixture of refrigerants such as nitrogen, methane, ethane, propane and iso-butane expands below its inversion temperature in the capillary tube of MR J-T cryocooler and reaches cryogenic temperature. The mass flow rate of refrigerant mixture circulating through capillary tube depends on the pressure difference across it. There are many empirical correlations which predict pressure drop across the capillary tube. However, they have not been tested for refrigerant mixtures and for operating conditions of the cryocooler. The present paper assesses the existing empirical correlations for predicting overall pressure drop across the capillary tube for the MR J-T cryocooler. The empirical correlations refer to homogeneous as well as separated flow models. Experiments are carried out to measure the overall pressure drop across the capillary tube for the cooler. Three different compositions of refrigerant mixture are used to study the pressure drop variations. The predicted overall pressure drop across the capillary tube is compared with the experimentally obtained value. The predictions obtained using homogeneous model show better match with the experimental results compared to separated flow models

  16. The new Drop Tower catapult system

    Science.gov (United States)

    von Kampen, Peter; Kaczmarczik, Ulrich; Rath, Hans J.

    2006-07-01

    The Center of Applied Space Technology and Microgravity (ZARM) was founded in 1985 as an institute of the University Bremen, which focuses on research on gravitational and space-related phenomena. In 1988, the construction of the "Drop Tower" began. Since then, the eye-catching tower with a height of 146 m and its characteristic glass roof has become the emblem of the technology centre in Bremen. The Drop Tower Bremen provides a facility for experiments under conditions of weightlessness. Items are considered weightless, when they are in "free fall", i.e. moving without propulsion within the gravity field of the earth. The height of the tower limits the simple "free fall" experiment period to max. 4.74 s. With the inauguration of the catapult system in December 2004, the ZARM is entering a new dimension. This world novelty will meet scientists' demands of extending the experiment period up to 9.5 s. Since turning the first sod on May 3rd, 1988, the later installation of the catapult system has been taken into account by building the necessary chamber under the tower. The catapult system is located in a chamber 10 m below the base of the tower. This chamber is almost completely occupied by 12 huge pressure tanks. These tanks are placed around the elongation of the vacuum chamber of the drop tube. In its centre there is the pneumatic piston that accelerates the drop capsule by the pressure difference between the vacuum inside the drop tube and the pressure inside the tanks. The acceleration level is adjusted by means of a servo hydraulic breaking system controlling the piston velocity. After only a quarter of a second the drop capsule achieves its lift-off speed of 175 km/h. With this exact speed, the capsule will rise up to the top of the tower and afterwards fall down again into the deceleration unit which has been moved under the drop tube in the meantime. The scientific advantages of the doubled experiment time are obvious: during almost 10 s of high

  17. Shuttlecock Velocity of a Badminton Drop Shot

    Directory of Open Access Journals (Sweden)

    Ampharin Ongvises

    2013-01-01

    Full Text Available In a badminton ‘drop shot’, the shuttlecock is struck by a non-rotating racquet at low speed. In this investigation, a shuttlecock was hit by a badminton racquet in a linear collision, simulating a drop shot. The collision was recorded with high-speed video and the velocities of the racquet and shuttlecock determined. The relationship between the impact velocity of the racquet and the velocity of the shuttlecock as it leaves the badminton racquet after collision was found to be proportional over the range tested.

  18. Shuttlecock Velocity of a Badminton Drop Shot

    Directory of Open Access Journals (Sweden)

    Ampharin Ongvises

    2013-12-01

    Full Text Available In a badminton ‘drop shot’, the shuttlecock is struck by a non-rotating racquet at low speed. In this investigation, a shuttlecock was hit by a badminton racquet in a linear collision, simulating a drop shot. The collision was recorded with high-speed video and the velocities of the racquet and shuttlecock determined. The relationship between the impact velocity of the racquet and the velocity of the shuttlecock as it leaves the badminton racquet after collision was found to be proportional over the range tested.

  19. Relating water and air flow characteristics in coarse granular materials

    DEFF Research Database (Denmark)

    Andreasen, Rune Røjgaard; Canga, Eriona; Poulsen, Tjalfe Gorm

    2013-01-01

    Water pressure drop as a function of velocity controls w 1 ater cleaning biofilter operation 2 cost. At present this relationship in biofilter materials must be determined experimentally as no 3 universal link between pressure drop, velocity and filter material properties have been established. 4...... Pressure drop - velocity in porous media is much simpler and faster to measure for air than for water. 5 For soils and similar materials, observations show a strong connection between pressure drop – 6 velocity relations for air and water, indicating that water pressure drop – velocity may be estimated 7...... from air flow data. The objective of this study was, therefore, to investigate if this approach is valid 8 also for coarse granular biofilter media which usually consists of much larger particles than soils. In 9 this paper the connection between the pressure drop – velocity relationships for air...

  20. Effects of drop freezing on microphysics of an ascending cloud parcel under biomass burning conditions

    Science.gov (United States)

    Diehl, K.; Simmel, M.; Wurzler, S.

    There is some evidence that the initiation of warm rain is suppressed in clouds over regions with vegetation fires. Thus, the ice phase becomes important as another possibility to initiate precipitation. Numerical simulations were performed to investigate heterogeneous drop freezing for a biomass-burning situation. An air parcel model with a sectional two-dimensional description of the cloud microphysics was employed with parameterizations for immersion and contact freezing which consider the different ice nucleating efficiencies of various ice nuclei. Three scenarios were simulated resulting to mixed-phase or completely glaciated clouds. According to the high insoluble fraction of the biomass-burning particles drop freezing via immersion and contact modes was very efficient. The preferential freezing of large drops followed by riming (i.e. the deposition of liquid drops on ice particles) and the evaporation of the liquid drops (Bergeron-Findeisen process) caused a further decrease of the liquid drops' effective radius in higher altitudes. In turn ice particle sizes increased so that they could serve as germs for graupel or hailstone formation. The effects of ice initiation on the vertical cloud dynamics were fairly significant leading to a development of the cloud to much higher altitudes than in a warm cloud without ice formation.

  1. Mesoscopic analyses of porous concrete under static compression and drop weight impact tests

    DEFF Research Database (Denmark)

    Agar Ozbek, A.S.; Pedersen, R.R.; Weerheijm, J.

    2008-01-01

    was considered as a four-phase material incorporating aggregates, bulk cement paste, interfacial transition zones and meso-size air pores. The stress-displacement relations obtained from static compression tests, the stress values, and the corresponding damage levels provided by the drop weight impact tests were......The failure process in highly porous concrete was analyzed experimentally and numerically. A triaxial visco-plastic damage model and a mesoscale representation of the material composition were considered to reproduce static compression and drop weight impact tests. In the mesoscopic model, concrete...

  2. Pressure drop and friction factor correlations of supercritical flow

    International Nuclear Information System (INIS)

    Fang Xiande; Xu Yu; Su Xianghui; Shi Rongrong

    2012-01-01

    Highlights: ► Survey and evaluation of friction factor models for supercritical flow. ► Survey of experimental study of supercritical flow. ► New correlation of friction factor for supercritical flow. - Abstract: The determination of the in-tube friction pressure drop under supercritical conditions is important to the design, analysis and simulation of transcritical cycles of air conditioning and heat pump systems, nuclear reactor cooling systems and some other systems. A number of correlations for supercritical friction factors have been proposed. Their accuracy and applicability should be examined. This paper provides a comprehensive survey of experimental investigations into the pressure drop of supercritical flow in the past decade and a comparative study of supercritical friction factor correlations. Our analysis shows that none of the existing correlations is completely satisfactory, that there are contradictions between the existing experimental results and thus more elaborate experiments are needed, and that the tube roughness should be considered. A new friction factor correlation for supercritical tube flow is proposed based on 390 experimental data from the available literature, including 263 data of supercritical R410A cooling, 45 data of supercritical R404A cooling, 64 data of supercritical carbon dioxide (CO 2 ) cooling and 18 data of supercritical R22 heating. Compared with the best existing model, the new correlation increases the accuracy by more than 10%.

  3. Acoustic forcing of a liquid drop

    Science.gov (United States)

    Lyell, M. J.

    1992-01-01

    The development of systems such as acoustic levitation chambers will allow for the positioning and manipulation of material samples (drops) in a microgravity environment. This provides the capability for fundamental studies in droplet dynamics as well as containerless processing work. Such systems use acoustic radiation pressure forces to position or to further manipulate (e.g., oscillate) the sample. The primary objective was to determine the effect of a viscous acoustic field/tangential radiation pressure forcing on drop oscillations. To this end, the viscous acoustic field is determined. Modified (forced) hydrodynamic field equations which result from a consistent perturbation expansion scheme are solved. This is done in the separate cases of an unmodulated and a modulated acoustic field. The effect of the tangential radiation stress on the hydrodynamic field (drop oscillations) is found to manifest as a correction to the velocity field in a sublayer region near the drop/host interface. Moreover, the forcing due to the radiation pressure vector at the interface is modified by inclusion of tangential stresses.

  4. 49 CFR 178.965 - Drop test.

    Science.gov (United States)

    2010-10-01

    ... Large Packaging design types and performed periodically as specified in § 178.955(e) of this subpart. (b... § 178.960(d). (d) Test method. (1) Samples of all Large Packaging design types must be dropped onto a... be restored to the upright position for observation. (2) Large Packaging design types with a capacity...

  5. Predicting Students Drop Out: A Case Study

    Science.gov (United States)

    Dekker, Gerben W.; Pechenizkiy, Mykola; Vleeshouwers, Jan M.

    2009-01-01

    The monitoring and support of university freshmen is considered very important at many educational institutions. In this paper we describe the results of the educational data mining case study aimed at predicting the Electrical Engineering (EE) students drop out after the first semester of their studies or even before they enter the study program…

  6. Modeling merging behavior at lane drops.

    Science.gov (United States)

    2015-02-01

    In work-zone configurations where lane drops are present, merging of traffic at the taper presents an operational concern. In : addition, as flow through the work zone is reduced, the relative traffic safety of the work zone is also reduced. Improvin...

  7. Pressure drops in low pressure local boiling

    International Nuclear Information System (INIS)

    Courtaud, Michel; Schleisiek, Karl

    1969-01-01

    For prediction of flow reduction in nuclear research reactors, it was necessary to establish a correlation giving the pressure drop in subcooled boiling for rectangular channels. Measurements of pressure drop on rectangular channel 60 and 90 cm long and with a coolant gap of 1,8 and 3,6 mm were performed in the following range of parameters. -) 3 < pressure at the outlet < 11 bars abs; -) 25 < inlet temperature < 70 deg. C; -) 200 < heat flux < 700 W/cm 2 . It appeared that the usual parameter, relative length in subcooled boiling, was not sufficient to correlate experimental pressure losses on the subcooled boiling length and that there was a supplementary influence of pressure, heat flux and subcooling. With an a dimensional parameter including these terms a correlation was established with an error band of ±10%. With a computer code it was possible to derive the relation giving the overall pressure drop along the channel and to determine the local gradients of pressure drop. These local gradients were then correlated with the above parameter calculated in local conditions. 95 % of the experimental points were computed with an accuracy of ±10% with this correlation of gradients which can be used for non-uniform heated channels. (authors) [fr

  8. Predicting students drop out : a case study

    NARCIS (Netherlands)

    Dekker, G.W.; Pechenizkiy, M.; Vleeshouwers, J.M.; Barnes, T.; Desmarais, M.; Romero, C.; Ventura, S.

    2009-01-01

    The monitoring and support of university freshmen is considered very important at many educational institutions. In this paper we describe the results of the educational data mining case study aimed at predicting the Electrical Engineering (EE) students drop out after the first semester of their

  9. Potential drop sensors for sodium loops

    International Nuclear Information System (INIS)

    Selvaraj, R.

    1978-11-01

    Potential drop sensors to detect the presence or the absence of sodium in pipe lines are described. These are very handy during loop charging and dumping operations. Their suitability to detect level surges and to monitor continuous level of liquid metals in certain applications is discussed. (author)

  10. The liquid drop nature of nucleoli.

    Science.gov (United States)

    Marko, John F

    2012-03-01

    Nucleoli are prominent subnuclear organelles, and are known to be hubs of ribosome synthesis. A recent study of Brangwynne et al. reports that the nucleoli of Xenopus oocytes display "liquid drop" behavior, suggesting that nucleolar structure may be driven by rather simple physical principles.

  11. Biomechanical analysis of drop and countermovement jumps

    NARCIS (Netherlands)

    Bobbert, M. F.; Mackay, M.T.; Schinkelshoek, D.; Huijing, P. A.; van Ingen Schenau, G. J.

    For 13 subjects the performance of drop jumps from a height of 40 cm (DJ) and of countermovement jumps (CMJ) was analysed and compared. From force plate and cine data biomechanical variables including forces, moments, power output and amount of work done were calculated for hip, knee and ankle

  12. The stability of cylindrical pendant drops

    CERN Document Server

    McCuan, John

    2018-01-01

    The author considers the stability of certain liquid drops in a gravity field satisfying a mixed boundary condition. He also considers as special cases portions of cylinders that model either the zero gravity case or soap films with the same kind of boundary behavior.

  13. Scaling the drop size in coflow experiments

    International Nuclear Information System (INIS)

    Castro-Hernandez, E; Gordillo, J M; Gundabala, V; Fernandez-Nieves, A

    2009-01-01

    We perform extensive experiments with coflowing liquids in microfluidic devices and provide a closed expression for the drop size as a function of measurable parameters in the jetting regime that accounts for the experimental observations; this expression works irrespective of how the jets are produced, providing a powerful design tool for this type of experiments.

  14. Scaling the drop size in coflow experiments

    Energy Technology Data Exchange (ETDEWEB)

    Castro-Hernandez, E; Gordillo, J M [Area de Mecanica de Fluidos, Universidad de Sevilla, Avenida de los Descubrimientos s/n, 41092 Sevilla (Spain); Gundabala, V; Fernandez-Nieves, A [School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States)], E-mail: jgordill@us.es

    2009-07-15

    We perform extensive experiments with coflowing liquids in microfluidic devices and provide a closed expression for the drop size as a function of measurable parameters in the jetting regime that accounts for the experimental observations; this expression works irrespective of how the jets are produced, providing a powerful design tool for this type of experiments.

  15. Goose droppings as food for reindeer

    NARCIS (Netherlands)

    van der Wal, R; Loonen, MJJE

    Feeding conditions for Svalbard reindeer, Rangifer tarandus platyrhynchus, on Spitsbergen are generally poor, owing to low availability of forage. We report on coprophagy: the use of goose faeces as an alternative food source for reindeer. Fresh droppings from Barnacle Geese, Branta leucopsis,

  16. Drop impact entrapment of bubble rings

    KAUST Repository

    Thoraval, M.-J.; Takehara, K.; Etoh, T.G.; Thoroddsen, Sigurdur T

    2013-01-01

    We use ultra-high-speed video imaging to look at the initial contact of a drop impacting on a liquid layer. We observe experimentally the vortex street and the bubble-ring entrapments predicted numerically, for high impact velocities, by Thoraval et

  17. Drop rebound after impact: the role of the receding contact angle.

    Science.gov (United States)

    Antonini, C; Villa, F; Bernagozzi, I; Amirfazli, A; Marengo, M

    2013-12-31

    Data from the literature suggest that the rebound of a drop from a surface can be achieved when the wettability is low, i.e., when contact angles, measured at the triple line (solid-liquid-air), are high. However, no clear criterion exists to predict when a drop will rebound from a surface and which is the key wetting parameter to govern drop rebound (e.g., the "equilibrium" contact angle, θeq, the advancing and the receding contact angles, θA and θR, respectively, the contact angle hysteresis, Δθ, or any combination of these parameters). To clarify the conditions for drop rebound, we conducted experimental tests on different dry solid surfaces with variable wettability, from hydrophobic to superhydrophobic surfaces, with advancing contact angles 108° contact angles 89° contact angle is the key wetting parameter that influences drop rebound, along with surface hydrophobicity: for the investigated impact conditions (drop diameter 2.4 contact angles higher than 100°. Also, the drop rebound time decreased by increasing the receding contact angle. It was also shown that in general care must be taken when using statically defined wetting parameters (such as advancing and receding contact angles) to predict the dynamic behavior of a liquid on a solid surface because the dynamics of the phenomenon may affect surface wetting close to the impact point (e.g., as a result of the transition from the Cassie-Baxter to Wenzel state in the case of the so-called superhydrophobic surfaces) and thus affect the drop rebound.

  18. Curvature singularity and film-skating during drop impact

    Science.gov (United States)

    Duchemin, Laurent; Josserand, Christophe

    2011-09-01

    We study the influence of the surrounding gas in the dynamics of drop impact on a smooth surface. We use an axisymmetric model for which both the gas and the liquid are incompressible; lubrication regime applies for the gas film dynamics and the liquid viscosity is neglected. In the absence of surface tension a finite time singularity whose properties are analysed is formed and the liquid touches the solid on a circle. When surface tension is taken into account, a thin jet emerges from the zone of impact, skating above a thin gas layer. The thickness of the air film underneath this jet is always smaller than the mean free path in the gas suggesting that the liquid film eventually wets the surface. We finally suggest an aerodynamical instability mechanism for the splash.

  19. The Temperature of the Dimethylhydrazine Drops Moving in the Atmosphere after Depressurization of the Fuel Tank Rockets

    Directory of Open Access Journals (Sweden)

    Bulba Elena

    2016-01-01

    Full Text Available This work includes the results of the numerical modeling of temperature changes process of the dimethylhydrazine (DMH drops, taking into account the radial temperature gradient in the air after the depressurization of the fuel compartments rockets at high altitude. There is formulated a mathematical model describing the process of DMH drops thermal state modifying when it's moving to the Earth's surface. There is the evaluation of the influence of the characteristic size of heptyl drops on the temperature distribution. It's established that the temperatures of the small size droplets practically completely coincide with the distribution of temperature in the atmosphere at altitudes of up to 40 kilometers.

  20. Annual Occurrence of Meteorite-Dropping Fireballs

    Science.gov (United States)

    Konovalova, Natalia; Jopek, Tadeusz J.

    2016-07-01

    The event of Chelyabinsk meteorite has brought about change the earlier opinion about limits of the sizes of potentially dangerous asteroidal fragments that crossed the Earth's orbit and irrupted in the Earth's atmosphere making the brightest fireball. The observations of the fireballs by fireball networks allows to get the more precise data on atmospheric trajectories and coordinates of predicted landing place of the meteorite. For the reason to search the periods of fireball activity is built the annual distribution of the numbers of meteorites with the known fall dates and of the meteorite-dropping fireballs versus the solar longitude. The resulting profile of the annual activity of meteorites and meteorite-dropping fireballs shows several periods of increased activity in the course of the year. The analysis of the atmospheric trajectories and physical properties of sporadic meteorite-dropping fireballs observed in Tajikistan by instrumental methods in the summer‒autumn periods of increased fireballs activity has been made. As a result the structural strength, the bulk density and terminal mass of the studied fireballs that can survive in the Earth atmosphere and became meteorites was obtained. From the photographic IAU MDC_2003 meteor database and published sources based on the orbit proximity as determined by D-criterion of Southworth and Hawkins the fireballs that could be the members of group of meteorite-dropping fireballs, was found. Among the near Earth's objects (NEOs) the searching for parent bodies for meteorite-dropping fireballs was made and the evolution of orbits of these objects in the past on a long interval of time was investigated.

  1. Connectable solar air collectors

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard Jensen, S.; Bosanac, M.

    2002-02-01

    The project has proved that it is possible to manufacture solar air collector panels, which in an easy way can be connected into large collector arrays with integrated ducting without loss of efficiency. The developed connectable solar air collectors are based on the use of matrix absorbers in the form of perforated metal sheets. Three interconnected solar air collectors of the above type - each with an transparent area of approx. 3 m{sup 2} - was tested and compared with parallel tests on two single solar air collectors also with a transparent area of approx. 3 m{sup 2} One of the single solar air collectors has an identical absorber as the connectable solar air collectors while the absorber of the other single solar air collector was a fibre cloth. The efficiency of the three solar air collectors proved to be almost identical in the investigated range of mass flow rates and temperature differences. The solar air collectors further proved to be very efficient - as efficient as the second most efficient solar air collectors tested in the IEA task 19 project Solar Air Systems. Some problems remain although to be solved: the pressure drop across especially the connectable solar air collectors is too high - mainly across the inlets of the solar air collectors. It should, however, be possible to considerably reduce the pressure losses with a more aerodynamic design of the inlet and outlet of the solar air collectors; The connectable solar air collectors are easy connectable but the air tightness of the connections in the present form is not good enough. As leakage leads to lower efficiencies focus should be put on making the connections more air tight without loosing the easiness in connecting the solar air collectors. As a spin off of the project a simple and easy way to determine the efficiency of solar, air collectors for pre-heating of fresh air has been validated. The simple method of determining the efficiency has with success been compared with an advance method

  2. Fission product removal by containment spray - influence of the distance between the drops on the aerosol collection efficiency

    International Nuclear Information System (INIS)

    Gauchet, N.

    2000-01-01

    This work is within the framework of the studies that are conducted at the IPSN concerning the loss of coolant in a nuclear reactor. During this kind of accident, a spray system in the reactor containment induces the scrubbing of fission products in the atmosphere, and allows the decrease of their concentration in the containment. Our objective is to study the influence of the distance between the drops of their aerosol collection efficiency. This is not taken into account in the existing models. We stimulate the various aerosol collection mechanisms with one free falling drop using computational fluid dynamics codes. The mechanisms are: deposition by brownian diffusion, impaction and interception of the particles by the drop, and collection of particles in the presence of steam condensation at the surface of the drop. These phenomena are studied for drops ranging in diameter from 100 to 700 micrometers, falling in a saturated air-steam mixture whose temperature varies between 20 and 140 degrees Celsius, and total pressure varies between 1 and 5 bars. We validate these models with results available in the literature and with experimental results CARAIDAS. Then we apply these models to the case of three aligned drops, which constitutes a case for which the proximity of the drops has a strong influence on the collection of aerosols. While varying the distance between the drop from 5 to 25 drop diameters, we can highlight the modification of the collection efficiency of each mechanism related to the disturbance of the velocity and concentration fields in the vicinity of the drops. We note that the strongest variations of efficiency observed are in the field of impaction, and that the steam condensation at the surface of the drops limits the decrease. (authors)

  3. Coalescence collision of liquid drops I: Off-center collisions of equal-size drops

    Directory of Open Access Journals (Sweden)

    Alejandro Acevedo-Malavé

    2011-09-01

    Full Text Available The Smoothed Particle Hydrodynamics method (SPH is used here to model off-center collisions of equal-size liquid drops in a three-dimensional space. In this study the Weber number is calculated for several conditions of the droplets dynamics and the velocity vector fields formed inside the drops during the collision process are shown. For the permanent coalescence the evolution of the kinetic and internal energy is shown and also the approaching to equilibrium of the resulting drop. Depending of the Weber number three possible outcomes for the collision of droplets is obtained: permanent coalescence, flocculation and fragmentation. The fragmentation phenomena are modeled and the formation of small satellite drops can be seen. The ligament that is formed follows the “end pinching” mechanism and it is transformed into a flat structure.

  4. Phase separation and pressure drop of two-phase flow in vertical manifolds

    International Nuclear Information System (INIS)

    Zetzmann, K.

    1982-01-01

    The splitting of a two-phase mass flow in a tube manifold results in a separation between liquid and gas phase. A study is presented of the phase distribution and the related two-phase pressure drop for vertical manifolds in the technically relevant geometry and flow parameter region of an air-water-flow. At the outlet changes in the gas/fluid-radio are observed which are proportional to this ratio at the inlet. The separation characteristic strongly depends on the massflow through the junction. Empirical equations are given to calculate the separation. Measuring the pressure drop at main- and secondary tube of the manifold the additional pressure drop can be obtained. If these results are related with the dynamic pressure at the inlet, two-phase resistance coefficients can be deduced, which may be tested by empirical relations. (orig.) [de

  5. On the scavenging of SO2 by large and small rain drops. 5. A wind tunnel and theoretical study of the desorption of SO2 from water drops containing S(IV)

    International Nuclear Information System (INIS)

    Mitra, S.K.; Hannemann, A.U.

    1993-01-01

    An experimental and theoretical study has been carried out to investigate the fate of desorption of SO 2 from water drops falling at terminal velocity in air. The experiments were carried out in the Mainz vertical wind tunnel in which water drops of various sizes containing S(IV) in various concentrations were freely suspended in the vertical airstream of the tunnel. The results were compared with the predictions of theoretical models, and with the experiments of Walcek et al. This comparison shows that the predictions of the diffusion model of Kronig and Brink in the formulation given by Walcek and Pruppacher agree well with the experimental results. In contrast, the predictions of the diffusion model which assumes complete internal mixing inside a drop agrees with the experimental results only if the concentration of S(IV) inside the drop is less than that equivalent of an equilibrium SO 2 concentration of 15 ppbv. At larger concentrations, the theoretical predictions of the model for complete internal mixing progressively deviate from the experimental results. It is further shown that Barrie's double film model can be used to interpret the resistance to diffusion inside a drop in terms of a diffusion boundary layer inside the drop which increases in thickness with decreasing concentration of S(IV). Applying our results to the desorption of SO 2 from small and large rain drops falling below an assumed cloud base, shows that for typical contents of S(IV) inside the drops substantial amounts of SO 2 will desorb from these drops unless H 2 O 2 is present in the surrounding air

  6. Drop evaporation and triple line dynamics

    Science.gov (United States)

    Sobac, Benjamin; Brutin, David; Gavillet, Jerome; Université de Provence Team; Cea Liten Team

    2011-03-01

    Sessile drop evaporation is a phenomenon commonly came across in nature or in industry with cooling, paintings or DNA mapping. However, the evaporation of a drop deposited on a substrate is not completely understood due to the complexity of the problem. Here we investigate, with several nano-coating of the substrate (PTFE, SiOx, SiOc and CF), the influence of the dynamic of the triple line on the evaporation process. The experiment consists in analyzing simultaneously the motion of the triple line, the kinetics of evaporation, the internal thermal motion and the heat and mass transfer. Measurements of temperature, heat-flux and visualizations with visible and infrared cameras are performed. The dynamics of the evaporative heat flux appears clearly different depending of the motion of the triple line

  7. How drops start sliding over solid surfaces

    Science.gov (United States)

    Gao, Nan; Geyer, Florian; Pilat, Dominik W.; Wooh, Sanghyuk; Vollmer, Doris; Butt, Hans-Jürgen; Berger, Rüdiger

    2018-02-01

    It has been known for more than 200 years that the maximum static friction force between two solid surfaces is usually greater than the kinetic friction force--the force that is required to maintain the relative motion of the surfaces once the static force has been overcome. But the forces that impede the lateral motion of a drop of liquid on a solid surface are not as well characterized, and there is a lack of understanding about liquid-solid friction in general. Here, we report that the lateral adhesion force between a liquid drop and a solid can also be divided into a static and a kinetic regime. This striking analogy with solid-solid friction is a generic phenomenon that holds for liquids of different polarities and surface tensions on smooth, rough and structured surfaces.

  8. A pressure drop model for PWR grids

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dong Seok; In, Wang Ki; Bang, Je Geon; Jung, Youn Ho; Chun, Tae Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    A pressure drop model for the PWR grids with and without mixing device is proposed at single phase based on the fluid mechanistic approach. Total pressure loss is expressed in additive way for form and frictional losses. The general friction factor correlations and form drag coefficients available in the open literatures are used to the model. As the results, the model shows better predictions than the existing ones for the non-mixing grids, and reasonable agreements with the available experimental data for mixing grids. Therefore it is concluded that the proposed model for pressure drop can provide sufficiently good approximation for grid optimization and design calculation in advanced grid development. 7 refs., 3 figs., 3 tabs. (Author)

  9. Coupling slots without shunt impedance drop

    International Nuclear Information System (INIS)

    Balleyguier, P.

    1996-01-01

    It is well known that coupling slots between adjacent cells in a π-mode structure reduce shunt impedance per unit length with respect to single cell cavities. To design optimized coupling slots, one has to answer the following question: for a given coupling factor, what shape, dimension, position and number of slots lead to the lowest shunt impedance drop? A numerical study using the 3D code MAFIA has been carried out. The aim was to design the 352 MHz cavities for the high intensity proton accelerator of the TRISPAL project. The result is an unexpected set of four 'petal' slots. Such slots should lead to a quasi-negligible drop in shunt impedance: about -1% on average, for particle velocity from 0.4 c to 0.8 c. (author)

  10. A pressure drop model for PWR grids

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dong Seok; In, Wang Ki; Bang, Je Geon; Jung, Youn Ho; Chun, Tae Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    A pressure drop model for the PWR grids with and without mixing device is proposed at single phase based on the fluid mechanistic approach. Total pressure loss is expressed in additive way for form and frictional losses. The general friction factor correlations and form drag coefficients available in the open literatures are used to the model. As the results, the model shows better predictions than the existing ones for the non-mixing grids, and reasonable agreements with the available experimental data for mixing grids. Therefore it is concluded that the proposed model for pressure drop can provide sufficiently good approximation for grid optimization and design calculation in advanced grid development. 7 refs., 3 figs., 3 tabs. (Author)

  11. Hospital executive compensation act dropped from ballot

    Directory of Open Access Journals (Sweden)

    Robbins RA

    2016-08-01

    Full Text Available The Hospital Executive Compensation Act did not qualify for the November 8, 2016 ballot in Arizona as a state statute (1. The Service Employees International Union (SEIU dropped the initiative just before arguments were to begin in a lawsuit that challenged the legality of signature gatherers who failed to register with the state. The measure would have limited total pay for executives, administrators and managers of healthcare facilities and entities to the annual salary of the President of the United States. A similar measure in California was also dropped by the SEIU in 2014. Supporters of the proposal said it would decrease escalating healthcare costs. Opponents of the measure, including the Arizona Chamber of Commerce who filed the suit challenging the proposition, alleged that it would lead to poorer healthcare. However, a survey conducted by the Southwest Journal of Pulmonary and Critical Care showed that most supported the measure and felt that it would not lead to poorer healthcare (2.

  12. Semisupervised Community Detection by Voltage Drops

    Directory of Open Access Journals (Sweden)

    Min Ji

    2016-01-01

    Full Text Available Many applications show that semisupervised community detection is one of the important topics and has attracted considerable attention in the study of complex network. In this paper, based on notion of voltage drops and discrete potential theory, a simple and fast semisupervised community detection algorithm is proposed. The label propagation through discrete potential transmission is accomplished by using voltage drops. The complexity of the proposal is OV+E for the sparse network with V vertices and E edges. The obtained voltage value of a vertex can be reflected clearly in the relationship between the vertex and community. The experimental results on four real networks and three benchmarks indicate that the proposed algorithm is effective and flexible. Furthermore, this algorithm is easily applied to graph-based machine learning methods.

  13. Sessile Drop Evaporation and Leidenfrost Phenomenon

    OpenAIRE

    A. K. Mozumder; M. R. Ullah; A. Hossain; M. A. Islam

    2010-01-01

    Problem statement: Quenching and cooling are important process in manufacturing industry for controlling the mechanical properties of materials, where evaporation is a vital mode of heat transfer. Approach: This study experimentally investigated the evaporation of sessile drop for four different heated surfaces of Aluminum, Brass, Copper and Mild steel with a combination of four different liquids as Methanol, Ethanol, Water and NaCl solution. The time of evaporation for the droplet on the hot...

  14. Liquid drop parameters for hot nuclei

    International Nuclear Information System (INIS)

    Guet, C.; Strumberger, E.; Brack, M.

    1988-01-01

    Using the semiclassical extended Thomas-FERMI (ETF) density variational method, we derived selfconsistently the liquid drop model (LDM) coefficients for the free energy of hot nuclear systems from a realistic effective interaction (Skyrme SkM*). We expand the temperature (T) dependence of these coefficients up to the second order in T and test their application to the calculation of the fission barriers of the nuclei 208 Pb and 240 Pu

  15. Impact of water drops on small targets

    Science.gov (United States)

    Rozhkov, A.; Prunet-Foch, B.; Vignes-Adler, M.

    2002-10-01

    The collision of water drops against small targets was studied experimentally by means of a high-speed photography technique. The drop impact velocity was about 3.5 m/s. Drop diameters were in the range of 2.8-4.0 mm. The target was a stainless steel disk of 3.9 mm diameter. The drop spread beyond the target like a central cap surrounded by a thin, slightly conical lamella bounded by a thicker rim. By mounting a small obstacle near the target, surface-tension driven Mach waves in the flowing lamella were generated, which are formally equivalent to the familiar compressibility driven Mach waves in gas dynamics. From the measurement of the Mach angle, the values of some flow parameters could be obtained as functions of time, which provided insight into the flow structure. The liquid flowed from the central cap to the liquid rim through the thin lamella at constant momentum flux. At a certain stage of the process, most of the liquid accumulated in the rim and the internal part of the lamella became metastable. In this situation, a rupture wave propagating through the metastable internal part of the lamella caused the rim to retract while forming outwardly directed secondary jets. The jets disintegrated into secondary droplets due to the Savart-Plateau-Rayleigh instability. Prior to the end of the retraction, an internal circular wave of rupture was formed. It originated at the target and then it propagated to meet the retracting rim. Their meeting resulted in a crown of tiny droplets. A theoretical analysis of the ejection process is proposed.

  16. The jet mass distribution after Soft Drop

    Science.gov (United States)

    Marzani, Simone; Schunk, Lais; Soyez, Gregory

    2018-02-01

    We present a first-principle computation of the mass distribution of jets which have undergone the grooming procedure known as Soft Drop. This calculation includes the resummation of the large logarithms of the jet mass over its transverse momentum, up to next-to-logarithmic accuracy, matched to exact fixed-order results at next-to-leading order. We also include non-perturbative corrections obtained from Monte-Carlo simulations and discuss analytic expressions for hadronisation and Underlying Event effects.

  17. Sporadic frame dropping impact on quality perception

    Science.gov (United States)

    Pastrana-Vidal, Ricardo R.; Gicquel, Jean Charles; Colomes, Catherine; Cherifi, Hocine

    2004-06-01

    Over the past few years there has been an increasing interest in real time video services over packet networks. When considering quality, it is essential to quantify user perception of the received sequence. Severe motion discontinuities are one of the most common degradations in video streaming. The end-user perceives a jerky motion when the discontinuities are uniformly distributed over time and an instantaneous fluidity break is perceived when the motion loss is isolated or irregularly distributed. Bit rate adaptation techniques, transmission errors in the packet networks or restitution strategy could be the origin of this perceived jerkiness. In this paper we present a psychovisual experiment performed to quantify the effect of sporadically dropped pictures on the overall perceived quality. First, the perceptual detection thresholds of generated temporal discontinuities were measured. Then, the quality function was estimated in relation to a single frame dropping for different durations. Finally, a set of tests was performed to quantify the effect of several impairments distributed over time. We have found that the detection thresholds are content, duration and motion dependent. The assessment results show how quality is impaired by a single burst of dropped frames in a 10 sec sequence. The effect of several bursts of discarded frames, irregularly distributed over the time is also discussed.

  18. Eye-Drops for Activation of DREADDs

    Directory of Open Access Journals (Sweden)

    William T. Keenan

    2017-11-01

    Full Text Available Designer Receptors Exclusively Activated by Designer Drugs (DREADDs are an important tool for modulating and understanding neural circuits. Depending on the DREADD system used, DREADD-targeted neurons can be activated or repressed in vivo following a dose of the DREADD agonist clozapine-N-oxide (CNO. Because DREADD experiments often involve behavioral assays, the method of CNO delivery is important. Currently, the most common delivery method is intraperitoneal (IP injection. IP injection is both a fast and reliable technique, but it is painful and stressful particularly when many injections are required. We sought an alternative CNO delivery paradigm, which would retain the speed and reliability of IP injections without being as invasive. Here, we show that CNO can be effectively delivered topically via eye-drops. Eye-drops robustly activated DREADD-expressing neurons in the brain and peripheral tissues and does so at the same dosages as IP injection. Eye-drops provide an easier, less invasive and less stressful method for activating DREADDs in vivo.

  19. Imaging transport phenomena during lysozyme protein crystal growth by the hanging drop technique

    Science.gov (United States)

    Sethia Gupta, Anamika; Gupta, Rajive; Panigrahi, P. K.; Muralidhar, K.

    2013-06-01

    The present study reports the transport process that occurs during the growth of lysozyme protein crystals by the hanging drop technique. A rainbow schlieren technique has been employed for imaging changes in salt concentration. A one dimensional color filter is used to record the deflection of the light beam. An optical microscope and an X-ray crystallography unit are used to characterize the size, tetragonal shape and Bravais lattice constants of the grown crystals. A parametric study on the effect of drop composition, drop size, reservoir height and number of drops on the crystal size and quality is reported. Changes in refractive index are not large enough to create a meaningful schlieren image in the air gap between the drop and the reservoir. However, condensation of fresh water over the reservoir solution creates large changes in the concentration of NaCl, giving rise to clear color patterns in the schlieren images. These have been analyzed to obtain salt concentration profiles near the free surface of the reservoir solution as a function of time. The diffusion of fresh water into the reservoir solution at the early stages of crystal growth followed by the mass flux of salt from the bulk solution towards the free surface has been recorded. The overall crystal growth process can be classified into two regimes, as demarcated by the changes in slope of salt concentration within the reservoir. The salt concentration in the reservoir equilibrates at long times when the crystallization process is complete. Thus, transport processes in the reservoir emerge as the route to monitor protein crystal growth in the hanging drop configuration. Results show that crystal growth rate is faster for a higher lysozyme concentration, smaller drops, and larger reservoir heights.

  20. PERFLUOROCARBON LIQUIDS' ABILITY TO PROTECT THE MACULA FROM INTRAOCULAR DROPPING OF METALLIC FOREIGN BODIES: A Model Eye Study.

    Science.gov (United States)

    Shah, Chirag M; Gentile, Ronald C; Mehta, Mitul C

    2016-07-01

    To examine the utility of perfluoro-n-octane (PFO) in balanced salt solution (BSS) to shield the macula from the impact of dropped metallic intraocular foreign bodies (IOFBs) by modeling scenarios in which they may fall during surgical removal. Model eyes were filled with various fluid mixtures (Group 1: 10% PFO/90% BSS; Group 2: 100% BSS; Group 3: 100% PFO; Group 4: 10% PFO/90% air; Group 5: 10% BSS/90% air). In Groups 1, 4, and 5, the 10% fluid volume covered the theoretical macula. For each fluid mixture, up to 30 IOFB drop scenarios were performed for each of the 5 sample IOFBs from 3 locations. Trajectories were recorded using a camera attached to a Zeiss operating microscope (Carl Zeiss, Jena, Germany). The percentages of IOFBs impacting the macula were calculated and Fisher exact test was used to assess differences. In Group 1, 93% (417/450) of the dropped IOFBs were deflected by the PFO-BSS interface compared with 0% (0/500) in Groups 2, 3, 4, and 5 (P macula in 30% of tests when dropped from the superior posterior segment (P < 0.01), all other IOFBs (2.8-13.4 mg) were deflected by the PFO-BSS interface in 100% of Group 1 drops (P < 0.01). As demonstrated by these simulations, the PFO-BSS interface can deflect IOFBs dropped during surgery in a wide range of scenarios, especially when the IOFB is of lower mass.

  1. Critical look at South Africa’s Green Drop Programme

    CSIR Research Space (South Africa)

    Ntombela, Cebile

    2016-10-01

    Full Text Available (WSAs) in the controversial wastewater services sector. In particular, we focus on DWS’s incentive-based mechanism, the National Green Drop Certification Programme (Green Drop Programme), and evaluate the achievements and challenges associated with its...

