WorldWideScience

Sample records for air crew monitoring

  1. Crew Cerebral Oxygen Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase II SBIR proposal is aimed at developing a non-invasive, optical method for monitoring crew member state of awareness in operational environments. All...

  2. Crew Cerebral Oxygen Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR proposal is aimed at developing a non-invasive, optical method for monitoring the state of consciousness of crew members in operational...

  3. Biomedical Wireless Ambulatory Crew Monitor

    Science.gov (United States)

    Chmiel, Alan; Humphreys, Brad

    2009-01-01

    A compact, ambulatory biometric data acquisition system has been developed for space and commercial terrestrial use. BioWATCH (Bio medical Wireless and Ambulatory Telemetry for Crew Health) acquires signals from biomedical sensors using acquisition modules attached to a common data and power bus. Several slots allow the user to configure the unit by inserting sensor-specific modules. The data are then sent real-time from the unit over any commercially implemented wireless network including 802.11b/g, WCDMA, 3G. This system has a distributed computing hierarchy and has a common data controller on each sensor module. This allows for the modularity of the device along with the tailored ability to control the cards using a relatively small master processor. The distributed nature of this system affords the modularity, size, and power consumption that betters the current state of the art in medical ambulatory data acquisition. A new company was created to market this technology.

  4. Air Quality Monitoring: Risk-Based Choices

    Science.gov (United States)

    James, John T.

    2009-01-01

    Air monitoring is secondary to rigid control of risks to air quality. Air quality monitoring requires us to target the credible residual risks. Constraints on monitoring devices are severe. Must transition from archival to real-time, on-board monitoring. Must provide data to crew in a way that they can interpret findings. Dust management and monitoring may be a major concern for exploration class missions.

  5. Flight Crew State Monitoring Metrics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — eSky will develop specific crew state metrics based on the timeliness, tempo and accuracy of pilot inputs required by the H-mode Flight Control System (HFCS)....

  6. Environmental Monitoring as Part of Life Support for the Crew Habitat for Lunar and Mars Missions

    Science.gov (United States)

    Jan, Darrell L.

    2010-01-01

    Like other crewed space missions, future missions to the moon and Mars will have requirements for monitoring the chemical and microbial status of the crew habitat. Monitoring the crew habitat becomes more critical in such long term missions. This paper will describe the state of technology development for environmental monitoring of lunar lander and lunar outpost missions, and the state of plans for future missions.

  7. AIR RADIOACTIVITY MONITOR

    Science.gov (United States)

    Bradshaw, R.L.; Thomas, J.W.

    1961-04-11

    The monitor is designed to minimize undesirable background buildup. It consists of an elongated column containing peripheral electrodes in a central portion of the column, and conduits directing an axial flow of radioactively contaminated air through the center of the column and pure air through the annular portion of the column about the electrodes. (AEC)

  8. Air Quality Monitoring Programme

    DEFF Research Database (Denmark)

    Kemp, K.; Palmgren, F.

    The air quality in Danish cities has been monitored continuously since 1982 within the Danish Air Quality (LMP) network. The aim has been to follow the concentration levels of toxic pollutants in the urban atmosphere and to provide the necessary knowledge to assess the trends, to perform source...... apportionment, and to evaluate the chemical reactions and the dispersion of the pollutants in the atmosphere. In 2002 the air quality was measured in four Danish cities and at two background sites. NO2 and PM10 were at several stations found in concentrations above the new EU limit values, which the Member...

  9. Air Quality Monitoring Programme

    DEFF Research Database (Denmark)

    Kemp, K.; Palmgren, F.

    The Danish Air Quality Monitoring Programme (LMP IV) has been revised in accordance with the Framework Directive and the first three daughter directives of SO2, NOx/NO2, PM10, lead, benzene, CO and ozone. PM10 samplers are under installation and the installation will be completed during 2002...

  10. Radiation exposure of the crew in commercial air traffic

    International Nuclear Information System (INIS)

    The routine radiation exposure of the crews in Yugoslav Airlines (JAT) has been studied and some previous results are presented. The flights of four selected groups of pilots (four aircraft types) have been studied during one year. Annual exposures and dose equivalents are presented. Some additional results and discussions are given. (1 fig., 4 tabs.)

  11. Routine individual monitoring of aircraft crew exposure: Czech experience and results since 1998

    International Nuclear Information System (INIS)

    ICRP Publication 60 recommended that the radiation exposure due to the cosmic component at high altitudes be considered when appropriate as part of occupational exposure to the radiation. The recommendation was incorporated to the Czech regulation in 1997, and the studies on how to perform individual dosimetry of Czech companies aircraft crew started immediately. The individual monitoring values were calculated using the Transport code CARI. The results obtained since the beginning have been recalculated, now with the version 6. The information on the flight schedules and the participation of aircraft crew in the flight were received from the air company. Routine individual dosimetry had started in 1998. Main results for the period 1998-2003 are as follows: both relative frequencies, as well as, average annual effective doses vary with the company and with the year, without any evident general tendency; the average annual values of E were between 1.5 and 2 mSv; and collective effective dose increased regularly, from ∼1.5 manSv to >2.2 manSv. More detailed analysis is presented, including the verification of the procedure by a series of onboard experimental measurements. (authors)

  12. Space Weather Monitoring for ISS Space Environments Engineering and Crew Auroral Observations

    Science.gov (United States)

    Minow, Joseph; Pettit, Donald R.; Hartman, William A.

    2012-01-01

    Today s presentation describes how real time space weather data is used by the International Space Station (ISS) space environments team to obtain data on auroral charging of the ISS vehicle and support ISS crew efforts to obtain auroral images from orbit. Topics covered include: Floating Potential Measurement Unit (FPMU), . Auroral charging of ISS, . Real ]time space weather monitoring resources, . Examples of ISS auroral charging captured from space weather events, . ISS crew observations of aurora.

  13. Optical Monitor for Major Air Constituents Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The well-being of the crew on manned missions depends critical on the composition of the habitat air. Oxygen, carbon dioxide and water vapor are the most important...

  14. Wireless Monitoring of Changes in Crew Relations during Long-Duration Mission Simulation.

    Directory of Open Access Journals (Sweden)

    Bernd Johannes

    Full Text Available Group structure and cohesion along with their changes over time play an important role in the success of missions where crew members spend prolonged periods of time under conditions of isolation and confinement. Therefore, an objective system for unobtrusive monitoring of crew cohesion and possible individual stress reactions is of high interest. For this purpose, an experimental wireless group structure (WLGS monitoring system integrated into a mobile psychophysiological system was developed. In the presented study the WLGS module was evaluated separately in six male subjects (27-38 years old participating in a 520-day simulated mission to Mars. Two days per week, each crew member wore a small sensor that registered the presence and distance of the sensors either worn by the other subjects or strategically placed throughout the isolation facility. The registration between two sensors was on average 91.0% in accordance. A correspondence of 95.7% with the survey video on day 475 confirmed external reliability. An integrated score of the "crew relation time index" was calculated and analyzed over time. Correlation analyses of a sociometric questionnaire (r = .35-.55, p< .05 and an ethological group approach (r = .45-.66, p < 05 provided initial evidence of the method's validity as a measure of cohesion when taking behavioral and activity patterns into account (e.g. only including activity phases in the afternoon. This confirms our assumption that the registered amount of time spent together during free time is associated with the intensity of personal relationships.

  15. Radiation shielding is not a solution. Radiation protection of air crews

    Energy Technology Data Exchange (ETDEWEB)

    Boehm, Theresia [Vereinigung Cockpit e.V., Frankfurt am Main (Germany). AG Strahlenschutz

    2012-06-15

    In most working environments it is fairly easy to minimize radiation doses of workers as postulated by radiation protection basics: Increasing the distance to the radiation source, reducing the exposure time, and the use of protective clothing or shielding. With air crews however, being the largest group of exposed persons and receiving the highest collective doses, classical protective measures are difficult or even impossible to enforce. Without neglecting the economical situation, effective measures could nevertheless be realized. Planning flights at slightly lower altitudes and further away from the geomagnetic poles can significantly reduce the radiation exposure for both crew and passengers. Furthermore, affordable high-quality dosimeters with the size of mobile phones have reached marketability. If installed on board, they could measure and display the actually received radiation during normal operation and additionally warn the flight crew in case of an abnormally high dose rate during solar particle events. Pilots could react to such warnings according to procedures that are yet to be installed. (orig.)

  16. Air Radioactivity Monitoring in Serbia

    OpenAIRE

    Popovic, Dragana; Todorovic, Dragana; Jokic, Vesna Spasic; Djuric, Gordana

    2008-01-01

    It can be concluded that monitoring natural and anthropogenic radionuclides in ground level air provide important information on the content of radionuclides due to their origin, weather and climate conditions (rate of precipitation, washout effects, temperature differences and inverstion, wind direction and intensity, troposphere-to-stratosphere transport and exchange, etc). The local topology, as well as anthropogenic factors such as the effects of traffic and heating plants are highly impo...

  17. Cosmic radiation in aviation: radiological protection of Air France aircraft crew.

    Science.gov (United States)

    Desmaris, G

    2016-06-01

    Cosmic radiation in aviation has been a concern since the 1960s, and measurements have been taken for several decades by Air France. Results show that aircraft crew generally receive 3-4 mSv y(-1) for 750 boarding hours. Compliance with the trigger level of 6 mSv y(-1) is achieved by route selection. Work schedules can be developed for pregnant pilots to enable the dose to the fetus to be kept below 1 mSv. Crew members are informed of their exposition and the potential health impact. The upcoming International Commission on Radiological Protection (ICRP) report on cosmic radiation in aviation will provide an updated guidance. A graded approach proportionate with the time of exposure is recommended to implement the optimisation principle. The objective is to keep exposures of the most exposed aircraft members to reasonable levels. ICRP also recommends that information about cosmic radiation be disseminated, and that awareness about cosmic radiation be raised in order to favour informed decision-making by all concerned stakeholders. PMID:27044363

  18. 10 CFR 835.403 - Air monitoring.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Air monitoring. 835.403 Section 835.403 Energy DEPARTMENT OF ENERGY OCCUPATIONAL RADIATION PROTECTION Monitoring of Individuals and Areas § 835.403 Air monitoring. (a) Monitoring of airborne radioactivity shall be performed: (1) Where an individual is likely...

  19. Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants

    Science.gov (United States)

    Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.

    1998-01-01

    Control of air contaminants is a crucial factor in the safety considerations of crewed space flight. Indoor air quality needs to be closely monitored during long range missions such as a Mars mission, and also on large complex space structures such as the International Space Station. This work mainly pertains to the detection and simulation of air contaminants in the space station, though much of the work is easily extended to buildings, and issues of ventilation systems. Here we propose a method with which to track the presence of contaminants using an accurate physical model, and also develop a robust procedure that would raise alarms when certain tolerance levels are exceeded. A part of this research concerns the modeling of air flow inside a spacecraft, and the consequent dispersal pattern of contaminants. Our objective is to also monitor the contaminants on-line, so we develop a state estimation procedure that makes use of the measurements from a sensor system and determines an optimal estimate of the contamination in the system as a function of time and space. The real-time optimal estimates in turn are used to detect faults in the system and also offer diagnoses as to their sources. This work is concerned with the monitoring of air contaminants aboard future generation spacecraft and seeks to satisfy NASA's requirements as outlined in their Strategic Plan document (Technology Development Requirements, 1996).

  20. Community air monitoring and Village Green Project

    Science.gov (United States)

    Cost and logistics are practical issues that have historically constrained the number of locations where long-term, active air pollution measurement is possible. In addition, traditional air monitoring approaches are generally conducted by technical experts with limited engageme...

  1. REAL TIME WIRELESS AIR POLLUTION MONITORING SYSTEM

    OpenAIRE

    Raja Vara Prasad Y; Mirza Sami Baig; Mishra, Rahul K; Rajalakshmi, P.; U. B. Desai; S. N. Merchant

    2011-01-01

    Air pollution has significant influence on the concentration of constituents in the atmosphere leading to effects like global warming and acid rains. To avoid such adverse imbalances in the nature, an air pollution monitoring system is utmost important. This paper attempts to develop an effective solution for pollution monitoring using wireless sensor networks (WSN) on a real time basis namely real time wireless air pollution monitoring system. Commercially available discrete gas sensors for ...

  2. Dose Tracker Application for Monitoring Crew Medication Usage, Symptoms, and Adverse Effects During Missions

    Science.gov (United States)

    Wotring, Virginia; Smith, LaRona

    2015-01-01

    Medication usage records can be used as a relatively nonintrusive means of monitoring health. This has been attempted previously through crew medical records, but these records are incomplete from the perspective of a research pharmacologist. During the shuttle era, NASA operations did not include routine questioning of crewmembers about their medication use until after missions were complete. The (long!) questionnaire was on paper. Asking crewmembers to recall medication use from weeks before questioning made getting complete and accurate information virtually impossible. This study will document medication usage of crewmembers before and during their missions. It will capture previously unrecorded data regarding medication use during spaceflight, including side effect qualities, frequencies and severities. The research-oriented data will be collected for research purposes, separate from medical records. Dose Tracker employs an iOS application (app) for fast & easy collection of medication usage data from crewmember participants during their missions.

  3. Volunteers for Air Monitoring Project (VAMP).

    Science.gov (United States)

    Oak Ridge National Lab., TN.

    An education and communication project of the Environment and Technology Assessment Program, Oak Ridge National Laboratory, Tennessee, is described in this report. The project for monitoring air dustfall resulted in the largest citizen-scientist air monitoring effort in the history of our nation. Nearly 21,000 public secondary school students and…

  4. Trace Contaminant Monitor for Air in Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A need exists for analyzers that can measure trace contaminants in air on board spacecraft. Toxic gas buildup can endanger the crew particularly during long...

  5. A survey of an air monitoring program

    International Nuclear Information System (INIS)

    The objective of this report is to compare personal air sampling data to stationary air sampling data and to bioassay data that was taken during the decontamination and decommissioning of sixty-one plutonium glove boxes at Argonne National Laboratory (ANL) in 1995. An air monitoring program administered at Argonne National Laboratory was assessed by comparing personal air sampler (PAS) data, stationary air sampler (SAS) data, and bioassay data. The study revealed that the PAS and SAS techniques were equivalent when averaged over all employees and all workdays, but the standard deviation was large. Also, large deviations were observed in individual samples. The correlation between individual PAS results and bioassay results was low. Personal air samplers and bioassay monitoring played complementary roles in assessing the workplace and estimating intakes. The PAS technique is adequate for detection and evaluation of contaminated atmospheres, whereas bioassay monitoring is better for determining individual intakes

  6. A survey of an air monitoring program

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M.B.

    1997-08-01

    The objective of this report is to compare personal air sampling data to stationary air sampling data and to bioassay data that was taken during the decontamination and decommissioning of sixty-one plutonium glove boxes at Argonne National Laboratory (ANL) in 1995. An air monitoring program administered at Argonne National Laboratory was assessed by comparing personal air sampler (PAS) data, stationary air sampler (SAS) data, and bioassay data. The study revealed that the PAS and SAS techniques were equivalent when averaged over all employees and all workdays, but the standard deviation was large. Also, large deviations were observed in individual samples. The correlation between individual PAS results and bioassay results was low. Personal air samplers and bioassay monitoring played complementary roles in assessing the workplace and estimating intakes. The PAS technique is adequate for detection and evaluation of contaminated atmospheres, whereas bioassay monitoring is better for determining individual intakes.

  7. Effects of Gas-Phase Adsorption air purification on passengers and cabin crew in simulated 11-hour flights

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter; Zukowska, Daria; Fang, Lei;

    2006-01-01

    In a 3-row, 21-seat section of a simulated aircraft cabin that had been installed in a climate chamber, 4 groups of 17 subjects, acting as passengers and crew, took part in simulated 11-hour flights. Each group experienced 4 conditions in balanced order, defined by two outside air supply rates (2.......4 and 3.3 L/s per person), with and without a Gas-Phase Adsorption (GPA) unit in the re-circulated air system. Objective physical and physiological measurements and subjective human assessments of symptom intensity were obtained. The GPA unit provided advantages with no apparent disadvantages....

  8. Air and radiation monitoring stations

    CERN Multimedia

    AUTHOR|(SzGeCERN)582709

    2015-01-01

    CERN has around 100 monitoring stations on and around its sites. New radiation measuring stations, capable of detecting even lower levels of radiation, were installed in 2014. Two members of HE-SEE group (Safety Engineering and Environment group) in front of one of the new monitoring stations.

  9. 2011 NATA - Air Toxics Monitors

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset includes annual (2005 - 2013) statistics of measured ambient air toxics concentrations (in micrograms per cubic meter) and associated risk estimates...

  10. Integrated monitoring and assessment of air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, O.

    2009-09-15

    Improved quality, better understanding of processes and optimisation of allocated resources, these are the main advantages of applying Integrated Monitoring and Assessment (IMA) in air quality management. The IMA is defined as the combined use of measurements and model calculations. The use of IMA is demonstrated with examples with different aims: to obtain data for air pollution in urban streets, to assess human exposure to traffic air pollution, and to assess atmospheric deposition of nitrogen compounds to marine and terrestrial ecosystems. (author)

  11. Large scale air monitoring: Biological indicators versus air particulate matter

    International Nuclear Information System (INIS)

    Biological indicator organisms are widely used for monitoring and banking purposes since many years. Although the complexity of the interactions between bioorganisms and their environment is generally not easily comprehensible, environmental quality assessment using the bioindicator approach offers some convincing advantages compared to direct analysis of soil, water, or air. Direct measurement of air particulates is restricted to experienced laboratories with access to expensive sampling equipment. Additionally, the amount of material collected generally is just enough for one determination per sampling and no multidimensional characterization might be possible. Further, fluctuations in air masses have a pronounced effect on the results from air filter sampling. Combining the integrating property of bioindicators with the world wide availability and uniform matrix characteristics of air particulates as a prerequisite for global monitoring of air pollution will be discussed. A new approach for sampling urban dust using large volume filtering devices installed in air conditioners of large hotel buildings is assessed. A first experiment was initiated to collect air particulates (300 to 500 g each) from a number of hotels during a period of three to four months by successive vacuum cleaning of used inlet filters from high volume air conditioning installations reflecting average concentrations per three months in different large cities. This approach is expected to be upgraded and applied for global monitoring. Highly positive correlated elements were found in lichen such as K/S, Zn/P, the rare earth elements (REE) and a significant negative correlation between Fig and Cu was observed in these samples. The ratio of concentrations of elements in dust and Usnea spp. is highest for Cr, Zn, and Fe (400-200) and lowest for elements such as Ca, Rb, and Sr (20-10). (author)

  12. Air pollution monitor for TRISTAN

    International Nuclear Information System (INIS)

    In the summer of 1988, sixteen superconducting RF cavities were installed to increase the beam energy of TRISTAN and they began to be effective operation in November. One of the obvious problems created by the installation of superconducting equipment to the tunnel is oxygen-poor in case of bursting the liquefied gases. Air pollution in the tunnel from poisonous gases formed by synchrotron radiations is also becoming serious problem as upgrading TRISTAN. It is the purpose of this paper to show the special safety control problems and the system used in TRISTAN to give a solution for these problems. 3 refs., 5 figs., 1 tab

  13. Solar Powered Radioactive Air Monitoring Stations

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, J. Matthew; Bisping, Lynn E.; Gervais, Todd L.

    2013-10-30

    Environmental monitoring of ambient air for radioactive material is required as stipulated in the PNNL Site radioactive air license. Sampling ambient air at identified preferred locations could not be initially accomplished because utilities were not readily available. Therefore, solar powered environmental monitoring systems were considered as a possible option. PNNL purchased two 24-V DC solar powered environmental monitoring systems which consisted of solar panels, battery banks, and sampling units. During an approximate four month performance evaluation period, the solar stations operated satisfactorily at an on-site test location. They were subsequently relocated to their preferred locations in June 2012 where they continue to function adequately under the conditions found in Richland, Washington.

  14. NASA Crew Personal Active Dosimeters (CPADs): Leveraging Novel Terrestrial Personal Radiation Monitoring Capabilities for Space Exploration

    Science.gov (United States)

    Leitgab, Martin; Semones, Edward; Lee, Kerry

    2016-01-01

    The NASA Space Radiation Analysis Group (SRAG) is developing novel Crew Personal Active Dosimeters (CAPDs) for upcoming crewed space exploration missions and beyond. To reduce the resource footprint of the project a COTS dosimeter base is used for the development of CPADs. This base was identified from evaluations of existing COTS personal dosimeters against the concept of operations of future crewed missions and tests against detection requirements for radiation characteristic of the space environment. CPADs exploit operations efficiencies from novel features for space flight personal dosimeters such as real-time dose feedback, and autonomous measuring and data transmission capabilities. Preliminary CPAD design, results of radiation testing and aspects of operational integration will be presented.

  15. Air monitoring in radioiodine therapy ward

    International Nuclear Information System (INIS)

    Full text: In Radioiodine therapy wards, in general the radiation exposure due to air borne activity from patients administered with 925MBq-7.4GBq (25-200mCi) of 131I has to be kept under regulatory limits. The purpose of conducting an air monitoring in our setup was to assess air borne activity levels. If the levels are high then it may lead to increased exposure to the occupational workers and patient's attendants. A total of 22.2GBq (600 mCi) 131I is administered every week to our patients in the isolation ward. After administered of 131I in the dose administration room, patients occupy their respective beds. The isolation beds are provided with attached toilet facility. Six air samples were collected from various regions (high dose room, low dose room, dose administration room, special room, corridor and entrance) in the vacuumized vials (9 ml) using 16 G needle at the breathing zone level. One control sample was also collected from the area with no possible 131I air-contamination. The vials were then counted in the pre-calibrated NaI well counter (known efficiency). The maximum air borne radioiodine concentration was found to be 1.999x10-6 ?Ci/cm3 in the high dose room (which keeps on decreasing with time, being maximum on second day and zero on third and subsequent days). We measured the thyroid counts of the staff and patient's attendants, routinely. The estimated thyroid activity never showed any significant increase in the thyroid uptake of the staff and patient's attendants. In our setup, air monitoring is strictly followed and performed periodically. We conclude that air monitoring program is only one element of the comprehensive radiation protection program and should be a made mandatory practice. (author)

  16. SEATTLE AIR TOXICS MONITORING PILOT PROJECT

    Science.gov (United States)

    Since January, 2000, the Washington Department of Ecology has been monitoring for air toxics at two sites in Seattle, Beacon Hill and Georgetown. The Beacon Hill site is in an area of high population density that reflects conditions in a "typical" urban residential neighborhood a...

  17. Air Quality – monitoring and modelling

    Directory of Open Access Journals (Sweden)

    Marius DEACONU

    2012-12-01

    Full Text Available Air pollution is a major concern for all nations, regardless of their development. The rapid growth of the industrial sector and urban development have lead to significant quantities of substances and toxic materials, mostly discharged into the atmosphere and having adverse effects both on human health and environment in general. Human society has to recognize that environment has only a limited capacity to process all of its waste without major changes. Each of us is a pollutant but also a victim of pollution. If monitoring of air pollutants is particularly important for assessing the air quality at any moment, by modelling the monitoring data spectacular results are obtained both through the factor analysis and identification of potential pollution mitigation measures. Latest equipment and techniques come and support these problems giving medium and long term solutions.

  18. Assessment of SRS ambient air monitoring network

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jannik, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-03

    Three methodologies have been used to assess the effectiveness of the existing ambient air monitoring system in place at the Savannah River Site in Aiken, SC. Effectiveness was measured using two metrics that have been utilized in previous quantification of air-monitoring network performance; frequency of detection (a measurement of how frequently a minimum number of samplers within the network detect an event), and network intensity (a measurement of how consistent each sampler within the network is at detecting events). In addition to determining the effectiveness of the current system, the objective of performing this assessment was to determine what, if any, changes could make the system more effective. Methodologies included 1) the Waite method of determining sampler distribution, 2) the CAP88- PC annual dose model, and 3) a puff/plume transport model used to predict air concentrations at sampler locations. Data collected from air samplers at SRS in 2015 compared with predicted data resulting from the methodologies determined that the frequency of detection for the current system is 79.2% with sampler efficiencies ranging from 5% to 45%, and a mean network intensity of 21.5%. One of the air monitoring stations had an efficiency of less than 10%, and detected releases during just one sampling period of the entire year, adding little to the overall network intensity. By moving or removing this sampler, the mean network intensity increased to about 23%. Further work in increasing the network intensity and simulating accident scenarios to further test the ambient air system at SRS is planned

  19. The Danish Air Quality Monitoring Programme

    DEFF Research Database (Denmark)

    Kemp, K.; Palmgren, F.; Manscher, O. H.

    The Danish Air Quality Monitoring Programme (LMP) was started in 1982 as the first nation-wide urban air pollution monitoring programme in Denmark. The programme has been adjusted to the pollution pattern by two revisions. The present phase (LMP III) was started in 1992. This report presents...... direction, wind speed, tem-perature, relative humidity and global radiation are measured at the roof sites. Additional measurements of CO at street and NO and NO2 at roof sites are performed in campaigns in order to improve the knowledge about the NO, NO2 and O3 problem complex. At the rural site outside...... factor for the formation of NO2 at street level and it remains to be seen to what extent the NO2 concentrations will be reduced at highly polluted places as result of the TWC's. Some of the threshold values for O3 were frequently exceeded. The average O3 concentrations are almost the same at all sites...

  20. Air Quality System (AQS) Monitoring Network, EPA OAR OAQPS

    Data.gov (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains points which depict air quality monitors within EPA's Air Quality System (AQS) monitoring network. This dataset is updated weekly to...

  1. Design of a small personal air monitor and its application in aircraft.

    Science.gov (United States)

    van Netten, Chris

    2009-01-15

    A small air sampling system using standard air filter sampling technology has been used to monitor the air in aircraft. The device is a small ABS constructed cylinder 5 cm in diameter and 9 cm tall and can be operated by non technical individuals at an instant notice. It is completely self contained with a 4 AAA cell power supply, DC motor, a centrifugal fan, and accommodates standard 37 mm filters and backup pads. The monitor is totally enclosed and pre assembled in the laboratory. A 45 degrees twist of the cap switches on the motor and simultaneously opens up the intake ports and exhaust ports allowing air to pass through the filter. A reverse 45 degrees twist of the cap switches off the motor and closes all intake and exhaust ports, completely enclosing the filter. The whole monitor is returned to the laboratory by standard mail for analysis and reassembly for future use. The sampler has been tested for electromagnetic interference and has been approved for use in aircraft during all phases of flight. A set of samples taken by a BAe-146-300 crew member during two flights in the same aircraft and analyzed by GC-MS, indicated exposure to tricresyl phosphate (TCP) levels ranging from 31 to 83 nanograms/m(3) (detection limit aircraft. It was concluded that the air sampler was capable of monitoring air concentrations of TCP isomers in aircraft above 4.5 nanogram/m(3). PMID:18801557

  2. 40 CFR 51.190 - Ambient air quality monitoring requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Ambient air quality monitoring... PROGRAMS REQUIREMENTS FOR PREPARATION, ADOPTION, AND SUBMITTAL OF IMPLEMENTATION PLANS Ambient Air Quality Surveillance § 51.190 Ambient air quality monitoring requirements. The requirements for monitoring ambient...

  3. 40 CFR 52.346 - Air quality monitoring requirements.

    Science.gov (United States)

    2010-07-01

    ... Air Quality Monitoring plan as identified at 40 CFR 52.320 (c)(17). The revisions updated the plan to bring it into conformance with the Federal requirements for air quality monitoring as found in 40 CFR... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Air quality monitoring requirements....

  4. Assessment of SRS ambient air monitoring network

    Energy Technology Data Exchange (ETDEWEB)

    Abbott, K. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jannik, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-03

    Three methodologies have been used to assess the effectiveness of the existing ambient air monitoring system in place at the Savannah River Site in Aiken, SC. Effectiveness was measured using two metrics that have been utilized in previous quantification of air-monitoring network performance; frequency of detection (a measurement of how frequently a minimum number of samplers within the network detect an event), and network intensity (a measurement of how consistent each sampler within the network is at detecting events). In addition to determining the effectiveness of the current system, the objective of performing this assessment was to determine what, if any, changes could make the system more effective. Methodologies included 1) the Waite method of determining sampler distribution, 2) the CAP88- PC annual dose model, and 3) a puff/plume transport model used to predict air concentrations at sampler locations. Data collected from air samplers at SRS in 2015 compared with predicted data resulting from the methodologies determined that the frequency of detection for the current system is 79.2% with sampler efficiencies ranging from 5% to 45%, and a mean network intensity of 21.5%. One of the airmonitoring stations had an efficiency of less than 10%, and detected releases during just one sampling period of the entire year, adding little to the overall network intensity. By moving or removing this sampler, the mean network intensity increased to about 23%. Further work in increasing the network intensity and simulating accident scenarios to further test the ambient air system at SRS is planned

  5. Vertical hydraulic generators experience with dynamic air gap monitoring

    International Nuclear Information System (INIS)

    Until recently, dynamic monitoring of the rotor to stator air gap of hydraulic generators was not practical. Cost effective and reliable dyamic air gap monitoring equipment has been developed in recent years. Dynamic air gap monitoring was originally justified because of the desire of the owner to minimize the effects of catastrophic air gap failure. However, monitoring air gaps on a time basis has been shown to be beneficial by assisting in the assessment of hydraulic generator condition. The air gap monitor provides useful information on rotor and stator condition and generator vibration. The data generated by air gap monitors will assist managers in the decision process with respect to the timing and extent of required maintenance for a particular generating unit

  6. Experimental Investigation of Project Orion Crew Exploration Vehicle Aeroheating: LaRC 20-Inch Mach 6 Air Tunnel Test 6931

    Science.gov (United States)

    Hollis, Brian R.

    2009-01-01

    An investigation of the aeroheating environment of the Project Orion Crew Entry Vehicle has been performed in the Langley Research Center 20-Inch Mach 6 Air Tunnel. Data were measured on a approx.3.5% scale model (0.1778-m/7-inch diameter) of the vehicle using coaxial thermocouples at free stream Reynolds numbers of 2.0 10(exp 6)/ft to 7.30 10(exp 6)/ft and computational predictions were generated for all test conditions. The primary goals of this test were to obtain convective heating data for use in assessing the accuracy of the computational technique and to validate test methodology and heating data from a test of the same wind tunnel model in the Arnold Engineering Development Center Tunnel 9. Secondary goals were to determine the extent of transitional/turbulent data which could be produced on a CEV model in this facility, either with or without boundary-layer trips, and to demonstrate continuous pitch-sweep operation in this tunnel for heat transfer testing.

  7. 40 CFR 52.995 - Enhanced ambient air quality monitoring.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Enhanced ambient air quality monitoring. 52.995 Section 52.995 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... air quality monitoring. (a) The Governor of the State of Louisiana submitted the...

  8. Cubesat Constellation Design for Air Traffic Monitoring

    Science.gov (United States)

    Nag, Sreeja; Rios, Joseph Lucio; Gerhardt, David; Pham, Camvu

    2015-01-01

    Suitably equipped global and local air traffic can be tracked. The tracking information may then be used for control from ground-based stations by receiving the Automatic Dependent Surveillance-Broadcast (ADS-B) signal. The ADS-B signal, emitted from the aircraft's Mode-S transponder, is currently tracked by terrestrial based receivers but not over remote oceans or sparsely populated regions such as Alaska or the Pacific Ocean. Lack of real-time aircraft time/location information in remote areas significantly hinders optimal planning and control because bigger "safety bubbles" (lateral and vertical separation) are required around the aircraft until they reach radar-controlled airspace. Moreover, it presents a search-and-rescue bottleneck. Aircraft in distress, e.g. Air France AF449 that crashed in 2009, take days to be located or cannot be located at all, e.g. Malaysia Airlines MH370 in 2014. In this paper, we describe a tool for designing a constellation of small satellites which demonstrates, through high-fidelity modeling based on simulated air traffic data, the value of space-based ADS-B monitoring and provides recommendations for cost-efficient deployment of a constellation of small satellites to increase safety and situational awareness in the currently poorly-served surveillance area of Alaska. Air traffic data has been obtained from the Future ATM Concepts Evaluation Tool (FACET), developed at NASA Ames Research Center, simulated over the Alaskan airspace over a period of one day. The simulation is driven by MATLAB with satellites propagated and coverage calculated using AGI's Satellite ToolKit(STK10).

  9. Monitoring air pollution in the Bialowieza Forest

    Science.gov (United States)

    Malzahn, Elżbieta; Sondej, Izabela; Paluch, Rafał

    2016-04-01

    Air pollution, as sulfur dioxide(SO2) and nitrous oxides (NOx), affects forest health negatively and can initiate forest dieback. Long-term monitoring (since 1986) and analyses are conducted in the Bialowieza Forest due to the threat by abiotic, biotic and anthropogenic factors. This forest has a special and unique natural value, as confirmed by the various forms of protection of national and international rank. The main aim of monitoring is to determine the level and trends of deposition of air pollutants and their effects on selected forest stands and forest communities in the Bialowieza Forest. Concentration measurements of gaseous pollutants and the chemical composition of the precipitation are performed at seven points within the forest area (62 219 ha). Measurement gauges are measuring gaseous pollutants (SO2 and NOx) by the passive method and collecting precipitation at each point at a height of three meters. The period of measuring by the instruments is 30 days. All analyses are conducted according to the methodology of the European forest monitoring program in the certified Laboratory of Natural Environment Chemistry of the Polish Forest Research Institute (IBL). The concentration of pollutant gases (dry deposition) in the years 2002-2015 accounted for only 6-13% of the limit in Poland, as defined by the Polish Ministry of Environment, and are of no threat to the forest environment. Wet deposition of pollutants, which dependents directly from the amount of precipitation and its concentration of pollutants, varied strongly between different months and years. Total deposition (dry and wet) of sulfur (S) and nitrogen (N) was calculated for seasonal and annual periods. On an annual basis, wet deposition represented approximately 80% of the total deposition of S and N. Total deposition of S did not exceed the average deposition values for forests in north-eastern Europe (5-10 kg ha-1 year-1) at any of the seven measuring points. Total deposition of N did not

  10. Monitoring of pyrocatechol indoor air pollution

    Science.gov (United States)

    Eškinja, I.; Grabarić, Z.; Grabarić, B. S.

    Spectrophotometric and electrochemical methods for monitoring of pyrocatechol (PC) indoor air pollution have been investigated. Spectrophotometric determination was performed using Fe(III) and iodine methods. The adherence to Beer's law was found in the concentration range between 0 and 12 μg ml - for iodine method at pH = 5.7 measuring absorbance at 725 nm, and in the range 0-30 μg ml - for Fe(III) method at pH = 9.5 measuring absorbance at 510 nm. The former method showed greater sensitivity than the latter one. Differential pulse voltammetry (DPV) and chronoamperometric (CA) detection in flow injection analysis (FIA) using carbon paste electrode in phosphate buffer solution of pH = 6.5 was also used for pyrocatechol determination. The electrochemical methods allowed pyrocatechol quantitation in submicromolar concentration level with an overall reproducibility of ± 1%. The efficiency of pyrocatechol sampling collection was investigated at two temperatures (27 and 40°C) in water, 0.1 M NaOH and 0.1 M HCl solutions. Solution of 0.1 M HCl gave the best collection efficiency (95.5-98.5%). A chamber testing simulating the indoor pollution has been performed. In order to check the reliability of the proposed methods for monitoring of the indoor pyrocatechol pollution, the air in working premises with pyrocatechol released from meteorological charts during mapping and paper drying was analyzed using proposed methods. The concentration of pyrocatechol in the air during mapping was found to be 1.8 mg m -3 which is below the hygienic standard of permissible exposure of 20 mg m -3 (≈ 5 ppm). The release of pyrocatechol from the paper impregnated with pyrocatechol standing at room temperature during one year was also measured. The proposed methods can be used for indoor pyrocatechol pollution monitoring in working premises of photographic, rubber, oil and dye industries, fur and furniture dyeing and cosmetic or pharmaceutical premises where pyrocatechol and related

  11. Monitoring activities in the Dutch National Air Quality Monitoring Network in 2000 and 2001

    NARCIS (Netherlands)

    Elzakker BG van; LLO

    2001-01-01

    The Dutch National Air Quality Monitoring Network (LML in Dutch) is one of the responsibilities of the Air Research Laboratory of the National Institute of Public Health and the Environment. The main objectives of the LML are to monitor ambient air quality, facilitate implementation of air quality s

  12. Community air monitoring and the Village Green Project

    Science.gov (United States)

    Abstract: Cost and logistics are practical issues that have historically constrained the number of locations where long-term, active air pollution measurement is possible. In addition, traditional air monitoring approaches are generally conducted by technical experts with limite...

  13. Community air monitoring and the Village Green Project

    Science.gov (United States)

    Cost and logistics are practical issues that have historically constrained the number of locations where long-term, active air pollution measurement is possible. In addition, traditional air monitoring approaches are generally conducted by technical experts with limited engageme...

  14. DANIDA; Air Quality Monitoring Programme. Mission 2 Report

    Energy Technology Data Exchange (ETDEWEB)

    Sivertsen, B.

    1996-06-01

    The report deals with the EIMP (Environmental Information and Monitoring Programme for the Arab Republic of Egypt). The programme is funded by Danida which is a cooperation project between Norway and Denmark. The programme covers the monitoring of air pollution, coastal water monitoring, and the monitoring of pollution sources and emissions. This report pays the attention to the Norwegian part of the programme executed by NILU (Norwegian Institute for Air Research) which covers the development air quality monitoring network. 14 refs., 51 figs., 18 tabs.

  15. DANIDA; Air Quality Monitoring Programme. Mission 3 Report

    Energy Technology Data Exchange (ETDEWEB)

    Sivertsen, B.; Marsteen, L.

    1996-12-31

    In the development of the Environmental Information and Monitoring Programme for the Arab Republic of Egypt (EIMP), NILU is responsible for the establishment of an air pollution monitoring system. This report summarizes the third mission to Egypt and includes meetings and site visit reports. Air quality sites in Alexandria are described and comments are given to earlier selected sites in Cairo

  16. Air pollution assessment in the Slovak Republic in 2005. Measurement stations of air quality monitoring network

    International Nuclear Information System (INIS)

    In this Appendix to the report 'Air pollution assessment in the Slovak Republic in 2005' the main characteristics of measurement stations of air quality monitoring network of the Slovak Republic are presented

  17. Radiation contamination air monitoring basing on NATO normalization documents

    International Nuclear Information System (INIS)

    The conditions and actions connected with conducting of the air radiation monitoring have been described in the article. The staff and tasks of special military troops for air sampling as well as commonly used methods for air sampling have been presented and discussed

  18. CHATTANOOGA AIR TOXICS (CATS) MONITORING RISK ASSESSMENT

    Science.gov (United States)

    The Chattanooga-Hamilton County Air Pollution Control Bureau (CHCAPCB), the United States Environmental Protection Agency Region 4 (Region 4), and other stakeholders, in a cooperative effort, conducted an air toxics study in the Chattanooga area (city population approximately 285...

  19. Representativeness of air quality monitoring networks

    NARCIS (Netherlands)

    Duyzer, J.; Hout, D. van den; Zandveld, P.; Ratingen, S. van

    2015-01-01

    The suitability of European networks to check compliance with air quality standards and to assess exposure of the population was investigated. An air quality model (URBIS) was applied to estimate and compare the spatial distribution of the concentration of nitrogen dioxide (NO2) in ambient air in fo

  20. Monitoring activities in the Dutch National Air Quality Monitoring Network in 2000 and 2001

    OpenAIRE

    Elzakker BG van; LLO

    2001-01-01

    The Dutch National Air Quality Monitoring Network (LML in Dutch) is one of the responsibilities of the Air Research Laboratory of the National Institute of Public Health and the Environment. The main objectives of the LML are to monitor ambient air quality, facilitate implementation of air quality standards, alert authorities and the public to pollution episodes, support validation of model results, support diagnosis using model simulation, support short-term model prognosis and assist in qua...

  1. Faster Array Training and Rapid Analysis for a Sensor Array Intended for an Event Monitor in Air

    Science.gov (United States)

    Homer, Margie L.; Shevade, A. V.; Fonollosa, J.; Huerta, R.

    2013-01-01

    Environmental monitoring, in particular, air monitoring, is a critical need for human space flight. Both monitoring and life support systems have needs for closed loop process feedback and quality control for environmental factors. Monitoring protects the air environment and water supply for the astronaut crew and different sensors help ensure that the habitat falls within acceptable limits, and that the life support system is functioning properly and efficiently. The longer the flight duration and the farther the destination, the more critical it becomes to have carefully monitored and automated control systems for life support. There is an acknowledged need for an event monitor which samples the air continuously and provides near real-time information on changes in the air. Past experiments with the JPL ENose have demonstrated a lifetime of the sensor array, with the software, of around 18 months. We are working on a sensor array and new algorithms that will incorporate transient sensor responses in the analysis. Preliminary work has already showed more rapid quantification and identification of analytes and the potential for faster training time of the array. We will look at some of the factors that contribute to demonstrating faster training time for the array. Faster training will decrease the integrated sensor exposure to training analytes, which will also help extend sensor lifetime.

  2. Crew Activity Analyzer

    Science.gov (United States)

    Murray, James; Kirillov, Alexander

    2008-01-01

    . Assuming essentially instantaneous propagation of the radio signal, the distance between that beacon and the listener unit is estimated from this time difference and the speed of sound in air.] In this system, six Cricket listener units are mounted in various positions on the ceiling, and as many as four Cricket beacons are attached to crew members. The three-dimensional position of each Cricket beacon can be estimated from the time-difference readings of that beacon from at least three Cricket listener units

  3. Development of mobile air pollution monitoring system (LIDAR)

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Hyung Ki; Song, Kyu Seok; Kim, Dukh Yeon; Yang, Ki Ho; Lee, Jong Min; Yoon, S.; Rostov, A

    2001-01-01

    Most air pollution monitoring technologies accompany a time-consuming sample treatment and provide pollution information only for a local area. Thus, they have a critical restriction in monitoring time-dependent pollution variation effectively over the wide range of area both in height and in width. LIDAR(Light Detection And Ranging) is a new technology to overcome such drawbacks of the existing pollution monitoring technologies and has long been investigated in the advanced countries. The coal of this project is to develop the mobile air pollution monitoring system and to apply the system to the detection of various pollutants, such as ozone, nitrogen dioxide, sulfur dioxide and aerosols.

  4. Micro GC's for Contaminant Monitoring in Spacecraft Air Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to create new gas chromatographs (GCs) for contaminant monitoring in spacecraft air that do not require any reagents or special...

  5. A Wireless Sensor Network Air Pollution Monitoring System

    CERN Document Server

    Khedo, Kavi K; Mungur, Avinash; Mauritius, University of; Mauritius,; 10.5121/ijwmn.2010.2203

    2010-01-01

    Sensor networks are currently an active research area mainly due to the potential of their applications. In this paper we investigate the use of Wireless Sensor Networks (WSN) for air pollution monitoring in Mauritius. With the fast growing industrial activities on the island, the problem of air pollution is becoming a major concern for the health of the population. We proposed an innovative system named Wireless Sensor Network Air Pollution Monitoring System (WAPMS) to monitor air pollution in Mauritius through the use of wireless sensors deployed in huge numbers around the island. The proposed system makes use of an Air Quality Index (AQI) which is presently not available in Mauritius. In order to improve the efficiency of WAPMS, we have designed and implemented a new data aggregation algorithm named Recursive Converging Quartiles (RCQ). The algorithm is used to merge data to eliminate duplicates, filter out invalid readings and summarise them into a simpler form which significantly reduce the amount of dat...

  6. DANIDA; Air Quality Monitoring Programme. Mission 4 Report

    Energy Technology Data Exchange (ETDEWEB)

    Sivertsen, B.

    1997-12-31

    In the development of the Environmental Information and Monitoring Programme for the Arab Republic of Egypt (EIMP), NILU is responsible for the establishment of an air pollution monitoring system. This report summarizes the fourth mission to Egypt, including planning of the second phase meetings and site visits. Additional air quality sites in Cairo have been described. A project group meeting and a visit to Egypt Meteorological Service have been reported

  7. Air monitoring requirements and alarm response procedures in reprocessing plants

    International Nuclear Information System (INIS)

    A comprehensive air monitoring programme will need to consider the requirement to sample for alpha and/or beta particulate activity, volatile species activity (eg iodine) and radioactive gas (eg tritium or krypton). This paper reviews the philosophy and requirements of the air monitoring programme for the reprocessing plant at BNFL's Sellafield site (formerly known as Windscale and Calder Works), with particular emphasis on particulate activity sampling systems

  8. US Navy Submarine Sea Trial of the NASA Air Quality Monitor

    Science.gov (United States)

    Limero, Thomas; Wallace, William T.; Manney, Joshua A.; Mudgett, Paul D.

    2017-01-01

    For the past four years, the Air Quality Monitor (AQM) has been the operational instrument for measuring trace volatile organic compounds on the International Space Station (ISS). The key components of the AQM are the inlet preconcentrator, the gas chromatograph (GC), and the differential mobility spectrometer. Most importantly, the AQM operates at atmospheric pressure and uses air as the GC carrier gas, which translates into a small reliable instrument. Onboard ISS there are two AQMs, with different GC columns that detect and quantify 22 compounds. The AQM data contributes valuable information to the assessment of air quality aboard ISS for each crew increment. The U.S. Navy is looking to update its submarine air monitoring suite of instruments, and the success of the AQM on ISS has led to a jointly planned submarine sea trial of a NASA AQM. In addition to the AQM, the Navy is also interested in the Multi-Gas Monitor (MGM), which was successfully flown on ISS as a technology demonstration to measure major constituent gases (oxygen, carbon dioxide, water vapor, and ammonia). A separate paper will present the MGM sea trial results. A prototype AQM, which is virtually identical to the operational AQM, has been readied for the sea trial. Only one AQM will be deployed during the sea trial, but it is sufficient to detect the compounds of interest to the Navy for the purposes of this trial. A significant benefit of the AQM is that runs can be scripted for pre-determined intervals and no crew intervention is required. The data from the sea trial will be compared to archival samples collected prior to and during the trial period. This paper will give a brief overview of the AQM technology and protocols for the submarine trial. After a quick review of the AQM preparation, the main focus of the paper will be on the results of the submarine trial. Of particular interest will be the comparison of the contaminants found in the ISS and submarine atmospheres, as both represent

  9. Measurement results obtained from air quality monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Turzanski, P.K.; Beres, R. [Provincial Inspection of Environmental Protection, Cracow (Poland)

    1995-12-31

    An automatic system of air pollution monitoring operates in Cracow since 1991. The organization, assembling and start-up of the network is a result of joint efforts of the US Environmental Protection Agency and the Cracow environmental protection service. At present the automatic monitoring network is operated by the Provincial Inspection of Environmental Protection. There are in total seven stationary stations situated in Cracow to measure air pollution. These stations are supported continuously by one semi-mobile (transportable) station. It allows to modify periodically the area under investigation and therefore the 3-dimensional picture of creation and distribution of air pollutants within Cracow area could be more intelligible.

  10. A Next Generation Air Monitor: Combining Orion and ISS Requirements for a Common Major Constituent Analyzer

    Science.gov (United States)

    Burchfield, David E.; Tissandier, Michael; Niu, William Hsein-Chi; Lewis, John F.

    2013-01-01

    The Major Constituent Analyzer (MCA) is a mass spectrometer-based instrument designed to provide critical monitoring of six major atmospheric constituents; nitrogen, oxygen, hydrogen, carbon dioxide, methane, and water vapor on-board the International Space Station. The analyzer has been an integral part of the Environmental Control and Life Support System (ECLSS) since the station went on-line. The Orion Air Monitor (OAM) was derived from the MCA and heavily optimized for reduced mass, lower power, faster water vapor response, and maintenance-free operation. The resulting OAM is approximately the size of the analyzer portion of the MCA, orbital-replacement unit 02 (ORU 02), while incorporating the functions of three other modules: Data Processing and Communication (ORU 01), Verification Gas Assembly (ORU 08), and Low Voltage Power Supply (ORU 04). The overlap in MCA and OAM requirements makes it possible to derive a common Air Monitor design that spans both applications while minimally impacting the weight and power limits imposed by the Multipurpose Crew Vehicle (MPCV). Benefits to ISS include the retirement of ORUs 01, 04, and 08, reducing up-mass and eliminating EEE parts obsolescence issues through the extended ISS mission phases. Benefits to MPCV and future deployed habitats under the Constellation program include greater interchangeability across ECLSS subsystems. This paper discusses the results of the requirements development study, where a superset of ISS and Orion air monitoring requirements were distilled; evaluated against increases in OAM functionality, mass, and power; and traded-off where possible using simple operating mode modifications. A system architecture and preliminary design addressing the common requirements will be presented.

  11. Technology of Measuring equipment for Air Pollution. Development of Mobile Air Pollution monitoring system (LIDAR)

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Hyung Ki; Song, Ky Seok; Rhee, Young Joo; Kim, Duck Hyun; Yang, Ki Ho; Lee, Jong Min; Cha, Byung Heon; Lee, Kang Soo

    1999-01-01

    Most air pollution monitoring technologies accompany a time-consuming sample treatment process and provides pollution information only for a local area. Thus, they have a critical restriction in monitoring time-dependent pollution variation effectively over the wide range of area both in height and in width. LIDAR (Light detection and ranging) is a new technology to overcome such drawbacks of the existing pollution monitoring technologies and has long been investigated in the advanced countries. The goal of this project is to develop the mobile air pollution monitoring system and to apply the system to the detection of various pollutants, such as ozone, nitrogen dioxide, sulfur dioxide and aerosols.

  12. Technology of Measuring equipment for Air Pollution. Development of Mobile Air Pollution monitoring system (LIDAR)

    International Nuclear Information System (INIS)

    Most air pollution monitoring technologies accompany a time-consuming sample treatment process and provides pollution information only for a local area. Thus, they have a critical restriction in monitoring time-dependent pollution variation effectively over the wide range of area both in height and in width. LIDAR (Light detection and ranging) is a new technology to overcome such drawbacks of the existing pollution monitoring technologies and has long been investigated in the advanced countries. The goal of this project is to develop the mobile air pollution monitoring system and to apply the system to the detection of various pollutants, such as ozone, nitrogen dioxide, sulfur dioxide and aerosols

  13. Air Quality Monitoring Using CCD/ CMOS Devices

    OpenAIRE

    Low, Khee Lam; Joanna, Tan Choay Ee; Sim, Keat; Jafri, Mohd Zubir Mat; and, Khiruddin Abdullah

    2010-01-01

    In this chapter, we showed a method for measuring of the air quality index by using the CCD/CMOS sensor. We showed two examples to obtain index values by using webcam and CCTV. Both devices provided a high correlation between the measured and estimated PM10. So, the imaging method is capable to measure PM10 values in the environment. Futher application can be conducted using different devices.

  14. Air Quality – monitoring and modelling

    OpenAIRE

    Marius DEACONU; Cretu, Mihaiella

    2012-01-01

    Air pollution is a major concern for all nations, regardless of their development. The rapid growth of the industrial sector and urban development have lead to significant quantities of substances and toxic materials, mostly discharged into the atmosphere and having adverse effects both on human health and environment in general. Human society has to recognize that environment has only a limited capacity to process all of its waste without major changes. Each of us is a pollutant but also a v...

  15. A Novel Approach for Indoor Outdoor Air Pollution Monitoring

    Directory of Open Access Journals (Sweden)

    Mohammed Abdullah Hussein

    2012-07-01

    Full Text Available Current increase of atmospheric air pollution rates in developing and developed countries requires efforts to design more cost effective and affordable devices. In developed countries pollution monitoring chambers are available to aid the monitoring process. The culture and the society are aware of the polluted environment side effects and measures have been taken to reduce pollution amounts. Most developing countries lack these chambers and they do not have cost effective tools for measuring pollution amounts for indoor and outdoor environments. Here, an effort has been made to modify low cost available pollution devices to work for indoor and outdoor pollution monitoring and a simple cost effective approach has been carried out. Indoor carbon monoxide gas level monitoring using cheap alarms sensor, supported by a car oxygen sensor for oxygen gas level monitoring. The same approach is used for outdoor gas pollution monitoring. A computer program has been designed to facilitate computer based monitoring process and logging of pollution data.

  16. Summary Day 1: Second AirMonTech Workshop, Current and Future Air Quality Monitoring

    OpenAIRE

    Querol, Xavier

    2012-01-01

    Presentación resumen de las ponencias del primer día de las Second AirMonTech Workshop, Current and Future Air Quality Monitoring. Estas jornadas tuvieron lugar en Barcelona del 25 al 26 de abril de 2012.

  17. Noncontact Monitoring of Respiration by Dynamic Air-Pressure Sensor.

    Science.gov (United States)

    Takarada, Tohru; Asada, Tetsunosuke; Sumi, Yoshihisa; Higuchi, Yoshinori

    2015-01-01

    We have previously reported that a dynamic air-pressure sensor system allows respiratory status to be visually monitored for patients in minimally clothed condition. The dynamic air-pressure sensor measures vital information using changes in air pressure. To utilize this device in the field, we must clarify the influence of clothing conditions on measurement. The present study evaluated use of the dynamic air-pressure sensor system as a respiratory monitor that can reliably detect change in breathing patterns irrespective of clothing. Twelve healthy volunteers reclined on a dental chair positioned horizontally with the sensor pad for measuring air-pressure signals corresponding to respiration placed on the seat back of the dental chair in the central lumbar region. Respiratory measurements were taken under 2 conditions: (a) thinly clothed (subject lying directly on the sensor pad); and (b) thickly clothed (subject lying on the sensor pad covered with a pressure-reducing sheet). Air-pressure signals were recorded and time integration values for air pressure during each expiration were calculated. This information was compared with expiratory tidal volume measured simultaneously by a respirometer connected to the subject via face mask. The dynamic air-pressure sensor was able to receive the signal corresponding to respiration regardless of clothing conditions. A strong correlation was identified between expiratory tidal volume and time integration values for air pressure during each expiration for all subjects under both clothing conditions (0.840-0.988 for the thinly clothed condition and 0.867-0.992 for the thickly clothed condition). These results show that the dynamic air-pressure sensor is useful for monitoring respiratory physiology irrespective of clothing.

  18. Air Monitoring of Emissions from the Fukushima Daiichi Reactor

    Energy Technology Data Exchange (ETDEWEB)

    McNaughton, Michael [Los Alamos National Laboratory; Allen, Shannon P. [Los Alamos National Laboratory; Archuleta, Debra C. [Los Alamos National Laboratory; Brock, Burgandy [Los Alamos National Laboratory; Coronado, Melissa A. [Los Alamos National Laboratory; Dewart, Jean M. [Los Alamos National Laboratory; Eisele, William F. Jr. [Los Alamos National Laboratory; Fuehne, David P. [Los Alamos National Laboratory; Gadd, Milan S. [Los Alamos National Laboratory; Green, Andrew A. [Los Alamos National Laboratory; Lujan, Joan J. [Los Alamos National Laboratory; MacDonell, Carolyn [Los Alamos National Laboratory; Whicker, Jeffrey J. [Los Alamos National Laboratory

    2012-06-12

    In response to the disasters in Japan on March 11, 2011, and the subsequent emissions from Fukushima-Daiichi, we monitored the air near Los Alamos using four air-monitoring systems: the standard AIRNET samplers, the standard rad-NESHAP samplers, the NEWNET system, and high-volume air samplers. Each of these systems has advantages and disadvantages. In combination, they provide a comprehensive set of measurements of airborne radionuclides near Los Alamos during the weeks following March 11. We report air-monitoring measurements of the fission products released from the Fukushima-Daiichi nuclear-power-plant accident in 2011. Clear gamma-spectrometry peaks were observed from Cs-134, Cs-136, Cs-137, I-131, I132, Te-132, and Te-129m. These data, together with measurements of other radionuclides, are adequate for an assessment and assure us that radionuclides from Fukushima Daiichi did not present a threat to human health at or near Los Alamos. The data demonstrate the capabilities of the Los Alamos air-monitoring systems.

  19. Beta aerosols beacon, a truly portable continuous air monitor

    International Nuclear Information System (INIS)

    The Beta Aerosols Beacon (BAB) is a portable (57 lbs) continuous air monitor designed to detect airborne radiation. Utilizing solid state detectors has eliminated the use of lead shielding usually necessary for achieving accurate readings in high background areas, making the monitor lightweight as well as portable. The size of a small suitcase, it can be carried into confined work areas, eliminating the requirement for workers to wear respirators for many maintenance tasks. This paper describes the operation and applications of the BAB

  20. The Danish Air Quality Monitoring Programme

    DEFF Research Database (Denmark)

    Kemp, K.; Palmgren, F.

    and plants. The new EU Directives introduce revised standards for NO2, SO2, particles (PM10) and Pb. They are implemented through the first "daughter" Directive to the Air Quality Framework Directive. It was adopted by the EU council in April 1999. The new limit values shall be in force from January 2001 (18....... Further EU standards are prepared for O3, Benzene and the heavy metals Ni, As and Cd. The measured NO2 concentrations were about a factor of two lower than the limit value, while they are close to the values in the new EU Directive. The trend for NO2 indicates the latest years a weak decrease...... the measured concentrations in Denmark. The measured concentrations for Ni, As and Cd are well below the expected new limit values. The traffic is no longer then main source for Pb, but other heavy metals as Cr and Cu, are mainly traffic related in urban areas. The main source is probably dust from brake pads...

  1. A Wireless Sensor Network Air Pollution Monitoring System

    Directory of Open Access Journals (Sweden)

    Kavi K. Khedo

    2010-05-01

    Full Text Available Sensor networks are currently an active research area mainly due to the potential of their applications. Inthis paper we investigate the use of Wireless Sensor Networks (WSN for air pollution monitoring inMauritius. With the fast growing industrial activities on the island, the problem of air pollution isbecoming a major concern for the health of the population. We proposed an innovative system namedWireless Sensor Network Air Pollution Monitoring System (WAPMS to monitor air pollution inMauritius through the use of wireless sensors deployed in huge numbers around the island. The proposedsystem makes use of an Air Quality Index (AQI which is presently not available in Mauritius. In order toimprove the efficiency of WAPMS, we have designed and implemented a new data aggregation algorithmnamed Recursive Converging Quartiles (RCQ. The algorithm is used to merge data to eliminateduplicates, filter out invalid readings and summarise them into a simpler form which significantly reducethe amount of data to be transmitted to the sink and thus saving energy. For better power management weused a hierarchical routing protocol in WAPMS and caused the motes to sleep during idle time.

  2. Air Monitoring: New Advances in Sampling and Detection

    Directory of Open Access Journals (Sweden)

    Nicola Watson

    2011-01-01

    Full Text Available As the harmful effects of low-level exposure to hazardous organic air pollutants become more evident, there is constant pressure to improve the detection limits of indoor and ambient air monitoring methods, for example, by collecting larger air volumes and by optimising the sensitivity of the analytical detector. However, at the other end of the scale, rapid industrialisation in the developing world and growing pressure to reclaim derelict industrial land for house building is driving the need for air monitoring methods that can reliably accommodate very-high-concentration samples in potentially aggressive matrices. This paper investigates the potential of a combination of two powerful gas chromatography—based analytical enhancements—sample preconcentration/thermal desorption and time-of-flight mass spectrometry—to improve quantitative and qualitative measurement of very-low-(ppt level organic chemicals, even in the most complex air samples. It also describes new, practical monitoring options for addressing equally challenging high-concentration industrial samples.

  3. Advantages for passengers and cabin crew of operating a Gas-Phase Adsorption air purifier in 11-h simulated flights

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter; Zukowska, Daria; Fang, Lei;

    2008-01-01

    Experiments were carried out in a 3-row, 21-seat section of a simulated aircraft cabin installed in a climate chamber to evaluate the extent to which passengers’ perception of cabin air quality is affected by the operation of a Gas-Phase Adsorption (GPA) purification unit. A total of 68 subjects......, divided into four groups of 17 subjects took part in simulated 11-hour flights. Each group experienced 4 conditions in balanced order, defined by two outside air supply rates (2.4 and 3.3 L/s per person), with and without the GPA purification unit installed in the recirculated air system. During each...... flight the subjects completed questionnaires five times to provide subjective assessments of air quality, cabin environment, intensity of symptoms, and thermal comfort. Additionally, the subjects’ visual acuity, finger temperature, skin dryness and nasal peak flow were measured three times during each...

  4. Monitoring and analysis of an absorption air-conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Perez de Vinaspre, M.; Bourouis, M.; Coronas, A. [Centro de Innovacion Tecnologica en Revalorizacion Energetica y Refrigeracion, Tarragona (Spain); Garcia, A.; Soto, V.; Pinazo, J.M. [E.T.S. Ingenieros Industriales, Valencia (Spain)

    2004-09-01

    In the last few years, high-energy consumption due to air-conditioning has led to a growing interest in the efficient use of energy in buildings. Although simulation programs have always been the main tools for analyzing energy in buildings, the reliability of their results is often compromised by a lack of certainty to reflect real conditions. The aim of this work is to monitorize and analyze the thermal behavior of an absorption-based air-conditioning installation of a university building in Tarragona, Spain. The existing monitoring system of the installation has been improved by implementing additional sensors and flow meters. The data has been stored during summer 2002 and used to assess the energy balance of the air-conditioning installation and the operational regime of the absorption chiller. [Author].

  5. The Danish air quality monitoring programme. Annual summary for 2008

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, K.; Ellemann, T.; Brandt, J.; Christensen, Jesper; Ketzel, M.; Solvang Jensen, S.

