WorldWideScience

Sample records for air contamination due

  1. Contaminative Influence of Beef Due to the Inhalation of Air and the Ingestion of Soil of Livestock from an Acute Release of Radioactive Materials

    International Nuclear Information System (INIS)

    Hwang, Won Tae; Kim, Eun Han; Suh, Kyung Suk; Jeong, Hyo Jeon; Han, Moon Hee

    2004-01-01

    The contaminative influence of beef due to the inhalation of air and the ingestion of soil of livestock, both of which are dealt with as minor contaminative pathways in most radioecological models but may not be neglected, was comprehensively investigated with the improvement of the Korean food chain model DYNACON. As the results, it was found that both pathways can not be neglected at all in the contamination of beef in the case of an accidental release during the non-grazing period of livestock. The ingestion of soil was more influential in the contamination of beef than the inhalation of air over most time following an release. If precipitation is encountered during an accidental release, contaminative influence due to the ingestion of soil was far greater compared with the cases of no precipitation. This fact was more distinct for a long-lived radionuclide 137 Cs than a short-lived radionuclide '1 31 I (elemental iodine). Compared with the results for milk performed prior to this study, the contaminative pathways due to the inhalation of air and the ingestion of soil were more important in beef because of longer biological half-lives. On the other hand, in the case of an accidental release during the grazing period of livestock, radioactive contamination due to the ingestion of pasture was dominant irrespective of the existence of precipitation during an accidental release. It means that contaminative influence due to the inhalation of air and the ingestion of soil is negligible, like the cases of milk.

  2. Contaminative influence of beef due to the inhalation of air and the ingestion of soil of cattle in an accidental release of radioactive materials

    International Nuclear Information System (INIS)

    Hwang, W. T.; Kim, E. H.; Seo, K. S.; Jung, H. J.; Lee, S. M.; Hang, M. H.

    2004-01-01

    The contaminative influence of beef due to the inhalation of air and the ingestion of soil of cattle, both of which are dealt with as minor contaminative pathways in most radioecological models but may not be neglected, was comprehensively investigated with the improvement of the Korean dynamic food chain model DYNACON. As the results, it was found that both pathways can not be neglected at all in the contamination of beef in the case of an accidental release during the non-grazing period of cattle. The ingestion of soil was more influential in the contamination of beef than the inhalation of air over most time following an release. If precipitation is encountered during an accidental release, contaminative influence due to the ingestion of soil was far greater compared with the cases of no precipitation. This fact was more distinct for a long-lived radionuclide 137 Cs than a short-lived radionuclide 131 I (elemental iodine). Compared with the results for milk performed prior to this study, the contaminative pathways due to the inhalation of air and the ingestion of soil were more important in beef because of longer biological half-lives. In the meantime, in the case of an accidental release during the grazing period of cattle, radioactive contamination due to the ingestion of pasture was dominant irrespective of the existence of precipitation during an accidental release. It means that contaminative influence due to the inhalation of air and the ingestion of soil is negligible like the cases of milk

  3. Direct measurement of homogeneously distributed radioactive air contamination with germanium detectors

    International Nuclear Information System (INIS)

    Sowa, W.

    1990-01-01

    Air contamination by γ emitting radionuclides was measured with a vertically arranged germanium detector, laterally shielded by a lead ring, and calibration factors and detection limits of a number of fission products determined. The possibility of measuring simultaneously existing air and soil contamination by measurements with and without lead shield is described. The change of detection limit of air contamination is presented for different soil contamination levels by the same radionuclide. Calibration factors are given to determine the dose rate on the ground due to air contamination by different radionuclides. (author)

  4. Air contamination analysis during emergency medical treatment

    International Nuclear Information System (INIS)

    Yamada, Y.; Fukutsu, K.; Yuuki, M.; Akashi, M.

    2009-01-01

    After radiological emergencies, patients contaminated with radioactivity are taken to radiation emergency hospitals for treatment. Numerical simulations using the computer software 'Flow Designer R were made in order to evaluate indoor air contamination caused by the breathing out of contaminated air. The National Inst. of Radiological Sciences facility was used for the numerical evaluation. Results indicate that the dispersion of contaminated air depends on the characteristics of the contaminants, and that the dispersion range was limited and localised. Only medical staff standing in a special position near the patient was exposed to almost un-diluted contaminated air. Highly contaminated air was evacuated with a local exhaust pump system. Room air quality was monitored using a continuous air sampling system, but it was found that the sampling point was not representative for the purpose of radiation protection. From the air-flow analysis, some problems that affect radiological safety were revealed and valuable information and measures for preventing secondary contamination were determined. (authors)

  5. Radioactive air and surface contamination in Czechia and Slovakia

    International Nuclear Information System (INIS)

    Rumyantsev, V.V.

    1992-01-01

    Data are presented on the radioactive substance effluents into the environment in conditions of NPP normal operation and on the air contamination by 85 Kr due to operation of the European and Soviet plants for reprocessing spent nuclear fuel. Data are given on the dosage of the Czechoslovakia population due to the Chernobyl NPP accident

  6. Contamination Effects Due to Space Environmental Interactions

    Science.gov (United States)

    Chen, Philip T.; Paquin, Krista C. (Technical Monitor)

    2001-01-01

    Molecular and particulate contaminants are commonly generated from the orbital spacecraft operations that are under the influence of the space environment. Once generated, these contaminants may attach to the surfaces of the spacecraft or may remain in the vicinity of the spacecraft. In the event these contaminants come to rest on the surfaces of the spacecraft or situated in the line-of-sight of the observation path, they will create various degrees of contamination effect which may cause undesirable effects for normal spacecraft operations, There will be circumstances in which the spacecraft may be subjected to special space environment due to operational conditions. Interactions between contaminants and special space environment may alter or greatly increase the contamination effect due to the synergistic effect. This paper will address the various types of contamination generation on orbit, the general effects of the contamination on spacecraft systems, and the typical impacts on the spacecraft operations due to the contamination effect. In addition, this paper will explain the contamination effect induced by the space environment and will discuss the intensified contamination effect resulting from the synergistic effect with the special space environment.

  7. Regenerable Air Purification System for Gas-Phase Contaminant Control

    Science.gov (United States)

    Constantinescu, Ileana C.; Finn, John E.; LeVan, M. Douglas; Lung, Bernadette (Technical Monitor)

    2000-01-01

    Tests of a pre-prototype regenerable air purification system (RAPS) that uses water vapor to displace adsorbed contaminants from an adsorbent column have been performed at NASA Ames Research Center. A unit based on this design can be used for removing trace gas-phase contaminants from spacecraft cabin air or from polluted process streams including incinerator exhaust. During the normal operation mode, contaminants are removed from the air on the column. Regeneration of the column is performed on-line. During regeneration, contaminants are displaced and destroyed inside the closed oxidation loop. In this presentation we discuss initial experimental results for the performance of RAPS in the removal and treatment of several important spacecraft contaminant species from air.

  8. Exposure to secondhand smoke in Germany: air contamination due to smoking in German restaurants, bars, and other venues.

    Science.gov (United States)

    Schneider, Sven; Seibold, Bjoern; Schunk, Susanne; Jentzsch, Elmar; Pötschke-Langer, Martina; Dresler, Carolyn; Travers, Mark J; Hyland, Andrew

    2008-03-01

    This study quantified exposure to secondhand smoke in German restaurants, bars, and entertainment venues by determining the concentration of respirable suspended particles measuring 2.5 microm or less (PM2.5) in indoor air. The measurements were taken using an inconspicuous device placed on the investigator's table in the venue. The concentration of particulate matter in the indoor air was measured for a minimum of 30 min. A total of 39 restaurants, 20 coffee bars, 12 bars, 9 discothèques, and 20 restaurant cars in trains were visited throughout Germany from September 30 to October 31, 2005. The readings disclosed a median PM2.5 of 260 microg/m3 and an arithmetic mean PM2.5 of 333 microg/m3. Median values were 378 microg/m3 in bars, 131 microg/m3 in cafes, and 173 microg/m3 in restaurants. The highest medians were measured in discothèques and restaurant cars, with values averaging 432 microg/m3 and 525 microg/m3 PM2.5, respectively. This study was the first to show the magnitude and extent of exposure to secondhand smoke on such an extensive scale in Germany. The contaminated air due to smoking is a human carcinogenic and major health hazard, which would be prevented most effectively and completely by implementing a ban on smoking. This study is important for the ongoing national debate in Germany as well as for debates in all countries without smoke-free air legislation, which includes most countries around the world.

  9. Air contamination for predicting wound contamination in clean surgery: A large multicenter study.

    Science.gov (United States)

    Birgand, Gabriel; Toupet, Gaëlle; Rukly, Stephane; Antoniotti, Gilles; Deschamps, Marie-Noelle; Lepelletier, Didier; Pornet, Carole; Stern, Jean Baptiste; Vandamme, Yves-Marie; van der Mee-Marquet, Nathalie; Timsit, Jean-François; Lucet, Jean-Christophe

    2015-05-01

    The best method to quantify air contamination in the operating room (OR) is debated, and studies in the field are controversial. We assessed the correlation between 2 types of air sampling and wound contaminations before closing and the factors affecting air contamination. This multicenter observational study included 13 ORs of cardiac and orthopedic surgery in 10 health care facilities. For each surgical procedure, 3 microbiologic air counts, 3 particles counts of 0.3, 0.5, and 5 μm particles, and 1 bacteriologic sample of the wound before skin closure were performed. We collected data on surgical procedures and environmental characteristics. Of 180 particle counts during 60 procedures, the median log10 of 0.3, 0.5, and 5 μm particles was 7 (interquartile range [IQR], 6.2-7.9), 6.1 (IQR, 5.4-7), and 4.6 (IQR, 0-5.2), respectively. Of 180 air samples, 50 (28%) were sterile, 90 (50%) had 1-10 colony forming units (CFU)/m(3) and 40 (22%) >10 CFU/m(3). In orthopedic and cardiac surgery, wound cultures at closure were sterile for 24 and 9 patients, 10 and 11 had 1-10 CFU/100 cm(2), and 0 and 6 had >10 CFU/100 cm(2), respectively (P air microbial counts (P contamination (P = .22). This study suggests that particle counting is a good surrogate of airborne microbiologic contamination in the OR. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  10. Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants

    Science.gov (United States)

    Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.

    1998-01-01

    Control of air contaminants is a crucial factor in the safety considerations of crewed space flight. Indoor air quality needs to be closely monitored during long range missions such as a Mars mission, and also on large complex space structures such as the International Space Station. This work mainly pertains to the detection and simulation of air contaminants in the space station, though much of the work is easily extended to buildings, and issues of ventilation systems. Here we propose a method with which to track the presence of contaminants using an accurate physical model, and also develop a robust procedure that would raise alarms when certain tolerance levels are exceeded. A part of this research concerns the modeling of air flow inside a spacecraft, and the consequent dispersal pattern of contaminants. Our objective is to also monitor the contaminants on-line, so we develop a state estimation procedure that makes use of the measurements from a sensor system and determines an optimal estimate of the contamination in the system as a function of time and space. The real-time optimal estimates in turn are used to detect faults in the system and also offer diagnoses as to their sources. This work is concerned with the monitoring of air contaminants aboard future generation spacecraft and seeks to satisfy NASA's requirements as outlined in their Strategic Plan document (Technology Development Requirements, 1996).

  11. Air Contamination With Fungals In Museum

    Science.gov (United States)

    Scarlat, Iuliana; Haiducu, Maria; Stepa, Raluca

    2015-07-01

    The aim of the studies was to determine the level and kind of fungal contamination of air in museum, deposits patrimony, restoration and conservation laboratories and their effects on health of workers. Microbiological air purity was measured with a SAS-100 Surface Air System impactor. The fungal contamination was observed in all 54 rooms where we made determinations. The highest levels of fungal were recorded at rooms with hygroscopic patrimony objects, eg carpets, chairs, upholstered chairs, books etc. The most species identified included under common allergens: Aspergillus, Penicillium, and Mucor. There fungal species belonging to the genus identified in this study, can trigger serious diseases museum workers, such as for example Aspergillus fumigatus, known allergies and toxic effects that may occur. In some places of the museum, occupational exposure limit values to fungi present in the air in the work environment, recommended by the specialized literature, have been overcome.

  12. Determination of tricresyl phosphate air contamination in aircraft.

    Science.gov (United States)

    Denola, G; Hanhela, P J; Mazurek, W

    2011-08-01

    Monitoring of tricresyl phosphate (TCP) contamination of cockpit air was undertaken in three types of military aircraft [fighter trainer (FT), fighter bomber (FB), and cargo transport (CT) aircraft]. The aircraft had a previous history of pilot complaints about cockpit air contamination suspected to originate from the engine bleed air supply through the entry of aircraft turbine engine oil (ATO) into the engine compressor. Air samples were collected in flight and on the ground during engine runs using sorbent tubes packed with Porapak Q and cellulose filters. A total of 78 air samples were analysed, from 46 different aircraft, and 48 samples were found to be below the limit of detection. Nine incidents of smoke/odour were identified during the study. The concentrations of toxic o-cresyl phosphate isomers were below the level of detection in all samples. The highest total TCP concentration was 51.3 μg m(-3), while most were generally found to be contamination of cabin/cockpit air has been the subject of much concern in aviation, quantitative data are sparse.

  13. Influence of predictive contamination to agricultural products due to dry and wet processes during an accidental release of radionuclides

    International Nuclear Information System (INIS)

    Hwang, Won Tae; Kim, Eun Han; Suh, Kyung Suk; Jeong, Hyo Joon; Han, Moon Hee; Lee, Chang Woo

    2003-01-01

    The influence of predictive contamination to agricultural products due to the wet processes as well as dry processes from radioactive air concentration during a nuclear emergency is comprehensively analyzed. The previous dynamic food chain model DYNACON considering Korean agricultural and environmental conditions, in which the initial input parameter was radionuclide concentrations on the ground, is improved so as to evaluate radioactive contamination to agricultural products from either radioactive air concentrations or radionuclide concentrations on the ground. As for the results, wet deposition is a more dominant mechanism than dry deposition in contamination on the ground. While, the contamination levels of agricultural products are strongly dependent on radionuclide and precipitation when the deposition of radionuclides occurs. It means that the contamination levels of agricultural products are determined from which is the more dominant process between deposition on the ground and interception to agricultural plants

  14. 29 CFR 1910.19 - Special provisions for air contaminants.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Special provisions for air contaminants. 1910.19 Section 1910.19 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION... Standards § 1910.19 Special provisions for air contaminants. (a) Asbestos, tremolite, anthophyllite, and...

  15. Influence of radioactive contamination to agricultural products due to dry and wet deposition processes during a nuclear emergency

    International Nuclear Information System (INIS)

    Hwang, Won Tae; Kim, Eun Han; Suh, Kyung Suk; Han, Moon Hee; Choi, Yong Ho; Lee, Chang Woo

    2002-01-01

    Combined with deposition model onto the ground of radionuclides, the influence of radioactive contamination to agricultural products was analyzed due to wet deposition as well as dry deposition from radioactive air concentration during a nuclear emergency. The previous dynamic food chain model, in which initial input parameter is only radionuclide concentrations on the ground, was improved for the evaluating of radioactive contamination to agricultural products from either radionuclide concentrations in air or radionuclide concentrations on the ground. As the results, in case of deposition onto the ground, wet deposition was more dominant process than dry deposition. While the contamination levels of agricultural products were dependent on the a variety of factors such as radionuclides and rainfall rate. It means that the contamination levels of agricultural products are determined from which is more dominant process between deposition on the ground and interception onto agricultural plants

  16. Air Contamination Quantification by FTIR with Gas Cell

    Science.gov (United States)

    Freischlag, Jason

    2017-01-01

    Air quality is of utmost importance in environmental studies and has many industrial applications such as aviators grade breathing oxygen (ABO) for pilots and breathing air for fire fighters. Contamination is a major concern for these industries as identified in MIL-PRF-27210, CGA G-4.3, CGA G-7.1, and NFPA 1989. Fourier Transform Infrared Spectroscopy (FTIR) is a powerful tool that when combined with a gas cell has tremendous potential for gas contamination analysis. Current procedures focus mostly on GC-MS for contamination quantification. Introduction of this topic will be done through a comparison of the currently used deterministic methods for gas contamination with those of FTIR gas analysis. Certification of the mentioned standards through the ISOIEC 17065 certifying body A2LA will be addressed followed by an evaluation of quality information such as the determinations of linearity and the limits of detection and quantitation. Major interferences and issues arising from the use of the FTIR for accredited work with ABO and breathing air will be covered.

  17. Assessment of the bacterial contamination of hand air dryer in washrooms

    OpenAIRE

    Alharbi, Sulaiman Ali; Salmen, Saleh Hussein; Chinnathambi, Arunachalam; Alharbi, Naiyf S.; Zayed, M.E.; Al-Johny, Bassam O.; Wainwright, Milton

    2016-01-01

    The present study was carried out, using standard techniques, to identify and count the bacterial contamination of hand air dryers, used in washrooms. Bacteria were isolated from the air flow, outlet nozzle of warm air dryers in fifteen air dryers used in these washrooms. Bacteria were found to be relatively numerous in the air flows. Bacterially contaminated air was found to be emitted whenever a warm air dryer was running, even when not being used for hand drying. Our investigation shows th...

  18. Ambient air contamination: Characterization and detection techniques

    Science.gov (United States)

    Nulton, C. P.; Silvus, H. S.

    1985-01-01

    Techniques to characterize and detect sources of ambient air contamination are described. Chemical techniques to identify indoor contaminants are outlined, they include gas chromatography, or colorimetric detection. Organics generated from indoor materials at ambient conditions and upon combustion are characterized. Piezoelectric quartz crystals are used as precision frequency determining elements in electronic oscillators.

  19. Hydrodebridement of wounds: effectiveness in reducing wound bacterial contamination and potential for air bacterial contamination.

    Science.gov (United States)

    Bowling, Frank L; Stickings, Daryl S; Edwards-Jones, Valerie; Armstrong, David G; Boulton, Andrew Jm

    2009-05-08

    The purpose of this study was to assess the level of air contamination with bacteria after surgical hydrodebridement and to determine the effectiveness of hydro surgery on bacterial reduction of a simulated infected wound. Four porcine samples were scored then infected with a broth culture containing a variety of organisms and incubated at 37 degrees C for 24 hours. The infected samples were then debrided with the hydro surgery tool (Versajet, Smith and Nephew, Largo, Florida, USA). Samples were taken for microbiology, histology and scanning electron microscopy pre-infection, post infection and post debridement. Air bacterial contamination was evaluated before, during and after debridement by using active and passive methods; for active sampling the SAS-Super 90 air sampler was used, for passive sampling settle plates were located at set distances around the clinic room. There was no statistically significant reduction in bacterial contamination of the porcine samples post hydrodebridement. Analysis of the passive sampling showed a significant (p air whilst using hydro surgery equipment compared with a basal count of 582 CFUs/m3. During removal of the wound dressing, a significant increase was observed relative to basal counts (p air samples was still significantly raised 1 hour post-therapy. The results suggest a significant increase in bacterial air contamination both by active sampling and passive sampling. We believe that action might be taken to mitigate fallout in the settings in which this technique is used.

  20. [Legionella spp. contamination in indoor air: preliminary results of an Italian multicenter study].

    Science.gov (United States)

    Montagna, Maria Teresa; De Giglio, Osvalda; Napoli, Christian; Cannova, Lucia; Cristina, Maria Luisa; Deriu, Maria Grazia; Delia, Santi Antonino; Giuliano, Ada; Guida, Marco; Laganà, Pasqualina; Liguori, Giorgio; Mura, Ida; Pennino, Francesca; Rossini, Angelo; Tardivo, Stefano; Torre, Ida; Torregrossa, Maria Valeria; Villafrate, Maria Rosaria; Albertini, Roberto; Pasquarella, Cesira

    2014-01-01

    To propose a standardized protocol for the evaluation of Legionella contamination in air. A bathroom having a Legionella contamination in water >1,000 cfu/l was selected in 10 different healthcare facilities. Air contamination was assessed by active (Surface Air System, SAS) and passive (Index of Microbial Air, IMA) sampling for 8 hours, about 1 m away from the floor and 50 cm from the tap water. Two hundred liters of air were sampled by SAS every 12 min, after flushing water for 2 min. The IMA value was calculated as the mean value of colony forming units/16 plates exposed during sampling (2 plates/hour). Water contamination was evaluated at T0, after 4 and 8 hours, according to the standard methods. Air contamination by Legionella was found in three healthcare facilities (one with active and two with passive sampling), showing a concomitant tap water contamination (median=40,000; range 1,100-43,000 cfu/l). The remaining seven hospitals isolated Legionella spp. exclusively from water samples (median=8,000; range 1,200-70,000 cfu/l). Our data suggest that environmental Legionella contamination cannot be assessed only through the air sampling, even in the presence of an important water contamination.

  1. Circumventing shallow air contamination in Mid Ocean Ridge Basalts

    Science.gov (United States)

    Mukhopadhyay, Sujoy; Parai, Rita; Tucker, Jonathan; Middleton, Jennifer; Langmuir, Charles

    2016-04-01

    Noble gases in mantle-derived basalts provide a rich portrait of mantle degassing and surface-interior volatile exchange. However, the ubiquity of shallow-level air contamination frequently obscures the mantle noble gas signal. In a majority of samples, shallow air contamination dominates the noble gas budget. As a result, reconstructing the variability in heavy noble gas mantle source compositions and inferring the history of deep recycling of atmospheric noble gases is difficult. For example, in the gas-rich popping rock 2ΠD43, 129Xe/130Xe ratios reach 7.7±0.23 in individual step-crushes, but the bulk composition of the sample is close to air (129Xe/130Xe of 6.7). Here, we present results from experiments designed to elucidate the source of shallow air contamination in MORBs. Step-crushes were carried out to measure He, Ne, Ar and Xe isotopic compositions on two aliquots of a depleted popping glass that was dredged from between the Kane and Atlantis Fracture Zones of the Mid-Atlantic Ridge in May 2012. One aliquot was sealed in ultrapure N2 after dredge retrieval, while the other aliquot was left exposed to air for 3.5 years. The bulk 20Ne/22Ne and 129Xe/130Xe ratios measured in the aliquot bottled in ultrapure N2 are 12.3 and 7.6, respectively, and are nearly identical to the estimated mantle source values. On the other hand, step crushes in the aliquot left exposed to air for several years show Ne isotopic compositions that are shifted towards air, with a bulk 20Ne/22Ne of 11.5; the bulk 129Xe/130Xe, however, was close to 7.6. These results indicate that lighter noble gases exchange more efficiently between the bubbles trapped in basalt glass and air, suggesting a diffusive or kinetic mechanism for the incorporation of the shallow air contamination. Importantly, in Ne-Ar or Ar-Xe space, step-crushes from the bottled aliquot display a trend that can be easily fit with a simple two-component hyperbolic mixing between mantle and atmosphere noble gases. Step

  2. [Study on the groundwater petroleum contaminant remediation by air sparging].

    Science.gov (United States)

    Wang, Zhi-Qiang; Wu, Qiang; Zou, Zu-Guang; Chen, Hong; Yang, Xun-Chang; Zhao, Ji-Chu

    2007-04-01

    The groundwater petroleum contaminant remediation effect by air sparging was investigated in an oil field. The results show that the soil geological situation has great influence on the air distribution, and the shape of air distribution is not symmetrical to the air sparging (AS) well as axis. The influence distance in the left of AS well is 6 m, and only 4 m in the right. The petroleum removal rate can reach 70% in the zone with higher air saturation, but only 40% in the zone with lower air saturation, and the average petroleum removal rate reaches 60% in the influence zone for 40 days continuous air sparging. The petroleum components in groundwater were analyzed by GC/MS (gas chromatogram-mass spectrograph) before and after experiments, respectively. The results show that the petroleum removal rate has relationship with the components and their properties. The petroleum components with higher volatility are easily removed by volatilization, but those with lower volatility are difficult to remove, so a tailing effect of lingering residual contaminant exists when the air sparging technology is adopted to treat groundwater contaminated by petroleum products.

  3. A study on contaminant transport in indoor air

    International Nuclear Information System (INIS)

    Pujala, Usha; Sen, Soubhadra; Subramanian, V.; Srinivas, C.V.; Baskaran, R.; Venkatraman, B.

    2016-01-01

    In case of an accidental release of radioactive contaminant inside a well-ventilated room, the same will be transported to the different parts of the room due to the circulation of indoor air. To ensure safety of the operating personnel, it is important to identify the ideal locations for keeping the warning alarm systems. To address the problem, a detailed study is required where numerical simulation has to be supported by experimental verification. A computational methodology has already been verified for this purpose (IGC report-no.323). In this work, a study on the transport of an inert aerosol inside a well-ventilated isolated room has been carried out

  4. Air cleaning issues with contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    Bellamy, R.R. [Nuclear Regulatory Commission, King of Prussia, PA (United States)

    1997-08-01

    The US Nuclear Regulatory Commission has developed a list of contaminated sites that warrant special USNRC attention because they pose unique or complex decommissioning issues. This list of radiologically contaminated sites is termed the Site Decommissioning Management Plan (SDMP), and was first issued in 1990. A site is placed on the SDMP list if it has; (1) Problems with the viability of the responsible organization (e.g., the licensee for the site is unable or unwilling to pay for the decommissioning); (2) Large amounts of soil contamination or unused settling ponds or burial grounds that may make the waste difficult to dispose of; (3) The long-term presence of contaminated, unused buildings; (4) A previously terminated license; or (5) Contaminated or potential contamination of the ground water from on-site wastes. In deciding whether to add a site to the SDMP list, the NRC also considers the projected length of time for decommissioning and the willingness of the responsible organization to complete the decommissioning in a timely manner. Since the list was established, 9 sites have been removed from the list, and the current SDMP list contains 47 sites in 11 states. The USNRC annually publishes NUREG-1444, {open_quotes}Site Decommissioning Management Plan{close_quotes}, which updates the status of each site. This paper will discuss the philosophical goals of the SDMP, then will concentrate on the regulatory requirements associated with air cleaning issues at the SDMP sites during characterization and remediation. Both effluent and worker protection issues will be discussed. For effluents, the source terms at sites will be characterized, and measurement techniques will be presented. Off-site dose impacts will be included. For worker protection issues, air sampling analyses will be presented in order to show how the workers are adequately protected and their doses measured to satisfy regulatory criteria during decontamination operations. 1 tab.

  5. [Bacterial contamination of the indoor air in a transplant unit].

    Science.gov (United States)

    Matoušková, Ivanka; Holý, Ondřej

    2013-12-01

    For one year (August 2010 to July 2011), microbial contamination of the indoor air in the Transplant Unit of the Haemato-Oncology Clinic, Olomouc University Hospital was monitored monthly. Twenty sampling sites were singled out and a total of 240 indoor air samples were collected. An MAS-100 air sampler (Merck, GER) was used, air flow rate of 100 liters per minute, 1 minute. The measured values of indoor air temperature were stable. The relative air humidity ranged from 17% to 68%. The highest average value of microbial air contamination was found in the "staff entry room" (1170 CFU/m3). The lowest microbial air contamination (150-250 CFU/m3) was measured in the patient isolation units. The most frequently isolated bacterial strains were coagulase-negative staphylococci (94.3%), followed by Micrococcus spp. (67%) and Bacillus subtilis (11%). It can be assumed that the -source of these airborne bacterial strains are both patients and medical staff. They are classified as -opportunistic pathogens and as such can cause hospital infections among haemato-oncology patients.

  6. Microbial contamination of dental unit waterlines and effect on quality of indoor air.

    Science.gov (United States)

    Kadaifciler, Duygu Göksay; Cotuk, Aysin

    2014-06-01

    The microbiological quality in dental unit waterlines (DUWLs) is considered to be important because patients and dental staff with suppressed immune systems are regularly exposed to water and aerosols generated from dental units (DUs). Opportunistic pathogens like Pseudomonas, Legionella, Candida, and Aspergillus can be present in DUWLs, while during consultations, bioaerosols can be dispersed in the air, thus resulting in effects on microbiological quality of indoor air. This present study represents microbiological air and water quality in dental offices (DOs) and also concerns the relationship between the quality of DO air and dental unit water. This study aimed to assess both the microbial quality of dental unit water and the indoor air in 20 DOs and to survey the effect on the quality of the indoor air with the existing microorganisms in dental unit water. Fourteen out of 20 (70 %) DUWLs were found to be contaminated with a high number of aerobic mesophilic heterotrophic bacteria. In terms of bacterial air contamination levels, in 90 % of DOs, a medium level (contamination was determined, while in terms of microfungal air contamination, in all DOs, a low level (contamination was determined. Potential infection or allergen agents, such as Pseudomonas, Micrococcus, Staphylococcus, Alternaria, Cladosporium, Penicillium, Aspergillus, and Paecilomyces were isolated from water and air samples. This study's determination of contamination sources and evaluation of microbial load in DOs could contribute to the development of quality control methods in the future.

  7. Heavy metal contamination in an urban stream fed by contaminated air-conditioning and stormwater discharges.

    Science.gov (United States)

    O'Sullivan, Aisling; Wicke, Daniel; Cochrane, Tom

    2012-03-01

    Urban waterways are impacted by diffuse stormwater runoff, yet other discharges can unintentionally contaminate them. The Okeover stream in Christchurch, New Zealand, receives air-conditioning discharge, while its ephemeral reach relies on untreated stormwater flow. Despite rehabilitation efforts, the ecosystem is still highly disturbed. It was assumed that stormwater was the sole contamination source to the stream although water quality data were sparse. We therefore investigated its water and sediment quality and compared the data with appropriate ecotoxicological thresholds from all water sources. Concentrations of metals (Zn, Cu and Pb) in stream baseflow, stormwater runoff, air-conditioning discharge and stream-bed sediments were quantified along with flow regimes to ascertain annual contaminant loads. Metals were analysed by ICP-MS following accredited techniques. Zn, Cu and Pb concentrations from stormflow exceeded relevant guidelines for the protection of 90% of aquatic species by 18-, 9- and 5-fold, respectively, suggesting substantial ecotoxicity potential. Sporadic copper (Cu) inputs from roof runoff exceeded these levels up to 3,200-fold at >4,000 μg L⁻¹ while Cu in baseflow from air-conditioning inputs exceeded them 5.4-fold. There was an 11-fold greater annual Cu load to the stream from air-conditioning discharge compared to stormwater runoff. Most Zn and Cu were dissolved species possibly enhancing metal bioavailability. Elevated metal concentrations were also found throughout the stream sediments. Environmental investigations revealed unsuspected contamination from air-conditioning discharge that contributed greater Cu annual loads to an urban stream compared to stormwater inputs. This discovery helped reassess treatment strategies for regaining ecological integrity in the ecosystem.

