WorldWideScience

Sample records for air dried soil

  1. Effects of Soil and Air Drying Methods on Soil Plasticity of Different Cities of Pakistan

    Directory of Open Access Journals (Sweden)

    Aashan Ijaz

    2014-12-01

    Full Text Available Atterberg Limits were initially defined in 1911, by Albert Atterberg, a Swedish scientist. Their purposes are to classifying cohesive soils and determine engineering properties of soils. According to ASTM, all the soils tested by Atterberg limits should be oven dried, it is because drying the soils in different degree will alter their properties significantly. Some of the physical properties of soils will undergo changes that appear to be permanent. Therefore, the soil samples should be in natural or air-dried form. However, in reality, due to time constraint and other factors, many will run the tests by using soil samples that are prepared by oven drying method. They assumed that there is no difference between the results of two types of drying method. However, in reality, the properties of soil will be affected and thus give a misleading result. The objective of this study is to determine the effect of two drying methods, air-drying method and oven drying method, on the soil plasticity. Six soil samples from different cities were tested. These tests include sieve analysis, specific gravity test, hydrometer analysis, Plastic limit and liquid limit test. Conclusively, the oven drying method could not replace the air-drying method in soil preparation for both Atterberg limits tests.

  2. Effects of Air-Drying on the Inorganic Phosphorus Forms in Soils

    Institute of Scientific and Technical Information of China (English)

    FENG Ke; TANG Yan; WANG Xiao-li; LU Hai-ming; ZHAO Hai-tao

    2005-01-01

    After 90 day's cultivation of five different plants (rye grass, lupin, buckwheat, rape and amaranth) in three soils (Yellow brown soil, Paddy soil and Red soil), fresh soil samples were collected and inorganic phosphorus (Pi) fractions were measured before and after air-drying. The results clearly indicated that the total Pi and their composition differed significantly among soil types. The air-drying process increased the total Pi in yellow brown soil and in paddy soil, while decreased that in red soil. The total Pi could vary to 70% of that before air-drying. The Pi forms in different soils changed to different extent after air-drying. As to yellow brown soil, Al-P decreased, while O-P and Ca-P increased; as to paddy soil, Al-P and Ca-P increased, while Fe-P and O-P remained; as to red soil, Al-P and Fe-P increased, Ca-P remained and O-P reduced obviously. Growth of different plants in soils had effects on Pi forms during the process of air-drying. Therefore, for chemical study of soil phosphorus, application of fresh soil samples can provide more reliable results.

  3. Dry deposition and soil-air gas exchange of polychlorinated biphenyls (PCBs) in an industrial area

    International Nuclear Information System (INIS)

    Ambient air and dry deposition, and soil samples were collected at the Aliaga industrial site in Izmir, Turkey. Atmospheric total (particle + gas) Σ41-PCB concentrations were higher in summer (3370 ± 1617 pg m-3, average + SD) than in winter (1164 ± 618 pg m-3), probably due to increased volatilization with temperature. Average particulate Σ41-PCBs dry deposition fluxes were 349 ± 183 and 469 ± 328 ng m-2 day-1 in summer and winter, respectively. Overall average particulate deposition velocity was 5.5 ± 3.5 cm s-1. The spatial distribution of Σ41-PCB soil concentrations (n = 48) showed that the iron-steel plants, ship dismantling facilities, refinery and petrochemicals complex are the major sources in the area. Calculated air-soil exchange fluxes indicated that the contaminated soil is a secondary source to the atmosphere for lighter PCBs and as a sink for heavier ones. Comparable magnitude of gas exchange and dry particle deposition fluxes indicated that both mechanisms are equally important for PCB movement between air and soil in Aliaga. - Determined fluxes indicated that dry deposition and air-soil exchange are equally important mechanisms for movement of PCBs between air and soil in the study area

  4. Air temperature evolution during dry spells and its relation to prevailing soil moisture regimes

    Science.gov (United States)

    Schwingshackl, Clemens; Hirschi, Martin; Seneviratne, Sonia I.

    2015-04-01

    The complex interplay between land and atmosphere makes accurate climate predictions very challenging, in particular with respect to extreme events. More detailed investigations of the underlying dynamics, such as the identification of the drivers regulating the energy exchange at the land surface and the quantification of fluxes between soil and atmosphere over different land types, are thus necessary. The recently started DROUGHT-HEAT project (funded by the European Research Council) aims to provide better understanding of the processes governing the land-atmosphere exchange. In the first phase of the project, different datasets and methods are used to investigate major drivers of land-atmosphere dynamics leading to droughts and heatwaves. In the second phase, these findings will be used for reducing uncertainties and biases in earth system models. Finally, the third part of the project will focus on the application of the previous findings and use them for the attribution of extreme events to land processes and possible mitigation through land geoengineering. One of the major questions in land-atmosphere exchange is the relationship between air temperature and soil moisture. Different studies show that especially during dry spells soil moisture has a strong impact on air temperature and the amplification of hot extremes. Whereas in dry and wet soil moisture regimes variations in latent heat flux during rain-free periods are expected to be small, this is not the case in transitional soil moisture regimes: Due to decreasing soil moisture content latent heat flux reduces with time, which causes in turn an increase in sensible heat flux and, subsequently, higher air temperatures. The investigation of air temperature evolution during dry spells can thus help to detect different soil moisture regimes and to provide insights on the effect of different soil moisture levels on air temperature. Here we assess the underlying relationships using different observational and

  5. Leaching heavy metals from the surface soil of reclaimed tidal flat by alternating seawater inundation and air drying.

    Science.gov (United States)

    Guo, Shi-Hong; Liu, Zhen-Ling; Li, Qu-Sheng; Yang, Ping; Wang, Li-Li; He, Bao-Yan; Xu, Zhi-Min; Ye, Jin-Shao; Zeng, Eddy Y

    2016-08-01

    Leaching experiments were conducted in a greenhouse to simulate seawater leaching combined with alternating seawater inundation and air drying. We investigated the heavy metal release of soils caused by changes associated with seawater inundation/air drying cycles in the reclaimed soils. After the treatment, the contents of all heavy metals (Cd, Pb, Cr, and Cu), except Zn, in surface soil significantly decreased (P air drying significantly enhanced the concentration of heavy metals in the exchangeable fraction. Therefore, the removal of heavy metals in the exchangeable fraction can be enhanced during subsequent leaching with seawater. PMID:27236846

  6. Leaching heavy metals from the surface soil of reclaimed tidal flat by alternating seawater inundation and air drying.

    Science.gov (United States)

    Guo, Shi-Hong; Liu, Zhen-Ling; Li, Qu-Sheng; Yang, Ping; Wang, Li-Li; He, Bao-Yan; Xu, Zhi-Min; Ye, Jin-Shao; Zeng, Eddy Y

    2016-08-01

    Leaching experiments were conducted in a greenhouse to simulate seawater leaching combined with alternating seawater inundation and air drying. We investigated the heavy metal release of soils caused by changes associated with seawater inundation/air drying cycles in the reclaimed soils. After the treatment, the contents of all heavy metals (Cd, Pb, Cr, and Cu), except Zn, in surface soil significantly decreased (P removal rates ranging from 10% to 51%. The amounts of the exchangeable, carbonate, reducible, and oxidizable fractions also significantly decreased (P heavy metals. Measurement of diffusive gradients in thin films indicated that seawater inundation significantly increased the re-mobility of heavy metals. During seawater inundation, iron oxide reduction induced the release of heavy metals in the reducible fraction. Decomposition of organic matter, and complexation with dissolved organic carbon decreased the amount of heavy metals in the oxidizable fraction. Furthermore, complexation of chloride ions and competition of cations during seawater inundation and/or leaching decreased the levels of heavy metals in the exchangeable fraction. By contrast, air drying significantly enhanced the concentration of heavy metals in the exchangeable fraction. Therefore, the removal of heavy metals in the exchangeable fraction can be enhanced during subsequent leaching with seawater.

  7. Rate of Decomposition of Organic Matter in Soil as Influenced by Repeated Air Drying-Rewetting and Repeated Additions of Organic Material

    DEFF Research Database (Denmark)

    Sørensen, Lasse Holst

    1974-01-01

    Repeated air drying and rewetting of three soils followed by incubation at 20°C resulted in an increase in the rate of decomposition of a fraction of 14C labeled organic matter in the soils. The labeled organic matter originated from labeled glucose, cellulose and straw, respectively, metabolized...... in the soils during previous incubation periods ranging from 1.5 to 8 years. Air drying and rewetting every 30th day over an incubation period of 260–500 days caused an increase in the evolution of labeled CO2 ranging from 16 to 121 per cent as compared to controls kept moist continuously. The effect...

  8. Persistence of Denitrifying Enzyme Activity in Dried Soils

    OpenAIRE

    Smith, M. Scott; Parsons, Laura L.

    1985-01-01

    The effects of air drying soil on denitrifying enzyme activity, denitrifier numbers, and rates of N gas loss from soil cores were measured. Only 29 and 16% of the initial denitrifying enzyme activity in fresh, near field capacity samples of Maury and Donerail soils, respectively, were lost after 7 days of air drying. The denitrifying activity of bacteria added to soil and activity recently formed in situ were not stable during drying. When dried and moist soil cores were irrigated, evolution ...

  9. Biomassa microbiana em amostras de solos secadas ao ar e reumedecidas Microbial biomass in air dried and rewetted soil samples

    Directory of Open Access Journals (Sweden)

    Antônio Samarão Gonçalves

    2002-05-01

    Full Text Available O objetivo do trabalho foi avaliar a viabilidade do condicionamento de amostras como terra fina secada ao ar (TFSA por curto período, para a determinação do carbono da biomassa microbiana (BMS-C, pelo método da fumigaçãoextração, e verificar a respiração microbiana basal (RB do solo. O condicionamento como TFSA, procedendo-se à fumigação para a análise da BMS-C imediatamente ou 24 horas após o reumedecimento, proporcionou valores de BMS-C para os solos Podzólicos, Latossolo Vermelho-Amarelo álico e Orgânico, semelhantes aos valores dos seus controles. Os solos Glei Pouco Húmico e Vertissolo apresentaram valores de BMS-C similares aos do controle a partir de 24 horas de incubação; o solo Planossolo arenoso apresentou valores similares aos do controle com 72 horas, e a Rendizina, com 168 horas de incubação. Na maioria dos solos, a RB determinada na TFSA apresentou valores maiores do que os do tratamento-controle, quando avaliada imediatamente ou 24 horas após o reumedecimento a 60% da capacidade máxima de retenção de água, seguida de queda e manutenção em níveis semelhantes ao do controle nos períodos subseqüentes. O précondicionamento, de curta duração, como TFSA, é promissor para a determinação da BMS-C, quando níveis e períodos adequados de reumedecimento são adotados.The objective of this work was to evaluate the utilization of short term air dried soil samples in a determination of soil microbial biomass (SMB-C, by a fumigationextraction method, and soil microbial basal respiration (BR. Zero time or 24 hours rewetting incubation period before fumigation procedure gave values of SMB-C similar to those of the control for the Podzolic soils, Allic RedYellow Latosol and Organic soil. Low Humic Gley and Vertisol soils gave values of SMB-C similar to those of the control for periods of incubation equal or higher than 24 hours. Planosol (sandy soil and Rendzina soils gave values of SMB-C similar to the

  10. Microbial growth responses upon rewetting dry soil

    Science.gov (United States)

    Meisner, Annelein; Rousk, Johannes; Bååth, Erland

    2015-04-01

    Increased rainfall and drought periods are expected to occur with current climate change, leading to fluctuations in soil moisture. Changes in soil moisture are known to affect carbon cycling. A pulse of carbon dioxide release (respiration) is often observed after rewetting a dry soil and a drying threshold is observed before this pulse emerges. Increased microbial activity is often assumed to be the cause for the pulse in respiration. Yet, the microbial growth responses that underlie this pulse are often not studied. The following questions will be addressed in this presentation. 1) Do fungal and bacterial growth explain the pulse in respiration upon rewetting a dry soil? 2) How does microbial growth respond to different drying intensities before rewetting? To answer the research questions, soils from Sweden, U.K. and Greenland were put in microcosms, air-dried for four days, a prolonged period or to different moisture content before rewetting. We measured soil respiration, fungal growth rates and/or bacterial growth rates at high temporal resolution during one week after rewetting. Our results suggest that the respiration pulse upon rewetting dry soil is not due to high microbial growth rates. During the first hours after rewetting, bacterial and fungal growth rates were low whereas the respiration rates were high. As such, there was a decoupling between the pulse in respiration and microbial growth rates. Two patterns of bacterial growth were observed upon rewetting the three different soils. In "pattern 1", bacteria started growing immediately in a linear pattern up to values similar as the moist control. In "pattern 2", bacteria started growing exponentially after a lag period of no growth with a second pulse of respiration occurring at the start of bacterial growth. Manipulating the drying intensity changed the patterns. Soils with "pattern 1" were changed to "pattern 2" when subjected to more extensive drying periods whereas soils with "pattern 2" were

  11. The Relationship Between Soil Air Filled Porosity and Soil Methane Oxidation is Almost Identical in Both Dry and Wet Temperate Eucalypt Forests

    Science.gov (United States)

    Fest, B. J.; Wardlaw, T.; Hinko-Najera, N.; Arndt, S. K.

    2015-12-01

    In order to gain a better understanding of the temporal variation in soil methane (CH4) exchange in temperate evergreen eucalypt forests in south-eastern Australia we measured soil CH4 exchange in high temporal resolution (every 2 hours or less) over two consecutive years (Wombat State Forest, Victoria, AUS) and over one year (Warra, Tasmania, AUS) in two temperate Eucalyptus obliqua (L. Her) forests with contrasting annual precipitation (Wombat State Forest = 870 mm yr-1, Warra = 1700 mm yr-1). Both forests were continuous CH4 sinks with the Victorian site having a sink strength of -1.79 kg CH4 ha-1 yr-1 and the Tasmanian site having a sink strength of -3.83 kg CH4 ha-1 yr-1. Our results show that CH4 uptake was strongly controlled by soil moisture at both sites and explained up to 90% of the temporal variability in CH4 uptake. Furthermore, when soil moisture was expressed as soil air filled porosity (AFP) we were able to predict the CH4 uptake of one site by the linear regression between AFP and CH4 uptake from the other site. Soil temperature only had an apparent control over seasonal variation in CH4 uptake during periods when soil moisture and soil temperature were closely correlated. The fluctuation of the generally low soil nitrogen levels did not influence soil CH4 uptake at either site.

  12. Carrageenan drying with dehumidified air: drying characteristics and product quality

    NARCIS (Netherlands)

    Djaeni, M.; Sasongko, S.B.; Prasetyaningrum, Aji A A.A.; Jin, X.; Boxtel, van A.J.B.

    2012-01-01

    Applying dehumidified air is considered as an option to retain quality in carrageenan drying. This work concerns the effects of operational temperature, air velocity, and carrageenan thickness on the progress of drying and product quality when using dehumidified air. Final product quality and progre

  13. Isothermal vapour flow in extremely dry soils

    Science.gov (United States)

    Todman, L. C.; Ireson, A. M.; Butler, A. P.; Templeton, M. R.

    2012-04-01

    In dry soils hydraulic connectivity within the liquid water phase decreases and vapour flow becomes a significant transport mechanism for water. The temperature or solute concentration of the liquid phase affects the vapour pressure of the surrounding air, thus temperature or solute gradients can drive vapour flows. However, in extremely dry soils where water is retained by adsorptive forces rather than capillarity, vapour flows can also occur. In such soils tiny changes in water content significantly affect the equilibrium vapour pressure in the soil, and hence small differences in water content can initiate vapour pressure gradients. In many field conditions this effect may be negligible compared to vapour flows driven by other factors. However, flows of this type are particularly significant in a new type of subsurface irrigation system which uses pervaporation, via a polymer tubing, as the mechanism for water supply. In this system, water enters the soil in vapour phase. Experiments were performed in laboratory conditions using marine sand that had previously been oven dried and cooled. This dry sand was used to represent the desert conditions in which this irrigation system is intended for use. Experimental results show that isothermal vapour flows can significantly affect the performance of such irrigation systems due to the rapid transport of water through the soil via the vapour phase. When the irrigation pipe was buried at a depth of 10cm a vapour flow from the soil surface was observed in less than 2 hours. These flows therefore affect the loss of mass into the atmosphere and thus must be considered when evaluating the availability of water for the irrigated crop. The experiments also provide a rare opportunity to observe isothermal vapour flows initiating from a subsurface source. Such experiments allow the significance of these flows to be quantified and potentially applied to other areas of arid zone hydrology.

  14. Convective Air Drying Characteristics for Thin Layer Carrots

    Directory of Open Access Journals (Sweden)

    Ionut Dumitru Velescu

    2013-11-01

    Full Text Available Introduction: Carrot is one of the most commonly used vegetables for human nutrition due to high vitamin and fibre content. Drying is one of the oldest methods of food preservation, and it represents a very important aspect of food processing. Sun drying is the most common method used to preserve agricultural products in most tropical countries; this technique is extremely weather dependent, and has the problems of contamination with dust, soil, sand particles and insects. Also, the required drying time can be quite long. Therefore, using solar and hot-air dryers, which are far more rapid, providing uniformity and hygiene are inevitable for industrial food drying processes. Aim: This paper presents a kinetic study of convective drying without pre-treatment of carrot. The effects of the temperature of the drying agent, the speed of the drying agent and the thickness of the kinetics of drying the sample of carrots were investigated. Materials and methods: The experiments were carried out with the aid of an installation for drying food products, that is capable of ensuring the temperature of the drying agent (air in the range of +25 ... +125 °C. The drying process was conducted at temperature of 45 °C in first hour of process, 2 hours at 55 °C, and 3 hours at 60 °C. The air velocity was setup  at 1.0 - 2.5 m/s. Carrots were divided into segments of a thickness of 0.4 cm. Two mathematical models available in the literature were fitted to the experimental data. Results: The drying rate increases with temperature and decreases with the sample diameter. The Page model is given better prediction than the Henderson and Pabis model and satisfactorily described drying characteristics of carrot slices. Conclusions: The most important characteristics of carrot required for simulation and optimization of the drying were studied. The values of calculated effective diffusivity for drying at 45, 55 and 60oC of air temperature and 1.0, 1.5, 2.0 and 2.5 m

  15. High strength air-dried aerogels

    Science.gov (United States)

    Coronado, Paul R.; Satcher, Jr., Joe H.

    2012-11-06

    A method for the preparation of high strength air-dried organic aerogels. The method involves the sol-gel polymerization of organic gel precursors, such as resorcinol with formaldehyde (RF) in aqueous solvents with R/C ratios greater than about 1000 and R/F ratios less than about 1:2.1. Using a procedure analogous to the preparation of resorcinol-formaldehyde (RF) aerogels, this approach generates wet gels that can be air dried at ambient temperatures and pressures. The method significantly reduces the time and/or energy required to produce a dried aerogel compared to conventional methods using either supercritical solvent extraction. The air dried gel exhibits typically less than 5% shrinkage.

  16. Soil methane oxidation in both dry and wet temperate eucalypt forests show near identical relationship with soil air-filled porosity

    OpenAIRE

    Fest, Benedikt J.; Hinko-Najera, Nina; Wardlaw, Tim; Griffith, David W. T.; Livesley, Stephen J.; Arndt, Stefan K.

    2016-01-01

    Well-drained, aerated soils are important sinks for atmospheric methane (CH4) via the process of CH4 oxidation by methane oxidising bacteria (MOB). This terrestrial CH4 sink may contribute towards climate change mitigation, but the impact of changing soil moisture and temperature regimes on CH4 uptake is not well understood in all ecosystems. Temperate eucalypt forests in south-eastern Australia are predicted to experience rapid and extreme changes in rainfall patterns, temperatures and wild ...

  17. Effect of air drying on speciation of heavy metals in flooded rice paddies

    Institute of Scientific and Technical Information of China (English)

    Bao Wang; Biao Huang; Yan Bing Qi; Wen You Hu; Wei Xia Sun

    2012-01-01

    Flooded soil samples were collected in the typical area of the Yangtze Delta Region; fractions of heavy metals in flooded and air dried samples were measured with BCR sequential extraction method and atomic absorption spectrometry.In flooded soils,fractions of heavy metals increased in the order of acid soluble < oxidizable < reducible < residual.The acid soluble and reducible fractions significantly decreased but residual fraction significantly increased when the samples were air dried.The data obtained from air dried soil samples could not accurately represent the speciation of heavy metals in flooded field conditions.

  18. Design of dry barriers for containment of contaminants in unsaturated soils

    Energy Technology Data Exchange (ETDEWEB)

    Morris, C.E. [Univ. of Wollongong (Australia); Thomson, B.M.; Stormont, J.C. [Univ. of New Mexico, Albuquerque, NM (United States)

    1997-12-31

    A dry barrier is a region of very dry conditions in unsaturated soil that prevents vertical migration of water created by circulating dry air through the formation. Dry soil creates a barrier to vertical water movement by decreasing the soil`s hydraulic conductivity, a concept also used in capillary barriers. A dry barrier may be a viable method for providing containment of a contaminant plume in a setting with a thick unsaturated zone and dry climate. The principal factors which determine the feasibility of a dry barrier include: (1) an and environment, (2) thick vadose zone, and (3) the ability to circulate air through the vadose zone. This study investigated the technical and economic considerations associated with creating a dry barrier to provide containment of a hypothetical 1 ha aqueous contaminant plume. The concept appears to be competitive with other interim containment methods such as ground freezing.

  19. Jambu drying with cold air circulation

    Directory of Open Access Journals (Sweden)

    Alan Franco Barbosa

    2015-06-01

    Full Text Available The purpose of this study was to evaluate the drying process of jambu using cold air which is a technology that can add value to the horticultural food, improve the production rates and help in waste reduction. Initially, the vegetable is washed in water in order to remove residual impurities. Then, the roots are removed. The raw material is sanitized with 200 ppm (mg.L-1 of sodium hypochlorite (10 minutes. Therefore, the final rinse is carried out with a 5 ppm sodium hypochlorite bath for 10 minutes with the subsequent drainage of this water. The cold air-drying of jambu is performed under temperatures around 25 °C using an air conditioning system. A dehumidifier is used in order to reduce the product's relative humidity (54.6 ± 2.87. The process takes place in a room with an area of 4 square meters that remains shut during the process, which lasts a total time of 44 hours. Later, the product is stored in a high protective package to avoid moisture. Jambu centrifugation is not performed because its leaves are fragile. The cold air-dried jambu is in accordance with the current legislation regarding microbiological aspects. Also, it is well accepted by consumers and its centesimal composition is similar to fresh jambu. Other drying techniques can also be applied, such as hot air and ultrasound. Thus, considering sanitary and sensory aspects and chemical composition, the commercialization of dried jambu is feasible in terms of transport and handling.

  20. Design of dry barriers for containment of contaminants in unsaturated soils

    International Nuclear Information System (INIS)

    A dry barrier is a region of very dry conditions in unsaturated soil that prevents vertical migration of water created by circulating dry air through the formation. Dry soil creates a barrier to vertical water movement by decreasing the soil's hydraulic conductivity, a concept also used in capillary barriers. A dry barrier may be a viable method for providing containment of a contaminant plume in a setting with a thick unsaturated zone and dry climate. The principal factors which determine the feasibility of a dry barrier include: (1) an and environment, (2) thick vadose zone, and (3) the ability to circulate air through the vadose zone. This study investigated the technical and economic considerations associated with creating a dry barrier to provide containment of a hypothetical 1 ha aqueous contaminant plume. The concept appears to be competitive with other interim containment methods such as ground freezing

  1. Drying characteristics of ultrasound assisted hot air drying of Flos Lonicerae

    OpenAIRE

    LIU, YUNHONG; Sun, Yue; Miao, Shuai; Li, Fang; Luo, Denglin

    2014-01-01

    Ultrasound assisted hot air drying of Flos Lonicerae was investigated in this study. The effects of drying parameters such as ultrasonic radiation distance, ultrasonic power and drying temperature on drying characteristics were discussed. The results showed that ultrasound application has positive and significant effects on hot air drying. Shortening ultrasonic radiation distance is beneficial to improve both ultrasonic energy efficiency and drying rate. Higher ultrasonic power had more posit...

  2. Drier for air-drying coatings

    OpenAIRE

    Micciche, F.; Oostveen, E.A.; Linde, van der, S.J.; Haveren, van, J.

    2003-01-01

    The invention pertains to a drier composition for air-drying alkyd-based coatings, inks, or floor coverings, comprising a combination of the following components: a) a transition metal salt with the formula: (Me )( X )m in which Me is the transition metal; X represents a coordinating ligand; and k- is the valence state of the transition metal and m is the number of ligands X. b) a reducing biomolecule. The reducing biomolecule is in particular ascorbic acid or a derivative thereof, including ...

  3. Can soil drying affect the sorption of pesticides in soil?

    Science.gov (United States)

    Chaplain, Véronique; Saint, Philippe; Mamy, Laure; Barriuso, Enrique

    2010-05-01

    The sorption of pesticides in soils mainly controls their further dispersion into the environment. Sorption is usually related to the physico-chemical properties of molecules but it also depends on the hydrophobic features of soils. However, the hydrophobicity of soils changes with wetting and drying cycles and this can be enhanced with climate change. The objective of this study was to measure by using controlled artificial soils the influence of the hydrophobic characteristic of soils on the retention of a model pesticide. Artificial soils consisted in silica particles covered by synthetic cationic polymers. Polymers were characterized by the molar ratio of monomers bearing an alkyl chain of 12C. Two polymers were used, with 20 and 80 % ratios, and the same degree of polymerization. In addition, porous and non-porous particles were used to study the accessibility notion and to measure the influence of diffusion on pesticide sorption kinetics. Lindane was chosen as model molecule because its adsorption is supposed mainly due to hydrophobic interactions. Results on polymers adsorption on silica showed that it was governed by electrostatic interactions, without any dependency of the hydrophobic ratio. Polymers covered the entire surface of porous particles. Kinetic measurements showed that lindane sorption was slowed in porous particles due to the molecular diffusion inside the microporosity. The adsorption of lindane on covered silica particles corresponded to a partition mechanism described by linear isotherms. The slope was determined by the hydrophobic ratio of polymers: the sorption of lindane was highest in the most hydrophobic artificial soil. As a result, modification in soil hydrophobicity, that can happen with climate change, might affect the sorption and the fate of pesticides. However additional experiments are needed to confirm these first results. Such artificial soils should be used as reference materials to compare the reactivity of pesticides, to

  4. Application of Dry Air Drying Techniques on West-East Gas Pipeline Project

    Institute of Scientific and Technical Information of China (English)

    GaoJianguo; XieLigong; DaiZongyu

    2004-01-01

    Based on the pre-eommissioning requirements of gas pipeline, the basic principles and influential factors of dry air drying adopted in long distance gas pipelines, and states in detail the technological flow and the equipment required, etc. are introduced, which will have practical significance in drying operation on gas pipeline.

  5. Drying kinetics and mathematical modeling of hot air drying of coconut coir pith

    OpenAIRE

    Fernando, J. A. K. M.; Amarasinghe, A. D. U. S.

    2016-01-01

    Drying kinetics of coir pith was studied and the properties of compressed coir pith discs were analyzed. Coir pith particles were oven dried in the range of temperatures from 100 to 240 °C and the rehydration ability of compressed coir pith was evaluated by finding the volume expansion. The optimum drying temperature was found to be 140 °C. Hot air drying was carried out to examine the drying kinetics by allowing the coir pith particles to fluidize and circulate inside the drying chamber. Par...

  6. Air flow characteristics in an industrial wood pallet drying kiln

    OpenAIRE

    Tzempelikos, Dimitrios; Filios, Andronikos; Margaris, Dionisios

    2013-01-01

    The improvement and optimization of air-distribution systems in drying kilns contributes to the preservation of the quality, safety and shelf life of perishable products. The present study reports on the numerical solution of airflow within a two dimensional drying kiln enclosure loaded with wooden pallets. The performance of air flow field is examined with and without supply of wooden pallets. Different arrangements of the supplied wooden pallets are investigated as well as the use of a ...

  7. Do we know how plants sense a drying soil?

    Directory of Open Access Journals (Sweden)

    Streck Nereu Augusto

    2004-01-01

    Full Text Available The reduction of crop growth and yield in dry areas is largely due to stomatal closure in response to dry soil, which decreases photosynthesis. However, the mechanism that causes stomatal closure in a drying soil is a controversial issue. Experienced and respected plant physiologists around the world have different views about the primary sensor of soil water shortage in plants. The goal of this review is to present a chronological synthesis about the evidence of the possible candidates for the mechanism by which plants sense a drying soil. Hydraulic signals in the leaves as the mechanism that causes stomatal closure dominated the view on how plants sense a drying soil during the 70?s and the early 80?s. In the middle 80?s, studies suggested that stomatal conductance is better correlated with soil and root water status than with leaf water status. Thus, chemical signals produced in the roots dominated the view on how plants sense a drying soil during the late 80?s and early 90?s. During the second half of the 90?s, however, studies provided evidence that hydraulic signals in the leaves are still better candidates for the mechanism by which plants sense a drying soil. After more than 60 years of studies in plant-water relations, the question raised in the title still has no unanimous answer. This controversial issue is a good research rationale for the current generation of plant physiologists.

  8. Dynamics of convective hot air drying of filiform Lagenaria siceraria

    Directory of Open Access Journals (Sweden)

    Zhu Aishi

    2013-01-01

    Full Text Available In this study, a laboratory convective hot air dryer was used for the thin-layer drying of filiform Lagenaria siceraria and the influences of the drying temperature and air velocity on the drying process were investigated. The drying temperature and the air velocity were varied in the range of 60-80°C and 0.6-1.04 m•s-1, respectively. The experimental data of moisture ratio of filiform Lagenaria siceraria were used to fit the mathematical models, and the dynamics parameters such as convective heat transfer coefficient α and mass transfer coefficient kH were calculated. The results showed that the drying temperature and air velocity influenced the drying process significantly. The Logarithmic model showed the best fit to experimental drying data. It was also found that, the air velocity and the drying temperature influence notable on both of the convective heat transfer coefficient α and the mass transfer coefficient kH. With the increase of hot air velocity from 0.423 to 1.120 ms-1, the values of α varied from 111.3 to 157.7 W•m-2•K-1, the values of kH varied from 13.12 to 18.58 g•m-2• s-1•ΔH-1. With the increase of air temperature from 60 to 80°C, the values of α varied between 150.2 and 156.9 W•m-2•K-1, the values of kH varied between 18.26 and 18.75 g•m-2•s-1•ΔH-1.

  9. Cold Vacuum Drying Instrument Air System Design Description. System 12

    International Nuclear Information System (INIS)

    This system design description (SDD) addresses the instrument air (IA) system of the spent nuclear fuel (SNF). This IA system provides instrument quality air to the Cold Vacuum Drying (CVD) Facility. The IA system is a general service system that supports the operation of the heating, ventilation, and air conditioning (HVAC) system, the process equipment skids, and process instruments in the CVD Facility. The following discussion is limited to the compressor, dryer, piping, and valving that provide the IA as shown in Drawings H-1-82222, Cold Vacuum Drying Facility Mechanical Utilities Compressed and Instrument Air PandID, and H-1.82161, Cold Vacuum Drying Facility Process Equipment Skid PandID MCO/Cusk Interface. Figure 1-1 shows the physical location of the 1A system in the CVD Facility

  10. Characterization of Thin Layer Hot Air Drying of Celery Root

    Directory of Open Access Journals (Sweden)

    Xiaohong Wei

    2015-08-01

    Full Text Available The hot air drying characteristics of celery root were evaluated in a laboratory scale dryer at the drying temperatures of 50, 60, 70 and 80°C. The effect of hot air drying on drying time, drying rate, moisture content, moisture ratio and effective moisture diffusivity of celery root was investigated. Fifteen thin layer drying models were fitted by using experimental drying data. The fitting effect of model predictions was evaluated by using the values of coefficient of determination, sum squared error, root mean square error and chi-square. The results showed fitting accuracy of model 15 (Hii et al.,2009 gave a better fit for all drying conditions applied. The average values of effective moisture diffusivities of celery root ranged from 1.957×10-9 to 9.016×10-9 within the given drying temperature range. With in a certain temperature range (50-70°C, the average effective moisture diffusivities of celery root increased with increased temperature. The activation energy was estimated as 21.817 KJ/mol using an exponential expression based on the Arrhenius equation.

  11. Machine Learning Assessments of Soil Drying

    Science.gov (United States)

    Coopersmith, E. J.; Minsker, B. S.; Wenzel, C.; Gilmore, B. J.

    2011-12-01

    Agricultural activities require the use of heavy equipment and vehicles on unpaved farmlands. When soil conditions are wet, equipment can cause substantial damage, leaving deep ruts. In extreme cases, implements can sink and become mired, causing considerable delays and expense to extricate the equipment. Farm managers, who are often located remotely, cannot assess sites before allocating equipment, causing considerable difficulty in reliably assessing conditions of countless sites with any reliability and frequency. For example, farmers often trace serpentine paths of over one hundred miles each day to assess the overall status of various tracts of land spanning thirty, forty, or fifty miles in each direction. One means of assessing the moisture content of a field lies in the strategic positioning of remotely-monitored in situ sensors. Unfortunately, land owners are often reluctant to place sensors across their properties due to the significant monetary cost and complexity. This work aspires to overcome these limitations by modeling the process of wetting and drying statistically - remotely assessing field readiness using only information that is publically accessible. Such data includes Nexrad radar and state climate network sensors, as well as Twitter-based reports of field conditions for validation. Three algorithms, classification trees, k-nearest-neighbors, and boosted perceptrons are deployed to deliver statistical field readiness assessments of an agricultural site located in Urbana, IL. Two of the three algorithms performed with 92-94% accuracy, with the majority of misclassifications falling within the calculated margins of error. This demonstrates the feasibility of using a machine learning framework with only public data, knowledge of system memory from previous conditions, and statistical tools to assess "readiness" without the need for real-time, on-site physical observation. Future efforts will produce a workflow assimilating Nexrad, climate network

  12. Simultaneous Preservation of Soil Structural Properties and Phospholipid Profiles: A Comparison of Three Drying Techniques

    Institute of Scientific and Technical Information of China (English)

    L.J.DEACON; D.V.GRINEV; J.W.CRAWFORD; J.HARRIS; K.RITZ; I.M.YOUNG

    2008-01-01

    There is a need to simultaneously preserve evidence of interactions between the biological community and soil structural properties of a soil in as near an intact (natural) state as possible.Three dehydration techniques were implemented and assessed for their ability to minimise disruption of both biological and physical properties of the same arable soil sample.Dehydration techniques applied until samples were at constant weight were i) air-drying at 20℃ (AD); ii)-80℃ freeze for 24 h,followed by freeze-drying (-80FD); and iii) liquid nitrogen snap freeze,followed by freeze-drying(LNFD) and were compared to a moist control.Physical structure was determined and quantified in three dimensions using X-ray computed tomography and microbial phenotypic community composition was assessed using phospholipid fatty acid (PLFA) profiling.This study confirms that any form of dehydration,when preparing soil for simultaneous biological and physical analysis,will alter the soil physical properties,and cause some change in apparent community structure.Freeze-drying (both the LNFD and -80FD treatments) was found to minimise disruption (when compared to the moist control soil) to both the soil physical properties and the community structure and is a preferable technique to air-drying which markedly alters the size and character of the pore network,as well as the phenotypic profile.The LNFD was the preferred treatment over the -80FD treatment as samples show low variability between replicates and a fast turn-around time between samples.Therefore snap freezing in liquid nitrogen,followed by freeze drying is the most appropriate form of dehydration when two sets of data,both physical and biological,need to be preserved simultaneously from a soil core.

  13. Influence of Dry Density on Soil-Water Retention Curve of Unsaturated Soils and Its Mechanism Based on Mercury Intrusion Porosimetry

    Institute of Scientific and Technical Information of China (English)

    李博; 陈宇龙

    2016-01-01

    The soil-water retention curve(SWRC)can be used to evaluate the ability of unsaturated soils to attract water at various water contents and suctions. In this study, drying SWRCs for a kind of sandy soil were obtained in the laboratory by using self-modified SWRC apparatus. In addition, the porosity and the pore size distribution of the samples were investigated by a mercury porosimetry test in order to analyze the effect of dry density. Results showed that the soil-water retention of the soil specimens was strongly dependent on the dry density. Under zero suction, soil specimens with a higher dry density exhibited lower initial volumetric water content. The higher the dry density of soil, the more slowly the volumetric water content decreased with the increase of suction. There was a general and consistent trend for a soil specimen to possess a larger air-entry value and residual suction, while smaller slope of SWRC when it had a higher density. This was probably attributed to the presence of smaller inter-connected pores in the soil specimen with a higher dry density. The proportion of large diameter pores decreased in comparison to pores with small diameters in the soil tested. The measured total pore volume of the soil specimen, which had a larger dry density, was lower than that of the relatively loose specimens.

  14. Mineralogy of Antarctica Dry Valley Soils: Implications for Pedogenic Processes on Mars

    Science.gov (United States)

    Quinn, J. E.; Ming, D. W.; Morris, R. V.; Douglas, S.; Kounaves, S. P.; McKay, C. P.; Tamppari, L, K.; Smith, P. H.; Zent, A. P.; Archer, P. D., Jr.

    2010-01-01

    The Antarctic Dry Valleys (ADVs) located in the Transantarctic Mountains are the coldest and driest locations on Earth. The mean annual air temperature is -20 C or less and the ADVs receive 100mm or less of precipitation annually in the form of snow. The cold and dry climate in the ADVs is one of the best terrestrial analogs for the climatic conditions on Mars [2]. The soils in the ADVs have been categorized into three soil moisture zones: subxerous, xerous and ultraxerous. The subxerous zone is a coastal region in which soils have ice-cemented permafrost relatively close to the surface. Moisture is available in relatively large amounts and soil temperatures are above freezing throughout the soil profile (above ice permafrost) in summer months. The xerous zone, the most widespread of the three zones, is an inland region with a climate midway between the subxerous and ultraxerous. The soils from this zone have dry permafrost at moderate depths (30-75cm) but have sufficient water in the upper soil horizons to allow leaching of soluble materials. The ultraxerous zone is a high elevation zone, where both temperature and precipitation amounts are very low resulting in dry permafrost throughout the soil profile. The three moisture regime regions are similar to the three microclimatic zones (coastal thaw, inland mixed, stable upland) defined by Marchant and Head.

  15. Convective Air Drying Characteristics for Thin Layer Carrots

    OpenAIRE

    Ionut Dumitru Velescu; Ioan Tenu; Petru Carlescu; Vasile Dobre

    2013-01-01

    Introduction: Carrot is one of the most commonly used vegetables for human nutrition due to high vitamin and fibre content. Drying is one of the oldest methods of food preservation, and it represents a very important aspect of food processing. Sun drying is the most common method used to preserve agricultural products in most tropical countries; this technique is extremely weather dependent, and has the problems of contamination with dust, soil, sand particles and insects. Also, the required ...

  16. Enhancing The Food Product Drying with Air Dehumidified by Zeolite

    OpenAIRE

    M. Djaeni; D. Anggoro; G.W. Santoso; D. Agustina; N. Asiah; Hii, C.L.

    2014-01-01

    The demand of powdered food products such as soups, sauces, dried yeasts and herbal medicine is increasing for consumer convenience. Mostly, these products have been produced with drying process either, direct sunlight, conventional, or modern dryer. The direct sunlight dryer depends on the daily weather both in the product quality and process continuity. Meanwhile, conventional dryer results high energy consumption as well as low product quality due to the introduction of hot air. In additio...

  17. Raestur fiskur : air-dried fermented fish the Faroese way

    OpenAIRE

    Svanberg, Ingvar

    2015-01-01

    Background: Fish has played an important role in the diet of the population of the mid-Atlantic Faroe Islands. Dried and fermented fish in particular have been an essential storable protein source in an economy where weather conditions and seasonal fluctuations affect the availability of food. For generations the islanders have prepared raestur fiskur, a home-made air-dried and fermented fish dish made of Atlantic cod (Gadus morhua L.) or saithe (Pollachius virens (L.)). Fermenting the fish i...

  18. Determination of the most economical drying schedule and air velocity in softwood drying

    Energy Technology Data Exchange (ETDEWEB)

    Salin, J.G.

    2001-12-01

    Simulation models for conventional softwood drying have been available and have also been used by kiln operators for many years. For instance models for Scots pine and Norway spruce, dried at temperatures below about 80 deg C, are in use in Sweden, Finland and Norway. These models predict drying rates as a function of climate (schedule) and air velocity. The models thus give a direct basis for calculation of instantaneous energy demand for moisture evaporation and ventilation. There is further a direct relationship between the air velocity in the space between the board layers in the kiln stack and the electrical power demand by the circulation fans. Finally, the smaller energy consumption associated with heat losses through kiln walls and the accumulated heat in timber etc. can be estimated with sufficient accuracy. Instantaneous energy costs can thus be calculated for each part of a drying schedule. Capital costs associated with kiln investment and maintenance, personnel, insurance etc can be accounted for as an hourly cost, which is basically independent of whether timber is dried fast or slowly. A slow drying process thus accumulates more capital costs per m 3 timber. In this way it is possible to calculate the total instantaneous drying cost (Euro/m{sup 3}/h or Euro/m3/MC%) and the overall total cost (Euro or Euro/m{sup 3}). Some results obtained with a simulation model equipped with such a cost calculation are presented in the paper. A rapidly increasing drying cost is seen when the final MC is lowered. By minimising the instantaneous cost, an optimal drying schedule can be determined for a given fixed air velocity. Finally an optimal air velocity - constant or varying - can be found in the same way.

  19. Microwave and hot-air drying of Thai red curry paste

    OpenAIRE

    Sudathip Inchuen

    2008-01-01

    Thai red curry paste was dried with two different drying methods: microwave and hot-air drying. The microwave drying was carried out in a microwave oven with output power of 180, 360 and 540 W, while the hot-air drying was carried out at drying air temperatures of 60, 70 and 80 C. The drying time of microwave drying process to reduce the moisture content of red curry paste from 2.58 to 0.08 g water/g dry matter was much shorter than that of the hot-air drying process. An increase in the mic...

  20. Osmo-air drying of aloe vera gel cubes.

    Science.gov (United States)

    Pisalkar, P S; Jain, N K; Jain, S K

    2011-04-01

    Aloe vera (Aloe barbadensis Miller) cubes of 12.5 × 12.5 × 12.5 mm thick were osmosed for 4 h in sugar syrup of 30, 40 and 50°Brix concentration and temperatures of 30 and 50°C at constant syrup to fruit ratio of 5:1. Osmosed and unosmosed aloe vera samples were hot air dried at 50, 60, 70 and 80°C with constant air velocity of 1.5 m/s. The water loss, solid gain and convective drying behaviour were recorded during experiments. It was observed that water loss and solid gain ranged from 39.2 to 71.3 and 2.7 to 6.3%, respectively during osmo-drying. The moisture diffusivity varied from 2.9 to 8.0 × 10(-9) m²/s and 2.7 to 4.6 × 10(-9) m²/s during air drying of osmosed and unosmosed aloe vera samples, respectively. Drying air temperature and osmosis as pre-treatment affected the water loss, solid gain, diffusivity at -p ≤ 0.01. PMID:21350589

  1. Drying kinetics, rehydration and colour characteristics of convective hot-air drying of carrot slices

    Science.gov (United States)

    Doymaz, İbrahim

    2016-03-01

    The effects of air drying temperature, slice thickness and pre-treatment application on the drying kinetics of carrot slices during convective drying in the range 50-70 °C were investigated. Results indicated that drying time, rehydration ratio and colour characteristics of carrot slices were more affected by drying air temperature, followed by pre-treatment applications. Five thin-layer drying models were applied to describe the drying kinetics. Midilli et al. model was the best model to characterize the drying kinetics of carrot slices. The moisture effective diffusivity calculated from the second Fick's law of diffusion ranged from 3.46 × 10-10 to 1.02 × 10-9 m2/s. The values of activation energy determined from the slope of the Arrhenius plot, ln(D eff ) versus 1/(T + 273.15), were 35.53, 43.42, and 37.75 kJ/mol for blanch, potas and control samples, respectively.

  2. On the effectiveness of dry drainage in soil salinity control

    Institute of Scientific and Technical Information of China (English)

    VINCENT; Bernard; BOUARFA; Sami; VIDAL; Alain

    2009-01-01

    Dry drainage is thought to be a potential approach to control soil salinity. This study took the Hetao Irrigation District as an example and evaluated the effectiveness of dry drainage by using remote sensing, a conceptual model and a field experiment. Archived remote sensing images from 1973―2006 were used to delineate the temporal and spatial change of soil salinity. The conceptual water and salt balance model was used to evaluate the role of dry drainage in removing excess salt from the irrigated land. The field experiment was performed to get field validation and give more accurate estimation. The results show that dry drainage did contribute to remove excess salt from the irrigated land and succeed in controlling soil salinity in the Hetao Irrigation District. It can be taken as an alternative approach in (semi-)arid area where artificial drainage is not applicable.

  3. On the effectiveness of dry drainage in soil salinity control

    Institute of Scientific and Technical Information of China (English)

    WU JingWei; ZHAO LiRong; HUANG JieSheng; YANG JinZhong; VINCENT Bernard; BOUARFA Sami; VIDAL Alain

    2009-01-01

    Dry drainage is thought to be a potential approach to control soil salinity.This study took the Hetao Irrigation District as an example and evaluated the effectiveness of dry drainage by using remote sensing, a conceptual model and a field experiment.Archived remote sensing images from 1973-2006 were used to delineate the temporal and spatial change of soil salinity.The conceptual water and salt balance model was used to evaluate the role of dry drainage in removing excess salt from the irrigated land.The field experiment was performed to get field validation and give more accurate estimation.The results show that dry drainage did contribute to remove excess salt from the irrigated land and succeed in controlling soil salinity in the Hetao Irrigation District.it can be taken as an alternative approach in (semi-)arid area where artificial drainage is not applicable.

  4. Drying kinetics and mathematical modeling of hot air drying of coconut coir pith.

    Science.gov (United States)

    Fernando, J A K M; Amarasinghe, A D U S

    2016-01-01

    Drying kinetics of coir pith was studied and the properties of compressed coir pith discs were analyzed. Coir pith particles were oven dried in the range of temperatures from 100 to 240 °C and the rehydration ability of compressed coir pith was evaluated by finding the volume expansion. The optimum drying temperature was found to be 140 °C. Hot air drying was carried out to examine the drying kinetics by allowing the coir pith particles to fluidize and circulate inside the drying chamber. Particle motion within the drying chamber closely resembled the particle motion in a flash dryer. The effective moisture diffusivity was found to increase from 1.18 × 10(-8) to 1.37 × 10(-8) m(2)/s with the increase of air velocity from 1.4 to 2.5 m/s respectively. Correlation analysis and residual plots were used to determine the adequacy of existing mathematical models for describing the drying behavior of coir pith. The empirical models, Wang and Singh model and Linear model, were found to be adequate for accurate prediction of drying behavior of coir pith. A new model was proposed by modifying the Wang and Singh model and considering the effect of air velocity. It gave the best correlation between observed and predicted moisture ratio with high value of coefficient of determination (R(2)) and lower values of root mean square error, reduced Chi square (χ(2)) and mean relative deviation (E%). PMID:27390647

  5. Preparation of Natural Zeolite for Air Dehumidification in Food Drying

    Directory of Open Access Journals (Sweden)

    Mohamad Djaeni

    2015-03-01

    Full Text Available Drying with air dehumidification with solid adsorbent improves the quality of food product as well as energy efficiency. The natural zeolite is one of adsorbent having potential to adsorb the water.  Normally, the material was activated to open the pore, remove the organic impurities, and increase Si/Al rate. Hence, it can enhance the adsorbing capacity. This research studied the activation of natural zeolite mined from Klaten, Indonesia as air dehumidification for food drying. Two different methods were used involving activation by heat and NaOH introduction.  As indicators, the porosity and water loaded were evaluated. Results showed both methods improved the adsorbing capacity significantly. With NaOH, the adsorbing capacity was higher. The simple test in onion and corn drying showed the presence of activated natural zeolite can speed up water evaporation positively. This performance was also comparable with Zeolite 3A

  6. Dry coolers and air-condensing units (Review)

    Science.gov (United States)

    Milman, O. O.; Anan'ev, P. A.

    2016-03-01

    The analysis of factors affecting the growth of shortage of freshwater is performed. The state and dynamics of the global market of dry coolers used at electric power plants are investigated. Substantial increase in number and maximum capacity of air-cooled condensers, which have been put into operation in the world in recent years, are noted. The key reasons facilitating the choice of developers of the dry coolers, in particular the independence of the location of thermal power plant from water sources, are enumerated. The main steam turbine heat removal schemes using air cooling are considered, their comparison of thermal efficiency is assessed, and the change of three important parameters, such as surface area of heat transfer, condensate pump flow, and pressure losses in the steam exhaust system, are estimated. It is shown that the most effective is the scheme of direct steam condensation in the heat-exchange tubes, but other schemes also have certain advantages. The air-cooling efficiency may be enhanced much more by using an air-cooling hybrid system: a combination of dry and wet cooling. The basic applied constructive solutions are shown: the arrangement of heat-exchange modules and the types of fans. The optimal mounting design of a fully shopassembled cooling system for heat-exchange modules is represented. Different types of heat-exchange tubes ribbing that take into account the operational features of cooling systems are shown. Heat transfer coefficients of the plants from different manufacturers are compared, and the main reasons for its decline are named. When using evaporative air cooling, it is possible to improve the efficiency of air-cooling units. The factors affecting the faultless performance of dry coolers (DC) and air-condensing units (ACU) and the ways of their elimination are described. A high velocity wind forcing reduces the efficiency of cooling systems and creates preconditions for the development of wind-driven devices. It is noted that

  7. Drying Strategy of Shrimp using Hot Air Convection and Hybrid Infrared Radiation/Hot Air Convection

    Directory of Open Access Journals (Sweden)

    Supawan TIRAWANICHAKUL

    2008-01-01

    Full Text Available The main objective of the research was to study the effect of drying temperatures using infrared irradiation and electric heating convection on dehydration and was to investigate the effect of drying conditions on the quality of the shrimp. Two sizes of fresh shrimp (100 shrimp/kg and 200 shrimp/kg with initial moisture content of 270 - 350 % dry-basis were dried under various conditions while the final moisture content of dried shrimp was in ranges between 20 and 25 % dry-basis. Hot air flow rates of 1.0 -   1.2 m/s, drying temperatures of 40 - 90 °C and infrared intensities of 1,785.7 - 3,571.4 W/m2 were used in these experiments. The experimental results showed that the rate of moisture content transfer of both sizes of shrimps decreased exponentially with drying time while increasing drying temperature significantly affected to the drying kinetics and quality of the shrimps. Effective diffusion coefficients of both shrimps were determined by a diffusion model forming a finite cylindrical shape was in order of 10-7 m2/s and this effective diffusion coefficient value was relatively dependent on the drying temperature compared to the initial moisture content. The quality analysis of dried shrimp using an infrared source and electric heating source found that the redness value (Hunter a-value of dried samples using hybrid infrared radiation and electric heating had a higher colour uniformity than other drying methods. Additionally, shrinkage and rehydration properties were insignificantly different for all drying strategies (p < 0.05 and drying using infrared radiation had higher drying rates compared to electric heat convection, corresponding to relatively low drying times.

  8. The effect of pretreatments on air drying characteristics of persimmons

    Science.gov (United States)

    Demiray, Engin; Tulek, Yahya

    2016-03-01

    In this study, whole and peeled persimmons were dried in the ranges of 55-75 °C of drying temperature in a hot air dryer. The effect of drying temperature and pretreatments on the drying characteristics was determined. Immersing in a solution of 20 % sucrose resulted in an increase in the drying rate of persimmons. A non-linear regression procedure was used to fit five thin-layer drying models available in the literature to the experimental moisture loss data. The Page and Modified Page models have shown a better fit to the experimental drying data as compared to other models. The effective diffusivity was determined to be 9.237 × 10-10-10.395 × 10-10 m2 s-1 for the blanched persimmons and 7.755 × 10-10-9.631 × 10-10 m2 s-1 for immersed sucrose solution persimmons. The activation energies for diffusion were calculated to be 56.09 kJ mol-1 (for blanched) and 10.28 kJ mol-1 (for immersed sucrose solution).

  9. Drying Kinetics and Rehydration Characteristics of Convective Hot-Air Dried White Button Mushroom Slices

    Directory of Open Access Journals (Sweden)

    İbrahim Doymaz

    2014-01-01

    Full Text Available The effect of pretreatment (0.5% citric acid solution and drying air temperature (40, 50, 60, and 70°C on drying characteristics of button mushroom slices was investigated in a cabinet dryer. The experimental results show that the drying temperature and pretreatment have significant effects on the moisture removal from mushroom. In addition, rehydration ratio of pretreated samples was higher than that of control ones. Four kinds of classical model were used to obtain moisture data and the logarithmic model was the best for representation of mushroom drying. The values of effective moisture diffusivity were found to range between 1.70×10-10 and 7.12×10-10 m2/s over the temperature range studied. The activation energy was found to be 35.04 and 37.21 kJ/mol for control and pretreated samples, respectively.

  10. Cumulative ventilation air drying potential as an indication of dry mass content in wastewater sludge in a thin-layer solar drying facility

    Science.gov (United States)

    Krawczyk, Piotr

    2013-12-01

    Controlling low-temperature drying facilities which utilise nonprepared air is quite difficult, due to very large variability of ventilation air parameters - both in daily and seasonal cycles. The paper defines the concept of cumulative drying potential of ventilation air and presents experimental evidence that there is a relation between this parameter and condition of the dried matter (sewage sludge). Knowledge on current dry mass content in the dried matter (sewage sludge) provides new possibilities for controlling such systems. Experimental data analysed in the paper was collected in early 2012 during operation of a test solar drying facility in a sewage treatment plant in Błonie near Warsaw, Poland.

  11. Microbial community composition of transiently wetted Antarctic Dry Valley soils

    Directory of Open Access Journals (Sweden)

    Thomas D. Neiderberger

    2015-01-01

    Full Text Available During the summer months, wet (hyporheic soils associated with ephemeral streams and lake edges in the Antarctic Dry Valleys (DV become hotspots of biological activity and are hypothesized to be an important source of carbon and nitrogen for arid DV soils. Recent research in the DV has focused on the geochemistry and microbial ecology of lakes and arid soils, with substantially less information being available on hyporheic soils. Here we determined the unique properties of hyporheic microbial communities, resolved their relationship to environmental parameters and to compared them to archetypal arid DV soils. Generally, pH increased and chlorophyll a concentrations decreased along transects from wet to arid soils (9.0 to ~7.0 for pH and ~0.8 to ~ 5 µg/cm3 for chlorophyll a, respectively. Soil water content decreased to below ~3% in the arid soils. Community fingerprinting-based principle component analyses revealed that bacterial communities formed distinct clusters specific to arid and wet soils; however, eukaryotic communities that clustered together did not have similar soil moisture content nor did they group together based on sampling location. Collectively, rRNA pyrosequencing indicated a considerably higher abundance of Cyanobacteria in wet soils and a higher abundance of Acidobacterial, Actinobacterial, Deinococcus/Thermus, Bacteroidetes, Firmicutes, Gemmatimonadetes, Nitrospira and Planctomycetes in arid soils. The two most significant differences at the genus level were Gillisia signatures present in arid soils and chloroplast signatures related to Streptophyta that were common in wet soils. Fungal dominance was observed in arid soils and Viridplantae were more common in wet soils. This research represents an in-depth characterization of microbial communities inhabiting wet DV soils. Results indicate that the repeated wetting of hyporheic zones has a profound impact on the bacterial and eukaryotic communities inhabiting in these areas.

  12. Experimental and theoretical analysis of cracking in drying soils

    OpenAIRE

    Lakshmikantha, M.R.

    2009-01-01

    The thesis focuses on the experimental and theoretical aspects of the process of cracking in drying soils. The results and conclusions were drawn from an exhaustive experimental campaign characterised by innovative multidisciplinary aspects incorporating Fracture Mechanics and classical Soil mechanics, aided with image analysis techniques. A detailed study of the previous works on the topic showed the absence of large scale fully monitored laboratory tests, while the existing studies were per...

  13. Combustion gas properties. 2: Natural gas fuel and dry air

    Science.gov (United States)

    Wear, J. D.; Jones, R. E.; Trout, A. M.; Mcbride, B. J.

    1985-01-01

    A series of computations has been made to produce the equilibrium temperature and gas composition for natural gas fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0. Only samples tables and figures are provided in this report. The complete set of tables and figures is provided on four microfiche films supplied with this report.

  14. Air-drying kinetics affect yeast membrane organization and survival.

    Science.gov (United States)

    Lemetais, Guillaume; Dupont, Sébastien; Beney, Laurent; Gervais, Patrick

    2012-10-01

    The plasma membrane (PM) is a key structure for the survival of cells during dehydration. In this study, we focused on the concomitant changes in survival and in the lateral organization of the PM in yeast strains during desiccation, a natural or technological environmental perturbation that involves transition from a liquid to a solid medium. To evaluate the role of the PM in survival during air-drying, a wild-type yeast strain and an osmotically fragile mutant (erg6Δ) were used. The lateral organization of the PM (microdomain distribution) was observed using a fluorescent marker related to a specific green fluorescent protein-labeled membrane protein (Sur7-GFP) after progressive or rapid desiccation. We also evaluated yeast behavior during a model dehydration experiment performed in liquid medium (osmotic stress). For both strains, we observed similar behavior after osmotic and desiccation stresses. In particular, the same lethal magnitude of dehydration and the same lethal kinetic effect were found for both dehydration methods. Thus, yeast survival after progressive air-drying was related to PM reorganization, suggesting the positive contribution of passive lateral rearrangements of the membrane components. This study also showed that the use of glycerol solutions is an efficient means to simulate air-drying desiccation.

  15. Phenome data - Air-drying stress - DGBY | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available cker. The results showed that mitochondria were extremely sensitive to air-drying stress, suggesting that a ...uggested that oxidative stress is a critical determinant of sensitivity to air-drying stress, although ROS-s

  16. Relationship soil-water-plant after the dry season in dry Mediterranean areas

    Science.gov (United States)

    Hueso-González, P.; Jiménez-Donaire, V.; Ruiz-Sinoga, J. D.

    2012-04-01

    Preliminary studies have determined the existence of a pluviometric gradient around Mediterranean system, which varies from 240 to 1 100 mm mean annual rainfall. This gradient has an incidence in the physical, chemical and hydrological properties in soils with the same litology. Empiric results conclude that humid eco-geomorphological systems are controlled by biotic processes, whereas in arid eco-geomorphological systems, are abiotic factors which have more importance in soil degradation processes. The study area of the present work is located in Málaga (Andalusia, Spain), in the southern part of the Natural Park "Sierra Tejeda, Almijara y Alhama". There, the mean annual temperature is around 18 °C and the mean rainfall is 650 mm. Predominant vegetation corresponds to the termomediterranean serie Smilaci Mauritanicae-Querceto Rotundifoliae Sigmetum, typical of basic soils. The aim of this study is to analyse the immediate hydrological response of the soil under different vegetation covers, through the analysis of certain properties, all this, under subhumid ombrotipe. A random choice of ten representative plants has been done. These plants, with different sizes, were located in the same Southern slope. The soil samples were taken right beside the plant log, and also within a distance of 0.4 to 1 metre from them, depending on the plant size. The sampling was carried out between the end of the dry season and the beginning of the wet one, after a 20% of the mean annual rainfall had rained. The physical, chemical and hydrological analyzes -both in the field and the laboratory- were: exchange-base, total carbon, cation exchange capacity, soil infiltration capacity, salt content, hydrophobia, organic matter, soil organic carbon, total nitrogen, wetting profile in bared soil, wetting profile under vegetation cover (shrubland), and p.H. Literature reveals that rainfall affects significantly the edafogenetic factors, regarding the pluviometric gradient level. In the

  17. Dynamics of Soil Water Evaporation during Soil Drying: Laboratory Experiment and Numerical Analysis

    OpenAIRE

    Jiangbo Han; Zhifang Zhou

    2013-01-01

    Laboratory and numerical experiments were conducted to investigate the evolution of soil water evaporation during a continuous drying event. Simulated soil water contents and temperatures by the calibrated model well reproduced measured values at different depths. Results show that the evaporative drying process could be divided into three stages, beginning with a relatively high evaporation rate during stage 1, followed by a lower rate during transient stage and stage 2, and finally maintain...

  18. Gas Dispersion in Granular Porous Media under Air-Dry and Wet Conditions

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Hamamoto, S; Kawamoto, K;

    2012-01-01

    Subsurface gaseous-phase transport is governed by three gas transport parameters: the air permeability coefficient (ka), gas diffusion coefficient (DP), and gas dispersion coefficient (DH). Among these, DH is the least understood due to hitherto limited research into the relationship between gas...... dispersion. Glass beads and various sands of different shapes (angular and rounded) with mean particle diameters (d50) ranging from 0.19 to 1.51 mm at both air-dry and variable moisture contents were used as granular porous media. Gas dispersion coefficients and gas dispersivities (a = DH/v, where v...... is the pore-gas velocity) were determined by fitting the advection–dispersion equation to the measured breakthrough curves. For all test conditions, DH increased linearly with v. The test results showed that neither soil column length nor diameter had significant effect on gas dispersivity. Under air...

  19. DRY CLEANING OF COAL WITH AIR DENSE MEDIUM FLUIDIZED BED

    Institute of Scientific and Technical Information of China (English)

    陈清如; 杨毅; 余智敏; 李建明

    1990-01-01

    This paper deals with the experimental study of dry cleaning of coal with air dense medium fluidized bed. This technique opens up an efficient way of coal separation for vast areas in the country where water resources are in short supply or coals tend to slime seriously in wet process. Tests show that it can separate any kind of coal (6--50mm) efficiently. The probable error E, can reach 0.05--0.08. The separating density can be adjusted in the range of 1.0--2.0 g/cm3. This technique brings about enormous economic benifits.

  20. The analysis of thermal calculation for air stove drying system

    Directory of Open Access Journals (Sweden)

    Li Xue

    2012-08-01

    Full Text Available This article discusses the existing calculation of heat for a coal-fired hot-blast furnace. By utilizing the standard method of heat calculation for boilers, considering the relation between the theoretical combustion temperature and the excess air coefficient of the boiler, combining some operational parameters of a coal-fired powder hot-blast furnace, the heat calculation of iron ore concentrating dry combustion on a coal-fired hot stove is discussed. It is used to prevent coke and optimize combustion. It also discusses the advantages and disadvantages of flue gas recirculation systems. The conclusion will show the practical applications of this.

  1. Drying Characteristics and Model of Chinese Hawthorn Using Microwave Coupled with Hot Air

    OpenAIRE

    Hai-Ming Yu; Chun-Cheng Zuo; Qiu-Ju Xie

    2015-01-01

    Microwave coupled with hot air drying kinetics and characteristics of hawthorn slices at different drying hot air temperatures, hot air velocities, and microwave power densities was investigated. The research results showed that drying occurred mainly in the falling rate period and in the accelerating period. Twelve mathematical models were selected to describe and compare the drying kinetics of hawthorn slices. By comparing three criterions including correlation coefficient, chi-square, and ...

  2. Spatial variability of soils in a seasonally dry tropical forest

    Science.gov (United States)

    Pulla, Sandeep; Riotte, Jean; Suresh, Hebbalalu; Dattaraja, Handanakere; Sukumar, Raman

    2016-04-01

    Soil structures communities of plants and soil organisms in tropical forests. Understanding the controls of soil spatial variability can therefore potentially inform efforts towards forest restoration. We studied the relationship between soils and lithology, topography, vegetation and fire in a seasonally dry tropical forest in southern India. We extensively sampled soil (available nutrients, Al, pH, and moisture), rocks, relief, woody vegetation, and spatial variation in fire burn frequency in a permanent 50-ha plot. Lower elevation soils tended to be less moist and were depleted in several nutrients and clay. The availability of several nutrients was, in turn, linked to whole-rock chemical composition differences since some lithologies were associated with higher elevations, while the others tended to dominate lower elevations. We suggest that local-scale topography in this region has been shaped by the spatial distribution of lithologies, which differ in their susceptibility to weathering. Nitrogen availability was uncorrelated with the presence of trees belonging to Fabaceae, a family associated with N-fixing species. No effect of burning on soil parameters could be discerned at this scale.

  3. Soil macrofauna (invertebrates of Kazakhstanian Stipa lessingiana dry steppe

    Directory of Open Access Journals (Sweden)

    Bragina Tatyana М.

    2016-12-01

    Full Text Available Stipa lessingiana steppes used to be prevalent on the dry Trans-Ural denudation plains, particularly, on the Sub-Ural and the Turgay Plateau. But, most of them have been lost because they were plowed up during the Virgin Land campaign in the second part of 20th century. This paper presents a detailed study of the faunistic composition and the structure of soil-dwelling invertebrate communities (macrofauna of a temperate-dry bunch feather grass steppe in the Turgai Plateau (Northern-Turgai physical-geographical province of steppe Kazakhstan, Kostanay Oblast. The study site is located in the territory of the Naurzum State Nature Reserve, a part of the UNESCO World Heritage site “Saryarka Steppe and Lakes of Northern Kazakhstan”, where remnants of Virgin S. lessingiana steppes have been preserved to the present day. This region is the driest and most continental in climate of all the dry steppes of Kazakhstan. The total abundance and biomass of soil invertebrate communities in the investigated site were lower than in the northern and western steppe areas. Soil invertebrates are among the major components that determine the functioning of terrestrial natural ecosystems.

  4. Gaseous fuels production from dried sewage sludge via air gasification.

    Science.gov (United States)

    Werle, Sebastian; Dudziak, Mariusz

    2014-07-01

    Gasification is a perspective alternative method of dried sewage sludge thermal treatment. For the purpose of experimental investigations, a laboratory fixed-bed gasifier installation was designed and built. Two sewage sludge (SS) feedstocks, taken from two typical Polish wastewater treatment systems, were analysed: SS1, from a mechanical-biological wastewater treatment system with anaerobic stabilization (fermentation) and high temperature drying; and (SS2) from a mechanical-biological-chemical wastewater treatment system with fermentation and low temperature drying. The gasification results show that greater oxygen content in sewage sludge has a strong influence on the properties of the produced gas. Increasing the air flow caused a decrease in the heating value of the produced gas. Higher hydrogen content in the sewage sludge (from SS1) affected the produced gas composition, which was characterized by high concentrations of combustible components. In the case of the SS1 gasification, ash, charcoal, and tar were produced as byproducts. In the case of SS2 gasification, only ash and tar were produced. SS1 and solid byproducts from its gasification (ash and charcoal) were characterized by lower toxicity in comparison to SS2. However, in all analysed cases, tar samples were toxic.

  5. Gaseous fuels production from dried sewage sludge via air gasification.

    Science.gov (United States)

    Werle, Sebastian; Dudziak, Mariusz

    2014-06-17

    Gasification is a perspective alternative method of dried sewage sludge thermal treatment. For the purpose of experimental investigations, a laboratory fixed-bed gasifier installation was designed and built. Two sewage sludge (SS) feedstocks, taken from two typical Polish wastewater treatment systems, were analysed: SS1, from a mechanical-biological wastewater treatment system with anaerobic stabilization (fermentation) and high temperature drying; and (SS2) from a mechanical-biological-chemical wastewater treatment system with fermentation and low temperature drying. The gasification results show that greater oxygen content in sewage sludge has a strong influence on the properties of the produced gas. Increasing the air flow caused a decrease in the heating value of the produced gas. Higher hydrogen content in the sewage sludge (from SS1) affected the produced gas composition, which was characterized by high concentrations of combustible components. In the case of the SS1 gasification, ash, charcoal, and tar were produced as byproducts. In the case of SS2 gasification, only ash and tar were produced. SS1 and solid byproducts from its gasification (ash and charcoal) were characterized by lower toxicity in comparison to SS2. However, in all analysed cases, tar samples were toxic. PMID:24938297

  6. Low Temperature Drying With Air Dehumidified by Zeolite for Food Products: Energy Efficiency Aspect Analysis

    OpenAIRE

    M. Djaeni; Asselt, van, R.; Bartels, P.V.; Sanders, J. P. M.; Straten, van, FE; Boxtel, van, C.

    2011-01-01

    Developments in low temperature drying of food products are still an interesting issue; especially with respect to the energy efficiency. This research studies the energy efficiency that can be achieved by a dryer using air which is dehumidified by zeolite. Experimental results are fitted to a dynamic model to find important variables for the drying operation. The results show that ambient air temperature as well as the ratio between air flow for drying and air flow for regeneration, affect t...

  7. Effect of green roofs on air temperature; measurement study of well-watered and dry conditions

    Science.gov (United States)

    Solcerova, Anna; van de Ven, Frans; Wang, Mengyu; van de Giesen, Nick

    2016-04-01

    Rapid urbanization and increasing number and duration of heat waves poses a need for understanding urban climate and ways to mitigate extremely high temperatures. One of repeatedly suggested and often investigated methods to moderate the so called urban heat island are green roofs. This study investigates several extensive green roofs in Utrecht (NL) and their effect on air temperature right above the roof surface. Air temperature was measured 15 and 30 cm above the roof surface and also in the substrate. We show that under normal condition is air above green roof, compared to white gravel roof, colder at night and warmer during day. This suggest that green roofs might help decrease air temperatures at night, when the urban heat island is strongest, but possibly contribute to high temperatures during daytime. We also measured situation when the green roofs wilted and dried out. Under such conditions green roof exhibits more similar behavior to conventional white gravel roof. Interestingly, pattern of soil temperature remains almost the same for both dry and well-prospering green roof, colder during day and warmer at night. As such, green roof works as a buffer of diurnal temperature changes.

  8. Temperature dependence of the water retention curve for dry soils

    Science.gov (United States)

    Schneider, M.; Goss, K.-U.

    2011-03-01

    Water retention curves (WRCs) are equivalent to water adsorption isotherms that display the soil water content as a function of water activity in the pore space. The use of water activity implies that pure (unbound) water at the given temperature is considered to be a reference state. In this study we measured the temperature dependence of WRCs for nine European soils under dry conditions (i.e., water activity adsorption enthalpy of water, ?, which reflects this temperature dependence, increased with decreasing water content and thus deviated from the condensation enthalpy of a pure (unbound) water phase, ?. These results are explained by the following facts: under increasingly drier conditions the interactions between water molecules and the mineral surfaces become more and more dominant because the sorbed water film becomes very thin. These interactions between water and minerals are stronger than those between pure water molecules. The observed temperature dependence of WRCs varied only a little between the studied soils. Therefore, the average equation, ?, derived from our experimental data may serve as a good approximation of ? for soils in general and thus allow the temperature extrapolation of WRCs (in the dry region down to 30% RH) between 5°C and 40°C without the need for additional experimental information.