    2010-06-15

    The air quality in Danish cities has been monitored continuously since 1982 within the Danish Air Quality Monitoring (LMP) network. The aim has been to follow the concentration levels of toxic pollutants in the urban atmosphere and to provide the necessary knowledge to assess the trends, to perform source apportionment, and to evaluate the chemical reactions and the dispersion of the pollutants in the atmosphere. In 2007 the air quality was measured in four Danish cities and at two background sites. Model calculations were also carried out to supplement the measurements. At several stations NO{sub 2} and PM{sub 10} were found in concentrations above EU limit values, which the Member States have to comply with in 2005 and 2010. The concentrations for most pollutants have been strongly decreasing since 1982, however, only a slight decrease has been observed for NO{sub 2} and O{sub 3}. (author)

  6. The Danish air quality monitoring programme. Annual Summary for 2007

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, K.; Ellemann, T.; Brandt, J.; Christensen, Jesper; Ketzel, M.; Solvang Jensen, S.

    2008-07-15

    The air quality in Danish cities has been monitored continuously since 1982 within the Danish Air Quality Monitoring (LMP) network. The aim has been to follow the concentration levels of toxic pollutants in the urban atmosphere and to provide the necessary knowledge to assess the trends, to perform source apportionment, and to evaluate the chemical reactions and the dispersion of the pollutants in the atmosphere. In 2007 the air quality was measured in four Danish cities and at two background sites. Model calculations were also carried out to supplement the measurements. At several stations NO{sub 2} and PM{sub 10} were found in concentrations above EU limit values, which the Member States have to comply with in 2005 and 2010. The concentrations for most pollutants have been strongly decreasing since 1982, however, only a slight decrease has been observed for NO{sub 2} and O{sub 3}. (au)

  7. Waste to energy plant-air pollution monitoring and reporting

    International Nuclear Information System (INIS)

    We can't eat it. We can't wear it. We are running out of places to bury it. We can't export it. We can't stop making it. Garbage seems to be, by volume at least, our biggest national product. These facts are driving more and more industries and municipalities to construct waste to energy plants. Following the adage that when you get lemons, make lemonade, municipalities have been burning their garbage to produce steam and electricity. Communities, fearful that what they have produced may be toxic to them when burned, have enacted stringent air pollution control and monitoring regulations. The federal government has enacted regulations under the Clean Air Act 43 CFR Part 60 which regulate the emission limits monitoring and reporting requirements of waste energy plants. The most important of these regulations was enacted on December 16, 1987 and June 26, 1987, regulating particulate, SO2 and NOx emissions. This paper reports that these regulations also tie in to various other EPA regulations and requirements. The most important of these to air pollution monitoring is Appendix F, Quality Assurance. However, these regulations are only minimum requirements -- individual states further strengthen their bite by requiring lower emissions limits and the monitoring of additional parameters such as H2S, HCl, NH2, CO, CO2 and moisture. These monitoring limits and reporting requirements are currently being negotiated on a case by case basis in most instances

  8. Design of monitoring system for physiological parameters of a crew%乘员生理参数监测系统设计

    Institute of Scientific and Technical Information of China (English)

    万红; 王延琦; 考希宾; 闫金海; 罗思源

    2015-01-01

    Objective To design a monitoring system of the state of life for a crew in order to ensure their life safety. Methods A wearable physiological parameter monitoring technology was used, and the fabric electrode and temperature sensors were embedded in the vest.The thress-lead electrode was used to extract ECG and respiration signal,temperature signals were collected with a thermistor of negative temperature parameters.Blood pressure and blood oxygen saturation were detected by a finger cuff type of blood oxygen sensors.The volume pulse wave velocity method was used to extract blood pressure signals,and the photoelectric measurement method was used to extract blood oxygen saturation signals.The state of life was evaluated by calculation of the times of respiration and divided into 4 states.Results and Conclusion The system is capable of low load dynamic monitoring of physiological parameters of a crew and evaluation of their state of life, contributing much to self-aid and buddy aid among the crew.%目的:为掌握乘员的生命状态,提供生命保障,设计乘员生命状态监测系统。方法采用穿戴式生理参数监测技术,在背心中嵌入织物电极和温度传感器,用三导联电极采集心电和呼吸信号,用负温度系数的热敏电阻采集体温信号;血压、血氧饱和度共用指套式血氧传感器,用容积脉搏波速法采集血压信号,用光电测量法采集血氧饱和度信号,在战伤时即插即用;用呼吸次数将生命状态评估为4种状态,结果传输至车长终端。结果及结论系统实现了对乘员生理参数的低负荷动态监测及乘员生命状态的评估监测,对乘员开展自救互救将起到重要的支持作用。

  9. Toward the next generation of air quality monitoring: Particulate Matter

    Science.gov (United States)

    Engel-Cox, Jill; Kim Oanh, Nguyen Thi; van Donkelaar, Aaron; Martin, Randall V.; Zell, Erica

    2013-12-01

    Fine particulate matter is one of the key global pollutants affecting human health. Satellite and ground-based monitoring technologies as well as chemical transport models have advanced significantly in the past 50 years, enabling improved understanding of the sources of fine particles, their chemical composition, and their effect on human and environmental health. The ability of air pollution to travel across country and geographic boundaries makes particulate matter a global problem. However, the variability in monitoring technologies and programs and poor data availability make global comparison difficult. This paper summarizes fine particle monitoring, models that integrate ground-based and satellite-based data, and communications, then recommends steps for policymakers and scientists to take to expand and improve local and global indicators of particulate matter air pollution. One of the key set of recommendations to improving global indicators is to improve data collection by basing particulate matter monitoring design and stakeholder communications on the individual country, its priorities, and its level of development, while at the same time creating global data standards for inter-country comparisons. When there are good national networks that produce consistent quality data that is shared openly, they serve as the foundation for better global understanding through data analysis, modeling, health impact studies, and communication. Additionally, new technologies and systems should be developed to expand personal air quality monitoring and participation of non-specialists in crowd-sourced data collections. Finally, support to the development and improvement of global multi-pollutant indicators of the health and economic effects of air pollution is essential to addressing improvement of air quality around the world.

  10. Participatory Patterns in an International Air Quality Monitoring Initiative

    CERN Document Server

    Sîrbu, Alina; Caminiti, Saverio; De Baets, Bernard; Elen, Bart; Francis, Louise; Gravino, Pietro; Hotho, Andreas; Ingarra, Stefano; Loreto, Vittorio; Molino, Andrea; Mueller, Juergen; Peters, Jan; Ricchiuti, Ferdinando; Saracino, Fabio; Servedio, Vito D P; Stumme, Gerd; Theunis, Jan; Tria, Francesca; Bossche, Joris Van den

    2015-01-01

    The issue of sustainability is at the top of the political and societal agenda, being considered of extreme importance and urgency. Human individual action impacts the environment both locally (e.g., local air/water quality, noise disturbance) and globally (e.g., climate change, resource use). Urban environments represent a crucial example, with an increasing realization that the most effective way of producing a change is involving the citizens themselves in monitoring campaigns (a citizen science bottom-up approach). This is possible by developing novel technologies and IT infrastructures enabling large citizen participation. Here, in the wider framework of one of the first such projects, we show results from an international competition where citizens were involved in mobile air pollution monitoring using low cost sensing devices, combined with a web-based game to monitor perceived levels of pollution. Measures of shift in perceptions over the course of the campaign are provided, together with insights int...

  11. Sable Island air monitoring program report: 2003-2006

    International Nuclear Information System (INIS)

    Sable Island is an island situated in the Atlantic which receives pollutant flows from the Great Lakes and the United States Eastern Seaboard. The Sable Island air monitoring station was set up by the Environmental Studies Research Funds and its partners to monitor the concentration of nitrogen oxides (NOx), sulphur oxides (SO2), hydrogen sulphide (H2S), fine particulate matter (PM2.5) and ozone (O3). This paper presents the results of the first 4 years of operation of the station. It was found that concentrations of PM2.5 and ozone exceeded desirable levels on several occasions while concentrations of NOx, SO2 and H2S recorded were much below maximum acceptable levels. In addition it was found that the episodes of elevated pollutant levels were due to transboundary flows from onshore. The Sable Island air monitoring project showed good results in its first 4 years of operation and the project partners are considering extending the program.

  12. SAMIRA - SAtellite based Monitoring Initiative for Regional Air quality

    Science.gov (United States)

    Schneider, Philipp; Stebel, Kerstin; Ajtai, Nicolae; Diamandi, Andrei; Horalek, Jan; Nicolae, Doina; Stachlewska, Iwona; Zehner, Claus

    2016-04-01

    Here, we present a new ESA-funded project entitled Satellite based Monitoring Initiative for Regional Air quality (SAMIRA), which aims at improving regional and local air quality monitoring through synergetic use of data from present and upcoming satellites, traditionally used in situ air quality monitoring networks and output from chemical transport models. Through collaborative efforts in four countries, namely Romania, Poland, the Czech Republic and Norway, all with existing air quality problems, SAMIRA intends to support the involved institutions and associated users in their national monitoring and reporting mandates as well as to generate novel research in this area. Despite considerable improvements in the past decades, Europe is still far from achieving levels of air quality that do not pose unacceptable hazards to humans and the environment. Main concerns in Europe are exceedances of particulate matter (PM), ground-level ozone, benzo(a)pyrene (BaP) and nitrogen dioxide (NO2). While overall sulfur dioxide (SO2) emissions have decreased in recent years, regional concentrations can still be high in some areas. The objectives of SAMIRA are to improve algorithms for the retrieval of hourly aerosol optical depth (AOD) maps from SEVIRI, and to develop robust methods for deriving column- and near-surface PM maps for the study area by combining satellite AOD with information from regional models. The benefit to existing monitoring networks (in situ, models, satellite) by combining these datasets using data fusion methods will be tested for satellite-based NO2, SO2, and PM/AOD. Furthermore, SAMIRA will test and apply techniques for downscaling air quality-related EO products to a spatial resolution that is more in line with what is generally required for studying urban and regional scale air quality. This will be demonstrated for a set of study sites that include the capitals of the four countries and the highly polluted areas along the border of Poland and the

  13. Sampling frequency guidance for ambient air toxics monitoring.

    Science.gov (United States)

    Bortnick, Steven M; Stetzer, Shannon L

    2002-07-01

    The U.S. Environmental Protection Agency (EPA) is in the process of designing a national network to monitor hazardous air pollutants (HAPs), also known as air toxics. The purposes of the expanded monitoring are to (1) characterize ambient concentrations in representative areas; (2) provide data to support and evaluate dispersion and receptor models; and (3) establish trends and evaluate the effectiveness of HAP emission reduction strategies. Existing air toxics data, in the form of an archive compiled by EPA's Office of Air Quality Planning and Standards (OAQPS), are used in this paper to examine the relationship between estimated annual average (AA) HAP concentrations and their associated variability. The goal is to assess the accuracy, or bias and precision, with which the AA can be estimated as a function of ambient concentration levels and sampling frequency. The results suggest that, for several air toxics, a sampling schedule of 1 in 3 days (1:3) or 1:6 days maybe appropriate for meeting some of the general objectives of the national network, with the more intense sampling rate being recommended for areas expected to exhibit relatively high ambient levels. PMID:12139351

  14. SNRB{trademark} air toxics monitoring. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    Babcock & Wilcox (B&W) is currently conducting a project under the DOE`s Clean Coal Technology (CCT II) Program to demonstrate its SO{sub x}NO{sub x}-Rox Box{trademark} (SNRB{trademark}) process in a 5 MWe Field Demonstration Unit at Ohio Edison`s R. E. Burger Plant near Shadyside, Ohio. The objective of the SNRB{trademark} Air Toxics Monitoring Project was to provide data on SNRB{trademark} air toxics emissions control performance to B&W and to add to the DOE/EPRI/EPA data base by quantifying the flow rates of selected hazardous substances (or air toxics) in all of the major input and output streams of the SNRB{trademark} process as well as the power plant. Work under the project included the collection and analysis of representative samples of all major input and output streams of the SNRB{trademark} demonstration unit and the power plant, and the subsequent laboratory analysis of these samples to determine the partitioning of the hazardous substances between the various process streams. Material balances for selected air toxics were subsequently calculated around the SNRB{trademark} and host boiler systems, including the removal efficiencies across each of the major air pollution control devices. This report presents results of the SNRB{trademark} Air Toxics Monitoring Project. In addition to the Introduction, a brief description of the test site, including the Boiler No. 8 and the SNRB{trademark} process, is included in Section H. The concentrations of air toxic emissions are presented in Section II according to compound class. Material balances are included in Section IV for three major systems: boiler, electrostatic precipitator, and SNRB{trademark}. Emission factors and removal efficiencies are also presented according to compound class in Sections V and VI, respectively. A data evaluation is provided in Section VII.

  15. Caenorhabditis elegans: a model to monitor bacterial air quality

    Directory of Open Access Journals (Sweden)

    Duclairoir Poc Cécile

    2011-11-01

    Full Text Available Abstract Background Low environmental air quality is a significant cause of mortality and morbidity and this question is now emerging as a main concern of governmental authorities. Airborne pollution results from the combination of chemicals, fine particles, and micro-organisms quantitatively or qualitatively dangerous for health or for the environment. Increasing regulations and limitations for outdoor air quality have been decreed in regards to chemicals and particles contrary to micro-organisms. Indeed, pertinent and reliable tests to evaluate this biohazard are scarce. In this work, our purpose was to evaluate the Caenorhaditis elegans killing test, a model considered as an equivalent to the mouse acute toxicity test in pharmaceutical industry, in order to monitor air bacterial quality. Findings The present study investigates the bacterial population in dust clouds generated during crop ship loading in harbor installations (Rouen harbor, Normandy, France. With a biocollector, airborne bacteria were impacted onto the surface of agar medium. After incubation, a replicate of the colonies on a fresh agar medium was done using a velvet. All the replicated colonies were pooled creating the "Total Air Sample". Meanwhile, all the colonies on the original plate were isolated. Among which, five representative bacterial strains were chosen. The virulence of these representatives was compared to that of the "Total Air Sample" using the Caenorhaditis elegans killing test. The survival kinetic of nematodes fed with the "Total Air Sample" is consistent with the kinetics obtained using the five different representatives strains. Conclusions Bacterial air quality can now be monitored in a one shot test using the Caenorhaditis elegans killing test.

  16. Preliminary draft: comprehensive air-monitoring plan report

    Energy Technology Data Exchange (ETDEWEB)

    1980-02-15

    The topography of the CAMP Study Area, climate, and air pollution meteorology are described. The population analysis indicated limited growth during the next 10 years in the CAMP Study Area. Analysis of emission sources (current and projected) included a presentation of the types of emissions and their impact on the Study Area population (receptors). The general conclusion was drawn that of the non-condensible gases emitted, and considered pollutants, hydrogen sulfide was the only one for which monitoring would be recommended. Recommendations for type, placement, performance criteria, and the timing of establishment and terminating monitoring equipment were determined.

  17. Fiber Optic Sensors for Structural Health Monitoring of Air Platforms

    Directory of Open Access Journals (Sweden)

    Jianping Yao

    2011-03-01

    Full Text Available Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided.

  18. Fiber optic sensors for structural health monitoring of air platforms.

    Science.gov (United States)

    Guo, Honglei; Xiao, Gaozhi; Mrad, Nezih; Yao, Jianping

    2011-01-01

    Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM) based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SHM capability due to its unique superior characteristics. This review paper covers the aerospace SHM requirements and an overview of the fiber optic sensor technologies. In particular, fiber Bragg grating (FBG) sensor technology is evaluated as the most promising tool for load monitoring and damage detection, the two critical SHM aspects of air platforms. At last, recommendations on the implementation and integration of FBG sensors into an SHM system are provided. PMID:22163816

  19. Fiber Optic Sensors for Structural Health Monitoring of Air Platforms

    OpenAIRE

    Jianping Yao; Honglei Guo; Gaozhi Xiao; Nezih Mrad

    2011-01-01

    Aircraft operators are faced with increasing requirements to extend the service life of air platforms beyond their designed life cycles, resulting in heavy maintenance and inspection burdens as well as economic pressure. Structural health monitoring (SHM) based on advanced sensor technology is potentially a cost-effective approach to meet operational requirements, and to reduce maintenance costs. Fiber optic sensor technology is being developed to provide existing and future aircrafts with SH...

  20. The Danish air quality monitoring programme. Annual summary for 2005

    International Nuclear Information System (INIS)

    The air quality in Danish cities has been monitored continuously since 1982 within the Danish Air Quality (LMP) network. The aim has been to follow the concentration levels of toxic pollutants in the urban atmosphere and to provide the necessary knowledge to assess the trends, to perform source apportionment, and to evaluate the chemical reactions and the dispersion of the pollutants in the atmosphere. In 2005 the air quality was measured in four Danish cities and at two background sites. NO2 and PM10 were at several stations found in concentrations above EU limit values, which the Member States have to comply with in 2005 and 2010. While the concentrations for most other pollutants have been strongly decreasing since 1982, only a slight decrease has been observed for NO2. (au)

  1. Air quality monitoring programme. Annual summary for 2004

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, K.; Ellermann, T.; Palmgren, F.; Waehlin, P.; Berkowicz, R. Brandt. j.

    2005-07-15

    The air quality in Danish cities has been monitored continuously since 1982 within the Danish Air Quality (LMP) network. The aim has been to follow the concentration levels of toxic pollutants in the urban atmosphere and to provide the necessary knowledge to assess the trends, to perform source apportionment, and to evaluate the chemical reactions and the dispersion of the pollutants in the atmosphere. In 2004 the air quality was measured in four Danish cities and at two background sites. NO{sup 2} and PM10 were at several stations found in concentrations above EU limit values, which the Member States have to comply with in 2005 and 2010. While the concentrations for most other pollutants have been strongly decreasing since 1982, only a slight decrease has been observed for NO{sup 2}. The measurement has been supplemented with dispersion models for a number of streets in Copenhagen and Aalborg. (au)

  2. Ambient air monitoring for mercury around an industrial complex

    International Nuclear Information System (INIS)

    Public and scientific interest in mercury in the environment has experienced an upsurge in the past few years, due in part to disclosures that fish in certain waters, which have apparently received no direct industrial discharges, were contaminated with mercury. Atmospheric releases of mercury from fossil fuel energy generators, waste incinerators and other industrial sources are suspected to be contributing to this problem. Such releases can be evaluated in a variety of ways, including stack sampling, material balance studies, soil/vegetation sampling and ambient air monitoring. Ambient air monitoring of mercury presents significant challenges because of the typically low concentrations (ng/m3) encountered and numerous opportunities for sample contamination or analyte loss. There are presently no EPA-approved protocols for such sampling and analysis. Elemental mercury was used in large quantities at a nuclear weapons plant in Oak Ridge, Tennessee between 1950 and 1963 in a process similar to chloralkali production. Soil and water contamination with mercury were known to be present at the facility but outdoor ambient air contamination had not been investigated prior to the present study. In addition, one large building still contained original process equipment with mercury residuals. The objectives of this study were to establish a monitoring network for mercury which could be used (1) to demonstrate whether or not human health and the environment was being protected, and (2), to establish a decommissioning activities at the facility

  3. River Corridor Project Workplace Air Monitoring Technical Basis

    International Nuclear Information System (INIS)

    This document provides the technical basis by which the workplace air monitoring and sampling program is operated in the River Corridor Project (RCP). Revision 2 addresses and incorporates changes in the air monitoring program drivers and implementing documents which occurred after the previous revision was issued. This revision also includes an additional RCP project to make Revision 2 applicable to the entire RCP. These changes occurred in the following areas: (1) Changes resulting from the conversion of the Hanford Site Radiological Control Manual (HSRCM-1) into the Project Hanford Radiological Control Manual (F-5173). HNF-5173 is now the implementing document for 10CFR835. (2) Changes resulting from the issue of new and revised Hanford Site implementing procedures. (3) Changes resulting from the issue of new and revised, as well as the cancellation of RCP implementing procedures. (4) Addition of the 200 Area Accelerated Deactivation Project (ADP). (5) Modification of some air sampling/monitoring locations to better meet the needs of facility operations. (6) Changes resulting from the RCP reorganization

  4. The Danish air quality monitoring programme. Annual summary for 2012

    Energy Technology Data Exchange (ETDEWEB)

    Ellermann, T.; Klenoe Noejgaard, J.; Nordstroem, C.; Brandt, J.; Christensen, Jesper; Ketzel, M.; Jansen, S.; Massling, A.; Solvang Jensen, S.

    2013-10-15

    The air quality in Danish cities has been monitored continuously since 1982 within the Danish Air Quality Monitoring network. The aim is to follow the concentration levels of toxic pollutants in the urban atmosphere and to provide the necessary knowledge to assess the trends, to perform source apportionment, and to understand the governing processes that determine the level of air pollution in Denmark. In 2012 the air quality was measured in four Danish cities and at two background sites. In addition model calculations were carried out to supplement the measurements. At one street station (H.C. Andersens Boulevard) in Copenhagen NO{sub 2} was found in concentrations above EU limit values while NO{sub 2} levels in Odense, Aarhus and Aalborg were below the limit value. Model calculations indicate exceedances of NO{sub 2} limit values at several streets in Copenhagen. Annual averages of PM{sub 10} and PM{sub 2.5} were below limit values at all stations. The concentrations for most pollutants have been decreasing during the last decades. (Author)

  5. The Danish air quality monitoring programme. Annual summary for 2011

    Energy Technology Data Exchange (ETDEWEB)

    Ellemann, T.; Klenoe Noejgaard, J.; Nordstroem, C.; Brandt, J.; Christensen, Jesper; Ketzel, M.; Solvang Jensen, S.

    2012-10-15

    The air quality in Danish cities has been monitored continuously since 1982 within the Danish Air Quality Monitoring network. The aim is to follow the concentration levels of toxic pollutants in the urban atmosphere and to provide the necessary knowledge to assess the trends, to perform source apportionment, and to understand the governing processes that determine the level of air pollution in Denmark. In 2011 the air quality was measured in four Danish cities and at two background sites. In addition model calculations were carried out to supplement the measurements. At one street station (H.C. Andersens Boulevard) in Copenhagen NO{sub 2} was found in concentrations above EU limit values while NO{sub 2} levels in Odense, Aarhus and Aalborg were below the limit value. Model calculations indicate exceedances of NO{sub 2} limit values at several streets in Copenhagen. Annual averages of PM{sub 10} and PM{sub 2.5} were below limit values at all stations. However, concentrations levels in Copenhagen exceeded the daily limit value for PM{sub 10}. Winter salting of roads was one of the main reasons for this exceedance. The concentrations for most pollutants have been strongly decreasing during the last decades, however, only a slight decrease has been observed for NO{sub 2} and O{sub 3}. (Author)

  6. The TOMPs ambient air monitoring network - Continuous data on UK air quality for over 20 years.

    Science.gov (United States)

    Graf, Carola; Katsoyiannis, Athanasios; Jones, Kevin C; Sweetman, Andrew J

    2016-10-01

    Long-term air monitoring datasets are needed for persistent organic pollutants (POPs) to assess the effectiveness of source abatement measures and the factors controlling ambient levels. The Toxic Organic Micro Pollutants (TOMPs) Network, which has operated since 1991, collects ambient air samples at six sites across England and Scotland, using high-volume active air samplers. The network provides long-term ambient air trend data for a range of POPs at both urban and rural locations. Data from the network provides the UK Government, regulators and researchers with valuable information on emission/source controls and on the effectiveness of international chemicals regulation such as the Stockholm Convention and UN/ECE Protocol on POPs. The target chemicals of TOMPs have been polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and, since 2010, polybrominated diphenyl ethers (PBDEs). The continuous monitoring of these compounds demonstrates the constant decline in UK air concentrations over the last two decades, with average clearance rates for PCDD/Fs in urban locations of 5.1 years and for PCBs across all sites 6.6 years. No significant declines in rural locations for PCDD/Fs have been observed. There is a strong observable link between the declining ambient air concentrations and the emission reductions estimated in the annually produced National Atmospheric Emission Inventory (NAEI) dataset. These findings clearly demonstrate the unique strengths of long-term consistent datasets for the evaluation of the success of chemical regulation and control.

  7. Air quality monitoring at toxic waste sites: A Hanford perspective

    International Nuclear Information System (INIS)

    Air quality monitoring is being conducted as part of remedial investigation activities at waste sites in the 1100-EM-1 Operating Unit at the US Department of Energy's Hanford Site. Sampling is being conducted for volatile organic compounds (VOCs), semivolatile organic compounds (SVOCs) (including pesticides and PCBs), metals, and asbestos. The monitoring program is being conducted in three phases: before, during, and after intrusive remedial investigation activities. At each waste site, battery-powered monitoring equipment is positioned at one location upwind of the site (to measure background concentrations of pollutants) and typically at two locations downwind of the site. Control samples are used to identify sample contamination that may occur during handling or analysis. All samples are analyzed using methods approved by the US Environmental Protection Agency. The results from the first phase of sampling have been assessed and are being used to upgrade sampling and laboratory analysis procedures. 5 refs

  8. A Monitoring of Air Pollutants (CO, SO2 and NO) in Ambient Air Near an Industrial Area

    OpenAIRE

    Radin Mohamed Radin Maya Saphira; Hakim Rahim Ahmad Faizol; Mohd Kassim Amir Hashim

    2016-01-01

    A monitoring assessment was carried out to measure the concentration of air pollutants in ambient air in the university campus, which is located adjacent to the industrial area. The air pollutants were monitored for CO (Carbon monoxide), SO2 (Sulfur dioxide) and NO (Nitrous oxide) at the three sampling points, with distance reference based from the industrial area. Air pollutant gases were sampled from the I-Brid Toxic Gases Analyzer with the sampling hour referred to the Recommended Malaysia...

  9. Operational Use of the Air Quality Monitor on ISS and Potential for Air Quality Monitoring Onboard Submarines

    Science.gov (United States)

    Limero, Thomas; Jones, Jared; Wallace, William; Mudgett, Paul

    2015-01-01

    The air quality monitor (AQM) began operations on the International Space Station (ISS) in March 2013 and was validated for operational use in January 2014. The AQM is a gas chromatograph-differential mobility spectrometer that currently monitors 22 target compounds in the ISS atmosphere. Data are collected twice per week, although data collection can be more frequent in contingency situations. In its second year, the AQM has provided data to decision-makers on several ISS contaminant related issues in both air and water. AQM has been used in strictly air incidents, such as a potential ammonia leak, and to investigate air contaminants affecting the water processing (excess ethanol). In the latter case data from water monitors and AQM were compared to understand the issue with the water processor. Additionally, the AQM has been moved to different ISS modules to determine whether air is sufficiently mixed between modules so that a central LAB module location is representative of the entire ISS atmosphere. Historic data on the ISS atmosphere in different modules from archival samples (ground lab analysis) suggest that the atmosphere is usually homogenous. This presentation will briefly describe the technical aspects of the AQM operations and summarize the validation results. The main focus of the presentation will be to discuss the results from the AQM survey of the ISS modules and to show how the AQM data has contributed to an understanding of environmental issues that have arisen on ISS. Presentation of a potential ammonia leak (indicated by an alarm) in 2015 will illustrate the use and value of the AQM in such situations.

  10. Monitoring of Air Polution by Using Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    Dr. Gopal Upadhyaya,

    2010-10-01

    Full Text Available The Air Quality Index is a simple and generalized way to describe the air quality in China, Hong Kong, Malaysia and now in India. Indian Air Quality Index (IND-AQI is mainly a health related index with the descriptor words: “Good (0- 100”, “Moderate (101-200 ”, “Poor (201-300”, “Very Poor (301-400”, “Severe (401-500”. State Environment Protection Agency (SEPA is responsible for measuring the level of air pollution in China . In China the AQI is based on the level of 5 atmospheric pollutants, namely sulferdioxide(SO2, nitrogen dioxide (NO2, suspended particulates (PM10, carbon monoxide (CO, and ozone (O3 measured at the monitoring stations throughout each city (USEPA et al. 1998. An individual score is assigned to the level of each pollutant and the final AQI is the Highest of those scores. Air quality measurement are commonly reported in terms of micrograms per cubic meter (μgm/m3 or parts per million (ppm (http://en.wikipedia.org. The Conventional method used Linear Interpolation for calculating AQI . We applied a real time Fuzzy Logic System with Simulink to calculate AQI. This method gives satisfactory result and it is efficient to work under continuous working mode .

  11. Comparison of continuous air monitor utilization: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, J.C.; Whicker, J.J.; Voss, J.T.

    1997-08-01

    The Chemical Metallurgy Research (CMR) building has been upgrading to different continuous air monitors (CAMs) over the past several years. During the transition, both the newer and older CAMs were positioned in the rooms for field testing and comparison. On December 19, 1996, an accidental release of plutonium aerosol occurred into a laboratory in the CMR building. The event occurred while the room was unoccupied, and no personnel were exposed from this incident. There were two fixed air samplers (FASs) and three CAMs operating in the room at the time the release occurred, including two of the recently installed Canberra Alpha Sentry CAMs and one older Eberline CAM. The apparent cause of the release was a procedure carried out in the basement involving the replacement of the HEPA filter in the ventilation exhaust of a slot-box in the laboratory. For a short period, the ventilation was disconnected from the slot-box in this room, but not from the chemical hood exhaust on the opposite side of the laboratory. Therefore, a condition was created where backflow could occur out of the slot-box and into the room. Eventually all three CAMs in the room alarmed, and the situation was successfully monitored and brought under control by health physics personnel. Data on CAM performance were logged, and Pu activity collected on CAM and FAS filters were measured. A comparison of the new and old continuous air monitoring programs was performed and many interesting lessons on CAM performance and CAM utilization were learned. Overall, this comparison showed the advantages of remote monitoring, timely spectral information, and concentration measurements resolved in time and space.

  12. Objective classification of air quality monitoring sites over Europe

    Science.gov (United States)

    Joly, Mathieu; Peuch, Vincent-Henri

    2012-02-01

    The observation sites that make up air quality monitoring networks can have very different characteristics (topography, climatology, distance to emission sources, etc), which are partially described in the meta-information provided with data sets. At the scale of Europe, the description of the sites depends on the institute(s) in charge of the air quality monitoring in each country, and is based on specific criteria that can be sometimes rather subjective. The purpose of this study is to build an objective, homogeneous, and pollutant-specific classification of European air quality monitoring sites, primarily for the purpose of model verification and chemical data assimilation. Most studies that tackled this issue so far were based on limited data sets, and often took into account additional external data such as population density, emission estimates, or land cover maps. The present study demonstrates the feasibility of a classification only based on the past time series of measured pollutants. The underlying idea is that the true fingerprint of a given monitoring site lies within its past observation values. On each site to be categorized, eight indicators are defined to characterize each pollutant time series (O 3, NO 2, NO, SO 2, or PM 10) of the European AirBase and the French BDQA (Base de Données de Qualité de l'Air) reference sets of validated data over the period 2002-2009. A Linear Discriminant Analysis is used to best discriminate the rural and urban sites. After projection on the Fisher axis, ten classes are finally determined on the basis of fixed thresholds, for each molecule. The method is validated by cross-validation and by direct comparison with the existing meta-data. The link between the classes obtained and the meta-data is strongest with NO, NO 2, and PM 10. Across Europe, the classification exhibits interesting large-scale features: some contrasts between different regions depend on the pollutant considered. Comparing the classes obtained

  13. 19 CFR 122.75b - Electronic manifest requirement for crew members and non-crew members onboard commercial aircraft...

    Science.gov (United States)

    2010-04-01

    ... issued by the TSA to an air carrier subject to the provisions of 49 CFR part 1544, 1546, or 1550. The... and non-crew members onboard commercial aircraft departing from the United States. 122.75b Section 122...; Electronic Manifest Requirements for Passengers, Crew Members, and Non-Crew Members Onboard...

  14. Response of continuous air monitors in simulated conditions

    International Nuclear Information System (INIS)

    Continuous air monitors (CAM) are widely used in nuclear industry for checking airborne activity in radioactive areas. Mathematical equations related to response of CAM's in assessing airborne activities are derived and presented in this paper. A case study is carried out for a model with necessary inputs. Assumed model is similar to areas in nuclear power plants. Graphical simulation results are used to analyze the conditions and its radiological significance. The response predictions can also be used to calculate alarm set points that correspond to appropriate limits on the concentration of airborne radioactivity in the sampled air. Equations can be modified further to find the response for different scenarios. Using these we can predict the escape rate of activity from the system even in minute levels. (author)

  15. Quality screening for air quality monitoring data in China.

    Science.gov (United States)

    Liu, Jianzheng; Li, Weifeng; Li, Jie

    2016-09-01

    Particulate matter data obtained from the national air quality monitoring network in China has become an essential and critical data source for many current and forthcoming studies as well as the formulation and implementation of air pollution regulatory policies on particulate matter (PM2.5 and PM10). However, the quality control of this data is dubitable and can affect many future studies and policies. This study identifies and elucidates two significant quality control issues with the data. They are PM2.5 levels exceeding concurrent co-located PM10 levels and the registration of same concentrations for consecutive hours at some stations. Future studies utilizing particulate matter data need to acknowledge and address these issues to ensure accurate and reliable results.

  16. Vehicle Cabin Atmosphere Monitor

    Science.gov (United States)

    Chutjian, Ara; Darrach, Muray

    2007-01-01

    Vehicle Cabin Atmosphere Monitor (VCAM) identifies gases that are present in minute quantities in the International Space Station (ISS) breathing air that could harm the crew s health. If successful, instruments like VCAM could accompany crewmembers during long-duration exploration missions to the Moon or traveling to Mars.

  17. 40 CFR Appendix D to Part 58 - Network Design Criteria for Ambient Air Quality Monitoring

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 5 2010-07-01 2010-07-01 false Network Design Criteria for Ambient Air...—Network Design Criteria for Ambient Air Quality Monitoring 1. Monitoring Objectives and Spatial Scales 2... networks must be designed to meet three basic monitoring objectives. These basic objectives are...

  18. Microbiology and Crew Medical Events on the International Space Station

    Science.gov (United States)

    Oubre, Cherie; Charvat, Jacqueline M.; Kadwa, Biniafer; Taiym, Wafa; Ott, C. Mark; Pierson, Duane; Baalen, Mary Van

    2014-01-01

    The closed environment of the International Space Station (ISS) creates an ideal environment for microbial growth. Previous studies have identified the ubiquitous nature of microorganisms throughout the space station environment. To ensure safety of the crew, microbial monitoring of air and surface within ISS began in December 2000 and continues to be monitored on a quarterly basis. Water monitoring began in 2009 when the potable water dispenser was installed on ISS. However, it is unknown if high microbial counts are associated with inflight medical events. The microbial counts are determined for the air, surface, and water samples collected during flight operations and samples are returned to the Microbiology laboratory at the Johnson Space Center for identification. Instances of microbial counts above the established microbial limit requirements were noted and compared inflight medical events (any non-injury event such as illness, rashes, etc.) that were reported during the same calendar-quarter. Data were analyzed using repeated measures logistic regression for the forty-one US astronauts flew on ISS between 2000 and 2012. In that time frame, instances of microbial counts being above established limits were found for 10 times for air samples, 22 times for surface samples and twice for water. Seventy-eight inflight medical events were reported among the astronauts. A three times greater risk of a medical event was found when microbial samples were found to be high (OR = 3.01; p =.007). Engineering controls, crew training, and strict microbial limits have been established to mitigate the crew medical events and environmental risks. Due to the timing issues of sampling and the samples return to earth, identification of particular microorganisms causing a particular inflight medical event is difficult. Further analyses are underway.

  19. Selection of filter media in alpha air monitors for emergency environmental monitoring

    International Nuclear Information System (INIS)

    We have developed an alpha air monitor which is possible to measure rapidly and sensitively the concentrations of airborne alpha-emitting particles, such as plutonium, for the environmental monitoring at an accident of nuclear reprocessing plant. The monitor is designed to collect airborne alpha-emitting particles by drawing the ambient air through a filter and to detect the activity by alpha spectroscopy. In order to achieve high-sensitive measurements, selection of a suitable filter used in the monitor is considerably important. The most important requirement for the filter is that it has a high surface collection efficiency to obtain the sharpness of the alpha energy spectrum. This makes it easy to distinguish the alpha-ray peak of plutonium from the alpha spectrum of naturally occurring radon decay products in the environment. And the filter is also desired to have low resistance of the air flow so that particles can be collected at a high flowrate. We have made a comparison of the surface collection efficiency and pressure drop for the various filters. Types of the test filters, most of which are commercially available in Japan, were glass fiber, cellulose-glass fiber, membrane and so on. The surface collection efficiency has been evaluated by the following two indices. One was the sharpness of alpha-ray energy peaks of thoron decay products generated in a laboratory and collected in the fibers. The other was the background counts of radon decay products in a plutonium region by measuring alpha-ray energy spectrum of radon decay products collected in the filters by sampling of dust in the atmosphere. It was found that the PTFE (polytetrafluoroethylene) membrane filter with backing had a high surface collection efficiency and low pressure drop. The results of the test are described in detail in this paper. (author)

  20. Air quality nearby road traffic tunnel portals: BTEX monitoring

    Institute of Scientific and Technical Information of China (English)

    Fabio Murena

    2007-01-01

    A monitoring campaign of BTEX (benzene, toluene, ethylbenzene, o- m- and p-xylene) was carried out nearby two tunnel portals in the urban area of Naples with the aim to verify air quality in this kind of urban sites. Sampling was carried out using the active adsorption technique. Sampling time was 1 h. Ambient temperature and traffic flow measurements were carried out during each sampling operation. The results indicate that average benzene concentrations at both sites exceed the limit value of 10 μg/Nm3 established by the European Community (EC) (Dir. 2000/69). Concentration levels of other BTEX are relatively high as well. A correlation between BTEX concentration and two wheeler vehicle flow was observed.

  1. Use of the Operational Air Quality Monitor (AQM) for In-Flight Water Testing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Currently, the Air Quality Monitor (AQM) on-board ISS provides specific information for a number of target compounds in the air. However, there is a significant...

  2. Social [and health] relevance of psychotropic substances monitoring in air

    International Nuclear Information System (INIS)

    Drug abuse assessment methods based on measuring illicit substances in waste waters are consolidated. The approach of ambient air monitoring looks questionable, nonetheless it can be explored if the variables determining the drug burdens are accounted for, or suitable co-contaminants are adopted to normalize concentrations to environmental and human contours. The general approach linking the airborne drug concentrations to consumption is presented and the case of cocaine is discussed according to measurements conducted in Italy. The cocaine/nicotine concentration ratio, identified as the most suitable tool, fitted well with anti-drug Police operations and people noticed for drug-related crimes, and with the abuse prevalence estimated in the cities investigated. According to that, the conversion factors of drug concentrations into prevalence estimates seem assessable, provided sufficient databases over space and time are collected. Further investigations are necessary to understand if airborne drugs cause adverse sanitary effects. -- Highlights: •The drug contents in the air were discussed to draw information about abuse prevalence. •The time and site drug modulations were compared to those of the airborne toxicants. •Nicotine looks suitable to normalize the cocaine concentrations to human and environmental contours. •The health impact of illicit and licit drugs onto non-abusers is still insufficiently understood. -- The airborne cocaine/nicotine concentration ratio looks a promising tool to estimate the cocaine abuse prevalence

  3. Shared Problem Models and Crew Decision Making

    Science.gov (United States)

    Orasanu, Judith; Statler, Irving C. (Technical Monitor)

    1994-01-01

    The importance of crew decision making to aviation safety has been well established through NTSB accident analyses: Crew judgment and decision making have been cited as causes or contributing factors in over half of all accidents in commercial air transport, general aviation, and military aviation. Yet the bulk of research on decision making has not proven helpful in improving the quality of decisions in the cockpit. One reason is that traditional analytic decision models are inappropriate to the dynamic complex nature of cockpit decision making and do not accurately describe what expert human decision makers do when they make decisions. A new model of dynamic naturalistic decision making is offered that may prove more useful for training or aiding cockpit decision making. Based on analyses of crew performance in full-mission simulation and National Transportation Safety Board accident reports, features that define effective decision strategies in abnormal or emergency situations have been identified. These include accurate situation assessment (including time and risk assessment), appreciation of the complexity of the problem, sensitivity to constraints on the decision, timeliness of the response, and use of adequate information. More effective crews also manage their workload to provide themselves with time and resources to make good decisions. In brief, good decisions are appropriate to the demands of the situation and reflect the crew's metacognitive skill. Effective crew decision making and overall performance are mediated by crew communication. Communication contributes to performance because it assures that all crew members have essential information, but it also regulates and coordinates crew actions and is the medium of collective thinking in response to a problem. This presentation will examine the relation between communication that serves to build performance. Implications of these findings for crew training will be discussed.

  4. Development and Application of a Next Generation Air Sensor Network for the Hong Kong Marathon 2015 Air Quality Monitoring.

    Science.gov (United States)

    Sun, Li; Wong, Ka Chun; Wei, Peng; Ye, Sheng; Huang, Hao; Yang, Fenhuan; Westerdahl, Dane; Louie, Peter K K; Luk, Connie W Y; Ning, Zhi

    2016-01-01

    This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO) and nitrogen dioxide (NO2) pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI) for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring.

  5. Development and Application of a Next Generation Air Sensor Network for the Hong Kong Marathon 2015 Air Quality Monitoring

    Science.gov (United States)

    Sun, Li; Wong, Ka Chun; Wei, Peng; Ye, Sheng; Huang, Hao; Yang, Fenhuan; Westerdahl, Dane; Louie, Peter K.K.; Luk, Connie W.Y.; Ning, Zhi

    2016-01-01

    This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO) and nitrogen dioxide (NO2) pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI) for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring. PMID:26861336

  6. Development and Application of a Next Generation Air Sensor Network for the Hong Kong Marathon 2015 Air Quality Monitoring

    Directory of Open Access Journals (Sweden)

    Li Sun

    2016-02-01

    Full Text Available This study presents the development and evaluation of a next generation air monitoring system with both laboratory and field tests. A multi-parameter algorithm was used to correct for the impact of environmental conditions on the electrochemical sensors for carbon monoxide (CO and nitrogen dioxide (NO2 pollutants. The field evaluation in an urban roadside environment in comparison to designated monitors showed good agreement with measurement error within 5% of the pollutant concentrations. Multiple sets of the developed system were then deployed in the Hong Kong Marathon 2015 forming a sensor-based network along the marathon route. Real-time air pollution concentration data were wirelessly transmitted and the Air Quality Health Index (AQHI for the Green Marathon was calculated, which were broadcast to the public on an hourly basis. The route-specific sensor network showed somewhat different pollutant patterns than routine air monitoring, indicating the immediate impact of traffic control during the marathon on the roadside air quality. The study is one of the first applications of a next generation sensor network in international sport events, and it demonstrated the usefulness of the emerging sensor-based air monitoring technology in rapid network deployment to supplement existing air monitoring.

  7. Flight Crew Scheduling

    OpenAIRE

    Graves, Glenn W.; Richard D. McBride; Ira Gershkoff; Diane Anderson; Deepa Mahidhara

    1993-01-01

    A new crew scheduling optimization system has been developed for United Airlines. The system was developed to permit quick response to schedule changes and to reduce crew scheduling costs. It was designed to work efficiently for both the medium sized problems (300 flights daily) and the very large problems (1,700 flights daily) that United must solve. The system has two main components, a generator and an optimizer. The generator creates pairings (candidate crew trips) which are fed as variab...

  8. Towards development of a deposition monitoring network for air pollution of Europe

    NARCIS (Netherlands)

    Erisman JW; Mennen MG; Fowler D; Flechard CR; Spindler G; Gruner A; Duyzer JH; Ruigrok W; Wyers GP; LLO; TNO; ECN; ITE (Engeland); IFT (Duitsland)

    1996-01-01

    In January 1993 within the framework of the LIFE programme a project was financed which aim was to develop a deposition monitoring method for air pollution of Europe. This method should be used to extend existing European monitoring networks of air concentrations to provide deposition inputs on an e

  9. 75 FR 9894 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Science.gov (United States)

    2010-03-04

    ... AGENCY Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of one new equivalent method for monitoring ambient air quality. SUMMARY: Notice is hereby...

  10. Plant monitoring of air quality around waste incinerators

    Energy Technology Data Exchange (ETDEWEB)

    Tonneijck, A.E.G.; Dijk, C.J. van; Dueck, T.A. [Plant Research International, Wageningen (Niger). Dept. of Crop and Production Ecology

    2002-07-01

    Since the early 1990's, three new waste incineration plants have come into operation in agricultural regions in The Netherlands. Multi-year standardised biomonitoring programmes around these incinerators were set up to determine the absence of adverse effects on quality of crop produce due to the incineration of waste. Depending on time of year, plants of kale (Brassica oleracea) and spinach (Spinacia oleracea) were cultivated for use as accumulators of cadmium (Cd), mercury (Hg) and polycyclic aromatic hydrocarbons (PAHs). Trends in fluoride contents were followed by sampling field-grown pasture grass. Cow milk was sampled to determine the concentrations of dioxins. Plants of gladiola (Gladiolus gandavensis) were used for the assessment of visible injury by ambient fluoride in one programme only. The results of many years of biomonitoring showed that the emissions of the waste incinerators did not affect the quality of crop produce and cow milk. Concentrations of the various components in these products were generally similar to background levels and did not exceed standards for maximum allowable concentrations. On one occasion, concentrations of PAHs in spinach were clearly enhanced due to the use of wood-preserving compounds at a barn close to the monitoring site. This incident reveals that our biomonitoring projects are an appropriate tool to detect changes in air quality. (orig.)

  11. Using Unmanned Air Systems to Monitor Methane in the Atmosphere

    Science.gov (United States)

    Clow, Jacqueline; Smith, Jeremy Christopher

    2016-01-01

    Methane is likely to be an important contributor to global warming, and our current knowledge of its sources, distributions, and transport is insufficient. It is estimated that there could be from 7.5 to 400 billion tons carbon-equivalent of methane in the arctic region, a broad range that is indicative of the uncertainty within the Earth Science community. Unmanned Air Systems (UASs) are often used for combat or surveillance by the military, but they also have been used for Earth Science field missions. In this study, we will analyze the utility of the NASA Global Hawk and the Aurora Flight Sciences Orion UASs compared to the manned DC-8 aircraft for conducting a methane monitoring mission. The mission will focus on the measurement of methane along the boundaries of Arctic permafrost thaw and melting glaciers. The use of Long Endurance UAS brings a new range of possibilities including the ability to obtain long- term and persistent observations and to significantly augment methane measurements/retrievals collected by satellite. Furthermore, we discuss the future of long endurance UAS and their potential for science applications in the next twenty to twenty-five years.

  12. Air monitoring results according to the IAEA recommendations

    International Nuclear Information System (INIS)

    The policy adopted by the International Atomic Energy Agency-IAEA. related to radioprotection concepts, such as limits and the classification of areas were recently changed. The aim of this work is to show the results of air monitoring performed in the chemical treatment facilities of the uranium concentrated (yellow-cake) until its conversion in uranium hexafluoride at the IPEN-CNEN-S.P. pilot plant. At this plant, we have about a hundred kilos of diuranate (DUA,DUS) in powder converted in UF4 in a batch way. The operational cycle begins with a weighting stage. After this there is the dissolution stage, a powder stage such as uranium oxide (UO3 and U3O8) and finally UF4. The workplace concentration with the committed effective dose per intake unit via inhalation is compared. The evaluation of the workers' intake depends on the knowledge of the current time in the workplace. The new workplace classification is free for levels below the public annual limits, supervised when the potential exposure are in the stochastic effects and controlled area when the potential exposure are in the deterministic effect range. In this new classification, it is shown that 75% of the workplaces that are in the facilities of the pilot plant are supervised area and 25% are controlled area. (authors). 7 refs

  13. Technologies for air quality monitoring; Tecnologias para el monitoreo de calidad del aire

    Energy Technology Data Exchange (ETDEWEB)

    Muriel, Manuel [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    There are various measuring principles and systems whose usage is delimited by the type of contaminant to be measured. The author of this paper presents a revision of the different applications, measuring principles, systems, costs and selection of the equipment utilized for the measuring and monitoring the atmospheric emissions. The case of the pollutants emitted to the air by the Power Plants in analyzed [Espanol] Existen diversos principios y sistemas de medicion cuyo uso estara delimitado por el tipo de contaminante a medir. El autor de esta ponencia presenta una revision de las diferentes aplicaciones, principios de medicion, sistemas, costos y seleccion de los equipos utilizados en la medicion y monitoreo de emisiones atmosfericas. Se analiza el caso de los contaminantes emitidos a la atmosfera en las centrales termoelectricas

  14. Method, system and apparatus for monitoring and adjusting the quality of indoor air

    Energy Technology Data Exchange (ETDEWEB)

    Hartenstein, Steven D.; Tremblay, Paul L.; Fryer, Michael O.; Hohorst, Frederick A.

    2004-03-23

    A system, method and apparatus is provided for monitoring and adjusting the quality of indoor air. A sensor array senses an air sample from the indoor air and analyzes the air sample to obtain signatures representative of contaminants in the air sample. When the level or type of contaminant poses a threat or hazard to the occupants, the present invention takes corrective actions which may include introducing additional fresh air. The corrective actions taken are intended to promote overall health of personnel, prevent personnel from being overexposed to hazardous contaminants and minimize the cost of operating the HVAC system. The identification of the contaminants is performed by comparing the signatures provided by the sensor array with a database of known signatures. Upon identification, the system takes corrective actions based on the level of contaminant present. The present invention is capable of learning the identity of previously unknown contaminants, which increases its ability to identify contaminants in the future. Indoor air quality is assured by monitoring the contaminants not only in the indoor air, but also in the outdoor air and the air which is to be recirculated. The present invention is easily adaptable to new and existing HVAC systems. In sum, the present invention is able to monitor and adjust the quality of indoor air in real time by sensing the level and type of contaminants present in indoor air, outdoor and recirculated air, providing an intelligent decision about the quality of the air, and minimizing the cost of operating an HVAC system.

  15. An Alternative Approach to the Monitoring of Respiration by Dynamic Air-Pressure Sensor

    OpenAIRE

    Takarada, Tohru; Kawahara, Michio; Irifune, Masahiro; Endo, Chie; Shimizu, Yoshitaka; Kobayashi, Keiko; Sakata, Keiko; Kikuchi, Nobuhito; Saida, Takuya; Onizuka, Chiori

    2007-01-01

    Monitoring and assessing of patient respiratory function during conscious sedation are important because many drugs used for conscious sedation produce respiratory depression and subsequent hypoventilation. The purpose of this study is to assess the value of a dynamic air-pressure sensor for respiratory monitoring of clothed patients. Eight clothed adult volunteers were reclined on a dental chair positioned horizontally. The air bag for measuring air-pressure signals corresponding to respirat...

  16. Dynamic Radioactive Source for Evaluating and Demonstrating Time-dependent Performance of Continuous Air Monitors.

    Science.gov (United States)

    McLean, Thomas D; Moore, Murray E; Justus, Alan L; Hudston, Jonathan A; Barbé, Benoît

    2016-11-01

    Evaluation of continuous air monitors in the presence of a plutonium aerosol is time intensive, expensive, and requires a specialized facility. The Radiation Protection Services Group at Los Alamos National Laboratory has designed a Dynamic Radioactive Source, intended to replace plutonium aerosol challenge testing. The Dynamic Radioactive Source is small enough to be inserted into the sampler filter chamber of a typical continuous air monitor. Time-dependent radioactivity is introduced from electroplated sources for real-time testing of a continuous air monitor where a mechanical wristwatch motor rotates a mask above an alpha-emitting electroplated disk source. The mask is attached to the watch's minute hand, and as it rotates, more of the underlying source is revealed. The measured alpha activity increases with time, simulating the arrival of airborne radioactive particulates at the air sampler inlet. The Dynamic Radioactive Source allows the temporal behavior of puff and chronic release conditions to be mimicked without the need for radioactive aerosols. The new system is configurable to different continuous air monitor designs and provides an in-house testing capability (benchtop compatible). It is a repeatable and reusable system and does not contaminate the tested air monitor. Test benefits include direct user control, realistic (plutonium) aerosol spectra, and iterative development of continuous air monitor alarm algorithms. Data obtained using the Dynamic Radioactive Source has been used to elucidate alarm algorithms and to compare the response time of two commercial continuous air monitors. PMID:27682903

  17. Exploring flight crew behaviour

    Science.gov (United States)

    Helmreich, R. L.

    1987-01-01

    A programme of research into the determinants of flight crew performance in commercial and military aviation is described, along with limitations and advantages associated with the conduct of research in such settings. Preliminary results indicate significant relationships among personality factors, attitudes regarding flight operations, and crew performance. The potential theoretical and applied utility of the research and directions for further research are discussed.

  18. Commercial Crew Medical Ops

    Science.gov (United States)

    Heinbaugh, Randall; Cole, Richard

    2016-01-01

    Provide commercial partners with: center insight into NASA spaceflight medical experience center; information relative to both nominal and emergency care of the astronaut crew at landing site center; a basis for developing and sharing expertise in space medical factors associated with returning crew.

  19. A Monitoring of Air Pollutants (CO, SO2 and NO in Ambient Air Near an Industrial Area

    Directory of Open Access Journals (Sweden)

    Radin Mohamed Radin Maya Saphira

    2016-01-01

    Full Text Available A monitoring assessment was carried out to measure the concentration of air pollutants in ambient air in the university campus, which is located adjacent to the industrial area. The air pollutants were monitored for CO (Carbon monoxide, SO2 (Sulfur dioxide and NO (Nitrous oxide at the three sampling points, with distance reference based from the industrial area. Air pollutant gases were sampled from the I-Brid Toxic Gases Analyzer with the sampling hour referred to the Recommended Malaysian Air Quality Guidelines (RMAQG during October 2013 to Jun 2014. Meteorological data was collected from the E-Sampler device for 24 hours. It was found that the CO concentrations were fall within the RMAQG at all stations monitored. The SO2 concentration was high at Station 3 (Material lab, with 0.66 ppm which was exceeded the RMAQG of 0.13 ppm. All three stations recorded high concentration of NO, which the peak concentration occurred at the afternoon sampling. The nearest Station 3 (Material lab has recorded the highest level of NO, SO2 and CO compared to the other stations. The monitoring data has contributed some highlights to the authority and awareness about possible long risk effect of the air pollutants at the case study.

  20. STS-114: Discovery Crew Arrival

    Science.gov (United States)

    2005-01-01

    George Diller of NASA Public Affairs narrates the STS-114 Crew arrival at Kennedy Space Center aboard a Gulf Stream aircraft. They were greeted by Center Director Jim Kennedy. Commander Eileen Collins introduced each of her crew members and gave a brief description of their roles in the mission. Mission Specialist 3, Andrew Thomas will be the lead crew member on the inspection on flight day 2; he is the intravehicular (IV) crew member that will help and guide Mission Specialists Souichi Noguchi and Stephen Robinson during their spacewalks. Pilot James Kelly will be operating the shuttle systems in flying the Shuttle; he will be flying the space station robotic arm during the second extravehicular activity and he will be assisting Mission Specialist Wendy Lawrence during the other two extravehicular activities; he will be assisting on the rendezvous on flight day three, and landing of the shuttle. Commander Collins also mentioned Pilot Kelly's recent promotion to Colonel by the United States Air Force. Mission Specialist 1, Souichi Noguchi from JAXA (The Japanese Space Agency) will be flying on the flight deck for ascent; he will be doing three spacewalks on day 5, 7, and 9; He will be the photo/TV lead for the different types of cameras on board to document the flight and to send back the information to the ground for both technical and public affairs reasons. Mission Specialist 5, Charles Camada will be doing the inspection on flight day 2 with Mission Specialist Thomas and Pilot Kelly; he will be transferring the logistics off the shuttle and onto the space station and from the space station back to the shuttle; He will help set up eleven lap tops on board. Mission Specialist 4, Wendy Lawrence will lead the transfer of logistics to the space station; she is the space station arm operator during extravehicular activities 1 and 3; she will be carrying the 6,000 pounds of external storage platform from the shuttle payload bay over to the space station; she is also

  1. Mobile Air Monitoring: Measuring Change in Air Quality in the City of Hamilton, 2005-2010

    Science.gov (United States)

    Adams, Matthew D.; DeLuca, Patrick F.; Corr, Denis; Kanaroglou, Pavlos S.

    2012-01-01

    This paper examines the change in air pollutant concentrations between 2005 and 2010 occurring in the City of Hamilton, Ontario, Canada. After analysis of stationary air pollutant concentration data, we analyze mobile air pollutant concentration data. Air pollutants included in the analysis are CO, PM[subscript 2.5], SO[subscript 2], NO,…

  2. Space shuttle crew training at CERN

    CERN Multimedia

    Paola Catapano

    From 13 to 16 October, the crew of NASA Space Shuttle mission STS-134 came to CERN for a special physics training programme. Invited here by Samuel Ting, they will deliver the Alpha Magnetic Spectrometer (AMS) detector to the International Space Station (ISS).   The STS134 crew in the Lodge at the Aiguille du Midi wearing CERN fleeces. From left to right: Captain Mark Kelly, US Navy; Pilot Gregory Johnson, USAF ret.; Mission Specialist Andrew Feustel; Mission Specialist Mike Fincke, USAF, Mission Specialist Gregory Chamitoff and Mission Specialist Roberto Vittori, ESA and Italian Air Force. Headed by Commander Mark Kelly, a US Navy captain, the crew included pilot Gregory Johnson, a US Air Force (USAF) colonel, and mission specialists Mike Fincke (also a USAF Colonel), Andrew Feustel, and Gregory Chamitoff of NASA, as well as Colonel Roberto Vittori of the European Space Agency (ESA). Two flight directors, Gary Horlache and Derek Hassmann of NASA, and the engineer responsible for the Ext...

  3. Monitoring of Air Polution by Using Fuzzy Logic

    OpenAIRE

    Dr. Gopal Upadhyaya,; Mr. Nilesh Dashore

    2010-01-01

    The Air Quality Index is a simple and generalized way to describe the air quality in China, Hong Kong, Malaysia and now in India. Indian Air Quality Index (IND-AQI) is mainly a health related index with the descriptor words: “Good (0- 100)”, “Moderate (101-200 )”, “Poor (201-300)”, “Very Poor (301-400)”, “Severe (401-500)”. State Environment Protection Agency (SEPA ) is responsible for measuring the level of air pollution in China . In China the AQI is based on the level of 5 atmospheric poll...

  4. 14 CFR 91.1061 - Augmented flight crews.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Augmented flight crews. 91.1061 Section 91...) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Fractional Ownership Operations Program Management § 91.1061 Augmented flight crews. (a) No program manager may assign any...

  5. Ambient air monitoring for organic compounds, acids, and metals at Los Alamos National Laboratory, January 1991

    International Nuclear Information System (INIS)

    Los Alamos National Laboratory (LANL) contracted Radian Corporation (Radian) to conduct a short-term, intensive air monitoring program whose goal was to estimate the impact of chemical emissions from LANL on the ambient air environment. A comprehensive emission inventory had identified more than 600 potential air contaminants in LANL's emissions. A subset of specific target chemicals was selected for monitoring: 20 organic vapors, 6 metals and 5 inorganic acid vapors. These were measured at 5 ground level sampling sites around LANL over seven consecutive days in January 1991. The sampling and analytical strategy used a combination of EPA and NIOSH methods modified for ambient air applications

  6. Crew Transportation Plan

    Science.gov (United States)

    Zeitler, Pamela S. (Compiler); Mango, Edward J.

    2013-01-01

    The National Aeronautics and Space Administration (NASA) Commercial Crew Program (CCP) has been chartered to facilitate the development of a United States (U.S.) commercial crew space transportation capability with the goal of achieving safe, reliable, and cost effective access to and from low Earth orbit (LEO) and the International Space Station (ISS) as soon as possible. Once the capability is matured and is available to the Government and other customers, NASA expects to purchase commercial services to meet its ISS crew rotation and emergency return objectives.

  7. Aerophagia : Excessive Air Swallowing Demonstrated by Esophageal Impedance Monitoring

    NARCIS (Netherlands)

    Hemmink, Gerrit J. M.; Weusten, Bas L. A. M.; Bredenoord, Albert J.; Timmer, Robin; Smout, Andre J. P. M.

    2009-01-01

    BACKGROUND & AIMS: Patients with aerophagia suffer from the presence of an excessive volume of intestinal gas, which is thought to result from excessive air ingestion. However, this has not been shown thus far. The aim of this study was therefore to assess swallowing and air swallowing frequencies i

  8. Toward the next generation of air quality monitoring: Persistent organic pollutants

    Science.gov (United States)

    Hung, Hayley; MacLeod, Matthew; Guardans, Ramon; Scheringer, Martin; Barra, Ricardo; Harner, Tom; Zhang, Gan

    2013-12-01

    Persistent Organic Pollutants (POPs) are global pollutants that can migrate over long distances and bioaccumulate through food webs, posing health risks to wildlife and humans. Multilateral environmental agreements, such as the Stockholm Convention on POPs, were enacted to identify POPs and establish the conditions to control their release, production and use. A Global Monitoring Plan was initiated under the Stockholm Convention calling for POP monitoring in air as a core medium; however long temporal trends (>10 years) of atmospheric POPs are only available at a few selected sites. Spatial coverage of air monitoring for POPs has recently significantly improved with the introduction and advancement of passive air samplers. Here, we review the status of air monitoring and modeling activities and note major uncertainties in data comparability, deficiencies of air monitoring and modeling in urban and alpine areas, and lack of emission inventories for most POPs. A vision for an internationally-integrated strategic monitoring plan is proposed which could provide consistent and comparable monitoring data for POPs supported and supplemented by global and regional transport models. Key recommendations include developing expertise in all aspects of air monitoring to ensure data comparability and consistency; partnering with existing air quality and meteorological networks to leverage synergies; facilitating data sharing with international data archives; and expanding spatial coverage with passive air samplers. Enhancing research on the stability of particle-bound chemicals is needed to assess exposure and deposition in urban areas, and to elucidate long-range transport. Conducting targeted measurement campaigns in specific source areas would enhance regional models which can be extrapolated to similar regions to estimate emissions. Ultimately, reverse-modeling combined with air measurements can be used to derive “emission” as an indicator to assess environmental

  9. 19 CFR 122.49b - Electronic manifest requirement for crew members and non-crew members onboard commercial aircraft...