  8. Characterization of the frequency and nature of bleed air contamination events in commercial aircraft.

    Science.gov (United States)

    Shehadi, M; Jones, B; Hosni, M

    2016-06-01

    Contamination of the bleed air used to pressurize and ventilate aircraft cabins is of concern due to the potential health and safety hazards for passengers and crew. Databases from the Federal Aviation Administration, NASA, and other sources were examined in detail to determine the frequency of bleed air contamination incidents. The frequency was examined on an aircraft model basis with the intent of identifying aircraft make and models with elevated frequencies of contamination events. The reported results herein may help investigators to focus future studies of bleed air contamination incidents on smaller number of aircrafts. Incident frequency was normalized by the number of aircraft, number of flights, and flight hours for each model to account for the large variations in the number of aircraft of different models. The focus of the study was on aircraft models that are currently in service and are used by major airlines in the United States. Incidents examined in this study include those related to smoke, oil odors, fumes, and any symptom that might be related to exposure to such contamination, reported by crew members, between 2007 and 2012, for US-based carriers for domestic flights and all international flights that either originated or terminated in the US. In addition to the reported frequency of incidents for different aircraft models, the analysis attempted to identify propulsion engines and auxiliary power units associated with aircrafts that had higher frequencies of incidents. While substantial variations were found in frequency of incidents, it was found that the contamination events were widely distributed across nearly all common models of aircraft. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. [Establishment of Assessment Method for Air Bacteria and Fungi Contamination].

    Science.gov (United States)

    Zhang, Hua-ling; Yao, Da-jun; Zhang, Yu; Fang, Zi-liang

    2016-03-15

    In this paper, in order to settle existing problems in the assessment of air bacteria and fungi contamination, the indoor and outdoor air bacteria and fungi filed concentrations by impact method and settlement method in existing documents were collected and analyzed, then the goodness of chi square was used to test whether these concentration data obeyed normal distribution at the significant level of α = 0.05, and combined with the 3σ principle of normal distribution and the current assessment standards, the suggested concentrations ranges of air microbial concentrations were determined. The research results could provide a reference for developing air bacteria and fungi contamination assessment standards in the future.

  10. Protection of atmospheric air against radioactive gas and aerosol contaminants

    International Nuclear Information System (INIS)

    Zykova, A.S.

    1984-01-01

    Measures for contamination protection of atmospheric air subdivided into active and passive ones, are considered. The active measures envisage: development and application of waste-free flowsheets, use of flowsheets which restrict formation of gaseous-aerosol discharges; application of highly efficient treatment facilities torage. Dispersion of radioactive substances, released with discharges to the atmosphere, using high stacks; development of the corresponding site-selection solutions and arrangement of sanitary protective zones belong to passive measures. Measures for protection of atmospheric air also include waste and air contamination monitoring. The measures described are considered as applied to NPPs

  11. OPEN AIR DEMOLITION OF FACILITIES HIGHLY CONTAMINATED WITH PLUTONIUM

    International Nuclear Information System (INIS)

    LLOYD, E.R.

    2007-01-01

    The demolition of highly contaminated plutonium buildings usually is a long and expensive process that involves decontaminating the building to near free- release standards and then using conventional methods to remove the structure. It doesn't, however, have to be that way. Fluor has torn down buildings highly contaminated with plutonium without excessive decontamination. By removing the select source term and fixing the remaining contamination on the walls, ceilings, floors, and equipment surfaces; open-air demolition is not only feasible, but it can be done cheaper, better (safer), and faster. Open-air demolition techniques were used to demolish two highly contaminated buildings to slab-on-grade. These facilities on the Department of Energy's Hanford Site were located in, or very near, compounds of operating nuclear facilities that housed hundreds of people working on a daily basis. To keep the facilities operating and the personnel safe, the projects had to be creative in demolishing the structures. Several key techniques were used to control contamination and keep it within the confines of the demolition area: spraying fixatives before demolition; applying fixative and misting with a fine spray of water as the buildings were being taken down; and demolishing the buildings in a controlled and methodical manner. In addition, detailed air-dispersion modeling was done to establish necessary building and meteorological conditions and to confirm the adequacy of the proposed methods. Both demolition projects were accomplished without any spread of contamination outside the modest buffer areas established for contamination control. Furthermore, personnel exposure to radiological and physical hazards was significantly reduced by using heavy equipment rather than ''hands on'' techniques

  12. Potential air contamination during CO2 angiography using a hand-held syringe: theoretical considerations and gas chromatography.

    Science.gov (United States)

    Cho, David R; Cho, Kyung J; Hawkins, Irvin F

    2006-01-01

    To assess air contamination in the hand-held syringes currently used for CO2 delivery and to determine whether there is an association between their position and the rate of air contamination. Assessment of air contamination in the syringe (20 ml) included theoretical modeling, mathematical calculation, and gas chromatography (GC). The model was used with Fick's first law to calculate the diffusion of CO2 and the amount of air contamination. For GC studies, the syringes were placed in the upright, horizontal, and inverted positions and gas samples were obtained after 5, 10, 20, 30, and 60 min. All trials with each position for each sampling time were performed five times. The amounts of air contamination with time calculated mathematically were 5-10% less than those of GC. With the diffusivity of air-CO2 at 0.1599 cm2/sec (9.594 cm2/min), air contamination was calculated to be 60% at 60 min. With GC air contamination was 13% at 5 min, 31% at 20 min, 43% at 30 min, and 68% at 60 min. There was no difference in air contamination between the different syringe positions. Air contamination occurs in hand-held syringes filled with CO2 when they are open to the ambient air. The amounts of air contamination over time are similar among syringes placed in the upright, horizontal, and inverted positions.

  13. Potential Air Contamination During CO2 Angiography Using a Hand-Held Syringe: Theoretical Considerations and Gas Chromatography

    International Nuclear Information System (INIS)

    Cho, David R.; Cho, Kyung J.; Hawkins, Irvin F.

    2006-01-01

    Purpose. To assess air contamination in the hand-held syringes currently used for CO 2 delivery and to determine whether there is an association between their position and the rate of air contamination. Methods. Assessment of air contamination in the syringe (20 ml) included theoretical modeling, mathematical calculation, and gas chromatography (GC). The model was used with Fick's first law to calculate the diffusion of CO 2 and the amount of air contamination. For GC studies, the syringes were placed in the upright, horizontal, and inverted positions and gas samples were obtained after 5, 10, 20, 30, and 60 min. All trials with each position for each sampling time were performed five times. Results. The amounts of air contamination with time calculated mathematically were 5-10% less than those of GC. With the diffusivity of air-CO 2 at 0.1599 cm 2 /sec (9.594 cm 2 /min), air contamination was calculated to be 60% at 60 min. With GC air contamination was 13% at 5 min, 31% at 20 min, 43% at 30 min, and 68% at 60 min. There was no difference in air contamination between the different syringe positions. Conclusion. Air contamination occurs in hand-held syringes filled with CO 2 when they are open to the ambient air. The amounts of air contamination over time are similar among syringes placed in the upright, horizontal, and inverted positions

  14. An assessment of air as a source of DNA contamination encountered when performing PCR.

    Science.gov (United States)

    Witt, Nina; Rodger, Gillian; Vandesompele, Jo; Benes, Vladimir; Zumla, Alimuddin; Rook, Graham A; Huggett, Jim F

    2009-12-01

    Sensitive molecular methods, such as the PCR, can detect low-level contamination, and careful technique is required to reduce the impact of contaminants. Yet, some assays that are designed to detect high copy-number target sequences appear to be impossible to perform without contamination, and frequently, personnel or laboratory environment are held responsible as the source. This complicates diagnostic and research analysis when using molecular methods. To investigate the air specifically as a source of contamination, which might occur during PCR setup, we exposed tubes of water to the air of a laboratory and clean hood for up to 24 h. To increase the chances of contamination, we also investigated a busy open-plan office in the same way. All of the experiments showed the presence of human and rodent DNA contamination. However, there was no accumulation of the contamination in any of the environments investigated, suggesting that the air was not the source of contamination. Even the air from a busy open-plan office was a poor source of contamination for all of the DNA sequences investigated (human, bacterial, fungal, and rodent). This demonstrates that the personnel and immediate laboratory environment are not necessarily to blame for the observed contamination.

  15. Measurement of underground contamination of non-aqueous phase liquids (NAPLs) on the basis of the radon concentration in ground level air

    International Nuclear Information System (INIS)

    Schubert, M.

    2001-01-01

    It was investigated whether measurements of radon concentrations in ground level air are a suitable method of detecting sub-surface soil contamination with non-aqueous phase liquids (NAPLs). The working postulation was that, due to the very high solubility of radon in NAPLs, and the resulting accumulation of radon in NAPLs, radon exhalation to the ground level air in the proximity of such NAPL contamination should be locally reduced, thus indicating contamination of sub-surface soils with NAPLs. The research work reported was to verify the working theory by way of experiments, and to finally develop a reliable detection method for NAPL contaminations. The investigations comprised theoretical studies, laboratory experiments, experiments in defined soil columns, and extensive field studies [de

  16. Evaluation of the Level of air Microbial Contamination in some ...

    African Journals Online (AJOL)

    The level of air microbial contamination in some teaching hospitals waste dump site in South Eastern Nigeria was evaluated using the standard microbiological techniques. Passive air sampling was performed using settle plates. The microbial load of the air around the hospitals waste dumpsite, showed high microbial load ...

  17. Colombian legislation for air contamination control

    International Nuclear Information System (INIS)

    Hernandez S, Gildardo; Montes de Correa, Consuelo

    1999-01-01

    The most relevant legislative acts promulgated by the Colombian government for controlling atmospheric pollution are reviewed in chronological order. Special emphasis is paid to decree 948 of 1995 modified according to decree 2107 of 1995, e. The general dispositions about norms of air quality, emission levels, contaminant emissions, noise and offensive odors (chapter II), as well as, prohibitions and restrictions to emissions and noise from stationary and mobile sources (chapters III-V) furthermore, the resolutions issued so far by the ministry of the environment for regulating decree 948/95 in those aspects related to the prevention and control of atmospheric pollution are describes. Finally, the main philosophies for regulating air pollutants around the world are explained: the emissions norms, air quality norms, the emission taxes philosophy and the cost-benefit norms

  18. Carbapenem-Resistant Acinetobacter baumannii: Concomitant Contamination of Air and Environmental Surfaces.

    Science.gov (United States)

    Shimose, Luis A; Masuda, Eriko; Sfeir, Maroun; Berbel Caban, Ana; Bueno, Maria X; dePascale, Dennise; Spychala, Caressa N; Cleary, Timothy; Namias, Nicholas; Kett, Daniel H; Doi, Yohei; Munoz-Price, L Silvia

    2016-07-01

    OBJECTIVE To concomitantly determine the differential degrees of air and environmental contamination by Acinetobacter baumannii based on anatomic source of colonization and type of ICU layout (single-occupancy vs open layout). DESIGN Longitudinal prospective surveillance study of air and environmental surfaces in patient rooms. SETTING A 1,500-bed public teaching hospital in Miami, Florida. PATIENTS Consecutive A. baumannii-colonized patients admitted to our ICUs between October 2013 and February 2014. METHODS Air and environmental surfaces of the rooms of A. baumannii-colonized patients were sampled daily for up to 10 days. Pulsed-field gel electrophoresis (PFGE) was used to type and match the matching air, environmental, and clinical A. baumannii isolates. RESULTS A total of 25 A. baumannii-colonized patients were identified during the study period; 17 were colonized in the respiratory tract and 8 were colonized in the rectum. In rooms with rectally colonized patients, 38.3% of air samples were positive for A. baumannii; in rooms of patients with respiratory colonization, 13.1% of air samples were positive (P=.0001). In rooms with rectally colonized patients, 15.5% of environmental samples were positive for A. baumannii; in rooms of patients with respiratory colonization, 9.5% of environmental samples were positive (P=.02). The rates of air contamination in the open-layout and single-occupancy ICUs were 17.9% and 21.8%, respectively (P=.5). Environmental surfaces were positive in 9.5% of instances in open-layout ICUs versus 13.4% in single-occupancy ICUs (P=.09). CONCLUSIONS Air and environmental surface contaminations were significantly greater among rectally colonized patients; however, ICU layout did not influence the rate of contamination. Infect Control Hosp Epidemiol 2016;37:777-781.

  19. Petrol contaminated groundwater treatment with air-stripper in Balassagyarmat, Hungary

    International Nuclear Information System (INIS)

    Szabo, Peter; Bernath, Balazs

    2005-01-01

    Hydrocarbon contaminated groundwater is a common environmental problem in Hungary. Leakage of underground storage tanks, pipe break or illegal tapping as well as lorry accidents can be mentioned as main reasons. MEGATERRA Ltd. elaborated, adopted and tested several groundwater clean-up methods. These methods are based on detailed survey and investigation, sampling and analysis, delineation of contaminated groundwater, risk assessment, establishment of monitoring wells, pumping tests and remediation action plan. One of these methods was implemented by MEGATERRA Ltd. in Balassagyarmat, Hungary. Contamination source was a 10 m 3 vol. simple wall underground fuel-storage tank, which had been emptied. When the remediation started in April 1998, the petrol had already been accumulated on the ground water table forming a 5-7 m wide and 10-15 m long plume being expanded to SSE-NNW direction. The area of the dissolved hydrocarbon contaminated groundwater-body was 1 000 m 2 and its concentration reached up to 30-40 mg/l TPH. The free-phase hydrocarbon layer was 10 cm thick. For the remediation of contaminated groundwater MEGATERRA Ltd. applied pump and treat method, namely groundwater pumping using extraction well, skimming of free-phase hydrocarbon, stripping of the contaminated ground water in air-stripper tower and draining of the treated groundwater into a drainage ditch. In the centre of the plume we established an extraction well with 300 mm diameter in a 500 mm borehole. Peristaltic skimmer pump was used inside the extraction well to remove the free phase petrol from the ground water surface.Because of the intense volatility of the pollutant we applied aeration (stripping) technology. The extracted contaminated groundwater was cleaned in air-stripper equipment being able to eliminate efficiently the volatile pollutants from the water. The aeration tower is a compact cylindrical shaped column with 650 mm in diameter. Its height depends on the pollutant's type The

  20. Air separation of heavy metal contaminants from soil

    International Nuclear Information System (INIS)

    Nelson, M.E.; Harper, M.J.; Buckon, A.D.

    1995-01-01

    Several heavy metal separation techniques are currently being developed for soil remediation at various Department of Defense and Department of Energy (DOE) Facilities. The majority of these techniques involve a wet process using water, pH modifiers or other compounds. The US Naval Academy (USNA) has developed a dry process for heavy metal separation. The process uses air classification technology to concentrate the metal contaminant into a fraction of the soil. The advantages of this dry process are that it creates no contaminated byproduct and uses commercially available technology. The USNA process is based on using a Gayco-Reliance air classifier. Tests have been conducted with the system at the Naval Academy and the University of Nevada-Reno (UNR). The USNA tests used soil from the Nevada Test Site mixed with bismuth at a concentration of 500--1,000 ppm. The UNR tests used soil from four DOE sites mixed with uranium oxides and plutonium at an activity level of 100--700 pCi per gram. Concentration of activities and volume reduction percentages are presented for the various soils and contaminants tested

  1. Assessment of the bacterial contamination of hand air dryer in washrooms.

    Science.gov (United States)

    Alharbi, Sulaiman Ali; Salmen, Saleh Hussein; Chinnathambi, Arunachalam; Alharbi, Naiyf S; Zayed, M E; Al-Johny, Bassam O; Wainwright, Milton

    2016-03-01

    The present study was carried out, using standard techniques, to identify and count the bacterial contamination of hand air dryers, used in washrooms. Bacteria were isolated from the air flow, outlet nozzle of warm air dryers in fifteen air dryers used in these washrooms. Bacteria were found to be relatively numerous in the air flows. Bacterially contaminated air was found to be emitted whenever a warm air dryer was running, even when not being used for hand drying. Our investigation shows that Staphylococcus haemolyticus, Micrococcus luteus, Pseudomonas alcaligenes, Bacillus cereus and Brevundimonad diminuta/vesicularis were emitted from all of the dryers sampled, with 95% showing evidence of the presence of the potential pathogen S. haemolyticus. It is concluded that hot air dryers can deposit pathogenic bacteria onto the hands and body of users. Bacteria are distributed into the general environment whenever dryers are running and could be inhaled by users and none-users alike. The results provide an evidence base for the development and enhancement of hygienic hand drying practices.

  2. Compressed-air power tools in orthopaedic surgery: exhaust air is a potential source of contamination.

    Science.gov (United States)

    Sagi, H C; DiPasquale, Thomas; Sanders, Roy; Herscovici, Dolfi

    2002-01-01

    To determine if the exhaust from surgical compressed-air power tools contains bacteria and if the exhaust leads to contamination of sterile surfaces. Bacteriologic study of orthopaedic power tools. Level I trauma center operative theater. None. Part I. Exhaust from two sterile compact air drills was sampled directly at the exhaust port. Part II. Exhaust from the drills was directed at sterile agar plates from varying distances. The agar plates represented sterile surfaces within the operative field. Part III. Control cultures. A battery-powered drill was operated over open agar plates in similar fashion as the compressed-air drills. Agar plates left open in the operative theater served as controls to rule out atmospheric contamination. Random cultures were taken from agar plates, gloves, drills, and hoses. Incidence of positive cultures. In Part I, all filters from both compressed-air drill exhausts were culture negative ( = 0.008). In Part II, the incidence of positive cultures for air drills number one and number two was 73% and 82%, respectively. The most commonly encountered organisms were, coagulase-negative Staphylococcus, and Micrococcus species. All control cultures from agar plates, battery-powered drill, gloves, and hoses were negative ( compressed-air power tools in orthopaedic surgery may contribute to the dissemination of bacteria onto the surgical field. We do not recommend the use of compressed-air power tools that do not have a contained exhaust.

  3. Forced-air warming blowers: An evaluation of filtration adequacy and airborne contamination emissions in the operating room.

    Science.gov (United States)

    Albrecht, Mark; Gauthier, Robert L; Belani, Kumar; Litchy, Mark; Leaper, David

    2011-05-01

    Forced-air warming (FAW) is widely used to prevent hypothermia during surgical procedures. The airflow from these blowers is often vented near the operative site and should be free of contaminants to minimize the risk of surgical site infection. Popular FAW blowers contain a 0.2-μm rated intake filter to reduce these risks. However, there is little evidence that the efficiency of the intake filter is adequate to prevent airborne contamination emissions or protect the internal air path from microbial contamination buildup. Five new intake filters were obtained directly from the manufacturer (Bair Hugger 505, model 200708D; Arizant Healthcare, Eden Prairie, MN), and 5 model 200708C filters currently in hospital use were removed from FAW devices. The retention efficiency of these filters was assessed using a monodisperse sodium chloride aerosol. In the same hospitals, internal air path surface swabs and hose outlet particle counts were performed on 52 forced-air warming devices (all with the model 200708C filter) to assess internal microbial buildup and airborne contamination emissions. Intake filter retention efficiency at 0.2 μm was 93.8% for the 200708C filter and 61.3% at for the 200708D filter. The 200708D filter obtained directly from the manufacturer has a thinner filtration media than the 200708C filter in current hospital use, suggesting that the observed differences in retention efficiency were due to design changes. Fifty-eight percent of the FAW blowers evaluated were internally generating and emitting airborne contaminants, with microorganisms detected on the internal air path surfaces of 92.3% of these blowers. Isolates of Staphylococcus aureus, coagulase-negative Staphylococcus, and methicillin-resistant S aureus were detected in 13.5%, 3.9%, and 1.9% of FAW blowers, respectively. The design of popular FAW devices using the 200708C filter was found to be inadequate for preventing the internal buildup and emission of microbial contaminants into the

  4. Forced-air warming design: evaluation of intake filtration, internal microbial buildup, and airborne-contamination emissions.

    Science.gov (United States)

    Reed, Mike; Kimberger, Oliver; McGovern, Paul D; Albrecht, Mark C

    2013-08-01

    Forced-air warming devices are effective for the prevention of surgical hypothermia. However, these devices intake nonsterile floor-level air, and it is unknown whether they have adequate filtration measures to prevent the internal buildup or emission of microbial contaminants. We rated the intake filtration efficiency of a popular current-generation forced-air warming device (Bair Hugger model 750, Arizant Healthcare) using a monodisperse sodium chloride aerosol in the laboratory. We further sampled 23 forced-air warming devices (same model) in daily hospital use for internal microbial buildup and airborne-contamination emissions via swabbing and particle counting. Laboratory testing found the intake filter to be 63.8% efficient. Swabbing detected microorganisms within 100% of the forced-air warming blowers sampled, with isolates of coagulase-negative staphylococci, mold, and micrococci identified. Particle counting showed 96% of forced-air warming blowers to be emitting significant levels of internally generated airborne contaminants out of the hose end. These findings highlight the need for upgraded intake filtration, preferably high-efficiency particulate air filtration (99.97% efficient), on current-generation forced-air warming devices to reduce contamination buildup and emission risks.

  5. Trace Contaminant Monitor for Air in Spacecraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A need exists for analyzers that can measure trace contaminants in air on board spacecraft. Toxic gas buildup can endanger the crew particularly during long...

  6. Uranium Concentration of Contaminated Zone due to the Cover Depth for Self-Disposal

    International Nuclear Information System (INIS)

    Koo, Dae Seo; Sung, Hyun Hee; Kim, Gye Nam; Kim, Seung Soo; Kim, Il Gook; Han, Gyu Seong; Choi, Jong Won

    2016-01-01

    To acquire radiation dose under self disposal from them, the study on decontamination of some uranium contaminated soil and concrete wastes was performed using electrokinetic-electrodialytic. In this study, we evaluated radiation dose due to cover depth on contaminated zone such as uranium contaminated soil and concrete wastes under radiation dose limit using RESRAD Version 6.5. At first, the calculation of the radiation dose on the contaminated zone are carried out. The second, the uranium concentration of contaminated zone due to the cover depth are also analyzed. The uranium contaminated soil and concrete wastes under radiation dose limit by decontaminating them have application to self-disposal of contaminated zone. The area of contaminated zone is 1,500 m"2. The thickness of contaminated zone is 2 m. The length parallel to aquifer flow is 43.702m. The age of the residents on contaminated zone is 15 years old. The period of evaluation on the contaminated zone is from regulation exemption of uranium contaminated soil and concrete wastes till 1,000 years. The calculation of the radiation dose on contaminated zone are carried out. The uranium concentration of contaminated zone due to the cover depth was also analyzed. as the cover depth increases, the uranium concentration has an increasing trend. As the cover depth increases, radiation dose of a person has a decreasing trend. As the cover depth increases, the radiation dose of residents has also a decreasing trend.

  7. Uranium Concentration of Contaminated Zone due to the Cover Depth for Self-Disposal

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Dae Seo; Sung, Hyun Hee; Kim, Gye Nam; Kim, Seung Soo; Kim, Il Gook; Han, Gyu Seong; Choi, Jong Won [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    To acquire radiation dose under self disposal from them, the study on decontamination of some uranium contaminated soil and concrete wastes was performed using electrokinetic-electrodialytic. In this study, we evaluated radiation dose due to cover depth on contaminated zone such as uranium contaminated soil and concrete wastes under radiation dose limit using RESRAD Version 6.5. At first, the calculation of the radiation dose on the contaminated zone are carried out. The second, the uranium concentration of contaminated zone due to the cover depth are also analyzed. The uranium contaminated soil and concrete wastes under radiation dose limit by decontaminating them have application to self-disposal of contaminated zone. The area of contaminated zone is 1,500 m{sup 2}. The thickness of contaminated zone is 2 m. The length parallel to aquifer flow is 43.702m. The age of the residents on contaminated zone is 15 years old. The period of evaluation on the contaminated zone is from regulation exemption of uranium contaminated soil and concrete wastes till 1,000 years. The calculation of the radiation dose on contaminated zone are carried out. The uranium concentration of contaminated zone due to the cover depth was also analyzed. as the cover depth increases, the uranium concentration has an increasing trend. As the cover depth increases, radiation dose of a person has a decreasing trend. As the cover depth increases, the radiation dose of residents has also a decreasing trend.

  8. Effects of H2O, CO2, and N2 Air Contaminants on Critical Airside Strain Rates for Extinction of Hydrogen-Air Counterflow Diffusion Flames

    Science.gov (United States)

    Pellett, G. L.; Wilson, L. G.; Northam, G. B.; Guerra, Rosemary

    1989-01-01

    Coaxial tubular opposed jet burners (OJB) were used to form dish shaped counterflow diffusion flames (CFDF), centered by opposing laminar jets of H2, N2 and both clean and contaminated air (O2/N2 mixtures) in an argon bath at 1 atm. Jet velocities for flame extinction and restoration limits are shown versus wide ranges of contaminant and O2 concentrations in the air jet, and also input H2 concentration. Blowoff, a sudden breaking of CFDF to a stable ring shape, occurs in highly stretched stagnation flows and is generally believed to measure kinetically limited flame reactivity. Restore, a sudden restoration of central flame, is a relatively new phenomenon which exhibits a H2 dependent hysteresis from Blowoff. For 25 percent O2 air mixtures, mole for mole replacement of 25 percent N2 contaminant by steam increased U(air) or flame strength at Blowoff by about 5 percent. This result is consistent with laminar burning velocity results from analogous substitution of steam for N2 in a premixed stoichiometric H2-O2-N2 (or steam) flame, shown by Koroll and Mulpuru to promote a 10 percent increase in experimental and calculated laminar burning velocity, due to enhanced third body efficiency of water in: H + O2 + M yields HO2 + M. When the OJB results were compared with Liu and MacFarlane's experimental laminar burning velocity of premixed stoichiometric H2 + air + steam, a crossover occurred, i.e., steam enhanced OJB flame strength at extinction relative to laminar burning velocity.

  9. Microbial air contamination in indoor environment of a university library.

    Science.gov (United States)

    Kalwasińska, Agnieszka; Burkowska, Aleksandra; Wilk, Iwona

    2012-01-01

    The present study was aimed at evaluating the number of bacteria and mould fungi in the indoor and outdoor environment of Toruń University Library. The sampling sites were located in the rooms serving the functions typical of libraries (i.e. in the Main Reading Room, Current Periodicals Reading Room, Collections Conservation Laboratory, Old Prints Storeroom, in rooms serving other (non-library) functions (i.e. main hall, cafeteria, and toilet) as well as outside the library building. The analyses reveal that the concentrations of bacterial as well as fungal aerosols estimated with the use of the impaction method ranged between 10(1)-10(3) CFU·m(-3), which corresponds to the concentrations normally observed in areas of this kind. Evaluation of the hygienic condition of the studied areas was based on the criteria for microbiological cleanliness in interiors submitted by the European Commission in 1993. According to this classification, the air was considered to be heavily or moderately contaminated with bacteria, while the air contamination with mould fungi was described as low or moderate. The air in the Old Prints Storeroom was considered the least contaminated with microbial aerosol.

  10. Contamination of hospital compressed air with nitric oxide: unwitting replacement therapy.

    Science.gov (United States)

    Pinsky, M R; Genc, F; Lee, K H; Delgado, E

    1997-06-01

    Inhaled nitric oxide (NO) at levels between 5 and 80 ppm has been used experimentally to treat a variety of conditions. NO also is a common environmental air pollutant in industrial regions. As compressed hospital air is drawn from the local environment, we speculated that it may contain NO contamination, which, if present, would provide unwitting inhaled NO therapy to all subjects respiring this compressed gas. NO levels were measured twice daily from ambient hospital air and compressed gas sources driving positive pressure ventilation from two adjacent hospitals and compared with NO levels reported daily by local Environmental Protection Agency sources. An NO chemiluminescence analyzer (Sievers 270B; Boulder, Colo) sensitive to > or =2 parts per billion was used to measure NO levels in ambient air and compressed gas. NO levels in ambient air and hospital compressed air covaried from day to day, and absolute levels of NO differed between hospitals with the difference never exceeding 1.4 ppm (range, 0 to 1.4 ppm; median, 0.07 ppm). The hospital with the highest usage level of compressed air had the highest levels of NO, which approximated ambient levels of NO. NO levels were lowest on weekends in both hospitals. We also documented inadvertent NO contamination in one hospital occurring over 5 days, which corresponded to welding activity near the intake port for fresh gas. This contamination resulted in system-wide NO levels of 5 to 8 ppm. Hospital compressed air contains highly variable levels of NO that tend to covary with ambient NO levels and to be highest when the rate of usage is high enough to preclude natural degradation of NO in 21% oxygen. Assuming that inhaled NO may alter gas exchange, pulmonary hemodynamics, and outcome from acute lung injury, the role of unwitting variable NO of hospital compressed air needs to be evaluated.

  11. Data Assimilation in Air Contaminant Dispersion Using a Particle Filter and Expectation-Maximization Algorithm

    Directory of Open Access Journals (Sweden)

    Rongxiao Wang

    2017-09-01

    Full Text Available The accurate prediction of air contaminant dispersion is essential to air quality monitoring and the emergency management of contaminant gas leakage incidents in chemical industry parks. Conventional atmospheric dispersion models can seldom give accurate predictions due to inaccurate input parameters. In order to improve the prediction accuracy of dispersion models, two data assimilation methods (i.e., the typical particle filter & the combination of a particle filter and expectation-maximization algorithm are proposed to assimilate the virtual Unmanned Aerial Vehicle (UAV observations with measurement error into the atmospheric dispersion model. Two emission cases with different dimensions of state parameters are considered. To test the performances of the proposed methods, two numerical experiments corresponding to the two emission cases are designed and implemented. The results show that the particle filter can effectively estimate the model parameters and improve the accuracy of model predictions when the dimension of state parameters is relatively low. In contrast, when the dimension of state parameters becomes higher, the method of particle filter combining the expectation-maximization algorithm performs better in terms of the parameter estimation accuracy. Therefore, the proposed data assimilation methods are able to effectively support air quality monitoring and emergency management in chemical industry parks.

  12. Air monitoring data reveal previously unknown contamination at radioactive waste disposal area, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Kraig, D.H.; Conrad, R.C.

    2000-01-01

    Air monitoring at Area G, the low-level radioactive waste disposal area at Los Alamos National Laboratory, revealed increased air concentrations of 239 Pu and 241 Am at one location along the north boundary. This air monitoring location is a couple of meters north of a dirt road used to access the easternmost part of Area G. Air concentrations of 238 Pu were essentially unaffected which was puzzling because both 238 Pu and 239 Pu are present in the local, slightly contaminated soils. Air concentrations of these radionuclides increased about a factor of ten in early 1995 and remained at those levels until the first quarter of 1996. During the spring of 1996 air concentrations again increased by a factor of about ten. No other radionuclides were elevated, and no other Area G stations showed elevations of these radionuclides. After several formal meetings did not provide an adequate explanation for the elevations, a gamma-survey was performed and showed a small area of significant contamination just south of the monitor location. We found that in February 1995, a trench for a water line had been dug within a meter or so of the air stations. Then, during early 1996, the dirt road was rerouted such that its new path was directly over the unknown contamination. It appears that the trenching brought contaminated material to the surface and caused the firs rise in air concentrations and then the rerouting of the road over the contamination caused the second rise, during 1996. We also found that during 1976 and 1977 contaminated soils from the clean-up of an old processing facility had been spread over the filled pits in the vicinity of the air monitors. These soils, which were probably the source of the air contamination, were very low in 238 Pu which explains why we saw very little 238 Pu in the increased air concentrations. A layer of gravel and sand was spread over the contaminated area. Although air concentrations of 239 Pu and 241 Am dropped considerably, they have

  13. Air Contamination by Mercury, Emissions and Transformations-a Review.

    Science.gov (United States)

    Gworek, Barbara; Dmuchowski, Wojciech; Baczewska, Aneta H; Brągoszewska, Paulina; Bemowska-Kałabun, Olga; Wrzosek-Jakubowska, Justyna

    2017-01-01

    The present and future air contamination by mercury is and will continue to be a serious risk for human health. This publication presents a review of the literature dealing with the issues related to air contamination by mercury and its transformations as well as its natural and anthropogenic emissions. The assessment of mercury emissions into the air poses serious methodological problems. It is particularly difficult to distinguish between natural and anthropogenic emissions and re-emissions from lands and oceans, including past emissions. At present, the largest emission sources include fuel combustion, mainly that of coal, and "artisanal and small-scale gold mining" (ASGM). The distinctly highest emissions can be found in South and South-East Asia, accounting for 45% of the global emissions. The emissions of natural origin and re-emissions are estimated at 45-66% of the global emissions, with the largest part of emissions originating in the oceans. Forecasts on the future emission levels are not unambiguous; however, most forecasts do not provide for reductions in emissions. Ninety-five percent of mercury occurring in the air is Hg 0 -GEM, and its residence time in the air is estimated at 6 to 18 months. The residence times of its Hg II -GOM and that in Hg p -TPM are estimated at hours and days. The highest mercury concentrations in the air can be found in the areas of mercury mines and those of ASGM. Since 1980 when it reached its maximum, the global background mercury concentration in the air has remained at a relatively constant level.