  9. The role of soil air composition for noble gas tracer applications in tropical groundwater

    Science.gov (United States)

    Mayer, Simon; Jenner, Florian; Aeschbach, Werner; Weissbach, Therese; Peregovich, Bernhard; Machado, Carlos

    2016-04-01

    Dissolved noble gases (NGs) in groundwater provide a well-established tool for paleo temperature reconstruction. However, reliable noble gas temperature (NGT) determination needs appropriate assumptions or rather an exact knowledge of soil air composition. Deviations of soil air NG partial pressures from atmospheric values have already been found in mid latitudes during summer time as a consequence of subsurface oxygen depletion. This effect depends on ambient temperature and humidity and is thus expected to be especially strong in humid tropical soils, which was not investigated so far. We therefore studied NGs in soil air and shallow groundwater near Santarém (Pará, Brazil) at the end of the rainy and dry seasons, respectively. Soil air data confirms a correlation between NG partial pressures, the sum value of O2+CO2 and soil moisture contents. During the rainy season, we find significant NG enhancements in soil air by up to 7% with respect to the atmosphere. This is twice as much as observed during the dry season. Groundwater samples show neon excess values between 15% and 120%. Nearly all wells show no seasonal variations of excess air, even though the local river level seasonally fluctuates by about 8 m. Assuming atmospheric NG contents in soil air, fitted NGTs underestimate the measured groundwater temperature by about 1-2° C. However, including enhanced soil air NG contents as observed during the rainy season, resulting NGTs are in good agreement with local groundwater temperatures. Our presented data allows for a better understanding of subsurface NG variations. This is essential with regard to NG tracer applications in humid tropical areas, for which reliable paleoclimate data is of major importance for modern climate research.

  10. Variability of soil moisture memory for wet and dry basins

    Science.gov (United States)

    Rahman, Mohammad Mahfuzur; Lu, Minjiao; Kyi, Khin Htay

    2015-04-01

    Soil moisture memory (SMM) is not only important for atmospheric weather/climate forecasting, but may also be useful in flood and drought prediction. Despite their importance, SMM studies are restricted in certain regions due to the scarcity of soil moisture data. To overcome this limitation, this study explains the variability of SMM in wet and dry basins, and shows an alternative way to predict the basin scale SMM using observed precipitation and potential evapotranspiration information only. This study presents the basin average SMM in the form of a timescale that indicates the duration of significant autocorrelations at 95% confidence intervals. The soil moisture autocorrelations were calculated using observed precipitation, potential evapotranspiration, streamflow and soil moisture data sets simulated using the XinAnJiang (XAJ) model, for 26 river basins across the USA. The XAJ model's capability to simulate seasonal cycles (temporal anomalies) of soil moisture was validated against cycles from the observed data set of the Spoon River basin of Illinois State, USA. Based on the validation experience, the XAJ model was thereafter used to simulate soil moisture data for the analysed basins. Basin scale SMM timescale ranges were computed from 11 to 133 days. The SMM timescale is highly influenced by precipitation variability and exhibits strong seasonality. Dry basins tend to show the highest memory during the winter months (December to February) and lowest in late spring (May). In contrast, wet basins have the lowest memory during winter and early spring (December to April) and highest in the late summer and early autumn (July to September). The SMM timescale displayed an exponential relationship with the basin aridity index, with an r2 value of 0.9. This relationship could be a cheap source of basin scale SMM prediction from widely available observed data sets (actual precipitation and potential evapotranspiration), and thus, could afford some knowledge of SMM

  11. Reduced heat stress in offices in the tropics using solar powered drying of the supply air

    DEFF Research Database (Denmark)

    Gunnarsen, Lars; Santos, A M B

    2002-01-01

    Many solutions to indoor climate problems known from developed countries may have prohibitive installation and running costs in developing countries. The purpose was to develop a low-cost solution to heat stress in a hot and humid environment based on solar powered drying of supply air. Dry supply...... air may facilitate personal cooling by increased evaporation of sweat. Heat acclimatized people with efficient sweating may in particular benefit from this cooling. A prototype solar powered supply system for dried-only air was made. Air from the system was mixed with room air, heated to six different...... content of room air, temperature of supply air and moisture content of supply air was developed based on the experiments. Reduction of moisture content in the supply air by 1.6 g/kg had the same effect as lowering the operative temperature by 1 degree C. The solar-powered system for supplying dry air...

  12. A revised parameterization for gaseous dry deposition in air-quality models

    Directory of Open Access Journals (Sweden)

    L. Zhang

    2003-01-01

    Full Text Available A parameterization scheme for calculating gaseous dry deposition velocities in air-quality models is revised based on recent study results on non-stomatal uptake of O3 and SO2 over 5 different vegetation types. Non-stomatal resistance, which includes in-canopy aerodynamic, soil and cuticle resistances, for SO2 and O3 is parameterized as a function of friction velocity, relative humidity, leaf area index, and canopy wetness. Non-stomatal resistance for other chemical species is scaled to those of SO2 and O3 based on their chemical and physical characteristics. Stomatal resistance is calculated using a two-big-leaf stomatal resistance sub-model for all gaseous species of interest. The improvements in the present model compared to its earlier version include a newly developed non-stomatal resistance formulation, a realistic treatment of cuticle and ground resistance in winter, and the handling of seasonally-dependent input parameters. Model evaluation shows that the revised parameterization can provide more realistic deposition velocities for both O3 and SO2, especially for wet canopies. Example model output shows that the parameterization provides reasonable estimates of dry deposition velocities for different gaseous species, land types and diurnal and seasonal variations. Maximum deposition velocities from model output are close to reported measurement values for different land types. The current parameterization can be easily adopted into different air-quality models that require inclusion of dry deposition processes.

  13. A proposed compressed air drying method using pressurized liquid desiccant and experimental verification

    International Nuclear Information System (INIS)

    Highlights: • A novel compressed air drying method using pressurized liquid desiccant was proposed. • Experiments verified the method and get compressed air with the humidity of 0.9 g/kg. • Energy efficiency was analyzed to show the energy saving potential of the new method. - Abstract: A novel compressed air drying method using pressurized liquid desiccant is proposed in this paper. The compressed air drying system is consisted of a compressed air module, a pressurized liquid desiccant dehumidifier, a liquid desiccant regenerator working in an atmospheric pressure, and other auxiliary components. An experimental apparatus of the pressurized liquid desiccant dehumidifier associated with a compressed air module is established to verify the proposed air drying method experimentally. The results show that, under the pressure of 0.5 MPa, the moisture content in the outlet air can reach 0.9 g/kg. The moisture content of the outlet air reaches 1.4 g/kg under the pressure of 0.3 MPa, and the power consumption of the drying system is 6.17 kJ/g, which is 0.69 kJ/g and 10.1% lower than the conventional compressed air cooling drying system. The dehumidification efficiency is around 0.90, indicating the sufficiently mass transfer between compressed air and solution in pressurized dehumidifier. Besides, the proposed compressed air drying system can use the low-grade heat from the air compressor to regenerate the diluted desiccant solution. The novel air drying method is verified to offer very dry air for industrial application, and shows significant energy saving potential compared with the conventional compressed air cooling drying system

  14. Dry heat effects on survival of indigenous soil particle microflora and particle viability studies of Kennedy Space Center soil

    Science.gov (United States)

    Ruschmeyer, O. R.; Pflug, I. J.; Gove, R.; Heisserer, Y.

    1975-01-01

    Research efforts were concentrated on attempts to obtain data concerning the dry heat resistance of particle microflora in Kennedy Space Center soil samples. The in situ dry heat resistance profiles at selected temperatures for the aggregate microflora on soil particles of certain size ranges were determined. Viability profiles of older soil samples were compared with more recently stored soil samples. The effect of increased particle numbers on viability profiles after dry heat treatment was investigated. These soil particle viability data for various temperatures and times provide information on the soil microflora response to heat treatment and are useful in making selections for spacecraft sterilization cycles.

  15. Hot air drying characteristics of mango ginger: Prediction of drying kinetics by mathematical modeling and artificial neural network.

    Science.gov (United States)

    Murthy, Thirupathihalli Pandurangappa Krishna; Manohar, Balaraman

    2014-12-01

    Mango ginger (Curcuma amada) was dried in a through-flow dryer system at different temperatures (40-70 °C) and air velocities (0.84 - 2.25 m/s) to determine the effect of drying on drying rate and effective diffusivity. As the temperature and air velocity increased, drying time significantly decreased. Among the ten different thin layer drying models considered to determine the kinetic drying parameters, semi empirical Midilli et al., model gave the best fit for all drying conditions. Effective moisture diffusivity varied from 3.7 × 10(-10) m(2)/s to 12.5 × 10(-10) m(2)/s over the temperature and air velocity range of study. Effective moisture diffusivity regressed well with Arrhenius model and activation energy of the model was found to be 32.6 kJ/mol. Artificial neural network modeling was also employed to predict the drying behaviour and found suitable to describe the drying kinetics with very high correlation coefficient of 0.998. PMID:25477637

  16. Transcriptome data - Air-drying stress - DGBY | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available [ Credits ] BLAST Search Image Search Home About Archive Update History Contact us DGBY Tran...scriptome data - Air-drying stress Data detail Data name Transcriptome data - Air-drying stress Des...suggested that the genes involved in protein folding were transiently upregulated at early stages, and that ... License Update History of This Database Site Policy | Contact Us Transcriptome data - Air-drying stress - DGBY | LSDB Archive ...

  17. Hot air injection for removal of dense, non-aqueous-phase liquid contaminants from low-permeability soils

    Energy Technology Data Exchange (ETDEWEB)

    Payne, F.C.

    1996-08-01

    The performance of soil vapor extraction systems for the recovery of volatile and semi-volatile organic compounds is potentially enhanced by the injection of heated air to increase soil temperatures. The soil temperature increase is expected to improve soil vapor extraction (SVE) performance by increasing target compound vapor pressures and by increasing soil permeability through drying. The vapor pressure increase due to temperature rise relieves the vapor pressure limit on the feasibility of soil vapor extraction. However, the system still requires an air flow through the soil system to deliver heat and to recover mobilized contaminants. Although the soil permeability can be increased through drying, very low permeability soils and low permeability soils adjacent to high permeability air flow pathways will be treated slowly, if at all. AR thermal enhancement methods face this limitation. Heated air injection offers advantages relative to other thermal techniques, including low capital and operation costs. Heated air injection is at a disadvantage relative to other thermal techniques due to the low heat capacity of air. To be effective, heated air injection requires that higher air flows be established than for steam injection or radio frequency heating. Heated air injection is not economically feasible for the stratified soil system developed as a standard test for this document. This is due to the inability to restrict heated air flow to the clay stratum when a low-resistance air flow pathway is available in the adjoining sand. However, the technology should be especially attractive, both technically and economically, for low-volatile contaminant recovery from relatively homogeneous soil formations. 16 refs., 2 tabs.

  18. Tunneling behavior of the formosan subterranean termite (isoptera: rhinotermitadae) in dry soil

    Science.gov (United States)

    This study examines the effect of dry soil on tunnel construction by the Formosan subterranean termite, Cptotermes formosanus. Termites did not construct tunnels in dry soil in any of the treatments. Termites only constructed tunnels in moist areas in treatments where the soil was partially moistene...

  19. The Sappanwood Extract Drying With Carrier Agent Under Air Dehumidification

    OpenAIRE

    Mohamad Djaeni; Meilya Suzan Triyastuti; Febiani Utari; Arianti Nuur Annisa; Dewi Ayu Novita

    2016-01-01

    The sappanwood extract enriched by brazilin can be used for natural colouring agent in food and beverages. The extract is produced in form of dry powder for consummer convenience as well as prolonging storage life. Currently, the sappanwood extract drying still deals with the product sticky that inhibit water transport in drying. As a result, the drying process needs long time to get moisture content below 10%. The extract drying with carrier agent is an option to break the product sticky and...

  20. Effects of dry bulk density and particle size fraction on gas transport parameters in variably saturated landfill cover soil.

    Science.gov (United States)

    Wickramarachchi, Praneeth; Kawamoto, Ken; Hamamoto, Shoichiro; Nagamori, Masanao; Moldrup, Per; Komatsu, Toshiko

    2011-12-01

    Landfill sites are emerging in climate change scenarios as a significant source of greenhouse gases. The compacted final soil cover at landfill sites plays a vital role for the emission, fate and transport of landfill gases. This study investigated the effects of dry bulk density, ρ(b), and particle size fraction on the main soil-gas transport parameters - soil-gas diffusivity (D(p)/D(o), ratio of gas diffusion coefficients in soil and free air) and air permeability (k(a)) - under variably-saturated moisture conditions. Soil samples were prepared by three different compaction methods (Standard and Modified Proctor compaction, and hand compaction) with resulting ρ(b) values ranging from 1.40 to 2.10 g cm(-3). Results showed that D(p) and k(a) values for the '+gravel' fraction (soil-air content (ε), likely due to enhanced gas diffusion and advection through less tortuous, large-pore networks. The effect of dry bulk density on D(p) and k(a) was most pronounced for the '+gravel' fraction. Normalized ratios were introduced for all soil-gas parameters: (i) for gas diffusivity D(p)/D(f), the ratio of measured D(p) to D(p) in total porosity (f), (ii) for air permeability k(a)/k(a)(,pF4.1), the ratio of measured k(a) to k(a) at 1235 kPa matric potential (=pF 4.1), and (iii) for soil-air content, the ratio of soil-air content (ε) to total porosity (f) (air saturation). Based on the normalized parameters, predictive power-law models for D(p)(ε/f) and k(a)(ε/f) models were developed based on a single parameter (water blockage factor M for D(p) and P for k(a)). The water blockage factors, M and P, were found to be linearly correlated to ρ(b) values, and the effects of dry bulk density on D(p) and k(a) for both '+gravel' and '-gravel' fractions were well accounted for by the new models. PMID:21813272

  1. OPTIMIZATION OF MICROWAVE AND AIR DRYING CONDITIONS OF QUINCE (CYDONIA OBLONGA, MILLER USING RESPONSE SURFACE METHODOLOGY

    Directory of Open Access Journals (Sweden)

    Cem Baltacioglu

    2015-03-01

    Full Text Available Effects of slice thickness of quince (Cydonia oblonga Miller , microwave incident power and air drying temperature on antioxidant activity and total phenolic content of quince were investigated during drying in microwave and air drying. Optimum conditions were found to be: i for microwave drying, 285 W and 4.14 mm thick (maximum antioxidant activity and 285 W and 6.85 mm thick (maximum total phenolic content, and ii for air drying, 75 ºC and 1.2 mm thick (both maximum antioxidant activity and total phenolic content. Drying conditions were optimized by using the response surface methodology. 13 experiments were carried out considering incident microwave powers from 285 to 795 W, air temperature from 46 to 74 ºC and slice thickness from 1.2 to 6.8 mm.

  2. Seismic Soil-Structure Interaction Analysis of a Consolidated Dry Storage Module for CANDU Spent Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Young Gon; Yoon, Jeong Hyoun; Cho, Chun Hyung; Lee, Heung Young [Korea Hydro and Nuclear Power Co., Ltd., Taejon (Korea, Republic of); Choi, Kyu Sup; Jeong, In Su; Kim, Jong Soo [KONES Co., Seoul (Korea, Republic of)

    2005-07-01

    The MACSTOR/KN-400 module has been developed as an effective alternative to the existing stand alone concrete canister for dry storage of CANDU spent fuel. The structure is a concrete monolith of 21.67 m long and 12.66 m wide and has a height equal to 7.518 m including the bottom slab. Inside of the concrete module are built 40 storage cylinders accommodating ten 60- bundle dry storage baskets, which are suspended from the top slab and eventually constrained at 10 cm above the bottom slab with horizontal seismic restraints. The main cooling process of the MACSTOR/KN-400 module is by air convection through air inlets and outlets. The civil design parameters, with respect to meteorological and seismic loads applied to the module are identical to those specified for the Wolsung CANDU 3 and 4 plants except for local geologic characteristics. As per USNRC SRP Section 3.7.2 and current US practices, Soil-Structure Interaction (SSI) effect shall be considered for all structures not supported by a rock or rock-like soil foundation materials. An SSI is a very complicated phenomenon of the structure coupled with the soil medium that is usually semi-infinite in extent and highly nonlinear in its behavior. And the effect of the SSI is noticeable especially for stiff and massive structures resting on relatively soft ground. Thus the SSI effect has to be considered in the seismic design of MACSTOR/KN-400 module resting on soil medium. The scope of the this paper is to carry out a seismic SSI analysis of the MACSTOR/KN-400 module, in order to show how much the SSI gives an effect on the structural responses by comparing with the fixed-base analysis.

  3. High Temperature Convective Drying of a Packed Bed with Humid Air at Different Humidities

    Directory of Open Access Journals (Sweden)

    J. Sghaier

    2009-01-01

    Full Text Available Problem statement: Drying a packed bed of porous particle at high temperature with varying humidity of hot air is an attractive process. Despite, many researches on experimental and simulation on a fixed bed drying at low and average temperature are proposed. Few studies showed drying at high temperature with humid air or using superheated steam. The latest is compared to dry air. Approach: In this study, we show an experimental and numerical study of humid air drying of a fixed bed of moist porous alumina particles. The air velocity, the air temperature and the vapor pressure were varied from 1.7-2.3 m.sec-1, 120-160°C and 0.1-0.65 bar, respectively and the experiments were performed at atmospheric pressure. Then a mathematical describing heat and mass transfer during drying is developed. This model is based on the averaging volume approach using two scale changes. Results: From the experimental works, the solid temperature and the bed moisture content have been presented at different drying conditions. The previous results show that an increase in humidity leads to an increase of the wet bulb temperature and a decrease in the drying time. At the same drying temperature, the variation in the gas velocity affects also the drying time. In addition, we note that the drying time increases if the bed depth increases. The predicted results deduced from the developed model were compared with the experiment. Conclusion: The experimental and predicted results obtained from this study describing drying of a packed bed illustrate clearly the effect of the air humidity on the drying kinetics.

  4. Air-soil exchange of PCBs: levels and temporal variations at two sites in Turkey.

    Science.gov (United States)

    Yolsal, Didem; Salihoglu, Güray; Tasdemir, Yücel

    2014-03-01

    Seasonal distribution of polychlorinated biphenyls (PCBs) at the air-soil intersection was determined for two regions: one with urban characteristics where traffic is dense (BUTAL) and the other representing the coastal zone (Mudanya). Fifty-one air and soil samples were simultaneously collected. Total PCB (Σ82 PCB) levels in the soil samples collected during a 1-year period ranged between 105 and 7,060 pg/g dry matter (dm) (BUTAL) and 110 and 2,320 pg/g dm (Mudanya). Total PCB levels in the gaseous phase were measured to be between 100 and 910 pg/m(3) (BUTAL) and 75 and 1,025 pg/m(3) (Mudanya). Variations in the concentrations were observed depending on the season. Though the PCB concentrations measured in the atmospheres of both regions in the summer months were high, they were found to be lower in winter. However, while soil PCB levels were measured to be high at BUTAL during summer months, they were found to be high during winter months in Mudanya. The direction and amount of the PCB movement were determined by calculating the gaseous phase change fluxes at air-soil intersection. While a general PCB movement from soil to air was found for BUTAL, the PCB movement from air to soil was calculated for the Mudanya region in most of the sampling events. During the warmer seasons PCB movement towards the atmosphere was observed due to evaporation from the soil. With decreases in the temperature, both decreases in the number of PCB congeners occurring in the air and a change in the direction of some congeners were observed, possibly caused by deposition from the atmosphere to the soil. 3-CB and 4-CB congeners were found to be dominant in the atmosphere, and 4-, 5-, and 6-CBs were found to dominate in the surface soils. PMID:24293299

  5. Optimization of Microwave-Osmotic Pretreatment of Apples with Subsequent Air-Drying for Preparing High-Quality Dried Product

    Directory of Open Access Journals (Sweden)

    Elham Azarpazhooh

    2011-01-01

    Full Text Available Prepared apple (Red Gala cylinders were subjected to microwave-osmotic dehydration treatment under continuous flow medium spray (MWODS conditions and then air-dried to a final 20% moisture content. The dried samples were evaluated for color and textural properties, and rehydration capacity. The MWODS pretreatments were based on a central composite rotatable design and a response surface methodology using five levels of sucrose concentration, temperature, and contact time at a constant flow rate of 2800 mL/min. The air-drying was carried out at 60°C, 15±1% relative humidity, and 0.64±0.02 m/s air velocity. The results were compared to untreated air-dried (AD (worst-case scenario and freeze-dried (FD (best-case scenario apples without the MWODS treatment. Color properties were affected regardless of the type of treatment. Conventional AD apples were darker in color, whereas MWODS-treated samples were lighter with higher L∗ and b∗ values, higher Hue and Chroma values but lower a∗ value and ΔE. Further the color parameters of MWODS-treated samples were closer or equal to the FD apples. The texture properties were also affected by the osmotic variables with MWODS treatment resulting in softer and chewier products. The AD samples were hard, and FD apples were brittle.

  6. 干旱季节不同耕作制度下红壤栕魑飽大气连续体水流阻力变化规律%VARIATION OF HYDRAULIC RESISTANCES IN RED SOIL-CROP-AIR CONTINUUMS IN DIFFERENT FARMING SYSTEMS IN DRY SEASON

    Institute of Scientific and Technical Information of China (English)

    张斌; 丁献文; 张桃林; 赵其国

    2001-01-01

    Estimation of hydraulic resistances of soil-plant-climate continuum (SPAC) is important both for describing water movement in the continuum and for adopting practical water-saving measures in agriculture to find the solutions to seasonal drought in the area of Red Soil of China. The diurnal variation of stomatal resistance of crops in dry season was observed and its relation to transpiration rate and water potentials of crop leaf and soil in different farming systems was also studied. Results indicated that stomatal resistance and transpiration rate were different for each crop in different farming systems. Stomatal resistance was related to soil water potentials within the soil layers of 70cm. The hydraulic resistances of the leaf-air interface in SPACs ranged from 109 to 1010 S, which was 1000 times higher than those of crop body. The resistance of crop body was 100 times as much as that within the soil layer of 70cm. In dry season, soil resistance increased with the depletion of soil water.Resistance of crop body fell in the order: soybean>peanut>corn>sweet potato, which experienced dramatically diurnal variation except that of sweet potato. Resistance of crop also varied with cropping systems.%确定水流阻力不仅有助于定量土壤栕魑飽大气连续体(SPAC)描述的水分传输过程,而且对建立减少水流阻力的节水农业措施,解决红壤区季节性干旱有重要意义。本文研究了不同耕作制度下作物气孔阻力日变化及其与蒸腾速率、土壤基质势、作物叶水势的关系,并分析了水流阻力的分布及其日变化规律。结果表明气孔阻力和蒸腾速率受作物种类和耕作制度影响,气孔阻力随着70cm土层以上土壤基质势的变化而变化;SPAC中叶气系统水流阻力为109~1010 S,是作物体水流阻力的1000倍,而后者又是70cm以上土层土壤水流阻力的100倍;作物体水流阻力大小顺序为:大豆>花生>玉米>甘薯,

  7. Effect of Turmerin on Endothelial Denudation by Air Drying

    Directory of Open Access Journals (Sweden)

    A. K. Markov

    2002-09-01

    Full Text Available Abstract: The objective of this study is to determine if arterial endothelial injury can be attenuated by local application of 80 μg/ml turmerin at the site of injury and by oral administration of the same dose. Anesthetized Lewis rats (n =12 weighing 200 ± 4.0 gms randomly were assigned to two groups. After 5 min of air drying a segment of right carotid artery, six rats were treated locally 80μg/ml with turmerin and the rest were treated with 0.9% NaCl. Turmerin was then administered by gavage (80 μg every 24 hrs for 14 days. Animals were sacrificed on day 14 and the carotid artery removed from the injured site for histological analysis and serum collected for lipid peroxidation analysis by measuring malondialdehyde (MDA and conjugated dienes. This study showed no proliferation in the intima of one rat out of six rats treated with turmerin while there was significant variation between the treated rats and the controls. MDA for control was 0.593±0.02 nanomoles/ml while turmerin was 0.187±0.04 (p≤0.01; conjugated diene for control was 0.402±0.03 nanomoles/ml while turmerin was 0.212±0.04 nanomoles/ml (p ≤0.05. Although there was significant reduction in serum peroxidation activity, the histological findings indicate that attenuation of carotid artery injury may involve other factors than decreased lipid peroxidation.

  8. Oxidation behaviour of U2Ti alloy in dry air

    International Nuclear Information System (INIS)

    U2Ti alloy is being considered as promising storage material for storage of hydrogen isotopes. However, the absorption capacity of this reactive alloy can be affected due to presence of oxygen in the process gas. Hence, it is necessary to know the kinetic of this alloy in presence of oxygen. In this study, U2Ti alloy was prepared by arc melting method followed by vacuum annealing. The alloy was characterized by XRD, SEM and EDX methods. The isothermal oxidation behaviour of U2Ti alloy was investigated in the temperature range of 548-623 K in dry air for 24 hours by using thermo gravimetric technique. The oxidation curves are shown. The oxidation curves were analysed using the rate equation: (Δm/a)n = kt, where, (Δm/a) is the mass gain per unit area, n is the power exponent, k is the rate constant and t is time in (seconds). Analysis of the results shows that the oxidation reaction follows linear rate law (n ~ 1). Using the linear rate law, the rate constant (k) of oxidation reaction was evaluated at each temperature in the range 548-623 K. The variation of (ln k) with reciprocal temperature is shown. The activation energy of this oxidation reaction in the temperature range 548-623 K was calculated using the Arrhenius equation and found to be 76 kJ/mol. The XRD analysis of the oxidation products was found to be U3O8 and TiO2. (author)

  9. Hot-air drying of purslane ( Portulaca oleracea L.)

    Science.gov (United States)

    Doymaz, İbrahim

    2013-06-01

    Drying characteristics of purslane was experimentally studied in a cabinet dryer. The experimental drying data were fitted best to Modified Henderson and Pabis and Midilli et al. models apart from other models to predict the drying kinetics. The effective moisture diffusivity varied from 1.12 × 10-9 to 3.60 × 10-9 m2/s over the temperature range studied and activation energy was 53.65 kJ/mol.

  10. Hyperventilation with cold versus dry air in 2- to 5-year-old children with asthma

    DEFF Research Database (Denmark)

    Nielsen, Kim G; Bisgaard, Hans

    2005-01-01

    UNLABELLED: Cold air challenge (CACh) has been shown to discriminate between children with asthma and healthy young children. Hyperventilation with dry room-temperature air is a simplified alternative. We compared responsiveness in young children with asthma between two standardized, single......-step protocols: dry air challenge (DACh) performed as 6 minutes of eucapnic hyperventilation with dry room-temperature air and CACh as 4 minutes of hyperventilation. Response was measured as specific airway resistance by whole-body plethysmography and expressed as change from baseline in numbers of within......-subject SDs (SDw). The challenge sequence was randomly assigned. A comparator challenge was performed 1 hour later if the first challenge gave a change of 3 SDw or more. Forty 2- to 5-year-old children with asthma were included. Responsiveness to cold versus dry air showed significant, but weak, correlation...

  11. Effect of ultrasound and blanching pretreatments on polyacetylene and carotenoid content of hot air and freeze dried carrot discs.

    Science.gov (United States)

    Rawson, A; Tiwari, B K; Tuohy, M G; O'Donnell, C P; Brunton, N

    2011-09-01

    The effect of ultrasound and blanching pretreatments on polyacetylene (falcarinol, falcarindiol and falcarindiol-3-acetate) and carotenoid compounds of hot air and freeze dried carrot discs was investigated. Ultrasound pretreatment followed by hot air drying (UPHD) at the highest amplitude and treatment time investigated resulted in higher retention of polyacetylenes and carotenoids in dried carrot discs than blanching followed by hot air drying. Freeze dried samples had a higher retention of polyacetylene and carotenoid compounds compared to hot air dried samples. Color parameters were strongly correlated with carotenoids (pblanching treatment in the drying of carrots.

  12. Performance of Silica Gel in the Role of Residual Air Drying

    Science.gov (United States)

    Jan, Darrell L.; Hogan, John A.; Koss, Brian; Palmer, Gary H.; Richardson, Justine; Linggi, Paul

    2014-01-01

    Removal of carbon dioxide (CO2) is a necessary step in air revitalization and is often accomplished with sorbent materials. Since moisture competes with CO2 in sorbent materials, it is necessary to remove the water first. This is typically accomplished in two stages: bulk removal and residual drying. Silica gel is used as the bulk drying material in the Carbon Dioxide Removal Assembly (CDRA) in operation on ISS. There has been some speculation that silica gel may also be capable of serving as the residual drying material. This paper will describe test apparatus and procedures for determining the performance of silica gel in residual air drying.

  13. Mathematical modelling of thin layer hot air drying of carrot pomace

    OpenAIRE

    Kumar, Navneet; Sarkar, B. C.; Sharma, H. K.

    2011-01-01

    Thin layer carrot pomace drying characteristics were evaluated in a laboratory scale hot air forced convective dryer. The drying experiments were carried out at 60, 65, 70 & 75 °C and at an air velocity of 0.7 m/s. Mathematical models were tested to fit drying data of carrot pomace. The whole drying process of carrot pomace took place in a falling rate period except a very short accelerating period at the beginning. The average values of effective diffusivity ranged from 2.74 × 10−9 to 4.64 ×...

  14. The inlfuence of soil drying- and tillage-induced penetration resistance on maize root growth in a clayey soil

    Institute of Scientific and Technical Information of China (English)

    LIN Li-rong; HE Yang-bo; CHEN Jia-zhou

    2016-01-01

    Soil drying may induce a number of stresses on crops. This paper investigated maize (Zea maysL.) root growth as affected by drought and soil penetration resistance (PR), which was caused by soil drying and tilage in a clayey red soil. Com-pared with conventional tilage (C) and deep tilage (D), soil compaction (P) and no-til (N) signiifcantly increased soil PR in the 0–15 cm layer. The PR increased dramaticaly as the soil drying increased, particularly in soil with a high bulk density. Increased soil PR reduced the maize root mass density distribution not only in the vertical proifle (0–20 cm) but also in the horizontal layer at the same distance (0–5, 5–10, 10–15 cm) from the maize plant. With an increase in soil PR in pots, the maize root length, root surface area and root volume signiifcantly decreased. Speciifcaly, the maize root length declined exponentialy from 309 to 64 cm per plant with an increase in soil PR from 491 to 3370 kPa; the roots almost stopped elon-gating when the soil PR was larger than 2200 kPa. It appeared that ifne roots (<2.5 mm in diameter) thickened when the soil PR increased, resulting in a larger average root diameter. The average root diameter increased linearly with soil PR, regardless of soil irrigation or drought. The results suggest that differences in soil PR caused by soil drying is most likely responsible for inconsistent root responses to water stress in different soils.

  15. Hot air drying of apple slices: dehydration characteristics and quality assessment

    Science.gov (United States)

    Beigi, Mohsen

    2016-08-01

    The main objectives of the present study were to investigate the drying characteristics and quality attributes of apple slices. The samples were dried at different air temperature levels (50, 60 and 70 °C) and a constant air velocity (1.5 m s-1). It was observed that the drying air temperature affected the dehydration rate significantly. The usefulness of eight different mathematical models to simulate the experimental drying curves was evaluated and the Midilli model provided the best simulation of the samples drying kinetics. The effective moisture diffusivity was determined to be 7.03 × 10-10, 8.48 × 10-10 and 1.08 × 10-9 m2 s-1 for drying air temperatures of 50, 60 and 70 °C, respectively. The shrinkage values of the dried samples at air temperatures of 50, 60 and 70 °C were 74.70, 82.35 and 80.78 %, respectively. The maximum value of rehydration ratio (4.527) and also the minimum value of ∆E (11.27) were obtained for the slices dried at 70 °C.

  16. Effects of warm air-drying and spreading on resin bonding.

    Science.gov (United States)

    Galan, D; Williams, P T; Kasloff, Z

    1991-12-01

    The purpose of this study was to compare the effect on resin-to-enamel bonding produced by warm air from a hair dryer, and to correlate changes in resin bond strength with resin tag structure. Herculite-XR resin composite and Bondlite bonding resin were used. The three technique variables were the type of air used for drying, air dryer distance, and drying and spreading time. Control samples were dried and the bonding resin spread with a dental air syringe, whereas warm air from a hair dryer was used on the experimental samples. The bond strength (MPa) was determined in shear at a crosshead speed of 1 mm/min. Following bond strength evaluation, the teeth were immersed in 10% HCl for enamel dissolution and the resin tag structure was examined with the SEM. ANOVA analyses of shear bond strengths were performed. Warm air-drying and spreading for 15 seconds at 6 cm and 5 seconds at 6 cm respectively, produced statistically greater shear bond strengths (x = 20.4 +/- 4.4 MPa, P less than 0.05). The other drying time/distance combinations, including the control (x = 14.4 +/- 3.3 MPa), were not statistically different. Differences in resin tag structure were qualitatively evident under the SEM, with sharp tags produced by the warm air-drying and spreading techniques, compared to the blunt tags created by syringe air-drying and spreading. Warm air-drying and spreading significantly improved the bond strength. No apparent correlation exists between bond strength and tag length.

  17. Drying/rewetting cycles of the soil under alternate partial root-zone drying irrigation reduce carbon and nitrogen retention in the soil-plant systems of potato

    DEFF Research Database (Denmark)

    Sun, Yanqi; Yan, Fei; Liu, Fulai

    2013-01-01

    for five weeks. For each N rate, the PRD and DI plants received a same amount of water, which allowed re-filling one half of the PRD pots close to full water holding capacity. The results showed that plant dry biomass, plant water use, and water use efficiency were increased with increasing N......-fertilization rate but were unaffected by the irrigation treatment. As compared with DI, PRD significantly decreased soil C and N contents, which could have been due to an enhanced soil organic C and N mineralization. PRD did not influence plant C content but significantly increased plant N content in relation to DI......Dry/wet cycles of soil may stimulate mineralization of soil organic carbon (C) and nitrogen (N) leading to increased N bioavailability to plants but potentially also increased C and N losses. We investigated the effects of partial root-zone drying (PRD) and deficit irrigation (DI) on C and N...

  18. Comparing the VOC emissions between air-dried and heat-treated Scots pine wood

    Science.gov (United States)

    Manninen, Anne-Marja; Pasanen, Pertti; Holopainen, Jarmo K.

    The emissions of volatile organic compounds (VOCs) from air-dried Scots pine wood and from heat-treated Scots pine wood were compared with GC-MS analysis. Air-dried wood blocks released about 8 times more total VOCs than heat-treated (24 h at 230°C) ones. Terpenes were clearly the main compound group in the air-dried wood samples, whereas aldehydes and carboxylic acids and their esters dominated in the heat-treated wood samples. Only 14 compounds out of 41 identified individual compounds were found in both wood samples indicating considerable changes in VOC emission profile during heat-treatment process. Of individual compounds α-pinene, 3-carene and hexanal were the most abundant ones in the air-dried wood. By contrast, in the heat-treated wood 2-furancarboxaldehyde, acetic acid and 2-propanone were the major compounds of VOC emission. Current emission results reveal that significant chemical changes have occurred, and volatile monoterpenes and other low-molecular-weight compounds have evaporated from the wood during the heat-treatment process when compared to air-dried wood. Major chemical changes detected in VOC emissions are explained by the thermal degradation and oxidation of main constituents in wood. The results suggest that if heat-treated wood is used in interior carpentry, emissions of monoterpenes are reduced compared to air-dried wood, but some irritating compounds might be released into indoor air.

  19. Industrial drying of wooden pallets - CFD analysis of air flow

    OpenAIRE

    Ghiaus, Adrian; Filios, Andronikos; Margaris, Dionissios; Tzempelikos, Dimitrios

    2013-01-01

    This paper presents the results of the airflow 2D numerical simulation inside an industrial unit designed for drying of wooden pallets. The airflow field profile was examined in different operation conditions by plotting velocity vector distribution, path lines and pressure contours for both loaded with the wooden pallets and unloaded drying room. The analysis of the obtained results shows the presence of stagnation zones between and above the pallet columns and recirculation regions in diffe...

  20. Microbial responses of forest soil to moderate anthropogenic air pollution - a large scale field survey

    International Nuclear Information System (INIS)

    There is a need to introduce soil microbiological methods into long term ecological monitoring programs. For this purpose we studied the impact of moderate anthropogenic air pollution in polluted and less polluted area districts, forest site types Calluna (CT), Vaccinium (VT) and Myrtillus (MT) and the amount of organic matter, measured as carbon content on the soil respiration activity and the ATP content. The main sources of local air pollutants (SO2 and NOx) in the polluted area district were from the capital region and an oil refinery. Humus (F/H-layer) and the underlying 0 to 5 cm mineral soil samples were collected from 193 study plots located in the 5300 km2 study area. We found that the soil respiration rate in humus layer samples was lower in the polluted area district compared to the less polluted one (16.0 and 19.5μL CO2 h-1g-1 dw, respectively), but the difference occurred only in the dry, coarse-textured CT forest site type. The mineral soil respiration rate and the mineral soil and humus layer ATP content were not affected by the air pollution. Most of the variations of the biological variables were explained primarily by the soil carbon content, secondly by the forest site type and thirdly by the area division. 38 refs., 1 fig., 6 tabs

  1. Dynamics of soil water evaporation during soil drying: laboratory experiment and numerical analysis.

    Science.gov (United States)

    Han, Jiangbo; Zhou, Zhifang

    2013-01-01

    Laboratory and numerical experiments were conducted to investigate the evolution of soil water evaporation during a continuous drying event. Simulated soil water contents and temperatures by the calibrated model well reproduced measured values at different depths. Results show that the evaporative drying process could be divided into three stages, beginning with a relatively high evaporation rate during stage 1, followed by a lower rate during transient stage and stage 2, and finally maintaining a very low and constant rate during stage 3. The condensation zone was located immediately below the evaporation zone in the profile. Both peaks of evaporation and condensation rate increased rapidly during stage 1 and transition stage, decreased during stage 2, and maintained constant during stage 3. The width of evaporation zone kept a continuous increase during stages 1 and 2 and maintained a nearly constant value of 0.68 cm during stage 3. When the evaporation zone totally moved into the subsurface, a dry surface layer (DSL) formed above the evaporation zone at the end of stage 2. The width of DSL also presented a continuous increase during stage 2 and kept a constant value of 0.71 cm during stage 3. PMID:24489492

  2. Anti-Browning of Mushroom (Agaricus bisporus Slices by Glutathione during Hot Air Drying

    Directory of Open Access Journals (Sweden)

    Zhenqiang Xia

    2013-08-01

    Full Text Available Browning of mushroom tends to occur during hot air drying due to Poly Phenol Oxidase (PPO, while glutathione is known for its ability to inhibit the activity of PPO and browning. In this study, the efficacy of glutathione in inhibiting browning on mushroom slices was estimated. Browning of mushroom slices treated with glutathione was monitored during hot air drying. PPO activity in mushroom was inhibited by 98.2 with 0.08% glutathione. Compared with the control, mushroom slices treated with glutathione showed no browning during hot air drying. These results indicate that application of glutathione is a promising method of Anti-browning of mushroom by glutathione during hot air drying.

  3. Comparison of the effects of gamma radiation on hydrated and air dried rye grass seeds

    International Nuclear Information System (INIS)

    This is a comparative study of the effects of gamma radiation on the growth of hydrated and air dried seeds during the first weeks of primary growth. Four groups of seeds were used in the study: 1) hydrated sweet corn, 2) air dried sweet corn, 3) hydrated rye grass, and 4) air dried rye grass. Each group was then further subdivided and exposed to various levels of gamma radiation using a Cobalt-60 irradiator, except for the control samples of the four groups which received no radiation above background level. All seeds samples were then planted, allowed to grow for approximately 12 days, and harvested. Growth of both shoot and root of each seed was recorded for data analysis according to specific groups. Analyses of data from this study shows that the mean growth of air dried seeds when exposed to gamma radiation prior to planting

  4. Effects of Composted and Thermally Dried Sewage Sludges on Soil and Soil Humic Acid Properties

    Institute of Scientific and Technical Information of China (English)

    J.M.FERN(A)NDEZ; N.SENESI; C.PLAZA; G.BRUNETTI; A.POLO

    2009-01-01

    The effect of annual additions of composted sewage sludge (CS) and thermally dried sewage sludge (TS) at 80 t ha-1 on soil chemical properties was investigated for three years in a field experiment under semiarid conditions.Humie acids (HAs) isolated by conventional procedures from CS,TS,and unamended (SO) and sludge amended soils were analysed for elemental (C,H,N,S and O) and acidic functional groups (carboxylic and phenolic) and by ultraviolet-visible,Fourier transform infrared and fluorescence spectroscopies.With respect to CS,TS had similar pH and total P and K contents,larger dry matter,total organic C,total N.and C/N ratio and smaller ash content and electrical conductivity.Amendment with both CS and TS induced a number of modifications in soil properties,including an increase of pH,electrical conductivity,total organic C,total N,and available P.The CS-HA had greater O,total acidity,carboxyl,and phenolic OH group contents and smaller C and H contents than TS-HA.The CS-HA and TS-HA had larger N and S contents,smaller C,O and acidic functional group contents,and lower aromatic polycondensation and humification degrees than SO-HA.Amended soil-HAs showed C,H,N and S contents larger than SO-HA,suggesting that sludge HAs were partially incorporated into soil HAs.These effects were more evident with increasing number of sludge applications.

  5. Drying effects on selenium and copper in 0.01M calcium chloride soil extractions

    NARCIS (Netherlands)

    Supriatin, Supriatin; Terrones, Cristian Adolfo; Bussink, Wim; Weng, Liping

    2015-01-01

    The study aimed to understand the effects of drying and rewetting the soils on soluble selenium (Se) and copper (Cu) concentrations in 0.01M CaCl2 soil extraction, and the mechanisms leading to these changes. Soluble Se and Cu concentrations were measured in the extractions of 58 soil

  6. Seasonal variation in soil and plant water potentials in a Bolivian tropical moist and dry forest

    NARCIS (Netherlands)

    Markesteijn, L.; Iraipi, J.; Bongers, F.; Poorter, L.

    2010-01-01

    We determined seasonal variation in soil matric potentials (¿soil) along a topographical gradient and with soil depth in a Bolivian tropical dry (1160 mm y-1 rain) and moist forest (1580 mm y-1). In each forest we analysed the effect of drought on predawn leaf water potentials (¿pd) and drought resp

  7. Soil Effects on Forest Structure and Diversity in a Moist and a Dry Tropical Forest

    NARCIS (Netherlands)

    Peña-Claros, M.; Poorter, L.; Alarcon, A.; Blate, G.; Choque, U.; Fredericksen, T.S.; Justiniano, J.; Leaño, C.; Licona, J.C.; Pariona, W.; Putz, F.E.; Quevedo, L.; Toledo, M.

    2012-01-01

    Soil characteristics are important drivers of variation in wet tropical forest structure and diversity, but few studies have evaluated these relationships in drier forest types. Using tree and soil data from 48 and 32 1 ha plots, respectively, in a Bolivian moist and dry forest, we asked how soil co

  8. Robust Vacuum-/Air-Dried Graphene Aerogels and Fast Recoverable Shape-Memory Hybrid Foams.

    Science.gov (United States)

    Li, Chenwei; Qiu, Ling; Zhang, Baoqing; Li, Dan; Liu, Chen-Yang

    2016-02-17

    New graphene aerogels can be fabricated by vacuum/air drying, and because of the mechanical robustness of the graphene aerogels, shape-memory polymer/graphene hybrid foams can be fabricated by a simple infiltration-air-drying-crosslinking method. Due to the superelasticity, high strength, and good electrical conductivity of the as-prepared graphene aerogels, the shape-memory hybrid foams exhibit excellent thermotropical and electrical shape-memory properties, outperforming previously reported shape-memory polymer foams.

  9. Microwave application on air drying of apple (var. Granny Smith). The influence of vacuum impregnation pretreatment

    Science.gov (United States)

    Martin Esparza, Maria Eugenia

    Combined hot air-microwave drying has been studied on apple (var. Granny Smith), with and without vacuum impregnation (VI) pretreatment with isotonic solution, respect to kinetics, microstructural and final quality items. In order to reach this objective, a drier has been designed and built, that allows to control and to register all the variables which take place during the drying process. Thermal and dielectric properties, that are very important characteristics when studying heat and mass transfer phenomena that occur during the combined drying process, have been related to temperature and/or moisture content throughout empirical equations. It could be observed that all these properties decreased with product moisture content. Respect to dielectric properties, a relationship among water binding forms to food structure and water molecules relaxation frequency has been found. On the other hand, the effect of drying treatment conditions (air rate, drying temperature, sample thickness and incident microwave power) on the drying rate, from an empirical model based on diffusional mechanisms with two kinetic parameters (k1 and k2), both function of the incident microwave power, has been studied. Microwave application to air drying implied a notable decrease on drying time, the higher the applied power the higher the reduction. Microstructural study by Cryo-Sem revealed fast water vaporization taking place when microwaves are applied. Vacuum impregnation did not implied an additional advantage for combined drying as drying rate was similar to that of NIV samples. Finally, it has been studied the influence of process conditions on the color and mechanical properties of the dried product (IV and NIV). Vacuum impregnation implied an increase on the fracture resistance and less purity and tone angle. Microwave application induced product browning with respect to air drying (tone decreased and purity increased).

  10. Potential of roof-integrated solar collectors for preheating air at drying facilities in Northern Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Roman, Franz; Nagle, Marcus; Leis, Hermann; Mueller, Joachim [Institute of Agricultural Engineering 440e, University of Hohenheim, Garbenstrasse 9, 70599 Stuttgart (Germany); Janjai, Serm [Department of Physics, Silpakorn University, Nakhon Pathom (Thailand); Mahayothee, Busarakorn [Department of Food Technology, Silpakorn University, Nakhon Pathom (Thailand); Haewsungcharoen, Methinee [Department of Food Engineering, Chiang Mai University, Chiang Mai (Thailand)

    2009-07-15

    Longan is one of the most widely cropped fruits in Northern Thailand, where a significant amount of the annual harvest is commercially dried and exported as a commodity. Liquefied petroleum gas is generally used as the energy source for heating the drying air, but concern is growing as fuel prices are expected to increase for the foreseeable future. Meanwhile, with the ample solar radiation in Thailand, the roofs of drying facilities could be adapted to serve as solar collectors to preheat the drying air, thus reducing the energy requirement from fossil fuels. In this study, a simulation program for a flat-plate solar air heater was used to estimate the potential to preheat drying air given the conditions of several longan drying facilities. Results showed that solar collectors can replace up to 19.6% of the thermal energy demand during the drying season. Bigger collectors and smaller air channels result in more useful heat, but attention has to be paid to costs and pressure drop, respectively. Annual monetary savings can reach up to THB 56,000 ({approx}US$ 1800 at US$ 1 THB 31). (author)

  11. Mass transfer characteristics of bisporus mushroom ( Agaricus bisporus) slices during convective hot air drying

    Science.gov (United States)

    Ghanbarian, Davoud; Baraani Dastjerdi, Mojtaba; Torki-Harchegani, Mehdi

    2016-05-01

    An accurate understanding of moisture transfer parameters, including moisture diffusivity and moisture transfer coefficient, is essential for efficient mass transfer analysis and to design new dryers or improve existing drying equipments. The main objective of the present study was to carry out an experimental and theoretical investigation of mushroom slices drying and determine the mass transfer characteristics of the samples dried under different conditions. The mushroom slices with two thicknesses of 3 and 5 mm were dried at air temperatures of 40, 50 and 60 °C and air flow rates of 1 and 1.5 m s-1. The Dincer and Dost model was used to determine the moisture transfer parameters and predict the drying curves. It was observed that the entire drying process took place in the falling drying rate period. The obtained lag factor and Biot number indicated that the moisture transfer in the samples was controlled by both internal and external resistance. The effective moisture diffusivity and the moisture transfer coefficient increased with increasing air temperature, air flow rate and samples thickness and varied in the ranges of 6.5175 × 10-10 to 1.6726 × 10-9 m2 s-1 and 2.7715 × 10-7 to 3.5512 × 10-7 m s-1, respectively. The validation of the Dincer and Dost model indicated a good capability of the model to describe the drying curves of the mushroom slices.

  12. Soil Air Regime of Corn Field Under Plastic Mulching

    Institute of Scientific and Technical Information of China (English)

    CHENYONG-XIANG; LIUXIAO-YI; 等

    1995-01-01

    The effects of plastic mulching on soil aeration at the soil depth of 0-100 cm were studied in a corn field.The results indicated that the CO2 concentration of unmulched soil in the 0-100 cm layer ranged from 0.001 to 0.016 m3/m3,and that of mulched oil 0.002 to 0.018m3/m3,about 32,39% higher than the former on the average.Such a CO2 concentration in the soil air is still sutiable for crop growth.The O2 concentration was inversely correlated with CO2 concentration in the soil air (unmulching r=-0.92,mulching r=-0.79*).O2 concentration raged from 0.11 to 0.17m3/m3 in the mulched soil and 0.13 to 0.18m3/m3 in the unmulched soil.By contrast,N2 concentration in soil air remained relatively steady,with no difference between the two treatments.The relationship between the soil respiratory intensity and the depth of a soil layer appeard to be a power function.At the layer of 0-20cm,the soil respiration intensity in the mulched soil was obviously higher than that in the unmulched.Plastic mulching could also affect soil structure.In comparison with the unmulched soil,the content of >0.25mm aggregate and 0.05-0.001mm microaggregate in the mulched soil was reduced by 82.1% and 35.8%,respectively;the soil total porotity,gaseous phase rate and aeration porosity in the depth of 10-20cm were reduced by 2.85%,19.89%and 26.54% respectively ,but contrary at the depth of 0-10cm.

  13. Determination of total carbon and nitrogen content in a range of tropical soils using near infrared spectroscopy : influence of replication and sample grinding and drying

    OpenAIRE

    Barthès, Bernard; Brunet, Didier; Ferrer, Henri; Chotte, Jean-Luc; Feller, Christian

    2006-01-01

    Near infrared (NIR) reflectance spectroscopy has been receiving increased attention for the rapid and inexpensive determination of soil properties and of total carbon (Ct) and nitrogen content (Nt) in particular. However, methodological aspects such as sample grinding and drying or replication have not been addressed extensively. The objectives of the paper were, thus, to assess how NIR predictions of Ct and Nt were affected by sample grinding (2 mm sieving vs. 0.2 mm grinding), drying (air-d...

  14. Contrasting Hydraulic Strategies during Dry Soil Conditions in Quercus rubra and Acer rubrum in a Sandy Site in Michigan

    Directory of Open Access Journals (Sweden)

    Julia E. Thomsen

    2013-12-01

    Full Text Available Correlation analyses were carried out for the dynamics of leaf water potential in two broad-leaf deciduous tree species in a sandy site under a range of air vapor pressure deficits and a relatively dry range of soil conditions. During nights when the soil is dry, the diffuse-porous, isohydric and shallow-rooted Acer rubrum does not recharge its xylem and leaf water storage to the same capacity that is observed during nights when the soil is moist. The ring-porous, deep-rooted Quercus rubra displays a more anisohydric behavior and appears to be capable of recharging to capacity at night-time even when soil moisture at the top 1 m is near wilting point, probably by accessing deeper soil layers than A. rubrum. Compared to A. rubrum, Q. rubra displays only a minimal level of down-regulation of stomatal conductance, which leads to a reduction of leaf water potential during times when vapor pressure deficit is high and soil moisture is limiting. We determine that the two species, despite typically being categorized by ecosystem models under the same plant functional type—mid-successional, temperate broadleaf—display different hydraulic strategies. These differences may lead to large differences between the species in water relations, transpiration and productivity under different precipitation and humidity regimes.

  15. Empirical Modeling on Hot Air Drying of Fresh and Pre-treated Pineapples

    Directory of Open Access Journals (Sweden)

    Tanongkankit Yardfon

    2016-01-01

    Full Text Available This research was aimed to study drying kinetics and determine empirical model of fresh pineapple and pre-treated pineapple with sucrose solution at different concentrations during drying. 3 mm thick samples were immersed into 30, 40 and 50 Brix of sucrose solution before hot air drying at temperatures of 60, 70 and 80°C. The empirical models to predict the drying kinetics were investigated. The results showed that the moisture content decreased when increasing the drying temperatures and times. Increase in sucrose concentration led to longer drying time. According to the statistical values of the highest coefficients (R2, the lowest least of chi-square (χ2 and root mean square error (RMSE, Logarithmic model was the best models for describing the drying behavior of soaked samples into 30, 40 and 50 Brix of sucrose solution.

  16. Mercury Exchange at the Air-Water-Soil Interface: An Overview of Methods

    Directory of Open Access Journals (Sweden)

    Fengman Fang

    2002-01-01

    Full Text Available An attempt is made to assess the present knowledge about the methods of determining mercury (Hg exchange at the air-water-soil interface during the past 20 years. Methods determining processes of wet and dry removal/deposition of atmospheric Hg to aquatic and terrestrial ecosystems, as well as methods determining Hg emission fluxes to the atmosphere from natural surfaces (soil and water are discussed. On the basis of the impressive advances that have been made in the areas relating to Hg exchange among air-soil-water interfaces, we analyzed existing problems and shortcomings in our current knowledge. In addition, some important fields worth further research are discussed and proposed.

  17. Treatment of air dried archaeological wool textiles from waterlogged environment

    DEFF Research Database (Denmark)

    Scharff, Annemette Bruselius

    2014-01-01

    expanded the fibers and the yarn increased in size, resulting in more flexible and less brittle textiles. This property was kept when the textiles were dried by stepwise dehydration in ethanol, acetone, and white spirit with a final treatment in 5% lanolin. Preliminary tests on brittle textiles can...... be performed on small samples to investigate if they will gain in flexibility by this method....

  18. Effect of microwave and air drying of parboiled rice on stabilization of rice bran oil

    OpenAIRE

    Rizk, Laila F.; Basyony, A. E.; Doss, Hanaa A.

    1995-01-01

    Two rice varieties, Giza 175 (short grain) and Giza 181 (long grain) were partDoiled by soaking the grains at room temperature for 20 hours and steaming for 15 min then dried either at room temperature or by microwave. The results indicated that air and microwave drying significantly increased oil extraction in both rice bran varieties. Parboiling followed by air or microwave drying produced a slight change on protein, fiber and ash content of rice bran and reduced the development of free fat...

  19. Mathematical Modeling and Effect of Various Hot-Air Drying on Mushroom (Lentinus edodes)

    Institute of Scientific and Technical Information of China (English)

    GUO Xiao-hui; XIA Chun-yan; TAN Yu-rong; CHEN Long; MING Jian

    2014-01-01

    An experimental study was performed to determine the characteristics and drying process of mushroom (Lentinus edodes) by 6 different hot-air drying methods namely isothermal drying, uniform raise drying, non-uniform raise drying, uniform intermittent drying, non-uniform intermittent drying and combined drying. The chemical composition (dry matter, ash, crude protein, crude fat, total sugars, dietary ifber, and energy), color parameters (L, a*, b*, c*, and h0) and rehydration capacities were determined. Among all the experiments, non-uniform intermittent drying reached a better comprehensive results due to the higher chemical composition, better color quality associated with high bright (26.381±5.842), high color tone (73.670±2.975), low chroma (13.349±3.456) as well as the highest rehydration (453.76%weigh of dried body). Nine kinds of classical mathematical model were used to obtained moisture data and the Midili-kucuk model can be described by the drying process with the coefifcient (R2 ranged from 0.99790 to 0.99967), chi-square (χ2 ranged from 0.00003 to 0.00019) and root mean square error (RMSE ranged from 0.000486 to 0.0012367).

  20. The effect of air temperature on the sappan wood extract drying

    Science.gov (United States)

    Djaeni, M.; Triyastuti, M. S.; Asiah, N.; Annisa, A. N.; Novita, D. A.

    2015-12-01

    The sappan wood extract contain natural colour called brazilin that can be used as a food colouring and antioxidant. The product is commonly found as a dry extract powder for consummer convenience. The spray dryer with air dehumidification can be an option to retain the colour and antioxidant agent. This paper discusses the effect of air temperature on sappan wood extract drying that was mixed with maltodextrin. As responses, the particle size, final moisture content, and extract solubility degradation were observed. In all cases, the process conducted in temperature ranging 90 - 110°C can retain the brazilin quality as seen in solubility and particle size. In addition, the sappan wood extract can be fully dried with moisture content below 2%. Moreover, with the increase of air temperature, the particle size of dry extract can be smaller.

  1. Effect of hot-air drying on the physicochemical properties of kaffir lime leaves (Citrus hystrix)

    OpenAIRE

    Juhari, Nurul Hanisah Binti; Lasekan, Ola; Muhammad, Kharidah; Karim, Shahrim

    2013-01-01

    The effect of hot-air drying namely drying time (3-15 h), drying temperature (40-80°C) and loading capacity (0.5-2.0 kg/m2 ) on the physicochemical characteristics of kaffir lime leaves was optimized using Response Surface Methodology. Twenty treatments were assigned based on the second- order CCD including 6 center points, 6 axial points and 8 factorial points. The quality of dried kaffir lime leaves was evaluated by determining moisture content, water activity, texture (brittleness) and Hun...

  2. Analysis and Modeling of Wangqing Oil Shale Drying Characteristics in a Novel Fluidized Bed Dryer with Asynchronous Rotating Air Distributor

    Institute of Scientific and Technical Information of China (English)

    Yang Ning; Zhou Yunlong; Miao Yanan

    2016-01-01

    In order to replace the conventional distributor, a novel asynchronous rotating air distributor, which can optimize the drying ability of lfuidized bed and strengthen the drying performance of oil shale particles, is creatively designed in this study. The rotating speed of the asynchronous rotating air distributor with an embedded center disk and an encircling disk is regulated to achieve the different air supply conditions. The impacts of different drying conditions on the drying characteristic of Wangqing oil shale particles are studied with the help of electronic scales. The dynamics of experimental data is analyzed with 9 common drying models. The results indicate that the particles distribution in lfuidized bed can be improved and the drying time can be reduced by decreasing the rotating speed of the embedded center disk and increasing the rotating speed of the encircling disk. The drying process of oil shale particles involves a rising drying rate period, a constant drying rate period and a falling drying rate period. Regulating the air distributor rotating speed reasonably will accelerate the shift of particles from the rising drying rate period to the falling drying rate period directly. The two-term model ifts properly the oil shale particles drying simulation among 9 drying models at different air supply conditions. Yet the air absorbed in the particles’ pores is diffused along with the moisture evaporation, and a small amount of moisture remains on the wall of lfuidized bed in each experiment, thus, the values of drying simulation are less than the experimental values.

  3. Seasonal variation in soil and plant water potentials in a Bolivian tropical moist and dry forest

    OpenAIRE

    Markesteijn, L.; Iraipi, J.; F. Bongers; Poorter, L.

    2010-01-01

    We determined seasonal variation in soil matric potentials (¿soil) along a topographical gradient and with soil depth in a Bolivian tropical dry (1160 mm y-1 rain) and moist forest (1580 mm y-1). In each forest we analysed the effect of drought on predawn leaf water potentials (¿pd) and drought response (midday leaf water potential at a standardized ¿pd of -0.98 MPa; ¿md) of saplings of three tree species, varying in shade-tolerance and leaf phenology. ¿soil changed during the dry season and ...

  4. Degradation of Biochemical Activity in Soil Sterilized by Dry Heat and Gamma Radiation

    Science.gov (United States)

    Shih, K. L.; Souza, K. A.

    1978-01-01

    The effect of soil sterilization by dry heat (0.08% relative humidity), gamma radiation, or both on soil phosphatase, urease, and decarboxylase activity was studied. Soil sterilized by a long exposure to dry heat at relatively low temperatures (eight weeks at 100.5 C) retained higher activities than did soil exposed to a higher temperature (two weeks at 124.5 C), while all activity was destroyed by four days at 148.5 C. Sterilization with 7.5 Mrads destroyed less activity than did heat sterilization. The effect of several individually nonsterizing doses of heat radiation is described.

  5. Air-soil exchange of mercury from background soils in the United States.

    Science.gov (United States)

    Ericksen, J A; Gustin, M S; Xin, M; Weisberg, P J; Fernandez, G C J

    2006-08-01

    The air-surface exchange of mercury (Hg) was measured, using a dynamic polycarbonate flux chamber, for soils with low or "background" Hg concentrations (pine forest ecosystems (n=1326 soil flux measurements at 46 individual sites). An overall soil Hg flux of 0.9+/-0.2 ng/m2/h for these background soils was obtained by averaging the means for the different locations. Soil Hg fluxes were significantly lower in dark conditions than in the light for all but the grassland sites. Mean inlet air Hg concentrations were 1.0+/-0.1 ng/m3 in the dark and 1.3+/-0.2 ng/m3 in the light. Soil temperature inside and outside of the chamber, air temperature, relative humidity, and irradiance were measured concurrently with soil Hg flux. Soil-air Hg exchange was weakly predicted by environmental variables (R2 from 0.07 to 0.52). For a single location, flux was better correlated with soil moisture than other measured environmental parameters, suggesting that soil moisture might be an important driver for Hg emissions from background soils. In addition, based on data collected we suggest some quality control measures for use of Tekran 2537A analyzers when measuring low mercury fluxes. Using basic scaling procedures, we roughly estimate that natural emissions from soils in the contiguous U.S. release approximately 100 Mg/yr of Hg to the atmosphere. PMID:16181661

  6. Air pollution dry deposition: radioisotopes as particles and volatiles

    International Nuclear Information System (INIS)

    This study focuses on determining volcanic ash and ambient airborne solids concentrations at various sampling sites subsequent to the Mt. St. Helens' eruption in order to develop an experimental basis for models predicting removal of airborne particles and gases by dry deposition onto outdoor surfaces. In addition, deposition rates were determined using dual tracer techniques in the field and in a wind tunnel in the laboratory

  7. Modelling pesticide volatilization after soil application using the mechanistic model Volt'Air

    Science.gov (United States)

    Bedos, Carole; Génermont, Sophie; Le Cadre, Edith; Garcia, Lucas; Barriuso, Enrique; Cellier, Pierre

    Volatilization of pesticides participates in atmospheric contamination and affects environmental ecosystems including human welfare. Modelling at relevant time and spatial scales is needed to better understand the complex processes involved in pesticide volatilization. Volt'Air-Pesticides has been developed following a two-step procedure to study pesticide volatilization at the field scale and at a quarter time step. Firstly, Volt'Air-NH 3 was adapted by extending the initial transfer of solutes to pesticides and by adding specific calculations for physico-chemical equilibriums as well as for the degradation of pesticides in soil. Secondly, the model was evaluated in terms of 3 pesticides applied on bare soil (atrazine, alachlor, and trifluralin) which display a wide range of volatilization rates. A sensitivity analysis confirmed the relevance of tuning to K h. Then, using Volt'Air-Pesticides, environmental conditions and emission fluxes of the pesticides were compared to fluxes measured under 2 environmental conditions. The model fairly well described water temporal dynamics, soil surface temperature, and energy budget. Overall, Volt'Air-Pesticides estimates of the order of magnitude of the volatilization flux of all three compounds were in good agreement with the field measurements. The model also satisfactorily simulated the decrease in the volatilization rate of the three pesticides during night-time as well as the decrease in the soil surface residue of trifluralin before and after incorporation. However, the timing of the maximum flux rate during the day was not correctly described, thought to be linked to an increased adsorption under dry soil conditions. Thanks to Volt'Air's capacity to deal with pedo-climatic conditions, several existing parameterizations describing adsorption as a function of soil water content could be tested. However, this point requires further investigation. Practically speaking, Volt'Air-Pesticides can be a useful tool to make

  8. Soil concentrations, occurrence, sources and estimation of air-soil exchange of polychlorinated biphenyls in Indian cities.

    Science.gov (United States)

    Chakraborty, Paromita; Zhang, Gan; Li, Jun; Selvaraj, Sakthivel; Breivik, Knut; Jones, Kevin C

    2016-08-15

    Past studies have shown potentially increasing levels of polychlorinated biphenyls (PCBs) in the Indian environment. This is the first attempt to investigate the occurrence of PCBs in surface soil and estimate diffusive air-soil exchange, both on a regional scale as well as at local level within the metropolitan environment of India. From the north, New Delhi and Agra, east, Kolkata, west, Mumbai and Goa and Chennai and Bangalore in the southern India were selected for this study. 33 PCB congeners were quantified in surface soil and possible sources were derived using positive matrix factorization model. Net flux directions of PCBs were estimated in seven major metropolitan cities of India along urban-suburban-rural transects. Mean Σ33PCBs concentration in soil (12ng/g dry weight) was nearly twice the concentration found in global background soil, but in line with findings from Pakistan and urban sites of China. Higher abundance of the heavier congeners (6CB-8CB) was prevalent mostly in the urban centers. Cities like Chennai, Mumbai and Kolkata with evidence of ongoing PCB sources did not show significant correlation with soil organic carbon (SOC). This study provides evidence that soil is acting as sink for heavy weight PCB congeners and source for lighter congeners. Atmospheric transport is presumably a controlling factor for occurrence of PCBs in less polluted sites of India. PMID:27136304

  9. Polymer tensiometers to characterize unsaturated zone processes in dry soils

    OpenAIRE

    Ploeg, van der, D.T.E.

    2008-01-01

    More frequent and intense droughts due to global climate change, together with an increasing agricultural water use emphasize the importance of understanding root water uptake by plants under water-stressed conditions. Root water uptake is driven by potential gradients between water in the soil and in the root. In unsaturated soil, the soil water matric potential is often the largest component of the total soil water potential. Tensiometers are commonly used to measure the pressure-equivalent...

  10. Patterns of cracking in soils due to drying and wetting cycles

    OpenAIRE

    Ledesma Villalba, Alberto; Cordero Arias, Josbel Andreina; Cuadrado Cabello, Agustín; Prat Catalán, Pere

    2014-01-01

    There is a well reported evidence of cracking in clayey or silty soils when drying. Shrinkage in the soil mass and also boundary conditions generate a nonhomogeneous stress state locally producing tensile stresses and eventually cracking. This process has been analysed in detail by several authors. However, the evolution of such cracks due to further relative humidity changes (i.e. wetting and drying again) has been rarely considered in the reported experiments. This paper describes a particu...

  11. Retrofitting Air Conditioning and Duct Systems in Hot, Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, Carl [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Aldrich, Robb [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States); Arena, Lois [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)

    2012-07-01

    This technical report describes CARB's work with Clark County Community Resources Division in Las Vegas, Nevada, to optimize procedures for upgrading cooling systems on existing homes in the area to implement health, safety, and energy improvements. Detailed monitoring of five AC systems showed that three of the five systems met or exceeded air flow rate goals.

  12. DUS II SOIL GAS SAMPLING AND AIR INJECTION TEST RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Noonkester, J.; Jackson, D.; Jones, W.; Hyde, W.; Kohn, J.; Walker, R.

    2012-09-20

    Soil vapor extraction (SVE) and air injection well testing was performed at the Dynamic Underground Stripping (DUS) site located near the M-Area Settling Basin (referred to as DUS II in this report). The objective of this testing was to determine the effectiveness of continued operation of these systems. Steam injection ended on September 19, 2009 and since this time the extraction operations have utilized residual heat that is present in the subsurface. The well testing campaign began on June 5, 2012 and was completed on June 25, 2012. Thirty-two (32) SVE wells were purged for 24 hours or longer using the active soil vapor extraction (ASVE) system at the DUS II site. During each test five or more soil gas samples were collected from each well and analyzed for target volatile organic compounds (VOCs). The DUS II site is divided into four parcels (see Figure 1) and soil gas sample results show the majority of residual VOC contamination remains in Parcel 1 with lesser amounts in the other three parcels. Several VOCs, including tetrachloroethylene (PCE) and trichloroethylene (TCE), were detected. PCE was the major VOC with lesser amounts of TCE. Most soil gas concentrations of PCE ranged from 0 to 60 ppmv with one well (VEW-22A) as high as 200 ppmv. Air sparging (AS) generally involves the injection of air into the aquifer through either vertical or horizontal wells. AS is coupled with SVE systems when contaminant recovery is necessary. While traditional air sparging (AS) is not a primary component of the DUS process, following the cessation of steam injection, eight (8) of the sixty-three (63) steam injection wells were used to inject air. These wells were previously used for hydrous pyrolysis oxidation (HPO) as part of the DUS process. Air sparging is different from the HPO operations in that the air was injected at a higher rate (20 to 50 scfm) versus HPO (1 to 2 scfm). . At the DUS II site the air injection wells were tested to determine if air sparging affected

  13. Root water potential integrates discrete soil physical properties to influence ABA signalling during partial rootzone drying.

    Science.gov (United States)

    Dodd, Ian C; Egea, Gregorio; Watts, Chris W; Whalley, W Richard

    2010-08-01

    To investigate the influence of different growing substrates (two mineral, two organic) on root xylem ABA concentration ([ABA](root)) and the contribution of the drying root system to total sap flow during partial rootzone drying (PRD), sunflower (Helianthus annuus L.) shoots were grafted onto the root systems of two plants grown in separate pots. Sap flow through each hypocotyl was measured below the graft union when one pot ('wet') was watered and other ('dry') was not. Each substrate gave unique relationships between dry pot matric potential (Psi(soil)), volumetric water content ((v)) or penetrometer resistance (Q) and either the fraction of photoperiod sap flow from roots in drying soil or [ABA](root). However, decreased relative sap flow, and increased [ABA](root), from roots in drying soil varied with root water potential (Psi(root)) more similarly across a range of substrates. The gradient between Psi(soil) and Psi(root) was greater in substrates with high sand or peat proportions, which may have contributed to a more sensitive response of [ABA](root) to Psi(soil) in these substrates. Whole plant transpiration was most closely correlated with the mean Psi(soil) of both pots, and then with detached leaf xylem ABA concentration. Although Psi(root) best predicted decreased relative sap flow, and increased [ABA](root), from roots in drying soil across a range of substrates, the inaccessibility of this variable in field studies requires a better understanding of how measurable soil variables (Psi(soil), (v), Q) affect Psi(root). PMID:20591896

  14. Crop soil air carbon dioxide concentration and sludge

    Energy Technology Data Exchange (ETDEWEB)

    Guiresse, M.; Gers, C.; Dourel, L.; Kaemmerer, M.; Revel, J.C. [Institut National Polytechnique de Toulouse, Toulouse (France). Ecole Nationale Superieure Agronomique de Toulouse

    1995-12-31

    The introduction of organic compounds into the soil may increase carbon dioxide emission and thus change the composition of the soil air and microfauna. These factors were studied in a field experiment in luvi-redoxisoils in the South West of France. The untreated liquid sludge from the wastewater treatment plant of Toulouse was tested. The first field plot was an unploughed plot, without any fertilizer and any sludge; the second was a control plot sown with Zea mays and a standard mineral fertilizer without any sludge; the third plot was sown with Zea mays and a normal amount of sludge; and the last plot was sown with Zea mays and a large amount of sludge. In these plots soil air dioxide carbon concentration during all the maize cultivation was measured using the Draeger field method twice a week. The results showed that burying degradable organic compounds increases soil air CO{sub 2}. 8 refs., 6 figs.

  15. Enhanced soil moisture drying in transitional regions under a warming climate

    Science.gov (United States)

    Cheng, Shanjun; Huang, Jianping

    2016-03-01

    We analyzed global trends of soil moisture for the period 1948-2010 using the Global Land Data Assimilation System data set. Soil moisture was dominated by negative trends, with pronounced drying over East Asia and the Sahel. Spatial analysis according to climatic region revealed that the most obvious drying occurred over transitional regions between dry and wet climates. The noticeable drying first took place in the humid transitional regions and extended to the dry transitional regions, beginning in the 1980s. The variability of soil moisture was notably related to the changes in precipitation and temperature, but with different roles. For the global average, precipitation had a dominant effect on the variability of soil moisture at interannual to decadal time scales, but temperature was the main cause of the long-term trend of soil moisture on the whole. The enhanced soil drying in the transitional regions was primarily caused by global warming, which is illustrated by regression analysis and the land surface model.

  16. Persistent Soil Seed Banks for Natural Rehabilitation of Dry Tropical Forests in Northern Ethiopia

    OpenAIRE

    Gebrehiwot, K; HEYN, M; Reubens, B; Hermy, M.; Muys, B.