    Science.gov (United States)

    2010-04-01

    ... 49 CFR part 1544, 1546, or 1550 of the Transportation Security Administration regulations. Crew... an air carrier subject to 49 CFR part 1544, 1546, or 1550. The provisions or amendments will have... and non-crew members onboard commercial aircraft arriving in, continuing within, and overflying...

  10. 19 CFR 122.45 - Crew list.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Crew list. 122.45 Section 122.45 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Entry and Entry Documents; Electronic Manifest Requirements for...

  11. Crew Transportation Operations Standards

    Science.gov (United States)

    Mango, Edward J.; Pearson, Don J. (Compiler)

    2013-01-01

    The Crew Transportation Operations Standards contains descriptions of ground and flight operations processes and specifications and the criteria which will be used to evaluate the acceptability of Commercial Providers' proposed processes and specifications.

  12. STS-54 Crew Portrait

    Science.gov (United States)

    1992-01-01

    Astronauts pictured in the STS-54 crew portrait from left to right are: Mario Runco, Jr., mission specialist; John H. Casper, commander; Donald R. McMonagle, pilot; and mission specialists Susan J. Helms, and Gregory J. Harbaugh. Launched aboard the Space Shuttle Endeavour on January 13, 1993 at 8:59:30 am (EST), the crew deployed the fifth Tracking and Data Relay Satellite (TDRS-6).

  13. Real-time Multispecies Spacecraft Air Quality Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Small Business Innovative Research Phase I proposal seeks to develop an ultrasensitive, multispecies sensor system for use in determining the efficacy of air...

  14. Incident-response monitoring technologies for aircraft cabin air quality

    Science.gov (United States)

    Magoha, Paul W.

    Poor air quality in commercial aircraft cabins can be caused by volatile organophosphorus (OP) compounds emitted from the jet engine bleed air system during smoke/fume incidents. Tri-cresyl phosphate (TCP), a common anti-wear additive in turbine engine oils, is an important component in today's global aircraft operations. However, exposure to TCP increases risks of certain adverse health effects. This research analyzed used aircraft cabin air filters for jet engine oil contaminants and designed a jet engine bleed air simulator (BAS) to replicate smoke/fume incidents caused by pyrolysis of jet engine oil. Field emission scanning electron microscopy (FESEM) with X-ray energy dispersive spectroscopy (EDS) and neutron activation analysis (NAA) were used for elemental analysis of filters, and gas chromatography interfaced with mass spectrometry (GC/MS) was used to analyze used filters to determine TCP isomers. The filter analysis study involved 110 used and 90 incident filters. Clean air filter samples exposed to different bleed air conditions simulating cabin air contamination incidents were also analyzed by FESEM/EDS, NAA, and GC/MS. Experiments were conducted on a BAS at various bleed air conditions typical of an operating jet engine so that the effects of temperature and pressure variations on jet engine oil aerosol formation could be determined. The GC/MS analysis of both used and incident filters characterized tri- m-cresyl phosphate (TmCP) and tri-p-cresyl phosphate (TpCP) by a base peak of an m/z = 368, with corresponding retention times of 21.9 and 23.4 minutes. The hydrocarbons in jet oil were characterized in the filters by a base peak pattern of an m/z = 85, 113. Using retention times and hydrocarbon thermal conductivity peak (TCP) pattern obtained from jet engine oil standards, five out of 110 used filters tested had oil markers. Meanwhile 22 out of 77 incident filters tested positive for oil fingerprints. Probit analysis of jet engine oil aerosols obtained

  15. Caenorhabditis elegans: a model to monitor bacterial air quality.

    OpenAIRE

    Duclairoir Poc Cécile; Groboillot Anne; Lesouhaitier Olivier; Morin Jean-Paul; Orange Nicole; Feuilloley Marc JG

    2011-01-01

    Abstract Background Low environmental air quality is a significant cause of mortality and morbidity and this question is now emerging as a main concern of governmental authorities. Airborne pollution results from the combination of chemicals, fine particles, and micro-organisms quantitatively or qualitatively dangerous for health or for the environment. Increasing regulations and limitations for outdoor air quality have been decreed in regards to chemicals and particles contrary to micro-orga...

  16. Technical memorandum - Aamjiwnaang First Nation community air monitoring station - results for September 2008 to August 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-01-15

    In 2008, the provincial and federal governments, working with the Aamjiwnaang First Nation, established the Aamjiwnaang First Nation community air monitoring station. The station's purpose was to monitor a series of contaminants produced by local industry. In addition, through the collection and analysis of air quality information, the station provided useful input to air quality studies and community health assessments. This report presents the results from analysis of air quality information between September 1, 2008 and August 31, 2009. Overall the report finds that the local air quality is similar to that in surrounding communities during this period and there were no exceedances of any ministry standard or guideline recorded concerning the expectations for particulate matter and ozone. It will be possible in the future to use this air quality information for comparison and correlation with known point sources or modeled results.

  17. Performance Evaluation of a Low-Cost, Real-Time Community Air Monitoring Station

    Science.gov (United States)

    The US EPA’s Village Green Project (VGP) is an example of using innovative technology to enable community-level low-cost real-time air pollution measurements. The VGP is an air monitoring system configured as a park bench located outside of a public library in Durham, NC. It co...

  18. Air nicotine monitoring for second hand smoke exposure in public places in India

    Directory of Open Access Journals (Sweden)

    Jagdish Kaur

    2011-01-01

    Full Text Available Background: Air nicotine monitoring is an established method of measuring exposure to second hand smoke (SHS. Not much research has been done in India to measure air nicotine for the purpose of studying exposure to SHS. It is a risk factor and many diseases are known to occur among non smokers if they are exposed to second hand smoke. Objective: To conduct monitoring of air nicotine for second hand smoke exposure in public places across major cities in India. Materials and Methods: A cross sectional survey was conducted across four cities across the country, using passive air monitoring. The buildings included hospitals, secondary schools, Governmental offices, bars and restaurants. The buildings were selected through convenience sampling method keeping in view specific sentinel locations of interest. Result: The presence of air nicotine was recorded in most of the buildings under the study, which included government buildings, hospitals, schools, restaurants and entertainment venues (bars in all four cities under the study. The highest median levels of air nicotine were found in entertainment venues and restaurants in cities. Conclusion: The presence of air nicotine in indoor public places indicates weak implementation of existing smoke free law in India. The findings of this study provide a baseline characterization of exposure to SHS in public places in India, which could be used to promote clean indoor air policies and programs and monitor and evaluate the progress and future smoke-free initiatives in India.

  19. Journal Article: EPA's National Dioxin Air Monitoring Network (Ndamn): Design, Implementation, and Final Results

    Science.gov (United States)

    The U.S. Environmental Protection Agency (U.S. EPA) established the National Dioxin Air Monitoring Network (NDAMN) in June of 1998, and operated it until November of 2004. The objective of NDAMN was to determine background air concentrations of polychlorinated dibenzo-p-dioxins (...

  20. Community Air Sensor Network (CAIRSENSE) Project: Lower Cost, Continuous Ambient Monitoring Methods

    Science.gov (United States)

    Advances in air pollution sensor technology have enabled the development of small and low cost systems to measure outdoor air pollution. The deployment of numerous sensors across a small geographic area would have potential benefits to supplement existing monitoring networks and ...

  1. Performance Evaluation of a Low-Cost, Real-Time Community Air Monitoring Station

    Science.gov (United States)

    The US EPA’s Village Green Project (VGP) is an example of using innovative technology to enable community-level low-cost real-time air pollution measurements. The VGP is an air monitoring system configured as a park bench located outside of a public library in Durham, NC. ...

  2. AIR QUALITY MONITORING WITH THE LICHEN BIODIVERSITY INDEX (LBI IN THE DISTRICT OF FAENZA (ITALY

    Directory of Open Access Journals (Sweden)

    Manuela Cioffi

    2009-07-01

    Full Text Available The Lichen Biodiversity Index (LBI is a method for monitoring air pollution. This method employs lichens living on lime trees because they are sensitive to NOx and SOx, and it considers the variations in their communities. This study was performed in 16 stations located in the suburbs of Faenza city town and the result shows a more than acceptable air quality although in some stations the air was affected by the polluting effects of the vehicle traffic.

  3. Monitoring and prediction of air polution from traffic in the urban environment

    OpenAIRE

    Reynolds, Shirley Anne

    1996-01-01

    Traffic-related air pollution is now a major concern. The Rio Earth Summit and the Government's commitment to Agenda 21 has led to Local Authorities taking responsibility to manage the growing number of vehicles and to reduce the impact of traffic on the environment. There is an urgent need to effectively monitor urban air quality at reasonable cost and to develop long and short term air pollution prediction models. The aim of the research described was to investigate relationships betw...

  4. Coordination strategies of crew management

    Science.gov (United States)

    Conley, Sharon; Cano, Yvonne; Bryant, Don

    1991-01-01

    An exploratory study that describes and contrasts two three-person flight crews performing in a B-727 simulator is presented. This study specifically attempts to delineate crew communication patterns accounting for measured differences in performance across routine and nonroutine flight patterns. The communication patterns in the two crews evaluated indicated different modes of coordination, i.e., standardization in the less effective crew and planning/mutual adjustment in the more effective crew.

  5. Comparison of regional air dispersion simulation and ambient air monitoring data for the soil fumigant 1,3-dichloropropene.

    Science.gov (United States)

    van Wesenbeeck, I J; Cryer, S A; de Cirugeda Helle, O; Li, C; Driver, J H

    2016-11-01

    SOFEA v2.0 is an air dispersion modeling tool used to predict acute and chronic pesticide concentrations in air for large air sheds resulting from agronomic practices. A 1,3-dichloropropene (1,3-D) air monitoring study in high use townships in Merced County, CA, logged 3-day average air concentrations at nine locations over a 14.5month period. SOFEA, using weather data measured at the site, and using a historical CDPR regulatory assumption of a constant 320m mixing height, predicted the general pattern and correct order of magnitude for 1,3-D air concentrations as a function of time, but failed to estimate the highest observed 1,3-D concentrations of the monitoring study. A time series and statistical comparison of the measured and modeled data indicated that the model underestimated 1,3-D concentrations during calm periods (wind speed density was also found to have an effect on the modeled 1,3-D concentration PDF, and a 50×50 receptor grid in the nine township domain captured the measured 1,3-D concentration distribution much better than a 3×3 receptor grid (i.e., simulated receptors at the nine monitoring locations). Comparison of the monitored and simulated PDF for 72-h 1,3-D concentrations indicated that SOFEA slightly over predicts the 1,3-D concentration distribution at all percentiles below the 99th with slight under prediction of the 99-100th percentile values. This suggests that without further refinement, the SOFEA2 model, based upon field validation observations, will result in representative but conservative estimates of lifetime exposure to 1,3-D for bystanders in 1,3-D use areas. PMID:27376915

  6. AirSWOT: An Airborne Platform for Surface Water Monitoring

    Science.gov (United States)

    Rodriguez, E.; Moller, D.; Smith, L. C.; Pavelsky, T. M.; Alsdorf, D. E.

    2010-12-01

    The SWOT mission, expected to launch in 2020, will provide global measurements of surface water extent and elevation from which storage change and discharge can be derived. SWOT-like measurements are not routinely used by the hydrology community, and their optimal use and associated errors are areas of active research. The purpose of AirSWOT, a system that has been proposed to NASA’s Instrument Incubator Program, is to provide SWOT-like measurements to the hydrology and ocean community to be used to advance the understanding and use of SWOT data in the pre-launch phase. In the post-launch phase, AirSWOT will be used as the SWOT calibration/validation platform. The AirSWOT payload will consist of Kaspar, a multi-beam Ka-band radar interferometer able to produce elevations over a 5 km swath with centimetric precision. The absolute elevation accuracy of the AirSWOT system will be achieved with a combination of high precision Inertial Motion Units (IMUs), ground calibration points, and advanced calibration techniques utilizing a priori knowledge. It is expected that the accuracy of AirSWOT will exceed or match SWOT’s accuracy requirements. In addition to elevation measurements, the AirSWOT payload will include a near-infrared camera able to provide coincident high-resolution optical imagery of the water bodies imaged by the radar. In its initial hydrology deployments, AirSWOT will investigate four field sites: the Ohio-Mississippi confluence, the lower Atchafalaya River on the Mississippi River Delta, the Yukon River basin near Fairbanks, and the Sacramento River, California. The Ohio-Mississippi confluence is targeted for its large discharge, modest slope, and control structures that modulate Ohio but not Mississippi River slopes and elevations. The lower Atchafalaya River includes low slopes, wetlands with differing vegetation types, and some open lakes. Vegetation includes Cyprus forests, floating macrophytes, and grass marshes, all of which impact radar returns

  7. Air Nicotine Monitoring for Second Hand Smoke Exposure in Public Places in India

    OpenAIRE

    Jagdish Kaur; Prasad, Vinayak M

    2011-01-01

    Background: Air nicotine monitoring is an established method of measuring exposure to second hand smoke (SHS). Not much research has been done in India to measure air nicotine for the purpose of studying exposure to SHS. It is a risk factor and many diseases are known to occur among non smokers if they are exposed to second hand smoke. Objective: To conduct monitoring of air nicotine for second hand smoke exposure in public places across major cities in India. Materials and Methods: A cross s...

  8. Elektronische monitoring van luchtwassers op veehouderijbedrijven = Automated process monitoring and data logging of air scrubbers at animal houses

    NARCIS (Netherlands)

    Melse, R.W.; Franssen, J.C.T.J.

    2010-01-01

    At 6 animal houses air scrubbers equipped with an automated process monitoring and data logging system were tested. The measured values were successfully stored but the measured values, especially the pH and EC of the recirculation water, appeared not to be correct at all times.

  9. Use of Multi-Objective Air Pollution Monitoring Sites and Online Air Pollution Monitoring System for Total Health Risk Assessment in Hyderabad, India

    Directory of Open Access Journals (Sweden)

    K. V. Ramani

    2005-08-01

    Full Text Available A consensus has been emerging among public health experts in developing countries that air pollution, even at current ambient levels, aggravates respiratory and cardiovascular diseases and leads to premature mortality. Recent studies have also presented well-founded theories concerning the biological mechanisms involved and the groups of people that are probably more susceptible to health effects caused or exacerbated by inhalation of ambient particulate matter (PM.. On the basis of prognostic studies carried out in Center for Environment, JNT University, Hyderabad “it has been estimated that in Hyderabad some 1,700 to 3,000 people per year die prematurely as a result of inhaling PM”. These figures reflect only the effects of acute exposure to air pollution. If the long-term effects of chronic exposure are taken into account, 10,000–15,000 people a year could die prematurely in Hyderabad. This estimate of the chronic effects is based on other studies, which are not completely comparable with the Hyderabad situation. While the study designs and analyses in these other studies may indeed be different or irrelevant to Hyderabad, the fact they were carried out in other countries is irrelevant. Taking into account these considerations, a model for total health risk assessment for the city of Hyderabad, and its state of Andhra Pradesh in India has been developed using a multi-objective air pollution monitoring network and online and real time air pollution monitoring stations. For the model studies a number of potential monitoring sites were screened for general and site-specific criteria in a geographic information system (GIS environment that may, on a local basis, affect the representativeness of the data collected. Local features that may affect either the chemical or meteorological parameters are evaluated to assure a minimum of interference. Finally, for monitoring air pollution, an online and real

  10. Data Quality Objectives Summary Report Supporting Radiological Air Surveillance Monitoring for the INL Site

    Energy Technology Data Exchange (ETDEWEB)

    Haney, Thomas Jay [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    This report documents the Data Quality Objectives (DQOs) developed for the Idaho National Laboratory (INL) Site ambient air surveillance program. The development of the DQOs was based on the seven-step process recommended “for systematic planning to generate performance and acceptance criteria for collecting environmental data” (EPA 2006). The process helped to determine the type, quantity, and quality of data needed to meet current regulatory requirements and to follow U.S. Department of Energy guidance for environmental surveillance air monitoring design. It also considered the current air monitoring program that has existed at INL Site since the 1950s. The development of the DQOs involved the application of the atmospheric dispersion model CALPUFF to identify likely contamination dispersion patterns at and around the INL Site using site-specific meteorological data. Model simulations were used to quantitatively assess the probable frequency of detection of airborne radionuclides released by INL Site facilities using existing and proposed air monitors.

  11. An evaluation of air effluent and workplace radioactivity monitoring at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Improvements are needed in the Waste Isolation Pilot Plant (WIPP) air effluent and workplace radioactivity monitoring prior to receipt of radioactive wastes. This report provides a detailed review Zf radioactivity air monitoring regulatory requirements and related facility design requirements. Air monitoring data, supplied by the Westinghouse Isolation Division, are analyzed. The WIPP Final Safety Analysis Report (FSAR) requires that the WIPP radiological facilities always have multiple confinement barriers to prevent the accidental release of radioactive material to the environment. The Waste Handling Building has standard confinement barriers that satisfy the regulatory requirements, but the underground confinement barriers.include a more complex system for filtering air in the event of-an accidental release. A continuous air monitor (CAM) is an integral part of the underground confinement barrier strategy. For the last four years'' the reliability and sensitivity of the CAMs have been the subject of numerous reports and meetings which are summarized in this report. Data supplied to the Environmental Evaluation Group (EEG) show that the Station A CAM, which monitors the underground.exhaust, does not satisfy the requirements of the FSAR. The CAM system is not fail-safe, and operations appear to be affected by high levels of salt aerosol and poor detector performance. Additional test information is needed to establish the limits of CAM performance. Findings and recommendations are also provided on alternative monitoring methods, procedures and calculations

  12. Air Quality Monitoring and Information System for Egypt

    Energy Technology Data Exchange (ETDEWEB)

    Sivertsen, B.

    1996-06-01

    The publication relates to the main objectives and design of a modern monitoring and information system developed in Norway. The system is to be installed in Egypt. Themes being discussed cover technical features of the system, meteorological data, environmental indicators, data transfer and quality assurance, the data bases, data presentation - graphics and GIS, and environmental information to the public. 11 figs., 1 tab.

  13. Instrumentation and Virtual Library for Air Pollution Monitoring

    OpenAIRE

    Branzila, Marius

    2010-01-01

    The presented system constitutes a versatile, flexible, cheap, high-speed digital data acquisition system that combined with LabView software give the possibility to easily monitoring the environmental parameters. They are many applications where the system can be used like: toxic waste identification, combustible mixture analyze, industrial emission

  14. APPLICATION OF JET REMPI AND LIBS TO AIR TOXIC MONITORING

    Science.gov (United States)

    The paper discusses three advanced, laser-based monitoring techniques that the EPA is assisting in developing for real time measurement of toxic aerosol compounds. One of the three techniques is jet resonance enhanced multiphoton ionization (Jet REMPI) coupled with a time-of-flig...

  15. Terahertz sensor for air pollution monitoring from spacecraft

    Science.gov (United States)

    You, Rui; Guo, Aiyan

    2016-07-01

    Terahertz wave is a radio wave which wavelength between infrared and microwave, substantial is from 0.1-1mm that is 300-3000GHz(0.3-3THz). Compare to microwave and visible/infrared it is advantage of resolution and better penetration in atmosphere respectively, and because of wavelength is similar to scale of micro-particle of air pollution, the absorption coefficient due to the many relevant molecules have a maximum signature in the THz region, such as SO2、CH4、H2S、NH3、CO、O3 etc. of molecules of polluted atmosphere . This paper present a conceptional solution of THz sensor for air pollution sounder which using of large aperture antenna and FSS with 15 channels in 0.183-1.5THz region, each channel with 2MHz by extreme narrow band filter for detecting signature of polluted air. Analysis data show that 2Km spatial resolution at 700km altitude orbit. Sensitive is about 10-12W/Hz1/2 level at cryogenic temp.

  16. Systems Health Monitoring — From Ground to Air — The Aerospace Challenges

    Science.gov (United States)

    Austin, Mary

    2007-03-01

    The aerospace industry and the government are significantly investing in jet engine systems health monitoring. Government organizations such as the Air Force, Navy, Army, National Labs and NASA are investing in the development of state aware sensing for health monitoring of jet engines such as the Joint Strike Fighter, F119 and F100's. This paper will discuss on-going work in systems health monitoring for jet engines. Topics will include a general discussion of the approaches to engine structural health monitoring and the prognosis of engine component life. Real-world implementation challenges on the ground and in the air will be reviewed. The talk will conclude with a prediction of where engine health monitoring will be in twenty years.

  17. Passive air sampler as a tool for long-term air pollution monitoring: Part 2. Air genotoxic potency screening assessment

    International Nuclear Information System (INIS)

    The capability of passive air sampling to be employed in the evaluation of direct genotoxicity of ambient air samples was assessed. Genotoxic effects of the total extracts from the polyurethane foam filters exposed for 28 days during a regional passive air sampling campaign were investigated. Twenty sampling sites were selected in Brno city on the area of approximately 20 x 20 km in October and November 2004. Brno is the second largest city of the Czech Republic, highly industrialized with approximately 370,000 of permanent inhabitants. The levels of PAHs, PCBs, and chlorinated pesticides were determined in all samples. Fraction of each extract was also assayed in the bacterial genotoxicity test using Escherichia coli sulA::lacZ. Complete dose-response relationships of the air extracts were determined. The statistical analysis showed significant correlation between observed biological effects and PAHs concentrations in samples. - Extracts from passive air samples can be used to assess genotoxic potency

  18. Monitoring plan for routine organic air emissions at the Radioactive Waste Management Complex Waste Storage Facilities

    International Nuclear Information System (INIS)

    This monitoring plan provides the information necessary to perform routine organic air emissions monitoring at the Waste Storage Facilities located at the Transuranic Storage Area of the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The Waste Storage Facilities include both the Type I and II Waste Storage Modules. The plan implements a dual method approach where two dissimilar analytical methodologies, Open-Path Fourier Transform Infrared Spectroscopy (OP-FTIR) and ancillary SUMMA reg-sign canister sampling, following the US Environmental Protection Agency (EPA) analytical method TO-14, will be used to provide qualitative and quantitative volatile organic concentration data. The Open-Path Fourier Transform Infrared Spectroscopy will provide in situ, real time monitoring of volatile organic compound concentrations in the ambient air of the Waste Storage Facilities. To supplement the OP-FTIR data, air samples will be collected using SUMMA reg-sign, passivated, stainless steel canisters, following the EPA Method TO-14. These samples will be analyzed for volatile organic compounds with gas chromatograph/mass spectrometry analysis. The sampling strategy, procedures, and schedules are included in this monitoring plan. The development of this monitoring plan is driven by regulatory compliance to the Resource Conservation and Recovery Act, State of Idaho Toxic Air Pollutant increments, Occupational Safety and Health Administration. The various state and federal regulations address the characterization of the volatile organic compounds and the resultant ambient air emissions that may originate from facilities involved in industrial production and/or waste management activities

  19. 76 FR 54462 - Notification of a Public Teleconference; Clean Air Scientific Advisory Committee; Air Monitoring...

    Science.gov (United States)

    2011-09-01

    ... required to consider traffic volumes, fleet mix, roadway design, traffic congestion patterns, local terrain... Committee (CASAC) to provide advice on EPA's draft Near-Road NO 2 Monitoring Technical Assistance Document... http://www.epa.gov/casac . Any inquiry regarding EPA's draft Near-Road NO 2 Monitoring...

  20. The Air Sensor Citizen Science Toolbox: A Collaboration in Community Air Quality Monitoring and Mapping?

    Science.gov (United States)

    Project GoalDevelop tools Citizen Scientists can use to assist them in conducting environmental monitoringResearch PlanIdentify a citizen science project as a potential pilot study locationEstablish their pollutant monitoring interestsDevelop a sensor package to meet their needs ...

  1. Environmental Monitoring, Air Quality - MO 2011 Air Quality Standards Nonattainment Areas (SHP)

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — The St. Louis air quality nonattainment areas geospatial data layer contains regions representing the geographic extent of areas that are estimated to be out of...

  2. The Air Sensor Citizen Science Toolbox: A Collaboration in Community Air Quality Monitoring and Mapping

    Science.gov (United States)

    Research in Action: Collect air quality data to characterize near-road/near-source hotspots; Determine potential impact on nearby residences & roadways; Case study of successful use of such data; Relationship between distance to roadways and industrial sources, exposure to...

  3. Air and water quality monitor assessment of life support subsystems

    Science.gov (United States)

    Whitley, Ken; Carrasquillo, Robyn L.; Holder, D.; Humphries, R.

    1988-01-01

    Preprotype air revitalization and water reclamation subsystems (Mole Sieve, Sabatier, Static Feed Electrolyzer, Trace Contaminant Control, and Thermoelectric Integrated Membrane Evaporative Subsystem) were operated and tested independently and in an integrated arrangement. During each test, water and/or gas samples were taken from each subsystem so that overall subsystem performance could be determined. The overall test design and objectives for both subsystem and integrated subsystem tests were limited, and no effort was made to meet water or gas specifications. The results of chemical analyses for each of the participating subsystems are presented along with other selected samples which were analyzed for physical properties and microbiologicals.

  4. Aerosol composition and its application in air pollution monitoring

    International Nuclear Information System (INIS)

    Aerosol composition measurements have been carried out in our laboratory using nuclear and related techniques. A brief overview of results from the earlier studies and the scope of the present project are outlined. The analytical procedures in use along with the systems available are detailed. Changes envisaged in sampling and analysis are briefly discussed. Results of two case studies relating to air pollution which are investigated using INAA/EDXRF are presented. The work plan under the CRP is outlined. (author). 11 refs, 2 figs, 5 tabs

  5. An Air-Ground Wireless Sensor Network for Crop Monitoring

    Directory of Open Access Journals (Sweden)

    Claudio Rossi

    2011-06-01

    Full Text Available This paper presents a collaborative system made up of a Wireless Sensor Network (WSN and an aerial robot, which is applied to real-time frost monitoring in vineyards. The core feature of our system is a dynamic mobile node carried by an aerial robot, which ensures communication between sparse clusters located at fragmented parcels and a base station. This system overcomes some limitations of the wireless networks in areas with such characteristics. The use of a dedicated communication channel enables data routing to/from unlimited distances.

  6. Portable monitors for measuring radon and its progenies air by intergrated sampling method

    International Nuclear Information System (INIS)

    Two kinds of portable monitors have been developed, which can be used to measure the concentration of radon or potential energy concentration of radon or potential energy concentration of radon progenies in air. The thermoluminescent material CaSO4(Tm) is used as a detecting element for both of them. The lowest detectable limit of the passive radon monitor is about 1.5 Bq/m3 for radon in air, as the exposure time being one week. Its main advantages are high reliability and convenient manipulation. The working level monitor for radon progenies in air consists of a mini membrane pump and an integrating probe. The lowest detectable limit is about 6.2 x 10-9 J/m3, as the sampling time being 6 hours. It weights only about 0.35 kg

  7. Simple tecniques of radiation protection for radon monitoring in air and water

    International Nuclear Information System (INIS)

    Simple techniques for 'in situ' radon concentration measurements in air and water using a scintillation chamber are discussed. The chamber was constructed with a comercial 'Pyrex' erlenmeyer flask by uniformely coating with powdered ZnS:Ag all the flask's internal surface, except its base. For air monitoring, the sample is introduced into the scintillation chamber and when the radioactive equilibrium between radon and its daughters of short half life is reached, the chamber is placed into a light-tight box that has a photomultiplier connected to a counting system. For water monitoring, the sample is placed in a plastic bottle and the bottle connected with a scintillation chamber for 5 hours. Afterwards, the gas of the chamber is counted and radon concentration in water is determined through the counting rate observed in the gaseous phase. The detection limits of these techniques in air and water monitoring were 7pCi/l and 1,5pCi/l

  8. Cultural Variability in Crew Discourse

    Science.gov (United States)

    Fischer, Ute

    1999-01-01

    Four studies were conducted to determine features of effective crew communication in response to errors during flight. Study One examined whether US captains and first officers use different communication strategies to correct errors and problems on the flight deck, and whether their communications are affected by the two situation variables, level of risk and degree of face-threat involved in challenging an error. Study Two was the cross-cultural extension of Study One and involved pilots from three European countries. Study Three compared communication strategies of female and male air carrier pilots who were matched in terms of years and type of aircraft experience. The final study assessed the effectiveness of the communication strategies observed in Study One.

  9. Air pollution prevention manual on emission monitoring. 2. rev. ed.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-08-15

    The Manual on Emission Monitoring covers the need for information about the national practice in the field of emission control at plants, requiring official approval. The legal bases for discontinuous and continuous measurements for emission control at plants, requiring official approval, are treated. Thereby also the European environmental legislation is considered. The publication procedure for testing institutes, which execute such measurements, is described. The execution of discontinuous emission measurements (course of the measurement and measurement requests) and for continuous emission measurement (suitability test, installation, maintenance, functional test and calibration of the automated measuring system) including the evaluation and documentation of the measured values is described. The procedure of remote emission monitoring is explained. The most important measuring procedures (continuous and discontinuous) are reported. The guide also includes an up-to-date list of tested and appropriate measurement devices. Such tested measuring devices are described by their manufacturers. Indications are given as to how the devices function together with their technical data (e. g. parameters from the suitability test). (orig.)

  10. Improvement of a monitoring tape for nitrogen dioxide in air

    Energy Technology Data Exchange (ETDEWEB)

    Nagashima, Kunio [Faculty of Engineering, Kogakuin University, 2665-1, Nakanocho, Hachioji-shi, Tokyo (Japan); Nakano, Nobuo [Riken Keiki Co., Ltd., 2-7-6, Azusawa, Itabashi-ku, Tokyo (Japan)

    1999-06-14

    A porous cellulose tape containing a silica gel that was previously impregnated with a processing solution containing p-toluenesulfonic acid, sulfanilic acid, N-1-naphthyl ethylene diamine dihydrochloride, ethylene glycol and methanol has been developed to provide a highly sensitive detection of nitrogen dioxide in air. When the sample including nitrogen dioxide was passed through the tape, the color of tape changed to red, and the degree of color change could be recorded by measuring the intensity of reflecting light (555 nm). The calibration graph was linear up to =0.10 ppm. The detection limit was 0.5 ppb for nitrogen dioxide with a sampling time of 8 min and a flow rate of 60 ml min{sup -1}. No interferences were observed from ammonia (40 ppm), sulfur dioxide (51 ppm), carbon dioxide (21%), ozone (0.75 ppm), hydrogen sulfide (27 ppm) or nitrogen monoxide (99 ppm)

  11. European experience on air and water pollution control: monitoring network and warning station

    Energy Technology Data Exchange (ETDEWEB)

    Aflalo, Sergio S. [Groupe Environnement S.A., Poissy (France)

    1993-12-31

    After a review of the energy consumption and pollutants emitted in the European Community, especially those concerning the `green house effect`, the author proceeded a summary of the actual legislation and Europeans directives, and also, the Best Available Technology for reducing air pollution is discussed. Original Air Quality monitoring networks performed by Environnement SA are described including measurements obtained around Paris and other areas of France. 7 refs., 11 figs.

  12. Air Pollution Monitoring & Tracking System Using Mobile Sensors and Analysis of Data Using Data Mining

    OpenAIRE

    Umesh M. Lanjewar, J. J. Shah

    2012-01-01

    This study proposes air pollution monitoring systemand analysis of pollution data using association ruledata mining technique. Association rule datamining technique aims at finding associationpatterns among various parameters. In this paper,association rule mining is presented for findingassociation patterns among various air pollutants.For this, Apriori algorithm of association rule datamining is used. Apriori is characterized as a level -by-level complete search algorithm. This algorithmis ...

  13. Ambient air monitoring plan for Ciudad Acuna and Piedra Negras, Coahuila, Mexico. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Winberry, J.; Henning, L.; Crume, R.

    1998-01-01

    The Cities of Ciudad Acuna and Piedras Negras and the State of Coahuila in Mexico are interested in improving ambient air quality monitoring capabilities in the two cities through the establishment of a network of ambient air monitors. The purpose of the network is to characterize population exposure to potentially harmful air contaminants, possibly including sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), ozone (O{sub 3}), carbon monoxide (CO), total suspended particulate matter (TSP), particulate matter with aerodynamic diameter less than 100 micrometers PM-10, and lead. This report presents the results of an evaluation of existing air quality monitoring equipment and facilities in Ciudad Acuna and Piedras Negras. Additionally, the report presents recommendations for developing an air quality monitoring network for PM-10, SO{sub 2}, lead, and ozone in these cities, using a combination of both new and existing equipment. The human resources currently available and ultimately needed to operate and maintain the network are also discussed.

  14. Role of monitoring network in the control management of air quality. An industrial case history

    Energy Technology Data Exchange (ETDEWEB)

    Zerbo, G. [Catania Univ. (Italy). Inst. of Merceology; Fabiano, B.; Ferraiolo, A.; Solisio, C.; Ruaro, R.

    1995-12-31

    Air quality control by a system of monitoring station is indispensable for the environmental protection. Moreover, a monitoring network have not to be only a mere data collection a good air quality control is possible only if the network management allows to prevent unacceptable pollutants level. In other terms, elaboration and interpretation data are fundamental in order to make monitoring system really able for regulations of corrective measures as, for example, the reduction of local emissions. The case of monitoring network run from the Industrial Society CIPA of Siracusa (Italy) is discussed. The management of the data obtained from a continuous survey allows to keep pollutants level below the current limits set down by the Italian law. Furthermore, elaboration of the data allows useful evaluations about atmospheric dispersion phenomena. (author)

  15. Semiconducting organic thin films as monitoring devices for NO2 air pollution

    Science.gov (United States)

    Heilmann, A.; Lantto, V.

    The chemisorption of NO2 on lead phthalocyanine (PbPc) thin films changes the electrical conductivity of this semiconducting organic material and so the detection of NO2 concentration in the ppb range is possible. Some mesurements concerning the NO2 concentration in city air (Oulu, Finland) were carried out using this kind of device (PbPc thin film on metal slit electrodes). In the first part of the study, the sensor devices were heated in a test chamber up to 170 C and air from outside the laboratory was pumped into the test chamber using a conventional pump. In the second part of the study, a PbPc sensor with internal heating and measuring amplifier was installed directly at the city air pollution monitoring station where a commercial equipment based on chemiluminescnece was also used for continuous monitoring of the NO2 concentration in the city air. Good correlation between the sensor response and the chemiluminescence values was obtained under these circumstances. The measurements show that NO2 sensors based on PbPc thin films are suited to monitor NO2 as an air pollutant in city air.

  16. Air quality monitoring in the Canadian oil sands. Tests of new technology

    Energy Technology Data Exchange (ETDEWEB)

    Platt, Ulrich; Seitz, Katja; Buxmann, Joelle [Heidelberg Univ. (Germany). Inst. of Environmental Physics; Thimm, Harald F. [Thimm Petroleum Technologies Inc., Calgary (Canada)

    2012-12-15

    Modern bitumen recovery processes, such as Steam Assisted Gravity Drainage (SAGD), minimize the environmental footprint of oil recovery in terms of land disturbance and water demands. However, as a corollary, air monitoring becomes more difficult. In particular air quality monitoring for sulphur and nitrogen oxides, as currently practiced, suffers from significant limitations in remote regions, such as the Canadian Oil Sands Areas. Current techniques require the placement of monitoring trailers in accessible locations, but the electrical power or even access for optimal location for trailers is not always given. In addition, the trailers are capable of monitoring air quality only at the location of their deployment. There would be an advantage in deploying monitoring techniques that require minimal power (e.g. car battery, solar cell) and are capable of measuring air quality at a distance from the place of deployment. In the autumn of 2008, a trial of DOAS (Differential Optical Absorption Spectroscopy) was undertaken in Northern Alberta and Northern Saskatchewan, at four SAGD plants in various stages of development. Results of this study, and a discussion of the technology, will be given. Advantages and limitations of DOAS for deployment in Athabasca will be discussed. In general it was found that SO{sub 2} results showed remarkably low degrees of contamination, while NO{sub 2} concentrations were more noticeable. (orig.)

  17. Radioactivity monitoring in environmental water and air around QNPP

    Institute of Scientific and Technical Information of China (English)

    XIANG Yuanyi; WANG Kan; ZHANG Yu; CAO Zhonggang; YE Jida; WANG Hongfeng

    2007-01-01

    Results of environmental radioactivity monitoring around Qinshan Nuclear Power Plant (QNPP) are reported in this paper. From 1992 to 2005, concentrations of 90Sr, 137Cs and 3H in terrestrial freshwater are (4.4±1.7) mBq·L-1, (0.3±0.1) mBq·L-1 and (1.6±0.5) Bq·L-1, respectively, and (2.8±2.4) Bq·L-1 of 3H in rainwater. Concentrations of 90Sr, 137Cs and 3H in the seawater samples collected from sea area nearby QNPP are (5.4±4.1) mBq·L-1,(0.7±0.2) mBq·L-1 and (1.0±0.5) Bq·L-1, respectively. Concentrations of 90Sr, 137Cs and 3H in the total waste water discharged from NPP-I are (4.0±1.8) m Bq·L-1, (1.0±0.5) mBq·L-1 and (2.8±2.2) Bq·L-1, respectively, and (1.4±0.4)Bq·L-1 of 3H in seawater sampled from No.1 outlet. Atomspheric 3H concentration in 1993 ~ 2005 at two monitoring sites is (78.9±96.3) and (64.2±40.2) mBq·m-3, respectively, with an increasing trend after 2003. Atmospheric 14C concentrations at the two sites are in the same levels as the background and data of the reference site.

  18. Method and apparatus for monitoring oxygen partial pressure in air masks

    Science.gov (United States)

    Kelly, Mark E. (Inventor); Pettit, Donald R. (Inventor)

    2006-01-01

    Method and apparatus are disclosed for monitoring an oxygen partial pressure in an air mask and providing a tactile warning to the user. The oxygen partial pressure in the air mask is detected using an electrochemical sensor, the output signal from which is provided to a comparator. The comparator compares the output signal with a preset reference value or range of values representing acceptable oxygen partial pressures. If the output signal is different than the reference value or outside the range of values, the air mask is vibrated by a vibrating motor to alert the user to a potentially hypoxic condition.

  19. Air Pollution Monitoring & Tracking System Using Mobile Sensors and Analysis of Data Using Data Mining

    Directory of Open Access Journals (Sweden)

    Umesh M. Lanjewar, J. J. Shah

    2012-12-01

    Full Text Available This study proposes air pollution monitoring systemand analysis of pollution data using association ruledata mining technique. Association rule datamining technique aims at finding associationpatterns among various parameters. In this paper,association rule mining is presented for findingassociation patterns among various air pollutants.For this, Apriori algorithm of association rule datamining is used. Apriori is characterized as a level -by-level complete search algorithm. This algorithmis applied on data captured by various gas sensorsfor CO, NO2 and SO2 sensors. As association rulemining can produce several sequence rules ofcontaminants, the proposed system design canenhance the reproducibility, reliability andselectivity of air pollution sensor output.

  20. Development of a monitoring tape for nitrogen dioxide in air

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, N. [Riken Keiki Co., Ltd., Tokyo (Japan)

    1996-03-08

    A porous cellulose tape containing a silica gel impregnated with a processing solution that includes p-toluenesulfonic acid, sulfanilic acid, N-(1-naphthyl)ethylenediamine dihydrochloride, glycerin and methanol has been developed to provide a highly sensitive means of detecting nitrogen dioxide in air. When the sample including nitrogen dioxide was passed through the tape, the color of tape changed to red. The degree of color change was proportional to the concentration of nitrogen dioxide at a constant sampling time and flow rate. The degree of color change could be recorded by measuring the intensity of reflecting light (555 nm). The detection limit was 1 ppb for nitrogen dioxide with a sampling time of 10 min and a flow rate of 30 ml/min. Reproducibility tests showed that the relative standard deviation of response (n=10) was 3.5% for 0.1 ppm nitrogen dioxide. No interference was observed from methanol (0.5 vol.%), ammonia (40 ppm), ethylene (99.9 vol.%), hydrogen (99.9%), carbon monoxide (306 ppm), sulfur dioxide (50.6 ppm), carbon dioxide (20.5 vol.%), chlorine (2.5 ppm), hydrogen sulfide (27.1 ppm) or nitrogen monoxide (99.1 ppm)

  1. Air Pollution Monitoring and Control System for Subway Stations Using Environmental Sensors

    Directory of Open Access Journals (Sweden)

    Gyu-Sik Kim

    2016-01-01

    Full Text Available The metropolitan city of Seoul uses more energy than any other area in South Korea due to its high population density. It also has high emissions of air pollutants. Since an individual usually spends most of his/her working hours indoors, the ambient air quality refers to indoor air quality. In particular, PM10 concentration in the underground areas should be monitored to preserve the health of commuters in the subway system. Seoul Metro and Seoul Metropolitan Rapid Transit Corporation measure several air pollutants regularly. In this study, the accuracy of an instrument for PM measurement using the light scattering method was improved with the help of a linear regression analysis technique to continuously measure the PM10 concentrations in subway stations. In addition, an air quality monitoring system based on environmental sensors was implemented to display and record the data of PM10, CO2, temperature, and humidity. Through experimental studies, we found that ventilation fans could improve air quality and decrease PM10 concentrations in the tunnels effectively by increasing the air flow rate.

  2. Air quality in the Greater Madrid area. Monitoring campaign in November 1990

    International Nuclear Information System (INIS)

    Growing concern about air quality in the greater area has initiated local authorities to undertake a series of investigations. Supplementing a long-term monitoring campaign with NO sup 2 diffusion tubes, a monitoring survey on pollutants distribution in the area took place in November 1990 when the meteorological conditions were expected to be favourable to an accumulation of pollutants released by fumes from traffic and from domestic heating. Measurements acquired by a specially equipped mobile unit in different quarters of the city enabled us to get a detailed view of pollutant distribution, thus adding information for better siting of monitoring stations within the network. 58 figs., 5 tabs

  3. Applications of MODIS satellite data and products for monitoring air quality in the state of Texas

    Science.gov (United States)

    Hutchison, Keith D.

    The Center for Space Research (CSR), in conjunction with the Monitoring Operations Division (MOD) of the Texas Commission on Environmental Quality (TCEQ), is evaluating the use of remotely sensed satellite data to assist in monitoring and predicting air quality in Texas. The challenges of meeting air quality standards established by the US Environmental Protection Agency (US EPA) are impacted by the transport of pollution into Texas that originates from outside our borders and are cumulative with those generated by local sources. In an attempt to quantify the concentrations of all pollution sources, MOD has installed ground-based monitoring stations in rural regions along the Texas geographic boundaries including the Gulf coast, as well as urban regions that are the predominant sources of domestic pollution. However, analysis of time-lapse GOES satellite imagery at MOD, clearly demonstrates the shortcomings of using only ground-based observations for monitoring air quality across Texas. These shortcomings include the vastness of State borders, that can only be monitored with a large number of ground-based sensors, and gradients in pollution concentration that depend upon the location of the point source, the meteorology governing its transport to Texas, and its diffusion across the region. With the launch of NASA's MODerate resolution Imaging Spectroradiometer (MODIS), the transport of aerosol-borne pollutants can now be monitored over land and ocean surfaces. Thus, CSR and MOD personnel have applied MODIS data to several classes of pollution that routinely impact Texas air quality. Results demonstrate MODIS data and products can detect and track the migration of pollutants. This paper presents one case study in which continental haze from the northeast moved into the region and subsequently required health advisories to be issued for 150 counties in Texas. It is concluded that MODIS provides the basis for developing advanced data products that will, when used in

  4. A performance assessment and adjustment program for air quality monitoring networks in Shanghai

    Science.gov (United States)

    Zhao, Laijun; Xie, Yujing; Wang, Jiajia; Xu, Xiang

    2015-12-01

    In this study, we evaluated the performance of Shanghai's air quality monitoring network (AQMN) using principal components analysis, an assignment method, and cluster analysis. Our goal was to improve the utilization of monitoring stations and evaluate Shanghai's air quality more comprehensively and accurately. Specifically, we (i) identified similar pollution sources or behaviors in the monitoring areas; (ii) identified redundant monitoring stations and re-evaluated the AQMN's performance without them; and (iii) proposed adjustments to the AQMN. We used data on particulates less than 2.5 μm (PM2.5) and 10 μm (PM10) in diameter, sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), and carbon monoxide (CO) at stations in and around Shanghai from 1 January to 22 August 2014. For each pollutant, we grouped the monitoring stations into clusters based on their different pollution behaviors, revealing redundancy and inefficiency in the current AQMN that resulted from the concentrated station distribution and similarity of the monitoring environments. The analysis results showed that there exist redundant stations in the current AQMN of Shanghai. Furthermore, we proposed adjustments to Shanghai's AQMN: transfer four redundant stations and build a new station in the directions of the Taicang Experimental Primary School, Kunshan Zhenchuan Middle School, Suzhou Industrial Park, Wujiang Industrial Zone, and Jiaxing Monitoring Station. Our analysis suggests that, in addition to industrial, transportation, construction, and population influences inside Shanghai, external pollutants significantly affect Shanghai's air quality. Therefore, it is necessary to jointly prevent and control regional air pollution both in Shanghai and in neighboring cities.

  5. Flight Crew Health Maintenance

    Science.gov (United States)

    Gullett, C. C.

    1970-01-01

    The health maintenance program for commercial flight crew personnel includes diet, weight control, and exercise to prevent heart disease development and disability grounding. The very high correlation between hypertension and overweight in cardiovascular diseases significantly influences the prognosis for a coronary prone individual and results in a high rejection rate of active military pilots applying for civilian jobs. In addition to physical fitness the major items stressed in pilot selection are: emotional maturity, glucose tolerance, and family health history.

  6. Towards development of a deposition monitoring network for air pollution of Europe

    NARCIS (Netherlands)

    Erisman JW; Mennen MG; Fowler D; Flechard CR; Spindler G; Gruner A; Duyzer JH; Ruigrok W; Wyers GP; LLO; TNO; ECN; ITE (Engeland); IFT (Duitsland)

    1996-01-01

    In 1993 werd vanuit het LIFE project van de Europese Commissie DG XI het project 'Towards the development of a deposition monitoring network for air pollution of Europe' gefinancierd. Het doel van dit project was het ontwikkelen en implementeren van een depositiemonitoring-methode voor

  7. 76 FR 62402 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Science.gov (United States)

    2011-10-07

    ... AGENCY Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods... provisions of 40 CFR part 53, as amended on June 22, 2010 (75 FR 35597). The new O 3 equivalent method is an..., Research Triangle Park, North Carolina 27711. Designation of this new equivalent method is intended...

  8. 76 FR 15974 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Science.gov (United States)

    2011-03-22

    ... AGENCY Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods: Designation of Four New Equivalent Methods AGENCY: Environmental Protection Agency. ACTION: Notice of the... Part 53, as amended on June 22, 2010 (75 FR 35597). The new PM 2.5 equivalent method is an...

  9. 75 FR 30022 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Science.gov (United States)

    2010-05-28

    ... AGENCY Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the... of 40 CFR Part 53, as amended on November 12, 2008 (73 FR 67057-67059). The new equivalent method...

  10. 75 FR 22126 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Science.gov (United States)

    2010-04-27

    ... AGENCY Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the... November 12, 2008 (73 FR 67057-67059). The new equivalent method for O 3 is an automated method...

  11. 75 FR 45627 - Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods...

    Science.gov (United States)

    2010-08-03

    ... AGENCY Office of Research and Development; Ambient Air Monitoring Reference and Equivalent Methods: Designation of One New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the... of 40 CFR part 53, as amended on November 12, 2008 (73 FR 67057-67059). The new equivalent method...

  12. 77 FR 55832 - Ambient Air Monitoring Reference and Equivalent Methods: Designation of a New Equivalent Method

    Science.gov (United States)

    2012-09-11

    ... made under the provisions of 40 CFR part 53, as ] amended on August 31, 2011 (76 FR 54326-54341). The... AGENCY Ambient Air Monitoring Reference and Equivalent Methods: Designation of a New Equivalent Method AGENCY: Environmental Protection Agency. ACTION: Notice of the designation of a new equivalent method...

  13. Monitoring and assessment of regional air quality in China using space observations (Marco Polo)

    NARCIS (Netherlands)

    Ronald, A. van der; Timmermans, R.; Bai, J.; Zhang, Q.; Wal, L. van der

    2013-01-01

    In this paper we will present the FP7-project 'MarcoPolo'. The main objective of MarcoPolo is to improve air quality monitoring, modelling and forecasting over China using satellite data. During the project a new emission inventory will be constructed by combining Chinese and European expertise. It

  14. FY 1994 ambient air monitoring report for McMurdo Station, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Lugar, R.M.

    1994-12-01

    This report presents the results of ambient air monitoring performed during the 1994 fiscal year (FY 1994) in the vicinity of McMurdo Station, Antarctica. Routine monitoring was performed during the 1993-1994 austral summer at three locations for airborne particulate matter less than 10 micrometers (PM-10) and at two locations for carbon monoxide (CO), sulfur dioxide (SO{sub 2}), and nitrogen oxides (NO, NO{sub 2}, and NO{sub x}). Selected PM-10 filters were analyzed for arsenic, beryllium, cadmium, chromium, lead, mercury, and nickel. Additional air samples were collected at three McMurdo area locations and at Black Island for determination of the airborne concentration of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Sampling site selection, sampling procedures, and quality assurance procedures used were consistent with US Environmental Protection Agency guidance for local ambient air quality networks.

  15. Nonradioactive Ambient Air Monitoring at Los Alamos National Laboratory 2001--2002

    Energy Technology Data Exchange (ETDEWEB)

    E. Gladney; J.Dewart, C.Eberhart; J.Lochamy

    2004-09-01

    During the spring of 2000, the Cerro Grande forest fire reached Los Alamos National Laboratory (LANL) and ignited both above-ground vegetation and disposed materials in several landfills. During and after the fire, there was concern about the potential human health impacts from chemicals emitted by the combustion of these Laboratory materials. Consequently, short-term, intensive air-monitoring studies were performed during and shortly after the fire. Unlike the radiological data from many years of AIRNET sampling, LANL did not have an adequate database of nonradiological species under baseline conditions with which to compare data collected during the fire. Therefore, during 2001 the Meteorology and Air Quality Group designed and implemented a new air-monitoring program, entitled NonRadNET, to provide nonradiological background data under normal conditions. The objectives of NonRadNET were to: (1) develop the capability for collecting nonradiological air-monitoring data, (2) conduct monitoring to develop a database of typical background levels of selected nonradiological species in the communities nearest the Laboratory, and (3) determine LANL's potential contribution to nonradiological air pollution in the surrounding communities. NonRadNET ended in late December 2002 with five quarters of data. The purpose of this paper is to organize and describe the NonRadNET data collected over 2001-2002 to use as baseline data, either for monitoring during a fire, some other abnormal event, or routine use. To achieve that purpose, in this paper we will: (1) document the NonRadNET program procedures, methods, and quality management, (2) describe the usual origins and uses of the species measured, (3) compare the species measured to LANL and other area emissions, (4) present the five quarters of data, (5) compare the data to known typical environmental values, and (6) evaluate the data against exposure standards.

  16. Data Quality Objectives Supporting Radiological Air Emissions Monitoring for the PNNL Site

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, J. M.; Meier, Kirsten M.; Snyder, Sandra F.; Fritz, Brad G.; Poston, Ted M.; Rhoads, Kathleen

    2010-05-25

    This document of Data Quality Objectives (DQOs) was prepared based on the U.S. Environmental Protection Agency (EPA) Guidance on Systematic Planning Using the Data Quality Objectives Process, EPA, QA/G4, 2/2006 (EPA 2006) as well as several other published DQOs. Pacific Northwest National Laboratory (PNNL) is in the process of developing a radiological air monitoring program for the PNNL Site that is distinct from that of the nearby Hanford Site. Radiological emissions at the PNNL Site result from Physical Sciences Facility (PSF) major emissions units. A team was established to determine how the PNNL Site would meet federal regulations and address guidelines developed to monitor and estimate offsite air emissions of radioactive materials. The result is a program that monitors the impact to the public from the PNNL Site.

  17. Health physics experience in commissioning and operation of radiation and air activity monitoring system at FBTR

    International Nuclear Information System (INIS)

    The Radiation and Air Activity Monitoring System (RAAMS) at Fast Breeder Test Reactor (FBTR) is meant to monitor and record the radiation and air activity levels at various potentially active areas in FBTR complex. Health Physics Group, FBTR was associated during commissioning of RAAMS in fixing the alarm settings for the monitors, their relocation and in formulating the surveillance procedures. The areas were surveyed to check for any release of activity for confirming the observed readings during operation of the reactor. In such cases, augmentation of shielding was recommended and was promptly implemented by the station management. The details of the long and fruitful experience gained by the Health Physics Group, FBTR are described in this paper. (author)

  18. Crew activities, science, and hazards of manned missions to Mars

    Science.gov (United States)

    Clark, Benton C.

    1988-01-01

    The crew scientific and nonscientific activities that will occur at each stage of a mission to Mars are examined. Crew activities during the interplanetary flight phase will include simulations, maintenance and monitoring, communications, upgrading procedures and operations, solar activity monitoring, cross-training and sharpening of skills, physical conditioning, and free-time activities. Scientific activities will address human physiology, human psychology, sociology, astronomy, space environment effects, manufacturing, and space agriculture. Crew activities on the Martian surface will include exploration, construction, manufacturing, food production, maintenance and training, and free time. Studies of Martian geology and atmosphere, of the life forms that may exist there, and of the Martian moons will occur on the planet's surface. Crew activities and scientific studies that will occur in Mars orbit, and the hazards relevant to each stage of the mission, are also addressed.

  19. Air

    International Nuclear Information System (INIS)

    In recent years several regulations and standards for air quality and limits for air pollution were issued or are in preparation by the European Union, which have severe influence on the environmental monitoring and legislation in Austria. This chapter of the environmental control report of Austria gives an overview about the legal situation of air pollution control in the European Union and in specific the legal situation in Austria. It gives a comprehensive inventory of air pollution measurements for the whole area of Austria of total suspended particulates, ozone, volatile organic compounds, nitrogen oxides, sulfur dioxide, carbon monoxide, heavy metals, benzene, dioxin, polycyclic aromatic hydrocarbons and eutrophication. For each of these pollutants the measured emission values throughout Austria are given in tables and geographical charts, the environmental impact is discussed, statistical data and time series of the emission sources are given and legal regulations and measures for an effective environmental pollution control are discussed. In particular the impact of fossil-fuel power plants on the air pollution is analyzed. (a.n.)

  20. Personal Air Pollution Exposure Monitoring using Low Cost Sensors in Chennai City

    Science.gov (United States)

    Reddy Yasa, Pavan; Shiva, Nagendra S. N.

    2016-04-01

    Air quality in many cities is deteriorating due to rapid urbanization and motorization. In the past, most of the health impacts studies in the urban areas have considered stationary air quality monitoring station data for health impact assessment. Since, there exist a spatial and temporal variation of air quality because of rapid change in land use pattern and complex interaction between emission sources and meteorological conditions, the human exposure assessment using stationary data may not provide realistic information. In such cases low cost sensors monitoring is viable in providing both spatial and temporal variations of air pollutant concentrations. In the present study an attempt has been made to use low cost sensor for monitoring the personal exposure to the two criteria pollutants CO and PM2.5 at 3 different locations of Chennai city. Maximum and minimum concentrations of CO and PM2.5 were found to be 5.4ppm, 0.8ppm and 534.8μg/m3, 1.9μg/m3 respectively. Results showed high concentrations near the intersection and low concentrations in the straight road.

  1. Recognizing the Challenges of Ambient Air Monitoring in the Persian Gulf

    Science.gov (United States)

    Meade, T. G.; Nicodemus, M. A.; Howard, J. M.

    2011-12-01

    In an effort to better estimate environmental exposure, the U.S. Army Public Health Command has been operating an ambient air monitoring station in Shuaiba Port, Kuwait since 2002. The focus has primarily been on monitoring criteria pollutants at a busy sea port where local industry (oil refineries, cement plant, petrochemical production, etc.) heavily impacts air quality. To compound the issues associated with day to day monitoring at a busy sea port, the region often experiences sand storms and temperatures up to 60°C. Average daily particulate matter concentrations at Shuaiba Port are an order of magnitude higher than similar industrial areas in the U.S. On days when sand storms occur ambient PM concentrations can be two or three orders higher than average daily U.S. concentrations. For example, 24-hour average PM10 concentrations from 2004-2010 for the month of June were 395 μg/m3. During sand storms, 24-hour average concentrations can reach as high as 4,000 μg/m3. This poster presents 2004-2010 particulate matter data collected at Shuaiba Port, Kuwait and outlines logistical and environmental challenges associated with air monitoring in the region.

  2. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems.

    Science.gov (United States)

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-12-12

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems.

  3. Developing a feeling for error: Practices of monitoring and modelling air pollution data

    Directory of Open Access Journals (Sweden)

    Emma Garnett

    2016-08-01

    Full Text Available This paper is based on ethnographic research of data practices in a public health project called Weather Health and Air Pollution. (All names are pseudonyms. I examine two different kinds of practices that make air pollution data, focusing on how they relate to particular modes of sensing and articulating air pollution. I begin by describing the interstitial spaces involved in making measurements of air pollution at monitoring sites and in the running of a computer simulation. Specifically, I attend to a shared dimension of these practices, the checking of a numerical reading for error. Checking a measurement for error is routine practice and a fundamental component of making data, yet these are also moments of interpretation, where the form and meaning of numbers are ambiguous. Through two case studies of modelling and monitoring data practices, I show that making a ‘good’ (error free measurement requires developing a feeling for the instrument–air pollution interaction in terms of the intended functionality of the measurements made. These affective dimensions of practice are useful analytically, making explicit the interaction of standardised ways of knowing and embodied skill in stabilising data. I suggest that environmental data practices can be studied through researchers’ materialisation of error, which complicate normative accounts of Big Data and highlight the non-linear and entangled relations that are at work in the making of stable, accurate data.

  4. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems.

    Science.gov (United States)

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-01-01

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems. PMID:26703598

  5. Air-quality monitoring at toxic waste sites: A Hanford perspective

    International Nuclear Information System (INIS)

    Air-quality monitoring is part of remedial investigation (RI) activities at waste sites in the 1,100-EM-1 Operable Unit on the U.S. Department of Energy's Hanford Site. Sampling is being conducted for volatile organic compounds, semivolatile organic compounds (including pesticides and polychlorinated biphenyls), metals, and asbestos. Monitoring will be conducted in three phases: before, during, and after intrusive RI activities. Battery-powered monitoring equipment is positioned at one location upwind of each site (to measure background) and, typically, at two locations downwind. Control samples identify contamination that may occur during handling or analysis. All samples are analyzed by approved U.S. Environmental Protection Agency methods. Results from the first monitoring have been assessed and are being used to upgrade sampling and laboratory analysis procedures

  6. Air monitoring

    International Nuclear Information System (INIS)

    Spectroscopy, the scientific field concerned with the interaction of electromagnetic radiation (light) with matter (atoms and molecules), often is used as a powerful tool for chemical analysis. Every atom and molecule absorbs light. By shining a light through a gaseous cloud of chemicals and placing a light detector in a spectral analyzer on the opposite side of the cloud, one could obtain an absorption spectrum. This is a plot of the amount of light seen at the detector versus the electromagnetic wavelength of the light. There are narrow regions along the wavelength axis where the light is absorbed. This paper shows an absorption spectrum for ammonia gas in the infrared (IR) region near 10 micrometers

  7. GIS based assessment of the spatial representativeness of air quality monitoring stations using pollutant emissions data

    Science.gov (United States)

    Righini, G.; Cappelletti, A.; Ciucci, A.; Cremona, G.; Piersanti, A.; Vitali, L.; Ciancarella, L.

    2014-11-01

    Spatial representativeness of air quality monitoring stations is a critical parameter when choosing location of sites and assessing effects on population to long term exposure to air pollution. According to literature, the spatial representativeness of a monitoring site is related to the variability of pollutants concentrations around the site. As the spatial distribution of primary pollutants concentration is strongly correlated to the allocation of corresponding emissions, in this work a methodology is presented to preliminarily assess spatial representativeness of a monitoring site by analysing the spatial variation of emissions around it. An analysis of horizontal variability of several pollutants emissions was carried out by means of Geographic Information System using a neighbourhood statistic function; the rationale is that if the variability of emissions around a site is low, the spatial representativeness of this site is high consequently. The methodology was applied to detect spatial representativeness of selected Italian monitoring stations, located in Northern and Central Italy and classified as urban background or rural background. Spatialized emission data produced by the national air quality model MINNI, covering entire Italian territory at spatial resolution of 4 × 4 km2, were processed and analysed. The methodology has shown significant capability for quick detection of areas with highest emission variability. This approach could be useful to plan new monitoring networks and to approximately estimate horizontal spatial representativeness of existing monitoring sites. Major constraints arise from the limited spatial resolution of the analysis, controlled by the resolution of the emission input data, cell size of 4 × 4 km2, and from the applicability to primary pollutants only.

  8. 19 CFR 122.73 - General declaration and air cargo manifest.

    Science.gov (United States)

    2010-04-01

    ...; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Documents Required for Clearance and Permission To Depart; Electronic Manifest Requirements for Passengers, Crew Members, and Non-Crew Members Onboard...

  9. Beam-loss monitoring system with free-air ionization chambers

    Science.gov (United States)

    Nakagawa, H.; Shibata, S.; Hiramatsu, S.; Uchino, K.; Takashima, T.