  2. The jet mass distribution after Soft Drop

    Energy Technology Data Exchange (ETDEWEB)

    Marzani, Simone [Universita di Genova, Dipartimento di Fisica, Genoa (Italy); INFN, Sezione di Genova (Italy); Schunk, Lais [Deutsches Elektronen-Synchrotron DESY, Hamburg (Germany); Soyez, Gregory [IPhT, CEA Saclay, CNRS UMR 3681, Gif-Sur-Yvette (France)

    2018-02-15

    We present a first-principle computation of the mass distribution of jets which have undergone the grooming procedure known as Soft Drop. This calculation includes the resummation of the large logarithms of the jet mass over its transverse momentum, up to next-to-logarithmic accuracy, matched to exact fixed-order results at next-to-leading order. We also include non-perturbative corrections obtained from Monte-Carlo simulations and discuss analytic expressions for hadronisation and Underlying Event effects. (orig.)

  3. Drop Calibration of Accelerometers for Shock Measurement

    Science.gov (United States)

    2011-08-01

    important that the screen is clear, the records displayed are crisp and values are easily read. The current DSO, used within the Division, in the...Capacitor ≤ ± 0.01% ξc Tolerance of capacitor Drop Mass Reading ≤ ± 0.083 %  dm 0.1g over 120g (typically) Reference Mass Reading ≤ ± 0.1 % rm...Therefore m has uncertainty components due to rm ,  dm and ξrme. The random component is  222 dmrmm  (6.8) and once again  dsodc

  4. Drops on hydrophobic surfaces & vibrated fluid surfaces

    DEFF Research Database (Denmark)

    Wind-Willassen, Øistein

    in the literature. Furthermore, we quantify the energy associated with center of mass translation and internal fluid motion. The model predicts trajectories for tracer particles deposited inside the drop, and satisfactorily describes the sliding motion of steadily accelerating droplets. The model can be used...... numerically, and the results are compared to experiments. We provide, again, the most detailed regime diagram of the possible orbits depending on the forcing and the rotation rate of the fluid bath. We highlight each class of orbit, and analyze in depth the wobbling state, precessing orbits, wobble...

  5. Partial coalescence from bubbles to drops

    KAUST Repository

    Zhang, F. H.

    2015-10-07

    The coalescence of drops is a fundamental process in the coarsening of emulsions. However, counter-intuitively, this coalescence process can produce a satellite, approximately half the size of the original drop, which is detrimental to the overall coarsening. This also occurs during the coalescence of bubbles, while the resulting satellite is much smaller, approximately 10 %. To understand this difference, we have conducted a set of coalescence experiments using xenon bubbles inside a pressure chamber, where we can continuously raise the pressure from 1 up to 85 atm and thereby vary the density ratio between the inner and outer fluid, from 0.005 up to unity. Using high-speed video imaging, we observe a continuous increase in satellite size as the inner density is varied from the bubble to emulsion-droplet conditions, with the most rapid changes occurring as the bubble density grows up to 15 % of that of the surrounding liquid. We propose a model that successfully relates the satellite size to the capillary wave mode responsible for its pinch-off and the overall deformations from the drainage. The wavelength of the primary wave changes during its travel to the apex, with the instantaneous speed adjusting to the local wavelength. By estimating the travel time of this wave mode on the bubble surface, we also show that the model is consistent with the experiments. This wavenumber is determined by both the global drainage as well as the interface shapes during the rapid coalescence in the neck connecting the two drops or bubbles. The rate of drainage is shown to scale with the density of the inner fluid. Empirically, we find that the pinch-off occurs when 60 % of the bubble fluid has drained from it. Numerical simulations using the volume-of-fluid method with dynamic adaptive grid refinement can reproduce these dynamics, as well as show the associated vortical structure and stirring of the coalescing fluid masses. Enhanced stirring is observed for cases with second

  6. Spent Nuclear Fuel (SNF) Bounding Drop Support Calculations

    International Nuclear Information System (INIS)

    CHENAULT, D.M.

    1999-01-01

    This report evaluates different drop heights, concrete and other impact media to which the transport package and/or the MCO is dropped. A prediction method is derived for estimating the resultant impact factor for determining the bounding drop case for the SNF Project

  7. Underwater sound produced by individual drop impacts and rainfall

    DEFF Research Database (Denmark)

    Pumphrey, Hugh C.; Crum, L. A.; Jensen, Leif Bjørnø

    1989-01-01

    An experimental study of the underwater sound produced by water drop impacts on the surface is described. It is found that sound may be produced in two ways: first when the drop strikes the surface and, second, when a bubble is created in the water. The first process occurs for every drop...

  8. Drop test of reinforced concrete slab onto storage cask

    International Nuclear Information System (INIS)

    Kato, Y.; Hattori, S.; Ito, C.; Sirai, K.; Ozaki, S.; Kato, O.

    1993-01-01

    In this research, drop tests onto full-scale casks considering the specifications of a falling object (weight, construction, drop height, etc.) demonstrate and evaluate the integrity of casks in case a heavy object drops into the storage facilities. (J.P.N.)

  9. Model of an Evaporating Drop Experiment

    Science.gov (United States)

    Rodriguez, Nicolas

    2017-11-01

    A computational model of an experimental procedure to measure vapor distributions surrounding sessile drops is developed to evaluate the uncertainty in the experimental results. Methanol, which is expected to have predominantly diffusive vapor transport, is chosen as a validation test for our model. The experimental process first uses a Fourier transform infrared spectrometer to measure the absorbance along lines passing through the vapor cloud. Since the measurement contains some errors, our model allows adding random noises to the computational integrated absorbance to mimic this. Then the resulting data are interpolated before passing through a computed tomography routine to generate the vapor distribution. Next, the gradients of the vapor distribution are computed along a given control volume surrounding the drop so that the diffusive flux can be evaluated as the net rate of diffusion out of the control volume. Our model of methanol evaporation shows that the accumulated errors of the whole experimental procedure affect the diffusive fluxes at different control volumes and are sensitive to how the noisy data of integrated absorbance are interpolated. This indicates the importance of investigating a variety of data fitting methods to choose which is best to present the data. Trinity University Mach Fellowship.

  10. Vlasov simulations of parallel potential drops

    Directory of Open Access Journals (Sweden)

    H. Gunell

    2013-07-01

    Full Text Available An auroral flux tube is modelled from the magnetospheric equator to the ionosphere using Vlasov simulations. Starting from an initial state, the evolution of the plasma on the flux tube is followed in time. It is found that when applying a voltage between the ends of the flux tube, about two thirds of the potential drop is concentrated in a thin double layer at approximately one Earth radius altitude. The remaining part is situated in an extended region 1–2 Earth radii above the double layer. Waves on the ion timescale develop above the double layer, and they move toward higher altitude at approximately the ion acoustic speed. These waves are seen both in the electric field and as perturbations of the ion and electron distributions, indicative of an instability. Electrons of magnetospheric origin become trapped between the magnetic mirror and the double layer during its formation. At low altitude, waves on electron timescales appear and are seen to be non-uniformly distributed in space. The temporal evolution of the potential profile and the total voltage affect the double layer altitude, which decreases with an increasing field aligned potential drop. A current–voltage relationship is found by running several simulations with different voltages over the system, and it agrees with the Knight relation reasonably well.

  11. Pressure Drop Hysteresis of Hydrodynamic States in Packed Tower for Foaming Systems

    Directory of Open Access Journals (Sweden)

    Vijay Sodhi

    2011-11-01

    Full Text Available An experimental investigation was carried out to determine the effects of gas and liquid flow velocities and surface tension on the two-phase phase pressure drop a in a downflow trickle bed reactor. Water and non- Newtonian foaming solutions were employed as liquid phase. More than 240 experimental points for the trickle flow (GCF and foaming pulsing flow (PF/FPF regime were obtained for present study. Hydrodynamic characteristics involving two-phase pressure drop significantly influenced by gas and liquid flow rates. For 15 and 30 ppm air-aqueous surfactant solutions, two-phase pressure drop increases with higher liquid and gas flow velocities in trickle flow and foaming/pulsing flow regimes. With decrease in surface tension i.e. for 45 and 60 ppm air-aqueous surfactant systems, two-phase pressure drop increases very sharply during change in regime transition at significantly low liquid and gas velocities. Copyright © 2011 BCREC UNDIP. All rights reserved.(Received: 14th March 2011, Revised: 29th June 2011; Accepted: 4th July 2011[How to Cite: V. Sodhi, and R. Gupta. (2011. Pressure Drop Hysteresis of Hydrodynamic States in Packed Tower for Foaming Systems. Bulletin of Chemical Reaction Engineering & Catalysis, 6(2: 115-122. doi:10.9767/bcrec.6.2.828.115-122][How to Link / DOI: http://dx.doi.org/10.9767/bcrec.6.2.828.115-122 || or local: http://ejournal.undip.ac.id/index.php/bcrec/article/view/828 ] | View in 

  12. The Galileo Bias: A Naive Conceptual Belief That Influences People's Perceptions and Performance in a Ball-Dropping Task

    Science.gov (United States)

    Oberle, Crystal D.; McBeath, Michael K.; Madigan, Sean C.; Sugar, Thomas G.

    2005-01-01

    This research introduces a new naive physics belief, the Galileo bias, whereby people ignore air resistance and falsely believe that all objects fall at the same rate. Survey results revealed that this bias is held by many and is surprisingly strongest for those with formal physics instruction. In 2 experiments, 98 participants dropped ball pairs…

  13. Vertical vibration and shape oscillation of acoustically levitated water drops

    International Nuclear Information System (INIS)

    Geng, D. L.; Xie, W. J.; Yan, N.; Wei, B.

    2014-01-01

    We present the vertical harmonic vibration of levitated water drops within ultrasound field. The restoring force to maintain such a vibration mode is provided by the resultant force of acoustic radiation force and drop gravity. Experiments reveal that the vibration frequency increases with the aspect ratio for drops with the same volume, which agrees with the theoretical prediction for those cases of nearly equiaxed drops. During the vertical vibration, the floating drops undergo the second order shape oscillation. The shape oscillation frequency is determined to be twice the vibration frequency.

  14. Vertical vibration and shape oscillation of acoustically levitated water drops

    Energy Technology Data Exchange (ETDEWEB)

    Geng, D. L.; Xie, W. J.; Yan, N.; Wei, B., E-mail: bbwei@nwpu.edu.cn [Department of Applied Physics, Northwestern Polytechnical University, Xi' an 710072 (China)

    2014-09-08

    We present the vertical harmonic vibration of levitated water drops within ultrasound field. The restoring force to maintain such a vibration mode is provided by the resultant force of acoustic radiation force and drop gravity. Experiments reveal that the vibration frequency increases with the aspect ratio for drops with the same volume, which agrees with the theoretical prediction for those cases of nearly equiaxed drops. During the vertical vibration, the floating drops undergo the second order shape oscillation. The shape oscillation frequency is determined to be twice the vibration frequency.

  15. Deformed liquid marbles: Freezing drop oscillations with powders

    KAUST Repository

    Marston, Jeremy; Zhu, Y.; Vakarelski, Ivan Uriev; Thoroddsen, Sigurdur T

    2012-01-01

    In this work we show that when a liquid drop impacts onto a fine-grained hydrophobic powder, the final form of the drop can be very different from the spherical form with which it impacts. In all cases, the drop rebounds due to the hydrophobic nature of the powder. However, we find that above a critical impact speed, the drop undergoes a permanent deformation to a highly non-spherical shape with a near-complete coverage of powder, which then freezes the drop oscillations during rebound. © 2012 Elsevier B.V.

  16. Deformed liquid marbles: Freezing drop oscillations with powders

    KAUST Repository

    Marston, Jeremy

    2012-09-01

    In this work we show that when a liquid drop impacts onto a fine-grained hydrophobic powder, the final form of the drop can be very different from the spherical form with which it impacts. In all cases, the drop rebounds due to the hydrophobic nature of the powder. However, we find that above a critical impact speed, the drop undergoes a permanent deformation to a highly non-spherical shape with a near-complete coverage of powder, which then freezes the drop oscillations during rebound. © 2012 Elsevier B.V.

  17. Air Research

    Science.gov (United States)

    EPA's air research provides the critical science to develop and implement outdoor air regulations under the Clean Air Act and puts new tools and information in the hands of air quality managers and regulators to protect the air we breathe.

  18. Sound Wave Energy Resulting from the Impact of Water Drops on the Soil Surface.

    Directory of Open Access Journals (Sweden)

    Magdalena Ryżak

    Full Text Available The splashing of water drops on a soil surface is the first step of water erosion. There have been many investigations into splashing-most are based on recording and analysing images taken with high-speed cameras, or measuring the mass of the soil moved by splashing. Here, we present a new aspect of the splash phenomenon's characterization the measurement of the sound pressure level and the sound energy of the wave that propagates in the air. The measurements were carried out for 10 consecutive water drop impacts on the soil surface. Three soils were tested (Endogleyic Umbrisol, Fluvic Endogleyic Cambisol and Haplic Chernozem with four initial moisture levels (pressure heads: 0.1 kPa, 1 kPa, 3.16 kPa and 16 kPa. We found that the values of the sound pressure and sound wave energy were dependent on the particle size distribution of the soil, less dependent on the initial pressure head, and practically the same for subsequent water drops (from the first to the tenth drop. The highest sound pressure level (and the greatest variability was for Endogleyic Umbrisol, which had the highest sand fraction content. The sound pressure for this soil increased from 29 dB to 42 dB with the next incidence of drops falling on the sample The smallest (and the lowest variability was for Fluvic Endogleyic Cambisol which had the highest clay fraction. For all experiments the sound pressure level ranged from ~27 to ~42 dB and the energy emitted in the form of sound waves was within the range of 0.14 μJ to 5.26 μJ. This was from 0.03 to 1.07% of the energy of the incident drops.

  19. Sound Wave Energy Resulting from the Impact of Water Drops on the Soil Surface.

    Science.gov (United States)

    Ryżak, Magdalena; Bieganowski, Andrzej; Korbiel, Tomasz

    2016-01-01

    The splashing of water drops on a soil surface is the first step of water erosion. There have been many investigations into splashing-most are based on recording and analysing images taken with high-speed cameras, or measuring the mass of the soil moved by splashing. Here, we present a new aspect of the splash phenomenon's characterization the measurement of the sound pressure level and the sound energy of the wave that propagates in the air. The measurements were carried out for 10 consecutive water drop impacts on the soil surface. Three soils were tested (Endogleyic Umbrisol, Fluvic Endogleyic Cambisol and Haplic Chernozem) with four initial moisture levels (pressure heads: 0.1 kPa, 1 kPa, 3.16 kPa and 16 kPa). We found that the values of the sound pressure and sound wave energy were dependent on the particle size distribution of the soil, less dependent on the initial pressure head, and practically the same for subsequent water drops (from the first to the tenth drop). The highest sound pressure level (and the greatest variability) was for Endogleyic Umbrisol, which had the highest sand fraction content. The sound pressure for this soil increased from 29 dB to 42 dB with the next incidence of drops falling on the sample The smallest (and the lowest variability) was for Fluvic Endogleyic Cambisol which had the highest clay fraction. For all experiments the sound pressure level ranged from ~27 to ~42 dB and the energy emitted in the form of sound waves was within the range of 0.14 μJ to 5.26 μJ. This was from 0.03 to 1.07% of the energy of the incident drops.

  20. Low pressure drop filtration of airborne molecular organic contaminants using open-channel networks

    Science.gov (United States)

    Dallas, Andrew J.; Joriman, Jon; Ding, Lefei; Weineck, Gerald; Seguin, Kevin

    2007-03-01

    Airborne molecular contamination (AMC) continues to play a very decisive role in the performance of many microelectronic devices and manufacturing processes. Besides airborne acids and bases, airborne organic contaminants such as 1-methyl-2-pyrrolidinone (NMP), hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), perfluoroalkylamines and condensables are of primary concern in these applications. Currently, the state of the filtration industry is such that optimum filter life and removal efficiency for organics is offered by granular carbon filter beds. However, the attributes that make packed beds of activated carbon extremely efficient also impart issues related to elevated filter weight and pressure drop. Most of the lower pressure drop AMC filters currently offered are quite expensive and are simply pleated combinations of various adsorptive and reactive media. On the other hand, low pressure drop filters, such as those designed as open-channel networks (OCN's), offer good filter life and removal efficiency with the additional benefits of significant reductions in overall filter weight and pressure drop. Equally important for many applications, the OCN filters can reconstruct the airflow so as to enhance the operation of a tool or process. For tool mount assemblies and fan filter units (FFUs) this can result in reduced fan and blower speeds, which subsequently can provide reduced vibration and energy costs. Additionally, these low pressure drop designs can provide a cost effective way of effectively removing AMC in full fab (or HVAC) filtration applications without significantly affecting air-handling requirements. Herein, we will present a new generation of low pressure drop OCN filters designed for the removal of airborne organics in a wide range of applications.

  1. Drop dynamics on a stretched viscoelastic filament: An experimental study

    Science.gov (United States)

    Peixinho, Jorge; Renoult, Marie-Charlotte; Crumeyrolle, Olivier; Mutabazi, Innocent

    2016-11-01

    Capillary pressure can destabilize a thin liquid filament during breakup into a succession of drops. Besides, the addition of a linear, high molecular weight, flexible and soluble polymer is enough to modify the morphology of this instability. In the time period preceding the breakup, the development of beads-on-a-string structures where drops are connected by thin threads is monitored. The drops dynamics involve drop formation, drop migration and drop coalescence. Experiments using a high-speed camera on stretched bridges of viscoelastic polymeric solutions were conducted for a range of viscosities and polymer concentrations. The rheological properties of the solutions are also quantified through conventional shear rheology and normal stress difference. The overall goal of this experimental investigation is to gain more insight into the formation and time evolution of the drops. The project BIOENGINE is co-financed by the European Union with the European regional development fund and by the Normandie Regional Council.

  2. Calculation of drop course of control rod assembly in PWR

    International Nuclear Information System (INIS)

    Zhou Xiaojia; Mao Fei; Min Peng; Lin Shaoxuan

    2013-01-01

    The validation of control rod drop performance is an important part of safety analysis of nuclear power plant. Development of computer code for calculating control rod drop course will be useful for validating and improving the design of control rod drive line. Based on structural features of the drive line, the driving force on moving assembly was analyzed and decomposed, the transient value of each component of the driving force was calculated by choosing either theoretical method or numerical method, and the simulation code for calculating rod cluster control assembly (RCCA) drop course by time step increase was achieved. The analysis results of control rod assembly drop course calculated by theoretical model and numerical method were validated by comparing with RCCA drop test data of Qinshan Phase Ⅱ 600 MW PWR. It is shown that the developed RCCA drop course calculation code is suitable for RCCA in PWR and can correctly simulate the drop course and the stress of RCCA. (authors)

  3. The study of the effects of sea-spray drops on the marine atmospheric boundary layer by direct numerical simulation

    Science.gov (United States)

    Druzhinin, O.; Troitskaya, Yu; Zilitinkevich, S.

    2018-01-01

    The detailed knowledge of turbulent exchange processes occurring in the atmospheric marine boundary layer are of primary importance for their correct parameterization in large-scale prognostic models. These processes are complicated, especially at sufficiently strong wind forcing conditions, by the presence of sea-spray drops which are torn off the crests of sufficiently steep surface waves by the wind gusts. Natural observations indicate that mass fraction of sea-spray drops increases with wind speed and their impact on the dynamics of the air in the vicinity of the sea surface can become quite significant. Field experiments, however, are limited by insufficient accuracy of the acquired data and are in general costly and difficult. Laboratory modeling presents another route to investigate the spray-mediated exchange processes in much more detail as compared to the natural experiments. However, laboratory measurements, contact as well as Particle Image Velocimetry (PIV) methods, also suffer from inability to resolve the dynamics of the near-surface air-flow, especially in the surface wave troughs. In this report, we present a first attempt to use Direct Numerical Simulation (DNS) as tool for investigation of the drops-mediated momentum, heat and moisture transfer in a turbulent, droplet-laden air flow over a wavy water surface. DNS is capable of resolving the details of the transfer processes and do not involve any closure assumptions typical of Large-Eddy and Reynolds Averaged Navier-Stokes (LES and RANS) simulations. Thus DNS provides a basis for improving parameterizations in LES and RANS closure models and further development of large-scale prognostic models. In particular, we discuss numerical results showing the details of the modification of the air flow velocity, temperature and relative humidity fields by multidisperse, evaporating drops. We use Eulerian-Lagrangian approach where the equations for the air-flow fields are solved in a Eulerian frame whereas

  4. Pendent_Drop: An ImageJ Plugin to Measure the Surface Tension from an Image of a Pendent Drop

    Directory of Open Access Journals (Sweden)

    Adrian Daerr

    2016-01-01

    Full Text Available The pendent drop method for surface tension measurement consists in analysing the shape of an axisymmetric drop hanging from a capillary tube. This software is an add-on for the public domain image processing software ImageJ which matches a theoretical profile to the contour of a pendent drop, either interactively or by automatically minimising the mismatch. It provides an estimate of the surface tension, drop volume and surface area from the best matching parameters. It can be used in a headless setup. It is hosted on http://fiji.sc/List_of_update_sites with the source code on https://github.com/adaerr/pendent-drop

  5. Crack formation and prevention in colloidal drops

    Science.gov (United States)

    Kim, Jin Young; Cho, Kun; Ryu, Seul-A.; Kim, So Youn; Weon, Byung Mook

    2015-08-01

    Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles.

  6. Bubble and Drop Nonlinear Dynamics experiment

    Science.gov (United States)

    2003-01-01

    The Bubble and Drop Nonlinear Dynamics (BDND) experiment was designed to improve understanding of how the shape and behavior of bubbles respond to ultrasound pressure. By understanding this behavior, it may be possible to counteract complications bubbles cause during materials processing on the ground. This 12-second sequence came from video downlinked from STS-94, July 5 1997, MET:3/19:15 (approximate). The BDND guest investigator was Gary Leal of the University of California, Santa Barbara. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced fluid dynamics experiments will be a part of investigations plarned for the International Space Station. (189KB JPEG, 1293 x 1460 pixels; downlinked video, higher quality not available) The MPG from which this composite was made is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300163.html.

  7. Drop Impact on a Solid Surface

    KAUST Repository

    Josserand, C.

    2015-09-22

    © Copyright 2016 by Annual Reviews. All rights reserved. A drop hitting a solid surface can deposit, bounce, or splash. Splashing arises from the breakup of a fine liquid sheet that is ejected radially along the substrate. Bouncing and deposition depend crucially on the wetting properties of the substrate. In this review, we focus on recent experimental and theoretical studies, which aim at unraveling the underlying physics, characterized by the delicate interplay of not only liquid inertia, viscosity, and surface tension, but also the surrounding gas. The gas cushions the initial contact; it is entrapped in a central microbubble on the substrate; and it promotes the so-called corona splash, by lifting the lamella away from the solid. Particular attention is paid to the influence of surface roughness, natural or engineered to enhance repellency, relevant in many applications.

  8. Drop Impact on to Moving Liquid Pools

    Science.gov (United States)

    Muñoz-Sánchez, Beatriz Natividad; Castrejón-Pita, José Rafael; Castrejón-Pita, Alfonso Arturo; Hutchings, Ian M.

    2014-11-01

    The deposition of droplets on to moving liquid substrates is an omnipresent situation both in nature and industry. A diverse spectrum of phenomena emerges from this simple process. In this work we present a parametric experimental study that discerns the dynamics of the impact in terms of the physical properties of the fluid and the relative velocity between the impacting drop and the moving liquid pool. The behaviour ranges from smooth coalescence (characterized by little mixing) to violent splashing (generation of multiple satellite droplets and interfacial vorticity). In addition, transitional regimes such as bouncing and surfing are also found. We classify the system dynamics and show a parametric diagram for the conditions of each regime. This work was supported by the EPSRC (Grant EP/H018913/1), the Royal Society, Becas Santander Universidades and the International Relationships Office of the University of Extremadura.

  9. Effect of Bilineaster Drop on Neonatal Hyperbilirubinemia

    Directory of Open Access Journals (Sweden)

    Zahra Ameli

    2017-01-01

    Full Text Available Background: Hyperbilirubinemia is considered one of the most prevalent problems in newborns. Phototherapy, exchange transfusion, and herbal medicine are common therapeutic approaches for preventing any neurologic damage in infants with neonatal jaundice. However, herbal medicine is less commonly used. Aim: This study aimed to investigate the effect of bilineaster drop on neonatal hyperbilirubinemia. Method: This study was a randomized clinical trial conducted on 98 term neonates (aged 2-14 days with neonatal jaundice admitted to Ghaem Hospital of Mashhad, Iran, during 2015. These newborns were randomly assigned into intervention (phototherapy and bilineaster drop and control (only phototherapy groups. Total and direct serum bilirubin levels were measured at the time of admission and then 12, 24, 36, and 48 h after treatment. Data were analyzed using independent t-test and repeated measures ANOVA through Stata software (Version 12. Results: The mean ages of the newborns at the time of admission were 6.2 ±2.5 and 6.04 ±2.4 days in the intervention and control groups, respectively. The intervention group showed higher reduction in mean duration of hospital stay, readmission rate, and bilirubin levels 12 and 24 h after the intervention, compared to the control group (P>0.001. However, the two groups demonstrated no statistically significant difference 36 h and 48 h after the intervention (P=0.06, P=0.22, respectively. Repeated measures ANOVA indicated that the intervention had no significant effect on the reduction trend of bilirubin levels (P=0.10 [total], P=0.06 [indirect] in both groups. Nonetheless, bilirubin levels significantly diminished in both groups over time (P

  10. Adding the 'heart' to hanging drop networks for microphysiological multi-tissue experiments.

    Science.gov (United States)

    Rismani Yazdi, Saeed; Shadmani, Amir; Bürgel, Sebastian C; Misun, Patrick M; Hierlemann, Andreas; Frey, Olivier

    2015-11-07

    Microfluidic hanging-drop networks enable culturing and analysis of 3D microtissue spheroids derived from different cell types under controlled perfusion and investigating inter-tissue communication in multi-tissue formats. In this paper we introduce a compact on-chip pumping approach for flow control in hanging-drop networks. The pump includes one pneumatic chamber located directly above one of the hanging drops and uses the surface tension at the liquid-air-interface for flow actuation. Control of the pneumatic protocol provides a wide range of unidirectional pulsatile and continuous flow profiles. With the proposed concept several independent hanging-drop networks can be operated in parallel with only one single pneumatic actuation line at high fidelity. Closed-loop medium circulation between different organ models for multi-tissue formats and multiple simultaneous assays in parallel are possible. Finally, we implemented a real-time feedback control-loop of the pump actuation based on the beating of a human iPS-derived cardiac microtissue cultured in the same system. This configuration allows for simulating physiological effects on the heart and their impact on flow circulation between the organ models on chip.

  11. Adding the ‘heart’ to hanging drop networks for microphysiological multi-tissue experiments†

    Science.gov (United States)

    Yazdi, Saeed Rismani; Shadmani, Amir; Bürgel, Sebastian C.; Misun, Patrick M.; Hierlemann, Andreas; Frey, Olivier

    2017-01-01

    Microfluidic hanging-drop networks enable culturing and analysis of 3D microtissue spheroids derived from different cell types under controlled perfusion and investigating inter-tissue communication in multi-tissue formats. In this paper we introduce a compact on-chip pumping approach for flow control in hanging-drop networks. The pump includes one pneumatic chamber located directly above one of the hanging drops and uses the surface tension at the liquid–air-interface for flow actuation. Control of the pneumatic protocol provides a wide range of unidirectional pulsatile and continuous flow profiles. With the proposed concept several independent hanging-drop networks can be operated in parallel with only one single pneumatic actuation line at high fidelity. Closed-loop medium circulation between different organ models for multi-tissue formats and multiple simultaneous assays in parallel are possible. Finally, we implemented a real-time feedback control-loop of the pump actuation based on the beating of a human iPS-derived cardiac microtissue cultured in the same system. This configuration allows for simulating physiological effects on the heart and their impact on flow circulation between the organ models on chip. PMID:26401602

  12. Marangoni Flow Induced Evaporation Enhancement on Binary Sessile Drops.

    Science.gov (United States)

    Chen, Pin; Harmand, Souad; Ouenzerfi, Safouene; Schiffler, Jesse

    2017-06-15

    The evaporation processes of pure water, pure 1-butanol, and 5% 1-butanol aqueous solution drops on heated hydrophobic substrates are investigated to determine the effect of temperature on the drop evaporation behavior. The evolution of the parameters (contact angle, diameter, and volume) during evaporation measured using a drop shape analyzer and the infrared thermal mapping of the drop surface recorded by an infrared camera were used in investigating the evaporation process. The pure 1-butanol drop does not show any thermal instability at different substrate temperatures, while the convection cells created by the thermal Marangoni effect appear on the surface of the pure water drop from 50 °C. Because 1-butanol and water have different surface tensions, the infrared video of the 5% 1-butanol aqueous solution drop shows that the convection cells are generated by the solutal Marangoni effect at any substrate temperature. Furthermore, when the substrate temperature exceeds 50 °C, coexistence of the thermal and solutal Marangoni flows is observed. By analyzing the relation between the ratio of the evaporation rate of pure water and 1-butanol aqueous solution drops and the Marangoni number, a series of empirical equations for predicting the evaporation rates of pure water and 1-butanol aqueous solution drops at the initial time as well as the equations for the evaporation rate of 1-butanol aqueous solution drop before the depletion of alcohol are derived. The results of these equations correspond fairly well to the experimental data.

  13. Numerical studies on heat transfer and pressure drop characteristics of flat finned tube bundles with various fin materials

    Science.gov (United States)

    Peng, Y.; Zhang, S. J.; Shen, F.; Wang, X. B.; Yang, X. R.; Yang, L. J.

    2017-11-01

    The air-cooled heat exchanger plays an important role in the field of industry like for example in thermal power plants. On the other hand, it can be used to remove core decay heat out of containment passively in case of a severe accident circumstance. Thus, research on the performance of fins in air-cooled heat exchangers can benefit the optimal design and operation of cooling systems in nuclear power plants. In this study, a CFD (Computational Fluid Dynamic) method is implemented to investigate the effects of inlet velocity, fin spacing and tube pitch on the flow and the heat transfer characteristics of flat fins constructed of various materials (316L stainless steel, copper-nickel alloy and aluminium). A three dimensional geometric model of flat finned tube bundles with fixed longitudinal tube pitch and transverse tube pitch is established. Results for the variation of the average convective heat transfer coefficient with respect to cooling air inlet velocity, fin spacing, tube pitch and fin material are obtained, as well as for the pressure drop of the cooling air passing through finned tube. It is shown that the increase of cooling air inlet velocity results in enhanced average convective heat transfer coefficient and decreasing pressure drop. Both fin spacing and tube pitch engender positive effects on pressure drop and have negative effects on heat transfer characteristics. Concerning the fin material, the heat transfer performance of copper-nickel alloy is superior to 316L stainless steel and inferior to aluminium.

  14. Effects of wind on the dynamics of the central jet during drop impact onto a deep-water surface

    Science.gov (United States)

    Liu, Xinan; Wang, An; Wang, Shuang; Dai, Dejun

    2018-05-01

    The cavity and central jet generated by the impact of a single water drop on a deep-water surface in a wind field are experimentally studied. Different experiments are performed by varying the impacting drop diameter and wind speed. The contour profile histories of the cavity (also called crater) and central jet (also called stalk) are measured in detail with a backlit cinematic shadowgraph technique. The results show that shortly after the drop hits the water surface an asymmetrical cavity appears along the wind direction, with a train of capillary waves on the cavity wall. This is followed by the formation of an inclined central jet at the location of the drop impact. It is found that the wind has little effect on the penetration depth of the cavity at the early stage of the cavity expansion, but markedly changes the capillary waves during the retraction of the cavity. The capillary waves in turn shift the position of the central jet formation leeward. The dynamics of the central jet are dominated by two mechanisms: (i) the oblique drop impact produced by the wind and (ii) the wind drag force directly acting on the jet. The maximum height of the central jet, called the stalk height, is drastically affected by the wind, and the nondimensional stalk height H /D decreases with increasing θ Re-1 , where D is the drop diameter, θ is the impingement angle of drop impact, and Re=ρaUwD /μa is the Reynolds number with air density ρa, wind speed Uw, and air viscosity μa.

  15. An experimental study on two-phase pressure drop in small diameter horizontal, downward inclined and vertical tubes

    Directory of Open Access Journals (Sweden)

    Autee Arun

    2015-01-01

    Full Text Available An experimental study of two-phase pressure drop in small diameter tubes orientated horizontally, vertically and at two other downward inclinations of θ= 300 and θ = 600 is described in this paper. Acrylic transparent tubes of internal diameters 4.0, 6.0, and 8.0 mm with lengths of 400 mm were used as the test section. Air-water mixture was used as the working fluid. Two-phase pressure drop was measured and compared with the existing correlations. These correlations are commonly used for calculation of pressure drop in macro and mini-microchannels. It is observed that the existing correlations are inadequate in predicting the two-phase pressure drop in small diameter tubes. Based on the experimental data, a new correlation has been proposed for predicting the two-phase pressure drop. This correlation is developed by modification of Chisholm parameter C by incorporating different parameters. It was found that the proposed correlation predicted two-phase pressure drop at satisfactory level.

  16. DROpS: an object of learning in computer simulation of discrete events

    Directory of Open Access Journals (Sweden)

    Hugo Alves Silva Ribeiro

    2015-09-01

    Full Text Available This work presents the “Realistic Dynamics Of Simulated Operations” (DROpS, the name given to the dynamics using the “dropper” device as an object of teaching and learning. The objective is to present alternatives for professors teaching content related to simulation of discrete events to graduate students in production engineering. The aim is to enable students to develop skills related to data collection, modeling, statistical analysis, and interpretation of results. This dynamic has been developed and applied to the students by placing them in a situation analogous to a real industry, where various concepts related to computer simulation were discussed, allowing the students to put these concepts into practice in an interactive manner, thus facilitating learning

  17. Drop Test Results of CRDM under Seismic Loads

    International Nuclear Information System (INIS)

    Choi, Myoung-Hwan; Cho, Yeong-Garp; Kim, Gyeong-Ho; Sun, Jong-Oh; Huh, Hyung

    2016-01-01

    This paper describes the test results to demonstrate the drop performance of CRDM under seismic loads. The top-mounted CRDM driven by the stepping motor for Jordan Research and Training Reactor (JRTR) has been developed in KAERI. The CRDM for JRTR has been optimized by the design improvement based on that of the HANARO. It is necessary to verify the drop performance under seismic loads such as operating basis earthquake (OBE) and safe shutdown earthquake (SSE). Especially, the CAR drop times are important data for the safety analysis. confirm the drop performance under seismic loads. The delay of drop time at Rig no. 2 due to seismic loads is greater than that at Rig no. 3. The total pure drop times under seismic loads are estimated as 1.169 and 1.855, respectively

  18. Ballistic Jumping Drops on Superhydrophobic Surfaces via Electrostatic Manipulation.

    Science.gov (United States)

    Li, Ning; Wu, Lei; Yu, Cunlong; Dai, Haoyu; Wang, Ting; Dong, Zhichao; Jiang, Lei

    2018-02-01

    The ballistic ejection of liquid drops by electrostatic manipulating has both fundamental and practical implications, from raindrops in thunderclouds to self-cleaning, anti-icing, condensation, and heat transfer enhancements. In this paper, the ballistic jumping behavior of liquid drops from a superhydrophobic surface is investigated. Powered by the repulsion of the same kind of charges, water drops can jump from the surface. The electrostatic acting time for the jumping of a microliter supercooled drop only takes several milliseconds, even shorter than the time for icing. In addition, one can control the ballistic jumping direction precisely by the relative position above the electrostatic field. The approach offers a facile method that can be used to manipulate the ballistic drop jumping via an electrostatic field, opening the possibility of energy efficient drop detaching techniques in various applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Drop Impact on Textile Material: Effect of Fabric Properties

    Directory of Open Access Journals (Sweden)

    Romdhani Zouhaier

    2014-09-01

    Full Text Available This paper presents an experimental study of impact of water drop on a surface in a spreading regime with no splashing. Three surfaces were studied: virgin glass, coating film and woven cotton fabric at different construction parameters. All experiments were carried out using water drop with the same free fall high. Digidrop with high-resolution camera is used to measure the different parameters characterising this phenomenon. Results show an important effect of the height of the free fall on the drop profile and the spreading behaviour. An important drop deformation at the surface impact was observed. Then, fabric construction as the weft count deeply affects the drop impact. For plain weave, an increase of weft count causes a decrease in penetration and increase in the spreading rate. The same result was obtained for coated fabric. Therefore, the impact energy was modified and the drop shape was affected, which directly influenced the spreading rate.

  20. Drop Test Results of CRDM under Seismic Loads

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Myoung-Hwan; Cho, Yeong-Garp; Kim, Gyeong-Ho; Sun, Jong-Oh; Huh, Hyung [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    This paper describes the test results to demonstrate the drop performance of CRDM under seismic loads. The top-mounted CRDM driven by the stepping motor for Jordan Research and Training Reactor (JRTR) has been developed in KAERI. The CRDM for JRTR has been optimized by the design improvement based on that of the HANARO. It is necessary to verify the drop performance under seismic loads such as operating basis earthquake (OBE) and safe shutdown earthquake (SSE). Especially, the CAR drop times are important data for the safety analysis. confirm the drop performance under seismic loads. The delay of drop time at Rig no. 2 due to seismic loads is greater than that at Rig no. 3. The total pure drop times under seismic loads are estimated as 1.169 and 1.855, respectively.

  1. A study of fungi on droppings of certain birds

    Directory of Open Access Journals (Sweden)

    C. S. Singh

    2014-08-01

    Full Text Available Droppings of fowl, owl, parrot, pigeon and sparrow were asepticaly collected in sterilized bottles from different places at Gorakhpur, 54 fungi were isolated. The number of fungi was more in the pigeon showing considerable decrease in the fowl and the sparrow. In the parrot and the owl, however. the fungi were egual in number. The number of Phycomycetes was almost the same on droppings of all birds, from parrot only one species could be isolated. A larger number of Ascomyteces was recorded from fowl, less from pigeon and owl and the least (two each on sparrow and parrot droppings. The Basidiomycetes, represented by two species only, were recorded on owl and pigeon droppings. Pigeon droppings yielded the largest number of Deuteromycetes. They were egual in numbers on owl and parrot while on fowl and sparrow their number was comparatively less. Mycelia sterilia, though poor in their numbers, were recorded on all the bird droppings excepting owl.

  2. Micro-bubble morphologies following drop impacts onto a pool surface

    KAUST Repository

    Thoroddsen, Sigurdur T; Thoraval, M.-J.; Takehara, K.; Etoh, T.G.

    2012-01-01

    When a drop impacts at low velocity onto a pool surface, a hemispheric air layer cushions and can delay direct contact. Herein we use ultra-high-speed video to study the rupture of this layer, to explain the resulting variety of observed distribution of bubbles. The size and distribution of micro-bubbles is determined by the number and location of the primary punctures. Isolated holes lead to the formation of bubble necklaces when the edges of two growing holes meet, whereas bubble nets are produced by regular shedding of micro-bubbles from a sawtooth edge instability. For the most viscous liquids the air film contracts more rapidly than the capillary-viscous velocity through repeated spontaneous ruptures of the edge. From the speed of hole opening and the total volume of micro-bubbles we conclude that the air sheet ruptures when its thickness approaches ?100.

  3. Micro-bubble morphologies following drop impacts onto a pool surface

    KAUST Repository

    Thoroddsen, Sigurdur T.