  14. Microbial air quality and bacterial surface contamination in ambulances during patient services.

    Science.gov (United States)

    Luksamijarulkul, Pipat; Pipitsangjan, Sirikun

    2015-03-01

    We sought to assess microbial air quality and bacterial surface contamination on medical instruments and the surrounding areas among 30 ambulance runs during service. We performed a cross-sectional study of 106 air samples collected from 30 ambulances before patient services and 212 air samples collected during patient services to assess the bacterial and fungal counts at the two time points. Additionally, 226 surface swab samples were collected from medical instrument surfaces and the surrounding areas before and after ambulance runs. Groups or genus of isolated bacteria and fungi were preliminarily identified by Gram's stain and lactophenol cotton blue. Data were analyzed using descriptive statistics, t-test, and Pearson's correlation coefficient with a p-value of less than 0.050 considered significant. The mean and standard deviation of bacterial and fungal counts at the start of ambulance runs were 318±485cfu/m(3) and 522±581cfu/m(3), respectively. Bacterial counts during patient services were 468±607cfu/m(3) and fungal counts were 656±612cfu/m(3). Mean bacterial and fungal counts during patient services were significantly higher than those at the start of ambulance runs, p=0.005 and p=0.030, respectively. For surface contamination, the overall bacterial counts before and after patient services were 0.8±0.7cfu/cm(2) and 1.3±1.1cfu/cm(2), respectively (pair samples and bacterial counts on medical instruments and allocated areas. This study revealed high microbial contamination (bacterial and fungal) in ambulance air during services and higher bacterial contamination on medical instrument surfaces and allocated areas after ambulance services compared to the start of ambulance runs. Additionally, bacterial and fungal counts in ambulance air showed a significantly positive correlation with the bacterial surface contamination on medical instruments and allocated areas. Further studies should be conducted to determine the optimal intervention to reduce

  15. Sources of indoor air contamination on the ground floor of a high-rise commercial building

    International Nuclear Information System (INIS)

    Nayebzadeh, A.; Cragg-Elkouh, S.; Rancy, R.; Dufresne, A.

    1999-01-01

    Indoor air quality is a subject of growing concern in the developed world. Many sources of indoor air contamination in commercial and office buildings are recognised and have been investigated. In addition to the usual internal sources of air contaminants, other external sources from attached facilities can find their way into the building. This report presents the results of an indoor air quality survey in a high-rise office building which demonstrated an obvious seasonal change in regard to the concentrations of carbon dioxide (CO 2 ), nitric oxide (NO) and nitrogen dioxide (NO 2 ). Furthermore, a complementary survey in the same building was carried out to identify the relevant sources of air contamination in the building and the results indicated that an attached train station and the nearby street traffic had a significant impact on indoor air quality. (author)

  16. Particulate Air Contamination in Puerto Rico: A Student Involvement Project.

    Science.gov (United States)

    Eckert, Richard R.

    1979-01-01

    Describes a research project undertaken by physics undergraduate students to monitor particulate air contamination in Ponce, Puerto Rico, and to determine the meteorological factors which contribute to it. (GA)

  17. Microbial contamination of the air at the wastewater treatment plant

    Directory of Open Access Journals (Sweden)

    Monika Vítězová

    2012-01-01

    Full Text Available Wastewater treatment plants (WWTPs primarily serve to protect the environment. Their task is to clean waste water from the agglomerations. On the other hand wastewater treatment plants can also negatively affect the environment in their neighbourhood. These include emissions of odour and microorganisms. This article discusses the microbial contamination of the air, called bioaerosols in selected wastewater treatment plant for 18 000 p.e. From results of the work is evident that the largest group of microorganisms in the monitored air were psychrophilic and mesophilic bacteria and microscopic fungi. The number of psychrophilic bacteria ranged from 14 to 12 000 CFU/m3 (colony forming units in 1 m3, the number of mesophilic bacteria varied in the range from 20 to 18 500 CFU/m3 and the fungi from 25 to 32 000 CFU/m3 in the air. The amount of actinomycetes ranged from 1 to 1 030 CFU/m3 and faecal coliform bacteria from 0 to 2 500 CFU/m3. Furthermore, it was confirmed that the highest air contamination was around the activation tank, area for dewatered sludge and around the building of mechanical cleaning, depending on the season. The density of studied microorganisms correlated with air temperature.

  18. Air suctioning during colon biopsy forceps removal reduces bacterial air contamination in the endoscopy suite.

    Science.gov (United States)

    Vavricka, S R; Tutuian, R; Imhof, A; Wildi, S; Gubler, C; Fruehauf, H; Ruef, C; Schoepfer, A M; Fried, M

    2010-09-01

    Bacterial contamination of endoscopy suites is of concern; however studies evaluating bacterial aerosols are lacking. We aimed to determine the effectiveness of air suctioning during removal of biopsy forceps in reducing bacterial air contamination. This was a prospective single-blinded trial involving 50 patients who were undergoing elective nontherapeutic colonoscopy. During colonoscopy, endoscopists removed the biopsy forceps first without and then with suctioning following contact with the sigmoid mucosa. A total of 50 L of air was collected continuously for 30 seconds at 30-cm distance from the biopsy channel valve of the colonoscope, with time starting at forceps removal. Airborne bacteria were collected by an impactor air sampler (MAS-100). Standard Petri dishes with CNA blood agar were used to culture Gram-positive bacteria. Main outcome measure was the bacterial load in endoscopy room air. At the beginning and end of the daily colonoscopy program, the median (and interquartile [IQR] range) bioaerosol burden was 4 colony forming units (CFU)/m (3) (IQR 3 - 6) and 16 CFU/m (3) (IQR 13 - 18), respectively. Air suctioning during removal of the biopsy forceps reduced the bioaerosol burden from a median of 14 CFU/m (3) (IQR 11 - 29) to a median of 7 CFU/m (3) (IQR 4 - 16) ( P = 0.0001). Predominantly enterococci were identified on the agar plates. The bacterial aerosol burden during handling of biopsy forceps can be reduced by applying air suction while removing the forceps. This simple method may reduce transmission of infectious agents during gastrointestinal endoscopies. Copyright Georg Thieme Verlag KG Stuttgart . New York.

  19. Air-borne heavy metal contamination to dietary vegetables: a case study from India.

    Science.gov (United States)

    Pandey, J; Pandey, Richa; Shubhashish, K

    2009-12-01

    Contamination of edible parts of three dietary vegetables, Spinach (Spinacia oleracea L.), Radish (Raphanus sativus L.), and Tomato (Lycopersicon esculentum Mill.) by air-borne cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), and lead (Pb) was determined using pot culture experiments at three sites in the city of Varanasi, India. The data revealed that although Cr and Cu in vegetables remained below their safe limits, about 68% of the total samples contained Cd, Ni, and Pb above their respective safe limits of 1.5, 1.5, and 2.5 μg g(-1). Site wise synchrony and air accumulation factor (AAF) indicated that atmospheric deposition was the main contributor of metal contamination to vegetables. The study suggests that if the present trends of atmospheric deposition are continued, air-borne heavy metals will contaminate the agricultural produce with long-term health implications.

  20. Quantitative assessment of bio-aerosols contamination in indoor air of University dormitory rooms.

    Science.gov (United States)

    Hayleeyesus, Samuel Fekadu; Ejeso, Amanuel; Derseh, Fikirte Aklilu

    2015-07-01

    The purpose of this study is to provide insight into how students are exposed to indoor bio-aerosols in the dormitory rooms and to figure out the major possible factors that govern the contamination levels. The Bio-aerosols concentration level of indoor air of thirty dormitory rooms of Jimma University was determined by taking 120 samples. Passive air sampling technique; the settle plate method using open Petri-dishes containing different culture media was employed to collect sample twice daily. The range of bio-aerosols contamination detected in the dormitory rooms was 511-9960 CFU/m(3) for bacterial and 531-6568 CFU/m(3) for fungi. Based on the criteria stated by WHO expert group, from the total 120 samples 95 of the samples were above the recommended level. The statistical analysis showed that, occupancy were significantly affected the concentrations of bacteria that were measured in all dormitory rooms at 6:00 am sampling time (p-value=0.000) and also the concentrations of bacteria that were measured in all dormitory rooms were significantly different to each other (p-value=0.013) as of their significance difference in occupancy (p-value=0.000). Moreover, there were a significant different on the contamination level of bacteria at 6:00 am and 7:00 pm sampling time (p=0.015), whereas there is no significant difference for fungi contamination level for two sampling times (p= 0.674). There is excessive bio-aerosols contaminant in indoor air of dormitory rooms of Jimma University and human occupancy produces a marked concentration increase of bacterial contamination levels and most fungi species present into the rooms air of Jimma University dormitory were not human-borne.

  1. Microbiological contamination of compressed air used in dentistry: an investigation.

    Science.gov (United States)

    Conte, M; Lynch, R M; Robson, M G

    2001-11-01

    The purpose of this preliminary investigation was twofold: 1) to examine the possibility of cross-contamination between a dental-evacuation system and the compressed air used in dental operatories and 2) to capture and identify the most common microflora in the compressed-air supply. The investigation used swab, water, and air sampling that was designed to track microorganisms from the evacuation system, through the air of the mechanical room, into the compressed-air system, and back to the patient. Samples taken in the vacuum system, the air space in the mechanical room, and the compressed-air storage tank had significantly higher total concentrations of bacteria than the outside air sampled. Samples of the compressed air returning to the operatory were found to match the outside air sample in total bacteria. It was concluded that the air dryer may have played a significant role in the elimination of microorganisms from the dental compressed-air supply.

  2. Methodology for modeling the microbial contamination of air filters.

    Science.gov (United States)

    Joe, Yun Haeng; Yoon, Ki Young; Hwang, Jungho

    2014-01-01

    In this paper, we propose a theoretical model to simulate microbial growth on contaminated air filters and entrainment of bioaerosols from the filters to an indoor environment. Air filter filtration and antimicrobial efficiencies, and effects of dust particles on these efficiencies, were evaluated. The number of bioaerosols downstream of the filter could be characterized according to three phases: initial, transitional, and stationary. In the initial phase, the number was determined by filtration efficiency, the concentration of dust particles entering the filter, and the flow rate. During the transitional phase, the number of bioaerosols gradually increased up to the stationary phase, at which point no further increase was observed. The antimicrobial efficiency and flow rate were the dominant parameters affecting the number of bioaerosols downstream of the filter in the transitional and stationary phase, respectively. It was found that the nutrient fraction of dust particles entering the filter caused a significant change in the number of bioaerosols in both the transitional and stationary phases. The proposed model would be a solution for predicting the air filter life cycle in terms of microbiological activity by simulating the microbial contamination of the filter.

  3. Methodology for modeling the microbial contamination of air filters.

    Directory of Open Access Journals (Sweden)

    Yun Haeng Joe

    Full Text Available In this paper, we propose a theoretical model to simulate microbial growth on contaminated air filters and entrainment of bioaerosols from the filters to an indoor environment. Air filter filtration and antimicrobial efficiencies, and effects of dust particles on these efficiencies, were evaluated. The number of bioaerosols downstream of the filter could be characterized according to three phases: initial, transitional, and stationary. In the initial phase, the number was determined by filtration efficiency, the concentration of dust particles entering the filter, and the flow rate. During the transitional phase, the number of bioaerosols gradually increased up to the stationary phase, at which point no further increase was observed. The antimicrobial efficiency and flow rate were the dominant parameters affecting the number of bioaerosols downstream of the filter in the transitional and stationary phase, respectively. It was found that the nutrient fraction of dust particles entering the filter caused a significant change in the number of bioaerosols in both the transitional and stationary phases. The proposed model would be a solution for predicting the air filter life cycle in terms of microbiological activity by simulating the microbial contamination of the filter.

  4. Micro GC's for Contaminant Monitoring in Spacecraft Air, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to create new gas chromatographs (GCs) for contaminant monitoring in spacecraft air that do not require any reagents or special...

  5. Process for contamination containment of a workplace by means of an air jet

    International Nuclear Information System (INIS)

    Meline, F.

    1984-01-01

    Containment of pollution in an area, for example the room where nuclear fuel elements are cut, is obtained by an air curtain directed by a second air jet to improve the containment of pollutants. Contamined air is extracted by a cyclone and filtered [fr

  6. The major regularities of the air radioactive contamination of Belarus territory after the Chernobyl accident

    International Nuclear Information System (INIS)

    Konoplya, E. F.; Mironov, V. P.; Drugachenok, M. A.; Kudryashov, V.P; Grushevich, L.E; Adamovich, A.A.

    2001-01-01

    In the first days after the Chernobyl accident the radioactivity of surface air in different regions of Belarus has increased in tens and hundred thousand time. The regular control of air radioactive contamination in the zone of alienation and nearest to it is carried out from the end 1989. The radioactive air monitoring carried out in territories with various contamination density (from 0,2 up to 9,6 MBq/m 2 on Cs-137). The measurements of the Cs-137 contents in ashes of air sampler filters were carried out by gamma - spectrometer ADCAM-300 MCA. The measurement of the Pu-240,239 and Sr-90 contents was carried out by usual radiochemical techniques. The used techniques and equipment allow to define in a sample of the minimal activity: Pu-239,240 - 0,001 Bq, Cs-137 - 0,5 Bq, Sr-90 - 0,1 Bq. The initial contamination of ground happened a near zone within approximately first 2 weeks after accident. Since the end of May, 1986 till present time the air radioactive contamination is formed under action of processes of secondary wind rise and carry of radioactive particles with contaminated territories, which depends from a number factors of both natural and anthropogenous origin. The relations of Pu-238/Pu-239 and Sr-90/Pu-239 in aerosol particles practically coincide with the same relations in fuel blown up reactor. The ratio of Cs-137/Pu-239 activities in aerosols considerably exceeds the resettlement ratio for fuel. Strontium and plutonium are in structure of fuel particles, and cesium aerosol have other origin. The analysis of changes annual radioisotopes concentration in air of towns of Belarus specifies existence of the tendency to slow decrease of contamination of atmosphere by radioisotopes of industrial origins. The basic tendency of formation of air radioactive contamination is determined by the contents of a dust at surface layer of an atmosphere and its specific activity. Annual average dust content of air in a zone resettlement was least and made about 10 mk g

  7. Mitigation of trichloroethylene contaminated air streams through biofiltration: a pilot-scale study

    International Nuclear Information System (INIS)

    Lackey, L.W.; Gamble, J.R.; Boles, J.L.

    2002-01-01

    As a result of abundant usage and improper disposal practices, trichloroethylene (TCE) is one of the most prevalent groundwater contaminants. Traditional cleanup methods of aquifers contaminated with TCE include pumping the water to the surface and treating with stripper technology, soil vapor extraction, and air sparging. As a result of each of these mitigation schemes, TCE is transferred from the aqueous to the gas phase. As regulations associated with air emission tighten, development of technologies both technically feasible and cost effective for remediating TCE laden gas streams becomes imperative. This project demonstrated the use of biofiltration technology to mitigate TCE contaminated air streams. A pilot-scale biofilter system was designed, constructed, and subsequently installed at the Anniston Army Depot (ANAD), Anniston, AL. The system was inoculated with a propane-oxidizing microbial consortium that had previously been shown to degrade TCE as well as other short-chained chlorinated aliphatics and a variety of one-and two-ring aromatic compounds. Critical process variables were identified and their effects on system performance analyzed. Results indicated that the process scheme used to introduce propane into the biofiltration system had a significant impact on the observed TCE removal efficiency. The inlet contaminant concentration as well as the loading rate also had an impact on observed TCE degradation rates. Results suggest that biofilter performance and economics are generally improved by manipulating a specific waste stream so as to increase the TCE concentration and decrease the volumetric flow rate of the contaminated air fed to the biofilter. Through manipulation of process variables, including the empty bed contact time, TCE degradation efficiencies greater than 99.9 percent were sustained. No microbial inhibition was observed at inlet TCE concentrations as high as 87 parts per million on a volume basis (ppmv). (author)

  8. Spacecraft contamination programs within the Air Force Systems Command Laboratories

    Science.gov (United States)

    Murad, Edmond

    1990-01-01

    Spacecraft contamination programs exist in five independent AFSC organizations: Geophysics Laboratory (GL), Arnold Engineering and Development Center (AEDC), Rome Air Development Center (RADC/OSCE), Wright Research and Development Center (MLBT), Armament Laboratory (ATL/SAI), and Space Systems Division (SSD/OL-AW). In addition, a sizable program exists at Aerospace Corp. These programs are complementary, each effort addressing a specific area of expertise: GL's effort is aimed at addressing the effects of on-orbit contamination; AEDC's effort is aimed at ground simulation and measurement of optical contamination; RADC's effort addresses the accumulation, measurement, and removal of contamination on large optics; MLBT's effort is aimed at understanding the effect of contamination on materials; ATL's effort is aimed at understanding the effect of plume contamination on systems; SSD's effort is confined to the integration of some contamination experiments sponsored by SSD/CLT; and Aerospace Corp.'s effort is aimed at supporting the needs of the using System Program Offices (SPO) in specific areas, such as contamination during ground handling, ascent phase, laboratory measurements aimed at understanding on-orbit contamination, and mass loss and mass gain in on-orbit operations. These programs are described in some detail, with emphasis on GL's program.

  9. Ozone production by a dc corona discharge in air contaminated by n-heptane

    International Nuclear Information System (INIS)

    Pekarek, S

    2008-01-01

    Beneficial purposes of ozone such as elimination of odours, harmful bacteria and mildew can be used for transportation of food, fruits and vegetables with the aim to extend their storage life. To date the main technique used for this purpose in the transportation of these commodities, e.g. by trucks, was cooling. Here a combination of cooling together with the supply of ozone into containers with these commodities is considered. For these purposes we studied the effect of air contamination by n-heptane (part of automotive fuels) and humidity on ozone production by a dc hollow needle to mesh corona discharge. We found that, for both polarities of the needle electrode, addition of n-heptane to air (a) decreases ozone production; (b) causes discharge poisoning to occur at lower current than for air; (c) does not substantially influence the current for which the ozone production reaches the maximum. Finally the maximum ozone production for the discharge in air occurs for the same current as the maximum ozone production for the discharge contaminated by n-heptane. We also found that humidity decreases ozone production from air contaminated by n-heptane irrespective of the polarity of the coronating needle electrode. This dependence is stronger for the discharge with the needle biased positively

  10. Comparison of Air Impaction and Electrostatic Dust Collector Sampling Methods to Assess Airborne Fungal Contamination in Public Buildings.

    Science.gov (United States)

    Normand, Anne-Cécile; Ranque, Stéphane; Cassagne, Carole; Gaudart, Jean; Sallah, Kankoé; Charpin, Denis-André; Piarroux, Renaud

    2016-03-01

    Many ailments can be linked to exposure to indoor airborne fungus. However, obtaining a precise measurement of airborne fungal levels is complicated partly due to indoor air fluctuations and non-standardized techniques. Electrostatic dust collector (EDC) sampling devices have been used to measure a wide range of airborne analytes, including endotoxins, allergens, β-glucans, and microbial DNA in various indoor environments. In contrast, viable mold contamination has only been assessed in highly contaminated environments such as farms and archive buildings. This study aimed to assess the use of EDCs, compared with repeated air-impactor measurements, to assess airborne viable fungal flora in moderately contaminated indoor environments. Indoor airborne fungal flora was cultured from EDCs and daily air-impaction samples collected in an office building and a daycare center. The quantitative fungal measurements obtained using a single EDC significantly correlated with the cumulative measurement of nine daily air impactions. Both methods enabled the assessment of fungal exposure, although a few differences were observed between the detected fungal species and the relative quantity of each species. EDCs were also used over a 32-month period to monitor indoor airborne fungal flora in a hospital office building, which enabled us to assess the impact of outdoor events (e.g. ground excavations) on the fungal flora levels on the indoor environment. In conclusion, EDC-based measurements provided a relatively accurate profile of the viable airborne flora present during a sampling period. In particular, EDCs provided a more representative assessment of fungal levels compared with single air-impactor sampling. The EDC technique is also simpler than performing repetitive air-impaction measures over the course of several consecutive days. EDC is a versatile tool for collecting airborne samples and was efficient for measuring mold levels in indoor environments. © The Author 2015

  11. Contamination of Ambient Air with Acinetobacter baumannii on Consecutive Inpatient Days.

    Science.gov (United States)

    Shimose, Luis A; Doi, Yohei; Bonomo, Robert A; De Pascale, Dennise; Viau, Roberto A; Cleary, Timothy; Namias, Nicholas; Kett, Daniel H; Munoz-Price, L Silvia

    2015-07-01

    Acinetobacter-positive patients had their ambient air tested for up to 10 consecutive days. The air was Acinetobacter positive for an average of 21% of the days; the rate of contamination was higher among patients colonized in the rectum than in the airways (relative risk [RR], 2.35; P = 0.006). Of the 6 air/clinical isolate pairs available, 4 pairs were closely related according to rep-PCR results. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Biofiltration of air contaminated with methanol and toluene

    Directory of Open Access Journals (Sweden)

    Pakamas Chetpattananondh

    2005-12-01

    Full Text Available Biofiltration of air contaminated with VOCs is inexpensive compared with the conventional techniques and very effective for treating large volumes of moist air streams with low concentrations of VOCs. In this study, biofiltration for the purification of polluted air from methanol, a hydrophilic VOC, and toluene, a hydrophobic VOC, was investigated. The experiments were operated using three separated stainless steel biofilters, for methanol, toluene, and a mixture of methanol and toluene, respectively. Biofilter consisted of a mixture of palm shells and activated sludge as a filter-bed material. Only the indigenous microorganisms of the bed medium without any addition of extra inoculum were used throughout the whole process. The polluted air inlet concentration was varied from 0.3-4.7 g/m3 with flow rates ranging from 0.06-0.45 m3/h, equivalent to the empty bed residence times of 9-71 sec. Polluted air was successfully treated by biofiltration, 100% removal efficiencies would be obtained when the air flow rate was lower than 0.45 m3/h. The presence of toluene did not affect the removal rate of methanol while the removal rate of toluene was decreased with the presence of methanol in air stream according to the competition phenomenon.

  13. Endothelial damage due to air pollution

    Directory of Open Access Journals (Sweden)

    Livio Dei Cas

    2010-05-01

    Full Text Available The first human deaths due to air pollution were recorded in the mid-20th century. There were 6,000 cases of illness recorded in Donora, Pennsylvania, in 1948 and 20,000 in London in 1952; 15 and 4,000 cases of death, respectively, were allegedly ascribed to air pollution. Since then, many countries have adopted standards of air quality in order to protect environmental and human health, although the quality of the air in some industrialized countries remains worrying. Emerging countries in the Far East and South America are also cause for concern because of the growth in the population, industrialization and transport. The WHO World Health Report 2002 estimated that air pollutants, particularly PM10, are associated with a mortality rate of 5% for cancer of the respiratory system, 2% for cardiovascular diseases and about 1% for respiratory tract infections. These estimates consider the mortality but not the morbidity rate, which would increase proportionally the number of cases of these pathologies, despite the difficulty in evaluation.

  14. Molecular-level removal of proteinaceous contamination from model surfaces and biomedical device materials by air plasma treatment.

    Science.gov (United States)

    Banerjee, K K; Kumar, S; Bremmell, K E; Griesser, H J

    2010-11-01

    Established methods for cleaning and sterilising biomedical devices may achieve removal of bioburden only at the macroscopic level while leaving behind molecular levels of contamination (mainly proteinaceous). This is of particular concern if the residue might contain prions. We investigated at the molecular level the removal of model and real-life proteinaceous contamination from model and practical surfaces by air plasma (ionised air) treatment. The surface-sensitive technique of X-ray photoelectron spectroscopy (XPS) was used to assess the removal of proteinaceous contamination, with the nitrogen (N1s) photoelectron signal as its marker. Model proteinaceous contamination (bovine serum albumin) adsorbed on to a model surface (silicon wafer) and the residual proteinaceous contamination resulting from incubating surgical stainless steel (a practical biomaterial) in whole human blood exhibited strong N1s signals [16.8 and 18.5 atomic percent (at.%), respectively] after thorough washing. After 5min air plasma treatment, XPS detected no nitrogen on the sample surfaces, indicating complete removal of proteinaceous contamination, down to the estimated XPS detection limit 10ng/cm(2). Applying the same plasma treatment, the 7.7at.% nitrogen observed on a clinically cleaned dental bur was reduced to a level reflective of new, as-received burs. Contact angle measurements and atomic force microscopy also indicated complete molecular-level removal of the proteinaceous contamination upon air plasma treatment. This study demonstrates the effectiveness of air plasma treatment for removing proteinaceous contamination from both model and practical surfaces and offers a method for ensuring that no molecular residual contamination such as prions is transferred upon re-use of surgical and dental instruments. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.

  15. Evaluation of Triple Containment Method for Air Transport of Contaminated Human

    National Research Council Canada - National Science Library

    Neville, J

    2003-01-01

    A triple containment system intended for transport of biologically contaminated human remains was tested for its ability to maintain integrity during exposure to altitude changes representative of air transport...

  16. Microbial contamination level of air in animal waste utilization plants.

    Science.gov (United States)

    Chmielowiec-Korzeniowska, Anna; Tymczyna, Leszek; Drabik, Agata; Krzosek, Łukasz

    2016-01-01

    The aim of this research was evaluation of microbial contamination of air within and in the vicinity of animal waste disposal plants. Air samples were analyzed to determine total bacterial and fungal counts as well as microbial species composition. Measurements of climate conditions (temperature, humidity, air motion) and total dust concentration were also performed. Total numbers of bacteria and fungi surpassed the threshold limit values for production halls. The most abundant bacteria detected were those consisting of physiological microflora of animal dermis and mucosa. Fungal species composition proved to be most differentiated in the air beyond the plant area. Aspergillus versicolor, a pathogenic and allergenic filamentous fungus, was isolated only inside the rendering plant processing hall. The measurement results showed a low sanitary-hygienic state of air in the plant processing halls and substantial air pollution in its immediate vicinity.

  17. Forced-air warming: a source of airborne contamination in the operating room?

    Science.gov (United States)

    Albrecht, Mark; Gauthier, Robert; Leaper, David

    2009-10-10

    Forced-air-warming (FAW) is an effective and widely used means for maintaining surgical normothermia, but FAW also has the potential to generate and mobilize airborne contamination in the operating room.We measured the emission of viable and non-viable forms of airborne contamination from an arbitrary selection of FAW blowers (n=25) in the operating room. A laser particle counter measured particulate concentrations of the air near the intake filter and in the distal hose airstream. Filtration efficiency was calculated as the reduction in particulate concentration in the distal hose airstream relative to that of the intake. Microbial colonization of the FAW blower's internal hose surfaces was assessed by culturing the microorganisms recovered through swabbing (n=17) and rinsing (n=9) techniques.Particle counting revealed that 24% of FAW blowers were emitting significant levels of internally generated airborne contamination in the 0.5 to 5.0 µm size range, evidenced by a steep decrease in FAW blower filtration efficiency for particles 0.5 to 5.0 µm in size. The particle size-range-specific reduction in efficiency could not be explained by the filtration properties of the intake filter. Instead, the reduction was found to be caused by size-range-specific particle generation within the FAW blowers. Microorganisms were detected on the internal air path surfaces of 94% of FAW blowers.The design of FAW blowers was found to be questionable for preventing the build-up of internal contamination and the emission of airborne contamination into the operating room. Although we did not evaluate the link between FAW and surgical site infection rates, a significant percentage of FAW blowers with positive microbial cultures were emitting internally generated airborne contamination within the size range of free floating bacteria and fungi (<4 µm) that could, conceivably, settle onto the surgical site.

  18. Air pollution due to road traffic in Ljubljana

    Directory of Open Access Journals (Sweden)

    Matej Ogrin

    2007-01-01

    Full Text Available Air pollution is due to road traffic an inevitable outcome of internal combustion in engines ofvehicles and some other processes. Air near the roads is more polluted with some pollutants,such as carbon monoxide, nitrogen oxides, ozone, particulate matter and some others.Monitoring the air quality is a key issue, when one wants to estimate environmental impactsof the road traffic. The article shows a method of passive samplers for air quality monitoringalong different roads in the area of Ljubljana Municipality.

  19. Methods for reducing internal collective doses due to contamination of agricultural lands

    International Nuclear Information System (INIS)

    Prister, B.S.; Novikova, N.K.; Tkachenko, N.V.; Nagovisyna, L.I.; Berezhnaya, T.I.; Semenyuk, N.D.; Rudoj, V.M.

    1990-01-01

    Radioactive contamination of agricultural lands in 30 km vicinity of Chernobyl NPP asw well as agricultural products involved in food chains is considered. Attention is paid to population collective doses due to intake of contaminated food. It is shown that target optimization of agricultural production structure in territories where food contamination does not result in increase of population dose limit lies in achievement of minimal inclusion of radionuclides in human diet

  20. Evaluation of Legionella Air Contamination in Healthcare Facilities by Different Sampling Methods: An Italian Multicenter Study.

    Science.gov (United States)

    Montagna, Maria Teresa; De Giglio, Osvalda; Cristina, Maria Luisa; Napoli, Christian; Pacifico, Claudia; Agodi, Antonella; Baldovin, Tatjana; Casini, Beatrice; Coniglio, Maria Anna; D'Errico, Marcello Mario; Delia, Santi Antonino; Deriu, Maria Grazia; Guida, Marco; Laganà, Pasqualina; Liguori, Giorgio; Moro, Matteo; Mura, Ida; Pennino, Francesca; Privitera, Gaetano; Romano Spica, Vincenzo; Sembeni, Silvia; Spagnolo, Anna Maria; Tardivo, Stefano; Torre, Ida; Valeriani, Federica; Albertini, Roberto; Pasquarella, Cesira

    2017-06-22

    Healthcare facilities (HF) represent an at-risk environment for legionellosis transmission occurring after inhalation of contaminated aerosols. In general, the control of water is preferred to that of air because, to date, there are no standardized sampling protocols. Legionella air contamination was investigated in the bathrooms of 11 HF by active sampling (Surface Air System and Coriolis ® μ) and passive sampling using settling plates. During the 8-hour sampling, hot tap water was sampled three times. All air samples were evaluated using culture-based methods, whereas liquid samples collected using the Coriolis ® μ were also analyzed by real-time PCR. Legionella presence in the air and water was then compared by sequence-based typing (SBT) methods. Air contamination was found in four HF (36.4%) by at least one of the culturable methods. The culturable investigation by Coriolis ® μ did not yield Legionella in any enrolled HF. However, molecular investigation using Coriolis ® μ resulted in eight HF testing positive for Legionella in the air. Comparison of Legionella air and water contamination indicated that Legionella water concentration could be predictive of its presence in the air. Furthermore, a molecular study of 12 L. pneumophila strains confirmed a match between the Legionella strains from air and water samples by SBT for three out of four HF that tested positive for Legionella by at least one of the culturable methods. Overall, our study shows that Legionella air detection cannot replace water sampling because the absence of microorganisms from the air does not necessarily represent their absence from water; nevertheless, air sampling may provide useful information for risk assessment. The liquid impingement technique appears to have the greatest capacity for collecting airborne Legionella if combined with molecular investigations.