    1980-08-01

    A monitoring system for proton beam losses was installed in the proton synchrotron at the National Laboratory for High Energy Physics in Japan (KEK). The system consists of 56 air ionization chambers (AIC) for radiation detectors, 56 integrators, 56 variable gain amplifiers, two multiplexers, a computer interface circuit, a manual controller and a high tension power supply. The characteristics of the AIC, time resolution, radiation measurement upper limit saturation, kinetic energy dependence of the sensitivity, chamber activation effect, the beam loss detection system and the results of observations with the monitoring system are described.

  10. Performance Evaluation of the Operational Air Quality Monitor for Water Testing Aboard the International Space Station

    Science.gov (United States)

    Wallace, William T.; Limero, Thomas F.; Gazda, Daniel B.; Minton, John M.; Macatangay, Ariel V.; Dwivedi, Prabha; Fernandez, Facundo M.

    2014-01-01

    Real-time environmental monitoring on ISS is necessary to provide data in a timely fashion and to help ensure astronaut health. Current real-time water TOC monitoring provides high-quality trending information, but compound-specific data is needed. The combination of ETV with the AQM showed that compounds of interest could be liberated from water and analyzed in the same manner as air sampling. Calibration of the AQM using water samples allowed for the quantitative analysis of ISS archival samples. Some calibration issues remain, but the excellent accuracy of DMSD indicates that ETV holds promise for as a sample introduction method for water analysis in spaceflight.

  11. Using nocturnal cold air drainage flow to monitor ecosystem processes in complex terrain.

    Science.gov (United States)

    Pypker, Thomas G; Unsworth, Michael H; Mix, Alan C; Rugh, William; Ocheltree, Troy; Alstad, Karrin; Bond, Barbara J

    2007-04-01

    This paper presents initial investigations of a new approach to monitor ecosystem processes in complex terrain on large scales. Metabolic processes in mountainous ecosystems are poorly represented in current ecosystem monitoring campaigns because the methods used for monitoring metabolism at the ecosystem scale (e.g., eddy covariance) require flat study sites. Our goal was to investigate the potential for using nocturnal down-valley winds (cold air drainage) for monitoring ecosystem processes in mountainous terrain from two perspectives: measurements of the isotopic composition of ecosystem-respired CO2 (delta13C(ER)) and estimates of fluxes of CO2 transported in the drainage flow. To test if this approach is plausible, we monitored the wind patterns, CO2 concentrations, and the carbon isotopic composition of the air as it exited the base of a young (approximately 40 yr-old) and an old (>450 yr-old) steeply sided Douglas-fir watershed. Nocturnal cold air drainage within these watersheds was strong, deep, and occurred on more than 80% of summer nights. The depth of cold air drainage rapidly increased to tower height or greater when the net radiation at the top of the tower approached zero. The carbon isotope composition of CO2 in the drainage system holds promise as an indicator of variation in basin-scale physiological processes. Although there was little vertical variation in CO2 concentration at any point in time, we found that the range of CO2 concentration over a single evening was sufficient to estimate delta 13C(ER) from Keeling plot analyses. The seasonal variation in delta 13C(ER) followed expected trends: during the summer dry season delta 13C(ER) became less negative (more enriched in 13C), but once rain returned in the fall, delta 13C(ER) decreased. However, we found no correlation between recent weather (e.g., vapor pressure deficit) and delta 13C(ER) either concurrently or with up to a one-week lag. Preliminary estimates suggest that the nocturnal CO2

  12. Data Quality Objectives Supporting Radiological Air Emissions Monitoring for the PNNL Site

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, J. Matthew; Meier, Kirsten M.; Snyder, Sandra F.; Fritz, Brad G.; Poston, Theodore M.; Antonio, Ernest J.

    2012-11-12

    Pacific Northwest National Laboratory (PNNL) is in the process of developing a radiological air monitoring program for the PNNL Site that is distinct from that of the nearby Hanford Site. The original DQO (PNNL-19427) considered radiological emissions at the PNNL Site from Physical Sciences Facility (PSF) major emissions units. This first revision considers PNNL Site changes subsequent to the implementation of the original DQO. A team was established to determine how the PNNL Site changes would continue to meet federal regulations and address guidelines developed to monitor air emissions and estimate offsite impacts of radioactive material operations. The result is an updated program to monitor the impact to the public from the PNNL Site. The team used the emission unit operation parameters and local meteorological data as well as information from the PSF Potential-to-Emit documentation and Notices of Construction submitted to the Washington State Department of Health (WDOH). The locations where environmental monitoring stations would most successfully characterize the maximum offsite impacts of PNNL Site emissions from the three PSF buildings with major emission units were determined from these data. Three monitoring station locations were determined during the original revision of this document. This first revision considers expanded Department of Energy operations south of the PNNL Site and relocation of the two offsite, northern monitoring stations to sites near the PNNL Site fenceline. Inclusion of the southern facilities resulted in the proposal for a fourth monitoring station in the southern region. The southern expansion added two minor emission unit facilities and one diffuse emission unit facility. Relocation of the two northern stations was possible due to the use of solar power, rather than the previous limitation of the need for access to AC power, at these more remote locations. Addendum A contains all the changes brought about by the revision 1

  13. [A method for resolving spectra shift in the urban air quality monitoring system (DOAS)].

    Science.gov (United States)

    Liu, Shi-Sheng; Wei, Qing-Nong; Feng, Wei-Wei; Zhan, Kai; Wang, Feng-Ping

    2009-06-01

    In the urban air quality monitoring system, there is spectra shift which is caused by environment factors on the optical part (temperature and optic fiber position), or by the self-change of Xe-lamp. Relative spectra shift will occur if the shift of lamp-spectrum and air-spectrum is inconsistent which has direct influences on the accuracy of the measurement results. So the match of wavelength between lamp-spectrum and air-spectrum should be considered when we retrieve pollutants concentration measurement of trace gas in the atmosphere through DOAS method. Based on the study of the unique structures for Xe-lamp emitting spectrum, a method for the calibration of two signal spectra using Xe-lamp emitting peak and least square fitting is given. The results show that, the impact of spectrum shift can be reduced by this method for retrieving results. PMID:19810506

  14. Spatial Analysis of Air Quality Monitor Data in China, Japan, and South Korea

    Science.gov (United States)

    Rohde, Robert

    2016-04-01

    In 2015, Berkeley Earth published a widely-reported study concluding that air pollution contributes to 1.6 million deaths per year in China. This presentation will provide an update on that work with additional data for China and new analysis for South Korea and Japan. In China, two years of data from more than 1500 monitoring stations allows local trends to be estimated. Preliminary review indicates a trend towards improving air quality across most of China with decreasing emissions at most major population centers. Such improvements are consistent with tightening emissions standards and the decreasing usage of coal. In addition, new spatial analysis has been applied to ~900 monitoring sites in Japan and ~120 sites in South Korea. This new analysis provides information on air quality, pollutant source distributions, and implied mortality in these countries. Finally, boundary crossing fluxes in South Korea and Japan have been used to estimate the fraction of air pollution in Japan and South Korea that has being imported from sources in China.

  15. Monitoring Air Quality over China: Evaluation of the modeling system of the PANDA project

    Science.gov (United States)

    Bouarar, Idir; Katinka Petersen, Anna; Brasseur, Guy; Granier, Claire; Xie, Ying; Wang, Xuemei; Fan, Qi; Wang, Lili

    2015-04-01

    Air pollution has become a pressing problem in Asia and specifically in China due to rapid increase in anthropogenic emissions related to growth of China's economic activity and increasing demand for energy in the past decade. Observed levels of particulate matter and ozone regularly exceed World Health Organization (WHO) air quality guidelines in many parts of the country leading to increased risk of respiratory illnesses and other health problems. The EU-funded project PANDA aims to establish a team of European and Chinese scientists to monitor air pollution over China and elaborate air quality indicators in support of European and Chinese policies. PANDA combines state-of-the-art air pollution modeling with space and surface observations of chemical species to improve methods for monitoring air quality. The modeling system of the PANDA project follows a downscaling approach: global models such as MOZART and MACC system provide initial and boundary conditions to regional WRF-Chem and EMEP simulations over East Asia. WRF-Chem simulations at higher resolution (e.g. 20km) are then performed over a smaller domain covering East China and initial and boundary conditions from this run are used to perform simulations at a finer resolution (e.g. 5km) over specific megacities like Shanghai. Here we present results of model simulations for January and July 2010 performed during the first year of the project. We show an intercomparison of the global (MACC, EMEP) and regional (WRF-Chem) simulations and a comprehensive evaluation with satellite measurements (NO2, CO) and in-situ data (O3, CO, NOx, PM10 and PM2.5) at several surface stations. Using the WRF-Chem model, we demonstrate that model performance is influenced not only by the resolution (e.g. 60km, 20km) but also the emission inventories used (MACCity, HTAPv2), their resolution and diurnal variation, and the choice of initial and boundary conditions (e.g. MOZART, MACC analysis).

  16. Tracking hazardous air pollutants from a refinery fire by applying on-line and off-line air monitoring and back trajectory modeling

    International Nuclear Information System (INIS)

    Highlights: • An industrial fire can emit hazardous air pollutants into the surrounding areas. • Both on- and off-line monitoring are needed to study air pollution from fires. • Back trajectory and dispersion modeling can trace emission sources of fire-related pollution. -- Abstract: The air monitors used by most regulatory authorities are designed to track the daily emissions of conventional pollutants and are not well suited for measuring hazardous air pollutants that are released from accidents such as refinery fires. By applying a wide variety of air-monitoring systems, including on-line Fourier transform infrared spectroscopy, gas chromatography with a flame ionization detector, and off-line gas chromatography–mass spectrometry for measuring hazardous air pollutants during and after a fire at a petrochemical complex in central Taiwan on May 12, 2011, we were able to detect significantly higher levels of combustion-related gaseous and particulate pollutants, refinery-related hydrocarbons, and chlorinated hydrocarbons, such as 1,2-dichloroethane, vinyl chloride monomer, and dichloromethane, inside the complex and 10 km downwind from the fire than those measured during the normal operation periods. Both back trajectories and dispersion models further confirmed that high levels of hazardous air pollutants in the neighboring communities were carried by air mass flown from the 22 plants that were shut down by the fire. This study demonstrates that hazardous air pollutants from industrial accidents can successfully be identified and traced back to their emission sources by applying a timely and comprehensive air-monitoring campaign and back trajectory air flow models

  17. Flight Crew Health Stabilization Program

    Science.gov (United States)

    Johnston, Smith L.

    2010-01-01

    This document establishes the policy and procedures for the HSP and is authorized through the Director, Johnson Space Center (JSC). This document delineates the medical operations requirements for the HSP. The HSP goals are accomplished through an awareness campaign and procedures such as limiting access to flight crewmembers, medical screening, and controlling flight crewmember activities. NASA's Human Space Flight Program uses strategic risk mitigation to achieve mission success while protecting crew health and safety. Infectious diseases can compromise crew health and mission success, especially in the immediate preflight period. The primary purpose of the Flight Crew Health Stabilization Program (HSP) is to mitigate the risk of occurrence of infectious disease among astronaut flight crews in the immediate preflight period. Infectious diseases are contracted through direct person-to-person contact, and through contact with infectious material in the environment. The HSP establishes several controls to minimize crew exposure to infectious agents. The HSP provides a quarantine environment for the crew that minimizes contact with potentially infectious material. The HSP also limits the number of individuals who come in close contact with the crew. The infection-carrying potential of these primary contacts (PCs) is minimized by educating them in ways to avoid infections and avoiding contact with the crew if they are or may be sick. The transmission of some infectious diseases can be greatly curtailed by vaccinations. PCs are strongly encouraged to maintain updated vaccinations.

  18. Using Social Media to Detect Outdoor Air Pollution and Monitor Air Quality Index (AQI: A Geo-Targeted Spatiotemporal Analysis Framework with Sina Weibo (Chinese Twitter.

    Directory of Open Access Journals (Sweden)

    Wei Jiang

    Full Text Available Outdoor air pollution is a serious problem in many developing countries today. This study focuses on monitoring the dynamic changes of air quality effectively in large cities by analyzing the spatiotemporal trends in geo-targeted social media messages with comprehensive big data filtering procedures. We introduce a new social media analytic framework to (1 investigate the relationship between air pollution topics posted in Sina Weibo (Chinese Twitter and the daily Air Quality Index (AQI published by China's Ministry of Environmental Protection; and (2 monitor the dynamics of air quality index by using social media messages. Correlation analysis was used to compare the connections between discussion trends in social media messages and the temporal changes in the AQI during 2012. We categorized relevant messages into three types, retweets, mobile app messages, and original individual messages finding that original individual messages had the highest correlation to the Air Quality Index. Based on this correlation analysis, individual messages were used to monitor the AQI in 2013. Our study indicates that the filtered social media messages are strongly correlated to the AQI and can be used to monitor the air quality dynamics to some extent.

  19. Laser system for remote sensing monitoring of air pollution and quality control of the atmosphere

    Directory of Open Access Journals (Sweden)

    Belić Ilija

    2012-01-01

    Full Text Available Monitoring of the atmosphere and determination of the types and amounts of pollutants is becoming more important issue in complex and global monitoring of the environment. On the geocomponent and geocomplex level problem of monitoring the environment is attracting the attention of the scientific experts of different profiles (chemists, physicists, geographers, biologists, meteorologists, both in the national and international projects. Because of the general characteristics of the Earth's atmosphere (Dynamically Ballanced Instability DBI and the potential contribution to climate change solutions air-pollution monitoring has become particularly important field of environmental research. Control of aerosol distribution over Europe is enabled by EARLINET systems (European Aerosol Lidar NETwork. Serbia’s inclusion into these European courses needs development of the device, the standardization of methods and direct activity in determining the type, quantity and location of aerosol. This paper is analyzing the first step in the study of air-pollution, which is consisted of the realization of a functional model of LIDAR remote sensing devices for the large particle pollutants.

  20. Portable formaldehyde monitoring device using porous glass sensor and its applications in indoor air quality studies.

    Science.gov (United States)

    Maruo, Yasuko Yamada; Nakamura, Jiro

    2011-09-30

    We have developed a portable device for formaldehyde monitoring with both high sensitivity and high temporal resolution, and carried out indoor air formaldehyde concentration analysis. The absorbance difference of the sensor element was measured in the monitoring device at regular intervals of, for example, one hour or 30 min, and the result was converted into the formaldehyde concentration. This was possible because we found that the lutidine derivative that was formed as a yellow product of the reaction between 1-phenyl-1,3-butandione and formaldehyde was stable in porous glass for at least six months. We estimated the reaction rate and to be 0.049 min(-1) and the reaction occurred quickly enough for us to monitor hourly changes in the formaldehyde concentration. The detection limit was 5 μg m(-3) h. We achieved hourly formaldehyde monitoring using the developed device under several indoor conditions, and estimated the air exchange rate and formaldehyde adsorption rate, which we adopted as a new term in the mass balance equation for formaldehyde, in one office.

  1. Crew Transportation Technical Management Processes

    Science.gov (United States)

    Mckinnie, John M. (Compiler); Lueders, Kathryn L. (Compiler)

    2013-01-01

    Under the guidance of processes provided by Crew Transportation Plan (CCT-PLN-1100), this document, with its sister documents, International Space Station (ISS) Crew Transportation and Services Requirements Document (CCT-REQ-1130), Crew Transportation Technical Standards and Design Evaluation Criteria (CCT-STD-1140), Crew Transportation Operations Standards (CCT STD-1150), and ISS to Commercial Orbital Transportation Services Interface Requirements Document (SSP 50808), provides the basis for a National Aeronautics and Space Administration (NASA) certification for services to the ISS for the Commercial Provider. When NASA Crew Transportation System (CTS) certification is achieved for ISS transportation, the Commercial Provider will be eligible to provide services to and from the ISS during the services phase.

  2. Opportunistic mobile air pollution monitoring: A case study with city wardens in Antwerp

    Science.gov (United States)

    Van den Bossche, Joris; Theunis, Jan; Elen, Bart; Peters, Jan; Botteldooren, Dick; De Baets, Bernard

    2016-09-01

    The goal of this paper is to explore the potential of opportunistic mobile monitoring to map the exposure to air pollution in the urban environment at a high spatial resolution. Opportunistic mobile monitoring makes use of existing mobile infrastructure or people's common daily routines to move measurement devices around. Opportunistic mobile monitoring can also play a crucial role in participatory monitoring campaigns as a typical way to gather data. A case study to measure black carbon was set up in Antwerp, Belgium, with the collaboration of city employees (city wardens). The Antwerp city wardens are outdoors for a large part of the day on surveillance tours by bicycle or on foot, and gathered a total of 393 h of measurements. The data collection is unstructured both in space and time, leading to sampling bias. A temporal adjustment can only partly counteract this bias. Although a high spatial coverage was obtained, there is still a rather large uncertainty on the average concentration levels at a spatial resolution of 50 m due to a limited number of measurements and sampling bias. Despite of this uncertainty, large spatial patterns within the city are clearly captured. This study illustrates the potential of campaigns with unstructured opportunistic mobile monitoring, including participatory monitoring campaigns. The results demonstrate that such an approach can indeed be used to identify broad spatial trends over a wider area, enabling applications including hotspot identification, personal exposure studies, regression mapping, etc. But, they also emphasize the need for repeated measurements and careful processing and interpretation of the data.

  3. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air Part 1: Sorbent-based air monitoring options.

    Science.gov (United States)

    Woolfenden, Elizabeth

    2010-04-16

    Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Target compounds range in volatility from acetylene and freons to phthalates and PCBs and include apolar, polar and reactive species. Airborne vapour concentrations will vary depending on the nature of the location, nearby pollution sources, weather conditions, etc. Levels can range from low percent concentrations in stack and vent emissions to low part per trillion (ppt) levels in ultra-clean outdoor locations. Hundreds, even thousands of different compounds may be present in any given atmosphere. GC is commonly used in combination with mass spectrometry (MS) detection especially for environmental monitoring or for screening uncharacterised workplace atmospheres. Given the complexity and variability of organic vapours in air, no one sampling approach suits every monitoring scenario. A variety of different sampling strategies and sorbent media have been developed to address specific applications. Key sorbent-based examples include: active (pumped) sampling onto tubes packed with one or more sorbents held at ambient temperature; diffusive (passive) sampling onto sorbent tubes/cartridges; on-line sampling of air/gas streams into cooled sorbent traps; and transfer of air samples from containers (canisters, Tedlar) bags, etc.) into cooled sorbent focusing traps. Whichever sampling approach is selected, subsequent analysis almost always involves either solvent extraction or thermal desorption (TD) prior to GC(/MS) analysis. The overall performance of the air monitoring method will depend heavily on appropriate selection of key sampling and analytical parameters. This comprehensive review of air monitoring using sorbent tubes/traps is divided into 2 parts. (1) Sorbent-based air sampling option. (2) Sorbent selection and other aspects of optimizing sorbent-based air monitoring methods. The paper presents

  4. Microbial air monitoring in the operating theatres of Salam Center for Cardiac Surgery in Khartoum (Sudan

    Directory of Open Access Journals (Sweden)

    Margherita Scapaticci

    2012-06-01

    Full Text Available The seriousness of postoperative infections and the increased susceptibility of patients undergoing cardiac surgery increase the demand for the operating theatre (OT asepsis to prevent bacterial infections. In fact, the organisms carried by the air reach the wound after having sedimented onto sterile field. The air represents a critical point for quality control of air filtration systems, for sanitization procedures and for the evolution of hygienic features of the OT environment.Aim of the study is to evaluate the prevalence of microorganisms found in the operating rooms (OR air monitoring in the Salam Center for Cardiac Surgery of Khartoum (Sudan between July 2008 and March 2009.The specimens were collected every month in two different times: “OR at rest” (after sanitization and “OR operational”, using sedimentation method (Fisher 1972. Results showed that each sample collected at rest had IMA (index of microbial air contamination < 5CFU/plt, whereas the bacterial growth was between 25 and 50 CFU/plt when the samples had been collected in the same places during operating activities.This indicate the effectiveness of sanitization procedures and confirm that people working in OT are an important source of bacteria causing postoperative infections. Coagulase negative Staphylococci, Gram negative bacillus and Staphylococcus aureus spp. were the predominant organisms isolated.

  5. Mapping real-time air pollution health risk for environmental management: Combining mobile and stationary air pollution monitoring with neural network models.

    Science.gov (United States)

    Adams, Matthew D; Kanaroglou, Pavlos S

    2016-03-01

    Air pollution poses health concerns at the global scale. The challenge of managing air pollution is significant because of the many air pollutants, insufficient funds for monitoring and abatement programs, and political and social challenges in defining policy to limit emissions. Some governments provide citizens with air pollution health risk information to allow them to limit their exposure. However, many regions still have insufficient air pollution monitoring networks to provide real-time mapping. Where available, these risk mapping systems either provide absolute concentration data or the concentrations are used to derive an Air Quality Index, which provides the air pollution risk for a mix of air pollutants with a single value. When risk information is presented as a single value for an entire region it does not inform on the spatial variation within the region. Without an understanding of the local variation residents can only make a partially informed decision when choosing daily activities. The single value is typically provided because of a limited number of active monitoring units in the area. In our work, we overcome this issue by leveraging mobile air pollution monitoring techniques, meteorological information and land use information to map real-time air pollution health risks. We propose an approach that can provide improved health risk information to the public by applying neural network models within a framework that is inspired by land use regression. Mobile air pollution monitoring campaigns were conducted across Hamilton from 2005 to 2013. These mobile air pollution data were modelled with a number of predictor variables that included information on the surrounding land use characteristics, the meteorological conditions, air pollution concentrations from fixed location monitors, and traffic information during the time of collection. Fine particulate matter and nitrogen dioxide were both modelled. During the model fitting process we reserved

  6. Mapping real-time air pollution health risk for environmental management: Combining mobile and stationary air pollution monitoring with neural network models.

    Science.gov (United States)

    Adams, Matthew D; Kanaroglou, Pavlos S

    2016-03-01

    Air pollution poses health concerns at the global scale. The challenge of managing air pollution is significant because of the many air pollutants, insufficient funds for monitoring and abatement programs, and political and social challenges in defining policy to limit emissions. Some governments provide citizens with air pollution health risk information to allow them to limit their exposure. However, many regions still have insufficient air pollution monitoring networks to provide real-time mapping. Where available, these risk mapping systems either provide absolute concentration data or the concentrations are used to derive an Air Quality Index, which provides the air pollution risk for a mix of air pollutants with a single value. When risk information is presented as a single value for an entire region it does not inform on the spatial variation within the region. Without an understanding of the local variation residents can only make a partially informed decision when choosing daily activities. The single value is typically provided because of a limited number of active monitoring units in the area. In our work, we overcome this issue by leveraging mobile air pollution monitoring techniques, meteorological information and land use information to map real-time air pollution health risks. We propose an approach that can provide improved health risk information to the public by applying neural network models within a framework that is inspired by land use regression. Mobile air pollution monitoring campaigns were conducted across Hamilton from 2005 to 2013. These mobile air pollution data were modelled with a number of predictor variables that included information on the surrounding land use characteristics, the meteorological conditions, air pollution concentrations from fixed location monitors, and traffic information during the time of collection. Fine particulate matter and nitrogen dioxide were both modelled. During the model fitting process we reserved

  7. The Deployment of Carbon Monoxide Wireless Sensor Network (CO-WSN for Ambient Air Monitoring

    Directory of Open Access Journals (Sweden)

    Chaichana Chaiwatpongsakorn

    2014-06-01

    Full Text Available Wireless sensor networks are becoming increasingly important as an alternative solution for environment monitoring because they can reduce cost and complexity. Also, they can improve reliability and data availability in places where traditional monitoring methods are difficult to site. In this study, a carbon monoxide wireless sensor network (CO-WSN was developed to measure carbon monoxide concentrations at a major traffic intersection near the University of Cincinnati main campus. The system has been deployed over two weeks during Fall 2010, and Summer 2011–2012, traffic data was also recorded by using a manual traffic counter and a video camcorder to characterize vehicles at the intersection 24 h, particularly, during the morning and evening peak hour periods. According to the field test results, the 1 hr-average CO concentrations were found to range from 0.1–1.0 ppm which is lower than the National Ambient Air Quality Standards (NAAQS 35 ppm on a one-hour averaging period. During rush hour periods, the traffic volume at the intersection varied from 2,067 to 3,076 vehicles per hour with 97% being passenger vehicles. Furthermore, the traffic volume based on a 1-h average showed good correlation (R2 = 0.87 with the 1-h average CO-WSN concentrations for morning and evening peak time periods whereas CO-WSN results provided a moderate correlation (R2 = 0.42 with 24 hours traffic volume due to fluctuated changes of meteorological conditions. It is concluded that the performance and the reliability of wireless ambient air monitoring networks can be used as an alternative method for real time air monitoring.

  8. The deployment of carbon monoxide wireless sensor network (CO-WSN) for ambient air monitoring.

    Science.gov (United States)

    Chaiwatpongsakorn, Chaichana; Lu, Mingming; Keener, Tim C; Khang, Soon-Jai

    2014-06-01

    Wireless sensor networks are becoming increasingly important as an alternative solution for environment monitoring because they can reduce cost and complexity. Also, they can improve reliability and data availability in places where traditional monitoring methods are difficult to site. In this study, a carbon monoxide wireless sensor network (CO-WSN) was developed to measure carbon monoxide concentrations at a major traffic intersection near the University of Cincinnati main campus. The system has been deployed over two weeks during Fall 2010, and Summer 2011-2012, traffic data was also recorded by using a manual traffic counter and a video camcorder to characterize vehicles at the intersection 24 h, particularly, during the morning and evening peak hour periods. According to the field test results, the 1 hr-average CO concentrations were found to range from 0.1-1.0 ppm which is lower than the National Ambient Air Quality Standards (NAAQS) 35 ppm on a one-hour averaging period. During rush hour periods, the traffic volume at the intersection varied from 2,067 to 3,076 vehicles per hour with 97% being passenger vehicles. Furthermore, the traffic volume based on a 1-h average showed good correlation (R2 = 0.87) with the 1-h average CO-WSN concentrations for morning and evening peak time periods whereas CO-WSN results provided a moderate correlation (R2 = 0.42) with 24 hours traffic volume due to fluctuated changes of meteorological conditions. It is concluded that the performance and the reliability of wireless ambient air monitoring networks can be used as an alternative method for real time air monitoring. PMID:24937527

  9. Preliminary enviromagnetic comparison of the moss, lichen, and filter fabric bags to air pollution monitoring

    Directory of Open Access Journals (Sweden)

    Hanna Salo

    2014-08-01

    Full Text Available Air quality and anthropogenic air pollutants are usually investigated by passive biomonitoring which utilizes native species. Active biomonitoring, instead, refers to the use of transplants or bags in areas lacking native species. In Finland, the standardized moss bag technique SFS 5794 is commonly applied in active monitoring but there is still need for simpler and labor-saving sample material even on international scale. This article focuses on a preliminary comparison of the usability and collection efficiency of bags made of moss Sphagnum papillosum, lichen Hypogymnia physodes, and filter fabric (Filtrete™ in active biomonitoring of air pollutants around an industrial site in Harjavalta, SW Finland. The samples are analyzed with magnetic (i.e. magnetic susceptibility, isothermal remanent magnetization, hysteresis loop and hysteresis parameters methods highly suitable as a first-step tool for pollution studies. The results show that the highest magnetic susceptibility of each sample material is measured close to the industrial site. Furthermore, moss bags accumulate more magnetic material than lichen bags which, on the contrary, perform better at further distances. Filter fabric bags are tested only at 1 km sites indicating a good accumulation capability near the source. Pseudo-single-domain (PSD magnetite is identified as the main magnetic mineral in all sample materials and good correlations are found between different bag types. To conclude, all three materials effectively accumulate air pollutants and are suitable for air quality studies. The results of this article provide a base for later studies which are needed in order to fully determine a new, efficient, and easy sample material for active monitoring.

  10. Sumatera Air Asia Training Center (Arsitektur Metafora)

    OpenAIRE

    Susanto, William

    2015-01-01

    Sumatera Air Asia Training Center as Air Asia training facility’s construction have a propose to train the Air Asia air craft crew who will be the employee of the Air Asia Airlines.Beside the main function;training facility for the Air Asia Crew; the other airline’s crew can be train by a cooperation with Air Asia.The aircraft crew that can be train in this facility is pilot initial, pilot type-rating, pilot recurrent, ATPL, Flight attendant initial and recurrent..This facility ha...

  11. Transboundary Air Pollution over the Central Himalayas: Monitoring network and Preliminary Results

    Science.gov (United States)

    Zhang, Qianggong; Kang, Shichang

    2016-04-01

    The Himalayas, stretching over 3000 kms along west-east, separates South Asia continent and the Tibetan Plateau with its extreme high altitudes. The South Asia is being increasingly recognized to be among the hotspots of air pollution, posing multi-effects on regional climate and environment. Recent monitoring and projection have indicated an accelerated decrease of glacier and increasing glacier runoff in the Himalayas, and a remarkable phenomenon has been recognized in the Himalayas that long-range transport atmospheric pollutants (e.g., black carbon and dust) deposited on glacier surface can promote glacier melt, and in turns, may liberate historical contaminant legacy in glaciers into downward ecosystems. To understand the air pollution variation and how they can infiltrate the Himalayas and beyond, we started to operate a coordinated atmospheric pollution monitoring network composing 11 sites with 5 in Nepal and 6 in Tibet since April 2013. Atmospheric total suspended particles ( TSP < 100 μm) are collected for 24h at an interval of 3-6 days at all sites. Black carbon, typical persistent organic pollutants (PAHs) and heavy metals (particulate-bounded mercury) are measured to reveal their spatial and temporal distributions. Results revealed a consistent gradient decrease in almost all analyzed parameters along south-north gradient across the Himalayas, with a clear seasonal variation of higher values in pre-monsoon seasons. Analysis of geochemical signatures of carbonaceous aerosols indicated dominant sources from biomass burning and vehicle exhaust. PAHs concentrations and signatures from soils and aerosols indicated that low-ring PAHs can readily transport across the Himalayas. Integrated analysis of satellite images and air mass trajectories suggested that the transboundary air pollution over the Himalayas is episodic and is likely concentrated in pre-monsoon seasons. Our results emphasis the potential transport and impact of air pollution from South Asia

  12. The influence of salt aerosol on alpha radiation detection by WIPP continuous air monitors

    International Nuclear Information System (INIS)

    Alpha continuous air monitors (CAMs) will be used at the Waste Isolation Pilot Plant (WIPP) to measure airborne transuranic radioactivity that might be present in air exhaust or in work-place areas. WIPP CAMs are important to health and safety because they are used to alert workers to airborne radioactivity, to actuate air-effluent filtration systems, and to detect airborne radioactivity so that the radioactivity can be confined in a limited area. In 1993, the Environmental Evaluation Group (EEG) reported that CAM operational performance was affected by salt aerosol, and subsequently, the WIPP CAM design and usage were modified. In this report, operational data and current theories on aerosol collection were reviewed to determine CAM quantitative performance limitations. Since 1993, the overall CAM performance appears to have improved, but anomalous alpha spectra are present when sampling-filter salt deposits are at normal to high levels. This report shows that sampling-filter salt deposits directly affect radon-thoron daughter alpha spectra and overall monitor efficiency. Previously it was assumed that aerosol was mechanically collected on the surface of CAM sampling filters, but this review suggests that electrostatic and other particle collection mechanisms are more important than previously thought. The mechanism of sampling-filter particle collection is critical to measurement of acute releases of radioactivity. 41 refs

  13. New and Emerging Technologies for Real-Time Air and Surface Beryllium Monitoring; FINAL

    International Nuclear Information System (INIS)

    In this study, five emerging technologies were identified for real-time monitoring of airborne beryllium: Microwave-Induced Plasma Spectroscopy (MIPS), Aerosol Beam-Focused Laser-Induced Plasma Spectroscopy (ABFLIPS), Laser-Induced Breakdown Spectroscopy (LIBS), Surfaced-Enhanced Raman Scattering (SERS) Spectroscopy, and Micro-Calorimetric Spectroscopy (CalSpec). Desired features of real-time air beryllium monitoring instrumentation were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies as well as their unique demonstrated capability to provide real-time monitoring of similar materials. However, best available technologies were considered, regardless of their ability to comply with the desired features. None of the five technologies have the capability to measure the particle size of airborne beryllium. Although reducing the total concentration of airborne beryllium is important, current literature suggests that reducing or eliminating the concentration of respirable beryllium is critical for worker health protection. Eight emerging technologies were identified for surface monitoring of beryllium. CalSpec, MIPS, SERS, LIBS, Laser Ablation, Absorptive Stripping Voltametry (ASV), Modified Inductively Coupled Plasma (ICP) Spectroscopy, and Gamma BeAST. Desired features of real-time surface beryllium monitoring were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies. However, the best available technologies were considered regardless of their ability to comply with the desired features

  14. New and Emerging Technologies for Real-Time Air and Surface Beryllium Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Phifer, B.E. Jr.; Churnetski, E.L.; Cooke, L.E.; Reed, J.J.; Howell, M.L.; Smith, V.D.

    2001-09-01

    In this study, five emerging technologies were identified for real-time monitoring of airborne beryllium: Microwave-Induced Plasma Spectroscopy (MIPS), Aerosol Beam-Focused Laser-Induced Plasma Spectroscopy (ABFLIPS), Laser-Induced Breakdown Spectroscopy (LIBS), Surfaced-Enhanced Raman Scattering (SERS) Spectroscopy, and Micro-Calorimetric Spectroscopy (CalSpec). Desired features of real-time air beryllium monitoring instrumentation were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies as well as their unique demonstrated capability to provide real-time monitoring of similar materials. However, best available technologies were considered, regardless of their ability to comply with the desired features. None of the five technologies have the capability to measure the particle size of airborne beryllium. Although reducing the total concentration of airborne beryllium is important, current literature suggests that reducing or eliminating the concentration of respirable beryllium is critical for worker health protection. Eight emerging technologies were identified for surface monitoring of beryllium. CalSpec, MIPS, SERS, LIBS, Laser Ablation, Absorptive Stripping Voltametry (ASV), Modified Inductively Coupled Plasma (ICP) Spectroscopy, and Gamma BeAST. Desired features of real-time surface beryllium monitoring were developed from the Y-12 CBDPP. These features were used as guidelines for the identification of potential technologies. However, the best available technologies were considered regardless of their ability to comply with the desired features.

  15. Flight Crew Integration (FCI) ISS Crew Comments Database & Products Summary

    Science.gov (United States)

    Schuh, Susan

    2016-01-01

    This Crew Debrief Data provides support for design and development of vehicles, hardware, requirements, procedures, processes, issue resolution, lessons learned, consolidation and trending for current Programs; and much of the data is also used to support development of future Programs.

  16. The JPL Electronic Nose: Monitoring Air in the US Lab on the International Space Station

    Science.gov (United States)

    Ryan, M. A.; Manatt, K. S.; Gluck, S.; Shevade, A. V.; Kisor, A. K.; Zhou, H.; Lara, L. M.; Homer, M. L.

    2010-01-01

    An electronic nose with a sensor array of 32 conductometric sensors has been developed at the Jet Propulsion Laboratory (JPL) to monitor breathing air in spacecraft habitat. The Third Generation ENose is designed to operate in the environment of the US Lab on the International Space Station (ISS). It detects a selected group of analytes at target concentrations in the ppm regime at an environmental temperature range of 18 - 30 oC, relative humidity from 25 - 75% and pressure from 530 to 760 torr. The monitoring targets are anomalous events such as leaks and spills of solvents, coolants or other fluids. The JPL ENose operated as a technology demonstration for seven months in the U.S. Laboratory Destiny during 2008-2009. Analysis of ENose monitoring data shows that there was regular, periodic rise and fall of humidity and occasional releases of Freon 218 (perfluoropropane), formaldehyde, methanol and ethanol. There were also several events of unknown origin, half of them from the same source. Each event lasted from 20 to 100 minutes, consistent with the air replacement time in the US Lab.

  17. In-situ continuous scanning high efficiency particulate air (HEPA) filter monitoring system

    International Nuclear Information System (INIS)

    The testing and replacement of HEPA filters, which are widely used in the nuclear industry to purify process air before it is ventilated to the atmosphere, is a costly and labor-intensive undertaking. Current methods of testing filter performance, such as differential pressure measurement and scanning air monitoring, allow for determination of overall filter performance but preclude detection of symptoms of incipient filter failure, such as small holes in the filters themselves. Using current technology, a continual in-situ monitoring system has been designed which provides three major improvements over current methods of filter testing and replacement. This system (1) realizes a cost savings by reducing the number of intact filters which are currently being replaced unnecessarily, (2) provides a more accurate and quantitative measurement of filter performance than is currently achieved with existing testing methods, and (3) reduces personnel exposure to a radioactive environment by automatically performing most testing operations. The operation and performance of the HEPA filter monitoring system are discussed

  18. A review of acceptance testing of the Los Alamos, Canberra Alpha Sentry Continuous Air Monitor (CAM)

    International Nuclear Information System (INIS)

    Los Alamos National Laboratory (LANL) undertook the design and development of a new generation of alpha continuous air monitor (CAM) instrumentation that would incorporate advanced technologies in the design of the sampling inlet, multi-channel analyzer (MCA) electronics, solid state alpha detectors, radon background interference suppression, background interference compensation and based on spectral analysis, and microcomputer based data communication, processing, storage, and retrieval. The ANSI air monitoring instrument standards (Performance Specifications for Health Physics Instrumentation -- Occupational Airborne Radioactivity Monitoring Instrumentation, N42.17B) specify performance criteria and testing procedures for instruments and instrument systems designed to continuously sample and quantify airborne radioactivity in the workplace. Although the intent of the standard is to provide performance testing criteria for type testing, it is appropriate to evaluate the performance of a new instrument such as the Alpha Sentry against certain of these criteria for purposes of an acceptance test based on stated specifications and the Los Alamos CAM Requirements document. This report provides an overview of the results of these tests, as they pertain to instruments designed to detect alpha-emitting radionuclides in particulate form

  19. Tonopah Test Range Air Monitoring: CY2013 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A [DRI; Nikolich, George [DRI; Shadel, Craig [DRI; McCurdy, Greg [DRI; Etyemezian, Vicken [DRI; Miller, Julianne J [DRI

    2014-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during on-going monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2013 monitoring include: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2012 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations (this was the latest documented data available at the time of this writing); (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. However, differences in the observed dust concentrations are likely due to differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  20. Tonopah Test Range Air Monitoring. CY2014 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Nikoloch, George [Desert Research Inst. (DRI), Las Vegas, NV (United States); Shadel, Craig [Desert Research Inst. (DRI), Las Vegas, NV (United States); Chapman, Jenny [Desert Research Inst. (DRI), Las Vegas, NV (United States); Mizell, Steve A. [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, Greg [Desert Research Inst. (DRI), Las Vegas, NV (United States); Etyemezian, Vicken [Desert Research Inst. (DRI), Las Vegas, NV (United States); Miller, Julianne J. [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2015-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2014 monitoring are: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2014 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations; (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. Differences in the observed dust concentrations are likely the result of differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  1. 40 CFR 60.1450 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1450 Section 60.1450 Protection of Environment... Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1450 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a) Use EPA Reference Method 9 in appendix A...

  2. 40 CFR 60.1925 - How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste?

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn 100 percent yard waste? 60.1925 Section 60.1925 Protection of Environment... or Before August 30, 1999 Model Rule-Air Curtain Incinerators That Burn 100 Percent Yard Waste § 60.1925 How must I monitor opacity for air curtain incinerators that burn 100 percent yard waste? (a)...

  3. Assessment and monitoring of air pollution effects. Possibilities and constraints of international cooperation

    International Nuclear Information System (INIS)

    Under the geneva convention on long-range transboundary air pollution, an international cooperative programme on 'Assessment and monitoring of Air effects' had been set-up in 1985. of the 34 signatory states of the convention, 28 participate in the implementation of the programme. The objective is to assess effects of air pollution on forests in europe, using a common survey method in order to assure comparability of survey results. In 1987, 20 countries conducted harmonized forest health surveys based on the assessment of two visible symptoms, loss and/or discoloration of foliage. harmonization of the surveys was quickly achieved because of the simplicity of the methodical approach. The price of rapidly obtaining large-area information on defoliation of forests is, that no distinction can be made in the assessment process between defoliation caused by air pollution and defoliation caused by natural, biotic or a biotic causes. Further improvements of the interpretability of survey results can be expected if additional visible symptoms can be defined for the major species in the different european regions. Possibilities and constraints of incorporating differentiating symptoms into the annual health surveys are discussed. 1 fig., 2 tabs

  4. 76 FR 27656 - Intent To Request Renewal From OMB of One Current Public Collection of Information: Flight Crew...

    Science.gov (United States)

    2011-05-12

    ... advanced self-defense training program for flight and cabin crew members of air carriers providing... information, airline employee number, and Social Security number (last four digits) from flight and cabin crew members of air carriers to verify employment status to confirm eligibility to participate in...

  5. 76 FR 64960 - Extension of Agency Information Collection Activity Under OMB Review: Flight Crew Self-Defense...

    Science.gov (United States)

    2011-10-19

    ..., 2011 (76 FR 27656). Upon registering for a voluntary advanced self-defense training class provided by... number, and Social Security number (last four digits) from flight and cabin crew members of air carriers... voluntary advanced self-defense training program for flight and cabin crew members of air carriers...

  6. 19 CFR 122.44 - Crew baggage declaration.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Crew baggage declaration. 122.44 Section 122.44 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Entry and Entry Documents; Electronic Manifest Requirements...

  7. 19 CFR 122.46 - Crew purchase list.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Crew purchase list. 122.46 Section 122.46 Customs Duties U.S. CUSTOMS AND BORDER PROTECTION, DEPARTMENT OF HOMELAND SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Entry and Entry Documents; Electronic Manifest Requirements...

  8. Ergonomic and anthropometric issues of the forward Apache crew station

    NARCIS (Netherlands)

    Oudenhuijzen, A.J.K.

    1999-01-01

    This paper describes the anthropometric accommodation in the Apache crew systems. These activities are part of a comprehensive project, in a cooperative effort from the Armstrong Laboratory at Wright Patterson Air Force Base (Dayton, Ohio, USA) and TNO Human Factors Research Institute (TNO HFRI) in

  9. Monitoring the Electrochemical Processes in the Lithium–Air Battery by Solid State NMR Spectroscopy

    OpenAIRE

    Leskes, Michal; Moore, Amy J.; Goward, Gillian R.; Grey, Clare P.

    2013-01-01

    A multi-nuclear solid-state NMR approach is employed to investigate the lithium–air battery, to monitor the evolution of the electrochemical products formed during cycling, and to gain insight into processes affecting capacity fading. While lithium peroxide is identified by 17O solid state NMR (ssNMR) as the predominant product in the first discharge in 1,2-dimethoxyethane (DME) based electrolytes, it reacts with the carbon cathode surface to form carbonate during the charging process. 13C ss...

  10. Tonopah Test Range Air Monitoring: CY2015 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Nikolich, George [Nevada University, Reno, NV (United States). Desert Research Inst.; Shadel, Craig [Nevada University, Reno, NV (United States). Desert Research Inst.; Chapman, Jenny [Nevada University, Reno, NV (United States). Desert Research Inst.; McCurdy, Greg [Nevada University, Reno, NV (United States). Desert Research Inst.; Etyemezian, Vicken [Nevada University, Reno, NV (United States). Desert Research Inst.; Miller, Julianne J. [Nevada University, Reno, NV (United States). Desert Research Inst.; Mizell, Steve [Nevada University, Reno, NV (United States). Desert Research Inst.

    2016-09-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). The operation resulted in radionuclide-contaminated soils at the Clean Slate I, II, and III sites. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III, and at the TTR Sandia National Laboratories (SNL) Range Operations Control (ROC) center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soil beyond the physical and administrative boundaries of the sites.

  11. Instrumentation for continuous on-line monitoring of non-methane organic carbon in air emissions

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, S.; Xu, Y.; Chen, W. [New Jersey Institute of Technology, Newark, NJ (United States); McAllister, G. [Environmental Protection Agency, Durham, NC (United States)

    1996-12-31

    Nonmethane organic carbons (NMOC) is a measure of total organic carbon except that from methane. EPA standard method 25 was developed in the mid 1970`s as a means of quantifying NMOC emission from stationary source such as incinerators and paint industry. This method which involves obtaining a grab sample, and transporting it to the lab for analysis is not suitable for continuous monitoring. Moreover, this GC based method is prone to interferences from moisture and high concentrations of CO{sub 2}. In this paper we discuss the development of a novel columnless instrument that can be used for continuous on-line monitoring of NMOC in emission sources as well as in ambient air. 4 refs., 4 figs.

  12. Monitoring of Hazardous Air Pollutant Surrogates Using Resonance Enhanced Multiphoton Ionization/Time of Flight Mass Spectrometry

    Science.gov (United States)

    EPA’s preferred approach for regulatory emissions compliance is based upon real-time monitoring of individual hazardous air pollutants (HAPs). Real-time, continuous monitoring not only provides the most comprehensive assurance of emissions compliance, but also can serve as...

  13. Space Shuttle Wireless Crew Communications

    Science.gov (United States)

    Armstrong, R. W.; Doe, R. A.

    1982-01-01

    The design, development, and performance characteristics of the Space Shuttle's Wireless Crew Communications System are discussed. This system allows Space Shuttle crews to interface with the onboard audio distribution system without the need for communications umbilicals, and has been designed through the adaptation of commercially available hardware in order to minimize development time. Testing aboard the Space Shuttle Orbiter Columbia has revealed no failures or design deficiencies.

  14. 14C AMS measurements of tree leaf samples to monitor air pollution induced by city traffic

    International Nuclear Information System (INIS)

    In the past, many radiocarbon measurement have been made for environmental studies such as source apportionment of air-borne particulates, and studies of the anthropogenic effects of nuclear power plants. In this presentation we report our accelerator mass spectrometry (AMS) measurements of radiocarbon on tree leaf samples to investigate the impact of city traffic on our living-environment. The fossil-burning vehicles emit carbon dioxide (CO2) free of 14C content and, when mixed with the clean air CO2, lower 14C ratio compared to the normal reservoir value. This so-called Suess effect can be incorporated to monitor air quality in our living environments, since metabolic processes maintain the 14C content of living organism in equilibrium with atmospheric 14C. In other words, dead CO2 is admixed to the normal atmospheric CO2 and then photo-synthetically assimilated by the plants. Two kinds of tree leaf samples; pine tree needles and Ginkgo tree leaves were collected during a one-week period in the summer 1996 at five different locations with various traffic conditions in the region, within a 10-km diameter circle, south of the River Han, Seoul. The AMS targets were made by a simple sample-making procedure. The leaves have been pretreated by a standard acid-alkali treatment and then charred in a vacuum evaporator by applying ca. 800 deg C heat. The charred samples were mixed with Ag powder and pressed into the Al target holder for the AMS measurement.The AMS measurements were made using the accelerator mass spectrometry facilities of the Leibniz-Labor at the Christian-Albrecht University, Kiel,Germany. The observed Δ14C values, which ranged from 60TM to 158TM, have a good correlation with the traffic conditions in the places where the sampling took place and show a remarkable capability of 14C AMS measurements to monitor our fossil burning environment. The volume ratios of clean air to air from fossil-burn origin in the environmental CO2 reached to a level of 8

  15. Monitoring and analysis of air emissions based on condition models derived from process history

    Directory of Open Access Journals (Sweden)

    M. Liukkonen

    2016-12-01

    Full Text Available Evaluation of online information on operating conditions is necessary when reducing air emissions in energy plants. In this respect, automated monitoring and control are of primary concern, particularly in biomass combustion. As monitoring of emissions in power plants is ever more challenging because of low-grade fuels and fuel mixtures, new monitoring applications are needed to extract essential information from the large amount of measurement data. The management of emissions in energy boilers lacks economically efficient, fast, and competent computational systems that could support decision-making regarding the improvement of emission efficiency. In this paper, a novel emission monitoring platform based on the self-organizing map method is presented. The system is capable, not only of visualizing the prevailing status of the process and detecting problem situations (i.e. increased emission release rates, but also of analyzing these situations automatically and presenting factors potentially affecting them. The system is demonstrated using measurement data from an industrial circulating fluidized bed boiler fired by forest residue as the primary fuel and coal as the supporting fuel.

  16. Report on R and D activities of Air Monitoring Section (Division of Radiological Protection) 1979-1984

    International Nuclear Information System (INIS)

    The work done by the Air Monitoring Section of the Bhabha Atomic Research Centre, Bombay, during the period 1979-1984 is reported. The work is reported in the form of programme summaries grouped under the headings: (1) atmospheric radioactivity, (2) biospheric radioactivity, (3) radioactivity monitoring systems, (4) environmental monitoring for trace constituents, (5) pollution monitoring systems, (6) aerosal studies, and (7) atmospheric physics and chemistry. The Section continued to supply continuous in-plant air/water radioactivity monitoring systems and continuous monitoring systems for gaseous constituents to various units of the Department of Atomic Energy. A list of papers published in journals, papers presented at conferences and symposia and technical reports published by the staff-members of the Section is given. (M.G.B.)

  17. BAQMAP. Air Quality Monitoring and Surveillance Program for Botswana. Mission 1 Report 4-22 November 1996

    Energy Technology Data Exchange (ETDEWEB)

    Bekkestad, T.; Dreiem, R.; Hermansen, O.; Knudsen, S.

    1996-12-31

    This report is concerned with the start of a joint project between the authorities in Botswana and Norway on the development of an air pollution monitoring and surveillance program for Botswana. NILU will provide assistance in the fields of (1) Siting and establishment of an air pollution monitoring network, (2) Laboratory techniques, methods and routines, (3) Quality control and quality assurance procedures, (4) Emission data bases, (5) Statistical data analysis and reporting, (6) Atmospheric dispersion model estimates for air quality planning and assessment analysis. This is the report of the Norwegian team after their first visit to Botswana. 1 ref., 13 figs., 35 tabs.

  18. First results from the oil sands passive air monitoring network for polycyclic aromatic compounds.

    Science.gov (United States)

    Schuster, Jasmin K; Harner, Tom; Su, Ky; Mihele, Cristian; Eng, Anita

    2015-03-01

    Results are reported from an ongoing passive air monitoring study for polycyclic aromatic compounds (PACs) in the Athabasca oil sands region in Alberta, Canada. Polyurethane foam (PUF) disk passive air samplers were deployed for consecutive 2-month periods from November 2010 to June 2012 at 17 sites. Samples were analyzed for polycyclic aromatic hydrocarbons (PAHs), alkylated PAHs, dibenzothiophene and its alkylated derivatives (DBTs). Relative to parent PAHs, alkylated PAHs and DBTs are enriched in bitumen and therefore considered to be petrogenic markers. Concentrations in air were in the range 0.03-210 ng/m(3), 0.15-230 ng/m(3) and 0.01-61 ng/m(3) for ∑PAHs, ∑alkylated PAHs and ΣDBTs, respectively. An exponential decline of the PAC concentrations in air with distance from mining areas and related petrogenic sources was observed. The most significant exponential declines were for the alkylated PAHs and DBTs and attributed to their association with mining-related emissions and near-source deposition, due to their lower volatility and greater association with depositing particles. Seasonal trends in concentrations in air for PACs were not observed for any of the compound classes. However, a forest fire episode during April to July 2011 resulted in greatly elevated PAH levels at all passive sampling locations. Alkylated PAHs and DBTs were not elevated during the forest fire period, supporting their association with petrogenic sources. Based on the results of this study, an "Athabasca PAC profile" is proposed as a potential source marker for the oil sands region. The profile is characterized by ∑PAHs/∑Alkylated PAHs = ∼0.2 and ∑PAHs/∑DBTs = ∼5.

  19. Assessing isocyanate exposures in polyurethane industry sectors using biological and air monitoring methods.

    Science.gov (United States)

    Creely, K S; Hughson, G W; Cocker, J; Jones, K

    2006-08-01

    Isocyanates, as a chemical group, are considered to be the biggest cause of occupational asthma in the UK. Monitoring of airborne exposures to total isocyanate is costly, requiring considerable expertise, both in terms of sample collection and chemical analysis and cannot be used to assess the effectiveness of protection from wearing respiratory protective equipment (RPE). Biological monitoring by analysis of metabolites in urine can be a relatively simple and inexpensive way to assess exposure to isocyanates. It may also be a useful way to evaluate the effectiveness of control measures in place. In this study biological and inhalation monitoring were undertaken to assess exposure in a variety of workplaces in the non-motor vehicle repair sector. Companies selected to participate in the survey included only those judged to be using good working practices when using isocyanate formulations. This included companies that used isocyanates to produce moulded polyurethane products, insulation material and those involved in industrial painting. Air samples were collected by personal monitoring and were analysed for total isocyanate content. Urine samples were collected soon after exposure and analysed for the metabolites of different isocyanate species, allowing calculation of the total metabolite concentration. Details of the control measures used and observed contamination of exposed skin were also recorded. A total of 21 companies agreed to participate in the study, with exposure measurements being collected from 22 sites. The airborne isocyanate concentrations were generally very low (range 0.0005-0.066 mg m(-3)). A total of 50 of the 70 samples were polyurethane foam insulation (0.023 mg m(-3)). The most commonly detected isocyanate in the urine was hexamethylene diisocyanate, which was detected in 21 instances. The geometric mean total isocyanate metabolite concentration for the dataset was 0.29 micromol mol(-1) creatinine (range 0.05-12.64 micromol mol(-1

  20. Air Pollution and Preterm Birth in the U.S. State of Georgia (2002–2006): Associations with Concentrations of 11 Ambient Air Pollutants Estimated by Combining Community Multiscale Air Quality Model (CMAQ) Simulations with Stationary Monitor Measurements

    OpenAIRE

    Hao, Hua; Chang, Howard H.; Holmes, Heather A.; Mulholland, James A.; Klein, Mitch; Darrow, Lyndsey A.; Strickland, Matthew J

    2015-01-01

    Background: Previous epidemiologic studies suggest associations between preterm birth and ambient air pollution. Objective: We investigated associations between 11 ambient air pollutants, estimated by combining Community Multiscale Air Quality model (CMAQ) simulations with measurements from stationary monitors, and risk of preterm birth (< 37 weeks of gestation) in the U.S. state of Georgia. Methods: Birth records for singleton births ≥ 27 weeks of gestation with complete covariate informatio...

  1. Surface air concentration and deposition of lead-210 in French Guiana: two years of continuous monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Melieres, Marie-Antoinette E-mail: melieres@glaciog.ujf-grenoble.fr; Pourchet, Michel; Richard, Sandrine

    2003-07-01

    To make up for the lack of data on {sup 210}Pb aerosol deposition in tropical regions and to use this radionuclide as an aerosol tracer,a monitoring station was run for two years at Petit-Saut, French Guiana. Lead-210 concentration in air at ground level was monitored continuously together with atmospheric total deposition. The air concentration has a mean value of 0.23{+-}0.02 mBq m{sup -3} during both wet and dry seasons, and it is only weakly affected by the precipitation mechanism. This result was unexpected in a wet tropical region, with a high precipitation rate. In contrast, deposition clearly correlates with precipitation for low/moderate rainfall (<15 cm per 15-day), while this correlation is masked by strong fluctuations at high rainfall. The estimated mean annual deposition over the last ten years is 163{+-}75 Bq m{sup -2} y{sup -1}. This provides a procedure fo estimating this mean flux at other sites in French Guiana.

  2. Morus nigra plant leaves as biomonitor for elemental air pollution monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Daud, M.; Khalid, N.; Waheed, S.; Wasim, M.; Arif, M.; Zaidi, J.H. [Pakistan Institute of Nuclear Science and Technology, Islamabad (Pakistan). Chemistry Div.

    2011-07-01

    The present paper deals with the determination of 36 elements in 120 leaf samples of Morus nigra plant to assess their potential as biomonitor for elemental air pollution monitoring. The elemental quantification was made by employing Instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectrometric (AAS) techniques. The leaf samples were collected in spring, summer and winter seasons from various sites in Islamabad with different types of anthropogenic activities as well as from a reference site with minimum of such activities. Twenty four soil samples from the respective sites were also analyzed. The reliability of the adopted procedures was established by analyzing the certified reference materials, i.e., citrus leaves-1572 and soil-7, from NIST and IAEA, respectively, under identical experimental conditions and comparing the results obtained with the certified values which are in quite good agreement with each other. The enrichment values and Pollution Load Index (PLI) of the determined elements were computed and discussed accordingly. The elemental translocation from soil to roots, stem and leaves has also been studied by analyzing these parts of the same plant. The results indicated that the leaves of Morus nigra plant have promising potential to monitor the extent of air pollution in the vicinity of industrial as well as in high traffic areas. (orig.)

  3. Quantitative Assessment of Detection Frequency for the INL Ambient Air Monitoring Network

    Energy Technology Data Exchange (ETDEWEB)

    A. Jeffrey Sondrup; Arthur S. Rood

    2014-11-01

    A quantitative assessment of the Idaho National Laboratory (INL) air monitoring network was performed using frequency of detection as the performance metric. The INL air monitoring network consists of 37 low-volume air samplers in 31 different locations. Twenty of the samplers are located on INL (onsite) and 17 are located off INL (offsite). Detection frequencies were calculated using both BEA and ESER laboratory minimum detectable activity (MDA) levels. The CALPUFF Lagrangian puff dispersion model, coupled with 1 year of meteorological data, was used to calculate time-integrated concentrations at sampler locations for a 1-hour release of unit activity (1 Ci) for every hour of the year. The unit-activity time-integrated concentration (TICu) values were calculated at all samplers for releases from eight INL facilities. The TICu values were then scaled and integrated for a given release quantity and release duration. All facilities modeled a ground-level release emanating either from the center of the facility or at a point where significant emissions are possible. In addition to ground-level releases, three existing stacks at the Advanced Test Reactor Complex, Idaho Nuclear Technology and Engineering Center, and Material and Fuels Complex were also modeled. Meteorological data from the 35 stations comprising the INL Mesonet network, data from the Idaho Falls Regional airport, upper air data from the Boise airport, and three-dimensional gridded data from the weather research forecasting model were used for modeling. Three representative radionuclides identified as key radionuclides in INL’s annual National Emission Standards for Hazardous Air Pollutants evaluations were considered for the frequency of detection analysis: Cs-137 (beta-gamma emitter), Pu-239 (alpha emitter), and Sr-90 (beta emitter). Source-specific release quantities were calculated for each radionuclide, such that the maximum inhalation dose at any publicly accessible sampler or the National

  4. Environmental Monitoring, Air Quality, Ambient air monitoring sites are geographic point locations with monitoring equipment, and possibly meteorological instruments, that monitor outdoor, near ground level criteria pollutant concentrations., Published in 2011, 1:24000 (1in=2000ft) scale, Florida Department of Environmental Protection.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Environmental Monitoring, Air Quality dataset, published at 1:24000 (1in=2000ft) scale, was produced all or in part from Field Survey/GPS information as of...

  5. Pt-TiO2/MWCNTs Hybrid Composites for Monitoring Low Hydrogen Concentrations in Air

    Directory of Open Access Journals (Sweden)

    Stefano Trocino

    2012-09-01

    Full Text Available Hydrogen is a valuable fuel for the next energy scenario. Unfortunately, hydrogen is highly flammable at concentrations higher than 4% in air. This aspect makes the monitoring of H2 leaks an essential issue for safety reasons, especially in the transportation field. In this paper, nanocomposites based on Pt-doped TiO2/multiwalled carbon nanotubes (MWCNTs have been introduced as sensitive materials for H2 at low temperatures. Pt-TiO2/MWNTs nanocomposites with different composition have been prepared by a simple wet chemical procedure and their morphological, microstructural and electrical properties were investigated. Resistive thick-film devices have been fabricated printing the hybrid nanocomposites on alumina substrates provided with Pt interdigitated electrodes. Electrical tests in air have shown that embedding MWCNTs in the TiO2 matrix modify markedly the electrical conductivity, providing a means to decrease the resistance of the sensing layer. Pt acts as a catalytic additive. Pt-TiO2/MWNTs-based sensors were found to be sensitive to hydrogen at concentrations between 0.5 and 3% in air, satisfying the requisites for practical applications in hydrogen leak detection devices.

  6. Feasibility of poplar foliages as bio-monitors for organochlorine pesticides in air

    Institute of Scientific and Technical Information of China (English)

    DAI TianYou; ZHU XiaoHua; WANG Wei; MENG Wei; YU YunJiang; LI FaSheng; YANG YongLiang; LIU Feng

    2009-01-01

    The feasibility of poplar (P. tomentosa) foliages as passive biomonitors for organochlorine pesticides In air was explored. The accumulation patterns of poplar foliages for HCHs, DDTs and HCB were similar, the amount of HCHs, DDTs and HCB increased with foliage growth in spring, and decreased thereafter. There was no obvious distinction in the accumulation styles between the adult leaf and the leaf-litter. This accumulation pattern is likely related to the growing process of the poplar foliage, and was ob-served for the first time in our work, giving an evidence for the "bud burst effect" in plants. The tech-nical HCH and DDT were used largely in history and not used in recent years, but there was a little usage of lindane and new input of o,p'DDT in recent years, and dicofol usage may be the main source of o,p'-DDT. Concentrations of HCHs, DDTs and HCB in poplar foliages were similar to those in pine needles at the corresponding period, and there is a positive strong correlation between OCP concen-tration data of two kinds of trees. It presents no difference in the accumulation style between two kinds of trees. The level of OCPs in the poplar foliage reflected the pollution status of OCPs in air. The result of this work showed that the poplar foliage can be used as the bio-monitor of OCPs in air.