    2007-01-01

    Dry tropical forests are threatened world-wide by conversion to grazing land, secondary forest, savannah or arable land. In Ethiopia, natural dry forest cover has been decreasing at an alarming rate over the last decennia and has reached a critical level. Efforts like the rehabilitation of dry forests to curb this ecological degradation, need a stronger scientific basis than currently available. The aim of the present research was to test the hypothesis whether soil seed banks can contribute ...

  17. SOIL AIR CARBON DIOXIDE CONCENTRATIONS IN A NEW ENGLAND SPRUCE-FIR FORESTS

    Science.gov (United States)

    Research and modeling efforts to evaluate soil-soil solution chemical interactions must take into account solution equilibria with soil air CO2. Measurements of soil air CO2 and soil temperature were made in the major horizons of a forest soil in eastern Maine through the 1985 gr...

  18. Experimental investigation of infiltration in soil with occurrence of preferential flow and air trapping

    Science.gov (United States)

    Snehota, Michal; Jelinkova, Vladimira; Sacha, Jan; Cislerova, Milena

    2015-04-01

    Recently, a number of infiltration experiments have not proved the validity of standard Richards' theory of the flow in soils with wide pore size distribution. Water flow in such soils under near-saturated conditions often exhibits preferential flow and temporal instability of the saturated hydraulic conductivity. An intact sample of coarse sandy loam from Cambisol series containing naturally developed vertically connected macropore was investigated during recurrent ponding infiltration (RPI) experiments conducted during period of 30 hours. RPI experiment consisted of two ponded infiltration runs, each followed by free gravitational draining of the sample. Three-dimensional neutron tomography (NT) image of the dry sample was acquired before the infiltration begun. The dynamics of the wetting front advancement was investigated by a sequence of neutron radiography (NR) images. Analysis of NR showed that water front moved preferentially through the macropore at the approximate speed of 2 mm/sec, which was significantly faster pace than the 0.3 mm/sec wetting advancement in the surrounding soil matrix. After the water started to flow out of the sample, changes in the local water content distribution were evaluated quantitatively by subtracting the NT image of the dry sample from subsequent tomography images. As a next stage, the experiment was repeated on a composed sample packed of ceramic and coarse sand. Series of infiltration runs was conducted in the sample with different initial water contents. The neutron tomography data quantitatively showed that both in natural soil sample containing the macropore and in the composed sample air was gradually transported from the region of fine soil matrix to the macropores or to the coarser material. The accumulation of the air bubbles in the large pores affected the hydraulic conductivity of the sample reducing it up to 50% of the initial value. This supports the hypothesis on strong influence of entrapped air amount and

  19. Effects of Dry Air Intrusion on MJO Initiation during DYNAMO (Invited)

    Science.gov (United States)

    Chen, S. S.; Kerns, B. W.; Savarin, A.

    2013-12-01

    One of the challenging issues in MJO initiation over the equatorial Indian Ocean is interaction of convection and environmental moisture. It involves complex, multi-scale processes from entrainment/detrainment of cloud, convective downdraft and cold pools affecting the air-sea interface, to large-scale advection controlled by tropical and extratropical circulation. Observations from the DYNAMO field campaign in 2011 show that dry air intrusion into the equatorial Indian Ocean affects convection on both synoptic and MJO time scales. During mid-late November, a strong MJO event, refereed to as MJO2, developed over the DYNAMO array, which has the best coverage of the observational platforms including two aircraft, two research vessels, and island stations. This study focuses on two aspects of the dry air intrusion during MJO2: 1) convective cold pool structure and recovery related to convective-environmental moisture interaction, and 2) dry air intrusion and synoptic variability in convection/precipitation in MJO initiation. Convective downdraft can be affected by environmental water vapor due to entrainment by the convective clouds. Mid-level dry air observed during the convectively suppressed phase of MJO2 seems to enhance convective downdraft by increasing evaporation and, therefore, the strength of the downdraft and cold pools. We examine the convective cold pool structure and boundary layer recovery using the NOAA P-3 aircraft observations, include flight-level, Doppler radar, and GPS dropsonde data. The depth and strength of convective cold pools are defined by the negative buoyancy from the dropsonde data. Recovery of the cold pools in the boundary layer is determined by not only the strength and depth of the cold pools but also the air-sea heat and moisture fluxes. Given that the water vapor and surface winds are distinct for the convectively active and suppressed phases of MJO2, the aircraft data are stratified by the two different large-scale regimes of MJO2

  20. Nitrogen mineralization from anaerobically digested centrifuge cake and aged air-dried biosolids.

    Science.gov (United States)

    Kumar, Kuldip; Hundal, Lakhwinder S; Cox, Albert E; Granato, Thomas

    2014-09-01

    This study was conducted to estimate nitrogen (N) mineralization of anaerobically digested centrifuge cake from the Stickney Water Reclamation Plant (SWRP) and Calumet Water Reclamation Plant (CWRP), lagoon-aged air-dried biosolids from the CWRP, and Milorganite at three rates of application (0, 12.5 and 25 Mg ha(-1)). The N mineralized varied among biosolids as follows: Milorganite (44%) > SWRP centrifuge cake (35%) > CWRP centrifuge cake (31%) > aged air-dried (13%). The N mineralized in the SWRP cake (32%) and CWRP aged air-dried biosolids (12%) determined from the 15N study were in agreement with the first study. The N mineralization value for centrifuge cake biosolids observed in our study is higher than the value given in the Part 503 rule and Illinois Part 391 guidelines. These results will be used to fine-tune biosolids application rate to match crop N demand without compromising yield while minimizing any adverse effect on the environment.

  1. Estimation of whole lemon mass transfer parameters during hot air drying using different modelling methods

    Science.gov (United States)

    Torki-Harchegani, Mehdi; Ghanbarian, Davoud; Sadeghi, Morteza

    2015-08-01

    To design new dryers or improve existing drying equipments, accurate values of mass transfer parameters is of great importance. In this study, an experimental and theoretical investigation of drying whole lemons was carried out. The whole lemons were dried in a convective hot air dryer at different air temperatures (50, 60 and 75 °C) and a constant air velocity (1 m s-1). In theoretical consideration, three moisture transfer models including Dincer and Dost model, Bi- G correlation approach and conventional solution of Fick's second law of diffusion were used to determine moisture transfer parameters and predict dimensionless moisture content curves. The predicted results were then compared with the experimental data and the higher degree of prediction accuracy was achieved by the Dincer and Dost model.

  2. Effects of convective air drying temperature on nutritional quality and colour of watercress (Nasturtium officinale)

    OpenAIRE

    Pichmony, E. K.; Araújo, Ana C.; Oliveira, Sara M.; Ramos, Inês N.; Teresa R.S. Brandão; Silva, Cristina L. M.

    2015-01-01

    Watercress (Nasturtium officinale) is one of the most popular leafy vegetables consumed in the world, either fresh or cooked, presenting high contents of phytochemicals and bioactive compounds. However, due to its high moisture content (91% w.b.), this vegetable is easily perishable. To prolong shelf life and provide the convenient transportation, dried watercress might be a novel product for consumption in soups and other recipes. Convective air drying is an affordable process, b...

  3. Soil Crust Changes due to Wetting and Drying Analyzed by Non-Invasive Images

    International Nuclear Information System (INIS)

    In this work a γ-ray computed tomography (CT) scanner was used to evaluate soil crust changes due to wetting and drying (W-D) cycles. Changes in soil porous system (SPS) due to W-D cycles of samples with crust have important practical consequences, because they can affect the soil water retention curve (SWRC) representativeness. CT data allowed detailed analyses of the soil bulk density (db) for thick layers, which cannot be achieved by traditional methods commonly used in soil physics. It was also possible to observe a decrease in db in the crust region. These results show that important changes can occur in SPS during SWRC evaluations.

  4. Research on Air-dried Density and Mechanical Properties of Moso Bamboo from Different Plantations

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to further research bamboo cultivation and expand its application field, air-dried density and mechanical properties of Moso bamboo from the 2 plantations under the same site condition were measured and analyzed by using the national standard The Testing Methods for Physical and Mechanical Properties of Bamboo (GB / T 15780-1995). And the single linear regression analysis was carried out. The results showed that air-dried density and mechanical properties of the 2 kinds of Moso bamboo increase with...

  5. Effect of osmotic pretreatment on air drying characteristics and colour of pepper (Capsicum spp) cultivars

    OpenAIRE

    Falade, Kolawole Olumuyiwa; Oyedele, Olaniyi O.

    2010-01-01

    Air-drying characteristics of fresh and osmotically pretreated (40°B, 50°B and 60°B sucrose solutions for 9 h) four pepper cultivars namely, Rodo (Capsicum annuum), Shombo (Capsicum frutescens), Bawa (Capsicum frutenscens) and Tatashe (Capsicum annuum), and CIE L*a*b* parameters of air-dried (50, 60, 70 and 80 °C) peppers were investigated. Moisture diffusivity and activation energy (Ea) were calculated from Fick’s law and analogous Arrhenius equation, respectively. Colour difference, chroma ...

  6. Dry air preservation and corrosion prevention using desiccant dehumidification

    International Nuclear Information System (INIS)

    The preservation and longevity of power station plants is a significant problem, particularly in cold shut down situations for prolonged periods of time, and also in storage of parts prior to installation. Power station protection and equipment preservation using the desiccant method is not new. For many years dehumidification machinery has been employed as a barrier to moisture related degradation. The first rotary desiccant dehumidifiers were installed within the power plant industry in the mid 1960s. Many of these first installations remain in operation today. In order to understand the functioning of a desiccant unit as compared with other air handling systems, it is essential to understand the fundamentals of a psychrometric chart. This article will attempt to give the reader an understanding of the subject. (author)

  7. Soil Geochemical Control Over Nematode Populations in Bull Pass, McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    Poage, M. A.; Barrett, J. E.; Virginia, R. A.; Wall, D. H.

    2005-12-01

    The McMurdo Dry Valleys occupy the largest ice-free region of Antarctica and are characterized by climatic conditions among the most extreme on Earth. Despite the harsh environmental conditions, some soils of the dry valleys host simple low-diversity ecosystems dominated by microbes and several taxa of metazoans, predominantly nematodes. Distributions, abundance, and diversity of these biota appear to be related to the highly variable soil geochemistry (pH, conductivity, nitrate, sulfate, chloride) of the dry valleys. Bull Pass is a glacially carved valley within the dry valleys. An ancient lake margin near the valley floor creates a continuous gradient spanning the full range of geochemical parameters found across the entire McMurdo Dry Valleys system. This unique setting provides the opportunity to systematically investigate the soil geochemical control on local biodiversity and establish, on the spatial scale of hundreds of meters, correlations between nematode populations and individual geochemical parameters that have application at the regional scale. We measured soil geochemistry and nematode population data from a 1500-meter transect across this ancient lake margin. There were significant negative correlations between live nematode abundance and concentrations of soil nitrate, sulfate and chloride as well as total soil salinity, consistent with recent laboratory experiments showing strong salinity inhibition of nematode survival. A logistical regression analysis based on a compilation of published datasets from across the dry valleys was designed to calculate the probably of live nematode populations occurring given a particular soil chemistry, using the dataset from the Bull Pass transect as a case study to field-test the model. Small-scale chemical and biological gradients can provide insights on the distribution of soil biota at much larger regional scales.

  8. Use of a novel new irrigation system to observe and model water vapor flow through dry soils

    Science.gov (United States)

    Todman, L. C.; Ireson, A. M.; Butler, A. P.; Templeton, M.

    2013-12-01

    In dry soils hydraulic connectivity within the liquid water phase decreases and vapor flow becomes a significant transport mechanism for water. The temperature or solute concentration of the liquid phase affects the vapor pressure of the surrounding air, thus temperature or solute gradients can drive vapor flows. However, in extremely dry soils where water is retained by adsorption rather than capillarity, vapor flows can also occur. In such soils tiny changes in water content significantly affect the equilibrium vapor pressure in the soil, and hence small differences in water content can initiate vapor pressure gradients. In many field conditions this effect may be negligible compared to vapor flows driven by other factors. However, flows of this type are particularly significant in a new type of subsurface irrigation system which uses pervaporation, via a polymer tubing, as the mechanism for water supply. In this system, water enters the soil in vapor phase. Experiments using this system therefore provide a rare opportunity to observe vapor flows initiating from a subsurface source without significant injection of heat. A model was developed to simulate water flow through the soil in liquid and vapor phase. In this model it was assumed that the two phases were in equilibrium. The equilibrium relationship was defined by a new mathematical expression that was developed to fit experimental data collected to characterize the sorption isotherm of three soils (sand, saline sand and top soil). The osmotic potential of the saline sand was defined as a function of water content using a continuous mathematical expression. The model was then calibrated to fit the data from laboratory experiments, in which the vapor flow into and out of the soil were quantified. The model successfully reproduced experimental observations of the total water flux, relative humidity and water content distribution in three soil types. This suggests that the model, including the proposed

  9. Gamma ray computed tomography to evaluate wetting/drying soil structure changes

    Energy Technology Data Exchange (ETDEWEB)

    Pires, Luiz F. [Center for Nuclear Energy in Agriculture, USP, Soil Physics, Av. Centenrio, 303, C.P. 96, C.E.P. 13.400-970 Piracicaba, SP (Brazil)]. E-mail: lfpires@cena.usp.br; Bacchi, Osny O.S. [Center for Nuclear Energy in Agriculture, USP, Soil Physics, Av. Centenrio, 303, C.P. 96, C.E.P. 13.400-970 Piracicaba, SP (Brazil); Reichardt, Klaus [Center for Nuclear Energy in Agriculture, USP, Soil Physics, Av. Centenrio, 303, C.P. 96, C.E.P. 13.400-970 Piracicaba, SP (Brazil)

    2005-04-01

    Wetting and drying (W-D) cycles can cause strong modifications of the structure of a soil, especially in pore distribution, which reflects the temporal and spatial distribution of soil water and, consequently, these processes can affect soil water and nutrient retention and movement. These alterations have important practical consequences when calculating soil water storages and matric potentials, widely used in irrigation management. The present paper has as objective to use gamma ray computed tomography (GCT) as a tool to investigate possible modifications in soil structure induced by W-D cycles and to analyze how these alterations can affect soil water retention. The GCT scanner used was a first generation system with a fixed source-detector arrangement, with a radioactive gamma ray source of {sup 241}Am. Soil samples were taken from profiles of three different soils characterized as Xanthic Ferralsol (Fx), Eutric Nitosol (Ne) and Rhodic Ferralsol (Fr). Eighteen samples (50 cm{sup 3}), six from each soil, were submitted to none (T{sub 0}), three (T{sub 1}) and nine (T{sub 2}) wetting/drying cycles. Based on image analysis it was possible to detect modifications in soil structure in all samples after wetting/drying cycles for all treatments. Tomographic unit profiles of the samples permitted to identify an increase on soil porosity with the increase in the number of wetting/drying cycles and it was also possible to quantify the average porosity values. The statistical test (Duncan test) indicates that there are significant differences between treatments for all samples at the 5% significance level.

  10. Gamma ray computed tomography to evaluate wetting/drying soil structure changes

    International Nuclear Information System (INIS)

    Wetting and drying (W-D) cycles can cause strong modifications of the structure of a soil, especially in pore distribution, which reflects the temporal and spatial distribution of soil water and, consequently, these processes can affect soil water and nutrient retention and movement. These alterations have important practical consequences when calculating soil water storages and matric potentials, widely used in irrigation management. The present paper has as objective to use gamma ray computed tomography (GCT) as a tool to investigate possible modifications in soil structure induced by W-D cycles and to analyze how these alterations can affect soil water retention. The GCT scanner used was a first generation system with a fixed source-detector arrangement, with a radioactive gamma ray source of 241Am. Soil samples were taken from profiles of three different soils characterized as Xanthic Ferralsol (Fx), Eutric Nitosol (Ne) and Rhodic Ferralsol (Fr). Eighteen samples (50 cm3), six from each soil, were submitted to none (T0), three (T1) and nine (T2) wetting/drying cycles. Based on image analysis it was possible to detect modifications in soil structure in all samples after wetting/drying cycles for all treatments. Tomographic unit profiles of the samples permitted to identify an increase on soil porosity with the increase in the number of wetting/drying cycles and it was also possible to quantify the average porosity values. The statistical test (Duncan test) indicates that there are significant differences between treatments for all samples at the 5% significance level

  11. Effect of microwave and air drying of parboiled rice on stabilization of rice bran oil

    Directory of Open Access Journals (Sweden)

    Rizk, Laila F.

    1995-06-01

    Full Text Available Two rice varieties, Giza 175 (short grain and Giza 181 (long grain were partDoiled by soaking the grains at room temperature for 20 hours and steaming for 15 min then dried either at room temperature or by microwave. The results indicated that air and microwave drying significantly increased oil extraction in both rice bran varieties. Parboiling followed by air or microwave drying produced a slight change on protein, fiber and ash content of rice bran and reduced the development of free fatty acids (F.F.A. In oil bran. Microwave samples have less F.F.A. content than the corresponding samples air dried. Oils from the cold stored rice bran presented lower F.F.A. than the corresponding oil bran stored at room temperature. The ratio between total unsaturated fatty acids and total saturated ones (Tu/Ts decreased after air and microwave drying. Results also show that air drying increased the ratio of total hydrocarbons and total sterols (Tu/Ts in both varieties while microwave decreased it.

    Dos variedades de arroz, Giza 175 (grano corto y Giza 181 (grano largo se precocieron mediante la puesta en remojo de los granos a temperatura ambiente durante 20 horas y cocimiento al vapor durante 15 minutos, luego se secaron a temperatura ambiente o por microondas. Los resultados indicaron que el secado al aire y en microondas aumentó significativamente la extracción del aceite en ambas variedades de salvado de arroz. El precocido seguido del secado al aire o en microondas produjo un cambio pequeño en el contenido en proteína, fibra y ceniza y redujo el desarrollo de ácidos grasos libres (F.F.A. en el aceite de salvado. Las muestras secadas en microondas tuvieron un menor contenido en F.F.A. que las muestras correspondientes al secado en aire. Aceites de salvado de arroz almacenado en frió presentaron menor F.F.A. que los almacenados a temperatura ambiente. La relación entre ácidos grasos insaturados totales y los saturados totales (Tu/Ts disminuy

  12. Organochlorine pesticides in soils and air of southern Mexico: Chemical profiles and potential for soil emissions

    Science.gov (United States)

    Wong, Fiona; Alegria, Henry A.; Jantunen, Liisa M.; Bidleman, Terry F.; Salvador-Figueroa, Miguel; Gold-Bouchot, Gerardo; Ceja-Moreno, Victor; Waliszewski, Stefan M.; Infanzon, Raul

    The extent of organochlorine pesticides (OCs) contamination in southern Mexico was investigated in this study. Biweekly air samplings were carried out in two sites in the state of Chiapas (during 2002-2003), and one in each state of Veracruz and Tabasco (during 2003-2004). Corresponding to the air sampling locations, soil samples were also collected to gauge the soil-air exchange of OCs in the region. ∑DDTs in soils ranged from 0.057 to 360 ng g -1 whereas those in air ranged from 240 to 2400 pg m -3. DDT and metabolite DDE were expressed as fractional values, FDDTe = p, p'-DDT/( p, p'-DDT + p, p'-DDE) and FDDTo = p,p'-DDT/( p,p'-DDT + o,p'-DDT). FDDTe in soils ranged from 0.30 to 0.69 while those in air ranged from 0.45 to 0.84. FDDTe in air at a farm in Chiapas (0.84) was closer to that of technical DDT (0.95) which is suggestive of fresh DDT input. Enantiomer fractions (EF) of o,p'-DDT in air were racemic at all locations (0.500-0.504). However, nonracemic o,p'-DDT was seen in the soils (EFs = 0.456-0.647). Fugacities of OCs in soil ( fs) and air ( fa) were calculated, and the fugacity fraction, ff = fs/( fs + fa) of DDTs ranged from 0.013 to 0.97 which indicated a mix of net deposition ( ff 0.5) from soil among the sites. It is suggested that DDTs in Mexico air are due to a combination of ongoing regional usage and re-emission of old DDT residues from soils. Total toxaphene in soils ranged from 0.066 to 69 ng g -1 while levels in air ranged from 6.2 to 230 pg m -3. Chromatographic profiles of toxaphenes in both air and soil showed depletion of Parlar congeners 39 and 42. Fugacity fractions of toxaphene were within the equilibrium range or above the upper equilibrium threshold boundary. These findings suggested that soil emission of old residues is the main source of toxaphenes to the atmosphere. Results from this study provide baseline data for establishing a long-term OC monitoring program in Mexico.

  13. Transport parameters and breakdown voltage characteristics of the dry air and its constituents

    International Nuclear Information System (INIS)

    This paper contains measured breakdown voltage curves and calculated transport parameters for the dry air and gases included in the air composition. The breakdown voltage curves exhibit U-shaped form for the interelectrode separation of 100 μm and departure from the standard Paschen law for a few micrometers gap sizes. The results of calculations provide an insight into similarities and differences between the transport parameters for individual gases and the gas mixture.

  14. Air sparging in low permeability soils

    Energy Technology Data Exchange (ETDEWEB)

    Marley, M.C. [Envirogen, Inc., Canton, MA (United States)

    1996-08-01

    Sparging technology is rapidly growing as a preferred, low cost remediation technique of choice at sites across the United States. The technology is considered to be commercially available and relatively mature. However, the maturity is based on the number of applications of the technology as opposed to the degree of understanding of the mechanisms governing the sparging process. Few well documented case studies exist on the long term operation of the technology. Sparging has generally been applied using modified monitoring well designs in uniform, coarse grained soils. The applicability of sparging for the remediation of DNAPLs in low permeability media has not been significantly explored. Models for projecting the performance of sparging systems in either soils condition are generally simplistic but can be used to provide general insight into the effects of significant changes in soil and fluid properties. The most promising sparging approaches for the remediation of DNAPLs in low permeability media are variations or enhancements to the core technology. Recirculatory sparging systems, sparging/biosparging trenches or curtains and heating or induced fracturing techniques appear to be the most promising technology variants for this type of soil. 21 refs., 9 figs.

  15. Controls of Soil Spatial Variability in a Dry Tropical Forest

    OpenAIRE

    Pulla, Sandeep; Riotte, Jean; Suresh, HS; Dattaraja, HS; Sukumar, Raman

    2016-01-01

    We examined the roles of lithology, topography, vegetation and fire in generating local-scale (= 1 cm diameter at breast height (DBH), and spatial variation in fire frequency (times burnt during the 17 years preceding soil sampling) in a perman...

  16. Microbial responses to carbon and nitrogen supplementation in an Antarctic dry valley soil

    DEFF Research Database (Denmark)

    Dennis, P. G.; Sparrow, A. D.; Gregorich, E. G.;

    2013-01-01

    The soils of the McMurdo Dry Valleys are exposed to extremely dry and cold conditions. Nevertheless, they contain active biological communities that contribute to the biogeochemical processes. We have used ester-linked fatty acid (ELFA) analysis to investigate the effects of additions of carbon...... organic carbon concentration, indicating efficient conversion of soil organic carbon into microbial biomass and rapid turnover of soil organic carbon. The ELFA concentrations increased significantly in response to carbon additions, indicating that carbon supply was the main constraint to microbial...... activity. The large ELFA concentrations relative to soil organic carbon and the increases in ELFA response to organic carbon addition are both interpreted as evidence for the soil microbial community containing organisms with efficient scavenging mechanisms for carbon. The diversity of the ELFA profiles...

  17. SOLAR DRYING KINETICS OF DATE PALM FRUITS ASSUMING A STEP-WISE AIR TEMPERATURE CHANGE

    Directory of Open Access Journals (Sweden)

    ABDELGHANI BOUBEKRI

    2009-09-01

    Full Text Available The effect of drying using a step-wise temperature change was studied considering the case of indirect solar drying of the date palm fruit (Phoenix dactylifera L.. The followed procedure consists of building drying kinetics by stages of temperatures resulting from drying, in constant conditions, of the same variety of dates from Algerian and Tunisian origin. A law of daily temperature variation prevailed by 60°C, was deduced from a statement of temperature collected on a laboratory solar dryer prototype. Two drying curve equation models were used and some comparisons were discussed. The results obtained for dates from the two origins highlighted different response times by changing the air temperature and showed the possibility of reaching a fruit with standard moisture content in only one day of drying on the basis of initial water contents ranging from 0.40 to 0.65. This moisture range is in practice allotted to rehydrated dates by water immersion in order to enhance their quality. Experiments conducted in a laboratory solar drier under temperatures oscillating around 50°C and 60°C led to the same end up regarding the drying time ensuring a visually appreciable fruit quality. Results obtained by a simple sensorial test revealed a better quality of date fruits treated by solar drying comparing to those issued from industrial heat treatment units.

  18. Parametric study of a solar air heater with and without thermal storage for solar drying applications

    Energy Technology Data Exchange (ETDEWEB)

    Aboul-Enein, S.; El-Sebaii, A.A.; Ramadan, M.R.I.; El-Gohary, H.G. [Tanta Univ., Physics Dept., Tanta (Egypt)

    2000-12-01

    A transient analytical model is presented for a flat-plate solar air heater with and without thermal storage. The flowing air temperature is assumed to vary with time and space coordinates. Analytical expressions are obtained for various temperatures of the air heater elements as well as for the temperature of the storage material. The performance of the air heater is investigated by computer simulation using the climatic conditions of Tanta (Lat. 30deg 47' N, Egypt). Effects of design parameters of the air heater such as length (L), width (b), gap spacing between the absorber plate and glass cover (d{sub f}), mass flow rate (m) and thickness and type of the storage material (sand, granite and water) on the outlet and average temperatures of the flowing air are studied. It is found that as L and b increase the average temperatures of flowing air (T{sub fav}) increases up to typical values for these parameters. Typical values for L and b are obtained as 3 and 2 m, respectively. The outlet temperature (T{sub fo}) of flowing air is found to decrease with increasing gap spacing and mass flow rate of air. Improvements in the heater performance with storage have been achieved at the optimum thickness (0.12 m) of the storage material. Therefore, the air heater can be used as a heat source for drying agricultural products and the drying process will continue during night, instead of re-absorption of moisture from the surrounding air. Comparisons between experimental and theoretical results indicated that the proposed mathematical model can be used for estimating the thermal performance of flat-plate solar air heaters with reasonable accuracy. (Author)

  19. Thin layer convective air drying of wild edible plant (Allium roseum) leaves: experimental kinetics, modeling and quality.

    Science.gov (United States)

    Ben Haj Said, Leila; Najjaa, Hanen; Farhat, Abdelhamid; Neffati, Mohamed; Bellagha, Sihem

    2015-06-01

    The present study deals with the valorization of an edible spontaneous plant of the Tunisian arid areas: Allium roseum. This plant is traditionally used for therapeutic and culinary uses. Thin-layer drying behavior of Allium roseum leaves was investigated at 40, 50 and 60 °C drying air temperatures and 1 and l.5 m/s air velocity, in a convective dryer. The increase in air temperature significantly affected the moisture loss and reduced the drying time while air velocity was an insignificant factor during drying of Allium roseum leaves. Five models selected from the literature were found to satisfactorily describe drying kinetics of Allium roseum leaves for all tested drying conditions. Drying data were analyzed to obtain moisture diffusivity values. During the falling rate-drying period, moisture transfer from Allium roseum leaves was described by applying the Fick's diffusion model. Moisture diffusivity varied from 2.55 × 10(-12) to 8.83 × 10(-12) m(2)/s and increased with air temperature. Activation energy during convective drying was calculated using an exponential expression based on Arrhenius equation and ranged between 46.80 and 52.68 kJ/mol. All sulfur compounds detected in the fresh leaves were detected in the dried leaves. Convective air drying preserved the sulfur compounds potential formation.

  20. Thin layer convective air drying of wild edible plant (Allium roseum) leaves: experimental kinetics, modeling and quality.

    Science.gov (United States)

    Ben Haj Said, Leila; Najjaa, Hanen; Farhat, Abdelhamid; Neffati, Mohamed; Bellagha, Sihem

    2015-06-01

    The present study deals with the valorization of an edible spontaneous plant of the Tunisian arid areas: Allium roseum. This plant is traditionally used for therapeutic and culinary uses. Thin-layer drying behavior of Allium roseum leaves was investigated at 40, 50 and 60 °C drying air temperatures and 1 and l.5 m/s air velocity, in a convective dryer. The increase in air temperature significantly affected the moisture loss and reduced the drying time while air velocity was an insignificant factor during drying of Allium roseum leaves. Five models selected from the literature were found to satisfactorily describe drying kinetics of Allium roseum leaves for all tested drying conditions. Drying data were analyzed to obtain moisture diffusivity values. During the falling rate-drying period, moisture transfer from Allium roseum leaves was described by applying the Fick's diffusion model. Moisture diffusivity varied from 2.55 × 10(-12) to 8.83 × 10(-12) m(2)/s and increased with air temperature. Activation energy during convective drying was calculated using an exponential expression based on Arrhenius equation and ranged between 46.80 and 52.68 kJ/mol. All sulfur compounds detected in the fresh leaves were detected in the dried leaves. Convective air drying preserved the sulfur compounds potential formation. PMID:26028758

  1. Drying Characteristics and Model of Chinese Hawthorn Using Microwave Coupled with Hot Air

    Directory of Open Access Journals (Sweden)

    Hai-Ming Yu

    2015-01-01

    Full Text Available Microwave coupled with hot air drying kinetics and characteristics of hawthorn slices at different drying hot air temperatures, hot air velocities, and microwave power densities was investigated. The research results showed that drying occurred mainly in the falling rate period and in the accelerating period. Twelve mathematical models were selected to describe and compare the drying kinetics of hawthorn slices. By comparing three criterions including correlation coefficient, chi-square, and root mean square error, we determined that Weibull distribution model obtained the best fit and could best predict the experimental values. Consequently, Weibull distribution model could be used to aid dryer design and promote the efficiency of dryer operation by simulation and optimization of the drying processes. Moisture transfer from hawthorn slice was described by applying Fick’s second law and the effective diffusivity values were calculated by simplified Fick’s second law. The variable law of effective diffusivity values was consistent with the variable law of moisture ratio.

  2. Root-soil air gap and resistance to water flow at the soil-root interface of Robinia pseudoacacia.

    Science.gov (United States)

    Liu, X P; Zhang, W J; Wang, X Y; Cai, Y J; Chang, J G

    2015-12-01

    During periods of water deficit, growing roots may shrink, retaining only partial contact with the soil. In this study, known mathematical models were used to calculate the root-soil air gap and water flow resistance at the soil-root interface, respectively, of Robinia pseudoacacia L. under different water conditions. Using a digital camera, the root-soil air gap of R. pseudoacacia was investigated in a root growth chamber; this root-soil air gap and the model-inferred water flow resistance at the soil-root interface were compared with predictions based on a separate outdoor experiment. The results indicated progressively greater root shrinkage and loss of root-soil contact with decreasing soil water potential. The average widths of the root-soil air gap for R. pseudoacacia in open fields and in the root growth chamber were 0.24 and 0.39 mm, respectively. The resistance to water flow at the soil-root interface in both environments increased with decreasing soil water potential. Stepwise regression analysis demonstrated that soil water potential and soil temperature were the best predictors of variation in the root-soil air gap. A combination of soil water potential, soil temperature, root-air water potential difference and soil-root water potential difference best predicted the resistance to water flow at the soil-root interface.

  3. Economical analysis of the spray drying process by pre-dehumidification of the inlet air

    Energy Technology Data Exchange (ETDEWEB)

    Madeira, A.N.; Camargo, J.R. [University of Taubate (UNITAU), SP (Brazil). Mechanical Engineering Dept.

    2009-07-01

    Spray drying is a dehumidification process by atomization in a closed chamber that aims to remove moisture of a product by heat and mass transfer from the product's contained water to the air that, in this process is previously heated. This paper presents a case study for an industry that produces food ingredients. The current process applied in the product to heat the air can uses one of these two systems: a direct heating process that burns liquid petroleum gas in contact with the inlet air or indirect heating that uses a heat exchanger which heat the air. This heating system consumes 90% of the total process energy. However, this inlet air can reach the dehumidifier with high moisture from the atmosphere condition requesting, in this case, more energy consumption according to the year's seasons. This paper promotes a utilization study of the current process through the installation of a pre-dehumidification device of the inlet air and shows a study to three different dehumidification systems that means by refrigeration, adsorption and actual comparing their performance in an energetic and economical point of view. The goals of this study are to analyze the capacity of moisture removing of each removing device, the influence of moisture variation of the inlet air in the process as well as the economic impact of each device in the global system. It concludes that the utilization of dehumidification devices can eliminate the heating system reducing this way the energy consumption. Moreover it promotes the increasing of moisture gradient between the inlet air and the product optimizing the drying process and increasing the global energy efficiency in the global system. Choosing the most appropriate system for the pre-dehumidification device depends on the desired initial and final moisture content of the product, but applying pre-dehumidifiers at the inlet air promotes an energetic optimization in the spray drying process. (author)

  4. Combustion Gas Properties I-ASTM Jet a Fuel and Dry Air

    Science.gov (United States)

    Jones, R. E.; Trout, A. M.; Wear, J. D.; Mcbride, B. J.

    1984-01-01

    A series of computations was made to produce the equilibrium temperature and gas composition for ASTM jet A fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0.

  5. Combustion gas properties. Part 3: Hydrogen gas fuel and dry air

    Science.gov (United States)

    Wear, J. D.; Jones, R. E.; Mcbride, B. J.; Beyerle, R. A.

    1985-01-01

    A series of computations has been made to produce the equilibrium temperature and gas composition for hydrogen gas fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0. Only sample tables and figures are provided in this report.

  6. Effect of heterogenous and homogenous air gaps on dry heat loss through the garment

    Science.gov (United States)

    Mert, Emel; Psikuta, Agnes; Bueno, Marie-Ange; Rossi, René M.

    2015-11-01

    In real life conditions, the trapped air between the human body and the garment has uneven shape and vary over the body parts as a consequence of the complex geometry of the human body. However, the existing clothing models assume uniform air layer between the human body and the garment or its full contact, which may cause large error in the output of simulations. Therefore, the aim of this study was to investigate the effect of a heterogeneous vertical air gap with different configuration of folds (size and frequency) on dry heat loss using a heated cylinder (Torso). It was found that the presence of folds in the garment led to an increased heat loss from the body in comparison to a homogeneous air gap of comparable size. Interestingly, the size of folds did not have an influence on the dry heat loss. Additionally, the effect of the contact area on dry heat loss became important when exceeding a threshold of about 42 %. The results from this study are useful for modelling of a realistic dry heat loss through the clothing and contribute to the improvement of design of protective and active sport garments.

  7. Effect of heterogenous and homogenous air gaps on dry heat loss through the garment.

    Science.gov (United States)

    Mert, Emel; Psikuta, Agnes; Bueno, Marie-Ange; Rossi, René M

    2015-11-01

    In real life conditions, the trapped air between the human body and the garment has uneven shape and vary over the body parts as a consequence of the complex geometry of the human body. However, the existing clothing models assume uniform air layer between the human body and the garment or its full contact, which may cause large error in the output of simulations. Therefore, the aim of this study was to investigate the effect of a heterogeneous vertical air gap with different configuration of folds (size and frequency) on dry heat loss using a heated cylinder (Torso). It was found that the presence of folds in the garment led to an increased heat loss from the body in comparison to a homogeneous air gap of comparable size. Interestingly, the size of folds did not have an influence on the dry heat loss. Additionally, the effect of the contact area on dry heat loss became important when exceeding a threshold of about 42%. The results from this study are useful for modelling of a realistic dry heat loss through the clothing and contribute to the improvement of design of protective and active sport garments. PMID:25796204

  8. Coffee husk associated with firewood as fuel for indirect heating of drying air

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Edney Alves; Silva, Juarez de Sousa e; Silva, Jadir Nogueira da; Oliveira Filho, Delly [Universidade Federal de Vicosa (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola; Donzeles, Sergio Mauricio Lopes [Empresa de Pesquisa Agropecuaria de Minas Gerais (EPAMIG), Vicosa, MG (Brazil)

    2008-07-01

    The objective of this work was the performance analysis of a furnace, burning coffee husk associated with firewood to heat the drying air passing through a heat exchanger. For the analysis the temperature variation, the combustion quality, the heat losses and the furnace thermal efficiency were all monitored. Results showed that the furnace average efficiency was 58.3% and the heat losses in the exhaust were 24.3%. The presence of carbon monoxide in the exhaust gases (average 2982.8 ppm) had proven incomplete combustion, and suggesting that the combustion gases can not be used to directly drying of foods. Despite of indirect heating, the presented thermal efficiency indicates that the burning of coffee husks is one economic alternative for air heating in grain drying or in other agricultural processes. (author)

  9. Increasing thermal drying temperature of biosolids reduced nitrogen mineralisation and soil N2O emissions.

    Science.gov (United States)

    Case, Sean D C; Gómez-Muñoz, Beatriz; Magid, Jakob; Jensen, Lars Stoumann

    2016-07-01

    Previous studies found that thermally dried biosolids contained more mineralisable organic nitrogen (N) than the raw or anaerobically digested (AD) biosolids they were derived from. However, the effect of thermal drying temperature on biosolid N availability is not well understood. This will be of importance for the value of the biosolids when used to fertilise crops. We sourced AD biosolids from a Danish waste water treatment plant (WWTP) and dried it in the laboratory at 70, 130, 190 or 250 °C to >95 % dry matter content. Also, we sourced biosolids from the WWTP dried using its in-house thermal drying process (input temperature 95 °C, thermal fluid circuit temperature 200 °C, 95 % dry matter content). The drying process reduced the ammonium content of the biosolids and reduced it further at higher drying temperatures. These findings were attributed to ammonia volatilisation. The percentage of mineralisable organic N fraction (min-N) in the biosolids, and nitrous oxide (N2O) and carbon dioxide (CO2) production were analysed 120 days after addition to soil. When incubated at soil field capacity (pF 2), none of the dried biosolids had a greater min-N than the AD biosolids (46.4 %). Min-N was lowest in biosolids dried at higher temperatures (e.g. 19.3 % at 250 °C vs 35.4 % at 70 °C). Considering only the dried biosolids, min-N was greater in WWTP-dried biosolids (50.5 %) than all of the laboratory-dried biosolids with the exception of the 70 °C-dried biosolids. Biosolid carbon mineralisation (CO2 release) and N2O production was also the lowest in treatments of the highest drying temperature, suggesting that this material was more recalcitrant. Overall, thermal drying temperature had a significant influence on N availability from the AD biosolids, but drying did not improve the N availability of these biosolids in any case. PMID:27068895

  10. Copper pollution decreases the resistance of soil microbial community to subsequent dry-rewetting disturbance.

    Science.gov (United States)

    Li, Jing; Wang, Jun-Tao; Hu, Hang-Wei; Ma, Yi-Bing; Zhang, Li-Mei; He, Ji-Zheng

    2016-01-01

    Dry-rewetting (DW) disturbance frequently occurs in soils due to rainfall and irrigation, and the frequency of DW cycles might exert significant influences on soil microbial communities and their mediated functions. However, how microorganisms respond to DW alternations in soils with a history of heavy metal pollution remains largely unknown. Here, soil laboratory microcosms were constructed to explore the impacts of ten DW cycles on the soil microbial communities in two contrasting soils (fluvo-aquic soil and red soil) under three copper concentrations (zero, medium and high). Results showed that the fluctuations of substrate induced respiration (SIR) decreased with repeated cycles of DW alternation. Furthermore, the resistance values of substrate induced respiration (RS-SIR) were highest in non-copper-stressed (zero) soils. Structural equation model (SEM) analysis ascertained that the shifts of bacterial communities determined the changes of RS-SIR in both soils. The rate of bacterial community variance was significantly lower in non-copper-stressed soil compared to the other two copper-stressed (medium and high) soils, which might lead to the higher RS-SIR in the fluvo-aquic soil. As for the red soil, the substantial increase of the dominant group WPS-2 after DW disturbance might result in the low RS-SIR in the high copper-stressed soil. Moreover, in both soils, the bacterial diversity was highest in non-copper-stressed soils. Our results revealed that initial copper stress could decrease the resistance of soil microbial community structure and function to subsequent DW disturbance.

  11. Sulfate Attack Resistance of Air-entrained Silica Fume Concrete under Dry-Wet Cycle Condition

    Institute of Scientific and Technical Information of China (English)

    YANG Jiansen; WANG Peiming; LI Haoxin; YANG Xu

    2016-01-01

    Based on the erosion resistant coefficient, the effects of water-cement ratio, air-entrained, silica fume content and sand ratio on the sulfate attack resistance of air-entrained silica fume concrete were studied by orthogonal experiments in order to explore its sulfate attack resistance under dry-wet condition. A more signiifcant model of concrete resistance to sulfate attack was also established, thus this work provided a strategy reference for quantitative design of sulfate attack resistant concrete. The experimental results show that dry-wet cycle deteriorates the concrete resistance to the sulfate attack, and leads to the remarkable declines of concrete strength and sulfate resistance. Air bubbles in the air-entrained silica fume concrete lower and delay the damage resulted from the crystallization sulfate salt. However this delay gradually disappears when most of the close bubbles are breached by the alternative running of the sulfate salt crystallization and the permeating pressure, and then the air bubbles are iflled with sulfate salt crystallization. The concrete is provided with the strongest sulfate resistance when it is prepared with the 0.47 water-binder ratio, 6.0% air-entrained, 5% silica fume and 30% sand ratio. The erosion resistant coefifcientsK80 andK150 of this concrete are increased by 9%, 7%, 9%, and 5% respectively as compared with those of concretes without silica fume and air entraining.

  12. Preliminary Design of KAIST Micro Modular Reactor with Dry Air Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Baik, Seung Joon; Bae, Seong Jun; Kim, Seong Gu; Lee, Jeong Ik [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    KAIST research team recently proposed a Micro Modular Reactor (MMR) concept which integrates power conversion unit (PCU) with the reactor core in a single module. Using supercritical CO{sub 2} as a working fluid of cycle can achieve physically compact size due to small turbomachinery and heat exchangers. The objective of this project is to develop a concept that can operate at isolated area. The design focuses especially on the operation in the inland area where cooling water is insufficient. Thus, in this paper the potential for dry air cooling of the proposed reactor will be examined by sizing the cooling system with preliminary approach. The KAIST MMR is a recently proposed concept of futuristic SMR. The MMR size is being determined to be transportable with land transportation. Special attention is given to the MMR design on the dry cooling, which the cooling system does not depend on water. With appropriately designed air cooling heat exchanger, the MMR can operate autonomously. Two types of air cooling methods are suggested. One is using fan and the other is utilizing cooling tower for the air flow. With fan type air cooling method it consumes about 0.6% of generated electricity from the nuclear reactor. Cooling tower occupies an area of 227 m{sup 2} and 59.6 m in height. This design is just a preliminary estimation of the dry cooling method, and therefore more detailed and optimal design will be followed in the next phase.

  13. Air permeability of powder: a potential tool for Dry Powder Inhaler formulation development.

    Science.gov (United States)

    Le, V N P; Robins, E; Flament, M P

    2010-11-01

    Dry Powder Inhalers have drawn great attention from pharmaceutical scientists in recent years in particular those consisting of low-dose micronized drug particles associated with larger carrier particles and called interactive mixtures. However, there is little understanding of the relation between bulk powder properties such as powder structure and its aerodynamic dispersion performance. The aim of this work was to develop a simple method to measure the air permeability of interactive mixtures used in Dry Powder Inhalers by using Blaine's apparatus--a compendial permeameter and to relate it to the aerodynamic behaviour. The study was done with fluticasone propionate and terbutaline sulphate as drug models that were blended with several lactoses having different particle size distribution thus containing different percentages of fine particle lactose. The quality of the blends was examined by analysing the drug content uniformity. Aerodynamic evaluation of fine particle fraction was obtained using a Twin Stage Impinger. A linear correlation between a bulk property--air permeability of packed powder bed--and the fine particle fraction of drug was observed for the tested drugs. The air permeability reflects the quantity of the free particle fraction in the interparticulate spaces of powder bed that leads to fine particle fraction during fluidization in air flow. A theoretical approach was developed in order to link the air permeability of powder bed and drag force acting on powders during aerosolization process. The permeability technique developed in this study provides a potential tool for screening Dry Powder Inhaler formulations at the development stage. PMID:20854906

  14. Antioxidant activity changes during hot-air drying of Moringa oleifera leaves

    Directory of Open Access Journals (Sweden)

    Wiwat Wangcharoen

    2013-09-01

    Full Text Available Dried Moringa oleifera leaf powder in capsule is now a popular food supplement in Thailand. To investigate its health benefits, antioxidant activities of M. oleifera leaves (3 varieties: Num Phrae, Ang Thong and PKM1 during drying in hot-air oven at 50C and 100C were studied by 3 different methods, viz. ferric reducing antioxidant power (FRAP, DPPH free radical scavenging activity and ABTS radical cation decolourisation, together with the determination of total phenolic content and browning pigment formation. It was found that the antioxidant activities and total phenolic content tend to decrease in the early stage of drying and then increase in the later stage, and that the dried leaves still have at least 60% of antioxidant activities compared to fresh leaves.

  15. SLOPE LITHOLOGIC PROPERTY, SOIL MOISTURE CONDITION AND REVEGETATION IN DRY-HOT VALLEY OF JINSHA RIVER

    Institute of Scientific and Technical Information of China (English)

    XIONG Dong-hong; ZHOU Hong-yi; YANG Zhong; ZHANG Xin-bao

    2005-01-01

    The dry-hot valley of the Jinsha River is one of the typical eco-fragile areas in Southwest China, as well as a focus ofrevegetation study in the upper and middle reaches of the Changjiang River. Due to its extremely dry and hot climate, severely degraded vegetation and the intense soil and water loss, there are extreme difficulties in vegetation restoration in this area and no great breakthrough has ever been achieved on studies of revegetation over the last several decades. Through over ten years' research conducted in the typical areas-the Yuanmou dry-hot valley, the authors found that the lithologic property is one of the crucial factors determining soil moisture conditions and vegetation types in the dry-hot valley, and the rainfall infiltration capability is also one of the key factors affecting the tree growth. Then the revegetation zoning based on different slopes was conducted and revegetation patterns for different zones were proposed.

  16. Dry air effects on the copper oxides sensitive layers formation for ethanol vapor detection

    International Nuclear Information System (INIS)

    The copper oxide films have been deposited by thermal evaporation and annealed under ambient air and dry air respectively, at different temperatures. The structural characteristics of the films were investigated by X-ray diffraction. They showed the presences of two hydroxy-carbonate minerals of copper for annealing temperatures below 250 deg. C. Above this temperature the conductivity measurements during the annealing process, show a transition phase from metallic copper to copper oxides. The copper oxides sensitivity toward ethanol were performed using conductivity measurements at the working temperature of 200 deg. C. A decrease of conductivity was observed under ethanol vapor, showing the p-type semi-conducting characters of obtained copper oxide films. It was found that the sensing properties of copper oxide toward ethanol depend mainly on the annealing conditions. The best responses were obtained with copper layers annealed under dry air.

  17. Dry air effects on the copper oxides sensitive layers formation for ethanol vapor detection

    Energy Technology Data Exchange (ETDEWEB)

    Labidi, A., E-mail: Ahmed_laabidi@yahoo.fr [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia); Bejaoui, A.; Ouali, H. [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia); Akkari, F. Chaffar [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs, ENIT, Universite de Tunis el Manar, BP 37, Le belvedere 1002, Tunis (Tunisia); Hajjaji, A.; Gaidi, M. [Laboratoire de Photovoltaique, Centre de Recherches et de technologies de l' energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia); Kanzari, M. [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs, ENIT, Universite de Tunis el Manar, BP 37, Le belvedere 1002, Tunis (Tunisia); Bessais, B. [Laboratoire de Photovoltaique, Centre de Recherches et de technologies de l' energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia); Maaref, M. [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia)

    2011-09-15

    The copper oxide films have been deposited by thermal evaporation and annealed under ambient air and dry air respectively, at different temperatures. The structural characteristics of the films were investigated by X-ray diffraction. They showed the presences of two hydroxy-carbonate minerals of copper for annealing temperatures below 250 deg. C. Above this temperature the conductivity measurements during the annealing process, show a transition phase from metallic copper to copper oxides. The copper oxides sensitivity toward ethanol were performed using conductivity measurements at the working temperature of 200 deg. C. A decrease of conductivity was observed under ethanol vapor, showing the p-type semi-conducting characters of obtained copper oxide films. It was found that the sensing properties of copper oxide toward ethanol depend mainly on the annealing conditions. The best responses were obtained with copper layers annealed under dry air.

  18. The Resilience of Microbial Community under Drying and Rewetting Cycles of Three Forest Soils

    Science.gov (United States)

    Zhou, Xue; Fornara, Dario; Ikenaga, Makoto; Akagi, Isao; Zhang, Ruifu; Jia, Zhongjun

    2016-01-01

    Forest soil ecosystems are associated with large pools and fluxes of carbon (C) and nitrogen (N), which could be strongly affected by variation in rainfall events under current climate change. Understanding how dry and wet cycle events might influence the metabolic state of indigenous soil microbes is crucial for predicting forest soil responses to environmental change. We used 454 pyrosequencing and quantitative PCR to address how present (DNA-based) and potentially active (RNA-based) soil bacterial communities might response to the changes in water availability across three different forest types located in two continents (Africa and Asia) under controlled drying and rewetting cycles. Sequencing of rRNA gene and transcript indicated that Proteobacteria, Actinobacteria, and Acidobacteria were the most responsive phyla to changes in water availability. We defined the ratio of rRNA transcript to rRNA gene abundance as a key indicator of potential microbial activity and we found that this ratio was increased following soil dry-down process whereas it decreased after soil rewetting. Following rewetting Crenarchaeota-like 16S rRNA gene transcript increased in some forest soils and this was linked to increases in soil nitrate levels suggesting greater nitrification rates under higher soil water availability. Changes in the relative abundance of (1) different microbial phyla and classes, and (2) 16S and amoA genes were found to be site- and taxa-specific and might have been driven by different life-strategies. Overall, we found that, after rewetting, the structure of the present and potentially active bacterial community structure as well as the abundance of bacterial (16S), archaeal (16S) and ammonia oxidizers (amoA), all returned to pre-dry-down levels. This suggests that microbial taxa have the ability to recover from desiccation, a critical response, which will contribute to maintaining microbial biodiversity in harsh ecosystems under environmental perturbations

  19. The Resilience of Microbial Community under Drying and Rewetting Cycles of Three Forest Soils.

    Science.gov (United States)

    Zhou, Xue; Fornara, Dario; Ikenaga, Makoto; Akagi, Isao; Zhang, Ruifu; Jia, Zhongjun

    2016-01-01

    Forest soil ecosystems are associated with large pools and fluxes of carbon (C) and nitrogen (N), which could be strongly affected by variation in rainfall events under current climate change. Understanding how dry and wet cycle events might influence the metabolic state of indigenous soil microbes is crucial for predicting forest soil responses to environmental change. We used 454 pyrosequencing and quantitative PCR to address how present (DNA-based) and potentially active (RNA-based) soil bacterial communities might response to the changes in water availability across three different forest types located in two continents (Africa and Asia) under controlled drying and rewetting cycles. Sequencing of rRNA gene and transcript indicated that Proteobacteria, Actinobacteria, and Acidobacteria were the most responsive phyla to changes in water availability. We defined the ratio of rRNA transcript to rRNA gene abundance as a key indicator of potential microbial activity and we found that this ratio was increased following soil dry-down process whereas it decreased after soil rewetting. Following rewetting Crenarchaeota-like 16S rRNA gene transcript increased in some forest soils and this was linked to increases in soil nitrate levels suggesting greater nitrification rates under higher soil water availability. Changes in the relative abundance of (1) different microbial phyla and classes, and (2) 16S and amoA genes were found to be site- and taxa-specific and might have been driven by different life-strategies. Overall, we found that, after rewetting, the structure of the present and potentially active bacterial community structure as well as the abundance of bacterial (16S), archaeal (16S) and ammonia oxidizers (amoA), all returned to pre-dry-down levels. This suggests that microbial taxa have the ability to recover from desiccation, a critical response, which will contribute to maintaining microbial biodiversity in harsh ecosystems under environmental perturbations

  20. Drying and wetting of Mediterranean soils stimulates decomposition and carbon dioxide emission: the "Birch effect".

    Science.gov (United States)

    Jarvis, Paul; Rey, Ana; Petsikos, Charalampos; Wingate, Lisa; Rayment, Mark; Pereira, João; Banza, João; David, Jorge; Miglietta, Franco; Borghetti, Marco; Manca, Giovanni; Valentini, Riccardo

    2007-07-01

    Observations on the net carbon exchange of forests in the European Mediterranean region, measured recently by the eddy covariance method, have revived interest in a phenomenon first characterized on agricultural and forest soils in East Africa in the 1950s and 1960s by H. F. Birch and now often referred to as the "Birch effect." When soils become dry during summer because of lack of rain, as is common in regions with Mediterranean climate, or are dried in the laboratory in controlled conditions, and are then rewetted by precipitation or irrigation, there is a burst of decomposition, mineralization and release of inorganic nitrogen and CO(2). In forests in Mediterranean climates in southern Europe, this effect has been observed with eddy covariance techniques and soil respiration chambers at the stand and small plot scales, respectively. Following the early work of Birch, laboratory incubations of soils at controlled temperatures and water contents have been used to characterize CO(2) release following the rewetting of dry soils. A simple empirical model based on laboratory incubations demonstrates that the amount of carbon mineralized over one year can be predicted from soil temperature and precipitation regime, provided that carbon lost as CO(2) is taken into account. We show that the amount of carbon returned to the atmosphere following soil rewetting can reduce significantly the annual net carbon gain by Mediterranean forests. PMID:17403645

  1. Photon yields from nitrogen gas and dry air excited by electrons

    CERN Document Server

    Nagano, M; Sakaki, N; Ando, K

    2003-01-01

    In order to detect ultrahigh-energy cosmic rays (UHECR), atmospheric fluorescence light from the trajectory of the extensive air shower may be measured by mirror-photosensor systems. In this type of experiment the photon yield from electrons exciting air of various densities and temperatures is most fundamental information for estimating the primary energy of UHECR. An experiment has been undertaken using a Sr90 $\\beta$ source to study the pressure dependence of photon yields, and the life times of the excited states, for radiation in nitrogen and dry air. The photon yield between 300 nm and 406 nm in air excited by 0.85 MeV electrons is 3.734+-0.148 (+-13.2 % systematic) photons per meter at 1000 hPa and 20 $^{\\circ}$C. The air density and temperature dependence is given for application to UHECR observations.

  2. Application of the biological forced air soil treatment (BIOFAST trademark) technology to diesel contaminated soil

    International Nuclear Information System (INIS)

    A subsurface Biological Forced Air Soil Treatment (BIOFAST trademark) system was constructed at the Yellow Freight System, Inc. (Yellow Freight) New Haven facility in Connecticut as a means of expediting the remediation of soils impacted by a diesel fuel release. Prior to beginning construction activities the soils were evaluated for the feasibility of bioremediation based on soil characteristics including contaminant degrading bacteria, moisture content, and pH. Based on results of stimulant tests with oxygen and nutrients, the addition of fertilizer during the construction of the cell was recommended. Following the removal of underground storage tanks, the bioremediation cell was constructed by lining the enlarged excavation with high density polyethylene (HDPE) and backfilling alternating layers of nutrient-laden soil and pea gravel. Passive and active soil vapor extraction (SVE) piping was included in the gravel layers and connected to a blower and vapor treatment unit, operated intermittently to supply oxygen to the subsurface cell. Operating data have indicated that the bacteria are generating elevated levels of CO2, and the SVE unit is evacuating the accumulated CO2 from the soils and replacing it with fresh air. These data suggest that the bioremediation process is active in the soils. Soil samples collected from within the soil pit subsequent to installation and again after 10 months of operation indicate that TPH concentrations have decreased by as much as 50%

  3. Controls of Soil Spatial Variability in a Dry Tropical Forest

    Science.gov (United States)

    Pulla, Sandeep; Riotte, Jean; Suresh, H. S.; Dattaraja, H. S.; Sukumar, Raman

    2016-01-01

    We examined the roles of lithology, topography, vegetation and fire in generating local-scale (DBH), and spatial variation in fire frequency (times burnt during the 17 years preceding soil sampling) in a permanent 50-ha plot. Unlike classic catenas, lower elevation soils had lesser moisture, plant-available Ca, Cu, Mn, Mg, Zn, B, clay and total C. The distribution of plant-available Ca, Cu, Mn and Mg appeared to largely be determined by the whole-rock chemical composition differences between amphibolites and hornblende-biotite gneisses. Amphibolites were associated with summit positions, while gneisses dominated lower elevations, an observation that concurs with other studies in the region which suggest that hillslope-scale topography has been shaped by differential weathering of lithologies. Neither NO3−-N nor NH4+-N was explained by the basal area of trees belonging to Fabaceae, a family associated with N-fixing species, and no long-term effects of fire on soil parameters were detected. Local-scale lithological variation is an important first-order control over soil variability at the hillslope scale in this SDTF, by both direct influence on nutrient stocks and indirect influence via control of local relief. PMID:27100088

  4. Controls of Soil Spatial Variability in a Dry Tropical Forest.

    Science.gov (United States)

    Pulla, Sandeep; Riotte, Jean; Suresh, H S; Dattaraja, H S; Sukumar, Raman

    2016-01-01

    We examined the roles of lithology, topography, vegetation and fire in generating local-scale (DBH), and spatial variation in fire frequency (times burnt during the 17 years preceding soil sampling) in a permanent 50-ha plot. Unlike classic catenas, lower elevation soils had lesser moisture, plant-available Ca, Cu, Mn, Mg, Zn, B, clay and total C. The distribution of plant-available Ca, Cu, Mn and Mg appeared to largely be determined by the whole-rock chemical composition differences between amphibolites and hornblende-biotite gneisses. Amphibolites were associated with summit positions, while gneisses dominated lower elevations, an observation that concurs with other studies in the region which suggest that hillslope-scale topography has been shaped by differential weathering of lithologies. Neither NO3(-)-N nor NH4(+)-N was explained by the basal area of trees belonging to Fabaceae, a family associated with N-fixing species, and no long-term effects of fire on soil parameters were detected. Local-scale lithological variation is an important first-order control over soil variability at the hillslope scale in this SDTF, by both direct influence on nutrient stocks and indirect influence via control of local relief. PMID:27100088

  5. Polymer tensiometers to characterize unsaturated zone processes in dry soils

    NARCIS (Netherlands)

    Ploeg, van der M.J.

    2008-01-01

    More frequent and intense droughts due to global climate change, together with an increasing agricultural water use emphasize the importance of understanding root water uptake by plants under water-stressed conditions. Root water uptake is driven by potential gradients between water in the soil and

  6. Soil air CO2 concentration as an integrative parameter of soil structure

    Science.gov (United States)

    Ebeling, Corinna; Gaertig, Thorsten; Fründ, Heinz-Christian

    2015-04-01

    The assessment of soil structure is an important but difficult issue and normally takes place in the laboratory. Typical parameters are soil bulk density, porosity, water or air conductivity or gas diffusivity. All methods are time-consuming. The integrative parameter soil air CO2 concentration ([CO2]) can be used to assess soil structure in situ and in a short time. Several studies highlighted that independent of soil respiration, [CO2] in the soil air increases with decreasing soil aeration. Therefore, [CO2] is a useful indicator of soil aeration. Embedded in the German research project RÜWOLA, which focus on soil protection at forest sites, we investigated soil compaction and recovery of soil structure after harvesting. Therefore, we measured soil air CO2 concentrations continuously and in single measurements and compared the results with the measurements of bulk density, porosity and gas diffusivity. Two test areas were investigated: At test area 1 with high natural regeneration potential (clay content approx. 25 % and soil-pH between 5 and 7), solid-state CO2-sensors using NDIR technology were installed in the wheel track of different aged skidding tracks in 5 and 10 cm soil depths. At area 2 (acidic silty loam, soil-pH between 3.5 and 4), CO2-sensors and water-tension sensors (WatermarkR) were installed in 6 cm soil depth. The results show a low variance of [CO2] in the undisturbed soil with a long term mean from May to June 2014 between 0.2 and 0.5 % [CO2] in both areas. In the wheel tracks [CO2] was consistently higher. The long term mean [CO2] in the 8-year-old-wheel track in test area 1 is 5 times higher than in the reference soil and shows a high variation (mean=2.0 %). The 18-year-old wheel track shows a long-term mean of 1.2 % [CO2]. Furthermore, there were strong fluctuations of [CO2] in the wheel tracks corresponding to precipitation and humidity. Similar results were yielded with single measurements during the vegetation period using a portable

  7. Influence of Various Air Temperature on Duration of Drying Pumpkin Seed with Higher Water Content After Washing (Cucurbita pepo L.

    Directory of Open Access Journals (Sweden)

    S. Sito

    1998-12-01

    The samples dried at air temperature of 80 and 100°C were partly roasted, the seeds were dark coloured (burned, inferior taste, and problematic storage quality. Consequently air temperature above 60°C could not be recommended for pumpkin seed drying.

  8. Radioecological investigations in the food-chain air-soil-vine-wine. Pt. 1

    International Nuclear Information System (INIS)

    In a field investigation (1983-1985) comprising 8 locations of the most important viticultural regions in Germany, the contents of H-3, C-14, Sr-90, and Cs-137 in air, soils, leaves of the vine, grapes and wine were measured and site-specific transfer factors were calculated. Data concerning soil parameters, climatic conditions, cultivation and vinification were collected. The T contents of all samples were 10 Bq/l water of combustion, independent of location and year. The specific activity of C-14 in the atmosphere and in biological material was 0.22 Bq/g C, independent of site and year. Sr-90 contents of soils fluctuated between 0.7 and 3.5 Bq/kg dry matter. The mean content of leaves was 2 Bq/kg fresh material, of grapes 0.035 Bq/kg and of wine 0.008 Bq/l. The Cs-137 level of soils fluctuated between 1.3 and 7.9 Bq/kg dry matter. The mean content of leaves was 0.098 Bq/kg fresh material, of grapes 0.021 Bq/kg and of wine 0.0085 Bq/l. A relation between transfer and soil parameters and between the contents of grapes and wine was not recognizeable. While cultivar-specific differences were not observed in grapes, red wines contained somewhat more Cs-137 than white wines. Transfer factors soil-grapes were 0.027 for Sr-90 and 0.0057 for Cs-137. Site-specific influences such as soil parameters, climate, cultivation, vinification and differences between years led to a small fluctuation of values. No influence of the Neckarwestheim reactor has been found in any of the radionuclides. (orig./HP)

  9. New species of ice nucleating fungi in soil and air

    Science.gov (United States)

    Fröhlich-Nowoisky, Janine; Hill, Thomas C. J.; Pummer, Bernhard G.; Franc, Gray D.; Pöschl, Ulrich

    2014-05-01

    Primary biological aerosol particles (PBAP) are ubiquitous in the atmosphere (1,2). Several types of PBAP have been identified as ice nuclei (IN) that can initiate the formation of ice at relatively high temperatures (3, 4). The best-known biological IN are common plant-associated bacteria. The IN activity of these bacteria is due to a surface protein on the outer cell membrane that catalyses ice formation, for which the corresponding gene has been identified and detected by DNA analysis (3). Fungal spores or hyphae can also act as IN, but the biological structures responsible for their IN activity have not yet been elucidated. Furthermore, the abundance, diversity, sources, seasonality, properties, and effects of fungal IN in the atmosphere have neither been characterized nor quantified. Recent studies have shown that airborne fungi are highly diverse (1), and that atmospheric transport leads to efficient exchange of species among different ecosystems (5, 6). The results presented in Fröhlich-Nowoisky et al. 2012 (7) clearly demonstrate the presence of geographic boundaries in the global distribution of microbial taxa in air, and indicate that regional differences may be important for the effects of microorganisms on climate and public health. DNA analyses of aerosol samples collected during rain events showed higher diversity and frequency of occurrence for fungi belonging to the Sordariomycetes, than samples that were collected under dry conditions (8). Sordariomycetes is the class that comprises known ice nucleation active species (Fusarium spp.). By determination of freezing ability of fungal colonies isolated from air samples two species of ice nucleation active fungi that were not previously known as biological ice nucleators were found. By DNA-analysis they were identified as Isaria farinosa and Acremonium implicatum. Both fungi belong to the phylum Ascomycota, produce fluorescent spores in the range of 1-4 µm in diameter, and induced freezing at -4 and

  10. Drying Characteristics and Product Quality of Lemon Slices Dried with Hot Air Circulation Oven and Hybrid Heatpump Dryers

    Directory of Open Access Journals (Sweden)

    Yong Hong Lee

    2014-12-01

    Full Text Available In this research, drying characteristics and product quality of Coulomb-force-assisted heatpump and oven dried lemon slices were studied. Lemon slices with 3 mm thickness each, were dried using oven and Coulomb-force-assisted-heatpump dryer with and without auxiliary heater at different drying conditions. It was found that the drying rate of the lemon slices dried by all drying methods showed only falling rate states, which indicates the drying kinetics were controlled by internal moisture diffusion. Oven drying of lemon slices at 60°C showed the highest drying rate among all, followed by oven dried slices at 50°C, Coulomb-force-heater-assisted-heatpump (CF-HT-HP dried slices at 31°C, Coulomb-force-assisted-heatpump (CF-HP dried slices at 22°C, oven dried slices at 40°C and heatpump dried slices at 22°C. The average effective moisture diffusivity value for the slices dried with these drying methods was found in the range of 16.2 to 63.8´10-4 mm2min-1. In terms of quality assessment, CF-HP dried lemon slices retained the highest amount of Vitamin C as compared to the lemon slices dried by other drying methods. However, it retained relatively lower amount of total phenolic content (TPC as compared to oven dried products. Among of all, CF-HP drying method produced dried lemon slices with the highest Vitamin C (6.74 mg AA / g dry weight whereas oven dried lemon slices at 50°C preserved most of the TPC in the dried slices, which recorded as 13.76 mg GA / g dry weight.

  11. Mathematical Modeling of Hot Air Drying Kinetics of Momordica Charantia Slices and Its Color Change

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2013-09-01

    Full Text Available This study presented the drying characteristics of fresh Momordica Charantia slices at different drying temperatures (50, 60, 70 and 80°C and different thicknesses (0.5, 0.75 and 1.0 cm. Three mathematical models including Page, Henderson and Pabis and Wang and Singh equations were compared and discussed. The results showed that the Page model provided the best correlation capacity with the decision coefficient R2 of 0.998. The color change of Momordica Charantia slices during hot air drying at different temperatures were also studied by the measuring of color parameters such as the values of Hunter L* (whiteness/darkness, a* (redness/greenness and b* (yellowness/blueness. The total color change (ΔE of the samples was observed to increase as drying temperature increased. The results show that the color ofMomordica Charantia slices changed sharply when temperature was higher than about 70°C. The study could provide theoretical bases of the equipment design and process optimization for hot air drying of Momordica Charantia

  12. Microbiological and sensory evaluation of Jambu (Acmella oleracea L. dried by cold air circulation

    Directory of Open Access Journals (Sweden)

    Alan Franco BARBOSA

    2016-01-01

    Full Text Available Abstract The aim of this study was to evaluate the microbiological and sensory quality of the Jambu (Acmella oleracea L. in natura and dried by cold air, and the determination of its drying curve. The microbiological analysis were performed to Salmonella spp, the coagulase-positive Staphylococcus, and coliforms in the both Jambu samples, at 45 °C. Tacacá, the typical food dish of Pará state, Brazil, has showed good consumer global acceptance in the sensory evaluation of Jambu in natura (score of 8.00 ± 1.46 and dried (score of 8.67 ± 0.66. Both samples, Jambu in natura and dried by cold air, were by the current legislation regarding the microbiological aspects, this is the absence of Salmonella spp, coagulase-positive Staphylococcus <1×101 CFU/g, and coliforms <3 MPN/g, at 45 °C. Thus, considering sensory and health aspects, the commercialization of dried Jambu becomes viable, facilitating its transportation and handling, as well as for reducing its vegetable mass.

  13. Pathogen reduction effects of solar drying and soil application in sewage sludge

    OpenAIRE

    ÖĞLENİ, Nurtaç; ÖZDEMİR, Saim

    2010-01-01

    The responses of sludge faecal coliforms, Salmonella, and Ascaris lumbricoides to heat drying, solar dehydration, and inactivation in soil are examined in this study. The presence of Salmonella in raw sludge cake after treatment was low, and absent for most of the cases. Likewise, the viable Ascaris eggs were not determined because of absent or low prevalence. Faecal coliforms, on the other hand, drastically decreased from 4.2 × 107 MPN g-1 Dry Solid (DS) to absence by heat drying. Faecal col...

  14. Changes in the properties of solonetzic soil complexes in the dry steppe zone under anthropogenic impacts

    Science.gov (United States)

    Lyubimova, I. N.; Novikova, A. F.

    2016-05-01

    Long-term studies of changes in the properties of solonetzic soil complexes of the dry steppe zone under anthropogenic impacts (deep plowing, surface leveling, irrigation, and post-irrigation use) have been performed on the Privolzhskaya sand ridge and the Khvalyn and Ergeni plains. The natural morphology of solonetzic soils was strongly disturbed during their deep ameliorative plowing. At present, the soil cover consists of solonetzic agrozems (Sodic Protosalic Cambisols (Loamic, Aric, Protocalcic)), textural (clay-illuvial) calcareous agrozems (Eutric Cambisols (Loamic, Aric, Protocalcic)), agrosolonetzes (Endocalcaric Luvisols (Loamic, Aric, Cutanic, Protosodic), agrochestnut soils (Eutric Cambisols (Siltic, Aric)), and meadowchestnut soils (Haplic Kastanozems). No features attesting to the restoration of the initial profile of solonetzes have been found. The dynamics of soluble salts and exchangeable sodium differ in the agrosolonetzes and solonetzic agrozems. A rise in pH values takes place in the middle part of the soil profiles on the Khvalyn and Ergeni plains.

  15. STATISTIC MODELING OF DRYING KINETHIC OF SPINACH LEAVES USING MICROWAVE AND HOT AIR METHODS

    OpenAIRE

    Mojtaba Nouri; Marzieh Vahdani; Shilan Rashidzadeh; Lukáš Hleba; Mohammad Ali Shariati

    2015-01-01

    The target of this study was to model of spinach leaves drying using microwave and hot air dryer. This test performed in combination treatment of temperatures (50°C, 60°C, and 70°C) and microwave (90, 180, 360, 600 and 900w) in 3 replications. Sample moisture measured within drying. All the results were fitted and analyzed with 8 mathematical models base on 3 parameters including determination (R2), Chi square(X2), root mean square errors(RSME). Results also revealed that temperature and micr...

  16. Mathematical Modeling of Hot Air Drying Kinetics of Momordica Charantia Slices and Its Color Change

    OpenAIRE

    Jie Chen; Ying Zhou; Sheng Fang; Yuecheng Meng; Xin Kang; Xuejiao Xu; Xiaobo Zuo

    2013-01-01

    This study presented the drying characteristics of fresh Momordica Charantia slices at different drying temperatures (50, 60, 70 and 80°C) and different thicknesses (0.5, 0.75 and 1.0 cm). Three mathematical models including Page, Henderson and Pabis and Wang and Singh equations were compared and discussed. The results showed that the Page model provided the best correlation capacity with the decision coefficient R2 of 0.998. The color change of Momordica Charantia slices during hot air dryin...