    2012-10-01

    When a drop impacts at low velocity onto a pool surface, a hemispheric air layer cushions and can delay direct contact. Herein we use ultra-high-speed video to study the rupture of this layer, to explain the resulting variety of observed distribution of bubbles. The size and distribution of micro-bubbles is determined by the number and location of the primary punctures. Isolated holes lead to the formation of bubble necklaces when the edges of two growing holes meet, whereas bubble nets are produced by regular shedding of micro-bubbles from a sawtooth edge instability. For the most viscous liquids the air film contracts more rapidly than the capillary-viscous velocity through repeated spontaneous ruptures of the edge. From the speed of hole opening and the total volume of micro-bubbles we conclude that the air sheet ruptures when its thickness approaches ?100.

  4. Evaporation of a sessile water drop and a drop of aqueous salt solution.

    Science.gov (United States)

    Misyura, S Y

    2017-11-07

    The influence of various factors on the evaporation of drops of water and aqueous salt solution has been experimentally studied. Typically, in the studies of drop evaporation, only the diffusive vapor transfer, radiation and the molecular heat conduction are taken into account. However, vapor-gas convection plays an important role at droplet evaporation. In the absence of droplet boiling, the influence of gas convection turns out to be the prevailing factor. At nucleate boiling, a prevailing role is played by bubbles generation and vapor jet discharge at a bubble collapse. The gas convection behavior for water and aqueous salt solution is substantially different. With a growth of salt concentration over time, the influence of the convective component first increases, reaches an extremum and then significantly decreases. At nucleate boiling in a salt solution it is incorrect to simulate the droplet evaporation and the heat transfer in quasi-stationary approximation. The evaporation at nucleate boiling in a liquid drop is divided into several characteristic time intervals. Each of these intervals is characterized by a noticeable change in both the evaporation rate and the convection role.

  5. Studying the field induced breakup of acoustically levitated drops

    Science.gov (United States)

    Warschat, C.; Riedel, J.

    2017-10-01

    Coulomb fission of charged droplets (The terms drop and droplet are often used synonymous. Throughout this manuscript, to avoid confusion, the terms drop and droplet will be used for liquid spheres with radii in the millimeter range and the micrometer range, respectively. In our experiments, the first correspond to the parent drop while the latter describes the ejected progeny droplets.) is a well-studied natural phenomenon. Controlled droplet fission is already successfully employed in several technological applications. Still, since the occurring surface rupture relies on the exact understanding and description of the liquid gas boundary, some details are still under debate. Most empirical systematic studies observe falling micrometer droplets passing through the electric field inside a plate capacitor. This approach, although easily applicable and reliable, limits the experimental degrees of freedom regarding the observable time and the maximum size of the drops and can only be performed in consecutive individual observations of different subsequent drops. Here we present a novel setup to study the field induced breakup of acoustically levitated drops. The design does not bear any restrictions towards the temporal window of observation, and allows handling of drops of a tunable radius ranging from 10 μm to several millimeters and a real-time monitoring of one single drop. Our comprehensive study includes a time resolved visual inspection, laser shadowgraphy, laser induced fluorescence imaging, and ambient mass spectrometric interrogation of the nascent Taylor cone. The results shown for a millimeter sized drop, previously inaccessible for Coulomb fission experiments, are mostly comparable with previous results for smaller drops. The major difference is the time scale and the threshold potential of the drop rupture. Both values, however, resemble theoretically extrapolations to the larger radius. The technique allows for a systematic study of breakup behavior of

  6. Electromagnetic Drop Scale Scattering Modelling for Dynamic Statistical Rain Fields

    OpenAIRE

    Hipp, Susanne

    2015-01-01

    This work simulates the scattering of electromagnetic waves by a rain field. The calculations are performed for the individual drops and accumulate to a time signal dependent on the dynamic properties of the rain field. The simulations are based on the analytical Mie scattering model for spherical rain drops and the simulation software considers the rain characteristics drop size (including their distribution in rain), motion, and frequency and temperature dependent permittivity. The performe...

  7. Self-excited hydrothermal waves in evaporating sessile drops

    OpenAIRE

    Sefiane K.; Moffat J.R.; Matar O.K.; Craster R.V.

    2008-01-01

    Pattern formation driven by the spontaneous evaporation of sessile drops of methanol, ethanol, and FC-72 using infrared thermography is observed and, in certain cases, interpreted in terms of hydrothermal waves. Both methanol and ethanol drops exhibit thermal wave trains, whose wave number depends strongly on the liquid volatililty and substrate thermal conductivity. The FC- 72 drops develop cellular structures whose size is proportional to the local thickness. Prior to this work, hydrotherma...

  8. Drop-out from a psychodynamic group psychotherapy outpatient unit.

    Science.gov (United States)

    Jensen, Hans Henrik; Mortensen, Erik Lykke; Lotz, Martin

    2014-11-01

    BACKGROUND. Drop-out from psychotherapy is common and represents a considerable problem in clinical practice and research. Aim. To explore pre-treatment predictors of early and late drop-out from psychodynamic group therapy in a public outpatient unit for non-psychotic disorders in Denmark. Methods. Naturalistic design including 329 patients, the majority with mood, neurotic and personality disorders referred to 39-session group therapy. Predictors were socio-demographic and clinical variables, self-reported symptoms (Symptom Check List-90-Revised) and personality style (Millon Clinical Multiaxial Inventory-II). Drop-out was classified into early and late premature termination excluding patients who dropped out for external reasons. Results. Drop-out comprised 20.6% (68 patients) of the sample. Logistic regression revealed social functioning, vocational training, alcohol problems and antisocial behavior to be related to drop-out. However, early drop-outs had prominent agoraphobic symptoms, lower interpersonal sensitivity and compulsive personality features, and late drop-outs cognitive and somatic anxiety symptoms and antisocial personality features. Clinical and psychological variables accounted for the major part of variance in predictions of drop-out, which ranged from 15.6% to 19.5% (Nagelkerke Pseudo R-Square). Conclusion. Social functioning was consistently associated with drop-out, but personality characteristics and anxiety symptoms differentiated between early and late drop-out. Failure to discriminate between stages of premature termination may explain some of the inconsistencies in the drop-out literature. Clinical implications. Before selection of patients to time-limited psychodynamic groups, self-reported symptoms should be thoroughly considered. Patients with agoraphobic symptoms should be offered alternative treatment. Awareness of and motivation to work with interpersonal issues may be essential for compliance with group therapy.

  9. Analysis of DCI cask drop test onto reinforced concrete pad

    International Nuclear Information System (INIS)

    Ito, C.; Kato, Y.; Hattori, S.; Shirai, K.; Misumi, M.; Ozaki, S.

    1993-01-01

    In a cask-storage facility, a cask may be subjected to an impact load as a result of a free drop onto the floor because of cask mishandling. We performed drop tests of casks onto a reinforced concrete (RC) slab representing the floor of a facility as well as simulation analysis [Kato et al]. This paper describes the details of the FEM analysis and calculated results and compares them with the drop test results. (J.P.N.)

  10. Reducing Variability in Stress Drop with Root-Mean Acceleration

    Science.gov (United States)

    Crempien, J.; Archuleta, R. J.

    2012-12-01

    Stress drop is a fundamental property of the earthquake source. For a given tectonic region stress drop is assumed to be constant allowing for the scaling of earthquake spectra. However, the variability of the stress drop, either for worldwide catalogs or regional catalogs, is quite large. The variability around the median value is on the order of 1.5 in log10 units. One question that continues to pervade the analysis of stress drop is whether this variability is an inherent characteristic of the Earth or is an artifact of the determination of stress drop via the use of the spectral analysis. It is simple to see that the stress drop determined by seismic moment times corner frequency cubed that errors in the corner frequency will strongly influence the variability in the stress drop. To avoid this strong dependence on corner frequency cubed, we have examined the determination of stress drop based on the approach proposed by Hanks (1979), namely using the root-mean-square acceleration. The stress drop determined using rms acceleration may be advantageous because the stress drop is only affected by the square root of the corner frequency. To test this approach we have determined stress drops for the 2000 Tottori earthquake and its aftershocks. We use both the classic method of fitting to a spectrum as well as using rms acceleration. For a preliminary analysis of eight aftershocks and the mainshock we find that the variability in stress drop is reduced by about a factor of two. This approach needs more careful analysis of more events, which will be shown at the meeting.

  11. Numerical Simulations of the Impact and Spreading of a Particulate Drop on a Solid Substrate

    Directory of Open Access Journals (Sweden)

    Hyun Jun Jeong

    2012-01-01

    Full Text Available We present two-dimensional numerical simulations of the impact and spreading of a droplet containing a number of small particles on a flat solid surface, just after hitting the solid surface, to understand particle effects on spreading dynamics of a particle-laden droplet for the application to the industrial inkjet printing process. The Navier-Stokes equation is solved by a finite-element-based computational scheme that employs the level-set method for the accurate interface description between the drop fluid and air and a fictitious domain method for suspended particles to account for full hydrodynamic interaction. Focusing on the particle effect on droplet spreading and recoil behaviors, we report that suspended particles suppress the droplet oscillation and deformation, by investigating the drop deformations for various Reynolds numbers. This suppressed oscillatory behavior of the particulate droplet has been interpreted with the enhanced energy dissipation due to the presence of particles.

  12. [Stability of physical state on compound hawthorn dropping pills].

    Science.gov (United States)

    Zhang, Wei; Chen, Hong-Yan; Jiang, Jian-Lan

    2008-11-01

    To evaluate the stability of physical state with accelerate test and dropping in process before and after on compound hawthorn dropping pills. Scanning electron microscope, TG-DTA, FT-IR and XRD were used. The active components presented amorphous, tiny crystal and molecular state in dropping pills, and it had no obvious reaction between PEG 4000 and active components. With time prolonging, a little of active components changed from amorphous state to tiny crystal or molecular state. Solid dispersion improved the stability and dissolution of compound hawthorn dropping pills.

  13. Theory of magnetostriction of electron-hole drops in Ge

    International Nuclear Information System (INIS)

    Markiewicz, R.S.

    1978-01-01

    A large mass of electron-hole liquid (γ drop) formed in a strain-induced potential well in Ge is known to distort its shape significantly in a magnetic field B > or approx. = 1 kG. It is shown in this paper that the shape change can be understood in detail as due to a ''recombination current'' of electron-hole pairs needed to replace those pairs which recombine in the drop volume. The Lorentz force deflects this current and produces a macroscopic dipole current loop inside the drop. The drop then changes shape to minimize its total energy, including magnetic, strain, and surface energies. While the drop usually flattens along the field direction, both para- and diamagnetic effects (elongated drops) are found to be possible, depending on excitation conditions, in accord with experiment. Similar effects are predicted to occur in small drops in unstrained Ge. This paper presents a magnetohydrodynamic theory of the magnetostriction which takes into account density variations which occur in the strain well and in high magnetic fields. A simpler theory is given for the special case in which the drop may be considered incompressible (small drops and moderate fields). Effects of carrier mass anisotropy and fluid viscosity are taken into consideration

  14. Ground Motion Prediction Equations Empowered by Stress Drop Measurement

    Science.gov (United States)

    Miyake, H.; Oth, A.

    2015-12-01

    Significant variation of stress drop is a crucial issue for ground motion prediction equations and probabilistic seismic hazard assessment, since only a few ground motion prediction equations take into account stress drop. In addition to average and sigma studies of stress drop and ground motion prediction equations (e.g., Cotton et al., 2013; Baltay and Hanks, 2014), we explore 1-to-1 relationship for each earthquake between stress drop and between-event residual of a ground motion prediction equation. We used the stress drop dataset of Oth (2013) for Japanese crustal earthquakes ranging 0.1 to 100 MPa and K-NET/KiK-net ground motion dataset against for several ground motion prediction equations with volcanic front treatment. Between-event residuals for ground accelerations and velocities are generally coincident with stress drop, as investigated by seismic intensity measures of Oth et al. (2015). Moreover, we found faster attenuation of ground acceleration and velocities for large stress drop events for the similar fault distance range and focal depth. It may suggest an alternative parameterization of stress drop to control attenuation distance rate for ground motion prediction equations. We also investigate 1-to-1 relationship and sigma for regional/national-scale stress drop variation and current national-scale ground motion equations.

  15. Allelic drop-out probabilities estimated by logistic regression

    DEFF Research Database (Denmark)

    Tvedebrink, Torben; Eriksen, Poul Svante; Asplund, Maria

    2012-01-01

    We discuss the model for estimating drop-out probabilities presented by Tvedebrink et al. [7] and the concerns, that have been raised. The criticism of the model has demonstrated that the model is not perfect. However, the model is very useful for advanced forensic genetic work, where allelic drop-out...... is occurring. With this discussion, we hope to improve the drop-out model, so that it can be used for practical forensic genetics and stimulate further discussions. We discuss how to estimate drop-out probabilities when using a varying number of PCR cycles and other experimental conditions....

  16. Motion of a drop driven by substrate vibrations

    Science.gov (United States)

    Brunet, P.; Eggers, J.; Deegan, R. D.

    2009-01-01

    We report an experimental study of liquid drops moving against gravity, when placed on a vertically vibrating inclined plate, which is partially wet by the drop. Frequency of vibrations ranges from 30 to 200 Hz, and above a threshold in vibration acceleration, drops experience an upward motion. We attribute this surprising motion to the deformations of the drop, as a consequence of an up/down symmetry-breaking induced by the presence of the substrate. We relate the direction of motion to contact angle measurements.

  17. Career drop outs of young elite athletes

    Directory of Open Access Journals (Sweden)

    Petra Fišer

    2007-12-01

    Full Text Available The main problem of the study was to examine the characteristics of sports career drop outs of young elite sportswomen and their adaptation to the post-sport life. The sample included 20 ex-young elite sportswomen, who had brought their successful sport careers to an end before the age of 19. We used a modified interview about sports career termination (Cecić Erpič, 1998 for the investigation of the characteristics of their sports careers. To examine the caracteristics of sport careers we used frequency analysis and cluster analysis. The results showed that the participants mostly stated more than one reason for the termination of their career. The most common reasons for career termination were: lack of motivation, bad relations with trainers or co-competitors and dedication to school or education. After the end of a sports career most of the young sportswomen stayed actively in touch with sport, either as trainers, judges, or they remained engaged in sports for recreation.

  18. The viruses of wild pigeon droppings.

    Directory of Open Access Journals (Sweden)

    Tung Gia Phan

    Full Text Available Birds are frequent sources of emerging human infectious diseases. Viral particles were enriched from the feces of 51 wild urban pigeons (Columba livia from Hong Kong and Hungary, their nucleic acids randomly amplified and then sequenced. We identified sequences from known and novel species from the viral families Circoviridae, Parvoviridae, Picornaviridae, Reoviridae, Adenovirus, Astroviridae, and Caliciviridae (listed in decreasing number of reads, as well as plant and insect viruses likely originating from consumed food. The near full genome of a new species of a proposed parvovirus genus provisionally called Aviparvovirus contained an unusually long middle ORF showing weak similarity to an ORF of unknown function from a fowl adenovirus. Picornaviruses found in both Asia and Europe that are distantly related to the turkey megrivirus and contained a highly divergent 2A1 region were named mesiviruses. All eleven segments of a novel rotavirus subgroup related to a chicken rotavirus in group G were sequenced and phylogenetically analyzed. This study provides an initial assessment of the enteric virome in the droppings of pigeons, a feral urban species with frequent human contact.

  19. GENDER, DEBT, AND DROPPING OUT OF COLLEGE.

    Science.gov (United States)

    Dwyer, Rachel E; Hodson, Randy; McLoud, Laura

    2013-02-01

    For many young Americans, access to credit has become critical to completing a college education and embarking on a successful career path. Young people increasingly face the trade-off of taking on debt to complete college or foregoing college and taking their chances in the labor market without a college degree. These trade-offs are gendered by differences in college preparation and support and by the different labor market opportunities women and men face that affect the value of a college degree and future difficulties they may face in repaying college debt. We examine these new realities by studying gender differences in the role of debt in the pivotal event of graduating from college using the 1997 cohort of the national longitudinal Survey of youth. In this article, we find that women and men both experience slowing and even diminishing probabilities of graduating when carrying high levels of debt, but that men drop out at lower levels of debt than do women. We conclude by theorizing that high levels of debt are one of the mechanisms that sort women and men into different positions in the social stratification system.

  20. That's one small drop for Mankind...

    CERN Multimedia

    Anaïs Schaeffer

    2012-01-01

    In August, the members of an ISOLDE project called LOI88 successfully employed a new technique to study the interaction of metal ions in a liquid. It’s the first time that specific ions have been studied in a liquid medium - a technical achievement that opens promising doors for biochemistry.   In the heart of the LOI88 experiment: this is the point where the metal ions (from the left) enter the drop.  “More than half of the proteins in the human body contain metal ions such as magnesium, zinc and copper,” explains Monika Stachura, a biophysicist at the University of Copenhagen and the LOI88 project leader. “We know that these elements are crucial to a protein’s structure and function but their behaviour and interactions are not known in detail.” Detecting these ions directly in  a body-like environment is problematic as their closed atomic shells make them invisible to most spectroscopic techniques. However, using ...

  1. Insights from the pollination drop proteome and the ovule transcriptome of Cephalotaxus at the time of pollination drop production.

    Science.gov (United States)

    Pirone-Davies, Cary; Prior, Natalie; von Aderkas, Patrick; Smith, Derek; Hardie, Darryl; Friedman, William E; Mathews, Sarah

    2016-05-01

    Many gymnosperms produce an ovular secretion, the pollination drop, during reproduction. The drops serve as a landing site for pollen, but also contain a suite of ions and organic compounds, including proteins, that suggests diverse roles for the drop during pollination. Proteins in the drops of species of Chamaecyparis, Juniperus, Taxus, Pseudotsuga, Ephedra and Welwitschia are thought to function in the conversion of sugars, defence against pathogens, and pollen growth and development. To better understand gymnosperm pollination biology, the pollination drop proteomes of pollination drops from two species of Cephalotaxus have been characterized and an ovular transcriptome for C. sinensis has been assembled. Mass spectrometry was used to identify proteins in the pollination drops of Cephalotaxus sinensis and C. koreana RNA-sequencing (RNA-Seq) was employed to assemble a transcriptome and identify transcripts present in the ovules of C. sinensis at the time of pollination drop production. About 30 proteins were detected in the pollination drops of both species. Many of these have been detected in the drops of other gymnosperms and probably function in defence, polysaccharide metabolism and pollen tube growth. Other proteins appear to be unique to Cephalotaxus, and their putative functions include starch and callose degradation, among others. Together, the proteins appear either to have been secreted into the drop or to occur there due to breakdown of ovular cells during drop production. Ovular transcripts represent a wide range of gene ontology categories, and some may be involved in drop formation, ovule development and pollen-ovule interactions. The proteome of Cephalotaxus pollination drops shares a number of components with those of other conifers and gnetophytes, including proteins for defence such as chitinases and for carbohydrate modification such as β-galactosidase. Proteins likely to be of intracellular origin, however, form a larger component of drops

  2. Development of ultrasonically levitated drops as microreactors for study of enzyme kinetics and potential as a universal portable analysis system

    Science.gov (United States)

    Scheeline, A.; Pierre, Z.; Field, C. R.; Ginsberg, M. D.

    2009-05-01

    Development of microfluidics has focused on carrying out chemical synthesis and analysis in ever-smaller volumes of solution. In most cases, flow systems are made of either quartz, glass, or an easily moldable polymer such as polydimethylsiloxane (Whitesides 2006). As the system shrinks, the ratio of surface area to volume increases. For studies of either free radical chemistry or protein chemistry, this is undesirable. Proteins stick to surfaces, biofilms grow on surfaces, and radicals annihilate on walls (Lewis et al. 2006). Thus, under those circumstances where small amounts of reactants must be employed, typical microfluidic systems are incompatible with the chemistry one wishes to study. We have developed an alternative approach. We use ultrasonically levitated microliter drops as well mixed microreactors. Depending on whether capillaries (to form the drop) and electrochemical sensors are in contact with the drop or whether there are no contacting solids, the ratio of solid surface area to volume is low or zero. The only interface seen by reactants is a liquid/air interface (or, more generally, liquid/gas, as any gas may be used to support the drop). While drop levitation has been reported since at least the 1940's, we are the second group to carry out enzyme reactions in levitated drops, (Weis; Nardozzi 2005) and have fabricated the lowest power levitator in the literature (Field; Scheeline 2007). The low consumption aspects of ordinary microfluidics combine with a contact-free determination cell (the levitated drop) that ensures against cross-contamination, minimizes the likelihood of biofilm formation, and is robust to changes in temperature and humidity (Lide 1992). We report kinetics measurements in levitated drops and explain how outgrowths of these accomplishments will lead to portable chemistry/biology laboratories well suited to detection of a wide range of chemical and biological agents in the asymmetric battlefield environment.

  3. The pressure drop factor - a powerful monitoring tool for hydrotreaters; Der Druckverlustfaktor - ein leistungsstarkes Monitoringwerzeug fuer Entschwefelungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Riebel, A.; Kuczera, M. [MiRO Mineraloelraffinerie Oberrhein GmbH und Co. KG, Karlsruhe (Germany); Skyum, L. [Haldor Topsoe, Lyngby (Denmark)

    2004-08-01

    In order to reduce traffic air pollution the sulphur content in gasoline and diesel of 50 ppm was appointed Europe-wide for 2005 according to the auto oil programme (aop.) The Mineraloelraffinerie Oberrhein (MiRO-refinery) in Karlsruhe delivers gasoline and diesel with sulphur content below 10 ppm since the 1{sup st} of November 2001. For the deep desulphurisation process temperatures in the reactors had to be raised. Because the catalyst volume was partly considerably increased in order to compensate the thereby caused higher deactivation, now the maximum allowable pressure drop in fixed bed reactors limits the run time for hydrotreaters. Because the pressure drop increases as a first approximation with the squared volume flow, it is hard to distinguish between pressure drop caused by blockades of coke, polymerisation and corrosion products in the catalyst bed and the influence of changing volume flow due to different process conditions. However this necessary to predict the development of pressure drop in the future in order take the right action. The aim of this work is to calculate the loss of void space in the catalyst bed caused due to particulate matter by adequate pressure drop calculation in order to give recommendation and prepare counteractive measures. Using the existing works a model for calculating the pressure drop in hydro treating reactors was developed, which can determine the reduction of void space caused by coke, polymers or corrosion products. In order to verify the validity of the equations from pure gas phase to the trickle bed reactor a gasoline hydrotreater (100% gas phase), a hydrotreater for kerosene (98% gas phase) and a vacuum gas oil hydrotreater (83% gas phase) were regarded. Measured and calculated data match satisfyingly. The presented pressure drop factor takes into account the grown importance of pressure drop in hydrotreaters. The effects of operational changes or feed impurities can be identified in good time and counteractive

  4. Air Pollution

    Science.gov (United States)

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  5. Total sleep time severely drops during adolescence.

    Directory of Open Access Journals (Sweden)

    Damien Leger

    Full Text Available UNLABELLED: Restricted sleep duration among young adults and adolescents has been shown to increase the risk of morbidities such as obesity, diabetes or accidents. However there are few epidemiological studies on normal total sleep time (TST in representative groups of teen-agers which allow to get normative data. PURPOSE: To explore perceived total sleep time on schooldays (TSTS and non schooldays (TSTN and the prevalence of sleep initiating insomnia among a nationally representative sample of teenagers. METHODS: Data from 9,251 children aged 11 to 15 years-old, 50.7% of which were boys, as part of the cross-national study 2011 HBSC were analyzed. Self-completion questionnaires were administered in classrooms. An estimate of TSTS and TSTN (week-ends and vacations was calculated based on specifically designed sleep habits report. Sleep deprivation was estimated by a TSTN - TSTS difference >2 hours. Sleep initiating nsomnia was assessed according to International classification of sleep disorders (ICSD 2. Children who reported sleeping 7 hours or less per night were considered as short sleepers. RESULTS: A serious drop of TST was observed between 11 yo and 15 yo, both during the schooldays (9 hours 26 minutes vs. 7 h 55 min.; p<0.001 and at a lesser extent during week-ends (10 h 17 min. vs. 9 h 44 min.; p<0.001. Sleep deprivation concerned 16.0% of chidren aged of 11 yo vs. 40.5% of those of 15 yo (p<0.001. Too short sleep was reported by 2.6% of the 11 yo vs. 24.6% of the 15 yo (p<0.001. CONCLUSION: Despite the obvious need for sleep in adolescence, TST drastically decreases with age among children from 11 to 15 yo which creates significant sleep debt increasing with age.

  6. Variation of rain intensity and drop size distribution with General Weather Patterns (GWL)

    Science.gov (United States)

    Ghada, Wael; Buras, Allan; Lüpke, Marvin; Menzel, Annette

    2017-04-01

    Short-duration rainfall extremes may cause flash floods in certain catchments (e.g. cities or fast responding watersheds) and pose a great risk to affected communities. In order to predict their occurrence under future climate change scenarios, their link to atmospheric circulation patterns needs to be well understood. We used a comprehensive data set of meteorological data (temperature, rain gauge precipitation) and precipitation spectra measured by a disdrometer (OTT PARSIVEL) between October 2008 and June 2010 at Freising, southern Germany. For the 21 months of the study period, we integrated the disdrometer spectra over intervals of 10 minutes to correspond to the temporal resolution of the weather station data and discarded measurements with air temperatures below 0°C. Daily General Weather Patterns ("Großwetterlagen", GWL) were downloaded from the website of the German Meteorological Service. Out of the 29 GWL, 14 were included in the analysis for which we had at least 12 rain events during our study period. For the definition of a rain event, we tested different lengths of minimum inter-event times and chose 30 min as a good compromise between number and length of resulting events; rain events started when more than 0.001 mm/h (sensitivity of the disdrometer) were recorded. The length of the rain events ranged between 10 min and 28 h (median 130 min) with the maximum rain intensity recorded being 134 mm/h on 24-07-2009. Seasonal differences were identified for rain event average intensities and maximum intensities per event. The influence of GWL on rain properties such as rain intensity and drop size distribution per time step and per event was investigated based on the above mentioned rain event definition. Pairwise Wilcoxon-tests revealed that higher rain intensity and larger drops were associated with the GWL "Low over the British Isles" (TB), whereas low rain intensities and less drops per interval were associated with the GWL "High over Central Europe

  7. Evaluation of Sodium Sulphacetamide drops in the Treatment of ...

    African Journals Online (AJOL)

    Sodium sulphacetamide eye drops had been used successfully in the past in the treatment of ophthalmia neonatorium (ON) but its use has decreased remarkably in recent time. The efficacy of 10 percent sodium sulphacetamide eye drops in the treatment of ON was prospectively evaluated in 68 neonates seen in our ...

  8. Summary of Skoda JS rod drop measurements analysis

    International Nuclear Information System (INIS)

    Svarny, J.; Krysl, V.

    1999-01-01

    A summary is presented of the Skoda JS rod drop reactivity measurements analysis provided during last two years based on control rod worth measurements by the outer ion chambers. Standard analysis based on comparisons of dynamics macrocode MOBY-DICK-SK and experimental data is extended to the 8-th group delayed neutron structure and new features of rod drop process are investigated. (author)

  9. Fabrication and Operation of Microfluidic Hanging-Drop Networks.

    Science.gov (United States)

    Misun, Patrick M; Birchler, Axel K; Lang, Moritz; Hierlemann, Andreas; Frey, Olivier

    2018-01-01

    The hanging-drop network (HDN) is a technology platform based on a completely open microfluidic network at the bottom of an inverted, surface-patterned substrate. The platform is predominantly used for the formation, culturing, and interaction of self-assembled spherical microtissues (spheroids) under precisely controlled flow conditions. Here, we describe design, fabrication, and operation of microfluidic hanging-drop networks.

  10. Why Did They Not Drop Out? Narratives from Resilient Students

    Science.gov (United States)

    Lessard, Anne; Fortin, Laurier; Marcotte, Diane; Potvin, Pierre; Royer, Egide

    2009-01-01

    There is much to be learned from students who were at-risk for dropping out of school but persevered and graduated. The purpose of the study on which this article is based, was to describe how students who were at-risk for dropping out of school persevered and graduated. The voices of two students are introduced, highlighting the challenges they…

  11. Pressure Drop of Chamfer on Spacer Grid Strap

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Euijae; Kim, Kanghoon; Kim, Kyounghong; Nahm, Keeyil [KEPCO Nuclear Fuel Co., Daejeon (Korea, Republic of)

    2014-05-15

    A swirl flow and cross flow are generated by the spacer grid with mixing vane that enhances the thermal performance and critical heat flux (CHF). The additional pressure drop makes it difficult to meet acceptance criteria for overall pressure drop in fuel assembly depending upon the pump capacity. The chamfer on the end of spacer grid strap is one solution to reduce additional pressure drop without any adverse effect on flow fields. In this research, the pressure drop tests for spacer grid with and without chamfer were carried out at the hydraulic test facility. The result can be applied to develop high performance nuclear fuel assemblies for Pressurized Water Reactor (PWR) plants. The pressure drop tests for 5x5 spacer grid with and without chamfer as well as 6x6 spacer grid with and without chamfer were carried out at the INFINIT test facility. The Reynolds number ranged about from 16000 to 75000. The sweep-up and sweep-down test showed that the direction of sweep did not affect the pressure drop. The chamfer on spacer grid strap reduced the pressure drop due to the decreased in ratio of inlet area to outlet area. The pressure loss coefficient for spacer grid with chamfer was by up to 13.8 % lower than that for spacer grid without chamfer. Hence, the chamfer on spacer grid strap was one of effective ways to reduce the pressure drop.

  12. Delayed frost growth on jumping-drop superhydrophobic surfaces.

    Science.gov (United States)

    Boreyko, Jonathan B; Collier, C Patrick

    2013-02-26

    Self-propelled jumping drops are continuously removed from a condensing superhydrophobic surface to enable a micrometric steady-state drop size. Here, we report that subcooled condensate on a chilled superhydrophobic surface are able to repeatedly jump off the surface before heterogeneous ice nucleation occurs. Frost still forms on the superhydrophobic surface due to ice nucleation at neighboring edge defects, which eventually spreads over the entire surface via an interdrop frost wave. The growth of this interdrop frost front is shown to be up to 3 times slower on the superhydrophobic surface compared to a control hydrophobic surface, due to the jumping-drop effect dynamically minimizing the average drop size and surface coverage of the condensate. A simple scaling model is developed to relate the success and speed of interdrop ice bridging to the drop size distribution. While other reports of condensation frosting on superhydrophobic surfaces have focused exclusively on liquid-solid ice nucleation for isolated drops, these findings reveal that the growth of frost is an interdrop phenomenon that is strongly coupled to the wettability and drop size distribution of the surface. A jumping-drop superhydrophobic condenser minimized frost formation relative to a conventional dropwise condenser in two respects: preventing heterogeneous ice nucleation by continuously removing subcooled condensate, and delaying frost growth by limiting the success of interdrop ice bridge formation.

  13. From nuclear reactions to liquid-drop collisions

    International Nuclear Information System (INIS)

    Menchaca R, A.; Huidobro, F.; Martinez D, A.; Michaelian, K.; Perez, A.; Rodriguez, V.; Carjan, N.

    1997-01-01

    A review of the experimental and theoretical situation in coalescence and fragmentation studies of binary liquid-drop collisions is given, putting in perspective our own contributions, which include experiments with mercury and oil drops and the application of a nuclear reaction model, specifically modified by us for the macroscopic case. (Author)

  14. The origin of star-shaped oscillations of Leidenfrost drops

    Science.gov (United States)

    Ma, Xiaolei; Burton, Justin C.

    We experimentally investigate the oscillations of Leidenfrost drops of water, liquid nitrogen, ethanol, methanol, acetone and isopropyl alcohol. The drops levitate on a cushion of evaporated vapor over a hot, curved surface which keeps the drops stationary. We observe star-shaped modes along the periphery of the drop, with mode numbers n = 2 to 13. The number of observed modes is sensitive to the properties of the liquid. The pressure oscillation frequency in the vapor layer under the drop is approximately twice that of the drop frequency, which is consistent with a parametric forcing mechanism. However, the Rayleigh and thermal Marangoni numbers are of order 10,000, indicating that convection should play a dominating role as well. Surprisingly, we find that the wavelength and frequency of the oscillations only depend on the thickness of the liquid, which is twice the capillary length, and do not depend on the mode number, substrate temperature, or the substrate curvature. This robust behavior suggests that the wavelength for the oscillations is set by thermal convection inside the drop, and is less dependent on the flow in the vapor layer under the drop

  15. Student Drop-Out from German Higher Education Institutions

    Science.gov (United States)

    Heublein, Ulrich

    2014-01-01

    28% of students of any one year currently give up their studies in bachelor degree programmes at German higher education institutions. Drop-out is to be understood as the definite termination in the higher education system without obtaining an academic degree. The drop-out rate is thereby calculated with the help of statistical estimation…

  16. Fundamentals and applications of fast micro-drop impact

    NARCIS (Netherlands)

    Visser, C.W.

    2014-01-01

    3D-printing, biofabrication, diesel engines, and spray cleaning all depend on controlled drop impact. However, surprisingly, these drops have received scarce attention so far. This is mainly due to their small size and high impact velocity, which makes visualizing the impact a challenge. This thesis

  17. Generic versus brand-name North American topical glaucoma drops.

    Science.gov (United States)

    Mammo, Zaid N; Flanagan, John G; James, David F; Trope, Graham E

    2012-02-01

    To determine whether brand-name glaucoma drops differ from generic equivalents in bottle design, viscosity, surface tension, and volume in North America. Experimental study. We studied 5 bottles each of 11 kinds of glaucoma drops. Density-based calculations of drop volume were assessed using 0.1 mg analytic balance. Viscosity was measured using rotational rheometery. Bottle tip diameter was measured using 0.05 mm Vernier calipers. Surface tension was measured using a Fisher Scientific (Ottawa, ON) tensiometer. For the American brand-name Timoptic XE, the average drop volume was 38 ± 3.1 μL versus 24 ± 1.5 μL of Timolol GFS (p brand-name Timoptic XE, the average drop volume was 42 ± 4.0 μL versus 25 ± 2 μL of timolol maleate EX (p brand-name Timoptic drop volume was 28 ± 1.4 μL versus 35 ± 1.9 μL Apo-Timop (p brand-name Timoptic delivered significantly smaller drop volumes than generic Apo-Timop. Careful consideration should be given to drop viscosity and bottle design when generic ophthalmic products are evaluated for interchangeability and market entry. Copyright © 2012 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  18. Complex cooling water systems optimization with pressure drop consideration

    CSIR Research Space (South Africa)

    Gololo, KV

    2012-12-01

    Full Text Available Pressure drop consideration has shown to be an essential requirement for the synthesis of a cooling water network where reuse/recycle philosophy is employed. This is due to an increased network pressure drop associated with additional reuse...

  19. Drop tests of the Three Mile Island knockout canister

    International Nuclear Information System (INIS)

    Box, W.D.; Aaron, W.S.; Shappert, L.B.; Childress, P.C.; Quinn, G.J.; Smith, J.V.

    1987-01-01

    A type of Three Mile Island Unit 2 (TMI-2) defueling canister, called a ''knockout'' canister, was subjected to a series of drop tests at the Oak Ridge National Laboratory's Drop Test Facility. These tests confirmed the structural integrity of internal fixed neutron poisons in support of a request for NRC licensing of this type of canister for the shipment of TMI-2 reactor fuel debris to the Idaho National Engineering Laboratory (INEL) for the Core Examination R and D Program. This report presents the data generated and the results obtained from a series of four drop tests that included two drops with the test assembly in the vertical position and two drops with the assembly in the horizontal position

  20. Building micro-soccer-balls with evaporating colloidal fakir drops

    Science.gov (United States)

    Gelderblom, Hanneke; Marín, Álvaro G.; Susarrey-Arce, Arturo; van Housselt, Arie; Lefferts, Leon; Gardeniers, Han; Lohse, Detlef; Snoeijer, Jacco H.

    2013-11-01

    Drop evaporation can be used to self-assemble particles into three-dimensional microstructures on a scale where direct manipulation is impossible. We present a unique method to create highly-ordered colloidal microstructures in which we can control the amount of particles and their packing fraction. To this end, we evaporate colloidal dispersion drops from a special type of superhydrophobic microstructured surface, on which the drop remains in Cassie-Baxter state during the entire evaporative process. The remainders of the drop consist of a massive spherical cluster of the microspheres, with diameters ranging from a few tens up to several hundreds of microns. We present scaling arguments to show how the final particle packing fraction of these balls depends on the drop evaporation dynamics, particle size, and number of particles in the system.

  1. Experimental study of pressure drop characteristics of venturi scrubber working at self-priming mode

    International Nuclear Information System (INIS)

    Wang Meng; Sun Zhongning; Gu Haifeng; Guo Xueqing; Yu Yong

    2012-01-01

    The pressure drop characteristics of Venturi scrubber working at self-priming mode were studied experimentally. The test sections were smooth glass scrubbers, with air and water as the working medium. The results show that the trends of empirical formula are more consistent with that of the experimental results, but the relative error is large, up to ±50% or more. The experimental correlation is proposed based on the experimental research, and the calculated results of which can well predict the experimental data and the relative error is within ±15%. (authors)

  2. Prediction of pressure drop and CCFL breakdown in countercurrent two-phase flow

    International Nuclear Information System (INIS)

    Ostrogorsky, A.G.; Gay, R.R.; Lahey, R.T. Jr.

    1983-01-01

    A steady-state analytical has been developed to predict channel pressure drop as a function of inlet vapor flow rate and applied heat flux during conditions of countercurrent two-phase flow. The interfacial constitutive relations utilized are flow surface dependent and allow for the existence of either smooth or way liquid films. A computer code was developed to solve the analytical model. Predictions of Δp versus vapor flow rate were found to agree favorably with experimental data from adiabatic, air/water systems. In addition, the model was used to predict countercurrent flow conditions in heated channels characteristic of a BWR/4 nuclear reactor fuel assembly

  3. Electrowetting-on-dielectrics for manipulation of oil drops and gas bubbles in aqueous-shell compound drops.

    Science.gov (United States)

    Li, Jiang; Wang, Yixuan; Chen, Haosheng; Wan, Jiandi

    2014-11-21

    We present the manipulation of oil, organic and gaseous chemicals by electrowetting-on-dielectric (EWOD) technology using aqueous-shell compound drops. We demonstrate that the transport and coalescence of viscous oil drops, the reaction of bromine with styrene in benzene solution, and the reaction of red blood cells with carbon monoxide bubbles can be accomplished using this method.

  4. Pressure loss of the annular air-liquid flow in vertical tufes

    Energy Technology Data Exchange (ETDEWEB)

    Schmal, M [Rio de Janeiro Univ. (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia; Cantalino, A [Rio de Janeiro Univ. (Brazil). Dept. de Engenharia Quimica

    1976-01-01

    In this work the pressure loss of the annular air-liquid flow in vertical tubes has been determined. Correlations are presented for the frictional pressure drop. The dimensional analysis and the following fluid systems were used for this determination: air-water, air-alcohol solutions and air-water and surfactants.