  7. Could gingko foliage serve as a bio-monitor for organochlorine pesticides in air?

    Institute of Scientific and Technical Information of China (English)

    DAI TianYou; ZHU XiaoHua; MENG Wei; YU YunJiang; WANG Wei; LI FaSheng; LIU Feng; YANG YongLiang; WU DaNian

    2008-01-01

    The feasibility of gingko (Gingo Biloba) foliage as a passive bio-monitor for organochlorine pesticides in air was explored. The accumulation patterns of hexachlorocyclohexanes (HCHs), dichlorodiphenyl-trichloroethanes (DDTs) and hexachlorobenzene (HCB) in gingko foliage were similar; the amounts of HCHs, DDTs and HCB increased with foliage growth in spring and decreased thereafter. This accumu-lation pattern is likely related to the growing process of the gingko foliage, which was observed for the first time in our work, giving a piece of evidence for the "bud burst effect" in plants. Compared with those in pine needles in 1980's, the residual levels of HCHs and DDTs have declined obviously in Bei-jing, indicating that the ban on the production and use of organochlorine pesticides (OCPs) in our country is effective; however, the amount of HCB has increased, indicating great progress of chemical industry in Beijing. The analysis for the source of OCPs in the gingko foliage showed that the technical HCHs and DDTs were used largely in history, but were not used in recent years. A little lidane has been used and there was a new input of o,p'-DDT in recent years; dicofol usage may be the main source of o,p'-DDT. Concentrations of HCHs, DDTs and HCB in gingko foliages were similar to those in pine nee-dles in the corresponding period and there is a strong positive correlation between the OCPs concen-tration data obtained from these two kinds of trees. It presents no difference in the accumulation style between these two kinds of trees. The level of OCPs in the gingko foliage reflects the pollution status of OCP in air. The result of this work shows that the gingko foliage can be used as a bio-monitor of OCPs in air.

  8. Could gingko foliage serve as a bio-monitor for organochlorine pesticides in air?

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The feasibility of gingko (Gingo Biloba) foliage as a passive bio-monitor for organochlorine pesticides in air was explored. The accumulation patterns of hexachlorocyclohexanes (HCHs), dichlorodiphenyl- trichloroethanes (DDTs) and hexachlorobenzene (HCB) in gingko foliage were similar; the amounts of HCHs, DDTs and HCB increased with foliage growth in spring and decreased thereafter. This accumu-lation pattern is likely related to the growing process of the gingko foliage, which was observed for the first time in our work, giving a piece of evidence for the "bud burst effect" in plants. Compared with those in pine needles in 1980’s, the residual levels of HCHs and DDTs have declined obviously in Bei-jing, indicating that the ban on the production and use of organochlorine pesticides (OCPs) in our country is effective; however, the amount of HCB has increased, indicating great progress of chemical industry in Beijing. The analysis for the source of OCPs in the gingko foliage showed that the technical HCHs and DDTs were used largely in history, but were not used in recent years. A little lidane has been used and there was a new input of o,p′-DDT in recent years; dicofol usage may be the main source of o,p′-DDT. Concentrations of HCHs, DDTs and HCB in gingko foliages were similar to those in pine nee-dles in the corresponding period and there is a strong positive correlation between the OCPs concen-tration data obtained from these two kinds of trees. It presents no difference in the accumulation style between these two kinds of trees. The level of OCPs in the gingko foliage reflects the pollution status of OCP in air. The result of this work shows that the gingko foliage can be used as a bio-monitor of OCPs in air.

  9. Elemental analysis of lichen bioaccumulators before exposure as transplants in air pollution monitoring

    International Nuclear Information System (INIS)

    Lichen transplants from relatively unpolluted sites are successfully used as heavy metal bioaccumulators for long-term air pollution monitoring. Significant element accumulations are generally revealed after 6 to 12 months of exposure. The main objective of this interdisciplinary research is to get a low-price survey of the air pollution level in some critical areas of Romania by nuclear and atomic analytical methods, based on the element accumulating property of transplanted lichens. The lichen species Evernia prunastri and Pseudevernia furfuracea collected from the Prealps, northeast Italy, have been selected for this study. Experimental setup for standardized lichen exposure needs special plastic frames ('little traps': 15 · 15 · 1.5 cm, with 1cm2 mesh) which are fixed horizontally on stainless steel posts at about 1.5 m above the ground. Prior to exposure, the lichen material is cleansed of some vegetal impurities and then shortly washed using de-ionised water. The initial (zero-level) contents of lichens were determined by Instrumental Neutron Activation Analysis (INAA) and Energy Dispersive X-Ray Fluorescence Analysis (EDXRFA) methods. INAA was carried out at the Institute of Physics and Nuclear Engineering in Bucharest (IFIN) and while EDXRFA at the University of Hohenheim in Stuttgart. The investigated elements were: As, Br, Ca, Cd, Co, Cr, Cu, Fe, K, Mn, Ni, Pb, S, Sb, Se, V and Zn. From among them, Cd, Co and Sb can be determined only by INAA and ICP-MS, Pb only by EDXRFA and PIXE, and S only by EDXRFA. A statistical intercomparison of the results allowed a good quality control of the used analytical methods for these specific matrices. This work was supported in part by European Commission Center of Excellence Project ICA1-CT-2000-70023: IDRANAP (Inter-Disciplinary Research and Applications based on Nuclear and Atomic Physics), Work Package 2 (Air pollution monitoring by sampling airborne particulate matter combined with lichen bioaccumulator exposure

  10. The next generation of low-cost personal air quality sensors for quantitative exposure monitoring

    Directory of Open Access Journals (Sweden)

    R. Piedrahita

    2014-03-01

    Full Text Available Advances in embedded systems and low-cost gas sensors are enabling a new wave of low cost air quality monitoring tools. Our team has been engaged in the development of low-cost wearable air quality monitors (M-Pods using the Arduino platform. The M-Pods use commercially available metal oxide semiconductor (MOx sensors to measure CO, O3, NO2, and total VOCs, and NDIR sensors to measure CO2. MOx sensors are low in cost and show high sensitivity near ambient levels; however they display non-linear output signals and have cross sensitivity effects. Thus, a quantification system was developed to convert the MOx sensor signals into concentrations. Two deployments were conducted at a regulatory monitoring station in Denver, Colorado. M-Pod concentrations were determined using laboratory calibration techniques and co-location calibrations, in which we place the M-Pods near regulatory monitors to then derive calibration function coefficients using the regulatory monitors as the standard. The form of the calibration function was derived based on laboratory experiments. We discuss various techniques used to estimate measurement uncertainties. A separate user study was also conducted to assess personal exposure and M-Pod reliability. In this study, 10 M-Pods were calibrated via co-location multiple times over 4 weeks and sensor drift was analyzed with the result being a calibration function that included drift. We found that co-location calibrations perform better than laboratory calibrations. Lab calibrations suffer from bias and difficulty in covering the necessary parameter space. During co-location calibrations, median standard errors ranged between 4.0–6.1 ppb for O3, 6.4–8.4 ppb for NO2, 0.28–0.44 ppm for CO, and 16.8 ppm for CO2. Median signal to noise (S/N ratios for the M-Pod sensors were higher for M-Pods than the regulatory instruments: for NO2, 3.6 compared to 23.4; for O3, 1.4 compared to 1.6; for CO, 1.1 compared to 10.0; and for CO2, 42

  11. Air-dropped sensor network for real-time high-fidelity volcano monitoring

    Science.gov (United States)

    Song, W.-Z.; Huang, R.; Xu, M.; Ma, A.; Shirazi, B.; LaHusen, R.

    2009-01-01

    This paper presents the design and deployment experience of an air-dropped wireless sensor network for volcano hazard monitoring. The deployment of five stations into the rugged crater of Mount St. Helens only took one hour with a helicopter. The stations communicate with each other through an amplified 802.15.4 radio and establish a self-forming and self-healing multi-hop wireless network. The distance between stations is up to 2 km. Each sensor station collects and delivers real-time continuous seismic, infrasonic, lightning, GPS raw data to a gateway. The main contribution of this paper is the design and evaluation of a robust sensor network to replace data loggers and provide real-time long-term volcano monitoring. The system supports UTC-time synchronized data acquisition with 1ms accuracy, and is online configurable. It has been tested in the lab environment, the outdoor campus and the volcano crater. Despite the heavy rain, snow, and ice as well as gusts exceeding 120 miles per hour, the sensor network has achieved a remarkable packet delivery ratio above 99% with an overall system uptime of about 93.8% over the 1.5 months evaluation period after deployment. Our initial deployment experiences with the system have alleviated the doubts of domain scientists and prove to them that a low-cost sensor network system can support real-time monitoring in extremely harsh environments. Copyright 2009 ACM.

  12. Acoustic impedance rhinometry (AIR): a technique for monitoring dynamic changes in nasal congestion

    International Nuclear Information System (INIS)

    We describe a simple and inexpensive method for monitoring nasal air flow resistance using measurement of the small-signal acoustic input impedance of the nasal passage, similar to the audiological measurement of ear drum compliance with acoustic tympanometry. The method requires generation of a fixed sinusoidal volume–velocity stimulus using ear-bud speakers, and an electret microphone to monitor the resultant pressure fluctuation in the nasal passage. Both are coupled to the nose via high impedance silastic tubing and a small plastic nose insert. The acoustic impedance is monitored in real-time using a laptop soundcard and custom-written software developed in LabView 7.0 (National Instruments). The compact, lightweight equipment and fast time resolution lends the technique to research into the small and rapid reflexive changes in nasal resistance caused by environmental and local neurological influences. The acoustic impedance rhinometry technique has the potential to be developed for use in a clinical setting, where the need exists for a simple and inexpensive objective nasal resistance measurement technique. (paper)

  13. 2000 annual report of the air pollution monitoring network; Jahresbericht 2000 des Messnetzes

    Energy Technology Data Exchange (ETDEWEB)

    Beilke, S.; Uhse, K. (comps.)

    2001-11-01

    In this report the results of the air pollution monitoring network of the Federal Environmental Agency (FEA) are presented for the year 2000. The results are interpreted and compared with measurements carried out in previous years. The network consists of 23 stations situated in rural areas. As the data set was thoroughly quality controlled reliable statements on long-term trends of air pollutants can be made. In general air quality in Germany has considerably improved over the last decades especially in the years after 1990. As an example, lowest concentrations of SO{sub 2} and total particulate matter were observed in 2000 since the beginning of measurements in the late 1960s and early 1970s. Other examples for an improvement of air quality are the increase of rainwater pH from 4.2 - 4.3 to 4.8 - 5.0 between 1982 and 2000 and a decline of ozone peak concentrations over the last decade. In contrast to ozone peak values mean concentrations have slightly increased during this period. (orig.) [German] Das Umweltbundesamt betreibt ein bundesweites Messnetz, das heute aus insgesamt 23 in laendlichen Regionen gelegenen Stationen besteht. Im vorliegenden Jahresbericht 2000 werden die Ergebnisse aus dem UBA-Messnetz fuer das Jahr 2000 vorgestellt, interpretiert und mit den Ergebnissen aus frueheren Jahren verglichen. Die Messdaten sind in sich homogen und wurden einer eingehenden Qualitaetspruefung unterzogen. Zusammenfassend zeigen die Messungen, dass sich die grossraeumige Luftqualitaet in Deutschland waehrend der letzten Jahrzehnte, insbesondere nach 1990, erheblich verbessert hat. So wurden beispielsweise im Jahre 2000 die niedrigsten SO{sub 2}- und Schwebstaubkonzentrationen im UBA-Messnetz seit Beginn der Messungen Ende der 60er und Anfang der 70er Jahre gemessen. Erfreulich ist auch die deutliche Abnahme des Saeuregehaltes im Regen in den vergangenen 2 Jahrzehnten sowie der Rueckgang der Ozonspitzenkonzentrationen waehrend der letzten 10 Jahre. Dagegen haben die

  14. Air Pollution Monitoring and Use of Nanotechnology Based Solid State Gas Sensors in Greater Cairo Area, Egypt

    Science.gov (United States)

    Ramadan, A. B. A.

    Air pollution is a serious problem in thickly populated and industrialized areas in Egypt, especially in greater Cairo area. Economic growth and industrialization are proceeding at a rapid pace, accompanied by increasing emissions of air polluting sources. Furthermore, though the variety and quantities of polluting sources have increased dramatically, the development of a suitable method for monitoring the pollution causing sources has not followed at the same pace. Environmental impacts of air pollutants have impact on public health, vegetation, material deterioration etc. To prevent or minimize the damage caused by atmospheric pollution, suitable monitoring systems are urgently needed that can rapidly and reliably detect and quantify polluting sources for monitoring by regulating authorities in order to prevent further deterioration of the current pollution levels. Consequently, it is important that the current real-time air quality monitoring system, controlled by the Egyptian Environmental Affairs Agency (EEAA), should be adapted or extended to aid in alleviating this problem. Nanotechnology has been applied to several industrial and domestic fields, for example, applications for gas monitoring systems, gas leak detectors in factories, fire and toxic gas detectors, ventilation control, breath alcohol detectors, and the like. Here we report an application example of studying air quality monitoring based on nanotechnology `solid state gas sensors'. So as to carry out air pollution monitoring over an extensive area, a combination of ground measurements through inexpensive sensors and wireless GIS will be used for this purpose. This portable device, comprising solid state gas sensors integrated to a Personal Digital Assistant (PDA) linked through Bluetooth communication tools and Global Positioning System (GPS), will allow rapid dissemination of information on pollution levels at multiple sites simultaneously.

  15. Multitemporal Monitoring of the Air Quality in Bulgaria by Satellite Based Instruments

    Science.gov (United States)

    Nikolov, Hristo; Borisova, Denitsa

    2015-04-01

    Nowadays the effect on climate changes on the population and environment caused by air pollutants at local and regional scale by pollution concentrations higher than allowed is undisputable. Main sources of gas releases are due to anthropogenic emissions caused by the economic and domestic activities of the inhabitants, and to less extent having natural origin. Complementary to pollutants emissions the local weather parameters such as temperature, precipitation, wind speed, clouds, atmospheric water vapor, and wind direction control the chemical reactions in the atmosphere. It should be noted that intrinsic property of the air pollution is its "transboundary-ness" and this is why the air quality (AQ) is not affecting the population of one single country only. This why the exchange of information concerning AQ at EU level is subject to well established legislation and one of EU flagship initiatives for standardization in data exchange, namely INSPIRE, has to cope with. It should be noted that although good reporting mechanism with regard to AQ is already established between EU member states national networks suffer from a serious disadvantage - they don't form a regular grid which is a prerequisite for verification of pollutants transport modeling. Alternative sources of information for AQ are the satellite observations (i.e. OMI, TOMS instruments) providing daily data for ones of the major contributors to air pollution such as O3, NOX and SO2. Those data form regular grids and are processed the same day of the acquisition so they could be used in verification of the outputs generated by numerical modeling of the AQ and pollution transfer. In this research we present results on multitemporal monitoring of several regional "hot spots" responsible for greenhouse gases emissions in Bulgaria with emphasis on satellite-based instruments. Other output from this study is a method for validation of the AQ forecasts and also providing feedback to the service that prepares

  16. Portable and low-cost sensors in monitoring air qualities in China

    Science.gov (United States)

    Ouyang, Bin; Popoola, Lekan; Jones, Roderic; Li, Chunlin; Chen, Jianmin

    2016-04-01

    The fast dynamics and the associated high spatial variability of the atmosphere calls for monitoring techniques that are robust, portable, low-power and ideally cheap (which thus allows for easy deployment and little maintenance needs over long measurement period), yet still offering sufficient sensitivity for measuring typical air pollutants at their ambient levels. We have over years developed a measuring suite (SNAQ box, Sensor Network for Air Quality), which weighs ~2.5 kg and has dimension of 30 cm (L)*20 cm (W)* 15 cm (H), and is capable of measuring wind speed and direction, relative humidity, gas species CO, NO, NO2, O3, SO2 (all based on electrochemical sensors), CO2 (based on NDIR, non-dispersive infrared) and total VOCs (based on PID, photoionization detector), and size-speciated particles (based on optical counting method with cut-off in size at 0.34 microns). Two of these boxes have been deployed in China during the 2015 Yangtze River campaign led by Fudan University, China during 22nd/Nov and 05th/Dec. One of the two boxes was mounted on a monitoring ship that sailed along the river aiming at capturing primarily emissions from ships, and the other was carried by a van that drove on roads but followed the track of the ship during the same period. Preliminary analysis of the data revealed that measurements were successful on both platforms for most of the targeted species with essentially no need of personnel interference during the entire campaign. Emission ratio of CO against NOx, or that of CO/NOx against CO2, for different dominating emission sources (vehicles vs. ships), can be readily quantified. Ongoing analysis includes correlating the measured pollution levels with different source profiles as well as meteorology conditions and understanding the background aerosol size profiles. We conclude that this technique provides a viable solution not only for routine point measurements of air quality in China, but also as construction unit for building

  17. Monitoring of heavy metal concentrations in home outdoor air using moss bags

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, Marcela, E-mail: arivera@creal.ca [Centre for Research in Environmental Epidemiology CREAL, Barcelona (Spain); Municipal Institute of Medical Research (IMIM-Hospital del Mar), Barcelona (Spain); Universitat Pompeu Fabra, Barcelona (Spain); CIBER Epidemiologia y Salud Publica (CIBERESP) (Spain); Zechmeister, Harald [University of Vienna, Faculty of Life Sciences, Vienna (Austria); Medina-Ramon, Mercedes; Basagana, Xavier [Centre for Research in Environmental Epidemiology CREAL, Barcelona (Spain); Municipal Institute of Medical Research (IMIM-Hospital del Mar), Barcelona (Spain); CIBER Epidemiologia y Salud Publica (CIBERESP) (Spain); Foraster, Maria [Centre for Research in Environmental Epidemiology CREAL, Barcelona (Spain); Municipal Institute of Medical Research (IMIM-Hospital del Mar), Barcelona (Spain); Universitat Pompeu Fabra, Barcelona (Spain); CIBER Epidemiologia y Salud Publica (CIBERESP) (Spain); Bouso, Laura [Centre for Research in Environmental Epidemiology CREAL, Barcelona (Spain); Municipal Institute of Medical Research (IMIM-Hospital del Mar), Barcelona (Spain); CIBER Epidemiologia y Salud Publica (CIBERESP) (Spain); Moreno, Teresa [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona (Spain); Solanas, Pascual; Ramos, Rafael [Research Unit, Family Medicine, Girona, Jordi Gol Institute for Primary Care Research (IDIAP Jordi Gol), Catalan Institute of Health, Catalunya (Spain); Department of Medical Sciences, School of Medicine, University of Girona (Spain); Koellensperger, Gunda [University of Natural Resources and Applied Life Sciences, Vienna (Austria); Deltell, Alexandre [Polytechnic School, GREFEMA, University of Girona (Spain); Vizcaya, David [Centre for Research in Environmental Epidemiology CREAL, Barcelona (Spain); Municipal Institute of Medical Research (IMIM-Hospital del Mar), Barcelona (Spain); Universitat Pompeu Fabra, Barcelona (Spain); CIBER Epidemiologia y Salud Publica (CIBERESP) (Spain)

    2011-04-15

    One monitoring station is insufficient to characterize the high spatial variation of traffic-related heavy metals within cities. We tested moss bags (Hylocomium splendens), deployed in a dense network, for the monitoring of metals in outdoor air and characterized metals' long-term spatial distribution and its determinants in Girona, Spain. Mosses were exposed outside 23 homes for two months; NO{sub 2} was monitored for comparison. Metals were not highly correlated with NO{sub 2} and showed higher spatial variation than NO{sub 2}. Regression models explained 61-85% of Cu, Cr, Mo, Pb, Sb, Sn, and Zn and 72% of NO{sub 2} variability. Metals were strongly associated with the number of bus lines in the nearest street. Heavy metals are an alternative traffic-marker to NO{sub 2} given their toxicological relevance, stronger association with local traffic and higher spatial variability. Monitoring heavy metals with mosses is appealing, particularly for long-term exposure assessment, as mosses can remain on site many months without maintenance. - Research highlights: > Moss bags can be used to measure the metal's long-term spatial distribution within cities. > Heavy metals in mosses are not highly correlated with ambient NO{sub 2} concentrations. > Heavy metals show higher spatial variation and association with traffic than NO{sub 2}. > Bus lines in the nearest street explain 75-85% of Mo, Cr, Sb, Sn and Cu variability. > Moss bags are useful for long-term at home exposure assessment in epidemiological studies. - The long-term spatial distribution of heavy metals, measured with moss bags, is mainly determined by proximity to bus lines.

  18. Monitoring of heavy metal concentrations in home outdoor air using moss bags

    International Nuclear Information System (INIS)

    One monitoring station is insufficient to characterize the high spatial variation of traffic-related heavy metals within cities. We tested moss bags (Hylocomium splendens), deployed in a dense network, for the monitoring of metals in outdoor air and characterized metals' long-term spatial distribution and its determinants in Girona, Spain. Mosses were exposed outside 23 homes for two months; NO2 was monitored for comparison. Metals were not highly correlated with NO2 and showed higher spatial variation than NO2. Regression models explained 61-85% of Cu, Cr, Mo, Pb, Sb, Sn, and Zn and 72% of NO2 variability. Metals were strongly associated with the number of bus lines in the nearest street. Heavy metals are an alternative traffic-marker to NO2 given their toxicological relevance, stronger association with local traffic and higher spatial variability. Monitoring heavy metals with mosses is appealing, particularly for long-term exposure assessment, as mosses can remain on site many months without maintenance. - Research highlights: → Moss bags can be used to measure the metal's long-term spatial distribution within cities. → Heavy metals in mosses are not highly correlated with ambient NO2 concentrations. → Heavy metals show higher spatial variation and association with traffic than NO2. → Bus lines in the nearest street explain 75-85% of Mo, Cr, Sb, Sn and Cu variability. → Moss bags are useful for long-term at home exposure assessment in epidemiological studies. - The long-term spatial distribution of heavy metals, measured with moss bags, is mainly determined by proximity to bus lines.

  19. Lunar-Mars Life Support Test Project. Phase 2; Human Factors and Crew Interactions

    Science.gov (United States)

    Ming, D. W.; Hurlbert, K. M.; Kirby, G.; Lewis, J. F.; ORear, P.

    1997-01-01

    Phase 2 of the Lunar-Mars Life Support Test Project was conducted in June and July of 1996 at the NASA Johnson Space Center. The primary objective of Phase 2 was to demonstrate and evaluate an integrated physicochemical air revitalization and regenerative water recovery system capable of sustaining a human crew of four for 30 days inside a closed chamber. The crew (3 males and 1 female) was continuously present inside a chamber throughout the 30-day test. The objective of this paper was to describe crew interactions and human factors for the test. Crew preparations for the test included training and familiarization of chamber systems and accommodations, and medical and psychological evaluations. During the test, crew members provided metabolic loads for the life support systems, performed maintenance on chamber systems, and evaluated human factors inside the chamber. Overall, the four crew members found the chamber to be comfortable for the 30-day test. The crew performed well together and this was attributed in part to team dynamics, skill mix (one commander, two system experts, and one logistics lead), and a complementary mix of personalities. Communication with and support by family, friends, and colleagues were identified as important contributors to the high morale of the crew during the test. Lessons learned and recommendations for future testing are presented by the crew in this paper.

  20. Satellite air temperature estimation for monitoring the canopy layer heat island of Milan

    DEFF Research Database (Denmark)

    Pichierri, Manuele; Bonafoni, Stefania; Biondi, Riccardo

    2012-01-01

    In this work, satellite maps of the urban heat island of Milan are produced using satellite-based infrared sensor data. For this aim, we developed suitable algorithms employing satellite brightness temperatures for the direct air temperature estimation 2 m above the surface (canopy layer), showing...... 2007 and 2010 were processed. Analysis of the canopy layer heat island (CLHI) maps during summer months reveals an average heat island effect of 3–4K during nighttime (with some peaks around 5K) and a weak CLHI intensity during daytime. In addition, the satellite maps reveal a well defined island shape...... across the city center from June to September confirming that, in Milan, urban heating is not an occasional phenomenon. Furthermore, this study shows the utility of space missions to monitor the metropolis heat islands if they are able to provide nighttime observations when CLHI peaks are generally...

  1. The influence of salt aerosol on alpha radiation detection by WIPP continuous air monitors

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, W.T.; Walker, B.A. [Environmental Evaluation Group, Albuquerque, NM (United States)

    1997-08-01

    Waste Isolation Pilot Plant (WIPP) alpha continuous air monitor (CAM) performance was evaluated to determine if CAMs could detect accidental releases of transuranic radioactivity from the underground repository. Anomalous alpha spectra and poor background subtraction were observed and attributed to salt deposits on the CAM sampling filters. Microscopic examination of salt laden sampling filters revealed that aerosol particles were forming dendritic structures on the surface of the sampling filters. Alpha CAM detection efficiency decreased exponentially as salt deposits increased on the sampling filters, suggesting that sampling-filter salt was performing like a fibrous filter rather than a membrane filter. Aerosol particles appeared to penetrate the sampling-filter salt deposits and alpha particle energy was reduced. These findings indicate that alpha CAMs may not be able to detect acute releases of radioactivity, and consequently CAMs are not used as part of the WIPP dynamic confinement system. 12 refs., 12 figs., 1 tab.

  2. APPLICATION OF ARTIFICIAL NEURAL NETWORKS FOR PREDICTION OF AIR POLLUTION LEVELS IN ENVIRONMENTAL MONITORING

    Directory of Open Access Journals (Sweden)

    Małgorzata Pawul

    2016-09-01

    Full Text Available Recently, a lot of attention was paid to the improvement of methods which are used to air quality forecasting. Artificial neural networks can be applied to model these problems. Their advantage is that they can solve the problem in the conditions of incomplete information, without the knowledge of the analytical relationship between the input and output data. In this paper we applied artificial neural networks to predict the PM 10 concentrations as factors determining the occurrence of smog phenomena. To create these networks we used meteorological data and concentrations of PM 10. The data were recorded in 2014 and 2015 at three measuring stations operating in Krakow under the State Environmental Monitoring. The best results were obtained by three-layer perceptron with back-propagation algorithm. The neural networks received a good fit in all cases.

  3. Lipids and Molecular Tools as Biomarkers in Monitoring Air Sparging Bioremediation Processes

    Science.gov (United States)

    Heipieper, Hermann J.; Fischer, Janett

    2010-05-01

    The fluctuation of membrane lipids offers a promising tool as biomarkers for the analysis of microbial population changes as well as for the physiological status of micro-organisms. The investigation of changes in lipid composition is of common use for the assessment of physiological conditions in pure cultures. However, as lipid composition does not show drastic diversity among living organisms the use of lipids as biomarkers in mixed cultures and environmental samples has certain limitations. Therefore, special marker phospholipid fatty acids as well as modern statistical analysis of the results are necessary to receive certain information about the qualitative and quantitative changes of e.g. a soil microflora due to a contamination with organic compounds and its bioremediation. The use of lipids as biomarker in monitoring bioremediation are shown at the Hradčany site, a former Russian air force base in the Czech Republic that operated until 1990. In this time in an area of 32 ha soil and groundwater were contaminated with kerosene and BTEX compounds in an amount of 7,150 tons. This highly contaminated site is treated with the so-called air sparging method to clean-up the contamination by aerobic biodegradation. The results of PLFA analysis demonstrated a community shift to a gram-negative bacterial biomass with time. The results, including a principal component analysis (PCA) of the obtained fatty acid profiles, showed that the air sparging leads to substantial differences in microbial communities depending on the contamination levels and length of treatment, respectively. Obviously, the length of air sparging treatment controlling the BTEX concentration in soils causes temporal changes of bacterial community and adaptations of its respective members. This work was supported by the project BIOTOOL (Contract No. 003998) of the European Commission within its Sixth Framework Programme. Kabelitz N., Machackova J., Imfeld G., Brennerova M., Pieper D.H., Heipieper H

  4. A framework for air quality monitoring based on free public data and open source tools

    Science.gov (United States)

    Nikolov, Hristo; Borisova, Denitsa

    2014-10-01

    In the recent years more and more widely accepted by the Space agencies (e.g. NASA, ESA) is the policy toward provision of Earth observation (EO) data and end products concerning air quality especially in large urban areas without cost to researchers and SMEs. Those EO data are complemented by increasing amount of in-situ data also provided at no cost either from national authorities or having crowdsourced origin. This accessibility together with the increased processing capabilities of the free and open source software is a prerequisite for creation of solid framework for air modeling in support of decision making at medium and large scale. Essential part of this framework is web-based GIS mapping tool responsible for dissemination of the output generated. In this research an attempt is made to establish a running framework based solely on openly accessible data on air quality and on set of freely available software tools for processing and modeling taking into account the present status quo in Bulgaria. Among the primary sources of data, especially for bigger urban areas, for different types of gases and dust particles, noted should be the National Institute of Meteorology and Hydrology of Bulgaria (NIMH) and National System for Environmental Monitoring managed by Bulgarian Executive Environmental Agency (ExEA). Both authorities provide data for concentration of several gases just to mention CO, CO2, NO2, SO2, and fine suspended dust (PM10, PM2.5) on monthly (for some data on daily) basis. In the framework proposed these data will complement the data from satellite-based sensors such as OMI instrument aboard EOS-Aura satellite and from TROPOMI instrument payload for future ESA Sentinel-5P mission. Integral part of the framework is the modern map for the land use/land cover which is provided from EEA by initiative GIO Land CORINE. This map is also a product from EO data distributed at European level. First and above all, our effort is focused on provision to the

  5. Lessons from a 5 yr citizen-science monitoring program, Mountain Watch, to engage hikers in air quality/visibility and plant phenology monitoring in the mountains

    Science.gov (United States)

    Murray, G.; Weihrauch, D.; Kimball, K.; McDonough, C.

    2010-12-01

    The AMC’s citizen scientist monitoring program, Mountain Watch, engages hikers in observational monitoring while recreating in the northern Appalachian Mountains. The program uses two monitoring activities:1) tracking the phenology of 11 mountain flowers species, and 2) the visitors real world perception of on-mountain visibility and its ‘quality’ with proximate monitored air quality parameters. The Mountain Watch program objectives are a) to engage and educate the public through hands-on monitoring, b) to motivate the participant to take further action towards environmental stewardship, and c) to provide supplemental data to AMC’s ongoing science-based research to further our understanding of the impact of human activity on mountain ecosystems. The Mountain Watch plant monitoring includes recording the time and location of alpine and forest plants flowering and other phenological phases using AMC field guides and datasheets. In the White Mountains of New Hampshire concurrent meteorological data, including soil temperature, is paired with the phenology observations as part of AMC’s research to develop spatial and temporal phenology models with air and soil temperature for northeastern mountains. Mountain Watch’s visibility monitoring program has hikers record visual range and rate the view at select vistas in comparison to a clear day view photo guide when visiting AMC’s backcountry huts. The results are compared to proximate air quality measurements, which assists in determining how White Mountain National Forest air quality related values and natural resources management objectives are being met. Since 2006 the Mountain Watch program has received over 3,500 citizen datasheets for plant reproductive phenology and visibility monitoring. We estimate that we have reached more than 15,000 hikers through our facility based education programming focused on air quality and phenology and field monitoring hikes. While we consider this good success in engaging

  6. A Study on the Potential Applications of Satellite Data in Air Quality Monitoring and Forecasting

    Science.gov (United States)

    Li, Can; Hsu, N. Christina; Tsay, Si-Chee

    2011-01-01

    In this study we explore the potential applications of MODIS (Moderate Resolution Imaging Spectroradiometer) -like satellite sensors in air quality research for some Asian regions. The MODIS aerosol optical thickness (AOT), NCEP global reanalysis meteorological data, and daily surface PM(sub 10) concentrations over China and Thailand from 2001 to 2009 were analyzed using simple and multiple regression models. The AOT-PM(sub 10) correlation demonstrates substantial seasonal and regional difference, likely reflecting variations in aerosol composition and atmospheric conditions, Meteorological factors, particularly relative humidity, were found to influence the AOT-PM(sub 10) relationship. Their inclusion in regression models leads to more accurate assessment of PM(sub 10) from space borne observations. We further introduced a simple method for employing the satellite data to empirically forecast surface particulate pollution, In general, AOT from the previous day (day 0) is used as a predicator variable, along with the forecasted meteorology for the following day (day 1), to predict the PM(sub 10) level for day 1. The contribution of regional transport is represented by backward trajectories combined with AOT. This method was evaluated through PM(sub 10) hindcasts for 2008-2009, using ohservations from 2005 to 2007 as a training data set to obtain model coefficients. For five big Chinese cities, over 50% of the hindcasts have percentage error less than or equal to 30%. Similar performance was achieved for cities in northern Thailand. The MODIS AOT data are responsible for at least part of the demonstrated forecasting skill. This method can be easily adapted for other regions, but is probably most useful for those having sparse ground monitoring networks or no access to sophisticated deterministic models. We also highlight several existing issues, including some inherent to a regression-based approach as exemplified by a case study for Beijing, Further studies will be

  7. Fine Resolution Air Quality Monitoring from a Small Satellite: CHRIS/PROBA

    Directory of Open Access Journals (Sweden)

    Man Sing Wong

    2008-11-01

    Full Text Available Current remote sensing techniques fail to address the task of air quality monitoring over complex regions where multiple pollution sources produce high spatial variability. This is due to a lack of suitable satellite-sensor combinations and appropriate aerosol optical thickness (AOT retrieval algorithms. The new generation of small satellites, with their lower costs and greater flexibility has the potential to address this problem, with customised platform-sensor combinations dedicated to monitoring single complex regions or mega-cities. This paper demonstrates the ability of the European Space Agency’s small satellite sensor CHRIS/PROBA to provide reliable AOT estimates at a spatially detailed level over Hong Kong, using a modified version of the dense dark vegetation (DDV algorithm devised for MODIS. Since CHRIS has no middle-IR band such as the MODIS 2,100 nm band which is transparent to fine aerosols, the longest waveband of CHRIS, the 1,019 nm band was used to approximate surface reflectance, by the subtraction of an offset derived from synchronous field reflectance spectra. Aerosol reflectance in the blue and red bands was then obtained from the strong empirical relationship observed between the CHRIS 1,019 nm, and the blue and red bands respectively. AOT retrievals for three different dates were shown to be reliable, when compared with AERONET and Microtops II sunphotometers, and a Lidar, as well as air quality data at ground stations. The AOT images exhibited considerable spatial variability over the 11 x 11km image area and were able to indicate both local and long distance sources.

  8. Monitoring of Air Quality in Passenger Cabins of the Athens Metro

    Science.gov (United States)

    Tsairidi, Evangelia; Assimakopoulos, Vasiliki D.; Assimakopoulos, Margarita-Niki; Barbaresos, Nicolaos; Karagiannis, Athanassios

    2013-04-01

    The air pollution induced by various transportation means combines the emission of pollutants with the simultaneous presence of people. In this respect, the scientific community has focused its efforts in studying both the air quality within busy streets and inside cars, buses and the underground railway network in order to identify the pollutants' sources and levels as well as the human exposure. The impact of the air pollution on commuters of the underground may be more severe because it is a confined space, extended mostly under heavily trafficked urban streets, relies on mechanical ventilation for air renewal and gathers big numbers of passengers. The purpose of the present work is to monitor the air quality of the city of Athens Metro Network cabins and platforms during the unusually hot summer of 2012. For that cause particulate matter (PM10, PM2.5, PM1), carbon dioxide (CO2), the number of commuters along with temperature (T) and humidity (RH) were recorded inside the Athens Metro Blue Line trains (covering a route from the centre of Athens (Aigaleo) to the Athens International Airport) and on the platforms of a central (Syntagma) and a suburban-traffic (Doukissis Plakentias) station between June and August. The data collection included six different experiments that took place for 2 consecutive working days each, for a time period of 6 weeks from 6:30 am too 7:00 pm in order to account for different outdoor climatic conditions and for morning and evening rush hours respectively. Measurements were taken in the middle car of the moving trains and the platform end of the selected stations. The results show PM concentrations to be higher (approximately 2 to 5 times) inside the cabins and o the platforms of the underground network as compared to the outdoor levels monitored routinely by the Ministry of Environment. Moreover, PM1, PM2.5 and PM10 average concentrations recorded at the Syntagma Station Platform were almost constantly higher reaching 11 μg m-3 47

  9. Ambient air toxics monitoring and impact analysis for a resource recovery facility

    International Nuclear Information System (INIS)

    Ambient air monitoring has been conducted for approximately three years beginning in January of 1988 at four locations surrounding the Greater Detroit Resource Recovery Facility (GDRRF). The GDRRF began burning refuse-derived fuel (RDF) in early 1989. Two sampling locations operated by Roy F. Weston, Inc. are located in Michigan near the facility, and two sampling locations operated by Environment Canada are located across the Detroit River in Ontario. The groups of compounds sampled include dioxins and furans, PCBs, polycyclic aromatic hydrocarbons (PAHs), trace metals, and inorganic acids. The sampling results comprise one of the most comprehensive databases available for assessment of RRF air quality impacts. This paper presents a comparison of the sampling results between two of the four sampling locations. The site locations were chosen to represent background and impacted sites based on dispersion modeling and climatology. The background and impacted site results are statistically compared to determine impacts from the facility. Also, multiple regression and principal components techniques are used to identify source-receptor relations and source signatures

  10. Biomagnetic monitoring of traffic air pollution in Toulouse (France) using magnetic properties of tree bark

    Science.gov (United States)

    Macouin, M.; Rousse, S.; Brulfert, F.; Durand, M.; Feida, N.; Durand, X.; Becaud, L.

    2012-12-01

    Magnetic properties of various atmospheric samples represent rapid and economic proxies in the pollution studies based on their strong linkage to heavy metals and/or volatile organic carbons. We report a biomonitoring study of air pollution in Toulouse (France) based on the magnetic properties of tree (Platanus acerifolia) bark. More than 250 bark samples were taken at different areas of the city. Both mass specific magnetic susceptibility and isothermal remanent magnetization (IRM) at 1 Tesla display relationships with the traffic intensity and the distance to the road. Urban roadside tree bark exhibit significant enhancement in their values of susceptibility and IRM reflecting surface accumulation of particulate pollutants, compared with tree growing at lower traffic sites. To estimate the deposition time and accumulation on bark, we have deposited 20 "clean" bark samples from low traffic area with susceptibility inferior to 10 SI, near the city ring road. Samples were then collected during three months. Samples were imparted a 1 Tesla IRM both prior the deposition and after the resampling. Results are useful to apprehend the process of magnetic particulates accumulation and to evaluate the potential of tree bark for the air quality monitoring.

  11. An assessment of the performance of the Monitor for AeRosols and GAses in ambient air (MARGA): a semi-continuous method for soluble compounds

    OpenAIRE

    I. C. Rumsey; K. A. Cowen; Walker, J. T.; Kelly, T J; E. A. Hanft; K. Mishoe; Rogers, C.; R. Proost; G. M. Beachley; Lear, G.; T. Frelink; R. P. Otjes

    2013-01-01

    Ambient air monitoring as part of the US Environmental Protection Agency's (US EPA's) Clean Air Status and Trends Network (CASTNet) currently uses filter packs to measure weekly integrated concentrations. The US EPA is interested in supplementing CASTNet with semi-continuous monitoring systems at select sites to characterize atmospheric chemistry and deposition of nitrogen and sulfur compounds at higher time resolution than the filter pack. The Monitor for AeRosols and GAses in ambient air (M...

  12. Analysis and optimal design of air quality monitoring networks using a variational approach

    Directory of Open Access Journals (Sweden)

    Adolfo Henriquez

    2015-10-01

    Full Text Available Air quality networks need revision and optimisation as instruments and network requirements, both scientific and societal, evolve over time. Assessing and optimising the information content of a monitoring network is a non-trivial problem. Here, we introduce a methodology formulated in a variational framework using an air quality model to simulate the dispersion of carbon monoxide (CO as a passive tracer at the city scale. We address the specific case of adding or removing stations, and the more general situation of optimally distributing a given number of stations in a domain taking into account transport patterns and spatial factors such as population density and emission patterns. We consider three quality indicators: precision gain, information gain and degrees of freedom for a signal. These metrics are all functions of the singular values of the sensitivity matrix that links emissions and observations in the variational framework. We illustrate the application of the methodology in the case of Santiago (33.5°S, 70.5°W, 500 m a.s.l., a city of ca. 7 million inhabitants with significant pollution levels. We deem information gain as the best of the above indicators for this case. We then quantify the actual evolution of Santiago's network and compare it with the optimal configuration suggested by our methodology and with results previously obtained using a statistical approach. The application is restricted to diurnal and summer conditions, for which the dispersion model shows a good agreement with observations. The current method offers advantages in that it allows extending a network to include new sites, and it explicitly considers the effects of dispersion patterns, and desired weighting functions such as emission fluxes and population density. We find that Santiago's air quality has improved two-fold since 1988, regarding CO under diurnal summer conditions. Still, according to our results, the current configuration could be improved by

  13. Weather and Climate on the Reliability of Enviromagnetic Studies of Tree Leaves in Air Pollution Monitoring

    Science.gov (United States)

    Rey, D.; Rodríguez-Germade, I.; Mohamed Falcon, K. J.; Rubio, B.; Garcia, A.

    2014-12-01

    Monthly monitoring of the magnetic properties of Platanus hispanica tree leaves to assess atmospheric pollution in Madrid (Spain) and its suburban town of Pozuelo de Alarcon showed anthropogenic time-related klf enhancement of tree leaves. We established a significant correlation between metal concentration (leaching) in the leaves with Klf and IRM1T. This relationship was not as high as those found in other studies carried out on airborne dust, sediments and soils. Further analyses pointed out that local humidity played a dual roll, controlling availability of airborne lithogenic dust and the incorporation of trace metals in the leaf tissue, modulating the magnetic enhancement. Further to these findings, the comparison between cities of different climatic regimes showed that air humidity is the major factor controlling the interaction of the atmosphere and tree leaves, thus their magnetic properties. The relative influence of pollutants, lithogenic dust and biological effects depends not only on local meteorology but also on climate. Their influence should be most seriously considered to design methodological approaches that are appropriate to the environmental characteristics of each study area, if the magnetic properties of tree leaves are intended as an atmospheric pollution-monitoring tool.

  14. Temperature-modulated graphene oxide resistive humidity sensor for indoor air quality monitoring

    Science.gov (United States)

    de Luca, A.; Santra, S.; Ghosh, R.; Ali, S. Z.; Gardner, J. W.; Guha, P. K.; Udrea, F.

    2016-02-01

    In this paper we present a temperature-modulated graphene oxide (GO) resistive humidity sensor that employs complementary-metal-oxide-semiconductor (CMOS) micro-electro-mechanical-system (MEMS) micro-hotplate technology for the monitoring and control of indoor air quality (IAQ). GO powder is obtained by chemical exfoliation, dispersed in water and deposited via ink-jet printing onto a low power micro-hotplate. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) show the typical layered and wrinkled morphology of the GO. Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and Fourier transform infra-red (FTIR) spectroscopy indicate that the GO flakes possess a significant number of oxygen containing functional groups (epoxy, carbonyl, hydroxyl) extremely attractive for humidity detection. Electro-thermal characterisation of the micro-hotplates shows a thermal efficiency of 0.11 mW per °C, resulting in a sensor DC power consumption of only 2.75 mW at 50 °C. When operated in an isothermal mode, the sensor response is detrimentally affected by significant drift, hysteretic behaviour, slow response/recovery times and hence poor RH level discrimination. Conversely, a temperature modulation technique coupled with a differential readout methodology results in a significant reduction of the sensor drift, improved linear response with a sensitivity of 0.14 mV per %, resolution below 5%, and a maximum hysteresis of +/-5% response and recovery times equal to 189 +/- 49 s and 89 +/- 5 s, respectively. These performance parameters satisfy current IAQ monitoring requirements. We have thus demonstrated the effectiveness of integrating GO on a micro-hotplate CMOS-compatible platform enabling temperature modulation schemes to be easily applied in order to achieve compact, low power, low cost humidity IAQ monitoring.In this paper we present a temperature-modulated graphene oxide (GO) resistive humidity sensor that employs complementary

  15. Project 57 Air Monitoring Report: October 1, 2013, through December 31, 2014

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A. [Desert Research Inst. (DRI), Las Vegas, NV (United States); Nikolich, George [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, Greg [Desert Research Inst. (DRI), Reno, NV (United States); Shadel, Craig [Desert Research Inst. (DRI), Las Vegas, NV (United States); Miller, Julianne J. [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2016-02-01

    assessment of gross alpha and gross beta radioactivity and for determination of gamma-emitting radionuclides. Annual average gross alpha values at the Project 57 monitoring stations are in the same range as the highest two values reported for the CEMP stations surrounding the NTTR. Annual average gross beta values at the Project 57 monitoring stations are slightly higher than the lowest value reported for the CEMP stations surrounding the NTTR. Gamma spectroscopy analyses on samples collected from the Project 57 stations identified only naturally occurring radionuclides. No manmade radionuclides were detected. Thermoluminescent dosimeters (TLDs) indicated that the average annual radioactivity dose at the monitoring stations is higher than the dose determined at surrounding CEMP stations but approximately half of the estimated national average dose received by the general public as a result of exposure to natural sources. The TLDs at the Project 57 monitoring stations are exposed to both natural sources (terrestrial and cosmic) and radioactive releases from the Project 57 contamination area. These comparisons show that the gross alpha, gross beta, and gamma spectroscopy levels at the Project 57 monitoring stations are similar to levels observed at the CEMP stations but that the average annual dose rate is higher than at the CEMP stations. Winds in excess of approximately 15 mph begin to generate dust movement by saltation (migration of sand at the ground surface) or direct suspension in the air. Saltated sand, PM10 (inhalable) dust, and PM2.5 (fine particulate dust) exhibit an approximately exponential increase with increasing wind speed. The greatest concentrations of dust occur for winds exceeding 20 mph. During the reporting period, winds in excess of 20 mph occurred approximately 1.6 percent of the time. Preliminary assessment of individual wind events suggests that dust generation is highly variable likely because of the influence of other meteorological and

  16. Project 57 Air Monitoring Report: October 1, 2013, through December 31, 2014

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A. [Desert Research Inst. (DRI), Las Vegas, NV (United States); Nikolich, George [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, Greg [Desert Research Inst. (DRI), Reno, NV (United States); Shadel, Craig [Desert Research Inst. (DRI), Las Vegas, NV (United States); Miller, Julianne J. [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2016-02-01

    assessment of gross alpha and gross beta radioactivity and for determination of gamma-emitting radionuclides. Annual average gross alpha values at the Project 57 monitoring stations are in the same range as the highest two values reported for the CEMP stations surrounding the NTTR. Annual average gross beta values at the Project 57 monitoring stations are slightly higher than the lowest value reported for the CEMP stations surrounding the NTTR. Gamma spectroscopy analyses on samples collected from the Project 57 stations identified only naturally occurring radionuclides. No manmade radionuclides were detected. Thermoluminescent dosimeters (TLDs) indicated that the average annual radioactivity dose at the monitoring stations is higher than the dose determined at surrounding CEMP stations but approximately half of the estimated national average dose received by the general public as a result of exposure to natural sources. The TLDs at the Project 57 monitoring stations are exposed to both natural sources (terrestrial and cosmic) and radioactive releases from the Project 57 contamination area. These comparisons show that the gross alpha, gross beta, and gamma spectroscopy levels at the Project 57 monitoring stations are similar to levels observed at the CEMP stations but that the average annual dose rate is higher than at the CEMP stations. Winds in excess of approximately 15 mph begin to generate dust movement by saltation (migration of sand at the ground surface) or direct suspension in the air. Saltated sand, PM10 (inhalable) dust, and PM2.5 (fine particulate dust) exhibit an approximately exponential increase with increasing wind speed. The greatest concentrations of dust occur for winds exceeding 20 mph. During the reporting period, winds in excess of 20 mph occurred approximately 1.6 percent of the time. Preliminary assessment of individual wind events suggests that dust generation is highly variable likely because of the influence of other meteorological and

  17. The usefulness of air quality monitoring and air quality impact studies before the introduction of reformulated gasolines in developing countries. Mexico City, a real case study

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, H.A.; Torres, R.J. [Universidad Nacional Autonoma de Mexico (Mexico). Section de Contaminacion Ambiental

    2000-07-01

    Urban air pollution is a major environmental problem in several developing countries in the world. This phenomenon seems to be related to the growth of both the urban population in large cities and the number of old and poorly maintained car fleets. The expected rise of population in the next century in countries which suffer from lack of capital for air pollution control, means that there is a great potential for the worsening of the air quality. The worldwide promote policy to phase out lead in gasolines has not proved to be an adequate option in improving the environmental quality. Mexico City Metropolitan Area (MCMA) represents a case in which the introduction of reformulated gasolines in an old car fleet has resulted in the reduction of the airborne lead levels but has worsened the ozone concentration of its urban atmosphere. This paper critically analyzes the chronological evolution of the ozone air pollution problem in MCMA after the successive occurrence of several changes in the formulation of low leaded and unleaded gasolines. It also presents evidences of the usefulness potential of air quality monitoring activities and air quality impact studies on the definition of realistic fuel reformulation policies of developing countries. (author)

  18. 46 CFR 185.420 - Crew training.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Crew training. 185.420 Section 185.420 Shipping COAST...) OPERATIONS Crew Requirements § 185.420 Crew training. (a) The owner, charterer, master or managing operator... duties listed in the station bill required by § 185.514 of this part. (b) Training conducted on a...

  19. Design of a mobile laboratory for ventilation studies and indoor air pollution monitoring. [Residences and commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Berk, J.V.; Hollowell, C.D.; Lin, C.I.; Pepper, J.H.

    1978-04-01

    A mobile laboratory for research and development studies of ventilation requirements and energy utilization in residential and commercial buildings was designed and fabricated. The mobile laboratory contains sampling, calibrating, and monitoring systems to measure the concentration of CO, CO/sub 2/, NO, NO/sub 2/, NO/sub x/, O/sub 3/, and SO/sub 2/, and infiltration rates can be monitored continuously using a tracer gas system in which the tracer is injected into the room, mixed with room air, and monitored.

  20. Ambient air monitoring during the 2011 Las Conchas wildland fire near Los Alamos, U.S.A.

    Energy Technology Data Exchange (ETDEWEB)

    Green, Andrew A. [Los Alamos National Laboratory; Schlemann, Shea A. [Los Alamos Technical Associates; Young, Daniel L. [Los Alamos National Laboratory

    2012-08-31

    Air monitoring data collected during the Las Conchas fire near the Los Alamos National Laboratory during 2011 are presented. Data included are for selected radionuclides and selected metals found in particulate matter. None of these analytes were seen at levels which exceeded any state or federal standards.

  1. Air quality monitoring. 1979-June 1980 (citations from the NTIS data base). Report for 1979-June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Cavagnaro, D.M.

    1980-08-01

    The citations from Federally funded research discuss major studies on air pollution monitoring, including site selection, operation criteria, design criteria, calibration, and performance evaluation of the technique or equipment. Different types of pollutants from various sources are covered. (This updated bibliography contains 125 abstracts, 89 of which are new entries to the previous edition.)

  2. Air quality monitoring. 1977-1978 (citations from the NTIS data base). Report for 1977-78

    Energy Technology Data Exchange (ETDEWEB)

    Cavagnaro, D.M.

    1980-07-01

    This bibliography discusses major studies on air pollution monitoring, including site selection, operation criteria, design criteria, calibration, and performance evaluation of the technique or equipment. Different types of pollutants from various sources are covered. (This updated bibliography contains 215 citations, none of which are new entries to the previous edition.)

  3. SPATIAL ANALYSIS OF VOLATILE ORGANIC COMPOUNDS FROM A COMMUNITY-BASED AIR TOXICS MONITORING NETWORK IN DEER PARK, TEXAS, USA

    Science.gov (United States)

    This RARE Project with EPA Region 6 was a spatial analysis study of select volatile organic compounds (VOC) collected using passive air monitors at outdoor residential locations in the Deer Park, Texas area near the Houston Ship Channel. Correlation analysis of VOC species confi...

  4. Passive air sampler as a tool for long-term air pollution monitoring: Part 1. Performance assessment for seasonal and spatial variations.

    Science.gov (United States)

    Klánová, Jana; Kohoutek, Jirí; Hamplová, Lenka; Urbanová, Petra; Holoubek, Ivan

    2006-11-01

    The potential of passive air sampling devices (polyurethane foam disks) to assess the influence of local sources on the quality of the surrounding environment was investigated. DEZA Valasske Mezirici, a coal tar and mixed tar oils processing plant, and Spolana Neratovice, a chemical factory with the history of high production of organochlorinated pesticides (OCPs), were selected as the point sources of PAHs, and OCPs, respectively. Levels of PCBs, OCPs and PAHs were determined for all sampling sites and sampling periods. The study brought useful data about the air concentrations of POPs in the investigated regions. More important, it provided information on the transport and fate of POPs in the vicinity of local sources of contamination useful for the estimation of their influence. Very good capability of passive samplers to reflect temporal and spatial fluctuation in concentrations of persistent organic pollutants in the ambient air was confirmed which makes them applicable for monitoring on the local scale.

  5. Passive air sampler as a tool for long-term air pollution monitoring: Part 1. Performance assessment for seasonal and spatial variations

    Energy Technology Data Exchange (ETDEWEB)

    Klanova, J.; Kohoutek, J.; Hamplova, L.; Urbanova, P.; Holoubek, I. [Masaryk University, Brno (Czech Republic)

    2006-11-15

    The potential of passive air sampling devices (polyurethane foam disks) to assess the influence of local sources on the quality of the surrounding environment was investigated. DEZA Valasske Mezirici, a coal tar and mixed tar oils processing plant, and Spolana Neratovice, a chemical factory with the history of high production of organochlorinated pesticides (OCPs), were selected as the point sources of PAHs, and OCPs, respectively. Levels of PCBs, OCPs and PAHs were determined for all sampling sites and sampling periods. The study brought useful data about the air concentrations of POPs in the investigated regions. More important, it provided information on the transport and fate of POPs in the vicinity of local sources of contamination useful for the estimation of their influence. Very good capability of passive samplers to reflect temporal and spatial fluctuation in concentrations of persistent organic pollutants in the ambient air was confirmed which makes them applicable for monitoring on the local scale.

  6. Satellite Air Quality Monitoring Before, During and After the Beijing 2008 Olympics and Paralympics

    Science.gov (United States)

    Witte, J. C.; Schoeberl, M. R.; Krotkov, N. A.; Pickering, K. E.; Streets, D. G.; Gleason, J. F.; Gille, J. C.

    2009-12-01

    In 2001, Beijing, China was awarded the hosting rights to the 2008 Olympic and Paralympic Games. Since then, the government has gradually implemented pollution emission control strategies to improve Beijing's air quality in preparation for both games. Long-term industrial and short-term vehicle emission controls have also been enforced upwind of Beijing's neighboring provinces to the south and west. This region is characterized by numerous heavy-polluting industries whose emissions are typically transported towards Beijing, significantly impacting the city's air quality. We examine the efficacy of these emission control measures on tropospheric NO2, SO2, and CO pollution using satellite data from Aura's Ozone Monitoring Instrument (OMI) and Terra's Measurements Of Pollution In The Troposphere (MOPITT) from 2004 to the present. During both games, held in August and September 2008, OMI and MOPITT measured significant decreases in all three tracer gases compared to the past three years: NO2 (-43%), SO2 (-13%), and CO (-12%). This decrease in CO and SO2 over northeastern China continues through 2009, reflecting the longer-term nature of emission controls on heavily polluting industries. The global recession is also a likely contributor, as factories have shut down or slowed production due to the decrease in demand for manufactured goods. The tropospheric NO2 column over Beijing returned to typical monthly mean values when controls on vehicle emissions were lifted by the end of September 2008. However, we observe a slight NO2 decrease at the beginning of 2009 relative to 2008 suggesting a decrease in the contribution of industrial emissions of NOx to the overall NO2 column.

  7. The Biomolecule Sequencer Project: Nanopore Sequencing as a Dual-Use Tool for Crew Health and Astrobiology Investigations

    Science.gov (United States)

    John, K. K.; Botkin, D. S.; Burton, A. S.; Castro-Wallace, S. L.; Chaput, J. D.; Dworkin, J. P.; Lehman, N.; Lupisella, M. L.; Mason, C. E.; Smith, D. J.; Stahl, S; Switzer, C.

    2016-01-01

    Human missions to Mars will fundamentally transform how the planet is explored, enabling new scientific discoveries through more sophisticated sample acquisition and processing than can currently be implemented in robotic exploration. The presence of humans also poses new challenges, including ensuring astronaut safety and health and monitoring contamination. Because the capability to transfer materials to Earth will be extremely limited, there is a strong need for in situ diagnostic capabilities. Nucleotide sequencing is a particularly powerful tool because it can be used to: (1) mitigate microbial risks to crew by allowing identification of microbes in water, in air, and on surfaces; (2) identify optimal treatment strategies for infections that arise in crew members; and (3) track how crew members, microbes, and mission-relevant organisms (e.g., farmed plants) respond to conditions on Mars through transcriptomic and genomic changes. Sequencing would also offer benefits for science investigations occurring on the surface of Mars by permitting identification of Earth-derived contamination in samples. If Mars contains indigenous life, and that life is based on nucleic acids or other closely related molecules, sequencing would serve as a critical tool for the characterization of those molecules. Therefore, spaceflight-compatible nucleic acid sequencing would be an important capability for both crew health and astrobiology exploration. Advances in sequencing technology on Earth have been driven largely by needs for higher throughput and read accuracy. Although some reduction in size has been achieved, nearly all commercially available sequencers are not compatible with spaceflight due to size, power, and operational requirements. Exceptions are nanopore-based sequencers that measure changes in current caused by DNA passing through pores; these devices are inherently much smaller and require significantly less power than sequencers using other detection methods

  8. STS-88 crew goes through Crew Equipment Interface Testing

    Science.gov (United States)

    1998-01-01

    In the Space Station Processing Facility, STS-88 Mission Specialists Sergei Krikalev, a Russian cosmonaut, and Jerry L. Ross check out equipment on the Unity connecting module, primary payload on the mission. The STS-88 crew members are participating in a Crew Equipment Interface Test (CEIT), familiarizing themselves with the orbiter's midbody and crew compartments. Scheduled for launch on Dec. 3, 1998, STS-88 will be the first Space Shuttle launch for the International Space Station. The Unity connecting module will be mated to the Russian-built Zarya control module, already on orbit after a November launch. Unity will have two Pressurized Mating Adapters (PMAs) attached and 1 stowage rack installed inside. PMA-1 will connect U.S. and Russian elements; PMA-2 will provide a Shuttle docking location. Eventually, Unity's six ports will provide connecting points for the Z1 truss exterior framework, U.S. lab, airlock, cupola, Node 3, and the Multi-Purpose Logistics Module, as well as the control module. Zarya is a self-supporting active vehicle, providing propulsive control capability and power through the early assembly stages. It provides fuel storage capability and a rendezvous and docking capability to the Service Module.

  9. Air monitoring of volatile organic compounds at relevant receptors during hydraulic fracturing operations in Washington County, Pennsylvania.

    Science.gov (United States)

    Maskrey, Joshua R; Insley, Allison L; Hynds, Erin S; Panko, Julie M

    2016-07-01

    A 3-month air monitoring study was conducted in Washington County, Pennsylvania, at the request of local community members regarding the potential risks resulting from air emissions of pollutants related to hydraulic fracturing operations. Continuous air monitoring for total volatile organic compounds was performed at two sampling sites, including a school and a residence, located within 900 m of a hydraulic fracturing well pad that had been drilled prior to the study. Intermittent 24-hour air samples for 62 individual volatile organic compounds were also collected. The ambient air at both sites was monitored during four distinct periods of unconventional natural gas extraction activity: an inactive period prior to fracturing operations, during fracturing operations, during flaring operations, and during another inactive period after operations. The results of the continuous monitoring during fracturing and flaring sampling periods for total volatile organic compounds were similar to the results obtained during inactive periods. Total volatile organic compound 24-hour average concentrations ranged between 0.16 and 80 ppb during all sampling periods. Several individual volatile compounds were detected in the 24-hour samples, but they were consistent with background atmospheric levels measured previously at nearby sampling sites and in other areas in Washington County. Furthermore, a basic yet conservative screening level evaluation demonstrated that the detected volatile organic compounds were well below health-protective levels. The primary finding of this study was that the operation of a hydraulic fracturing well pad in Washington County did not substantially affect local air concentrations of total and individual volatile organic compounds.

  10. Air monitoring of volatile organic compounds at relevant receptors during hydraulic fracturing operations in Washington County, Pennsylvania.