  17. Effect of air-flow rate and turning frequency on bio-drying of dewatered sludge.

    Science.gov (United States)

    Zhao, Ling; Gu, Wei-Mei; He, Pin-Jing; Shao, Li-Ming

    2010-12-01

    Sludge bio-drying is an approach for biomass energy utilization, in which sludge is dried by means of the heat generated by aerobic degradation of its organic substances. The study aimed at investigating the interactive influence of air-flow rate and turning frequency on water removal and biomass energy utilization. Results showed that a higher air-flow rate (0.0909m(3)h(-1)kg(-1)) led to lower temperature than did the lower one (0.0455m(3)h(-1)kg(-1)) by 17.0% and 13.7% under turning per two days and four days. With the higher air-flow rate and lower turning frequency, temperature cumulation was almost similar to that with the lower air-flow rate and higher turning frequency. The doubled air-flow rate improved the total water removal ratio by 2.86% (19.5gkg(-1) initial water) and 11.5% (75.0gkg(-1) initial water) with turning per two days and four days respectively, indicating that there was no remarkable advantage for water removal with high air-flow rate, especially with high turning frequency. The heat used for evaporation was 60.6-72.6% of the total heat consumption (34,400-45,400kJ). The higher air-flow rate enhanced volatile solids (VS) degradation thus improving heat generation by 1.95% (800kJ) and 8.96% (3200kJ) with turning per two days and four days. With the higher air-flow rate, heat consumed by sensible heat of inlet air and heat utilization efficiency for evaporation was higher than the lower one. With the higher turning frequency, sensible heat of materials and heat consumed by turning was higher than lower one.

  18. A novel method for air drying aloe leaf slices by covering with filter papers as a shrink-proof layer.

    Science.gov (United States)

    Kim, S A; Baek, J H; Lee, S J; Choi, S Y; Hur, W; Lee, S Y

    2009-01-01

    To prevent the shrinkage of aloe vera slices during air drying, a method utilizing a shrink-proof layer was developed. The sample was configured of whole leaf aloe slices, where 1 side or both sides were covered with filter papers as shrink-proof layers. After air drying by varying the air temperature and the slice thickness, the drying characteristics, as well as several quality factors of the dried aloe vera leaf slices, were analyzed. In the simulation of the drying curves, the modified Page model showed the best fitness, representing a diffusion-controlled drying mechanism. Nonetheless, there was a trace of a constant-rate drying period in the samples dried by the method. Shrinkage was greatly reduced, and the rehydration ratios increased by approximately 50%. Scanning electron microscopic analysis revealed that the surface structure of original fibrous form was well sustained. FT-IR characteristics showed that the dried samples could sustain aloe polysaccharide acetylation. Furthermore, the functional properties of the dried slices including water holding capacity, swelling, and fat absorption capability were improved, and polysaccharide retention levels increased by 20% to 30%. Therefore, we concluded that application of shrink-proof layers on aloe slices provides a novel way to overcome the shrinkage problems commonly found in air drying, thereby improving their functional properties with less cost. Practical Application: This research article demonstrates a novel air drying method using shrink-proof layers to prevent the shrinkage of aloe slices. We analyzed extensively the characteristics of shrinkage mechanism and physical properties of aloe flesh gels in this drying system. We concluded that this method can be a beneficial means to retain the functional properties of dried aloe, and a potential alternative to freeze drying, which is still costly. PMID:20492108

  19. Resource Limitations on Soil Microbial Activity in an Antarctic Dry Valley

    DEFF Research Database (Denmark)

    Sparrow, Asley; Gregorich, Ed; Hopkins, David;

    2011-01-01

    Although Antarctic dry valley soils function under some of the harshest environmental conditions on the planet, there is significant biological activity concentrated in small areas in the landscape. These productive areas serve as a source of C and N in organic matter redistributed to the surroun......Although Antarctic dry valley soils function under some of the harshest environmental conditions on the planet, there is significant biological activity concentrated in small areas in the landscape. These productive areas serve as a source of C and N in organic matter redistributed...... to the surrounding biologically impoverished soils. We conducted a 3-yr replicated field experiment involving soil amendment with C and N in simple (glucose and NH4Cl) and complex (glycine and lacustrine detritus) forms to evaluate the resource limitations on soil microbial activity in an Antarctic dry valley....... The respiratory response for all substrates was slow, with a significant but weak response to NH4Cl, followed by a more widespread response to all substrates after 2 yr and in laboratory incubations conducted 3 yr after substrate addition. This response suggests that the soil microbial community is N limited and...

  20. Release of aged 14C-atrazine residues from soil facilitated by dry-wet cycles

    Science.gov (United States)

    Jablonowski, N. D.; Yu, K.; Koeppchen, S.; Burauel, P.

    2012-04-01

    Intermittent dry-wet cycles may have an important effect on soil structure and aged pesticide residues release (1). A laboratory study was conducted to assess the maximum potential of water extractable aged atrazine residues influenced by soil drying and wetting. The used soil was obtained from an outdoor lysimeter (gleyic cambisol; Corg: 1.45%), containing environmentally aged (22 years) 14C-atrazine residues. For the experiment, soil from 0-10 cm depth was used since most residual 14C activity was previously found in this layer (2,3). Triplicate soil samples with a residual water content of approx. 8% were either dried (45° C) prior water addition or directly mixed with distilled water (soil+water: 1+2, w:w). The samples were shaken (150 rmp, 60 min, at 21° C), centrifuged (approx. 2000 g), and the supernatants were filtered. Water-extracted residual 14C activity was detected via liquid scintillation counter. The total water-extracted 14C activity (the amount of residual 14C activity in a sample equals 100%) was significantly higher (p

  1. Effect of osmotic pretreatment on air drying characteristics and colour of pepper (Capsicum spp) cultivars.

    Science.gov (United States)

    Falade, Kolawole Olumuyiwa; Oyedele, Olaniyi O

    2010-10-01

    Air-drying characteristics of fresh and osmotically pretreated (40°B, 50°B and 60°B sucrose solutions for 9 h) four pepper cultivars namely, Rodo (Capsicum annuum), Shombo (Capsicum frutescens), Bawa (Capsicum frutenscens) and Tatashe (Capsicum annuum), and CIE L*a*b* parameters of air-dried (50, 60, 70 and 80 °C) peppers were investigated. Moisture diffusivity and activation energy (Ea) were calculated from Fick's law and analogous Arrhenius equation, respectively. Colour difference, chroma and hue angle of fresh- and osmo-oven dried peppers were evaluated. Drying rates occurred predominantly in the falling rate. Moisture diffusivity varied from 8.071 × 10(-10)-1.048 × 10(-8), 7.710 × 10(-11)-1.018 × 10(-9), 9.807 × 10(-9)-1.746 × 10(-8) and 8.748 × 10(-10)-1.464 × 10(-9) m(2)/s for Bawa, Rodo, Shombo, and Tatashe, respectively. Ea for moisture diffusion during drying of peppers varied from 53.86 to 84.86 kJ/mol and was affected by cultivars and osmotic pretreatment concentration. Osmotic pretreatment and drying temperature had significant effect (p < 0.05) on a*, b*, chroma and hue angle values of dried peppers. PMID:23572676

  2. Green ambrosia for Soil- Dry Cow Dung Powder: Rhexistasy to Biostasy

    Science.gov (United States)

    Bagla, Hemlata; Barot, Nisha

    2013-04-01

    "Greener ambrosia for Soil - Dry cow dung powder: Rhexistasy to Biostasy" Pedosphere, the soil with its biotic and abiotic component, is produced by lithosphere`s interactions with atmosphere, hydrosphere and biosphere. The theory of Biorhexistasy proposed by pedologist H. Erhart [1], describes two crucial climatic phases of soil i.e. Biostasy, period of soil formation and Rhexistasy, periods of soil erosion. Humus, the organic matter in soil, permits better aeration, enhances the absorption and releases nutrients, and makes the soil less susceptible to leaching and erosion [2], thus the agent of soil`s vitality. Mismanagement of soil, leads to the degradation of millions of acres of land through erosion, compaction, salinization and acidification. Among these threats salinity is a major abiotic stress reducing the yield of wide variety of crops all over the world [3]. It is been proved that Humic Acid (HA) treatment can ameliorate the deleterious effects of salt stress by increasing root growth, altering mineral uptake, and decreasing membrane damage, thus inducing salt tolerance in plants [4]. HA can be inexpensively incorporated into soils via different biowastes. Dry cow dung powder (DCP), is naturally available bio-organic, complex, polymorphic humified fecal matter, enriched with minerals, carbohydrates, fats, proteins, bile pigments, aliphatic - aromatic species such as HA, Fulvic Acid (FA) etc [5]. The microbial consortium enables DCP with considerable potentials for biodegradation and biotransformation of even saline soil and further contributes to many biogeochemical processes, boosting humus content of soil. Due to unambiguous biological, microbiological as well as chemical inert properties of DCP, it has been successfully utilized as a fertilizer and soil conditioner since ages in India, one of the leading agrarian countries of the world. Thus we summarize that DCP is one of the best contenders for the biostasy and desaliner of soil, aptly, soil`s

  3. Preliminary Study on Biological Characteristics of Degraded Soil Ecosystems in Dry Hot Valley of the Jinsha River

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Distribution characteristics of soil animals, microorganisms and enzymatic activity were studied in thedry red soil and Vertisol ecosystems with different degradation degrees in the Yuanmou dry hot valley of theJinsha River, China. Results showed that Hymenoptera, Araneae and Collembola were the dominant groupsof soil animals in the plots studied. The numbers of groups and individuals and density of soil animals in thedry red soil series were higher than those in the Vertisol series, and the numbers of individuals and density ofsoil animals decreased with the degree of soil degradation. Bacteria dominated microbiocoenosis not only inthe dry red soils but also in the Vertisols. Microbial numbers of the dry red soil series were higher than thoseof Vertisol series, and decreased with the degree of soil degradation. The activities of catalase, invertase,urease and alkaline phosphatase declined with the degradation degree and showed a significant decline withdepth in the profiles of both the dry red soils and the Vertisols, but activities of polyphenol oxidase andacid and neutral phosphatase showed the same tendencies only in the Vertisols. It was concluded that thecharacteristics of soil animals, microorganisms and enzymatic activity could be used as the bio-indicators toshow the degradation degree of the dry red soils and Vertisols. Correlation among these soil bio-indicatorswas highly significant.

  4. Microbial Biomass C,N and P in Disturbed Dry Tropical Forest Soils, India

    Institute of Scientific and Technical Information of China (English)

    J.S.SINGH; D.P.SINGH; A.K.KASHYAP

    2010-01-01

    Variations in microbial biomass C(MB-C),N(MB-N)and P(MB-P)along a gradient of different dominant vegetation covers(natural forest,mixed deciduous forest,disturbed savanna and grassland ecosystems)in dry tropical soils of Vindhyan Plateau,India were studied from January 2005 to December 2005.The water holding capacity,organic C,total N,total P and soil moisture content were comparatively higher in forest soils than in the savanna and grassland sites.Across different study sites the mean annual MB-C,MB-N and MB-P at 0-15 cm soil depth varied from 312.05 ± 4.22to 653.40 ± 3.17,32.16 ± 6.25 to 75.66 ± 7.21 and 18.94 ± 2.94 to 30.83 ± 23.08 μg g-1 dry soil,respectively.At all the investigated sites,the maximum MB-C,MB-N and MB-P occurred during the dry period(summer season)and the minimum in wet period(rainy season).In the present study,soil MB-C,MB-N and MB-P were higher at the forest sites compared to savanna and grassland sites.The differences in MB-C,MB-N and MB-P were significant(P mixed deciduous forest > savanna > grassland.The results suggested that deforestation and land use practices(conversion of forest into savanna and grassland)caused the alterations in soil properties,which as a consequence,led to reduction in soil nutrients and MB-C,MB-N and MB-P in the soil of disturbed sites(grassland and savanna)compared to undisturbed forest ecosystems.

  5. Effects of Temperature and Drying and Wetting Alternation on Ammonium Fixation in Manured Loessial Soil

    Institute of Scientific and Technical Information of China (English)

    FANXIAOLIN; LILING; 等

    1996-01-01

    Effects of temperature and drying and wetting alternation (DWA) on ammonium fixation in manured loessial soil were studied by means of Batch Equilibrium with varying concentration solutions of ammonium chloride.ammonium fixation time,and soil clay contents.The purpose of the research was to find out the pattern of ammonium fixation affected by the varying factors.The results showed a remarkable variation in ammonium fixation.Fixed ammonium increased with temperature and treatments of DWA.The ammonium fixation in manured loessial soil was characterized by the effect of temperature and DWA.

  6. Soil moisture prediction to support management in semiarid wetlands during drying episodes

    NARCIS (Netherlands)

    Aguilera, Héctor; Moreno, Luis; Wesseling, Jan G.; Jiménez-Hernández, María E.; Castaño, Silvino

    2016-01-01

    Wetlands supported by groundwater in semiarid regions are extremely vulnerable to the impacts of droughts, particularly anthropized systems. During drying periods, soil water content arises as the controlling factor for environmental and ecological disturbances such as the spread of invasive plan

  7. Electro-Hydrodynamics and Kinetic Modeling of Dry and Humid Air Flows Activated by Corona Discharges

    Institute of Scientific and Technical Information of China (English)

    J.P.SARRETTE; O.EICHWALD; F.MARCHAL; O.DUCASSE; M.YOUSFI

    2016-01-01

    The present work is devoted to the 2D simulation of a point-to-plane Atmospheric Corona Discharge Reactor (ACDR) powered by a DC high voltage supply.The corona reactor is periodically crossed by thin mono filamentary streamers with a natural repetition frequency of some tens of kHz.The study compares the results obtained in dry air and in air mixed with a small amount of water vapour (humid air).The simulation involves the electro-dynamics,chemical kinetics and neutral gas hydrodynamics phenomena that influence the kinetics of the chemical species transformation.Each discharge lasts about one hundred of a nanosecond while the post-discharge occurring between two successive discharges lasts one hundred of a microsecond.The ACDR is crossed by a lateral dry or humid air flow initially polluted with 400 ppm of NO.After 5 ms,the time corresponding to the occurrence of 50 successive discharge/post-discharge phases,a higher NO removal rate and a lower ozone production rate are found in humid air.This change is due to the presence of the HO2 species formed from the H primary radical in the discharge zone.

  8. Electro-Hydrodynamics and Kinetic Modeling of Dry and Humid Air Flows Activated by Corona Discharges

    Science.gov (United States)

    P. Sarrette, J.; Eichwald, O.; Marchal, F.; Ducasse, O.; Yousfi, M.

    2016-05-01

    The present work is devoted to the 2D simulation of a point-to-plane Atmospheric Corona Discharge Reactor (ACDR) powered by a DC high voltage supply. The corona reactor is periodically crossed by thin mono filamentary streamers with a natural repetition frequency of some tens of kHz. The study compares the results obtained in dry air and in air mixed with a small amount of water vapour (humid air). The simulation involves the electro-dynamics, chemical kinetics and neutral gas hydrodynamics phenomena that influence the kinetics of the chemical species transformation. Each discharge lasts about one hundred of a nanosecond while the post-discharge occurring between two successive discharges lasts one hundred of a microsecond. The ACDR is crossed by a lateral dry or humid air flow initially polluted with 400 ppm of NO. After 5 ms, the time corresponding to the occurrence of 50 successive discharge/post-discharge phases, a higher NO removal rate and a lower ozone production rate are found in humid air. This change is due to the presence of the HO2 species formed from the H primary radical in the discharge zone.

  9. Study on Longitudinal Gas Permeability of Air-dried Masson Pine Sapwood

    Institute of Scientific and Technical Information of China (English)

    HOU Zhuqiang; ZHANG Lifei; GUAN Ning; CHEN Guihua

    2006-01-01

    Measurement of the longitudinal gas permeability was made for air-dried sapwood specimens from Masson pine(Pinus massoniana).Results showed that air-dried Masson pine sapwood was one of the most permeable softwoods.The investigated specimens had an average longitudinal gas permeability of 4.60 ×10-13m3/m.and the permeability ranged from 1.06×10-13 to 1.12 ×10-12m3/m.The Kruskal-Wallis Test indicated that,generally,there was no correlation between the longitudinal gas permeability and the trees from which specimens were prepared,and tree height had no significant effect on the longitudinal gas permeability.

  10. Long-Term Effects of Multiwalled Carbon Nanotubes and Graphene on Microbial Communities in Dry Soil.

    Science.gov (United States)

    Ge, Yuan; Priester, John H; Mortimer, Monika; Chang, Chong Hyun; Ji, Zhaoxia; Schimel, Joshua P; Holden, Patricia A

    2016-04-01

    Little is known about the long-term effects of engineered carbonaceous nanomaterials (ECNMs) on soil microbial communities, especially when compared to possible effects of natural or industrial carbonaceous materials. To address these issues, we exposed dry grassland soil for 1 year to 1 mg g(-1) of either natural nanostructured material (biochar), industrial carbon black, three types of multiwalled carbon nanotubes (MWCNTs), or graphene. Soil microbial biomass was assessed by substrate induced respiration and by extractable DNA. Bacterial and fungal communities were examined by terminal restriction fragment length polymorphism (T-RFLP). Microbial activity was assessed by soil basal respiration. At day 0, there was no treatment effect on soil DNA or T-RFLP profiles, indicating negligible interference between the amended materials and the methods for DNA extraction, quantification, and community analysis. After a 1-year exposure, compared to the no amendment control, some treatments reduced soil DNA (e.g., biochar, all three MWCNT types, and graphene; P < 0.05) and altered bacterial communities (e.g., biochar, carbon black, narrow MWCNTs, and graphene); however, there were no significant differences across the amended treatments. These findings suggest that ECNMs may moderately affect dry soil microbial communities but that the effects are similar to those from natural and industrial carbonaceous materials, even after 1-year exposure.

  11. [Possible mechanisms of aftereffects of GSM electromagnetic radiation on air-dry seeds].

    Science.gov (United States)

    Veselova, T V; Veselovskiĭ, V A

    2012-01-01

    Some physical treatments, such as microwave- and gamma-radiation and magnetic field, induce long-term transition of air-dry seeds from the fraction of strong seeds into the weak seed fraction, due to non-enzymatic hydrolysis ofbiomacromolecules. These physical factors make water molecules more active, which is followed by the release of water molecules from the hydration layer, disturbance of this layer structure, further activation of water molecules by means of the "domino effect," and accumulation of hydrolysis products.

  12. Influence of drying air parameters on mass transfer characteristics of apple slices

    Science.gov (United States)

    Beigi, Mohsen

    2016-10-01

    To efficiently design both new drying process and equipment and/or to improve the existing systems, accurate values of mass transfer characteristics are necessary. The present study aimed to investigate the influence of drying air parameters (i.e. temperature, velocity and relative humidity) on effective diffusivity and convective mass transfer coefficient of apple slices. The Dincer and Dost model was used to determine the mass transfer characteristics. The obtained Biot number indicated that the moisture transfer in the apple slices was controlled by both internal and external resistance. The effective diffusivity and mass transfer coefficient values obtained to be in the ranges of 7.13 × 10-11-7.66 × 10-10 and 1.46 × 10-7-3.39 × 10-7 m s-1, respectively and the both of them increased with increasing drying air temperature and velocity, and decreasing relative humidity. The validation of the model showed that the model predicted the experimental drying curves of the samples with a good accuracy.

  13. Modeling Soil Water Retention Curves in the Dry Range Using the Hygroscopic Water Content

    DEFF Research Database (Denmark)

    Chen, Chong; Hu, Kelin; Arthur, Emmanuel;

    2014-01-01

    curves of soils and to predict SWRCs at the dry end using the hygroscopic water content at a relative humidity of 50% (θRH50). The Oswin model yielded satisfactory fits to dry-end SWRCs for soils dominated by both 2:1 and 1:1 clay minerals. Compared with the Oswin model, the Campbell and Shiozawa model...... combined with the Kelvin equation (CS-K) produced better fits to dry-end SWRCs of soils dominated by 2:1 clays but provided poor fits for soils dominated by 1:1 clays. The shape parameter α of the Oswin model was dependent on clay mineral type, and approximate values of 0.29 and 0.57 were obtained...... that for soils dominated by 2:1 clay minerals, the predictive ability of the Oswin-KRH50 model was comparable to the CS-KRH50 model in which θRH50 was the input parameter but performed better than the CS-A model where clay content was the input parameter. The Oswin-KRH50 model also has the potential...

  14. The effect of soil surface sealing on vegetation water uptake along a dry climatic gradient

    Science.gov (United States)

    Sela, Shai; Svoray, Tal; Assouline, Shmuel

    2015-09-01

    Soil surface sealing is a widespread natural process occurring frequently in bare soil areas between vegetation patches. The low hydraulic conductivity that characterizes the seal layer reduces both infiltration and evaporation fluxes from the soil, and thus has the potential to affect local vegetation water uptake (VWU). This effect is investigated here using experimental data, 2-D physically based modeling, and a long-term climatic data set from three dry sites presenting a climatic gradient in the Negev Desert, Israel. The Feddes VWU parameters for the dominant shrub at the study site (Sarcopoterium spinosum) were acquired using lysimeter experiments. The results indicate that during the season surface sealing could either increase or decrease VWU depending on initial soil water content, rainfall intensity, and the duration of the subsequent drying intervals. These factors have a marked effect on interannual variability of the seal layer effect on VWU, which on average was found to be 26% higher under sealed conditions than in the case of unsealed soil surfaces. The seal layer was found to reduce the period where the vegetation was under water stress by 31% compared with unsealed conditions. This effect was more pronounced for seasons with total rainfall depth higher than 10 cm/yr, and was affected by interseasonal climatic variability. These results shed light on the importance of surface sealing in dry environments and its contribution to the resilience of woody vegetation.

  15. Shakedown modeling of unsaturated expansive soils subjected to wetting and drying cycles

    Directory of Open Access Journals (Sweden)

    Nowamooz Hossein

    2016-01-01

    Full Text Available It is important to model the behavior of unsaturated expansive soils subjected to wetting and drying cycles because they alter significantly their hydro-mechanical behavior and therefore cause a huge differential settlement on shallow foundations of the structure. A simplified model based on the shakedown theory (Zarka method has been developed in this study for unsaturated expansive soils subjected to wetting and drying cycles. This method determines directly the stabilized limit state and consequently saves the calculation time. The parameters of the proposed shakedown-based model are calibrated by the suction-controlled oedometer tests obtained for an expansive soil compacted at loose and dense initial states, and then validated for the same soil compacted at intermediate initial state by comparing the model predictions with the experimental results. Finally, the finite element equations for the proposed shakedown model are developed and these equations are implemented in the finite element code CAST3M to carry out the full-scale calculations. A 2D geometry made up of the expansive soil compacted at the intermediate state is subjected to successive extremely dry and wet seasons for the different applied vertical loads. The results show the swelling plastic deformations for the lower vertical stresses and the shrinkage deformations for the higher vertical stresses.

  16. Modeling Soil Water in the Caatinga Tropical Dry Forest of Northeastern Brazil

    Science.gov (United States)

    Wright, C.; Wilcox, B.; Souza, E.; Lima, J. R. D. S.; West, J. B.

    2015-12-01

    The Caatinga is a tropical dry forest unique to northeastern Brazil. It has a relatively high degree of endism and supports a population of about 20 million subsistence farmers. However, it is poorly understood, under-researched and often over-looked in regards to other Brazilian ecosystems. It is a highly perturbed system that suffers from deforestation, land use change, and may be threatened by climate change. How these perturbations affect hydrology is unknown, but may have implications for biodiversity and ecosystem services and resiliency. Therefore, understanding key hydrological processes is critical, particularly as related to deforestation. In this study, Hydrus 1D, which is based on van Genuchten parameters to describe the soil water curve and Richard's Equation to describe flow in the vadose zone, was used to model soil moisture in the Caatinga ecosystem. The aim was 1) to compare hydraulic characterization between a forested Caatinga site and a deforested pasture site, 2) to analyze inter-annual variability, and 3) to compare with observed soil moisture data. Hydraulic characterization included hydraulic conductivity, infiltration, water content and pressure head trends. Van Genuchten parameters were derived using the Beerkan method, which is based on soil texture, particle distribution, as well as in-situ small-scale infiltration experiments. Observational data included soil moisture and precipitation logged every half-hour from September 2013 to April 2014 to include the dry season and rainy season. It is expected that the forested Caatinga site will have a higher hydraulic conductivity as well as retain higher soil moisture values. These differences may be amplified during the dry season, as water resources become scarce. Deviations between modeled data and observed data will allow for further hypothesis to be proposed, especially those related to soil water repellency. Hence, these results may indicate difference in soil water dynamics between a

  17. Impact of drying-rewetting events on the response of soil microbial functions to dairyfibre and Miscanthus biochars

    Science.gov (United States)

    Bonnett, Sam; Vink, Stefanie; Baker, Kate; Saghir, Muhammad; Hornung, Andreas

    2014-05-01

    Biochar application has been shown to positively affect soil microbial functions such as reducing greenhouse gas emissions, increasing water/nutrient availability and increasing crop yields in tropical regions (Lehmann & Joseph, 2009). Understanding the dynamics of biochar application to soil microbial processes is critical for ensuring that soil quality, integrity and sustainability of the soil sub-system are maintained for crop growth. The aim of this British Ecological Society (BES) funded study was to examine the effect of two types of biochar on soil physicochemistry, GHG production, soil enzyme activities and microbial biomass in typical agricultural soil types and whether the effects were altered by drying, rewetting and flooding events. Miscanthus and dairyfibre (a mixture of straw and manure) feedstocks from Harper Adams University were pyrolyzed by Aston University at 450 °C using 100 kg/hr pyroformer technology. Two sieved soil types (sandy loam and clay loam) were mixed with dry biochar to produce 2 and 10 % w/w treatments for comparison with controls and maintained at 15 °C in temperature controlled incubators. At 0, 22, 44, 80, 101, and 114 days, soil was collected for determination of heterotrophic respiration, and microbial biomass by substrate-induced respiration (SIR), by gas headspace incubation and analysis of carbon dioxide (CO2) and nitrous oxide (N2O) by gas chromatography. Soil was sampled for the determination of water-extractable carbon, pH, and extracellular enzyme activities. Soil samples were maintained at field gravimetric water content between 0 and 44 days; air dried between 44 and 80 days; rewetted between 80 and 101 days; and flooded between 101 to 114 days. Results showed that the impact of biochar on soil microbial processes was dependent on biochar type and soil type, the level of biochar application and changes in soil moisture. Biochar affected soil pH particularly within the dairyfibre treatments, potentially due to the

  18. A Numerical Assessment of the Air Flow Behaviour in a Conventional Compact Dry Kiln

    Directory of Open Access Journals (Sweden)

    Paulo Zdanski

    2015-01-01

    Full Text Available Convective drying is the most common drying strategy used in timber manufacturing industries in the developing world. In convective drying, the reduction rate of the moisture content is directly affected by the flow topology in the inlet and exit plenums and the air flow velocity in the channels formed by timber layers.Turbulence, boundary layer separation, vortex formation and recirculation regions are flow features that are intrinsically associated with the kiln geometry, which in turn dictate the flow velocity across the timber stack and, ultimately, the drying rate. Within this framework, this work presents a numerical study of the effects of the plenum width and inlet flow velocity in a compact dry kiln aiming to establish design recommendations to ensure the highest possible level of flow uniformity across the lumber stack. The numerical solution of the mathematical model is obtained through the finite-volume based Ansys CFX R flow solver. Validation of the numerical approximation is performed by comparing numerical and experimental flow velocities for a scale model of a kiln available in the literature.

  19. Changes in viscoelastic properties of longan during hot-air drying in relation to its indentation

    Directory of Open Access Journals (Sweden)

    Jatuphong Varith

    2008-05-01

    Full Text Available Changes in viscoelastic properties are related to the indentation of whole longan (Dimocarpus longan Lour. in the drying process. The objective of this research is to determine parameters from a creep test to characterise the viscoelastic properties of on-progress dried longan. During 65C hot-air drying, the whole longan was sampled every 2 hours to perform the creep test with a constant stress of 44 kPa using a texture analyser. Viscoelastic properties, viz. retardation time (ret, instantaneous compliance (J0, retarded compliance (J1, creep compliance (J, Newtonian viscosity (0, and modulus of elasticity (E were analysed using the four-element Burger’s model. The ret and E decreased linearly as the moisture content decreased from approximately 70% to 64-57%, then they linearly increased as the moisture content further decreased to 11%. The J and J1 increased linearly and then decreased linearly as the moisture content decreased, showing the transition moisture content of 64%. The J0 decreased as the moisture content decreased. There was no marked change in , thus it was not involved in the indentation of dried longan. The moisture content of 64-57% was found to be the critical range leading to the indentation of longan during the drying process.

  20. Influence of disturbance on soil respiration in biologically crusted soil during the dry season.

    Science.gov (United States)

    Feng, Wei; Zhang, Yu-qing; Wu, Bin; Zha, Tian-shan; Jia, Xin; Qin, Shu-gao; Shao, Chen-xi; Liu, Jia-bin; Lai, Zong-rui; Fa, Ke-yu

    2013-01-01

    Soil respiration (Rs) is a major pathway for carbon cycling and is a complex process involving abiotic and biotic factors. Biological soil crusts (BSCs) are a key biotic component of desert ecosystems worldwide. In desert ecosystems, soils are protected from surface disturbance by BSCs, but it is unknown whether Rs is affected by disturbance of this crust layer. We measured Rs in three types of disturbed and undisturbed crusted soils (algae, lichen, and moss), as well as bare land from April to August, 2010, in Mu Us desert, northwest China. Rs was similar among undisturbed soils but increased significantly in disturbed moss and algae crusted soils. The variation of Rs in undisturbed and disturbed soil was related to soil bulk density. Disturbance also led to changes in soil organic carbon and fine particles contents, including declines of 60-70% in surface soil C and N, relative to predisturbance values. Once BSCs were disturbed, Q 10 increased. Our findings indicate that a loss of BSCs cover will lead to greater soil C loss through respiration. Given these results, understanding the disturbance sensitivity impact on Rs could be helpful to modify soil management practices which promote carbon sequestration.

  1. Influence of Disturbance on Soil Respiration in Biologically Crusted Soil during the Dry Season

    Directory of Open Access Journals (Sweden)

    Wei Feng

    2013-01-01

    Full Text Available Soil respiration (Rs is a major pathway for carbon cycling and is a complex process involving abiotic and biotic factors. Biological soil crusts (BSCs are a key biotic component of desert ecosystems worldwide. In desert ecosystems, soils are protected from surface disturbance by BSCs, but it is unknown whether Rs is affected by disturbance of this crust layer. We measured Rs in three types of disturbed and undisturbed crusted soils (algae, lichen, and moss, as well as bare land from April to August, 2010, in Mu Us desert, northwest China. Rs was similar among undisturbed soils but increased significantly in disturbed moss and algae crusted soils. The variation of Rs in undisturbed and disturbed soil was related to soil bulk density. Disturbance also led to changes in soil organic carbon and fine particles contents, including declines of 60–70% in surface soil C and N, relative to predisturbance values. Once BSCs were disturbed, Q10 increased. Our findings indicate that a loss of BSCs cover will lead to greater soil C loss through respiration. Given these results, understanding the disturbance sensitivity impact on Rs could be helpful to modify soil management practices which promote carbon sequestration.

  2. Long Term Effects of Farming System on Soil Water Content and Dry Soil Layer in Deep Loess Proifle of Loess Tableland in China

    Institute of Scientific and Technical Information of China (English)

    CHENG Li-ping; LIU Wen-zhao

    2014-01-01

    Soil water is strongly affected by land use/cover in the Loess Plateau in China. Water stored in thick loessal soils is one of the most important resources regulating vegetation growth. However, soil water in the deep loess proifle, which is critical for maintaining the function of the“soil water pool”is rarely studied because deep proifle soil samples are dififcult to collect. In this study, four experimental plots were established in 2005 to represent different farming systems on the Changwu Tableland:fallow land, fertilized cropland, unfertilized cropland, and continuous alfalfa. The soil water content in the 15-m-deep loess proifles was monitored continuously from 2007 to 2012 with the neutron probe technique. The results showed that temporal variations in soil water proifles differed among the four farming systems. Under fallow land, the soil water content increased gradually over time, ifrst in the surface layers and later in the deep soil layers. In contrast, the soil water content decreased gradually under continuous alfalfa. The distributions of soil water in deep soil layers under both fertilized and unfertilized cropland were relatively stable over time. Thus farming system signiifcantly affected soil water content. Seven years after the start of the experiment, the soil water contents in the 15-m-deep proifles averaged 23.4%under fallow land, 20.3%under fertilized cropland, 21.6%under unfertilized cropland, and 16.0%under continuous alfalfa. Compared to measurements at the start of the experiment, both fallow land and unfertilized cropland increased soil water storage in the 15-m loess proifles. In contrast, continuous alfalfa reduced soil water storage. Fertilized cropland has no signiifcant effect on soil water storage. These results suggest that deep soil water can be replenished under the fallow and unfertilized farming systems. Dry soil layers (i.e., those which have soil water content less than the stable ifeld water capacity) in the subsoil

  3. Influence of Dry Soil on the Ability of Formosan Subterranean Termites, Coptotermes formosanus, to Locate Food Sources

    OpenAIRE

    Mary L. Cornelius; Weste L.A. Osbrink

    2011-01-01

    The effect of barriers of dry soil on the ability of Formosan subterranean termites, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae), to construct tunnels and find food was evaluated. Termite movement and wood consumption in a three—chambered apparatus were compared between treatments with dry soil in the center container and treatments where the soil in the center container was moist. When a wood block was located in the release container, termites fed significantly more on that b...

  4. Atmospheric dry deposition in the vicinity of the Salton Sea, California - I: Air pollution and deposition in a desert environment

    Science.gov (United States)

    Alonso, R.; Bytnerowicz, A.; Boarman, W.I.

    2005-01-01

    Air pollutant concentrations and atmospheric dry deposition were monitored seasonally at the Salton Sea, southern California. Measurements of ozone (O 3), nitric acid vapor (HNO3), ammonia (NH3), nitric oxide (NO), nitrogen dioxide (NO2) and sulfur dioxide (SO 2) were performed using passive samplers. Deposition rates of NO 3-, NH4+, Cl-, SO 42-, Na+, K+ and Ca2+ to creosote bush branches and nylon filters as surrogate surfaces were determined for one-week long exposure periods. Maximum O3 values were recorded in spring with 24-h average values of 108.8 ??g m-3. Concentrations of NO and NO2 were low and within ranges of the non-urban areas in California (0.4-5.6 and 3.3-16.2 ??g m-3 ranges, respectively). Concentrations of HNO3 (2.0-6.7 ??g m-3) and NH 3 (6.4-15.7 ??g m-3) were elevated and above the levels typical for remote locations in California. Deposition rates of Cl-, SO42-, Na+, K+ and Ca2+ were related to the influence of sea spray or to suspended soil particles, and no strong enrichments caused by ions originated by human activities were detected. Dry deposition rates of NO3- and NH4+ were similar to values registered in areas where symptoms of nitrogen saturation and changes in species composition have been described. Deposition of nitrogenous compounds might be contributing to eutrophication processes at the Salton Sea. ?? 2005 Elsevier Ltd. All rights reserved.

  5. Induction of Soil Suppressiveness Against Rhizoctonia solani by Incorporation of Dried Plant Residues into Soil.

    Science.gov (United States)

    Kasuya, Masahiro; Olivier, Andriantsoa R; Ota, Yoko; Tojo, Motoaki; Honjo, Hitoshi; Fukui, Ryo

    2006-12-01

    ABSTRACT Suppressive effects of soil amendment with residues of 12 cultivars of Brassica rapa on damping-off of sugar beet were evaluated in soils infested with Rhizoctonia solani. Residues of clover and peanut were tested as noncruciferous controls. The incidence of damping-off was significantly and consistently suppressed in the soils amended with residues of clover, peanut, and B. rapa subsp. rapifera 'Saori', but only the volatile substance produced from water-imbibed residue of cv. Saori exhibited a distinct inhibitory effect on mycelial growth of R. solani. Nonetheless, disease suppression in such residue-amended soils was diminished or nullified when antibacterial antibiotics were applied to the soils, suggesting that proliferation of antagonistic bacteria resident to the soils were responsible for disease suppression. When the seed (pericarps) colonized by R. solani in the infested soil without residues were replanted into the soils amended with such residues, damping-off was suppressed in all cases. In contrast, when seed that had been colonized by microorganisms in the soils containing the residues were replanted into the infested soil, damping-off was not suppressed. The evidence indicates that the laimosphere, but not the spermosphere, is the site for the antagonistic microbial interaction, which is the chief principle of soil suppressiveness against Rhizoctonia damping-off. PMID:18943670

  6. Influence of Air Temperature and Pretreatment Solutions on Drying Time, Energy Consumption and Organoleptic Properties of Sour Cherry

    Directory of Open Access Journals (Sweden)

    Hamid Reza Gazor

    2014-09-01

    Full Text Available The effects of pretreatment solution (no treatment, boiling water, salty boiling water, ethil oleat on drying time of sour cherry were studied experimentally. The thin layer drying of sour cherries was carried out at three air temperatures of 50, 60, 70°C and with constant airflow velocity of 1 m/s. Drying kinetic, energy consumption and organoleptic properties as taste, visual color and texture were evaluated in dried fruits. Results of experiments showed that pretreatment solutions and air temperatures had significant effect on drying time and organoleptic properties of dried sour cherry. Using of pretreatment solution is necessary before drying process. It reduced drying time up to 80% and energy saving was approximately 83% in comparison with no treatment samples. Results of this research indicated that using of salty boiling water as pretreatment and temperature of 50°C in sour cherry drying process cause the best result in drying time and organoleptic evaluation such as taste quality, visual color and texture suitability of dried fruit. In addition, energy consumption for drying reduced noticeably when sour cherry was pretreated with salty boiling water.

  7. Influence of Air Temperature and Pretreatment Solutions on Drying Time, Energy Consumption and Organoleptic Properties of Sour Cherry

    Directory of Open Access Journals (Sweden)

    Hamid Reza Gazor

    2014-10-01

    Full Text Available The effects of pretreatment solution (no treatment, boiling water, salty boiling water, ethil oleat on drying time of sour cherry were studied experimentally. The thin layer drying of sour cherries was carried out at three air temperatures of 50, 60, 70°C and with constant airflow velocity of 1 m/s. Drying kinetic, energy consumption and organoleptic properties as taste, visual color and texture were evaluated in dried fruits. Results of experiments showed that pretreatment solutions and air temperatures had significant effect on drying time and organoleptic properties of dried sour cherry. Using of pretreatment solution is necessary before drying process. It reduced drying time up to 80% and energy saving was approximately 83% in comparison with no treatment samples. Results of this research indicated that using of salty boiling water as pretreatment and temperature of 50°C in sour cherry drying process cause the best result in drying time and organoleptic evaluation such as taste quality, visual color and texture suitability of dried fruit. In addition, energy consumption for drying reduced noticeably when sour cherry was pretreated with salty boiling water.

  8. Startup of air-cooled condensers and dry cooling towers at low temperatures of the cooling air

    Science.gov (United States)

    Milman, O. O.; Ptakhin, A. V.; Kondratev, A. V.; Shifrin, B. A.; Yankov, G. G.

    2016-05-01

    The problems of startup and performance of air-cooled condensers (ACC) and dry cooling towers (DCT) at low cooling air temperatures are considered. Effects of the startup of the ACC at sub-zero temperatures are described. Different options of the ACC heating up are analyzed, and examples of existing technologies are presented (electric heating, heating up with hot air or steam, and internal and external heating). The use of additional heat exchanging sections, steam tracers, in the DCT design is described. The need for high power in cases of electric heating and heating up with hot air is noted. An experimental stand for research and testing of the ACC startup at low temperatures is described. The design of the three-pass ACC unit is given, and its advantages over classical single-pass design at low temperatures are listed. The formation of ice plugs inside the heat exchanging tubes during the start-up of ACC and DCT at low cooling air temperatures is analyzed. Experimental data on the effect of the steam flow rate, steam nozzle distance from the heat-exchange surface, and their orientation in space on the metal temperature were collected, and test results are analyzed. It is noted that the surface temperature at the end of the heat up is almost independent from its initial temperature. Recommendations for the safe start-up of ACCs and DCTs are given. The heating flow necessary to sufficiently heat up heat-exchange surfaces of ACCs and DCTs for the safe startup is estimated. The technology and the process of the heat up of the ACC with the heating steam external supply are described by the example of the startup of the full-scale section of the ACC at sub-zero temperatures of the cooling air, and the advantages of the proposed start-up technology are confirmed.

  9. Relating trends in land surface-air temperature difference to soil moisture and evapotranspiration

    Science.gov (United States)

    Veal, Karen; Taylor, Chris; Gallego-Elvira, Belen; Ghent, Darren; Harris, Phil; Remedios, John

    2016-04-01

    Soil water is central to both physical and biogeochemical processes within the Earth System. Drying of soils leads to evapotranspiration (ET) becoming limited or "water-stressed" and is accompanied by rises in land surface temperature (LST), land surface-air temperature difference (delta T), and sensible heat flux. Climate models predict sizable changes to the global water cycle but there is variation between models in the time scale of ET decay during dry spells. The e-stress project is developing novel satellite-derived diagnostics to assess the ability of Earth System Models (ESMs) to capture behaviour that is due to soil moisture controls on ET. Satellite records of LST now extend 15 years or more. MODIS Terra LST is available from 2000 to the present and the Along-Track Scanning Radiometer (ATSR) LST record runs from 1995 to 2012. This paper presents results from an investigation into the variability and trends in delta T during the MODIS Terra mission. We use MODIS Terra and MODIS Aqua LST and ESA GlobTemperature ATSR LST with 2m air temperatures from reanalyses to calculate trends in delta T and "water-stressed" area. We investigate the variability of delta T in relation to soil moisture (ESA CCI Passive Daily Soil Moisture), vegetation (MODIS Monthly Normalized Difference Vegetation Index) and precipitation (TRMM Multi-satellite Monthly Precipitation) and compare the temporal and spatial variability of delta T with model evaporation data (GLEAM). Delta T anomalies show significant negative correlations with soil moisture, in different seasons, in several regions across the planet. Global mean delta T anomaly is small (magnitude mostly less than 0.2 K) between July 2002 and July 2008 and decreases to a minimum in early 2010. The reduction in delta T anomaly coincides with an increase in soil moisture anomaly and NDVI anomaly suggesting an increase in evapotranspiration and latent heat flux with reduced sensible heat flux. In conclusion there have been

  10. Assessing the ability of mechanistic volatilization models to simulate soil surface conditions: a study with the Volt'Air model.

    Science.gov (United States)

    Garcia, L; Bedos, C; Génermont, S; Braud, I; Cellier, P

    2011-09-01

    Ammonia and pesticide volatilization in the field is a surface phenomenon involving physical and chemical processes that depend on the soil surface temperature and water content. The water transfer, heat transfer and energy budget sub models of volatilization models are adapted from the most commonly accepted formalisms and parameterizations. They are less detailed than the dedicated models describing water and heat transfers and surface status. The aim of this work was to assess the ability of one of the available mechanistic volatilization models, Volt'Air, to accurately describe the pedo-climatic conditions of a soil surface at the required time and space resolution. The assessment involves: (i) a sensitivity analysis, (ii) an evaluation of Volt'Air outputs in the light of outputs from a reference Soil-Vegetation-Atmosphere Transfer model (SiSPAT) and three experimental datasets, and (iii) the study of three tests based on modifications of SiSPAT to establish the potential impact of the simplifying assumptions used in Volt'Air. The analysis confirmed that a 5 mm surface layer was well suited, and that Volt'Air surface temperature correlated well with the experimental measurements as well as with SiSPAT outputs. In terms of liquid water transfers, Volt'Air was overall consistent with SiSPAT, with discrepancies only during major rainfall events and dry weather conditions. The tests enabled us to identify the main source of the discrepancies between Volt'Air and SiSPAT: the lack of gaseous water transfer description in Volt'Air. They also helped to explain why neither Volt'Air nor SiSPAT was able to represent lower values of surface water content: current classical water retention and hydraulic conductivity models are not yet adapted to cases of very dry conditions. Given the outcomes of this study, we discuss to what extent the volatilization models can be improved and the questions they pose for current research in water transfer modeling and parameterization.

  11. Chemistry and Mineralogy of Antarctica Dry Valley Soils: Implications for Mars

    Science.gov (United States)

    Quinn, J. E.; Golden, D. C.; Graff, T. G.; Ming, D. W.; Morris, R. V.; Douglas, S.; Kounaves, S. P.; McKay, C. P.; Tamppari, L, K.; Smith, P. H.; Zent, A. P.; Archer, P. D., Jr.

    2011-01-01

    The Antarctic Dry Valleys (ADV) comprise the largest ice-free region of Antarctica. Precipitation almost always occurs as snow, relative humidity is frequently low, and mean annual temperatures are about -20 C. The ADV soils have previously been categorized into three soil moisture regimes: subxerous, xerous and ultraxerous, based on elevation and climate influences. The subxerous regime is predominately a coastal zone soil, and has the highest average temperature and precipitation, while the ultraxerous regime occurs at high elevation (>1000 m) and have very low temperature and precipitation. The amounts and types of salts present in the soils vary between regions. The nature, origin and significance of salts in the ADV have been previously investigated. Substantial work has focused on soil formation in the ADVs, however, little work has focused on the mineralogy of secondary alteration phases. The dominant weathering process in the ADV region is physical weathering, however, chemical weathering has been well documented. The objective of this study was to characterize the chemistry and mineralogy, including the alteration mineralogy, of soils from two sites, a subxerous soil in Taylor Valley, and an ultraxerous soil in University Valley. The style of aqueous alteration in the ADVs may have implications for pedogenic processes on Mars.

  12. Using Artificial Soil and Dry-Column Flash Chromatography to Simulate Organic Substance Leaching Process: A Colorful Environmental Chemistry Experiment

    Science.gov (United States)

    de Avellar, Isa G. J.; Cotta, Tais A. P. G.; Neder, Amarilis de V. Finageiv

    2012-01-01

    Soil is an important and complex environmental compartment and soil contamination contributes to the pollution of aquifers and other water basins. A simple and low-cost experiment is described in which the mobility of three organic compounds in an artificial soil is examined using dry-column flash chromatography. The compounds were applied on top…

  13. Entrainment Rate in Shallow Cumuli: Dependence on Entrained Dry Air Sources and Probability Density Functions

    Science.gov (United States)

    Lu, C.; Liu, Y.; Niu, S.; Vogelmann, A. M.

    2012-12-01

    In situ aircraft cumulus observations from the RACORO field campaign are used to estimate entrainment rate for individual clouds using a recently developed mixing fraction approach. The entrainment rate is computed based on the observed state of the cloud core and the state of the air that is laterally mixed into the cloud at its edge. The computed entrainment rate decreases when the air is entrained from increasing distance from the cloud core edge; this is because the air farther away from cloud edge is drier than the neighboring air that is within the humid shells around cumulus clouds. Probability density functions of entrainment rate are well fitted by lognormal distributions at different heights above cloud base for different dry air sources (i.e., different source distances from the cloud core edge). Such lognormal distribution functions are appropriate for inclusion into future entrainment rate parameterization in large scale models. To the authors' knowledge, this is the first time that probability density functions of entrainment rate have been obtained in shallow cumulus clouds based on in situ observations. The reason for the wide spread of entrainment rate is that the observed clouds are affected by entrainment mixing processes to different extents, which is verified by the relationships between the entrainment rate and cloud microphysics/dynamics. The entrainment rate is negatively correlated with liquid water content and cloud droplet number concentration due to the dilution and evaporation in entrainment mixing processes. The entrainment rate is positively correlated with relative dispersion (i.e., ratio of standard deviation to mean value) of liquid water content and droplet size distributions, consistent with the theoretical expectation that entrainment mixing processes are responsible for microphysics fluctuations and spectral broadening. The entrainment rate is negatively correlated with vertical velocity and dissipation rate because entrainment

  14. Modelling Rooting Depth and Soil Strength in a Drying Soil Profile

    Science.gov (United States)

    Bengough

    1997-06-01

    A combined root growth and water extraction model is described that simulates the affects of mechanical impedance on root elongation in soil. The model simulates the vertical redistribution of water in the soil profile, water uptake by plant roots, and the effects of decreasing water content on increasing soil strength and decreasing the root elongation rate. The modelling approach is quite general and can be applied to any soil for which a relation can be defined between root elongation and penetrometer resistance. By definition this excludes soils that contain a large proportion of continuous channels through which roots can grow unimpeded. Root elongation rate is calculated as a function of the penetrometer resistance which is determined by the soil water content. Use of the model is illustrated using input data for a sandy loam soil. The results confirm reports in the literature that the depth of water extraction can exceed the rooting depth. The increase in mechanical impedance to root growth due to this water extraction restricted the maximum rooting depth attained, and this limited the depth of soil from which a crop could extract water and nutrients. This study highlighted the lack of published data sets for single crop/soil combinations containing both the strength/root growth information and the hydraulic conductivity characteristics necessary for this type of model. Copyright 1997 Academic Press Limited PMID:9344728

  15. GEMAS: Colours of dry and moist agricultural soil samples of Europe

    Science.gov (United States)

    Klug, Martin; Fabian, Karl; Reimann, Clemens

    2016-04-01

    High resolution HDR colour images of all Ap samples from the GEMAS survey were acquired using a GeoTek Linescan camera. Three measurements of dry and wet samples with increasing exposure time and increasing illumination settings produced a set of colour images at 50μm resolution. Automated image processing was used to calibrate the six images per sample with respect to the synchronously measured X-Rite colorchecker chart. The calibrated images were then fit to Munsell soil colours that were measured in the same way. The results provide overview maps of dry and moist European soil colours. Because colour is closely linked to iron mineralogy, carbonate, silicate and organic carbon content the results can be correlated to magnetic, mineralogical, and geochemical properties. In combination with the full GEMAS chemical and physical measurements, this yields a valuable data set for calibration and interpretation of visible satellite colour data with respect to chemical composition and geological background, soil moisture, and soil degradation. This data set will help to develop new methods for world-wide characterization and monitoring of agricultural soils which is essential for quantifying geologic and human impact on the critical zone environment. It furthermore enables the scientific community and governmental authorities to monitor consequences of climatic change, to plan and administrate economic and ecological land use, and to use the data set for forensic applications.

  16. Morphological, sediment and soil chemical characteristics of dry tropical shallow reservoirs in the Southern Mexican Highlands

    Directory of Open Access Journals (Sweden)

    José Luis ARREDONDO-FIGUEROA

    2011-02-01

    Full Text Available The morphometry, sediment and soil chemical characteristics of eleven dry tropical shallow reservoirs situated in Southern Mexican Highlands were studied. The reservoirs are located at 1104 to 1183 meters above sea level in a sedimentary area. Seventeen morphometric and eight sediment and soil chemical parameters were measured. The results of the morphometric parameters showed that these reservoirs presented a soft and roughness bottom, with an ellipsoid form and a concave depression that permit the mix up of water and sediments, causing turbidity and broken thermal gradients; their slight slopes allowed the colonization of submerged macrophyte and halophyte plants and improved the incidence of sunlight on water surface increasing evaporation and primary productivity. Dry tropical shallow reservoirs have fluctuations in area, and volume according to the amount of rainfall, the effect of evaporation, temperature, lost volume for irrigation, and other causes. The sand-clay was the most important sediment texture and their values fluctuated with the flooded periods. The concentration-dilution cycle showed a direct relationship in the percentage of organic matter in the soil as well as with pH, soil nitrogen and phosphorus. El Tilzate, El Candelero and El Movil were related by the shore development and high concentrations of organic matter and nitrogen in the soil. Finally, we emphasize the importance of this study, in relation to possible future changes in morphometrical parameters as a consequence of human impact.

  17. Determination of Soil Water Content After Fallow, Winter and Spring Sown Lentil in Dry Farming Areas

    OpenAIRE

    ADAK, M. Sait

    2001-01-01

    This research was carried out from 1993 through 1995 for a two-year period in dry farming areas of Haymana/Ankara. The aim of the research was to determine the available water content of the 0-60 and 0-90 cm soil depth layers for wheat after fallow periods and after winter and spring crops of lentils under two different soil tillage treatments. According to the experimental results, the highest available water content was measured in fallow plots (28.6% (rototiller 0-60 cm) and 94.6% plough 0...

  18. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region

    Science.gov (United States)

    Oikawa, P. Y.; Ge, C.; Wang, J.; Eberwein, J. R.; Liang, L. L.; Allsman, L. A.; Grantz, D. A.; Jenerette, G. D.

    2015-11-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality.

  19. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region.

    Science.gov (United States)

    Oikawa, P Y; Ge, C; Wang, J; Eberwein, J R; Liang, L L; Allsman, L A; Grantz, D A; Jenerette, G D

    2015-01-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality.

  20. Complex sources of air-soil-water pollution processes in the Miyun reservoir region

    Institute of Scientific and Technical Information of China (English)

    YANG; Dongzhen; XU; Xiangde; LIU; Xiaoduan; XU; Qing; DING

    2005-01-01

    The comprehensive impact of atmospheric dry deposition and wet deposition and the pollution sources of farmlands, mining areas, and towns along the Baihe River on the water quality of Miyun reservoir is investigated from the angle of the complex sources of air-soil-water pollution processes, in the context of the 1990-2001 precipitation chemical data at Shangdianzi station--a WMO regional background air pollution monitoring station 15 km far from the Miyun reservoir, in conjunction with the atmospheric dry deposition and wet deposition data of the 2002-2003 Beijing City Air Pollution Observation Field Experiment (BECAPEX). Analysis results suggest that the major ions in precipitation in the Miyun reservoir region in this period were SO, NO, NH and Ca2+; wet acid deposition quantity of Miyun reservoir in the summer half year (April to September) was greater than the quantity in the winter half year (October to March), and the annual wet acid deposition in the reservoir exhibited a rising trend with the mean 1038.45 t, the maximum 1766.31 t occurred in 1996, and the minimum 604.02 t in 1994; the long-term averaged pH of atmospheric precipitation in the Miyun reservoir region was 5.20, i.e. weakly acidic, and the interannual variation of pH values displayed a falling trend. pH values of water body at various depths in the Miyun reservoir were all greater than 7.0, but they exhibited vertical and horizontal nonhomogeneity, and at the same region pH decreased vertically with depth; the 2002 and 2003 annual dustfalls in the Miyun reservoir were 13513.08 t and 3577.64 t, respectively, and the spring dustfall was the number one in a year, accounting for the 61.91% and 44.56% of the annual totals of 2002 and 2003, respectively. Because the atmospheric dry deposition and wet depositions contain multiple types heavy metal elements and harmful elements, they to some extent exacerbated the eutrophication, acidification and potential heavy metal pollution of the reservoir water

  1. Temporal stability of the apparent electrical conductivity measured in seasonally dry sandy soil

    Science.gov (United States)

    Pedrera, Aura; Brevik, Eric C.; Giráldez, Juan V.; Vanderlinden, Karl

    2016-04-01

    Soil is spatially heterogeneous due to differences in parent material, climate, topography, time and management practices. The use of non-invasive and non-contact geophysical methods facilitates the exploration of natural landscapes or cropped areas. Electromagnetic induction (EMI) sensors which measure the soil apparent electrical conductivity (ECa) express soil spatial variability in terms of spatial soil ECa variability. In an agricultural context, knowledge and understanding of the soil spatial variability will allow us to delimit areas where precision agriculture techniques could be used to improve management practices. These practices enhance soil and water conservation, especially for sandy soils in Mediterranean climates where soils are dry for substantial periods of time. The first objective of this work was to apply principal component analysis (PCA) to see if a temporally stable component could be found. The second objective was to see if temporal stability information acquired from several ECa surveys could be used to better interpret results of a single survey in terms of relationships between ECa and soil water content (SWC). The experimental catchment, "La Manga", is located in SW Spain and covers 6.7 ha of a rainfed olive orchard. Soil profile samples were collected at 41 locations on a pseudo-regular grid. Samples were analyzed in the laboratory for soil texture, stone content, and bulk density (ρb). The catchment was sampled for gravimetric SWC at the 0-0.1 and 0.1-0.2 m depth intervals at the same 41 locations on 18 occasions. At the same 41 locations ECa was measured during 9 of the 18 SWC surveys using a DUALEM-21S EMI sensor. In addition, 7 field-wide ECa surveys were conducted. Soil ECa values were used to delimit three areas in the orchard, based on the spatial distribution of the first principal component (PC), which represented the spatial ECa pattern. Soil properties were studied within each area, and using analysis of variance

  2. DEVELOPMENT OF COAL DRY BENEFICIATION WITH AIR-DENSE MEDIUM FLUIDIZED BED IN CHINA

    Institute of Scientific and Technical Information of China (English)

    Qingru Chen; Lubin Wei

    2005-01-01

    In China more than two-thirds of available coal reserves are in arid areas, where, to beneficiate the run-of-mine coal,there is not enough water resource required by conventional processing. Developing efficient dry beneficiation technology is of great significance for efficient coal utilization in China, notably the clean coal technology (CCT). The dry coal beneficiation technology with air-dense medium fluidized bed utilizes air-solid suspension as beneficiating medium whose density is consistent for beneficiation, similar in principle to the wet dense medium beneficiation using liquid-solid suspension as separating medium. The heavy portion in feedstock whose density is higher than the density of the fluidized bed will sink, whereas the lighter portion will float, thus stratifying the feed materials according to their density.In order to obtain efficient dry separation in air-dense medium fluidized bed, stable fluidization with well dispersed micro-bubbles must be achieved to ensure low viscosity and high fluidity. The pure buoyancy of beneficiation materials plays a main role in fluidized bed, and the displaced distribution effect should be restrained. The displaced distribution effects include viscosity displaced distribution effect and movement displaced distribution effect. The former is caused by viscosity of the fluidized bed. It decreases with increasing air flow velocity. Movement displaced distribution effect will be large when air flow rate is too low or too high. If medium particle size distribution and air flow are well controlled, both displaced distribution effects could be controlled effectively. A beneficiation displaced distribution model may be used to optimize beneficiation of feedstock with a wide particle size distribution and multiple components in the fluidized bed. The rheological characteristics of fluidized beds were studied using the falling sphere method. Experimental results indicated that the fluidized bed behaves as a Bingham fluid

  3. DEVELOPMENT OF COAL DRY BENEFICIATION WITH AIR-DENSE MEDIUM FLUIDIZED BED IN CHINA

    Institute of Scientific and Technical Information of China (English)

    Qingru; Chen; Lubin; Wei

    2005-01-01

    In China more than two-thirds of available coal reserves are in arid areas, where, to beneficiate the run-of-mine coal,there is not enough water resource required by conventional processing. Developing efficient dry beneficiation technology is of great significance for efficient coal utilization in China, notably the clean coal technology (CCT). The dry coal beneficiation technology with air-dense medium fluidized bed utilizes air-solid suspension as beneficiating medium whose density is consistent for beneficiation, similar in principle to the wet dense medium beneficiation using liquid-solid suspension as separating medium. The heavy portion in feedstock whose density is higher than the density of the fluidized bed will sink, whereas the lighter portion will float, thus stratifying the feed materials according to their density.In order to obtain efficient dry separation in air-dense medium fluidized bed, stable fluidization with well dispersed micro-bubbles must be achieved to ensure low viscosity and high fluidity. The pure buoyancy of beneficiation materials plays a main role in fluidized bed, and the displaced distribution effect should be restrained. The displaced distribution effects include viscosity displaced distribution effect and movement displaced distribution effect. The former is caused by viscosity of the fluidized bed. It decreases with increasing air flow velocity. Movement displaced distribution effect will be large when air flow rate is too low or too high. If medium particle size distribution and air flow are well controlled, both displaced distribution effects could be controlled effectively. A beneficiation displaced distribution model may be used to optimize beneficiation of feedstock with a wide particle size distribution and multiple components in the fluidized bed. The rheological characteristics of fluidized beds were studied using the falling sphere method. Experimental results indicated that the fluidized bed behaves as a Bingham fluid

  4. Occurrence and quantitative microbial risk assessment of Cryptosporidium and Giardia in soil and air samples

    Directory of Open Access Journals (Sweden)

    Ana Paola Balderrama-Carmona

    2014-09-01

    Conclusions: Soil and air inhalation and/or ingestion are important vehicles for these parasites. To our knowledge, the results obtained in the present study represent the first QMRAs for cryptosporidiosis and giardiasis due to soil and air inhalation/ingestion in Mexico. In addition, this is the first evidence of the microbial air quality around these parasites in rural zones.

  5. Mapping dry matter production of Tifton 85 and its correlation with the soil chemical properties

    Directory of Open Access Journals (Sweden)

    Osmar Henrique de Castro Pias

    2015-07-01

    Full Text Available The creation of cattle in the semi extensive system has currently been the most used by the farmers on Brazil, however, problems such as degradation of pastures are committing this production system, reducing the production of forager and consequently the profitability of producers. In this sense, the aim of this study was to perform the mapping of the dry mass production, nitrogen accumulation, phosphorus and potassium in the Tifton 85, and evaluate their correlations with the chemical attributes in different layers of the soil profile. The study was carried out in an area of 4.3 ha constituted of Tifton 85 in the city of Vista Gaucha - RS, Brazil, during the months from October to December in the year of 2012. The experimental area was georeferenced and divided into a sample mesh of 50 x 50 m, resulting in 16 sampling points. It was conducted two cuts on Tifton 85 to evaluate the dry mass production. Soil sampling was done in the layers from 0.00 - 0.10 m, 0.10 - 0.20 and 0.20 - 0.40 m. The data were submitted to descriptive statistical analysis and linear correlation matrix of Pearson, being the results specialized in thematic maps. The production of dry mass, nitrogen accumulation, phosphorus and potassium by Tifton 85 showed coefficients of variation ranked of high to very high, and in generally, demonstrated low correlation with the soil chemical properties, independently of the layer profile evaluated.

  6. Soil emissions of nitric oxide in a seasonally dry tropical forest of Mexico

    Science.gov (United States)

    Davidson, Eric A.; Vitousek, Peter M.; Riley, Ralph; Matson, Pamela A.; Garcia-Mendez, Georgina; Maass, J. M.

    1991-01-01

    Soil emissions of NO were measured at the Chamela Biological Station, Mexico, using soil covers and a field apparatus of NO detection based on CrO3 conversion of NO to NO2 and detection of NO2 by chemiluminescence with Luminol. Mean NO fluxes from forest soils ranged from 0.14 to 0.52 ng NO-N/sq cm/hr during the dry season and from 0.73 to 1.27 ng NO-N/sq cm/hr during the wet season. A fertilized floodplain pasture exhibited higher fluxes, but an unfertilized upland pasture, which represents the fastest growing land use in the region, had flux rates similar to the forest sites. Wetting experiments at the end of the dry season caused large pulses of NO flux, equaling 10 percent to 20 percent of the estimated annual NO emissions of 0.5-1.0 kg N/ha from the forest sites. Absence of a forest canopy during the dry season and the first wet season rain probably results in substantial NO(x) export from the forest system that may be important to regional atmospheric chemical processes. Wetting experiments during the wet season and a natural rain event had little or no stimulatory effect on NO flux rates.

  7. Modeling evaporation processes in a saline soil from saturation to oven dry conditions

    Directory of Open Access Journals (Sweden)

    M. Gran

    2011-07-01

    Full Text Available Thermal, suction and osmotic gradients interact during evaporation from a salty soil. Vapor fluxes become the main water flow mechanism under very dry conditions. A coupled nonisothermal multiphase flow and reactive transport model was developed to study mass and energy transfer mechanisms during an evaporation experiment from a sand column. Very dry and hot conditions, including the formation of a salt crust, necessitate the modification of the retention curve to represent oven dry conditions. Experimental observations (volumetric water content, temperature and concentration profiles were satisfactorily reproduced using mostly independently measured parameters, which suggests that the model can be used to assess the underlying processes. Results show that evaporation concentrates at a very narrow front and is controlled by heat flow, and limited by salinity and liquid and vapor fluxes. The front divides the soil into a dry and saline portion above and a moist and diluted portion below. Vapor diffusses not only upwards but also downwards from the evaporation front, as dictated by temperature gradients. Condensation of this downward flux causes dilution, so that salt concentration is minimum and lower than the initial one, just beneath the evaporation front. While this result is consistent with observations, it required adopting a vapor diffusion enhancement factor of 8.

  8. Regional Simulation of Soil Organic Carbon Dynamics for Dry Farmland in East China by Coupling a 1:500 000 Soil Database with the Century Model

    Institute of Scientific and Technical Information of China (English)

    WANG Shi-Hang; SHI Xue-Zheng; ZHAO Yong-Cun; D.C.WEINDORF; YU Dong-Sheng; XU Sheng-Xiang; TAN Man-Zhi; SUN Wei-Xia

    2011-01-01

    Changes in soil organic carbon (SOC) in agricultural soils influence soil quality and greenhouse gas concentrations in the atmosphere. Dry farmland covers more than 70% of the whole cropland area in China and plays an important role in mitigating carbon dioxide (CO2) emissions. In this study, 4 109 dry farmland soil polygons were extracted using spatial overlay analysis of the soil layer (1:500 000) and the land use layer (1:500 000) to support Century model simulations of SOC dynamics for dry farmland in Anhui Province, East China from 1980 to 2008. Considering two field-validation sites,the Century model performed relatively well in modeling SOC dynamics for dry farmland in the province. The simulated results showed that the area-weighted mean soil organic carbon density (SOCD) of dry farmland increased from 18.77 Mg C ha-1 in 1980 to 23.99 Mg C ha-1 in 2008 with an average sequestration rate of 0.18 Mg C ha-1 year-1. Approximately 94.9% of the total dry farmland area sequestered carbon while 5.1% had carbon lost. Over the past 29 years, the net SOC gain in dry farmland soils of the province was 19.37 Tg, with an average sequestration rate of 0.67 Tg C year-1 Augmentation of SOC was primarily due to increased consumption of nitrogen fertilizer and farmyard manure. Moreover,SOC dynamics were highly differentiated among dry farmland soil groups. The integration of the Century model with a fine-scale soil database approach could be conveniently utilized as a tool for the accurate simulation of SOC dynamics at the regional scale.

  9. Linear GPR inversion for lossy soil and a planar air-soil interface

    DEFF Research Database (Denmark)

    Meincke, Peter

    2001-01-01

    A three-dimensional inversion scheme for fixed-offset ground penetrating radar (GPR) is derived that takes into account the loss in the soil and the planar air-soil interface. The forward model of this inversion scheme is based upon the first Born approximation and the dyadic Green function...... for a two-layer medium. The forward model is inverted using the Tikhonov-regularized pseudo-inverse operator. This involves two steps: filtering and backpropagation. The filtering is carried out by numerically solving Fredholm integral equations of the first kind and the backpropagation is performed using...

  10. Field controlled experiments of mercury accumulation in crops from air and soil

    Energy Technology Data Exchange (ETDEWEB)

    Niu Zhenchuan [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Zhang Xiaoshan, E-mail: zhangxsh@rcees.ac.cn [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Wang Zhangwei, E-mail: wangzhw@rcees.ac.cn [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China); Ci Zhijia [Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085 (China)

    2011-10-15

    Field open top chambers (OTCs) and soil mercury (Hg) enriched experiments were employed to study the influence of Hg concentrations in air and soil on the Hg accumulation in the organs of maize (Zea mays L.) and wheat (Triticum aestivum L.). Results showed that Hg concentrations in foliages were correlated significantly (p < 0.05) with air Hg concentrations but insignificantly correlated with soil Hg concentrations, indicating that Hg in crop foliages was mainly from air. Hg concentrations in roots were generally correlated with soil Hg concentrations (p < 0.05) but insignificantly correlated with air Hg concentrations, indicating that Hg in crop roots was mainly from soil. No significant correlations were found between Hg concentrations in stems and those in air and soil. However, Hg concentrations in upper stems were usually higher than those in bottom stems, implying air Hg might have stronger influence than soil Hg on stem Hg accumulation. - Highlights: > Hg accumulation in crop organs was studied by OTCs and soil Hg enriched experiments. > Hg accumulation in foliages and roots was mainly from air and soil, respectively. > Air Hg had stronger influence than soil Hg on stem Hg accumulation. > Foliar Hg concentrations showed the trend of increase over growth stages. - Capsule Mercury accumulated in the aboveground organs of crop was mainly from the air.

  11. Suspension and resuspension of dry soil indoors following track-in on footwear.

    Science.gov (United States)

    Hunt, Andrew; Johnson, David L

    2012-06-01

    Contamination of the indoor environment by tracked-in outdoor soil has the potential to pose a significant human health threat through exposure to hazardous soil constituents. The indoor distribution of (contaminated) soil following ingress is important when evaluating exposure risk. Here, the time evolution of size-resolved airborne particulate matter aerosolized as a result of mechanical (i.e., footfall or step-on) impacts on a floor surface with a layer of dry soil was investigated using laser particle counters. Suspended particle levels were recorded after step-on impacts that aerosolized soil particles at a single contact point by the action of a human tester who followed a pre-determined walking pattern. The experimental design presumed that the floor area immediately upon entrance indoors is the location of maximum deposition of outdoor soil transferred on footwear. The suspension of soil resulting from the first step-on floor contact and the subsequent resuspension of soil resulting from additional step-on events were quantified by various arrangements of four laser particle counters. Step-on impacts produced a transient increase in particle levels at various lateral distances and heights from the contact point. Also, with increasing distance and height from the step-on contact point, the level of suspended particles after successive step-on events decreased markedly. The results suggested that a lateral component of the dispersion process was more significant than a vertical one under these experimental conditions. A wall jet effect created by the impact of the footfalls on the floor surface was considered responsible for the apparent greater lateral dispersion of the soil particles.

  12. Influence of warm air-drying on enamel bond strength and surface free-energy of self-etch adhesives.

    Science.gov (United States)

    Shiratsuchi, Koji; Tsujimoto, Akimasa; Takamizawa, Toshiki; Furuichi, Tetsuya; Tsubota, Keishi; Kurokawa, Hiroyasu; Miyazaki, Masashi

    2013-08-01

    We examined the effect of warm air-drying on the enamel bond strengths and the surface free-energy of three single-step self-etch adhesives. Bovine mandibular incisors were mounted in self-curing resin and then wet ground with #600 silicon carbide (SiC) paper. The adhesives were applied according to the instructions of the respective manufacturers and then dried in a stream of normal (23°C) or warm (37°C) air for 5, 10, and 20 s. After visible-light irradiation of the adhesives, resin composites were condensed into a mold and polymerized. Ten samples per test group were stored in distilled water at 37°C for 24 h and then the bond strengths were measured. The surface free-energies were determined by measuring the contact angles of three test liquids placed on the cured adhesives. The enamel bond strengths varied according to the air-drying time and ranged from 15.8 to 19.1 MPa. The trends for the bond strengths were different among the materials. The value of the γS⁺ component increased slightly when drying was performed with a stream of warm air, whereas that of the γS⁻ component decreased significantly. These data suggest that warm air-drying is essential to obtain adequate enamel bond strengths, although increasing the drying time did not significantly influence the bond strength.

  13. Understanding spatial heterogeneity in soil carbon and nitrogen cycling in regenerating tropical dry forests

    Science.gov (United States)

    Waring, B. G.; Powers, J. S.; Branco, S.; Adams, R.; Schilling, E.