  5. MEASUREMENT OF THE HIGH-FIELD Q-DROP IN A LARGE-GRAIN NIOBIUM CAVITY FOR DIFFERENT OXIDATION PROCESSES

    Energy Technology Data Exchange (ETDEWEB)

    Gianluigi Ciovati; Peter Kneisel; Alex Gurevich

    2008-01-23

    In this contribution, we present the results from a series of RF tests at 1.7 K and 2.0 K on a single-cell cavity made of high-purity large (with area of the order of few cm2) grain niobium which underwent various oxidation processes. After initial buffered chemical polishing, anodization, baking in pure oxygen atmosphere and baking in air up to 180 °C was applied with the objective of clearly identifying the role of oxygen and the oxide layer on the Q-drop. During each rf test a temperature mapping system was used allowing to measure the local temperature rise of the cavity outer surface due to RF losses, which gives information about the losses location, their field dependence and space distribution on the RF surface. The results confirmed that the depth affected by baking is about 20 – 30 nm from the surface and showed that the Q-drop did not re-appear in a previously baked cavity by further baking at 120 °C in pure oxygen atmosphere or in air up to 180 °C. A statistic of the position of the “hot-spots” on the cavity surface showed that grain-boundaries are not the preferred location. An interesting correlation was found between the Q-drop onset, the quench field and the low-field energy gap, which supports the hypothesis of thermo-magnetic instability governing the Q-drop and the baking effect.

  6. MEASUREMENT OF THE HIGH-FIELD Q-DROP IN A LARGE-GRAIN NIOBIUM CAVITY FOR DIFFERENT OXIDATION PROCESSES

    International Nuclear Information System (INIS)

    Gianluigi Ciovati; Peter Kneisel; Alex Gurevich

    2008-01-01

    In this contribution, we present the results from a series of RF tests at 1.7 K and 2.0 K on a single-cell cavity made of high-purity large (with area of the order of few cm2) grain niobium which underwent various oxidation processes. After initial buffered chemical polishing, anodization, baking in pure oxygen atmosphere and baking in air up to 180 C was applied with the objective of clearly identifying the role of oxygen and the oxide layer on the Q-drop. During each rf test a temperature mapping system was used allowing to measure the local temperature rise of the cavity outer surface due to RF losses, which gives information about the losses location, their field dependence and space distribution on the RF surface. The results confirmed that the depth affected by baking is about 20-30 nm from the surface and showed that the Q-drop did not re-appear in a previously baked cavity by further baking at 120 C in pure oxygen atmosphere or in air up to 180 C. A statistic of the position of the ''hot-spots'' on the cavity surface showed that grain-boundaries are not the preferred location. An interesting correlation was found between the Q-drop onset, the quench field and the low-field energy gap, which supports the hypothesis of thermomagnetic instability governing the Q-drop and the baking effect.

  7. Understanding evaporation characteristics of a drop of distilled sulfur mustard (HD) chemical agent from stainless steel and aluminum substrates

    Energy Technology Data Exchange (ETDEWEB)

    Jung, H., E-mail: junghs@add.re.kr; Lee, H.W.

    2014-05-01

    Highlights: • Evaporation rates of HD are obtained from stainless steel and aluminum substrates. • The rates increase with temperature and are linearly proportional to drop size. • HD evaporation from stainless steel follows only constant contact area mechanism. • HD evaporation from aluminum proceeds by a combined mechanism. - Abstract: We report herein the evaporation rates and mechanism of a drop of distilled sulfur mustard (HD) agent from stainless steel and aluminum substrates. For systematic analysis, we used a laboratory-sized wind tunnel, thermal desorption (TD) connected to gas chromatograph/mass spectrometry (GC/MS) and drop shape analysis (DSA). We found that the evaporation rates of HD from stainless steel and aluminum increased with temperature. The rates were also linearly proportional to drop size. The time-dependent contact angle measurement showed that the evaporation of the drop of HD proceeded only by constant contact area mechanism from stainless steel surface. On the other hand, the evaporation of HD from aluminum proceeded by a combined mechanism of constant contact area mode and constant contact angle mode. Our experimental data sets and analysis could be used to predict vapor and contact hazard persistence of chemical warfare agents (CWAs) in the air and on exterior surfaces with chemical releases, which assists the military decision influencing personnel safety and decontamination of the site upon a chemical attack event.

  8. Understanding evaporation characteristics of a drop of distilled sulfur mustard (HD) chemical agent from stainless steel and aluminum substrates

    International Nuclear Information System (INIS)

    Jung, H.; Lee, H.W.

    2014-01-01

    Highlights: • Evaporation rates of HD are obtained from stainless steel and aluminum substrates. • The rates increase with temperature and are linearly proportional to drop size. • HD evaporation from stainless steel follows only constant contact area mechanism. • HD evaporation from aluminum proceeds by a combined mechanism. - Abstract: We report herein the evaporation rates and mechanism of a drop of distilled sulfur mustard (HD) agent from stainless steel and aluminum substrates. For systematic analysis, we used a laboratory-sized wind tunnel, thermal desorption (TD) connected to gas chromatograph/mass spectrometry (GC/MS) and drop shape analysis (DSA). We found that the evaporation rates of HD from stainless steel and aluminum increased with temperature. The rates were also linearly proportional to drop size. The time-dependent contact angle measurement showed that the evaporation of the drop of HD proceeded only by constant contact area mechanism from stainless steel surface. On the other hand, the evaporation of HD from aluminum proceeded by a combined mechanism of constant contact area mode and constant contact angle mode. Our experimental data sets and analysis could be used to predict vapor and contact hazard persistence of chemical warfare agents (CWAs) in the air and on exterior surfaces with chemical releases, which assists the military decision influencing personnel safety and decontamination of the site upon a chemical attack event

  9. Effect of humidity on the filter pressure drop

    International Nuclear Information System (INIS)

    Vendel, J.; Letourneau, P.

    1995-01-01

    The effects of humidity on the filter pressure drop have been reported in some previous studies in which it is difficult to draw definite conclusions. These studies show contradictory effects of humidity on the pressure drop probably due to differences in the hygroscopicity of the test aerosols. The objective of this paper is to present experimental results on the evolution of the filter pressure drop versus mass loading, for different test aerosols and relative humidities. Present results are compared to those found in various publication. An experimental device has been designed to measure filter pressure drop as the function of the areal density for relative humidity varying in the range of 9 % to 85 %. Experiments have been conducted with hygroscopic: (CsOH) and nonhygroscopic aerosols (TiO 2 ). Cesium hydroxyde (CsOH) of size of 2 μ M AMMD has been generated by an ultrasonic generator and the 0.7 μm AMMD titanium oxyde has been dispersed by a open-quotes turn-tableclose quotes generator. As it is noted in the BISWAS'publication [3], present results show, in the case of nonhygroscopic aerosols, a linear relationship of pressure drop to mass loading. For hygroscopic aerosols two cases must be considered: for relative humidity below the deliquescent point of the aerosol, the relationship of pressure drop to mass loading remains linear; above the deliquescent point, the results show a sudden increase in the pressure drop and the mass capacity of the filter is drastically reduced

  10. Electric generation and ratcheted transport of contact-charged drops

    Science.gov (United States)

    Cartier, Charles A.; Graybill, Jason R.; Bishop, Kyle J. M.

    2017-10-01

    We describe a simple microfluidic system that enables the steady generation and efficient transport of aqueous drops using only a constant voltage input. Drop generation is achieved through an electrohydrodynamic dripping mechanism by which conductive drops grow and detach from a grounded nozzle in response to an electric field. The now-charged drops are transported down a ratcheted channel by contact charge electrophoresis powered by the same voltage input used for drop generation. We investigate how the drop size, generation frequency, and transport velocity depend on system parameters such as the liquid viscosity, interfacial tension, applied voltage, and channel dimensions. The observed trends are well explained by a series of scaling analyses that provide insight into the dominant physical mechanisms underlying drop generation and ratcheted transport. We identify the conditions necessary for achieving reliable operation and discuss the various modes of failure that can arise when these conditions are violated. Our results demonstrate that simple electric inputs can power increasingly complex droplet operations with potential opportunities for inexpensive and portable microfluidic systems.

  11. Measurement of an Evaporating Drop on a Reflective Substrate

    Science.gov (United States)

    Chao, David F.; Zhang, Nengli

    2004-01-01

    A figure depicts an apparatus that simultaneously records magnified ordinary top-view video images and laser shadowgraph video images of a sessile drop on a flat, horizontal substrate that can be opaque or translucent and is at least partially specularly reflective. The diameter, contact angle, and rate of evaporation of the drop as functions of time can be calculated from the apparent diameters of the drop in sequences of the images acquired at known time intervals, and the shadowgrams that contain flow patterns indicative of thermocapillary convection (if any) within the drop. These time-dependent parameters and flow patterns are important for understanding the physical processes involved in the spreading and evaporation of drops. The apparatus includes a source of white light and a laser (both omitted from the figure), which are used to form the ordinary image and the shadowgram, respectively. Charge-coupled-device (CCD) camera 1 (with zoom) acquires the ordinary video images, while CCD camera 2 acquires the shadowgrams. With respect to the portion of laser light specularly reflected from the substrate, the drop acts as a plano-convex lens, focusing the laser beam to a shadowgram on the projection screen in front of CCD camera 2. The equations for calculating the diameter, contact angle, and rate of evaporation of the drop are readily derived on the basis of Snell s law of refraction and the geometry of the optics.

  12. Inverse Leidenfrost effect: self-propelling drops on a bath

    Science.gov (United States)

    Gauthier, Anais; van der Meer, Devaraj; Lohse, Detlef; Physics of Fluids Team

    2017-11-01

    When deposited on very hot solid, volatile drops can levitate over a cushion of vapor, in the so-called Leidenfrost state. This phenomenon can also be observed on a hot bath and similarly to the solid case, drops are very mobile due to the absence of contact with the substrate that sustains them. We discuss here a situation of ``inverse Leidenfrost effect'' where room-temperature drops levitate on a liquid nitrogen pool - the vapor is generated here by the bath sustaining the relatively hot drop. We show that the drop's movement is not random: the liquid goes across the bath in straight lines, a pattern only disrupted by elastic bouncing on the edges. In addition, the drops are initially self-propelled; first at rest, they accelerate for a few seconds and reach velocities of the order of a few cm/s, before slowing down. We investigate experimentally the parameters that affect their successive acceleration and deceleration, such as the size and nature of the drops and we discuss the origin of this pattern.

  13. Effect of humidity on the filter pressure drop

    Energy Technology Data Exchange (ETDEWEB)

    Vendel, J.; Letourneau, P. [Institut de Protection et de Surete Nucleaire, Gif-sur-Yvette (France)

    1995-02-01

    The effects of humidity on the filter pressure drop have been reported in some previous studies in which it is difficult to draw definite conclusions. These studies show contradictory effects of humidity on the pressure drop probably due to differences in the hygroscopicity of the test aerosols. The objective of this paper is to present experimental results on the evolution of the filter pressure drop versus mass loading, for different test aerosols and relative humidities. Present results are compared to those found in various publication. An experimental device has been designed to measure filter pressure drop as the function of the areal density for relative humidity varying in the range of 9 % to 85 %. Experiments have been conducted with hygroscopic: (CsOH) and nonhygroscopic aerosols (TiO{sub 2}). Cesium hydroxyde (CsOH) of size of 2 {mu} M AMMD has been generated by an ultrasonic generator and the 0.7 {mu}m AMMD titanium oxyde has been dispersed by a {open_quotes}turn-table{close_quotes} generator. As it is noted in the BISWAS`publication [3], present results show, in the case of nonhygroscopic aerosols, a linear relationship of pressure drop to mass loading. For hygroscopic aerosols two cases must be considered: for relative humidity below the deliquescent point of the aerosol, the relationship of pressure drop to mass loading remains linear; above the deliquescent point, the results show a sudden increase in the pressure drop and the mass capacity of the filter is drastically reduced.

  14. Application of Proteomics to the Study of Pollination Drops

    Directory of Open Access Journals (Sweden)

    Natalie Prior

    2013-04-01

    Full Text Available Premise of the study: Pollination drops are a formative component in gymnosperm pollen-ovule interactions. Proteomics offers a direct method for the discovery of proteins associated with this early stage of sexual reproduction. Methods: Pollination drops were sampled from eight gymnosperm species: Chamaecyparis lawsoniana (Port Orford cedar, Ephedra monosperma, Ginkgo biloba, Juniperus oxycedrus (prickly juniper, Larix ×marschlinsii, Pseudotsuga menziesii (Douglas-fir, Taxus ×media, and Welwitschia mirabilis. Drops were collected by micropipette using techniques focused on preventing sample contamination. Drop proteins were separated using both gel and gel-free methods. Tandem mass spectrometric methods were used including a triple quadrupole and an Orbitrap. Results: Proteins are present in all pollination drops. Consistency in the protein complement over time was shown in L. ×marschlinsii. Representative mass spectra from W. mirabilis chitinase peptide and E. monosperma serine carboxypeptidase peptide demonstrated high quality results. We provide a summary of gymnosperm pollination drop proteins that have been discovered to date via proteomics. Discussion: Using proteomic methods, a dozen classes of proteins have been identified to date. Proteomics presents a way forward in deepening our understanding of the biological function of pollination drops.

  15. Study of pressure drop, void fraction and relative permeabilities of two phase flow through porous media

    International Nuclear Information System (INIS)

    Chu, W.; Dhir, V.K.; Marshall, J.

    1983-01-01

    An experimental investigation of two phase flow through porous layers formed of non-heated glass particles (nominal diameter 1 to 6 mm) has been made. Particulate bed depths of 30 cm and 70 cm were used. The effect of particle size, particle size distribution and bed porosity on void fraction and pressure drop through a particulate bed formed in a cylindrical test section has been investigated. The superficial velocity of liquid (water) is varied from 1.83 to 18.3 mm/s while the superficial velocity of gas (air) is varied from 0 to 68.4 mm/s. These superficial velocities were chosen so that pressure drop and void fraction measurement could be made for the porous layer in fixed and fluidized states. A model based on drift flux approach has been developed for the void fraction. Using the two phase friction pressure drop data, the relative permeabilities of the two phases have been concluded with void fraction. The void fraction and two phase friction pressure gradient in beds composed of mixtures of spherical particles as well as sharps of different nominal sizes have also been examined. It is found that the models for single size particles are also applicable to mixtures of particles if a mean particle diameter for the mixture is defined

  16. Frictional pressure drop of gas liquid two-phase flow in pipes

    International Nuclear Information System (INIS)

    Shannak, Benbella A.

    2008-01-01

    Experiments of air water two-phase flow frictional pressure drop of vertical and horizontal smooth and relatively rough pipes were conducted, respectively. The result demonstrated that the frictional pressure drop increases with increasing relative roughness of the pipe. However, the influence of the relative roughness becomes more evident at higher vapour quality and higher mass flux. A new prediction model for frictional pressure drop of two-phase flow in pipes is proposed. The model includes a new definition of the Reynolds number and the friction factor of two-phase flow. The proposed model fits the presented experimental data very well, for vertical, horizontal, smooth and rough pipes. Therefore, the reproductive accuracy of the model is tested on the experimental data existing in the open literature and compared with the most common models. The statistical comparison, based on the Friedel's Data-Bank containing of about 16,000 measured data, demonstrated that the proposed model is the best overall agreement with the data. The model was tested for a wide range of flow types, fluid systems, physical properties and geometrical parameters, typically encountered in industrial piping systems. Hence, calculating based on the new approach is sufficiently accurate for engineering purposes

  17. An analysis of pipe degradation shape using potential drop method

    International Nuclear Information System (INIS)

    Jegal, S.; Lee, S. H.

    1999-01-01

    The Potential Drop (PD) method, one of NDE (Non-Destructive Evaluation) method is used to analyze the thickness distribution of pipes degraded by FAC (Flow Accelerated Corrosion). A DCPD (Direct Current Potential Drop) system which can measure PD for direct current was made, and the specimens with line defects and cylinder type defects have been used for experiments to prove the theory of Potential Drop method and to find out the effects of each factors. The experiment to find out defect distributions has been performed and it is found that PD method can analyze almost correct position of defects

  18. Ready-made allogeneic ABO-specific serum eye drops

    DEFF Research Database (Denmark)

    Harritshøj, Lene Holm; Nielsen, Connie; Ullum, Henrik

    2014-01-01

    serum treatment. CONCLUSION: Ready-made ABO-identical allogeneic serum eye drops were straightforwardly produced, quality-assured and registered as a safe standard blood product for the treatment of certain cases of severe dry eye disease. Therapeutic efficacy was comparable to previous reports......PURPOSE: To overcome problems and delays of the preparation of autologous serum eye drops, a production line of ABO-specific allogeneic serum eye drops from male blood donors was set up in a blood bank. Feasibility, clinical routine, safety and efficacy were evaluated in a cohort of patients...

  19. Controlling Vapor Pressure In Hanging-Drop Crystallization

    Science.gov (United States)

    Carter, Daniel C.; Smith, Robbie

    1988-01-01

    Rate of evaporation adjusted to produce larger crystals. Device helps to control vapor pressure of water and other solvents in vicinity of hanging drop of solution containing dissolved enzyme protein. Well of porous frit (sintered glass) holds solution in proximity to drop of solution containing protein or enzyme. Vapor from solution in frit controls evaporation of solvent from drop to control precipitation of protein or enzyme. With device, rate of nucleation limited to decrease number and increase size (and perhaps quality) of crystals - large crystals of higher quality needed for x-ray diffraction studies of macromolecules.

  20. Analysis of an Electrostatic MEMS Squeeze-film Drop Ejector

    Directory of Open Access Journals (Sweden)

    Edward P. Furlani

    2009-10-01

    Full Text Available We present an analysis of an electrostatic drop-on-demand MEMS fluid ejector. The ejector consists of a microfluidic chamber with a piston that is suspended a few microns beneath a nozzle plate. A drop is ejected when a voltage is applied between the orifice plate and the piston. This produces an electrostatic force that moves the piston towards the nozzle. The moving piston generates a squeeze-film pressure distribution that causes drop ejection. We discuss the operating physics of the ejector and present a lumped-element model for predicting its performance. We calibrate the model using coupled structural-fluidic CFD analysis.

  1. Internal flow of acoustically levitated drops undergoing sectorial oscillations

    International Nuclear Information System (INIS)

    Shen, C.L.; Xie, W.J.; Yan, Z.L.; Wei, B.

    2010-01-01

    We present the experimental observation and theoretical analysis of fluid flow in acoustically levitated water drop undergoing sectorial oscillations. The fluid always flows between the extended sections and the compressed sections. The magnitude of fluid velocity decreases from the equatorial fringe to the centre of levitated drop. The maximum fluid velocity is 60-160 mm/s and the Reynolds number of the oscillations is estimated to be 137-367. The internal flow of the drop is analyzed as potential flow, and the fluid velocity is found to be horizontal. In the equatorial plane, the calculated stream lines and velocity profiles agree well with the experimental observations.

  2. Ultrasonic defect sizing using decibel drop methods. III

    International Nuclear Information System (INIS)

    Mills, C.; Goszczynski, J.; Mitchell, A.B.

    1988-03-01

    An earlier study on the use of ultrasonic decibel drop sizing methods for determining the length and vertical extent of flaws in welded steel sections was based on the scanning of machined flaws and fabrication flaws. The present study utilized the techniques developed to perform a similar study of the type of flaws expected to develop during service (e.g. fatigue cracks). The general findings are that: a) the use of decibel drops of less than 14 dB generally undersize the length of fatigue cracks; and b) the use of decibel drop methods to determine vertical extent is questionable

  3. Update on the Purdue University 2-second Drop Tower

    Science.gov (United States)

    Collicott, Steven

    an update on progress for the micro-gravity community. The most noticeable current activity is testing of the air-bag decelerator. The tower is one that will use a free-falling experiment inside of a drag shield to avoid most aerodynamic drag. The airbag is designed from experiences of others yet the small, triangular room in which the tower terminates imposes challenges. The airbag is approximately 1.5m diameter and 1.5m tall. Initial testing led to a desire to increase vent area, and just this week the bag has returned from the shop that was modifying it. On-board computer, battery packs, lighting, and cameras have been acquired. Thanks to Lockheed Martin, one camera is 500 frames per second with 1.3 million 12-bit gray scale pixels per frame. The Spincraft company donated steel hemisphere-cylinders to serve as the nose of the drag shield. Wind tunnel and CFD modeling of the drag shield has been performed by Purdue undergraduate aerospace students. Currently the drag shield structure and experiment package structure are being design and analyzed. The experiment volume is approximately a cylinder 0.45m diameter and 0.6m tall. Tower operation is intended to commence in fall 2010 with inert package drops at full mass and full height. Developing the operations procedures, especially operational safety, are the goals of this work. First science is then expected in the winter. References 1. Y. Chen, "A Study of Capillary Flow in a Vane-wall Gap in Zero Gravity," Ph.D. thesis, School of Aeronautics and Astronautics, Purdue University. August 2003. 2. Y. Chen and S. H. Collicott, "Investigation of the Symmetric Wetting of a Vane-Wall Gap in Propellant Tanks," AIAA Journal, 42, No. 2, pp. 305-314, February 2004. 3. Y. Chen, and S. H. Collicott, "Experimental Study on the Capillary Flow in a Vane-Wall Gap Geometry," AIAA Journal, 43, No. 11, pp. 2395-2403, November, 2005. 4. Y. Chen and S. H. Collicott, "Study of Wetting in an Asymmetrical Vane-Wall Gap in Propellant Tanks

  4. Air Abrasion

    Science.gov (United States)

    ... Chapters What Is Air Abrasion? What Happens? The Pros and Cons Will I Feel Anything? Is Air ... will perform any procedures that use air-abrasion technology. Ask your dentist if he or she uses ...

  5. Development of a higher capacity, lower pressure drop steam/water separator with reduced primary-to-secondary spacing

    International Nuclear Information System (INIS)

    Pruster, W.P.; Kidwell, J.H.; Eaton, A.M.; Wall, J.R.

    1985-01-01

    The goal of this development effort was to double the steam flow capacity of an existing module steam/water separator design without significantly increasing the pressure drop while simultaneously minimizing the vertical distance (spacing) between the primary and secondary separation stages. The development work included extensive air/water and steam/water testing. The steam/water tests were performed at a common pressure of 300 psia (2.1 MPa) with comparable water and steam flows

  6. Optimal formation of genetically modified and functional pancreatic islet spheroids by using hanging-drop strategy.

    Science.gov (United States)

    Kim, H J; Alam, Z; Hwang, J W; Hwang, Y H; Kim, M J; Yoon, S; Byun, Y; Lee, D Y

    2013-03-01

    Rejection and hypoxia are important factors causing islet loss at an early stage after pancreatic islet transplantation. Recently, islets have been dissociated into single cells for reaggregation into so-called islet spheroids. Herein, we used a hanging-drop strategy to form islet spheroids to achieve functional equivalence to intact islets. To obtain single islet cells, we dissociated islets with trypsin-EDTA digestion for 10 minutes. To obtain spheroids, we dropped various numbers of single cells (125, 250, or 500 cells/30 μL drop) onto a Petri dish, that was inverted for incubation in humidified air containing 5% CO(2) at 37 °C for 7 days. The aggregated spheroids in the droplets were harvested for further culture. The size of the aggregated islet spheroids depended on the number of single cells (125-500 cells/30 μL droplet). Their morphology was similar to that of intact islets without any cellular damage. When treated with various concentrations of glucose to evaluate responsiveness, their glucose-mediated stimulation index value was similar to that of intact islets, an observation that was attributed to strong cell-to-cell interactions in islet spheroids. However, islet spheroids aggregated in general culture dishes showed abnormal glucose responsiveness owing to weak cell-to-cell interactions. Cell-to-cell interactions in islet spheroids were confirmed with an anti-connexin-36 monoclonal antibody. Finally, nonviral poly(ethylene imine)-mediated interleukin-10 cytokine gene delivered beforehand into dissociated single cells before formation of islet spheroids increased the gene transfection efficacy and interleukin-10 secretion from islet spheroids >4-fold compared with intact islets. These results demonstrated the potential application of genetically modified, functional islet spheroids with of controlled size and morphology using an hanging-drop technique. Copyright © 2013 Elsevier Inc. All rights reserved.

  7. Penetration of gas into concrete during a leakage rate test of reactor containments and its significance for the drop in pressure

    Directory of Open Access Journals (Sweden)

    Nilsson L.-O.

    2011-04-01

    Full Text Available The objective of the project described in the paper was to develop a simulation model that describes transient air pressure distribution in concrete in order to see if the leakage rates obtained from the Containment Integrated Leakage Rate Tests can be explained by the transient air pressurization of concrete pores inside the steel liner. A partial differential equation was derived which describes transient air pressure distribution in concrete pores. The model was validated against experimental results. The simulation model shows that there are significant air fluxes into the concrete structures that can explain the pressure drop during a leakage test.

  8. Liquid drops attract or repel by the inverted Cheerios effect.

    Science.gov (United States)

    Karpitschka, Stefan; Pandey, Anupam; Lubbers, Luuk A; Weijs, Joost H; Botto, Lorenzo; Das, Siddhartha; Andreotti, Bruno; Snoeijer, Jacco H

    2016-07-05

    Solid particles floating at a liquid interface exhibit a long-ranged attraction mediated by surface tension. In the absence of bulk elasticity, this is the dominant lateral interaction of mechanical origin. Here, we show that an analogous long-range interaction occurs between adjacent droplets on solid substrates, which crucially relies on a combination of capillarity and bulk elasticity. We experimentally observe the interaction between droplets on soft gels and provide a theoretical framework that quantitatively predicts the interaction force between the droplets. Remarkably, we find that, although on thick substrates the interaction is purely attractive and leads to drop-drop coalescence, for relatively thin substrates a short-range repulsion occurs, which prevents the two drops from coming into direct contact. This versatile interaction is the liquid-on-solid analog of the "Cheerios effect." The effect will strongly influence the condensation and coarsening of drops on soft polymer films, and has potential implications for colloidal assembly and mechanobiology.

  9. Non-isothermal spreading of liquid drops on horizontal plates

    International Nuclear Information System (INIS)

    Ehrhard, P.; Davis, S.H.

    1990-05-01

    A viscous-liquid drop spreads on a smooth horizontal surface, which is uniformly heated or cooled. Lubrication theory is used to study thin drops subject to capillary, thermocapillary and gravity forces, and a variety of contact-angle-versus-speed conditions. It is found for isothermal drops that gravity is very important at large times and determines the power law for unlimited spreading. Predictions compare well with the experimental data on isothermal spreading for both two-dimensional and axisymmetric configurations. It is found that heating (cooling) retards (augments) the spreading process. When the advancing contact angle is zero, heating will cause the drop to spread only finitely far. For positive advancing contact angles, sufficient cooling will cause unlimited spreading. Thus, the heat transfer serves as a sentitive control on the spreading. (orig.) [de

  10. Satellite Formation during Coalescence of Unequal Size Drops

    KAUST Repository

    Zhang, F. H.

    2009-03-12

    The coalescence of a drop with a flat liquid surface pinches off a satellite from its top, in the well-known coalescence cascade, whereas the coalescence of two equally sized drops does not appear to leave such a satellite. Herein we perform experiments to identify the critical diameter ratio of two drops, above which a satellite is produced during their coalescence. We find that the critical parent ratio is as small as 1.55, but grows monotonically with the Ohnesorge number. The daughter size is typically about 50% of the mother drop. However, we have identified novel pinch-off dynamics close to the critical size ratio, where the satellite does not fully separate, but rather goes directly into a second stage of the coalescence cascade, thus generating a much smaller satellite droplet.

  11. Modeling merging behavior at lane drops : [tech transfer summary].

    Science.gov (United States)

    2015-02-01

    A better understanding of the merging behavior of drivers will lead : to the development of better lane-drop traffic-control plans and : strategies, which will provide better guidance to drivers for safer : merging.

  12. Determination of the viscosity by spherical drop using nuclear tecniques

    International Nuclear Information System (INIS)

    Silva, F.V. da; Qassim, R.Y.; Souza, Roberto de; Rio de Janeiro Univ.

    1983-01-01

    The measurements of the drop limit velocity of a Sphere in a fluid using a radiotracer method are analyzed. The dynamic process involved was observed, identifying the density and viscosity of the fluid. (E.G.) [pt

  13. Drop performance test and evaluation for HANARO shutoff units

    International Nuclear Information System (INIS)

    Jung, Y. H.; Cho, Y. K.; Lee, J. H.; Choi, Y. S.; Woo, J. S.

    2004-01-01

    The function of the shutoff units of the HANARO is to rapidly insert the shutoff rod into the reactor core for safe shutdown of reactor. This paper describes drop performance test and evaluation for a shutoff unit for the technical verification of lifetime extension and localization of the HANARO shutoff units. We have performed preliminary drop performance tests for a shutoff unit at 1/2-core test loop and analyzed through the comparison with the test results performed during design verification test and the results of the periodic performance test in HANARO. It shows that the results of the local fabrication, installation and alignment for the shutoff unit meet the basic performance requirements, Furthermore, the performance evaluation method of the periodic drop test of the HANARO shutoff units is a conservative method comparing with the real drop time

  14. The effect of dropping impact on bruising pomegranate fruit

    Directory of Open Access Journals (Sweden)

    M Mohammad Shafie

    2016-04-01

    Full Text Available Introduction: The pomegranate journey from orchard to supermarket is very complex and pomegranates are subjected to the variety of static and dynamic loads that could result in this damage and bruise occurring. Bruise area and bruise volume are the most important parameters to evaluate fruit damage occurred in harvest and postharvest stages. The bruising is defined as damage to fruit flesh usually with no abrasion of the peel. The two different types of dynamic loading which can physically cause fruit bruising are impact and vibration. The impact and vibration loadings may occur during picking or sorting as the pomegranates are dropped into storage bins and during transportation. The focus of this work was on the impact loading as this appeared to be the most prevalent. In view of the limitations of conventional testing methods (ASTM D3332 Standard Test Methods for Mechanical Shock Fragility of Products, the method and procedure for determining dropping bruise boundary of fruit were also established by adapting free-fall dropping tests. Materials and Methods: After the ‘Malas-e-Saveh’ pomegranates had been selected, they were numbered, and the weight and dimension of each sample were measured and recorded. Firmness in cheek region of each fruit was also measured. Fruit firmness was determined by measuring the maximum force during perforating the sample to a depth of 10 mm at a velocity of 100 mm min-1 with an 8 mm diameter cylindrical penetrometer mounted onto a STM-5 Universal Testing Machine (SANTAM, Design CO. LTD., England. Free-fall dropping tests with a series of drop heights (6, 7, 10, 15, 30 and 60 cm were conducted on fresh ‘Malas-e-Saveh’ pomegranates. Three samples were used for each dropping height, and each sample was subjected to impact on two different positions. Before the test was started, it was necessary to control the sample's drop position. The cheek of sample was placed on the fruit holder. An aluminum plate mounted

  15. Self-excited hydrothermal waves in evaporating sessile drops

    Science.gov (United States)

    Sefiane, K.; Moffat, J. R.; Matar, O. K.; Craster, R. V.

    2008-08-01

    Pattern formation driven by the spontaneous evaporation of sessile drops of methanol, ethanol, and FC-72 using infrared thermography is observed and, in certain cases, interpreted in terms of hydrothermal waves. Both methanol and ethanol drops exhibit thermal wave trains, whose wave number depends strongly on the liquid volatililty and substrate thermal conductivity. The FC-72 drops develop cellular structures whose size is proportional to the local thickness. Prior to this work, hydrothermal waves have been observed in the absence of evaporation in shallow liquid layers subjected to an imposed temperature gradient. In contrast, here both the temperature gradients and the drop thickness vary spatially and temporally and are a natural consequence of the evaporation process.

  16. Electrostatic charging and levitation of helium II drops

    International Nuclear Information System (INIS)

    Niemela, J.J.

    1997-01-01

    Liquid Helium II drops, of diameter 1 mm or less, are charged with positive helium ions and subsequently levitated by static electric fields. Stable levitation was achieved for drops of order 100-150 micrometers in diameter. The suspended drops could be translated to arbitrary positions within the levitator using additional superimposed DC electric fields, and also could be made to oscillate stably about their average positions by means of an applied time-varying electric field. A weak corona discharge was used to produce the necessary ions for levitation. A novel superfluid film flow device, developed for the controlled deployment of large charged drops, is described. Also discussed is an adjustable electric fountain that requires only a field emission tip operating at modest potentials, and works in both Helium I and Helium II

  17. Origin and dynamics of vortex rings in drop splashing.

    Science.gov (United States)

    Lee, Ji San; Park, Su Ji; Lee, Jun Ho; Weon, Byung Mook; Fezzaa, Kamel; Je, Jung Ho

    2015-09-04

    A vortex is a flow phenomenon that is very commonly observed in nature. More than a century, a vortex ring that forms during drop splashing has caught the attention of many scientists due to its importance in understanding fluid mixing and mass transport processes. However, the origin of the vortices and their dynamics remain unclear, mostly due to the lack of appropriate visualization methods. Here, with ultrafast X-ray phase-contrast imaging, we show that the formation of vortex rings originates from the energy transfer by capillary waves generated at the moment of the drop impact. Interestingly, we find a row of vortex rings along the drop wall, as demonstrated by a phase diagram established here, with different power-law dependencies of the angular velocities on the Reynolds number. These results provide important insight that allows understanding and modelling any type of vortex rings in nature, beyond just vortex rings during drop splashing.

  18. Sludge pipe flow pressure drop prediction using composite power ...

    African Journals Online (AJOL)

    Sludge pipe flow pressure drop prediction using composite power-law friction ... Water SA. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue ... When predicting pressure gradients for the flow of sludges in pipes, the ...

  19. Dropped fuel damage prediction techniques and the DROPFU code

    International Nuclear Information System (INIS)

    Mottershead, K.J.; Beardsmore, D.W.; Money, G.

    1995-01-01

    During refuelling, and fuel handling, at UK Advanced Gas Cooled Reactor (AGR) stations it is recognised that the accidental dropping of fuel is a possibility. This can result in dropping individual fuel elements, a complete fuel stringer, or a whole assembly. The techniques for assessing potential damage have been developed over a number of years. This paper describes how damage prediction techniques have subsequently evolved to meet changing needs. These have been due to later fuel designs and the need to consider drops in facilities outside the reactor. The paper begins by briefly describing AGR fuel and possible dropped fuel scenarios. This is followed by a brief summary of the damage mechanisms and the assessment procedure as it was first developed. The paper then describes the additional test work carried out, followed by the detailed numerical modelling. Finally, the paper describes the extensions to the practical assessment methods. (author)

  20. Bird nesting and droppings control on highway structures.

    Science.gov (United States)

    2010-10-01

    This report provides a comprehensive literature survey of permanent and temporary deterrents to nesting and roosting, a : discussion of risks to human health and safety from exposure to bird nests and droppings and recommended protective measures, : ...

  1. Magnetohydrodynamic pressure drop in a quickly changing magnetic field

    International Nuclear Information System (INIS)

    Xu, Z.Y.; Chen, J.M.; Qian, J.P.; Jiang, W.H.; Pan, C.J.; Li, W.Z.

    1995-01-01

    The magnetohydrodynamic (MHD) pressure drop of 22 Na 78 K flow in a circular duct was measured under a quickly changing magnetic field. The MHD pressure drop reduced with time as the magnetic field strength decreased. However, the dimensionless pressure drop gradient varied with the interaction parameter and had a higher value in the middle of the range of values of the interaction parameter. Therefore, a quickly changing magnetic field is harmful to the structural material in a liquid metal self-cooled blanket of a fusion reactor, since the greater pressure drop gradient may cause a larger stress in the blanket. This is even more harmful if the magnetic field strength decreases very quickly or its distribution in space is greatly non-uniform. (orig.)

  2. Satellite Formation during Coalescence of Unequal Size Drops

    KAUST Repository

    Zhang, F. H.; Li, E. Q.; Thoroddsen, Sigurdur T

    2009-01-01

    The coalescence of a drop with a flat liquid surface pinches off a satellite from its top, in the well-known coalescence cascade, whereas the coalescence of two equally sized drops does not appear to leave such a satellite. Herein we perform experiments to identify the critical diameter ratio of two drops, above which a satellite is produced during their coalescence. We find that the critical parent ratio is as small as 1.55, but grows monotonically with the Ohnesorge number. The daughter size is typically about 50% of the mother drop. However, we have identified novel pinch-off dynamics close to the critical size ratio, where the satellite does not fully separate, but rather goes directly into a second stage of the coalescence cascade, thus generating a much smaller satellite droplet.

  3. Rotavirus and the Vaccine (Drops) to Prevent It

    Science.gov (United States)

    ... Resources Maternal Immunization Resources Related Links Vaccines & Immunizations Rotavirus and the Vaccine (Drops) to Prevent It Language: ... the vaccine. Why should my child get the rotavirus vaccine? The rotavirus vaccine: Protects your child from ...

  4. 24 hydrocarbon degradation in poultry droppings and cassava peels

    African Journals Online (AJOL)

    OLUWOLE AKINNAGBE

    2009-01-01

    Jan 1, 2009 ... This greenhouse study was aimed at determining the potentials of poultry droppings (PD) and cassava peels ... shift in the composition of bacterial community to ..... Oil and Gas Journal. pp. ... Prentice-Hall of India Private Ltd.

  5. Drop-out rate and drop-out reasons among promising Norwegian track and field athletes: a 25 year study

    OpenAIRE

    Enoksen, Eystein

    2011-01-01

    © Eystein Enoksen, 2011 The aim of the present study was to identify the total drop-out rate and drop-out reasons for a group of promising track and field athletes. 202 males and 98 females, aged 16 ±2 years, took part in this study. Questionnaires were administrated in 1975, 1983, and 1989. In-depth interviews were conducted in 1989 and in 2000. A chi-square test was administrated to test the difference between males and females dropping out and to test the most significant reasons influe...

  6. Analysis of the rod drop accident for Angra-1

    International Nuclear Information System (INIS)

    Veloso, M.A.; Atayde, P.A.

    1989-01-01

    The aim of this work is to present a rod drop accident analysis for the third cycle of the Angra-1 nuclear power plant operating in the automatic control mode. In this analysis all possible configurations for dropped rods caused by a single failure in the controller circuits have been considered. The dropped rod worths, power distributions and excore detector tilts were determined by using the Siemens/KWU neutronic code system, in particular the MEDIUM2, PINPOW and DETILT codes. The transient behaviour of the plant during the rod drop event was simulated with the SACI2/MOD0 code, developed at CDTN. Determinations related to the DNBR design limit were conducted by utilizing the CDTN PANTERA-1P subchannel code. The transient analysis indicated that for dropped rod worths greater than about 425 pcm reactor trip from negative neutron flux rate will take place independently of core conditions. In the range from 0 to 425 pcm large power overshoots may occur as a consequence of the automatic control system action. The magnitude of the maximum power peaking during the event increases with the dropped rod worth, as far as the control bank is able to compensate the initial reactivity decrease. Thermal-hydraulic evaluations carried out with the PANTERA-1P code show that for all the relevant dropped rod worths the minimum DNBR will remain above a limit value of 1.365. Even if this conservative limit is met, the calculated nuclear power peaking factors, F N AH , will be at least 6% higher than the allowable F N AH -values. Therefore, the DNBR design margin will be preserved at the event of rod drop. (author)

  7. Refrigeration. Two-Phase Flow. Flow Regimes and Pressure Drop

    DEFF Research Database (Denmark)

    Knudsen, Hans-Jørgen Høgaard

    2002-01-01

    The note gives the basic definitions used in two-phase flow. Flow regimes and flow regimes map are introduced. The different contributions to the pressure drop are stated together with an imperical correlation from the litterature.......The note gives the basic definitions used in two-phase flow. Flow regimes and flow regimes map are introduced. The different contributions to the pressure drop are stated together with an imperical correlation from the litterature....

  8. Leidenfrost drops cooling surfaces: theory and interferometric measurement

    OpenAIRE

    Van Limbeek, Michiel A. J.; Klein Schaarsberg, Martin H.; Sobac, Benjamin; Rednikov, Alexey; Sun, Chao; Colinet, Pierre; Lohse, Detlef

    2017-01-01

    When a liquid drop is placed on a highly superheated surface, it can be levitated by its own vapour. This remarkable phenomenon is referred to as the Leidenfrost effect. The thermally insulating vapour film results in a severe reduction of the heat transfer rate compared to experiments at lower surface temperatures, where the drop is in direct contact with the solid surface. A commonly made assumption is that this solid surface is isothermal, which is at least questionable for materials of lo...