    Science.gov (United States)

    Maskrey, Joshua R; Insley, Allison L; Hynds, Erin S; Panko, Julie M

    2016-07-01

    A 3-month air monitoring study was conducted in Washington County, Pennsylvania, at the request of local community members regarding the potential risks resulting from air emissions of pollutants related to hydraulic fracturing operations. Continuous air monitoring for total volatile organic compounds was performed at two sampling sites, including a school and a residence, located within 900 m of a hydraulic fracturing well pad that had been drilled prior to the study. Intermittent 24-hour air samples for 62 individual volatile organic compounds were also collected. The ambient air at both sites was monitored during four distinct periods of unconventional natural gas extraction activity: an inactive period prior to fracturing operations, during fracturing operations, during flaring operations, and during another inactive period after operations. The results of the continuous monitoring during fracturing and flaring sampling periods for total volatile organic compounds were similar to the results obtained during inactive periods. Total volatile organic compound 24-hour average concentrations ranged between 0.16 and 80 ppb during all sampling periods. Several individual volatile compounds were detected in the 24-hour samples, but they were consistent with background atmospheric levels measured previously at nearby sampling sites and in other areas in Washington County. Furthermore, a basic yet conservative screening level evaluation demonstrated that the detected volatile organic compounds were well below health-protective levels. The primary finding of this study was that the operation of a hydraulic fracturing well pad in Washington County did not substantially affect local air concentrations of total and individual volatile organic compounds. PMID:27312253

  11. Lichens as integrating air pollution monitors biomonitoring studies of heavy metals speciation around mining areas

    International Nuclear Information System (INIS)

    Complete text of publication follows. Biomonitoring may be defined as the use of organisms and biomaterial to obtain information on pollution in the biosphere. There is a rapidly increasing interest in the use of lichens as a biomonitoring species. Their morphology does not vary with seasons; thus the accumulation can occur throughout the year. There is known lichens specific sensitivity to gaseous pollutants (SO2, NOx, and CO2), fluorides and strongly oxidizing compounds. Chemical and physical properties of lichens also enable them to be used as monitors of metal deposition from the atmosphere, since they can accumulate trace elements to the levels far greater than their expected physiological needs. Passive and active biomonitoring using lichens can be used on national scale as well as around particular pollution sources. However, there are not known biomonitoring studies using lichens in South Africa. Also no reports are available on using lichens for monitoring of metals speciation in the environment. This study presents the use of lichens for biomonitoring of air pollution due to chromium and uranium containing dust around a ferrochrome smelter and gold mines respectively in SA. The optimized lichens treatment and extraction procedures were developed to determine not only the total metal concentration but also, for the first time, the Cr(III)/(VI) speciation. Leaching has significant influence on the uptake of metals. It has been shown experimentally that leaching strongly affects the uptake of Mn and Cr and less Ni, V, and Fe. Also reducing properties of many soils strongly alter the chromium speciation in the environment making it less toxic. The current gold tailings reclamation activities in the Central Rand goldfield generate significant loads of dust containing uranium. High concentrations of this highly soluble radionuclide were obtained in the lichens sampled in dust-prone areas. The traditionally used soil samples were included in the study and

  12. Air - Ground - Bedrock Temperature Coupling, Its Monitoring at Borehole Climate Observatories

    Science.gov (United States)

    Cermák, V.

    2012-04-01

    Reconstructing ground surface temperature (GST) histories from present-day temperature-depth logs is now generally accepted as one of the independent and physically justified method to obtain information about the past climate history on the time scale of hundreds to thousands years. Any temperature change at the Earth`s surface slowly propagates downward and deeper we go farther back in time the measured temperature carries certain memory on what has happened on the surface in the past. Due to diffusive character of the process, however, the resolution quickly decreases for the remote events and the reconstructed GST at a given moment is a weighted average of temperature over a certain period of time. For better understanding of the temperature state in the subsurface T(z) logs can be suitably completed with long-run temperature-time monitoring at selected depth intervals, namely within the near-surface active layer affected by seasonal temperature variations (usually uppermost 30-40 m). In addition to GST inversions applied on deep T(z) profiles existing all over the world, several permanent borehole climate observatories were actually established in the last two decades to test the validity of the assumption that GST variations track the SAT (surface air temperature) changes as well as to study various environmental/local effects, such as the vegetation cover type/change, rain/snow precipitation, thawing/melting/freezing, etc. which controls the whole heat transfer process. Long-term monitoring of the shallow subsurface temperature field in suitably geographically located sites may additionally also help to understand the different conditions in e.g. urban vs. countryside environments and to assess the potential anthropogenic contribution to the present-day warming rate within the natural climate variability. This presentation summarizes main results obtained at the Czech borehole sites since 1992 completed with brief comparison of similar results collected

  13. 40 CFR Table A-1 to Subpart A of... - Summary of Applicable Requirements for Reference and Equivalent Methods for Air Monitoring of...

    Science.gov (United States)

    2010-07-01

    ... Reference and Equivalent Methods for Air Monitoring of Criteria Pollutants A Table A-1 to Subpart A of Part...) AMBIENT AIR MONITORING REFERENCE AND EQUIVALENT METHODS General Provisions Pt. 53, Subpt. A, Table A-1 Table A-1 to Subpart A of Part 53—Summary of Applicable Requirements for Reference and...

  14. The formation process of flight crews

    Science.gov (United States)

    Ginnett, Robert C.

    1987-01-01

    A study which uses Hackman's Normative Model (1986) for group effectiveness to see if there are any differences between the behaviors of effective and less effective captains at building and maintaining their crews is presented. Captains were selected using crew evaluations, creating a final pool of six effective crew managers and four captains less proficient as crew leaders. Data collection began at crew briefings, and continued through two trips, with intense data gathering during critical incidents for both task and process events. It was found that a predetermined set of interactions that can occur between crew members exists for the forming crew. It is concluded that effective captains expand the set of interactions, decreasing the limitations on how the group will work together.

  15. Rapid Monitoring of Mercury in Air from an Organic Chemical Factory in China Using a Portable Mercury Analyzer

    Directory of Open Access Journals (Sweden)

    Akira Yasutake

    2011-01-01

    Full Text Available A chemical factory, using a production technology of acetaldehyde with mercury catalysis, was located southeast of Qingzhen City in Guizhou Province, China. Previous research showed heavy mercury pollution through an extensive downstream area. A current investigation of the mercury distribution in ambient air, soils, and plants suggests that mobile mercury species in soils created elevated mercury concentrations in ambient air and vegetation. Mercury concentrations of up to 600 ng/m3 in air over the contaminated area provided evidence of the mercury transformation to volatile Hg(0. Mercury analysis of soil and plant samples demonstrated that the mercury concentrations in soil with vaporized and plant-absorbable forms were higher in the southern area, which was closer to the factory. Our results suggest that air monitoring using a portable mercury analyzer can be a convenient and useful method for the rapid detection and mapping of mercury pollution in advanced field surveys.

  16. Chicago Clean Air, Clean Water Project: Environmental Monitoring for a Healthy, Sustainable Urban Future

    Energy Technology Data Exchange (ETDEWEB)

    none, none; Tuchman, Nancy [Institute of Environmental Sustainability (IES), Chicago, IL (United States)

    2015-11-11

    The U.S. Department of Energy awarded Loyola University Chicago and the Institute of Environmental Sustainability (IES) $486,000.00 for the proposal entitled “Chicago clean air, clean water project: Environmental monitoring for a healthy, sustainable urban future.” The project supported the purchase of analytical instruments for the development of an environmental analytical laboratory. The analytical laboratory is designed to support the testing of field water and soil samples for nutrients, industrial pollutants, heavy metals, and agricultural toxins, with special emphasis on testing Chicago regional soils and water affected by coal-based industry. Since the award was made in 2010, the IES has been launched (fall 2013), and the IES acquired a new state-of-the-art research and education facility on Loyola University Chicago’s Lakeshore campus. Two labs were included in the research and education facility. The second floor lab is the Ecology Laboratory where lab experiments and analyses are conducted on soil, plant, and water samples. The third floor lab is the Environmental Toxicology Lab where lab experiments on environmental toxins are conducted, as well as analytical tests conducted on water, soil, and plants. On the south end of the Environmental Toxicology Lab is the analytical instrumentation collection purchased from the present DOE grant, which is overseen by a full time Analytical Chemist (hired January 2016), who maintains the instruments, conducts analyses on samples, and helps to train faculty and undergraduate and graduate student researchers.

  17. Air Pollution Sensors: Highlights from an EPA Workshop on the Evolution and Revolution in Low-Cost Participatory Air Monitoring

    Science.gov (United States)

    This article summarizes the findings from the EPA's Apps and Sensors for Air Pollution Workshop that was held March 26-27 of 2012. The workshop brought together researchers, developers, and community-based groups who have been working with sensors and apps in a variety of settin...

  18. Whither CRM? Future directions in Crew Resource Management training in the cockpit and elsewhere

    Science.gov (United States)

    Helmreich, Robert L.

    1993-01-01

    The past decade has shown worldwide adoption of human factors training in civil aviation, now known as Crew Resource Management (CRM). The shift in name from cockpit to crew reflects a growing trend to extend the training to other components of the aviation system including flight attendants, dispatchers, maintenance personnel, and Air Traffic Controllers. The paper reports findings and new directions in research into human factors.

  19. Tonopah Test Range Air Monitoring: CY2012 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A; Nikolich, George; Shadel, Craig; McCurdy, Greg; Miller, Julianne J

    2013-07-01

    In 1963, the Atomic Energy Commission (AEC), predecessor to the US Department of Energy (DOE), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range (NAFR)). Operation Roller Coaster consisted of four tests in which chemical explosions were detonated in the presence of nuclear devices to assess the dispersal of radionuclides and evaluate the effectiveness of storage structures to contain the ejected radionuclides. These tests resulted in dispersal of plutonium over the ground surface downwind of the test ground zero. Three tests, Clean Slate 1, 2, and 3, were conducted on the TTR in Cactus Flat; the fourth, Double Tracks, was conducted in Stonewall Flat on the NTTR. DOE is working to clean up and close all four sites. Substantial cleaned up has been accomplished at Double Tracks and Clean Slate 1. Cleanup of Clean Slate 2 and 3 is on the DOE planning horizon for some time in the next several years. The Desert Research Institute installed two monitoring stations, number 400 at the Sandia National Laboratories Range Operations Center and number 401 at Clean Slate 3, in 2008 and a third monitoring station, number 402 at Clean Slate 1, in 2011 to measure radiological, meteorological, and dust conditions. The primary objectives of the data collection and analysis effort are to (1) monitor the concentration of radiological parameters in dust particles suspended in air, (2) determine whether winds are re-distributing radionuclides or contaminated soil material, (3) evaluate the controlling meteorological conditions if wind transport is occurring, and (4) measure ancillary radiological, meteorological, and environmental parameters that might provide insight to the above assessments. The following observations are based on data collected during CY2012. The mean annual concentration of gross alpha and gross beta is highest at Station 400 and lowest at Station

  20. Real-time sensors for indoor air monitoring and challenges ahead in deploying them to urban buildings.

    Science.gov (United States)

    Kumar, Prashant; Skouloudis, Andreas N; Bell, Margaret; Viana, Mar; Carotta, M Cristina; Biskos, George; Morawska, Lidia

    2016-08-01

    Household air pollution is ranked the 9(th) largest Global Burden of Disease risk (Forouzanfar et al., The Lancet 2015). People, particularly urban dwellers, typically spend over 90% of their daily time indoors, where levels of air pollution often surpass those of outdoor environments. Indoor air quality (IAQ) standards and approaches for assessment and control of indoor air require measurements of pollutant concentrations and thermal comfort using conventional instruments. However, the outcomes of such measurements are usually averages over long integrated time periods, which become available after the exposure has already occurred. Moreover, conventional monitoring is generally incapable of addressing temporal and spatial heterogeneity of indoor air pollution, or providing information on peak exposures that occur when specific indoor sources are in operation. This article provides a review of new air pollution sensing methods to determine IAQ and discusses how real-time sensing could bring a paradigm shift in controlling the concentration of key air pollutants in billions of urban houses worldwide. We also show that besides the opportunities, challenges still remain in terms of maturing technologies, or data mining and their interpretation. Moreover, we discuss further research and essential development needed to close gaps between what is available today and needed tomorrow. In particular, we demonstrate that awareness of IAQ risks and availability of appropriate regulation are lagging behind the technologies. PMID:27101450

  1. National-Scale Air Quality Data Assessment: Initial Findings from the Near-Road NO2 Monitoring Program

    Science.gov (United States)

    DeWinter, J. L.

    2015-12-01

    In 2010, the U.S. Environmental Protection Agency (EPA) revised the National Ambient Air Quality Standards (NAAQS) for nitrogen dioxide (NO2) to include a primary health-based standard for hourly NO2. NO2 is a reactive gas that is emitted from motor vehicles, such as cars, trucks, and off-road equipment, as well as non-mobile sources, and is known to adversely affect human respiratory health. In conjunction with the NAAQS revision, EPA has mandated air quality monitoring next to selected major roadways throughout the United States that are in large urban areas where peak hourly NO2 concentrations are expected. Monitoring began in phases during 2012-2015 and included nitrogen dioxide (NO2), carbon monoxide (CO), and particulate matter smaller than 2.5 microns (PM2.5) at 40 monitoring sites nationwide. We conducted a national-scale review of near-road air pollutant concentrations, identified areas where high concentrations of NO2, PM2.5, and CO occurred, and evaluated how concentrations varied by factors such as location, distance to roadway, fleet mix characteristics, and traffic volume. We present the findings from our national near-road data assessment for the 2014 monitoring year.

  2. Air

    Science.gov (United States)

    ... house) Industrial emissions (like smoke and chemicals from factories) Household cleaners (spray cleaners, air fresheners) Car emissions (like carbon monoxide) *All of these things make up “particle pollution.” They mostly come from cars, trucks, buses, and ...

  3. European intercomparison workshops on air quality monitoring. Vol. 4. Measuring NO, NO{sub 2}, O{sub 3} and SO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Muecke, H.G.; Kollar, M. [Umweltbundesamt, Berlin (Germany). WHO-Zentrum zur Ueberwachung der Luftguete und Bekaempfung der Luftverschmutzung; Kratz, M.; Medem, A.; Rudolf, W.; Stummer, V.; Sukale, G. [Umweltbundesamt, Langen (Germany). UBA Pilotstation

    2000-07-01

    This report presents the results of two European Intercomparison Workshops on Air Quality Monitoring (NO, NO{sub 2}, O{sub 3}, and SO{sub 2}). The Workshops were a contribution to continuing quality assurance and quality control activities on air quality monitoring for Member States of the WHO European Region. Fourteen institutes mainly from Central and Eastern Europe used the opportunity to compare their measurement methods (15 manual methods and 24 monitors) and standards. (orig.)

  4. An assessment of the performance of the Monitor for AeRosols and GAses in ambient air (MARGA): a semi-continuous method for soluble compounds

    OpenAIRE

    I. C. Rumsey; K. A. Cowen; Walker, J. T.; Kelly, T J; E. A. Hanft; K. Mishoe; Rogers, C.; R. Proost; G. M. Beachley; Lear, G.; T. Frelink; R. P. Otjes

    2014-01-01

    Ambient air monitoring as part of the US Environmental Protection Agency's (US EPA's) Clean Air Status and Trends Network (CASTNet) currently uses filter packs to measure weekly integrated concentrations. The US EPA is interested in supplementing CASTNet with semi-continuous monitoring systems at select sites to characterize atmospheric chemistry and deposition of nitrogen and sulfur compounds at higher time resolution than the filter pack. The Monitor for AeRosols and GAses...

  5. Field Assessment of the Village Green Project: An Autonomous Community Air Quality Monitoring System

    Science.gov (United States)

    Recent findings on air pollution levels in communities motivate new technologies to assess air pollution at finer spatial scale. The Village Green Project (VGP) is a novel approach using commercially-available technology for long-term community environments air pollution measure...

  6. Accuracy and reliability of Chile's National Air Quality Information System for measuring particulate matter: Beta attenuation monitoring issue.

    Science.gov (United States)

    Toro A, Richard; Campos, Claudia; Molina, Carolina; Morales S, Raul G E; Leiva-Guzmán, Manuel A

    2015-09-01

    A critical analysis of Chile's National Air Quality Information System (NAQIS) is presented, focusing on particulate matter (PM) measurement. This paper examines the complexity, availability and reliability of monitoring station information, the implementation of control systems, the quality assurance protocols of the monitoring station data and the reliability of the measurement systems in areas highly polluted by particulate matter. From information available on the NAQIS website, it is possible to confirm that the PM2.5 (PM10) data available on the site correspond to 30.8% (69.2%) of the total information available from the monitoring stations. There is a lack of information regarding the measurement systems used to quantify air pollutants, most of the available data registers contain gaps, almost all of the information is categorized as "preliminary information" and neither standard operating procedures (operational and validation) nor assurance audits or quality control of the measurements are reported. In contrast, events that cause saturation of the monitoring detectors located in northern and southern Chile have been observed using beta attenuation monitoring. In these cases, it can only be concluded that the PM content is equal to or greater than the saturation concentration registered by the monitors and that the air quality indexes obtained from these measurements are underestimated. This occurrence has been observed in 12 (20) public and private stations where PM2.5 (PM10) is measured. The shortcomings of the NAQIS data have important repercussions for the conclusions obtained from the data and for how the data are used. However, these issues represent opportunities for improving the system to widen its use, incorporate comparison protocols between equipment, install new stations and standardize the control system and quality assurance.

  7. In situ monitoring of urban air in Córdoba, Argentina using the Tradescantia-micronucleus (Trad-MCN) bioassay

    Science.gov (United States)

    Carreras, H. A.; Pignata, M. L.; Saldiva, P. H. N.

    During the last decades, a significant deterioration of ambient air quality has been observed in Argentina. However, the availability of air pollution monitoring stations is still limited to only few cities. In this study, we investigated the genotoxicity of ambient levels of air pollution in Córdoba using the Tradescantia micronucleus assay. The experiment was performed from October, 2004 to April 2005. Pots with Tradescantia pallida were placed in three sites: Córdoba city center, characterized by important avenues with high traffic activity (cars, taxis, and public transport vehicles); the university campus, along a side road with heavy traffic of gasoline and diesel powered vehicles, buses and trucks; and a residential area, with no significant local sources of air pollution. Twenty young T. pallida inflorescences were collected from each sampling site in November, February and April. Micronuclei frequencies were determined in early tetrads of pollen mother cells and expressed as MCN/100 tetrads. Simultaneously, the environmental levels of total suspended particles (24 h mean) were determined for each site. A significant difference in micronuclei frequency was observed among sites ( p=0.036). Post-hoc analysis revealed that the residential area exhibited a lower micronuclei frequency than the university and city center areas. In conclusion, we found that the gradients of ambient air pollution of Córdoba are associated with changes in the spontaneous micronuclei frequency of Tradescantia pollen mother cells. These results indicate that in situ biomonitoring with higher plants may be useful for characterizing air pollution in areas without instrumental monitoring techniques, or for exploring the distribution of air contaminants at a microscale.

  8. Neutron activation analysis application to the study of air pollution bio monitors

    International Nuclear Information System (INIS)

    Full text: This work has been done within the IAEA Research Contract Arg 9929, Research Co-ordinated Programme on Validation and application of plants as bio monitors of trace-element atmospheric pollution, analysed using nuclear and related techniques. Knowledge on air pollution levels and identification of polluted areas and potential emission sources are of increasing concern all over the world. Chemical characterisation of atmospheric aerosol, especially its heavy metal contents, is therefore of great importance and neutron activation analysis is a powerful technique for its determination. The advantages of using bio monitors instead of direct sampling lies not only on its lower cost but also on the possibility of using them to measure and/or evaluate deposition over large areas. The general objective of this project is the use of lichen to evaluate pollution levels in an area of Cordoba province (Argentina) and to establish baseline levels and temporal trends and draw distribution maps of pollutants. Based on lichen distribution maps, two species were selected: Raumalina ecklonii and Usnea amblyoclada. Different tests were done to adjust sample preparation methodologies previous to irradiation. The tests included grinding and drying assays to investigate their influence on the following determination using NAA. Sample grinding with and without the addition of liquid nitrogen was tried and oven-dry and freeze-dry were tried on samples of the two selected species. Elemental determination was done using instrumental Neutron Activation Analysis. Samples were irradiated for 5 hours at the RA-3 reactor of the Ezeiza Atomic Center (thermal flux 3.1013cm-2-2.s-1-1, 4.5 M w), and measured twice with different decay times 86 and 30 days) for the determination of medium and long-lived nuclides. The measurements were done using GeHP detectors (30 % efficiency, resolution 1.9 keV for 6060Co 1332.5 keV peak) coupled to a Canberra Series 85 multichannel analyser

  9. On the system of monitoring ambient air quality in relation to the health of the population of the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Kazmarova, H. [National Inst. of Public Health, Prague (Czech Republic)

    1995-12-31

    In 1991 the Government of the Czech republic in Ruling No 369 approved a draft of a system for monitoring the health of the population in relation to the environment on the basis of a need to obtain purposefully targeted information for an appropriate policy for the protection of health and the environment. The aim of monitoring does not and cannot consist of determining the cause and effect relationship between the health status and pollutants. The system of monitoring is an open and comprehensive system of the continual collection, processing and evaluation of data concerned with the load on the organism and damage to human health in relation to environmental pollution. Air pollution and health are one of the six subsystems realised in the whole system (beside drinking water, noise, food, biomarkers, and demographic and health statistics). The aim of the monitoring is to obtain a data base that shall serve three main purposes: (1) Description of the status of health of the population and characteristics of the ambient air, (2) Evaluation of the trend of each index, (3) Assessment and evaluation of the risk to health of the parameters under study. Thirty cities and towns were selected in the Czech Republic for the realisation of the monitoring system. (author)

  10. Passive air sampler as a tool for long-term air pollution monitoring: Part 1. Performance assessment for seasonal and spatial variations

    International Nuclear Information System (INIS)

    The potential of passive air sampling devices (polyurethane foam disks) to assess the influence of local sources on the quality of the surrounding environment was investigated. DEZA Valasske Mezirici, a coal tar and mixed tar oils processing plant, and Spolana Neratovice, a chemical factory with the history of high production of organochlorinated pesticides (OCPs), were selected as the point sources of PAHs, and OCPs, respectively. Levels of PCBs, OCPs and PAHs were determined for all sampling sites and sampling periods. The study brought useful data about the air concentrations of POPs in the investigated regions. More important, it provided information on the transport and fate of POPs in the vicinity of local sources of contamination useful for the estimation of their influence. Very good capability of passive samplers to reflect temporal and spatial fluctuation in concentrations of persistent organic pollutants in the ambient air was confirmed which makes them applicable for monitoring on the local scale. - Passive air sampling techniques can indicate seasonal and spatial variations in the ambient concentrations of persistent organic compounds near point sources

  11. DNA Probe Design for Preflight and Inflight Microbial Monitoring

    Science.gov (United States)

    Fox, George E.

    1999-01-01

    Crew health is a dominant issue in manned space flight. Microbiological concerns, in particular, have repeatedly emerged as determinants of flight readiness. For example, in at least one case, suspected contamination of the potable water supply nearly forced a launch delay. In another instance, a crew member's urinary tract infection nearly led to early termination of the mission, in part due to the difficulty of accurately diagnosing the nature of the infection in-flight. Microbial problems are an increasing concern with the trend towards longer-duration missions. It is essential to the success of such missions that systems that deliver acceptable quality of air and water during the anticipated lifetime of the spacecraft be available. As mission duration and resupply intervals increase, it will be necessary to rely on advanced life support systems which incorporate both biological and physical-chemical recycling methods for air and water as well as provide food for the crew. It therefore is necessary to develop real-time, robust, in-flight monitoring procedures that are sensitive enough to detect less than 100 CFU (colony forming units) of bacteria per 100 milliliters of water. It would be desirable if the monitoring system could be readily "reprogrammed" to identify specific pathogens if an in-flight incident were to occur. Thus, the monitoring technology must simultaneously detect many organisms of interest, be subject to miniaturization and be highly automated The long range goal of project is to develop such monitoring systems.

  12. An Improved Calibration Method for Hydrazine Monitors for the United States Air Force

    Energy Technology Data Exchange (ETDEWEB)

    Korsah, K

    2003-07-07

    This report documents the results of Phase 1 of the ''Air Force Hydrazine Detector Characterization and Calibration Project''. A method for calibrating model MDA 7100 hydrazine detectors in the United States Air Force (AF) inventory has been developed. The calibration system consists of a Kintek 491 reference gas generation system, a humidifier/mixer system which combines the dry reference hydrazine gas with humidified diluent or carrier gas to generate the required humidified reference for calibrations, and a gas sampling interface. The Kintek reference gas generation system itself is periodically calibrated using an ORNL-constructed coulometric titration system to verify the hydrazine concentration of the sample atmosphere in the interface module. The Kintek reference gas is then used to calibrate the hydrazine monitors. Thus, coulometric titration is only used to periodically assess the performance of the Kintek reference gas generation system, and is not required for hydrazine monitor calibrations. One advantage of using coulometric titration for verifying the concentration of the reference gas is that it is a primary standard (if used for simple solutions), thereby guaranteeing, in principle, that measurements will be traceable to SI units (i.e., to the mole). The effect of humidity of the reference gas was characterized by using the results of concentrations determined by coulometric titration to develop a humidity correction graph for the Kintek 491 reference gas generation system. Using this calibration method, calibration uncertainty has been reduced by 50% compared to the current method used to calibrate hydrazine monitors in the Air Force inventory and calibration time has also been reduced by more than 20%. Significant findings from studies documented in this report are the following: (1) The Kintek 491 reference gas generation system (generator, humidifier and interface module) can be used to calibrate hydrazine detectors. (2) The

  13. Pinus roxburghii plant needles as a three-season biomonitor for elemental air pollution monitoring along roadside

    International Nuclear Information System (INIS)

    The present study deals with the determination of 36 elements in Pinus roxburghii plant needles to assess their potential as biomonitor for elemental air pollution monitoring. The elemental quantification was made by employing Instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectrometric (AAS) techniques. The needles of Pinus roxburghii were collected in spring, summer and winter seasons from various sites in Islamabad. The method validation was performed by analyzing two certified reference materials i.e., Citrus leaves - NIST-SRM-1572 and IAEA-Soil-7. Pollution level was assessed by using three indicators: enrichment factor, pollution load index and average toxic element concentration. The results indicated that the needles of Pinus roxburghii plant had potential to monitor the extent of air pollution in the vicinity of high traffic areas.

  14. Monitoring of air radioactivity at the Jungfraujoch research station: Test of a new high volume aerosol sampler

    OpenAIRE

    Flury, Thomas; Völkle, Hansruedi

    2008-01-01

    The Swiss Federal Office of Public Health (SFOPH) is responsible for the surveillance of environmental radioactivity in Switzerland and for the protection of the public from ionizing and non-ionizing radiation. In order to improve the Swiss radioactivity monitoring network, a new high volume air sampler (DIGITEL DHA-80) was tested in Fribourg and at the Jungfraujoch High Altitude Research Station at 3454 m. The filters are analyzed in the laboratory by a high purity coaxial germanium detector...

  15. Correlations between short-term mobile monitoring and long-term passive sampler measurements of traffic-related air pollution

    Science.gov (United States)

    Riley, Erin A.; Schaal, LaNae; Sasakura, Miyoko; Crampton, Robert; Gould, Timothy R.; Hartin, Kris; Sheppard, Lianne; Larson, Timothy; Simpson, Christopher D.; Yost, Michael G.

    2016-05-01

    Mobile monitoring has provided a means for broad spatial measurements of air pollutants that are otherwise impractical to measure with multiple fixed site sampling strategies. However, the larger the mobile monitoring route the less temporally dense measurements become, which may limit the usefulness of short-term mobile monitoring for applications that require long-term averages. To investigate the stationarity of short-term mobile monitoring measurements, we calculated long term medians derived from a mobile monitoring campaign that also employed 2-week integrated passive sampler detectors (PSD) for NOx, Ozone, and nine volatile organic compounds at 43 intersections distributed across the entire city of Baltimore, MD. This is one of the largest mobile monitoring campaigns in terms of spatial extent undertaken at this time. The mobile platform made repeat measurements every third day at each intersection for 6-10 min at a resolution of 10 s. In two-week periods in both summer and winter seasons, each site was visited 3-4 times, and a temporal adjustment was applied to each dataset. We present the correlations between eight species measured using mobile monitoring and the 2-week PSD data and observe correlations between mobile NOx measurements and PSD NOx measurements in both summer and winter (Pearson's r = 0.84 and 0.48, respectively). The summer season exhibited the strongest correlations between multiple pollutants, whereas the winter had comparatively few statistically significant correlations. In the summer CO was correlated with PSD pentanes (r = 0.81), and PSD NOx was correlated with mobile measurements of black carbon (r = 0.83), two ultrafine particle count measures (r = 0.8), and intermodal (1-3 μm) particle counts (r = 0.73). Principal Component Analysis of the combined PSD and mobile monitoring data revealed multipollutant features consistent with light duty vehicle traffic, diesel exhaust and crankcase blow by. These features were more consistent

  16. BAQMAP Air Quality Monitoring and Surveillance Program for Botswana. Mission 2 Report 27 January - 18 February 1997

    Energy Technology Data Exchange (ETDEWEB)

    Bekkestad, T.

    1997-12-31

    This report is concerned with Mission 2 of a joint project between the authorities in Botswana and Norway on the development of an air pollution monitoring and surveillance program for Botswana. Mission 2 was undertaken as part of the annual meeting on 4 February 1997. Discussions and decision on the air quality program was performed after the annual meeting. Passive samplers for SO{sub 2} and NO{sub 2} were installed in Selebi-Phikwe and Francistown. The samplers measured air pollution from the BCL smelter and traffic, respectively, during the first two weeks of February 1997. The samplers have been analysed and the results are given in this report, which also includes a status report. 13 tabs.

  17. Detection of Campylobacter Bacteria in Air Samples for Continuous Real-Time Monitoring of Campylobacter Colonization in Broiler Flocks

    DEFF Research Database (Denmark)

    Olsen, Katja Nyholm; Lund, Marianne; Skov, J.;

    2009-01-01

    Improved monitoring tools are important for the control of Campylobacter bacteria in broiler production. In this study, we compare the sensitivities of detection of Campylobacter by PCR with feces, dust, and air samples during the lifetimes of broilers in two poultry houses and conclude...... that the sensitivity of detection of Campylobacter in air is comparable to that in other sample materials. Profiling of airborne particles in six poultry houses revealed that the aerodynamic conditions were dependent on the age of the chickens and very comparable among different poultry houses, with low proportions...... of particles in the 0.5- to 2-mu m-diameter range and high proportions in the 2- to 5-mu m-diameter range. Campylobacter could also be detected by PCR in air samples collected at the hanging stage during the slaughter process but not at the other stages tested at the slaughterhouse. The exploitation...

  18. 6th Annual Report 1997. UN ECE convention on long-range transboundary air pollution. International cooperative programme on integrated monitoring of air pollution effects on ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Kleemola, S.; Forsius, M. [eds.

    1997-12-31

    The Integrated Monitoring Programme (IC P IM) is part of the Effects Monitoring Strategy under the UN ECE Convention on Long-Range Transboundary Air Pollution. The main aim of ICP IM is to provide a framework to observe and understand the complex changes occurring in the external environment. The monitoring and prediction of complex ecosystem effects on undisturbed reference areas require a continuous effort to improve the collection and assessment of data on the international scale. This report presents results from assessment activities carried out by the ICP IM Programme Centre and collaborating institutes during the programme year 1996/97 including (1) a summary of the present monitoring activities and the content of the ICP IM database as well as a description of the development of a GIS database, (2) comparison and assessment of the use of steady-state techniques vs. dynamic modelling for the calculation of critical loads, (3) results from a trend analysis of ICP IM data on bulk and throughfall deposition ant runoff water chemistry, (4) demonstration of the use of ICP IM data for advanced hydrological modelling (SVAT model). (orig.) 10 refs.

  19. Monitoring of long-range transported air pollutants and precipitation. Monitoring programme for forest damage. Abstract of annual reports 1996; Overvaaking av langtransportert forurenset luft og nedboer. Overvaakingsprogram for skogskader. Sammendrag av aarsrapporter 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    This report sums up the results for 1996 of two monitoring programmes: `` Norwegian Monitoring Programme for Long-Range Transported Air Pollutants`` and ``Norwegian forest monitoring programme``. The atmospheric pollution is monitored by measurements of chemical main components in the air and in precipitation. The effects of the pollutants on water quality are followed by monitoring of rivers, lakes and field research areas. The effects on fish are followed by regional investigations on benthic organisms, zooplankton and fish populations in rivers and lakes. Water chemical samples are taken each month from 16 rivers and acid material is monitored at seven field research areas. Samples are also taken from 200 lakes every autumn. The biological monitoring programme comprises fish in lakes and streams and benthic animals in lakes. The monitoring of forest damage uses three nation-wide areas from which registrations have been taken over a period of ten years. 28 figs., 6 tabs.

  20. Improved detection of incipient anomalies via multivariate memory monitoring charts: Application to an air flow heating system

    KAUST Repository

    Harrou, Fouzi

    2016-08-11

    Detecting anomalies is important for reliable operation of several engineering systems. Multivariate statistical monitoring charts are an efficient tool for checking the quality of a process by identifying abnormalities. Principal component analysis (PCA) was shown effective in monitoring processes with highly correlated data. Traditional PCA-based methods, nevertheless, often are relatively inefficient at detecting incipient anomalies. Here, we propose a statistical approach that exploits the advantages of PCA and those of multivariate memory monitoring schemes, like the multivariate cumulative sum (MCUSUM) and multivariate exponentially weighted moving average (MEWMA) monitoring schemes to better detect incipient anomalies. Memory monitoring charts are sensitive to incipient anomalies in process mean, which significantly improve the performance of PCA method and enlarge its profitability, and to utilize these improvements in various applications. The performance of PCA-based MEWMA and MCUSUM control techniques are demonstrated and compared with traditional PCA-based monitoring methods. Using practical data gathered from a heating air-flow system, we demonstrate the greater sensitivity and efficiency of the developed method over the traditional PCA-based methods. Results indicate that the proposed techniques have potential for detecting incipient anomalies in multivariate data. © 2016 Elsevier Ltd

  1. LOCAL AIR: Local Aerosol monitoring combining in-situ and Remote Sensing observations

    Science.gov (United States)

    Mona, Lucia; Caggiano, Rosa; Donvito, Angelo; Giannini, Vincenzo; Papagiannopoulos, Nikolaos; Sarli, Valentina; Trippetta, Serena

    2015-04-01

    The atmospheric aerosols have effects on climate, environment and health. Although the importance of the study of aerosols is well recognized, the current knowledge of the characteristics and their distribution is still insufficient, and there are large uncertainties in the current understanding of the role of aerosols on climate and the environment, both on a regional and local level. Overcoming these uncertainties requires a search strategy that integrates data from multiple platforms (eg, terrestrial, satellite, ships and planes) and the different acquisition techniques (for example, in situ measurements, remote sensing, modeling numerical and data assimilation) (Yu et al., 2006). To this end, in recent years, there have been many efforts such as the creation of networks dedicated to systematic observation of aerosols (eg, European Monitoring and Evaluation Programme-EMEP, European Aerosol Research Lidar NETwork-EARLINET, MicroPulse Lidar Network- MPLNET, and Aerosol Robotic NETwork-AERONET), the development and implementation of new satellite sensors and improvement of numerical models. The recent availability of numerous data to the ground, columnar and profiles of aerosols allows to investigate these aspects. An integrated approach between these different techniques could be able to provide additional information, providing greater insight into the properties of aerosols and their distribution and overcoming the limits of each single technique. In fact, the ground measurements allow direct determination of the physico-chemical properties of aerosols, but cannot be considered representative for large spatial and temporal scales and do not provide any information about the vertical profile of aerosols. On the other hand, the remote sensing techniques from the ground and satellite provide information on the vertical distribution of atmospheric aerosols both in the Planetary Boundary Layer (PBL), mainly characterized by the presence of aerosols originating from

  2. Environmental assessment of three egg production systems--Part I: Monitoring system and indoor air quality.

    Science.gov (United States)

    Zhao, Y; Shepherd, T A; Li, H; Xin, H

    2015-03-01

    To comprehensively assess conventional vs. some alternative laying-hen housing systems under U.S. production conditions, a multi-institute and multi-disciplinary project, known as the Coalition for Sustainable Egg Supply (CSES) study, was carried out at a commercial egg production farm in the Midwestern United States over two single-cycle production flocks. The housing systems studied include a conventional cage house (200,000 hen capacity), an aviary house (50,000 hen capacity), and an enriched colony house (50,000 hen capacity). As an integral part of the CSES project, continual environmental monitoring over a 27-month period described in this paper quantifies indoor gaseous and particulate matter concentrations, thermal environment, and building ventilation rate of each house. Results showed that similar indoor thermal environments in all three houses were maintained through ventilation management and environmental control. Gaseous and particulate matter concentrations of the enriched colony house were comparable with those of the conventional cage house. In comparison, the aviary house had poorer indoor air quality, especially in wintertime, resulting from the presence of floor litter (higher ammonia levels) and hens' activities (higher particulate matter levels) in it. Specifically, daily mean indoor ammonia concentrations had the 95% confidence interval values of 3.8 to 4.2 (overall mean of 4.0) ppm for the conventional cage house; 6.2 to 7.2 (overall mean of 6.7) ppm for the aviary house; and 2.7 to 3.0 (overall mean of 2.8) ppm for the enriched colony house. The 95% confidence interval (overall mean) values of daily mean indoor carbon dioxide concentrations were 1997 to 2170 (2083) ppm for the conventional cage house, 2367 to 2582 (2475) ppm for the aviary house, and 2124 to 2309 (2216) ppm for the enriched colony house. Daily mean indoor methane concentrations were similar for all three houses, with 95% confidence interval values of 11.1 to 11.9 (overall

  3. 7th annual report 1998. UN ECE convention on long-range transboundary air pollution. International cooperative programme on integrated monitoring of air pollution effects on ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Kleemola, S.; Forsius, M. [eds.

    1998-11-01

    The Integrated Monitoring Programme (ICP IM) is part of the Effects Monitoring Strategy under the UN ECE Long-Range Transboundary Air Pollution Convention. The main aim of ICP IM is to provide a framework to observe and understand the complex changes occurring in the external environment. The monitoring and prediction of complex ecosystem effects on undisturbed reference areas require a continuous effort to improve the collection and assessment of data on the international scale. At the 1997 Task Force meeting it was decided that future annual reports from ICP IM would have a more technical character. The report could include some scientific material but also short technical descriptions of recent national activities and publications. Scientific articles should preferably be published in recognised scientific journals. The responsibility for producing annual reports would still lie on the Programme Centre, but more contributions from National Focal Points were welcomed. The content of the present Annual Report reflects the decisions of the Task Force meeting. The report gives a general overview of the ICP IM activities, the present content of the ICP IM database, and presents results from assessment activities carried out by several collaborating institutes and the ICP IM Programme Centre during the programme year 1997/98. The resources of the Programme Centre have been targeted to the revision of the Programme Manual and the EU/LIFE-project `Development of Assessment and Monitoring Techniques at Integrated Monitoring Sites in Europe`, which has limited the possibilities to carry out additional evaluations of ICP IM data. Section 1 is a short status report of the ICP IM activities, content of the IM database, including the contents of the GIS database, and the present geographical coverage of the monitoring network. Section 2 contains a report on multivariate gradient analysis applied to relate chemical and biological observations (prepared by D. de Zwart, RIVM

  4. Low-cost monitoring of campylobacter in poultry houses by air sampling and quantitative PCR

    DEFF Research Database (Denmark)

    Søndergaard, Mette Sofie Rousing; Josefsen, Mathilde Hasseldam; Löfström, Charlotta;

    2014-01-01

    The present study describes the evaluation of a method for the quantification of Campylobacter by air sampling in poultry houses. Sampling was carried out in conventional chicken houses in Poland, in addition to a preliminary sampling in Denmark. Each measurement consisted of three air samples, t...

  5. Indoor Air Quality in Schools (IAQ): The Importance of Monitoring Carbon Dioxide Levels.

    Science.gov (United States)

    Sundersingh, David; Bearg, David W.

    This article highlights indoor air quality and exposure to pollutants at school. Typical air pollutants within schools include environmental tobacco smoke, formaldehyde, volatile organic compounds, nitrogen oxides, carbon monoxide, carbon dioxide, allergens, pathogens, radon, pesticides, lead, and dust. Inadequate ventilation, inefficient…

  6. Air pollution exposure estimation using dispersion modelling and continuous monitoring data in a prospective birth cohort study in the Netherlands

    Directory of Open Access Journals (Sweden)

    Van den Hooven Edith H

    2012-02-01

    Full Text Available Abstract Previous studies suggest that pregnant women and children are particularly vulnerable to the adverse effects of air pollution. A prospective cohort study in pregnant women and their children enables identification of the specific effects and critical periods. This paper describes the design of air pollution exposure assessment for participants of the Generation R Study, a population-based prospective cohort study from early pregnancy onwards in 9778 women in the Netherlands. Individual exposures to PM10 and NO2 levels at the home address were estimated for mothers and children, using a combination of advanced dispersion modelling and continuous monitoring data, taking into account the spatial and temporal variation in air pollution concentrations. Full residential history was considered. We observed substantial spatial and temporal variation in air pollution exposure levels. The Generation R Study provides unique possibilities to examine effects of short- and long-term air pollution exposure on various maternal and childhood outcomes and to identify potential critical windows of exposure.

  7. Air pollution monitoring in urban areas due to heavy transportation and industries: a case of rawalpindi and islamabad

    International Nuclear Information System (INIS)

    The present study deals with the air pollution caused by Industry and transportation in urban areas of Pakistan. Rawalpindi and Islamabad, the twin cities of Pakistan were considered for this purpose. The concentrations of major air pollutants were taken from different location according their standard time period using Air Quality Monitoring Station. Five major air pollutants were considered i.e., NO/sub 2/, SO/sub 2/, CO, O/sub 3/ and PM/sub 2.5/. The average mean values for all pollutants were taken on monthly and four monthly bases. The concentrations of NO2 and PM2.5 were exceeding the permissible limits as define by Environmental Protection Agency of Pakistan. Other pollutants concentrations were within the standard limits. Geographic Information System was used as a tool for the representation and analysis of Environmental Impacts of air pollution. Passquill and Smith dispersion model was used to calculate the buffer zones. Some mitigation measures were also recommended to assess the environmental and health Impacts because of PM/sub 2.5/ and NO/sub 2/. (author)

  8. Air pollutant monitoring for the East Bay Children's Respiratory Health Study

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Brett C.; Hotchi, Toshifumi; Hodgson, Alfred T.

    2002-11-01

    This report describes the methodology and presents the summary results of the air pollutant monitoring program conducted by Lawrence Berkeley National Laboratory in support of the East Bay Children's Respiratory Health Study. The full study is examining the effects of chronic exposure to traffic-related pollutants on respiratory health among 3rd and 4th grade children attending ten neighborhood elementary schools in the San Francisco East Bay Area (Hayward, San Leandro and Oakland, CA). The demographically similar schools are located at varying distances from the I-880 and CA-92 freeways. Several schools were selected because they are located within 300 m in the predominant downwind direction (east) from either of the freeways. Measurements of multiple pollutants were made outdoors at the schools over 1-2 week intervals for 14 weeks in spring and eight weeks in fall 2001 using a custom-designed and validated package of commercially available monitoring equipment. Particulate matter was sampled over all hours (24 h per day) or during schools hours only with battery-operated programmable pumps and inlet devices for PM{sub 10} and PM{sub 2.5}. These pumps were modified to allow for up to 10 days of continuous operation. Fine particle mass and black carbon (BC) were determined from the collected filters. Nitrogen oxides (NO{sub x} and NO{sub 2}) were measured with passive samplers. Carbon monoxide (CO) was measured continuously with an electrochemical sensor. Gasoline-related volatile organic compounds (VOCs) were measured with passive samplers during three 4-week intervals in spring 2001 and two 4-week periods in early 2002. All samplers were deployed in a metal cabinet located outside at each school. Ranges of study average pollutant concentrations (all-hours) at the ten individual schools were: NO{sub x}, 33-68 ppb; NO{sub 2}, 19-31 ppb; PM{sub 10} mass, 27-32 {micro}g/m{sup 3}; PM{sub 2.5} mass, 12-15 {micro}g/m{sup 3}; and BC associated with PM{sub 2.5}, 0

  9. Use of CFD modeling for estimating spatial representativeness of urban air pollution monitoring sites and suitability of their locations

    International Nuclear Information System (INIS)

    A methodology to estimate the spatial representativeness of air pollution monitoring sites is applied to two urban districts. This methodology is based on high resolution maps of air pollution computed by using Computational Fluid Dynamics (CFD) modelling tools. Traffic-emitted NO2 dispersion is simulated for several meteorological conditions taking into account the effect of the buildings on air flow and pollutant dispersion and using a steady state CFD-RANS approach. From these results, maps of average pollutant concentrations for January -May 2011 are computed as a combination of the simulated scenarios. Two urban districts of Madrid City were simulated. Spatial representativeness areas for 32 different sites within the same district (including the site of the operative air quality stations) have been estimated by computing the portion of the domains with average NO2 concentration differing less than a 20% of the concentration at each candidate monitoring site. New parameters such as the ratio AR between the representativeness area and the whole domain area or the representativeness index (IR) has been proposed to discuss and compare the representativeness areas. Significant differences between the spatial representativeness of the candidate sites of both studied districts have been found. The sites of the Escuelas Aguirre district have generally smaller representativeness areas than those of the Plaza de Castilla. More stations are needed to cover the Escuelas Aguirre district than for the Plaza de Castilla one. The operative air quality station of the Escuelas Aguirre district is less representative than the station of the Plaza de Castilla district. The cause of these differences seems to be the differences in urban structure of both districts prompting different ventilation. (Author)

  10. STS-54 Crew Arrival for TCDT

    Science.gov (United States)

    1992-01-01

    Footage shows the crew of STS-54, Commander John H. Casper, Pilot Donald R. McMonagle, and Mission Specialists Mario Runco, Jr., Gregory J. Harbaugh, and Susan J. Helms landing and emerging from several T-38 aircraft during the Terminal Countdown and Demonstration Test (TCDT). Commander Casper introduces the crew and they each make a brief statement about the mission.

  11. ANALYSIS OF EPA (ENVIRONMENTAL PROTECTION AGENCY) PROTOCOL GASES USED FOR CALIBRATION AND AUDITS OF CONTINUOUS EMISSION MONITORING SYSTEMS AND AMBIENT AIR ANALYZERS - RESULTS OF AUDIT 6

    Science.gov (United States)

    A performance audit was conducted on EPA Protocol Gases used for calibration and audits of continuous emission monitoring systems and ambient air analyzers. Fifty gaseous pollutant calibraton standards were purchased from eleven specialty gas producers. These standards contained ...

  12. Real-time monitoring of ozone in air using substrate-integrated hollow waveguide mid-infrared sensors.

    Science.gov (United States)

    da Silveira Petruci, João Flávio; Fortes, Paula Regina; Kokoric, Vjekoslav; Wilk, Andreas; Raimundo, Ivo Milton; Cardoso, Arnaldo Alves; Mizaikoff, Boris

    2013-11-11

    Ozone is a strong oxidant that is globally used as disinfection agent for many purposes including indoor building air cleaning, during food preparation procedures, and for control and killing of bacteria such as E. coli and S. aureus. However, it has been shown that effective ozone concentrations for controlling e.g., microbial growth need to be higher than 5 ppm, thereby exceeding the recommended U.S. EPA threshold more than 10 times. Consequently, real-time monitoring of such ozone concentration levels is essential. Here, we describe the first online gas sensing system combining a compact Fourier transform infrared (FTIR) spectrometer with a new generation of gas cells, a so-called substrate-integrated hollow waveguide (iHWG). The sensor was calibrated using an UV lamp for the controlled generation of ozone in synthetic air. A calibration function was established in the concentration range of 0.3-5.4 mmol m⁻³ enabling a calculated limit of detection (LOD) at 0.14 mmol m⁻³ (3.5 ppm) of ozone. Given the adaptability of the developed IR sensing device toward a series of relevant air pollutants, and considering the potential for miniaturization e.g., in combination with tunable quantum cascade lasers in lieu of the FTIR spectrometer, a wide range of sensing and monitoring applications of beyond ozone analysis are anticipated.

  13. Detection of Campylobacter bacteria in air samples for continuous real-time monitoring of Campylobacter colonization in broiler flocks.

    Science.gov (United States)

    Olsen, Katja N; Lund, Marianne; Skov, Julia; Christensen, Laurids S; Hoorfar, Jeffrey

    2009-04-01

    Improved monitoring tools are important for the control of Campylobacter bacteria in broiler production. In this study, we compare the sensitivities of detection of Campylobacter by PCR with feces, dust, and air samples during the lifetimes of broilers in two poultry houses and conclude that the sensitivity of detection of Campylobacter in air is comparable to that in other sample materials. Profiling of airborne particles in six poultry houses revealed that the aerodynamic conditions were dependent on the age of the chickens and very comparable among different poultry houses, with low proportions of particles in the 0.5- to 2-microm-diameter range and high proportions in the 2- to 5-microm-diameter range. Campylobacter could also be detected by PCR in air samples collected at the hanging stage during the slaughter process but not at the other stages tested at the slaughterhouse. The exploitation of airborne dust in poultry houses as a sample material for the detection of Campylobacter and other pathogens provides an intriguing possibility, in conjunction with new detection technologies, for allowing continuous or semicontinuous monitoring of colonization status.

  14. Communication analyses of plant operator crews

    International Nuclear Information System (INIS)

    Elucidation of crew communication aspects is required to improve the man-man interface which supports operators' diagnoses and decisions. Experiments to clarify operator performance under abnormal condition were evaluated by protocol analyses, interviews, etc. using a training simulator. We had the working hypothesis, based on experimental observations, that operator performance can be evaluated by analysis of crew communications. The following four approaches were tried to evaluate operator performance. (1) Crew performance was quantitatively evaluated by the number of tasks undertaken by an operator crew. (2) The group thinking process was clarified by cognition-communication flow. (3) The group response process was clarified by movement flow. (4) Quantitative indexes for evaluating crew performance were considered to be represented by the amount of information effectively exchanged among operators. (author)

  15. The Apollo 11 Prime Crew

    Science.gov (United States)

    1969-01-01

    Portrait of the prime crew of the Apollo 11 lunar landing mission. From left to right they are: Commander, Neil A. Armstrong, Command Module Pilot, Michael Collins, and Lunar Module Pilot, Edwin E. Aldrin Jr. On July 20th 1969 at 4:18 PM, EDT the Lunar Module 'Eagle' landed in a region of the Moon called the Mare Tranquillitatis, also known as the Sea of Tranquillity. After securing his spacecraft, Armstrong radioed back to earth: 'Houston, Tranquility Base here, the Eagle has landed'. At 10:56 p.m. that same evening and witnessed by a worldwide television audience, Neil Armstrong stepped off the 'Eagle's landing pad onto the lunar surface and said: 'That's one small step for a man, one giant leap for mankind.' He became the first human to set foot upon the Moon.

  16. Influence of the helicopter environment on patient care capabilities: flight crew perceptions

    Science.gov (United States)

    Myers, K. J.; Rodenberg, H.; Woodard, D.

    1995-01-01

    INTRODUCTION: Flight crew perceptions of the effect of the rotary-wing environment on patient-care capabilities have not been subject to statistical analysis. We hypothesized that flight crew members perceived significant difficulties in performing patient-care tasks during air medical transport. METHODS: A survey was distributed to a convenience sample of flight crew members from 20 flight programs. Respondents were asked to compare the difficulty of performing patient-care tasks in rotary-wing and standard (emergency department or intensive care unit) settings. Demographic data collected on respondents included years of flight experience, flights per month, crew duty position and primary aircraft in which the respondent worked. Statistical analysis was performed as appropriate using Student's t-test, type III sum of squares, and analysis of variance. Alpha was defined as p responded. All tasks were significantly rated more difficult in the rotary-wing environment. Ratings were not significantly correlated with flight experience, duty position, flights per month or aircraft used. CONCLUSIONS: We conclude that the performance of patient-care tasks are perceived by air medical flight crew to be significantly more difficult during rotary-wing air medical transport than in hospital settings.

  17. Performance Evaluation of a Lower-Cost, Real-Time Community Air Monitoring Station

    Science.gov (United States)

    These slides describe the Village Green Project prototype and how the measurements compare wtih nearby FEMs, including the OAQPS data collected at the AIRS site on the EPA-RTP campus and the NCDENR FEMs in the Triangle area.

  18. Air quality monitoring system using lichens as bioindicators in Central Argentina.

    Science.gov (United States)

    Estrabou, Cecilia; Filippini, Edith; Soria, Juan Pablo; Schelotto, Gabriel; Rodriguez, Juan Manuel

    2011-11-01

    Air quality studies with bioindicators have not been well developed in South America. In the city of Córdoba, there are not permanent air pollutant measurements by equipment. In order to develop an air quality biomonitoring system using lichens, we applied a systematic sampling in the city of Córdoba, Argentina. A total of 341 plots were sampled in the area of the city which is a square of 24 × 24 km. In each sample plot we selected three phorophytes and estimated the frequency and cover of lichen species growing at 1.5 m on trunks. We also calculated the Index of Atmospheric Purity (IAP) using lichen frequencies. Maps with number of lichen species, cover values, and IAP were performed. The lichen community was described with nine species where Physcia undulata and Physcia endochryscea were the most frequent. Moreover, these two species were dominant in the community with the highest cover index. The central area of the city is considered a lichen desert with poor air quality. The southeast and northwest areas of the city showed the highest IAP values and number of species. In general, the city shows fair air quality and few areas with good and very good air quality. PMID:21336488

  19. Monitoring of air pollution in Oerebro county. Results up to September 1999; Oevervakning av luftfoeroreningar i Oerebro laen. Resultat till och med september 1999

    Energy Technology Data Exchange (ETDEWEB)

    Akselsson, Cecilia [ed.

    2000-04-01

    Swedish Environmental Research Inst. have measured deposition of air pollutants, soil water quality, and air pollution levels in forested areas in different parts of Sweden. This report treats Oerebro county and the compilation covers the period 1989-1999, with more detailed monitoring for 1998-1999.

  20. MONITORING DAERAH RESAPAN AIR DENGAN METODE GEOLISTRIK STUDI KASUS KELURAHAN SEKARAN, KECAMATAN GUNUNGPATI, KOTA SEMARANG

    Directory of Open Access Journals (Sweden)

    N. Millah

    2012-05-01

    Full Text Available Kecamatan Gunungpati merupakan salah satu wilayah konservasi di Kota Semarang yang mengalami perkembangan sejakdidirikannya Kampus Unnes di Kelurahan Sekaran. Pesatnya pembangunan yang ada saat ini telah mengakibatkan terjadinyaperubahan tata guna lahan. Untuk mengetahui pengaruhnya terhadap fungsi daerah resapan air di Kelurahan Sekaran makadilakukan pengukuran dengan metode geolistrik konfigurasi Schlumberger. Tujuan dari penelitian ini adalah untuk mengetahuistatus daerah resapan air di Kelurahan Sekaran. Penelitian ini dilakukan di Kawasan Kampus Unnes Sekaran dan sekitarnyadalam 2 tahap, yaitu bulan Nopember 2010 dan Januari 2011. Hasil pengolahan data dengan software Res2dinv ver. 3.56 diketahuibahwa untuk TS 01, TS 02, TS 04, TS 05 resapan air paling banyak terjadi pada bulan Nopember 2010, untuk TS 03 pada bulanJanuari 2011. Lapisan batuan penyusun yang ada umumnya terdiri dari lempung dan batu pasir. Lapisan batu pasir inilah yangdiharapkan dapat berfungsi sebagai penyimpan air hujan yang meresap dan teridentifikasi sebagai air tanah dangkal. Simpulandari penelitian ini yaitu Kelurahan Sekaran masih berfungsi sebagai daerah resapan air dengan ditemukannya air tanah dangkal dilokasi penelitian. This research aims to study the influence of development of Sekaran into the function of its water infiltration area by using a methodof Schlumberger configuration. There were two steps of research conducted in November 2010 and January 2011. The result ofdata processing using software Res2dinv ver. 3.56 shows that the most water infiltration happened in Nopember 2010 forTS 01,TS02, TS 04, TS 05 points, while those for TS 03 happened in January 2011. In general, the composing layers are clay and sand. Thesand is supposed to have the function of infiltrated rain water keeper and identified as shalow soil water. Based on the identifiedshalow soil water, the research concluded that Sekaran still has a function of water infiltration

  1. Air quality and precipitation quality monitoring at Tjeldbergodden October 2009 to September 2010; Maalinger av luftkvalitet og nedboerkvalitet paa Tjeldbergodden oktober 2009 - september 2010

    Energy Technology Data Exchange (ETDEWEB)

    Toennessen, Dag; Haugsbakk, Ivar

    2012-07-01

    Air and precipitation quality is measured and the Tjeldbergodden from October 2009 to October 2010. Most of the components values corresponding levels measured on the basis stations in the monitoring of long air and rain contamination. Local emissions and elevated concentrations of nitrogen dioxide in air to about 2.5 times the background value and to vanadium in precipitation. Components chlorine, sodium and magnesium are also somewhat higher than the background stations.(eb)

  2. Applications of NO2 Satellite Observations at High Latitudes for Monitoring Air Quality (ILMA): Objectives and First Results

    Science.gov (United States)

    Ialongo, Iolanda; Tamminen, Johanna

    2015-06-01

    The first results of ILMA project are presented in this paper. The project aims at increasing the scientific exploitation of satellite data for air quality monitoring at high latitudes. The specific focus of the project is evaluating the quality of satellite NO2 retrievals and preparing for upcoming TROPOMI mission. Satellite-based OMI (Ozone Monitoring Instrument) NO2 total columns are compared with Pandora measurements performed in Helsinki in 2012. The median relative difference for OMI standard product is 1% and -6% for clear sky and all sky conditions, respectively. Larger differences between OMI and Pandora correspond to cloudy autumn-winter days with solar zenith angles above 70° . Both satellite and ground-based data show similar weekly cycle, with lower NO2 levels during the weekend compared to the weekdays.

  3. The Deployment of Carbon Monoxide Wireless Sensor Network (CO-WSN) for Ambient Air Monitoring

    OpenAIRE

    Chaichana Chaiwatpongsakorn; Mingming Lu; Keener, Tim C.; Soon-Jai Khang

    2014-01-01

    Wireless sensor networks are becoming increasingly important as an alternative solution for environment monitoring because they can reduce cost and complexity. Also, they can improve reliability and data availability in places where traditional monitoring methods are difficult to site. In this study, a carbon monoxide wireless sensor network (CO-WSN) was developed to measure carbon monoxide concentrations at a major traffic intersection near the University of Cincinnati main campus. The syst...

  4. Monitoring coal-tar pitch composition changes during air-blowing by gas chromatography.

    Science.gov (United States)

    Domínguez, A; Blanco, C; Santamaría, R; Granda, M; Blanco, C G; Menéndez, R

    2004-02-13

    A series of air-blown coal-tar pitches was studied by GC and GC-MS in order to achieve a deeper understanding of the behaviour of the different pitch components during air-blowing. Compounds present in the parent pitch were identified and quantified and then compared to those present in the air-blown pitches. The compounds observed were identical before and after the treatments, but the concentration of each compound changed with the treatment to a different extent depending on its molecular structure and consequently its reactivity to oxygen. The most reactive compounds were those with a mehylene-bridge in a five member ring, followed by those with a methyl group in their structure.

  5. Client Server Model Based DAQ System for Real-Time Air Pollution Monitoring

    Directory of Open Access Journals (Sweden)

    Vetrivel. P

    2014-01-01

    Full Text Available The proposed system consists of client server model based Data-Acquisition Unit. The Embedded Web Server integrates Pollution Server and DAQ that collects air Pollutants levels (CO, NO2, and SO2. The Pollution Server is designed by considering modern resource constrained embedded systems. In contrast, an application server is designed to the efficient execution of programs and scripts for supporting the construction of various applications. While a pollution server mainly deals with sending HTML for display in a web browser on the client terminal, an application server provides access to server side logic for pollutants levels to be use by client application programs. The Embedded Web Server is an arm mcb2300 board with internet connectivity and acts as air pollution server as this standalone device gathers air pollutants levels and as a Server. Embedded Web server is accessed by various clients.

  6. Spatiotemporal Patterns, Monitoring Network Design, and Environmental Justice of Air Pollution in the Phoenix Metropolitan Region: A Landscape Approach

    Science.gov (United States)

    Pope, Ronald L.

    Air pollution is a serious problem in most urban areas around the world, which has a number of negative ecological and human health impacts. As a result, it's vitally important to detect and characterize air pollutants to protect the health of the urban environment and our citizens. An important early step in this process is ensuring that the air pollution monitoring network is properly designed to capture the patterns of pollution and that all social demographics in the urban population are represented. An important aspect in characterizing air pollution patterns is scale in space and time which, along with pattern and process relationships, is a key subject in the field of landscape ecology. Thus, using multiple landscape ecological methods, this dissertation research begins by characterizing and quantifying the multi-scalar patterns of ozone (O3) and particulate matter (PM10) in the Phoenix, Arizona, metropolitan region. Results showed that pollution patterns are scale-dependent, O3 is a regionally-scaled pollutant at longer temporal scales, and PM10 is a locally-scaled pollutant with patterns sensitive to season. Next, this dissertation examines the monitoring network within Maricopa County. Using a novel multiscale indicator-based approach, the adequacy of the network was quantified by integrating inputs from various academic and government stakeholders. Furthermore, deficiencies were spatially defined and recommendations were made on how to strengthen the design of the network. A sustainability ranking system also provided new insight into the strengths and weaknesses of the network. Lastly, the study addresses the question of whether distinct social groups were experiencing inequitable exposure to pollutants - a key issue of distributive environmental injustice. A novel interdisciplinary method using multi-scalar ambient pollution data and hierarchical multiple regression models revealed environmental inequities between air pollutants and race, ethnicity

  7. Los Alamos Air Monitoring Data Related to the Fukushima Daiichi Reactor

    Energy Technology Data Exchange (ETDEWEB)

    McNaughton, Michael [Los Alamos National Laboratory

    2011-01-01

    In response to the disasters in Japan on March 11, 2011, Los Alamos National Laboratory (LANL) is collecting air data and analyzing the data for fission products. At present, we report preliminary data from three high-volume air samplers and one stack sampler. Iodine-131 (I-131) is not optimally measured by our standard polypropylene filters. In addition to the filter data, we have one measurement obtained from a charcoal cartridge. These data, together with measurements of other radionuclides are adequate for a preliminary assessment and assure us that radionuclides from Fukushima Daiichi do not present a threat to human health at or near Los Alamos.