    2015-12-01

    Tropical dry forests (TDFs) currently store significant amounts of carbon in their biomass and soils, but these highly seasonal ecosystems may be uniquely sensitive to altered climates. The ability to quantitatively predict C cycling in TDFs under global change is constrained by tremendous spatial heterogeneity in soil parent material, land-use history, and plant community composition. To explore this variation, we examined soil carbon and nitrogen dynamics in 18 permanent plots spanning orthogonal gradients of stand age and soil fertility. Soil C and N pools, microbial biomass, and microbial extracellular enzyme activities were most variable at small (m2) spatial scales. However, the ratio of organic vs. inorganic N cycling was consistently higher in forest stands dominated by slow-growing, evergreen trees that associate with ectomycorrhizal fungi. Similarly, although bulk litter stocks and turnover rates varied greatly among plots, litter decomposition tended to be slower in ectomycorrhizae-dominated stands. Soil N cycling tended to be more conservative in older plots, although the relationship between stand age and element cycling was weak. Our results emphasize that microscale processes, particularly interactions between mycorrhizal fungi and free-living decomposers, are important controls on ecosystem-scale element cycling.

  14. Study of drying kinetics and qualities of two parboiled rice varieties: Hot air convection and infrared irradiation

    OpenAIRE

    Supawan Tirawanichakul; Oraporn Bualuang; Yutthana Tirawanichakul

    2012-01-01

    The effect of infrared (IR) and hot air (HA) drying conditions on drying kinetics of Leb Nok Pattani (LNP) rice andSuphanburi 1 (SP 1) parboiled rice and their qualities was studied. Initial moisture content for LNP and SP 1 rice was 54±1 and49±1% dry-basis, respectively. Drying temperatures of 60-100°C, IR power of 1.0 and 1.5 kW and hot air flow rate of 1.0±0.2m/s were used for experiments. The results show that HA and IR parboiled rice drying can maintain high head rice yield(HRY) and IR d...

  15. Dry Pressed Holey Graphene Composites for Li-air Battery Cathodes

    Science.gov (United States)

    Lacey, Steven; Lin, Yi; Hu, Liangbing

    Graphene is considered an ``omnipotent'' material due to its unique structural characteristics and chemical properties. By heating graphene powder in an open-ended tube furnace, a novel compressible carbon material, holey graphene (hG), can be created with controlled porosity and be further decorated with nanosized catalysts to increase electrocatalytic activity. All hG-based materials were characterized using various microscopic and spectroscopic techniques to obtain morphological, topographical, and chemical information as well as to identify any disordered/crystalline phases. In this work, an additive-free dry press method was employed to press the hG composite materials into high mass loading mixed, sandwich, and double-decker Li-air cathode architectures using a hydraulic press. The sandwich and double-decker (i.e. Big Mac) cathode architectures are the first of its kind and can be discharged for more than 200 hours at a current density of 0.2 mA/cm2. The scalable, binderless, and solventless dry press method and unique Li-air cathode architectures presented here greatly advance electrode fabrication possibilities and could promote future energy storage advancements. Support appreciated from the NASA Internships Fellowships Scholarships (NIFS) Program.

  16. Effect mechanism of air deflectors on the cooling performance of dry cooling tower with vertical delta radiators under crosswind

    International Nuclear Information System (INIS)

    Highlights: • A 3D numerical model was set for NDDCTV to study the effect of air deflectors. • The air deflectors improve the tower performance by 1.375 °C at uc = 6 m/s for a case. • The air deflectors reduce the air inflow deviation angle θd at most delta entries. • The reduced θd can improve the cooling performance of former deteriorated columns. • Both the radial inflow air velocity and θd impact the cooling performance of delta. - Abstract: To study the effect mechanism of air deflectors on dry cooling tower, a three dimensional numerical model was established, with full consideration of the delta structure. The accuracy and credibility of dry cooling tower numerical model were validated. By numerical model, the average air static pressure and the average radial inflow air velocity were computed and analyzed at delta air entry, sector air entry and exit faces. By the air inflow deviation angle θd, the effect of air deflectors on the aerodynamic field around tower was analyzed. The water exit temperatures of θ−1 columns, θ+2 columns and cooling sectors were also presented to clarify the effect of air deflectors. It was found that the air deflectors improved the aerodynamic field around cooling columns. The reduced air inflow deviation degree at delta entry improved the cooling performance of deteriorated columns. Referring to the radial inflow air velocity ura and the air inflow deviation degree at delta entry, the effect mechanism of air deflectors are clarified under crosswind

  17. Analysis of Phthalate Esters in Air, Soil and Plants in Plastic Film Greenhouse

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The phthalate esters such as DMP, DEP, DBP and DEHP in air, soil and plant samples in plastic film greenhouse were clean up with fine silica gel column and determined with HPLC. It was found that the concentrations of PEs in air and soil samples in plastic film greenhouse are much higher than those of contrast samples. But concentrations of PEs in plants in plastic film greenhouse are not remarkably affected by the pollution of air and soil.

  18. Differences between soybean genotypes in physiological response to sequential soil drying and rewetting

    Institute of Scientific and Technical Information of China (English)

    Md; Mokter; Hossain; Xueyi; Liu; Xusheng; Qi; Hon-Ming; Lam; Jianhua; Zhang

    2014-01-01

    Soybean genotypes show diverse physiological responses to drought, but specific physiological traits that can be used to evaluate drought tolerance have not been identified. In the present study we investigated physiological traits of soybean genotypes under progressive soil drying and rewetting, using a treatment mimicking field conditions.After a preliminary study with eight soybean genotypes, two drought-tolerant genotypes and one susceptible genotype were grown in the greenhouse and subjected to water restriction. Leaf expansion rate, gas exchange, water relation parameters, total chlorophyll(Chl), proline contents of leaves, and root xylem p H were monitored in a time course, and plant growth and root traits were measured at the end of the stress cycle. Drought-tolerant genotypes maintained higher leaf expansion rate, net photosynthetic rate(Pn), Chl content,instantaneous water use efficiency(WUEi), % relative water content(RWC), water potential(ψw), and turgor potential(ψp) during progressive soil drying and subsequent rewetting than the susceptible genotypes. By contrast, stomatal conductance(gs) and transpiration rate(Tr)of tolerant genotypes declined faster owing to dehydration and recovered more sharply after rehydration than the same parameters in susceptible ones. Water stress caused a significant increase in leaf proline level and root xylem sap p H of both genotypes but tolerant genotypes recovered to pre-stress levels more quickly after rehydration. Tolerant genotypes also produced longer roots with higher dry mass than susceptible genotypes. We conclude that rapid perception and adjustment in response to soil drying and rewetting as well as the maintenance of relatively high Pn, %RWC, and root growth constitute the mechanisms by which drought-tolerant soybean genotypes cope with water stress.

  19. Environmental application of nanotechnology: air, soil, and water.

    Science.gov (United States)

    Ibrahim, Rusul Khaleel; Hayyan, Maan; AlSaadi, Mohammed Abdulhakim; Hayyan, Adeeb; Ibrahim, Shaliza

    2016-07-01

    Global deterioration of water, soil, and atmosphere by the release of toxic chemicals from the ongoing anthropogenic activities is becoming a serious problem throughout the world. This poses numerous issues relevant to ecosystem and human health that intensify the application challenges of conventional treatment technologies. Therefore, this review sheds the light on the recent progresses in nanotechnology and its vital role to encompass the imperative demand to monitor and treat the emerging hazardous wastes with lower cost, less energy, as well as higher efficiency. Essentially, the key aspects of this account are to briefly outline the advantages of nanotechnology over conventional treatment technologies and to relevantly highlight the treatment applications of some nanomaterials (e.g., carbon-based nanoparticles, antibacterial nanoparticles, and metal oxide nanoparticles) in the following environments: (1) air (treatment of greenhouse gases, volatile organic compounds, and bioaerosols via adsorption, photocatalytic degradation, thermal decomposition, and air filtration processes), (2) soil (application of nanomaterials as amendment agents for phytoremediation processes and utilization of stabilizers to enhance their performance), and (3) water (removal of organic pollutants, heavy metals, pathogens through adsorption, membrane processes, photocatalysis, and disinfection processes).

  20. Environmental application of nanotechnology: air, soil, and water.

    Science.gov (United States)

    Ibrahim, Rusul Khaleel; Hayyan, Maan; AlSaadi, Mohammed Abdulhakim; Hayyan, Adeeb; Ibrahim, Shaliza

    2016-07-01

    Global deterioration of water, soil, and atmosphere by the release of toxic chemicals from the ongoing anthropogenic activities is becoming a serious problem throughout the world. This poses numerous issues relevant to ecosystem and human health that intensify the application challenges of conventional treatment technologies. Therefore, this review sheds the light on the recent progresses in nanotechnology and its vital role to encompass the imperative demand to monitor and treat the emerging hazardous wastes with lower cost, less energy, as well as higher efficiency. Essentially, the key aspects of this account are to briefly outline the advantages of nanotechnology over conventional treatment technologies and to relevantly highlight the treatment applications of some nanomaterials (e.g., carbon-based nanoparticles, antibacterial nanoparticles, and metal oxide nanoparticles) in the following environments: (1) air (treatment of greenhouse gases, volatile organic compounds, and bioaerosols via adsorption, photocatalytic degradation, thermal decomposition, and air filtration processes), (2) soil (application of nanomaterials as amendment agents for phytoremediation processes and utilization of stabilizers to enhance their performance), and (3) water (removal of organic pollutants, heavy metals, pathogens through adsorption, membrane processes, photocatalysis, and disinfection processes). PMID:27074929

  1. Solar Park Impacts on Air and Soil Microclimate

    Science.gov (United States)

    Armstrong, A.; Ostle, N. J.; Whitaker, J.

    2015-12-01

    The drive towards low carbon energy sources and increasing energy demand has resulted in a rapid rise in solar photovoltaics across the world. A substantial proportion of photovoltaics are large-scale ground-mounted systems, solar parks, causing a notable land use change. While the impacts of photovoltaic panel production and disposal have been considered, the consequences of the operation of solar parks on the hosting landscape are poorly resolved. Here, we present data which demonstrates that a solar park sited on permanent grassland in the UK significantly impacted the air and soil microclimate. Specifically, we observed (1) cooler soil under the photovoltaic panels during the summer and between the photovoltaic panel rows during the winter; (2) dampening of the diurnal variation in air temperature and absolute humidity from the spring to the autumn; (3) lower photosynthetically active radiation and a lower direct:diffuse under the panels; and (4) reduced wind speed between the panel rows and substantially reduced wind speeds under the panels. Further, there were differences in vegetation type and productivity and greenhouse gas emissions. Given the centrality of climate on ecosystem function, quantifying the microclimatic impacts of this emerging land use change is critical. We anticipate these data will help develop understanding of effects in other climates, under different solar park designs and the implications for the function and service provision of the hosting landscape.

  2. Chemical-Specific Representation of Air-Soil Exchange and Soil Penetration in Regional Multimedia Models

    Energy Technology Data Exchange (ETDEWEB)

    McKone, T.E.; Bennett, D.H.

    2002-08-01

    In multimedia mass-balance models, the soil compartment is an important sink as well as a conduit for transfers to vegetation and shallow groundwater. Here a novel approach for constructing soil transport algorithms for multimedia fate models is developed and evaluated. The resulting algorithms account for diffusion in gas and liquid components; advection in gas, liquid, or solid phases; and multiple transformation processes. They also provide an explicit quantification of the characteristic soil penetration depth. We construct a compartment model using three and four soil layers to replicate with high reliability the flux and mass distribution obtained from the exact analytical solution describing the transient dispersion, advection, and transformation of chemicals in soil with fixed properties and boundary conditions. Unlike the analytical solution, which requires fixed boundary conditions, the soil compartment algorithms can be dynamically linked to other compartments (air, vegetation, ground water, surface water) in multimedia fate models. We demonstrate and evaluate the performance of the algorithms in a model with applications to benzene, benzo(a)pyrene, MTBE, TCDD, and tritium.

  3. Numerical-analytical investigation into impact pipe driving in soil with dry friction. Part I: Nondeformable external medium

    CERN Document Server

    Aleksandrova, Nadezhda

    2013-01-01

    The study focuses on propagation of longitudinal waves in an elastic pipe partly embedded in a medium with dry friction. Mathematical formulation of the problem on the impact pipe driving into the soil is based on the model of longitudinal vibration of an elastic rod with taking into account lateral resistance. The lateral resistance of soil is described by the law of the contact dry friction. Numerical and analytical solutions to problems on longitudinal impulse loading of a pipe are compared.

  4. Mathematical Modeling of Drying Kinetics of Bird’s Eye Chilies in a Convective Hot-Air Dryer

    Directory of Open Access Journals (Sweden)

    Kongdej LIMPAIBOON

    2013-12-01

    Full Text Available The drying kinetics of red bird’s eye chilies and the color of the product were investigated in a laboratory scale hot-air dryer under 3 air temperatures of 55, 60 and 65 °C. The 6 mathematical models (Lewis model; Page model; Henderson and Pabis model; Logarithmic model; Modified Page model; and Wang and Singh model were used to fit the experimental data obtained in order to estimate the moisture ratio as the function of drying time. The results showed that operating temperature enhanced the kinetics of the drying of chilies; the drying times of chilies at 55, 60 and 65 °C were 510, 360 and 330 min, respectively. The experimental drying curves obtained at all operating conditions took place in the falling rate period. Comparing the dried products, it was observed that the red bird’s eye chilies dried at a lower temperature had higher Hunter L (lightness, a* (redness and b* (yellowness values. The experimental data were fitted to different drying models. The performance of these models was investigated by comparing the determination of coefficient (R2 and root mean square error (RMSE between the observed and predicted moisture ratios. Among the 6 mathematical models, the Wang and Singh model satisfactorily described the drying kinetics of chilies.

  5. Effect of incubation temperature and wet-dry cycle on the availabilities of Cd, Pb and Zn in soil

    Institute of Scientific and Technical Information of China (English)

    SI Ji-tao; TIAN Bao-guo; WANG Hong-tao

    2006-01-01

    The effect of incubation temperature and wet-dry cycle on the availabilities of Cd, Pb and Zn was studied. Three soils with pH ranging from 3.8 to 7.3, organic carbon (OC) from 0.7% to 2.4%, and clay from 12.3% to 35.6% were selected. Soils were spiked with reagent grade Cd(NO3)2, Pb(NO3)2, and Zn(NO3)2 at concentrations of 30 mg Cd/kg soil, 300 mg Zn/kg soil and 2000 mg Pb/kg soil. The soils were incubated at 35, 60, 105℃, respectively and went through four wet-dry cycles. Metal availability in soils was estimated by soil extraction with 0.1 mol/L Ca(NO3)2. According to this study, the effect of the spiking temperature on the metal availabilities was different among the metals, soils and wet-dry cycles. Mostly, 35℃ was the first recommended spiking temperature for Cd and Pb while no spiking temperature was obviously better than others for Zn. Three wet-dry cycles was recommended regardless of the type of metals and incubation temperature.

  6. [Research on characteristics of soil clay mineral evolution in paddy field and dry land by XRD spectrum].

    Science.gov (United States)

    Zhang, Zhi-dan; Li, Qiao; Luo, Xiang-li; Jiang, Hai-chao; Zheng, Qing-fu; Zhao, Lan-po; Wang, Ji-hong

    2014-08-01

    The present paper took the typical saline-alkali soil in Jilin province as study object, and determinated the soil clay mineral composition characteristics of soil in paddy field and dry land. Then XRD spectrum was used to analyze the evolutionary mechanism of clay mineral in the two kinds of soil. The results showed that the physical and chemical properties of soil in paddy field were better than those in dry land, and paddy field would promote the weathering of mineral particles in saline-alkali soil and enhance the silt content. Paddy field soil showed a strong potassium-removal process, with a higher degree of clay mineral hydration and lower degree of illite crystallinity. Analysis of XRD spectrum showed that the clay mineral composition was similar in two kinds of soil, while the intensity and position of diffraction peak showed difference. The evolution process of clay mineral in dry land was S/I mixture-->vermiculite, while in paddy field it was S/I mixture-->vermiculite-->kaolinite. One kind of hydroxylated 'chlorite' mineral would appear in saline-alkali soil in long-term cultivated paddy field. Taking into account that the physical and chemical properties of soil in paddy field were better then those in dry land, we could know that paddy field could help much improve soil structure, cultivate high-fertility soil and improve saline-alkali soil. This paper used XRD spectrum to determine the characteristics of clay minerals comprehensively, and analyzed two'kinds of land use comparatively, and was a new perspective of soil minerals study.

  7. Nitrate Accumulation in Soil Profile of Dry Land Farming in Northwest China

    Institute of Scientific and Technical Information of China (English)

    FAN Jun; HAO Ming-De; SHAO Ming-An

    2003-01-01

    A long-term fertilizer experiment on dry land of the Loess Plateau, northwest China, has been conducted since 1984 to study the distribution and accumulation of NO3-N down to a depth of 400 cm in the profile of a coarse-textured dark loessial soil after continuous winter wheat cropping. Thirteen fertilizer treatments consisted of four levels of N and P applied alone or in combination. Annual N and P (P2O5) rates were 0,45, 90, 135 and 180 kg ha-1. After 15 successive cropping cycles, the soil samples were taken from each treatment for analysis of NO3-N concentration. The results showed that NO3-N distribution in the soil profile was quite different among the treatments. The application of fertilizer N alone resulted in higher NO3-N concentration in the soil profile than the combined application of N and P, showing that application of P could greatly reduce the NO3-N accumulation. With an annual application of 180 kg N ha-1 alone, a peak in NO3-N accumulation occurred at 140 cm soil depth, and the maximum NO3-N concentration in the soils was 67.92 mg kg-1. The amount of NO3-N accumulated in the soil profile decreased as the cumulative N uptake by the winter wheat increased. Application of a large amount of N resulted in lower N recoveries in winter wheat and greater NO3-N accumulation in soil profile. NO3-N did not enter underground water in the study region; therefore, there is no danger of underground water pollution. Amount of NO3-N accumulation can be predicted by an equation according to annual N and P rates based on the results of this experiment.

  8. Episodic soil succession on basaltic lava fields in a cool, dry environment

    Science.gov (United States)

    Vaughan, K.L.; McDaniel, P.A.; Phillips, W.M.

    2011-01-01

    Holocene- to late Pleistocene-aged lava flows at Craters of the Moon National Monument and Preserve provide an ideal setting to examine the early stages of soil formation under cool, dry conditions. Transects were used to characterize the amount and nature of soil cover on across basaltic lava flows ranging in age from 2.1 to 18.4 ka. Results indicate that on flows <13 ka, very shallow organic soils (Folists in Soil Taxonomy) are the dominant soil type, providing an areal coverage of up to ∼25%. On flows ≥13.9 ka, deeper mineral soils including Entisols, Aridisols, and Mollisols become dominant and the areal extent increases to ≥95% on flows older than 18.4 ka. These data suggest there are two distinct pedogenic pathways associated with lava flows of the region. The first pathway is illustrated by the younger flows, where Folists dominate. In the absence of a major source of loess, relatively little mineral material accumulates and soils provide only minor coverage of the lava flows. Our results indicate that this pathway of soil development has not changed appreciably over the past ∼10 ka. The second pedogenic pathway is illustrated by the flows older than 13.9 ka. These flows have been subject to deposition of large quantities of loess during and after the last regional glaciation, resulting in almost complete coverage. Subsequent pedogenesis has given rise to Aridisols and Mollisols with calcic and cambic horizons and mollic epipedons. This research highlights the importance of regional climate change on the evolution of Craters of the Moon soilscapes.

  9. Natural radioactivity content in soil and indoor air of Chellanam.

    Science.gov (United States)

    Mathew, S; Rajagopalan, M; Abraham, J P; Balakrishnan, D; Umadevi, A G

    2012-11-01

    Contribution of terrestrial radiation due to the presence of naturally occurring radionuclides in soil and air constitutes a significant component of the background radiation exposure to the population. The concentrations of natural radionuclides in the soil and indoor air of Chellanam were investigated with an aim of evaluating the environmental radioactivity level and radiation hazard to the population. Chellanam is in the suburbs of Cochin, with the Arabian Sea in the west and the Cochin backwaters in the east. Chellanam is situated at ∼25 km from the sites of these factories. The data obtained serve as a reference in documenting changes to the environmental radioactivity due to technical activities. Soil samples were collected from 30 locations of the study area. The activity concentrations of (232)Th, (238)U and (40)K in the samples were analysed using gamma spectrometry. The gamma dose rates were calculated using conversion factors recommended by UNSCEAR [United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionizing radiation. UNSCEAR (2000)]. The ambient radiation exposure rates measured in the area ranged from 74 to 195 nGy h(-1) with a mean value of 131 nGy h(-1). The significant radionuclides being (232)Th, (238)U and (40)K, their activities were used to arrive at the absorbed gamma dose rate with a mean value of 131 nGy h(-1) and the radium equivalent activity with a mean value of 162 Bq kg(-1). The radon progeny levels varied from 0.21 to 1.4 mWL with a mean value of 0.6 mWL. The thoron progeny varied from 0.34 to 2.9 mWL with a mean value of 0.85 mWL. The ratio between thoron and radon progenies varied from 1.4 to 2.3 with a mean of 1.6. The details of the study, analysis and results are discussed.

  10. Roles of Arbuscular Mycorrhizal Fungi and Soil Abiotic Conditions in the Establishment of a Dry Grassland Community.

    Directory of Open Access Journals (Sweden)

    Jana Knappová

    Full Text Available The importance of soil biota in the composition of mature plant communities is commonly acknowledged. In contrast, the role of soil biota in the early establishment of new plant communities and their relative importance for soil abiotic conditions are still poorly understood.The aim of this study was to understand the effects of soil origin and soil fungal communities on the composition of a newly established dry grassland plant community. We used soil from two different origins (dry grassland and abandoned field with different pH and nutrient and mineral content. Grassland microcosms were established by sowing seeds of 54 species of dry grassland plants into the studied soils. To suppress soil fungi, half of the pots were regularly treated with fungicide. In this way, we studied the independent and combined effects of soil origin and soil community on the establishment of dry grassland communities.The effect of suppressing the soil fungal community on the richness and composition of the plant communities was much stronger than the effect of soil origin. Contrary to our expectations, the effects of these two factors were largely additive, indicating the same degree of importance of soil fungal communities in the establishment of species-rich plant communities in the soils from both origins. The negative effect of suppressing soil fungi on species richness, however, occurred later in the soil from the abandoned field than in the soil from the grassland. This result likely occurred because the negative effects of the suppression of fungi in the field soil were caused mainly by changes in plant community composition and increased competition. In contrast, in the grassland soil, the absence of soil fungi was limiting for plants already at the early stages of their establishment, i.e., in the phases of germination and early recruitment. While fungicide affects not only arbuscular mycorrhizal fungi but also other biota, our data indicate that changes

  11. Effect of alternate wetting and drying versus continuous flooding on carbon rates in rice and soil

    Directory of Open Access Journals (Sweden)

    M.B. Hossain

    2016-08-01

    Full Text Available An experiment was conducted at Bangladesh Institute of Nuclear Agriculture (BINA farm, Mymensingh, Bangladesh during 2010-2011 to find out the effect of different water and organic residue rates on rice and soil. Organic carbon rates from cow dung (0.5, 1.0, 1.5 and 2.0 t C ha-1 including control were evaluated under alternate wetting and drying (AWD and continuous flooding (CF. CF system in combination with chemical fertilizers and 2.0 t C ha-1 produced the maximum plant height, filled grains tiller-1, 1000 grains weight, grain and straw yields. Combined use of 2.0 t C ha-1 cow dung and CF system decreased CO2-C gas emission, increased carbon accumulation in above ground biomass of rice as well as carbon sequestration in soil. This treatment also helped to optimize soil pH. Based on these results, it may be concluded that continuous flooding system in combination 2.0 t C ha-1 increased grain yield, carbon accumulation in above ground biomass, carbon sequestration in soil and optimized soil pH.

  12. Forest structure, diversity and soil properties in a dry tropical forest in Rajasthan, Western India

    Directory of Open Access Journals (Sweden)

    J. I. Nirmal Kumar

    2011-06-01

    Full Text Available Structure, species composition, and soil properties of a dry tropical forest in Rajasthan Western India, were examined by establishment of 25 plots. The forest was characterized by a relatively low canopy and a large number of small-diameter trees. Mean canopy height for this forest was 10 m and stands contained an average of 995 stems ha-1 (= 3.0 cm DBH; 52% of those stems were smaller than 10 cm DBH. The total basal area was 46.35 m2ha-1, of which Tectona grandis L. contributed 48%. The forest showed high species diversity of trees. 50 tree species (= 3.0 cm DBH from 29 families were identified in the 25 sampling plots. T. grandis (20.81% and Butea monosperma (9% were the dominant and subdominant species in terms of importance value. The mean tree species diversity indices for the plots were 1.08 for Shannon diversity index (H´, 0.71 for equitability index (J´ and 5.57 for species richness index (S´, all of which strongly declined with the increase of importance value of the dominant, T. grandis. Measures of soil nutrients indicated low fertility, extreme heterogeneity. Regression analysis showed that stem density and the dominant tree height were significantly correlated with soil pH. There was a significant positive relationship between species diversity index and soil available P, exchangeable K+, Ca2+ (all p values < 0.001 and a negative relationship with N, C, C:N and C:P ratio. The results suggest that soil properties are major factors influencing forest composition and structure within the dry tropical forest in Rajasthan.

  13. Dried gamma-irradiated sewage solids use on calcareous soils: crop yields and heavy metals uptake

    International Nuclear Information System (INIS)

    The fertilizer values of gamma-irradiated digested sewage solids (RDSS) and gamma-irradiated undigested sewage solids (RUSS) have been examined on calcareous soils. Previously published data from Sandia Laboratories have shown that approximately 1 mega-rad of gamma-irradiation effectively destroys pathogenic bacteria, parasites and plant seeds in dried sewage solids. Greenhouse experiments directly comparing gamma-irradiated and non-irradiated undigested and digested dried sewage solids as fertilizers indicate little or no effect of 1 mega-rad gamma radiation treatment on plant yield or plant-nutrient uptake and demonstrated considerable benefit from using sewage solids on calcareous soils. Plant response to undigested sewage solids was considerably greater than to digested sewage solids when applied at levels that were isonitrogenous. The calcareous soils in New Mexico typically range in pH from 7.5 to 9.0, limiting the plant-availability of many elements, especially heavy metals. Soils irrigated with sewage-effluent for 40 years demonstrated beneficial use of supplied plant-nutrients with no apparent increase in plant-uptake of heavy metals. RDSS applied to a calcareous soil low in plant-available iron increased plant growth in the greenhouse considerably more than treatments with equal amounts of nitrogen, phosphorus and iron applied as common fertilizer materials. Plant tissue concentrations of Fe, Zn, Mn and Cu showed that RDSS was a good source of these nutrients. Results also indicated that the total soluble salt concentration of the RDSS was the factor most limiting plant growth. Chromium, Cd, Ni and Pd plant-tissue concentrations were apparently not increased by RDSS treatments. (Auth.)

  14. Experimental Study on Ginger Hot Air Drying%生姜热风干燥试验研究

    Institute of Scientific and Technical Information of China (English)

    张涛; 赵士杰; 冉雪

    2014-01-01

    First, the temperature of hot air , speed of hot air and thickness of slice are elected as the ginger dryer ’ s in-fluencing factors in this experiment to carry the ginger dryer and dynamic experiment .According to test, the curve of drying characteristics and drying rate of ginger hot air dryer are obtained .After the ginger hot air dryer test , the ginger rehydration test further obtained the relationships between the rehydration characteristics and drying conditions of ginger in different drying conditions .The hot air temperature is higher , hot air speeds greater , slice thickness as small as ginger dry faster , higher drying efficiency , but rehydration of dried increase decrease with increasing temperature and wind speed .%通过选取热风温度、热风速度和切片厚度作为生姜干燥的影响因素进行生姜干燥动力学试验,得到了生姜热风干燥的干燥特性曲线和干燥速率曲线。热风干燥后对干品进行复水试验,从而进一步得出了不同干燥条件下的生姜干品复水特性与干燥条件的关系:热风温度越高,热风速度越大,切片厚度越小,生姜干燥速度越快,干燥效率也越高;但干品的复水特性随温度的升高和风速的增大反而降低。

  15. Effectiveness of Air Drying and Magnification Methods for Detecting Initial Caries on Occlusal Surfaces Using Three Different Diagnostic Aids.

    Science.gov (United States)

    Goel, Deepti; Sandhu, Meera; Jhingan, Pulkit; Sachdev, Vinod

    2016-01-01

    Objective-The aim of this study was to assess the effect of magnification and air-drying on detection of carious lesion. Study Design-44 human extracted premolars were selected with sound occlusal surfaces without frank cavitation. The Diagnostic techniques used were Unaided visual examination, Magnifying Loupes (4.2×) and Stereomicroscope (10×, before and after air-drying) and then the teeth were sectioned bucco-lingually and both the surfaces were examined under Stereomicroscope (50×) to assess the presence or absence of carious lesion in the pit and fissures. The scores were compared to obtain Cohen's kappa coefficient (Reproducibility) and subjected to the Friedman Test and Paired t test. Sensitivity, specificity and positive predictive value used to assess accuracy. Results-On Statistical analysis, visual examination before and after air drying had highest specificity but lowest sensitivity compared to different diagnostic techniques. Magnifying loupes after air-drying had highest sensitivity and lowest specificity compared to other diagnostic techniques. Conclusion-Air drying combined with magnifying aids are cost-effective, reliable method for detection of early carious lesion. If used in pediatric clinical practice, any undesirable pain and discomfort to the patient due to invasive procedures and helps in employing preventive measures. PMID:27472570

  16. The distribution of deuterium and oxygen-18 during unsteady evaporation from a dry soil

    Science.gov (United States)

    Barnes, C. J.; Walker, G. R.

    1989-12-01

    Evaporation from a dry soil is studied by modelling the movement and distribution of the stable isotopic species of water under transient isothermal conditions. This model extends an earlier steady-state model to account for unsteady evaporation. It is shown that with appropriate initial and boundary conditions, isotope profiles in space and time can be described in the same way as the water content profiles in terms of a similarity variable, proportional to depth and (time) -1/2. The analysis provides a means for experimental examination of the detailed processes of evaporation, allowing quantitative partitioning of the evaporative flux between vapour and liquid movement at all points within a one-dimensional column. Isotope and chloride distributions are analysed numerically for a step-function water content distribution, and compared with steady-state profiles calculated for similar conditions. It is shown that whereas for steady state the peak isotope ratios are determined by atmospheric and deep soil isotope ratios, for these transient conditions the peak value depends also on water content, and may be higher or lower than for steady state. For very dry soils, decreasing water content leads to deeper, broader but lower isotope maxima.

  17. Influence of Dry Soil on the Ability of Formosan Subterranean Termites (Coptotermes formosanus) to Locate Food Sources

    Science.gov (United States)

    The effect of barriers of dry soil on the ability of Formosan subterranean termites, Coptotermes formosanus Shiraki, to construct tunnels and find food was evaluated. Termite movement and wood consumption in a three-chambered apparatus were compared for treatments where the soil in the center contai...

  18. Influence of dry soil on the ability of Formosan Subterranean Termites, Coptotermes formosanus, to locate food sources.

    Science.gov (United States)

    The effect of barriers of dry soil on the ability of Formosan subterranean termites, Coptotermes formosanus Shiraki, to construct tunnels and find food was evaluated. Termite movement and wood consumption in a three-chambered apparatus were compared for treatments where the soil in the center contai...

  19. Nitrogen dynamics in the soil-plant system under deficit and partial root-zone drying irrigation strategies in potatoes

    DEFF Research Database (Denmark)

    Shahnazari, Ali; Ahmadi, Seyed Hamid; Lærke, Poul Erik;

    2008-01-01

    Experiments were conducted in lysimeters with sandy soil under an automatic rain-out shelter to study the effects of subsurface drip irrigation treatments, full irrigation (FI), deficit irrigation (DI) and partial root-zone drying (PRD), on nitrogen (N) dynamics in the soil-plant system of potatoes...

  20. Microbial diversity of a Mediterranean soil and its changes after biotransformed dry olive residue amendment.

    Directory of Open Access Journals (Sweden)

    José A Siles

    Full Text Available The Mediterranean basin has been identified as a biodiversity hotspot, about whose soil microbial diversity little is known. Intensive land use and aggressive management practices are degrading the soil, with a consequent loss of fertility. The use of organic amendments such as dry olive residue (DOR, a waste produced by a two-phase olive-oil extraction system, has been proposed as an effective way to improve soil properties. However, before its application to soil, DOR needs a pre-treatment, such as by a ligninolytic fungal transformation, e.g. Coriolopsis floccosa. The present study aimed to describe the bacterial and fungal diversity in a Mediterranean soil and to assess the impact of raw DOR (DOR and C. floccosa-transformed DOR (CORDOR on function and phylogeny of soil microbial communities after 0, 30 and 60 days. Pyrosequencing of the 16S rRNA gene demonstrated that bacterial diversity was dominated by the phyla Proteobacteria, Acidobacteria, and Actinobacteria, while 28S-rRNA gene data revealed that Ascomycota and Basidiomycota accounted for the majority of phyla in the fungal community. A Biolog EcoPlate experiment showed that DOR and CORDOR amendments decreased functional diversity and altered microbial functional structures. These changes in soil functionality occurred in parallel with those in phylogenetic bacterial and fungal community structures. Some bacterial and fungal groups increased while others decreased depending on the relative abundance of beneficial and toxic substances incorporated with each amendment. In general, DOR was observed to be more disruptive than CORDOR.

  1. Study of drying kinetics and qualities of two parboiled rice varieties: Hot air convection and infrared irradiation

    Directory of Open Access Journals (Sweden)

    Supawan Tirawanichakul

    2012-11-01

    Full Text Available The effect of infrared (IR and hot air (HA drying conditions on drying kinetics of Leb Nok Pattani (LNP rice andSuphanburi 1 (SP 1 parboiled rice and their qualities was studied. Initial moisture content for LNP and SP 1 rice was 54±1 and49±1% dry-basis, respectively. Drying temperatures of 60-100°C, IR power of 1.0 and 1.5 kW and hot air flow rate of 1.0±0.2m/s were used for experiments. The results show that HA and IR parboiled rice drying can maintain high head rice yield(HRY and IR drying with 1.5 kW provided the highest HRY value. Additionally, the qualities analysis showed that whiteness,water absorption, cooking time and pasting property were significantly different compared to reference samples. The specificenergy consumption of parboiled rice drying with IR of 1.0 kW at 100°C delivered a low value. Thus IR drying for parboiledrice should promote.

  2. Influence of air-drying temperature on drying kinetics, colour, firmness and biochemical characteristics of Atlantic salmon (Salmo salar L.) fillets.

    Science.gov (United States)

    Ortiz, Jaime; Lemus-Mondaca, Roberto; Vega-Gálvez, Antonio; Ah-Hen, Kong; Puente-Diaz, Luis; Zura-Bravo, Liliana; Aubourg, Santiago

    2013-08-15

    In this work the drying kinetics of Atlantic salmon (Salmo salar L.) fillets and the influence of air drying temperature on colour, firmness and biochemical characteristics were studied. Experiments were conducted at 40, 50 and 60°C. Effective moisture diffusivity increased with temperature from 1.08×10(-10) to 1.90×10(-10) m(2) s(-1). The colour difference, determined as ΔE values (from 9.3 to 19.3), as well as firmness (from 25 to 75 N mm(-1)) of dried samples increased with dehydration temperature. The lightness value L(∗) and yellowness value b(∗) indicated formation of browning products at higher drying temperatures, while redness value a(∗) showed dependence on astaxanthin value. Compared with fresh fish samples, palmitic acid and tocopherol content decreased in a 20% and 40%, respectively, with temperature. While eicosapentaenoic acid (EPA) content remained unchanged and docosahexaenoic acid (DHA) content changed slightly. Anisidine and thiobarbituric acid values indicated the formation of secondary lipid oxidation products, which is more relevant for longer drying time than for higher drying temperatures. PMID:23561093

  3. Biochar effects on wet and dry regions of the soil water retention curve of a sandy loam

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Moldrup, Per; Sun, Zhencai;

    2014-01-01

    Reported beneficial effects of biochar on soil physical properties and processes include decreased soil density, and increased soil water transport, water holding capacity and retention (mainly for the wet region). Research is limited on biochar effects on the full soil water retention curve (wet...... and dry regions) for a given soil and biochar amendment scenarios. This study evaluates how biochar applied to a sandy loam field at rates from 0 to 50 Mg ha−1 yr–1 in 2011, 2012, or both years (2011+2012) influences the full water retention curve. Inorganic fertilizer and pig slurry were added to all...... region-water retention curve increased with increasing biochar rates....

  4. Density-Corrected Models for Gas Diffusivity and Air Permeability in Unsaturated Soil

    DEFF Research Database (Denmark)

    Chamindu, Deepagoda; Møldrup, Per; Schjønning, Per;

    2011-01-01

    profile data (total of 150 undisturbed soil samples) were used to investigate soil type and density effects on the gas transport parameters and for model development. The measurements were within a given range of matric potentials (-10 to -500 cm H2O) typically representing natural field conditions......Accurate prediction of gas diffusivity (Dp/Do) and air permeability (ka) and their variations with air-filled porosity (e) in soil is critical for simulating subsurface migration and emission of climate gases and organic vapors. Gas diffusivity and air permeability measurements from Danish soil...... in subsurface soil. The data were regrouped into four categories based on compaction (total porosity F 0.4 m3 m-3) and soil texture (volume-based content of clay, silt, and organic matter 15%). The results suggested that soil compaction more than soil type was the major control on gas...

  5. Dry sliding wear behavior of Ti-6Al-4V alloy in air

    Institute of Scientific and Technical Information of China (English)

    刘勇; 杨德庄; 武万良; 杨士勤

    2002-01-01

    The dry sliding wear properties of Ti-6Al-4V alloy sliding against GCr15 steel under different velocities(between 0.2 and 1.2 m/s)and applied loads(from 30 to 90 N)were tested using a pin-on-disk tester in air. The wear occurred on both surfaces of the tested couplings. The wear rate of the Ti-6Al-4V alloy ranged from 23.0 to 123.8 mg/km. The wear of Ti-6Al-4V samples was in severe wear. The wear rate of Ti-6Al-4V samples increased with the increasing of load and shows a minimum on the curves of wear rate versus sliding velocity. SEM morphologies of worn surfaces and debris were observed. Phases in the debris were analyzed by means of XRD spectra.

  6. A passive air-cooled dry storage facility for vitrified high-level wastes

    International Nuclear Information System (INIS)

    A conceptual design of air-cooled dry storage vault facility for vitrified high-level waste (HLW) canisters is developed for a site in northern Japan. The facility is designed for the reception and unloading of shielded seagoing transportation casks of vitrified HLW canisters, for the inspection of these canisters, and for their temporary storage for a period of up to 50 years. The waste is to be at least 9 years old when received, and the facility will be capable of storing up to 2,500 canisters. This paper provides a conceptual design to identify construction requirements, materials, and space requirements that are unique to the vitrified HLW storage facility. It also identifies the types of special systems and equipment needed in such a facility

  7. Water relations and transpiration of quinoa (Chenopodium quinoa Willd.) under salinity and soil drying

    DEFF Research Database (Denmark)

    Razzaghi, Fatemeh; Ahmadi, Seyed Hamid; Adolf, Verena Isabelle;

    2011-01-01

    water potential (Wl), shoot and root abscisic acid concentration ([ABA]) and transpiration rate were measured in full irrigation (FI; around 95 % of water holding capacity (WHC)) and progressive drought (PD) treatments using the irrigation water with five salinity levels (0, 10, 20, 30 and 40 dS m)1......); the treatments are referred to as FI0, FI10, FI20, FI30, FI40; PD0, PD10, PD20, PD30, PD40, respectively. The measurements were carried out over 9 days of continuous drought. The results showed that increasing salinity levels decreased the total soil water potential (WT) and consequently decreased gs and Wl...... values in both FI and PD. During the drought period, the xylem [ABA] extracted from the shoots increased faster than that extracted from the roots. A reduction in WT, caused by salinity and soil drying, reduced transpiration and increased apparent root resistance (R) to water uptake, especially in PD0...

  8. Transmission of Curing Light through Moist, Air-Dried, and EDTA Treated Dentine and Enamel

    Directory of Open Access Journals (Sweden)

    E. Uusitalo

    2016-01-01

    Full Text Available Objective. This study measured light transmission through enamel and dentin and the effect of exposed dentinal tubules to light propagation. Methods. Light attenuation through enamel and dentin layers of various thicknesses (1 mm, 2 mm, 3 mm, and 4 mm was measured using specimens that were (1 moist and (2 air-dried (n=5. Measurements were repeated after the specimens were treated with EDTA. Specimens were transilluminated with a light curing unit (maximum power output 1869 mW/cm2, and the mean irradiance power of transmitting light was measured. The transmission of light through teeth was studied using 10 extracted intact human incisors and premolars. Results. Transmitted light irradiance through 1 mm thick moist discs was 500 mW/cm2 for enamel and 398 mW/cm2 for dentin (p<0.05. The increase of the specimen thickness decreased light transmission in all groups (p<0.005, and moist specimens attenuated light less than air-dried specimens in all thicknesses (p<0.05. EDTA treatment increased light transmission from 398 mW/cm2 to 439 mW/cm2 (1 mm dentin specimen thickness (p<0.05. Light transmission through intact premolar was 6.2 mW/cm2 (average thickness 8.2 mm and through incisor was 37.6 mW/cm2 (average thickness 5.6 mm. Conclusion. Light transmission through enamel is greater than that through dentin, probably reflecting differences in refractive indices and extinction coefficients. Light transmission through enamel, dentin, and extracted teeth seemed to follow Beer-Lambert’s law.

  9. Experimental evaluation of dry/wet air-cooled heat exchangers. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, S.G.; Gruel, R.L.; Huenefeld, J.C.; Eschbach, E.J.; Johnson, B.M.; Kreid, D.K.

    1982-08-01

    The ultimate goal of this project was to contribute to the development of improved cooling facilities for power plants. Specifically, the objective during FY-81 was to experimentally determine the thermal performance and operating characteristics of an air-cooled heat exchanger surface manufactured by the Unifin Company. The performance of the spiral-wound finned tube surface (Unifin) was compared with two inherently different platefin surfaces (one developed by the Trane Co. and the other developed by the HOETERV Institute) which were previously tested as a part of the same continuing program. Under dry operation the heat transfer per unit frontal area per unit inlet temperature difference (ITD) of the Unifin surface was 10% to 20% below that of the other two surfaces at low fan power levels. At high fan power levels, the performances of the Unifin and Trane surfaces were essentially the same, and 25% higher than the HOETERV surface. The design of the Unifin surface caused a significantly larger air-side pressure drop through the heat exchanger both in dry and deluge operation. Generally higher overall heat transfer coefficients were calculated for the Unifin surface under deluged operation. They ranged from 2.0 to 3.5 Btu/hr-ft/sup 2/-/sup 0/F as compared to less than 2.0 Btu hr-ft/sup 2/-/sup 0/F for the Trane and HOETERV surfaces under similar conditions. The heat transfer enhancement due to the evaporative cooling effect was also measureably higher with the Unifin surface as compared to the Trane surface. This can be primarily attributed to the better wetting characteristics of the Unifin surface. If the thermal performance of the surfaces are compared at equal face velocities, the Unifin surface is as much as 35% better. This method of comparison accounts for the wetting characteristics while neglecting the effect of pressure drop. Alternatively the surfaces when compared at equal pressure drop essentially the same thermal performance.

  10. Impact of warming and drying on microbial activity in subarctic tundra soils: inferences from patterns in extracellular enzyme activity

    Science.gov (United States)

    Schade, J. D.; Natali, S.; Spawn, S.; Sistla, S.; Schuur, E. A. G.

    2014-12-01

    Permafrost contains a large pool of carbon that has accumulated for thousands of years, and remains frozen in organic form. As climate warms, permafrost thaw will increase rates of microbial breakdown of old soil organic matter (SOM), accelerating release of carbon to the atmosphere. Higher rates of microbial decomposition may also release reactive nitrogen, which may increase plant production and carbon fixation. The net effect on atmospheric carbon, and the strength of climate feedback, depends on the balance between direct and indirect effects of increased microbial activity, which depends on changes in soil conditions and microbial responses to them. In particular, soil moisture and availability of C and N for microbes strongly influence soil respiration and primary production. Current understanding of changes in these factors as climate warms is limited. We present results from analysis of soil extracellular enzyme activities (EEA) from a long-term warming and drying experiment in subarctic Alaskan tundra (the CiPEHR experiment) as an indicator of changes in soil microbial activity and relative availability of C and N for microbes. We collected soil samples from control (C), warming (W), and warming + drying (WD) treatments and used fluorometric methods to estimate EEA in shallow (0-5 cm) and deep (5-15) soils. We measured soil moisture, SOM, and C:N, and plant tissue C:N as an indicator of N availability. Activity of N-acquiring enzymes was higher in WD soils at both depths. Carbon EEA in W soils was lower in surface, but higher in deeper soils. We also found significantly lower soil C:N in both W and WD in deeper soils, where C:N was generally lower than surface. In general, EEA results suggest drying leads to increased C availability relative to N. This may be due to lower soil moisture leading to greater aeration of soils in WD plots relative to W plots, which may be saturated due to significant land subsidence. Greater aeration may increase efficiency of

  11. Comparison of CO2 and O2 concentrations in soil air: A lesson learned about CO2 diffusivity in soils

    Science.gov (United States)

    Angert, A.; Davidson, E. A.; Savage, K.; Yakir, D.; Luz, B.

    2002-12-01

    Soil respiration is a major component of the global carbon and oxygen cycles and accounts for about one quarter of global respiration. Since respiration consumes O2 and emits CO2, a simple relationship may be expected between the concentration of these gases in soil-air. However, because the [O2] signal in well-drained soils is small, deriving this relationship from field observations is not trivial. In this study, we present high accuracy measurements of O2 concentrations in soil air, that for the first time, enable precise comparison of these concentrations with CO2 concentrations. Soil air was sampled in two sites: an orchard in Israel, and a temperate forest (Harvard forest). The expected ratio of the decrease in [O2] in soil air to the increase in [CO2] can be calculated from the ratio of O2 consumption to CO2 emission in respiration, and the ratio between the diffusivities of these two gases in air as 0.79-0.07. The measured ratio of the decrease in [O2] to the increase in [CO2] in soil air was 0.56-2.48 in the orchard site and 1.06-1.20 in Harvard Forest. These ratios deviate strongly from the expected relationship. In the orchard site, these deviations were probably caused by reactions in the carbonate system due to the calcareous soil of this site. At Harvard Forest, such reactions cannot be quantitatively important because of the low pH of the soil. In this site, we propose that the relationship between CO2 and O2 in the soil air indicates that the ratio of diffusivity of O2 and CO2 in soils is higher than the diffusivity ratio in air. Our results demonstrate that a combination of high accuracy measurements of the O2 and CO2 in soil air is important for better understanding of the soil CO2 dynamics. Such observations will improve estimates of soil respiration that are based only on CO2 concentration and diffusivity.

  12. High Efficiency Liquid-Desiccant Regenerator for Air Conditioning and Industrial Drying

    Energy Technology Data Exchange (ETDEWEB)

    Andrew Lowenstein

    2005-12-19

    Over 2 quads of fossil fuels are used each year for moisture removal. This includes industrial and agricultural processes where feedstocks and final products must be dried, as well as comfort conditioning of indoor spaces where the control of humidity is essential to maintaining healthy, productive and comfortable working conditions. Desiccants, materials that have a high affinity for water vapor, can greatly reduce energy use for both drying and dehumidification. An opportunity exists to greatly improve the competitiveness of advanced liquid-desiccant systems by increasing the efficiency of their regenerators. It is common practice within the chemical process industry to use multiple stage boilers to improve the efficiency of thermal separation processes. The energy needed to regenerate a liquid desiccant, which is a thermal separation process, can also be reduced by using a multiple stage boiler. In this project, a two-stage regenerator was developed in which the first stage is a boiler and the second stage is a scavenging-air regenerator. The only energy input to this regenerator is the natural gas that fires the boiler. The steam produced in the boiler provides the thermal energy to run the second-stage scavenging-air regenerator. This two-stage regenerator is referred to as a 1?-effect regenerator. A model of the high-temperature stage of a 1?-effect regenerator for liquid desiccants was designed, built and successfully tested. At nominal operating conditions (i.e., 2.35 gpm of 36% lithium chloride solution, 307,000 Btu/h firing rate), the boiler removed 153 lb/h of water from the desiccant at a gas-based efficiency of 52.9 % (which corresponds to a COP of 0.95 when a scavenging-air regenerator is added). The steam leaving the boiler, when condensed, had a solids concentration of less than 10 ppm. This low level of solids in the condensate places an upper bound of about 6 lb per year for desiccant loss from the regenerator. This low loss will not create

  13. Urban air temperature anomalies and their relation to soil moisture observed in the city of Hamburg

    Directory of Open Access Journals (Sweden)

    Sarah Wiesner

    2014-09-01

    Full Text Available The spatial variability of the urban air temperature for the city of Hamburg is analyzed based upon a one-year dataset of meteorological and pedological measurements. As local air temperature anomalies are subject to land-use and surface cover, they are monitored by a network of measurement stations within three different urban structures. Mean annual temperature deviations are found to be +1.0K$+1.0\\,\\text{K}$ for inner city sites and +0.25K$+0.25\\,\\text{K}$ to -0.2K$-0.2\\,\\text{K}$ for suburban sites compared to a rural reference. The nocturnal urban heat island (UHI is identified and averages +1.7K$+1.7\\,\\text{K}$ at the inner city stations, +0.7K$+0.7\\,\\text{K}$ at a suburban district housing area and +0.3K$+0.3\\,\\text{K}$ at a nearby green space. The observed UHI effect is most prominent when the wind speed is low (≤2ms-1$\\leq2\\,\\text{ms}^{-1}$ and the sky is only partly cloudy (≤6∕8th$\\leq6/8^{\\text{th}}$. In spring 2011 an average inner city UHI of up to +5.2K$+5.2\\,\\text{K}$ is observed during situations matching these conditions, while the extraordinary dry fall of 2011 lead to remarkably high air temperature differences at all observed stations. As expected, no evidence for a significant impact of topsoil moisture on nighttime UHI effect is found. The analysis of air temperature anomalies during daytime results in an annual mean deviation of -0.5K$-0.5\\,\\text{K}$ above unsealed, vegetated surfaces from a sealed site during days with a turbulent mixing induced by wind speed >2ms-1$>2\\,\\text{ms}^{-1}$. Here, there is an indication for a relation between the water content of upper soil layers and the warming of air: 11 to 17 % of the variance of the diurnal air temperature span is found to be explained by the soil water content for selected relevant days.

  14. Conceptual design of air sparge/soil vent systems for in situ remediation of petroleum hydrocarbons

    International Nuclear Information System (INIS)

    A conceptual design for a sparge and vent system is presented. A sparge and vent system consists of air sparging or in situ aeration in combination with soil vapor extraction. With air sparging, a compressed air source provides sparging of the ground water through aeration points, volatizes dissolved hydrocarbons, and elevates dissolved oxygen (DO) levels in the ground water. Volatile hydrocarbon vapors migrate more readily than liquid in soil, and are extracted to atmosphere with the vapor extraction system. Increased oxygen levels in the ground water and unsaturated soil promotes natural, aerobic biodegradation of the hydrocarbons without nutrient addition. Design considerations for sparge systems include spacing and depth of installation of the sparging points, air injection rates and pressures and the air source. The design techniques for the soil vapor extraction system have been discussed extensively in the literature but generally involve spacing of the extraction wells to capture all the hydrocarbons stripped from the ground water. The soil vapor extraction system can also be modified to enhance oxygen (air) delivery to the unsaturated zone and thus promote natural biodegradation of the petroleum hydrocarbons in the soil. Techniques for monitoring the progress of remediation include measurement of oxygen and carbon dioxide levels in the soil, DO levels in the ground water, subsurface air pressures and petroleum hydrocarbon levels in the discharged air, soil and ground water

  15. Modeling runoff and soil water balance under mechanized conservation tillage in dry land of north China

    Science.gov (United States)

    Wang, Xiaoyan; Li, Hongwen; Gao, Huanwen; Du, Bing; Li, Wenying

    2005-09-01

    PERFECT (Productivity Erosion and Runoff Functions to Evaluate Conservation Techniques), which has been widely used in Australia, is designed to predict runoff, erosion and crop yield under various management pratices including residue, tillage, sequences of plantings, harvesting and stubble managements in dryland cropping areas. The objectives of this study were to modify and calibrate PERFECT to simulate the impacts of tillage, residue and traffic on runoff and soil water balance under conservation tillage of small- to medium-sized machinery, and to assist identifying appropriate conservation practices for sustained crop production in dry land areas of Northern China. The procedure of runoff prediction using USDA Curve Numbers was modified by incorporating the effects of field slope and rainfall intensity. Runoff was calculated daily as a function of rainfall, soil water, residue cover, slope, surface roughness resulted from tillage, and rainfall energy. A simplified Priestley-Taylor equation was employed in the model to calculate potential evapotranspiration, and the effect of residue cover on evapotranspiration was also considered in the model. Input data for the simulation model included daily weather, runoff, soil hydraulic properties, plant available water capacity, cropping systems, and traffic and tillage management. Data were collected from field experiments on Loess Plateau of Northern China. Preliminary results of model calibration and validation showed that the R2 between predicted and observed runoff was 0.86~0.90 and R2 between predicted and observed available soil moisture was 0.82~0.94.

  16. Modeling relationship between runoff and soil properties in dry-farming lands, NW Iran

    Directory of Open Access Journals (Sweden)

    A. R. Vaezi

    2010-04-01

    Full Text Available The process of transformation of rainfall into runoff over a catchment is very complex and exhibits both temporal and spatial variability. However, in a semi-arid area this variability is mainly controlled by the physical and chemical properties of the soil surface. Developing an accurate and easily-used model that can appropriately determine the runoff generation value is of strong demand. In this study a simple, an empirically based model developed to explore effect of soil properties on runoff generation. Thirty six dry-farming lands under follow conditions in a semi-arid agricultural zone in Hashtroud, NW Iran were considered to installation of runoff plots. Runoff volume was measured at down part of standard plots under natural rainfall events from March 2005 to March 2007. Results indicated that soils were mainly clay loam having 36.7% sand, 31.6% silt and 32.0% clay, and calcareous with about 13% lime. During a 2-year period, 41 natural rainfall events produced surface runoff at the plots. Runoff was negatively (R2=0.61, p<0.001 affected by soil permeability. Runoff also significantly correlated with sand, coarse sand, silt, organic matter, lime, and aggregate stability, while its relationship with very fine sand, clay, gravel and potassium was not significant. Regression analysis showed that runoff was considerably (p<0.001, R2=0.64 related to coarse sand, organic matter and lime. Lime like to coarse sand and organic matter positively correlated with soil permeability and consequently decreased runoff. This result revealed that, lime is one of the most important factors controlling runoff in soils of the semi-arid regions.

  17. Effects of Savanna trees on soil nutrient limitation and carbon-sequestration potential in dry season

    Science.gov (United States)

    Becker, Joscha; Gütlein, Adrian; Sierra Cornejo, Natalia; Kiese, Ralf; Hertel, Dietrich; Kuzyakov, Yakov

    2016-04-01

    limitation and thus in C mineralization and sequestration. The effects on soil respiration are present, even under strong water scarcity. Therefore, the capability of a savanna ecosystem to act as a C sink during dry season is mainly (directly and indirectly) dependent on the spatial abundance of trees.

  18. 3D Model-Based Simulation Analysis of Energy Consumption in Hot Air Drying of Corn Kernels

    Directory of Open Access Journals (Sweden)

    Shiwei Zhang

    2013-01-01

    Full Text Available To determine the mechanism of energy consumption in hot air drying, we simulate the interior heat and mass transfer processes that occur during the hot air drying for a single corn grain. The simulations are based on a 3D solid model. The 3D real body model is obtained by scanning the corn kernels with a high-precision medical CT machine. The CT images are then edited by MIMICS and ANSYS software to reconstruct the three-dimensional real body model of a corn kernel. The Fourier heat conduction equation, the Fick diffusion equation, the heat transfer coefficient, and the mass diffusion coefficient are chosen as the governing equations of the theoretical dry model. The calculation software, COMSOL Multiphysics, is used to complete the simulation calculation. The influence of air temperature and velocity on the heat and mass transfer processes is discussed. Results show that mass transfer dominates during the hot air drying of corn grains. Air temperature and velocity are chosen primarily in consideration of mass transfer effects. A low velocity leads to less energy consumption.

  19. Seismic Structure-Soil-Structure Interaction Analysis of a Consolidated Dry Storage Module for CANDU Spent Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Young Gon; Yoon, Jeong Hyoun; Kim, Sung Hwan; Yang, Ke Hyung; Lee, Heung Young; Cho, Chun Hyung [Korea Hydro and Nuclear Power Co., Ltd., Daejeon (Korea, Republic of); Choi, Kyu Sup; Jeong, In Su [KONES Corporation, Seoul (Korea, Republic of)

    2005-07-01

    The MACSTOR/KN-400 module has been developed as an effective alternative to the existing stand alone concrete canister for dry storage of CANDU spent fuel. The structure is a concrete monolith of 21.67 m long and 12.66 m wide and has a height equal to 7.518 m including the bottom slab. Inside the concrete module consists of 40 storage cylinders accommodating ten 60-bundle dry storage baskets, which are suspended from the top slab and eventually restrained at 10 cm above the bottom slab with horizontal seismic restraints. The main cooling process of the MACSTOR/KN-400 module shall be by air convection through air inlets and outlets. The civil design parameters, with respect to meteorological and seismic loads applied to the module are identical to those specified for the Wolsung CANDU 3 and 4 plants, except for local site characteristics required for soilstructure interaction (SSI) analysis. It is required for the structural integrity to fulfill the licensing requirements. As per USNRC SRP Section 3.7.2, it shall be reviewed how to consider the phenomenon of coupling of the dynamic response of adjacent structures through the soil, which is referred to as structure-soil-structure interaction (SSSI). The presence of closely spaced multiple structural foundations creates coupling between the foundations of individual structures . Some observations of the actual seismic response of structures have indicated that SSSI effects do exist, but they are generally secondary for the overall structural response motions. SSSI effects, however, may be important for a relatively small structure which is to be close to a relatively large structure, while they may be generally neglected for overall structural response of a large massive structure, such as nuclear power plant. As such the scope of the present paper is to carry out a seismic SSSI analysis in case of the MACSTOR/KN- 400 module, in order to investigate whether or not SSSI effect shall be included in the overall seismic

  20. Change in dry matter and nutritive composition of Brachiaria humidicola grown in Ban Thon soil series

    Directory of Open Access Journals (Sweden)

    Jeerasak Chobtang

    2008-11-01

    Full Text Available This experiment was conducted to determine the change in dry matter and nutritive composition of Humidicola grass (Brachiaria humidicola grown in Ban Thon soil series (infertility soil as a function of growth age. One rai (0.16 ha of two-year-old pasture of fertilised Humidicola grass was uniformly cut and the regrowth samples were collected every twenty days. The samples were subjected to analysis for dry matter content and nutritive composition, i.e. crude protein, ash, calcium, phosphorus, neutral detergent fibre, acid detergent fibre, and acid detergent lignin. The results showed that while the yields of available forage and leaves increased curvilinearly (quadratic, p<0.05, the stem yield increased linearly (p<0.05 over sampling dates. The highest biomass accumulation rate was numerically observed between 40-60 days of regrowth. The concentrations of crude protein, ash, calcium and phosphorus decreased curvilinearly (quadratic, p<0.05 with advancing maturity and reached the lowest flat after 60 days of regrowth. The cell wall components, i.e. NDF, ADF and ADL, increased over the experimental period and reached the highest plateau at 40 days of regrowth. It was concluded that Humidicola grass should be grazed or preserved at the regrowth age of not over 60 days to maximise the utilisation of the grass.

  1. Effects of Soil Moisture on Dynamic Distribution of Dry Matter Between Winter Wheat Root and Shoot

    Institute of Scientific and Technical Information of China (English)

    CHEN Xiao-yuan; LIU Xiao-ying; LUO Yuan-pei

    2003-01-01

    The dynamic relationship of dry matter accumulation and distribution between winter wheatroot and shoot was studied under different soil water conditions. The dry matter accumulation in root wasgreatly influenced by water stress, so as to the final root weight of the treatment with 40 % field moisturecapacity (FMC) was less than 1/4 of that of the treatment with 80 % FMC on average. Water stress duringthe 3-leaf stage to the tillering stage had the greatest influence on root, and the influence of water stressduring the jointing stage to the booting stage on shoot was greater than root. However, water stress duringthe tillering stage to the booting stage had a balanced effect on root and shoot, and the proportion of drymatter that distributed to root and shoot was almost the same after rewatering. Water recovery during thejointing stage to booting stage could promote R/S, but the increasing degree was related to the duration ofwater limitation. Soil water condition had the lowest effect on R/S during the flowering stage to the fillingstage and the maximal effect on R/S during the jointing stage to the heading stage, R/S of 40% FMCtreatment was 20.93 and 126.09 % higher than that of 60 % FMC and 80 % FMC treatments respectivelyat this period.

  2. A THREE-DIMENSIONAL AIR FLOW MODEL FOR SOIL VENTING: SUPERPOSITION OF ANLAYTICAL FUNCTIONS

    Science.gov (United States)

    A three-dimensional computer model was developed for the simulation of the soil-air pressure distribution at steady state and specific discharge vectors during soil venting with multiple wells in unsaturated soil. The Kirchhoff transformation of dependent variables and coordinate...

  3. Estimating saturated hydraulic conductivity and air permeability from soil physical properties using state-space analysis

    DEFF Research Database (Denmark)

    Poulsen, Tjalfe; Møldrup, Per; Nielsen, Don;

    2003-01-01

    Estimates of soil hydraulic conductivity (K) and air permeability (k(a)) at given soil-water potentials are often used as reference points in constitutive models for K and k(a) as functions of moisture content and are, therefore, a prerequisite for predicting migration of water, air, and dissolved...... and gaseous chemicals in the vadose zone. In this study, three modeling approaches were used to identify the dependence of saturated hydraulic conductivity (K-S) and air permeability at -100 cm H2O soil-water potential (k(a100)) on soil physical properties in undisturbed soil: (i) Multiple regression, (ii...... at -100 cm H2O soil-water potential (epsilon(100)). Similarly, k(a100) could be predicted from nearby values of k(a100) and epsilon(100). Including soil total porosity in the state-space modeling did not improve prediction accuracy. Thus, macro-porosity (epsilon(100)) was the key porosity parameter...

  4. Air-drying of cells, the novel conditions for stimulated synthesis of triacylglycerol in a Green Alga, Chlorella kessleri.

    Directory of Open Access Journals (Sweden)

    Takuma Shiratake

    Full Text Available Triacylglycerol is used for the production of commodities including food oils and biodiesel fuel. Microalgae can accumulate triacylglycerol under adverse environmental conditions such as nitrogen-starvation. This study explored the possibility of air-drying of green algal cells as a novel and simple protocol for enhancement of their triacylglycerol content. Chlorella kessleri cells were fixed on the surface of a glass fibre filter and then subjected to air-drying with light illumination. The dry cell weight, on a filter, increased by 2.7-fold in 96 h, the corresponding chlorophyll content ranging from 1.0 to 1.3-fold the initial one. Concomitantly, the triacylglycerol content remarkably increased to 70.3 mole% of fatty acids and 15.9% (w/w, relative to total fatty acids and dry cell weight, respectively, like in cells starved of nitrogen. Reduction of the stress of air-drying by placing the glass filter on a filter paper soaked in H2O lowered the fatty acid content of triacylglycerol to 26.4 mole% as to total fatty acids. Moreover, replacement of the H2O with culture medium further decreased the fatty acid content of triacylglycerol to 12.2 mole%. It thus seemed that severe dehydration is required for full induction of triacylglycerol synthesis, and that nutritional depletion as well as dehydration are crucial environmental factors. Meanwhile, air-drying of Chlamydomonas reinhardtii cells increased the triacylglycerol content to only 37.9 mole% of fatty acids and 4.8% (w/w, relative to total fatty acids and dry cell weight, respectively, and a marked decrease in the chlorophyll content, on a filter, of 33%. Air-drying thus has an impact on triacylglycerol synthesis in C. reinhardtii also, however, the effect is considerably limited, owing probably to instability of the photosynthetic machinery. This air-drying protocol could be useful for the development of a system for industrial production of triacylglycerol with appropriate selection of the

  5. Predicting Soil-Air and Soil-Water Transport Properties During Soil Vapor Extraction

    DEFF Research Database (Denmark)

    Poulsen, Tjalfe

    Increased application of in-situ technology for control and removal of volatile organic compounds (VOC) in the subsurface has made the understanding of soil physical properties and their impact upon contaminant transport even more important. Knowledge of contaminant transport is important when de...

  6. Soil-Air Partitioning of Polychlorinated Biphenyls and Total Dichloro-Diphenyl-Trichloroethanes

    Institute of Scientific and Technical Information of China (English)

    Yaping Zhang; Erping Bi; Honghan Chen

    2014-01-01

    Soil-air partitioning is an important diffusive process that affects the environmental fate of organic compounds and human health. In this review, factors affecting the soil-air partitioning of polychlorinated biphenyls (PCBs) and total dichloro-diphenyl-trichloroethanes (p,p’-and o,p’-isomers of DDT, DDD, and DDE) are discussed. Hydrophobicity is an important factor that influences soil-air partition coefficients (KSA), and its effect can be explained through enthalpy of phase change for soil-air partitioning transfer (ΔHSA). For more hydrophobic compounds, a sharp increase in the KSA of PCBs and organochlorines can be seen in the early aging period. During the aging period, the temperature has a significant effect on the more hydrophobic organic compounds. The content and properties of soil or-ganic matter influence the KSA of the target compounds. Generally, KSA decreases with increasing rela-tive humidity in soils. The linear trend between KSA and temperature (T) changes at 0 °C. Freezing the air or soil in experiments would change the research results. On the basis of factors influencing soil-air partitioning, a multipleparameter (T, organic carbon fraction (fOC), and octanol-air partition coefficient (KOA)) model is put forward to predict the KSA values for PCBs and total DDTs.

  7. A determination of the greenhouse parameter for dry and unpolluted air

    Energy Technology Data Exchange (ETDEWEB)

    Penaloza M, Marcos A. [Universidad de Los Andes, Facultad de Ciencias, Departamento de Fisica, Merida, (Venezuela)

    1996-04-01

    The relative extinction of solar and infrared radiation by dry and clean air molecules, has been estimated through a theoretical determination of the ratio referred ordinarily as the Greenhouse Parameter (GP). In a first approach, it was calculated assuming that terrestrial air only consists of a simple mixture of oxygen and nitrogen. The method used here is based on the application, in an inverse procedure, of an homogeneous, plane-parallel, and time-independent grey model, which employs the Eddington approximation as a solution to the radiative transfer equation, both in the solar and the infrared spectral regions and, which has the GP value as an input free parameter. The best value of the GP was estimated calibrating the local temperature profile for four types of uniform surface (snow, desert, vegetation and ocean), with average albedos known in these spectral regions, adopting air surface temperature values which were chosen for an assumed micro or local climatological environment according to an average radiative criterion. With this result, it was possible for an estimation of the infrared opacity for the air layer implicated in this model and also the mean extinction coefficient in this spectral range to be calculated. The results predicted are compared with results obtained indirectly from the data provided by other authors. Although its validation is constrained solely to the radiative model applied it seems that the value of the GP obtained is more accurate than the one initially available. [Spanish] La extincion relativa de radiacion por moleculas de aire limpio y seco, tanto en la region espectral solar como en la infrarroja, ha sido estimada a traves del calculo teorico de un parametro conocido en general como Parametro de Invernadero (PI). En una primera aproximacion, este parametro fue calculado considerando el aire terrestre como una mezcla simple de oxigeno y nitrogeno solamente. El metodo usado aqui se baso en la aplicacion, bajo un

  8. Assessing the ability of mechanistic volatilization models to simulate soil surface conditions: a study with the Volt'Air model.

    Science.gov (United States)

    Garcia, L; Bedos, C; Génermont, S; Braud, I; Cellier, P

    2011-09-01

    Ammonia and pesticide volatilization in the field is a surface phenomenon involving physical and chemical processes that depend on the soil surface temperature and water content. The water transfer, heat transfer and energy budget sub models of volatilization models are adapted from the most commonly accepted formalisms and parameterizations. They are less detailed than the dedicated models describing water and heat transfers and surface status. The aim of this work was to assess the ability of one of the available mechanistic volatilization models, Volt'Air, to accurately describe the pedo-climatic conditions of a soil surface at the required time and space resolution. The assessment involves: (i) a sensitivity analysis, (ii) an evaluation of Volt'Air outputs in the light of outputs from a reference Soil-Vegetation-Atmosphere Transfer model (SiSPAT) and three experimental datasets, and (iii) the study of three tests based on modifications of SiSPAT to establish the potential impact of the simplifying assumptions used in Volt'Air. The analysis confirmed that a 5 mm surface layer was well suited, and that Volt'Air surface temperature correlated well with the experimental measurements as well as with SiSPAT outputs. In terms of liquid water transfers, Volt'Air was overall consistent with SiSPAT, with discrepancies only during major rainfall events and dry weather conditions. The tests enabled us to identify the main source of the discrepancies between Volt'Air and SiSPAT: the lack of gaseous water transfer description in Volt'Air. They also helped to explain why neither Volt'Air nor SiSPAT was able to represent lower values of surface water content: current classical water retention and hydraulic conductivity models are not yet adapted to cases of very dry conditions. Given the outcomes of this study, we discuss to what extent the volatilization models can be improved and the questions they pose for current research in water transfer modeling and parameterization

  9. A model on the effect of temperature and moisture on pollen longevity in air-dry storage environments

    NARCIS (Netherlands)

    Hong, T.D.; Ellis, R.H.; Buitink, J.; Walters, J.; Hoekstra, F.A.; Crane, J.

    1999-01-01

    Data on the survival of pollen ofTypha latifoliaL. stored for up to 261 d over seven different saturated salt solutions (providing 0.5 to 66% relative humidity) and six different constant temperatures (from −5 to +45 °C) were analysed to quantify the effect of air-dry storage environment on pollen l

  10. Hydromechanical behavior of a quasi-saturated compacted soils on drying-wetting paths-experimental and numerical approaches

    Directory of Open Access Journals (Sweden)

    Andriantrehina Soanarivo Rinah

    2016-01-01

    Full Text Available This paper presents an experimental and numerical investigation funded by the French National Project “Terredurable”, which is devoted to the study of soils in quasi-saturated state. The experimental study is focused on the behavior of compacted soils on drying-wetting paths and the macroscopic effect of the drying path on shrinkage and cracking. Furthermore, a protocol for image analysis of crack in drying tests was developed. Two approaches are used for the measurement of surface strains and identification of the ultimate stress before the formation of the first crack, using VIC-2D software, and for the monitoring of crack evolution, using ImageJ software. The aim of the numerical approach is to reproduce the drying experiments with a finite difference code (FLAC 3D, in order to understand the stress conditions that can explain crack initiation, without modeling the crack formation itself.