  9. Active structuring of colloidal armour on liquid drops

    OpenAIRE

    Dommersnes, Paul; Rozynek, Zbigniew; Mikkelsen, Alexander; Castberg, Rene; Kjerstad, Knut; Hersvik, Kjetil; Fossum, Jon Otto

    2013-01-01

    Adsorption and assembly of colloidal particles at the surface of liquid droplets are at the base of particle-stabilized emulsions and templating. Here we report that electrohydrodynamic and electro-rheological effects in leaky-dielectric liquid drops can be used to structure and dynamically control colloidal particle assemblies at drop surfaces, including electric-fieldassisted convective assembly of jammed colloidal ‘ribbons’, electro-rheological colloidal chains confined to a...

  10. Nectar and pollination drops: how different are they?

    Science.gov (United States)

    Nepi, Massimo; von Aderkas, Patrick; Wagner, Rebecca; Mugnaini, Serena; Coulter, Andrea; Pacini, Ettore

    2009-08-01

    Pollination drops and nectars (floral nectars) are secretions related to plant reproduction. The pollination drop is the landing site for the majority of gymnosperm pollen, whereas nectar of angiosperm flowers represents a common nutritional resource for a large variety of pollinators. Extrafloral nectars also are known from all vascular plants, although among the gymnosperms they are restricted to the Gnetales. Extrafloral nectars are not generally involved in reproduction but serve as 'reward' for ants defending plants against herbivores (indirect defence). Although very different in their task, nectars and pollination drops share some features, e.g. basic chemical composition and eventual consumption by animals. This has led some authors to call these secretions collectively nectar. Modern techniques that permit chemical analysis and protein characterization have very recently added important information about these sugary secretions that appear to be much more than a 'reward' for pollinating (floral nectar) and defending animals (extrafloral nectar) or a landing site for pollen (pollination drop). Nectar and pollination drops contain sugars as the main components, but the total concentration and the relative proportions are different. They also contain amino acids, of which proline is frequently the most abundant. Proteomic studies have revealed the presence of common functional classes of proteins such as invertases and defence-related proteins in nectar (floral and extrafloral) and pollination drops. Invertases allow for dynamic rearrangement of sugar composition following secretion. Defence-related proteins provide protection from invasion by fungi and bacteria. Currently, only few species have been studied in any depth. The chemical composition of the pollination drop must be investigated in a larger number of species if eventual phylogenetic relationships are to be revealed. Much more information can be provided from further proteomic studies of both

  11. Drop detachment and motion on fuel cell electrode materials.

    Science.gov (United States)

    Gauthier, Eric; Hellstern, Thomas; Kevrekidis, Ioannis G; Benziger, Jay

    2012-02-01

    Liquid water is pushed through flow channels of fuel cells, where one surface is a porous carbon electrode made up of carbon fibers. Water drops grow on the fibrous carbon surface in the gas flow channel. The drops adhere to the superficial fiber surfaces but exhibit little penetration into the voids between the fibers. The fibrous surfaces are hydrophobic, but there is a substantial threshold force necessary to initiate water drop motion. Once the water drops begin to move, however, the adhesive force decreases and drops move with minimal friction, similar to motion on superhydrophobic materials. We report here studies of water wetting and water drop motion on typical porous carbon materials (carbon paper and carbon cloth) employed in fuel cells. The static coefficient of friction on these textured surfaces is comparable to that for smooth Teflon. But the dynamic coefficient of friction is several orders of magnitude smaller on the textured surfaces than on smooth Teflon. Carbon cloth displays a much smaller static contact angle hysteresis than carbon paper due to its two-scale roughness. The dynamic contact angle hysteresis for carbon paper is greatly reduced compared to the static contact angle hysteresis. Enhanced dynamic hydrophobicity is suggested to result from the extent to which a dynamic contact line can track topological heterogeneities of the liquid/solid interface.

  12. Drop tests of the Three Mile Island knockout canister

    International Nuclear Information System (INIS)

    Box, W.D.; Aaron, W.S.; Shappert, L.B.; Childress, P.C.; Quinn, G.J.; Smith, J.V.

    1986-09-01

    A type of Three Mile Island Unit 2 (TMI-2) defueling canister, called a ''knockout'' canister, was subjected to a series of drop tests at the Oak Ridge National Laboratory's Drop Test Facility. These tests were designed to confirm the structural integrity of internal fixed neutron poisons in support of a request for NRC licensing of this type of canister for the shipment of TMI-2 reactor fuel debris to the Idaho National Engineering Laboratory (INEL) for the Core Examination R and D Program. Work conducted at the Oak Ridge National Laboratory included (1) precise physical measurements of the internal poison rod configuration before assembly, (2) canister assembly and welding, (3) nondestructive examination (an initial hydrostatic pressure test and an x-ray profile of the internals before and after each drop test), (4) addition of a simulated fuel load, (5) instrumentation of the canister for each drop test, (6) fabrication of a cask simulation vessel with a developed and tested foam impact limiter, (7) use of refrigeration facilities to cool the canister to well below freezing prior to three of the drops, (8) recording the drop test with still, high-speed, and normal-speed photography, (9) recording the accelerometer measurements during impact, (10) disassembly and post-test examination with precise physical measurements, and (11) preparation of the final report

  13. Drop formation of black liquor spraying; Mustalipeaen pisaroituminen

    Energy Technology Data Exchange (ETDEWEB)

    Fogelholm, C J; Kankkunen, A; Nieminen, K; Laine, J; Miikkulainen, P [Helsinki Univ. of Technology, Otaniemi (Finland): Lab. of Energy Technology and Environmental Protection

    1997-10-01

    Black liquor is a spent liquor of the pulp and paper industry. It is burned in kraft recovery boilers for chemical and energy recovery. The high dry solids content and viscosity of black liquor require a high spraying temperature. This affects the performance of the boiler. Kraft recovery boiler deposit formation, emissions and chemical recovery are strongly affected by the drop size and the velocity of the black liquor spray formed by a splashplate nozzle. The sheet breakup mechanism is studied with a system based on a video and image-analysis. The drop size of mill-scale nozzles was measured also with an image-analysis-system. Measurements were carried out in a spray test chamber. The sheet breakup mechanism and drop size tests were carried out both below and over the boiling point of black liquor. Special attention was paid to the effect of flashing on drop formation. Temperature increase normally decreases drop size. In the temperature where the wavy-sheet disintegration changes to perforated-sheet disintegration the drop size increases. Spray velocity rises when the temperature is increased above the boiling point. (orig.)

  14. Visualization study of film drops produced by bubble bursting

    International Nuclear Information System (INIS)

    Ma Chao; Bo Hanliang

    2012-01-01

    The phenomenon that bubble bursting results in drops production is common in the steam generator of the nuclear power plant, and the fine drops generated by this way is one of the most important source of the drop entrainment in the vapor stream. The visualization experiment about the film drops produced by the bursting bubbles at a free water surface was studied using a high-speed video camera. The results show that the bubble cap breaks up in a single point, within the limits of bubble size in the experiment at present. The whole process can be distinguished into four successive stages: A primary inertial drainage, the bubble cap puncture at the foot or on the top, the film rolls-up and the liquid ring appearing with the hole expanding, and fine film drops emission under the effect of destabilization of a Rayleigh-Taylor type. The expression about the bubble radius and the film drops number is obtain by fitting the experiment data at the bubble radius range from 3-25 mm. The result trend agrees well with the previous work. (authors)

  15. Afterlife of a Drop Impacting a Liquid Pool

    Science.gov (United States)

    Saha, Abhishek; Wei, Yanju; Tang, Xiaoyu; Law, Chung K.

    2017-11-01

    Drop impact on liquid pool is ubiquitous in industrial processes, such as inkjet printing and spray coating. While merging of drop with the impacted liquid surface is essential to facilitate the printing and coating processes, it is the afterlife of this merged drop and associated mixing which control the quality of the printed or coated surface. In this talk we will report an experimental study on the structural evolution of the merged droplet inside the liquid pool. First, we will analyze the depth of the crater created on the pool surface by the impacted drop for a range of impact inertia, and we will derive a scaling relation and the associated characteristic time-scale. Next, we will focus on the toroidal vortex formed by the moving drop inside the liquid pool and assess the characteristic time and length scales of the penetration process. The geometry of the vortex structure which qualitatively indicates the degree of mixedness will also be discussed. Finally, we will present the results from experiments with various viscosities to demonstrate the role of viscous dissipation on the geometry and structure formed by the drop. This work is supported by the Army Research Office and the Xerox Corporation.

  16. Ultrasonic defect-sizing using decibel drop methods. I

    International Nuclear Information System (INIS)

    Murphy, R.V.

    1987-03-01

    Results are reported of a study performed to investigate the accuracy and repeatability of various ultrasonic decibel (dB) drop sizing methods in determining the length, vertical extent and orientation of artificial and real weld flaws in thin steel sections. Seven artificial flaws and nine real weld flaws were examined; over 200 data plots were produced. The general findings are: a) length and vertical extent are assessed most accurately when using a 14 dB drop from the maximum indication amplitude; b) decibel drops less that 14 dB generally undersize flaws while decibel drops greater than 14 dB generally oversize flaws; c) flaws which are smaller than the width of the sound beam cannot be assessed accurately using dB drop methods; d) large flaws are assessed most accurately when the sound beam strikes the flaws at near normal incidence; e) the vertical extent and orientation of large flaws are plotted most accurately using the beam centre line method as opposed to the beam profile method; and, f) the limitations of dB-drop-sizing methods have considerable ramifications for CAN3-N285.4-M83 and ASME XI evaluation criteria

  17. Water Penetration through a Superhydrophobic Mesh During a Drop Impact

    Science.gov (United States)

    Ryu, Seunggeol; Sen, Prosenjit; Nam, Youngsuk; Lee, Choongyeop

    2017-01-01

    When a water drop impacts a mesh having submillimeter pores, a part of the drop penetrates through the mesh if the impact velocity is sufficiently large. Here we show that different surface wettability, i.e., hydrophobicity and superhydrophobicity, leads to different water penetration dynamics on a mesh during drop impact. We show, despite the water repellence of a superhydrophobic surface, that water can penetrate a superhydrophobic mesh more easily (i.e., at a lower impact velocity) over a hydrophobic mesh via a penetration mechanism unique to a superhydrophobic mesh. On a superhydrophobic mesh, the water penetration can occur during the drop recoil stage, which appears at a lower impact velocity than the critical impact velocity for water penetration right upon impact. We propose that this unique water penetration on a superhydrophobic mesh can be attributed to the combination of the hydrodynamic focusing and the momentum transfer from the water drop when it is about to bounce off the surface, at which point the water drop retrieves most of its kinetic energy due to the negligible friction on superhydrophobic surfaces.

  18. Autologous serum eye drops for dry eye

    Science.gov (United States)

    Pan, Qing; Angelina, Adla; Marrone, Michael; Stark, Walter J; Akpek, Esen K

    2017-01-01

    Background Theoretically, autologous serum eye drops (AS) offer a potential advantage over traditional therapies on the assumption that AS not only serve as a lacrimal substitute to provide lubrication but contain other biochemical components that allow them to mimic natural tears more closely. Application of AS has gained popularity as second-line therapy for patients with dry eye. Published studies on this subject indicate that autologous serum could be an effective treatment for dry eye. Objectives We conducted this review to evaluate the efficacy and safety of AS given alone or in combination with artificial tears as compared with artificial tears alone, saline, placebo, or no treatment for adults with dry eye. Search methods We searched CENTRAL (which contains the Cochrane Eyes and Vision Trials Register) (2016, Issue 5), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to July 2016), Embase (January 1980 to July 2016), Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to July 2016), the ISRCTN registry (www.isrctn.com/editAdvancedSearch), ClinicalTrials.gov (www.clinicaltrials.gov) and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We also searched the Science Citation Index Expanded database (December 2016) and reference lists of included studies. We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 5 July 2016. Selection criteria We included randomized controlled trials (RCTs) that compared AS versus artificial tears for treatment of adults with dry eye. Data collection and analysis Two review authors independently screened all titles and abstracts and assessed full-text reports of potentially eligible trials. Two review authors extracted data and assessed risk of bias and characteristics of included

  19. Rain drop size densities over land and over sea

    Science.gov (United States)

    Bumke, Karl

    2010-05-01

    A detailed knowledge of rain drop size densities is an essential presumption with respect to remote sensing of precipitation. Since maritime and continental aerosol is significantly different yielding to differences in cloud drop size densities, maritime and continental rain drop size densities may be different, too. In fact only a little is known about differences in rain drop size densities between land and sea due to a lack of suitable data over the sea. To fill in this gap measurements were performed during the recent 10 years at different locations in Germany and on board of research vessels over the Baltic Sea, the North Sea, Atlantic, Indian, and Pacific Ocean. Measurements were done by using an optical disdrometer (ODM 470, Großklaus et al., 1998), which is designed especially to perform precipitation measurements on moving ships and under high wind speeds. Temporal resolution of measurements is generally 1 minute, total number of time series is about 220000. To investigate differences in drop size densities over land and over sea measurements have been divided into four classes on the basis of prevailing continental or maritime influence: land measurements, coastal measurements, measurements in areas of semi-enclosed seas, and open sea measurements. In general differences in drop size densities are small between different areas. A Kolmogoroff Smirnoff test does not give any significant difference between drop size densities over land, coastal areas, semi-enclosed, and open seas at an error rate of 5%. Thus, it can be concluded that there are no systematic differences between maritime and continental drop size densities. The best fit of drop size densities is an exponential decay curve, N(D ) = 6510m -3mm -1mm0.14h- 0.14×R-0.14×exp(- 4.4mm0.25h-0.25×R- 0.25×D mm -1), it is estimated by using the method of least squares. N(D) is the drop size density normalized by the resolution of the optical disdrometer, D the diameter of rain drops in mm, and R the

  20. Many Drops Interactions I: Simulation of Coalescence, Flocculation and Fragmentation of Multiple Colliding Drops with Smoothed Particle Hydrodynamics

    Directory of Open Access Journals (Sweden)

    Alejandro Acevedo-Malavé

    2012-06-01

    Full Text Available Smoothed Particle Hydrodynamics (SPH is a Lagrangian mesh-free formalism and has been useful to model continuous fluid. This formalism is employed to solve the Navier-Stokes equations by replacing the fluid with a set of particles. These particles are interpolation points from which properties of the fluid can be determined. In this study, the SPH method is applied to simulate the hydrodynamics interaction of many drops, showing some settings for the coalescence, fragmentation and flocculation problem of equally sized liquid drops in three-dimensional spaces. For small velocities the drops interact only through their deformed surfaces and the flocculation of the droplets arises. This result is very different if the collision velocity is large enough for the fragmentation of droplets takes place. We observe that for velocities around 15 mm/ms the coalescence of droplets occurs. The velocity vector fields formed inside the drops during the collision process are shown.

  1. A systematic search of sudden pressure drops on Gale crater during two Martian years derived from MSL/REMS data

    Science.gov (United States)

    Ordonez-Etxeberria, Iñaki; Hueso, Ricardo; Sánchez-Lavega, Agustín

    2018-01-01

    The Mars Science Laboratory (MSL) rover carries a suite of meteorological detectors that constitute the Rover Environmental Monitoring Station (REMS) instrument. REMS investigates the meteorological conditions at Gale crater by obtaining high-frequency data of pressure, air and ground temperature, relative humidity, UV flux at the surface and wind intensity and direction with some limitations in the wind data. We have run a search of atmospheric pressure drops of short duration (pressure data during its first 1417 sols (more than two Martian years). The identified daytime pressure drops could be caused by the close passages of warm vortices and dust devils. Previous systematic searches of warm vortices from REMS pressure data (Kahanpää et al., 2016; Steakley and Murphy, 2016) cover about one Martian year. We show that sudden pressure drops are twice more abundant in the second Martian year [sols 671-1339] than in the first one analyzed in previous works. The higher number of detections could be linked to a combination of different topography, higher altitudes (120 m above the landing site) and true inter-annual meteorological variability. We found 1129 events with a pressure drop larger than 0.5 Pa. Of these, 635 occurred during the local daytime (∼56%) and 494 were nocturnal. The most intense pressure drop (4.2 Pa) occurred at daytime on sol 1417 (areocentric solar longitude Ls = 195°) and was accompanied by a simultaneous decrease in the UV signal of 7.1%, pointing to a true dust devil. We also discuss similar but less intense simultaneous pressure and UV radiation drops that constitute 0.7% of all daytime events. Most of the intense daytime pressure drops with variations larger than 1.0 Pa occur when the difference between air and ground temperature is larger than 15 K. Statistically, the frequency of daytime pressure drops peaks close to noon (12:00-13:00 Local True Solar Time or LTST) with more events in spring and summer (Ls from 180° to 360°). The

  2. Experimental Study on Pressure Drop and Flow Dispersion in Packed Bed of Natural Zeolite

    Directory of Open Access Journals (Sweden)

    Ruya Petric Marc

    2018-01-01

    Full Text Available The use of conventional correlation for pressure drop and dispersion coefficient calculation may result in inaccurate values for zeolite packed bed as the correlations are generally developed for regularly shaped and uniformly sized particles. To support the research on the application of modified natural zeolite as tar cracking catalyst, the research on the hydrodynamic behaviour of zeolite packed bed has been conducted. Experiments were carried out using a glass column with diameter of 37.8 mm. Natural zeolite with particle size of about 2.91 to 6.4 mm was applied as packing material in the column, and the bed height was varied at 9, 19 and 29 cm. Air was used as the fluid that flows through the bed and nitrogen was used as a tracer for residence time distribution determination. Air flow rates were in the range of 20 to 100 mL/s which correspond to the laminar-transitional flow regime. The pressure drops through the bed were in the range of 1.7 to 95.6 Pa, depending on the air flow rate and bed height. From these values, the parameters in the Ergun equation were estimated, taking into account the contribution by wall effect when the ratio of column to particle diameter is low. The viscous and inertial term constants in the Ergun equation calculated ranges from 179 to 199 and 1.41 to 1.47 respectively while the particle sphericity ranges from 0.56 to 0.59. The reactor Peclet number were determined to range from 5.2 to 5.5, which indicated significant deviation from a plug flow condition.

  3. Surfactant-Enhanced Benard Convection on an Evaporating Drop

    Science.gov (United States)

    Nguyen, Van X.; Stebe, Kathleen J.

    2001-11-01

    Surfactant effects on an evaporating drop are studied experimentally. Using a fluorescent probe, the distribution and surface phase of the surfactant is directly imaged throughout the evaporation process. From these experiments, we identify conditions in which surfactants promote surface tension-driven Benard instabilities in aqueous systems. The drops under study contain finely divided particles, which act as tracers in the flow, and form well-defined patterns after the drop evaporates. Two flow fields have been reported in this system. The first occurs because the contact line becomes pinned by solid particles at the contact line region. In order for the contact line to remain fixed, an outward flow toward the ring results, driving further accumulation at the contact ring. A ‘coffee ring’ of particles is left as residue after the drop evaporates[1]. The second flow is Benard convection, driven by surface tension gradients on the drop[2,3]. In our experiments, an insoluble monolayer of pentadecanoic acid is spread at the interface of a pendant drop. The surface tension is recorded, and the drop is deposited on a well-defined solid substrate. Fluorescent images of the surface phase of the surfactant are recorded as the drop evaporates. The surfactant monolayer assumes a variety of surface states as a function of the area per molecule at the interface: surface gaseous, surface liquid expanded, and surface liquid condensed phases[4]. Depending upon the surface state of the surfactant as the drop evaporates, transitions of residue patterns left by the particles occur, from the coffee ring pattern to Benard cells to irregular patterns, suggesting a strong resistance to outward flow are observed. The occurrence of Benard cells on a surfactant-rich interface occurs when the interface is in LE-LC coexistence. Prior research concerning surfactant effects on this instability predict that surfactants are strongly stabilizing[5]. The mechanisms for this change in behavior

  4. Calculation method for control rod dropping time in reactor

    International Nuclear Information System (INIS)

    Nogami, Takeki; Kato, Yoshifumi; Ishino, Jun-ichi; Doi, Isamu.

    1996-01-01

    If a control rod starts dropping, the dropping speed is rapidly increased, then settled substantially constant, rapidly decreased when it reaches a dash pot. A second detection signal generated by removing an AC component from a first detection signal is differentiated twice. The time when the maximum value among the twice differentiated values is generated is determined as a time when the control rods starts dropping. The time when minimum value among the twice differentiated values is generated is determined as a time when the control rod reaches the dash pot of the reactor. The measuring time within a range from the time when the control rod starts dropping to the time when the control rod reaches the dash pot of the reactor is determined. As a result, processing for the calculation of the dropping start time and dash pot reaching time of the control rod can be automatized. Further, it is suffice to conduct differentiation twice till the reaching time, which can facilitate the processing thereby enabling to determine a reliable time range. (N.H.)

  5. Electrohydrodynamics of suspension of liquid drops in AC fields

    Science.gov (United States)

    Abdul Halim, Md.; Esmaeeli, Asghar

    2012-11-01

    Manipulation of liquid drops by an externally applied electric field is currently the focus of increased attention because of its relevance in a broad range of industrial processes. The effect of a uniform DC electric field on a solitary drop is well studied; however, less is know about the impact of electric field on suspension of liquid drops, and very little information is available on the impact of AC field on a single or a suspension of drops. Here we report the results of Direct Numerical Simulations of electrohydrodynamics of suspension of liquid drops. The governing equations are solved using a front tracking/finite difference technique, in conjunction with Taylor's leaky dielectric model. The imposed electric potential comprises of two parts, a time-independent base and a time-dependent part. The goal is to explore the relative importance of these two components in setting the statistically steady state behavior of the suspension. To this end, we report the results of three sets of simulations, where (i) the time-dependent part act as a perturbation on the base potential, (ii) the two components are of the same order, and (iii) the time-dependent part is much larger than the base potential. The problem is studied as a function of the governing nondimensional parameters.

  6. 9 m side drop test of scale model

    International Nuclear Information System (INIS)

    Ku, Jeong-Hoe; Chung, Seong-Hwan; Lee, Ju-Chan; Seo, Ki-Seog

    1993-01-01

    A type B(U) shipping cask had been developed in KAERI for transporting PWR spent fuel. Since the cask is to transport spent PWR fuel, it must be designed to meet all of the structural requirements specified in domestic packaging regulations and IAEA safety series No.6. This paper describes the side drop testing of a one - third scale model cask. The crush and deformations of the shock absorbing covers directly control the deceleration experiences of the cask during the 9 m side drop impact. The shock absorbing covers greatly mitigated the inertia forces of the cask body due to the side drop impact. Compared with the side drop test and finite element analysis, it was verified that the 1/3 scale model cask maintain its structural integrity of the model cask under the side drop impact. The test and analysis results could be used as the basic data to evaluate the structural integrity of the real cask. (J.P.N.)

  7. Scaling during capillary thinning of particle-laden drops

    Science.gov (United States)

    Thete, Sumeet; Wagoner, Brayden; Basaran, Osman

    2017-11-01

    A fundamental understanding of drop formation is crucial in many applications such as ink-jet printing, microfluidic devices, and atomization. During drop formation, the about-to-form drop is connected to the fluid hanging from the nozzle via a thinning filament. Therefore, the physics of capillary thinning of filaments is key to understanding drop formation and has been thoroughly studied for pure Newtonian fluids using theory, simulations, and experiments. In some of the applications however, the forming drop and hence the thinning filament may contain solid particles. The thinning dynamics of such particle-laden filaments differs radically from that of particle-free filaments. Moreover, our understanding of filament thinning in the former case is poor compared to that in the latter case despite the growing interest in pinch-off of particle-laden filaments. In this work, we go beyond similar studies and experimentally explore the impact of solid particles on filament thinning by measuring both the radial and axial scalings in the neck region. The results are summarized in terms of a phase diagram of capillary thinning of particle-laden filaments.

  8. Electrohydrodynamics of drops in strong electric fields: Simulations and theory

    Science.gov (United States)

    Saintillan, David; Das, Debasish

    2016-11-01

    Weakly conducting dielectric liquid drops suspended in another dielectric liquid exhibit a wide range of dynamical behaviors when subject to an applied uniform electric field contingent on field strength and material properties. These phenomena are best described by the much celebrated Maylor-Taylor leaky dielectric model that hypothesizes charge accumulation on the drop-fluid interface and prescribes a balance between charge relaxation, the jump in Ohmic currents and charge convection by the interfacial fluid flow. Most previous numerical simulations based on this model have either neglected interfacial charge convection or restricted themselves to axisymmetric drops. In this work, we develop a three-dimensional boundary element method for the complete leaky dielectric model to systematically study the deformation and dynamics of liquid drops in electric fields. The inclusion of charge convection in our simulation permits us to investigate drops in the Quincke regime, in which experiments have demonstrated symmetry-breaking bifurcations leading to steady electrorotation. Our simulation results show excellent agreement with existing experimental data and small deformation theories. ACSPRF Grant 53240-ND9.

  9. A Novel Virus Causes Scale Drop Disease in Lates calcarifer.

    Directory of Open Access Journals (Sweden)

    Ad de Groof

    2015-08-01

    Full Text Available From 1992 onwards, outbreaks of a previously unknown illness have been reported in Asian seabass (Lates calcarifer kept in maricultures in Southeast Asia. The most striking symptom of this emerging disease is the loss of scales. It was referred to as scale drop syndrome, but the etiology remained enigmatic. By using a next-generation virus discovery technique, VIDISCA-454, sequences of an unknown virus were detected in serum of diseased fish. The near complete genome sequence of the virus was determined, which shows a unique genome organization, and low levels of identity to known members of the Iridoviridae. Based on homology of a series of putatively encoded proteins, the virus is a novel member of the Megalocytivirus genus of the Iridoviridae family. The virus was isolated and propagated in cell culture, where it caused a cytopathogenic effect in infected Asian seabass kidney and brain cells. Electron microscopy revealed icosahedral virions of about 140 nm, characteristic for the Iridoviridae. In vitro cultured virus induced scale drop syndrome in Asian seabass in vivo and the virus could be reisolated from these infected fish. These findings show that the virus is the causative agent for the scale drop syndrome, as each of Koch's postulates is fulfilled. We have named the virus Scale Drop Disease Virus. Vaccines prepared from BEI- and formalin inactivated virus, as well as from E. coli produced major capsid protein provide efficacious protection against scale drop disease.

  10. Drop splashing: the role of surface wettability and liquid viscosity

    Science.gov (United States)

    Almohammadi, Hamed; Amirfazli, Alidad; -Team

    2017-11-01

    There are seemingly contradictory results in the literature about the role of surface wettability and drop viscosity for the splashing behavior of a drop impacting onto a surface. Motivated by such issues, we conducted a systematic experimental study where splashing behavior for a wide range of the liquid viscosity (1-100 cSt) and surface wettability (hydrophilic to hydrophobic) are examined. The experiments were performed for the liquids with both low and high surface tensions ( 20 and 72 mN/m). We found that the wettability affects the splashing threshold at high or low contact angle values. At the same drop velocity, an increase of the viscosity (up to 4 cSt) promotes the splashing; while, beyond such value, any increase in viscosity shows the opposite effect. It is also found that at a particular combination of liquid surface tension and viscosity (e.g. silicone oil, 10 cSt), an increase in the drop velocity changes the splashing to spreading. We relate such behaviors to the thickness, shape, and the velocity of the drop's lamella. Finally, to predict the splashing, we developed an empirical correlation which covers all of the previous reported data, hence clarifying the ostensible existing contradictions.

  11. Naturally Occurring Egg Drop Syndrome Infection in Turkeys

    Directory of Open Access Journals (Sweden)

    Z. Biđin

    2007-01-01

    Full Text Available A decrease in the egg quality, production, fertility and hatchability without serious clinical signs of illness was recorded in turkey fl ocks in Croatia at the beginning of 2002. It was assumed that the egg drop syndrome virus might be one of the etiological agents responsible for the abnormalities in the egg production. The systematic serological monitoring, using a haemagglutination inhibition test, showed that the antibodies to the egg drop syndrome virus existed in 94.4 and 55.1% of the sera analysed in 2002 and 2003, respectively. The haemagglutination inhibition titres ranged from 16 to 128. The sera samples were randomly collected from 11 - to 46-week-old hens from the affected fl ocks. The serological evidence of the egg drop syndrome virus infection was confirmed by detection of the presence of the virus genome in the turkey sera by the polymerase chain reaction. Vaccination of the 18- and 25-week-old turkey hens against the egg drop syndrome virus started in March 2003. After this period, the presence of antibodies to the egg drop syndrome virus (the haemagglutination inhibition titres between 16 and 256 was found in 96.7% of the analysed sera, while the egg production reached normal or higher values for the Nicholas hybrid line of turkeys.

  12. A PIV Study of Drop-interface Coalescence with Surfactants

    Science.gov (United States)

    Weheliye, Weheliye Hashi; Dong, Teng; Angeli, Panagiota

    2017-11-01

    In this work, the coalescence of a drop with an aqueous-organic interface was studied by Particle Image Velocimetry (PIV). The effect of surfactants on the drop surface evolution, the vorticity field and the kinetic energy distribution in the drop during coalescence were investigated. The coalescence took place in an acrylic rectangular box with 79% glycerol solution at the bottom and Exxsol D80 oil above. The glycerol solution drop was generated through a nozzle fixed at 2cm above the aqueous/oil interface and was seeded with Rhodamine particles. The whole process was captured by a high-speed camera. Different mass ratios of non-ionic surfactant Span80 to oil were studied. The increase of surfactant concentration promoted deformation of the interface before the rupture of the trapped oil film. At the early stages after film rupture, two counter-rotating vortices appeared at the bottom of the drop which then travelled to the upper part. The propagation rates, as well as the intensities of the vortices decreased at high surfactant concentrations. At early stages, the kinetic energy was mainly distributed near the bottom part of the droplet, while at later stages it was distributed near the upper part of the droplet. Programme Grant MEMPHIS, Chinese Scholarship Council (CSC).

  13. Research on combustion of black-liquor drops

    International Nuclear Information System (INIS)

    Macek, A.

    1999-01-01

    Black liquor, the major by-product of the kraft process for production of pulp, is one of the most important industrial fuels. It is burned in recovery boilers in the form of large spray drops (mm), with the objective of simultaneous recovery of heat and chemicals (sodium and sulfur). Even though black-liquor combustion in boilers has been practised for over half a century, research efforts toward improvement of combustion efficiency and abatement of environmental emissions are much more recent. The present paper addresses a specific aspect of that research, namely, elucidation of processes which occur during combustion of black-liquor drops in boiler-gas streams. The paper (a) gives a brief description of the kraft process, (b) reviews the experimental and theoretical (modeling) research advances on combustion of kraft-liquor drops during the 1980s and 1990s, (c) re-examines the results of an earlier combustion study in which black-liquor drops were observed in free flight at temperatures near those in recovery boilers, and (d) recommends input for the modeling of in-flight combustion of kraft-liquor drops in recovery boilers. (author)

  14. Air Quality of Beijing and Impacts of the New Ambient Air Quality Standard

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2015-08-01

    Full Text Available Beijing has been publishing daily reports on its air quality since 2000, and while the air pollution index (API shows that the air quality has improved greatly since 2000, this is not the perception of Beijing’s residents. The new national ambient air quality standard (NAAQS-2012, which includes the monitoring of PM2.5, has posed stricter standards for evaluating air quality. With the new national standard, the air quality in Beijing is calculated using both NAAQS-2012 and the previous standard. The annual attainment rate has dropped from 75.5% to 50.7%. The spatial analysis of air quality shows that only a background station could attain the national standard, while urban and suburban stations exceed the national standard. Among the six pollutants included in the NAAQS-2012, PM2.5 is the major contributor to the air quality index (AQI comparing with the five other pollutants. The results indicate that under previous NAAQS without PM2.5 monitoring, the air quality has improved greatly in the past decade.  By considering PM2.5, the air quality attainment has dropped greatly. Furthermore, a great effort is needed for local government to bring down the PM2.5 concentration.

  15. Foamed emulsion drainage: flow and trapping of drops.

    Science.gov (United States)

    Schneider, Maxime; Zou, Ziqiang; Langevin, Dominique; Salonen, Anniina

    2017-06-07

    Foamed emulsions are ubiquitous in our daily life but the ageing of such systems is still poorly understood. In this study we investigate foam drainage and measure the evolution of the gas, liquid and oil volume fractions inside the foam. We evidence three regimes of ageing. During an initial period of fast drainage, both bubbles and drops are very mobile. As the foam stabilises drainage proceeds leading to a gradual decrease of the liquid fraction and slowing down of drainage. Clusters of oil drops are less sheared, their dynamic viscosity increases and drainage slows down even further, until the drops become blocked. At this point the oil fraction starts to increase in the continuous phase. The foam ageing leads to an increase of the capillary pressure until the oil acts as an antifoaming agent and the foam collapses.

  16. Steam explosion studies with single drops of molten refractory materials

    International Nuclear Information System (INIS)

    Nelson, L.S.

    1980-01-01

    Laser heating, levitation melting, and metal combustion were used to prepare individual drops of molten refractory materials which simulate LWR fuel melt products. Drop temperatures ranged from approx. = 1500 to > 3000K. These drops, several millimeters in diameter, were injected into water and subjected to pressure transients (approx. = 1MPa peak pressures) generated by a submerged exploding bridgewire. Molten oxides of Fe, Al and Zr could be induced to explode with bridgewire initiation. High speed films showed the explosions with exceptional clarity, and pressure transducer records could be correlated with individual frames in the films. Pressure spikes one or two MPa high were generated whenever an explosion occurred. Debris particles were mostly spheroidal, with diameters in the range 10 to 1000 μm

  17. Bacterial and fungal flora of seagull droppings in Jersey

    Science.gov (United States)

    Cragg, John; Clayton, Yvonne M.

    1971-01-01

    In Jersey 166 fresh and 122 dried seagull droppings were obtained and studied locally and in London for the presence of bacteria and fungi of potentially pathogenic nature. There were no salmonella or shigella bacteria isolated from the two groups but there was a high proportion of Candida albicans obtained from the fresh material (21·7%) and only 1·6% from the dry faeces. Cryptococcus neoformans and Histoplasma capsulatum were not found in either the dry or fresh droppings. The normal bacterial and fungal flora of the seagull was established and it is considered that the C. albicans in fresh gull droppings would not materially increase albicans infections in man. PMID:5104846

  18. A Partial Equilibrium Theory for Drops and Capillary Liquids

    International Nuclear Information System (INIS)

    Searcy, Alan W.; Beruto, Dario T.; Barberis, Fabrizio

    2006-01-01

    The two-century old theory of Young and Laplace retains a powerful influence on surface and interface studies because it quantitatively predicts the height of rise of capillary liquids from the contact angles of drops. But the classical theory does not acknowledge that equilibrium requires separate minimization of partial free energies of one-component liquids bonded to immiscible solids. We generalize a theorem of Gibbs and Curie to obtain a partial equilibrium (PE) theory that does so and that also predicts the height of capillary rise from contact angles of drops. Published observations and our own measurements of contact angles of water bonded to glass and Teflon surfaces support the conclusion of PE theory that contact angles of meniscuses and of drops are different dependent variables. PE theory provides thermodynamic and kinetic guidance to nanoscale processes that the classical theory obscures, as illustrated by examples in our concluding section

  19. Playing with water drops: from wetting to optics through electrostatics

    International Nuclear Information System (INIS)

    Domps, A; Roques-Carmes, T

    2011-01-01

    We present a consistent series of activities, including experiments and basic computational studies, investigating the shape and optical properties of water drops in connection with novel technological devices. Most of the work can be carried out with simple teaching equipment and is well suited to undergraduate students. Firstly, we show how the mass variations of a sessile drop can be used to control its curvature and hence to produce lenses with tunable focal distance. Alternatively, the shape of the drop can be varied using electrowetting on dielectric (EWOD). We propose a simple pedagogical approach to this phenomenon in connection with historical electrostatic apparatus. A detailed process for the preparation of an EWOD device is given, together with a focimetric method allowing the analysis of electrowetting effects in practical exercises. Finally, the manipulations of a commercialized variable focus lens illustrate that EWOD is at the heart of most recent technological developments, making practical work in optics more attractive than traditional exercises using conventional lenses.

  20. Emulsion Design. Analysis of Drop Deformations in Mixed Flows

    DEFF Research Database (Denmark)

    Egholm, Runi Ditlev

    2008-01-01

    . Furthermore wall effects are also investigated by varying the size of the computational domain which consists of a box with variable mesh size. In the center of the domain, where the drop resides, the mesh consists of a fine region whereas closer to the walls the elements gradually increase in size. Tests...... by the drop in the rotor-stator device is emulated in the computational box used for carrying out drop shape simulations. Comparison of simulated and experimentally obtained deformations show that in general the agreement is acceptable on a qualitative level. However, the simulations predict deformations...... there is a relaxation in the flow field. Furthermore we observe that for small viscosity ratios (A ~ 0.1) tip streaming is predominant while for larger viscosity ratios either binary or capillary break-up is predominant....

  1. Estimation of pressure drop in gasket plate heat exchangers

    Directory of Open Access Journals (Sweden)

    Neagu Anisoara Arleziana

    2016-06-01

    Full Text Available In this paper, we present comparatively different methods of pressure drop calculation in the gasket plate heat exchangers (PHEs, using correlations recommended in literature on industrial data collected from a vegetable oil refinery. The goal of this study was to compare the results obtained with these correlations, in order to choose one or two for practical purpose of pumping power calculations. We concluded that pressure drop values calculated with Mulley relationship and Buonopane & Troupe correlation were close and also Bond’s equation gave results pretty close to these but the pressure drop is slightly underestimated. Kumar correlation gave results far from all the others and its application will lead to oversize. In conclusion, for further calculations we will chose either the Mulley relationship or the Buonopane & Troupe correlation.

  2. Green chemistry and nanofabrication in a levitated Leidenfrost drop

    Science.gov (United States)

    Abdelaziz, Ramzy; Disci-Zayed, Duygu; Hedayati, Mehdi Keshavarz; Pöhls, Jan-Hendrik; Zillohu, Ahnaf Usman; Erkartal, Burak; Chakravadhanula, Venkata Sai Kiran; Duppel, Viola; Kienle, Lorenz; Elbahri, Mady

    2013-10-01

    Green nanotechnology focuses on the development of new and sustainable methods of creating nanoparticles, their localized assembly and integration into useful systems and devices in a cost-effective, simple and eco-friendly manner. Here we present our experimental findings on the use of the Leidenfrost drop as an overheated and charged green chemical reactor. Employing a droplet of aqueous solution on hot substrates, this method is capable of fabricating nanoparticles, creating nanoscale coatings on complex objects and designing porous metal in suspension and foam form, all in a levitated Leidenfrost drop. As examples of the potential applications of the Leidenfrost drop, fabrication of nanoporous black gold as a plasmonic wideband superabsorber, and synthesis of superhydrophilic and thermal resistive metal-polymer hybrid foams are demonstrated. We believe that the presented nanofabrication method may be a promising strategy towards the sustainable production of functional nanomaterials.

  3. Superheated drop, open-quotes Bubbleclose quotes, dosimeters

    International Nuclear Information System (INIS)

    Harper, M.J.; Lindler, K.W.; Nelson, M.E.; Johnson, T.L.; Jones, C.R.; Rabovsky, J.L.; Rao, N.; Kerschner, H.F.; Reil, G.K.; Schwartz, R.B.