  1. Evaluation of Legionella Air Contamination in Healthcare Facilities by Different Sampling Methods: An Italian Multicenter Study

    Science.gov (United States)

    Montagna, Maria Teresa; De Giglio, Osvalda; Cristina, Maria Luisa; Napoli, Christian; Pacifico, Claudia; Agodi, Antonella; Baldovin, Tatjana; Casini, Beatrice; Coniglio, Maria Anna; D’Errico, Marcello Mario; Delia, Santi Antonino; Deriu, Maria Grazia; Guida, Marco; Laganà, Pasqualina; Liguori, Giorgio; Moro, Matteo; Mura, Ida; Pennino, Francesca; Privitera, Gaetano; Romano Spica, Vincenzo; Sembeni, Silvia; Spagnolo, Anna Maria; Tardivo, Stefano; Torre, Ida; Valeriani, Federica; Albertini, Roberto; Pasquarella, Cesira

    2017-01-01

    Healthcare facilities (HF) represent an at-risk environment for legionellosis transmission occurring after inhalation of contaminated aerosols. In general, the control of water is preferred to that of air because, to date, there are no standardized sampling protocols. Legionella air contamination was investigated in the bathrooms of 11 HF by active sampling (Surface Air System and Coriolis®μ) and passive sampling using settling plates. During the 8-hour sampling, hot tap water was sampled three times. All air samples were evaluated using culture-based methods, whereas liquid samples collected using the Coriolis®μ were also analyzed by real-time PCR. Legionella presence in the air and water was then compared by sequence-based typing (SBT) methods. Air contamination was found in four HF (36.4%) by at least one of the culturable methods. The culturable investigation by Coriolis®μ did not yield Legionella in any enrolled HF. However, molecular investigation using Coriolis®μ resulted in eight HF testing positive for Legionella in the air. Comparison of Legionella air and water contamination indicated that Legionella water concentration could be predictive of its presence in the air. Furthermore, a molecular study of 12 L. pneumophila strains confirmed a match between the Legionella strains from air and water samples by SBT for three out of four HF that tested positive for Legionella by at least one of the culturable methods. Overall, our study shows that Legionella air detection cannot replace water sampling because the absence of microorganisms from the air does not necessarily represent their absence from water; nevertheless, air sampling may provide useful information for risk assessment. The liquid impingement technique appears to have the greatest capacity for collecting airborne Legionella if combined with molecular investigations. PMID:28640202

  2. INFLUENCE OF BACKGROUND AIR ON MICROBIAL-CONTAMINATION DURING SIMULATED IV-ADMIXTURE PREPARATION

    NARCIS (Netherlands)

    VANDOORNE, H; BAKKER, JH; MEEVIS, RF; MARSKAMP, A

    The effect of the cleanliness of environmental air on the microbial contamination of a simulated i.v.-admixture during its preparation by aseptic transfer was studied under three conditions: (i) in a laminar air flow (LAF) bench situated in a class 1000 clean room, (ii) in an LAF bench in a

  3. A longitudinal study of air contaminants in a newly built preschool. [Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Berglund, B. (Univ. of Stockholm, Sweden); Johansson, I.; Lindvall, T.

    1982-01-01

    The air quality in a newly built preschool was investigated in a longitudinal study. Typical air contaminants emanating from building materials were determined, their variation over time (0-18 months) was measured, and the influence of the ventilation system (81%-91% recirculation of return air) on contaminant concentrations was studied. Volatile organic compounds were sampled by adsorption on porous polymer, analysed by a GC/FID system, and identified by MS. A spatial build-up in concentration (ppb or ..mu..g/m/sup 3/ levels) is evident for all the organic compounds, as well as for CO/sub 2/, from the outdoor air, through the ventilation system, and through the rooms to the exhaust air. The longitudinal comparison over time shows that all the organic compounds decline in concentration mainly within the first 6 months of occupancy: 1-buttanol 4-14 times, toluene and pentanal + hexanal 2-4 times, while formaldehyde remained at a constant low level of 90 ppb (110 ..mu..g/m/sup 3/). It is difficult to believe that the problems of poor air quality in 100 preschools in Stockholm are caused by the organic compounds alone unless interactions occur. A preschool building needs to be gassed off during the first 6 months after its construction with no recirculation of return air allowed (outdoor air rate approx 4-5 ach). During at least 1-2 additional years, it is desired that the recirculation rate of return air is restricted, perhaps to 50%.

  4. The circulating air barrier: Effective prevention of liquid contaminant movement through soil

    International Nuclear Information System (INIS)

    Gill, R.; Towers, T.; Johnson, H.; Overbey, W.

    1995-01-01

    The environmental cleanup task facing the United States Department of Energy (DOE) presents enormous technical, planning and institutional challenges, including the need to develop new technologies that are faster, better, safer, and cheaper, in order to expedite site cleanup. Characterization of contaminated sediments resulting from past tank leaks, continued safe operations of the tanks, total confinement of leaking materials, secondary waste minimization, and final closure of the single shell tanks are five of the many facets of the storage tank issue at Hanford and elsewhere in the nation. Each of these issues are considered in the development of the Circulating Air Barrier (CAB). The Circulating Air Barrier system is a desiccant-type barrier designed to prevent the movement of liquid contaminants toward the groundwater by using an air circulation and processing system to lower the water saturation in a targeted subsurface zone below the saturation level required for liquid flow. Vertical or horizontal wells can be installed to create a matrix of air injection and production so that air flows across the target barrier zone to the production wells. In the event of a tank leak, the system serves as a tool for early detection and provides a means to withdraw volatile contaminants to the surface for treatment. Demonstration and full-scale CAB systems have been designed for the Hanford Site. This includes chemical and geological characterization; model development, sensitivity analysis and performance optimization; subsurface configuration and surface processing equipment design; and development of a test program with associated cost estimates

  5. Environmental survey to assess viral contamination of air and surfaces in hospital settings.

    Science.gov (United States)

    Carducci, A; Verani, M; Lombardi, R; Casini, B; Privitera, G

    2011-03-01

    The presence of pathogenic viruses in healthcare settings represents a serious risk for both staff and patients. Direct viral detection in the environment poses significant technical problems and the indirect indicators currently in use suffer from serious limitations. The aim of this study was to monitor surfaces and air in hospital settings to reveal the presence of hepatitis C virus, human adenovirus, norovirus, human rotavirus and torque teno virus by nucleic acid assays, in parallel with measurements of total bacterial count and haemoglobin presence. In total, 114 surface and 62 air samples were collected. Bacterial contamination was very low (air was 282 cfu/m(3). Overall, 19 (16.7%) surface samples tested positive for viral nucleic acids: one for norovirus, one for human adenovirus and 17 (14.9%) for torque teno virus (TTV). Only this latter virus was directly detected in 10 air samples (16.1%). Haemoglobin was found on two surfaces. No relationship was found between viral, biochemical or bacterial indicators. The data obtained confirm the difficulty of assessing viral contamination using bacterial indicators. The frequent detection of TTV suggests its possible use as an indicator for general viral contamination of the environment. Copyright © 2010 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.

  6. Concentrations of selected contaminants in cabin air of airbus aircrafts.

    Science.gov (United States)

    Dechow, M; Sohn, H; Steinhanses, J

    1997-07-01

    The concentrations of selected air quality parameters in aircraft cabins were investigated including particle numbers in cabin air compared to fresh air and recirculation air, the microbiological contamination and the concentration of volatile organic compounds (VOC). The Airbus types A310 of Swissair and A340 of Lufthansa were used for measurements. The particles were found to be mainly emitted by the passengers, especially by smokers. Depending on recirculation filter efficiency the recirculation air contained a lower or equal amount of particles compared to the fresh air, whereas the amount of bacteria exceeded reported concentrations within other indoor spaces. The detected species were mainly non-pathogenic, with droplet infection over short distances identified as the only health risk. The concentration of volatile organic compounds (VOC) were well below threshold values. Ethanol was identified as the compound with the highest amount in cabin air. Further organics were emitted by the passengers--as metabolic products or by smoking--and on ground as engine exhaust (bad airport air quality). Cleaning agents may be the source of further compounds.

  7. False indications of 95Zr-95Nb internal contamination due to contaminated sacred thread

    International Nuclear Information System (INIS)

    Garg, S.P.; Singh, I.S.; Sharma, R.C.

    2000-01-01

    Whole body monitoring of a worker showed an apparent internal contamination with a considerable amount of 95 Zr- 95 Nb. Inhalation exposure was suspected to have taken place about a week earlier when he had last worked in the radioactive area. Unexpected fast clearance indicated by the third periodical weekly follow up monitoring was considered to be an abnormal behaviour. Investigations revealed an external contamination on a sacred thread, which the worker was putting on across his thorax and not removing it at the time of bath due to religious considerations. These studies have underscored that short term follow up measurements data should be critically scrutinized and a caution should be exercised in the interpretation such data particularly in case of such relatively short lived radionuclides. (author)

  8. Numerical Study of Contaminant Effects on Combustion of Hydrogen, Ethane, and Methane in Air

    Science.gov (United States)

    Lai, H. T.; Thomas, S. R.

    1995-01-01

    A numerical study was performed to assess the effects of vitiated air on the chemical kinetics of hydrogen, ethane, and methane combustion with air. A series of calculations in static reacting systems was performed, where the initial temperature was specified and reactions occurred at constant pressure. Three different types of test flow contaminants were considered: NP, H2O, and a combustion of H2O and CO2. These contaminants are present in the test flows of facilities used for hypersonic propulsion testing. The results were computed using a detailed reaction mechanism and are presented in terms of ignition and reaction times. Calculations were made for a wide range of contaminant concentrations, temperatures and pressures. The results indicate a pronounced kinetic effect over a range of temperatures, especially with NO contamination and, to a lesser degree, with H2O contamination. In all cases studied, CO2 remained kinetically inert, but had a thermodynamic effect on results by acting as a third body. The largest effect is observed with combustion using hydrogen fuel, less effect is seen with combustion of ethane, and little effect of contaminants is shown with methane combustion.

  9. Evaluating the Spatial Distribution of Toxic Air Contaminants in Multiple Ecosystem Indicators in the Sierra Nevada-Southern Cascades

    Science.gov (United States)

    Nanus, L.; Simonich, S. L.; Rocchio, J.; Flanagan, C.

    2013-12-01

    Toxic air contaminants originating from agricultural areas of the Central Valley in California threaten vulnerable sensitive receptors including surface water, vegetation, snow, sediments, fish, and amphibians in the Sierra Nevada-Southern Cascades region. The spatial distribution of toxic air contaminants in different ecosystem indicators depends on variation in atmospheric concentrations and deposition, and variation in air toxics accumulation in ecosystems. The spatial distribution of organic air toxics and mercury at over 330 unique sampling locations and sample types over two decades (1990-2009) in the Sierra Nevada-Southern Cascades region were compiled and maps were developed to further understand spatial patterns and linkages between air toxics deposition and ecological effects. Potential ecosystem impacts in the Sierra Nevada-Southern Cascades region include bioaccumulation of air toxics in both aquatic and terrestrial ecosystems, reproductive disruption, and immune suppression. The most sensitive ecological end points in the region that are affected by bioaccumulation of toxic air contaminants are fish. Mercury was detected in all fish and approximately 6% exceeded human consumption thresholds. Organic air toxics were also detected in fish yielding variable spatial patterns. For amphibians, which are sensitive to pesticide exposure and potential immune suppression, increasing trends in current and historic use pesticides are observed from north to south across the region. In other indicators, such as vegetation, pesticide concentrations in lichen increase with increasing elevation. Current and historic use pesticides and mercury were also observed in snowpack at high elevations in the study area. This study shows spatial patterns in toxic air contaminants, evaluates associated risks to sensitive receptors, and identifies data gaps. Future research on atmospheric modeling and information on sources is needed in order to predict which ecosystems are the

  10. Air Monitoring Leads to Discovery of New Contamination at Radioactive Waste Disposal Site (Area G) at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Kraig, D.H.; Conrad, R.C.

    1999-01-01

    Air monitoring at Area G, the low-level radioactive waste disposal area at Los Alamos National Laboratory, revealed increased air concentrations of 239 Pu and 241 Am at one location along the north boundary. This air monitoring location is a couple of meters north of a dirt road used to access the easternmost part of Area G. Air concentrations of 238 Pu were essentially unaffected, which was puzzling because the 238 Pu and 239 Pu are present in the local, slightly contaminated soils. Air concentrations of these radionuclides increased about a factor of ten in early 1995 and remained at those levels until the first quarter of 1996. During the spring of 1996 air concentrations again increased by a factor of about ten. No other radionuclides were elevated and no other Area G stations showed elevations of these radionuclides. After several formal meetings didn't provide an adequate cause for the elevations, a gamma survey was performed and showed a small area of significant contamination just south of the monitor location. We found in February, 1995, a trench for a water line had been dug within a meter of so of the air stations. Then, during early 1996, the dirt road was rerouted such that its new path was directly over the unknown contamination. It appears that the trenching brought contaminated material to the surface and caused the first rise in air concentrations and then the rerouting of the road over the contamination caused the second rise, during 1996. We also found that during 1976 and 1977 contaminated soils from the clean-up of an old processing facility had been spread over the filled pits in the vicinity of the air monitors. These soils were very low in 238Pu which explains why we saw very little 238 Pu in the increased air concentrations. A layer of gravel and sand was spread over the contaminated area. Although air concentrations of 239 Pu and 241 Am dropped considerably, the y have not returned to pre-1995 levels

  11. Air-Seawater Exchange of Organochlorine Pesticides along the Sediment Plume of a Large Contaminated River.

    Science.gov (United States)

    Lin, Tian; Guo, Zhigang; Li, Yuanyuan; Nizzetto, Luca; Ma, Chuanliang; Chen, Yingjun

    2015-05-05

    Gaseous exchange fluxes of organochlorine pesticides (OCPs) across the air-water interface of the coastal East China Sea were determined in order to assess whether the contaminated plume of the Yangtze River could be an important regional source of OCPs to the atmosphere. Hexachlorocyclohexanes (HCHs), chlordane compounds (CHLs), and dichlorodiphenyltrichloroethanes (DDTs) were the most frequently detected OCPs in air and water. Air-water exchange was mainly characterized by net volatilization for all measured OCPs. The net gaseous exchange flux ranged 10-240 ng/(m2·day) for γ-HCH, 60-370 ng/(m2·day) for trans-CHL, 97-410 ng/(m2·day) for cis-CHL, and ∼0 (e.g., equilibrium) to 490 ng/(m2·day) for p,p'-DDE. We found that the plume of the large contaminated river can serve as a significant regional secondary atmospheric source of legacy contaminants released in the catchment. In particular, the sediment plume represented the relevant source of DDT compounds (especially p,p'-DDE) sustaining net degassing when clean air masses from the open ocean reached the plume area. In contrast, a mass balance showed that, for HCHs, contaminated river discharge (water and sediment) plumes were capable of sustaining volatilization throughout the year. These results demonstrate the inconsistencies in the fate of HCHs and DDTs in this large estuarine system with declining primary sources.

  12. The importance of determining the air exchange rate in flats and buildings for calculations of the averted indoor inhalation doses arising from contaminated outdoor air

    International Nuclear Information System (INIS)

    Jilek, Karel; Thomas, J.; Bulanek, B.; Lenk, J.; Marikova, S.

    2015-01-01

    The indoor-outdoor air exchange rate is an important parameter when refining estimates of the averted inhaled doses to population in houses and buildings after an emergency event resulting in contamination of outdoor air with a radioactive material. The air exchange rates measured in 70 occupied houses and in 20 unoccupied houses using N 2 O as the tracer gas are presented, and the results of modelling the averted doses in the residential buildings for both gaseous and aerosol outdoor contaminants are demonstrated. (orig.)

  13. Indoor air pollution

    International Nuclear Information System (INIS)

    Spengler, J.D.

    1985-01-01

    Although official efforts to control air pollution have traditionally focused on outdoor air, it is now apparent that elevated contaminant concentrations are common inside some private and public buildings. Concerns about potential public health problems due to indoor air pollution are based on evidence that urban residents typically spend more than 90 percent of their time indoors, concentrations of some contaminants are higher indoors than outdoors, and for some pollutants personal exposures are not characterized adequately by outdoor measurements. Among the more important indoor contaminants associated with health or irritation effects are passive tobacco smoke, radon decay products, carbon monoxide, nitrogen dioxide, formaldehyde, asbestos fibers, microorganisms and aeroallergens. Efforts to assess health risks associated with indoor air pollution are limited by insufficient information about the number of people exposed, the pattern and severity of exposures, and the health consequences of exposures. An overall strategy should be developed to investigate indoor exposures, health effects, control options, and public policy alternatives

  14. [Disinfectants and main sanitary and preventive measures for protection of ventilation and air-conditioning systems from Legionella contamination].

    Science.gov (United States)

    Gerasimov, V N; Golov, E A; Khramov, M V; Diatlov, I A

    2008-01-01

    The study was devoted to selection and assessment of disinfecting preparations for prevention of contamination by Legionella. Using system of criteria for quality assessment of disinfectants, seven newdomestic ones belonging to quaternary ammonium compounds class or to oxygen-containing preparations and designed for disinfecting of air-conditioning and ventilation systems were selected. Antibacterial and disinfecting activities of working solutions of disinfectants were tested in laboratory on the test-surfaces and test-objects of premises' air-conditioning and ventilation systems contaminated with Legionella. High antimicrobial and disinfecting activity of new preparations "Dezactiv-M", "ExtraDez", "Emital-Garant", "Aquasept Plus", "Samarovka", "Freesept", and "Ecobreeze Oxy" during their exposure on objects and materials contaminated with Legionella was shown. Main sanitary and preventive measures for defending of air-conditioning and ventilation systems from contamination by Legionella species were presented.

  15. Potential contamination of shipboard air samples by diffusive emissions of PCBs and other organic pollutants: implications and solutions.

    Science.gov (United States)

    Lohmann, Rainer; Jaward, Foday M; Durham, Louise; Barber, Jonathan L; Ockenden, Wendy; Jones, Kevin C; Bruhn, Regina; Lakaschus, Soenke; Dachs, Jordi; Booij, Kees

    2004-07-15

    Air samples were taken onboard the RRS Bransfield on an Atlantic cruise from the United Kingdom to Halley, Antarctica, from October to December 1998, with the aim of establishing PCB oceanic background air concentrations and assessing their latitudinal distribution. Great care was taken to minimize pre- and post-collection contamination of the samples, which was validated through stringent QA/QC procedures. However, there is evidence that onboard contamination of the air samples occurred,following insidious, diffusive emissions on the ship. Other data (for PCBs and other persistent organic pollutants (POPs)) and examples of shipboard contamination are presented. The implications of these findings for past and future studies of global POPs distribution are discussed. Recommendations are made to help critically appraise and minimize the problems of insidious/diffusive shipboard contamination.

  16. Monitoring of Radionuclide Contamination in Food Samples in Malaysia due to Daiichi Reactor Accident in Fukushima, Japan

    International Nuclear Information System (INIS)

    Nurrul Assyikeen Mohd Jaffary; Abdul Kadir Ishak; Wo, Y.M.

    2011-01-01

    On March 11, 2011, a serious accident occurred in Daiichi nuclear reactor plant, Fukushima, Japan which caused radioactive materials been released into the atmosphere in the form of aerosols and dust particles. Sea water around the plant was also found contaminated with high radioactivity readings. These radioactive materials could be transported by the winds and ocean current across international borders and cannot be controlled by human. Besides a continuous monitoring activity of radionuclide content in the air and sea water that need to be conducted by the authorities, Malaysia should also control the entry of radionuclide through contaminated food ingestion by human. Radionuclide I-131, Cs-134 and Cs-137 were used as a counter-measure of pollution levels and counted with gamma spectrometry using standard analysis method suggested by AOAC International. In this paper, details description of the role of Radiochemical and Environment Group, Nuclear Malaysia who's responsible in analyzing the radioactivity in the food samples due to Fukushima Daiichi, Japan accident was included. Also discussed are the radioactivity limit adopted and analysis results from this monitoring. (author)

  17. An Assessment of Air As a Source of DNA Contamination Encountered When Performing PCR

    OpenAIRE

    Witt, Nina; Rodger, Gillian; Vandesompele, Jo; Benes, Vladimir; Zumla, Alimuddin; Rook, Graham A.; Huggett, Jim F.

    2009-01-01

    Sensitive molecular methods, such as the PCR, can detect low-level contamination, and careful technique is required to reduce the impact of contaminants. Yet, some assays that are designed to detect high copy-number target sequences appear to be impossible to perform without contamination, and frequently, personnel or laboratory environment are held responsible as the source. This complicates diagnostic and research analysis when using molecular methods. To investigate the air specifically as...

  18. Effect of Air Stability on the Dispersal of Exhaled Contaminant in Rooms

    DEFF Research Database (Denmark)

    Xu, Chunwen; Gong, Guangcai; Nielsen, Peter V.

    2013-01-01

    the manikin, indicating that the person who exhales the contaminant may not be polluted by himself as the protective effect of the thermal boundary layer around the body, especially in stable condition with two concentration zones and clean air drawn from the inlets. However, other persons facing......Experiments are conducted in a full-scale chamber equipped with whole floor and whole ceiling supply or exhaust to form approximately zero and larger temperature gradients corresponding to unstable and stable air conditions. It can be observed that the air with smoke exhaled from a life...

  19. Measurements of air contaminants during the Cerro Grande fire at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Eberhart, Craig

    2010-08-01

    Ambient air sampling for radioactive air contaminants was continued throughout the Cerro Grande fire that burned part of Los Alamos National Laboratory. During the fire, samples were collected more frequently than normal because buildup of smoke particles on the filters was decreasing the air flow. Overall, actual sampling time was 96% of the total possible sampling time for the May 2000 samples. To evaluate potential human exposure to air contaminants, the samples were analyzed as soon as possible and for additional specific radionuclides. Analyses showed that the smoke from the fire included resuspended radon decay products that had been accumulating for many years on the vegetation and the forest floor that burned. Concentrations of plutonium, americium, and depleted uranium were also measurable, but at locations and concentrations comparable to non-fire periods. A continuous particulate matter sampler measured concentrations that exceeded the National Ambient Air Quality Standard for PM-10 (particles less than 10 micrometers in diameter). These high concentrations were caused by smoke from the fire when it was close to the sampler.

  20. Detoxification, endocrine, and immune responses of tree swallow nestlings naturally exposed to air contaminants from the Alberta oil sands.

    Science.gov (United States)

    Cruz-Martinez, Luis; Fernie, Kim J; Soos, Catherine; Harner, Tom; Getachew, Fitsum; Smits, Judit E G

    2015-01-01

    Changes in environmental and wildlife health from contaminants in tailings water on the Canadian oil sands have been well-studied; however, effects of air contaminants on wildlife health have not. A field study was conducted to assess biological costs of natural exposure to oil sands-related air emissions on birds. Nest boxes for tree swallows (Tachycineta bicolor) were erected at two sites; within 5 km of active oil sands mining and extraction, and ≥ 60 km south, at one reference site. Passive air monitors were deployed at the nest boxes to measure nitrogen dioxide, sulfur dioxide, ozone, volatile organic compounds, and polycyclic aromatic hydrocarbons (PAHs). Nestlings were examined at day 9 post hatching to assess T cell function and morphometry. At day 14 post hatching, a subset of nestlings was euthanized to measure detoxification enzymes, endocrine changes, and histological alterations of immune organs. Except for ozone, all air contaminants were higher at the two oil sands sites than the reference site (up to 5-fold). Adult birds had similar reproductive performance among sites (p>0.05). Nestlings from industrial sites showed higher hepatic ethoxyresorufin O-dealkylase (EROD) induction (pfeather corticosterone (p>0.6), and no histological alterations in the spleen or bursa of Fabricius (p>0.05). This is the first report examining toxicological responses in wild birds exposed to air contaminants from industrial activity in the oil sands. It is also the first time that small, individual air contaminant monitors have been used to determine local contaminant levels in ambient air around nest boxes of wild birds. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. The effect of stable bedding materials on dust levels, microbial air contamination and equine respiratory health.

    Science.gov (United States)

    Kwiatkowska-Stenzel, Agnieszka; Witkowska, Dorota; Sowińska, Janina; Stopyra, Artur

    2017-12-01

    The choice of bedding material affects the quality of air in a stable and, consequently, the respiratory health of horses and humans. The risk of respiratory problems can be mitigated by improving the quality of air in the stable. The choice of bedding material is particularly important in cold climate conditions where horses are kept indoors throughout the year. This study examined the impact of three bedding materials: straw (S), peat with shavings (PS), and crushed wood pellets (CWP). The investigated factors were air contamination, including dust contamination and microbial (bacterial and fungal) contamination, and the condition of the equine respiratory tract. The condition of the respiratory tract was evaluated based on the results of arterial blood biochemistry tests and endoscopic evaluations of the upper respiratory tract. Mechanical dust contamination was lowest for PS (1.09mg/m 3 ) and highest for CWP (4.07mg/m 3 ). Bacterial contamination (in CFU - colony forming units) was highest for PS (5.14log 10 CFU/m 3 ) and lowest for CWP (4.81log 10 CFU/m 3 ). Fungal air contamination was lowest for CWP (4.54log 10 CFU/m 3 ) and highest for S (4.82log 10 CFU/m 3 ) and PS (4.88log 10 CFU/m 3 ). An analysis of physiological indicators revealed that all horses were clinically healthy regardless of the type of applied bedding. The type of bedding material did not exert a clear influence on arterial blood biochemistry or the results of endoscopic evaluations of the respiratory tract; however, the use of alternative for straw bedding materials improved endoscopy results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Air contamination control as an element of state environmental monitoring

    International Nuclear Information System (INIS)

    Grabowski, D.

    1993-01-01

    The results of air contamination control on the base of gamma and beta radioactivity of aerosols collected on filters and in precipitation samples have been shown. The data have been gathered from 12 monitoring stations in Poland during 1993. No significant differences between actual results and those obtained in previous years have been noticed. 4 figs, 1 tab

  3. Impact of clay mineral on air oxidation of PAH-contaminated soils.

    Science.gov (United States)

    Biache, Coralie; Kouadio, Olivier; Lorgeoux, Catherine; Faure, Pierre

    2014-09-01

    This work investigated the impact of a clay mineral (bentonite) on the air oxidation of the solvent extractable organic matters (EOMs) and the PAHs from contaminated soils. EOMs were isolated from two coking plant soils and mixed with silica sand or bentonite. These samples, as well as raw soils and bentonite/soil mixtures, were oxidized in air at 60 and 100 °C for 160 days. Mineralization was followed by measuring the CO2 produced over the experiments. EOM, polycyclic aromatic compound (PAC), including PAH, contents were also determined. Oxidation led to a decrease in EOM contents and PAH concentrations, these diminutions were enhanced by the presence of bentonite. Transfer of carbon from EOM to insoluble organic matter pointed out a condensation phenomenon leading to a stabilization of the contamination. Higher mineralization rates, observed during the oxidation of the soil/bentonite mixtures, seem to indicate that this clay mineral had a positive influence on the transformation of PAC into CO2.

  4. An evaluation of the worker exposure during the RA reactor decommissioning due to presence of contamination

    International Nuclear Information System (INIS)

    Ljubenov, V.; Simovic, R.

    2005-01-01

    In this paper a possibility to establish the relationship between the presence of the surface contamination in the RA reactor rooms and the worker exposure during the decommissioning activities is discussed. RESRAD-BUILD code and the models typical for the RA reactor has been used to determine annual doses from the supposed activities of the main expected RA reactor contaminants. Different room air exchange rates have been modelled and analysed. (author) [sr

  5. Application of air ions for bacterial de-colonization in air filters contaminated by aerosolized bacteria

    International Nuclear Information System (INIS)

    Kim, Yang Seon; Yoon, Ki Young; Park, Jae Hong; Hwang, Jungho

    2011-01-01

    We aerosolized the Escherichia coli (E. coli) and Staphylococcus epidermidis (S. epidermidis) bacteria and collected them on membrane filters. Then we generated air ions by applying a high voltage to a carbon fiber tip and applied them to the contaminated filters. The antibacterial efficiency was not significantly affected by the bacteria being Gram-positive or Gram-negative, however, negative ions showed a lower antibacterial efficiency than positive ions to both E. coli and S. epidermidis, even though the concentration of negative air ions was much higher than that of positive air ions. With a field emission scanning electron microscope (FE-SEM) images and fluorescence microscopy images using a LIVE/DEAD BacLight Bacterial Viability Kit, electrostatic disruption of the bacteria was found to be the dominant antibacterial effect. - Research Highlights: →This study examined the effects of air ions generated by a carbon fiber ionizer on the inactivation of bioaerosols. →When the ion exposure time and the ion generation concentration were increased, the antibacterial efficiency increased. →The bioaerosols carried a significant number of negative electrical charges. →Negative ions showed lower antibacterial efficiency than positive ions to both E. coli and S. epidermidis, even though the concentration of negative air ions was much higher than that of positive air ions.

  6. Colombian legislation for air contamination control; Legislacion colombiana para el control de la contaminacion del aire

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez S, Gildardo; Montes de Correa, Consuelo

    1999-12-01

    The most relevant legislative acts promulgated by the Colombian government for controlling atmospheric pollution are reviewed in chronological order. Special emphasis is paid to decree 948 of 1995 modified according to decree 2107 of 1995, e. The general dispositions about norms of air quality, emission levels, contaminant emissions, noise and offensive odors (chapter II), as well as, prohibitions and restrictions to emissions and noise from stationary and mobile sources (chapters III-V) furthermore, the resolutions issued so far by the ministry of the environment for regulating decree 948/95 in those aspects related to the prevention and control of atmospheric pollution are describes. Finally, the main philosophies for regulating air pollutants around the world are explained: the emissions norms, air quality norms, the emission taxes philosophy and the cost-benefit norms.