  11. Daily and seasonal variations in radon activity concentration in the soil air.

    Science.gov (United States)

    Műllerová, Monika; Holý, Karol; Bulko, Martin

    2014-07-01

    Radon activity concentration in the soil air in the area of Faculty of Mathematics, Physics and Informatics (FMPI) in Bratislava, Slovak Republic, has been continuously monitored since 1994. Long-term measurements at a depth of 0.8 m and short-term measurements at a depth of 0.4 m show a high variability in radon activity concentrations in the soil. The analysis of the data confirms that regular daily changes in radon activity concentration in the soil air depend on the daily changes in atmospheric pressure. It was also found that the typical annual courses of the radon activity concentration in the soil air (with summer minima and winter maxima) were disturbed by mild winter and heavy summer precipitation. Influence of precipitation on the increase in the radon activity concentration in the soil air was observed at a depth of 0.4 m and subsequently at a depth of 0.8 m.

  12. Tree species effects on pathogen-suppressive capacities of soil bacteria across two tropical dry forests in Costa Rica.

    Science.gov (United States)

    Becklund, Kristen; Powers, Jennifer; Kinkel, Linda

    2016-11-01

    Antibiotic-producing bacteria in the genus Streptomyces can inhibit soil-borne plant pathogens, and have the potential to mediate the impacts of disease on plant communities. Little is known about how antibiotic production varies among soil communities in tropical forests, despite a long history of interest in the role of soil-borne pathogens in these ecosystems. Our objective was to determine how tree species and soils influence variation in antibiotic-mediated pathogen suppression among Streptomyces communities in two tropical dry forest sites (Santa Rosa and Palo Verde). We targeted tree species that co-occur in both sites and used a culture-based functional assay to quantify pathogen-suppressive capacities of Streptomyces communities beneath 50 focal trees. We also measured host-associated litter and soil element concentrations as potential mechanisms by which trees may influence soil microbes. Pathogen-suppressive capacities of Streptomyces communities varied within and among tree species, and inhibitory phenotypes were significantly related to soil and litter element concentrations. Average proportions of inhibitory Streptomyces in soils from the same tree species varied between 1.6 and 3.3-fold between sites. Densities and proportions of pathogen-suppressive bacteria were always higher in Santa Rosa than Palo Verde. Our results suggest that spatial heterogeneity in the potential for antibiotic-mediated disease suppression is shaped by tree species, site, and soil characteristics, which could have significant implications for understanding plant community composition and diversity in tropical dry forests.

  13. Tree species effects on pathogen-suppressive capacities of soil bacteria across two tropical dry forests in Costa Rica.

    Science.gov (United States)

    Becklund, Kristen; Powers, Jennifer; Kinkel, Linda

    2016-11-01

    Antibiotic-producing bacteria in the genus Streptomyces can inhibit soil-borne plant pathogens, and have the potential to mediate the impacts of disease on plant communities. Little is known about how antibiotic production varies among soil communities in tropical forests, despite a long history of interest in the role of soil-borne pathogens in these ecosystems. Our objective was to determine how tree species and soils influence variation in antibiotic-mediated pathogen suppression among Streptomyces communities in two tropical dry forest sites (Santa Rosa and Palo Verde). We targeted tree species that co-occur in both sites and used a culture-based functional assay to quantify pathogen-suppressive capacities of Streptomyces communities beneath 50 focal trees. We also measured host-associated litter and soil element concentrations as potential mechanisms by which trees may influence soil microbes. Pathogen-suppressive capacities of Streptomyces communities varied within and among tree species, and inhibitory phenotypes were significantly related to soil and litter element concentrations. Average proportions of inhibitory Streptomyces in soils from the same tree species varied between 1.6 and 3.3-fold between sites. Densities and proportions of pathogen-suppressive bacteria were always higher in Santa Rosa than Palo Verde. Our results suggest that spatial heterogeneity in the potential for antibiotic-mediated disease suppression is shaped by tree species, site, and soil characteristics, which could have significant implications for understanding plant community composition and diversity in tropical dry forests. PMID:27573616

  14. Nitrogen supply modulates the effect of changes in drying-rewetting frequency on soil C and N cycling and greenhouse gas exchange.

    Science.gov (United States)

    Morillas, Lourdes; Durán, Jorge; Rodríguez, Alexandra; Roales, Javier; Gallardo, Antonio; Lovett, Gary M; Groffman, Peter M

    2015-10-01

    Climate change and atmospheric nitrogen (N) deposition are two of the most important global change drivers. However, the interactions of these drivers have not been well studied. We aimed to assess how the combined effect of soil N additions and more frequent soil drying-rewetting events affects carbon (C) and N cycling, soil:atmosphere greenhouse gas (GHG) exchange, and functional microbial diversity. We manipulated the frequency of soil drying-rewetting events in soils from ambient and N-treated plots in a temperate forest and calculated the Orwin & Wardle Resistance index to compare the response of the different treatments. Increases in drying-rewetting cycles led to reductions in soil NO3- levels, potential net nitrification rate, and soil : atmosphere GHG exchange, and increases in NH4+ and total soil inorganic N levels. N-treated soils were more resistant to changes in the frequency of drying-rewetting cycles, and this resistance was stronger for C- than for N-related variables. Both the long-term N addition and the drying-rewetting treatment altered the functionality of the soil microbial population and its functional diversity. Our results suggest that increasing the frequency of drying-rewetting cycles can affect the ability of soil to cycle C and N and soil : atmosphere GHG exchange and that the response to this increase is modulated by soil N enrichment.

  15. The influence of soils on heterotrophic respiration exerts a strong control on net ecosystem productivity in seasonally dry Amazonian forests

    OpenAIRE

    J. R. Melton; Shrestha, R. K.; V. K. Arora

    2015-01-01

    Net ecosystem productivity of carbon (NEP) in seasonally dry forests of the Amazon varies greatly between sites with similar precipitation patterns. Correctly modeling the NEP seasonality with terrestrial ecosystem models has proven difficult. Previous modelling studies have mostly advocated for incorporating processes that act to reduce water stress on gross primary productivity (GPP) during the dry season, such as deep soils and roots, plant-mediated hydr...

  16. The Influence of Mastication on Soils and Fuels in Moist and Dry Forests of the Northern Rocky Mountains

    OpenAIRE

    Jain, Theresa; Graham, Russel T.

    2009-01-01

    We evaluated the applicability of mastication as a fuel treatment alternative within Northern Rocky Mountain moist and dry forests to treat post-harvest activity slash (moist forest) and standing trees (dry forest). On the moist forest site, we compared four different slash treatments, mastication, machine grapple piling, lop and scatter, and a control within a wildland urban interface setting to determine the effects of these treatments on soil nutrition, forest floor depth, and woody debris...

  17. Numerical-analytical investigation into impact pipe driving in soil with dry friction. Part II: Deformable external medium

    CERN Document Server

    Aleksandrova, Nadezhda

    2013-01-01

    Under analysis is travel of P-waves in an elastic pipe partly embedded in soil with dry friction. The mathematical formulation of the problem on impact pipe driving in soil is based on the model of axial vibration of an elastic bar, considering lateral resistance described using the law of solid dry friction. The author solves problems on axial load on pipe in interaction with external elastic medium, and compares the analytical and numerical results obtained with and without accounting for the external medium deformability.

  18. Soil Water Retention and Relative Permeability for Conditions from Oven-Dry to Full Saturation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Z. F.

    2011-11-04

    Common conceptual models for unsaturated flow often rely on the oversimplified representation of medium pores as a bundle of cylindrical capillaries and assume that the matric potential is attributed to the capillary force only. The adsorptive surface forces are ignored. It is often assumed that aqueous flow is negligible when a soil is near or at the residual water content. These models are successful at high and medium water contents but often give poor results at low water contents. These models do not apply to conditions at which the water content is less than the residual water content. We extend the lower bound of existing water-retention functions and conductivity models from residual water content to the oven-dry condition (i.e., zero water content) by defining a state-dependent, residual-water content for a soil drier than a critical value. Furthermore, a hydraulic conductivity model for smooth uniform spheres was modified by introducing a correction factor to describe the film flow-induced hydraulic conductivity for natural porous media. The total unsaturated hydraulic conductivity is the sum of those due to capillary and film flow. The extended retention and conductivity models were verified measurements. Results show that, when the soil is at high and intermediate water content, there is no difference between the un-extended and the extended models; when the soil is at low water content, the un-extended models overestimate the water content but underestimate the conductivity. The extended models match the retention and conductivity measurements well.

  19. Local root abscisic acid (ABA) accumulation depends on the spatial distribution of soil moisture in potato: implications for ABA signalling under heterogeneous soil drying.

    Science.gov (United States)

    Puértolas, Jaime; Conesa, María R; Ballester, Carlos; Dodd, Ian C

    2015-04-01

    Patterns of root abscisic acid (ABA) accumulation ([ABA]root), root water potential (Ψroot), and root water uptake (RWU), and their impact on xylem sap ABA concentration ([X-ABA]) were measured under vertical partial root-zone drying (VPRD, upper compartment dry, lower compartment wet) and horizontal partial root-zone drying (HPRD, two lateral compartments: one dry, the other wet) of potato (Solanum tuberosum L.). When water was withheld from the dry compartment for 0-10 d, RWU and Ψroot were similarly lower in the dry compartment when soil volumetric water content dropped below 0.22cm(3) cm(-3) for both spatial distributions of soil moisture. However, [ABA]root increased in response to decreasing Ψroot in the dry compartment only for HPRD, resulting in much higher ABA accumulation than in VPRD. The position of the sampled roots (~4cm closer to the surface in the dry compartment of VPRD than in HPRD) might account for this difference, since older (upper) roots may accumulate less ABA in response to decreased Ψroot than younger (deeper) roots. This would explain differences in root ABA accumulation patterns under vertical and horizontal soil moisture gradients reported in the literature. In our experiment, these differences in root ABA accumulation did not influence [X-ABA], since the RWU fraction (and thus ABA export to shoots) from the dry compartment dramatically decreased simultaneously with any increase in [ABA]root. Thus, HPRD might better trigger a long-distance ABA signal than VPRD under conditions allowing simultaneous high [ABA]root and relatively high RWU fraction.

  20. Aerosol Particles from Dried Salt-Lakes and Saline Soils Carried on Dust Storms over Beijing

    Directory of Open Access Journals (Sweden)

    Xingying Zhang

    2009-01-01

    Full Text Available Characteristics of individual particles from a super dust storm (DS on 20 March 2002, and those of non dust storm aero sols for Beijing (NDS and Duolun (DL (a desert area are determined using a variety of methods. In China, typically the source of aero sols in dust storms is thought to be deserts with alumino silicates being the main constituent particles; how ever, this does not reflect a complete analysis with our evidence indicating potential alternate dust sources along the _ trans port path. Individual particle anal y sis of aero sols collected from a super dust storm on 20 March 2002 in Beijing shows that among all the 14 elements measured, only S and Cl have re mark able positive correlation. 82.5% of all particles measured contained both S and Cl, and the relative mass per cent age of S and Cl in these particles is much higher than the average of all particles. 62.0% of all particles contained S, Cl, and Na, in which the concentration of Na is 1.4 times higher than average. PMF (Positive Matrix Factorization anal y sis indicates that NaCl and Na2SO4 are major components of these particles with S and Cl showing significant positive correlation. More over, SO4 2- and Cl- also show significant positive correlation in bulk aero sol analysis. XPS (X-ray Pho to electron Spectros copy analysis of the surface of aero sols demonstrates that concentrations of Na and S on particles from the dust storm are higher than those from non-dust storm particles in Beijing and also for particles from. It is very likely that particles enriched with S, Cl, and Na is from the surface soils of dried salt-lakes and saline soils enriched with chloride and sulfate. This evidence demonstrates that be sides deserts, surface soils from dry salt-lakes and saline soils of arid and semi-arid areas are also sources of particulates in dust storms over Beijing.

  1. Comparison of halocarbon measurements in an atmospheric dry whole air sample

    Directory of Open Access Journals (Sweden)

    George C. Rhoderick

    2015-11-01

    Full Text Available Abstract The growing awareness of climate change/global warming, and continuing concerns regarding stratospheric ozone depletion, will require continued measurements and standards for many compounds, in particular halocarbons that are linked to these issues. In order to track atmospheric mole fractions and assess the impact of policy on emission rates, it is necessary to demonstrate measurement equivalence at the highest levels of accuracy for assigned values of standards. Precise measurements of these species aid in determining small changes in their atmospheric abundance. A common source of standards/scales and/or well-documented agreement of different scales used to calibrate the measurement instrumentation are key to understanding many sets of data reported by researchers. This report describes the results of a comparison study among National Metrology Institutes and atmospheric research laboratories for the chlorofluorocarbons (CFCs dichlorodifluoromethane (CFC-12, trichlorofluoromethane (CFC-11, and 1,1,2-trichlorotrifluoroethane (CFC-113; the hydrochlorofluorocarbons (HCFCs chlorodifluoromethane (HCFC-22 and 1-chloro-1,1-difluoroethane (HCFC-142b; and the hydrofluorocarbon (HFC 1,1,1,2-tetrafluoroethane (HFC-134a, all in a dried whole air sample. The objective of this study is to compare calibration standards/scales and the measurement capabilities of the participants for these halocarbons at trace atmospheric levels. The results of this study show agreement among four independent calibration scales to better than 2.5% in almost all cases, with many of the reported agreements being better than 1.0%.

  2. Effects of warm air-drying on intra-pulpal temperature.

    Science.gov (United States)

    Galan, D; Kasloff, Z; Williams, P T

    1991-08-01

    This study was designed to determine what effects different warm air-drying conditions have on the intra-pulpal temperature (IPT), with or without chamber preparation and with or without an acid-etching treatment of the enamel. Four human maxillary centrals and four cuspids had lingual access openings prepared to accommodate a thermal sensor probe. Half of the specimens received a labial chamber preparation and half were acid-etched. All specimens were stored in water at 37 degrees C prior to testing. Labial aspects were positioned at 2 cm and 6 cm from the nozzle of a 500W hair dryer and IPTs were recorded after 15, 30, 45, and 60-second exposures. Exposure times for the acid-etched samples were modified to 10 seconds at 2 cm and 15 seconds at 6 cm. Results showed that for unetched teeth, increases in the IPT were greater at the 2 cm/15-second exposure (a 10.4-12.0 degrees C increase) than at the 6 cm/15-second exposure (a 3.9-6.6 degrees C increase). Even greater temperature changes were seen as the exposure times were increased to 30, 45, and 60 seconds. When the teeth were acid-etched, IPT rises of 5.6-10.1 degrees C and 5.8-8.7 degrees C were measured at 2 cm/10 seconds and at 6 cm/15 seconds, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Dust particle charge screening in the dry-air plasma produced by an external ionization source

    Energy Technology Data Exchange (ETDEWEB)

    Derbenev, I. N.; Filippov, A. V., E-mail: fav@triniti.ru [State Research Center of the Russian Federation Troitsk Institute for Innovation and Fusion Research (Russian Federation)

    2015-08-15

    The ionic composition of the plasma produced by an external ionization source in dry air at atmospheric pressure and room temperature and the screening of the electric field of a dust particle in such a plasma have been investigated. The point sink model based on the diffusion-drift approximation has been used to solve the screening problem. We have established that the main species of ions in the plasma under consideration are O{sub 4}{sup +}, O{sub 2}{sup -}, and O{sub 4}{sup -} and that the dust particle potential distribution is described by a superposition of four exponentials with four different constants. We show that the first constant coincides with the inverse Debye length, the second is described by the inverse ambipolar diffusion length of the positive and negative plasma components in the characteristic time of their recombination, the third is determined by the conversion of negative ions, and the fourth is determined by the attachment and recombination of electrons and diatomic ions.

  4. Influence of operating conditions on the air gasification of dry refinery sludge in updraft gasifier

    Science.gov (United States)

    Ahmed, R.; Sinnathambi, C. M.

    2013-06-01

    In the present work, details of the equilibrium modeling of dry refinery sludge (DRS) are presented using ASPEN PLUS Simulator in updraft gasifier. Due to lack of available information in the open journal on refinery sludge gasification using updraft gasifier, an evaluate for its optimum conditions on gasification is presented in this paper. For this purpose a Taguchi Orthogonal array design, statistical software is applied to find optimum conditions for DRS gasification. The goal is to identify the most significant process variable in DRS gasification conditions. The process variables include; oxidation zone temperature, equivalent ratio, operating pressure will be simulated and examined. Attention was focused on the effect of optimum operating conditions on the gas composition of H2 and CO (desirable) and CO2 (undesirable) in terms of mass fraction. From our results and finding it can be concluded that the syngas (H2 & CO) yield in term of mass fraction favors high oxidation zone temperature and at atmospheric pressure while CO2 acid gas favor at a high level of equivalent ratio as well as air flow rate favoring towards complete combustion.

  5. EFFECT OF AIR-DRYING ON DEMINERALIZED AND ON SOUND CORONAL HUMAN DENTIN - A STUDY ON DENSITY AND ON LESION SHRINKAGE

    NARCIS (Netherlands)

    ARENDS, J; RUBEN, J

    1995-01-01

    Recently, several papers investigated the linear dimensional changes in dentine after air-drying. This paper pertains to weight changes, volume changes, and density changes caused by air-drying of sound and demineralized intact dentine. The densities of sound and artificially demineralized human cor

  6. Autotrophic component of soil respiration is repressed by drought more than the heterotrophic one in dry grasslands

    Science.gov (United States)

    Balogh, János; Papp, Marianna; Pintér, Krisztina; Fóti, Szilvia; Posta, Katalin; Eugster, Werner; Nagy, Zoltán

    2016-09-01

    Summer droughts projected to increase in central Europe due to climate changes strongly influence the carbon cycle of ecosystems. Persistent respiration activities during drought periods are responsible for a significant carbon loss, which may turn the ecosystem from a sink into a source of carbon. There are still gaps in our knowledge regarding the characteristic changes taking place in the respiration of the different components of the ecosystem in response to drought events.In the present study, we combined a physical separation of soil respiration components with continuous measurements of soil CO2 efflux and its isotopic (13C) signals at a dry grassland site in Hungary. The physical separation of soil respiration components was performed by means of inox meshes and tubes inserted into the soil. The root-excluded and root- and mycorrhiza-excluded treatments served to measure the isotopic signals of the rhizospheric, mycorrhizal fungi and heterotrophic components, respectively.In the dry grassland investigated in the study the three components of the soil CO2 efflux decreased at different rates under drought conditions. During drought the contribution made by the heterotrophic components was the highest (54 ± 8 %; mean ±SE). Rhizospheric component was the most sensitive to soil drying with its relative contribution to the total soil respiration dropping from 66 ± 7 (non-stressed) to 35 ± 17 % (mean ±SE) under drought conditions. According to our results the heterotrophic component of soil respiration is the major contributor to the respiration activities during drought events in the dry grassland ecosystem studied.

  7. Threshold criteria for heavy metals in the soils of hazard-free dry fruit production regions of China

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jianguang; LIU Yufang; GUO Suping; LI Baoguo; ZHOU Junyi; WANG Wenjiang

    2007-01-01

    Determination of proper threshold criteria for heavy metals in soils is an important basis for hazard-free dry fruit production in China.Based on the detection of heavy metal contents in soils in this study,it is initially concluded that the soils for dry fruit production in China are suitable for hazard-free growing.Moreover,the soil safety qualification for dry fruit production is much better than that in some developed countries or regions,which might help our production have a competitive advantage on the international market.However,soil Cr contents in the country are slightly higher,so that it is necessary to take steps to control any contamination during the whole chain of production.The following threshold criteria for heavy metals in soils is suggested according to physical,ecological and economical considerations:Hg 0.15 mg/kg;As 20mg/kg;Pb 50mg/kg;Cd 0.30 mg/kg and Gr 200 mg/kg.

  8. Airborne bacterial populations above desert soils of the McMurdo Dry Valleys, Antarctica.

    Science.gov (United States)

    Bottos, Eric M; Woo, Anthony C; Zawar-Reza, Peyman; Pointing, Stephen B; Cary, Stephen C

    2014-01-01

    Bacteria are assumed to disperse widely via aerosolized transport due to their small size and resilience. The question of microbial endemicity in isolated populations is directly related to the level of airborne exogenous inputs, yet this has proven hard to identify. The ice-free terrestrial ecosystem of Antarctica, a geographically and climatically isolated continent, was used to interrogate microbial bio-aerosols in relation to the surrounding ecology and climate. High-throughput sequencing of bacterial ribosomal RNA (rRNA) genes was combined with analyses of climate patterns during an austral summer. In general terms, the aerosols were dominated by Firmicutes, whereas surrounding soils supported Actinobacteria-dominated communities. The most abundant taxa were also common to aerosols from other continents, suggesting that a distinct bio-aerosol community is widely dispersed. No evidence for significant marine input to bioaerosols was found at this maritime valley site, instead local influence was largely from nearby volcanic sources. Back trajectory analysis revealed transport of incoming regional air masses across the Antarctic Plateau, and this is envisaged as a strong selective force. It is postulated that local soil microbial dispersal occurs largely via stochastic mobilization of mineral soil particulates. PMID:24121801

  9. Testing the USA EPA's ISCST-Version 3 model on dioxins: a comparison of predicted and observed air and soil concentrations

    Science.gov (United States)

    Lorber, Matthew; Eschenroeder, Alan; Robinson, Randall

    The central purpose of our study was to examine the performance of the United States Environmental Protection Agency's (EPA) nonreactive Gaussian air quality dispersion model, the Industrial Source Complex Short-Term Model (ISCST3) Version 98226, in predicting polychlorinated dibenzodioxins and polychlorinated dibenzofurans concentrations (subsequently referred to as dioxins and furans, or CDD/Fs) in both air and soil near the Columbus Municipal Solid Waste-to-Energy Facility (CMSWTE) in Columbus, OH. During its 11 yr operation, the CMSWTE was estimated to be emitting nearly 1 kg of CDD/F Toxic Equivalents (TEQs) per year, making it one of the highest single emitters of dioxin in the United States during its operation. An ambient air-monitoring study conducted in 1994, prior to its shutdown in December of 1994, clearly identified high dioxin air concentration in the downwind direction during two sampling events. In one of the events, the CMSWTE stack was concurrently monitored for dioxins. A soil sampling study conducted in 1995/1996 was similarly able to identify an area of impacted soil extending mainly in the predominant downwind direction up to 3 km from the CMSWTE. Site-specific information, including meteorological data, stack parameters and emission rates, and terrain descriptions, were input into ISCST3 to predict ground-level 48-h concentrations which could be compared with the 48-h measured air concentrations. Predicted annual average dry and wet deposition of particle-bound dioxins were input into a simple soil reservoir model to predict soil concentrations that would be present after 11.5 yr of emissions, which were compared to measured concentrations. Both soil- and air-predicted concentrations were generally within a factor of 10 of observations, and judged to be reasonable given the small number of observations and the uncertainties of the exercise. Principal uncertainties identified and discussed include: source characterization (stack emission

  10. Soil dehydrogenase in a land degradation-rehabilitation gradient: observations from a savanna site with a wet/dry seasonal cycle.

    Science.gov (United States)

    Doi, Ryoichi; Ranamukhaarachchi, Senaratne Leelananda

    2009-01-01

    Soil dehydrogenase activity is a good indicator of overall microbial activity in soil, and it can serve as a good indicator of soil condition. However, seasonal changes in soil moisture content may have an effect on soil dehydrogenase activity, making an accurate assessment of soil condition difficult. In this study, we attempted to determine the significance of soil dehydrogenase activity for assessing soil condition, and we attempted to find a way to account for the influence of soil moisture content on soil dehydrogenase activity.' Soils were sampled in dry evergreen forest (original vegetation), bare ground (severely degraded) and Acacia plantation plots established on bare ground in 1986 and 1987 in Sakaerat, Thailand. Soil physico-chemical characteristics and dehydrogenase activity in the Acacia plantation soil had few differences from those in the evergreen forest soil. Soil dehydrogenase activity varied significantly between the bare ground and the forests regardless of the season (wet or dry), while the season did not produce a significant variation in soil dehydrogenase activity, as determined by repeated measures analysis of variance (p=0.077). The physico-chemical data provided the first principal component as a good measure of soil fertility. Values of soil dehydrogenase activity significantly correlated to scores of the soil samples of the first principal component (R=0.787, p<0.001). We found that soil dehydrogenase activity is a useful indicator of the extent of soil degradation and the rehabilitative effects of reforestation in this part of Thailand. PMID:19637703

  11. Antioxidant capacity and total phenolic content of air-dried cape gooseberry (physalis peruviana l.) at different ripeness stages

    OpenAIRE

    Narváez-Cuenca, Carlos Eduardo; Mateus-Gómez, Ángela; Restrepo-Sánchez, Luz Patricia

    2014-01-01

    Because the use of drying at high temperatures might negatively affect the functional properties of fruits, the effect of air-drying at 60°C on the total phenolic content (TPC) and antioxidant capacity (AOC) of cape gooseberry fruit was evaluated at three ripeness stages. The AOC was evaluated with 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing ability of plasma (FRAP), 1,1-diphenyl-2-picrylhydrazyl (DPPH), and β-carotene-linoleate assays. The TPC and AOC incre...

  12. Uptake of polychlorinated biphenyls and organochlorine pesticides from soil and air into radishes (Raphanus sativus)

    DEFF Research Database (Denmark)

    Mikes, Ondrej; Cupr, P.; Trapp, Stefan;

    2009-01-01

    Uptake of organochlorine pesticides and polychlorinated biphenyls from soil and air into radishes was measured at a heavily contaminated field site. The highest contaminant concentrations were found for DDT and its metabolites, and for beta-hexachlorocyclohexane. Bioconcentration factor (BCF...

  13. The influence of soils on heterotrophic respiration exerts a strong control on net ecosystem productivity in seasonally dry Amazonian forests

    Directory of Open Access Journals (Sweden)

    J. R. Melton

    2014-08-01

    Full Text Available Net ecosystem productivity of carbon (NEP in seasonally dry forests of the Amazon varies greatly between sites with similar precipitation patterns. Correctly modeling the NEP seasonality with terrestrial ecosystem models has proven difficult. Previous modelling studies have mostly advocated incorporating processes that act to reduce water stress on gross primary productivity (GPP during the dry season such as including deep soils and roots, plant-mediated hydraulic redistribution of soil moisture, and increased dry season leaf litter generation which reduces leaf age and thus increases photosynthetic capacity. Recent observations, however, indicate that seasonality in heterotrophic respiration also contributes to the observed seasonal cycle of NEP. Here, we use the dynamic vegetation model CLASS-CTEM – without deep soils or roots, hydraulic redistribution of soil moisture or increased dry season litter generation – at two Large-Scale Biosphere–Atmosphere Experiment (LBA sites (Tapajós km 83 and Jarú Reserve. These LBA sites exhibit opposite seasonal NEP cycles despite similar meteorological conditions. Our simulations are able to reproduce the observed NEP seasonality at both sites. Simulated GPP, heterotrophic respiration, latent and sensible heat fluxes, litter fall rate, soil moisture and temperature, and basic vegetation state are also compared with available observation-based estimates which provide confidence that the model overall behaves realistically at the two sites. Our results indicate that appropriately representing the influence of soil texture and depth, through soil moisture, on seasonal patterns of GPP and, especially, heterotrophic respiration is important to correctly simulating NEP seasonality.

  14. Spray washing, absorbent cornstarch powder, and dry time to reduce bacterial numbers on soiled transport cage flooring

    Science.gov (United States)

    Broiler transport cages are often used repeatedly without washing and fecal matter deposited on the floor surface can transfer Campylobacter from one flock to another. Allowing feces to dry is an effective but slow and logistically impractical means to kill Campylobacter in soiled transport cages. ...

  15. Impact of drying and re-wetting on N, P and K dynamics in a wetland soil

    NARCIS (Netherlands)

    Venterink, HO; Davidsson, TE; Kiehl, K; Leonardson, L

    2002-01-01

    As increased nutrient availability due to drainage is considered a major cause of eutrophication in wetlands rewetting of drained wetlands is recommended as a restoration measure. The effect of soil drying and rewetting on the contribution of various nutrient release or transformation processes to c

  16. A critical evaluation of soil water retention parameterizations with respect to their behaviour near saturation and in the dry range

    Science.gov (United States)

    Madi, Raneem; de Rooij, Gerrit; Mai, Juliane; Mielenz, Henrike

    2016-04-01

    Flow of liquid water and movement of water vapor in the unsaturated zone affect in-soil processes (e.g., root water uptake) and exchanges of water between the soil and the groundwater (e.g., aquifer recharge) and between the soil and the atmosphere (e.g., evaporation). Evapotranspiration in particular is a key factor in the way soils moderate weather and respond to climate change. Soil physicists typically model these processes at scales of individual fields and smaller. They solve Richards' equation using soil water retention curves and hydraulic conductivity curves (soil hydraulic property curves) that are typically valid for even smaller soil volumes. Over the years, many parametric expressions have been proposed as models for the soil hydraulic property curves. Before Richards' equation and the associated soil hydraulic properties can be upscaled or modified for use on scales that are more useful for climate modeling and other applications of practical relevance, the small scale soil hydraulic property curves should at least perform well on the scale for which they were originally developed. Research over the past couple of decades revealed that the fit of soil water retention curves in the dry end is often quite poor, which is particularly risky when vapor flow is a significant factor. It also emerged that the shape of the retention curve for matric potentials very close to zero can generate physically unrealistic behavior of the hydraulic conductivity near saturation when combined with a popular class of conductivity models. We critically examined most of the existing soil water retention parameterizations with respect to these two aspects, and introduced minor modifications to a few of them to improve their performance. The presentation will highlight the results of this review, and demonstrate the effect on calculated fluxes of liquid water and water vapor in soils for illustrative hypothetical scenarios.

  17. Air-side performance evaluation of three types of heat exchangers in dry, wet and periodic frosting conditions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ping [Zhejiang Vocational College of Commerce, Hangzhou, Binwen Road 470 (China); Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign 1206 West Green Street, Urbana, IL 61801 (United States); Hrnjak, P.S. [Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign 1206 West Green Street, Urbana, IL 61801 (United States)

    2009-08-15

    The performances of three types of heat exchangers that use the louver fin geometry: (1) parallel flow parallel fin with extruded flat tubes heat exchanger (PF{sup 2}), (2) parallel flow serpentine fin with extruded flat tubes heat exchanger (PFSF) and (3) round tube wave plate fin heat exchanger (RTPF) have been experimentally studied under dry, wet and frost conditions and results are presented. The parameters quantified include air-side pressure drop, water retention on the surface of the heat exchanger, capacity and overall heat transfer coefficient for air face velocity 0.9, 2 and 3 m/s, air humidity 70% and 80% and different orientations. The performances of three types of heat exchanger are compared and the results obtained are presented. The condensate drainage behavior of the air-side surface of these three heat exchanger types was studied using both the dip testing method and wind tunnel experiment. (author)

  18. Oxidation behaviour of UZr2.3 alloy in dry air

    International Nuclear Information System (INIS)

    UZr2.3 alloy is being considered as potential material for storage of hydrogen isotopes. However, the performance of this reactive alloy gets largely deteriorated by surface oxidation of oxygen impurity present in the process gas. Hence, it is necessary to investigate the oxidation behaviour of this alloy. In this study, UZr2.3 alloy was prepared by arc melting method followed by vacuum annealing. The alloy was characterized by XRD, SEM and EDX methods. Oxidation behaviour of UZr2.3 alloy was investigated in the temperature range of 773-848 K in dry air by using thermo gravimetric technique. The isothermal oxidation behaviour was studied for 24 hours at each temperature. The oxidation curves are shown. The oxidation curves were analysed using the rate equation: (Δm/a)n = kt, where, (Δm/a) is the mass gain per unit area, n is the power exponent, k is the rate constant and t is time in (seconds). Using the linear rate law, the rate constant (k) of oxidation reaction was evaluated at each temperature after 11% completion of the reaction. Analysis of the results shows that the oxidation reaction follows linear rate law (n ∼ 1) in the temperature range (773-848 K) The variation of (ln k) with reciprocal temperature is shown. The activation energy of this oxidation reaction in the temperature range 773-848 K was calculated using the Arrhenius equation and found to be 162 kJ/mol which is in good agreement with that of literature reported value of 196 kJ/mol

  19. The Research Status and Prospects of the Hot Air Drying and Freeze Drying for Papaya%木瓜热风干燥和冷冻干燥的研究现状和展望

    Institute of Scientific and Technical Information of China (English)

    李铭; 陈冬梅; 侯萍; 赵鹤飞; 余善鸣

    2013-01-01

    果蔬的干燥主要有热干、微波、冻干和组合干燥。木瓜的干燥以热干为主,冻干能最大程度保持木瓜的色泽、风味和营养价值,但研究报道较少。今后木瓜干燥研究的主要内容将是提高品质和降低产品成本。因此,木瓜的热干和冻干的组合干燥将是研究的重点。%The primary drying technologys of fruits and vegetables are hot-air drying , microwave drying , freeze drying and combined drying. The mainly drying method of papaya is hot-air drying. The freeze-dried can keep the greatest degree of color, flavor and nutritional value of papaya, However, it is lack of references on that. Future research of the drying technology of papaya will be improvement of the quality and to reduce product cost. Therefore, the combined drying technology of hot-air and freeze of papaya will become a study emphasis in further research.

  20. Seismic reflection and transmission coefficients at an air-water interface of saturated porous soil

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xin-min; XIA Tang-dai; XU Ping; ZOU Zhen-xuan

    2006-01-01

    Based on the modified Biot's theory of two-phase porous media, a study was presented on seismic reflection and transmission coefficients at an air-water interface of saturated porous soil media. The major differences between air-saturated soils and water-saturated soils were theoretically discussed, and the theoretical formulas of reflection and transmission coefficients at an air-water interface were derived. The characteristics of propagation and attenuation of elastic waves in air-saturated soils were given and the relations among the frequency, the angle of incidence and the reflection, transmission coefficients were analyzed by using numerical methods. Numerical results show that the propagation characteristic of the wave in air-saturated soils is great different from that in water-saturated soils. The frequency and the angle of incidence can have great influences on the reflection and transmission coefficients at interface. Some new cognition about the wave propagation is obtained and the study suggests that we may carefully pay attention to the influence of air on the dynamic analysis of seismic wave.

  1. Leaf area expansion and dry matter accumulation during establishment of broad bean and sorghum at different temperatures and soil water contents in two types of soil in mediterranean Portugal

    OpenAIRE

    Andrade, José; Abreu, Francisco

    2005-01-01

    Crop establishment is a major factor determining crop productivity in the field and is strongly controlled by soil temperature and soil moisture. Fast leaf expansion and dry matter accumulation during crop establishment are required for an adequate establishment. Leaf area expansion and accumulation of dry matter during the establishment of broad bean (Vicia faba L.) and sorghum (Sorghum vulgare L.) were studied at different soil temperatures and soil moisture contents in a Vertisol (Lisbo...

  2. Soil erosion risk evaluation using GIS in the Yuanmou County,a dry-hot valley of Yunnan, China

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Soil erosion is a major threat to sustainable agriculture. Evaluating regional erosion risk is increasingly needed by national and in-ternational environmental agencies. This study elaborates a model (using spatial principal component analysis [SPCA]) method for the evaluation of soil erosion risk in a representative area of dry-hot valley (Yuanmou County) at a scale of 1:100,000 using a spatial database and GIS. The model contains seven factors: elevation, slope, annual precipitation, land use, vegetation, soil, and population density. The evaluation results show that five grades of soil erosion risk: very low, low, medium, high, and very high. These are divided in the study area, and a soil erosion risk evaluation map is created. The model may be applicable to other areas of China because it utilizes spatial data that are generally available.

  3. Influence of alternating soil drying and wetting on the desorption and distribution of aged 14C-labeled pesticide residues in soil organic fractions

    Science.gov (United States)

    Jablonowski, N. D.; Mucha, M.; Thiele, B.; Hofmann, D.; Burauel, P.

    2012-04-01

    A laboratory experiment was conducted to evaluate the effect of alternating soil drying and wetting on the release of aged 14C-labeled pesticide residues and their distribution in soil organic fractions (humic acids, fulvic acids, and humin substances). The used soils (gleyic cambisol; Corg 1.2%, pH 7.2) were obtained from the upper soil layer of two individual outdoor lysimeter studies containing either environmentally long-term aged 14C residues of the herbicide ethidimuron (ETD; 0-10 cm depth; time of aging: 9 years) or methabenzthiazuron (MBT; 0-30 cm depth; time of aging: 17 years). Triplicate soil samples (10 g dry soil equivalents) were (A=dry/wet) previously dried (45° C) or (B=wet/wet) directly mixed with pure water (1+2, w:w), shaken (150 rpm, 1 h), and centrifuged (~2000 g). The resulting supernatant was removed, filtered (0.45 μm) and subjected to 14C activity analysis via liquid scintillation counter (LSC), dissolved organic carbon (DOC) analysis, and LC-MS-MS analysis. This extraction procedure was repeated 15 individual times, for both setups (A) and (B). To determine the distribution of the aged 14C labelled pesticide residues in the soil organic matter fractions, the soil samples were subject to humic and fulvic acids fractionations at cycles 0, 4, 10, and 15. The residual pesticide 14C activity associated with the humic, fulvic, and humin substances (organic fraction remaining in the soil) fractions was determined via LSC. The water-extracted residual 14C activity was significantly higher in the extracts of the dry/wet, compared to the wet/wet soil samples for both pesticides. The total extracted 14C activity in the dry/wet soil extracts accounted for 51.0% (ETD) and 15.4% (MBT) in contrast to 19.0% (ETD) and 4.7% (MBT) in the wet/wet extracts after 15 water extractions. LC-MS-MS analysis revealed the parent compound ETD 27.9 μg kg-1 soil (dry/wet) and 10.7 μg kg-1 soil (wet/wet), accounting for 3.45 and 1.35% of total parent compound

  4. Impacts of lindane usage in the Canadian prairies on the Great Lakes ecosystem. 1. Coupled atmospheric transport model and modeled concentrations in air and soil.

    Science.gov (United States)

    Ma, Jianmin; Daggupaty, Sreerama; Harner, Tom; Li, Yifan

    2003-09-01

    A coupled atmospheric transport, soil-air, water-air exchange model was developed to investigate the impacts of gamma-hexachlorocyclohexane (gamma-HCH or lindane) usage in the Canadian prairies over the Great Lakes region. The fate of gamma-HCH in air and soil is governed by atmospheric dynamics and physical and chemical processes that are described by the coupled model. These processes include transport and turbulent diffusion in the atmosphere, dry and wet deposition, exchange at the interfacial boundaries of air-water and soil-air, and removal processes from the soil such as diffusion, leaching, and degradation. Numerical experiments were conducted for the period of May 1, 1998-April 30, 1999, starting with application of lindane in the spring. The coupled model was executed with two lindane emission (usage) inventories in the model domain. The first scenario contained all known fresh emission sources in Canada-98% was usage in the prairies; the second excluded emission sources from Ontario and Quebec. The model showed that, in the absence of the reemission from past application of lindane, usage of lindane in Ontario and Quebec has a negligible impact on air concentrations in these regions and that the lindane budget in the Great Lakes ecosystem is mostly attributed to applications of lindane in the canola fields in Canadian prairie provinces. Model-predicted air concentrations and seasonal trends agreed well with measured data over the same time period for several background sites operated under the Integrated Atmospheric Deposition Network. Air temperature was shown to play a key role on surface-air exchange dynamics of gamma-HCH. A future paper will assess loadings to the Great Lakes based on these validated model results. PMID:12967095

  5. Rain-induced emission pulses of NOx and HCHO from soils in African regions after dry spells as viewed by satellite sensors

    Science.gov (United States)

    Zörner, Jan; Penning de Vries, Marloes; Beirle, Steffen; Veres, Patrick; Williams, Jonathan; Wagner, Thomas

    2014-05-01

    Outside industrial areas, soil emissions of NOx (stemming from bacterial emissions of NO) represent a considerable fraction of total NOx emissions, and may even dominate in remote tropical and agricultural areas. NOx fluxes from soils are controlled by abiotic and microbiological processes which depend on ambient environmental conditions. Rain-induced spikes in NOx have been observed by in-situ measurements and also satellite observations. However, the estimation of soil emissions over broad geographic regions remains uncertain using bottom-up approaches. Independent, global satellite measurements can help constrain emissions used in chemical models. Laboratory experiments on soil fluxes suggest that significant HCHO emissions from soil can occur. However, it has not been previously attempted to detect HCHO emissions from wetted soils by using satellite observations. This study investigates the evolution of tropospheric NO2 (as a proxy for NOx) and HCHO column densities before and after the first rain fall event following a prolonged dry period in semi-arid regions, deserts as well as tropical regions in Africa. Tropospheric NO2 and HCHO columns retrieved from OMI aboard the AURA satellite, GOME-2 aboard METOP and SCIAMACHY aboard ENVISAT are used to study and inter-compare the observed responses of the trace gases with multiple space-based instruments. The observed responses are prone to be affected by other sources like lightning, fire, influx from polluted air masses, as well measurement errors in the satellite retrieval caused by manifold reasons such as an increased cloud contamination. Thus, much care is taken verify that the observed spikes reflect enhancements in soil emissions. Total column measurements of H2O from GOME-2 give further insight into the atmospheric state and help to explain the increase in humidity before the first precipitation event. The analysis is not only conducted for averages of distinct geographic regions, i.e. the Sahel, but also

  6. Numerical modelling of the effect of dry air traces in a helium parallel plate dielectric barrier discharge

    Science.gov (United States)

    Lazarou, C.; Belmonte, T.; Chiper, A. S.; Georghiou, G. E.

    2016-10-01

    A validated numerical model developed for the study of helium barrier discharges in the presence of dry air impurities is presented in this paper. The model was used to numerically investigate the influence of air traces on the evolution of the helium dielectric barrier discharge (DBD). The level of dry air used as impurity was in the range from 0 to 1500 ppm, which corresponds to the most commonly encountered range in atmospheric pressure discharge experiments. The results presented in this study clearly show that the plasma chemistry and consequently the discharge evolution is highly affected by the concentration level of impurities in the mixture. In particular, it was observed that air traces assist the discharge ignition at low concentration levels (~55 ppm), while on the other hand, they increase the burning voltage at higher concentration levels (~1000 ppm). Furthermore, it was found that the discharge symmetry during the voltage cycle highly depends on the concentration of air. For the interpretation of the results, a detailed analysis of the processes that occur in the discharge gap is performed and the main reaction pathways of ion production are described. Thanks to this approach, useful insight into the physics behind the evolution of the discharge is obtained.

  7. Influence of carbon monoxide additions on the sensitivity of the dry hydrogen-air mixtures to detonation

    International Nuclear Information System (INIS)

    Under severe accident conditions of water cooled nuclear reactors the hydrogen-air detonation represents one of the most hazardous events which can result in the reactor containment damage. An important factor related with the measure of gas mixture detonability is the detonation cell size which correlates with the critical tube diameter and detonation initiation energy. A numerical kinetic study is presented of the influence of carbon monoxide admixtures (from 0 vol.% to 40 vol.%) upon the sensitivity (detonation cell size) of the dry hydrogen-air gas mixtures to detonation in post-accident containment atmosphere. (author). 3 refs., 3 figs

  8. Wind erosion at the dry-up bottom of Aiby Lake-- A case study on the source of air dust

    Institute of Scientific and Technical Information of China (English)

    穆桂金; 闫顺; 吉力力; 何青; 夏训诚

    2002-01-01

    Clay-rich deposits are usually considered as hard materials to be eroded by wind.Data from both surface monitoring and field survey at the dry-up bottom of Aiby Lake present thatclay-rich lacustrine deposits are easily broken down and eroded away by wind in the seasonalalternation process under the natural arid environment, and are the significant source of air dust.The surface of the clay-rich deposits is broken and softened by the freezing-and-thawing action inwinter season and/or by salt and alkali action with precipitation. Impact of wind-input particles andplow of plant branches with wind force drive the clay-rich sediments moving. Wind picks up theclay pebbles and repeats the impaction further-ward onto the dry-up surface. Tremendous finematerials, including soft salts, are contributed to air dust, and transported in long distance.

  9. Impact of Different Methodologies on the Detection of Point Mutations in Routine Air-dried Fine Needle Aspiration (FNA) Smears

    DEFF Research Database (Denmark)

    Rehfeld, C; Münz, S; Krogdahl, A;

    2013-01-01

    promising approach for molecular FNA diagnostics. The objective of this methodological study was to evaluate the feasibility of detecting BRAF, NRAS, HRAS, and KRAS mutations from routine air-dried thyroid FNA smears, and to find an optimal method for detecting these mutations in FNA samples. DNA...... was extracted from 110 routine air-dried FNA smears and the corresponding surgically obtained formalin-fixed paraffin-embedded tissues. The presence of BRAF, NRAS, HRAS, and KRAS mutations was assessed by real-time PCRs and high resolution melting analysis, and/or pyrosequencing in comparison to real-time PCRs...... using hybridization probes and fluorescence melting curve analysis. The high-resolution melting-PCRs revealed a significantly lower number of PCR failures and questionable results, and detected more mutations than the PCRs using hybridization probes. The number of PCR failures ranging from 14...

  10. Availability and evaluation of European forest soil monitoring data in the study on the effects of air pollution on forests

    OpenAIRE

    Cools N; De Vos B

    2011-01-01

    In the study of air pollution effects on forest ecosystems, solid soil data such as cation exchange capacity, base saturation and other exchangeable cation fractions, soil texture, soil moisture, soil weathering rates, C/N ratio and other variables form an important information base for many air pollution impact models. This paper shows some of the possibilities and the limitations of the soil data that European countries collected on the systematic Level I and on the intensive and permanent ...

  11. Modeling of mass transfer performance of hot-air drying of sweet potato (Ipomoea Batatas L. slices

    Directory of Open Access Journals (Sweden)

    Zhu Aishi

    2014-01-01

    Full Text Available In order to investigate the transfer characteristics of the sweet potato drying process, a laboratory convective hot air dryer was applied to study the influences of drying temperature, hot air velocity and thickness of sweet potato slice on the drying process. The experimental data of moisture ratio of sweet potato slices were used to fit the mathematical models, and the effective diffusion coefficients were calculated. The result showed that temperature, velocity and thickness influenced the drying process significantly. The Logarithmic model showed the best fit to experimental drying data for temperature and the Wang and Singh model were found to be the most satisfactory for velocity and thickness. It was also found that, with the increase of temperature from 60 to 80°C, the effective moisture diffusion coefficient varied from 2.962×10-10 to 4.694×10-10 m2×s-1, and it fitted the Arrhenius equation, the activation energy was 23.29 kJ×mol-1; with the increase of hot air velocity from 0.423 to 1.120 m×s-1, the values of effective moisture diffusion coefficient varied from 2.877×10-10 to 3.760×10-10 m2•s-1; with the increase of thickness of sweet potato slice from 0.002 m to 0.004 m, the values of effective moisture diffusion coefficient varied from 3.887×10-10 to 1.225×10-9 m2•s-1.

  12. Regional Differences and Characteristics of Soil Organic Carbon Density Between Dry Land and Paddy Field in China

    Institute of Scientific and Technical Information of China (English)

    XU Quan; RUI Wen-yi; BIAN Xin-min; ZHANG Wei-jian

    2007-01-01

    Study on the regional characteristics of soil organic carbon (SOC) density in farmland will not only contribute greatly to the technique of soil productivity enhancement, but also give evidences of technique selection and policy making for carbon sequestration in soils. Based on the second national soil survey of China, the situation of SOC density in the plow layer of farmland was analyzed under different land use patterns. Results showed that SOC density in the plow layer was about 3.15 kg m-2 in average ranging from 0.81 to 12.68 kg m-2. The highest density was found in the southeastern region with an average of 3.63 kg m-2, while the lowest occurring in the northwestern region with an average of 3.00 kg m-2. The variation coefficient of SOC density in the plow layer of farmland was 57%, which was 35% lower than that of non-farmland soils. Compared to SOC density in the dry land, SOC density in paddy soils was 13% higher with a lower variation coefficient between different regions. In addition, the relationships between the climatic factors (annual average temperature and precipitation) and SOC density were lower in farmland than those in non-farmland soils, as well as lower in paddy soils than those in dry land of farmland. These results suggest that anthropogenic disturbances have great impacts on SOC density in farmland soils, especially in paddy soils, indicating that Chinese rice cropping may contribute greatly to the SOC stability and sequestration in paddy field.

  13. Effects of Tomato Geometries and Air Temperature on the Drying Behavior of Plum Tomato

    Directory of Open Access Journals (Sweden)

    M. S. Brooks

    2008-01-01

    Full Text Available The drying behavior of plum tomatoes as affected by drying temperature and tomato pieces geometry was investigated. The tomato was cut into halves, quarters and eighths and dried at temperatures of 55 and 65°C. During drying, the moisture content followed an exponential decay curve with R2>0.98. The time required to achieve the critical moisture content for storage (15% for the tomato halves, quarters and eights were 36, 26 and 20 h and 23, 18 and 13 h, at the temperatures of 55 and 65°C, respectively. The rate of drying also followed exponential decay and was unaffected by the temperature and tomato piece geometries. The specific drying rate was dependent on the drying temperature and was not affected by geometry. The total surface area appeared to have a significant effect on the specific moisture loss than the cut surface area. Cutting the tomato samples into smaller pieces and drying at lower temperatures is recommended to reduce the drying time and maintain quality.

  14. Drying characteristics of garlic ( Allium sativum L) slices in a convective hot air dryer

    Science.gov (United States)

    Demiray, Engin; Tulek, Yahya

    2014-06-01

    The effects of drying temperatures on the drying kinetics of garlic slices were investigated using a cabinet-type dryer. The experimental drying data were fitted best to the Page and Modified Page models apart from other theoretical models to predict the drying kinetics. The effective moisture diffusivities varied from 4.214 × 10-10 to 2.221 × 10-10 m2 s-1 over the temperature range studied, and activation energy was 30.582 kJ mol-1.

  15. Gamma irradiation of air-dried olive leaves : effective decontamination and impact on the antioxidative properties and on phenolic compounds

    OpenAIRE

    Aouidi, F.; Ayari, S.; Ferhi, H.; Roussos, Sevastianos; M. Hamdi

    2011-01-01

    Olive leaves are commercialized for their antioxidative value due to their valuable phenolic compounds. The present study aimed to evaluate the effect of gamma irradiation on microbial load, on antioxidative properties and on phenolic compounds of air-dried olive leaves. Irradiation was applied up to 25 kGy (5 kGy intervals) to powdered and intact samples. Total aerobic bacteria, yeast and mold, and lactic acid bacteria were counted after gamma irradiation. Decontamination was obtained at 20 ...

  16. Effects of Slice Processing on Hot Air Drying Characteristics of Semi-dry Original Red Jujube%切片处理对半干红枣热风干燥特性的影响

    Institute of Scientific and Technical Information of China (English)

    韩志慧; 郭婷; 何新益; 程莉莉

    2013-01-01

      The objective of this study was to investigate the effects of slice processing on hot air drying characteristics of semi-dry red jujube. Drying characteristics of red jujube slice and origine semi-dry original red jujube under different hot air drying temperature were compared. The drying kinetics model of red jujube slice and origine semi-dry original red jujube were founded. Results showed that slice processing could decrease the drying time of semi-dry original red jujube. Page model provided better simulation of drying curves for red jujube slice at different hot drying temperature. While Henderson and Pabis model provided better simulation of drying curves for origine semi-dry original red jujube at different hot air drying temperature. The effective moisture diffusivity of red jujube was 10 times that of origine semi-dry original red jujube, among 1.77×10-5 m2/s-2.99×10-5 m2/s and 4.56×10-6 m2/s-7.20×10-6 m2/s, respectively. Slice processing has the significant effects on drying characteristics of semi-dry original red jujube dried by hot air drying.%  为探索切片处理对半干红枣热风干燥特性的影响,以半干原枣果作参照,比较了不同热风干燥温度下枣片和枣果的干燥特性,分别建立了干燥动力学模型。研究结果表明,切片处理可以缩短红枣的干燥时间;枣片的热风干燥过程符合Page方程,而枣果的热风干燥过程符合Henderson and Pabis方程。枣片的有效扩散系数是枣果有效扩散系数的的10倍左右,分别为1.77×10-5 m2/s~2.99×10-5 m2/s、4.56×10-6 m2/s~7.20×10-6 m2/s。结果表明切片处理对红枣的干燥特性有明显的影响。

  17. Variation in tensile properties and relationship between tensile properties and air-dried density for moso bamboo

    Institute of Scientific and Technical Information of China (English)

    Huaqiang YU; Benhua FEI; Haiqing REN; Zehui JIANG; Xinge LIU

    2008-01-01

    This research investigated the variation in tensile properties and the relationship between the tensile properties and the air-dried density for the moso bamboo (Phyllostachys pubescens) by sampling at different heights and radial positions. Results showed that the variation of the longitudinal tensile properties in the radial direction was greater than that in the longitudinal direction. The longitudinal tensile modules of elasticity (MOE) ranged from 8.49 to 32.49 GPa. MOE for the outermost layer was 3-4 times as high as that for the innermost layer. The longitudinal tensile strength (MOR) ranged from 115.94 to 328.15 MPa. MOR for the outermost layer is 2-3 times as high as that for the innermost layer. Linear and curvilinear regressions were done from tested data of MOE, MOR and air-dried density in this paper. The linear equation worked a little better than the curvilinear one to predict the longitudinal MOR and MOE from air-dried density.

  18. Historical changes in air temperature are evident in temperature fluxes measured in the sub-soil.

    Science.gov (United States)

    Fraser, Fiona; McCormick, Benjamin; Hallett, Paul; Wookey, Philip; Hopkins, David

    2013-04-01

    Warming trends in soil temperature have implications for a plethora of soil processes, including exacerbated climate change through the net release of greenhouse gases. Whereas long-term datasets of air temperature changes are abundant, a search of scientific literature reveals a lack of information on soil temperature changes and their specific consequences. We analysed five long-term data series collected in the UK (Dundee and Armagh) and Canada (Charlottetown, Ottawa and Swift Current). They show that the temperatures of soils at 5 - 20 cm depth, and sub-soils at 30 - 150 cm depth, increased in line with air temperature changes over the period 1958 - 2003. Differences were found, however, between soil and air temperatures when data were sub-divided into seasons. In spring, soil temperature warming ranged from 0.19°C at 30 cm in Armagh to 4.30°C at 50 cm in Charlottetown. In summer, however, the difference was smaller and ranged from 0.21°C at 10 cm in Ottawa to 3.70°C at 50 cm in Charlottetown. Winter temperatures were warmer in soil and ranged from 0.45°C at 5 cm in Charlottetown to 3.76°C at 150 cm in Charlottetown. There were significant trends in changes to soil temperature over time, whereas air temperature trends tended only to be significant in winter (changes range from 1.27°C in Armagh to 3.35°C in Swift Current). Differences in the seasonal warming patterns between air and soil temperatures have potential implications for the parameterization of models of biogeochemical cycling.

  19. Moisture Distribution in Broccoli: Measurements by MRI Hot Air Drying Experiments

    NARCIS (Netherlands)

    Jin, X.; Sman, van der R.G.M.; Gerkema, E.; Vergeldt, F.J.; As, van H.; Boxtel, van A.J.B.

    2011-01-01

    ABSTRACT The internal moisture distribution that arise in food products during drying, is a key factor for the retention of quality attributes. To reveal the course of moisture content in a product, internal moisture profiles in broccoli florets are measured by MRI imaging during drying experiments

  20. Moisture distribution in broccoli: measurements by MRI hot air drying experiments

    NARCIS (Netherlands)

    Jin, X.; Sman, van der R.G.M.; Gerkema, E.; Vergeldt, F.J.; As, van H.; Boxtel, van A.J.B.

    2011-01-01

    The internal moisture distribution that arise in food products during drying, is a key factor for the retention of quality attributes. To reveal the course of moisture content in a product, internal moisture profiles in broccoli florets are measured by MRI imaging during drying experiments with cont

  1. Aggregate Stability of Purple Soil and Its Impacts on Soil Erosion of Slope Dry Land%紫色土旱坡地土壤团聚体稳定性特征对侵蚀过程的影响

    Institute of Scientific and Technical Information of China (English)

    陈正发; 史东梅; 谢均强; 张兵

    2011-01-01

    [Objective] The objective of this research was to study the purple soil aggregate stability compared with soil erosion in different land use types of dry land. [Method] By using the methods of Simulated Rainfall and analysis characteristics of soil aggregates, the purple soil aggregate stability characteristics of four land use types and their impacts on the process of erosion were studied. [Result] It was found that fast wetting made the majority of aggregate breaking down to the small aggregates. The great impact of two treatments which were slow wetting and wet stirring was the 5-2 mm large aggregates Which the diameter is mainly concentrated in 2-0.5 mm after collapse. The aggregate stability of four land types is mulberry plantation>alfalfa>grassland > vegetable garden. Both the MWD and GMD are the smallest for four land use types of fast wetting, and the largest of the MWD and GMD are slow wetting. The mainly collapse mechanism of soil aggregates in purple soil dry land is fast wetting when the internal air pressure, and the minimal damage is clay swelling. The order of total runoff and sediment in four land use types under simulated rainfall is vegetable land > grassland > alfalfa > mulberry plantation, and the process of runoff and sediment coupled with the aggregate characteristics of stability. The correlation of soil aggregate stability index between runoff rate and sediment yield rate of rainfall is high in the first 1 hour. MWD values under fast wetting were significantly negatively correlated with runoff and sediment erosion. The mainly soil erosion of aggregate crushing mechanism of purple soil in dry land is soil aggregate destruction of the internal air pressure. [Conclusion] The worse the stability of soil aggregates, the more erosion and runoff in purple soil dry land. The relation between soil aggregate stability and sediment characteristics is the highest in antecedent rainfall erosion. It is better to use MWD to reflect the relationship

  2. Diversity of soil fungi in dry deciduous forest of Bhadra Wildlife Sanctuary, Western Ghats of southern India

    Institute of Scientific and Technical Information of China (English)

    Shivakumar P.Banakar; B.Thippeswamy; B.V.Thirumalesh; K.J.Naveenkumar

    2012-01-01

    We assessed soil fungal diversity in the dry deciduous forest of a Bhadra Wildlife Sanctuary of the Western Ghats (210.31 m a.s.(l).; N 13°44′ and E75°37′).Soil samples were collected by random mixed sampling during winter (November,2008),summer (March,2009) and monsoon (August,2009) seasons,and physico-chemical parameters were recorded.During winter,summer,and monsoon seasons,49,45 and 49of fungal species belongs to 20,18 and 19 of genera were isolated,respectively.Isolated soil fungi were mainly of the Mitosporic fungi,followed by Zygomycotina,Ascomycotina,Oomycotina and Coelomycetes.Indices of diversity,dominance and fisher alpha during winter,summer and monsoon seasons were 3.756,3.638 and 3.738 (H′),0.9737,0.9694and 0.9726 (1-D) and 18.84,29.83 and 19.46 (α),respectivelv.Spearman's (r) correlation coefficient of fungal population with physicochemical parameters of soils showed significantly positive and negative correlations (p<0.01) during winter,summer and monsoon seasons.Physico-chemical soil parameters played an important role in the occurrence,diversity,distribution,and relative abundance of fungal species in the tropical dry deciduous forest soil.

  3. Taxonomic and Functional Diversity of Soil and Hypolithic Microbial Communities in Miers Valley, McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    Wei, Sean T. S.; Lacap-Bugler, Donnabella C.; Lau, Maggie C. Y.; Caruso, Tancredi; Rao, Subramanya; de los Rios, Asunción; Archer, Stephen K.; Chiu, Jill M. Y.; Higgins, Colleen; Van Nostrand, Joy D.; Zhou, Jizhong; Hopkins, David W.; Pointing, Stephen B.

    2016-01-01

    The McMurdo Dry Valleys of Antarctica are an extreme polar desert. Mineral soils support subsurface microbial communities and translucent rocks support development of hypolithic communities on ventral surfaces in soil contact. Despite significant research attention, relatively little is known about taxonomic and functional diversity or their inter-relationships. Here we report a combined diversity and functional interrogation for soil and hypoliths of the Miers Valley in the McMurdo Dry Valleys of Antarctica. The study employed 16S rRNA fingerprinting and high throughput sequencing combined with the GeoChip functional microarray. The soil community was revealed as a highly diverse reservoir of bacterial diversity dominated by actinobacteria. Hypolithic communities were less diverse and dominated by cyanobacteria. Major differences in putative functionality were that soil communities displayed greater diversity in stress tolerance and recalcitrant substrate utilization pathways, whilst hypolithic communities supported greater diversity of nutrient limitation adaptation pathways. A relatively high level of functional redundancy in both soil and hypoliths may indicate adaptation of these communities to fluctuating environmental conditions. PMID:27812351

  4. Mathematical modeling of convective air drying of quinoa-supplemented feed for laboratory rats

    Directory of Open Access Journals (Sweden)

    Antonio Vega-Gálvez

    2011-02-01

    Full Text Available Drying kinetics of quinoa-supplemented feed for laboratory rats during processing at 50, 60, 70, 80 and 90ºC was studied and modeled in this work. Desorption isotherm was obtained at 60ºC giving a monolayer moisture content of 0.04 g water/g d.m. The experimental drying curves showed that drying process took place only in the falling rate period. Several thin-layer drying equations available in the literature were evaluated based on determination coefficient (r², sum squared errors (SSE and Chi-square (χ2 statisticals. In comparison to the experimental moisture values, the values estimated with the Logarithmic model gave the best fit quality (r² >0.994, SSE < 0.00015 and χ2 < 0.00018, showing this equation could predict very accurately the drying time of rat feed under the operative conditions applied.

  5. Quantification of soil-to-plant transport of recombinant nucleopolyhedrovirus: effects of soil type and moisture, air currents, and precipitation.

    Science.gov (United States)

    Fuxa, J R; Richter, A R

    2001-11-01

    Significantly more occlusion bodies (OB) of DuPont viral construct HzSNPV-LqhIT2, expressing a scorpion toxin, were transported by artificial rainfall to cotton plants from sandy soil (70:15:15 sand-silt-clay) than from silt (15:70:15) and significantly more from silt than from clay (15:15:70). The amounts transported by 5 versus 50 mm of precipitation were the same, and transport was zero when there was no precipitation. In treatments that included precipitation, the mean number of viable OB transported to entire, 25- to 35-cm-tall cotton plants ranged from 56 (clay soil, 5 mm of rain) to 226 (sandy soil, 50 mm of rain) OB/plant. In a second experiment, viral transport increased with increasing wind velocity (0, 16, and 31 km/h) and was greater in dry (-1.0 bar of matric potential) than in moist (-0.5 bar) soil. Wind transport was greater for virus in a clay soil than in silt or sand. Only 3.3 x 10(-7) (clay soil, 5 mm rain) to 1.3 x 10(-6) (sandy soil, 50 mm rain) of the OB in surrounding soil in experiment 1 or 1.1 x 10(-7) (-0.5 bar sandy soil, 16-km/h wind) to 1.3 x 10(-6) (-1.0 bar clay soil, 31-km/h wind) in experiment 2 were transported by rainfall or wind to cotton plants. This reduces the risk of environmental release of a recombinant nucleopolyhedrovirus (NPV), because only a very small proportion of recombinant virus in the soil reservoir is transported to vegetation, where it can be ingested by and replicate in new host insects. PMID:11679341

  6. CONTROL OF AROMATIC WASTE AIR STREAMS BY SOIL BIOREACTORS

    Science.gov (United States)

    Three soils were examined for the ability to degrade hydrocarbon vapors of benzene, toluene, ethylbenzene, and o-xylene (BTEX). Each of these compounds are major aromatic constituents of gasolines. The soils examined were Rubicon Sand from Traverse City, Michigan, Durant Loam fro...

  7. Role of vegetation cover on soil water balance in two Mediterranean areas: semiarid and dry at southeastern of Spain.

    Science.gov (United States)

    Manrique, Àngela; Ruiz, Samantha; Chirino, Esteban; Bellot, Juan

    2014-05-01

    Water is a limited resource in the semiarid areas, which affects both, the population services, the economic growth, like the natural ecosystems stability. In this context, an accurate knowledge of soil water balance and role of the vegetation cover contribute to improve the management of resources water and forest. These studies are increasingly important, if we consider the latest Assessment Reports of the Intergovernmental Panel on Climate Change. In this paper the main objectives were focused on:(1)To determine the soil water balance on two different climatic conditions, semiarid and dry climate and(2) Assess the effect of vegetation (structure and cover) on soil water balance under the studied climatic conditions. For this purpose we used HYDROBAL ecohydrological model, which calculates at a daily resolution the water flows through of the vegetation canopy, estimates daily soil moisture and predicts deep drainage from the unsaturated soil layer into the aquifer. In order to achieve these objectives, we have selected two sites in the south-eastern of Spain, on soils calcareous and different climatic conditions. Ventós site in a semiarid Mediterranean area and Confrides site in a dry Mediterranean area, with 303 and 611 mm of annual precipitation respectively. Both sites, the predominant vegetation are afforestations with Pinus halepensis on dry grasslands with some patches of thorn shrublands and dwarf scrubs; but it show difference on trees density, cover and height of pines.Soil water balance was determined in each site using HYDROBAL ecohydrological model on one hydrological year (October 2012 and September 2013).Model inputs include climatic variables (daily rainfall and temperature), as well as soil and vegetation characteristics (soil field capacity, soil wilting point, initial soil water content and vegetation cover index). Model outputs are interception, net rainfall, runoff, soil water reserves, actual evapotranspiration, direct percolation, and deep

  8. Elaboration of amniotic membrane dressing dried by air and irradiated - Peruvian experience

    International Nuclear Information System (INIS)

    The purpose of this work is to prepare dressings from the amniotic membrane to be used in cases of skin damage principally due to superficial and intermediate second-degree burns. The amnion is a transparent membrane that lines the chorion. It is resistant and rich in collagen. Due to these characteristics it can be well used as biological dressing as it diminishes the loss of fluids, electrolytes and proteins, it also protects the growing epithelium and adheres well to the surface of the wound, improves mobility of the patient, diminishing pain and stimulating neovascularization. The ISN-IPEN Tissue Bank promoted by IAEA has processed amniotic membrane since July 1997. Initially dressings were prepared using antibiotics, after IAEA training at the MINT of Malaysia, it is processed dried by air, lyophylized and in both presentations, sterilized by gamma-rays. Amniotic membranes are procured from Lima Maternity. Tissues must comply with VDRL, HIV, Hepatitis B and C exclusion tests. The process is held in a laminar flow hood and amnion already separated from the chorion is washed with sterile distilled water, a solution of 0.05% sodium hypochlorite, and normal saline. Then it is cut into appropriate sizes and double packed in PE films. The dressings are then carried to the Peruvian Institute of Nuclear Energy for irradiation, depending on the number of samples either irradiated with gamma-rays at the Gammacell 220 or at the Irradiation Facility located in Santa Anita. The delivered dose is 25 kGy. The product is only released if it complies with the end product quality controls. Meanwhile, microbiological tests are carried out during all the processing stages, in order to monitor the microbial load during production. In conclusion we can state that dressings prepared as above mentioned have the following advantages: not complicated preparation; reliable and safe for clinical use; diminish infection rates and days spent in the hospital; easy to storage; and can be

  9. Decadal co-variability of the summer surface air temperature and soil moisture in China under global warming

    Institute of Scientific and Technical Information of China (English)

    SU MingFeng; WANG HuiJun

    2007-01-01

    The self-calibrating Palmer Drought Severity Index (PDSI) is calculated using newly updated ground observations of monthly surface air temperature (SAT) and precipitation in China. The co-variabilities of PDSI and SAT are examined for summer for the period 1961-2004. The results show that there exist decadal climate co-variabilities and strong nonlinear interactions between SAT and soil moisture in many regions of China. Some of the co-variabilities can be linked to global warming. In summer, significant decadal co-variabilities from cool-wet to warm-dry conditions are found in the east region of Northwest China, North China, and Northeast China. An important finding is that in the west region of Northwest China and Southeast China, pronounced decadal co-variabilities take place from warm-dry to cool-wet conditions. Because significant warming was observed over most areas of the global land surface during the past 20-30 years, the shift to cool-wet conditions is a unique phenomenon which may deserve much scientific attention. The nonlinear interactions between SAT and soil moisture may partly account for the observed decadal co-variabilities. It is shown that anomalies of SAT will greatly affect the climatic co-variabilities, and changes of SAT may bring notable influence on the PDSI in China. These results provide observational evidence for increasing risks of decadal drought and wetness as anthropogenic global warming progresses.

  10. Air-soil exchange of organochlorine pesticides in a sealed chamber.

    Science.gov (United States)

    Yang, Bing; Han, Baolu; Xue, Nandong; Zhou, Lingli; Li, Fasheng

    2015-01-01

    So far little is known about air-soil exchange under any sealed circumstances (e.g., in plastic and glass sheds), which however has huge implications for the soil-air-plant pathways of persistent organic pollutants including organochlorine pesticides (OCPs). A newly designed passive air sampler was tested in a sealed chamber for measuring the vertical concentration profiles of gaseous phase OCPs (hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs)). Air was sampled at 5, 15, and 30 cm above ground level every 10th day during a 60-day period by deploying polyurethane foam cylinders housed in acrylonitrile butadiene styrene-covered cartridges. Concentrations and compositions of OCPs along the vertical sections indicated a clear relationship with proximity to the mixture of HCHs and DDTs which escapes from the soils. In addition, significant positive correlations were found between air temperatures and concentrations of HCHs and DDTs. These results indicated revolatilization and re-deposition being at or close to dynamic pseudo-equilibrium with the overlying air. The sampler used for addressing air-soil exchange of persistent organic pollutants in any sealed conditions is discussed. PMID:25597683

  11. Air-soil exchange of organochlorine pesticides in a sealed chamber

    Institute of Scientific and Technical Information of China (English)

    Bing Yang; Baolu Han; Nandong Xue; Lingli Zhou; Fasheng Li

    2015-01-01

    So far little is known about air-soil exchange under any sealed circumstances (e.g.,in plastic and glass sheds),which however has huge implications for the soil-air-plant pathways of persistent organic pollutants including organochlorine pesticides (OCPs).A newly designed passive air sampler was tested in a sealed chamber for measuring the vertical concentration profiles of gaseous phase OCPs (hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs)).Air was sampled at 5,15,and 30 cm above ground level every 10th day during a 60-day period by deploying polyurethane foam cyhnders housed in acrylonitrile butadiene styrene-covered cartridges.Concentrations and compositions of OCPs along the vertical sections indicated a clear relationship with proximity to the mixture of HCHs and DDTs which escapes from the soils.In addition,significant positive correlations were found between air temperatures and concentrations of HCHs and DDTs.These results indicated revolatilization and re-deposition being at or close to dynamic pseudo-equilibrium with the overlying air.The sampler used for addressing air-soil exchange of persistent organic pollutants in any sealed conditions is discussed.

  12. Analysis of the NASA AirMOSS Root Zone Soil Water and Soil Temperature from Three North American Ecosystems

    Science.gov (United States)

    Hagimoto, Y.; Cuenca, R. H.

    2015-12-01

    Root zone soil water and temperature are controlling factors for soil organic matter accumulation and decomposition which contribute significantly to the CO2 flux of different ecosystems. An in-situ soil observation protocol developed at Oregon State University has been deployed to observe soil water and temperature dynamics in seven ecological research sites in North America as part of the NASA AirMOSS project. Three instrumented profiles defining a transect of less than 200 m are installed at each site. All three profiles collect data for in-situ water and temperature dynamics employing seven soil water and temperature sensors installed at seven depth levels and one infrared surface temperature sensor monitoring the top of the profile. In addition, two soil heat flux plates and associated thermocouples are installed at one of three profiles at each site. At each profile, a small 80 cm deep access hole is typically made, and all below ground sensors are installed into undisturbed soil on the side of the hole. The hole is carefully refilled and compacted so that root zone soil water and temperature dynamics can be observed with minimum site disturbance. This study focuses on the data collected from three sites: a) Tonzi Ranch, CA; b) Metolius, OR and c) BERMS Old Jack Pine Site, Saskatchewan, Canada. The study describes the significantly different seasonal root zone water and temperature dynamics under the various physical and biological conditions at each site. In addition, this study compares the soil heat flux values estimated by the standard installation using the heat flux plates and thermocouples installed near the surface with those estimated by resolving the soil heat storage based on the soil water and temperature data collected over the total soil profile.