    1991-01-01

    Superheated Drop Dosimeters (SDD) offer a sensitive, immediate measure of the neutron dose equivalent, but their dynamic range is limited and their response varies with temperature, pressure, and vibration. They contain thousands of superheated liquid drops in a stabilizing matrix. High linear energy transfer (LET) radiation triggers vaporization of the drops into visible bubbles. If the matrix is a liquid, the bubbles slowly rise, and the number present indicates the dose rate. Dose may be measured by displacement of the matrix, or by counting the sounds of vaporization. If the matrix is a gel, the bubbles are fixed, and their number is proportional to the dose equivalent. Our research has focused on modeling and elimination of the environmental response, extension of the dynamic range, and tests and evaluations of prototype devices

  4. Potential drop crack measurement systems for CANDU components

    Energy Technology Data Exchange (ETDEWEB)

    Sahney, R [Carleton Univ., Ottawa, ON (Canada)

    1994-12-31

    A project to develop an automated crack measurement system for CANDU pressure tube burst testing is currently underway. The system will utilize either Direct Current Potential Drop (DCPD) or Alternating Current Potential Drop (ACPD) techniques for crack measurement. The preliminary stage of the project involves testing and comparison of both ACPD and DCPD methods on a Zr - 2.5% Nb alloy plate with saw cuts (used to simulate cracks). Preliminary results show that both ACPD and DCPD techniques are capable of detecting cracks; further testing is in progress to determine the ability of each of the two systems to make accurate crack depth measurements. This paper will describe the two potential drop techniques and will present test results from the experimental program. (author). 10 refs., 7 figs.

  5. MHD pressure drop in ducts with imperfectly insulating coatings

    International Nuclear Information System (INIS)

    Malang, S.; Buehler, L.

    1994-08-01

    Liquid metal cooled blankets in fusion tokamak's are feasible only with electrically insulating coatings at the coolant channel walls. The requirements of such coatings are investigated and a simple analytical model is developed to determine the influence of imperfections in the coatings on the magneto-hydrodynamic pressure drop. This model is compared with the results of a 3D-MHD code based on the core flow approach. Both methods are in good agreement as long as the imperfections do not increase the pressure drop by more than 20%. The analytical model over-estimates the pressure drop for values larger than 20%. The importance of self-healing of coatings in case of cracking or flaking is quantified and an equation for the equilibrium conditions between the generation of imperfection and the healing of such spots is provided

  6. Neuromuscular function during drop jumps in young and elderly males.

    Science.gov (United States)

    Piirainen, Jarmo M; Linnamo, Vesa; Sippola, Niina; Avela, Janne

    2012-12-01

    The Hoffman reflex (H-reflex), indicating alpha-motoneuron pool activity, has been shown to be task - and in resting conditions - age dependent. How aging affects H-reflex activity during explosive movements is not clear at present. The purpose of this study was to examine the effects of aging on H-reflexes during drop jumps, and its possible role in drop jump performance. Ten young (26.8 ± 2.7 years) and twenty elderly (64.2 ± 2.7 years) subjects participated in the study. Maximal drop jump performance and soleus H-reflex response (H/M jump) 20 ms after ground contact were measured in a sledge ergometer. Maximal H-reflex, maximal M-wave, Hmax/Mmax-ratio and H-reflex excitability curves were measured during standing rest. Although in young the H-reflex response (Hmax/Mmax) was 6.5% higher during relaxed standing and 19.7% higher during drop jumps (H jump/M jump) than in the elderly group, these differences were not statistically significant. In drop jumps, the elderly subjects had lower jumping height (30.4%, p push-off force (18.0%, p push-off time (31.0% p push-off force (r = 0.833, p push-off time (r = -0.857, p < 0.01) in young but not in the elderly. Correlations between H-reflex response and jumping parameters in young may indicate different jumping and activation strategies in drop jumps. However, it does not fully explain age related differences in jumping performance, since age related differences in H-reflex activity were non-significant. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Semi-automatic image analysis methodology for the segmentation of bubbles and drops in complex dispersions occurring in bioreactors

    Science.gov (United States)

    Taboada, B.; Vega-Alvarado, L.; Córdova-Aguilar, M. S.; Galindo, E.; Corkidi, G.

    2006-09-01

    Characterization of multiphase systems occurring in fermentation processes is a time-consuming and tedious process when manual methods are used. This work describes a new semi-automatic methodology for the on-line assessment of diameters of oil drops and air bubbles occurring in a complex simulated fermentation broth. High-quality digital images were obtained from the interior of a mechanically stirred tank. These images were pre-processed to find segments of edges belonging to the objects of interest. The contours of air bubbles and oil drops were then reconstructed using an improved Hough transform algorithm which was tested in two, three and four-phase simulated fermentation model systems. The results were compared against those obtained manually by a trained observer, showing no significant statistical differences. The method was able to reduce the total processing time for the measurements of bubbles and drops in different systems by 21-50% and the manual intervention time for the segmentation procedure by 80-100%.

  8. Combustion, cofiring and emissions characteristics of torrefied biomass in a drop tube reactor

    International Nuclear Information System (INIS)

    Ndibe, Collins; Maier, Jörg; Scheffknecht, Günter

    2015-01-01

    The study investigates cofiring characteristics of torrefied biomass fuels at 50% thermal shares with coals and 100% combustion cases. Experiments were carried out in a 20 kW, electrically heated, drop-tube reactor. Fuels used include a range of torrefied biomass fuels, non-thermally treated white wood pellets, a high volatile bituminous coal and a lignite coal. The reactor was maintained at 1200 °C while the overall stoichiometric ratio was kept constant at 1.15 for all combustion cases. Measurements were performed to evaluate combustion reactivity, emissions and burn-out. Torrefied biomass fuels in comparison to non-thermally treated wood contain a lower amount of volatiles. For the tests performed at a similar particle size distribution, the reduced volatile content did not impact combustion reactivity significantly. Delay in combustion was only observed for test fuel with a lower amount of fine particles. The particle size distribution of the pulverised grinds therefore impacts combustion reactivity more. Sulphur and nitrogen contents of woody biomass fuels are low. Blending woody biomass with coal lowers the emissions of SO 2 mainly as a result of dilution. NO X emissions have a more complex dependency on the nitrogen content. Factors such as volatile content of the fuels, fuel type, furnace and burner configurations also impact the final NO X emissions. In comparison to unstaged combustion, the nitrogen conversion to NO X declined from 34% to 9% for air-staged co-combustion of torrefied biomass and hard coal. For the air-staged mono-combustion cases, nitrogen conversion to NO X declined from between 42% and 48% to about 10%–14%. - Highlights: • Impact of torrefaction on cofiring was studied at high heating rates in a drop tube. • Cofiring of torrefied biomasses at high thermal shares (50% and higher) is feasible. • Particle size impacts biomass combustion reactivity more than torrefaction. • In a drop tube reactor, torrefaction has no negative

  9. Rapid determination of caffeine in one drop of beverages and foods using drop-to-drop solvent microextraction with gas chromatography/mass spectrometry.

    Science.gov (United States)

    Shrivas, Kamlesh; Wu, Hui-Fen

    2007-11-02

    A simple and rapid sample cleanup and preconcentration method for the quantitative determination of caffeine in one drop of beverages and foods by gas chromatography/mass spectrometry (GC/MS) has been proposed using drop-to-drop solvent microextraction (DDSME). The best optimum experimental conditions for DDSME were: chloroform as the extraction solvent, 5 min extraction time, 0.5 microL exposure volume of the extraction phase and no salt addition at room temperature. The optimized methodology exhibited good linearity between 0.05 and 5.0 microg/mL with correlation coefficient of 0.980. The relative standard deviation (RSD) and limits of detection (LOD) of the DDSME/GC/MS method were 4.4% and 4.0 ng/mL, respectively. Relative recovery of caffeine in beverages and foods were found to be 96.6-101%, which showing good reliability of this method. This DDSME excludes the major disadvantages of conventional method of caffeine extraction, like large amount of organic solvent and sample consumption and long sample pre-treatment process. So, this approach proves that the DDSME/GC/MS technique can be applied as a simple, fast and feasible diagnosis tool for environmental, food and biological application for extremely small amount of real sample analysis.

  10. Drops and bubbles in contact with solid surfaces

    CERN Document Server

    Ferrari, Michele

    2012-01-01

    The third volume in a series dedicated to colloids and interfaces, Drops and Bubbles in Contact with Solid Surfaces presents an up-to-date overview of the fundamentals and applications of drops and bubbles and their interaction with solid surfaces. The chapters cover the theoretical and experimental aspects of wetting and wettability, liquid-solid interfacial properties, and spreading dynamics on different surfaces, including a special section on polymers. The book examines issues related to interpretation of contact angle from nano to macro systems. Expert contributors discuss interesting pec

  11. Hanging drop cultures of human testis and testis cancer samples

    DEFF Research Database (Denmark)

    Jørgensen, Anne; Young, J; Nielsen, J E

    2014-01-01

    cultured in 'hanging drops' and effects of activin A and follistatin treatment were investigated in seminoma cultures. RESULTS: Testis fragments with normal spermatogenesis or CIS cells were cultured for 14 days with sustained proliferation of germ cells and CIS cells and without increased apoptosis....... Seminoma cultures survived 7 days, with proliferating cells detectable during the first 5 days. Activin A treatment significantly reduced KIT transcript and protein levels in seminoma cultures, thereby demonstrating a specific treatment response. CONCLUSIONS: Hanging drop cultures of human testis...

  12. Bioconversion of poultry droppings for biogas and algal production

    Energy Technology Data Exchange (ETDEWEB)

    Mahadevaswamy, M.; Venkataraman, L.V.

    1986-01-01

    An integrated system for the bioconversion of poultry droppings for biogas production and utilization of the effluent for the production of the blue-green alga Spirulina platensis was studied. Poultry droppings produced 0.54 cubic m of biogas per kilogran of Total Solids (TS). The 2% TS biogas plant effluent as sole nutrient medium for Spirulina yielded 7-8 g dry algae a day. The biomass was harvested by filtration. The sundried algal biomass has been used as a poultry feed component. In economic terms the system appears promising. 18 references.

  13. Neck extensor muscle weakness (Dropped head syndrome) following radiotherapy

    International Nuclear Information System (INIS)

    Bhatia, S.; Miller, R.C.; Lachance, D.L.

    2006-01-01

    Background. Dropped head syndrome is an unusual condition in which the head cannot be held upright in its normal anatomic position secondary to pronounced, isolated, neck extensor muscle weakness. Case report. A case of dropped head syndrome in a female with a history of radiotherapy for Hodgkin's lymphoma and a clinical history consistent with multiple sclerosis is presented, and potential etiologies are discussed. Conclusions. Muscular atrophy and lower motor neuron injury secondary to isolated anterior horn cell injury from radiotherapy emerge as the most likely etiology. (author)

  14. Efficacy of atropine and anisodamine eye drops for adolescent pseudomyopia

    OpenAIRE

    Hui-Jie Wang

    2017-01-01

    AIM:To investigate the effect and local influence of atropine and anisodamine eye drops on adolescent pseudomyopia. METHODS:Totally 110 cases of juvenile pseudomyopia were randomly divided into two groups, the control group was given 10g/L atropine sulfate eye gel, and the observation group was treated with 5g/L raceanisodamine eye drops. The efficacy of two methods, the changes of axial length and intraocular pressure before and after treatment, and the incidence of adverse reactions were co...

  15. Predicting pressure drop in venturi scrubbers with artificial neural networks.

    Science.gov (United States)

    Nasseh, S; Mohebbi, A; Jeirani, Z; Sarrafi, A

    2007-05-08

    In this study a new approach based on artificial neural networks (ANNs) has been used to predict pressure drop in venturi scrubbers. The main parameters affecting the pressure drop are mainly the gas velocity in the throat of venturi scrubber (V(g)(th)), liquid to gas flow rate ratio (L/G), and axial distance of the venturi scrubber (z). Three sets of experimental data from five different venturi scrubbers have been applied to design three independent ANNs. Comparing the results of these ANNs and the calculated results from available models shows that the results of ANNs have a better agreement with experimental data.

  16. Structure and Dynamics of Interfaces: Drops and Films

    Science.gov (United States)

    Mann, J. Adin, Jr.; Mann, Elizabeth K.; Meyer, William V.; Neumann, A. Wilhelm; Tavana, Hossein

    2015-01-01

    We aim to acquire measurements of the structure and dynamics of certain liquid-fluid interfaces using an ensemble of techniques in collaboration: (1) Total internal reflection (TIR) Surface light scattering spectroscopy (SLSS), (2) Brewster angle microscopy (BAM), and (3) Drop-shape analysis. SLSS and BAM can be done on a shared interfacial footprint. Results using a 50-50 mixture of pentane-isohexane, which extends the range of NASA's Confined Vapor Bubble (CVB) experiment, yield surface tension results that differ from the expected Langmuir Fit. These results were confirmed using both the SLSS and drop-shape analysis approaches.

  17. Medium carbon vanadium micro alloyed steels for drop forging

    International Nuclear Information System (INIS)

    Jeszensky, Gabor; Plaut, Ronald Lesley

    1992-01-01

    Growing competitiveness of alternative manufacturing routes requires cost minimization in the production of drop forged components. The authors analyse the potential of medium carbon, vanadium microalloyed steels for drop forging. Laboratory and industrial experiments have been carried out emphasizing deformation and temperature cycles, strain rates and dwell times showing a typical processing path, associated mechanical properties and corresponding microstructures. The steels the required levels of mechanical properties on cooling after forging, eliminating subsequent heat treatment. The machinability of V-microalloyed steels is also improved when compared with plain medium carbon steels. (author)

  18. Comparison of wet and dry heat transfer and pressure drop tests of smooth and rough corrugated PVC packing in cooling towers

    International Nuclear Information System (INIS)

    Goshayeshi, H.R.; Missenden, J.F.

    1998-01-01

    This paper presents the results of an experimental investigation of the performance of a cooling tower with PVC packing. The following were examined; the effect of surface roughness, the effect of the angle of roughness and the effect of packing spacing. The investigation was divided into two parts: comparison of film heat transfer with air pressure drop, without water circulation and comparison of enthalpy change and pressure drop in the model cooling tower, with circulation of water. Seven commercial packing were investigated, covering a size range of 1.1< P/D<1.70 and 1≤p/e≤5 and a discussion of the dimensionless correlation resulting is given

  19. Environmental Assessment: Sooner Drop Zone Expansion Altus Air Force Base, Oklahoma

    Science.gov (United States)

    2003-08-01

    AND OUTDOOR NOISE SOURCES NOISE LEVEL (dBA) COMMON INDOOR NOISE LEVELS COMMON OUTDOOR NOISE LEVELS Jet Flyover at 1000 ft. Gas Lawn Mower at 3 ft...Diesel Truck at 50 ft. Noise Urban Daytime Gas Lawn Mower at 100 ft. Commercial Area Heavy Traffic at 300 ft. Quiet Urban Daytime Quiet Urban Nighttime

  20. Particle scavenging in a cylindrical ultrasonic standing wave field using levitated drops

    Science.gov (United States)

    Merrell, Tyler; Saylor, J. R.

    2015-11-01

    A cylindrical ultrasonic standing wave field was generated in a tube containing a flow of particles and fog. Both the particles and fog drops were concentrated in the nodes of the standing wave field where they combined and then grew large enough to fall out of the system. In this way particles were scavenged from the system, cleaning the air. While this approach has been attempted using a standing wave field established between disc-shaped transducers, a cylindrical resonator has not been used for this purpose heretofore. The resonator was constructed by bolting three Langevin transducers to an aluminum tube. The benefit of the cylindrical geometry is that the acoustic energy is focused. Furthermore, the residence time of the particle in the field can be increased by increasing the length of the resonator. An additional benefit of this approach is that tubes located downstream of the resonator were acoustically excited, acting as passive resonators that enhanced the scavenging process. The performance of this system on scavenging particles is presented as a function of particle diameter and volumetric flow rate. It is noted that, when operated without particles, the setup can be used to remove drops and shows promise for liquid aerosol retention from systems where these losses can be financially disadvantageous and/or hazardous.

  1. Modeling pressure drop of inclined flow through a heat exchanger for aero-engine applications

    International Nuclear Information System (INIS)

    Missirlis, D.; Yakinthos, K.; Storm, P.; Goulas, A.

    2007-01-01

    In the present work further numerical predictions for the flow field through a specific type of a heat exchanger, which is planned to be used in the exhaust nozzle of aircraft engines. In order to model the flow field through the heat exchanger, a porous medium model is used based on a simple quadratic relation, which connects the pressure drop with the inlet air velocity in the external part of the heat exchanger. The aim of this work is to check the applicability of the quadratic law in a variety of velocity inlet conditions configured by different angles of attack. The check is performed with CFD and the results are compared with new available experimental data for these inlet conditions. A detailed qualitative analysis shows that although the quadratic law has been derived for a zero angle of attack, it performs very well for alternative non-zero angles. These observations are very helpful since this simple pressure drop law can be used for advanced computations where the whole system of the exhaust nozzle together with the heat exchangers can be modeled within a holistic approach

  2. Comparison of the lateral retention forces on sessile and pendant water drops on a solid surface

    Science.gov (United States)

    de la Madrid, Rafael; Whitehead, Taylor; Irwin, George M.

    2015-06-01

    We present a simple experiment that demonstrates how a water drop hanging from a Plexiglas surface (pendant drop) experiences a lateral retention force that is comparable to, and in some cases larger than, the lateral retention force on a drop resting on top of the surface (sessile drop). The experiment also affords a simple demonstration of the Coriolis effect in two dimensions.

  3. Structure Irregularity Impedes Drop Roll-Off at Superhydrophobic Surfaces

    DEFF Research Database (Denmark)

    Larsen, Simon Tylsgaard; Andersen, Nis Korsgaard; Søgaard, Emil

    2014-01-01

    -off angles is found to be caused by a decrease of the receding contact angle, which in turn is caused by an increase of the triple phase contact line of the drops for those more irregular surfaces. To understand the observation, we propose to treat the microdrops as rigid bodies and apply a torque balance...

  4. Monte Carlo studies of nuclei and quantum liquid drops

    International Nuclear Information System (INIS)

    Pandharipande, V.R.; Pieper, S.C.

    1989-01-01

    The progress in application of variational and Green's function Monte Carlo methods to nuclei is reviewed. The nature of single-particle orbitals in correlated quantum liquid drops is discussed, and it is suggested that the difference between quasi-particle and mean-field orbitals may be of importance in nuclear structure physics. 27 refs., 7 figs., 2 tabs

  5. A critical look at South Africa's Green Drop Programme

    African Journals Online (AJOL)

    direct regulation. The programme is based on DWS's realisation that rewarding positive behaviour may be more efficient and effective than sanctioning negative behaviour (Ntombela, 2013). The Green Drop Programme aims to sustainably improve the quality of wastewater management in South Africa by identifying.

  6. Predicting Drop-Out from Social Behaviour of Students

    Science.gov (United States)

    Bayer, Jaroslav; Bydzovska, Hana; Geryk, Jan; Obsivac, Tomas; Popelinsky, Lubomir

    2012-01-01

    This paper focuses on predicting drop-outs and school failures when student data has been enriched with data derived from students social behaviour. These data describe social dependencies gathered from e-mail and discussion board conversations, among other sources. We describe an extraction of new features from both student data and behaviour…

  7. Drop amalgam voltammetric study of lead complexation by natural ...

    African Journals Online (AJOL)

    A study of inorganic complexation of lead using drop amalgam voltammetry is described. The study has been carried out in simulated salt lake water and at ionic strength of 7.35 M, the predetermined ionic strength of Lake Katwe. The complexation of lead with the simple ligands (Cl-, CO32-) created anodic waves and the ...

  8. Drop Jumping as a Training Method for Jumping Ability

    NARCIS (Netherlands)

    Bobbert, Maarten F.

    1990-01-01

    Vertical jumping ability is of importance for good performance in sports such as basketball and volleyball. Coaches are in need of exercises that consume only little time and still help to improve their players’ jumping ability, without involving a high risk of injury. Drop jumping is assumed to

  9. Price drop and increasing competition; Sinkende Preise und mehr Wettbewerb

    Energy Technology Data Exchange (ETDEWEB)

    Berner, Joachim

    2012-01-06

    Competition in the German PV sector is getting harder. German wholesale providers are dropping their prices, strengthening their marketing activities and expanding their range of services. This is the result of an enquiry made by SONNE WIND and WAeRME in November 2011.

  10. Effects of relative humidity on banana fruit drop

    NARCIS (Netherlands)

    Saengpook, C.; Ketsa, S.; Doorn, van W.G.

    2007-01-01

    Commercial ripening of banana fruit occurs at high relative humidity (RH), which prevents browning of damaged skin areas. In experiments with ripening at high RH (94 ± 1%) the individual fruit (fingers) of `Sucrier¿ (Musa acuminata, AA Group) banana exhibited a high rate of drop. The falling off of

  11. Analysis of the reflection of a micro drop fiber sensor

    Science.gov (United States)

    Sun, Weimin; Liu, Qiang; Zhao, Lei; Li, Yingjuan; Yuan, Libo

    2005-01-01

    Micro drop fiber sensors are effective tools for measuring characters of liquids. These types of sensors are wildly used in biotechnology, beverage and food markets. For a fiber micro drop sensor, the signal of the output light is wavy with two peaks, normally. Carefully analyzing the wavy process can identify the liquid components. Understanding the reason of forming this wavy signal is important to design a suitable sensing head and to choose a suitable signal-processing method. The dripping process of a type of liquids is relative to the characters of the liquid and the shape of the sensing head. The quasi-Gauss model of the light field from the input-fiber end is used to analyse the distribution of the light field in the liquid drop. In addition, considering the characters of the liquid to be measured, the dripping process of the optical signal from the output-fiber end can be expected. The reflection surface of the micro drop varies as serials of spheres with different radiuses and global centers. The intensity of the reflection light changes with the shape of the surface. The varying process of the intensity relates to the tense, refractive index, transmission et al. To support the analyse above, an experimental system is established. In the system, LED is chosen as the light source and the PIN transform the light signal to the electrical signal, which is collected by a data acquisition card. An on-line testing system is made to check the theory discussed above.

  12. Don’t drop the patient: teamwork for cataract surgery

    Directory of Open Access Journals (Sweden)

    Daksha Patel

    2014-04-01

    Full Text Available The purpose of a team is to work together towards a common goal. On an athletics track, relay race teams run with a baton that is passed from one team member to another, without breaking the pace. If the baton is dropped, the team is disqualified.

  13. Evaluation of double drop beads pavement edge lines.

    Science.gov (United States)

    2009-08-01

    This report presents an evaluation of Double Drop Bead (DDB) edge lines used on ALDOT-maintained highways. It compares DDB to three other pavement marking types in terms of service lives, life-cycle costs, and both dry-night retroreflectivity and wet...

  14. Effect of drop jump technique on the reactive strength index

    Directory of Open Access Journals (Sweden)

    Struzik Artur

    2016-09-01

    Full Text Available The basic drill of plyometric training aimed at improving lower limb power and jump height is a drop jump. This exercise can be performed using different techniques, which substantially affects jump variables. Therefore, the aim of this study was to compare the values of the reactive strength index (RSI for countermovement drop jumps (CDJs and bounce drop jumps (BDJs. The study was carried out in a group of 8 male youth basketball players. The tests were conducted using the AMTI BP600900 force plate to measure ground reaction forces and the Noraxon MyoMotion system to record kinematic data. Each player performed two CDJs and two BDJs from the height of 15, 30, 45 and 60 cm. The RSI was calculated as a ratio of jump height and contact time. Moreover, the RSI was determined for the amortization and take-off phases separately. Significant differences (p < 0.05 between RSI values for CDJs and BDJs were recorded for jumps from 30, 45 and 60 cm. Differences in RSI values for jumps from 15 cm were not significant. Furthermore, CDJ height values were significantly higher (p < 0.05 than the values recorded for BDJs. Times of contact, amortization and take-off during BDJs were significantly shorter (p < 0.05 than the respective values obtained for CDJs. Therefore, the use of the RSI to monitor plyometric training should be based on the drop jump technique that is commonly performed by basketball players.

  15. Structure formation in soft nanocolloids: liquid-drop model.

    Science.gov (United States)

    Doukas, A-K; Likos, C N; Ziherl, P

    2018-04-25

    Using a model where soft nanocolloids such as spherical polymer brushes and star polymers are viewed as compressible liquid drops, we theoretically explore contact interactions between such particles. By numerically minimizing the phenomenological free energy consisting of bulk and surface terms, we find that at small deformations the drop-drop interaction is pairwise additive and described by a power law. We also propose a theory to describe the small-deformation regime, and the agreement is very good at all drop compressibilities. The large-deformation regime, which is dominated by many-body interactions, is marked by a rich phase diagram which includes the face- and body-centered-cubic, σ, A15, and simple hexagonal lattice as well as isostructural and re-entrant transitions. Most of these features are directly related to the non-convex deformation free energy emerging from many-body effects in the partial-faceting regime. The phase diagram, which depends on just two model parameters, contains many of the condensed phases observed in experiments. We also provide statistical-mechanical arguments that relate the two model parameters to the molecular architecture of the polymeric nanocolloids, chain rigidity, and solvent quality. The model represents a generic framework for the overarching features of the phase behavior of polymeric nanocolloids at high compressions.

  16. Molecular dynamics study of the vaporization of an ionic drop.

    Science.gov (United States)

    Galamba, N

    2010-09-28

    The melting of a microcrystal in vacuum and subsequent vaporization of a drop of NaCl were studied through molecular dynamics simulations with the Born-Mayer-Huggins-Tosi-Fumi rigid-ion effective potential. The vaporization was studied for a single isochor at increasing temperatures until the drop completely vaporized, and gaseous NaCl formed. Examination of the vapor composition shows that the vapor of the ionic drop and gaseous NaCl are composed of neutral species, the most abundant of which, ranging from simple NaCl monomers (ion pairs) to nonlinear polymers, (Na(n)Cl(n))(n=2-4). The enthalpies of sublimation, vaporization, and dissociation of the different vapor species are found to be in reasonable agreement with available experimental data. The decrease of the enthalpy of vaporization of the vapor species, with the radius of the drop decrease, accounts for a larger fraction of trimers and tetramers than that inferred from experiments. Further, the rhombic dimer is significantly more abundant than its linear isomer although the latter increases with the temperature. The present results suggest that both trimers and linear dimers may be important to explain the vapor pressure of molten NaCl at temperatures above 1500 K.

  17. The evaporation of the charged and uncharged water drops ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    The evaporation of the charged and uncharged water drops suspended in a wind tunnel. Rohini V Bhalwankar, A B Sathe and A K Kamra∗. Indian Institute of Tropical Meteorology, Pune, India. ∗e-mail: kamra@tropmet.res.in. A laboratory experiment has been performed to study the effect of ventilation on the rate of evap-.

  18. Controlling a nuclear reactor with dropped control rods

    International Nuclear Information System (INIS)

    Mc Atee, K.R.; Alsop, B.H.

    1987-01-01

    A control system is described for a nuclear power plant including a reactor with a core having an upper portion and a lower portion and control rods which are inserted into and withdrawn from the core of the reactor vertically to control reactivity in the core. The system comprises: means to measure neutron flux separately in the upper portion and the lower portion of the reactor and to generate from such measurements a signal representative of axial distribution of power between the upper and lower portions of the reactor core; means to detect a dropped control rod in the reactor and to generate a dropped rod signal in response thereto; means to generate an axial power distribution limit signal representative of a critical axial power distribution for a dropped rod condition; means to compare the axial power distribution signal to the axial power distribution limit signal and to generate an axial power distribution out of limits signal when the axial power distribution signal exceeds the axial power distribution limit signal; and means responsive only to the presence of both the dropped rod signal and the axial power distribution out of limits signal to generate a signal for shutting the reactor down

  19. Physiological and biochemical changes during banana ripening and finger drop

    NARCIS (Netherlands)

    Imsabai, W.; Ketsa, S.; Doorn, van W.G.

    2006-01-01

    Fruit drop of banana is due to breaking at the junction of the pedicel and pulp, and we found no true abscission zone. The breakage seems therefore due to weakening of the peel. We investigated pectin hydrolysis and some properties at the rupture zone, using `Hom Thong` (Musa acuminata, AAA Group)

  20. Linear Oscillations of a Supported Bubble or Drop

    Czech Academy of Sciences Publication Activity Database

    Vejražka, Jiří; Vobecká, Lucie; Tihon, Jaroslav

    2013-01-01

    Roč. 25, č. 6 (2013), 062102 ISSN 1070-6631 R&D Projects: GA ČR GAP101/11/0806 Grant - others:COST(XE) MP1106 Institutional support: RVO:67985858 Keywords : oscillating bubble or drop * linear oscillations * lagrange equation Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.040, year: 2013

  1. Molecular dynamics study of the vaporization of an ionic drop

    Science.gov (United States)

    Galamba, N.

    2010-09-01

    The melting of a microcrystal in vacuum and subsequent vaporization of a drop of NaCl were studied through molecular dynamics simulations with the Born-Mayer-Huggins-Tosi-Fumi rigid-ion effective potential. The vaporization was studied for a single isochor at increasing temperatures until the drop completely vaporized, and gaseous NaCl formed. Examination of the vapor composition shows that the vapor of the ionic drop and gaseous NaCl are composed of neutral species, the most abundant of which, ranging from simple NaCl monomers (ion pairs) to nonlinear polymers, (NanCln)n=2-4. The enthalpies of sublimation, vaporization, and dissociation of the different vapor species are found to be in reasonable agreement with available experimental data. The decrease of the enthalpy of vaporization of the vapor species, with the radius of the drop decrease, accounts for a larger fraction of trimers and tetramers than that inferred from experiments. Further, the rhombic dimer is significantly more abundant than its linear isomer although the latter increases with the temperature. The present results suggest that both trimers and linear dimers may be important to explain the vapor pressure of molten NaCl at temperatures above 1500 K.

  2. Mathematics Anxiety and the Affective Drop in Performance

    Science.gov (United States)

    Ashcraft, Mark H.; Moore, Alex M.

    2009-01-01

    The authors provide a brief review of the history and assessment of math anxiety, its relationship to personal and educational consequences, and its important impact on measures of performance. Overall, math anxiety causes an "affective drop," a decline in performance when math is performed under timed, high-stakes conditions, both in laboratory…

  3. Playing with Water Drops: From Wetting to Optics through Electrostatics

    Science.gov (United States)

    Domps, A.; Roques-Carmes, T.

    2011-01-01

    We present a consistent series of activities, including experiments and basic computational studies, investigating the shape and optical properties of water drops in connection with novel technological devices. Most of the work can be carried out with simple teaching equipment and is well suited to undergraduate students. Firstly, we show how the…

  4. Vortex-ring-induced large bubble entrainment during drop impact

    KAUST Repository

    Thoraval, Marie-Jean; Li, Yangfan; Thoroddsen, Sigurdur T

    2016-01-01

    , produced in the neck between the drop and the pool, controls the crater deformations and pinchoff. However, it is not the strongest vortex rings that are responsible for the large bubbles, as they interact too strongly with the pool surface and self

  5. Barriers Keep Drops Of Water Out Of Infrared Gas Sensors

    Science.gov (United States)

    Murray, Sean K.

    1996-01-01

    Infrared-sensor cells used for measuring partial pressures of CO(2) and other breathable gases modified to prevent entry of liquid water into sensory optical paths of cells. Hydrophobic membrane prevents drops of water entrained in flow from entering optical path from lamp to infrared detectors.

  6. Monte Carlo studies of nuclei and quantum liquid drops

    Energy Technology Data Exchange (ETDEWEB)

    Pandharipande, V.R.; Pieper, S.C.

    1989-01-01

    The progress in application of variational and Green's function Monte Carlo methods to nuclei is reviewed. The nature of single-particle orbitals in correlated quantum liquid drops is discussed, and it is suggested that the difference between quasi-particle and mean-field orbitals may be of importance in nuclear structure physics. 27 refs., 7 figs., 2 tabs.

  7. Effectiveness of eye drops protective against ultraviolet radiation.

    Science.gov (United States)

    Daxer, A; Blumthaler, M; Schreder, J; Ettl, A

    1998-01-01

    To test the effectiveness of commercially available ultraviolet (UV)-protective eye drops (8-hydroxy-1-methylchinolinium methylsulphate) which are recommended for protection against both solar and artificial UV radiation. The spectral transmission in the wavelength range from 250 to 500 nm was investigated in 1-nm steps using a high-resolution double monochromator with holographic gratings of 2,400 lines/mm and a 1,000-watt halogen lamp as light source. The transmission spectrum was measured for different values of the layer thickness. The transmission of a liquid layer of about 10 microns, which corresponds to the thickness of the human tear film, shows a cut-off at 290 nm with a transmission of about 25-50% at shorter wavelengths. For wavelengths longer than 290 nm the transmission is higher than 90%. The threshold time ratio for keratitis formation with and without eye drops is above 0.93 considering solar radiation on the earth's surface and above 0.65 considering radiation from arc-welding, respectively. The transmission spectrum of the eye drops under realistic conditions does not show a protective effect against solar UV radiation. However, there exists reduction of UVC radiation in the spectral range typical of artificial UV sources such as arc-welding. We cannot recommend the application of these eye drops as an UV-protective aid against eye damage by solar UV radiation.

  8. [Dropped head syndrome as first manifestation of primary hyperparathyroid myopathy].

    Science.gov (United States)

    Ota, Kiyobumi; Koseki, Sayo; Ikegami, Kenji; Onishi, Iichiroh; Tomimitsu, Hiyoryuki; Shintani, Shuzo

    2018-03-28

    75 years old woman presented with 6-month history of progressive dropped head syndrome. Neurological examination revealed moderate weakness of flexor and extensor of neck and mild weakness of proximal appendicular muscles with normal deep tendon reflexes. The needle electromyography showed short duration and low amplitude motor unit potential. No fibrillation potentials or positive sharp waves were seen. Biopsy of deltoid muscle was normal. Laboratory studies showed elevated levels of serum calcium (11.8 mg/dl, upper limit of normal 10.1) and intact parathyroid hormone (104 pg/ml, upper limit of normal 65), and decreased level of serum phosphorus (2.3 mg/dl, lower limit of normal 2.7). Ultrasonography and enhanced computed tomography revealed a parathyroid tumor. The tumor was removed surgically. Pathological examination proved tumor to be parathyroid adenoma. Dropped head and weakness of muscles were dramatically improved within a week after the operation. Although hyperparathyroidism is a rare cause of dropped head syndrome, neurologists must recognize hyperparathyroidism as a treatable cause of dropped head syndrome.

  9. Sodium-fuel interaction: dropping experiments and subassembly test

    International Nuclear Information System (INIS)

    Holtbecker, H.; Schins, H.; Jorzik, E.; Klein, K.

    1978-01-01

    Nine dropping tests, which bring together 2 to 4 kg of molten UO 2 with 150 l sodium, showed the incoherency and non-violence of these thermal interactions. The pressures can be described by sodium incipient boiling and bubble collapse; the UO 2 fragmentation by thermal stress and bubble collapse impact forces. The mildness of the interaction is principally due to the slowness and incoherency of UO 2 fragmentation. This means that parametric models which assume instantaneous mixing and fragmentation are of no use for the interpretation of dropping experiments. One parametric model, the Caldarola Fuel Coolant Interaction Variable Mass model, is being coupled to the two dimensional time dependent hydrodynamic REXCO-H code. In a first step the coupling is applicated to a monodimensional geometry. A subassembly test is proposed to validate the model. In this test rapid mixing between UO 2 and sodium has to be obtained. Dispersed molten UO 2 fuel is obtained by flashing injected sodium drops inside a UO 2 melt. This flashing is theoretically explained and modelled as a superheat limited explosion. The measured sodium drop dwell times of two experiments are compared to results obtained from the mentioned theory, which is the basis of the Press 2 Code

  10. Emotional Competence and Drop-Out Rates in Higher Education

    Science.gov (United States)

    Kingston, Emma

    2008-01-01

    Purpose: The purpose of this paper is to compare the emotional competence of first year undergraduates enrolled on a high or low drop-out rate (HDR and LDR, respectively) course, at a newly established university within the UK. Design/methodology/approach: A mixed methods approach using both quantitative and qualitative data collection methods was…

  11. Investigating Call Drops with Field Measurements on Commercial Mobile Phones

    DEFF Research Database (Denmark)

    Messina, Alessandro; Caragea, Gabriel; Compta, Pol Torres

    2013-01-01

    can be done per day. In this paper we present a new methodology to investigate call drops by using mobile phones to do the measurements following the concept of citizen sensing. Therefore, a mobile application for Android is made that collects all necessary data and dumps the measurement results...

  12. La Gotita de Agua (The Little Drop of Water).

    Science.gov (United States)

    Palandra, Maria; Puigdollers, Carmen

    This Spanish reader for children in kindergarten and first grade is about a drop of water that comes to life in a trip through the water cycle of evaporation, condensation, and subsequent return to a drier part of the earth's surface environment. The story is suitable for reading aloud or independent reading. The text is entirely in Spanish.…

  13. Drop spreading and penetration into pre-wetted powders

    KAUST Repository

    Marston, Jeremy; Sprittles, James E.; Zhu, Y.; Li, Erqiang; Vakarelski, Ivan Uriev; Thoroddsen, Sigurdur T

    2013-01-01

    We present results from an experimental study of the impact of liquid drops onto powder beds which are pre-wetted with the impacting liquid. Using high-speed video imaging, we study both the dynamics of the initial spreading regime and drainage

  14. A Novel Virus Causes Scale Drop Disease in Lates calcarifer

    NARCIS (Netherlands)

    Groof, A.; Guelen, L.; Deijs, M.; Wal, van der Y.; Miyata, M.; Ng, K.S.; Grinsven, van L.; Simmelink, B.; Biermann, Y.; Grisez, L.; Lent, van J.W.M.; Ronde, de A.; Chang, S.F.; Schrier, C.; Hoek, L.

    2015-01-01

    From 1992 onwards, outbreaks of a previously unknown illness have been reported in Asian seabass (Lates calcarifer) kept in maricultures in Southeast Asia. The most striking symptom of this emerging disease is the loss of scales. It was referred to as scale drop syndrome, but the etiology remained

  15. Drop-out probabilities of IrisPlex SNP alleles

    DEFF Research Database (Denmark)

    Andersen, Jeppe Dyrberg; Tvedebrink, Torben; Mogensen, Helle Smidt

    2013-01-01

    In certain crime cases, information about a perpetrator's phenotype, including eye colour, may be a valuable tool if no DNA profile of any suspect or individual in the DNA database matches the DNA profile found at the crime scene. Often, the available DNA material is sparse and allelic drop-out...... of true alleles is possible. As part of the validation of the IrisPlex assay in our ISO17025 accredited, forensic genetic laboratory, we estimated the probability of drop-out of specific SNP alleles using 29 and 30 PCR cycles and 25, 50 and 100 Single Base Extension (SBE) cycles. We observed no drop-out...... when the amount of DNA was greater than 125 pg for 29 cycles of PCR and greater than 62 pg for 30 cycles of PCR. With the use of a logistic regression model, we estimated the allele specific probability of drop-out in heterozygote systems based on the signal strength of the observed allele...

  16. Drop-In Clinics for Environmental Science Students

    Directory of Open Access Journals (Sweden)

    Marcie Lynne Jacklin

    2008-12-01

    Full Text Available This paper describes the use of drop in clinics as a new pedagogical approach in information literacy instruction. Although drop in clinics have been used before for library instruction purposes, they are generally aligned with improvement of student academic writing. In the scenario described in this article, in contrast, the drop in clinic is used in a different manner. The drop in clinic as described here offers students an opportunity to engage in self-directed learning by letting them control the content of the instruction. The clinic is offered to students as a way for them to direct their own learning of the course content. It is facilitated by the librarian but it is not controlled by the librarian. The use of this innovative approach is grounded in the example of environmental science and tourism students at a medium sized university in Ontario and it is an approach that has been jointly promoted to students by both the librarian and the course instructor.