  8. Digital and smart chest drainage systems to monitor air leaks: the birth of a new era?

    Science.gov (United States)

    Cerfolio, Robert J; Varela, Gonzalo; Brunelli, Alessandro

    2010-08-01

    Recently, several companies have manufactured and commercialized new pleural drainage units that incorporate electronic components for the digital quantification of air through chest tubes and, in some instances, pleural pressure assessment. The goal of these systems is to objectify this previously subjective bedside clinical parameter and allow for more objective, consistent measurement of air leaks. The belief is this will lead to quicker and more accurate chest tube management. In addition, some systems feature portable suction devices. These may afford earlier mobilization of patients because the pleural drainage chamber is attached to a battery-powered smart suction device. In this article we review the clinical experiences using these new devices. PMID:20619233

  9. Monitoring of long-range transported air pollutants, Annual report for 2011; Overvaaking av langtransportert forurenset luft og nedboer. Atmosfaeriske tilfoersler, 2011

    Energy Technology Data Exchange (ETDEWEB)

    Aas, Wenche; Solberg, Sverre; Manoe, Stein; Yttri, Karl Espen

    2012-07-01

    This report presents the 2011 monitoring results from the rural air- and precipitation chemistry monitoring network in Norway. In 2011, main components in precipitation were measured at 15 sites. Trace elements were determined at four sites. Air concentrations of sulphur and nitrogen compounds were measured at six sites, and ozone concentrations at eight sites. Persistent organic pollutants and heavy metals in air are determined at three sites. Measurements of PM10 and PM2.5 mass are also determined at three sites, including measurements of organic and elemental carbon (OC and EC). An overview of the measurement programme is given in Appendix B2. (Author)

  10. Crew system dynamics - Combining humans and automation

    Science.gov (United States)

    Connors, Mary

    1989-01-01

    Some of the human factor issues involved in effectively combining human and automated systems are examined with particular reference to spaceflights. The concepts of the crew system and crew systems dynamics are defined, and the present status of crew systems is summarized. The possibilities and potential problems aasociated with the use of automated systems are discussed, as are unique capabilities and possible errors introduced by human participants. It is emphasized that the true integration of human and automated systems must allow for the characteristics of both.

  11. Optimal Design of Air Quality Monitoring Network and its Application in an Oil Refinery Plant: An Approach to Keep Health Satus of Workers

    Directory of Open Access Journals (Sweden)

    Khaled ZoroufchiBenis

    2015-12-01

    Full Text Available Background: Industrial air pollution is a growing challenge to humane health, especially in developing countries, where there is no systematic monitoring of air pollution. Given the importance of the availabil­ity of valid information on population exposure to air pollutants, it is important to design an optimal Air Quality Monitoring Network (AQMN for assessing population exposure to air pollution and predicting the magnitude of the health risks to the population. Methods: A multi-pollutant method (implemented as a MATLAB program was explored for configur­ing an AQMN to detect the highest level of pollution around an oil refinery plant. The method ranks potential monitoring sites (grids according to their ability to represent the ambient concentra­tion. The term of cluster of contiguous grids that exceed a threshold value was used to calculate the Station Dosage. Selection of the best configuration of AQMN was done based on the ratio of a sta­tion’s dosage to the total dosage in the network. Results: Six monitoring stations were needed to detect the pollutants concentrations around the study area for estimating the level and distribution of exposure in the population with total network effi­ciency of about 99%. An analysis of the design procedure showed that wind regimes have greatest effect on the location of monitoring stations. Conclusion: The optimal AQMN enables authorities to implement an effective program of air quality management for protecting human health.

  12. In-flight dose estimates for aircraft crew and pregnant female crew members in military transport missions.

    Science.gov (United States)

    Alves, J G; Mairos, J C

    2007-01-01

    Aircraft fighter pilots may experience risks other than the exposure to cosmic radiation due to the characteristics of a typical fighter flight. The combined risks for fighter pilots due to the G-forces, hypobaric hypoxia, cosmic radiation exposure, etc. have determined that pregnant female pilots should remain on ground. However, several military transport missions can be considered an ordinary civil aircraft flight and the question arises whether a pregnant female crew member could still be part of the aircraft crew. The cosmic radiation dose received was estimated for transport missions carried out on the Hercules C-130 type of aircraft by a single air squad in 1 month. The flights departed from Lisboa to areas such as: the Azores, several countries in central and southern Africa, the eastern coast of the USA and the Balkans, and an estimate of the cosmic radiation dose received on each flight was carried out. A monthly average cosmic radiation dose to the aircraft crew was determined and the dose values obtained were discussed in relation to the limits established by the European Union Council Directive 96/29/Euratom. The cosmic radiation dose estimates were performed using the EPCARD v3.2 and the CARI-6 computing codes. EPCARD v3.2 was kindly made available by GSF-National Research Centre for Environment and Health, Institute of Radiation Protection (Neuherberg, Germany). CARI-6 (version July 7, 2004) was downloaded from the web site of the Civil Aerospace Medical Institute, Federal Aviation Administration (USA). In this study an estimate of the cosmic radiation dose received by military aircraft crew on typical transport missions is made.

  13. 77 FR 41930 - Bleed Air Cleaning and Monitoring Equipment and Technology

    Science.gov (United States)

    2012-07-17

    ... an opportunity to participate in #0;the rule making prior to the adoption of the final rules. #0; #0... Equipment and Technology ACTION: Notice; request for information. SUMMARY: The FAA seeks information from industry developers, manufacturers, and the public related to effective air cleaning technology and...

  14. AIR QUALITY MONITORING IN ATLANTA WITH THE DIFFERENTIAL OPTICAL ABSORPTION SPECTROMETER

    Science.gov (United States)

    During July and August of 1990, a differential optical absorption spectrometer (DOAS) made by OPSIS Inc. was used to measure gaseous air pollutants over three separate open paths in Atlanta, GA. ver path 1 (1099 m) and path 2 (1824 m), ozone (O3), sulfur dioxide (SO2), nitrogen d...

  15. Cooling Properties of the Shuttle Advanced Crew Escape Spacesuit: Results of an Environmental Chamber Experiment

    Science.gov (United States)

    Hamilton, Douglas; Gillis, David; Bue, Grant; Son, Chan; Norcross, Jason; Kuznetz, Larry; Chapman, Kirt; Chhipwadia, Ketan; McBride, Tim

    2008-01-01

    The shuttle crew wears the Advanced Crew Escape Spacesuit (ACES) to protect themselves from cabin decompression and to support bail out during landing. ACES is cooled by a liquid-cooled garment (LCG) that interfaces to a heat exchanger that dumps heat into the cabin. The ACES outer layer is made of Gore-Tex(Registered TradeMark), permitting water vapor to escape while containing oxygen. The crew can only lose heat via insensible water losses and the LCG. Under nominal landing operations, the average cabin temperature rarely exceeds 75 F, which is adequate for the ACES to function. Problem A rescue shuttle will need to return 11 crew members if the previous mission suffers a thermal protection system failure, preventing it from returning safely to Earth. Initial analysis revealed that 11 crew members in the shuttle will increase cabin temperature at wheel stop above 80 F, which decreases the ACES ability to keep crew members cool. Air flow in the middeck of the shuttle is inhomogeneous and some ACES may experience much higher temperatures that could cause excessive thermal stress to crew members. Methods A ground study was conducted to measure the cooling efficiency of the ACES at 75 F, 85 F, and 95 F at 50% relative humidity. Test subjects representing 5, 50, and 95 percentile body habitus of the astronaut corps performed hand ergometry keeping their metabolic rate at 400, 600, and 800 BTU/hr for one hour. Core temperature was measured by rectal probe and skin, while inside and outside the suit. Environmental chamber wall and cooling unit inlet and outlet temperatures were measured using high-resolution thermistors ( 0.2 C). Conclusions Under these test conditions, the ACES was able to protect the core temperature of all test subjects, however thermal stress due to high insensible losses and skin temperature and skin heat flow may impact crew performance. Further research should be performed to understand the impact on cognitive performance.

  16. Real-Time Cell-Electronic Sensing of Coal Fly Ash Particulate Matter for Toxicity-Based Air Quality Monitoring.

    Science.gov (United States)

    Moe, Birget; Yuan, Chungang; Li, Jinhua; Du, Haiying; Gabos, Stephan; Le, X Chris; Li, Xing-Fang

    2016-06-20

    The development of a unique bioassay for cytotoxicity analysis of coal fly ash (CFA) particulate matter (PM) and its potential application for air quality monitoring is described. Using human cell lines, A549 and SK-MES-1, as live probes on microelectrode-embedded 96-well sensors, impedance changes over time are measured as cells are treated with varying concentrations (1 μg/mL-20 mg/mL) of CFA samples. A dose-dependent impedance change is determined for each CFA sample, from which an IC50 histogram is obtained. The assay was successfully applied to examine CFA samples collected from three coal-fired power plants (CFPs) in China. The samples were separated into three size fractions: PM2.5 (10 μm). Dynamic cell-response profiles and temporal IC50 histograms of all samples show that CFA cytotoxicity depends on concentration, exposure time (0-60 h), and cell-type (SK-MES-1 > A549). The IC50 values differentiate the cytotoxicity of CFA samples based on size fraction (PM2.5 ≈ PM10-2.5 ≫ PM10) and the sampling location (CFP2 > CFP1 ≈ CFP3). Differential cytotoxicity measurements of particulates in human cell lines using cell-electronic sensing provide a useful tool for toxicity-based air quality monitoring and risk assessment. PMID:27124590

  17. Investigations of Techniques to Improve Continuous Air Monitors Under Conditions of High Dust Loading in Environmental Settings

    International Nuclear Information System (INIS)

    A number of DOE facilities, such as the Los Alamos National Laboratory (LANL) and the Waste Isolation Pilot Plant (WIPP), use alpha-particle environmental continuous air monitors (ECAMs) to monitor air for unwanted releases of radioactive aerosols containing such materials as plutonium and uranium. High sensitivity, ease of operation, and lack of false alarms are all important for ECAMs. The object of the project was to conduct investigations to improve operation of ECAMs, particularly under conditions where a lot of nonradioactive dust may be deposited on the filters (conditions of high dust loading). The presence of such dust may increase the frequency with which filters must be changed and can lead to an increased incidence of false alarms due to deteriorated energy resolution and response specificity to the radionuclides of interest. A major finding of the investigation, not previously documented, was that under many conditions thick layers of underlying nonradioactive dust do not decrease energy resolution and specificity for target radionuclides if the radioactive aerosol arrives as a sudden thin burst deposit, as commonly occurs in the early-warning alarm mode. As a result, operators of ECAMs may not need to change filters as often as previously thought and have data upon which to base more reliable operating procedures

  18. Implementation of a low emission zone and evaluation of effects on air quality by long-term monitoring

    Science.gov (United States)

    Panteliadis, Pavlos; Strak, Maciej; Hoek, Gerard; Weijers, Ernie; van der Zee, Saskia; Dijkema, Marieke

    2014-04-01

    A regulation was implemented on 9/1/2009, excluding Euro 0, I and II heavy duty vehicles from entering Amsterdam's Low Emission Zone (LEZA). The current study investigated whether and to what extent this regulation had an effect on air quality. Data for a period starting two years before the regulation up to 31 December 2010 were obtained from two monitoring sites within the LEZA, one located in a street frequently used by heavy-duty vehicles, and one at an urban background location. The difference in concentrations of NO2, NOx, PM10 and soot, between the two sites was attributed to traffic. Soot was measured by two proxies, Elemental Carbon (EC) and Absorbance that showed a significant mutual correlation. The traffic contribution concentrations measured were adjusted for wind direction, wind speed, type of day (weekday/weekend) and traffic intensity. Since the implementation of the LEZA, the traffic contribution concentrations compared to the roadside site concentrations were decreased by 4.9% (95%-CI: 3.0-6.9%) for NO2, 5.9% (95%-CI: 3.7-6.4%) for NOx, 5.8% (95%-CI: 3.3-8.4%) for PM10, 7.7% (95%-CI: 2.3-13.0%) for Absorbance and 12.9% (95%-CI: 5.2-20.5%) for EC. The current study demonstrated significant decreases in traffic-related air pollution concentrations in the vicinity of a roadside monitoring station after the implementation of a low emission zone in Amsterdam.

  19. Data Report for Monitoring at Six West Virginia Marcellus Shale Development Sites using NETL’s Mobile Air Monitoring Laboratory (July–November 2012)

    Energy Technology Data Exchange (ETDEWEB)

    Pekney, Natalie J. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Reeder, Matthew [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Indiana Univ., Bloomington, IN (United Stat; Veloski, Garret A. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Diehl, J. Rodney [Indiana Univ., Bloomington, IN (United States)

    2016-06-16

    The West Virginia Department of Environmental Protection’s Office of Oil and Gas was directed according to the Natural Gas Horizontal Well Control Act of December 14, 2011 (West Virginia Code §22-6A) to conduct studies of horizontal well drilling activities related to air quality. The planned study, “Noise, Light, Dust, Volatile Organic Compounds Related to Well Location Restrictions,” required determination of the effectiveness of a 625 ft minimum set-back from the center of the pad of a horizontal well drilling site to the nearest occupied dwelling. An investigation was conducted at seven drilling sites by West Virginia University (WVU) and the National Energy Technology Laboratory (NETL) to collect data on dust, hydrocarbon compounds and on noise, radiation, and light levels. NETL’s role in this study was to collect measurements of ambient pollutant concentrations at six of the seven selected sites using NETL’s Mobile Air Monitoring Laboratory. The trailer-based laboratory was situated a distance of 492–1,312 ft from each well pad, on which activities included well pad construction, vertical drilling, horizontal drilling, hydraulic fracturing, and flaring, with the objective of evaluating the air quality impact of each activity for 1–4 weeks per site. Measured pollutants included volatile organic compounds (VOCs), coarse and fine particulate matter (PM10 and PM2.5, respectively), ozone, methane (CH4), carbon dioxide (CO2), carbon isotopes of CH4 and CO2, organic carbon (OC), elemental carbon (EC), oxides of nitrogen (NOx), and sulfur dioxide (SO2).

  20. Quantitative Evaluation of an Air-monitoring Network Using Atmospheric Transport Modeling and Frequency of Detection Methods.

    Science.gov (United States)

    Rood, Arthur S; Sondrup, A Jeffrey; Ritter, Paul D

    2016-04-01

    A methodology has been developed to quantify the performance of an air-monitoring network in terms of frequency of detection. Frequency of detection is defined as the fraction of "events" that result in a detection at either a single sampler or network of samplers. An "event" is defined as a release to the atmosphere of a specified amount of activity over a finite duration that begins on a given day and hour of the year. The methodology uses an atmospheric transport model to predict air concentrations of radionuclides at the samplers for a given release time and duration. Another metric of interest determined by the methodology is called the network intensity, which is defined as the fraction of samplers in the network that have a positive detection for a given event. The frequency of detection methodology allows for evaluation of short-term releases that include effects of short-term variability in meteorological conditions. The methodology was tested using the U.S. Department of Energy Idaho National Laboratory Site ambient air-monitoring network consisting of 37 low-volume air samplers in 31 different locations covering a 17,630 km region. Releases from six major facilities distributed over an area of 1,435 km were modeled and included three stack sources and eight ground-level sources. A Lagrangian Puff air dispersion model (CALPUFF) was used to model atmospheric transport. The model was validated using historical Sb releases and measurements. Relevant 1-wk release quantities from each emission source were calculated based on a dose of 1.9×10 mSv at a public receptor (0.01 mSv assuming release persists over a year). Important radionuclides were Am, Cs, Pu, Pu, Sr, and tritium. Results show the detection frequency was over 97.5% for the entire network considering all sources and radionuclides. Network intensity results ranged from 3.75% to 62.7%. Evaluation of individual samplers indicated some samplers were poorly located and added little to the overall

  1. Quantitative Evaluation of an Air-monitoring Network Using Atmospheric Transport Modeling and Frequency of Detection Methods.

    Science.gov (United States)

    Rood, Arthur S; Sondrup, A Jeffrey; Ritter, Paul D

    2016-04-01

    A methodology has been developed to quantify the performance of an air-monitoring network in terms of frequency of detection. Frequency of detection is defined as the fraction of "events" that result in a detection at either a single sampler or network of samplers. An "event" is defined as a release to the atmosphere of a specified amount of activity over a finite duration that begins on a given day and hour of the year. The methodology uses an atmospheric transport model to predict air concentrations of radionuclides at the samplers for a given release time and duration. Another metric of interest determined by the methodology is called the network intensity, which is defined as the fraction of samplers in the network that have a positive detection for a given event. The frequency of detection methodology allows for evaluation of short-term releases that include effects of short-term variability in meteorological conditions. The methodology was tested using the U.S. Department of Energy Idaho National Laboratory Site ambient air-monitoring network consisting of 37 low-volume air samplers in 31 different locations covering a 17,630 km region. Releases from six major facilities distributed over an area of 1,435 km were modeled and included three stack sources and eight ground-level sources. A Lagrangian Puff air dispersion model (CALPUFF) was used to model atmospheric transport. The model was validated using historical Sb releases and measurements. Relevant 1-wk release quantities from each emission source were calculated based on a dose of 1.9×10 mSv at a public receptor (0.01 mSv assuming release persists over a year). Important radionuclides were Am, Cs, Pu, Pu, Sr, and tritium. Results show the detection frequency was over 97.5% for the entire network considering all sources and radionuclides. Network intensity results ranged from 3.75% to 62.7%. Evaluation of individual samplers indicated some samplers were poorly located and added little to the overall

  2. Crew Autonomy Measures and Models (CAMM) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — SA Technologies will employ a two-part solution including measures and models for evaluating crew autonomy in exploratory space missions. An integrated measurement...

  3. Validation of low-cost ozone measurement instruments suitable for use in an air-quality monitoring network

    International Nuclear Information System (INIS)

    This paper presents a novel low-cost instrument that uses a sensor based on conductivity changes of heated tungstic oxide, which is capable of accurately measuring ambient concentrations of ozone. A combination of temperature steps and air flow-rate steps is used to continually reset and re-zero the sensor. A two-stage calibration procedure is presented, in which a nonlinear transformation converts sensor resistance to a signal linear in ozone concentration, then a linear correlation is used to align the calibration with a reference instrument. The required calibration functions specific for the sensor, and control system for air flow rate and sensor temperature, are housed with the sensor in a compact, simple-to-exchange assembly. The instrument can be operated on solar power and uses cell phone technology to enable monitoring in remote locations. Data from field trials are presented here to demonstrate that both the accuracy and the stability of the instrument over periods of months are within a few parts-per-billion by volume. We show that common failure modes can be detected through measurement of signals available from the instrument. The combination of long-term stability, self-diagnosis, and simple, inexpensive repair means that the cost of operation and calibration of the instruments is significantly reduced in comparison with traditional reference instrumentation. These instruments enable the economical construction and operation of ozone monitoring networks of accuracy, time resolution and spatial density sufficient to resolve the local gradients that are characteristic of urban air pollution. (paper)

  4. 78 FR 67360 - Ambient Air Monitoring Reference and Equivalent Methods: Designation of Five New Equivalent Methods

    Science.gov (United States)

    2013-11-12

    ... 31, 2011 (76 FR 54326-54341). Two of the new equivalent methods for PM are automated monitoring..., Inc., 1600 Washington Blvd., Grants Pass, Or 97526. EQPM-1013-211, ``Environnement S.A. Model MP101M... method is identified as follows: EQNA-1013-210, ``Environnement S.A. Model AS32M cavity attenuated...

  5. Trace element air pollution monitoring studies in Slovenia using nuclear analytical techniques. Appendix 15

    International Nuclear Information System (INIS)

    Up to now, only a few investigations have been performed in Slovenia involving comprehensive studies of trace elements, toxic elements, heavy metals and radionuclides in the atmosphere. The aim of the project is development and application of nuclear and nuclear-related analytical techniques for air pollution studies, leading to formation of a database concerning the trace element air pollution of Slovenia. In this report, the emphasis is on the methodology and analytical development (neutron activation analysis and X-ray spectrometry), and to a lesser extent on the results obtained up to now. Analytical results for several certified reference materials of similar matrix as the real samples investigated are presented and discussed. (author)

  6. [Monitoring and analysis of air pollutants using DOAS in winter of Beijing].

    Science.gov (United States)

    Zhu, Yan-wu; Fu, Qiang; Xie, Pin-hua; Liu, Wen-qing; Peng, Fu-min; Qin, Min; Lin, Yi-hui; Si, Fu-qi; Dou, Ke

    2009-05-01

    Based on the differential optical absorption spectroscopy (DOAS) technology, the measurement of air pollutants (SOz, NO2, HONO and HCHO) was performed continuously from Jan 19, 2007 to Feb 8, 2007 in Peking University campus. The typical diurnal variation characteristic of SO2 concentration, the main source and the meteorological factors that influence the pollutants were analyzed. The results indicated that the typical diurnal variation of SO2 concentration has the same shape as the letter "V" when wind speed was low, and in the afternoon the SO2 concentration was the lowest, while in other time it was high. Coal-burning made prominent contribution to the concentration of atmospheric various pollutants in the heating period of Beijing. Wind speed played a leading role and other meteorological factors also have some effect, which resulted from the influence of the meteorology on diffusion, transmission, elimination of air pollutants. PMID:19650497

  7. Methodology and algorithms for railway crew management

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, R.; Gomide, F. [State Univ. of Campinas, SP (Brazil). Faculty of Electrical and Computer Engineering; Lagrimante, R. [MRS Logistica S.A, Juiz de Fora, MG (Brazil)

    2000-07-01

    Crew management problems are highly important for many transportation systems such as airlines, railways and public bus transportation. Despite recent advances, scheduling methodologies and decision support systems still need improvement, especially their computational efficiency, practical feasibility and use. This paper briefly overview classic crew management approaches. It discusses various practical issues concerning classic methods and suggests a new approach and algorithms. Computational results and experience with actual data and real world situations are also reported. (orig.)

  8. Supplementary measurements for air monitoring under NOVANA - Benzene and PAH; Supplerende maalinger til luftovervaagning under NOVANA - benzen og PAH

    Energy Technology Data Exchange (ETDEWEB)

    Ellermann, T.; Klenoe Noejgaard, J.; Bossi, R.

    2011-10-15

    The report presents results from a project carried out for the Danish Environmental Protection Agency. The aim of the project was to carry out several measuring campaigns in order to be able to better assess the monitoring needs for PAH and benzene in relation to EU's air quality directives. The results show that the mean concentrations of benzene are almost at the same level in Denmark's four largest cities, and that the concentrations are both below the threshold value (5mug/m3) as well as below the lower assessment threshold (2mug/m3). The report presents a method for objectively estimation the benzene concentration based on measurements of CO. The method can be applied to fulfil the monitoring need for benzene in those zones where no measurements of benzene are made. Measurements of PAH, especially benzo(a)pyrene, have been made during 12 months in the period 2010-2011 in an area with many wood burning furnaces are used (the town Jyllinge). The concentrations of benzo(a)pyrene in Jyllinge is almost three times higher than in the street H.C. Andersens Boulevard in Copenhagen. The concentrations of benzo(a)pyrene in Jylllinge are 0,6 ng/m3, which corresponds to the upper assessment threshold (0,6 ng/m3) and is 40% below the measuring value (1 ng/m3). On this basis, there is a need for re-evaluating the monitoring of PAH in the sub-programme for air under NOVANA. Measurements of PM{sub 10} showed that the levels in the towns Jyllinge, Lille Valby/Risoe and at the H.C. Oersted Institute in Copenhagen are all at about 20-22 mug/m3. (LN)

  9. Monitoring of fungal spores in the indoor air of preschool institution facilities in Novi Sad

    Directory of Open Access Journals (Sweden)

    Novaković Milana S.

    2013-01-01

    Full Text Available Fungal spores can cause a range of health problems in humans such as respiratory diseases and mycotoxicoses. Since children are the most vulnerable, the presence of fungal spores in the facilities of preschool and school institutions should be investigated readily. In order to estimate air contamination by fungal spores, air sampling was conducted in eight facilities of the preschool institution in Novi Sad during February and March, 2007. Sedimentation plate method was used for the detection of viable fungal spores, mostly being members of subdv. Deuteromycota (Fungi imperfecti. In 32 samples a total of 148 colonies were developed, among which five genera were identified: Penicillium, Cladosporium, Aspergillus, Alternaria and Acremonium while non-sporulating fungal colonies were labeled as sterile mycelia. Most frequently recorded genera were Penicillium with 46 colonies and Cladosporium with 44 colonies. The genera Aspergillus and Alternaria were represented with 3 colonies each and Acremonium with only 1 colony. The greatest number of colonies emerged in the samples from the day care facilities “Vendi” (58 colonies and “Panda” (49 colonies. Most diverse samples were obtained from the day care center “Zvončica”, with presence of all identified genera. These results showed notable presence of fungal spores in the indoor air of Preschool institution facilities and indicated the need for further, more complete seasonal research. Obtained information is considered useful for the evaluation of potential mycofactors that endanger health of children. [Projekat Ministarstva nauke Republike Srbije, br. III43002

  10. Comparative performance of two air samplers for monitoring airborne fungal propagules

    Directory of Open Access Journals (Sweden)

    L.G.F. Távora

    2003-05-01

    Full Text Available Many studies have attempted to evaluate the importance of airborne fungi in the development of invasive fungal infection, especially for immunocompromised hosts. Several kinds of instruments are available to quantitate fungal propagule levels in air. We compared the performance of the most frequently used air sampler, the Andersen sampler with six stages, with a portable one, the Reuter centrifugal sampler (RCS. A total of 84 samples were analyzed, 42 with each sampler. Twenty-eight different fungal genera were identified in samples analyzed with the Andersen instrument. In samples obtained with the RCS only seven different fungal genera were identified. The three most frequently isolated genera in samples analyzed with both devices were Penicillium, Aspergillus and Cladophialophora. In areas supplied with a high efficiency particulate air filter, fungal spore levels were usually lower when compared to areas without these filters. There was a significant correlation between total fungal propagule measurements taken with both devices on each sampling occasion (Pearson coefficient = 0.50. However, the Andersen device recovered a broader spectrum of fungi. We conclude that the RCS can be used for quantitative estimates of airborne microbiological concentrations. For qualitative studies, however, this device cannot be recommended.

  11. International Space Station Crew Return Vehicle: X-38. Educational Brief.

    Science.gov (United States)

    National Aeronautics and Space Administration, Washington, DC.

    The International Space Station (ISS) will provide the world with an orbiting laboratory that will have long-duration micro-gravity experimentation capability. The crew size for this facility will depend upon the crew return capability. The first crews will consist of three astronauts from Russia and the United States. The crew is limited to three…

  12. 20 CFR 404.1010 - Farm crew leader as employer.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Farm crew leader as employer. 404.1010....1010 Farm crew leader as employer. A farm crew leader furnishes workers to do agricultural labor for another person, usually a farm operator. If the crew leader pays the workers (the money can be the...

  13. Microbial Monitoring of the International Space Station

    Science.gov (United States)

    Pierson, Duane L.; Botkin, Douglas J.; Bruce, Rebekah J.; Castro, Victoria A.; Smith, Melanie J.; Oubre, Cherie M.; Ott, C. Mark

    2013-01-01

    Humans living and working in the harsh environment of space present many challenges for habitability engineers and microbiologists. Spacecraft must provide an internal environment in which physical (gas composition, pressure, temperature, and humidity), chemical, and biological environmental parameters are maintained at safe levels. Microorganisms are ubiquitous and will accompany all human-occupied spacecraft, but if biological contamination were to reach unacceptable levels, long-term human space flight would be impossible. Prevention of microbiological problems, therefore, must have a high priority. Historically, prevention of infectious disease in the crew has been the highest priority, but experience gained from the NASA-Mir program showed that microbial contamination of vehicle and life-support systems, such as biofouling of water and food, are of equal importance. The major sources of microbiological risk factors for astronauts include food, drinking water, air, surfaces, payloads, research animals, crew members, and personnel in close contact with the astronauts. In our efforts to eliminate or mitigate the negative effects of microorganisms in spacecraft, the National Aeronautics and Space Administration (NASA) implemented comprehensive microbial analyses of the major risk factors. This included the establishment of acceptability requirements for food, water, air, surfaces, and crew members. A robust monitoring program was then implemented to verify that the risks were within acceptable limits. Prevention of microbiological problems is preferred over mitigation of problems during flight, and preventive steps must begin very early in the design phase. Spacecraft development must include requirements to control free water from humidity, condensate, hygiene activities, and other releases. If water is available, microbes are likely to grow because sufficient nutrients are potentially available. Materials selected for the spacecraft must not promote or support

  14. Portable air quality sensor unit for participatory monitoring: an end-to-end VESNA-AQ based prototype

    Science.gov (United States)

    Vucnik, Matevz; Robinson, Johanna; Smolnikar, Miha; Kocman, David; Horvat, Milena; Mohorcic, Mihael

    2015-04-01

    Key words: portable air quality sensor, CITI-SENSE, participatory monitoring, VESNA-AQ The emergence of low-cost easy to use portable air quality sensors units is opening new possibilities for individuals to assess their exposure to air pollutants at specific place and time, and share this information through the Internet connection. Such portable sensors units are being used in an ongoing citizen science project called CITI-SENSE, which enables citizens to measure and share the data. The project aims through creating citizens observatories' to empower citizens to contribute to and participate in environmental governance, enabling them to support and influence community and societal priorities as well as associated decision making. An air quality measurement system based on VESNA sensor platform was primarily designed within the project for the use as portable sensor unit in selected pilot cities (Belgrade, Ljubljana and Vienna) for monitoring outdoor exposure to pollutants. However, functionally the same unit with different set of sensors could be used for example as an indoor platform. The version designed for the pilot studies was equipped with the following sensors: NO2, O3, CO, temperature, relative humidity, pressure and accelerometer. The personal sensor unit is battery powered and housed in a plastic box. The VESNA-based air quality (AQ) monitoring system comprises the VESNA-AQ portable sensor unit, a smartphone app and the remote server. Personal sensor unit supports wireless connection to an Android smartphone via built-in Wi-Fi. The smartphone in turn serves also as the communication gateway towards the remote server using any of available data connections. Besides the gateway functionality the role of smartphone is to enrich data coming from the personal sensor unit with the GPS location, timestamps and user defined context. This, together with an accelerometer, enables the user to better estimate ones exposure in relation to physical activities, time

  15. Comparison of Remote Sensing and Fixed-Site Monitoring Approaches for Examining Air Pollution and Health in a National Study Population

    Science.gov (United States)

    Prud'homme, Genevieve; Dobbin, Nina A.; Sun, Liu; Burnet, Richard T.; Martin, Randall V.; Davidson, Andrew; Cakmak, Sabit; Villeneuve, Paul J.; Lamsal, Lok N.; vanDonkelaar, Aaron; Peters, Paul A.; Johnson, Markey

    2013-01-01

    Satellite remote sensing (RS) has emerged as a cutting edge approach for estimating ground level ambient air pollution. Previous studies have reported a high correlation between ground level PM2.5 and NO2 estimated by RS and measurements collected at regulatory monitoring sites. The current study examined associations between air pollution and adverse respiratory and allergic health outcomes using multi-year averages of NO2 and PM2.5 from RS and from regulatory monitoring. RS estimates were derived using satellite measurements from OMI, MODIS, and MISR instruments. Regulatory monitoring data were obtained from Canada's National Air Pollution Surveillance Network. Self-reported prevalence of doctor-diagnosed asthma, current asthma, allergies, and chronic bronchitis were obtained from the Canadian Community Health Survey (a national sample of individuals 12 years of age and older). Multi-year ambient pollutant averages were assigned to each study participant based on their six digit postal code at the time of health survey, and were used as a marker for long-term exposure to air pollution. RS derived estimates of NO2 and PM2.5 were associated with 6e10% increases in respiratory and allergic health outcomes per interquartile range (3.97 mg m3 for PM2.5 and 1.03 ppb for NO2) among adults (aged 20e64) in the national study population. Risk estimates for air pollution and respiratory/ allergic health outcomes based on RS were similar to risk estimates based on regulatory monitoring for areas where regulatory monitoring data were available (within 40 km of a regulatory monitoring station). RS derived estimates of air pollution were also associated with adverse health outcomes among participants residing outside the catchment area of the regulatory monitoring network (p < 0.05).

  16. Remote monitoring field trial. Application to automated air sampling. Report on Task FIN-E935 of the Finnish Support Programme to IAEA Safeguards

    International Nuclear Information System (INIS)

    An automated air sampling station has recently been developed by Radiation and Nuclear Safety Authority (STUK). The station is furnished with equipment that allows comprehensive remote monitoring of the station and the data. Under the Finnish Support Programme to IAEA Safeguards, STUK and Sandia National Laboratories (SNL) established a field trial to demonstrate the use of remote monitoring technologies. STUK provided means for real-lime radiation monitoring and sample authentication whereas SNL delivered means for authenticated surveillance of the equipment and its location. The field trial showed that remote monitoring can be carried out using simple means although advanced facilities are needed for comprehensive surveillance. Authenticated measurement data could be reliably transferred from the monitoring site to the headquarters without the presence of authorized personnel in the monitoring site. The operation of the station and the remote monitoring system were reliable. (orig.)

  17. Air Monitoring Modeling of Radioactive Releases During Proposed PFP Complex Demolition Activities

    Energy Technology Data Exchange (ETDEWEB)

    Napier, Bruce A.; Droppo, James G.; Rishel, Jeremy P.

    2011-01-24

    This report is part of the planning process for the demolition of the 234-5Z, 236-Z, 242-Z, and 291-Z-1 structures at the Plutonium Finishing Plant (PFP) facilities on the Hanford Site. Pacific Northwest National Laboratory (PNNL) supports the U.S. Department of Energy (DOE) and the CH2M HILL Plateau Remediation Company (CHPRC) demolition planning effort by making engineering estimates of potential releases for various potential demolition alternatives. This report documents an analysis considering open-air demolition using standard techniques. It does not document any decisions about the decommissioning approaches; it is expected that this report will be revisited as demolition plans are finalized.

  18. 14 CFR 417.311 - Flight safety crew roles and qualifications.

    Science.gov (United States)

    2010-01-01

    ... procedures. (2) An individual who monitors vehicle performance and performs flight termination must have... must include: (1) Mission specific training programs to ensure team readiness. (2) Launch simulation exercises of system failure modes, including nominal and failure modes, that test crew performance,...

  19. Monitoring urban transport air pollution and energy demand in Rawalpindi and Islamabad using leap model

    Energy Technology Data Exchange (ETDEWEB)

    Shabbir, Rabia; Ahmad, Sheikh Saeed [Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi (Pakistan)

    2010-05-15

    A research associated with urban transportation was carried out in Rawalpindi and Islamabad to analyze the status of emission of air pollutants and energy demands. The study included a discussion of past trends and future scenarios in order to reduce the future emissions. A simple model of passenger transport has been developed using computer based software called Long-Range Energy Alternatives Planning System (LEAP). The LEAP model was used to estimate total energy demand and the vehicular emissions for the base year 2000 and extrapolated till 2030 for the future predictions. Transport database in Rawalpindi and Islamabad, together with fuel consumption values for the vehicle types and emission factors of NO{sub x}, SO{sub 2} and PM{sub 10} corresponding to the actual vehicle types, formed the basis of the transport demand, energy consumption and total emission calculations. Apart from base scenario, the model was run under three alternative scenarios to study the impact of different urban transport policy initiatives that would reduce energy demand and emissions in transport sector of Rawalpindi and Islamabad. The prime objective was to arrive at an optimal transport policy, which limits the future growth of fuel consumption as well as air pollution. (author)

  20. Work place air particulate monitoring of automobile workshops for public health and safety

    International Nuclear Information System (INIS)

    Twenty-eight pairs of coarse and fine air particulate samples were collected in front of an automotive workshop located at Tasmasipabad on Chaklala Road in Rawalpindi using a Gent sampler and polycarbonate filters. These samples were collected during the period; 7th to 27th of April 2009. The gravimetric data (PM2.5 and PM10) were obtained for these samples and were found to exceed the Pakistani standards. Black carbon (BC) was also determined using reflectance measurements and it was found that BC contributed significantly more to the fine mass than to the coarse fraction; i.e. ∼10 to ∼3 %, respectively. This is not surprising as soot is emitted by combustion processes and is usually found in the fine particulate mass. Using instrumental neutron activation analysis technique all 28 pairs of filters were analyzed for >30 elements. Major elements, in the coarse mass fraction, include Al, K, Fe, Sr, Na, and Zn implying soil as the major source while BC was found to be a higher contributor of PM2.5. An episode of high PM2.5 was observed on the 18th of April 2009. Back trajectory analysis showed that the air mass originated from the Middle East where a dust storm was in progress over Iraq. (author)

  1. Trace element air pollution monitoring studies in Slovenia using nuclear analytical techniques

    International Nuclear Information System (INIS)

    In the past, only a few investigations have been performed in Slovenia concerning trace elements, toxic elements, heavy metals and radionuclides in the atmosphere. During recent years, several projects were initiated, involving health-related studies connected to air pollution in highly exposed areas, mapping the status of air pollution in the whole country using biomonitors, as well as some specific research, i.e. involving studies of mercury speciation in the atmosphere around a mercury mine or concentration levels of radionuclides in biomonitors around a uranium mine. Since all these projects were or are of a preliminary nature, in this report, the emphasis is mainly on the methodology and analytical development (neutron activation analysis and X-ray spectrometry), and to a lesser extent on the results obtained up to now. Efforts are being put into co-ordination of all the presently running projects in order to complement the results and to make a unified database for their later evaluation and statistical interpretation. (author). 22 refs, 1 fig., 1 tab

  2. Design of a mobile laboratory for ventilation studies and indoor air pollution monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Berk, J.V.; Hollowell, C.D.; Lin, C.I.; Pepper, J.H.

    1978-04-01

    The design and fabrication of a mobile laboratory for research and development studies of ventilation requirements and energy utilization in residential and commercial buildings are described. Functionality, flexibility, and versatility have been stressed without sacrificing appearance and operator convenience. It is believed that modifications of and additions to the mobile laboratory (such as adding the capability to monitor building energy flow) can be made with a minimum of inconvenience. The studies being performed will provide data needed for the establishment of energy efficient ventilation standards.

  3. KSC inventor tests cabin pressure monitor

    Science.gov (United States)

    2000-01-01

    Jan Zysko (left) and Rich Mizell (right) test a Personal Cabin Pressure Altitude Monitor in an altitude chamber at Tyndall Air Force Base in Florida. Zysko invented the pager-sized monitor that alerts wearers of a potentially dangerous or deteriorating cabin pressure altitude condition, which can lead to life- threatening hypoxia. Zysko is chief of the KSC Spaceport Engineering and Technology directorate's data and electronic systems branch. Mizell is a Shuttle processing engineer. The monitor, which has drawn the interest of such organizations as the Federal Aviation Administration for use in commercial airliners and private aircraft, was originally designed to offer Space Shuttle and Space Station crew members added independent notification about any depressurization.

  4. Speciated mercury measurements in ambient air from 2009 to 2011 at a Central European rural background monitoring site

    Directory of Open Access Journals (Sweden)

    Weigelt A.

    2013-04-01

    Full Text Available Since January 2009 highly time-resolved mercury speciation measurements in ambient air are carried out at the Central European German EMEP monitoring station and measurement site of the German Federal Environment Agency “Waldhof“, providing the longest Central European dataset for mercury species. First statistical analyses do not indicate long term trends for the concentrations of gaseous elemental mercury (GEM and particle bound mercury (TPM. A potential increasing trend for reactive gaseous mercury (RGM will have to be verified in the coming years and should be regarded as indicative only at present. A seasonal cycle for TPM could be observed with higher concentrations during winter time. Furthermore a diurnal cycle for RGM is apparent with highest concentrations in the early afternoon.

  5. Application of Frequency of Detection Methods in Design and Optimization of the INL Site Ambient Air Monitoring Network

    Energy Technology Data Exchange (ETDEWEB)

    Rood, Arthur S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sondrup, A. Jeffrey [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-11-01

    This report presents an evaluation of a hypothetical INL Site monitoring network and the existing INL air monitoring network using frequency of detection methods. The hypothetical network was designed to address the requirement in 40 CFR Part 61, Subpart H (2006) that “emissions of radionuclides to ambient air from U.S. DOE facilities shall not exceed those amounts that would cause any member of the public to receive in any year an effective dose equivalent exceeding 10 mrem/year.” To meet the requirement for monitoring only, “radionuclide releases that would result in an effective dose of 10% of the standard shall be readily detectable and distinguishable from background.” Thus, the hypothetical network consists of air samplers placed at residence locations that surround INL and at other locations where onsite livestock grazing takes place. Two exposure scenarios were used in this evaluation: a resident scenario and a shepherd/rancher scenario. The resident was assumed to be continuously present at their residence while the shepherd/rancher was assumed to be present 24-hours at a fixed location on the grazing allotment. Important radionuclides were identified from annual INL radionuclide National Emission Standards for Hazardous Pollutants reports. Important radionuclides were defined as those that potentially contribute 1% or greater to the annual total dose at the radionuclide National Emission Standards for Hazardous Pollutants maximally exposed individual location and include H-3, Am-241, Pu-238, Pu 239, Cs-137, Sr-90, and I-131. For this evaluation, the network performance objective was set at achieving a frequency of detection greater than or equal to 95%. Results indicated that the hypothetical network for the resident scenario met all performance objectives for H-3 and I-131 and most performance objectives for Cs-137 and Sr-90. However, all actinides failed to meet the performance objectives for most sources. The shepherd/rancher scenario showed

  6. Air Quality Monitoring in European Union and Recommendations for China Strengthening Air Quality Monitoring System%欧盟空气质量监测现状及加强我国空气质量监测体系建设的建议

    Institute of Scientific and Technical Information of China (English)

    刘蕊; 张明顺

    2015-01-01

    This paper reviewed and assessed the status of European air quality monitoring from two aspects of monitoring policy and monitoring system.Based on the European experiences and approaches on air quality monitoring,this paper analyzes main issues of China air quality monitoring,and then recommends measures, such as increasing the intensity of policy and financial support,perfecting the air quality monitoring system grad-ually,strengthening the research on air quality monitoring technology,consummating air quality monitoring data-base,initiating capacity building and improving the public participation to strengthening air quality monitoring system of China.%从欧盟空气质量监测政策和监测网络建设现状两个方面描述了欧盟空气质量监测发展现状。分析了我国空气污染现状和空气质量监测体系中存在的问题,并借鉴欧盟的经验,提出了加大政策支持和财政保障力度、逐步健全空气质量监测网络体系、加强空气质量监测技术研究、完善空气质量监测数据库、开展能力建设、提高公众参与度等加强我国空气质量监测体系建设的建议。

  7. Doses monitoring in radiology: calibration of air kerma-area product (PKA meters

    Directory of Open Access Journals (Sweden)

    Ricardo Andrade Terini

    2013-12-01

    Full Text Available Objective The authors have sought to study the calibration of a clinical PKA meter (Diamentor E2 and a calibrator for clinical meters (PDC in the Laboratory of Ionizing Radiation Metrology at Instituto de Energia e Ambiente - Universidade de São Paulo. Materials and Methods Different qualities of both incident and transmitted beams were utilized in conditions similar to a clinical setting, analyzing the influence from the reference dosimeter, from the distance between meters, from the filtration and from the average beam energy. Calibrations were performed directly against a standard 30 cm3 cylindrical chamber or a parallel-plate monitor chamber, and indirectly against the PDC meter. Results The lowest energy dependence was observed for transmitted beams. The cross calibration between the Diamentor E2 and the PDC meters, and the PDC presented the greatest propagation of uncertainties. Conclusion The calibration coefficient of the PDC meter showed to be more stable with voltage, while the Diamentor E2 calibration coefficient was more variable. On the other hand, the PDC meter presented greater uncertainty in readings (5.0% than with the use of the monitor chamber (3.5% as a reference.

  8. Air Monitoring Network at Tonopah Test Range: Network Description and Capabilities

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Tappen; George Nikolich; Ken Giles; David Shafer; Tammy Kluesner

    2010-05-18

    During the period April to June 2008, at the behest of the U.S. Department of Energy (DOE) National Nuclear Security Administration, Nevada Site Office (NNSA/NSO); the Desert Research Institute (DRI) constructed and deployed two portable environmental monitoring stations at the Tonopah Test Range (TTR) as part of the Environmental Restoration Project Soils Sub-Project. The TTR is located within the boundaries of the Nevada Test and Training Range (NTTR) near the northern edge, and covers an area of approximately 725.20 km2 (179,200 acres). The primary objective of the monitoring stations is to evaluate whether and under what conditions there is wind transport of radiological contaminants from one of the three Soil Sub-Project Corrective Action Units (CAUs) associated with Operation Roller Coaster on TTR. Operation Roller Coaster was a series of tests, conducted in 1963, designed to examine the stability and dispersal of plutonium in storage and transportation accidents. These tests did not result in any nuclear explosive yield. However, the tests did result in the dispersal of plutonium and contamination of surface soils in the surrounding area.

  9. Air Monitoring Network at Tonopah Test Range: Network Description, Capabilities, and Analytical Results

    Energy Technology Data Exchange (ETDEWEB)

    Hartwell, William T.; Daniels, Jeffrey; Nikolich, George; Shadel, Craig; Giles, Ken; Karr, Lynn; Kluesner, Tammy

    2012-01-01

    During the period April to June 2008, at the behest of the Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office (NNSA/NSO); the Desert Research Institute (DRI) constructed and deployed two portable environmental monitoring stations at the Tonopah Test Range (TTR) as part of the Environmental Restoration Project Soils Activity. DRI has operated these stations since that time. A third station was deployed in the period May to September 2011. The TTR is located within the northwest corner of the Nevada Test and Training Range (NTTR), and covers an area of approximately 725.20 km2 (280 mi2). The primary objective of the monitoring stations is to evaluate whether and under what conditions there is wind transport of radiological contaminants from Soils Corrective Action Units (CAUs) associated with Operation Roller Coaster on TTR. Operation Roller Coaster was a series of tests, conducted in 1963, designed to examine the stability and dispersal of plutonium in storage and transportation accidents. These tests did not result in any nuclear explosive yield. However, the tests did result in the dispersal of plutonium and contamination of surface soils in the surrounding area.

  10. A sensor management architecture concept for monitoring emissions from open-air demil operations.

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Michael M.; Robinson, Jerry D.; Stoddard, Mary Clare; Horn, Brent A.; Lipkin, Joel; Foltz, Greg W.

    2005-09-01

    Sandia National Laboratories, CA proposed a sensor concept to detect emissions from open-burning/open-detonation (OB/OD) events. The system would serve two purposes: (1) Provide data to demilitarization operations about process efficiency, allowing process optimization for cleaner emissions and higher efficiency. (2) Provide data to regulators and neighboring communities about materials dispersing into the environment by OB/OD operations. The proposed sensor system uses instrument control hardware and data visualization software developed at Sandia National Laboratories to link together an array of sensors to monitor emissions from OB/OD events. The suite of sensors would consist of various physical and chemical detectors mounted on stationary or mobile platforms. The individual sensors would be wirelessly linked to one another and controlled through a central command center. Real-time data collection from the sensors, combined with integrated visualization of the data at the command center, would allow for feedback to the sensors to alter operational conditions to adjust for changing needs (i.e., moving plume position, increased spatial resolution, increased sensitivity). This report presents a systems study of the problem of implementing a sensor system for monitoring OB/OD emissions. The goal of this study was to gain a fuller understanding of the political, economic, and technical issues for developing and fielding this technology.

  11. Project 57 Air Monitoring Annual Report - Fiscal Year 2013 (October 1, 2012 to September 30, 2013)

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Julianne J. [DRI; McCurdy, Greg [DRI; Mizell, Steve A [DRI

    2014-07-01

    The U.S. Department of Energy (DOE), National Nuclear Security Administration, Nevada Field Office (NNSA/NFO) is currently working to achieve regulatory closure of radionuclide-contaminated Soils sites under its auspices. Corrective Action Unit (CAU) 415, Project 57 No. 1 Plutonium Dispersion Site is located in Emigrant Valley, Nevada, on Range 4808A of the Nevada Test and Training Range (NTTR), and consists of one Corrective Action Site (CAS): NAFR-23-02, Pu Contaminated Soil. Closure plans being developed for the CAUs both on and off of the Nevada National Security Site (NNSS) may include postclosure monitoring for the possible release of radioactive contaminants. Determining the potential for transport of radionuclide-contaminated soils under ambient climatic conditions will facilitate an appropriate closure design and postclosure monitoring program. The DOE has authorized the Desert Research Institute (DRI) to conduct field assessments of potential transport of radionuclide-contaminated soil from the Project 57 site during ambient wind events. The assessment is intended to provide site-specific information on meteorological conditions that result in airborne soil particle redistribution, as well as determine which, if any, radiological contaminants may be entrained with the soil particles and estimate their concentrations.

  12. Data Quality Objectives Supporting Radiological Air Emissions Monitoring for the Marine Sciences Laboratory, Sequim Site

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, J. Matthew; Meier, Kirsten M.; Snyder, Sandra F.; Antonio, Ernest J.; Fritz, Brad G.; Poston, Theodore M.

    2012-12-27

    This document of Data Quality Objectives (DQOs) was prepared based on the U.S. Environmental Protection Agency (EPA) Guidance on Systematic Planning Using the Data Quality Objectives Process, EPA, QA/G4, 2/2006 (EPA 2006), as well as several other published DQOs. The intent of this report is to determine the necessary steps required to ensure that radioactive emissions to the air from the Marine Sciences Laboratory (MSL) headquartered at the Pacific Northwest National Laboratory’s Sequim Marine Research Operations (Sequim Site) on Washington State’s Olympic Peninsula are managed in accordance with regulatory requirements and best practices. The Sequim Site was transitioned in October 2012 from private operation under Battelle Memorial Institute to an exclusive use contract with the U.S. Department of Energy, Office of Science, Pacific Northwest Site Office.

  13. Community air monitoring for pesticides. Part 3: using health-based screening levels to evaluate results collected for a year.

    Science.gov (United States)

    Wofford, Pamela; Segawa, Randy; Schreider, Jay; Federighi, Veda; Neal, Rosemary; Brattesani, Madeline

    2014-03-01

    The CA Department of Pesticide Regulation (CDPR) and the CA Air Resources Board monitored 40 pesticides, including five degradation products, in Parlier, CA, to determine if its residents were exposed to any of these pesticides and, if so, in what amounts. They included 1,3-dichloropropene, acrolein, arsenic, azinphos-methyl, carbon disulfide, chlorpyrifos and its degradation product, chlorthalonil, copper, cypermethrin, diazinon and its degradation product, dichlorvos, dicofol, dimethoate and its degradation product, diuron, endosulfan and its degradation product, S-ethyl dipropylcarbamothioate (EPTC), formaldehyde, malathion and its degradation product, methyl isothiocyanate (MITC), methyl bromide, metolachlor, molinate, norflurazon, oryzalin, oxyfluorfen, permethrin, phosmet, propanil, propargite, simazine, SSS-tributylphosphorotrithioate, sulfur, thiobencarb, trifluralin, and xylene. Monitoring was conducted 3 days per week for a year. Twenty-three pesticides and degradation products were detected. Acrolein, arsenic, carbon disulfide, chlorpyrifos, copper, formaldehyde, methyl bromide, MITC, and sulfur were detected in more than half the samples. Since no regulatory ambient air standards exist for these pesticides, CDPR developed advisory, health-based non-cancer screening levels (SLs) to assess acute, subchronic, and chronic exposures. For carcinogenic pesticides, CDPR assessed risk using cancer potency values. Amongst non-carcinogenic agricultural use pesticides, only diazinon exceeded its SL. For carcinogens, 1,3-dichloropropene concentrations exceeded its cancer potency value. Based on these findings, CDPR has undertaken a more comprehensive evaluation of 1,3-dichloropropene, diazinon, and the closely related chlorpyrifos that was frequently detected. Four chemicals-acrolein, arsenic, carbon disulfide, and formaldehyde-sometimes used as pesticides were detected, although no pesticidal use was reported in the area during this study. Their presence was most

  14. COMBINED USE OF SPACE-BORNE OBSERVATIONS OF NO2 AND REGIONAL CTM MODEL FOR AIR QUALITY MONITORING IN NORTHERN ITALY

    OpenAIRE

    A. Petritoli; Palazzi, E.; G. Giovanelli; di Nicolantonio, W.; Ballista, G.; Carnevale, C.; FINZI G.; Pisoni, E.; Volta, M. L.

    2008-01-01

    Abstract: The use of space-borne measurements of trace gas constituents for air quality monitoring is considerably increased during the past decade. This is due mainly to the new generation sensors able to observe large areas with good temporal resolution and due to new assimilation techniques that allow a synergetic use of information from satellite and from Chemical Transport Models (CTM). In fact the in situ sampling method used by the local environmental agencies for air quality ...

  15. Monitor

    Data.gov (United States)

    US Agency for International Development — A custom-built, dual-language (English and Spanish) system (http://www.monitor.net.co/) developed by DevTech that debuted in January 2011. It features a central PMP...

  16. Use of Data Comm by Flight Crew to Conduct Interval Management Operations to Parallel Dependent Runways

    Science.gov (United States)

    Baxley, Brian T.; Hubbs, Clay; Shay, Rick; Karanian, James

    2011-01-01

    The Interval Management (IM) concept is being developed as a method to maintain or increase high traffic density airport arrival throughput while allowing aircraft to conduct near idle thrust descents. The Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR1) experiment at NASA Langley Research Center used 24 commercial pilots to examine IM procedures to conduct parallel dependent runway arrival operations while maintaining safe but efficient intervals behind the preceding aircraft. The use of IM procedures during these operations requires a lengthy and complex clearance from Air Traffic Control (ATC) to the participating aircraft, thereby making the use of Controller Pilot Data Link Communications (CPDLC) highly desirable as the communication method. The use of CPDLC reduces the need for voice transmissions between controllers and flight crew, and enables automated transfer of IM clearance elements into flight management systems or other aircraft avionics. The result is reduced crew workload and an increase in the efficiency of crew procedures. This paper focuses on the subset of data collected related to the use of CPDLC for IM operations into a busy airport. Overall, the experiment and results were very successful, with the mean time under 43 seconds for the flight crew to load the clearance into the IM spacing tool, review the calculated speed, and respond to ATC. An overall mean rating of Moderately Agree was given when the crews were asked if the use of CPDLC was operationally acceptable as simulated in this experiment. Approximately half of the flight crew reported the use of CPDLC below 10,000 for IM operations was unacceptable, with 83% reporting below 5000 was unacceptable. Also described are proposed modifications to the IM operations that may reduce CPDLC Respond time to less than 30 seconds and should significantly reduce the complexity of crew procedures, as well as follow-on research issues for operational use of CPDLC during IM

  17. A Gas Sensor Array For Environmental Air Monitoring: A Study Case Of Application Of Artificial Neural Networks

    Science.gov (United States)

    Penza, Michele; Suriano, Domenico; Cassano, Gennaro; Rossi, Riccardo; Alvisi, Marco; Pfister, Valerio; Trizio, Livia; Brattoli, Magda; De Gennaro, Gianluigi

    2011-09-01

    An array of commercial gas sensors and nanotechnology sensors has been integrated to quantify gas concentration of air-pollutants. A variety of chemoresistive gas sensors, commercial (Figaro and Fis) and developed at ENEA laboratories (metal-modified carbon nanotubes) were tested to implement a database useful for applied artificial neural networks (ANNs). The ANN algorithm used is the common perceptron multi-layer feed-forward network based on error back-propagation. Electronic Noses based on various sensor arrays related to mammalian olfactory systems have been largely reported [1,2]. Here, we reported on the perceptron-based ANNs applied to a large database of 3875 datapoints for environmental air monitoring. The ANNs performance has been individually assessed for any targeted gas. The response of the classifier has been measured for NO2, CO, CO2, SO2, and H2S gas. The NO2 characteristics exhibit that real concentrations and predicted concentrations are very close with a normalized mean square error (NMSE) in the test set as low as 6%.

  18. Step-Scan T-Cell Fourier Transform Infrared Photoacoustic Spectroscopy (FTIR-PAS) for Monitoring Environmental Air Pollutants

    Science.gov (United States)

    Liu, Lixian; Mandelis, Andreas; Melnikov, Alexander; Michaelian, Kirk; Huan, Huiting; Haisch, Christoph

    2016-07-01

    Air pollutants have adverse effects on the Earth's climate system. There is an urgent need for cost-effective devices capable of recognizing and detecting various ambient pollutants. An FTIR photoacoustic spectroscopy (FTIR-PAS) method based on a commercial FTIR spectrometer developed for air contamination monitoring will be presented. A resonant T-cell was determined to be the most appropriate resonator in view of the low-frequency requirement and space limitations in the sample compartment. Step-scan FTIR-PAS theory for regular cylinder resonator has been described as a reference for prediction of T-cell vibration principles. Both simulated amplitude and phase responses of the T-cell show good agreement with measurement data Carbon dioxide IR absorption spectra were used to demonstrate the capacity of the FTIR-PAS method to detect ambient pollutants. The theoretical detection limit for carbon dioxide was found to be 4 ppmv. A linear response to carbon dioxide concentration was found in the range from 2500 ppmv to 5000 ppmv. The results indicate that it is possible to use step-scan FTIR-PAS with a T-cell as a quantitative method for analysis of ambient contaminants.

  19. Use of sulfur hexafluoride airflow studies to determine the appropriate number and placement of air monitors in an alpha inhalation exposure laboratory

    International Nuclear Information System (INIS)

    Determination of the appropriate number and placement of air monitors in the workplace is quite subjective and is generally one of the more difficult tasks in radiation protection. General guidance for determining the number and placement of air sampling and monitoring instruments has been provided by technical reports such as Mishima, J. These two documents and other published guidelines suggest that some insight into sampler placement can be obtained by conducting airflow studies involving the dilution and clearance of the relatively inert tracer gas sulfur hexafluoride (SF6) in sampler placement studies and describes the results of a study done within the ITRI alpha inhalation exposure laboratories. The objectives of the study were to document an appropriate method for conducting SF6 dispersion studies, and to confirm the appropriate number and placement of air monitors and air samplers within a typical ITRI inhalation exposure laboratory. The results of this study have become part of the technical bases for air sampling and monitoring in the test room

  20. Use of sulfur hexafluoride airflow studies to determine the appropriate number and placement of air monitors in an alpha inhalation exposure laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Newton, G.J.; Hoover, M.D.

    1995-12-01

    Determination of the appropriate number and placement of air monitors in the workplace is quite subjective and is generally one of the more difficult tasks in radiation protection. General guidance for determining the number and placement of air sampling and monitoring instruments has been provided by technical reports such as Mishima, J. These two documents and other published guidelines suggest that some insight into sampler placement can be obtained by conducting airflow studies involving the dilution and clearance of the relatively inert tracer gas sulfur hexafluoride (SF{sub 6}) in sampler placement studies and describes the results of a study done within the ITRI alpha inhalation exposure laboratories. The objectives of the study were to document an appropriate method for conducting SF{sub 6} dispersion studies, and to confirm the appropriate number and placement of air monitors and air samplers within a typical ITRI inhalation exposure laboratory. The results of this study have become part of the technical bases for air sampling and monitoring in the test room.

  1. Simultaneous monitoring of PCB profiles in the urban air of Dalian, China with active and passive samplings

    Institute of Scientific and Technical Information of China (English)

    Qian Xu; Songtao Qin; Yan Li; Xiuhua Zhu; Bernhard Henkelmann; Karl-Werner Schramm; Jiping Chen; Yuwen Ni; Wei Wang; Gerd Pfister; Jun Mu

    2013-01-01

    The concentration of polychlorinated biphenyls (PCBs) in the urban air of Dalian,China was monitored from November 2009 to October 2010 with active high-volume sampler and semipermeable membrane device (SPMD) passive sampler.The concentration of PCBs (particle + gas) (ΣPCBs) ranged from 18.6 to 91.0 pg/m3,with an average of 50.9 pg/m3,and the most abundant dioxin-like PCB (DL-PCBs) was PCB118.The WHO-TEQ values of DL-PCBs were 3.6-22.1 fg/m3,with an average of 8.5 fg/m3,and PCB 126 was the maximum contributor to Σ TEQ.There was a much larger amount of PCBs in the gas phase than in the particulate phase.The dominant PCB components were lower and middle molecular weight PCBs.With increasing chlorination level,the concentration of the PCB congeners in the air decreased.The gas-particulate partitioning of PCBs was different for the four seasons.The gasparticulate partitioning coefficients (logKp) vs.subcooled liquid vapor pressures (logPL0) of PCBs had reasonable correlations for different sampling sites and seasons.The absorption mechanism contributed more to the gas-particulate partitioning process than adsorption.Correlation analysis of meteorological parameters with the concentration of PCBs was conducted using SPSS packages.The ambient temperature and atmospheric pressure were important factors influencing the concentration of PCBs in the air.The distribution pattern of the congeners of PCBs and the dominant contributors to DL-PCBs and TEQ in active samples and SPMDs passive samples were similar.SPMD mainly sequestrated gas phase PCBs.

  2. Continuous Reliability Enhancement for Wind (CREW) database :

    Energy Technology Data Exchange (ETDEWEB)

    Hines, Valerie Ann-Peters; Ogilvie, Alistair B.; Bond, Cody R.

    2013-09-01

    To benchmark the current U.S. wind turbine fleet reliability performance and identify the major contributors to component-level failures and other downtime events, the Department of Energy funded the development of the Continuous Reliability Enhancement for Wind (CREW) database by Sandia National Laboratories. This report is the third annual Wind Plant Reliability Benchmark, to publically report on CREW findings for the wind industry. The CREW database uses both high resolution Supervisory Control and Data Acquisition (SCADA) data from operating plants and Strategic Power Systems ORAPWindª (Operational Reliability Analysis Program for Wind) data, which consist of downtime and reserve event records and daily summaries of various time categories for each turbine. Together, these data are used as inputs into CREWs reliability modeling. The results presented here include: the primary CREW Benchmark statistics (operational availability, utilization, capacity factor, mean time between events, and mean downtime); time accounting from an availability perspective; time accounting in terms of the combination of wind speed and generation levels; power curve analysis; and top system and component contributors to unavailability.