  7. Dioxin-like PCB in indoor air contaminated with different sources

    Energy Technology Data Exchange (ETDEWEB)

    Heinzow, B.G.J.; Mohr, S.; Ostendorp, G. [Landesamt fuer Gesundheit und Arbeitssicherheit des Landes Schleswig-Holstein, Flintbek (Germany); Kerst, M.; Koerner, W. [Bayerisches Landesamt fuer Umweltschutz, Augsburg (Germany)

    2004-09-15

    Polychlorinated biphenyls (PCB) have been used in public building constructions for various purposes in the 1960s and 1970s, mainly as an additive to concrete, caulking, grout, paints, as a major constitutent of permanent elastic Thiokol rubber sealants and flame retardant coatings of acoustic ceiling tiles. Offgazing of semivolatile PCB from building materials can nowadays still result in considerable house-dust contamination and in indoor air concentrations exceeding 10,000 ng/m{sup 3}. In Germany, PCB levels in indoor air in non-occupational settings have been regulated with a tolerable total PCB concentration of 300 ng /m{sup 3} and an intervention level of 3000 ng/m{sup 3}. Lower re-entry criteria have been proposed by Michaud et al. Technical mixtures of PCB contain dioxin-like non- and mono-ortho substituted PCB congeners and are contaminated with trace amounts of polychlorinated dibenzodioxins (PCDD) and mainly dibenzofurans (PCDF), sharing overlapping toxic effects and physicochemical properties. We report here on levels of dioxinlike PCB measured in buildings with various PCB sources and correlations among PCDD/PCDF and dioxin-like PCB and di-ortho PCB.

  8. Monitoring of Radionuclide Contamination in Food Samples in Malaysia due to Daiichi Reactor Accident in Fukushima, Japan

    International Nuclear Information System (INIS)

    Nurrul Assyikeen Mohd Jaffary; Wo, Y.M.; Abdul Kadir Ishak

    2015-01-01

    On March 11, 2011, a serious accident occurred in Daiichi nuclear reactor plant, Fukushima, Japan which caused radioactive materials been released into the atmosphere in the form of aerosols and dust particles. Sea water around the plant was also found contaminated with high radioactivity readings. These radioactive materials could be transported by the winds and ocean current across international borders and cannot be controlled by human. Thus, a continuous monitoring activity of radionuclide content in the air and sea water needs to be conducted by the authorities. In addition to radioactivity monitoring, Malaysia should also control the entry of contaminated food in order to prevent radionuclide ingestion by human. The radionuclide 131 I, 134 Cs and 137 Cs were used as a measure of pollution levels and counted with gamma spectrometry using standard analysis method suggested by AOAC International. In this paper, details description of the role of Radiochemical and Environment Group, Nuclear Malaysia who is responsible in analyzing the radioactivity in the food samples due to Fukushima Daiichi, Japan accident was included. The radioactivity limit adopted and analysis results from this monitoring were discussed. (author)

  9. The Evaluation of Removal Efficiency of COD Due to Water Contaminated by Gasoline by Granular Active Carbon

    Directory of Open Access Journals (Sweden)

    MH Salmani

    2014-11-01

    Conclusion: We can conclude from this study that the activated carbon is an appropriate adsorbent for decreasing of COD due to gasoline contamination in water. The use of this adsorbent can well decrease COD of water contamination due to gasoline at times of 30 min.

  10. Measurement of radioactive soil contamination from the air

    International Nuclear Information System (INIS)

    Loman, A.C.; Kuile, C.R. ter; Slaper, H.

    1990-09-01

    In-situ gamma spectrometry can be used to determine the qualitative and quantitative deposition of radioactive materials on the ground surface. By applying the in-situ spectrometry method using either a helicopter or an airplane, large areas can be scanned in a short period of time. In this report the results of in-situ gamma spectroscopic measurements taken from a helicopter are described. Measurements were carried out using a single point source, a field of 36 point sources, and using the present ground contamination due to fall-out from the Chernobyl accident and atom bombs. The results of these measurements were used to determine calibration factors, which were in agreement with a calibration obtained using more simple (and less expensive) laboratory measurements in combination with flux calculations. Detection limits for the measurement of surface contamination were determined. At a height of 50 meters above the surface and using a measurement time of 2 minutes, the minimally detectable surface contamination was 1.1 kBqm -2 for a Cs-137 contamination and 2.1 kBqm -2 for I-131 contamination. Fall-out determinations based on measurements taken at a height of 50 meters were in agreement with determinations taken at a height of 1 meter, and with the results obtained measuring soil samples. The in-situ gamma spectroscopy, using helicopter or airplane, is a fast and powerful method for mapping surface contamination. (author). 13 refs.; 18 figs.; 13 tabs

  11. Numerical Simulation of Inter-Flat Air Cross-Contamination under the Condition of Single-Sided Natural Ventilation

    DEFF Research Database (Denmark)

    Liu, Xiaoping; Niu, Jianlei; Perino, Marco

    2008-01-01

    ventilated room, the renormalization group based k-ε model, together with carbon dioxide used as a tracer, is chosen to reveal this air cross-contamination. The simulation results are in agreement with our prior on-site tracer-gas measurements, revealing that the windows flush with a flat fa ade can...... be a major route of the air cross-contamination in high-rise residential buildings. Finally, an assessment index is proposed to evaluate the potential infection risks associated with this inter-flat air flow occurring in high-rise residential buildings....... the two sides, each of which has a flat fa ade with openable windows. When the wind speed is extremely low, with doors closed and windows opened, the flats become single-sided naturally ventilated driven by buoyancy effects. The air pollutants can travel from a lower flat to a vertically adjacent upper...

  12. Microbial Air Contamination in Indoor and Outdoor Environment of Pig Farms

    Directory of Open Access Journals (Sweden)

    Silvana Popescu

    2014-05-01

    Full Text Available Ensuring a good air quality in pig farms is important for the health of animals and human workers. The aim of this study was the assessment of the microbiological quality of the air inside the pig houses and outside of these. The study was accomplished in two pig-fattening farms in Cluj County. The microbiological air quality was assessed in the cold and warm season, by determination of the total counts of mesophilic bacteria, staphylococci, streptococci, gram-negative bacteria and fungi. The bacterial and fungal counts varied in the air of the investigated farms. In relation to the season the mean counts of bacteria and fungi were significantly higher (P 0.05 were found between the values of the parameters determined from the indoor air and those obtained outside, from a distance of 5 m from the pig houses. The numbers of the bacteria and fungi in the outdoor air lowered as the distance from the farms increased, the differences being significant at 25 and 50 m (P < 0.05. The results of the study show a high bacterial contamination of the indoor and outdoor air of the pig farms.

  13. Measurement of air contamination in different wards of public sector hospital, Sukkur.

    Science.gov (United States)

    Memon, Badaruddin AllahDino; Bhutto, Gul Hassan; Rizvi, Wajid Hussain

    2016-11-01

    The aim of this study was to evaluate and assess the index of bacterial contamination in different wards of the Public Sector Hospital of Sukkur (Teaching) Pakistan; whether or not the air contamination was statistically different from the acceptable level using active and passive sampling. In addition to this main hypothesis, other investigations included: occurrence of the most common bacteria, whether or not the bacterial contamination in the wards was a persistent problem and identification of the effective antibiotics against the indentified bacteria. The evidence sought based on the One Sample T test suggests that there is a (statistically) significant difference between the observed (higher) than the acceptance level (pcontamination problem was persistent as there was no significant difference among observed contamination of all three visits at (p>0.01) and the result of antibiotic susceptibility test highlights sensitivity and resistance level of antibiotics for the indentified bacteria.

  14. Overall human mortality and morbidity due to exposure to air pollution.

    Science.gov (United States)

    Samek, Lucyna

    2016-01-01

    Concentrations of particulate matter that contains particles with diameter ≤ 10 mm (PM10) and diameter ≤ 2.5 mm (PM2.5) as well as nitrogen dioxide (NO2) have considerable impact on human mortality, especially in the cases when cardiovascular or respiratory causes are attributed. Additionally, they affect morbidity. An estimation of human mortality and morbidity due to the increased concentrations of PM10, PM2.5 and NO2 between the years 2005-2013 was performed for the city of Kraków, Poland. For this purpose the Air Quality Health Impact Assessment Tool (AirQ) software was successfully applied. The Air Quality Health Impact Assessment Tool was used for the calculation of the total, cardiovascular and respiratory mortality as well as hospital admissions related to cardiovascular and respiratory diseases. Data on concentrations of PM10, PM2.5 and NO2, which was obtained from the website of the Voivodeship Inspectorate for Environmental Protection (WIOS) in Kraków, was used in this study. Total mortality due to exposure to PM10 in 2005 was found to be 41 deaths per 100 000 and dropped to 30 deaths per 100 000 in 2013. Cardiovascular mortality was 2 times lower than the total mortality. However, hospital admissions due to respiratory diseases were more than an order of magnitude higher than the respiratory mortality. The calculated total mortality due to PM2.5 was higher than that due to PM10. Air pollution was determined to have a significant effect on human health. The values obtained by the use of the AirQ software for the city of Kraków imply that exposure to polluted air can result in serious health problems. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  15. Overall human mortality and morbidity due to exposure to air pollution

    Directory of Open Access Journals (Sweden)

    Lucyna Samek

    2016-06-01

    Full Text Available Objectives: Concentrations of particulate matter that contains particles with diameter ≤ 10 mm (PM10 and diameter ≤ 2.5 mm (PM2.5 as well as nitrogen dioxide (NO2 have considerable impact on human mortality, especially in the cases when cardiovascular or respiratory causes are attributed. Additionally, they affect morbidity. An estimation of human mortality and morbidity due to the increased concentrations of PM10, PM2.5 and NO2 between the years 2005–2013 was performed for the city of Kraków, Poland. For this purpose the Air Quality Health Impact Assessment Tool (AirQ software was successfully applied. Material and Methods: The Air Quality Health Impact Assessment Tool was used for the calculation of the total, cardiovascular and respiratory mortality as well as hospital admissions related to cardiovascular and respiratory diseases. Data on concentrations of PM10, PM2.5 and NO2, which was obtained from the website of the Voivodeship Inspectorate for Environmental Protection (WIOS in Kraków, was used in this study. Results: Total mortality due to exposure to PM10 in 2005 was found to be 41 deaths per 100 000 and dropped to 30 deaths per 100 000 in 2013. Cardiovascular mortality was 2 times lower than the total mortality. However, hospital admissions due to respiratory diseases were more than an order of magnitude higher than the respiratory mortality. Conclusions: The calculated total mortality due to PM2.5 was higher than that due to PM10. Air pollution was determined to have a significant effect on human health. The values obtained by the use of the AirQ software for the city of Kraków imply that exposure to polluted air can result in serious health problems.

  16. Calculation of conversion coefficients using Chinese adult reference phantoms for air submersion and ground contamination.

    Science.gov (United States)

    Lu, Wei; Qiu, Rui; Wu, Zhen; Li, Chunyan; Yang, Bo; Liu, Huan; Ren, Li; Li, Junli

    2017-03-21

    The effective and organ equivalent dose coefficients have been widely used to provide assessment of doses received by adult members of the public and by workers exposed to environmental radiation from nuclear facilities under normal or accidental situations. Advancements in phantom types, weighting factors, decay data, etc, have led to the publication of newer results in this regard. This paper presents a new set of conversion coefficients for air submersion and ground contamination (with the use of Geant4) for photons from 15 keV to 10 MeV using the Chinese and International Commission on Radiological Protection (ICRP) adult reference male and female phantoms. The radiation fields, except for energy spectrum at low energies, were validated by the data obtained from the Monte Carlo code YURI. The effective dose coefficients of monoenergetic photons, obtained for the ICRP adult reference phantoms, agree well with recently published data for air submersion and ground contamination with a plane source at a depth of 0.5 g cm -2 in soil, but an average difference of 36.5% is observed for ground surface contamination with the abovementioned radiation field. The average differences in organ equivalent dose coefficients between the Chinese and the ICRP adult reference phantoms are within 6% for most organs, but noticeable differences of up to 70% or even higher are found at photon energies below 30 keV under air submersion. The effective dose coefficients obtained with the Chinese adult reference phantoms are greater than those of the ICRP adult reference phantoms above 30 keV and 0.5 MeV for ground contamination and air submersion, respectively; the average differences from the Chinese adult reference phantoms are about 3.6% and 0.4% in the whole energy range with maximum differences of 31.8% and 27.6% at 15 keV for air submersion and ground contamination respectively. These differences are attributed to anatomical discrepancies in overlying tissue mass of an

  17. Air-sampling inlet contamination by aircraft emissions on the NASA CV-990 aircraft

    Science.gov (United States)

    Condon, E. P.; Vedder, J. F.

    1984-01-01

    Results of an experimental investigation of the contamination of air sampling inlets by aircraft emissions from the NASA CV-990 research aircraft are presented. This four-engine jet aircraft is a NASA facility used for many different atmospheric and meteorological experiments, as well as for developing spacecraft instrumentation for remote measurements. Our investigations were performed to provide information on which to base the selection of sampling locations for a series of multi-instrument missions for measuring tropospheric trace gases. The major source of contamination is the exhaust from the jet engines, which generate many of the same gases that are of interest in atmospheric chemistry, as well as other gases that may interfere with sampling measurements. The engine exhaust contains these gases in mixing ratios many orders of magnitude greater than those that occur in the clean atmosphere which the missions seek to quantify. Pressurized samples of air were collected simultaneously from a scoop located forward of the engines to represent clean air and from other multiport scoops at various aft positions on the aircraft. The air samples were analyzed in the laboratory by gas chromatography for carbon monoxide, an abundant combustion by-product. Data are presented for various scoop locations under various flight conditions.

  18. The Calculation of Self-Disposal Date by Analyzing the Radioactive Contamination of Air Filters Disused in Radioisotope Production Facility

    International Nuclear Information System (INIS)

    Kim, Sung Ho; Lee, Bu Hyung; Kwon, Soo Il

    2016-01-01

    The aim of the study is to decrease the diffusion of air contamination which occurred in radiation work places handle radioisotope under the permissible level. Accordingly, we replaced used air filter with a new one at the appropriate time , and computed disposal dates for disposing used air filters by calculate radioactive contamination. Air filter contaminated by radioactivity is possible to be self-disposed on condition that all detected nuclides is below permissible level according to Nuclear Safety and Security Commission (NSSC) notification No. 2014-003. Radioisotope, produced by 30, 50 MeV cyclotron and carried from other institutions, is used to treat patients, diagnose diseases, and research technology in Korea Institute of Radiological and Medical Sciences (KIRAMS). With unsealed sources generate radioactive contamination in air, it is important to use fume hood or hot cell. The accurate date needs to be calculated by the equation for calculation of self disposal date. If disposal date is in 1000 days, disposal for external institution is required. With increasing the number of medical institute which was related to use the radioisotopes, the importance of radioactive safety management was increased. As disposing radioactive waste, in particular, is the procedure of inspecting for releasing radioactive waste to outside, appropriate action and continuous research are required at a radioactive safety management.

  19. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This report presents information concerning field procedures employed during the monitoring, well construction, well purging, sampling, and well logging at the Wright-Patterson Air Force Base. Activities were conducted in an effort to evaluate ground water contamination.

  20. Lead on vegetation as indicator of air pollution due to automobile exhaust's gases

    Energy Technology Data Exchange (ETDEWEB)

    Impens, R; Deroanne-Bauvin, J; Tilman, J

    1974-01-01

    Lead is regarded as an undesirable air contaminant. It's effects on health are well documented. Lead levels in air are very high in cities. Analyses have been performed on soils and urban vegetation (trees, shrubs and plants growing in city parks or near urban highways) from fifteen sites in Brussels. The collections were made from 72 to actually, at each site. The sites gave a very wide range of traffic density. A very significant correlation of lead concentration with density and characteristics of urban traffic was found. A continuous survey of lead levels on vegetation is a good indicator of air pollution caused by automobile exhaust's gases in urban and suburban areas.

  1. Evaluation of air pollution due to natural radioactive elements

    International Nuclear Information System (INIS)

    Perez, B. A.; Lopez, M. E.

    2014-08-01

    The presence of radioactive materials in the crustal and as consequence present in the surface, originate the natural radioactive contamination in the different solid, liquid and gaseous materials; particularly in the air that we breathe. Among these radioactive materials that contribute to the environmental pollution are the presences of uranium, radio, thorium and their respective disintegration chains, as the gas radon (Rn-222) that spreads in the air; whose presence increases in areas where the seismic activity is notorious or other natural events take place, case of the Lima (Peru) City. In this work we show the measurements realized during two consecutive years in the roof of a building of three floors in the Lima City, with the purpose of establishing the fluctuations of this gassy pollutant in the surrounding air. The measurements were made using nitrocellulose detectors (Lr-115 type 2) applying the nuclear prints technique. The obtained results allowing to have an indicator of the Rn-222 presence in the air during different seasons of the year and also the presence of other possible radioactive pollutants. The use of this technique allows obtaining and studying the prints that generate the alpha particles that are emitted during the Rn-222 disintegration or by means of their descendants or predecessors; also allowing to discriminate between the short-range tracers or lineal type prints and other very different prints obtained during some of the measurements. The results analyzed according to proposed models are presented in this work. (author)

  2. Use of dust fall filters as passive samplers for metal concentrations in air for communities near contaminated mine tailings.

    Science.gov (United States)

    Beamer, P I; Sugeng, A J; Kelly, M D; Lothrop, N; Klimecki, W; Wilkinson, S T; Loh, M

    2014-05-01

    Mine tailings are a source of metal exposures in many rural communities. Multiple air samples are necessary to assess the extent of exposures and factors contributing to these exposures. However, air sampling equipment is costly and requires trained personnel to obtain measurements, limiting the number of samples that can be collected. Simple, low-cost methods are needed to allow for increased sample collection. The objective of our study was to assess if dust fall filters can serve as passive air samplers and be used to characterize potential exposures in a community near contaminated mine tailings. We placed filters in cylinders, concurrently with active indoor air samplers, in 10 occupied homes. We calculated an estimated flow rate by dividing the mass on each dust fall filter by the bulk air concentration and the sampling duration. The mean estimated flow rate for dust fall filters was significantly different during sampling periods with precipitation. The estimated flow rate was used to estimate metal concentration in the air of these homes, as well as in 31 additional homes in another rural community impacted by contaminated mine tailings. The estimated air concentrations had a significant linear association with the measured air concentrations for beryllium, manganese and arsenic (p passive air sampler is a simple low-cost method to assess potential exposures near contaminated mining sites.

  3. False indications of {sup 95}Zr-{sup 95}Nb internal contamination due to contaminated sacred thread

    Energy Technology Data Exchange (ETDEWEB)

    Garg, S P; Singh, I S; Sharma, R C [Internal Dosimetry Division, Bhabha Atomic Research Centre, BARC Hospital, Mumbai (India)

    2000-05-01

    Whole body monitoring of a worker showed an apparent internal contamination with a considerable amount of {sup 95}Zr-{sup 95}Nb. Inhalation exposure was suspected to have taken place about a week earlier when he had last worked in the radioactive area. Unexpected fast clearance indicated by the third periodical weekly follow up monitoring was considered to be an abnormal behaviour. Investigations revealed an external contamination on a sacred thread, which the worker was putting on across his thorax and not removing it at the time of bath due to religious considerations. These studies have underscored that short term follow up measurements data should be critically scrutinized and a caution should be exercised in the interpretation such data particularly in case of such relatively short lived radionuclides. (author)

  4. Traffic flow and microbial air contamination in operating rooms at a major teaching hospital in Ghana.

    Science.gov (United States)

    Stauning, M T; Bediako-Bowan, A; Andersen, L P; Opintan, J A; Labi, A-K; Kurtzhals, J A L; Bjerrum, S

    2018-07-01

    Current literature examining the relationship between door-opening rate, number of people present, and microbial air contamination in the operating room is limited. Studies are especially needed from low- and middle-income countries, where the risk of surgical site infections is high. To assess microbial air contamination in operating rooms at a Ghanaian teaching hospital and the association with door-openings and number of people present. Moreover, we aimed to document reasons for door-opening. We conducted active air-sampling using an MAS 100 ® portable impactor during 124 clean or clean-contaminated elective surgical procedures. The number of people present, door-opening rate and the reasons for each door-opening were recorded by direct observation using pretested structured observation forms. During surgery, the mean number of colony-forming units (cfu) was 328 cfu/m 3 air, and 429 (84%) of 510 samples exceeded a recommended level of 180 cfu/m 3 . Of 6717 door-openings recorded, 77% were considered unnecessary. Levels of cfu/m 3 were strongly correlated with the number of people present (P = 0.001) and with the number of door-openings/h (P = 0.02). In empty operating rooms, the mean cfu count was 39 cfu/m 3 after 1 h of uninterrupted ventilation and 52 (51%) of 102 samples exceeded a recommended level of 35 cfu/m 3 . The study revealed high values of intraoperative airborne cfu exceeding recommended levels. Minimizing the number of door-openings and people present during surgery could be an effective strategy to reduce microbial air contamination in low- and middle-income settings. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  5. Measurement of Indoor Air Quality by Means of a Breathing Thermal Manikin

    DEFF Research Database (Denmark)

    Brohus, Henrik

    When a person is located in a contaminant field with significant gradients the contaminant distribution is modified locally due to the entrainment and transport of room air in the human convective boundary layer as well as due to the effect of the person acting as an obstacle to the flow field, etc....... The local modification of the concentration distribution may affect the personal exposure significantly and, thus, the indoor air quality actually experienced. In this paper measurements of indoor air quality by means of a Breathing Thermal Manikin (BTM) are presented....

  6. Traffic flow and microbial air contamination in operating rooms at a major teaching hospital in Ghana

    DEFF Research Database (Denmark)

    Stauning, M. T.; Bediako-Bowan, A.; Andersen, L. P.

    2018-01-01

    . Aim: To assess microbial air contamination in operating rooms at a Ghanaian teaching hospital and the association with door-openings and number of people present. Moreover, we aimed to document reasons for door-opening. Methods: We conducted active air-sampling using an MAS 100® portable impactor...

  7. Bioaccumulation Potential Of Air Contaminants: Combining Biological Allometry, Chemical Equilibrium And Mass-Balances To Predict Accumulation Of Air Pollutants In Various Mammals

    Energy Technology Data Exchange (ETDEWEB)

    Veltman, Karin; McKone, Thomas E.; Huijbregts, Mark A.J.; Hendriks, A. Jan

    2009-03-01

    In the present study we develop and test a uniform model intended for single compartment analysis in the context of human and environmental risk assessment of airborne contaminants. The new aspects of the model are the integration of biological allometry with fugacity-based mass-balance theory to describe exchange of contaminants with air. The developed model is applicable to various mammalian species and a range of chemicals, while requiring few and typically well-known input parameters, such as the adult mass and composition of the species, and the octanol-water and air-water partition coefficient of the chemical. Accumulation of organic chemicals is typically considered to be a function of the chemical affinity forlipid components in tissues. Here, we use a generic description of chemical affinity for neutral and polar lipids and proteins to estimate blood-air partition coefficients (Kba) and tissue-air partition coefficients (Kta) for various mammals. This provides a more accurate prediction of blood-air partition coefficients, as proteins make up a large fraction of total blood components. The results show that 75percent of the modeled inhalation and exhalation rate constants are within a factor of 2 from independent empirical values for humans, rats and mice, and 87percent of the predicted blood-air partition coefficients are within a factor of 5 from empirical data. At steady-state, the bioaccumulation potential of air pollutants is shown to be mainly a function of the tissue-air partition coefficient and the biotransformation capacity of the species and depends weakly on the ventilation rate and the cardiac output of mammals.

  8. Studies on soil contamination due to used motor oil and its remediation

    International Nuclear Information System (INIS)

    Singh, S.K.; John, S.; Srivastava, R.K.

    2009-01-01

    Used motor oil (UMO) contains lead, chromium, cadmium, naphthalene, chlorinated hydrocarbons and sulphur. Although UMO can be recycled if safely and properly collected, in many cases it is poured into open drains or thrown into the trash where it can contaminate the subsurface soil and ground water. A study was conducted to evaluate the changes in behaviour of soils due to interaction with UMO followed by its remediation. Different types of soils classified as clay with low plasticity, clay with high plasticity, and poorly graded sand were used for the study. Used motor oil was the contaminant and sodium dedecyl sulphate (SDS) was used as the surfactant for decontamination. In order to compare the geotechnical properties before and after contamination, laboratory studies were conducted on uncontaminated soil samples as well as on soil samples simulated to varying degrees of contamination. The contaminants in the soil matrix were held either by chemical adsorption or entrained within the pore space surrounding the soil grains. The study showed that the sensitivity of soil to the contaminants depends not only on the local environment, but also on the mineral structure, particle size, bonding and ion exchange capacity. It was observed that the original geotechnical properties of soils could be almost restored upon decontamination with SDS washing at an optimum dosage. 31 refs., 7 tabs., 3 figs

  9. Removal of Cyclohexane from a Contaminated Air Stream Using a Dense Phase Membrane Bioreactor

    National Research Council Canada - National Science Library

    Roberts, Michael G

    2005-01-01

    The purpose of this research was to determine the ability of a dense phase membrane bioreactor to remove cyclohexane, a volatile organic compound in JP-8 jet fuel, from a contaminated air stream using...

  10. Distribution of Exhaled Contaminants and Personal Exposure in a Room using Three Different Air Distribution Strategies

    DEFF Research Database (Denmark)

    Olmedo, Inés; Nielsen, Peter V.; Adana, M. Ruiz de

    2012-01-01

    The level of exposure to human exhaled contaminants in a room depends not only on the air distribution system but also on people’s different positions, the distance between them, people’s activity level and height, direction of exhalation, and the surrounding temperature and temperature gradient...... between the manikins are changed to study the influence on the level of exposure. The results show that the air exhaled by a manikin flows a longer distance with a higher concentration in case of displacement ventilation than in the other two cases, indicating a significant exposure to the contaminants....... Human exhalation is studied in detail for different distribution systems: displacement and mixing ventilation as well as a system without mechanical ventilation. Two thermal manikins breathing through the mouth are used to simulate the exposure to human exhaled contaminants. The position and distance...

  11. Status of radiation dose and radioactive contamination due to the Fukushima accident

    International Nuclear Information System (INIS)

    Baba, Mamoru

    2016-01-01

    The accident at Fukushima Daiichi Nuclear Power Plant (NPP), March 2011, caused serious radioactive contamination over wide area in east Japan. Therefore, it is important to know the effect of the accident and the status of NPP. This paper provides a review on the status of radiation dose and radioactive contamination caused by the accident on the basis of publicized information. Monitoring of radiation dose and exposure dose of residents has been conducted extensively by the governments and various organizations. The effective dose of general residents due to the accident proved to be less than a mSv both for external and internal dose. The equivalent committed dose of thyroid was evaluated to be a few mSv in mean value and less than 50 mSv even for children. Monitoring of radioactivity concentration has been carried out on food ingredients, milk and tap water, and actual meal. These studies indicated the percentage of foods above the regulation standard was over 10% in 2011 but decreasing steadily with time. The internal dose due to foods proved to be tens of μSv and much less than that due to natural 40 K even in the Fukushima area and decreasing steadily, although high level concentration is still observed in wild plants, wild mushrooms, animals and some kind of fishes. According to extensive studies, not only the effect of the accident but also the pathway and countermeasures against radioactive contamination have been revealed, and they are applied very effectively for restoration of environment and reconstruction of the area

  12. Status of radiation dose and radioactive contamination due to the Fukushima accident

    Energy Technology Data Exchange (ETDEWEB)

    Baba, Mamoru [Tohoku Univeristy, Sendai (Japan)

    2016-06-15

    The accident at Fukushima Daiichi Nuclear Power Plant (NPP), March 2011, caused serious radioactive contamination over wide area in east Japan. Therefore, it is important to know the effect of the accident and the status of NPP. This paper provides a review on the status of radiation dose and radioactive contamination caused by the accident on the basis of publicized information. Monitoring of radiation dose and exposure dose of residents has been conducted extensively by the governments and various organizations. The effective dose of general residents due to the accident proved to be less than a mSv both for external and internal dose. The equivalent committed dose of thyroid was evaluated to be a few mSv in mean value and less than 50 mSv even for children. Monitoring of radioactivity concentration has been carried out on food ingredients, milk and tap water, and actual meal. These studies indicated the percentage of foods above the regulation standard was over 10% in 2011 but decreasing steadily with time. The internal dose due to foods proved to be tens of μSv and much less than that due to natural {sup 40}K even in the Fukushima area and decreasing steadily, although high level concentration is still observed in wild plants, wild mushrooms, animals and some kind of fishes. According to extensive studies, not only the effect of the accident but also the pathway and countermeasures against radioactive contamination have been revealed, and they are applied very effectively for restoration of environment and reconstruction of the area.

  13. Storage of LWR spent fuel in air. Volume 3, Results from exposure of spent fuel to fluorine-contaminated air

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, M.E.; Thomas, L.E.

    1995-06-01

    The Behavior of Spent Fuel in Storage (BSFS) Project has conducted research to develop data on spent nuclear fuel (irradiated U0{sub 2}) that could be used to support design, licensing, and operation of dry storage installations. Test Series B conducted by the BSFS Project was designed as a long-term study of the oxidation of spent fuel exposed to air. It was discovered after the exposures were completed in September 1990 that the test specimens had been exposed to an atmosphere of bottled air contaminated with an unknown quantity of fluorine. This exposure resulted in the test specimens reacting with both the oxygen and the fluorine in the oven atmospheres. The apparent source of the fluorine was gamma radiation-induced chemical decomposition of the fluoro-elastomer gaskets used to seal the oven doors. This chemical decomposition apparently released hydrofluoric acid (HF) vapor into the oven atmospheres. Because the Test Series B specimens were exposed to a fluorine-contaminated oven atmosphere and reacted with the fluorine, it is recommended that the Test Series B data not be used to develop time-temperature limits for exposure of spent nuclear fuel to air. This report has been prepared to document Test Series B and present the collected data and observations.

  14. Storage of LWR spent fuel in air. Volume 3, Results from exposure of spent fuel to fluorine-contaminated air

    International Nuclear Information System (INIS)

    Cunningham, M.E.; Thomas, L.E.

    1995-06-01

    The Behavior of Spent Fuel in Storage (BSFS) Project has conducted research to develop data on spent nuclear fuel (irradiated U0 2 ) that could be used to support design, licensing, and operation of dry storage installations. Test Series B conducted by the BSFS Project was designed as a long-term study of the oxidation of spent fuel exposed to air. It was discovered after the exposures were completed in September 1990 that the test specimens had been exposed to an atmosphere of bottled air contaminated with an unknown quantity of fluorine. This exposure resulted in the test specimens reacting with both the oxygen and the fluorine in the oven atmospheres. The apparent source of the fluorine was gamma radiation-induced chemical decomposition of the fluoro-elastomer gaskets used to seal the oven doors. This chemical decomposition apparently released hydrofluoric acid (HF) vapor into the oven atmospheres. Because the Test Series B specimens were exposed to a fluorine-contaminated oven atmosphere and reacted with the fluorine, it is recommended that the Test Series B data not be used to develop time-temperature limits for exposure of spent nuclear fuel to air. This report has been prepared to document Test Series B and present the collected data and observations

  15. Assessment of the environmental microbiological cross contamination following hand drying with paper hand towels or an air blade dryer.