  13. Influence of prevailing disturbances on soil biology and biochemistry of montane habitats at Nanda Devi Biosphere Reserve, India during wet and dry seasons

    DEFF Research Database (Denmark)

    Singh, S.K.; Singh, Anoop; Rai, J.P.N.

    2011-01-01

    The impact of prevailing disturbances in montane habitats of Nanda Devi Biosphere Reserve (NDBR) was studied on soil microbial population, biomass, soil respiration and enzyme activities during wet and dry seasons. The physico-chemical characteristics of soils exhibited conspicuous variation...

  14. Liming and phosphorus fertilization in soils under cerrado. 1. Dry matter accumulation and phosphorus uptake by sorghum

    Energy Technology Data Exchange (ETDEWEB)

    Souza, L.F.S. (Empresa Brasileira de Pesquisa Agropecuaria, Bahia. Centro Nacional de Pesquisa de Mandioca e Fruticultura); Fernandes, M.S.; Velloso, A.C.X. (Universidade Federal Rural do Rio de Janeiro (Brazil). Dept. de Solos); Castro, A.F. de (Empresa Brasileira de Pesquisa Agropecuaria, Rio de Janeiro. Servico Nacional de Levantamento e Conservacao de Solos)

    1983-07-01

    The effects of liming and phosphorus fertilizer (300 Kg P/sub 2/O/sub 5//ha) application on dry matter accumulation and P-uptake by sorghum plants were studied under greenhouse conditions. Plants were grown in four Oxisols originally under cerrado vegetation. There was a positive correlation between P-fertilization and liming on dry matter accumulation and P-uptake by plants. The results showed that the main effect of liming in these soils was on the elimination of phytotoxicity, mainly due to exchangeable aluminum.

  15. Air-drying paint compositions comprising carbohydrate-based polyesters and polyester preparation

    OpenAIRE

    Oostveen, E.A.; Weijnen, J.; Haveren, van, J.; Gillard, M.

    2003-01-01

    The invention relates to a polyester obtainable by transesterification or interesterification of:(i) a carbohydrate or an acyl ester thereof, (ii) an alkyl ester of a drying fatty acid, semi-drying fatty acid or mixture thereof; and (iii) an alkyl ester of a non aromatic polycarboxylic acid. The invention further relates to a method for the preparation of a polyester comprising the step of transesterification or interesterification.

  16. The repeated drying-wetting and freezing-thawing cycles affect only the active pool of soil organic matter

    Science.gov (United States)

    Semenov, Vyacheslav; Zinyakova, Natalya; Tulina, Anastasiya

    2016-04-01

    The decrease in the content of soil organic carbon, particularly in active form, is one of the major problems of the 21st century, which is closely related to the disturbance of the biogeochemical carbon cycle and to the increase in the emission of carbon dioxide into the atmosphere. The main reasons for the SOM losses are the surplus of the SOM active pool losses due to mineralization, erosion, and infiltration over the input of fresh organic matter to the soil, as well as the changes in the soil conditions and processes due to natural and anthropogenic disturbing impacts. Experiments were carried out with mixed samples from the upper layers of soddy-podzolic soil, gray forest soil, and typical chernozems. Soil samples as controls were incubated after wetting for 150 days. The dynamics and cumulative production of C-CO2 under stable temperature (22°C) and moisture conditions were determined; the initial content of potentially mineralizable organic matter (C0) in the soil at the beginning of the incubation was then calculated to use these data as the control. Other soil samples were exposed in flasks to the following successive treatments: wetting →incubation → freezing → thawing → incubation →drying. Six repeated cycles of disturbing impacts were performed for 140 days of the experiment. After six cycles, the soil samples were incubated under stable temperature and moisture conditions for 150 days. The wetting of dried soils and the thawing of frozen soils are accompanied by the pulsed dynamics of the C-CO2 production with an abrupt increase in the rate of the C-CO2 emission within several days by 2.7-12.4 and 1.6-2.7 times, respectively, compared to the stable incubation conditions. The rate of the C-CO2 production pulses under each subsequent impact decreased compared to the preceding one similarly for all studied soils, which could be due to the depletion in potentially mineralizable soil organic matter (C0). The cumulative extra C-CO2 production by

  17. Seasonal dynamics of CO2 efflux in soils amended with composted and thermally-dried sludge as affected by soil tillage systems in a semi-arid agroecosystem

    Science.gov (United States)

    García-Gil, Juan Carlos; Soler-Rovira, Pedro; López-de-Sa, Esther G.; Polo, Alfredo

    2014-05-01

    In semi-arid agricultural soils, seasonal dynamic of soil CO2 efflux (SCE) is highly variable. Based on soil respiration measurements the effects of different management systems (moldboard plowing, chisel and no-tillage) and the application of composted sludge (CS) and thermally-dried sewage sludge (TSS) was investigated in a long-term field experiment (28 years) conducted on a sandy-loam soil at the experimental station 'La Higueruela' (40o 03'N, 4o 24'W). Both organic amendments were applied at a rate of 30 Mg ha-1 prior to tillage practices. Unamended soils were used as control for each tillage system. SCE was moderate in late spring (2.2-11.8 μmol CO2 m-2 s-1) when amendments were applied and tillage was performed, markedly decreased in summer (0.4-3.2 μmol CO2 m-2 s-1), following a moderate increase in autumn (3.4-14.1 μmol CO2 m-2 s-1), rising sharply in October (5.6-39.8 μmol CO2 m-2 s-1 ). In winter, SCE was low (0.6-6.5 μmol CO2 m-2 s-1). In general, SCE was greater in chisel and moldboard tilled soils, and in CS and particularly TSS-amended soils, due to the addition of labile C with these amendments, meanwhile no-tillage soils exhibited smaller increases in C efflux throughout the seasons. Soil temperature controlled the seasonal variations of SCE. In summer, when drought occurs, a general decrease of SCE was observed due to a deficit in soil water content. After drought period SCE jumped to high values in response to rain events ('Birch effect') that changed soil moisture conditions. Soil drying in summer and rewetting in autumn may promotes some changes on the structure of soil microbial community, affecting associated metabolic processes, and enhancing a rapid mineralization of water-soluble organic C compounds and/or dead microbial biomass that acts as an energy source for soil microorganisms. To assess the effects of tillage and amendments on SCE, Q10 values were calculated. Data were grouped into three groups according to soil moisture (0

  18. Response of four foliage plants to heated soil and reduced air temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Bodnaruk, W.H. Jr.; Mills, T.W.; Ingram, D.L.

    1981-01-01

    Tip cuttings of Dieffenbachia maculata (Lodd.) G. Donn Exotic Perfection Compacta' and Aglaonema commutatum Schott Silver Queen and single eye cuttings of Epipremnum aureum (Linden and Andre) Bunt, and Philodendron scandens oxycardium (Schott) Bunt. were propagated in combinations of 4 minimum air temperatures, 45/sup 0/, 50/sup 0/, 55/sup 0/ and 60/sup 0/F (7.2/sup 0/, 10/sup 0/, 12.7/sup 0/, 15.5/sup 0/C), and 2 soil temperature treatments; controlled 70/sup 0/F (21/sup 0/C) minimum and variable. Maintaining minimum soil temperatures at 70/sup 0/F reduced production times for rooted Dieffenbachia and Aglaonema tips by 45% and of Epipremnum and Philodendron suitable for 3 inch pots by 35% and 25%, respectively, regardless of minimum air temperature. Minimum air temperature had little effect on Dieffenbachia or Aglaonema root number and length at 70/sup 0/F soil temperature. Similarly shoot length and number of leaves of Philodendron and Epipremnum were not affected by minimum air temperatures with 70/sup 0/F soil temperature. Plant quality was uniformly high in all crops at the 70/sup 0/F soil minimum for all air temperatures except Epipremnum which was chlorotic at 45/sup 0/F. A description of a warm water in-benching heating system is included. 6 references, 2 figures, 9 tables.

  19. Uptake of polychlorinated biphenyls and organochlorine pesticides from soil and air into radishes (Raphanus sativus)

    International Nuclear Information System (INIS)

    Uptake of organochlorine pesticides and polychlorinated biphenyls from soil and air into radishes was measured at a heavily contaminated field site. The highest contaminant concentrations were found for DDT and its metabolites, and for β-hexachlorocyclohexane. Bioconcentration factor (BCF, defined as a ratio between the contaminant concentration in the plant tissue and concentration in soil) was determined for roots, edible bulbs and shoots. Root BCF values were constant and not correlated to log KOW. A negative correlation between BCF and log KOW was found for edible bulbs. Shoot BCF values were rather constant and varied between 0.01 and 0.22. Resuspended soil particles may facilitate the transport of chemicals from soil to shoots. Elevated POP concentrations found in shoots of radishes grown in the control plot support the hypothesis that the uptake from air was more significant for shoots than the one from soil. The uptake of POPs from air was within the range of theoretical values predicted from log KOA. - Uptake from air represented for majority of persistent organochlorines a dominant pathway into shoots while uptake from soil was dominant for roots

  20. Intranasal cold dry air is superior to histamine challenge in determining the presence and degree of nasal hyperreactivity in nonallergic noninfectious perennial rhinitis

    NARCIS (Netherlands)

    J.P. Braat (Joseph); W.J. Fokkens (Wytske); R. Gerth van Wijk (Roy); E. Rijntjes; P.G.H. Mulder (Paul)

    1998-01-01

    textabstractThe objective of the study was to compare cold dry air (CDA) and histamine in differentiating patients with nonallergic noninfectious perennial rhinitis (NANIPER) from control subjects. Nasal reactivity (nasal patency, mucus production, and sneezing) in 16 s

  1. A comparative study of dried apple using hot air, intermittent and continuous microwave: evaluation of kinetic parameters and physicochemical quality attributes.

    Science.gov (United States)

    Aghilinategh, Nahid; Rafiee, Shahin; Gholikhani, Abolfazl; Hosseinpur, Soleiman; Omid, Mahmoud; Mohtasebi, Seyed S; Maleki, Neda

    2015-11-01

    In the study, the effectiveness of intermittent (IMWD) and continuous (CMWD) microwave drying and hot air drying (HAD) treatments on apple slices were compared in terms of drying kinetics (moisture diffusivity and activation energy) and critical physicochemical quality attributes (color change, rehydration ratio, bulk density, and total phenol content (TPC) of the final dried product. The temperature, microwave power, air velocity, and pulse ratio (PR) applied in the experiments were 40-80°C, 200-600 W, 0.5-2 m/s, and 2-6, respectively. Results showed that IMWD and CMWD more effective than HAD in kinetic parameters and physicochemical quality attributes. Also, results indicated CMWD had the lowest and highest drying time and effective diffusivity. The exponential model for estimating IMWD activation energy, considering absolute power (1/P) and pulse ratio were also represented. The color change in apple slices dried by HAD showed the highest change. PMID:26788293

  2. Long-term evaluation of the fate of sulfur mustard on dry and humid soils, asphalt, and concrete.

    Science.gov (United States)

    Mizrahi, Dana M; Goldvaser, Michael; Columbus, Ishay

    2011-04-15

    The long-term fate of the blister agent sulfur mustard (HD, bis(2-chloroethyl)sulfide) was determined in a variety of commercial and natural matrices. HD was found to be extremely stable in dry matrices for over a year. The addition of 5% water to the matrices induced slow degradation of HD, which lasted several months. The major degradation product in sands and asphalt was found to be a sulfonium salt, S[CH(2)CH(2)S(+)(CH(2)CH(2)OH)(2)](2) (H-2TG). Red loam soil, which has not been examined before, exhibited strong interaction with HD, both in dry form and in the presence of water. Humid red loam soil gave rise to unique oxidative degradation products. On humid concrete HD degraded to a complex mixture of products, including vinyls. This may be attributed to the basic sites incorporated in concrete.

  3. 大葱热风微波真空组合干燥试验%Study on Combined Hot-air and Microwave Vacuum Drying for Scallion

    Institute of Scientific and Technical Information of China (English)

    李仪凡; 李树君; 杨炳南; 马季威; 赵东林; 王凤良

    2013-01-01

    Combined drying of hot-air and microwave vacuum was applied for scallion .The effects of dif-ferent drying conditions and drying methods on its drying time and sensory quality including color , superficial aspect and shape of dried scallion was investigated .The effects of combined hot-air and microwave vacuum dr-ying scallion under different cutting length and different microwave power was discussed .Also the performance comparison of different drying methods including hot-air drying , microwave vacuum drying , combined hot-air and microwave drying , combined hot-air and microwave vacuum drying were demonstrated .The results proved that scallion cutting length had significant effect on drying time and sensory quality ;the higher microwave pow-er resulted in little shorter drying time and obvious lower scallion quality .The total drying time of combined hot-air and microwave vacuum drying was 2.8h under the drying condition of 0.65kW microwave power ,0.085 MPa vacuum level, 5mm scallion cutting length while hot-air dried at 60℃ for 2.5h.It decreased 1/3 than hot-air drying, and increased 3.6 times than microwave vacuum drying .But the sensory state was less poor than hot-air drying , and better than microwave vacuum drying , as well as combined hot-air and microwave dr-ying.%对大葱进行了微波真空干燥试验,分析了大葱切段长度、微波功率对大葱微波真空干燥效果的影响,对热风微波真空组合干燥、热风微波组合干燥、微波真空干燥和热风干燥4种干燥方式对大葱干燥效果的影响进行了比较。大葱切段长度对热风微波真空组合干燥的干燥时间和感官品质有显著影响,随着微波功率增大,大葱的干燥时间缩短,感官质量下降;热风微波真空组合干燥的大葱切段长度为5mm,先采用热风干燥温度60℃烘干2.5 h后,在真空度0.085MPa和微波功率0.65kW的条件下,再进行微波真空干燥18min,其整个干燥时间为2

  4. Spectra and vegetation index variations in moss soil crust in different seasons, and in wet and dry conditions

    Science.gov (United States)

    Fang, Shibo; Yu, Weiguo; Qi, Yue

    2015-06-01

    Similar to vascular plants, non-vascular plant mosses have different periods of seasonal growth. There has been little research on the spectral variations of moss soil crust (MSC) over different growth periods. Few studies have paid attention to the difference in spectral characteristics between wet MSC that is photosynthesizing and dry MSC in suspended metabolism. The dissimilarity of MSC spectra in wet and dry conditions during different seasons needs further investigation. In this study, the spectral reflectance of wet MSC, dry MSC and the dominant vascular plant (Artemisia) were characterized in situ during the summer (July) and autumn (September). The variations in the normalized difference vegetation index (NDVI), biological soil crust index (BSCI) and CI (crust index) in different seasons and under different soil moisture conditions were also analyzed. It was found that (1) the spectral characteristics of both wet and dry MSCs varied seasonally; (2) the spectral features of wet MSC appear similar to those of the vascular plant, Artemisia, whether in summer or autumn; (3) both in summer and in autumn, much higher NDVI values were acquired for wet than for dry MSC (0.6 ∼ 0.7 vs. 0.3 ∼ 0.4 units), which may lead to misinterpretation of vegetation dynamics in the presence of MSC and with the variations in rainfall occurring in arid and semi-arid zones; and (4) the BSCI and CI values of wet MSC were close to that of Artemisia in both summer and autumn, indicating that BSCI and CI could barely differentiate between the wet MSC and Artemisia.

  5. Evaluation of the desiccation tolerance of blastospores of Paecilomyces fumosoroseus (Deuteromycotina: Hyphomyces)using a lab- scale, air-drying chamber with controlled relative humidity

    Science.gov (United States)

    The stabilization of living microbial agents for use as biological control agents is often accomplished through desiccation. The drying process must be conducive to the survival of the living microbial agent during desiccation and storage. Our air-drying studies with liquid culture-produced blasto...

  6. THE INFLUENCE OF AIR-DRYING ON HYPER-REMINERALIZATION OF DEMINERALIZED DENTIN - A STUDY ON BULK AS WELL AS ON THIN WET SECTION OF BOVINE DENTIN

    NARCIS (Netherlands)

    INABA, D; IIJIMA, Y; TAKAGI, O; RUBEN, J; ARENDS, J

    1995-01-01

    The influence of air-drying on the remineralization of demineralized bovine dentine was examined in wet bulk samples, in dried bulk samples as well as in wet thin sections. Bulk samples of bovine dentine were first demineralized in an acidic gel (pH = 5) at 37 degrees C for 3 weeks. After 24-hour pr

  7. Improved Formulations for Air-Surface Exchanges Related to National Security Needs: Dry Deposition Models

    Energy Technology Data Exchange (ETDEWEB)

    Droppo, James G.

    2006-07-01

    The Department of Homeland Security and others rely on results from atmospheric dispersion models for threat evaluation, event management, and post-event analyses. The ability to simulate dry deposition rates is a crucial part of our emergency preparedness capabilities. Deposited materials pose potential hazards from radioactive shine, inhalation, and ingestion pathways. A reliable characterization of these potential exposures is critical for management and mitigation of these hazards. A review of the current status of dry deposition formulations used in these atmospheric dispersion models was conducted. The formulations for dry deposition of particulate materials from am event such as a radiological attack involving a Radiological Detonation Device (RDD) is considered. The results of this effort are applicable to current emergency preparedness capabilities such as are deployed in the Interagency Modeling and Atmospheric Assessment Center (IMAAC), other similar national/regional emergency response systems, and standalone emergency response models. The review concludes that dry deposition formulations need to consider the full range of particle sizes including: 1) the accumulation mode range (0.1 to 1 micron diameter) and its minimum in deposition velocity, 2) smaller particles (less than .01 micron diameter) deposited mainly by molecular diffusion, 3) 10 to 50 micron diameter particles deposited mainly by impaction and gravitational settling, and 4) larger particles (greater than 100 micron diameter) deposited mainly by gravitational settling. The effects of the local turbulence intensity, particle characteristics, and surface element properties must also be addressed in the formulations. Specific areas for improvements in the dry deposition formulations are 1) capability of simulating near-field dry deposition patterns, 2) capability of addressing the full range of potential particle properties, 3) incorporation of particle surface retention/rebound processes, and

  8. Variations in soil carbon sequestration and their determinants along a precipitation gradient in seasonally dry tropical forest ecosystems.

    Science.gov (United States)

    Campo, Julio; Merino, Agustín

    2016-05-01

    The effect of precipitation regime on the C cycle of tropical forests is poorly understood, despite the existence of models that suggest a drier climate may substantially alter the source-sink function of these ecosystems. Along a precipitation regime gradient containing 12 mature seasonally dry tropical forests growing under otherwise similar conditions (similar annual temperature, rainfall seasonality, and geological substrate), we analyzed the influence of variation in annual precipitation (1240 to 642 mm) and duration of seasonal drought on soil C. We investigated litterfall, decomposition in the forest floor, and C storage in the mineral soil, and analyzed the dependence of these processes and pools on precipitation. Litterfall decreased slightly - about 10% - from stands with 1240 mm yr(-1) to those with 642 mm yr(-1) , while the decomposition decreased by 56%. Reduced precipitation strongly affected C storage and basal respiration in the mineral soil. Higher soil C storage at the drier sites was also related to the higher chemical recalcitrance of litter (fine roots and forest floor) and the presence of charcoal across sites, suggesting an important indirect influence of climate on C sequestration. Basal respiration was controlled by the amount of recalcitrant organic matter in the mineral soil. We conclude that in these forest ecosystems, the long-term consequences of decreased precipitation would be an increase in organic layer and mineral soil C storage, mainly due to lower decomposition and higher chemical recalcitrance of organic matter, resulting from changes in litter composition and, likely also, wildfire patterns. This could turn these seasonally dry tropical forests into significant soil C sinks under the predicted longer drought periods if primary productivity is maintained. PMID:26913708

  9. Theoretical preconditions and technical substantiation for mechanical compressed air drying method application on the railway transport

    Directory of Open Access Journals (Sweden)

    Tatiana RIPOL’-SARAGOSI

    2009-01-01

    Full Text Available The article is related to the compressed air purification for the rolling stock problems. The mechanical method is described as a potential way of the compressed air cooling and purificating. The temperature field at the heat conducting surface engineer function equation is given in the article as well.

  10. Performance Evaluation of a Solar Dryer with Finny, Perforated Absorber Plate Collector Equipped with an Air Temperature Control System for Dill Drying

    Directory of Open Access Journals (Sweden)

    M Razmipour

    2016-04-01

    Full Text Available Dill is one of the most important plants in the world because of its medicinal properties and it is widely used as a vegetable in the most parts of Iran. In the present study a new solar dryer with finny, perforated absorber plate collector was utilized to dry fresh dill. The dryer was comprised of a solar collector, a product container, a fan and a drying air temperature controller. The temperature controller was used as a control system to regulate the drying air temperature. Thermal performance of the dryer with finny, perforated solar collector was compared with that of a simple flat plate solar collector at different airflow rates. The effect of drying air temperature at three levels (45, 55 and 65 °C, the product size at three lengths (3, 5 and 7 cm and two different modes of drying (mixed and indirect on the dryer performance was investigated. The results showed that the finny, perforated absorber plate solar collector could improve the thermal efficiency about 11% in comparison with the flat plate collector and the highest thermal efficiency was achieved at the maximum airflow rate. Meanwhile, increasing the air temperature and decreasing the product size caused a significant reduction in energy consumption. Solar fraction reduced by increasing the air temperature. Finally a maximum dryer efficiency of 70% was observed at air temperature of 65 oC, product size of 3 cm with mixed mode drying.

  11. High accuracy measurements of dry mole fractions of carbon dioxide and methane in humid air

    OpenAIRE

    Rella, C. W.; H Chen; A. E. Andrews; A. Filges; C. Gerbig; Hatakka, J.; A. Karion; N. L. Miles; Richardson, S. J.; M. Steinbacher; C. Sweeney; Wastine, B.; Zellweger, C.

    2012-01-01

    Traditional techniques for measuring the mole fractions of greenhouse gas in the well-mixed atmosphere have required extremely dry sample gas streams (dew point < −25 °C) to achieve the inter-laboratory compatibility goals set forth by the Global Atmospheric Watch program of the World Meteorological Organization (WMO/GAW) for carbon dioxide (±0.1 ppm) and methane (±2 ppb). Drying the sample gas to low levels of water vapor can be expensive, time-consuming, and/or problematic, especial...

  12. Dry/wet performance of a plate-fin air-cooled heat exchanger with continuous corrugated fins

    International Nuclear Information System (INIS)

    The performance and operating characteristics of a plate-fin heat exchanger in dry/wet or deluge operations was experimentally determined. Development of the deluge heat/mass transfer model continued. The experiments were conducted in a specially-designed wind tunnel at the PNL. Air that was first heated and humidified to specified conditions was circulated at a controlled rate through a 2 ft x 6 ft heat exchanger module. The heat exchanger used in the tests was a wavy surface, plate fin on tube configuration. Hot water was circulated through the tubes at high flow rates to maintain an essentially isothermal condition on the tube side. Deionized water sprayed on the top of the vertically oriented plate fins was collected at the bottom of the core and recirculated. Instrumentation was provided for measurement of flow rates and thermodynamic conditions in the air, in the core circulation water, and in the deluge water. Measurements of the air side pressure drop and heat rejection rate were made as a function of air flow rate, air inlet temperature and humidity, deluge water flow rate, and the core inclination from the vertical. An overall heat transfer coefficient and an effective deluge film convective coefficient was determined. The deluge model, for predicting heat transfer from a wet finned heat exchanger was further developed and refined, and a major extension of the model was formulated that permits simultaneous calculation of both the heat transfer and evaporation rates from the wetted surface. The experiments showed an increase in the heat rejection rate due to wetting, accompanied by a proportional increase in the air side pressure drop. For operation at the same air side pressure drop, the enhancement ratio Q/sub w//Q/sub d/ varied between 2 and 5 for the conditions tested. Thus, the potential enhancement of heat transfer due to wetting can be substantial

  13. Dry/wet performance of a plate-fin air-cooled heat exchanger with continuous corrugated fins

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, S.G.; Kreid, D.K.; Johnson, B.M.

    1981-01-01

    The performance and operating characteristics of a plate-fin heat exchanger in dry/wet or deluge operations was experimentally determined. Development of the deluge heat/mass transfer model continued. The experiments were conducted in a specially-designed wind tunnel at the PNL. Air that was first heated and humidified to specified conditions was circulated at a controlled rate through a 2 ft x 6 ft heat exchanger module. The heat exchanger used in the tests was a wavy surface, plate fin on tube configuration. Hot water was circulated through the tubes at high flow rates to maintain an essentially isothermal condition on the tube side. Deionized water sprayed on the top of the vertically oriented plate fins was collected at the bottom of the core and recirculated. Instrumentation was provided for measurement of flow rates and thermodynamic conditions in the air, in the core circulation water, and in the deluge water. Measurements of the air side pressure drop and heat rejection rate were made as a function of air flow rate, air inlet temperature and humidity, deluge water flow rate, and the core inclination from the vertical. An overall heat transfer coefficient and an effective deluge film convective coefficient was determined. The deluge model, for predicting heat transfer from a wet finned heat exchanger was further developed and refined, and a major extension of the model was formulated that permits simultaneous calculation of both the heat transfer and evaporation rates from the wetted surface. The experiments showed an increase in the heat rejection rate due to wetting, accompanied by a proportional increase in the air side pressure drop. For operation at the same air side pressure drop, the enhancement ratio Q/sub w//Q/sub d/ varied between 2 and 5 for the conditions tested. Thus, the potential enhancement of heat transfer due to wetting can be substantial.

  14. Radon as a tracer for soil-gas entry into a house located next to a contaminated dry-cleaning property; Radon som sporgas for jordluftindtraengning til hus ved forurenet renserigrund

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, C.E

    2001-07-01

    This study applies the naturally occurring radioactive gas radon-222 as a tracer for soil-gas entry into a house located next to a dry-cleaners shop. This is possible because the concentration of radon in the soil below the house is about 1000 times higher than the concentration in outdoor air. The study is based on continuous indoor measurement of radon, differential pressures, barometric pressure and temperatures and grab samples of radon below the slab and in the soil in the vicinity of the house. During the investigation, vacuum extraction were used to remove chlorinated solvents (perchloroethylene, PCE) from the unsaturated zone. The study shows that the vacuum extraction influences the radon concentration in and below the house. When the vacuum pump is on, the indoor radon concentration is only 10 Bq/m{sup 3} corresponding to the contribution from radon in outdoor air and exhalation from building materials. When the vacuum pump is set off, the average indoor radon concentration increases to 30 Bq/m{sup 3}. It is believed that the increase is caused by radon entry from the soil. Regression analysis demonstrates that changes in the indoor radon concentration can be explained by changes in indoor-outdoor pressure differences and changes in the atmospheric pressure. This suggests that advection is the primary mode of entry. Under some highly simplifying assumptions the soil-gas entry is found to be around 1 m{sup 3}/h. This, however, is most likely an overestimate. Based on the measured radon concentration in the exhaust air from the vacuum system and a typical radon emanation rate for Danish soil, it is estimated that the soil vapor extraction system ventilates about 10000 m{sup 3} of soil. The investigation is supported by numerical model calculations with the finite-volume model Rnmod3d. (au)

  15. Retention of Structure and Function of the Cat Germinal Vesicle after Air-Drying and Storage at Suprazero Temperature1

    OpenAIRE

    Graves-Herring, Jennifer E.; Wildt, David E.; Comizzoli, Pierre

    2013-01-01

    The study explored a novel approach for preserving the maternal genome without the entire oocyte by air-drying the cat germinal vesicle (GV) in the presence of the disaccharide trehalose. Specifically, we examined GV structure and function after desiccation, storage at 4°C (up to 32 wk), and rehydration including the ability to resume meiosis after injection into a fresh, conspecific cytoplast. In experiment 1, DNA integrity was similar to fresh controls after 1 and 4 wk storage in the presen...

  16. Utilization of air pollution control residues for the stabilization/solidification of trace element contaminated soil.

    Science.gov (United States)

    Travar, I; Kihl, A; Kumpiene, J

    2015-12-01

    The aim of this study was to evaluate the stabilization/solidification (S/S) of trace element-contaminated soil using air pollution control residues (APCRs) prior to disposal in landfill sites. Two soil samples (with low and moderate concentrations of organic matter) were stabilized using three APCRs that originated from the incineration of municipal solid waste, bio-fuels and a mixture of coal and crushed olive kernels. Two APCR/soil mixtures were tested: 30% APCR/70% soil and 50% APCR/50% soil. A batch leaching test was used to study immobilization of As and co-occurring metals Cr, Cu, Pb and Zn. Solidification was evaluated by measuring the unconfined compression strength (UCS). Leaching of As was reduced by 39-93% in APCR/soil mixtures and decreased with increased amounts of added APCR. Immobilization of As positively correlated with the amount of Ca in the APCR and negatively with the amount of soil organic matter. According to geochemical modelling, the precipitation of calcium arsenate (Ca3(AsO4)2/4H2O) and incorporation of As in ettringite (Ca6Al2(SO4)3(OH)12 · 26H2O) in soil/APCR mixtures might explain the reduced leaching of As. A negative effect of the treatment was an increased leaching of Cu, Cr and dissolved organic carbon. Solidification of APCR/soil was considerably weakened by soil organic matter. PMID:26233740

  17. Effects of precipitation regime and soil nitrogen on leaf traits in seasonally dry tropical forests of the Yucatan Peninsula, Mexico.

    Science.gov (United States)

    Roa-Fuentes, Lilia L; Templer, Pamela H; Campo, Julio

    2015-10-01

    Leaf traits are closely associated with nutrient use by plants and can be utilized as a proxy for nutrient cycling processes. However, open questions remain, in particular regarding the variability of leaf traits within and across seasonally dry tropical forests. To address this, we considered six leaf traits (specific area, thickness, dry matter content, N content, P content and natural abundance (15)N) of four co-occurring tree species (two that are not associated with N2-fixing bacteria and two that are associated with N2-fixing bacteria) and net N mineralization rates and inorganic N concentrations along a precipitation gradient (537-1036 mm per year) in the Yucatan Peninsula, Mexico. Specifically we sought to test the hypothesis that leaf traits of dominant plant species shift along a precipitation gradient, but are affected by soil N cycling. Although variation among different species within each site explains some leaf trait variation, there is also a high level of variability across sites, suggesting that factors other than precipitation regime more strongly influence leaf traits. Principal component analyses indicated that across sites and tree species, covariation in leaf traits is an indicator of soil N availability. Patterns of natural abundance (15)N in foliage and foliage minus soil suggest that variation in precipitation regime drives a shift in plant N acquisition and the openness of the N cycle. Overall, our study shows that both plant species and site are important determinants of leaf traits, and that the leaf trait spectrum is correlated with soil N cycling.

  18. High accuracy measurements of dry mole fractions of carbon dioxide and methane in humid air

    Directory of Open Access Journals (Sweden)

    C. W. Rella

    2013-03-01

    Full Text Available Traditional techniques for measuring the mole fractions of greenhouse gases in the well-mixed atmosphere have required dry sample gas streams (dew point inter-laboratory compatibility goals (WMO, 2011a without drying the sample gas. In this paper, we present laboratory methodology for empirically deriving the water vapour correction factors, and we summarise a series of in-situ validation experiments comparing the measurements in humid gas streams to well-characterised dry-gas measurements. By using the manufacturer-supplied correction factors, the dry-mole fraction measurements have been demonstrated to be well within the GAW compatibility goals up to a water vapour concentration of at least 1%. By determining the correction factors for individual instruments once at the start of life, this water vapour concentration range can be extended to at least 2% over the life of the instrument, and if the correction factors are determined periodically over time, the evidence suggests that this range can be extended up to and even above 4% water vapour concentrations.

  19. Effect of Polypropylene Fibers on the California Bearing Ratio of Air Cured Stabilized Tropical Peat Soil

    Directory of Open Access Journals (Sweden)

    Behzad Kalantari

    2010-01-01

    Full Text Available Problem statement: Peat soil is well known to deform and fail under a light surcharge load and is characterized with low shear strength, high compressibility and high water content. With the rising demand from the construction industry, utilization of these soils is required and suitable technique needs to be found out for stabilizing them. Approach: Model study had been carried to stabilize peat soil using cement as binding agent and polypropylene fibers as additive. Due to high natural water content of the peat soil, the stabilized peat soil samples were kept at normal room temperature and relative humidity for air curing for 90 days. The improvement in the mechanical strength of the stabilized samples was studied by California Bearing Ratio (CBR test for both, unsoaked and soaked samples. The water-cement ratio of the samples was measured for 180 days to study the improvement in strength over time. Results: The results of CBR tests showed an increase by a factor over 22 for unsoaked condition and 15 for the soaked condition of the stabilized samples. With the addition of the polypropylene fibers to the stabilized peat soil with cement not only improved the strength of the stabilized peat soil but also contributed to considerable amount of uniformity and intactness to the stabilized peat soil samples. It was also observed that as the curing time for the stabilized peat soil continued through 180 days the moisture content continued to decrease as well. Thus the water-cement (w/c ratio reduced and as a result of cement hydration, the strength stabilized peat soil samples increased in hardness and gained strength through the curing period. Conclusion/Recommendations: Cement and polypropylene fibers can be used to improve the mechanical strength of the soft peat soil by adopting air curing technique.

  20. High accuracy measurements of dry mole fractions of carbon dioxide and methane in humid air

    Directory of Open Access Journals (Sweden)

    C. W. Rella

    2012-08-01

    Full Text Available Traditional techniques for measuring the mole fractions of greenhouse gas in the well-mixed atmosphere have required extremely dry sample gas streams (dew point < −25 °C to achieve the inter-laboratory compatibility goals set forth by the Global Atmospheric Watch program of the World Meteorological Organization (WMO/GAW for carbon dioxide (±0.1 ppm and methane (±2 ppb. Drying the sample gas to low levels of water vapor can be expensive, time-consuming, and/or problematic, especially at remote sites where access is difficult. Recent advances in optical measurement techniques, in particular Cavity Ring Down Spectroscopy (CRDS, have led to the development of highly stable and precise greenhouse gas analyzers capable of highly accurate measurements of carbon dioxide, methane, and water vapor. Unlike many older technologies, which can suffer from significant uncorrected interference from water vapor, these instruments permit for the first time accurate and precise greenhouse gas measurements that can meet the WMO/GAW inter-laboratory compatibility goals without drying the sample gas. In this paper, we present laboratory methodology for empirically deriving the water vapor correction factors, and we summarize a series of in-situ validation experiments comparing the measurements in humid gas streams to well-characterized dry-gas measurements. By using the manufacturer-supplied correction factors, the dry-mole fraction measurements have been demonstrated to be well within the GAW compatibility goals up to at least 1% water vapor. By determining the correction factors for individual instruments once at the start of life, this range can be extended to at least 2% over the life of the instrument, and if the correction factors are determined periodically over time, the evidence suggests that this range can be extended above 4%.

  1. Simultaneous decay of contact-angle and surface-tension during the rehydration of air-dried root mucilage

    Science.gov (United States)

    Arye, Gilboa; Chen, Fengxian

    2016-04-01

    Plants can extract or exude water and solutes at their root surface. Among the root exudates, the mucilage exhibits a surfactant like properties - depressing the surface-tension (ST, mN/m) at the water-air interface. The amphipathic nature of some of the mucilage molecules (e.g. lipids) is thought to be the reason for its surfactant like behavior. As the rhizosphere dries out, re-orientation and/or re-configuration of amphipathic molecules at the solid-air interface, may impart hydrophobic nature to the rhizosphere. Our current knowledge on the ST of natural and/or model root mucilage is based on measurements of the equilibrium ST. However, adsorption of amphipathic molecules at the water-air interface is not reached instantaneously. The hydrophobic nature of the rhizosphere was deduced from the initial advancing CA, commonly calculated from the first few milliseconds up to few seconds (depending on the method employed). We hypothesized that during the rehydration of the root mucilage; both quantities are dynamic. Processes such as water absorbance and dissolution, may vary the interfacial tensions as a function of time. Consequently, simultaneous reduction of both CA and ST as a function of time can be expected. The main objective of this study was to characterize and quantify the extent, persistency and dynamic of the CA and ST during rehydration of air-dried root mucilage. The study was involved with measurements of dynamic and equilibrium ST using the pedant drop or Wilhelmy plate method, respectively. Glass slides were coated with naturally occurring or model root mucilage and the CA of a sessile drop was measured optically, as a function of time. The results were analyzed based on the Young-Dupré and Young-Laplace equations, from which the simultaneous decay of CA and ST was deduced. The implication for the wettability and water flow in the rhizosphere will be discussed.

  2. Numerical Analysis of Magnetic Force of Dry-Type Air-Core Reactor

    Institute of Scientific and Technical Information of China (English)

    LIUZhi-gang; GENGYing-san; WANGJian-hua

    2004-01-01

    This paper presents a coupled magnetic-circuit method for computing the magnetic force of air-core reactor under short-time current. The current and the magnetic flux density are computed first and then the magnetic force is obtained. Thus, the dynamic stability performance of air-core reactor can be analyzed at the design stage to reduce experimental cost and shorten the lead-time of product development.

  3. Explaining Air and Water Transport in Undisturbed Soils By X-Ray CT Derived Macroporosity and CT- Number-Derived Matrix Density

    DEFF Research Database (Denmark)

    Paradelo Pérez, Marcos; Katuwal, Sheela; Møldrup, Per;

    The characterization of soil pore space geometry is important to predict the fluxes of air, water and solutes through soil and understand soil hydrogeochemical functions. X-ray computed tomography (CT) -derived parameters were evaluated as predictors of water, air and solute transport through soil...... the potential of X-ray CT visualization techniques for estimating fluxes through soil....

  4. X-ray CT-Derived Soil Characteristics Explain Varying Air, Water, and Solute Transport Properties across a Loamy Field

    DEFF Research Database (Denmark)

    Paradelo Pérez, Marcos; Katuwal, Sheela; Møldrup, Per;

    2016-01-01

    when the limiting macroporosity (the minimum macroporosity for every 0.6-mm layer along the soil column) was used, suggesting that soil layers with the narrowest macropore section restricted the flow through the whole soil column. Water, air, and solute transport were related with the CT......The characterization of soil pore space geometry is important for explaining fluxes of air, water, and solutes through soil and understanding soil hydrogeochemical functions. X-ray computed tomography (CT) can be applied for this characterization, and in this study CT-derived parameters were used...... to explain water, air, and solute transport through soil. Forty-five soil columns (20 by 20 cm) were collected from an agricultural field in Estrup, Denmark, and subsequently scanned using a medical CT scanner. Nonreactive tracer leaching experiments were performed in the laboratory along with measurements...

  5. Air quality assessment in the periurban area of Mexico Megacity during dry hot season in 2011 and 2012

    Science.gov (United States)

    Garcia-Reynoso, Agustin; Santos Garcia-Yee, Jose; Barrera-Huertas, Hugo; Gerardo Ruiz-Suárez, Luis

    2016-04-01

    Air quality is a human health threat not only in urbanized areas, it also affects the surrounding zones. Interaction between urban and rural areas can be evaluated by measurements and using models for regional areas that includes in its domain the peri-urban regions. The use of monitoring sites in remote areas is useful however it is not possible to cover all the region the use of models can provide valuable information about the source and fate of the pollution and its transformation. In order to evaluate the influence of the Mexico Megacity in the air quality of the region, two field campaigns were performed during the dry hot season during 2011 and 2012. Meterological and pollutant measurements were made during February and march 2011, in three sites towards the south east of Mexico Megacity, and from march to April 2012 towards the west after the Popocatepetl-Iztaccihuatl mountain range. Air quality modeling were performed by using the National Emissions Inventory 2008 during the studied periods, a comparison between measurements and the air quality model was performed. This type of studies can offer information about the pollutant distribution, the meteorological conditions and the exactness of emissions inventories. The latest can be useful for emissions inventory developers and policy makers.

  6. Experimental Study on Hot Air Drying of Balsam Pear Slice%苦瓜切片热风干燥试验研究

    Institute of Scientific and Technical Information of China (English)

    王华红; 赵士杰; 张博

    2013-01-01

      通过恒温干燥以及变温干燥两种不同的热风干燥方式,研究了苦瓜切片在不同热风温度、切片厚度以及风速等因素条件下的热风干燥特性,并绘制了含水率曲线及干燥速率曲线。结果表明:热风温度和风速对苦瓜干燥影响较大,厚度影响相对较小;变温干燥时,干品色泽比恒温干燥好。这些可为苦瓜切片热风干燥工艺的改进提供一定的理论依据。%Through constant temperature and variable temperature drying , the two different hot air drying methods , this paper has studied the hot air drying characteristics of bitter gourd slices in different air temperature , wind speed , the slice thickness and other factors , and drawn the water cut curves and drying rate curves .The results show that:the hot air temperature and wind velocity have a big effect on the drying process , thickness effect is relatively small .Variable tem-perature drying is better than the constant temperature drying from the dry goods color perspective .The research can pro-vide a certain theory basis for improvements of bitter gourd slices hot-air drying process .

  7. 柠檬热风干燥特性及数学模型%Hot-air drying characteristics and mathematical model of lemon

    Institute of Scientific and Technical Information of China (English)

    黄艳斌; 郑优; 陈海桥; 李颖; 陈厚荣

    2012-01-01

    The characteristics hot-air drying of lemon and its mathematical model were studied with taking the fresh lemon as raw material. Effects of different factors which were lemon slice of thickness, hot-air temperature and wind speed,on the hot-air drying characteristics of lemon were studied to get lemon drying of drying characteristics of curve,drying rate curve. The experimental data was processed base on the SAS8.0 software to establish the drying mathematical model of lemon. Results showed that the hot-air temperature and the lemon slice of thickness had a greater impact on drying rate,while the wind speed on drying rate was less affected. And the hot-air drying model of lemon agreed with Page model.%以新鲜柠檬为原料,研究其热风干燥特性及数学模型。以柠檬片厚度、热风温度、热风风速为因素,分析其对柠檬热风干燥特性的影响,建立柠檬热风干燥的干燥特性曲线、干燥速率曲线,并利用SAS8.0软件对试验数据进行拟合,构建柠檬热风干燥数学模型。结果表明:热风温度、柠檬片厚度对柠檬热风干燥的速率有较大影响,而热风风速对干燥速率的影响较小;柠檬热风干燥符合Page模型。

  8. Gamma irradiation of air-dried olive leaves: Effective decontamination and impact on the antioxidative properties and on phenolic compounds.

    Science.gov (United States)

    Aouidi, Fathia; Ayari, Samia; Ferhi, Hana; Roussos, Sevastianos; Hamdi, Moktar

    2011-08-01

    Olive leaves are commercialized for their antioxidative value due to their valuable phenolic compounds. The present study aimed to evaluate the effect of gamma irradiation on microbial load, on antioxidative properties and on phenolic compounds of air-dried olive leaves. Irradiation was applied up to 25kGy (5kGy intervals) to powdered and intact samples. Total aerobic bacteria, yeast and mold, and lactic acid bacteria were counted after gamma irradiation. Decontamination was obtained at 20kGy. The radioresistance of microbial population was high with D10 values between 9.74 and 25.12kGy. Besides, gamma irradiation up to 25kGy was found to maintain the antioxidant capacity, molecular mass distribution of polyphenolics, total phenolics, ortho-diphenols, flavonoids, oleuropein, verbascoside and rutin contents. To conclude, the improvement of the microbial quality of air-dried olive leaves, without affecting phenolic composition and antioxidative properties, can be successively achieved by the application of gamma irradiation treatment. PMID:25214102

  9. Ozone generation by negative direct current corona discharges in dry air fed coaxial wire-cylinder reactors

    International Nuclear Information System (INIS)

    An analytical study was made in this paper for calculating the ozone generation by negative dc corona discharges. The corona discharges were formed in a coaxial wire-cylinder reactor. The reactor was fed by dry air flowing with constant rates at atmospheric pressure and room temperature, and stressed by a negative dc voltage. The current-voltage characteristics of the negative dc corona discharges formed inside the reactor were measured in parallel with concentration of the generated ozone under different operating conditions. An empirical equation was derived from the experimental results for calculating the ozone concentration generated inside the reactor. The results, that have been recalculated by using the derived equation, have agreed with the experimental results over the whole range of the investigated parameters, except in the saturation range for the ozone concentration. Therefore, the derived equation represents a suitable criterion for expecting the ozone concentration generated by negative dc corona discharges in dry air fed coaxial wire-cylinder reactors under any operating conditions in range of the investigated parameters.

  10. Atmospheric absorption model for dry air and water vapor at microwave frequencies below 100 GHz derived from spaceborne radiometer observations

    Science.gov (United States)

    Wentz, Frank J.; Meissner, Thomas

    2016-05-01

    The Liebe and Rosenkranz atmospheric absorption models for dry air and water vapor below 100 GHz are refined based on an analysis of antenna temperature (TA) measurements taken by the Global Precipitation Measurement Microwave Imager (GMI) in the frequency range 10.7 to 89.0 GHz. The GMI TA measurements are compared to the TA predicted by a radiative transfer model (RTM), which incorporates both the atmospheric absorption model and a model for the emission and reflection from a rough-ocean surface. The inputs for the RTM are the geophysical retrievals of wind speed, columnar water vapor, and columnar cloud liquid water obtained from the satellite radiometer WindSat. The Liebe and Rosenkranz absorption models are adjusted to achieve consistency with the RTM. The vapor continuum is decreased by 3% to 10%, depending on vapor. To accomplish this, the foreign-broadening part is increased by 10%, and the self-broadening part is decreased by about 40% at the higher frequencies. In addition, the strength of the water vapor line is increased by 1%, and the shape of the line at low frequencies is modified. The dry air absorption is increased, with the increase being a maximum of 20% at the 89 GHz, the highest frequency considered here. The nonresonant oxygen absorption is increased by about 6%. In addition to the RTM comparisons, our results are supported by a comparison between columnar water vapor retrievals from 12 satellite microwave radiometers and GPS-retrieved water vapor values.

  11. Simultaneous Water Vapor and Dry Air Optical Path Length Measurements and Compensation with the Large Binocular Telescope Interferometer

    CERN Document Server

    Defrère, D; Downey, E; Böhm, M; Danchi, W C; Durney, O; Ertel, S; Hill, J M; Hoffmann, W F; Mennesson, B; Millan-Gabet, R; Montoya, M; Pott, J -U; Skemer, A; Spalding, E; Stone, J; Vaz, A

    2016-01-01

    The Large Binocular Telescope Interferometer uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 $\\mu$m). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI/MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current performance of the system for dry air seeing compensation, we present simultaneous H-, K-, and N-band observations that illus...

  12. Ozone generation by negative direct current corona discharges in dry air fed coaxial wire-cylinder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yehia, Ashraf [Department of Physics, Faculty of Science, Assiut University, Assiut 71516, Egypt and Department of Physics, College of Science and Humanitarian Studies in Alkharj, Salman bin Abdulaziz University, P.O. Box 83, Alkharj 11942 (Saudi Arabia); Mizuno, Akira [Department of Environmental and Life Sciences, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580 (Japan)

    2013-05-14

    An analytical study was made in this paper for calculating the ozone generation by negative dc corona discharges. The corona discharges were formed in a coaxial wire-cylinder reactor. The reactor was fed by dry air flowing with constant rates at atmospheric pressure and room temperature, and stressed by a negative dc voltage. The current-voltage characteristics of the negative dc corona discharges formed inside the reactor were measured in parallel with concentration of the generated ozone under different operating conditions. An empirical equation was derived from the experimental results for calculating the ozone concentration generated inside the reactor. The results, that have been recalculated by using the derived equation, have agreed with the experimental results over the whole range of the investigated parameters, except in the saturation range for the ozone concentration. Therefore, the derived equation represents a suitable criterion for expecting the ozone concentration generated by negative dc corona discharges in dry air fed coaxial wire-cylinder reactors under any operating conditions in range of the investigated parameters.

  13. Dry sliding wear of Ti-6Al-4V alloy in air and vacuum

    Institute of Scientific and Technical Information of China (English)

    刘勇; 杨德庄; 何世禹; 武万良

    2003-01-01

    Differences in wear rate, morphology of the worn surface and debris, and the microstructure in subsurface of the Ti-6Al-4V alloy after wear in air and vacuum were compared. The wear rate of Ti-6Al-4V alloy in air is higher than that in vacuum in all the ranges of sliding velocities and applied loads. The wear of Ti-6Al-4V alloy in air is controlled by a combination of abrasion, oxidation and delamination with micro-cracks remaining in subsurface. Under the vacuum condition, the surface layer of Ti-6Al-4V alloy experiences a severe plastic deformation on a great scale, which results in an ultra-fine microstructure.

  14. Using air, soil and vegetation to assess the environmental behaviour of siloxanes

    DEFF Research Database (Denmark)

    Ratola, N.; Ramos, S.; Homem, V.;

    2016-01-01

    foam disks-SIPs), the sampling of pine needles and soil was also performed, thus closing the circle of atmospheric exposure in the areas of study. Two sampling campaigns (one in summer and one in winter) were done in a total of eight sampling points in the Portuguese territory, which covered a wide...... and pine needles, the results showed total concentration of siloxanes between 5 and 70 ng g(-1) (dry weight) for soils and from 2 to 118 ng g(-1) (dry weight (dw)) for pine needles, with no clear seasonal trend. For SIPs, the levels varied from 0.6 to 7.8 ng m(-3) and were higher in summer than in winter...

  15. Air pollution: Household soiling and consumer welfare losses

    Science.gov (United States)

    Watson, W.D.; Jaksch, J.A.

    1982-01-01

    This paper uses demand and supply functions for cleanliness to estimate household benefits from reduced particulate matter soiling. A demand curve for household cleanliness is estimated, based upon the assumption that households prefer more cleanliness to less. Empirical coefficients, related to particulate pollution levels, for shifting the cleanliness supply curve, are taken from available studies. Consumer welfare gains, aggregated across 123 SMSAs, from achieving the Federal primary particulate standard, are estimated to range from $0.9 to $3.2 million per year (1971 dollars). ?? 1982.

  16. {sup 7}Be concentrations in air, rain water and soil in Cantabria (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Rodenas, C.; Gomez, J.; Quindos, L.S.; Fernandez, P.L.; Soto, J. [Cantabria Univ. (Spain). Dept. of Medical Physics

    1997-04-01

    {sup 7}Be concentrations present in air, rain water and soil have been measured in the region of Cantabria (Spain) during the last 4 yr. There was a relationship between rainfall and the deposited areal activity of the nuclide at the study site which was consistent with observed annual global rainfall and fallout. (author).

  17. A Centrifuge-Based Technique for Dry Extraction of Air for Ice Core Studies of Carbon Dioxide.

    Science.gov (United States)

    Grachev, A. M.; Brook, E. J.

    2008-12-01

    High resolution CO2 data from the Law Dome ice core document an abrupt ~10 ppm drop in CO2 at about 1600 AD (MacFarling Meure et al., Geophys. Res Lett., v. 33, L14810), which has been attributed to changes in human activities. CO2 measurements in ice cores are difficult, however, making verification of this feature an important task. We are undertaking a high-resolution study of CO2 between 1400 and 1800 AD in the WAIS Divide (Antarctica) ice core with a new dry extraction technique. The need for a dry extraction technique as opposed to a melt-refreeze technique in studies of CO2 from ice cores arises because of the well-documented artifacts in CO2 imposed by the presence of liquid water. Three dry-extraction methods have been employed by previous workers to measure CO2: needle-crushing method, ball-bearings method, and cheese-grater method (B. Stauffer, in: Encyclopedia of Quaternary Science, p. 1181, Elsevier 2007). Each has limitations, and we propose a simpler dry extraction technique, based on a large-capacity refrigerated centrifuge (the "centrifuge technique"), which eliminates the need to employ cryogenic temperatures to collect extracted gas and is more compatible with high sample throughput. The technique is now being tested on ~25-gram WAIS Divide samples in conjunction with CO2 measurements with a gas chromatograph. The technique employs a Beckman J- 6B centrifuge, in which evacuated stainless steel flask is placed: the flask has a weight inside positioned directly over a tall-standing piece of ice whose cross-section is small compared to that of the flask. Upon acceleration to 3000 rpm the weight moves down and presses the ice sample into a thin tablet covering flask's bottom, yielding the air extraction efficiency of ~80%. Preliminary tests suggest that precision and accuracy can be achieved at the level of ~1 ppm once the system is fine-tuned.

  18. 豇豆隧道式热风干燥特性和模型%Drying characteristics and model of cowpea in tunnel hot air dryer

    Institute of Scientific and Technical Information of China (English)

    师建芳; 吴辉煌; 娄正; 吴中华; 刘清

    2013-01-01

    Cowpea, also known as beans, black-eyed peas, is an important leguminous vegetable, which is extensively grown in China. Fresh cowpeas having relatively high moisture content must be distributed to customers or processed as quickly as possible in order to prevent microbial fermentation and thermal degradation. Cowpeas resources have great losses as which are putrescible at normal temperatures and pressures, and this severely limits the transportation, storage and process of cowpea, therefore the development of cowpea deep processing is necessary. As Asian people have the habit of eating dried vegetables such as dried cowpea, drying can not only solve the serious problem of huge losses, but also create more economic benefits for farmers;and because most of deep processing technology needs dried cowpea, drying is of great importance as a preprocessing method. The tunnel type of hot air drying technology has been widely utilized in the drying of carrots, preserved fruits, and plums etc. In this paper, hot air drying characteristics and a drying model of tunnel type of hot air drying technology was studied in drying Cowpea, in order to establish the best model to simulate and predict the water ratio and to provide a technical basis for the industrial application of the control and prediction of the drying process and the tunnel type of hot air drying for cowpea. The tunnel dryer was made by the Institute of Agricultural Product Processing, Chinese Academy of Agricultural Engineering and College of Mechanical Engineering, Tianjin University of Science and Technology. According to the pre-test results, the drying characteristics of Cowpea was investigated under different air temperatures (70℃、80℃and 90℃), air velocities (0.3、0.4 and 0.5 m/s) and material thickness (6 mm、18 mm and 30 mm). The empirical relationships between Cowpea moisture then natural logarithmic lnMR and drying time, water effective diffusion coefficient Deff and drying air temperature was

  19. Micro-PIXE investigations of apoplastic iron in freeze-dried root cross-sections of soil grown barley

    International Nuclear Information System (INIS)

    Freeze-dried cryo-sections of barley roots (Hordeum vulgare L. cv. Alexis) were used to investigate the possible role of the root apoplast as an iron-storage pool for plants; this possibility has been a matter of controversy. Micro-PIXE analyzes in pixel mode were complemented by the STIM technique. Data were analyzed using the new Heidelberg software package BIOPIXE, which provides true elemental maps of inhomogeneous samples such as freeze-dried cross-sections of roots. The maps clearly show a high heterogeneity of the iron distribution in roots between adjacent cell layers. Accumulations of iron were observed in the cell walls of the outermost cell layers of the roots and at the endodermis. Based on the correlation between iron and soil related elements like titanium, aluminum and silicon, most of the iron located at the root surface could be attributed to soil contamination. It could also be shown that these soil contaminations lead to an overestimation of the apoplastic iron concentrations determined by methods commonly used in the botanical field. Besides this, low accumulations of iron were observed in the cell walls of the outmost cell layers of the roots. This may indicate that the root apoplast may have a minor function in iron nutrition

  20. Atmospheric inorganic nitrogen in dry deposition to a typical red soil agro-ecosystem in southeastern China.

    Science.gov (United States)

    Cui, Jian; Zhou, Jing; Yang, Hao

    2010-06-01

    Atmospheric dry deposition is an important pathway of nitrogen (N) sources input to agro-ecosystems. With the knowledge of increasing agricultural effects by dry N deposition, researchers have paid great attention to this topic. Characteristics of dry N deposition were estimated by a big-leaf resistance analogy model and the Auto-Meteorological Experiment Station (AMES) in a typical red soil agro-ecosystem in southeastern China for two years (2005-2006). Monthly dry deposition velocities (V(d)) were in the range of 0.16-0.36, 0.07-0.17 and 0.07-0.24 cm s(-1) for NH(3), NO(2) and aerosol particles (aerosol NH(4)(+) or NO(3)(-)), respectively, and the V(d) were higher in spring and winter than in summer and autumn. Monthly dry N deposition concentration (C(a)) and inferred deposition flux (F(d)) were in the range of 63.38-261.10, 47.21-278.92, 1.56-7.15, 47.21-278.92 microg N m(-3) and of 1.31-8.60, 0.38-3.67, 0-0.08, 0.01-0.23 kg N ha(-2) for NH(3), NO(2), aerosol NH(4)(+) and aerosol NO(3)(-), respectively. During the study period (2005-2006), the total dry N deposition was 70.55 kg N ha(-1) yr(-1) which equivalent to 1.53.8 kg (urea) ha(-1) yr(-1) or 415.0 kg (ammonium bicarbonate) ha(-1) yr(-1) applied in the red soil agro-ecosystems. In addition, the annual mean N depositions, mean sum of the monthly N depositions were 69.44, 1.12, 53.95 and 16.60 kg N ha(-1) yr(-1) for gaseous N, aerosol N, ammonia N and oxidized N, making up 98.42%, 1.58%, 53.95% and 16.60% of the total dry deposition N (70.50 kg ha(-1) yr(-1)). PMID:20532381

  1. Modelling of heat and mass transfer in a granular medium during high-temperature air drying. Effect of the internal gas pressure

    Science.gov (United States)

    Othmani, Hammouda; Hassini, Lamine; Lamloumi, Raja; El Cafsi, Mohamed Afif

    2016-02-01

    A comprehensive internal heat and water transfer model including the gas pressure effect has been proposed in order to improve the industrial high-temperature air drying of inserts made of agglomerated sand. In this model, the internal gas phase pressure effect was made perfectly explicit, by considering the liquid and vapour transfer by filtration and the liquid expulsion at the surface. Wet sand enclosed in a tight cylindrical glass bottle dried convectively at a high temperature was chosen as an application case. The model was validated on the basis of the experimental average water content and core temperature curves for drying trials at different operating conditions. The simulations of the spatio-temporal distribution of internal gas pressure were performed and interpreted in terms of product potential damage. Based on a compromise between the drying time and the pressure increase, a simple drying cycle was implemented in order to optimize the drying process.

  2. Response of respiration and nutrient availability to drying and rewetting in soil from a semi-arid woodland depends on vegetation patch and a recent wildfire

    Science.gov (United States)

    Sun, Q.; Meyer, W. S.; Koerber, G. R.; Marschner, P.

    2015-08-01

    Semi-arid woodlands, which are characterised by patchy vegetation interspersed with bare, open areas, are frequently exposed to wildfire. During summer, long dry periods are occasionally interrupted by rainfall events. It is well known that rewetting of dry soil induces a flush of respiration. However, the magnitude of the flush may differ between vegetation patches and open areas because of different organic matter content, which could be further modulated by wildfire. Soils were collected from under trees, under shrubs or in open areas in unburnt and burnt sandy mallee woodland, where part of the woodland experienced a wildfire which destroyed or damaged most of the aboveground plant parts 4 months before sampling. In an incubation experiment, the soils were exposed to two moisture treatments: constantly moist (CM) and drying and rewetting (DRW). In CM, soils were incubated at 80 % of maximum water holding capacity (WHC) for 19 days; in DRW, soils were dried for 4 days, kept dry for another 5 days, then rewetted to 80 % WHC and maintained at this water content until day 19. Soil respiration decreased during drying and was very low in the dry period; rewetting induced a respiration flush. Compared to soil under shrubs and in open areas, cumulative respiration per gram of soil in CM and DRW was greater under trees, but lower when expressed per gram of total organic carbon (TOC). Organic matter content, available P, and microbial biomass C, but not available N, were greater under trees than in open areas. Wild fire decreased the flush of respiration per gram of TOC in the open areas and under shrubs, and reduced TOC and microbial biomass C (MBC) concentrations only under trees, but had little effect on available N and P concentrations. We conclude that the impact of wildfire and DRW events on nutrient cycling differs among vegetation patches of a native semi-arid woodland which is related to organic matter amount and availability.

  3. Response of respiration and nutrient availability to drying and rewetting in soil from a semi-arid woodland depends on vegetation patch and a recent wild fire

    Science.gov (United States)

    Sun, Q.; Meyer, W. S.; Koerber, G.; Marschner, P.

    2015-06-01

    Semi-arid woodlands, which are characterised by patchy vegetation interspersed with bare, open areas, are frequently exposed to wild fire. During summer, long dry periods are occasionally interrupted by rainfall events. It is well-known that rewetting of dry soil induces a flush of respiration. However, the magnitude of the flush may differ between vegetation patches and open areas because of different organic matter content which could be further modulated by wild fire. Soils were collected from under trees, under shrubs or in open areas in unburnt and burnt sandy Mallee woodland, where part of the woodland experienced a wild fire which destroyed or damaged most of the aboveground plant parts four months before sampling. In an incubation experiment, the soils were exposed to two moisture treatments: constantly moist (CM) and drying and rewetting (DRW). In CM, soils were incubated at 80% of maximum water holding capacity for 19 days; In DRW, soils were dried for four days, kept dry for another five days, then rewet to 80% WHC and maintained at this water content until day 19. Soil respiration decreased during drying and was very low in the dry period; rewetting induced a respiration flush. Compared to soil under shrubs and in open areas, cumulative respiration per g soil in CM and DRW was greater under trees, but lower when expressed per g TOC. Organic matter content, available P, and microbial biomass C, but not available N were greater under trees than in open areas. Wild fire decreased the flush of respiration per g TOC in the open areas and under shrubs, and reduced TOC and MBC concentrations only under trees, but had little effect on available N and P concentrations. We conclude that of the impact wild fire and DRW events on nutrient cycling differ among vegetation patches of a native semiarid woodland which is related to organic matter amount and availability.

  4. Comparison, limitations and uncertainty of wet chemistry techniques, loss on ignition and dry combustion in soil organic carbon analysis

    Science.gov (United States)

    Ćirić, Vladimir; Manojlović, Maja; Belić, Milivoj; Nešić, Ljiljana; Švarc-Gajić, Jaroslava; Sitaula, Bishal K.

    2014-05-01

    Soil organic carbon (SOC) has an important role in natural processes (carbon cycle, global climate change and plant growth), agriculture, soil protection and biodiversity. Determination of SOC is usually based on the oxidation of soil organic matter (SOM). Many methods are available, each with advantages and disadvantages in terms of accuracy, costs, convenience and repeatability. Therefore, it is necessary to make a comprehensive overview in order to select appropriate method with the purpose of accurate SOC determination. Most errors in SOC stocks assessment and SOC monitoring occur due to differences in analytical approaches and procedures. This can be a key factor in making incorrect conclusions. The purpose of this research was to compare methods for SOC determination and highlight the strengths and weaknesses of individual methods. The research was conducted on soil samples collected from different soil types and different land uses of temperate region. The concentration of SOC in every sample was determined by the following methods: Tyrin's method, Tyrin's method without addition of AgSO4, Kotzmann's method, loss on ignition (LOI) method, Walkley-Black method, dry combustion by CHN analyzer with pretreatment with HCl and subtraction of volumetrically determined soil inorganic carbon (SIC) from dry combustion by CHN analyzer without pretreatment. Each of the applied methods demonstrated specific limitations. The average SOC concentration determined by different methods ranged from 16.1-28.5 g kg-1. It has been established that different methods for the determination of total SOC recovered 76-157% of SOC compared to the reference dry combustion method by CHN analyzer. The correlation coefficients between applied methods ranged from 0.74-0.98. The Tyrin's method without addition of AgSO4 can be recommended as the most suitable method for the determination of SOC, with mandatory use of the correction factor 1.14. For the purpose of reducing the difference

  5. Column Experiments Investigating Wetting and Drying of Soil and Consumption of Organic Contaminants for Managed Aquifer Recharge

    Science.gov (United States)

    Silver, M.; Schueth, C.; Wefer-Roehl, A.; Kuebeck, C.

    2014-12-01

    The EU FP7 project MARSOL seeks to address water scarcity challenges in arid regions. Within this framework, we conduct a series of experiments to evaluate the potential for water quality improvement and changes in hydraulic conductivity when managed aquifer recharge (MAR) is performed by infiltrating treated wastewater in soils that do not have high potential for sorption. For example, in the Attica (Athens and vicinity) region of Greece, the bedrock is mostly marble, resulting in calcite-rich soils that present little potential for sorption of contaminants to mineral surfaces. This leaves consumption of organic contaminants by microbes as the critical mechanism for water quality improvement, when treated wastewater is infiltrated through such soils. In order to enhance the potential for contaminant consumption by aerobic bacteria in a way that would be realistic to later perform in an infiltration basin, we conduct experiments using a series of wetting and drying cycles. The experimental setup consists of 90-cm long soil columns, fitted with oxygen sensors, time-domain reflectometry sensors (to measure moisture content), sampling ports, oxidation-reduction probes, and head observation tubes. We use the data collected from these sensors and features of the experimental setup to answer the following questions: 1. Does hydraulic conductivity change, from formation of a biofilm or dissolution of calcite (or both)? 2. Are organic contaminants consumed? 3. What effect do wetting and drying cycles have on consumption of organic contaminants? 4. How long can infiltration of treated wastewater last, before oxygen is consumed and conditions become reducing? These questions are investigated by observing the hydraulic head and outflow, performing tracer tests, taking samples from the sampling ports and outflow for chemical analyses, and measuring moisture content and oxygen concentration, in the course of performing multiple wetting and drying cycles. These column

  6. Vertical profile measurements of soil air suggest immobilization of gaseous elemental mercury in mineral soil.

    Science.gov (United States)

    Obrist, Daniel; Pokharel, Ashok K; Moore, Christopher

    2014-02-18

    Evasion of gaseous elemental Hg (Hg(0)g) from soil surfaces is an important source of atmospheric Hg, but the volatility and solid-gas phase partitioning of Hg(0) within soils is poorly understood. We developed a novel system to continuously measure Hg(0)g concentrations in soil pores at multiple depths and locations, and present a total of 297 days of measurements spanning 14 months in two forests in the Sierra Nevada mountains, California, U.S. Temporal patterns showed consistent pore Hg(0)g concentrations below levels measured in the atmosphere (termed Hg(0)g immobilization), ranging from 66 to 94% below atmospheric concentrations throughout multiple seasons. The lowest pore Hg(0)g concentrations were observed in the deepest soil layers (40 cm), but significant immobilization was already present in the top 7 cm. In the absence of sinks or sources, pore Hg(0)g levels would be in equilibrium with atmospheric concentrations due to the porous nature of the soil matrix and gas diffusion. Therefore, we explain decreases in pore Hg(0)g in mineral soils below atmospheric concentrations--or below levels found in upper soils as observed in previous studies--with the presence of an Hg(0)g sink in mineral soils possibly related to Hg(0)g oxidation or other processes such as sorption or dissolution in soil water. Surface chamber measurements showing daytime Hg(0)g emissions and nighttime Hg(0)g deposition indicate that near-surface layers likely dominate net atmospheric Hg(0)g exchange resulting in typical diurnal cycles due to photochemcial reduction at the surface and possibly Hg(0)g evasion from litter layers. In contrast, mineral soils seem to be decoupled from this surface exchange, showing consistent Hg(0)g uptake and downward redistribution--although our calculations indicate these fluxes to be minor compared to other mass fluxes. A major implication is that once Hg is incorporated into mineral soils, it may be unlikely subjected to renewed Hg(0)g re-emission from

  7. Volumetric shrinkage characteristics of soil during drying%土体干燥过程中的体积收缩变形特征

    Institute of Scientific and Technical Information of China (English)

    唐朝生; 崔玉军; Anh-Minh Tang; 施斌

    2011-01-01

    通过开展室内试验,分别研究了初始饱和的糊状试样和不同压实状态的压实试样的体积收缩变形特征。对于糊状试样,采用液体体积置换法测量了试样干燥过程中的体积变化,获得了完整的收缩曲线,试验结果表明:糊状试样的收缩过程可分正常收缩、残余收缩和零收缩3个阶段;绝大部分收缩变形发生在进气点之前即土体处于饱和状态。对于压实试样,初始干密度和含水率对收缩特征有重要影响:初始干密度增加对体积收缩变形起抑制作用,而初始含水率的增加对体积收缩变形起促进作用。此外,压实试样的体积收缩存在明显的各向异性,且对初始含水率的敏感程度高于%Drying shrinkage is one of the intrinsic characteristics of soil,and has profound effects on its engineering properties.In this investigation,laboratory tests are conducted on initially saturated paste-like specimens and compacted specimens with different compaction parameters.For the paste-like specimens,the fluid volume displacement technique is employed to measure the volumetric change of specimens during drying,and the complete shrinkage curve is determined.It is found that three stages can be distinguished in the shrinkage of paste-like specimens,namely normal shrinkage,residual shrinkage and zero shrinkage;most of the volumetric shrinkage deformation occurs before the air-entry point while the soil is still fully saturated;the volume shrinkage behavior and shrinkage curve shape significantly depend on soil microstructure characteristics.For the compacted specimens,the shrinkage behavior is significantly controlled by the initial drying density and water content.In general,shrinkage strain decreases with the increase of the initial dry density and increases with the increase of the compaction water content.In addition,the results show that the shrinkage of compacted specimens is anisotropic rather than isotropic,and is more

  8. Remediation of arsenic contaminated soil by coupling oxalate washing with subsequent ZVI/Air treatment.

    Science.gov (United States)

    Cao, Menghua; Ye, Yuanyao; Chen, Jing; Lu, Xiaohua

    2016-02-01

    The application of a novel coupled process with oxalate washing and subsequent zero-valent iron (ZVI)/Air treatment for remediation of arsenic contaminated soil was investigated in the present study. Oxalate is biodegradable and widely present in the environment. With addition of 0.1 mol L(-1) oxalate under circumneutral condition, 83.7% and 52.6% of arsenic could be removed from a spiked kaolin and an actual contaminated soil respectively. Much more oxalate adsorption on the actual soil was attributed to the higher soil organic matter and clay content. Interestingly, oxalate retained in the washing effluent could act as an organic ligand to promote the oxidation efficiency of ZVI/Air at near neutral pH. Compared with the absence of oxalate, much more As(III) was oxidized. Arsenic was effectively adsorbed on iron (hydr)oxides as the consumption of oxalate and the increase of pH value. For the actual soil washing effluent, about 94.9% of total arsenic was removed after 120 min's treatment without pH adjustment. It has been demonstrated that As(V) was the dominant arsenic speciation adsorbed on iron (hydr)oxides. This study provides a promising alternative for remediation of arsenic contaminated soil in view of its low cost and environmental benign.