  3. Air Monitoring System in Elders' Apartment with QCM Type Gas Sensors

    Science.gov (United States)

    Kikuchi, Masashi; Ito, Tsukasa; Shiratori, Seimei

    The gas monitoring system for elders' apartment using QCM sensors was newly developed. The QCM sensors for sulfide gas and ammonia gas were used for this system. The system for bodily wastes was fabricated and applied to nursing care system in elders' apartment. This system is composed by the sensor unit, communication unit and data server. Care person can see whether the linen should be changed or not without seeing over each room. The QCM sensors have some problems such as the interference of humidity and temperature, therefore these influences were dissolved using humidity sensor and temperature sensor as feedback source. The sensors were placed in several points of elders' apartment for 2 weeks. This system can be used in elders' apartment successfully.

  4. Real-time monitoring of bioaerosols via cell-lysis by air ion and ATP bioluminescence detection.

    Science.gov (United States)

    Park, Chul Woo; Park, Ji-Woon; Lee, Sung Hwa; Hwang, Jungho

    2014-02-15

    In this study, we introduce a methodology for disrupting cell membranes with air ions coupled with ATP bioluminescence detection for real-time monitoring of bioaerosol concentrations. A carbon fiber ionizer was used to extract ATP from bacterial cells for generating ATP bioluminescence. Our methodology was tested using Staphylococcus epidermidis and Escherichia coli, which were aerosolized with an atomizer, and then indoor bioaerosols were also used for testing the methodology. Bioaerosol concentrations were estimated without culturing which requires several days for colony formation. Correlation equations were obtained for results acquired using our methodology (Relative Luminescent Unit (RLU)/m(3)) and a culture-based (Colony Forming Unit (CFU)/m(3)) method; CFU/m(3)=1.8 × measured RLU/m(3) for S. epidermidis and E. coli, and CFU/m(3)=1.1 × measured RLU/m(3) for indoor bioaerosols under the experimental conditions. Our methodology is an affordable solution for rapidly monitoring bioaerosols due to rapid detection time (cell-lysis time: 3 min; bioluminescence detection time: <1 min) and easy operation.

  5. Monitoring and Modelling the Trends of Primary and Secondary Air Pollution Precursors: The Case of the State of Kuwait

    Directory of Open Access Journals (Sweden)

    S. M. Al-Salem

    2010-01-01

    Full Text Available Since the beginning of the industrial revolution, processes of different scales have contributed greatly to the pollution and waste load on the environment. More specifically, airborne pollutants associated with chemical processes have contributed greatly on the ecosystem and populations health. In this communication, we review recent activities and trends of primary and secondary air pollutants in the state of Kuwait, a country associated with petroleum, petrochemical, and other industrial pollution. Trends of pollutants and impact on human health have been studied and categorized based on recent literature. More attention was paid to areas known to researchers as either precursor sensitive (i.e., nitrogen oxides (NOx, volatile organic compounds (VOCs or adjacent to upstream- or downstream-related activities. Environmental monitoring and modelling techniques relevant to this study are also reviewed. Two case studies that link recent data with models associated with industrial sectors are also demonstrated, focusing mainly on chemical mass balance (CMB and Gaussian line source modelling. It is concluded that a number of the monitoring stations and regulations placed by the Kuwait Environment Public Authority (KUEPA need up-to-date revisions and better network placement, in agreement with previous findings.

  6. Remote Monitoring System for Air Quality%远程空气质量监测系统设计

    Institute of Scientific and Technical Information of China (English)

    李庆; 张娅

    2011-01-01

    为满足对城市空气质量的实时监测,设计了基于GPRS通信的远程空气质量监测系统.系统终端节点利用电化学空气传感器和MSP430F149单片机分别完成对气体浓度的检测和数据处理,然后将数据经GPRS通信模块送至中心服务器.中心服务器建立了数据库存储数据,并配置了专用软件完成查询、统计和绘图等操作.系统采用模块化设计,使用方便灵活.%To realize the real-time monitoring of city air quality, a remote monitoring system has been designed based on GPRS communications. The terminal node of this system using electrochemical sensors and MSP430F149 microprocessor to realize detection of gas saturation and data processing. Then the processed data was sent to a server central by adopting GPRS wireless module and stored in a database and complete the query,statistics and mapping and other operations by a specially designed software. This system that constituted with independent modules can be used flexibly.

  7. Networking Multiple Autonomous Air and Ocean Vehicles for Oceanographic Research and Monitoring

    Science.gov (United States)

    McGillivary, P. A.; Borges de Sousa, J.; Rajan, K.

    2013-12-01

    Autonomous underwater and surface vessels (AUVs and ASVs) are coming into wider use as components of oceanographic research, including ocean observing systems. Unmanned airborne vehicles (UAVs) are now available at modest cost, allowing multiple UAVs to be deployed with multiple AUVs and ASVs. For optimal use good communication and coordination among vehicles is essential. We report on the use of multiple AUVs networked in communication with multiple UAVs. The UAVs are augmented by inferential reasoning software developed at MBARI that allows UAVs to recognize oceanographic fronts and change their navigation and control. This in turn allows UAVs to automatically to map frontal features, as well as to direct AUVs and ASVs to proceed to such features and conduct sampling via onboard sensors to provide validation for airborne mapping. ASVs can also act as data nodes for communication between UAVs and AUVs, as well as collecting data from onboard sensors, while AUVs can sample the water column vertically. This allows more accurate estimation of phytoplankton biomass and productivity, and can be used in conjunction with UAV sampling to determine air-sea flux of gases (e.g. CO2, CH4, DMS) affecting carbon budgets and atmospheric composition. In particular we describe tests in July 2013 conducted off Sesimbra, Portugal in conjunction with the Portuguese Navy by the University of Porto and MBARI with the goal of tracking large fish in the upper water column with coordinated air/surface/underwater measurements. A thermal gradient was observed in the infrared by a low flying UAV, which was used to dispatch an AUV to obtain ground truth to demonstrate the event-response capabilities using such autonomous platforms. Additional field studies in the future will facilitate integration of multiple unmanned systems into research vessel operations. The strength of hardware and software tools described in this study is to permit fundamental oceanographic measurements of both ocean

  8. Discontinuous and Continuous Indoor Air Quality Monitoring in Homes with Fireplaces or Wood Stoves as Heating System.

    Science.gov (United States)

    de Gennaro, Gianluigi; Dambruoso, Paolo Rosario; Di Gilio, Alessia; Di Palma, Valerio; Marzocca, Annalisa; Tutino, Maria

    2015-12-24

    Around 50% of the world's population, particularly in developing countries, uses biomass as one of the most common fuels. Biomass combustion releases a considerable amount of various incomplete combustion products, including particulate matter (PM) and polycyclic aromatic hydrocarbons (PAHs). The paper presents the results of Indoor Air Quality (IAQ) measurements in six houses equipped with wood burning stoves or fireplaces as heating systems. The houses were monitored for 48-h periods in order to collect PM10 samples and measure PAH concentrations. The average, the maximum and the lowest values of the 12-h PM10 concentration were 68.6 μg/m³, 350.7 μg/m³ and 16.8 μg/m³ respectively. The average benzo[a]pyrene 12-h concentration was 9.4 ng/m³, while the maximum and the minimum values were 24.0 ng/m³ and 1.5 ng/m³, respectively. Continuous monitoring of PM10, PAHs, Ultra Fine Particle (UFP) and Total Volatile Organic Compounds (TVOC) was performed in order to study the progress of pollution phenomena due to biomass burning, their trends and contributions to IAQ. The results show a great heterogeneity of impacts on IAQ in terms of magnitude and behavior of the considered pollutants' concentrations. This variability is determined by not only different combustion technologies or biomass quality, but overall by different ignition mode, feeding and flame management, which can also be different for the same house. Moreover, room dimensions and ventilation were significant factors for pollution dispersion. The increase of PM10, UFP and PAH concentrations, during lighting, was always detected and relevant. Continuous monitoring allowed singling out contributions of other domestic sources of considered pollutants such as cooking and cigarettes. Cooking contribution produced an impact on IAQ in same cases higher than that of the biomass heating system.

  9. Discontinuous and Continuous Indoor Air Quality Monitoring in Homes with Fireplaces or Wood Stoves as Heating System

    Directory of Open Access Journals (Sweden)

    Gianluigi de Gennaro

    2015-12-01

    Full Text Available Around 50% of the world’s population, particularly in developing countries, uses biomass as one of the most common fuels. Biomass combustion releases a considerable amount of various incomplete combustion products, including particulate matter (PM and polycyclic aromatic hydrocarbons (PAHs. The paper presents the results of Indoor Air Quality (IAQ measurements in six houses equipped with wood burning stoves or fireplaces as heating systems. The houses were monitored for 48-h periods in order to collect PM10 samples and measure PAH concentrations. The average, the maximum and the lowest values of the 12-h PM10 concentration were 68.6 μg/m3, 350.7 μg/m3 and 16.8 μg/m3 respectively. The average benzo[a]pyrene 12-h concentration was 9.4 ng/m3, while the maximum and the minimum values were 24.0 ng/m3 and 1.5 ng/m3, respectively. Continuous monitoring of PM10, PAHs, Ultra Fine Particle (UFP and Total Volatile Organic Compounds (TVOC was performed in order to study the progress of pollution phenomena due to biomass burning, their trends and contributions to IAQ. The results show a great heterogeneity of impacts on IAQ in terms of magnitude and behavior of the considered pollutants’ concentrations. This variability is determined by not only different combustion technologies or biomass quality, but overall by different ignition mode, feeding and flame management, which can also be different for the same house. Moreover, room dimensions and ventilation were significant factors for pollution dispersion. The increase of PM10, UFP and PAH concentrations, during lighting, was always detected and relevant. Continuous monitoring allowed singling out contributions of other domestic sources of considered pollutants such as cooking and cigarettes. Cooking contribution produced an impact on IAQ in same cases higher than that of the biomass heating system.

  10. Can We Monitor Ecosystem Function Using Keeling Plot Analyses of Nocturnal Cold-Air Drainage?

    Science.gov (United States)

    Bond, B. J.; Ocheltree, T.; Pypker, T.; Unsworth, M. H.; Mix, A. C.; William, R.

    2003-12-01

    The carbon isotope signature of ecosystem respiration, δ 13CR, as measured by the Keeling Plot approach, has been related to short-term variations in weather and ecosystem function in several recent studies. In order to obtain an adequate range of [CO2] and to sample a consistent vegetation type, investigators typically select sampling locations in relatively flat terrain and uniform canopy cover, but these are unusual conditions for many forested ecosystems. In a pilot study, we are collecting samples for Keeling Plot analyses in cold-air drainage systems in small (60-100 ha), deeply-incised watersheds, one covered with old-growth (ca 450-years-old) Douglas-fir/hemlock forest and one covered with young (ca 45-years-old) Douglas-fir forest. We found that the nightly range of [CO2] was typically 380-460 ppm, sufficient to develop good estimates of δ 13CR. At any point in time there was little variation in [CO2] with height through the canopy (0.5-30m), so the required range was obtained by sampling over several hours. There was no indication that samples taken from different heights or at different times of night represented sources with different isotopic signatures. The isotopic signature of respired CO2 in the older watershed averaged about 1 per mil greater than that of the young watershed, and δ 13CR of both locations correlated with modeled stomatal conductance 6 days prior to flask sampling.

  11. Cultural Variability in Crew Communication

    Science.gov (United States)

    Fischer, Ute

    1997-01-01

    In this study we examined what linguistic strategies pilots use when they have to challenge the actions of a colleague, and how their communications balance the need for informativeness with the need for assuring the other's cooperation. Two strategies emerged for captains. They either gave commands or they made suggestions that referred to actions of the crew. Both strategies explicitly state what action should be taken but they differ in their social implications. Commands are direct insofar as they entail a strong obligation for the listener to comply with the speaker' s request. Suggestions are less direct in this respect. However, by using the collegial "Let's do," speakers appeal to the solidarity between themselves and their listeners and seek compliance in this way. Commands, in contrast, are inherently authoritative and imply an asymmetry in status. Speakers by giving a command, express their belief that they are socially more powerful than their listeners and that they are thus licensed to command. That is, speakers seek listener compliance by appeal to their status. Status-based commands were more frequent among male captains than among female captains. Female captains instead were likely to shift the motivation for their commands away from their status to some objective necessity by referring to some problem or goal It remains to be seen, however, how captains' strategies were affected by the severity of a problem situation. Results in a preliminary study involving only male participants, suggests that pilots increased the directness of their utterances in situations that they perceived to be risky. Thus the observation that male captains used complex communications half of the time while female captains did so 75% of the time, could indicate that male captains were more likely than female captains to change their strategies with the severity of situations. Both male and female first officers in this study were less direct than captains. The most common

  12. Composite Crew Module (CCM) Permeability Characterization

    Science.gov (United States)

    Kirsch, Michael T.

    2013-01-01

    In January 2007, the NASA Administrator chartered the NASA Engineering and Safety Center (NESC) to form an Agency team to design and build a composite crew module in 18 months in order to gain hands-on experience in anticipation that future exploration systems may be made of composite materials. One of the conclusions from this Composite Crew Module Primary Structure assessment was that there was a lack of understanding regarding the ability for composite pressure shells to contain consumable gases, which posed a technical risk relative to the use of a metallic design. After the completion of the Composite Crew Module test program, the test article was used in a new program to assess the overall leakage/permeability and identify specific features associated with high leak rates. This document contains the outcome of the leakage assessment.

  13. Environmental Monitoring, Air Quality, ACRLAirEmissions-This data set represents locations from the Utah Department Environmental Quality, Division of Air Quality's (DAQ) Criteria Air Pollutant Emissions yearly inventory., Published in 2001, 1:100000 (1in=8333ft) scale, State of Utah Automated Geographic Reference Center.

    Data.gov (United States)

    NSGIC GIS Inventory (aka Ramona) — This Environmental Monitoring, Air Quality dataset, published at 1:100000 (1in=8333ft) scale, was produced all or in part from Field Survey/GPS information as of...

  14. Improved spatial monitoring of air temperature in forested complex terrain: an energy-balance based calibration method

    Science.gov (United States)

    Kennedy, A. M.; Thomas, C. K.; Pypker, T. G.; Bond, B. J.; Selker, J. S.; Unsworth, M. H.

    2009-12-01

    Fiber-optic distributed temperature sensing (DTS) has great potential for spatial monitoring in hydrology and atmospheric science. DTS systems have an advantage over conventional individual temperature sensors in that thousands of quasi-concurrent temperature measurements may be made along the entire length of a fiber at 1 meter increments by a single instrument, thus increasing measurement precision. However, like any other temperature sensors, the fiber temperature is influenced by energy exchange with its environment, particularly by radiant energy (solar and long-wave) and by wind speed. The objective of this research is to perform an energy-balance based calibration of a DTS fiber system that will reduce the uncertainty of air temperature measurements in open and forested environments. To better understand the physics controlling the fiber temperature reported by the DTS, alternating black and white fiber optic cables were installed on vertical wooden jigs inside a recirculating wind tunnel. A constant irradiance from six 600W halogen lamps was directed on a two meter section of fiber to permit controlled observations of the resulting temperature difference between the black and white fibers as wind speed was varied. The net short and longwave radiation balance of each fiber was measured with an Eppley pyranometer and Kipp and Zonen pyrgeometer. Additionally, accurate air temperature was recorded from a screened platinum resistance thermometer, and sonic anemometers were positioned to record wind speed and turbulence. Relationships between the temperature excess of each fiber, net radiation, and wind speed were developed and will be used to derive correction terms in future field work. Preliminary results indicate that differential heating of fibers (black-white) is driven largely by net radiation with wind having a smaller but consistent effect. Subsequent work will require field verification to confirm that the observed wind tunnel correction algorithms are

  15. PROTOTIPE MONITORING KETINGGIAN AIR BENDUNGAN MELALUI MEDIA SOSIAL TWITTER BERBASIS MIKROKONTROLER ATMEGA-328PU

    Directory of Open Access Journals (Sweden)

    I G.M Sugiri Arnawa

    2015-12-01

    Full Text Available The prototype of this dam water level monitoring function to provide information about the dam water level through social media twitter and speakers. Information on twitter social media can be found by following the twitter account of this tool . The prototype consists of a microcontroller Arduino Uno , HC - SR04 sensor , LCD , WTV020SD and the Ethernet Shield . Sensor HC - SR04 , read the value of the dam water level based on emission and reflection of ultrasonic waves . Arduino Uno microcontroller will process and display the sensor input from HC - SR04 form of dam water level on the LCD and sent via ethernet shield to social media twitter . WTV020SD serves to ring the speaker on the water level 10 cm , 20 cm , 30 cm and 40 cm . The sound emitted is the normal condition of the dam , flood alert , flood alert and flood . Water level measurement results on LCD , manual measurement and display on twitter social media have gotten the same results .

  16. Air quality more extensive monitoring of particulates pollution but concentrations must be reduced by 2005; Qualite de l'air: une surveillance accrue des particules, mais des concentrations a reduire d'ici l'an 2005

    Energy Technology Data Exchange (ETDEWEB)

    Ba, M. [Institut francais de l' environnement, 45 - Orleans (France); Colosio, J. [ADEME, Agence de l' Environnement et de la Maitrise de l' Energie, 75 - Paris (France)

    2000-09-01

    Most epidemiological data point to a link between the concentrations of particles measured in the ambient air and the effects of air pollution on human health. Particulates emitted by road traffic and industry are among the most harmful; they carry serious risks. The particulate monitoring network and legislation on the issue are constantly changing. In France, the number of monitoring stations has more than doubled in recent years. EC Directive 1999/30/EC of 22 April 1999 sets limit values for concentrations of particulates in ambient air to be complied with at certain given dates. In France, while the concentrations measured in urban areas with over 100 000 inhabitants are below the limit values set by the Directive for today, they are significantly higher than those to be complied with by 1 January 2005. (author)

  17. Study of the psychological adaptation of the crew during a 135 days space simulation

    Science.gov (United States)

    Elisabeth, Rosnet; Geneviève, Cazes; Alla, Venokhodova

    The purpose of this study is to examine human Actaptation of a three members' crew during a 135 days MIR flight simulation and to compare and validate psychological methods for monitoring and support in flight. The main findings showed that isolation was not a key factor for the subjects who were more concerned by recreational activities, family, and work. The individual reactions to stress of the crew members were to project their problems on the others. These reactions had some consequences upon the group: Although the three subjects developed a weak tendency to ≪ group think ≫, one of the crew members was considered as less integrated to the group by me other two subjects, who, however, acted to protect (successfully) the general cohesion and mood of the crew. From a methodological point of view, baseline data predicted the difficulties that occurred for one of the crew member. Bom quantitative and qualitative tools were adequate, although qualitative tests gave a closer approach to the actual situation that developed during the simulation.

  18. Research on Airline Crew Scheduling%航空公司机组排班计划研究

    Institute of Scientific and Technical Information of China (English)

    赵正佳

    2011-01-01

    Giving an example of Beijing-Chengdu flights of Air China, the paper presents a new method to solve the problem of crew scheduling. In the new method, crews are not assigned jobs according to flight pairings directly. At first, ' crew pairings' are generated with Hungary algorithms to minimize crews' staying time. Then, the least crews are deduced with the method of worker-scheduling for production management. At last, the specific crews' scheduling is obtained in which the crews can take rest on successive two days in one week. By the method, the scheduling enables an airline corporation to fulfill its flights with least crews and crews to stay at staying-airports with least time.%以中国国际航空公司北京-成都航班为例,提出一种航空公司制定机组排班计划的新方法.首先以机组异地停留时间最短为目标,应用匈牙利算法生成“机组航班串”;然后,应用人员排班方法求得保证机组每周连休两日的条件下完成“机组航班串”飞行任务的最少机组数;最后,对这些机组制定具体的排班计划.应用该方法制定的机组排班计划使得航空公司在保证机组每周连休两日的条件下能够以最少的机组完成航班飞行任务,且机组在异地的停留时间最短.

  19. Monitoring

    Science.gov (United States)

    ... its main source of fuel. To keep your blood sugar level on target and avoid problems with your eyes, kidneys, heart and feet, you should eat right ... better. And monitoring doesn’t stop at measuring blood sugar levels. Because ... blood testing) Eye health (eye exams) Foot health (foot exams and ...

  20. 19 CFR 122.49 - Correction of air cargo manifest or air waybill.

    Science.gov (United States)

    2010-04-01

    ... SECURITY; DEPARTMENT OF THE TREASURY AIR COMMERCE REGULATIONS Aircraft Entry and Entry Documents; Electronic Manifest Requirements for Passengers, Crew Members, and Non-Crew Members Onboard Commercial... satisfactory reply within 30 days of entry of the aircraft or receipt of the notice, whichever is later....

  1. Twelve Months of Air Quality Monitoring at Ash Meadows National Wildlife Refuge, Southwestern Rural Nevada, U.S.A (EMSI April 2007)

    Energy Technology Data Exchange (ETDEWEB)

    Engelbrecht, Johann P; Shafer, David S; Campbell, Dave; Campbell, Scott; McCurdy, Greg; Kohl, Steven D; Nikolich, George; Sheetz, Larry

    2011-08-01

    The one year of air quality monitoring data collected at the Ash Meadows National Wildlife Refuge (NWR) was the final part of the air quality "Scoping Studies" for the Environmental Monitoring Systems Initiative (EMSI) in southern and central Nevada. The objective of monitoring at Ash Meadows was to examine aerosol and meteorological data, seasonal trends in aerosol and meteorological parameters as well as to examine evidence for long distance transport of some constituents. The 9,307 hectare refuge supports more than 50 springs and 24 endemic species, including the only population of the federally listed endangered Devil’s Hole pupfish (Cyprinodon diabolis) (U.S. Fish and Wildlife Service, 1990). Ash Meadows NWR is located in a Class II air quality area, and the aerosol measurements collected with this study are compared to those of Interagency Monitoring of Protected Visual Environments (IMPROVE) sites. Measurements taken at Ash Meadows NWR over a period of 12 months provide new baseline air quality and meteorological information for rural southwestern Nevada, specifically Nye County and the Amargosa Valley.

  2. 40 CFR 60.3067 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.3067 Section 60.3067... Incinerators That Burn Only Wood Waste, Clean Lumber, and Yard Waste § 60.3067 How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Use Method 9...

  3. 40 CFR 60.2972 - How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber...

    Science.gov (United States)

    2010-07-01

    ... curtain incinerators that burn only wood waste, clean lumber, and yard waste? 60.2972 Section 60.2972... Only Wood Waste, Clean Lumber, and Yard Waste § 60.2972 How must I monitor opacity for air curtain incinerators that burn only wood waste, clean lumber, and yard waste? (a) Use Method 9 of appendix A of...

  4. Monitoring of long-range transported air pollutants. Annual report for 1995; Overvaaking av langtransportert forurenset luft og nedboer. Atmosfaerisk tilfoersel, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Toerseth, K.

    1996-06-01

    Air and precipitation chemistry is determined though various monitoring programmes at several sites located in the rural areas of Norway. This report describes the results for 1995, and these are compared to the previous years. 52 refs., 32 figs., 80 tabs.

  5. QUALITY ASSURANCE PERFORMANCE AUDIT REPORT FOR THE SECRETARIA DEL MEDIO AMBIENTE CIUDAD DE MEXICO, DF, MEXICO RED AUTOMATICA DE MONITOREO ATMOSFERICO (RAMA) AIR QUALITY MONITORING STATIONS

    Science.gov (United States)

    The United States Environmental Protection Agency (U.S. EPA) conducted this evaluation of the air monitoring network, known as RAM (Red Automatica de Monitoreo Atmosferico) at the request of the Mexico City Secretariat of the Environment on October 16-27, 2000. This evaluation...

  6. Environmental Monitoring Plan

    International Nuclear Information System (INIS)

    The primary tasks of the environmental monitoring section (EMS) Livermore National Laboratory (LLNL) are: effluent monitoring of air, sewer, and NPDES water. Surveillance monitoring of soil, vegetation and foodstuff, water, air particulate, and air tritium. Radiation monitoring, dose assessment, emergency response, quality assurance, and reporting. This report describes LLNL and the monitoring plan

  7. Prototype development and test results of a continuous ambient air monitoring system for hydrazine at the 10 ppb level

    Science.gov (United States)

    Meneghelli, Barry; Parrish, Clyde; Barile, Ron; Lueck, Dale E.

    1995-01-01

    A Hydrazine Vapor Area Monitor (HVAM) system is currently being field tested as a detector for the presence of hydrazine in ambient air. The MDA/Polymetron Hydrazine Analyzer has been incorporated within the HVAM system as the core detector. This analyzer is a three-electrode liquid analyzer typically used in boiler feed water applications. The HVAM system incorporates a dual-phase sample collection/transport method which simultaneously pulls ambient air samples containing hydrazine and a very dilute sulfuric acid solution (0.0001 M) down a length of 1/4 inch outside diameter (OD) tubing from a remote site to the analyzer. The hydrazine-laden dilute acid stream is separated from the air and the pH is adjusted by addition of a dilute caustic solution to a pH greater than 10.2 prior to analysis. Both the dilute acid and caustic used by the HVAM are continuously generated during system operation on an "as needed" basis by mixing a metered amount of concentrated acid/base with dilution water. All of the waste water generated by the analyzer is purified for reuse by Barnstead ion-exchange cartridges so that the entire system minimizes the generation of waste materials. The pumping of all liquid streams and mixing of the caustic solution and dilution water with the incoming sample are done by a single pump motor fitted with the appropriate mix of peristaltic pump heads. The signal to noise (S/N) ratio of the analyzer has been enhanced by adding a stirrer in the MDA liquid cell to provide mixing normally generated by the high liquid flow rate designed by the manufacturer. An onboard microprocessor continuously monitors liquid levels, sample vacuum, and liquid leak sensors, as well as handles communications and other system functions (such as shut down should system malfunctions or errors occur). The overall system response of the HVAM can be automatically checked at regular intervals by measuring the analyzer response to a metered amount of calibration standard injected

  8. Prototype development and test results of a continuous ambient air monitoring system for hydrazine at the 10 ppb level

    Science.gov (United States)

    Meneghelli, Barry; Parrish, Clyde; Barile, Ron; Lueck, Dale E.

    1995-01-01

    A Hydrazine Vapor Area Monitor (HVAM) system is currently being field tested as a detector for the presence of hydrazine in ambient air. The MDA/Polymetron Hydrazine Analyzer has been incorporated within the HVAM system as the core detector. This analyzer is a three-electrode liquid analyzer typically used in boiler feed water applications. The HVAM system incorporates a dual-phase sample collection/transport method which simultaneously pulls ambient air samples containing hydrazine and a very dilute sulfuric acid solution (0.0001 M) down a length of 1/4 inch outside diameter (OD) tubing from a remote site to the analyzer. The hydrazine-laden dilute acid stream is separated from the air and the pH is adjusted by addition of a dilute caustic solution to a pH greater than 10.2 prior to analysis. Both the dilute acid and caustic used by the HVAM are continuously generated during system operation on an "as needed" basis by mixing a metered amount of concentrated acid/base with dilution water. All of the waste water generated by the analyzer is purified for reuse by Barnstead ion-exchange cartridges so that the entire system minimizes the generation of waste materials. The pumping of all liquid streams and mixing of the caustic solution and dilution water with the incoming sample are done by a single pump motor fitted with the appropriate mix of peristaltic pump heads. The signal to noise (S/N) ratio of the analyzer has been enhanced by adding a stirrer in the MDA liquid cell to provide mixing normally generated by the high liquid flow rate designed by the manufacturer. An onboard microprocessor continuously monitors liquid levels, sample vacuum, and liquid leak sensors, as well as handles communications and other system functions (such as shut down should system malfunctions or errors occur). The overall system response of the HVAM can be automatically checked at regular intervals by measuring the analyzer response to a metered amount of calibration standard injected

  9. Improvements in D2O leakage detection in restricted areas of Reactor Building during operation and tritium in air monitoring during outages

    International Nuclear Information System (INIS)

    This report describes the air sampling lines required for the improvement of simultaneous sampling for tritium in air monitoring in restricted areas of Reactor Building during operation. These sampling lines require penetrations equipped with containment sealing solenoid valves. It also describes the equipment used and the experience gained from some D2O leakages since Plant commissioning. By taking into account the current tendencies, improvements in gathering all data related to tritium concentrations in Reactor Building in Health Physicist's office, room S - 307 were made. Air samples were analyzed either by a liquid scintillation detector and/or by a proportional counter simultaneously, instead of the former single samples. These improvements also gave the possibility of a quicker detection of D2O leakage, thus contributing to keep low personnel dose, according to ALARA principles, as 'in situ' monitoring have proved to be not justifiable. (authors)

  10. DOE/NV/26383-LTR2008-01 Letter Report Yucca Mountain Environmental Monitoring Systems Initiative - Air Quality Scoping Study for Caliente, Lincoln County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    J. Engelbrecht; I. Kavouras; D. Campbell; S. Campbell; S. Kohl; D. Shafer

    2009-04-02

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S. Department of Energy's Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at eight sites outside the NTS, including Ash Meadows National Wildlife Refuge (NWR), Beatty, Sarcobatus Flats, Rachel, Caliente, Pahranagat NWR, Crater Flat, and Tonopah Airport, and at four sites on the NTS (Engelbrecht et al., 2007a-d). The trailer is stationed at any one site for approximately eight weeks at a time. This letter report provides a summary of air quality and meteorological data, on completion of the site's sampling program.

  11. Design and performance of a Nafion dryer for continuous operation at CO2 and CH4 air monitoring sites

    Directory of Open Access Journals (Sweden)

    W. Paplawsky

    2012-08-01

    Full Text Available In preparation for the routine deployment of the Earth Networks greenhouse gas monitoring network, we have designed and tested a simple method for drying ambient air to below 0.2% mole fraction H2O using a Nafion dryer. The inlet was designed for use with a Picarro model G2301 cavity ring down spectrometer (CRDS CO2/CH4/H2O analyzer. The analyzer measures water vapor mixing ratio at the same frequency as CO2 and CH4 and then corrects for the dilution and peak broadening effects of H2O on the CO2 and CH4 mixing ratios. This analyzer is remarkably stable and performs well on water vapor correction tests, but there is potentially an added benefit of reducing the dependence on the H2O correction for long term field measurement programs. Substantially lowering the amount of H2O in the sample can reduce uncertainties in the applied H2O corrections by an order of magnitude or more, and eliminate the need to determine an instrument-specific H2O correction factor and to verify its stability over time. Our Nafion drying inlet system takes advantage of the extra capacity of the analyzer pump to redirect 30% of the dry gas exiting the Nafion to the outer shell side of the dryer and has no consumables. We tested the Nafion dryer against a cryotrap (−95 °C method for removing H2O and found that it does not significantly alter the CO2 and CH4 dry mixing ratios of the sample gas. Systematic differences between the drying methods were at the level of 0.05 ppm in CO2 and 0.1 ppb in CH4 for the wet-air tests, well within the WMO compatibility guidelines.

  12. Design of Monitoring System for Air Compressors Based on LabVIEW%基于LabVIEW的压风机组监控系统设计

    Institute of Scientific and Technical Information of China (English)

    李高磊; 郑晓亮

    2015-01-01

    Mainly research the monitoring system for mine air compressors ,with the base of the analysis of characteristics of the existing unit air compressors on the basis of the monitoring system, a compressed air unit online monitoring system based on LabVIEW has been set up. The system consists of sensors, signal acquisition card, PLC, inverter and PC monitor screen. Realization of the state unit of the wind pressure parameters real-time online acquisition, real-time control, storage, display and warning, and rely on DataSocket technology enables remote monitoring.%以煤矿压风机组监控系统为研究对象,在分析现有压风机组监控系统特点的基础上,搭建了基于LabVIEW的压风机组在线监控系统。该系统包括传感器、信号采集卡、PLC、变频器和上位机监控界面。实现了对压风机组的状态参数的实时在线采集、实时控制、存储、显示与预警,并依靠DataSocket技术实现了远程监控。

  13. COMMUNICATION PROBLEMS IN A MIXED CREW ENVIRONMENT

    Directory of Open Access Journals (Sweden)

    CARMEN ASTRATINEI

    2016-06-01

    Full Text Available Shipping has become a highly international and multicultural industry due to a globalised labour market of seafarers. About two thirds of the world`s merchant fleets, are manned by a mixed crew, which may include two to three different nationalities. The common language used on board ship is English. So the crewmembers must have a good command of this language. 80% of all maritime accidents are, according to incident reports, caused by human error i.e. negligence, fatigue, incompetence or communication breakdown. Another factor that may affect the safety of crew and cargo is the cultural differences within the mixed nationality crews which, if not appeased in time, may lead to very serious conflicts. This paper proposes to analyse some characteristics of the Asian culture and traditions and suggest some ways of improving the professional relationship among multinational crew members by making them aware of their shipmates identities. A questionnaire, which we intend to use as a research tool, will be provided and explained.

  14. Multifunctional Coating for Crew Cabin Surfaces and Fabrics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA's crewed spacecrafts require routine cleaning of particulate, moisture, organic, and salt contaminants on the crew cabin surfaces and fabrics. Self-cleaning...

  15. The Investigation of Hourly,Daily and Seasonal Changes of Duzce Air Quality Monitoring Station 2014 Data

    Directory of Open Access Journals (Sweden)

    Filiz Bolu

    2015-10-01

    Full Text Available Aim: To evaluate data of air quality in the year 2004 in Duzce by days, hours and seasons. Method: In this study, sulfur dioxide, particulate matter levels, wind speed and wind direction values of Duzce city center obtained from the web page of Ministry of Envoriment and Planning between 1 January -31 December 2014 were studied. Data were examined by on the time of hours, days, days of the week, months and seasons. Results: Annual average PM10 was 106,42+/-102 and #956;g/m3 , SO2 concentration was 6,15+/-5,39 and #956;g/m3. Winter PM10 and SO2 measurements were significantly higher than summer season. Wind speed in the summer season had a higher average than the winter season. Highest average PM10 was at November 189,4 +/- 171,8 and #956;g/m3. The lowest PM10 was at June 58,0+/-24,5 and #956;g/m3. The highest average wind speed was at June, the lowest average wind speed is at December. PM10 and SO2 measurements were positively correlated with wind direction, shows a negative correlation with wind speed. The highest PM10 measurements in the summer season were on Thursdays, in the winter season on Wednesdays. The lowest PM10 measurements both in two seasons were on Sundays. Average PM10 was significantly higher on weekdays than weekends. The highest PM10 value of 146,6 +/- 131,3 and #956;g/m3 was measured at 23.00. The lowest PM10 value of 73,8+/-55,9 and #956;g/m3 was measured at 15.00. Conclusion: There is air pollution in Duzce both in the summer and winter. Continuous monitoring of the emissions of existing establishments in the industrial pollution control should be provided. The high PM10 measurements in the evening may be due to traffic during the day and fuel use for heating purposes. Widespread use of natural gas and creating socially conscious individual measures can be effective in reducing air pollution. [TAF Prev Med Bull 2015; 14(5.000: 387-393

  16. Design and performance of a Nafion dryer for continuous operation at CO2 and CH4 air monitoring sites

    Science.gov (United States)

    Welp, L. R.; Keeling, R. F.; Weiss, R. F.; Paplawsky, W.; Heckman, S.

    2013-05-01

    In preparation for routine deployment in a network of greenhouse gas monitoring stations, we have designed and tested a simple method for drying ambient air to near or below 0.2% (2000 ppm) mole fraction H2O using a Nafion dryer. The inlet system was designed for use with cavity ring-down spectrometer (CRDS) analyzers such as the Picarro model G2301 that measure H2O in addition to their principal analytes, in this case CO2 and CH4. These analyzers report dry-gas mixing ratios without drying the sample by measuring H2O mixing ratio at the same frequency as the main analytes, and then correcting for the dilution and peak broadening effects of H2O on the mixing ratios of the other analytes measured in moist air. However, it is difficult to accurately validate the water vapor correction in the field. By substantially lowering the amount of H2O in the sample, uncertainties in the applied water vapor corrections can be reduced by an order of magnitude or more, thus eliminating the need to determine instrument-specific water vapor correction coefficients and to verify the stability over time. Our Nafion drying inlet system takes advantage of the extra capacity of the analyzer pump to redirect 30% of the dry gas exiting the Nafion to the outer shell side of the dryer and has no consumables. We tested the Nafion dryer against a cryotrap (-97 °C) method for removing H2O and found that in wet-air tests, the Nafion reduces the CO2 dry-gas mixing ratios of the sample gas by as much as 0.1 ± 0.01 ppm due to leakage across the membrane. The effect on CH4 was smaller and varied within ± 0.2 ppb, with an approximate uncertainty of 0.1 ppb. The Nafion-induced CO2 bias is partially offset by sending the dry reference gases through the Nafion dryer as well. The residual bias due to the impact of moisture differences between sample and reference gas on the permeation through the Nafion was approximately -0.05 ppm for CO2 and varied within ± 0.2 ppb for CH4. The uncertainty of this

  17. Design and performance of a Nafion dryer for continuous operation at CO2 and CH4 air monitoring sites

    Directory of Open Access Journals (Sweden)

    L. R. Welp

    2013-05-01

    Full Text Available In preparation for routine deployment in a network of greenhouse gas monitoring stations, we have designed and tested a simple method for drying ambient air to near or below 0.2% (2000 ppm mole fraction H2O using a Nafion dryer. The inlet system was designed for use with cavity ring-down spectrometer (CRDS analyzers such as the Picarro model G2301 that measure H2O in addition to their principal analytes, in this case CO2 and CH4. These analyzers report dry-gas mixing ratios without drying the sample by measuring H2O mixing ratio at the same frequency as the main analytes, and then correcting for the dilution and peak broadening effects of H2O on the mixing ratios of the other analytes measured in moist air. However, it is difficult to accurately validate the water vapor correction in the field. By substantially lowering the amount of H2O in the sample, uncertainties in the applied water vapor corrections can be reduced by an order of magnitude or more, thus eliminating the need to determine instrument-specific water vapor correction coefficients and to verify the stability over time. Our Nafion drying inlet system takes advantage of the extra capacity of the analyzer pump to redirect 30% of the dry gas exiting the Nafion to the outer shell side of the dryer and has no consumables. We tested the Nafion dryer against a cryotrap (−97 °C method for removing H2O and found that in wet-air tests, the Nafion reduces the CO2 dry-gas mixing ratios of the sample gas by as much as 0.1 ± 0.01 ppm due to leakage across the membrane. The effect on CH4 was smaller and varied within ± 0.2 ppb, with an approximate uncertainty of 0.1 ppb. The Nafion-induced CO2 bias is partially offset by sending the dry reference gases through the Nafion dryer as well. The residual bias due to the impact of moisture differences between sample and reference gas on the permeation through the Nafion was approximately −0.05 ppm for CO2 and varied within ± 0.2 ppb for CH4. The

  18. Potential application of VIIRS Day/Night Band for monitoring nighttime surface PM2.5 air quality from space

    Science.gov (United States)

    Wang, Jun; Aegerter, Clint; Xu, Xiaoguang; Szykman, James J.

    2016-01-01

    A pilot study is conducted to illustrate the potential of using radiance data collected by the Day/Night Band (DNB) of the Visible Infrared Imaging Radiometer Suite (VIIRS) aboard the Suomi National Polar-orbiting Partnership (S-NPP) satellite for particulate matter (PM) air quality monitoring at night. The study focuses on the moonless and cloudless nights in Atlanta, Georgia during August-October 2012. We show with radiative transfer calculations that DNB at night is sensitive to the change of aerosols and much less sensitive to the change of water vapor in the atmosphere illuminated by common outdoor light bulbs at the surface. We further show both qualitatively that the contrast of DNB images can indicate the change of air quality at the urban scale, and quantitatively that change of light intensity during the night (as characterized by VIIRS DNB) reflects the change of surface PM2.5. Compared to four meteorological variables (u and v components of surface wind speed, surface pressure, and columnar water vapor amount) that can be obtained from surface measurements, the DNB light intensity is the only variable that shows either the largest or second largest correlation with surface PM2.5 measured at 5 different sites. A simple multivariate regression model with consideration of the change of DNB light intensity can yield improved estimate of surface PM2.5 as compared to the model with consideration of meteorological variables only. Cross validation of this DNB-based regression model shows that the estimated surface PM2.5 concentration has nearly no bias and a linear correlation coefficient (R) of 0.67 with respect to the corresponding hourly observed surface PM2.5 concentration. Furthermore, ground-based observations support that surface PM2.5 concentration at the VIIRS night overpass (˜1:00 am local) time is representative of daily-mean PM2.5 air quality (R = 0.82 and mean bias of -0.1 μg m-3). While the potential appears promising, mapping surface PM2.5 from

  19. Clean air policy under the UNECE Convention on long-range transboundary air pollution: how are monitoring results "translated" to policy action

    Directory of Open Access Journals (Sweden)

    Johannessen T

    2009-01-01

    Full Text Available Concerning clean air policy, under the convention on long-range transboundary air pollution, the following themes are discussed: the history of observed effects; the public awareness and concern for the ecosystem health; the current scientific evidence; the development of the critical load concept, and its application for an effects-based abatement policy.

  20. 14 CFR 121.385 - Composition of flight crew.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Composition of flight crew. 121.385 Section... Composition of flight crew. (a) No certificate holder may operate an airplane with less than the minimum flight crew in the airworthiness certificate or the airplane Flight Manual approved for that...

  1. Latino High School Students' Perceptions of Gangs and Crews

    Science.gov (United States)

    Lopez, Edward M.; Wishard, Alison; Gallimore, Ronald; Rivera, Wendy

    2006-01-01

    Controversies around definitions and perceptions of gangs are heightened by the scarcity of research on crews. In an open-ended interview, 77 Latino 10th graders from a random longitudinal sample provided information about gangs and crews. Although less than 10% reported having been in gangs or crews, 84% reported having personal contact with…

  2. 26 CFR 31.3121(o)-1 - Crew leader.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 15 2010-04-01 2010-04-01 false Crew leader. 31.3121(o)-1 Section 31.3121(o)-1... Contributions Act (Chapter 21, Internal Revenue Code of 1954) General Provisions § 31.3121(o)-1 Crew leader. The term “crew leader” means an individual who furnishes individuals to perform agricultural labor...

  3. Solving the Airline Crew Pairing Problem using Subsequence Generation

    DEFF Research Database (Denmark)

    Rasmussen, Matias Sevel; Ryan, David; Lusby, Richard Martin;

    2009-01-01

    Good and fast solutions to the airline crew pairing problem are highly interesting for the airline industry, as crew costs are the biggest expenditure after fuel for an airline. The crew pairing problem is typically modelled as a set partitioning problem and solved by column generation. However...

  4. Subsequence Generation for the Airline Crew Pairing Problem

    DEFF Research Database (Denmark)

    Rasmussen, Matias Sevel; Lusby, Richard Martin; Ryan, David;

    Good and fast solutions to the airline crew pairing problem are highly interesting for the airline industry, as crew costs are the biggest expenditure after fuel for an airline. The crew pairing problem is typically modelled as a set partitioning problem and solved by column generation. However...

  5. Solving the Airline Crew Pairing Problem using Subsequence Generation

    DEFF Research Database (Denmark)

    Rasmussen, Matias Sevel; Ryan, David M.; Lusby, Richard Martin;

    2010-01-01

    Good and fast solutions to the airline crew pairing problem are highly interesting for the airline industry, as crew costs are the biggest expenditure after fuel for an airline. The crew pairing problem is typically modelled as a set partitioning problem and solved by column generation. However...

  6. Solving the Airline Crew Pairing Problem using Subsequence Generation

    DEFF Research Database (Denmark)

    Rasmussen, Matias Sevel; Lusby, Richard Martin; Ryan, David M.;

    Good and fast solutions to the airline crew pairing problem are highly interesting for the airline industry, as crew costs are the biggest expenditure after fuel for an airline. The crew pairing problem is typically modelled as a set partitioning problem and solved by column generation. However...

  7. Monitoring the impact of the indoor air quality on silver cultural heritage objects using passive and continuous corrosion rate assessments

    Science.gov (United States)

    `t Hart, Lucy; Storme, Patrick; Anaf, Willemien; Nuyts, Gert; Vanmeert, Frederik; Dorriné, Walter; Janssens, Koen; de Wael, Karolien; Schalm, Olivier

    2016-10-01

    There is a long tradition in evaluating industrial atmospheres by measuring the corrosion rate of exposed metal coupons. The heritage community also uses this method, but the interpretation of the corrosion rate often lacks clarity due to the low corrosivity in indoor museum environments. This investigation explores the possibilities and drawbacks of different silver corrosion rate assessments. The corrosion rate is determined by three approaches: (1) chemical characterization of metal coupons using analytical techniques such as electrochemical measurements, SEM-EDX, XRD, and µ-Raman spectroscopy, (2) continuous corrosion monitoring methods based on electrical resistivity loss of a corroding nm-sized metal wire and weight gain of a corroding silver coated quartz crystal, and (3) characterization of the visual degradation of the metal coupons. This study confirms that subtle differences in corrosivity between locations inside a museum can be determined on condition that the same corrosion rate assessment is used. However, the impact of the coupon orientation with respect to the prevailing direction of air circulation can be substantially larger than the impact of the coupon location.

  8. A comparison of strategies for estimation of ultrafine particle number concentrations in urban air pollution monitoring networks

    International Nuclear Information System (INIS)

    We propose three estimation strategies (local, remote and mixed) for ultrafine particles (UFP) at three sites in an urban air pollution monitoring network. Estimates are obtained through Gaussian process regression based on concentrations of gaseous pollutants (NOx, O3, CO) and UFP. As local strategy, we use local measurements of gaseous pollutants (local covariates) to estimate UFP at the same site. As remote strategy, we use measurements of gaseous pollutants and UFP from two independent sites (remote covariates) to estimate UFP at a third site. As mixed strategy, we use local and remote covariates to estimate UFP. The results suggest: UFP can be estimated with good accuracy based on NOx measurements at the same location; it is possible to estimate UFP at one location based on measurements of NOx or UFP at two remote locations; the addition of remote UFP to local NOx, O3 or CO measurements improves models' performance. - Highlights: • UFP number concentrations are estimated using Gaussian process regression. • The independent variables include local and/or remote gaseous measurements. • Three modelling strategies (local, remote and mixed) used for UFP estimations. • NOx was the most important independent variable. • The best models explained >90% of the variance. - UFP can be estimated with good accuracy at one location based on NOx measurements at the same location and based on measurements of NOx or UFP at two remote locations

  9. High flow air sampling for determination of alpha long half-life emitters: area monitoring of a radioactive material disposal

    International Nuclear Information System (INIS)

    The Ore Treatment Unit (UTM) is a mine and closed uranium plant, located in Caldas, Minas Gerais, Brazil. It has a radioactive material disposal composed primarily of pie II and mesothorium. It is stored in six sheds designated C-01, C-02, C-05, C-06, C-07 and C-09. This study aims to present the high flow area monitoring program and results obtained in 2009. The threshold derived from concentration in the air was 0.25 Bq m-3. The average of the activity concentrations in 2009 were: for C-01 1.17 Bq m-3; C-02 0.006 Bq m-3; C-05 1.98 Bq m-3; C-06 2.14 Bq m-3; C-07 0.34 Bq m-3 and C-09 0,025 Bq m-3. Such values indicate that the control stay is an important factor in occupational workers' control, as well as the use of EPI's and behavioral care, besides radioprotection training to allow the access to the areas. No worker, supervisor or visitor reached the limit research

  10. Monitoring NSL. Progress of the Dutch National Air Quality Cooperation Programme (NSL). State of affairs 2012; Monitoringsrapportage NSL. Stand van zaken 2012 Nationaal Samenwerkingsprogamma Luchtkwaliteit

    Energy Technology Data Exchange (ETDEWEB)

    Van Zanten, M.C.; Wesseling, J.; Mooibroek, D.; Van Alphen, A.; Nguyen, L. [Rijksinstituut voor Volksgezondheid en Milieu RIVM, Bilthoven (Netherlands); Groot Wassink, H.; Verbeek, C. [InfoMil, Agentschap NL, Den Haag (Netherlands)

    2012-11-15

    The National Air Quality Cooperation Programme (NSL) has been created to facilitate improvements in air quality in the Netherlands and to ensure that the Netherlands meets the respective deadlines set for compliance to EU limit values for particulate matter (PM10) and nitrogen dioxide (NO2). Local, regional and national authorities work together within the framework of this programme to ensure that these goals will be met. A monitoring programme has been put in place to monitor progress and, if necessary, to enable timely modifications to the programme. The annual results of the monitoring programme have been bundled together by the Monitoring Bureau (collaboration between RIVM and the InfoMil Knowledge Centre) into the 2012 progress report [Dutch] Om de luchtkwaliteit te verbeteren is het Nationaal Samenwerkingsprogramma Luchtkwaliteit (NSL) opgezet. Hierin werken de Rijksoverheid en decentrale overheden samen om te zorgen dat Nederland overal tijdig aan de grenswaarden voor fijn stof en stikstofdioxide zal voldoen. Om de voortgang van dit verbeterprogramma te volgen en tijdig eventuele extra maatregelen te kunnen nemen, is aan het NSL een monitoringsprogramma verbonden. De uitvoering van de monitoring is neergelegd bij Bureau Monitoring, een samenwerkingsverband tussen het RIVM en Kenniscentrum InfoMil.

  11. STS-95 crew members participate in a SPACEHAB familiarization exercise

    Science.gov (United States)

    1998-01-01

    Inside the SPACEHAB training module, STS-95 Mission Specialist Scott Parazynski, M.D., helps with connections on the mesh cap worn by Payload Specialist John Glenn, who is a senator from Ohio. Glenn is also wearing the Respiratory Inductance Plethysmograph (RIP) suit he will wear on the mission to monitor respiration. The cap and suit are part of the equipment that will be used to seek to improve the quality of sleep for future astronauts. The STS-95 crew are participating in SPACEHAB familiarization at the SPACEHAB Payload Processing Facility, Cape Canaveral. The mission, scheduled to launch Oct. 29, includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  12. Testing of Continuous Sampling Air-ICP and Mercury Systems as Continuous Emission Monitors at the Diagnostic Instrumentation and Analysis Laboratory; TOPICAL

    International Nuclear Information System (INIS)

    This report has been prepared to document the performance of the continuous sampling reduced-pressure air-ICP-AES (inductively coupled plasma-atomic emission spectroscopy) and mercury-monitor systems developed by Ames Laboratory for use as continuous emission monitors (CEM). This work was funded by the U. S. Department of Energy, Office of Environmental Management, Office of Science and Technology, through the Mixed Waste Focus Area. The purpose of the project is to develop instrumentation and methods for spectroscopic field monitoring applications. During FY00 this included continued work on the development of the continuous sample introduction system and the multi-frequency AOTF-echelle spectrometer, used in conjunction with the reduced-pressure air-ICP-AES system as a multi-metal CEM. The assembly, development, and testing of an echelle spectrometer system for the detection of mercury (Hg) by atomic absorption was also completed during FY00. The continuous sampling system and the multi-metal air-ICP and mercury-monitor CEM systems were tested at Mississippi State University at the Diagnostic Instrumentation and Analysis Laboratory (DIAL) at the end of FY00. This report describes the characteristics and performance of these systems, and the results of the field tests performed at DIAL

  13. [Spatial representativeness of monitoring stations for air quality in Florence (Tuscany Region, Central Italy) according to ARPAT e LaMMA. Critical observations].

    Science.gov (United States)

    Grechi, Daniele

    2016-01-01

    On March 2015, the Environmental Protection Agency of Tuscany Region (Central Italy) and the Laboratory of monitoring and environmental modelling published a Report on spatial representativeness of monitoring stations for Tuscan air quality, where they supported the decommissioning of modelling stations located in the Florentine Plain. The stations of Signa, Scandicci, and Firenze-Bassi, located in a further South area, were considered representative Believing that air quality of the Plain could be evaluated by these stations is a stretch. In this text the author show the inconsistency of the conclusion of the Report through correlation graphs comparing daily means of PM10 detected in the disposed stations and in the active ones, showing relevant differences between the reported values and the days when the limits are exceeded. The discrepancy is due to the fact that uncertainty of theoretical estimates is greater than the differences recorded by the stations considered as a reference and the areas they may represent. The area of the Plain has a population of 150,000 individuals and it is subject to a heavy environmental pression, which will change for the urban works planned for the coming years. The population's legitimate request for the analytical monitoring of air pollution could be met through the organization of participated monitoring based on the use of low-cost innovative tools.

  14. Allegheny County Air Quality

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Air quality data from Allegheny County Health Department monitors throughout the county. Air quality monitored data must be verified by qualified individuals...

  15. A novel mobile monitoring approach to characterize spatial and temporal variation in traffic-related air pollutants in an urban community

    Science.gov (United States)

    Yu, Chang Ho; Fan, Zhihua; Lioy, Paul J.; Baptista, Ana; Greenberg, Molly; Laumbach, Robert J.

    2016-09-01

    Air concentrations of traffic-related air pollutants (TRAPs) vary in space and time within urban communities, presenting challenges for estimating human exposure and potential health effects. Conventional stationary monitoring stations/networks cannot effectively capture spatial characteristics. Alternatively, mobile monitoring approaches became popular to measure TRAPs along roadways or roadsides. However, these linear mobile monitoring approaches cannot thoroughly distinguish spatial variability from temporal variations in monitored TRAP concentrations. In this study, we used a novel mobile monitoring approach to simultaneously characterize spatial/temporal variations in roadside concentrations of TRAPs in urban settings. We evaluated the effectiveness of this mobile monitoring approach by performing concurrent measurements along two parallel paths perpendicular to a major roadway and/or along heavily trafficked roads at very narrow scale (one block away each other) within short time period (carbon (BC) monitor (Micro-Aethalometer), carbon monoxide (CO) monitor (Langan T15), and portable temperature/humidity data logger (HOBO U12), and a GPS-based tracker (Trackstick). Sampling was conducted for ˜3 h in the morning (7:30-10:30) in 7 separate days in March/April and 6 days in May/June 2012. Two simultaneous samplings were made at 5 spatially-distributed locations on parallel roads, usually distant one block each other, in each neighborhood. The 5-min averaged BC concentrations (AVG ± SD, [range]) were 2.53 ± 2.47 [0.09-16.3] μg/m3, particle number concentrations (PNC) were 33,330 ± 23,451 [2512-159,130] particles/cm3, PM2.5 mass concentrations were 8.87 ± 7.65 [0.27-46.5] μg/m3, and CO concentrations were 1.22 ± 0.60 [0.22-6.29] ppm in the community. The traffic-related air pollutants, BC and PNC, but not PM2.5 or CO, varied spatially depending on proximity to local stationary/mobile sources. Seasonal differences were observed for all four TRAPs

  16. A novel mobile monitoring approach to characterize spatial and temporal variation in traffic-related air pollutants in an urban community

    Science.gov (United States)

    Yu, Chang Ho; Fan, Zhihua; Lioy, Paul J.; Baptista, Ana; Greenberg, Molly; Laumbach, Robert J.

    2016-09-01

    Air concentrations of traffic-related air pollutants (TRAPs) vary in space and time within urban communities, presenting challenges for estimating human exposure and potential health effects. Conventional stationary monitoring stations/networks cannot effectively capture spatial characteristics. Alternatively, mobile monitoring approaches became popular to measure TRAPs along roadways or roadsides. However, these linear mobile monitoring approaches cannot thoroughly distinguish spatial variability from temporal variations in monitored TRAP concentrations. In this study, we used a novel mobile monitoring approach to simultaneously characterize spatial/temporal variations in roadside concentrations of TRAPs in urban settings. We evaluated the effectiveness of this mobile monitoring approach by performing concurrent measurements along two parallel paths perpendicular to a major roadway and/or along heavily trafficked roads at very narrow scale (one block away each other) within short time period (carbon (BC) monitor (Micro-Aethalometer), carbon monoxide (CO) monitor (Langan T15), and portable temperature/humidity data logger (HOBO U12), and a GPS-based tracker (Trackstick). Sampling was conducted for ∼3 h in the morning (7:30-10:30) in 7 separate days in March/April and 6 days in May/June 2012. Two simultaneous samplings were made at 5 spatially-distributed locations on parallel roads, usually distant one block each other, in each neighborhood. The 5-min averaged BC concentrations (AVG ± SD, [range]) were 2.53 ± 2.47 [0.09-16.3] μg/m3, particle number concentrations (PNC) were 33,330 ± 23,451 [2512-159,130] particles/cm3, PM2.5 mass concentrations were 8.87 ± 7.65 [0.27-46.5] μg/m3, and CO concentrations were 1.22 ± 0.60 [0.22-6.29] ppm in the community. The traffic-related air pollutants, BC and PNC, but not PM2.5 or CO, varied spatially depending on proximity to local stationary/mobile sources. Seasonal differences were observed for all four

  17. Regional monitoring of deposition and effects of air pollution; Regional oevervakning av nedfall och effekter av luftfoeroreningar. Sammanfattande slutrapport fraan ett samarbetsprojekt mellan IVL, laenen och Naturvaardsverket

    Energy Technology Data Exchange (ETDEWEB)

    Akselsson, Cecilia; Ferm, Martin; Hallgren Larsson, Eva; Knulst, Johan; Loevblad, Gun; Malm, Gunnar; Westling, Olle

    2000-05-01

    Regional programmes in Sweden focused on deposition and effects of air pollutants have been evaluated by IVL, Swedish Environmental Research Institute. Various air quality protection associations and regional environmental authorities initiated the monitoring programmes during the period 1985 to 1990. The result of the evaluation is a revised and coordinated programme with improved methods. The new regional programme combines collection of field data with national model calculations of deposition of air pollutants. The new programme involves collection of deposition on open field (bulk) and in forest stands (throughfall), and soil solution, according to national and international standards. Improved methods for monitoring of base cation and nitrogen deposition have been developed. Ambient air concentrations are measured at some locations. The purpose is to describe environmental conditions, regional differences, and temporal changes. Data on forest stands, such as needle loss, growth, and soil chemistry, are available since most locations are permanent forest plots, established for scientific forest observations. Regional dispersion and deposition of air pollutants will be calculated with a model (SMHI-MATCH), developed for simulating the dispersion and deposition of Swedish emissions in relation to the long-range transport on a relatively fine scale (grid square 11 km). The programme also includes developed methods for data handling, interpretation, evaluation, quality assurance and demonstration of results in written reports and via Internet.

  18. A study of air monitoring at an urban region in Korea and a comparative analysis by the three k0-NAA program

    International Nuclear Information System (INIS)

    For the study on air pollution, airborne particulate matter (APM) for the fine (2.5) and coarse particle (2.5-10 μm EAD: PM2.5-10) fractions were collected using the Gent stacked filter unit low volume sampler and two types of Nuclepore polycarbonate filters. Air samples were collected twice a month at two regions (suburban and industrial site of Daejeon city in the Republic of Korea) from January to December 2002. Monthly mass concentration of PM2.5 and PM2.5-10 were measured and the concentrations of 10 elements such as Al, Sc, Ti (indices for silicates); Na, Cl (sea salts); As, V, Sb, Br, Se (pollutants) were determined by an Instrumental NAA at the HANARO research reactor, Korea. Analytical quality control was carried out using three certified reference materials (CRM). Enrichment factors were also calculated from the monitoring data to classify the anthropogenic and crustal origins. A comparison of the analytical data determined by the three K0-NAA software was carried out using a part of the air monitoring sample and the CRM of the air filter to evaluate the accuracy as well as the convenience and simplicity of analysis. The k0-NAA method of three countries, Korea, China and Vietnam were used for the comparative analysis. The results obtained from this project can be used to investigate the source identification and its trends, and to establish a more cost-effective method for national air quality management. (author)

  19. Integrated Aircraft Fleeting, Routing, and Crew Pairing Models and Algorithms for the Airline Industry

    OpenAIRE

    Shao, Shengzhi

    2013-01-01

    The air transportation market has been growing steadily for the past three decades since the airline deregulation in 1978. With competition also becoming more intense, airline companies have been trying to enhance their market shares and profit margins by composing favorable flight schedules and by efficiently allocating their resources of aircraft and crews so as to reduce operational costs. In practice, this is achieved based on demand forecasts and resource availabilities through a structu...

  20. The Data Integrity Research of Air Quality Monitoring System in the City%空气质量监测系统数据完整性研究

    Institute of Scientific and Technical Information of China (English)

    张俊楷; 谷小娅

    2013-01-01

      空气质量监测指对存在于空气中的污染物进行定点、连续或定时的采样和测量,并将监测发送到监控中心,加以分析并得到相关的数据[1]。该文主要介绍城市空气质量在线监测系统的数据完整性研究,系统的分析了影响数据完整性的因素,并提出了相应的解决方案。该研究方案解决了空气质量在线监测系统中经常出现的监测数据丢失、损害的问题,并且能够方便、有效地运用到其他环保监控系统中。%Air quality monitoring refers the polluted substances that presented in the air to carry on sampling and measurement continuously and timing, the data is sent to the monitoring center,and to be analyzed. This paper describes the Integrity for that data of Air Quality Online Monitoring System in the city of ZhengZhou, analyzed the Influencing factors for data Integrity Sys-tematicly, and Propose solutions. the research program make The usual problems of the Air Quality Online Monitoring System that Appeared contains that Detect data lost、damaged can be solved, and can be Applied in the other Environmental protection Monitoring system.