    Science.gov (United States)

    Margas, E; Maguire, E; Berland, C R; Welander, F; Holah, J T

    2013-08-01

    This study compared the potential for cross contamination of the surrounding environment resulting from two different hand-drying methods: paper towels and the use of an air blade dryer. One hundred volunteers for each method washed their hands and dried them using one of the two methods. Bacterial contamination of the surrounding environment was measured using settle plates placed on the floor in a grid pattern, air sampling and surface swabs. Both drying methods produced ballistic droplets in the immediate vicinity of the hand-drying process. The air blade dryer produced a larger number of droplets which were dispersed over a larger area. Settle plates showed increased microbial contamination in the grid squares which were affected by ballistic droplets. Using the settle plates counts, it was estimated that approx. 1.7 × 10(5) cfu more micro-organisms were left on the laboratory floor (total area approx. 17.15 m(2)) after 100 volunteers used an air blade dryer compared to when paper towels were used. The two drying methods led to different patterns of ballistic droplets and levels of microbial contamination under heavy use conditions. Whilst the increase in microbial levels in the environment is not significant if only nonpathogenic micro-organisms are spread, it may increase the risk of pathogen contamination of the environment when pathogens are occasionally present on people's hands. The study suggests that the risk of cross contamination from the washroom users to the environment and subsequent users should be considered when choosing a hand-drying method. The data could potentially give guidance following the selection of drying methods on implementing measures to minimise the risk of cross contamination. © 2013 The Society for Applied Microbiology.

  16. Radiation risks to human health during air pollution from wildfires in contaminated zones

    International Nuclear Information System (INIS)

    Dvornik, A.A.

    2016-01-01

    The results of the investigation of radiation hazard of forest fires in the radioactive contaminated areas are presented in the article. Airborne concentration of Cs 137 produced by the combustion of forest fuel materials with different contamination density can exceed the permissible activity levels of Cs 137 in air. The emission containing radionuclides deposited on the fine aerosol fractions is particularly dangerous. Inhalation of radionuclides can generate additional internal doses both for fire-fighters, near the source of ignition, and for citizens, at a distance from the source. (authors)

  17. Imbalance of Nature due to Contaminant Loads in the Culiacan River Watershed, Sinaloa, México

    Science.gov (United States)

    García Páez, F.; Ley-Aispuro, E.

    2013-05-01

    The Culiacan River discharges runoff from a large agricultural watershed into the wetlands at Ensenada de Pabellones ranked as a priority marine region of Mexico due to its high biodiversity and the economic importance of its fishing resources. This research estimated potential contaminant loads for BOD5, TSS, N and P from stormwater runoff and associated land use in the watershed. Previous studies had demonstrated the imbalance of nature due to land use change causing contamination by heavy metals, pesticides, sediment, phosphorus and eutrophication (Lopez and Osuna, 2002; Green and Paez, 2004, Gonzalez et al., 2006; Osuna et al., 2007). The methodology included: Characterizing the watershed according to land use, soil, vegetation, annual runoff and population density by sub-watershed; estimating the potential contaminant load and annual average concentrations of contaminants using the PLOAD program, comparing the result with monitored contaminant concentrations; and identifying the impact of pollutant loads in the watershed and coastal ecosystems and proposing management strategies to reduce or reverse the imbalance of nature caused by contamination in the Culiacan River watershed. Calculated contaminant loads in tonne/year were 13,682.4 of BOD5; 503,621.8 of TSS; 5,975.7 of N and 1,789.1 of P. The Tamazula and Humaya rivers watersheds provide 72% of the total load of BOD5, 68.5% of TSS, 77.6% of N and 62.7% of P discharged to the wetlands. Monitored results include: 89% of temperature observations were above 21°C, which is stressful to aquatic life due to a subsequent decrease in dissolved oxygen; 100% of the observations of P exceeded the ecological criteria for water quality; 71.5% of the observations for DO from 2001 to 2011, were above the ecological criteria for protection of aquatic life and 91.5% met the criteria for use in drinking water; 100% of the observations for BOD5 values remained in the range of Excellent to Good; 22% of the observations for the

  18. Reactive Distillation and Air Stripping Processes for Water Recycling and Trace Contaminant Control

    Science.gov (United States)

    Boul, Peter J.; Lange, Kevin E.; Conger, Bruce; Anderson, Molly

    2009-01-01

    Reactive distillation designs are considered to reduce the presence of volatile organic compounds in the purified water. Reactive distillation integrates a reactor with a distillation column. A review of the literature in this field has revealed a variety of functional reactive columns in industry. Wastewater may be purified by a combination of a reactor and a distiller (e.g., the EWRS or VPCAR concepts) or, in principle, through a design which integrates the reactor with the distiller. A review of the literature in reactive distillation has identified some different designs in such combinations of reactor and distiller. An evaluation of reactive distillation and reactive air stripping is presented with regards to the reduction of volatile organic compounds in the contaminated water and air. Among the methods presented, an architecture is presented for the evaluation of the simultaneous oxidation of organics in air and water. These and other designs are presented in light of potential improvements in power consumptions and air and water purities for architectures which include catalytic activity integrated into the water processor. In particular, catalytic oxidation of organics may be useful as a tool to remove contaminants that more traditional distillation and/or air stripping columns may not remove. A review of the current leading edge at the commercial level and at the research frontier in catalytically active materials is presented. Themes and directions from the engineering developments in catalyst design are presented conceptually in light of developments in the nanoscale chemistry of a variety of catalyst materials.

  19. Ground-water contamination at Wurtsmith Air Force Base, Michigan

    Science.gov (United States)

    Stark, J.R.; Cummings, T.R.; Twenter, F.R.

    1983-01-01

    A sand and gravel aquifer of glacial origin underlies Wurtsmith Air Force Base in northeastern lower Michigan. The aquifer overlies a thick clay layer at an average depth of 65 feet. The water table is about 10 feet below land surface in the western part of the Base and about 25 feet below land surface in the eastern part. A ground-water divide cuts diagonally across the Base from northwest to southeast. South of the divide, ground water flows to the Au Sable River; north of the divide, it flows to Van Etten Creek and Van Etten Lake. Mathematical models were used to aid in calculating rates of groundwater flow. Rates range from about 0.8 feet per day in the eastern part of the Base to about 0.3 feet per day in the western part. Models also were used as an aid in making decisions regarding purging of contaminated water from the aquifer. In 1977, trichloroethylene was detected in the Air Force Base water-supply system. It had leaked from a buried storage tank near Building 43 in the southeastern part of the Base and moved northeastward under the influence of the natural ground-water gradient and the pumping of Base water-supply wells. In the most highly contaminated part of the plume, concentrations are greater than 1,000 micrograms per liter. Current purge pumping is removing some of the trichloroethylene, and seems to have arrested its eastward movement. Pumping of additional purge wells could increase the rate of removal. Trichloroethylene has also been detected in ground water in the vicinity of the Base alert apron, where a plume from an unknown source extends northeastward off Base. A smaller, less well-defined area of contamination also occurs just north of the larger plume. Trichloroethylene, identified near the waste-treatment plant, seepage lagoons, and the northern landfill area, is related to activities and operations in these areas. Dichloroethylene and trichloroethylene occur in significant quantities westward of Building 43, upgradient from the major

  20. Air sparging as a supporting measure to redevelopment of a LCFC-contaminated industrial site; Air-Sparging als begleitende Sanierungsmassnahme an einem LCKW-kontaminierten Industriestandort

    Energy Technology Data Exchange (ETDEWEB)

    Breh, W.; Suttheimer, J. [Karlsruhe Univ. (T.H.) (Germany). Lehrstuhl fuer Angewandte Geologie; Holub, B. [G.U.T Linz (Austria)

    1998-12-31

    On a company ground in Vorchdorf, Austria, from the 23{sup rd} to 26{sup th} of July 1996 an air-sparging experiment has been carried out as a supporting measure to a running redevelopment of an LCKW-contamination case. On this occasion compressed air, from which the oil had been extracted, was blown into the contaminated aquifer through a well with a maximum excess pressure of 0,6 MPa. The blowing-in of compressed air caused a mobilisation of the harmful substances in the ground water and the soil air. As a result circa 2,7 kg LCKW could be removed from the underground through neighbouring ground water and soil air wells. For the observed period of time this meant a tripling of the rate of discharge. On the basis of the obtained data we suggested a routine interval of blowing in compressed air into the well 1516. A blowing-in of compressed air into the highly contaminated wells 1617 and 1625 can not be realised until the construction of upstream situated injection wells, because of the danger of an uncontrollable spread of the harmful substances. (orig.) [Deutsch] Auf einem Firmengelaende in Vorchdorf, Oesterreich, wurde vom 23.07. bis 26.07.1996 ein Air-Sparging-Versuch als unterstuetzende Massnahme zur laufenden hydraulisch-pneumatischen Sanierung eines LCKW-Schadensfalles durchgefuehrt. Hierbei wurde entoelte Druckluft ueber einen Brunnen mit einem maximalen Ueberdruck von 600 mbar in den kontaminierten Aquifer eingeblasen. Die Drucklufteinblasung fuehrte zu einer Mobilisierung von Schadstoffen im Grundwasser und in der Bodenluft, so dass ueber benachbarte Grundwasser- und Bodenluftfoerderbrunnen ca. 2,7 kg LCKW aus dem Untergrund entfernt werden konnten. Fuer den Beobachtungszeitraum bedeutet dies eine Verdreifachung des Schadstoffaustrags. Aufgrund der gewonnenen Daten wird ein routinemaessiger Intervallbetrieb der Drucklufteinblasung in einen der Brunnen vorgeschlagen. Fuer zwei kontaminierte Brunnen ist eine Drucklufteinblasung wegen der Gefahr einer

  1. Mobile laminar air flow screen for additional operating room ventilation: reduction of intraoperative bacterial contamination during total knee arthroplasty.

    Science.gov (United States)

    Sossai, D; Dagnino, G; Sanguineti, F; Franchin, F

    2011-12-01

    Surgical site infections are important complications in orthopedic surgery. A mobile laminar air flow (LAF) screen could represent a useful addition to an operating room (OR) with conventional turbulent air ventilation (12.5 air changes/h), as it could decrease the bacterial count near the operating field. The purpose of this study was to evaluate LAF efficacy at reducing bacterial contamination in the surgical area during 34 total knee arthroplasties (TKAs). The additional unit was used in 17 operations; the LAF was positioned beside the operating table between two of the surgeons, with the air flow directed towards the surgical area (wound). The whole team wore conventional OR clothing and the correct hygiene procedures and rituals were used. Bacterial air contamination (CFU/m(3)) was evaluated in the wound area in 17 operations with the LAF unit and 17 without the LAF unit. The LAF unit reduced the mean bacterial count in the wound area from 23.5 CFU/m(3) without the LAF to 3.5 CFU/m(3) with the LAF (P contamination of the wound area significantly decreased to below the accepted level for an ultraclean OR, preventing SSI infections.

  2. Air sampling methods to evaluate microbial contamination in operating theatres: results of a comparative study in an orthopaedics department.

    Science.gov (United States)

    Napoli, C; Tafuri, S; Montenegro, L; Cassano, M; Notarnicola, A; Lattarulo, S; Montagna, M T; Moretti, B

    2012-02-01

    To evaluate the level of microbial contamination of air in operating theatres using active [i.e. surface air system (SAS)] and passive [i.e. index of microbial air contamination (IMA) and nitrocellulose membranes positioned near the wound] sampling systems. Sampling was performed between January 2010 and January 2011 in the operating theatre of the orthopaedics department in a university hospital in Southern Italy. During surgery, the mean bacterial loads recorded were 2232.9 colony-forming units (cfu)/m(2)/h with the IMA method, 123.2 cfu/m(3) with the SAS method and 2768.2 cfu/m(2)/h with the nitrocellulose membranes. Correlation was found between the results of the three methods. Staphylococcus aureus was detected in 12 of 60 operations (20%) with the membranes, five (8.3%) operations with the SAS method, and three operations (5%) with the IMA method. Use of nitrocellulose membranes placed near a wound is a valid method for measuring the microbial contamination of air. This method was more sensitive than the IMA method and was not subject to any calibration bias, unlike active air monitoring systems. Copyright © 2011 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  3. Contamination monitoring activities in Kanupp

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, S S [Karachi Nuclear Power Plant (Pakistan)

    1997-06-01

    The Karachi Nuclear Power Plant (Kanupp) is a 137 MWe pressurized heavy water reactor, designed and erected by the Canadian General Electric Company as a turn key project. The plant is in operation since it was commissioned in the year 1972. It is located at the Arabian Sea Coast about 15 miles to the west of Karachi. During its more than two decades of operation, the plant has generated about 8 billion units of electricity with an average life time availability factor of 60%. In Kanupp, radioactive contamination may exit due to the release of fission product, activation products etc., which may somehow escape from its confinement and may contaminate surface or other media such as air, water etc. In this paper, following items are described: main aspects of contamination, status of contamination monitoring, need of contamination monitoring, radiation protection activity, instruments, contamination, current status of contamination survey materials and their disposal, and environmental monitoring. (G.K.)

  4. [Contamination levels to room air arising from the use of 99mTc-gas and prevention from the contamination].

    Science.gov (United States)

    Komatani, A; Akutsu, T; Yamaguchi, K; Onodera, Y; Manaka, Y; Takahashi, K

    1996-04-01

    99mTc-gas (TECHNEGAS) is a 99mTc-labeled micro-aerosol which is considered to have different behavior from 133Xe or 81mKr gas. In order to estimate contamination levels to room air arising from the use of 99mTc-gas, filtered expired air during administration and 1, 2, 3, 5, 10 min after the administration were collected in each polyethylene bag. Radioactivities of the polyethylene bags, used filter and the lung were measured with 3-head scintillation camera. The activity of the expired air diminished within 6-10 min and about 5% of whole discharged 99mTc-gas was released to room air. The activity of the used filter was two times of the lung. According to these results, it is recommended that the 99mTc-gas may be administrated in a exclusive room. The administrated patient and used filter must be remain in the exclusive room.

  5. Filtered air plastic chamber as an experimental facility to prove visible damage of crops due to air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Y; Yoda, H; Omichi, S; Shiratori, K

    1975-01-01

    An experimental filtered air chamber was constructed to prove the visible damage of crops due to air pollution. The chamber was provided with another room into which non-filtered ambient air was introduced. The purified air was prepared by filtering ambient air with activated carbon. The average content of air pollutants in the purified air chamber was less than 10 to 20% of the ozone and 20% of the sulfur oxides in the ambient air. However, cultivated vegetables such as tobacco and spinach, which are susceptible to oxidant, showed no visible damage in the filtered air chamber, and showed the same damage in the nonfiltered air chamber as was seen in fields at the same time.

  6. Microbial Contamination on Used Surgical Masks among Hospital Personnel and Microbial Air Quality in their Working Wards: A Hospital in Bangkok

    Directory of Open Access Journals (Sweden)

    Pipat Luksamijarulkul

    2014-09-01

    Full Text Available Objective: To assess the relationship of bacterial and fungal contamination on used surgical masks worn by the hospital personnel and microbial air quality in their working wards. Methods: This is a cross-sectional study of 230 used surgical masks collected from 214 hospital personnel, and 215 indoor air samples collected from their working wards to culture for bacterial and fungal counts. This study was carried out at the hospital in Bangkok. Group or genus of isolated bacteria and fungi were preliminarily identified by Gram’s stain and lacto-phenol cotton blue. Data were analyzed using paired t-test and Pearson’s correlation coefficient at the significant level of p<0.050. Results: Means and standard deviation of bacterial and fungal contamination on inside area of the used masks were 47 ± 56 and 15 ± 9 cfu/ml/piece, and on outside area were 166 ± 199 and 34 ± 18 cfu/ml/piece, respectively, p<0.001. The bacterial and fungal contamination on used masks from hospital personnel working in the male and female medical wards and out-patient department, as well as the bacterial and fungal counts of the indoor air sample collected from the same area were relatively higher than the other wards. The predominant isolated bacteria and fungi contaminated on inside and outside areas of the used masks and air samples were similar (Staphylococcus spp. and Aspergillus spp.; respectively. For its relationship, results found that bacterial and fungal counts in air samples showed significantly positive correlation with the bacterial contamination load on outside area of the used masks, r=0.16, p=0.018 and r=0.21, p=0.003, respectively. Conclusion: High bacterial contamination on outside area of the used masks was demonstrated, and it showed a significant correlation with microbial air quality of working wards.

  7. A prospective survey of air and surface fungal contamination in a medical mycology laboratory at a tertiary care university hospital.

    Science.gov (United States)

    Sautour, Marc; Dalle, Frédéric; Olivieri, Claire; L'ollivier, Coralie; Enderlin, Emilie; Salome, Elsa; Chovelon, Isabelle; Vagner, Odile; Sixt, Nathalie; Fricker-Pap, Véronique; Aho, Serge; Fontaneau, Olivier; Cachia, Claire; Bonnin, Alain

    2009-04-01

    Invasive filamentous fungi infections resulting from inhalation of mold conidia pose a major threat in immunocompromised patients. The diagnosis is based on direct smears, cultural symptoms, and culturing fungi. Airborne conidia present in the laboratory environment may cause contamination of cultures, resulting in false-positive diagnosis. Baseline values of fungal contamination in a clinical mycology laboratory have not been determined to date. A 1-year prospective survey of air and surface contamination was conducted in a clinical mycology laboratory during a period when large construction projects were being conducted in the hospital. Air was sampled with a portable air system impactor, and surfaces were sampled with contact Sabouraud agar plates. The collected data allowed the elaboration of Shewhart graphic charts. Mean fungal loads ranged from 2.27 to 4.36 colony forming units (cfu)/m(3) in air and from 0.61 to 1.69 cfu/plate on surfaces. Strict control procedures may limit the level of fungal contamination in a clinical mycology laboratory even in the context of large construction projects at the hospital site. Our data and the resulting Shewhart graphic charts provide baseline values to use when monitoring for inappropriate variations of the fungal contamination in a mycology laboratory as part of a quality assurance program. This is critical to the appropriate management of the fungal risk in hematology, cancer and transplantation patients.

  8. Studies on the radioactive contamination due to nuclear detonations II. Preliminary findings on the radioactive fallout due to nuclear detonations

    Energy Technology Data Exchange (ETDEWEB)

    Nishiwaki, Yasushi [Nuclear Reactor Laboratory, Tokyo Institute of Technology, Tokyo (Japan); Nuclear Reactor Laboratoroy, Kinki University, Fuse City, Osaka Precture (Japan)

    1961-11-25

    Since we have detected a considerable amount of artificial radioactivity in the rain in spring 1954, it has become one of the most important items, from the health physics point of view, to continue measurements of radioactivity in the rain and in the atmosphere. To watch out the radioactive contamination of our environment due to repeated nuclear weapons testings in other countries was also considered to be important from the nuclear engineering point of view, in the sense that the permissible allowances of the radioactivity for the peaceful uses of atomic energy might be lowered if the degree of radioactive contamination due to nuclear testings should continue to increase gradually and indefinitely. If the permissible level were lowered, the cost for radiation protection may be expected to increase at the peaceful uses of atomic energy and should the radioactive contamination increase seriously in the future, it was anticipated that we may have to face a very difficult situation in designing the atomic energy facilities for peaceful purposes in our country. From these points of views, we have been continuing measurements of the radioactivity in the rain in Osaka, Japan since the spring of 1954. Some of the preliminary findings are introduced in this paper.

  9. Studies on the radioactive contamination due to nuclear detonations II. Preliminary findings on the radioactive fallout due to nuclear detonations

    International Nuclear Information System (INIS)

    Nishiwaki, Yasushi

    1961-01-01

    Since we have detected a considerable amount of artificial radioactivity in the rain in spring 1954, it has become one of the most important items, from the health physics point of view, to continue measurements of radioactivity in the rain and in the atmosphere. To watch out the radioactive contamination of our environment due to repeated nuclear weapons testings in other countries was also considered to be important from the nuclear engineering point of view, in the sense that the permissible allowances of the radioactivity for the peaceful uses of atomic energy might be lowered if the degree of radioactive contamination due to nuclear testings should continue to increase gradually and indefinitely. If the permissible level were lowered, the cost for radiation protection may be expected to increase at the peaceful uses of atomic energy and should the radioactive contamination increase seriously in the future, it was anticipated that we may have to face a very difficult situation in designing the atomic energy facilities for peaceful purposes in our country. From these points of views, we have been continuing measurements of the radioactivity in the rain in Osaka, Japan since the spring of 1954. Some of the preliminary findings are introduced in this paper

  10. Status of environmental response efforts at radioactively contaminated sites in the united states air force installation restoration program

    International Nuclear Information System (INIS)

    Rowe, W.D. Jr.; McEntee, T.E. Jr.; Johnson, B.; Manning, L.

    1995-01-01

    The United States Air Force has identified approximately 170 radioactively contaminated sites at its domestic installations. These sites contain a variety of low level radioactive and mixed wastes and are classified as burial sites, landfills, buildings, and other disposal sites. Of these 170, approximately 70 are presently being evaluated under the Air Force Installation Restoration Program (IRP) in accordance with applicable laws and regulations. Removal and/or remedial actions have been taken at specific sites using site-specific residual radioactivity criteria. The remaining sites are either under investigation to determine the need for possible action or have been classified as response complete based on restricted or unrestricted future use. This paper describes past Air Force operations that generated radioactive waste materials; examines the current inventory of resulting radioactively contaminated sites in the Air Force IRP; reviews criteria used to evaluate sites for removal and/or remedial actions; provides summary information on actions taken at sites; and focuses on response actions and cleanup levels at two completed sites. The paper concludes with an assessment of outstanding issues relevant to the remediation of radioactively contaminated sites. (author)

  11. Analysis of surface contaminants on beryllium and aluminum windows

    International Nuclear Information System (INIS)

    Gmur, N.F.

    1987-06-01

    An effort has been made to document the types of contamination which form on beryllium window surfaces due to interaction with a synchrotron radiation beam. Beryllium windows contaminated in a variety of ways (exposure to water and air) exhibited surface powders, gels, crystals and liquid droplets. These contaminants were analyzed by electron diffraction, electron energy loss spectroscopy, energy dispersive x-ray spectroscopy and wet chemical methods. Materials found on window surfaces include beryllium oxide, amorphous carbon, cuprous oxide, metallic copper and nitric acid. Aluminum window surface contaminants were also examined

  12. Contact angles at the water-air interface of hydrocarbon-contaminated soils and clay minerals

    Science.gov (United States)

    Sofinskaya, O. A.; Kosterin, A. V.; Kosterina, E. A.

    2016-12-01

    Contact angles at the water-air interface have been measured for triturated preparations of clays and soils in order to assess changes in their hydrophobic properties under the effect of oil hydrocarbons. Tasks have been to determine the dynamics of contact angle under soil wetting conditions and to reveal the effect of chemical removal of organic matter from soils on the hydrophilicity of preparations. The potentialities of static and dynamic drop tests for assessing the hydrophilic-hydrophobic properties of soils have been estimated. Clays (kaolinite, gumbrine, and argillite) have been investigated, as well as plow horizons of soils from the Republic of Tatarstan: heavy loamy leached chernozem, medium loamy dark gray forest soil, and light loamy soddy-calcareous soil. The soils have been contaminated with raw oil and kerosene at rates of 0.1-3 wt %. In the uncontaminated and contaminated chernozem, capillary water capacity has been maintained for 250 days. The contact angles have been found to depend on the degree of dispersion of powdered preparation, the main type of clay minerals in the soil, the presence and amount of oxidation-resistant soil organic matter, and the soil-water contact time. Characteristic parameters of mathematical models for drop behavior on triturated preparations have been calculated. Contamination with hydrocarbons has resulted in a reliable increase in the contact angles of soil preparations. The hydrophobization of soil surface in chernozem is more active than in soils poorer in organic matter. The complete restoration of the hydrophilic properties of soils after hydrocarbon contamination is due to the oxidation of easily oxidizable organic matter at the low content of humus, or to wetting during several months in the absence of the mazut fraction.

  13. 33 CFR 203.61 - Emergency water supplies due to contaminated water source.

    Science.gov (United States)

    2010-07-01

    .... (5) Loss of water supply is not a basis for assistance under this authority. (6) Water will not be... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Emergency water supplies due to... PROCEDURES Emergency Water Supplies: Contaminated Water Sources and Drought Assistance § 203.61 Emergency...

  14. Brazing retort manifold design concept may minimize air contamination and enhance uniform gas flow

    Science.gov (United States)

    Ruppe, E. P.

    1966-01-01

    Brazing retort manifold minimizes air contamination, prevents gas entrapment during purging, and provides uniform gas flow into the retort bell. The manifold is easily cleaned and turbulence within the bell is minimized because all manifold construction lies outside the main enclosure.

  15. (Environmental investigation of ground water contamination at Wright- Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This Health and Safety Plan (HSP) was developed for the Environmental Investigation of Ground-water Contamination Investigation at Wright-Patterson Air Force Base near Dayton, Ohio, based on the projected scope of work for the Phase 1, Task 4 Field Investigation. The HSP describes hazards that may be encountered during the investigation, assesses the hazards, and indicates what type of personal protective equipment is to be used for each task performed. The HSP also addresses the medical monitoring program, decontamination procedures, air monitoring, training, site control, accident prevention, and emergency response.

  16. Effects of Humidity Swings on Adsorption Columns for Air Revitalization: Modeling and Experiments

    Science.gov (United States)

    LeVan, M. Douglas; Finn, John E.

    1997-01-01

    Air purification systems are necessary to provide clean air in the closed environments aboard spacecraft. Trace contaminants are removed using adsorption. One major factor concerning the removal of trace contaminants is relative humidity. Water can reduce adsorption capacity and, due to constant fluctuations, its presence is difficult to incorporate into adsorption column designs. The purpose of the research was to allow for better design techniques in trace contaminant adsorption systems, especially for feeds with water present. Experiments and mathematical modeling research on effects of humidity swings on adsorption columns for air revitalization were carried out.

  17. Performance degradation of space Stirling cryocoolers due to gas contamination

    Science.gov (United States)

    Liu, Xin-guang; Wu, Yi-nong; Yang, Shao-hua; Zhang, Xiao-ming; Lu, Guo-hua; Zhang, Li

    2011-08-01

    With extensive application of infrared detective techniques, Stirling cryocoolers, used as an active cooling source, have been developed vigorously in China. After the cooler's cooling performance can satisfy the mission's request, its reliability level is crucial for its application. Among all the possible failure mechanisms, gas contamination has been found to be the most notorious cause of cooler's performance degradation by failure analyses. To analyze the characteristic of gas contamination, some experiments were designed and carried out to quantitatively analyze the relationship between failure and performance. Combined with the test results and the outgassing characteristic of non-metal materials in the cryocooler, a degradation model of cooling performance was given by T(t)=T0+A[1-exp(-t/B)] under some assumptions, where t is the running time, T is the Kelvin cooling temperature, and T0, A, B are model parameters, which can be given by the least square method. Here T0 is the fitting initial cooling temperature, A is the maximum range of performance degradation, and B is the time dependent constant of degradation. But the model parameters vary when a cryocooler is running at different cooling temperature ranges, or it is treated by different cleaning process. In order to verify the applicability of the degradation model, data fit analysis on eight groups of cooler's lifetime test was carried out. The final work indicated this model fit well with the performance degradation of space Stirling cryocoolers due to gas contamination and this model could be used to predict or evaluation the cooler's lifetime. Gaseous contamination will not arouse severe performance degradation until the contaminants accumulate to a certain amount, but it could be fatal when it works. So it is more serious to the coolers whose lifetime is more than 10,000 h. The measures taken to control or minimize its damage were discussed as well. To the long-life cryocooler, internal materials

  18. OPERATIONAL LIMITATIONS FOR DEMOLITION OF A HIGHLY ALPHA CONTAMINATED BUILDING MODLES VERSUS MEASURED AIR & SURFACE ACTIVITY CONCENTRATIONS

    Energy Technology Data Exchange (ETDEWEB)

    LLOYD, E.R.

    2006-11-02

    The demolition of a facility historically used for processing and handling transuranic materials is considered. Residual alpha emitting radionuclide contamination poses an exposure hazard if released to the local environment during the demolition. The process of planning for the demolition of this highly alpha contaminated building, 232-Z, included a predemolition modeling analysis of potential exposures. Estimated emission rates were used as input to an air dispersion model to estimate frequencies of occurrence of peak air and surface exposures. Postdemolition modeling was also conducted, based on the actual demolition schedule and conditions. The modeling results indicated that downwind deposition is the main operational limitation for demolition of a highly alpha-contaminated building. During the demolition of 232-Z, airborne radiation and surface contamination were monitored. The resultant non-detect monitoring results indicate a significant level of conservatism in the modeled results. This comparison supports the use of more realistic assumption in the estimating emission rates. The resultant reduction in modeled levels of potential exposures has significant implications in terms of the projected costs of demolition of such structures.

  19. Predicting soil, water, and air concentrations of environmental contaminants locally and regionally: Multimedia transport and transformation models

    International Nuclear Information System (INIS)

    McKone, T.E.; Daniels, J.I.

    1991-10-01

    Environmental scientists recognize that the environment functions as a complex, interconnected system. A realistic risk-management strategy for many contaminants requires a comprehensive and integrated assessment of local and regional transport and transformation processes. In response to this need, we have developed multimedia models that simulate the movement and transformation of chemicals as they spread through air, water, biota, soils, sediments, surface water, and ground water. Each component of the environment is treated as a homogeneous subsystem that can exchange water, nutrients, and chemical contaminants with other adjacent compartments. In this paper, we illustrate the use of multimedia models and measurements as tools for screening the potential risks of contaminants released to air and deposited onto soil and plants. The contaminant list includes the volatile organic compounds (VOCs) tetrachloroethylene (PCE) and trichloroethylene (TCE), the semi-volatile organic compound benzo(a)pyrene, and the radionuclides tritium and uranium-238. We examine how chemical properties effect both the ultimate route and quantity of human and ecosystem contact and identify sensitivities and uncertainties in the model results

  20. Indoor air pollution: a public health perspective

    International Nuclear Information System (INIS)

    Spengler, J.D.; Sexton, K.

    1983-01-01

    Although official efforts to control air pollution have traditionally focused on outdoor air, it is now apparent that elevated contaminant concentrations are common inside some private and public buildings. Concerns about potential public health problems due to indoor air pollution are based on evidence that urban residents typically spend more than 90 percent of their time indoors, concentrations of some contaminants are higher indoors than outdoors, and for some pollutants personal exposures are not characterized adequately by outdoor measurements. Among the more important indoor contaminants associated with health or irritation effects are passive tobacco smoke, radon decay products, carbon monoxide, nitrogen dioxide, formaldehyde, asbestos fibers, microorganisms, and aeroallergens. Efforts to assess health risks associated with indoor air pollution are limited by insufficient information about the number of people exposed, the pattern and severity of exposures, and the health consequences of exposures. An overall strategy should be developed to investigate indoor exposures, health effects, control options, and public policy alternatives

  1. Modeling emissions and dispersion of contaminants from cleanup activities at a mixed waste site to estimate air impacts and risks

    International Nuclear Information System (INIS)

    Chang, Y.S.; Menlove, S.

    1993-09-01

    The transport and dispersion of contaminants via the air pathway is a major concern during cleanup of contaminated sites. Impacts to air quality and human health during cleanup were evaluated for the Weldon Spring site by using site-specific information for source areas, activities, and receptor locations. In order to ensure protection of human health and the environment, results are being used to focus on those cleanup activities for which release controls should be emphasized

  2. Elements of a unified prognostic model for secondary air contamination by resuspension

    International Nuclear Information System (INIS)

    Besnus, F.; Garger, E.; Gordeev, S.; Hollaender, W.; Kashparov, V.; Martinez-Serrano, J.; Mironov, V.; Nicholson, K.; Tschiersch, J.; Vintersved, I.