  17. Leidenfrost drops cooling surfaces: theory and interferometric measurement

    NARCIS (Netherlands)

    Van Limbeek, Michiel A. J.; Klein Schaarsberg, Martin H.; Sobac, Benjamin; Rednikov, Alexey; Sun, Chao; Colinet, Pierre; Lohse, Detlef

    2017-01-01

    When a liquid drop is placed on a highly superheated surface, it can be levitated by its own vapour. This remarkable phenomenon is referred to as the Leidenfrost effect. The thermally insulating vapour film results in a severe reduction of the heat transfer rate compared to experiments at lower

  18. Rod-drop analysis in fast and thermal spectra

    International Nuclear Information System (INIS)

    Broccoli, U.

    1988-01-01

    The application of Carpenter's method to power profiles resulting from simulated or real rod-drop events has been tested. The conditions which allow the errors to be reduced to a minimum are highlighted. The results obtained show a good agreement with simulated and experimental data. (author). 1 ref., 21 figs, 6 tabs

  19. Analysis of Drop Call Probability in Well Established Cellular ...

    African Journals Online (AJOL)

    Technology in Africa has increased over the past decade. The increase in modern cellular networks requires stringent quality of service (QoS). Drop call probability is one of the most important indices of QoS evaluation in a large scale well-established cellular network. In this work we started from an accurate statistical ...

  20. Predictors of postoperative hemoglobin drop after laparoscopic myomectomy.

    Science.gov (United States)

    Watrowski, Rafał; Jäger, Christoph; Forster, Johannes

    2017-01-01

    Laparoscopic myomectomy (LM) can be associated with significant bleeding. To identify factors influencing the postoperative hemoglobin (Hb) drop after LM. This is a retrospective, single-center study. We evaluated data of 150 consecutive patients undergoing LM due to intramural myomas between 2010 and 2015. The median age of the patients was 37 (23-53) years. The mean diameter of the largest myoma was 5.7 ±2.3 (1.5-12) cm. The mean surgical time was 83 ±38 (35-299) min. The median number of sutures was 3 (1-11). The mean postoperative Hb drop was 1.6 ±1.2 (0-6) g/dl, and the mean estimated blood loss was 261 ±159 (50-1700) ml. In the univariate analysis, the postoperative Hb drop correlated with the duration of surgery (p < 0.001), diameter of the largest myoma (p < 0.001), cumulative myoma weight (p < 0.001), and number of sutures (p < 0.001), but not with patients' age or number of intramural myomas. In the multivariable analysis, the surgical time ( β = 0.395, p < 0.001), diameter of the largest myoma ( β = 0.292, p = 0.03) and preoperative Hb concentration ( β = 0.299, p < 0.001) predicted the postoperative Hb change. Surgical time and dominant myoma diameter are independent predictors of the postoperative Hb drop after LM.

  1. Growing bubbles and freezing drops: depletion effects and tip singularities

    NARCIS (Netherlands)

    Enriquez Paz y Puente, O.R.

    2015-01-01

    In this thesis, the author investigates the growth of gas bubbles in a supersaturated solution and the freezing of water drops when placed on a cold plate. Supersaturated solutions are common in nature and industry; perhaps the best know examples are carbonated drinks, such as beer or soda. These

  2. Mode-routed fiber-optic add-drop filter

    Science.gov (United States)

    Moslehi, Behzad (Inventor); Black, Richard James (Inventor); Shaw, Herbert John (Inventor)

    2000-01-01

    New elements mode-converting two-mode grating and mode-filtering two-mode coupler are disclosed and used as elements in a system for communications, add-drop filtering, and strain sensing. Methods of fabrication for these new two-mode gratings and mode-filtering two-mode couplers are also disclosed.

  3. School drop out in Bangladesh: Insights using panel data

    Science.gov (United States)

    Sabates, R.; Hossain, A.; Lewin, K.M.

    2013-01-01

    This paper examines the relative strength of different factors associated with school drop out using data collected between 2007 and 2009 in Bangladesh. A sample of 9046 children, aged 4-15, was selected across six districts for a household survey focusing on children's school access and experiences. Two groups of children were identified: those…

  4. Hydrocarbon Degradation In Poultry Droppings And Cassava Peels ...

    African Journals Online (AJOL)

    This greenhouse study was aimed at determining the potentials of poultry droppings (PD) and cassava peels (CP) for nutrient-enhanced biodegradation of petroleum hydrocarbon (THC) in a well drained Typic Paleustults using the THC levels and degradation duration as remediation indices. The performance of the organic ...

  5. Degree Flexibility and University Drop-out: The Italian Experience

    Science.gov (United States)

    Di Pietro, Giorgio; Cutillo, Andrea

    2008-01-01

    How to reduce university drop-out is a topic of increasing concern. Although several measures have been the subject of numerous debates, little attention has been given to those impacting on the duration, structure and content of the supply of university education. This paper looks at the Italian experience to see what can be learnt about the…

  6. Capillarity and wetting phenomena drops, bubbles, pearls, waves

    CERN Document Server

    Gennes, Pierre-Gilles; Quéré, David

    2004-01-01

    As I glance out my window in the early morning, I can see beads of droplets gracing a spider web. The film of dew that has settled on the threads is unstable and breaks up spontaneously into droplets. This phenomenon has implications for the treatment of textile fibers (the process known as "oiling"), glass, and carbon. It is no less important when applying mascara! I take my morning shower. The moment I step out, I dry off by way of evaporation (which makes me feel cold) and by dewetting (the process by which dry areas form spontaneously and expand on my skin). As I rush into my car under a pelting rain, my attention is caught by small drops stuck on my windshield. I also notice larger drops rolling down and others larger still that, like snails, leave behind them a trail of water. I ask myself what the difference is between these rolling drops and grains of sand tumbling down an incline. I wonder why the smallest drops remain stuck. The answers to such questions do help car manufacturers treat the surface o...

  7. Contraction of an air disk caught between two different liquids

    KAUST Repository

    Thoraval, M.-J.

    2013-12-17

    When a drop impacts a pool of liquid it entraps a thin disk of air under its center. This disk contracts rapidly into a bubble to minimize surface energy. Herein we use ultra-high-speed imaging to measure the contraction speed of this disk when the drop and pool are of different liquids. For miscible liquids the contraction rate is governed by the weaker of the two surface tensions. Some undulations are observed on the edge of the disk for a water drop impacting a pool of water, but not on a pool of lower surface tension. Similar results are observed for a pair of immiscible liquids.

  8. Two-phase flow boiling pressure drop in small channels

    International Nuclear Information System (INIS)

    Sardeshpande, Madhavi V.; Shastri, Parikshit; Ranade, Vivek V.

    2016-01-01

    Highlights: • Study of typical 19 mm steam generator tube has been undertaken in detail. • Study of two phase flow boiling pressure drop, flow instability and identification of flow regimes using pressure fluctuations is the main focus of present work. • Effect of heat and mass flux on pressure drop and void fraction was studied. • Flow regimes identified from pressure fluctuations data using FFT plots. • Homogeneous model predicted pressure drop well in agreement. - Abstract: Two-phase flow boiling in small channels finds a variety of applications in power and process industries. Heat transfer, boiling flow regimes, flow instabilities, pressure drop and dry out are some of the key issues related to two-phase flow boiling in channels. In this work, the focus is on pressure drop in two-phase flow boiling in tubes of 19 mm diameter. These tubes are typically used in steam generators. Relatively limited experimental database is available on 19 mm ID tube. Therefore, in the present work, the experimental set-up is designed for studying flow boiling in 19 mm ID tube in such a way that any of the different flow regimes occurring in a steam generator tube (from pre-heating of sub-cooled water to dry-out) can be investigated by varying inlet conditions. The reported results cover a reasonable range of heat and mass flux conditions such as 9–27 kW/m 2 and 2.9–5.9 kg/m 2 s respectively. In this paper, various existing correlations are assessed against experimental data for the pressure drop in a single, vertical channel during flow boiling of water at near-atmospheric pressure. A special feature of these experiments is that time-dependent pressures are measured at four locations along the channel. The steady-state pressure drop is estimated and the identification of boiling flow regimes is done with transient characteristics using time series analysis. Experimental data and corresponding results are compared with the reported correlations. The results will be

  9. Model for determining vapor equilibrium rates in the hanging drop method for protein crystal growth

    Science.gov (United States)

    Baird, James K.; Frieden, Richard W.; Meehan, E. J., Jr.; Twigg, Pamela J.; Howard, Sandra B.; Fowlis, William A.

    1987-01-01

    An engineering analysis of the rate of evaporation of solvent in the hanging drop method of protein crystal growth is presented. Results are applied to 18 drop and well arrangements commonly encountered in the laboratory. The chemical nature of the salt, drop size and shape, drop concentration, well size, well concentration, and temperature are taken into account. The rate of evaporation increases with temperature, drop size, and the salt concentration difference between the drop and the well. The evaporation in this model possesses no unique half-life. Once the salt in the drop achieves 80 percent of its final concentration, further evaporation suffers from the law of diminishing returns.

  10. Fabrication of superhydrophobic cotton textiles for water-oil separation based on drop-coating route.

    Science.gov (United States)

    Zhang, Ming; Wang, Chengyu; Wang, Shuliang; Li, Jian

    2013-08-14

    In the present study, we are so excited to report a simple drop-coating method for fabricating the superhydrophobic cotton textiles which can remove the water in oil (or the oil in water). It is confirmed that the superhydrophobic composite thin film containing modified-ZnO nanoparticles and polystyren (PS) has been successfully fabricated on the cotton textiles surface by a single-step procedure, and the superhydrophobic cotton textiles displays an excellent property in water-oil separation which is rarely put forward and studied. The static water contact angle on the superhydrophobic cotton sample surface arranges from 153° to 155°, and stays almost the same after exposure to ambient air or immersion in the corrosive liquids and oil, indicating the considerable range of potential applications for the superhydrophobic cotton textiles fabricated by this simple method. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Student Drop-Out Trends at Sultan Qaboos University and Kuwait University: 2000-2011

    Science.gov (United States)

    Al Ghanboosi, Salim Saleem; Alqahtani, Abdulmuhsen Ayedh

    2013-01-01

    The current study aims to explore the drop-out trends at Sultan Qaboos. University and Kuwait University. Archival data of the period 2000-2011 were used to achieve this goal. Main findings showed that (a) male drop-out rates are higher than female drop-out rates; (b) drop- out rates at scientific colleges are higher; (c) drop-out rates of…

  12. Efect of Pressure-Drop Rate on the Isolation of Cananga Oil using Instantaneous Controlled Pressure-Drop Process.

    Czech Academy of Sciences Publication Activity Database

    Kristiawan, M.; Sobolík, Václav; Al-Haddad, M.; Allaf, K.

    2008-01-01

    Roč. 47, 1 (2008) , s. 66-75 ISSN 0255-2701 Institutional research plan: CEZ:AV0Z40720504 Keywords : cananga oil * essential oil isolation * instantaneous controlled pressure drop (DIC) Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.518, year: 2008

  13. A perspective on the interfacial properties of nanoscopic liquid drops

    International Nuclear Information System (INIS)

    Malijevský, Alexandr; Jackson, George

    2012-01-01

    The structural and interfacial properties of nanoscopic liquid drops are assessed by means of mechanical, thermodynamical, and statistical mechanical approaches that are discussed in detail, including original developments at both the macroscopic level and the microscopic level of density functional theory (DFT). With a novel analysis we show that a purely macroscopic (static) mechanical treatment can lead to a qualitatively reasonable description of the surface tension and the Tolman length of a liquid drop; the latter parameter, which characterizes the curvature dependence of the tension, is found to be negative and has a magnitude of about a half of the molecular dimension. A mechanical slant cannot, however, be considered satisfactory for small finite-size systems where fluctuation effects are significant. From the opposite perspective, a curvature expansion of the macroscopic thermodynamic properties (density and chemical potential) is then used to demonstrate that a purely thermodynamic approach of this type cannot in itself correctly account for the curvature correction of the surface tension of liquid drops. We emphasize that any approach, e.g., classical nucleation theory, which is based on a purely macroscopic viewpoint, does not lead to a reliable representation when the radius of the drop becomes microscopic. The description of the enhanced inhomogeneity exhibited by small drops (particularly in the dense interior) necessitates a treatment at the molecular level to account for finite-size and surface effects correctly. The so-called mechanical route, which corresponds to a molecular-level extension of the macroscopic theory of elasticity and is particularly popular in molecular dynamics simulation, also appears to be unreliable due to the inherent ambiguity in the definition of the microscopic pressure tensor, an observation which has been known for decades but is frequently ignored. The union of the theory of capillarity (developed in the nineteenth

  14. Influence of turbulence on the drop growth in warm clouds, Part I: comparison of numerically and experimentally determined collision kernels

    Directory of Open Access Journals (Sweden)

    Christoph Siewert

    2014-09-01

    Full Text Available This study deals with the comparison of numerically and experimentally determined collision kernels of water drops in air turbulence. The numerical and experimental setups are matched as closely as possible. However, due to the individual numerical and experimental restrictions, it could not be avoided that the turbulent kinetic energy dissipation rate of the measurement and the simulations differ. Direct numerical simulations (DNS are performed resulting in a very large database concerning geometric collision kernels with 1470 individual entries. Based on this database a fit function for the turbulent enhancement of the collision kernel is developed. In the experiments, the collision rates of large drops (radius >7.5μm$> 7.5\\,\\text{\\textmu{}m}$ are measured. These collision rates are compared with the developed fit, evaluated at the measurement conditions. Since the total collision rates match well for all occurring dissipation rates the distribution information of the fit could be used to enhance the statistical reliability and for the first time an experimental collision kernel could be constructed. In addition to the collision rates, the drop size distributions at three consecutive streamwise positions are measured. The drop size distributions contain mainly small drops (radius <7.5μm$< 7.5\\,\\text{\\textmu{}m}$. The measured evolution of the drop size distribution is confronted with model calculations based on the newly derived fit of the collision kernel. It turns out that the observed fast evolution of the drop size distribution can only be modeled if the collision kernel for small drops is drastically increased. A physical argument for this amplification is missing since for such small drops, neither DNSs nor experiments have been performed. For large drops, for which a good agreement of the collision rates was found in the DNS and the experiment, the time for the evolution of the spectrum in the wind tunnel is too short to draw

  15. Fission product removal by containment spray - influence of the distance between the drops on the aerosol collection efficiency; Influence de la densite spatiale des gouttes d'aspersion sur l'efficacite de collecte des produits de fission

    Energy Technology Data Exchange (ETDEWEB)

    Gauchet, N

    2000-07-01

    This work is within the framework of the studies that are conducted at the IPSN concerning the loss of coolant in a nuclear reactor. During this kind of accident, a spray system in the reactor containment induces the scrubbing of fission products in the atmosphere, and allows the decrease of their concentration in the containment. Our objective is to study the influence of the distance between the drops of their aerosol collection efficiency. This is not taken into account in the existing models. We stimulate the various aerosol collection mechanisms with one free falling drop using computational fluid dynamics codes. The mechanisms are: deposition by brownian diffusion, impaction and interception of the particles by the drop, and collection of particles in the presence of steam condensation at the surface of the drop. These phenomena are studied for drops ranging in diameter from 100 to 700 micrometers, falling in a saturated air-steam mixture whose temperature varies between 20 and 140 degrees Celsius, and total pressure varies between 1 and 5 bars. We validate these models with results available in the literature and with experimental results CARAIDAS. Then we apply these models to the case of three aligned drops, which constitutes a case for which the proximity of the drops has a strong influence on the collection of aerosols. While varying the distance between the drop from 5 to 25 drop diameters, we can highlight the modification of the collection efficiency of each mechanism related to the disturbance of the velocity and concentration fields in the vicinity of the drops. We note that the strongest variations of efficiency observed are in the field of impaction, and that the steam condensation at the surface of the drops limits the decrease. (authors)

  16. Four-point potential drop measurements for materials characterization

    International Nuclear Information System (INIS)

    Bowler, Nicola

    2011-01-01

    The technique of measuring the voltage difference (potential drop) between two of the four electrodes of a four-point probe, in order to determine conductivity or surface resistivity of a test piece, is well established in the direct-current (dc) or quasi-dc regime. The technique finds wide usage in the semiconductor industry for the purpose of measuring surface resistivity of semiconductors, and also in the measurement of conductivity of metals, particularly of ferromagnetic metals for which conductivity cannot be easily measured using eddy-current nondestructive evaluation (NDE). In these applications, the conductivity of the test piece is deduced from an analytic formula that depends on the geometry of the probe and test piece. Such a formula requires, as an input, the measured value of the potential drop. Several analytical expressions exist for a variety of test-piece geometries and probe arrangements. Recently, it has been shown that broadband measurements of the potential drop, known as 'alternating current potential drop' (ac PD) measurements, can be used not only to obtain the conductivity of a test piece, but also its linear permeability μ. The beauty of this measurement is that the two parameters are completely decoupled in the quasi-static regime. In fact, μ does not appear in the quasi-static expression for σ. Hence, σ may be obtained from low-frequency ac PD measurements and then μ may be deduced as the frequency increases beyond the quasi-static regime, once σ is known. In this review, both dc and ac solutions that are useful in determining the conductivity of metals and semiconductors, and the permeability of ferromagnetic conductors, are summarized. In particular, flat test pieces with arbitrary thickness are considered. At the next level of complexity, a solution for a half-space coated with a surface layer is given, along with a discussion of the use of the four-point potential drop method for determining thickness of a surface layer, such

  17. Air pollution

    OpenAIRE

    MacKenbach, JP; Henschel, S; Goodman, P; McKee, M

    2013-01-01

    The human costs of air pollution are considerable in Jordan. According to a report published in 2000 by the World Bank under the Mediterranean Environmental Technical Assistance Program (METAP), approximately 600 people die prematurely each year in Jordan because of urban pollution. 50-90% of air pollution in Jordanian towns is caused by road traffic. Readings taken in 2007 by Jordanian researchers showed that levels of black carbon particles in the air were higher in urban areas (caused by v...

  18. Influence of the outlet air temperature on the thermohydraulic behaviour of air coolers

    Directory of Open Access Journals (Sweden)

    Đorđević Emila M.

    2003-01-01

    Full Text Available The determination of the optimal process conditions for the operation of air coolers demands a detailed analysis of their thermohydraulic behaviour on the one hand, and the estimation of the operating costs, on the other. One of the main parameters of the thermohydraulic behaviour of this type of equipment, is the outlet air temperature. The influence of the outlet air temperature on the performance of air coolers (heat transfer coefficient overall heat transfer coefficient, required surface area for heat transfer air-side pressure drop, fan power consumption and sound pressure level was investigated in this study. All the computations, using AirCooler software [1], were applied to cooling of the process fluid and the condensation of a multicomponent vapour mixture on two industrial devices of known geometries.

  19. THE EFFECTS OF SWIRL GENERATOR HAVING WINGS WITH HOLES ON HEAT TRANSFER AND PRESSURE DROP IN TUBE HEAT EXCHANGER

    Directory of Open Access Journals (Sweden)

    Zeki ARGUNHAN

    2006-02-01

    Full Text Available This paper examines the effect of turbulance creators on heat transfer and pressure drop used in concentric heat exchanger experimentaly. Heat exchanger has an inlet tube with 60 mm in diameter. The angle of swirl generators wings is 55º with each wing which has single, double, three and four holes. Swirl generators is designed to easily set to heat exchanger entrance. Air is passing through inner tube of heat exhanger as hot fluid and water is passing outer of inner tube as cool fluid.

  20. Finite amplitude effects on drop levitation for material properties measurement

    Science.gov (United States)

    Ansari Hosseinzadeh, Vahideh; Holt, R. Glynn

    2017-05-01

    The method of exciting shape oscillation of drops to extract material properties has a long history, which is most often coupled with the technique of acoustic levitation to achieve non-contact manipulation of the drop sample. We revisit this method with application to the inference of bulk shear viscosity and surface tension. The literature is replete with references to a "10% oscillation amplitude" as a sufficient condition for the application of Lamb's analytical expressions for the shape oscillations of viscous liquids. Our results show that even a 10% oscillation amplitude leads to dynamic effects which render Lamb's results inapplicable. By comparison with samples of known viscosity and surface tension, we illustrate the complicating finite-amplitude effects (mode-splitting and excess dissipation associated with vorticity) that can occur and then show that sufficiently small oscillations allow us to recover the correct material properties using Lamb's formula.

  1. Development of Active Learning Curriculum for CASPER's Microgravity Drop Tower

    Science.gov (United States)

    Carmona-Reyes, Jorge; Wang, Li; York, Judy; Matthews, Lorin; Laufer, Rene; Cook, Mike; Schmoke, Jimmy; Hyde, Truell

    2016-10-01

    As CASPER's new drop tower comes on line, plans for correlated educational research curricula are underway. CASPER's educational research team is working on developing curricula specific to the CASPER drop tower, modeled on a contest currently in use by (BEST) Robotics Inc. within central Texas independent school districts. The curricula integrates age specific use of computer programming software packages such as ``Scratch'' with industry standard communication protocols and augmented reality applications. Content is constructed around an earth and space science framework, covering subjects such as stars and galaxies, matter and energy, fusion and fission at a middle school level. CASPER faculty are partnering with the Region 12 Service Center; this combination provides a wide range of expertise that includes professional development, pedagogical methods, computational thinking in addition to microgravity and space science research expertise. The details of this work will be presented and samples of the manner in which it is impacting the CASPER research and educational outreach partnership will be discussed.

  2. The formation of intestinal organoids in a hanging drop culture.

    Science.gov (United States)

    Panek, Malgorzata; Grabacka, Maja; Pierzchalska, Malgorzata

    2018-01-25

    Recently organoids have become widely used in vitro models of many tissue and organs. These type of structures, originated from embryonic or adult mammalian intestines, are called "mini guts". They organize spontaneously when intestinal crypts or stem cells are embedded in the extracellular matrix proteins preparation scaffold (Matrigel). This approach has some disadvantages, as Matrigel is undefined (the concentrations of growth factors and other biologically active components in it may vary from batch to batch), difficult to handle and expensive. Here we show that the organoids derived from chicken embryo intestine are formed in a hanging drop without embedding, providing an attractive alternative for currently used protocols. Using this technique we obtained compact structures composed of contiguous organoids, which were generally similar to chicken organoids cultured in Matrigel in terms of morphology and expression of intestinal epithelial markers. Due to the simplicity, high reproducibility and throughput capacity of hanging drop technique our model may be applied in various studies concerning the gut biology.

  3. Pressure drop ana velocity measurements in KMRR fuel rod bundles

    International Nuclear Information System (INIS)

    Yagn, Sun Kyu; Chung, Heung June; Chung, Chang Whan; Chun, Se Young; Song, Chul Wha; Won, Soon Yeun; Chung, Moon Ki

    1990-01-01

    The detailed hydraulic characteristic measurements in subchannels of longitudinally finned rod bundles using one-component LDV(Laser Doppler Velocimeter) were performed. Time mean axial velocity, turbulent intensity, and turbulent micro scales, such as time auto-correlation, Eulerian integral and micro scale, Kolmogorov length and time scale, and Taylor micro length scale were measured. The signals from LDV are inherently more or less discontinuous. The spectra of signals having such intermittent defects can be obtained by the fast Fourier transformation (FFT) of the auto-correlation function. The turbulent crossflow mixing rate between neighboring subchannels and dominant frequencies were evaluated from the measured data. Pressure drop data were obtained for the typical 36-element and 18-element fuel rod bundles fabricated by the design requirement of KMRR fuel and for other type of fuels assembled with 6-fin rods to investigate the fin effects on the pressure drop characteristics

  4. Pressure drop and He II flow through fine mesh screens

    Science.gov (United States)

    Maddocks, J. R.; van Sciver, S. W.

    1989-05-01

    Fluid acquisition systems for He II transfer devices will utilize gallery arms to ensure that the fluid encounters the pump inlet. In near term experiments such as Superfluid Helium on Orbit Transfer (SHOOT), the preferred configuration consists of several rectangular channels which have one side made from a Dutch weave stainless steel screen having 325 x 2300 wires per inch. The effective pore diameter for this screen is about 5 microns. The present paper reports on measurements of pressure drop across a screen when it is subjected to a flow of liquid helium. The experiment measures the time rate of change of the level in two different helium reservoirs connected by a screen-blocked channel. Results with normal helium are compared with predictions based on the Armour-Cannon (1968) equations. The He II data show considerable deviation from the classical result. A discussion of the He II pressure drop results in terms of two fluid hydrodynamics is included.

  5. Toward an early detection of PWR control rod anomalous dropping

    International Nuclear Information System (INIS)

    Blazquez, J.; Vallejo, I.

    1998-01-01

    Some anomalous PWR control rods dropping occurred in the past. It is assumed to be caused by a geometrical deformation of its guide tube, which might be related with neutron fluence and its sharp changes. Now at days, this problem is an open field of research, oriented to the understanding and prevention of the event. Work here is focused toward early detection. A differential equation modelling control rod free fall movement is found. There result three acceleration terms: gravity; friction with fluid; and friction with its guide tube. From recorded Plant measurements, both friction coefficients are estimated. The one from guide tube experiences a large variation in case of anomalous dropping; so relationship with neutron fluence is proposed for the prevention purpose. (Author)

  6. Virtual prototyping of drop test using explicit analysis

    Science.gov (United States)

    Todorov, Georgi; Kamberov, Konstantin

    2017-12-01

    Increased requirements for reliability and safety, included in contemporary standards and norms, has high impact over new product development. New numerical techniques based on virtual prototyping technology, facilitates imrpoving product development cycle, resutling in reduced time/money spent for this stage as well as increased knowledge about certain failure mechanism. So called "drop test" became nearly a "must" step in development of any human operated product. This study aims to demonstrate dynamic behaviour assessment of a structure under impact loads, based on virtual prototyping using a typical nonlinear analysis - explicit dynamics. An example is presneted, based on a plastic container that is used as cartridge for a dispenser machine exposed to various work conditions. Different drop orientations were analyzed and critical load cases and design weaknesses have been found. Several design modifications have been proposed, based on detailed analyses results review.

  7. Active structuring of colloidal armour on liquid drops

    Science.gov (United States)

    Dommersnes, Paul; Rozynek, Zbigniew; Mikkelsen, Alexander; Castberg, Rene; Kjerstad, Knut; Hersvik, Kjetil; Otto Fossum, Jon

    2013-06-01

    Adsorption and assembly of colloidal particles at the surface of liquid droplets are at the base of particle-stabilized emulsions and templating. Here we report that electrohydrodynamic and electro-rheological effects in leaky-dielectric liquid drops can be used to structure and dynamically control colloidal particle assemblies at drop surfaces, including electric-field-assisted convective assembly of jammed colloidal ‘ribbons’, electro-rheological colloidal chains confined to a two-dimensional surface and spinning colloidal domains on that surface. In addition, we demonstrate the size control of ‘pupil’-like openings in colloidal shells. We anticipate that electric field manipulation of colloids in leaky dielectrics can lead to new routes of colloidosome assembly and design for ‘smart armoured’ droplets.

  8. Coefficient of restitution of sports balls: A normal drop test

    International Nuclear Information System (INIS)

    Haron, Adli; Ismail, K A

    2012-01-01

    Dynamic behaviour of bodies during impact is investigated through impact experiment, the simplest being a normal drop test. Normally, a drop test impact experiment involves measurement of kinematic data; this includes measurement of incident and rebound velocity in order to calculate a coefficient of restitution (COR). A high speed video camera is employed for measuring the kinematic data where speed is calculated from displacement of the bodies. Alternatively, sensors can be employed to measure speeds, especially for a normal impact where there is no spin of the bodies. This paper compares experimental coefficients of restitution (COR) for various sports balls, namely golf, table tennis, hockey and cricket. The energy loss in term of measured COR and effects of target plate are discussed in relation to the material and construction of these sports balls.

  9. Evaporation dynamics of completely wetting drops on geometrically textured surfaces

    Science.gov (United States)

    Mekhitarian, Loucine; Sobac, Benjamin; Dehaeck, Sam; Haut, Benoît; Colinet, Pierre

    2017-10-01

    This study deals with the evaporation dynamics of completely wetting and highly volatile drops deposited on geometrically textured but chemically homogeneous surfaces. The texturation consists in a cylindrical pillars array with a square pitch. The triple line dynamics and the drop shape are characterized by an interferometric method. A parametric study is realized by varying the radius and the height of the pillars (at fixed interpillar distance), allowing to distinguish three types of dynamics: i) an evaporation-dominated regime with a receding triple line; ii) a spreading-dominated regime with an initially advancing triple line; iii) a cross-over region with strong pinning effects. The overall picture is in qualitative agreement with a mathematical model showing that the selected regime mostly depends on the value of a dimensionless parameter comparing the time scales for evaporation and spreading into the substrate texture.

  10. Digital Radiography of a Drop Tested 9975 Radioactive Materials Packaging

    International Nuclear Information System (INIS)

    Blanton, P.S.

    2001-01-01

    This paper discusses the use of radiography as a tool for evaluating damage to radioactive material packaging subjected to regulatory accident conditions. The Code of Federal Regulations, 10 CFR 71, presents the performance based requirements that must be used in the development (design, fabrication and testing) of a radioactive material packaging. The use of various non-destructive examination techniques in the fabrication of packages is common. One such technique is the use of conventional radiography in the examination of welds. Radiography is conventional in the sense that images are caught one at a time on film stock. Most recently, digital radiography has been used to characterize internal damage to a package subjected to the 30-foot hypothetical accident conditions (HAC) drop. Digital radiography allows for real time evaluation of the item being inspected. This paper presents a summary discussion of the digital radiographic technique and an example of radiographic results of a 9975 package following the HAC 30-foot drop

  11. Apparatus for decelerating the dropping speed of a control rod

    International Nuclear Information System (INIS)

    Shirakawa, Toshihisa.

    1975-01-01

    Object: To reduce the dropping speed (i.e. withdrawal) of a control rod of the upward insertion type in a BWR type reactor without reducing the speed of insertion. Structure: A control rod is provided with a flaring lower end so as to constitute a speed limiter which is penerated by vertically extending and upwardly open flow ducts that each have a narrow opening and flare upwardly. Thus, at the time of insertion of the control rod, the resistance offered thereto by the surrounding fluid is reduced to provide increased insertion speed. On the other hand, at the time of withdrawal the resistance offered by the fluid is increased to reduce the dropping speed of the control rod. (Ikeda, J.)

  12. VOLTAMMETRY OF AQUEOUS CHLOROAURIC ACID WITH HANGING MERCURY DROP ELECTRODE

    Czech Academy of Sciences Publication Activity Database

    Korshunov, A.; Josypčuk, Bohdan; Heyrovský, Michael

    2011-01-01

    Roč. 76, č. 7 (2011), s. 929-936 ISSN 0010-0765 R&D Projects: GA ČR GAP206/11/1638; GA AV ČR IAA400400806; GA MŠk(CZ) LC06063 Institutional research plan: CEZ:AV0Z40400503 Keywords : aqueous chloauric acid * voltammetry * hanging mercury drop electrode Subject RIV: CG - Electrochemistry Impact factor: 1.283, year: 2011

  13. Foamed emulsion drainage: flow and trapping of drops

    OpenAIRE

    Schneider, Maxime; Zou, Ziqiang; Langevin, Dominique; Salonen, Anniina

    2017-01-01

    Foamed emulsions are ubiquitous in our daily life but the ageing of such systems is still poorly understood. In this study we investigate foam drainage and measure the evolution of the gas, liquid and oil volume fractions inside the foam. We evidence three regimes of ageing. During an initial period of fast drainage, both bubbles and drops are very mobile. As the foam stabilises drainage proceeds leading to a gradual decrease of the liquid fraction and slowing down of drainage. Clusters of oi...

  14. Blood drop size in passive dripping from weapons.

    Science.gov (United States)

    Kabaliuk, N; Jermy, M C; Morison, K; Stotesbury, T; Taylor, M C; Williams, E

    2013-05-10

    Passive dripping, the slow dripping of blood under gravity, is responsible for some bloodstains found at crime scenes, particularly drip trails left by a person moving through the scene. Previous work by other authors has established relationships, under ideal conditions, between the size of the stain, the number of spines and satellite stains, the roughness of the surface, the size of the blood droplet and the height from which it falls. To apply these relationships to infer the height of fall requires independent knowledge of the size of the droplet. This work aims to measure the size of droplets falling from objects representative of hand-held weapons. Pig blood was used, with density, surface tension and viscosity controlled to fall within the normal range for human blood. Distilled water was also tested as a reference. Drips were formed from stainless steel objects with different roughnesses including cylinders of diameter between 10 and 100 mm, and flat plates. Small radius objects including a knife and a wrench were also tested. High speed images of the falling drops were captured. The primary blood drop size ranged from 4.15±0.11 mm up to 6.15±0.15 mm (depending on the object), with the smaller values from sharper objects. The primary drop size correlated only weakly with surface roughness, over the roughness range studied. The number of accompanying droplets increased with the object size, but no significant correlation with surface texture was observed. Dripping of blood produced slightly smaller drops, with more accompanying droplets, than dripping water. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  15. Liquid-drop effects in sub-barrier fusion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, C E; Barbosa, V C; Canto, L F; Donangelo, R

    1988-01-28

    We introduce an operational measure for the enhancement of the fusion cross section at sub-barrier energies in terms of an asymptotic energy shift ..delta..E. It is shown that ..delta..E has a continuously growing trend with the size of the system. This trend is explained in terms of neck formation using the liquid-drop model. Deviations from this trend are attributed to strong coupling to specific channels.

  16. Heat transfer and pressure drop in flow boiling in microchannels

    CERN Document Server

    Saha, Sujoy Kumar

    2016-01-01

    This Brief addresses the phenomena of heat transfer and pressure drop in flow boiling in micro channels occurring in high heat flux electronic cooling. A companion edition in the Springer Brief Subseries on Thermal Engineering and Applied Science to “Critical Heat Flux in Flow Boiling in Micro channels,” by the same author team, this volume is idea for professionals, researchers and graduate students concerned with electronic cooling.

  17. Hydrothermal waves in evaporating sessile drops (APS 2009)

    OpenAIRE

    Brutin, D.; Rigollet, F.; LeNiliot, C.

    2009-01-01

    This fluid dynamics video was submitted to the Gallery of Fluid Motion for the 2009 APS Division of Fluid Dynamics Meeting in Minneapolis, Minnesota. Drop evaporation is a simple phenomena but still unclear concerning the mechanisms of evaporation. A common agreement of the scientific community based on experimental and numerical work evidences that most of the evaporation occurs at the triple line. However, the rate of evaporation is still empirically predicted due to the lack of knowledge o...

  18. Multi drop bus controller for IBM PC/AT

    International Nuclear Information System (INIS)

    Bardik, Yu.I.; Kalistratov, E.N.; Matyushin, A.A.; Obukhov, G.A.; Trofimov, N.N.

    1993-01-01

    The module PC-AT-PBC gives a possibility to create a working place based on the computer IBM PC/AT for testing of hardware which is compatible with the multi drop bus. The KP1830BE31 micro program change turns the module into timing generator for power supply controllers of the UNK correction system. The structure of the module, functional parts, library functions and two application programs have been described. 4 refs., 9 figs

  19. Effect of drop jump technique on the reactive strength index.

    Science.gov (United States)

    Struzik, Artur; Juras, Grzegorz; Pietraszewski, Bogdan; Rokita, Andrzej

    2016-09-01

    The basic drill of plyometric training aimed at improving lower limb power and jump height is a drop jump. This exercise can be performed using different techniques, which substantially affects jump variables. Therefore, the aim of this study was to compare the values of the reactive strength index (RSI) for countermovement drop jumps (CDJs) and bounce drop jumps (BDJs). The study was carried out in a group of 8 male youth basketball players. The tests were conducted using the AMTI BP600900 force plate to measure ground reaction forces and the Noraxon MyoMotion system to record kinematic data. Each player performed two CDJs and two BDJs from the height of 15, 30, 45 and 60 cm. The RSI was calculated as a ratio of jump height and contact time. Moreover, the RSI was determined for the amortization and take-off phases separately. Significant differences (p jumps from 30, 45 and 60 cm. Differences in RSI values for jumps from 15 cm were not significant. Furthermore, CDJ height values were significantly higher (p jump technique that is commonly performed by basketball players.

  20. Kinetic asymmetries between forward and drop jump landing tasks

    Directory of Open Access Journals (Sweden)

    Morgana Alves de Britto

    2015-12-01

    Full Text Available DOI: http://dx.doi.org/10.5007/1980-0037.2015v17n6p661   Landing asymmetry is a risk factor for knee anterior cruciate ligament injury. The aim of this study was to identify kinetic asymmetries in healthy recreational athletes performing different jump-landing techniques. Twelve recreational athletes engaged in regular training underwent kinetic evaluation using two 3D force plates and were analyzed for: (a three-dimensional peak forces, (b time to peak vertical force, and (c initial phase asymmetries. All data were collected during performance of unilateral and bilateral trials of forward and drop jump tasks. Forward jump-landing tasks elicited greater kinetic asymmetry than drop-landing tasks. Regardless of jump-landing technique, the preferred leg experienced higher forces than the non-preferred leg. The initial landing phase showed more kinetic asymmetries than the later phase when peak vertical forces occur. It was concluded that when screening athletes for kinetic asymmetries that may predispose them to injury, forward jump-landing tasks and the early landing phase might show more kinetic asymmetries than drop jump-landing tasks and the late landing phase, respectively.

  1. Drop weld thermal injuries to the middle ear.

    LENUS (Irish Health Repository)

    Keogh, I J

    2009-01-01

    Drop weld injuries to the tympanic membrane and middle ear caused by hot sparks or molten slag are a rare but significant injury. Steel workers and welders who are regularly exposed to flying sparks and molten metal slag are predisposed. This type of transtympanic thermal injury occurs when the slag literally drops into the external auditory canal and burns through the tympanic membrane. A spectrum of severity of injury occurs which includes chronic tympanic membrane perforation, chronic otorrhoea, facial nerve injury and deafness. Chronic tympanic membrane perforation is the most common sequelae and is perhaps one of the most challenging of all perforations to repair The combination of direct thermal injury and foreign body reaction results in continuing or recurrent suppuration. The foreign body reaction is due to the embedding of metal slag in the promontorial mucosa. We present a case of drop weld injury to the left tympanic membrane, resulting in chronic middle ear inflammation, otorrhoea and tympanic perforation. CAT scan clearly demonstrated a metallic promontorial foreign body with localised bone erosion. We emphasise the importance of removing these foreign bodies and recommend a cartilage reinforced underlay tympanoplasty technique to repair these perforations. Transtympanic thermal trauma is a preventable occupational injury, which is best, avoided by earplugs and increased awareness.