  9. Remediation of arsenic contaminated soil by coupling oxalate washing with subsequent ZVI/Air treatment.

    Science.gov (United States)

    Cao, Menghua; Ye, Yuanyao; Chen, Jing; Lu, Xiaohua

    2016-02-01

    The application of a novel coupled process with oxalate washing and subsequent zero-valent iron (ZVI)/Air treatment for remediation of arsenic contaminated soil was investigated in the present study. Oxalate is biodegradable and widely present in the environment. With addition of 0.1 mol L(-1) oxalate under circumneutral condition, 83.7% and 52.6% of arsenic could be removed from a spiked kaolin and an actual contaminated soil respectively. Much more oxalate adsorption on the actual soil was attributed to the higher soil organic matter and clay content. Interestingly, oxalate retained in the washing effluent could act as an organic ligand to promote the oxidation efficiency of ZVI/Air at near neutral pH. Compared with the absence of oxalate, much more As(III) was oxidized. Arsenic was effectively adsorbed on iron (hydr)oxides as the consumption of oxalate and the increase of pH value. For the actual soil washing effluent, about 94.9% of total arsenic was removed after 120 min's treatment without pH adjustment. It has been demonstrated that As(V) was the dominant arsenic speciation adsorbed on iron (hydr)oxides. This study provides a promising alternative for remediation of arsenic contaminated soil in view of its low cost and environmental benign. PMID:26476769

  10. Relationship between specific surface area and the dry end of the water retention curve for soils with varying clay and organic carbon contents

    DEFF Research Database (Denmark)

    Resurreccion, Augustus C.; Møldrup, Per; Tuller, Markus;

    2011-01-01

    dominate over capillary forces, have also been used to estimate soil specific surface area (SA). In the present study, the dry end of the SWRC was measured with a chilled-mirror dew point psychrometer for 41 Danish soils covering a wide range of clay (CL) and organic carbon (OC) contents. The 41 soils were...... with ethylene glycol monoethyl ether (SA_EGME) only for organic soils with n > 10. A strong correlation between the ratio of the two surface area estimates and the Dexter number was observed and applied as an additional scaling function in the TO model to rescale the soil water retention curve at low water...... and SA. It is therefore recommended to apply the empirical CSRN model for predicting the dry part of the water retention curve (−10 to −800 MPa) from measured soil texture or surface area. Further research should aim to modify the more physically based TO model to obtain better descriptions of the SWRC...

  11. X-ray Amorphous Phases in Antarctica Dry Valley Soils: Insight into Aqueous Alteration Processes on Mars?

    Science.gov (United States)

    Ming, D. W.; Morris, R. V.; Rampe, E. B.; Quinn, J. E.; Graff, T. G.

    2015-12-01

    The Chemistry and Mineralogy (CheMin) instrument onboard the Mars Curiosity rover has detected abundant amounts (approx. 25-30 wt. %) of X-ray amorphous materials in a windblown deposit (Rocknest) and in a sedimentary mudstone (Cumberland and John Klein) in Gale crater. On Earth, X-ray amorphous components are common in soils and sediments, but usually not as abundant as detected in Gale crater. One hypothesis for the abundant X-ray amorphous materials on Mars is limited interaction of liquid water with surface materials, kinetically inhibiting maturation to more crystalline phases. The objective of this study was to characterize the chemistry and mineralogy of soils formed in the Antarctica Dry Valleys, one of the driest locations on Earth. Two soils were characterized from different elevations, including a low elevation, coastal, subxerous soil in Taylor Valley and a high elevation, ultraxerous soil in University Valley. A variety of techniques were used to characterize materials from each soil horizon, including Rietveld analysis of X-ray diffraction data. For Taylor Valley soil, the X-ray amorphous component ranged from about 4 wt. % in the upper horizon to as high as 15 wt. % in the lowest horizon just above the permafrost layer. Transmission electron microscopy indicated that the presence of short-range ordered (SRO) smectite was the most likely candidate for the X-ray amorphous materials in the Taylor Valley soils. The SRO smectite is likely an aqueous alteration product of mica inherited from granitic materials during glaciation of Taylor Valley. The drier University Valley soil had lower X-ray amorphous contents of about 5 wt. % througout the profile. The X-ray amorphous materials in University Valley are attributed to nanoparticles of TiO2 and possibly amorphous SiO2. The high abundance of X-ray amorphous materials in Taylor Valley is surprising for one of the driest places on Earth. These materials may have been physically and chemical altered during

  12. Air impingement drying kinetics of cherry tomato%圣女果的气体射流冲击干燥动力学

    Institute of Scientific and Technical Information of China (English)

    王丽红; 高振江; 肖红伟; 林海; 姚雪东

    2011-01-01

    为缩短圣女果的干制时间、提高于制品质,将气体射流冲击干燥技术运用于圣女果的干燥.研究了在不同干燥温度(50,60,70和80℃)和风速(10,12,14和16 m·s-1)条件下圣女果的干燥速率、水分有效扩散系数、干燥活化能以及最佳干燥工艺.试验结果表明:提高干燥温度和风速均可缩短干燥时间,其中干燥温度的影响比风速更为明显;干燥过程中圣女果的水分有效扩散系数为(0.549 ~2.754)×10~9 m2·S-1;圣女果干燥活化能为51.09 kJ·mol-1;圣女果的最佳干燥工艺条件是:风温为70℃、风速为14 m·s-1.%To improve the quality of dried cherry tomato and to shorten drying time, air impingement drying technology was used to dry cherry tomato. The drying rate, the moisture effective diffusivity and the activation energy of cherry tomato drying were investigated under different drying temperatures of 50, 60, 70 and 80 ℃ , and different air velocities of 10, 12, 14 and 16 m · s-1. The results show that the drying time can be shortened by increasing drying temperature and air velocity, and the effect of drying temperature is more effective than that of air velocity. The moisture effective diffusivity ranges from 0. 549 X 10 " to 2. 754 × 10 -9 m2 · s-1 with activation energy of 51. 09 kJ · mol-1. The optimal drying conditions of cherry tomato are at air temperature of 70 ℃ with air velocity at jet nozzle of 14 m · s-1.

  13. Energy and Water Balance at Soil-Air Interface in a Sahelian Region

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The aim of this work is an improvement of the parameterization of the soil moisture in the scheme of the Land Surface Process Model (LSPM) for applications over desert areas. In fact, in very dry conditions, the water vapour flux plays an important role in the evaporation processes and influences the underground profiles of humidity and temperature. The improved version of soil moisture parametcrization in the LSPM scheme has been checked by using the data taken from the database of the field experiment HAPEX-Sahel (Hydrology-Atmosphere Pilot Experiment in the Sahel, 1990-1992). Model simulations refer to three dif ferent stations located in Niger (Fallow, Millet and Tiger sites) where input data for LSPM and observations were simultaneously available. The results of simulations taking into account the water vapour flux in the soil model LSPM, seem to compare better with the observed behaviour of soil moisture and turbulent heat fluxes than those overlooking the water vapour flux, confirming the great importance of the water vapour in such dry conditions.

  14. Modeling Air Permeability in Variably Saturated Soil from Two Natural Clay Gradients

    DEFF Research Database (Denmark)

    Chamindu, Deepagoda; Arthur, Emmanuel; Møldrup, Per;

    2013-01-01

    Understanding soil–gas phase properties and processes is important for finding solutions to critical environmental problems such as greenhouse gas emissions and transport of gaseous-phase contaminants in soils. Soil–air permeability, ka (μm2), is the key parameter governing advective gas movement...... measurements from two Danish arable fields, each located on natural clay gradients, this study presents a pore tortuosity–disconnectivity analysis to characterize the soil–gas phase. The main objective of this study is to investigate the effect of soil–moisture condition, clay content, and other potential...... drivers of soil texture and structure on soil-gas phase characteristics based on a ka–based pore tortuosity parameter, Xa [= log(ka/ka,1000)/log(ɛ/ɛ,1000)]. Results showed that Xa did not vary significantly with soil matric potential (in the range of –10 to –1000 cm H2O), but the average Xa across...

  15. Forecasting wetting and drying of post-wildfire soils in response to precipitation: A time series optimization approach

    Science.gov (United States)

    Basak, A.; Kulkarni, C.; Schmidt, K. M.; Mengshoel, O. J.

    2015-12-01

    Volumetric water content (VWC) in soils is critical for forecasting thresholds for runoff-driven erosion caused by rainfall. Even though theoretical relations (e.g., Richards equation) have been developed to quantify VWC in unsaturated granular soils, site-specific field conditions and hysteresis of suction and VWC in soil preclude their direct use. Although attempts have previously been made to forecast VWC using various time-series models (e.g., autoregressive integrated moving average or ARIMA), these approaches lack hydrologic foundations and perform poorly when used to forecast VWC over time periods longer than 24 hours. In this work, we extend an existing Antecedent Water Index (AWI) based model to express VWC as a function of time and rainfall. AWI models typically overfit data and cannot be used for forecast VWC over long time periods. We developed a new model to overcome this limitation, which accumulates rainfall over a time window and fits a diverse range of wetting and drying curves. Hydraulic redistribution parameters in this model bear resemblance to hydrologic processes driven by gravity and suction. This model reasonably forecasts VWC using only initial VWC values and rainfall forecasts. Experimental VWC data were collected from steep gradient post-wildfire sites in southern California. Rapid landscape change was observed in response to small to moderate rain storms. We formulated a mean-squared error minimization problem over the model parameters and optimized using genetic algorithms. We found that our model fits VWC data for 3 distinct soil textures, each occurring at 3 different depths below the ground surface (5 cm, 15 cm, and 30 cm). Our model successfully forecasts VWC trends, such as drying and wetting rate. To a certain extent, our model achieves spatial and seasonal generalizability. Our accumulative rainfall model is also applicable to continuous predictions, where VWC values are repeatedly used to predict future ones within a 12-hr time

  16. Physiological and biochemical responses of Yarrowia lipolytica to dehydration induced by air-drying and freezing.

    Directory of Open Access Journals (Sweden)

    Caroline Pénicaud

    Full Text Available Organisms that can withstand anhydrobiosis possess the unique ability to temporarily and reversibly suspend their metabolism for the periods when they live in a dehydrated state. However, the mechanisms underlying the cell's ability to tolerate dehydration are far from being fully understood. The objective of this study was to highlight, for the first time, the cellular damage to Yarrowia lipolytica as a result of dehydration induced by drying/rehydration and freezing/thawing. Cellular response was evaluated through cell cultivability determined by plate counts, esterase activity and membrane integrity assessed by flow cytometry, and the biochemical composition of cells as determined by FT-IR spectroscopy. The effects of the harvesting time (in the log or stationary phase and of the addition of a protective molecule, trehalose, were investigated. All freshly harvested cells exhibited esterase activity and no alteration of membrane integrity. Cells freshly harvested in the stationary phase presented spectral contributions suggesting lower nucleic acid content and thicker cell walls, as well as longer lipid chains than cells harvested in the log phase. Moreover, it was found that drying/rehydration induced cell plasma membrane permeabilization, loss of esterase activity with concomitant protein denaturation, wall damage and oxidation of nucleic acids. Plasma membrane permeabilization and loss of esterase activity could be reduced by harvesting in the stationary phase and/or with trehalose addition. Protein denaturation and wall damage could be reduced by harvesting in the stationary phase. In addition, it was shown that measurements of loss of membrane integrity and preservation of esterase activity were suitable indicators of loss and preservation of cultivability, respectively. Conversely, no clear effect of freezing/thawing could be observed, probably because of the favorable operating conditions applied. These results give insights into Y

  17. An economic optimization of evaporator and air collector area in a solar assisted heat pump drying system

    International Nuclear Information System (INIS)

    Highlights: • The optimum combination will provide around 89% of the total load. • The system has a savings during the life cycle with least payback period of 4.37 year. • The optimal system is insensitive to the variation in fuel inflation and discount rate. - Abstract: This paper presents an economic optimization of evaporator and air collector area of a solar assisted heat pump drying system. Economic viability of solar heating systems is usually made by comparing the cost flows recurring throughout the lifetime of the solar and conventional alternative systems. Therefore, identification of optimum variables by using a simulation program and an economic analysis based on payback period of the system are presented in this paper. FORTRAN language is used to run the simulation. Effect of load and different economic variables on payback period is also investigated. Economic analysis reveals that system has sufficient amount of savings during the life cycle with a minimum payback period of about 4 years

  18. Techno-economic analysis of a roof-integrated solar air heating system for drying fruit and vegetables

    Energy Technology Data Exchange (ETDEWEB)

    Sreekumar, A. [Dept. of Physics, Cochin University of Science and Technology, Kochi 682 022 (India)

    2010-11-15

    The solar air heater was 46 m{sup 2} and recorded a maximum temperature of 76.6 C. The dryer was loaded with 200 kg of fresh pineapple slices 5 mm thick. The initial moisture content of 82% was reduced to the desired level (<10%) within 8 h. The performance of the dryer was analyzed in detail by three methods namely annualized cost, present worth of annual savings, and present worth of cumulative savings. The cost of drying 1 kg pineapple worked out to Rs. 11 which was roughly half of that of an electric dryer. The payback period worked out to 0.54 year, much less than the estimated life of the system (20 years). (author)

  19. Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite – Part 1: Carbon dioxide

    Directory of Open Access Journals (Sweden)

    R. Macatangay

    2008-03-01

    Full Text Available Carbon dioxide (CO2 and methane (CH4 are the two most important anthropogenic greenhouse gases. SCIAMACHY on ENVISAT is the first satellite instrument whose measurements are sensitive to concentration changes of the two gases at all altitude levels down to the Earth's surface where the source/sink signals are largest. We have processed three years (2003–2005 of SCIAMACHY near-infrared nadir measurements to simultaneously retrieve vertical columns of CO2 (from the 1.58 μm absorption band, CH4 (1.66 μm and oxygen (O2 A-band at 0.76 μm using the scientific retrieval algorithm WFM-DOAS. We show that the latest version of WFM-DOAS, version 1.0, which is used for this study, has been significantly improved with respect to its accuracy compared to the previous versions while essentially maintaining its high processing speed (~1 minute per orbit, corresponding to ~6000 single measurements, and per gas on a standard PC. The greenhouse gas columns are converted to dry air column-averaged mole fractions, denoted XCO2 (in ppm and XCH4 (in ppb, by dividing the greenhouse gas columns by simultaneously retrieved dry air columns. For XCO2 dry air columns are obtained from the retrieved O2 columns. For XCH4 dry air columns are obtained from the retrieved CO2 columns because of better cancellation of light path related errors compared to using O2 columns retrieved from the spectrally distant O2 A-band. Here we focus on a discussion of the XCO2 data set. The XCH4 data set is discussed in a separate paper (Part 2. In order to assess the quality of the retrieved XCO2 we present comparisons with Fourier Transform Spectroscopy (FTS XCO2 measurements at two northern hemispheric mid-latitude ground stations. To assess the quality globally, we present detailed comparisons with global XCO2 fields obtained from NOAA's CO2 assimilation system CarbonTracker. For the Northern Hemisphere we find good agreement with the reference data for the CO2 seasonal cycle and the CO2

  20. Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite – Part 2: Methane

    Directory of Open Access Journals (Sweden)

    W. Peters

    2008-05-01

    Full Text Available Carbon dioxide (CO2 and methane (CH4 are the two most important anthropogenic greenhouse gases. SCIAMACHY on ENVISAT is the first satellite instrument whose measurements are sensitive to concentration changes of the two gases at all altitude levels down to the Earth's surface where the source/sink signals are largest. We have processed three years (2003–2005 of SCIAMACHY near-infrared nadir measurements to simultaneously retrieve vertical columns of CO2 (from the 1.58 μm absorption band, CH4 (1.66 μm and oxygen (O2 A-band at 0.76 μm using the scientific retrieval algorithm WFM-DOAS. We show that the latest version of WFM-DOAS, version 1.0, which is used for this study, has been significantly improved with respect to its accuracy compared to the previous versions while essentially maintaining its high processing speed (~1 min per orbit, corresponding to ~6000 single measurements, and per gas on a standard PC. The greenhouse gas columns are converted to dry air column-averaged mole fractions, denoted XCO2 (in ppm and XCH4 (in ppb, by dividing the greenhouse gas columns by simultaneously retrieved dry air columns. For XCO2 dry air columns are obtained from the retrieved O2 columns. For XCH4 dry air columns are obtained from the retrieved CO2 columns because of better cancellation of light path related errors compared to using O2 columns retrieved from the spectrally distant O2 A-band. Here we focus on a discussion of the XCH4 data set. The XCO2 data set is discussed in a separate paper (Part 1. For 2003 we present detailed comparisons with the TM5 model which has been optimally matched to highly accurate but sparse methane surface observations. After accounting for a systematic low bias of ~2% agreement with TM5 is typically within 1–2%. We investigated to what extent the SCIAMACHY XCH4 is influenced by the variability of atmospheric CO2 using global CO2 fields from NOAA's CO2 assimilation system CarbonTracker. We show that the CO2 corrected

  1. Heterogeneous photochemical reactions of a propylene-nitrogen dioxide-metal oxide-dry air system

    Science.gov (United States)

    Takeuchi, Koji; Ibusuki, Takashi

    Photochemical reactions of a C 3H 6-NO 2-air system in the presence of metal oxide were investigated. The metal oxides showing strong photooxidation activity were found to be n-type semiconductor oxides with the energy band gap around 3 eV. Formation of cyano-compounds (HCN and CH 3CN) was also observed and the activity can be explained in terms of the adsorptivity of NO onto metal oxides. Coalfired fly ash as a model of mixed metal oxides was also examined and their photocatalytic action was discussed.

  2. Analyzing carbon losses from dry soils after precipitation pulses by stable carbon isotopes

    Science.gov (United States)

    Unger, Stephan; Máguas, Cristina; Santos-Pereira, João.; Werner, Christiane

    2010-05-01

    Rain events after drought periods strongly increase soil respiration (Birch effect) and affect plant activity, and thus, may influence the isotopic signal of ecosystem respiration. These CO2-pulses may largely affect the C-balance of arid and semi-arid systems. Here, we evaluate the origins of the Birch effect in a Mediterranean forest and its influence on the isotopic signal of ecosystem (δ13CR) and soil respiration (δ13CSoil). We conducted artificial rain pulses in May and August 2005 and estimated δ13CSoil on intact vegetation, bare and root-free soil in response to watering. After watering in May δ13CSoil showed strong enrichment (-18) and a rapid return to initial values (-27). This transient enrichment was smaller in August than in May (ca. -22). Further, we compared δ13CR and δ13CSoil after first natural rains in October 2005, where both revealed a good relationship over the diurnal and the fortnight cycle. We hypothesize that the 'Birch effect' immediately after irrigation is the result of a hypo-osmotic stress response of the soil microbial community: during sudden moisture changes enriched osmoregulants are rapidly released and mineralized by the soil microbes to avoid cell lysis. After the pulse soil respiration followed a common moisture response. The overall impact of the Birch effect on C-sequestration will depend on both timing and frequency of the rains and thus, on whether the respired CO2 source is microbial or soil organic matter carbon.

  3. The effect of wetting and drying cycles on soil chemical composition and their impact on bulk density evaluation

    International Nuclear Information System (INIS)

    The gamma-ray attenuation technique has been applied successfully in several areas of knowledge such as medicine, industry, chemistry, biology, agriculture and so on. Before the technique application it is important to know the probability of gamma photons interaction with the matter. The linear attenuation coefficient (k) measures the probability per unit length of a photon to be absorbed or scattered while interacting with a sample. k represents the sum of several individual attenuation coefficients due mainly to the photoelectric absorption, coherent and incoherent scatterings and pair production. Soil is characterized as a three phase system composed by solid, liquid and gaseous phases. It is known that for a given photon energy the mass attenuation coefficient (μ) is directly related to the chemical composition of the soil. As a consequence by using the mixture rule, in which (μ) is calculated by adding the products of mass attenuation coefficients and the contents of the chemical components of the soil, it is possible to obtain a theoretical (μ) value. A possible cause of chemical composition changes in soil is the application of repeated wetting and drying (W-D) cycles. Another consequence of these changes in the chemical composition of the soil can be alterations in its (μ). This result can affect how well the gamma-ray attenuation or computed tomography (CT) techniques can determine soil bulk density (ds) or porosity (φ) when samples are submitted to W-D cycles. In this work the soil elemental (oxides) composition variation of three Brazilian soils submitted to the application of W-D cycles was measured in order to evaluate possible changes in the calculated μ as a function of the cycles. Measurements of μ by using radioactive sources of 241Am and 137Cs were also performed. Gamma-ray CT was used as a tool to evaluate the impact of changes in μ induced by the cycles in determinations of ds. The measured and calculated values of μ presented good

  4. Soil microarthropods are only weakly impacted after 13 years of repeated drought treatment in wet and dry heathland soils

    DEFF Research Database (Denmark)

    Holmstrup, Martin; Sørensen, Jesper G.; Schmidt, Inger Kappel;

    2013-01-01

    and temperature. This approach provided an opportunity to study biological responses on a local (within sites) and regional scale. Warming treatments increasing night time temperature (0.3–1 °C higher than ambient at 5 cm soil depth) had no detectable effects on the microarthropod communities. Increased intensity...

  5. Impact of clay mineral on air oxidation of PAH-contaminated soils.

    Science.gov (United States)

    Biache, Coralie; Kouadio, Olivier; Lorgeoux, Catherine; Faure, Pierre

    2014-09-01

    This work investigated the impact of a clay mineral (bentonite) on the air oxidation of the solvent extractable organic matters (EOMs) and the PAHs from contaminated soils. EOMs were isolated from two coking plant soils and mixed with silica sand or bentonite. These samples, as well as raw soils and bentonite/soil mixtures, were oxidized in air at 60 and 100 °C for 160 days. Mineralization was followed by measuring the CO2 produced over the experiments. EOM, polycyclic aromatic compound (PAC), including PAH, contents were also determined. Oxidation led to a decrease in EOM contents and PAH concentrations, these diminutions were enhanced by the presence of bentonite. Transfer of carbon from EOM to insoluble organic matter pointed out a condensation phenomenon leading to a stabilization of the contamination. Higher mineralization rates, observed during the oxidation of the soil/bentonite mixtures, seem to indicate that this clay mineral had a positive influence on the transformation of PAC into CO2.

  6. Research on Changes in the Volumetric Activity of Radon in Soil Air Depending on Depth

    Directory of Open Access Journals (Sweden)

    Erika Streckytė

    2012-12-01

    Full Text Available The article discusses radon concentrations measured in the upper and deeper sandy-loam soil air. The conducted research has disclosed that the volumetric activity of radon in soil at various depths depends on soil porosity, ambient temperature, humidity, atmospheric pressure and the density of radium in soil. The paper shows that radon concentrations in soil air is distributed as follows: 3,0 ± 0,8 kBq/m3 (0,4 m, 9,0 ± 2,4 kBq/m3 (0,6 m, 11.5 kBq/m3 ± 1.2 (0,8 m. The intensity of exhalation of the respective depths makes 8,0 ± 0,9 mBq/m2s, 9,2 ± 1,3 mBq/m2s, 10,0 ± 0,1 mBq/m2s.Article in Lithuanian

  7. Use of a horizontal air-dispersion system to enhance biodegradation of diesel fuel contaminated soils

    International Nuclear Information System (INIS)

    A horizontal air-dispersion system was designed and installed to enhance the natural biodegradation of residual diesel fuel contaminated soils at an underground storage tank (UST) facility in Seattle, Washington. This system was designed to operate in conjunction with an existing free-product recovery system which exposes more heavily contaminated soils at the capillary fringe to injected air. Results of a pilot study conducted at the facility indicate that an initial biodegradation rate of 2,200 mg of total petroleum hydrocarbons (TPH) per kg of soil per year will be achieved, making in-situ biodegradation a feasible remedial alternative for contaminated site soils. Oxygen, carbon dioxide, and hydrocarbon vapor concentrations have been monitored since full-scale startup in September 1992, using a series of vapor monitoring points (VMPs) installed in the vicinity of the aerated beds and around the perimeter of the facility. Recent monitoring data indicate that the system is capable of aerating soils at distances greater than 80 feet from the aerated beds. Oxygen utilization and carbon dioxide production measured during post-startup respiration tests indicate microbial activity has increased as a result of seven months of full-scale system operation

  8. Monitoring of the vegetable garden open air spinach and soil radioactivity in Beijing during the Japan Fukushima nuclear accident

    International Nuclear Information System (INIS)

    Objective: To detect artificial radionuclide content in the spinach and soil in open air vegetable garden in Beijing during Fukushima nuclear accident and to study the radioactive contamination characteristics of the samples. Methods: 6 spinach samples and 3 soil samples in open air vegetable garden were obtained through continuously sampling. High-purity germanium (HPGe) γ spectrometry was used to analyze activity concentrations of artificial radionuclide131I etc in these samples. Results: Artificial radionuclide 131I was detected in the 6 open air spinach samples. Artificial radionuclide 137Cs was detected in 3 vegetable garden soil samples, trace amount of 131I was detected in 1 open-air surface soil sample alone. Conclusions: Following the Fukushima nuclear accident, spinach in Beijing's open-air vegetable garden was slightly polluted by artificial radionuclide 131I, with the highest values of pollution appeared around April 4, 2011, but it could not cause harm to human health. (authors)

  9. Effect of hot air drying on volatile compounds of Flammulina velutipes detected by HS-SPME-GC-MS and electronic nose.

    Science.gov (United States)

    Yang, Wenjian; Yu, Jie; Pei, Fei; Mariga, Alfred Mugambi; Ma, Ning; Fang, Yong; Hu, Qiuhui

    2016-04-01

    Volatile compounds are important factors that affect the flavor quality of Flammulina velutipes, but the changes occurring during hot air drying is still unclear. To clarify the dynamic changes of flavor components during hot air drying, comprehensive flavor characterization and volatile compounds of F. velutipes were evaluated using electronic nose technology and headspace solid phase micro-extraction combined with gas chromatography-mass spectrometry (HS-SPME-GC-MS), respectively. Results showed that volatile components in F. velutipes significantly changed during hot air drying according to the principal component analysis and radar fingerprint chart of electronic nose. Volatile compounds of fresh F. velutipes consisted mainly of ketones, aldehydes and alcohols, and 3-octanone was the dominant compound. Drying process could significantly decrease the relative content of ketones and promoted the generation of alcohols, acids, and esters, which became the main volatile compounds of dried F. velutipes. These may provide a theoretical basis for the formation mechanism of flavor substances in dried F. velutipes. PMID:26593566

  10. A Numerical Study of the Impacts of Dry Air on Tropical Cyclone Formation: A Development Case and a Non-development Case

    Science.gov (United States)

    Fritz, C.; Wang, Z.

    2012-12-01

    The impacts of dry air on tropical cyclone formation are examined in the numerical model simulations of ex-Gaston (2010) and pre-Fay (2008). The former, a remnant low downgraded from a short-lived tropical cyclone, can be regarded as a non-developing system as it failed to redevelop, and the latter developed into a tropical cyclone despite lateral dry air entrainment and a transient upper-level dry air intrusion. Water vapor budget analysis suggests that the mean vertical moisture transport plays the dominant role in moistening the free atmosphere. Backward trajectory analysis and water budget analysis show that vertical transport of dry air from the middle and upper troposphere, where a well-defined wave pouch is absent, contributes to the mid-level drying near the pouch center in ex-Gaston. The mid-level drying suppresses deep convection, reduces moisture supply from the boundary layer, and contributes to the non-development of ex-Gaston. Three-dimensional trajectory analysis based on the numerical model simulation of Fay suggests that dry air entrained at the pouch periphery tends to stay off the pouch center due to the weak mid-level inflow or gets moistened along its path even if being wrapped into the wave pouch. Lateral entrainment in the middle troposphere thus does not suppress convection near the pouch center or prevent the development of Tropical Storm Fay. This study suggests that the upper troposphere is a weak spot of the wave pouch at the early formation stage and that the vertical transport is likely a more direct pathway for dry air to influence moist convection near the pouch center. Fig. 1 (a) 3 km relative humidity and storm relative streamlines for Gaston (2010) at 0800 UTC 05 September 2010 with a group of ensemble forward parcel trajectories (gray); (b) vertical cross section of RH along 17.5°N (contour intervals are set to 15%) and backward trajectories (gray) projected on the longitude-height plane. The box in (a) highlights a pocket of

  11. 自然干燥与热风干燥对甘薯粉丝质量的影响%Effcets of Natural Drying and Hot-air Drying on Quality of Sweet Potato Vermicelli

    Institute of Scientific and Technical Information of China (English)

    周洁; 孔晓玲

    2011-01-01

    This article researches on the quality comparison of natural drying and hot air drying of sweet potato vermicelli, by the appearance of shape, swelling rate, break off rate, tensile properties . Analyses the effect of different dry methods on sweet potato vermicelli, points out the reasonable dry method of vermicelli.%对自然干燥与热风干燥的甘薯粉丝进行了质量对比,通过外观形状、膨润度、断条率、抗拉性等几个方面的观察与检测,分析了不同的干燥方法对粉丝干燥特性的影响,并给出了粉丝干燥方式的合理化建议.

  12. Balancing mechanical strength with bioactivity in chitosan-calcium phosphate 3D microsphere scaffolds for bone tissue engineering: air- vs. freeze-drying processes.

    Science.gov (United States)

    Nguyen, D T; McCanless, J D; Mecwan, M M; Noblett, A P; Haggard, W O; Smith, R A; Bumgardner, J D

    2013-01-01

    The objective of this study was to evaluate the potential benefit of 3D composite scaffolds composed of chitosan and calcium phosphate for bone tissue engineering. Additionally, incorporation of mechanically weak lyophilized microspheres within those air-dried (AD) was considered for enhanced bioactivity. AD microsphere, alone, and air- and freeze-dried microsphere (FDAD) 3D scaffolds were evaluated in vitro using a 28-day osteogenic culture model with the Saos-2 cell line. Mechanical testing, quantitative microscopy, and lysozyme-driven enzymatic degradation of the scaffolds were also studied. FDAD scaffold showed a higher concentration (p mechanical strength was sacrificed through introduction of the less stiff, porous FD spheres.

  13. Polymer tensiometers with ceramic cones: direct observations of matric pressures in drying soils

    OpenAIRE

    M. J. van der Ploeg; Gooren, H. P. A.; Bakker, G.; Hoogendam, C. W.; Huiskes, C.; Koopal, L.K.; Kruidhof, H.; Rooij, G. H.

    2010-01-01

    Measuring soil water potentials is crucial to characterize vadose zone processes. Conventional tensiometers only measure until approximately −0.09 MPa, and indirect methods may suffer from the non-uniqueness in the relationship between matric potential and measured properties. Recently developed polymer tensiometers (POTs) are able to directly measure soil matric potentials until the theoretical wilting point (−1.6 MPa). By minimizing the volume of polymer solution inside the POT while maximi...

  14. Influence of kiln and air drying on redistribution of low-molecular sugars and nitrogenous compounds in scots pine (`pinus sylvestris l.`) and consequences for mould susceptibility. Thesis

    Energy Technology Data Exchange (ETDEWEB)

    Terziev, N.

    1994-12-31

    Drying of wood is linked up with the transport of free and bound water and will be of major importance for the redistribution of water soluble substances. Therefore this study treats the influence of drying on the redistribution of soluble sugars and nitrogen, including both transport- and chemical processes. Moreover the study deals with durability aspects: the influence of different kiln drying schedules and their parameters on the redistribution of low-molecular sugars and nitrogenous compounds--as a widely used method in practice air drying is also included in the study; investigation of the effect of different drying treatments on susceptibility to mold growth; and an attempt to shed light on the migration of water soluble substances above and under the fiber saturation point.

  15. Variability of Arundo donax growth in dry-farming as a function of soil properties

    OpenAIRE

    Mauri, Pedro Vicente; Plaza, Antonio; Guerrero, A. M.; Curt Fernández de la Mora, Mª Dolores; Sanz Gallego, Marina; Fernandez Gonzalez, Jesus

    2014-01-01

    Arundo donax L., commonly known as giant reed or arundo, is a perennial rhizomatous grass that has been studied since the decade of 1980 for bioenergy. In the Mediterranean region -characterised by dry and hot summers- arundo is usually grown with the support of irrigation. However, there is evidence that this plant species can tolerate dry-farming conditions once the crop is fully established. In this work the variation observed in plant growth of a 5-year-old arundo crop when the managemen...

  16. Increases in soil water content after the mortality of non-native trees in oceanic island forest ecosystems are due to reduced water loss during dry periods.

    Science.gov (United States)

    Hata, Kenji; Kawakami, Kazuto; Kachi, Naoki

    2016-03-01

    The control of dominant, non-native trees can alter the water balance of soils in forest ecosystems via hydrological processes, which results in changes in soil water environments. To test this idea, we evaluated the effects of the mortality of an invasive tree, Casuarina equisetifolia Forst., on the water content of surface soils on the Ogasawara Islands, subtropical islands in the northwestern Pacific Ocean, using a manipulative herbicide experiment. Temporal changes in volumetric water content of surface soils at 6 cm depth at sites where all trees of C. equisetifolia were killed by herbicide were compared with those of adjacent control sites before and after their mortality with consideration of the amount of precipitation. In addition, the rate of decrease in the soil water content during dry periods and the rate of increase in the soil water content during rainfall periods were compared between herbicide and control sites. Soil water content at sites treated with herbicide was significantly higher after treatment than soil water content at control sites during the same period. Differences between initial and minimum values of soil water content at the herbicide sites during the drying events were significantly lower than the corresponding differences in the control quadrats. During rainfall periods, both initial and maximum values of soil water contents in the herbicided quadrats were higher, and differences between the maximum and initial values did not differ between the herbicided and control quadrats. Our results indicated that the mortality of non-native trees from forest ecosystems increased water content of surface soils, due primarily to a slower rate of decrease in soil water content during dry periods.

  17. Radioecological investigations in the food-chain air-soil-vine-wine. Pt. 2

    International Nuclear Information System (INIS)

    This Part 2 presents all of the results, including the harvest of 1986 and 1987; it thus describes the consequences of the Chernobyl accident. H-3, C-14, Sr-90 and Cs-137 were determined in soil, vine leaves, grapes and wine at different locations. In some of the samples Cs-134, K-40 and Ra-226 were also measured. Site-specific transfer factors were calculated for Sr-90 and for the Cs radionuclides. The mean content of Cs-137 before Chernobyl (after Chernogyl) was about 4 (9) Bq/kg dry matter in soil (top 30 cm), 0.07 (3) Bq/kg fresh matter in leaves, 0.02 (0.4) Bq/kg FM in grapes, and 0.008 (0.9) Bq/l in wine. As comapred to 1986 distinctly lower levels were found in leaves, grapes and wine from 1987. The content of Cs-134 was about half that of Cs-137 in 1986. Due to its shorter half-life Cs-134 had fallen below detection limit in many of the 1987 samples. Mean Sr-90 levels were 1-2 Bq/kg in soil and in leaves (dry matter and fresh matter, respectively), 19-56 mBq/kg in grapes, and 3-11 mBq/l in wine. Samples obtained in the fall of 1986 showed no increase of Sr-90 in soil and leaves, whereas a slight increase was found in grapes and wine as a consequence of Chernobyl. Site-specific influences such als soil parameters, climate, cultivation, vinification and differences between years had no pronounced effects on transfer factors. No influence of the nuclear power station Neckarwestheim has been found in any of the radionuclides. (orig./HP)

  18. Acceleration of Selenate Reduction by Alternative Drying and Wetting of Soils

    Institute of Scientific and Technical Information of China (English)

    朴河春; 刘广深; 等

    1996-01-01

    In nature selenate reduction and nitrate denitrification both follow a similar biogeo-chemical mechanism.It has been proved that abiotic stresses such as alternative drying and wetting can exert an important influence on nitrate denitrification as well as on selenate reduction.Our experimental results lend great support to the above conclusion.

  19. Soil microbiological properties and enzymatic activities of long-term post-fire recovery in dry and semiarid Aleppo pine (Pinus halepensis M. forest stands

    Directory of Open Access Journals (Sweden)

    J. Hedo

    2014-10-01

    Full Text Available Wildfires affecting forest ecosystems and post-fire silvicultural treatments may cause considerable changes in soil properties. The capacity of different microbial groups to recolonize soil after disturbances is crucial for proper soil functioning. The aim of this work was to investigate some microbial soil properties and enzyme activities in semiarid and dry Aleppo pine (Pinus halepensis M. forest stands. Different plots affected by a wildfire event 17 years ago without or with post-fire silvicultural treatments five years after the fire event were selected. A mature Aleppo pine stand unaffected by wildfire and not thinned was used as a control. Physicochemical soil properties (soil texture, pH, carbonates, organic matter, electrical conductivity, total N and P, soil enzymes (urease, phosphatase, β-glucosidase and dehydrogenase activities, soil respiration and soil microbial biomass carbon were analysed in the selected forests areas and plots. The main finding was that long time after this fire event produces no differences in the microbiological soil properties and enzyme activities of soil after comparing burned and thinned, burned and not thinned, and mature plots. Thus, the long-term consequences and post-fire silvicultural management in the form of thinning have a significant effect on the site recovery after fire. Moreover, significant site variation was generally seen in soil enzyme activities and microbiological parameters. We conclude that total vegetation restoration normalises microbial parameters, and that wildfire and post-fire silvicultural treatments are not significant factors of soil properties after 17 years.

  20. AirMOSS P-Band Radar Retrieval of Subcanopy Soil Moisture Profile

    Science.gov (United States)

    Tabatabaeenejad, A.; Burgin, M. S.; Duan, X.; Moghaddam, M.

    2013-12-01

    Knowledge of soil moisture, as a key variable of the Earth system, plays an important role in our under-standing of the global water, energy, and carbon cycles. The importance of such knowledge has led NASA to fund missions such as Soil Moisture Active and Passive (SMAP) and Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS). The AirMOSS mission seeks to improve the estimates of the North American Net Ecosystem Exchange (NEE) by providing high-resolution observations of the root zone soil moisture (RZSM) over regions representative of the major North American biomes. AirMOSS flies a P-band SAR to penetrate vegetation and into the root zone to provide estimates of RZSM. The flights cover areas containing flux tower sites in regions from the boreal forests in Saskatchewan, Canada, to the tropical forests in La Selva, Costa Rica. The radar snapshots are used to generate estimates of RZSM via inversion of a scattering model of vegetation overlying soils with variable moisture profiles. These retrievals will be used to generate a time record of RZSM, which will be integrated with an ecosystem demography model in order to estimate the respiration and photosynthesis carbon fluxes. The aim of this work is the retrieval of the moisture profile over AirMOSS sites using the collected P-band radar data. We have integrated layered-soil scattering models into a forest scattering model; for the backscattering from ground and for the trunk-ground double-bounce mechanism, we have used a layered small perturbation method and a coherent scattering model of layered soil, respectively. To estimate the soil moisture profile, we represent it as a second-order polynomial in the form of az2 + bz + c, where z is the depth and a, b, and c are the coefficients to be retrieved from radar measurements. When retrieved, these coefficients give us the soil moisture up to a prescribed depth of validity. To estimate the unknown coefficients of the polynomial, we use simulated

  1. Unsaturated zone characterization in soil through transient wetting and drying using GPR joint time-frequency analysis and grayscale images

    Science.gov (United States)

    Lai, W. L.; Kou, S. C.; Poon, C. S.

    2012-07-01

    SummaryThis paper describes an experimental method to characterize the soil's unsaturated zone by constructing a scenario in which transient downward water infiltration took place from the topsoil to the bottom soil continuously. During the water infiltration, GPR waveforms and side-view grayscale images of the soil column were simultaneously and continuously captured. The GPR wavelets associated with the wetting front were analyzed using short time fourier transform (STFT) algorithm. The downward wetting front and the stretch of unsaturated transition zone decelerated and eased the wetting front's reflection in the time domain; as well as reduced the peak frequency and attenuated the frequency spectra in the frequency domain. The subsequent drying process further attenuated but accelerated the wetting front's reflection in both time and frequency domains. These observations were correlated with the image pixel profiles, from which GPR velocity profiles at different lapsed times were generated after computation via a complex refractive index model (CRIM). The CRIM method is entirely non-invasive and not only offers very detailed measurement of the water saturation profile of the transition zone in laboratory scale, but also is potentially useful for the further study of a variety of vadose zone properties.

  2. Investigation of remediation of soil contaminated with diesel fuel using air venting

    International Nuclear Information System (INIS)

    Soil venting is an effective and widely used method to remediate hydrocarbonically contaminated soils. A non-isothermal model, proposed by Lingineni and Dhir (1992) to predict evaporation rates of organic contaminants in an unsaturated non-sorbing soil, was incorporated into a computer code capable of numerically analyzing multi-component diesel fuel. The program accounts for 14 major components of diesel fuel as well as for temperature variation due to evaporation of the contaminant, preheating of the venting air, and heat loss. Experiments to verify the model performance were conducted in a one-dimensional column. Temperature readings from thermocouples located in the test section were recorded during the experiment and the composition of hydrocarbons in the effluent air was also monitored. The effluent gas samples were extracted at the selected times and analyzed with the help of a gas chromatograph. The experimental temperature readings and vapor composition in the extracted samples are in general agreement with the predictions from the computer program. The results show that the diesel components are removed according to their volatility with the higher volatility components being removed first. It is also found that preheating of the venting air can significantly increase the removal rates of the components

  3. Measurement of effective air diffusion coefficients for trichloroethene in undisturbed soil cores

    Science.gov (United States)

    Bartelt-Hunt, Shannon L.; Smith, James A.

    2002-06-01

    In this study, we measure effective diffusion coefficients for trichloroethene in undisturbed soil samples taken from Picatinny Arsenal, New Jersey. The measured effective diffusion coefficients ranged from 0.0053 to 0.0609 cm 2/s over a range of air-filled porosity of 0.23-0.49. The experimental data were compared to several previously published relations that predict diffusion coefficients as a function of air-filled porosity and porosity. A multiple linear regression analysis was developed to determine if a modification of the exponents in Millington's [Science 130 (1959) 100] relation would better fit the experimental data. The literature relations appeared to generally underpredict the effective diffusion coefficient for the soil cores studied in this work. Inclusion of a particle-size distribution parameter, d10, did not significantly improve the fit of the linear regression equation. The effective diffusion coefficient and porosity data were used to recalculate estimates of diffusive flux through the subsurface made in a previous study performed at the field site. It was determined that the method of calculation used in the previous study resulted in an underprediction of diffusive flux from the subsurface. We conclude that although Millington's [Science 130 (1959) 100] relation works well to predict effective diffusion coefficients in homogeneous soils with relatively uniform particle-size distributions, it may be inaccurate for many natural soils with heterogeneous structure and/or non-uniform particle-size distributions.

  4. Research on Wetting-Drying Cycles’ Effect on the Physical and Mechanical Properties of Expansive Soil Improved by OTAC-KCl

    Directory of Open Access Journals (Sweden)

    Bao-tian Wang

    2015-01-01

    Full Text Available Expansive soil experiences periodic swelling and shrinkage during the alternate wet and dry environments, which will result in severe damage to the slope stability. In this study, a promising modifier OTAC-KCl is introduced, which has a good diffusivity and is soluble in water or other solvents easily. Firstly, a reasonable combination of ameliorant 0.3% STAC and 3% KCl is chosen referring to the free swell test. Then, the best curing period, 14 days, is gotten from UCS tests. The effect of wetting and drying cycles on engineering properties of expansive soil improved by OTAC-KCl admixtures after 14-day curing is also studied accordingly. Both treated and untreated expansive soil samples are prepared for the cyclic wetting-drying tests which mainly include cyclic swelling potential and cyclic strength tests. Experimental results show that the swelling potential of expansive soil samples stabilized with OTAC-KCl is suppressed efficiently, and the untreated soil specimens will collapse when immersed in water while the treated specimens keep in good conditions. Moreover, expansive soil samples modified with 0.3% OTAC + 3% KCl show enough durability on the swelling ability, shear strength, and unconfined compressive strength, which means, that both the physical and the mechanical properties of stabilized expansive soil have been improved effectively.

  5. Microbial Community Responses to Increased Water and Organic Matter in the Arid Soils of the McMurdo Dry Valleys, Antarctica

    Directory of Open Access Journals (Sweden)

    Heather N Buelow

    2016-07-01

    Full Text Available The soils of the McMurdo Dry Valleys, Antarctica are an extreme polar desert, inhabited exclusively by microscopic taxa. This region is on the threshold of anticipated climate change, with glacial melt, permafrost thaw, and the melting of massive buried ice increasing liquid water availability and mobilizing soil nutrients. Experimental water and organic matter (OM amendments were applied to investigate how these climate change effects may impact the soil communities. To identify active taxa and their functions, total community RNA transcripts were sequenced and annotated, and amended soils were compared with unamended control soils using differential abundance and expression analyses. Overall, taxonomic diversity declined with amendments of water and organic matter. The domain Bacteria increased with both amendments while Eukaryota declined from 38% of all taxa in control soils to 8% and 11% in water and OM amended soils, respectively. Among bacterial phyla, Actinobacteria (59% dominated water-amended soils and Firmicutes (45% dominated OM amended soils. Three bacterial phyla (Actinobacteria, Proteobacteria, and Firmicutes were primarily responsible for the observed positive functional responses, while eukaryotic taxa experienced the majority (27 of 34 of significant transcript losses. These results indicated that as climate changes in this region, a replacement of endemic taxa adapted to dry, oligotrophic conditions by generalist, copiotrophic taxa is likely.

  6. Microbial Community Responses to Increased Water and Organic Matter in the Arid Soils of the McMurdo Dry Valleys, Antarctica.

    Science.gov (United States)

    Buelow, Heather N; Winter, Ara S; Van Horn, David J; Barrett, John E; Gooseff, Michael N; Schwartz, Egbert; Takacs-Vesbach, Cristina D

    2016-01-01

    The soils of the McMurdo Dry Valleys, Antarctica are an extreme polar desert, inhabited exclusively by microscopic taxa. This region is on the threshold of anticipated climate change, with glacial melt, permafrost thaw, and the melting of massive buried ice increasing liquid water availability and mobilizing soil nutrients. Experimental water and organic matter (OM) amendments were applied to investigate how these climate change effects may impact the soil communities. To identify active taxa and their functions, total community RNA transcripts were sequenced and annotated, and amended soils were compared with unamended control soils using differential abundance and expression analyses. Overall, taxonomic diversity declined with amendments of water and OM. The domain Bacteria increased with both amendments while Eukaryota declined from 38% of all taxa in control soils to 8 and 11% in water and OM amended soils, respectively. Among bacterial phyla, Actinobacteria (59%) dominated water-amended soils and Firmicutes (45%) dominated OM amended soils. Three bacterial phyla (Actinobacteria, Proteobacteria, and Firmicutes) were primarily responsible for the observed positive functional responses, while eukaryotic taxa experienced the majority (27 of 34) of significant transcript losses. These results indicated that as climate changes in this region, a replacement of endemic taxa adapted to dry, oligotrophic conditions by generalist, copiotrophic taxa is likely. PMID:27486436

  7. The effects of rice canopy on the air-soil exchange of polycyclic aromatic hydrocarbons and organochlorine pesticides using paired passive air samplers.

    Science.gov (United States)

    Wang, Yan; Wang, Shaorui; Luo, Chunling; Li, Jun; Ming, Lili; Zhang, Gan; Li, Xiangdong

    2015-05-01

    The rice canopy in paddy fields can influence the air-soil exchange of organic chemicals. We used paired passive air samplers to assess the exchange of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in a paddy field, South China. Levels of OCPs and light PAHs were generally higher under the canopy than above it. We found that the rice canopy can physically obstruct the evaporation of most OCPs and light PAHs, and can also act as a barrier to the gaseous deposition of p,p'-DDT and heavy PAHs. Paddy fields can behave as a secondary source of OCPs and light PAHs. The homolog patterns of these two types of chemical varied slightly between the air below and above the rice canopy, implying contributions of different sources. Paired passive air samplers can be used effectively to assess the in situ air-soil exchange of PAHs and OCPs in subtropical paddy fields. PMID:25686886

  8. Dried gamma-irradiated sewage solids use on calcareous soils: crop yeilds and heavy metals uptake

    International Nuclear Information System (INIS)

    Experiments designed to examine gamma-radiation effects on extractable and plant-available sludge elements and to examine the response of crops to sludge applications on two typical, calcareous soils in New Mexico are summarized. Information has been given indicating that the radiation process of reducing pathogens in sewage products being developed by Sandia Laboratories, does not significantly increase the chemical extractability and plant uptake of a broad range of nutrients and heavy metals. However, radiation treatment greatly facilitates handling sewage for experimentation, because pathogen contamination precautions are eliminated and weed seeds killed. Studies on the effects of sludge irradiation on plant nutrient uptake revealed no concentration increases, agreeing with results presented herein. Sewage products may have special potential for use on calcareous soils, such as in New Mexico. For instance, in New Mexico the lack of potassium in sewage products is not a problem and the naturally high pH of New Mexico soil greatly reduces plant availability of many problem heavy metals. Dramatic increases in yield are typified by the greenhouse and field results presented herein, especially for the known micronutrient deficient soils of New Mexico. Results indicate that sewage sludge is an excellent Zn and Fe fertilizer. More research needs to be done before the economics of sludge application can be calculated and more field information is needed before irradiated sewage products are used indiscriminately

  9. Polymer tensiometers with ceramic cones: direct observations of matric pressures in drying soils

    NARCIS (Netherlands)

    Ploeg, van der M.J.; Gooren, H.P.A.; Bakker, G.; Hoogendam, C.W.; Huiskes, C.; Koopal, L.K.; Kruidhof, H.; Rooij, de G.H.

    2010-01-01

    Measuring soil water potentials is crucial to characterize vadose zone processes. Conventional tensiometers only measure until approximately -0.09 MPa, and indirect methods may suffer from the non-uniqueness in the relationship between matric potential and measured properties. Recently developed pol

  10. Microbial community dynamics and methane, carbon dioxide, oxygen, and nitrous oxide concentrations in upland forest and riparian soils across a seasonal gradient of fully saturated soils to completely dried soils

    Science.gov (United States)

    Jones, R. T.; McGlynn, B. L.; McDermott, T.; Dore, J. E.

    2015-12-01

    Gas concentrations (CH4, CO2, N2O, and O2), soil properties (soil water content and pH), and microbial community composition were measured from soils at 32 sites across the Stringer Creek Watershed in the Tenderfoot Creek Experimental Forest 7 times between June 3, 2013 and September 20, 2013. Soils were fully saturated during the initial sampling period and dried down over the course of the summer. Soils and gas were sampled from 5cm and 20cm at each site and also at 50cm at eight riparian sites. In total, 496 individual soil samples were collected. Soil moisture ranged from 3.7% to fully saturated; soil pH ranged from 3.60 to 6.68. Methane concentrations in soils ranged from 0.426 ppm to 218 ppm; Carbon dioxide concentrations ranged from 550 ppm to 42,990 ppm; Nitrous oxide concentrations ranged from 0.220 ppm to 2.111 ppm; Oxygen concentrations ranged from 10.2% to 21.5%. Soil microbial communities were characterized by DNA sequences covering the V4 region of the 16S rRNA gene. DNA sequences were generated (~30,000,000 sequences) from the 496 soil samples using the Illumina MiSeq platform. Operational Taxonomic Units were generated using USEARCH, and representative sequences were taxonomically classified according the Ribosomal Database Project's taxonomy scheme. Analysis of similarity revealed that microbial communities found within a landscape type (high upland forest, low upland forest, riparian) were more similar than among landscape types (R = 0.600; p<0.001). Similarly, communities from unique site x depths were similar across the 7 collection periods (R = 0.646; p<0.001) despite changes in soil moisture. Euclidean distances of soil properties and gas concentrations were compared to Bray-Curtis community dissimilarity matrices using Mantel tests to determine how community structure co-varies with the soil environment and gas concentrations. All variables measured significantly co-varied with microbial community membership (pH: R = 0.712, p < 0.001; CO2: R

  11. The ecological dichotomy of ammonia-oxidizing archaea and bacteria in the hyper-arid soils of the Antarctic Dry Valleys

    OpenAIRE

    Magalhães, Catarina M.; Machado, Ana; Frank-Fahle, Béatrice; Lee, Charles K; Cary, S. Craig

    2014-01-01

    The McMurdo Dry Valleys of Antarctica are considered to be one of the most physically and chemically extreme terrestrial environments on the Earth. However, little is known about the organisms involved in nitrogen transformations in these environments. In this study, we investigated the diversity and abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) in four McMurdo Dry Valleys with highly variable soil geochemical properties and climatic conditions: Miers Valley, Upper Wright Va...

  12. Human semen can be air-dried prior to testing for sperm DNA fragmentation with the Halosperm® G2 kit

    Institute of Scientific and Technical Information of China (English)

    Kailin Yap; Phillip Matson

    2012-01-01

    Objective:To explore a method of semen storage prior to assessment of spermDNA fragmentation. Methods:This study examined a simplified alternative of air-drying semen on a microscope slide and reconstituting in seminal plasma prior to assessment of spermDNA fragmentation using the halosperm®G2 kit.Results:It showed that semen could be air-dried and stored overnight at room temperature with no detrimental effect onDNA quality.A significant correlation between results existed for20 semen samples both air-dried and snap-frozen in liquid nitrogen(r=0.982, P=0.000).A mean difference between the results of only -1.98% confirmed the effectiveness of air-drying compared to snap-freezing.Conclusions:Future studies to refine this technique are required on the effect of extrinsic factors such as the choice of reconstituting medium, and stability over an extended time-frame at different temperatures.

  13. Evaluation of a dry filter and an electrostatic precipitator for exhaust air cleaning at commercial non-cage laying hen houses

    NARCIS (Netherlands)

    Winkel, A.; Mosquera Losada, J.; Aarnink, A.J.A.; Groot Koerkamp, P.W.G.; Ogink, N.W.M.

    2015-01-01

    The removal performance of two exhaust air cleaning systems for abatement of particulate matter (PM) emission in poultry houses were investigated: a commercially available dry filter (DF) and a full-scale prototype electrostatic precipitator (ESP). Each system was connected to two commercial, non-ca

  14. Using δ15 N- and δ18 O-NO to Evaluate Mechanisms of Nitric Oxide Production Following the Wetting of Dry Soil

    Science.gov (United States)

    Homyak, P. M.; Schimel, J.; Sickman, J. O.

    2014-12-01

    In xeric environments, where soils can remain dry for more than 6 months, abrupt transitions from dry-to-wet conditions produce NO pulses within seconds after soils wet up. During these periods of intense gaseous N production, biological processes (nitrification and denitrification) are known to control NO fluxes, but it is not clear how soil microbes can recover from drought-induced stress within seconds after soils wet up. Are NO pulses immediately following rewetting more so controlled by abiotic NO-producing reactions? Because biotic and abiotic mechanisms can occur simultaneously, distinguishing between these processes can be problematic. To understand the contribution of biotic and abiotic processes to NO pulses, and to better inform biogeochemical models, we measured the δ15N- and δ18O-NO following a field soil rewetting experiment in a California annual grassland. In October, during the end of the dry season, we artificially watered soils and captured NO emissions for up to 15 minutes, 1 hour, 1 day, and 3 days after wet-up. Pulses of NO following the wetting of dry soil were explained by a two-component mixing model, where two distinct sources or processes produced NO. Within 15 minutes after soil wet-up, the isotopic composition of soil NO (δ15N =-8.95 ‰, δ18O=14.28 ‰) was similar to that of atmospheric samples (δ15N =-4.45 ‰, δ18O=15.20 ‰), but became increasingly depleted after 1 hour (δ15N =-21.08 ‰, δ18O=0.53 ‰), and more so after 1 day (δ15N =-37.44 ‰, δ18O=-9.45 ‰). After 3 days, the isotopic composition of NO (δ15N =-28.31 ‰, δ18O=-2.07 ‰) began to return to pre-wet-up conditions closely following the two-component mixing line. We conclude that NO-producing reactions immediately after the wetting of dry soil (up to 15 min) are different than those occurring after 1 hour post-wetting. We hypothesize that abiotic processes control the initial response to wetting, but that biological processes, which discriminate

  15. Effect of process parameters on energy performance of spray drying with exhaust air heat recovery for production of high value particles

    International Nuclear Information System (INIS)

    Highlights: • We study heat recovery from spray dryer using air-to-air heat exchanger. • We examine dryer energy performance using advanced mathematical model. • We use the response surface methodology to study the effect of process parameters. • Energy efficiency up to 43.3% is obtained at high flow rate of dilute slurry. • Energy saving up to 52.4% is obtained at high drying air temperature. - Abstract: Spray drying process has been widely used in various industries for many decades for production of numerous materials. This paper explores the energy performance of an industrial scale spray dryer equipped with an exhaust air heat recovery system for production of high value particles. Energy efficiency and energy saving were calculated using a comprehensive mathematical model of spray drying. The response surface methodology (RSM) was utilized to study the effect of process parameters on energy performance using a space-filling design. The meta model equations were formulated employing the well-fitted response surface equations with adjusted R2 larger than 0.995. The energy efficiency as high as 43.3% was obtained at high flow rate of dilute slurry, while the highest energy saving of 52.4% was found by combination of positive effect of drying air temperature and negative effect of slurry mass flow rate. The utilization of efficient air-to-air heat exchanger leads to an increase in energy efficiency and energy savings. The detailed temperature and vapor concentration profiles obtained with the model are also valuable in determining final product quality when spray dryer is operated at energy efficient conditions

  16. Gravel washing demonstration system and reducing the contaminated soil by BAT (Blend Air Tornado pump)

    International Nuclear Information System (INIS)

    Gravel washing system is composed of Blend Air Tornado pump (BAT), gravel classification and muddy water purification equipments. Gravel contaminated by radioactive cesium, pure water and air are mixed in BAT. This process will wash the contaminated gravel and reduce its radioactivity quickly. BAT is operated under appropriate water pressure and air/water/solid gravel ratio. After washing the gravel, it is classified by grain gravel classification equipment and the muddy waste water is purified by cohesive material process. This process is simple and reasonable gravel washing system. Improvement of the existing technology and the maintenance management in easy operation and a small number of people are possible for the system. The system is demonstrated to be the high efficiency decontamination technology of radioactive cesium on soils such as gravel with energy saving system which does not give the load on the environment. (author)

  17. Evaluation of short-term tracer fluctuations in groundwater and soil air in a two year study

    Science.gov (United States)

    Jenner, Florian; Mayer, Simon; Aeschbach, Werner; Weissbach, Therese

    2016-04-01

    The application of gas tracers like noble gases (NGs), SF6 or CFCs in groundwater studies such as paleo temperature determination requires a detailed understanding of the dynamics of reactive and inert gases in the soil air with which the infiltrating water equilibrates. Due to microbial gas consumption and production, NG partial pressures in soil air can deviate from atmospheric air, an effect that could bias noble gas temperatures estimates if not taken into account. So far, such an impact on NG contents in groundwater has not been directly demonstrated. We provide the first long-term study of the above mentioned gas tracers and physical parameters in both the saturated and unsaturated soil zone, sampled continuously for more than two years near Mannheim (Germany). NG partial pressures in soil air correlate with soil moisture and the sum value of O2+CO2, with a maximal significant enhancement of 3-6% with respect to atmospheric air during summer time. Observed seasonal fluctuations result in a mass dependent fractionation of NGs in soil air. Concentrations of SF6 and CFCs in soil air are determined by corresponding fluctuations in local atmospheric air, caused by industrial emissions. Arising concentration peaks are damped with increasing soil depth. Shallow groundwater shows short-term NG fluctuations which are smoothed within a few meters below the water table. A correlation between NG contents of soil air and of groundwater is observable during strong recharge events. However, there is no evidence for a permanent influence of seasonal variations of soil air composition on shallow groundwater. Fluctuating NG contents in shallow groundwater are rather determined by variations of soil temperature and water table level. Our data gives evidence for a further temperature driven equilibration of groundwater with entrapped air bubbles within the topmost saturated zone, which permanently occurs even some years after recharge. Local subsurface temperature fluctuations

  18. Assessing dry density and gravimetric water content of soils in geotechnics with complex conductivity measurements : preliminary investigations

    Science.gov (United States)

    Kaouane, C.; Beck, Y.; Fauchard, C.; Chouteau, M.

    2012-12-01

    Quality controls of geotechnical works need gravimetric water content (w) and dry density (γd) measurements. Afterwards, results are compared to Proctor tests and referred to soil classification. Depending on the class of soils, different objectives must be achieved. Those measurements are usually carried out with neutron and gamma probes. Combined use of theses probes directly access (w, γd). Theses probes show great disadvantages as: nuclear hazard, heavy on-site, transporation and storage restrictions and low sampling volumes. Last decades showed a strong development of electrical and electromagnetic methods for mapping water content in soils. Still, their use in Geotechnics is limited due to interfacial effects neglected in common models but strong in compacted soils. We first showed that (w, γd) is equivalent to (φ, Sr) assuming density of particles γs=2.7 (g.cm-3). This assumption is true for common soils used in civil engineering. That first relationship allows us to work with meaningful parameters for geophysicists. Revil&Florsh recently adapted Vinegar&Waxman model for Spectal Induced Polarization (SIP) measurements at low frequencies (geotechnical campaigns. In-phase conductivity would be mostly related to saturation as quadrature conductivity would be related to porosity and surface conductivity. Although this model was developed for oil-bearing sands, we investigated its potential for compacted soils. Former DC-resistivity (ρ) measurements were carried out on a silty fined-grained soil (A1 in GTR classification or ML-CL in USCS) in a cylindrical cell (radius ~4 cm, heigth 7 cm). Median diameter of grain was 50 μm. For each measurement, samples were compacted at Proctor energy. We assessed (w, γd) by weighting and drying samples. We obtained γd = 1.6-1.9 (g.cm-3) and w=7-14% which lead to φ=0.3-0.4 and Sr=0.3-0.8. Tap water (ρw= 30 Ω.m) was used for the experiment. We first evaluated the saturation factor n=1.35 by fitting a power law

  19. Effect of Harvest of Air Relative Humidity on Water and Heat Transfer in Soil With Crops Under Arid Climatic Conditions

    Directory of Open Access Journals (Sweden)

    El Khadir LAKHAL

    2015-05-01

    Full Text Available In this work, the main objective is to analyze the effect of the harvest of air relative humidity on soil temperature, soil water storage and evaporation. An experiment work was conducted in order to evaluate the quantity of soil water adsorbed by harvesting of relative air humidity. This experimental work was conducted on hilly areas with various hypsographic and microclimatic conditions greatly affecting daily fluctuations of air humidity and soil characteristics. The metrological data needed by SISPAT model were obtained by using a Campbell Scientific equipments Station recorder on data loggers every half hour. A numerical model based on SiSPAT (Système d’Interaction Sol Plante Atmosphère formulation is adopted. The general equations of the proposed model are based on heat and mass transfer in the soil, atmosphere and plant system. This study shows that Soil Water Adsorption (SWA induce an increasing in the total evaporation and in soil water storage especially on the upper layers. The effect of Soil Water Adsorption on soil temperature appears for the first layers of soil and become absent in the profound zone because the vapour condensation phenomenon is very important at night for the first layers.

  20. Experimental research on the mixed sand ratio and initial dry density of weathered sand improved expansive soil free load swelling rate

    Institute of Scientific and Technical Information of China (English)

    Yang Jun; Yang Zhi; Zhang Guodong; Tang Yunwei; Chen Hongping

    2014-01-01

    In this paper, through the indoor free load swelling rate test, expansive soil in a section of a first- class highway reconstruction project in Yichang City was studied. It emphatically analyzed the interrelations among free load swelling rate, non-load time, the proportion of mixed sand and initial dry density. Experimen- tal studies have shown that: Free load swelling deformation is mainly divided into three stages of rapid expan- sion, slow expansion and final stability; when the initial dry density is constant, free load swelling rate of the weathered sand modified soil will reduce rapidly before they slow down with the increase of sand proportion, and weathered sand modified soil free load swelling rate is not sensitive to the large amount of sand mixed; in the same mixed sand ratio, weathered sand modified soil free load swelling rate increases rapidly with the in- crease of initial dry density, there is a good linear correlation between them. To take appropriate control of the initial dry density during the expansive soil subgrade construction helps to reduce its swelling deformation and ensures the stability of the embankment.

  1. Experimental research on the mixed sand ratio and initial dry density of weathered sand improved expansive soil free load swelling rate

    Institute of Scientific and Technical Information of China (English)

    Yang Jun; Yang Zhi; Zhang Guodong; Tang Yunwei; Chen Hongping

    2014-01-01

    In this paper,through the indoor free load swelling rate test,expansive soil in a section of a first-class highway reconstruction project in Yichang City was studied. It emphatically analyzed the interrelations among free load swelling rate,non-load time,the proportion of mixed sand and initial dry density. Experimen-tal studies have shown that:Free load swelling deformation is mainly divided into three stages of rapid expan-sion,slow expansion and final stability;when the initial dry density is constant,free load swelling rate of the weathered sand modified soil will reduce rapidly before they slow down with the increase of sand proportion, and weathered sand modified soil free load swelling rate is not sensitive to the large amount of sand mixed;in the same mixed sand ratio,weathered sand modified soil free load swelling rate increases rapidly with the in-crease of initial dry density,there is a good linear correlation between them. To take appropriate control of the initial dry density during the expansive soil subgrade construction helps to reduce its swelling deformation and ensures the stability of the embankment.

  2. EXPERIMENTAL INVESTIGATION ON EVAPORATION PROCESS OF WATER IN SOIL DURING DRYING%土中水分的蒸发过程试验研究

    Institute of Scientific and Technical Information of China (English)

    唐朝生; 施斌; 顾凯

    2011-01-01

    Evaporation of water saturated in soil is a time-dependent process of decreasing water content. It is always accompanied by the evolution of soil fabric, stress-strain state as well as soil engineering properties. It is also an initiator of many geotechnical engineering problems. In this investigation, desiccation tests under different temperatures (25 ~ 451 ) were carried on initially saturated clayey soil with various layer thicknesses (5~11 mm) . The water loss of the specimen during drying was monitored and the corresponding evaporation curve was obtained. The results show that the evaporation process of soil water occurs in three fairly distinct stages; constant rate stage,falling rate stage and residual stage. After analyzing the evaporation characteristics and the intrinsic mechanism involved in each stage, it is found that the constant rate stage generally occurs at the initial drying period, where the water content is relative high and the specimen is still saturate. During the constant rate stage,the profile moisture transfer is dominated by liquid flow and mainly controlled by capillary force, and the evaporation rate significantly depends onenvironmental factors or limited by the amount of energy available to vaporize soil moisture in the upper layer of the soil. The decrease of vapor pressure gradient on the evaporation surface, transfer velocity of profile moisture, profile suction gradient, availability of water amount and the increase of pore air are the primary factors that result in the evaporation transition from constant rate stage to falling rate stage. During the falling rate stage,the profile moisture moves in both liquid and vapor forms and the later one gradually dominates the evaporation process, the evaporation rate is mainly limited by the soil conditions and pore structure. In addition,it is also found that higher temperature corresponds to higher initial evaporation rate and shorter drying period,while the initial evaporation rate

  3. Variable pore connectivity model linking gas diffusivity and air-phase tortuosity to soil matric potential

    DEFF Research Database (Denmark)

    Chamindu, Deepagoda; Møldrup, Per; Schjønning, Per;

    2012-01-01

    of a variable pore connectivity factor, X, as a function of soil matric potential, expressed as pF (=log |−ψ|), for pF values ranging from 1.0 to 3.5. The new model takes the form of X = X* (F/F*)A with F = 1 + pF−1, where X* is the pore network tortuosity at reference F (F*) and A is a model parameter...... that accounts for water blockage. The X–pF relation can be linked to drained pore size to explain the lower probability of the larger but far fewer air-filled pores at lower pF effectively interconnecting and promoting gas diffusion. The model with X* = 2 and A = 0.5 proved promising for generalizing Dp....../Do predictions across soils of wide geographic contrast and yielded results comparable to those from widely used predictive models. The X–pF model additionally proved valuable for differentiating between soils (providing a unique soil structural fingerprint for each soil layer) and also between the inter...

  4. Soil erosion and causative factors at Vandenberg Air Force Base, California

    Science.gov (United States)

    Butterworth, Joel B.

    1988-01-01

    Areas of significant soil erosion and unvegetated road cuts were identified and mapped for Vandenberg Air Force Base. One hundred forty-two eroded areas (most greater than 1.2 ha) and 51 road cuts were identified from recent color infrared aerial photography and ground truthed to determine the severity and causes of erosion. Comparison of the present eroded condition of soils (as shown in the 1986 photography) with that in historical aerial photography indicates that most erosion on the base took place prior to 1928. However, at several sites accelerated rates of erosion and sedimentation may be occurring as soils and parent materials are eroded vertically. The most conspicuous erosion is in the northern part of the base, where severe gully, sheet, and mass movement erosion have occurred in soils and in various sedimentary rocks. Past cultivation practices, compounded by highly erodible soils prone to subsurface piping, are probably the main causes. Improper range management practices following cultivation may have also increased runoff and erosion. Aerial photography from 1986 shows that no appreciable headward erosion or gully sidewall collapse have occurred in this area since 1928.

  5. Effect of temperature and air velocity on drying kinetics, antioxidant capacity, total phenolic content, colour, texture and microstructure of apple (var. Granny Smith) slices.

    Science.gov (United States)

    Vega-Gálvez, Antonio; Ah-Hen, Kong; Chacana, Marcelo; Vergara, Judith; Martínez-Monzó, Javier; García-Segovia, Purificación; Lemus-Mondaca, Roberto; Di Scala, Karina

    2012-05-01

    The aim of this work was to study the effect of temperature and air velocity on the drying kinetics and quality attributes of apple (var. Granny Smith) slices during drying. Experiments were conducted at 40, 60 and 80°C, as well as at air velocities of 0.5, 1.0 and 1.5ms(-1). Effective moisture diffusivity increased with temperature and air velocity, reaching a value of 15.30×10(-9)m(2)s(-1) at maximum temperature and air velocity under study. The rehydration ratio changed with varying both air velocity and temperature indicating tissue damage due to processing. The colour difference, ΔE, showed the best results at 80°C. The DPPH-radical scavenging activity at 40°C and 0.5ms(-1) showed the highest antioxidant activity, closest to that of the fresh sample. Although ΔE decreased with temperature, antioxidant activity barely varied and even increased at high air velocities, revealing an antioxidant capacity of the browning products. The total phenolics decreased with temperature, but at high air velocity retardation of thermal degradation was observed. Firmness was also determined and explained using glass transition concept and microstructure analysis. PMID:26434262

  6. Field study of pulsed air sparging for remediation of petroleum hydrocarbon contaminated soil and groundwater.

    Science.gov (United States)

    Yang, Xiaomin; Beckmann, Dennis; Fiorenza, Stephanie; Niedermeier, Craig

    2005-09-15

    Recent laboratory-scale studies strongly suggested an advantage to operating air-sparging systems in a pulsed mode; however, little definitive field data existed to support the laboratory-scale observations. This study aimed to evaluate the performance of a field-scale pulsed air-sparging system during a short-term pilot test and during long-term system operation. The air-sparging system consisted of 32 sparging points and had been previously operated in a continuous mode for two years before the field study was performed. The field study used instruments with continuous data logging capabilities to monitor the dynamic responses of groundwater and soil vapor parameters to air injection. The optimum pulsing frequency was based on the evidence that the hydrocarbon volatilization and oxygen dissolution rates dramatically dropped after the air-sparging system reached steady state. The short-term pilot test results indicated a substantial increase in hydrocarbon volatilization and biodegradation in pulsed operation. On the basis of the results of the pilottest, the air-sparging system was set to operate in a pulsed mode at an optimum pulsing frequency. Operation parameters were collected 2, 8, and 12 months after the start of the pulsed operation. The long-term monitoring results showed thatthe pulsed operation increased the average hydrocarbon removal rate (kg/day) by a factor of up to 3 as compared to the previous continuous operation. The pulsed air sparging has resulted in higher reduction rates of dissolved benzene, toluene, ethylbenzene, and xylenes (BTEX) than were observed during the continuous operation. Among BTEX, benzene's reduction rate was the highest during the pulsed air-sparging operation. PMID:16201659

  7. Novel Approach for the Remediation of Radioactive Cesium Contaminated Soil with nano-Fe/Ca/CaO Dispersion Mixture in Dry