    1996-01-01

    Based on results of several joint experimental campaigns and an extensive literature survey, a prognostic model was constructed capable of predicting airborne activity concentrations and size distributions as well as soil surface activity concentrations as a function of time and meteorological conditions. Example scenario calculations show that agricultural practices are of lesser importance to secondary air contamination than dust storms immediately after primary deposition and forest fires

  3. Radioactive Mapping Contaminant of Alpha on The Air in Space of Repair of Hot Cell and Medium Radioactivity Laboratory in Radio metallurgy Installation

    International Nuclear Information System (INIS)

    Yusuf-Nampira; Endang-Sukesi; S-Wahyuningsih; R-Budi-Santoso

    2007-01-01

    Hot cell and space of acid laboratory medium activity in Radio metallurgy Installation are used for the examination preparation of fuel nuclear post irradiation. The sample examined is dangerous radioactive material representing which can disseminate passing air stream. The dangerous material spreading can be pursued by arranging air stream from laboratory space to examination space. To know the performance the air stream arrangement is hence conducted by radioactive mapping contaminant of alpha in laboratory / space of activity place, for example, medium activity laboratory and repair space. This mapping radioactivity contaminant is executed with the measurement level of the radioactivity from sample air taken at various height with the distance of 1 m, various distance and from potential source as contaminant spreading access. The mapping result indicate that a little spreading of radioactive material happened from acid cupboard locker to laboratory activity up to distance of 3 m from acid cupboard locker and spreading of radioactive contaminant from goods access door of the hot cell 104 to repair space reach the distance of 2 m from goods door access. Level of the radioactive contamination in the space was far under maximum limitation allowed (20 Bq / m 3 ). (author)

  4. [Biological contamination in office buildings related to ventilation/air conditioning system].

    Science.gov (United States)

    Bródka, Karolina; Sowiak, Małgorzata; Kozajda, Anna; Cyprowski, Marcin; Irena, Szadkowska-Stańczyk

    2012-01-01

    Indoor air is contaminated with microorganisms coming from both the atmospheric air and sources present in premises. The aim of this study was to analyze the concentrations of biological agents in office buildings, dependending on ventilation/air conditioning system and season. The study covered office buildings (different in the system of ventila-tion/air conditioning). Air samples for assessing the levels of inhalable dust, endotoxins and (1-->3)-beta-D-glucans, were taken at the selected stationary points of each building during summer and winter. The air was sampled for 6 h, using portable sets consisting of the GilAir 5 pump and the head filled with a filter of fiber glass. The samples for the presence of airborne bacteria and fungi were collected twice during the day using the impaction method. Average concentrations of inhalable dust, bacteria, fungi, endotoxins and (1-->3)-beta-D-glucans in office premises were 0.09 mg/m3, 6.00 x 10(2) cfu/m3, 4.59 x 10(1) cfu/m3, 0.42 ng/m3 and 3.91 ng/m3, respectively. Higher concentrations of the investigated agents were found in summer. In premises with air conditioning concentrations of airborne fungi, (1-->3)-beta-D-glucans and inhalable dust were significantly lower in winter. In summer the trend was reverse except for (1-->3)-beta-D-glucans. Concentrations of biological agents were affected by the season and the presence of air conditioning. Concentrations of inhalable dust, bacteria, fungi, endotoxins and (1-->3)-beta-D-glucans, observed inside the office buildings, were significantly higher in summer than in winter. The presence of the air conditioning system modified in various ways the levels of biological agents. Its influence was greater on the concentration of fungi and (1-->3)-beta-D-glucans than on that of bacteria and endotoxins.

  5. Internal contamination during enmasse coolant channel replacement (EMCCR) operation at MAPS-2, Kalpakkam

    International Nuclear Information System (INIS)

    Rajaram, S.; Sreedevi, K.R.; Rajendran, V.; Parthasarathi, S.; Kannan, V.; Gurg, R.P.

    2003-01-01

    The operation of Enmasse Coolant Channel Replacement (EMCCR) of MAPS Unit-2, started in the month of March 2002. Since the whole operation was carried out inside the reactor building in the environment of high radiation level in air, it was necessary to whole body count all the personnel involved in the operation. These personnel were whole body monitored for internal contamination due to gamma emitting radionuclides. To measure the internal contamination of the personnel a shadow shield whole body counter having NaI (Tl) detector is used. To study the concentration of airborne radionuclides present during the EMCCR job air filter samples were collected and analysed using HPGe gamma Spectrometer. It was seen that nearly 95% of the total activity present in the air was due to activation products and the remaining 5% is due to fission products. About 2000 personnel (of which 97% contract personnel) involved in the EMCCR job were whole body monitored. Around 57% showed no internal contamination. In the remaining 43% of personnel activation products such as 65 Zn, 95 Zr/ 95 Nb, and 60 Co were observed. It is interesting to note that the radionuclides observed in the internal contamination were also observed in air filter samples collected from the work spot. The observation that all the personnel involved in the EMCCR job received dose less than the Derived Recording Level (DRL) of 0.6 mSv can be attributed to a clean and neat job carried out by the management and personnel involved. (author)

  6. Contamination mechanisms of air basin with tritium in venues of underground nuclear explosions at the former Semipalatinsk test site.

    Science.gov (United States)

    Lyakhova, O N; Lukashenko, S N; Larionova, N V; Tur, Y S

    2012-11-01

    During the period of testing from 1945 to 1962 at the territory of Semipalatinsk test site (STS) within the Degelen Mountains in tunnels, 209 underground nuclear explosions were produced. Many of the tunnels have seasonal water seepage in the form of streams, through which tritium migrates from the underground nuclear explosion (UNE) venues towards the surface. The issue of tritium contamination occupies a special place in the radioactive contamination of the environment. In this paper we assess the level and distribution of tritium in the atmospheric air of ecosystems with water seepage at tunnels № 176 and № 177, located on "Degelen" site. There has been presented general nature of tritium distribution in the atmosphere relative to surface of a watercourse which has been contaminated with tritium. The basic mechanisms were studied for tritium distribution in the air of studied ecosystems, namely, the distribution of tritium in the systems: water-atmosphere, tunnel air-atmosphere, soil water-atmosphere, vegetation-atmosphere. An analytical calculation of tritium concentration in the atmosphere by the concentration of tritium in water has been performed. There has experimentally obtained the dependence for predictive assessment of tritium concentrations in air as a function of tritium concentration in one of the inlet sources such as water, tunnel air, soil water, vegetation, etc.. The paper also describes the general nature of tritium distribution in the air in the area "Degelen". Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Development of Radioactive Substance Contamination Diffusion Preventive Equipment for a Hot cell

    International Nuclear Information System (INIS)

    Choo, Yong Sun; Kim, Do Sik; Baik, Seung Je; Yoo, Byung Ok; Kim, Ki Ha; Lee, Eun Pyo; Ahn, Sang Bok; Ryu, Woo Seok

    2009-01-01

    The hot cell of irradiated materials examination facility (IMEF), which has been operating since 1996, is generally contaminated by the radioactive nuclides of irradiated nuclear fuels and structural steels like Cs-137, Co-60, Co-134 and Ru-106. Especially Cs-137 is a main contaminated radioactive isotope which is easily moved here and there due to air flow in the hot cell, water-soluble, extremely toxic, and has a half-life of 30.23 years. To repair or fix the abnormal function of test apparatus installed in the hot cell, the maintenance door, so called a rear door and located at an intervention area, is opened to enter the hot cell inside. In a moment of opening the maintenance door, dirty air diffusion from the hot cell to an intervention area could be occurred in spite of increasing the rpm of exhaust fan to maintain much low under pressure, but an adjacent area to a maintenance door, i.e. intervention area, is very severely contaminated due to the unpredictable air flow. In this paper, the development of the radioactive substance contamination diffusion preventive equipment for a hot cell is studied to prevent dirty and toxic gaseous radioactive nuclides diffusion from a hot cell and installed at an intervention area of IMEF

  8. Plasma flame for mass purification of contaminated air with chemical and biological warfare agents

    International Nuclear Information System (INIS)

    Uhm, Han S.; Shin, Dong H.; Hong, Yong C.

    2006-01-01

    An elimination of airborne simulated chemical and biological warfare agents was carried out by making use of a plasma flame made of atmospheric plasma and a fuel-burning flame, which can purify the interior air of a large volume in isolated spaces such as buildings, public transportation systems, and military vehicles. The plasma flame generator consists of a microwave plasma torch connected in series to a fuel injector and a reaction chamber. For example, a reaction chamber, with the dimensions of a 22 cm diameter and 30 cm length, purifies an airflow rate of 5000 lpm contaminated with toluene (the simulated chemical agent) and soot from a diesel engine (the simulated aerosol for biological agents). Large volumes of purification by the plasma flame will free mankind from the threat of airborne warfare agents. The plasma flame may also effectively purify air that is contaminated with volatile organic compounds, in addition to eliminating soot from diesel engines as an environmental application

  9. In situ treatment of arsenic-contaminated groundwater by air sparging.

    Science.gov (United States)

    Brunsting, Joseph H; McBean, Edward A

    2014-04-01

    Arsenic contamination of groundwater is a major problem in some areas of the world, particularly in West Bengal (India) and Bangladesh where it is caused by reducing conditions in the aquifer. In situ treatment, if it can be proven as operationally feasible, has the potential to capture some advantages over other treatment methods by being fairly simple, not using chemicals, and not necessitating disposal of arsenic-rich wastes. In this study, the potential for in situ treatment by injection of compressed air directly into the aquifer (i.e. air sparging) is assessed. An experimental apparatus was constructed to simulate conditions of arsenic-rich groundwater under anaerobic conditions, and in situ treatment by air sparging was employed. Arsenic (up to 200 μg/L) was removed to a maximum of 79% (at a local point in the apparatus) using a solution with dissolved iron and arsenic only. A static "jar" test revealed arsenic removal by co-precipitation with iron at a molar ratio of approximately 2 (iron/arsenic). This is encouraging since groundwater with relatively high amounts of dissolved iron (as compared to arsenic) therefore has a large theoretical treatment capacity for arsenic. Iron oxidation was significantly retarded at pH values below neutral. In terms of operation, analysis of experimental results shows that periodic air sparging may be feasible. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Methods for Sampling and Measurement of Compressed Air Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Stroem, L

    1976-10-15

    In order to improve the technique for measuring oil and water entrained in a compressed air stream, a laboratory study has been made of some methods for sampling and measurement. For this purpose water or oil as artificial contaminants were injected in thin streams into a test loop, carrying dry compressed air. Sampling was performed in a vertical run, down-stream of the injection point. Wall attached liquid, coarse droplet flow, and fine droplet flow were sampled separately. The results were compared with two-phase flow theory and direct observation of liquid behaviour. In a study of sample transport through narrow tubes, it was observed that, below a certain liquid loading, the sample did not move, the liquid remaining stationary on the tubing wall. The basic analysis of the collected samples was made by gravimetric methods. Adsorption tubes were used with success to measure water vapour. A humidity meter with a sensor of the aluminium oxide type was found to be unreliable. Oil could be measured selectively by a flame ionization detector, the sample being pretreated in an evaporation- condensation unit

  11. Methods for Sampling and Measurement of Compressed Air Contaminants

    International Nuclear Information System (INIS)

    Stroem, L.

    1976-10-01

    In order to improve the technique for measuring oil and water entrained in a compressed air stream, a laboratory study has been made of some methods for sampling and measurement. For this purpose water or oil as artificial contaminants were injected in thin streams into a test loop, carrying dry compressed air. Sampling was performed in a vertical run, down-stream of the injection point. Wall attached liquid, coarse droplet flow, and fine droplet flow were sampled separately. The results were compared with two-phase flow theory and direct observation of liquid behaviour. In a study of sample transport through narrow tubes, it was observed that, below a certain liquid loading, the sample did not move, the liquid remaining stationary on the tubing wall. The basic analysis of the collected samples was made by gravimetric methods. Adsorption tubes were used with success to measure water vapour. A humidity meter with a sensor of the aluminium oxide type was found to be unreliable. Oil could be measured selectively by a flame ionization detector, the sample being pretreated in an evaporation- condensation unit

  12. Use of a horizontal air-dispersion system to enhance biodegradation of diesel fuel contaminated soils

    International Nuclear Information System (INIS)

    Baker, J.N.; Nickerson, D.A.; Guest, P.R.; Portele, T.E.

    1993-01-01

    A horizontal air-dispersion system was designed and installed to enhance the natural biodegradation of residual diesel fuel contaminated soils at an underground storage tank (UST) facility in Seattle, Washington. This system was designed to operate in conjunction with an existing free-product recovery system which exposes more heavily contaminated soils at the capillary fringe to injected air. Results of a pilot study conducted at the facility indicate that an initial biodegradation rate of 2,200 mg of total petroleum hydrocarbons (TPH) per kg of soil per year will be achieved, making in-situ biodegradation a feasible remedial alternative for contaminated site soils. Oxygen, carbon dioxide, and hydrocarbon vapor concentrations have been monitored since full-scale startup in September 1992, using a series of vapor monitoring points (VMPs) installed in the vicinity of the aerated beds and around the perimeter of the facility. Recent monitoring data indicate that the system is capable of aerating soils at distances greater than 80 feet from the aerated beds. Oxygen utilization and carbon dioxide production measured during post-startup respiration tests indicate microbial activity has increased as a result of seven months of full-scale system operation

  13. Modeled occupational exposures to gas-phase medical laser-generated air contaminants.

    Science.gov (United States)

    Lippert, Julia F; Lacey, Steven E; Jones, Rachael M

    2014-01-01

    Exposure monitoring data indicate the potential for substantive exposure to laser-generated air contaminants (LGAC); however the diversity of medical lasers and their applications limit generalization from direct workplace monitoring. Emission rates of seven previously reported gas-phase constituents of medical laser-generated air contaminants (LGAC) were determined experimentally and used in a semi-empirical two-zone model to estimate a range of plausible occupational exposures to health care staff. Single-source emission rates were generated in an emission chamber as a one-compartment mass balance model at steady-state. Clinical facility parameters such as room size and ventilation rate were based on standard ventilation and environmental conditions required for a laser surgical facility in compliance with regulatory agencies. All input variables in the model including point source emission rates were varied over an appropriate distribution in a Monte Carlo simulation to generate a range of time-weighted average (TWA) concentrations in the near and far field zones of the room in a conservative approach inclusive of all contributing factors to inform future predictive models. The concentrations were assessed for risk and the highest values were shown to be at least three orders of magnitude lower than the relevant occupational exposure limits (OELs). Estimated values do not appear to present a significant exposure hazard within the conditions of our emission rate estimates.

  14. Comparison of arterial and venous blood gases and the effects of analysis delay and air contamination on arterial samples in patients with chronic obstructive pulmonary disease and healthy controls.

    Science.gov (United States)

    O'Connor, T M; Barry, P J; Jahangir, A; Finn, C; Buckley, B M; El-Gammal, A

    2011-01-01

    Arterial blood gases (ABGs) are often sampled incorrectly, leading to a 'mixed' or venous sample. Delays in analysis and air contamination are common. We measured the effects of these errors in patients with chronic obstructive pulmonary disease (COPD) exacerbations and controls. Arterial and venous samples were analyzed from 30 patients with COPD exacerbation and 30 controls. Venous samples were analysed immediately and arterial samples separated into non-air-contaminated and air-contaminated specimens and analysed at 0, 30, 60, 90 and 180 min. Mean venous pH was 7.371 and arterial pH was 7.407 (p Air contamination was associated with a clinically significant increase in PO₂ in all samples, including those that were immediately analyzed. Arterial and venous pH differ significantly. Venous pH cannot accurately replace arterial pH. Temporal delays in ABG analysis result in a significant decline in measured pH. ABGs should be analysed within 30 min. Air contamination leads to an immediate increase in measured PO₂, indicating that air-contaminated ABGs should be discarded. Copyright © 2010 S. Karger AG, Basel.

  15. Predicting soil, water and air concentrations of environmental contaminants locally and regionally; multimedia transport and transformation models

    International Nuclear Information System (INIS)

    McKone, T.E.; Daniels, J.I.

    1991-01-01

    Environmental scientists recognize that the environment functions as a complex, interconnected system. A realistic risk-management strategy for many contaminants requires a comprehensive and integrated assessment of local and regional transport and transformation processes. In response to this need, we have developed multimedia models that simulate the movement and transformation of chemicals as they spread through air, water, biota, soils, sediments, surface water and ground water. Each component of the environment is treated as a homogeneous subsystem that can exchange water, nutrients, and chemical contaminants with other adjacent compartments. In this paper, we illustrate the use of multimedia models and measurements as tools for screening the potential risks of contaminants released to air and deposited onto soil and plants. The contaminant list includes the volatile organic compounds (VOCs) tetrachloroethylene (PCE) and trichloroethylene (TCE), the semi-volatile organic compound benzo(a)pyrene, and the radionuclides tritium and uranium-238. We examine how chemical properties effect both the ultimate route and quantity of human and ecosystem contact and identify sensitivities and uncertainties in the model results. We consider the advantages of multimedia models relative to environmental monitoring data. (au)

  16. Remediation of Chlorinated Solvent Plumes Using In-Situ Air Sparging—A 2-D Laboratory Study

    Directory of Open Access Journals (Sweden)

    Jeffrey A. Adams

    2011-06-01

    Full Text Available In-situ air sparging has evolved as an innovative technique for soil and groundwater remediation impacted with volatile organic compounds (VOCs, including chlorinated solvents. These may exist as non-aqueous phase liquid (NAPL or dissolved in groundwater. This study assessed: (1 how air injection rate affects the mass removal of dissolved phase contamination, (2 the effect of induced groundwater flow on mass removal and air distribution during air injection, and (3 the effect of initial contaminant concentration on mass removal. Dissolved-phase chlorinated solvents can be effectively removed through the use of air sparging; however, rapid initial rates of contaminant removal are followed by a protracted period of lower removal rates, or a tailing effect. As the air flow rate increases, the rate of contaminant removal also increases, especially during the initial stages of air injection. Increased air injection rates will increase the density of air channel formation, resulting in a larger interfacial mass transfer area through which the dissolved contaminant can partition into the vapor phase. In cases of groundwater flow, increased rates of air injection lessened observed downward contaminant migration effect. The air channel network and increased air saturation reduced relative hydraulic conductivity, resulting in reduced groundwater flow and subsequent downgradient contaminant migration. Finally, when a higher initial TCE concentration was present, a slightly higher mass removal rate was observed due to higher volatilization-induced concentration gradients and subsequent diffusive flux. Once concentrations are reduced, a similar tailing effect occurs.

  17. Factors affecting hydrocarbon removal by air stripping

    International Nuclear Information System (INIS)

    McFarland, W.E.

    1992-01-01

    This paper includes an overview of the theory of air stripping design considerations and the factors affecting stripper performance. Effects of temperature, contaminant characteristics, stripping tower geometry and air/water ratios on removal performance are discussed. The discussion includes treatment of groundwater contaminated with petroleum hydrocarbons and chlorinated solvents such as TCE and PCE. Control of VOC emissions from air strippers has become a major concern in recent years, due to more stringent restrictions on air quality in many areas. This paper includes an overview of available technology to control air emissions (including activated carbon adsorption, catalytic oxidation and steam stripping) and the effects of air emission control on overall efficiency of the treatment process. The paper includes an overview of the relative performance of various packing materials for air strippers and explains the relative advantages and disadvantages of comparative packing materials. Field conditions affecting selection of packing materials are also discussed. Practical guidelines for the design of air stripping systems are presented, as well as actual case studies of full-scale air stripping projects

  18. [Indoor air studies of mould fungus contamination of homes of selected patients with bronchial asthma (with special regard to evaluation problems)].

    Science.gov (United States)

    Senkpiel, K; Kurowski, V; Ohgke, H

    1996-02-01

    Investigations of indoor air of the homes of seven patients with asthma bronchiale who showed up with positive reactions following intracutaneous application of fungal allergens revealed that their places of residence were contaminated by fungal and bacterial spores. The number of colony forming units of mesophilic fungal spores of the indoor air ranged from 100 to 1000 CFU/m3 and this was much higher than the mould flora of the outdoor air determined simultaneously. The major fungi species found by the indoor investigation were: Penicillium sp. > Aspergillus sp. > Cladosporium sp., Mucor sp., Chrysonilia sp., Verticillium sp. > Geotrichum sp., Trichoderma sp. In two cases Thermoactinomyces species could be detected in the indoor air. The main cause of fungal contamination were moist building materials on room walls, insufficient air ventilation, bad maintenance of the circulating air-machines and insufficient room hygiene (e.g. biological garbage in the kitchen).

  19. Secondary contamination of 30-km zone of the Chernobyl atomic electric plant and adjacent territory due to radionuclides carried by ascending wind

    International Nuclear Information System (INIS)

    Garger, E.K.; Gavrilov, V.P.

    1992-01-01

    The territory contaminated with radionuclides as a result of the accident at the Chernobyl atomic electric plant is a surface source of radioactive aerosols carried into the atmosphere by ascending winds. In this connection, a number of problems arise whose solution is important for assessment of the radiation conditions in the atmosphere near the Earth's surface: (1) calculation of the volume concentration of radionuclides and their fallout on the contaminated and neighboring territory and on this basis determine the potentially dangerous contaminated regions; (2) assessment of the secondary contamination of deactivated territories due to ascending winds and transfer of radionuclides; and (3) determination of the size of the protective (buffer) zones around or near populated areas to ensure low volume concentrations of radionuclides during strong winds. In order to calculate the transfer of radionuclides from a surface source, it is necessary to know its dust intensity, which is the vertical turbulent flux of the radionuclides in the atmosphere layer near the ground Q (Ci · m -2 sec -1 ). A quantity frequently used in practice is Q referred to the contamination density of the surface layer c (Ci/m 2 ) and called the wind ascent intensity α = Q/c. As a rule, the radionuclide wind ascent intensity for a plane source with a nonuniform surface and contamination density may depend on the physical characteristics of the surface as well as on those of the radionuclides and also on the space coordinates x, y and on time. In the present study, the wind ascent intensity was determined by gradient measurements of the mean radionuclide concentration, the wind velocity and air temperature; the conditions during the measurements were assumed to correspond to the case of a plane homogeneous, stationary source of a nondepositing admixture

  20. Polychlorinated biphenyls (PCBs) in indoor air originating from sealants in contaminated and uncontaminated apartments within the same housing estate

    DEFF Research Database (Denmark)

    Frederiksen, Marie; Meyer, Harald William; Ebbehøj, Niels Erik

    2012-01-01

    . The PCB(tot) levels in the air of the contaminated section were 168-3843 ng m(-3) (mean: 1030 ng m(-3)), while the mean levels in the reference apartments were 6.03 ng m(-3). The sum of the 24 measured PCB congeners in sealants from the contaminated section was 187-221680 mg kg(-1). Principal component......Twenty-four congeners of polychlorinated biphenyls (PCBs) were measured in 83 air samples and 20 elastic sealants samples of apartments with PCB-containing sealants. In addition, PCBs were measured in 21 air samples from reference apartments located in an uncontaminated section of the same estate...... analysis revealed four groups among the sealant samples with different congener compositions, only two of which were clearly similar to known PCB mixtures, while two were not. Significant correlations and intercorrelations were observed between the lower chlorinated congeners in air and sealant, e...

  1. Radioactive contamination and health risk assessment due to burning of coal in thermal energy generation

    International Nuclear Information System (INIS)

    Kant, K.

    2008-01-01

    Full text: Radon being a ubiquitous air pollutant has global impact and its monitoring in the environment at work places is essential from health and hygiene point of view. In thermal power plants, a lot of coal is burnt which contains radionuclides which are released into the environment and are hazardous. Radon is the main culprit in the local radioactive contamination of the environment due to burning of coal in thermal energy generation. It has been reported by several researchers (Nikl and Vegvari 1992, Bodizs et al. 1992) that the concentrations of the isotopes U 238 and Ra 226 become 3-5 times more than those in the coal itself in the coal slag and fly ash obtained by burning the coal in coal fired power plants. Several researchers have reported radon levels in thermal power plants (Bodizs et al. 1992, Rawat et al. 1991, Nikl and Vevgari 1992, Papastefanou and Charalanbous 1979, Kant et al. 2001). Keeping in view the environmental pollution caused due to the burning of coal in thermal power stations, there is an upsurge in the establishment of nuclear and gas turbine power stations in recent times. An increased share of gas and nuclear in power generation could lead to lower emissions. Also, considerable emphasis is being laid on developing non-polluting and renewable energy sources like water, air, solar energy and others. In this study, measurement of radon and its progeny levels was carried out over long integrated times in thermal power plant in Haryana by using LR-115, Type- II (Kodak Pathe, France), plastic track detectors commonly known as solid state nuclear track detectors (SS NTDs). Alpha particles emitted from radon cause radiation damage tracks, which were subsequently revealed by chemical etching in NaOH. These alpha tracks registered were counted by optical microscope at suitable magnification and converted into radon concentration. The findings indicate that it is very important to carry out these studies and the results of the full study will

  2. CAirTOX, An inter-media transfer model for assessing indirect exposures to hazardous air contaminants

    International Nuclear Information System (INIS)

    McKone, T.E.

    1994-01-01

    Risk assessment is a quantitative evaluation of information on potential health hazards of environmental contaminants and the extent of human exposure to these contaminants. As applied to toxic chemical emissions to air, risk assessment involves four interrelated steps. These are (1) determination of source concentrations or emission characteristics, (2) exposure assessment, (3) toxicity assessment, and (4) risk characterization. These steps can be carried out with assistance from analytical models in order to estimate the potential risk associated with existing and future releases. CAirTOX has been developed as a spreadsheet model to assist in making these types of calculations. CAirTOX follows an approach that has been incorporated into the CalTOX model, which was developed for the California Department of Toxic Substances Control, With CAirTOX, we can address how contaminants released to an air basin can lead to contamination of soil, food, surface water, and sediments. The modeling effort includes a multimedia transport and transformation model, exposure scenario models, and efforts to quantify uncertainty in multimedia, multiple-pathway exposure assessments. The capacity to explicitly address uncertainty has been incorporated into the model in two ways. First, the spreadsheet form of the model makes it compatible with Monte-Carlo add-on programs that are available for uncertainty analysis. Second, all model inputs are specified in terms of an arithmetic mean and coefficient of variation so that uncertainty analyses can be carried out

  3. Contamination vs. Exposure

    Science.gov (United States)

    ... into the environment can cause air, water, surfaces, soil, plants, buildings, people, or animals to become contaminated. ... water to remove contamination. This process is called decontamination. Try to avoid spreading contamination to parts of ...

  4. Microlith-Based Catalytic Reactor for Air Quality and Trace Contaminant Control Applications

    Science.gov (United States)

    Vilekar, Saurabh; Hawley, Kyle; Junaedi, Christian; Crowder, Bruce; Prada, Julian; Mastanduno, Richard; Perry, Jay L.; Kayatin, Matthew J.

    2015-01-01

    Traditionally, gaseous compounds such as methane, carbon monoxide, and trace contaminants have posed challenges for maintaining clean air in enclosed spaces such as crewed spacecraft cabins as they are hazardous to humans and are often difficult to remove by conventional adsorption technology. Catalytic oxidizers have provided a reliable and robust means of disposing of even trace levels of these compounds by converting them into carbon dioxide and water. Precision Combustion, Inc. (PCI) and NASA - Marshall (MSFC) have been developing, characterizing, and optimizing high temperature catalytic oxidizers (HTCO) based on PCI's patented Microlith® technology to meet the requirements of future extended human spaceflight explorations. Current efforts have focused on integrating the HTCO unit with a compact, simple recuperative heat exchanger to reduce the overall system size and weight while also reducing its energy requirements. Previous efforts relied on external heat exchangers to recover the waste heat and recycle it to the oxidizer to minimize the system's power requirements; however, these units contribute weight and volume burdens to the overall system. They also result in excess heat loss due to the separation of the HTCO and the heat recuperator, resulting in lower overall efficiency. Improvements in the recuperative efficiency and close coupling of HTCO and heat recuperator lead to reductions in system energy requirements and startup time. Results from testing HTCO units integrated with heat recuperators at a variety of scales for cabin air quality control and heat melt compactor applications are reported and their benefits over previous iterations of the HTCO and heat recuperator assembly are quantified in this paper.

  5. Contamination in fractured-rock aquifers: Research at the former Naval Air Warfare Center, West Trenton, New Jersey

    Science.gov (United States)

    Goode, Daniel J.; Tiedeman, Claire; Lacombe, Pierre J.; Imbrigiotta, Thomas E.; Shapiro, Allen M.; Chapelle, Francis H.

    2007-01-01

    The U.S. Geological Survey and cooperators are studying chlorinated solvents in a fractured sedimentary rock aquifer underlying the former Naval Air Warfare Center (NAWC), West Trenton, New Jersey. Fractured-rock aquifers are common in many parts of the United States and are highly susceptible to contamination, particularly at industrial sites. Compared to 'unconsolidated' aquifers, there can be much more uncertainty about the direction and rate of contaminant migration and about the processes and factors that control chemical and microbial transformations of contaminants. Research at the NAWC is improving understanding of the transport and fate of chlorinated solvents in fractured-rock aquifers and will compare the effectiveness of different strategies for contaminant remediation.

  6. Microbial Contamination on Used Surgical Masks among Hospital Personnel and Microbial Air Quality in their Working Wards: A Hospital in Bangkok.

    Science.gov (United States)

    Luksamijarulkul, Pipat; Aiempradit, Natkitta; Vatanasomboon, Pisit

    2014-09-01

    To assess the relationship of bacterial and fungal contamination on used surgical masks worn by the hospital personnel and microbial air quality in their working wards. This is a cross-sectional study of 230 used surgical masks collected from 214 hospital personnel, and 215 indoor air samples collected from their working wards to culture for bacterial and fungal counts. This study was carried out at the hospital in Bangkok. Group or genus of isolated bacteria and fungi were preliminarily identified by Gram's stain and lacto-phenol cotton blue. Data were analyzed using paired t-test and Pearson's correlation coefficient at the significant level of pcontamination on inside area of the used masks were 47 ± 56 and 15 ± 9 cfu/ml/piece, and on outside area were 166 ± 199 and 34 ± 18 cfu/ml/piece, respectively, pcontamination on used masks from hospital personnel working in the male and female medical wards and out-patient department, as well as the bacterial and fungal counts of the indoor air sample collected from the same area were relatively higher than the other wards. The predominant isolated bacteria and fungi contaminated on inside and outside areas of the used masks and air samples were similar (Staphylococcus spp. and Aspergillus spp.; respectively). For its relationship, results found that bacterial and fungal counts in air samples showed significantly positive correlation with the bacterial contamination load on outside area of the used masks, r=0.16, p=0.018 and r=0.21, p=0.003, respectively. High bacterial contamination on outside area of the used masks was demonstrated, and it showed a significant correlation with microbial air quality of working wards.

  7. Distribution pathways of hexachlorocyclohexane isomers in a soil-plant-air system. A case study with Cynara scolymus L. and Erica sp. plants grown in a contaminated site

    International Nuclear Information System (INIS)

    Calvelo Pereira, R.; Monterroso, C.; Macias, F.; Camps-Arbestain, M.