  2. Application of Hanging Drop Technique for Kidney Tissue Culture.

    Science.gov (United States)

    Wang, Shaohui; Wang, Ximing; Boone, Jasmine; Wie, Jin; Yip, Kay-Pong; Zhang, Jie; Wang, Lei; Liu, Ruisheng

    2017-01-01

    The hanging drop technique is a well-established method used in culture of animal tissues. However, this method has not been used in adult kidney tissue culture yet. This study was to explore the feasibility of using this technique for culturing adult kidney cortex to study the time course of RNA viability in the tubules and vasculature, as well as the tissue structural integrity. In each Petri dish with the plate covered with sterile buffer, a section of mouse renal cortex was cultured within a drop of DMEM culture medium on the inner surface of the lip facing downward. The tissue were then harvested at each specific time points for Real-time PCR analysis and histological studies. The results showed that the mRNA level of most Na+ related transporters and cotransporters were stably maintained within 6 hours in culture, and that the mRNA level of most receptors found in the vasculature and glomeruli were stably maintained for up to 9 days in culture. Paraffin sections of the cultured renal cortex indicated that the tubules began to lose tubular integrity after 6 hours, but the glomeruli and vasculatures were still recognizable up to 9 days in culture. We concluded that adult kidney tissue culture by hanging drop method can be used to study gene expressions in vasculature and glomeruli. © 2017 The Author(s). Published by S. Karger AG, Basel.

  3. A hanging drop culture method to study terminal erythroid differentiation.

    Science.gov (United States)

    Gutiérrez, Laura; Lindeboom, Fokke; Ferreira, Rita; Drissen, Roy; Grosveld, Frank; Whyatt, David; Philipsen, Sjaak

    2005-10-01

    To design a culture method allowing the quantitative and qualitative analysis of terminal erythroid differentiation. Primary erythroid progenitors derived either from mouse tissues or from human umbilical cord blood were differentiated using hanging drop cultures and compared to methylcellulose cultures. Cultured cells were analyzed by FACS to assess differentiation. We describe a practical culture method by adapting the previously described hanging drop culture system to conditions allowing terminal differentiation of primary erythroid progenitors. Using minimal volumes of media and small numbers of cells, we obtained quantitative terminal erythroid differentiation within two days of culture in the case of murine cells and 4 days in the case of human cells. The established methods for ex vivo culture of primary erythroid progenitors, such as methylcellulose-based burst-forming unit-erythroid (BFU-E) and colony-forming unit-erythroid (CFU-E) assays, allow the detection of committed erythroid progenitors but are of limited value to study terminal erythroid differentiation. We show that the application of hanging drop cultures is a practical alternative that, in combination with clonogenic assays, enables a comprehensive assessment of the behavior of primary erythroid cells ex vivo in the context of genetic and drug-induced perturbations.

  4. Application of Hanging Drop Technique for Kidney Tissue Culture

    Directory of Open Access Journals (Sweden)

    Shaohui Wang

    2017-05-01

    Full Text Available Background/Aims: The hanging drop technique is a well-established method used in culture of animal tissues. However, this method has not been used in adult kidney tissue culture yet. This study was to explore the feasibility of using this technique for culturing adult kidney cortex to study the time course of RNA viability in the tubules and vasculature, as well as the tissue structural integrity. Methods: In each Petri dish with the plate covered with sterile buffer, a section of mouse renal cortex was cultured within a drop of DMEM culture medium on the inner surface of the lip facing downward. The tissue were then harvested at each specific time points for Real-time PCR analysis and histological studies. Results: The results showed that the mRNA level of most Na+ related transporters and cotransporters were stably maintained within 6 hours in culture, and that the mRNA level of most receptors found in the vasculature and glomeruli were stably maintained for up to 9 days in culture. Paraffin sections of the cultured renal cortex indicated that the tubules began to lose tubular integrity after 6 hours, but the glomeruli and vasculatures were still recognizable up to 9 days in culture. Conclusions: We concluded that adult kidney tissue culture by hanging drop method can be used to study gene expressions in vasculature and glomeruli.

  5. Seismic II over I Drop Test Program results and interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, B.

    1993-03-01

    The consequences of non-seismically qualified (Category 2) objects falling and striking essential seismically qualified (Category 1) objects has always been a significant, yet analytically difficult problem, particularly in evaluating the potential damage to equipment that may result from earthquakes. Analytical solutions for impact problems are conservative and available for mostly simple configurations. In a nuclear facility, the {open_quotes}sources{close_quotes} and {open_quotes}targets{close_quotes} requiring evaluation are frequently irregular in shape and configuration, making calculations and computer modeling difficult. Few industry or regulatory rules are available on this topic even though it is a source of considerable construction upgrade costs. A drop test program was recently conducted to develop a more accurate understanding of the consequences of seismic interactions. The resulting data can be used as a means to improve the judgment of seismic qualification engineers performing interaction evaluations and to develop realistic design criteria for seismic interactions. Impact tests on various combinations of sources and targets commonly found in one Savannah River Site (SRS) nuclear facility were performed by dropping the sources from various heights onto the targets. This report summarizes results of the Drop Test Program. Force and acceleration time history data are presented as well as general observations on the overall ruggedness of various targets when subjected to impacts from different types of sources.

  6. Seismic II over I Drop Test Program results and interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, B.

    1993-03-01

    The consequences of non-seismically qualified (Category 2) objects falling and striking essential seismically qualified (Category 1) objects has always been a significant, yet analytically difficult problem, particularly in evaluating the potential damage to equipment that may result from earthquakes. Analytical solutions for impact problems are conservative and available for mostly simple configurations. In a nuclear facility, the [open quotes]sources[close quotes] and [open quotes]targets[close quotes] requiring evaluation are frequently irregular in shape and configuration, making calculations and computer modeling difficult. Few industry or regulatory rules are available on this topic even though it is a source of considerable construction upgrade costs. A drop test program was recently conducted to develop a more accurate understanding of the consequences of seismic interactions. The resulting data can be used as a means to improve the judgment of seismic qualification engineers performing interaction evaluations and to develop realistic design criteria for seismic interactions. Impact tests on various combinations of sources and targets commonly found in one Savannah River Site (SRS) nuclear facility were performed by dropping the sources from various heights onto the targets. This report summarizes results of the Drop Test Program. Force and acceleration time history data are presented as well as general observations on the overall ruggedness of various targets when subjected to impacts from different types of sources.

  7. Modeling axisymmetric flows dynamics of films, jets, and drops

    CERN Document Server

    Middleman, Stanley

    1995-01-01

    This concise book is intended to fulfill two purposes: to provide an important supplement to classic texts by carrying fluid dynamics students on into the realm of free boundary flows; and to demonstrate the art of mathematical modeling based on knowledge, intuition, and observation. In the authors words, the overall goal is make the complex simple, without losing the essence--the virtue--of the complexity.Modeling Axisymmetric Flows: Dynamics of Films, Jets, and Drops is the first book to cover the topics of axisymmetric laminar flows; free-boundary flows; and dynamics of drops, jets, and films. The text also features comparisons of models to experiments, and it includes a large selection of problems at the end of each chapter.Key Features* Contains problems at the end of each chapter* Compares real-world experimental data to theory* Provides one of the first comprehensive examinations of axisymmetric laminar flows, free-boundary flows, and dynamics of drops, jets, and films* Includes development of basic eq...

  8. [A case of hypothyroidism displaying "dropped head" syndrome].

    Science.gov (United States)

    Furutani, Rikiya; Ishihara, Kenji; Miyazawa, Yumi; Suzuki, Yoshio; Shiota, Jun-Ichi; Kawamur, Mitsuru

    2007-01-01

    We describe a patient with hypothyroidism displaying "dropped head" syndrome. A 50-year-old man visited our clinic because he was unable to hold his head in the natural position. He had weakness and hypertrophy of the neck extensor muscles. Tendon reflexes were diminished or absent in all limbs. Mounding phenomena were observed in the bilateral upper extremities. Blood biochemical analysis revealed hypothyroidism, hyperlipidemia, and elevated levels of muscle-derived enzymes. Magnetic resonance imaging (MRI) of the neck demonstrated swelling and hyperintensity of the neck extensor muscles on T2-weighted images. The result of biopsy of the right biceps brachii muscle suggested mild atrophy of type 2 fibers. The diameters of the muscle fibers exhibited mild variation. No inflammatory changes were observed. We diagnosed hin as having "dropped head" syndrome due to hypothyroidism. Administration of thyroid hormone agent gradually improved his condition, and he became able to hold his head in the natural position. Levels of muscle-derived enzymes normalized and his hyperlipidemia remitted. Neck MRI also revealed improvement. Our findings suggest that hypothyroidism should be considered in the differential diagnosis of "dropped head" syndrome, although only a few cases like ours have been reported.

  9. Experimental observations of anomalous potential drops over ion density cavities

    International Nuclear Information System (INIS)

    Bohm, M.

    1991-08-01

    Experiments are reported showing the plasma potential response when a step voltage is applied over the plasma column between the two plasma sources in a triple plasma machine. The time resolution is sufficient to resolve potential variations caused essentially by the electron motion, and two independent probe methods are used to obtain this time resolution. Depending on the initial conditions two different responses were observed on the time scale of the electron motion. When the initial ion density varies along the plasma column and has a local minimum (that is, forms an ion density cavity), the applied potential drop becomes distributed over the cavity after a few electron transit times. Later the profile steepens to a double layer on the time scale of the ion motion. The width of the cavity is comparable to the length of the plasma column. When the initial density is axially uniform, most of the potential drop instead concentrates to a narrow region at the low potential end of the plasma column after a few electron transit times. On the time scale of the ion motion this potential drop begins to propagate into the plasma as a double layer. The results obtained are consistent with those from numerical simulations with similar boundary conditions. Further experiments are necessary to get conclusive insight into the voltage supporting capability of an ion density cavity. (au) (34 refs.)

  10. Seismic II over I Drop Test Program results and interpretation

    International Nuclear Information System (INIS)

    Thomas, B.

    1993-03-01

    The consequences of non-seismically qualified (Category 2) objects falling and striking essential seismically qualified (Category 1) objects has always been a significant, yet analytically difficult problem, particularly in evaluating the potential damage to equipment that may result from earthquakes. Analytical solutions for impact problems are conservative and available for mostly simple configurations. In a nuclear facility, the open-quotes sourcesclose quotes and open-quotes targetsclose quotes requiring evaluation are frequently irregular in shape and configuration, making calculations and computer modeling difficult. Few industry or regulatory rules are available on this topic even though it is a source of considerable construction upgrade costs. A drop test program was recently conducted to develop a more accurate understanding of the consequences of seismic interactions. The resulting data can be used as a means to improve the judgment of seismic qualification engineers performing interaction evaluations and to develop realistic design criteria for seismic interactions. Impact tests on various combinations of sources and targets commonly found in one Savannah River Site (SRS) nuclear facility were performed by dropping the sources from various heights onto the targets. This report summarizes results of the Drop Test Program. Force and acceleration time history data are presented as well as general observations on the overall ruggedness of various targets when subjected to impacts from different types of sources

  11. Coalescence of liquid drops: Different models versus experiment

    KAUST Repository

    Sprittles, J. E.

    2012-01-01

    The process of coalescence of two identical liquid drops is simulated numerically in the framework of two essentially different mathematical models, and the results are compared with experimental data on the very early stages of the coalescence process reported recently. The first model tested is the "conventional" one, where it is assumed that coalescence as the formation of a single body of fluid occurs by an instant appearance of a liquid bridge smoothly connecting the two drops, and the subsequent process is the evolution of this single body of fluid driven by capillary forces. The second model under investigation considers coalescence as a process where a section of the free surface becomes trapped between the bulk phases as the drops are pressed against each other, and it is the gradual disappearance of this "internal interface" that leads to the formation of a single body of fluid and the conventional model taking over. Using the full numerical solution of the problem in the framework of each of the two models, we show that the recently reported electrical measurements probing the very early stages of the process are better described by the interface formation/disappearance model. New theory-guided experiments are suggested that would help to further elucidate the details of the coalescence phenomenon. As a by-product of our research, the range of validity of different "scaling laws" advanced as approximate solutions to the problem formulated using the conventional model is established. © 2012 American Institute of Physics.

  12. Motion of Drops on Surfaces with Wettability Gradients

    Science.gov (United States)

    Subramanian, R. Shankar; McLaughlin, John B.; Moumen, Nadjoua; Qian, Dongying

    2002-11-01

    A liquid drop present on a solid surface can move because of a gradient in wettability along the surface, as manifested by a gradient in the contact angle. The contact angle at a given point on the contact line between a solid and a liquid in a gaseous medium is the angle between the tangent planes to the liquid and the solid surfaces at that point and is measured within the liquid side, by convention. The motion of the drop occurs in the direction of increasing wettability. The cause of the motion is the net force exerted on the drop by the solid surface because of the variation of the contact angle around the periphery. This force causes acceleration of an initially stationary drop, and leads to its motion in the direction of decreasing contact angle. The nature of the motion is determined by the balance between the motivating force and the resisting hydrodynamic force from the solid surface and the surrounding gaseous medium. A wettability gradient can be chemically induced as shown by Chaudhury and Whitesides who provided unambiguous experimental evidence that drops can move in such gradients. The phenomenon can be important in heat transfer applications in low gravity, such as when condensation occurs on a surface. Daniel et al have demonstrated that the velocity of a drop on a surface due to a wettability gradient in the presence of condensation can be more than two orders of magnitude larger than that observed in the absence of condensation. In the present research program, we have begun to study the motion of a drop in a wettability gradient systematically using a model system. Our initial efforts will be restricted to a system in which no condensation occurs. The experiments are performed as follows. First, a rectangular strip of approximate dimensions 10 x 20 mm is cut out of a silicon wafer. The strip is cleaned thoroughly and its surface is exposed to the vapor from an alkylchlorosilane for a period lasting between one and two minutes inside a

  13. Modifying Char Dustcake Pressure Drop Using Particulate Additives

    Energy Technology Data Exchange (ETDEWEB)

    Landham, C.; Dahlin, R.S.; Martin, R.A.; Guan, X.

    2002-09-19

    Coal gasification produces residual particles of coal char, coal ash, and sorbent that are suspended in the fuel gas stream exiting the gasifier. In most cases, these particles (referred to, hereafter, simply as char) must be removed from the stream prior to sending the gas to a turbine, fuel cell, or other downstream device. Currently, the most common approach to cleaning the gas stream at high temperature and pressure is by filtering the particulate with a porous ceramic or metal filter. However, because these dusts frequently have small size distributions, irregular morphology, and high specific surface areas, they can have very high gas flow resistance resulting in hot-gas filter system operating problems. Typical of gasification chars, the hot-gas filter dustcakes produced at the Power Systems Development Facility (PSDF) during recent coal gasification tests have had very high flow resistance (Martin et al, 2002). The filter system has been able to successfully operate, but pressure drops have been high and filter cleaning must occur very frequently. In anticipation of this problem, a study was conducted to investigate ways of reducing dustcake pressure drop. This paper will discuss the efficacy of adding low-flow-resistance particulate matter to the high-flow-resistance char dustcake to reduce dustcake pressure drop. The study had two parts: a laboratory screening study and confirming field measurements at the PSDF.

  14. Personality disorders and treatment drop out in the homeless

    Directory of Open Access Journals (Sweden)

    Salavera C

    2013-03-01

    Full Text Available Carlos Salavera,1 José M Tricás,2 Orosia Lucha21Faculty of Education, University of Zaragoza, Zaragoza, Spain; 2Physiotherapy Research Unit, University of Zaragoza, Zaragoza, SpainAbstract: The homeless drop out of treatment relatively frequently. Also, prevalence rates of personality disorders are much higher in the homeless group than in the general population. We hypothesize that when both variables coexist – homelessness and personality disorders – the possibility of treatment drop out grows. The aim of this study was to analyze the hypotheses, that is, to study how the existence of personality disorders affects the evolution of and permanence in treatment. One sample of homeless people in a therapeutic community (N = 89 was studied. The structured clinical interview for the diagnostic and statistical manual of mental disorders (DSM-IV-TR was administered and participants were asked to complete the Millon Clinical Multiaxial Inventory-II (MCMI-II. Cluster B personality disorders (antisocial, borderline, and narcissistic avoided permanence in the treatment process while cluster C disorders, as dependent, favored adhesion to the treatment and improved the prognosis. Knowledge of these personality characteristics should be used to advocate for better services to support homeless people and prevent their dropping out before completing treatment.Keywords: MCMI-II, abandonment, personality disorder, homeless

  15. A drop penetration method to measure powder blend wettability.

    Science.gov (United States)

    Wang, Yifan; Liu, Zhanjie; Muzzio, Fernando; Drazer, German; Callegari, Gerardo

    2018-03-01

    Water wettability of pharmaceutical blends affects important quality attributes of final products. We investigate the wetting properties of a pharmaceutical blend lubricated with Magnesium Stearate (MgSt) as a function of the mechanical shear strain applied to the blend. We measure the penetration dynamics of sessile drops deposited on slightly compressed powder beds. We consider a blend composed of 9% Acetaminophen 90% Lactose and 1% MgSt by weight. Comparing the penetration time of water and a reference liquid Polydimethylsiloxane (silicon oil) we obtain an effective cosine of the contact angle with water, based on a recently developed drop penetration method. We repeat the experiments for blends exposed to increasing levels of shear strain and demonstrate a significant decrease in water wettability (decrease in the cosine of the contact angle). The results are consistent with the development of a hydrophobic film coating the powder particles as a result of the increased shear strain. Finally, we show that, as expected dissolution times increase with the level of shear strain. Therefore, the proposed drop penetration method could be used to directly assess the state of lubrication of a pharmaceutical blend and act as a quality control on powder blend attributes before the blend is tableted. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Conversion Disorder; an Unusual Etiology of Unilateral Foot Drop.

    Science.gov (United States)

    Ayaz, Saeed Bin; Matee, Sumeera; Malik, Riffat; Ahmad, Khalil

    2015-06-01

    Foot drop is generally a consequence of common peroneal or sciatic nerve injury or L5 radiculopathy but rarely, it can be a manifestation of conversion disorder. A 24-year-old male presented with a foot drop on left side that developed overnight. He had difficulty walking with a trunk tilt towards right side and numbness in left leg up to mid-thigh. The initial diagnosis by the general practitioner was common peroneal nerve injury, which was not supported by the subsequent detailed examination in the physiatry department. Routine laboratory investigations, computed tomographic scan of brain and electrophysiological evaluation were normal. In a multidisciplinary team evaluation involving a psychiatrist, he was diagnosed to be suffering from conversion disorder and was advised gait retraining, cognitive and behavioral therapy and tablet venlafaxine. By sixth day of treatment, the patient was able to walk independently with a normal gait pattern and reported complete recovery of his symptoms. In the absence of an identifiable organic cause of foot drop in a patient, conversion disorder may be considered necessitating early intervention by a psychiatrist.

  17. Air lock

    International Nuclear Information System (INIS)

    Palkovich, P.; Gruber, J.; Madlener, W.

    1974-01-01

    The patent refers to an air lock system preferably for nuclear stations for the transport of heavy loads by means of a trolley on rails. For opening and closing of the air lock parts of the rails are removed, e.g. by a second rail system perpendicular to the main rails. (P.K.)

  18. The effect of spherical hub-nose position on pressure drop in an oscillating water column system for wave energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Taha, Z.; Ahmad, N.; Ghazilla, R.A.R.; Yap, H.J.; Ya, T.Y.T.; Passarella, R.; Hasanuddin, I.; Yunus, M. [Malaya Univ. (Malaysia). Centre for Product Design and Manufacturing; Sugiyono [Malaya Univ., (Malaysia). Centre for Product Design and Manufacturing; Gadjah Mada Univ. (Indonesia). Dept. of Mechanical and Industrial Engineering

    2009-07-01

    The use of renewable energy sources as an alternative to conventional fuels was discussed with particular reference to ocean wave energy and its potential to contribute to the energy requirements of coastal nations. Ocean wave energy has been harnessed and converted into electricity using processes and technologies that are environmentally sound. The oscillating water column (OWC) system is considered to be among the most promising technology for harnessing wave energy. This paper presented the results of a study that investigated the pressure drop in an OWC system and the effect of spherical hub-nose position in an annular duct. Computational fluid dynamics (CFD) analysis was used under steady flow conditions for several hub-nose positions to determine the characteristic of pressure drop. The study showed that the hub-nose position influenced the pressure drop in the OWC system. The highest value of the pressure drop in this study occurred when the hub-nose was at the position of 0.0 m relative to the end of the converging cone. The pressure drop decreased when the hub-nose position moved away from the end of converging cone. The lowest value occurred at the position of -0.5 m. It was concluded that despite the numerically small change in pressure drop, this phenomenon should be considered in the design process of the OWC system because of the operational condition of the system at low-pressure pneumatic power. The pressure drop actually reduces the amount of energy that will be converted by the air turbine. 9 refs., 2 tabs., 6 figs.

  19. Experimental and theoretical analysis of the rate of solvent equilibration in the hanging drop method of protein crystal growth

    Science.gov (United States)

    Fowlis, William W.; Delucas, Lawrence J.; Twigg, Pamela J.; Howard, Sandra B.; Meehan, Edward J.

    1988-01-01

    The principles of the hanging-drop method of crystal growth are discussed, and the rate of water evaporation in a water droplet (containing protein, buffer, and a precipitating agent) suspended above a well containing a double concentration of precipitating agent is investigated theoretically. It is shown that, on earth, the rate of evaporation may be determined from diffusion theory and the colligative properties of solutions. The parameters affecting the rate of evaporation include the temperature, the vapor pressure of water, the ionization constant of the salt, the volume of the drop, the contact angle between the droplet and the coverslip, the number of moles of salt in the droplet, the number of moles of water and salt in the well, the molar volumes of water and salt, the distance from the droplet to the well, and the coefficient of diffusion of water vapor through air. To test the theoretical equations, hanging-drop experiments were conducted using various reagent concentrations in 25-microliter droplets and measuring the evaporation times at 4 C and 25 C. The results showed good agreement with the theory.

  20. Experimental research of pressure drop in packed beds of monosized spheres a novel correlation for pressure drop calculation

    Directory of Open Access Journals (Sweden)

    Stamenić Mirjana S.

    2017-01-01

    Full Text Available Flow through packed beds of spheres is a complex phenomenon and it has been extensively studied. Although, there is many different correlations there is still no reliable universal equation for prediction of pressure drop. The paper presents the results of experimental research of pressure drop in packed bed of monosized spheres of three different diameters, 8, 11, and 13 mm set within cylindrical vessel of diameter dk = 74 mm, and two different heights of packed bed, hs = 300 and 400 mm. It has been proposed modification of widely used Ergun’s equation in the form of fp = [150+1.3•(Rep/(1-ε]•(1-ε2/(ε3×Rep and new correlation fp = 1/[(27.4-25700•dh/Rep+0.545+6.85•dh] for pressure drop calculation in simple and convenient form for hand and computer calculations. For total number of 362 experimental runs the correlation ratio of the modified Ergun’s relation was CR = 99.3%, and standard deviation SD = 12.2%, while novel relation has CR = 93.7% and SD = 5.4%. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. 33049

  1. A review on water fault diagnosis of PEMFC associated with the pressure drop

    International Nuclear Information System (INIS)

    Pei, Pucheng; Li, Yuehua; Xu, Huachi; Wu, Ziyao

    2016-01-01

    Highlights: • Reviewed the effect factors and estimations of pressure drop associated with water fault diagnosis. • Reviewed pressure drop-based water fault diagnosis using different indicators. • Deviation of pressure drop is used frequently to diagnose water fault. • Reviewed recovery strategies based on pressure drop used in commercial PEMFC. • Merits, demerits and application prospects of pressure drop-based water fault diagnosis are discussed. - Abstract: The pressure difference between the inlet and outlet of the reactant in fuel cells is called the pressure drop, which is related to the water amount inside the fuel cells. In recent years there have been many studies that used the pressure drop to detect the water content and diagnose water fault of proton exchange membrane fuel cells (PEMFCs). To our knowledge, there has not been a systematic review of these studies. In this paper, the effect variables of pressure drop are reviewed firstly. Then estimations of the theoretical pressure drop are reviewed mainly based on the following four aspects: Bernoulli’s equation, two-phase flow multiplier, Darcy’s law and artificial intelligence. Afterward, the water fault diagnosis based on the pressure drop using the following six indicators are reviewed: indicator of direct pressure drop, its deviation, frequency, multiplier, the ratio of pressure drop to flow rate and the flooding degree. In addition, the strategies of water fault recovery are also summarized. Finally the merits, demerits and application prospects of pressure drop-based water fault diagnosis are presented.

  2. The hydrodynamics of segmented two-phase flow in a circular tube with rapidly dissolving drops.

    Science.gov (United States)

    Leary, Thomas F; Ramachandran, Arun

    2017-05-03

    This article discusses boundary integral simulations of dissolving drops flowing through a cylindrical tube for large aspect ratio drops. The dynamics of drop dissolution is determined by three dimensionless parameters: λ, the viscosity of the drop fluid relative to the suspending fluid; Ca, the capillary number defining the ratio of the hydrodynamic force to the interfacial tension force; and k, a dissolution constant based on the velocity of dissolution. For a single dissolving drop, the velocity in the upstream region is greater than the downstream region, and for sufficiently large k, the downstream velocity can be completely reversed, particularly at low Ca. The upstream end of the drop travels faster and experiences greater deformation than the downstream end. The film thickness, δ, between the drop and the tube wall is governed by a delicate balance between dissolution and changes in the outer fluid velocity resulting from a fixed pressure drop across the tube and mass continuity. Therefore, δ, and consequently, the drop average velocity, can increase, decrease or be relatively invariant in time. For two drops flowing in succession, while low Ca drops maintain a nearly constant separation distance during dissolution, at sufficiently large Ca, for all values of k, dissolution increases the separation distance between drops. Under these conditions, the liquid segments between two adjacent drops can no longer be considered as constant volume stirred tanks. These results will guide the choices of geometry and operating parameters that will facilitate the characterization of fast gas-liquid reactions via two-phase segmented flows.

  3. Comparison of novel lipid-based eye drops with aqueous eye drops for dry eye: a multicenter, randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Simmons PA

    2015-04-01

    Full Text Available Peter A Simmons, Cindy Carlisle-Wilcox, Joseph G Vehige Ophthalmology Research and Development, Allergan, Inc., Irvine, CA, USA Background: Dry eye may be caused or exacerbated by deficient lipid secretion. Recently, lipid-containing artificial tears have been developed to alleviate this deficiency. Our study compared the efficacy, safety, and acceptability of lipid-containing eye drops with that of aqueous eye drops.Methods: A non-inferiority, randomized, parallel-group, investigator-masked multicenter trial was conducted. Subjects with signs and symptoms of dry eye were randomized to use one of two lipid-containing artificial tears, or one of two aqueous artificial tears. Subjects instilled assigned drops in each eye at least twice daily for 30 days. The primary efficacy analysis tested non-inferiority of a preservative-free lipid tear formulation (LT UD to a preservative-free aqueous tear formulation (AqT UD for change in Ocular Surface Disease Index (OSDI score from baseline at day 30. Secondary measures included OSDI at day 7, tear break-up time (TBUT, corneal and conjunctival staining, Schirmer’s test, acceptability and usage questionnaires, and safety assessments.Results: A total of 315 subjects were randomized and included in the analyses. Subjects reported instilling a median of three doses of study eye drops per day in all groups. At days 7 and 30, all groups showed statistically significant improvements from baseline in OSDI (P<0.001 and TBUT (P≤0.005. LT UD was non-inferior to AqT UD for mean change from baseline in OSDI score at day 30. No consistent or clinically relevant differences for the other efficacy variables were observed. Acceptability was generally similar across the groups and there was a low incidence of adverse events.Conclusion: In this heterogeneous population of dry eye subjects, there were no clinically significant differences in safety, effectiveness, and acceptability between lipid-containing artificial tears

  4. Air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, W; Mainwaring, S J

    1984-01-01

    This book deals with the nature of air pollution. The numerous sources of unwanted gases and dust particles in the air are discussed. Details are presented of the effects of pollutants on man, animals, vegetation and on inanimate materials. Methods used to measure, monitor and control air pollution are presented. The authors include information on the socio-economic factors which impinge on pollution control and on the problems the future will bring as methods of generating energy change and industries provide new sources of pollutants.

  5. Fault roughness and strength heterogeneity control earthquake size and stress drop

    KAUST Repository

    Zielke, Olaf; Galis, Martin; Mai, Paul Martin

    2017-01-01

    An earthquake's stress drop is related to the frictional breakdown during sliding and constitutes a fundamental quantity of the rupture process. High-speed laboratory friction experiments that emulate the rupture process imply stress drop values

  6. STUDY ON SOFTENING AND DROPPING PROPERTIES OF METALIZED BURDEN INSIDE BLAST FURNACE

    Directory of Open Access Journals (Sweden)

    Bi-yang Tuo

    2014-12-01

    Full Text Available The inferences of burden metallization rate on softening-melting dropping properties were investigated through softening-melting dropping test of three kinds of metalized burden pressure drop. The results indicated that the softeningmelting temperature interval of pre-reduction mixed burden is bigger than primeval mixed burden, the melting interval narrow with the rise of metallization rate of ferric burden as well as dropping temperature interval. The average pressure drop, maximum pressure drop and softening-melting dropping properties eigenvalue decrease with the rise of metallization rate of ferric burden. Besides, the dropping temperature of burden reduces with the rise of carbon content of molten iron. The combination high metalized burden and higher carbon content of molten iron is benefit to decreasing thickness of cohesive zone and improve permeability of cohesive zone.

  7. Experiments on the breakup of drop-impact crowns by Marangoni holes

    KAUST Repository

    Aljedaani, Abdulrahman Barakat; Wang, Chunliang; Jetly, Aditya; Thoroddsen, Sigurdur T

    2018-01-01

    We investigate experimentally the breakup of the Edgerton crown due to Marangoni instability when a highly viscous drop impacts on a thin film of lower-viscosity liquid, which also has different surface tension than the drop liquid. The presence

  8. Efficacy of atropine and anisodamine eye drops for adolescent pseudomyopia

    Directory of Open Access Journals (Sweden)

    Hui-Jie Wang

    2017-03-01

    Full Text Available AIM:To investigate the effect and local influence of atropine and anisodamine eye drops on adolescent pseudomyopia. METHODS:Totally 110 cases of juvenile pseudomyopia were randomly divided into two groups, the control group was given 10g/L atropine sulfate eye gel, and the observation group was treated with 5g/L raceanisodamine eye drops. The efficacy of two methods, the changes of axial length and intraocular pressure before and after treatment, and the incidence of adverse reactions were compared. RESULTS: There was no significant difference in cure rate between the two groups(χ2=0.533, P=0.465, but the effective rate of observation group was significantly better than the control group(χ2=3.907, P=0.048. Compared with the same group before treatment, the length of the axial length of the two groups increased in different degrees,and the increase value of the observation group was significantly higher than that of the control group, the difference was statistically significant(PP>0.05. The intraocular pressure of the two groups was significantly lower than that of the same group before treatment, and the difference between the two groups after treatments was not statistically significant(P >0.05. The incidence of adverse reactions in the observation group was significantly lower than that in the control group(χ2=18.939, PCONCLUSION: Anisodamine eye drops in the treatment of juvenile pseudomyopia has obvious curative effect, its efficacy and safety are better than atropine eye gel.

  9. A comprehensive analysis of the evaporation of a liquid spherical drop.

    Science.gov (United States)

    Sobac, B; Talbot, P; Haut, B; Rednikov, A; Colinet, P

    2015-01-15

    In this paper, a new comprehensive analysis of a suspended drop of a pure liquid evaporating into air is presented. Based on mass and energy conservation equations, a quasi-steady model is developed including diffusive and convective transports, and considering the non-isothermia of the gas phase. The main original feature of this simple analytical model lies in the consideration of the local dependence of the physico-chemical properties of the gas on the gas temperature, which has a significant influence on the evaporation process at high temperatures. The influence of the atmospheric conditions on the interfacial evaporation flux, molar fraction and temperature is investigated. Simplified versions of the model are developed to highlight the key mechanisms governing the evaporation process. For the conditions considered in this work, the convective transport appears to be opposed to the evaporation process leading to a decrease of the evaporation flux. However, this effect is relatively limited, the Péclet numbers happening to be small. In addition, the gas isothermia assumption never appears to be valid here, even at room temperature, due to the large temperature gradient that develops in the gas phase. These two conclusions are explained by the fact that heat transfer from the gas to the liquid appears to be the step limiting the evaporation process. Regardless of the complexity of the developed model, yet excluding extremely small droplets, the square of the drop radius decreases linearly over time (R(2) law). The assumptions of the model are rigorously discussed and general criteria are established, independently of the liquid-gas couple considered. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Air lasing

    CERN Document Server

    Cheng, Ya

    2018-01-01

    This book presents the first comprehensive, interdisciplinary review of the rapidly developing field of air lasing. In most applications of lasers, such as cutting and engraving, the laser source is brought to the point of service where the laser beam is needed to perform its function. However, in some important applications such as remote atmospheric sensing, placing the laser at a convenient location is not an option. Current sensing schemes rely on the detection of weak backscattering of ground-based, forward-propagating optical probes, and possess limited sensitivity. The concept of air lasing (or atmospheric lasing) relies on the idea that the constituents of the air itself can be used as an active laser medium, creating a backward-propagating, impulsive, laser-like radiation emanating from a remote location in the atmosphere. This book provides important insights into the current state of development of air lasing and its applications.

  11. Vertical Drop Of 21-PWR Waste Package On Unyielding Surface

    International Nuclear Information System (INIS)

    S. Mastilovic; A. Scheider; S.M. Bennett

    2001-01-01

    The objective of this calculation is to determine the structural response of a 21-PWR (pressurized-water reactor) Waste Package (WP) subjected to the 2-m vertical drop on an unyielding surface at three different temperatures. The scope of this calculation is limited to reporting the calculation results in terms of stress intensities in two different WP components. The information provided by the sketches (Attachment I) is that of the potential design of the type of WP considered in this calculation, and all obtained results are valid for that design only

  12. Chemical analysis of acoustically levitated drops by Raman spectroscopy.

    Science.gov (United States)

    Tuckermann, Rudolf; Puskar, Ljiljana; Zavabeti, Mahta; Sekine, Ryo; McNaughton, Don

    2009-07-01

    An experimental apparatus combining Raman spectroscopy with acoustic levitation, Raman acoustic levitation spectroscopy (RALS), is investigated in the field of physical and chemical analytics. Whereas acoustic levitation enables the contactless handling of microsized samples, Raman spectroscopy offers the advantage of a noninvasive method without complex sample preparation. After carrying out some systematic tests to probe the sensitivity of the technique to drop size, shape, and position, RALS has been successfully applied in monitoring sample dilution and preconcentration, evaporation, crystallization, an acid-base reaction, and analytes in a surface-enhanced Raman spectroscopy colloidal suspension.

  13. Effective liquid drop description for alpha decay of atomic nuclei

    International Nuclear Information System (INIS)

    Tavares, O.A.P.; Duarte, S.B.; Rodriguez, O.; Guzman, F.; Goncalves, M.; Garcia, F.

    1998-06-01

    Alpha decay half-lives are presented in the framework of an effective liquid drop model for different combination of mass transfer descriptions and inertia coefficients. Calculated half-life-values for ground-state to ground-state favoured alpha transitions are compared with available, updated experimental data. Results have shown that the present model is very suitable to treat the alpha decay process on equal foot as cluster radioactivity and cold fission processes. Better agreement with the data is found when the sub-set of even-even alpha emitters are considered in the calculation. (author)

  14. Interfacial wave dynamics of a drop with an embedded bubble.

    Science.gov (United States)

    Bhattacharya, S

    2016-02-01

    This article describes how an embedded bubble changes the surface wave of a suspended liquid drop, and how such modifications, if recorded experimentally, can be used to detect voids in typically opaque interior of the fluid. The analysis uses a matrix formalism to predict the frequencies for natural oscillation and the deformation for acoustically induced forced vibration. The theory shows that the embedded cavity causes major shifts in the frequency and amplitude values as well as twofold increase in number of natural modes, indicating multifacetted utility of the results in process diagnostics, material characterizations, and combustion technology.

  15. 3D Hanging Drop Culture to Establish Prostate Cancer Organoids.

    Science.gov (United States)

    Eder, Theresa; Eder, Iris E

    2017-01-01

    Three-dimensional (3D) cell culture enables the growth of cells in a multidimensional and multicellular manner compared to conventional cell culture techniques. Especially in prostate cancer research there is a big need for more tissue-recapitulating models to get a better understanding of the mechanisms driving prostate cancer as well as to screen for more efficient drugs that can be used for treatment. In this chapter we describe a 3D hanging drop system that can be used to culture prostate cancer organoids as tumor epithelial monocultures and as epithelial-stromal cocultures.

  16. Elasto-capillary interactions of drops and particles

    Science.gov (United States)

    Snoeijer, Jacco; Pandey, Anupam; Karpitschka, Stefan; Nawijn, Charlotte; Botto, Lorenzo; Andreotti, Bruno

    2017-11-01

    The interaction of solid particles floating on a liquid interface is popularly known as the Cheerios effect. Here we present similar interactions for particles and droplets on elastic surfaces, mediated by elastic deformation. We start with the Inverted Cheerios effect, by considering liquid drops on a solid gel. Remarkably, the interaction can be tuned from attractive to repulsive, as shown experimentally and theoretically. We then turn to more general cases of particles on elastic layers, for which new interaction laws are derived. An overview is given on the various regimes, including the crossover from purely elastic to purely capillary interfaces. ERC Consolidator Grant 616918.

  17. Thermal interaction for molten tin dropped into water

    Energy Technology Data Exchange (ETDEWEB)

    Arakeri, V.H.; Catton, I.; Kastenberg, W.E.; Plesset, M.S.

    1978-03-01

    Multiflash photography with extremely short duration exposure times per flash was used to observe the interaction of molten tin dropped into a water bath. Detailed photographic evidence is presented which demonstrates that transition, or nucleate boiling, is a possible triggering mechanism for vapor explosions. It was also found that the thermal constraints required to produce vapor explosions could be relaxed by introducing a stable thermal stratification within the coolant. In the present work, the threshold value of the initial tin temperature required for vapor explosion was reduced from about 500 to 343/sup 0/C.

  18. Creeping motion of long bubbles and drops in capillary tubes

    DEFF Research Database (Denmark)

    Westborg, Henrik; Hassager, Ole

    1989-01-01

    The flow of inviscid bubbles and viscous drops in capillary tubes has been simulated by a Galerkin finite element method with surface tension included at the bubble/liquid interface. The results show good agreement with published experimental results. At low capillary numbers the front and the rear...... of the bubble are nearly spherical. As the capillary number increases the thickness of the wetting film between the tube wall and the bubble increases, and the bubble assumes a more slender shape with a characteristic bump at the rear. Recirculations are found in front and behind the bubble, which disappear...

  19. Thermal interaction for molten tin dropped into water

    International Nuclear Information System (INIS)

    Arakeri, V.H.; Catton, I.; Kastenberg, W.E.; Plesset, M.S.

    1978-01-01

    Multiflash photography with extremely short duration exposure times per flash has been used to observe the interaction of molten tin dropped into a water bath. Detailed photographic evidence is presented which demonstrates that transition, or nucleate boiling, is a possible triggering mechanism for vapour explosions. It was also found that the thermal constraints required to produce vapour explosions could be relaxed by introducing a stable thermal stratification within the coolant. In the present work, the threshold value of the initial tin temperature required for vapour explosion was reduced from about 500 to 343 0 C. (author)

  20. Numerical study on drop formation through a micro nozzle

    International Nuclear Information System (INIS)

    Kim, Sung Il; Son, Gi Hun

    2005-01-01

    The drop ejection process from a micro nozzle is investigated by numerically solving the conservation equations for mass and momentum. The liquid-gas interface is tracked by a level set method which is extended for two-fluid flows with irregular solid boundaries. Based on the numerical results, the liquid jet breaking and droplet formation behavior is found to depend strongly on the pulse type of forcing pressure and the contact angle at the gas-liquid-solid interline. The negative pressure forcing can be used to control the formation of satelite droplets. Also, various nozzle shapes are tested to investigate their effect on droplet formation