    2008-01-01

    This study focuses on the main routes of distribution and accumulation of different hexachlorocyclohexane (HCH) isomers (mainly α-, β-, γ- and δ-HCH) in a soil-plant-air system. A field assay was carried out with two plant species, Cynara scolymus L. and Erica sp., which were planted either: (i) directly in the HCH-contaminated soil; or (ii) in pots filled with uncontaminated soil, which were placed in the HCH-contaminated soil. Both plant species accumulated HCH in their tissues, with relatively higher accumulation in above-ground biomass than in roots. The β-HCH isomer was the main isomer in all plant tissues. Adsorption of HCH by the roots from contaminated soil (soil → root pathway) and adsorption through the aerial biomass from either the surrounding air, following volatilization of the contaminant (soil → air → shoot pathway), and/or contact with air-suspended particles contaminated with HCH (soil particles → shoot pathway) were the main mechanisms of accumulation. These results may have important implications for the use of plants for reducing the transfer of contaminants via the atmosphere. - Hexachlorocyclohexane isomers are preferentially accumulated in above-ground tissues of plants grown in a heavily contaminated site

  8. Distribution pathways of hexachlorocyclohexane isomers in a soil-plant-air system. A case study with Cynara scolymus L. and Erica sp. plants grown in a contaminated site.

    Science.gov (United States)

    Pereira, R Calvelo; Monterroso, C; Macías, F; Camps-Arbestain, M

    2008-09-01

    This study focuses on the main routes of distribution and accumulation of different hexachlorocyclohexane (HCH) isomers (mainly alpha-, beta-, gamma- and delta-HCH) in a soil-plant-air system. A field assay was carried out with two plant species, Cynara scolymus L. and Erica sp., which were planted either: (i) directly in the HCH-contaminated soil; or (ii) in pots filled with uncontaminated soil, which were placed in the HCH-contaminated soil. Both plant species accumulated HCH in their tissues, with relatively higher accumulation in above-ground biomass than in roots. The beta-HCH isomer was the main isomer in all plant tissues. Adsorption of HCH by the roots from contaminated soil (soil-->root pathway) and adsorption through the aerial biomass from either the surrounding air, following volatilization of the contaminant (soil-->air-->shoot pathway), and/or contact with air-suspended particles contaminated with HCH (soil particles-->shoot pathway) were the main mechanisms of accumulation. These results may have important implications for the use of plants for reducing the transfer of contaminants via the atmosphere.

  9. Modelling of contamination of surface atmosphere for deflation of Cesium-137 on contaminated territories

    International Nuclear Information System (INIS)

    Bogdanov, A.P.; Zhmura, G.M.

    1994-01-01

    Presence of Cesium 137 in near land air is caused at the contaminated territories by 'local' dusting and transport of the dust from the zone of strong contamination. For large distance is it caused by resuspension of radioactive dust from the surface in the given region. In accordance with the models of dusting round square sources based on Gauss statistical model of dissemination of admixtures in the atmosphere, the contaminated areas of european part of the former of USSR with the density of contamination over 1 Ci/km 2 with Cesium 137 were represented by 30 round square sources covering the main spots of contamination. The results of calculation of contamination of the atmosphere for several cities of Belarus, Russia and Ukraine, where there are the permanent points of observation for the content of radionuclides in the air, have shown that the proposed model of dusting sources describes the contamination of near land air with Cesium 137 reasonably well. 7 refs., 3 tabs

  10. DFT Study On Effects of CO2 Contamination in Non-Aqueous Li-Air Batteries

    DEFF Research Database (Denmark)

    Mekonnen, Yedilfana Setarge; Mýrdal, Jón Steinar Garðarsson; Vegge, Tejs

    2013-01-01

    Density Functional Theory (DFT) studies on the effects of carbon dioxide (CO2) contamination at the cathode of rechargeable non-aqueous Li-O2 batteries, where the insulating material Lithium peroxide (Li2O2) is the main discharge product. The Li2O2 growth mechanism and overpotentials are investig...... and result in an increased battery capacity. However, CO2 contamination on the Li2O2 surface confirms an asymmetric increase in the overpotentials; particularly the charging overvoltage exhibits sustantial increase, which would reduce the efficiency of the Li-air battery.......Density Functional Theory (DFT) studies on the effects of carbon dioxide (CO2) contamination at the cathode of rechargeable non-aqueous Li-O2 batteries, where the insulating material Lithium peroxide (Li2O2) is the main discharge product. The Li2O2 growth mechanism and overpotentials...

  11. 21Pb dating of sediments in a heavily contaminated drainage channel to the La Plata estuary in Buenos Aires, Argentina

    International Nuclear Information System (INIS)

    Di Gregorio, D.E.; Fernandez Niello, J.O.; Huck, H.; Somacal, H.; Curutchet, G.

    2007-01-01

    Concentrations of 21 Pb and 137 Cs in sediment samples collected from two cores at a drainage channel to the La Plata river estuary in Buenos Aires, Argentina, were measured using ultralow-background detection systems. The 21 Pb data were used to determine the rate of sediment accumulation of the sites. These results were correlated with some heavy metal (chromium and lead) concentrations of the samples in an attempt to characterize the historical input of contaminants due to the industrial development, which has taken place in this area over the last century. The 137 Cs measurements demonstrate that cesium dating is not adequate in regions of the southern hemisphere

  12. [The balance of harmful trace contaminants between the air humidity condensate and air in a simulator of the Mir orbit station moisture condensation unit].

    Science.gov (United States)

    Zlotopol'skiĭ, V M; Smolenskaia, T S

    2000-01-01

    Subject of the investigation was the balance of harmful trace contaminants (HTC) between the air moisture condensate and air in a simulator of the MIR moisture condensation unit. Experiments involved various classes of water-solvent compounds including alcohols (C1-C4), ketons (C1-C2), aldehydes (C1-C2), fatty acids (C2-C4), esters (acetates C4-C6), and ammonium. For most of the compounds, removal efficiency correlates with air humidity and virtually does not depend on the HTC concentration within the range of 0.25 to 59.1 mg/m3.

  13. A Monte Carlo investigation of contaminant electrons due to a novel in vivo transmission detector

    International Nuclear Information System (INIS)

    Asuni, G; Jensen, J M; McCurdy, B M C

    2011-01-01

    A novel transmission detector (IBA Dosimetry, Germany) developed as an IMRT quality assurance tool, intended for in vivo patient dose measurements, is studied here. The goal of this investigation is to use Monte Carlo techniques to characterize treatment beam parameters in the presence of the detector and to compare to those of a plastic block tray (a frequently used clinical device). Particular attention is paid to the impact of the detector on electron contamination model parameters of two commercial dose calculation algorithms. The linac head together with the COMPASS transmission detector (TRD) was modeled using BEAMnrc code. To understand the effect of the TRD on treatment beams, the contaminant electron fluence, energy spectra, and angular distributions at different SSDs were analyzed for open and non-open (i.e. TRD and block tray) fields. Contaminant electrons in the BEAMnrc simulations were separated according to where they were created. Calculation of surface dose and the evaluation of contributions from contaminant electrons were performed using the DOSXYZnrc user code. The effect of the TRD on contaminant electrons model parameters in Eclipse AAA and Pinnacle 3 dose calculation algorithms was investigated. Comparisons of the fluence of contaminant electrons produced in the non-open fields versus open field show that electrons created in the non-open fields increase at shorter SSD, but most of the electrons at shorter SSD are of low energy with large angular spread. These electrons are out-scattered or absorbed in air and contribute less to surface dose at larger SSD. Calculated surface doses with the block tray are higher than those with the TRD. Contribution of contaminant electrons to dose in the buildup region increases with increasing field size. The additional contribution of electrons to surface dose increases with field size for TRD and block tray. The introduction of the TRD results in a 12% and 15% increase in the Gaussian widths used in the

  14. Measurements of the spatial distribution of tritium in air above a chronically contaminated surface

    International Nuclear Information System (INIS)

    Workman, W.J.G.; Davis, P.A.; Wood, M.J.; Barry, P.J.

    1993-01-01

    Tritium in air (HTO) concentrations were measured over a 13 month period above a surface that is chronically contaminated by tritium-bearing groundwater from a waste management area. The measurements were made using passive diffusion samplers, which were sited at six locations (about 100 m apart) at 0.15, 0.9, and 1.8 m above ground level. The diffusion samplers were compact, sampled at a known rate, and required no external power source. They are ideal for remote locations and require a minimum of effort to collect and analyze the data. HTO-in-air concentration peaked in the summer at 500-1500 Bq.m -3 and decreased in the winter to 1-120 Bq.m -3 . In general, concentration decreased with height above ground level, implying that HTO is being lost from the surface to the atmosphere. The flux of tritium to the atmosphere must, therefore, be taken into account to estimate the tritium mass balance for a contaminated area. (Author) 3 figs., 5 tabs., 10 refs

  15. Contamination mechanisms of air basin with tritium in venues of underground nuclear explosions at the former Semipalatinsk test site

    International Nuclear Information System (INIS)

    Lyakhova, O.N.; Lukashenko, S.N.; Larionova, N.V.; Tur, Y.S.

    2012-01-01

    During the period of testing from 1945 to 1962 at the territory of Semipalatinsk test site (STS) within the Degelen Mountains in tunnels, 209 underground nuclear explosions were produced. Many of the tunnels have seasonal water seepage in the form of streams, through which tritium migrates from the underground nuclear explosion (UNE) venues towards the surface. The issue of tritium contamination occupies a special place in the radioactive contamination of the environment. In this paper we assess the level and distribution of tritium in the atmospheric air of ecosystems with water seepage at tunnels № 176 and № 177, located on “Degelen” site. There has been presented general nature of tritium distribution in the atmosphere relative to surface of a watercourse which has been contaminated with tritium. The basic mechanisms were studied for tritium distribution in the air of studied ecosystems, namely, the distribution of tritium in the systems: water–atmosphere, tunnel air–atmosphere, soil water–atmosphere, vegetation–atmosphere. An analytical calculation of tritium concentration in the atmosphere by the concentration of tritium in water has been performed. There has experimentally obtained the dependence for predictive assessment of tritium concentrations in air as a function of tritium concentration in one of the inlet sources such as water, tunnel air, soil water, vegetation, etc.. The paper also describes the general nature of tritium distribution in the air in the area “Degelen”. - Highlights: ► The basic mechanisms for tritium distribution in the air of nuclear testing sites were examined. ► We researched the distribution of tritium in the systems such as water–atmosphere, tunnel air–atmosphere, soil water–atmosphere and vegetation–atmosphere. ► An analytical calculation of tritium concentration in the atmosphere was performed. ► We experimentally obtained the dependence for predictive assessment of tritium concentrations in

  16. Three-dimensional modeling, estimation, and fault diagnosis of spacecraft air contaminants.

    Science.gov (United States)

    Narayan, A P; Ramirez, W F

    1998-01-01

    A description is given of the design and implementation of a method to track the presence of air contaminants aboard a spacecraft using an accurate physical model and of a procedure that would raise alarms when certain tolerance levels are exceeded. Because our objective is to monitor the contaminants in real time, we make use of a state estimation procedure that filters measurements from a sensor system and arrives at an optimal estimate of the state of the system. The model essentially consists of a convection-diffusion equation in three dimensions, solved implicitly using the principle of operator splitting, and uses a flowfield obtained by the solution of the Navier-Stokes equations for the cabin geometry, assuming steady-state conditions. A novel implicit Kalman filter has been used for fault detection, a procedure that is an efficient way to track the state of the system and that uses the sparse nature of the state transition matrices.

  17. Process and apparatus for decontaminating air

    International Nuclear Information System (INIS)

    Reynolds, W.D.

    1993-01-01

    An apparatus for irradiating a contaminated air stream emanating from contaminated sources which contain mixtures of one or more volatile toxic and hazardous organic solvents or petroleum product vapors with ultraviolet wave energy below 200 nm is described comprising: a first means for passing the contaminated air stream via a tube into an enclosed empty air flow duct to allow free flow of said contaminated air stream; a second means for introducing a secondary fresh air stream into an inlet of said first means to dilute and maintain the contaminated air stream at a predetermined concentration level; a means for measuring a flow rate of said contaminated air stream; said air duct containing at least a first and second residence chambers separated by a wall divider; said divider containing at least one opening in which is mounted at least one centrally located ultraviolet wave energy source extending into said air stream to allow said contaminated air stream to pass around and in close contact with said wave energy source, wherein said contaminated air stream is irradiated by said wave energy source; an analyzer means for conducting on-line real time analysis of said diluted contaminated air stream in said first residence chamber, said analyzer means being capable of analyzing any residual contaminated mixtures in an effluent air stream from said second residence chamber; whereby said ultraviolet wave energy source functions to generate oxygen atom free radicals, other free radicals, ions, and ozone to react with the contaminated air strewn to produce unwanted acid gases, and wherein said effluent air stream containing the unwanted acid gases, being passed from said second residence chamber, can be disposed of in any manner known to the art

  18. The global burden of disease due to outdoor air pollution.

    Science.gov (United States)

    Cohen, Aaron J; Ross Anderson, H; Ostro, Bart; Pandey, Kiran Dev; Krzyzanowski, Michal; Künzli, Nino; Gutschmidt, Kersten; Pope, Arden; Romieu, Isabelle; Samet, Jonathan M; Smith, Kirk

    As part of the World Health Organization (WHO) Global Burden of Disease Comparative Risk Assessment, the burden of disease attributable to urban ambient air pollution was estimated in terms of deaths and disability-adjusted life years (DALYs). Air pollution is associated with a broad spectrum of acute and chronic health effects, the nature of which may vary with the pollutant constituents. Particulate air pollution is consistently and independently related to the most serious effects, including lung cancer and other cardiopulmonary mortality. The analyses on which this report is based estimate that ambient air pollution, in terms of fine particulate air pollution (PM(2.5)), causes about 3% of mortality from cardiopulmonary disease, about 5% of mortality from cancer of the trachea, bronchus, and lung, and about 1% of mortality from acute respiratory infections in children under 5 yr, worldwide. This amounts to about 0.8 million (1.2%) premature deaths and 6.4 million (0.5%) years of life lost (YLL). This burden occurs predominantly in developing countries; 65% in Asia alone. These estimates consider only the impact of air pollution on mortality (i.e., years of life lost) and not morbidity (i.e., years lived with disability), due to limitations in the epidemiologic database. If air pollution multiplies both incidence and mortality to the same extent (i.e., the same relative risk), then the DALYs for cardiopulmonary disease increase by 20% worldwide.

  19. Isopleths of surface air concentration and surface air kerma rate due to a radioactive cloud released from a stack (3)

    International Nuclear Information System (INIS)

    Tachibana, Haruo; Kikuchi, Masamitsu; Sekita, Tsutomu; Yamaguchi, Takenori

    2004-06-01

    This report is a revised edition of 'Isopleths of Surface Air Concentration and Surface Air Absorbed Dose Rate due to a Radioactive Cloud Released from a Stack(II) '(JAERI-M 90-206) and based on the revised Nuclear Safety Guidelines reflected the ICRP1990 Recommendation. Characteristics of this report are the use of Air Karma Rate (Gy/h) instead of Air Absorbed Dose Rate (Gy/h), and the record of isopleths of surface air concentration and surface air karma rate on CD-ROM. These recorded data on CD-ROM can be printed out on paper and/or pasted on digital map by personal computer. (author)

  20. Integration of processes induced air flotation and photo-Fenton for treatment of residual waters contaminated with xylene

    International Nuclear Information System (INIS)

    Silva, Syllos S. da; Chiavone-Filho, Osvaldo; Barros Neto, Eduardo L. de; Nascimento, Claudio A.O.

    2012-01-01

    Highlights: ► We have studied the treatment of wastewater contaminated with hydrocarbons represented by the xylene, using these processes in an integrated mode: induced air flotation and photo-Fenton. ► We have selected xylene as representative contaminant due to properties of toxicity, solubility in water and vapor pressure. ► The manuscript presents a series of accurate experimental data that can be useful for material and energy optimization purposes in the xylene removal aiming the treatment of oil field produced water. - Abstract: Produced water in oil fields is one of the main sources of wastewater generated in the industry. It contains several organic compounds, such as benzene, toluene, ethyl benzene and xylene (BTEX), whose disposal is regulated by law. The aim of this study is to investigate a treatment of produced water integrating two processes, i.e., induced air flotation (IAF) and photo-Fenton. The experiments were conducted in a column flotation and annular lamp reactor for flotation and photodegradation steps, respectively. The first order kinetic constant of IAF for the wastewater studied was determined to be 0.1765 min −1 for the surfactant EO 7. Degradation efficiencies of organic loading were assessed using factorial planning. Statistical data analysis shows that H 2 O 2 concentration is a determining factor in process efficiency. Degradations above 90% were reached in all cases after 90 min of reaction, attaining 100% mineralization in the optimized concentrations of Fenton reagents. Process integration was adequate with 100% organic load removal in 20 min. The results of the integration of the IAF with the photo-Fenton allowed to meet the effluent limits established by Brazilian legislation for disposal.

  1. Performance of personalized ventilation combined with chilled ceiling in an office room: inhaled air quality and contaminant distribution

    DEFF Research Database (Denmark)

    Lipczynska, Aleksandra; Kaczmarczyk, Jan; Melikov, Arsen Krikor

    2014-01-01

    people (exhaled air, bioeffluents) and building materials (wall painting). Personalized ventilation combined with chilled ceiling ensured highest air quality at the workstation under all conditions. Pollutant concentration in the occupied zone away from the workstations did not differ substantially...... between the tested systems. Chilled ceiling combined with personalized ventilation working as the only air supplying system may be optimal solution in many buildings.......In a simulated two persons’ office room inhaled air quality and contaminant distribution provided with personalized ventilation combined with chilled ceiling, mixing ventilation only, chilled ceiling with mixing ventilation and chilled ceiling with mixing and personalized ventilation was studied...

  2. Actual measurement, hygrothermal response experiment and growth prediction analysis of microbial contamination of central air conditioning system in Dalian, China.

    Science.gov (United States)

    Lv, Yang; Hu, Guangyao; Wang, Chunyang; Yuan, Wenjie; Wei, Shanshan; Gao, Jiaoqi; Wang, Boyuan; Song, Fangchao

    2017-04-03

    The microbial contamination of central air conditioning system is one of the important factors that affect the indoor air quality. Actual measurement and analysis were carried out on microbial contamination in central air conditioning system at a venue in Dalian, China. Illumina miseq method was used and three fungal samples of two units were analysed by high throughput sequencing. Results showed that the predominant fungus in air conditioning unit A and B were Candida spp. and Cladosporium spp., and two fungus were further used in the hygrothermal response experiment. Based on the data of Cladosporium in hygrothermal response experiment, this paper used the logistic equation and the Gompertz equation to fit the growth predictive model of Cladosporium genera in different temperature and relative humidity conditions, and the square root model was fitted based on the two environmental factors. In addition, the models were carried on the analysis to verify the accuracy and feasibility of the established model equation.

  3. Sources of electron contamination for the Clinac-35 25-MV photon beam

    International Nuclear Information System (INIS)

    Petti, P.L.; Goodman, M.S.; Sisterson, J.M.; Biggs, P.J.; Gabriel, T.A.; Mohan, R.

    1983-01-01

    A detailed Monte Carlo approach has been employed to investigate the sources of electron contamination for the 25-MV photon beam generated by Varian's Clinac-35. Three sources of contamination were examined: (a) the flattening filter and beam monitor chamber, (b) the fixed primary collimators downstream from the monitor chamber and the adjustable photon jaws, and (c) the air volume separating the treatment head from the observation point. Five source-to-surface distances (SSDs) were considered for a single field size, 28 cm in diameter at 80 cm SSD. It was found that for small SSDs (80-100 cm), the dominant sources of electron contamination were the flattening filter and the beam monitor chamber which accounted for 70% of the unwanted electrons. Thirteen percent of the remaining electrons originated in the downstream primary collimators and the photon jaws, and 17% were produced in air. At larger SSDs, the fraction of unwanted electrons originating in air increased. At 400 cm SSD, 61% of the contaminating electrons present in the beam were produced in air, 34% originated in the flattening filter and beam monitor chamber, and 5% were due to interactions in the fixed collimators downstream from the monitor chamber and the adjustable photon jaws. These calculated results are substantiated by recent experiments

  4. Phytovolatilization of Organic Contaminants.

    Science.gov (United States)

    Limmer, Matt; Burken, Joel

    2016-07-05

    Plants can interact with a variety of organic compounds, and thereby affect the fate and transport of many environmental contaminants. Volatile organic compounds may be volatilized from stems or leaves (direct phytovolatilization) or from soil due to plant root activities (indirect phytovolatilization). Fluxes of contaminants volatilizing from plants are important across scales ranging from local contaminant spills to global fluxes of methane emanating from ecosystems biochemically reducing organic carbon. In this article past studies are reviewed to clearly differentiate between direct- and indirect-phytovolatilization and we discuss the plant physiology driving phytovolatilization in different ecosystems. Current measurement techniques are also described, including common difficulties in experimental design. We also discuss reports of phytovolatilization in the literature, finding that compounds with low octanol-air partitioning coefficients are more likely to be phytovolatilized (log KOA < 5). Reports of direct phytovolatilization at field sites compare favorably to model predictions. Finally, future research needs are presented that could better quantify phytovolatilization fluxes at field scale.

  5. Air sampling procedures to evaluate microbial contamination: a comparison between active and passive methods in operating theatres.

    Science.gov (United States)

    Napoli, Christian; Marcotrigiano, Vincenzo; Montagna, Maria Teresa

    2012-08-02

    Since air can play a central role as a reservoir for microorganisms, in controlled environments such as operating theatres regular microbial monitoring is useful to measure air quality and identify critical situations. The aim of this study is to assess microbial contamination levels in operating theatres using both an active and a passive sampling method and then to assess if there is a correlation between the results of the two different sampling methods. The study was performed in 32 turbulent air flow operating theatres of a University Hospital in Southern Italy. Active sampling was carried out using the Surface Air System and passive sampling with settle plates, in accordance with ISO 14698. The Total Viable Count (TVC) was evaluated at rest (in the morning before the beginning of surgical activity) and in operational (during surgery). The mean TVC at rest was 12.4 CFU/m3 and 722.5 CFU/m2/h for active and passive samplings respectively. The mean in operational TVC was 93.8 CFU/m3 (SD = 52.69; range = 22-256) and 10496.5 CFU/m2/h (SD = 7460.5; range = 1415.5-25479.7) for active and passive samplings respectively. Statistical analysis confirmed that the two methods correlate in a comparable way with the quality of air. It is possible to conclude that both methods can be used for general monitoring of air contamination, such as routine surveillance programs. However, the choice must be made between one or the other to obtain specific information.

  6. Radioactive contamination in environment and food in Poland in 1992

    International Nuclear Information System (INIS)

    Grabowski, D.; Muszynski, W.; Petrykowska, M.; Rubel, B.; Smagala, G.; Wilgos, J.

    1993-01-01

    The level analysis of the level of radioactive contamination in environment and food samples was carried out in Poland in 1992. The results were compared to the data from 1985-1991 period. Since the Chernobyl accident gradual decrease of contamination level has been stated. The gamma dose rate and the contamination of air, fallout, tap and surface water were at the level of 1985. Still higher contamination level of cesium isotopes in soil has been reported and as a consequence food contamination was higher particularly the animal food. Actually, the source of additional dose is ingestion of artificial isotopes with food as a result of food contamination. The average effective dose equivalent, due to the contaminated food consumption, was estimated at the level 15 μSv for a Pole in 1992. (author). 13 refs, 6 figs, 20 tabs

  7. Controlled-air incineration of transuranic-contaminated solid waste

    International Nuclear Information System (INIS)

    Borduin, L.C.; Draper, W.E.; Koenig, R.A.; Neuls, A.S.; Warner, C.L.

    1976-01-01

    A controlled-air incinerator and an associated high-energy aqueous off-gas cleaning system are being installed at the Los Alamos Scientific Laboratory (LASL) Transuranic Waste Treatment Development Facility (TDF) for evaluation as a low-level transuranic-contaminated (TRU) solid waste volume reduction process. Program objectives are: (1) assembly and operation of a production scale (45 kg/hr) operation of ''off-the-shelf'' components representative of current incineration and pollution control technology; (2) process development and modification to meet radioactive health and safety standards, and (3) evaluation of the process to define the advantages and limitations of conventional technology. The results of the program will be the design specifications and operating procedures necessary for successful incineration of TRU waste. Testing, with nonradioactive waste, will begin in October 1976. This discussion covers commercially available incinerator and off-gas cleaning components, the modifications required for radioactive service, process components performance expectations, and a description of the LASL experimental program

  8. Modeling for Airborne Contamination

    International Nuclear Information System (INIS)

    F.R. Faillace; Y. Yuan

    2000-01-01

    The objective of Modeling for Airborne Contamination (referred to from now on as ''this report'') is to provide a documented methodology, along with supporting information, for estimating the release, transport, and assessment of dose to workers from airborne radioactive contaminants within the Monitored Geologic Repository (MGR) subsurface during the pre-closure period. Specifically, this report provides engineers and scientists with methodologies for estimating how concentrations of contaminants might be distributed in the air and on the drift surfaces if released from waste packages inside the repository. This report also provides dose conversion factors for inhalation, air submersion, and ground exposure pathways used to derive doses to potentially exposed subsurface workers. The scope of this report is limited to radiological contaminants (particulate, volatile and gaseous) resulting from waste package leaks (if any) and surface contamination and their transport processes. Neutron activation of air, dust in the air and the rock walls of the drift during the preclosure time is not considered within the scope of this report. Any neutrons causing such activation are not themselves considered to be ''contaminants'' released from the waste package. This report: (1) Documents mathematical models and model parameters for evaluating airborne contaminant transport within the MGR subsurface; and (2) Provides tables of dose conversion factors for inhalation, air submersion, and ground exposure pathways for important radionuclides. The dose conversion factors for air submersion and ground exposure pathways are further limited to drift diameters of 7.62 m and 5.5 m, corresponding to the main and emplacement drifts, respectively. If the final repository design significantly deviates from these drift dimensions, the results in this report may require revision. The dose conversion factors are further derived by using concrete of sufficient thickness to simulate the drift

  9. Mortality and morbidity due to exposure to outdoor air pollution in Mashhad metropolis, Iran. The AirQ model approach.

    Science.gov (United States)

    Miri, Mohammad; Derakhshan, Zahra; Allahabadi, Ahmad; Ahmadi, Ehsan; Oliveri Conti, Gea; Ferrante, Margherita; Aval, Hamideh Ebrahimi

    2016-11-01

    In the past two decades, epidemiological studies have shown that air pollution is one of the causes of morbidity and mortality. In this study the effect of PM10, PM2.5, NO2, SO2 and O3 pollutants on human health among the inhabitants of Mashhad has been evaluated. To evaluate the health effects due to air pollution, the AirQ model software 3.3.2, developed by WHO European Centre for Environment and Health, was used. The daily data related to the pollutants listed above has been used for the short term health effects (total mortality, cardiovascular and respiratory mortality, hospitalization due to cardiovascular and respiratory diseases, chronic obstructive pulmonary disease and acute myocardial infarction). PM2.5 had the most health effects on Mashhad inhabitants. With increasing in each 10μg/m3, relative risk rate of pollutant concentration for total mortality due to PM10, PM2.5, SO 2 , NO 2 and O 3 was increased of 0.6%, 1.5%, 0.4%, 0.3% and 0.46% respectively and, the attributable proportion of total mortality attributed to these pollutants was respectively equal to 4.24%, 4.57%, 0.99%, 2.21%, 2.08%, and 1.61% (CI 95%) of the total mortality (correct for the non-accident) occurred in the year of study. The results of this study have a good compatibly with other studies conducted on the effects of air pollution on humans. The AirQ software model can be used in decision-makings as a useful and easy tool. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Possible negative consequences of the secondary air contamination on the quality of accumulated drinking water

    International Nuclear Information System (INIS)

    Rihova Ambrozova, J.; Hubackova, J.; Cihakova, I.

    2008-01-01

    At the present time when requirements on quality of drinking water are increased, it is necessary not only to put stress on technological processes used in its preparation, but also there is a need to secure that water is distributed even to the consumer in that quality as it leaves a water station. Through a systematic surveillance of water-supply companies within the framework of biological audits it has been found out that the important points in a distribution network where the quality of water is deteriorated are the water reservoirs. Deterioration in quality of accumulated water is jointly caused by elements of technological, constructional and biological nature. The secondary air contamination has a substantial influence on the creation of bio-films on walls and the presence of microorganisms in accumulated drinking water. To this end, a water twin-compartment reservoir has been systematically evaluated during operation, cleaning meantime and before cleaning. The results of hydro-biological and microbiological analysis have confirmed the input of particles and microorganisms through air, their presence in surface level of accumulated water as well as scrapings from accumulation walls. The surveillance considered also the situation without a fixed filter unit, without door lining etc. On fixing a tested filter system into ventilation duct the risk of air contamination was lowered to minimum. (authors)

  11. Integration of processes induced air flotation and photo-Fenton for treatment of residual waters contaminated with xylene

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Syllos S. da [Departamento Engenharia Quimica, NUPEG, Universidade Federal do Rio Grande do Norte, Campus Universitario, Lagoa Nova, Natal 59066-800, RN (Brazil); Chiavone-Filho, Osvaldo, E-mail: osvaldo@eq.ufrn.br [Departamento Engenharia Quimica, NUPEG, Universidade Federal do Rio Grande do Norte, Campus Universitario, Lagoa Nova, Natal 59066-800, RN (Brazil); Barros Neto, Eduardo L. de [Departamento Engenharia Quimica, NUPEG, Universidade Federal do Rio Grande do Norte, Campus Universitario, Lagoa Nova, Natal 59066-800, RN (Brazil); Nascimento, Claudio A.O. [Departamento de Engenharia Quimica, Escola Politecnica, Universidade de Sao Paulo, Cidade Universitaria, Sao Paulo 05508-900, SP (Brazil)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer We have studied the treatment of wastewater contaminated with hydrocarbons represented by the xylene, using these processes in an integrated mode: induced air flotation and photo-Fenton. Black-Right-Pointing-Pointer We have selected xylene as representative contaminant due to properties of toxicity, solubility in water and vapor pressure. Black-Right-Pointing-Pointer The manuscript presents a series of accurate experimental data that can be useful for material and energy optimization purposes in the xylene removal aiming the treatment of oil field produced water. - Abstract: Produced water in oil fields is one of the main sources of wastewater generated in the industry. It contains several organic compounds, such as benzene, toluene, ethyl benzene and xylene (BTEX), whose disposal is regulated by law. The aim of this study is to investigate a treatment of produced water integrating two processes, i.e., induced air flotation (IAF) and photo-Fenton. The experiments were conducted in a column flotation and annular lamp reactor for flotation and photodegradation steps, respectively. The first order kinetic constant of IAF for the wastewater studied was determined to be 0.1765 min{sup -1} for the surfactant EO 7. Degradation efficiencies of organic loading were assessed using factorial planning. Statistical data analysis shows that H{sub 2}O{sub 2} concentration is a determining factor in process efficiency. Degradations above 90% were reached in all cases after 90 min of reaction, attaining 100% mineralization in the optimized concentrations of Fenton reagents. Process integration was adequate with 100% organic load removal in 20 min. The results of the integration of the IAF with the photo-Fenton allowed to meet the effluent limits established by Brazilian legislation for disposal.

  12. Air sampling procedures to evaluate microbial contamination: a comparison between active and passive methods in operating theatres

    Directory of Open Access Journals (Sweden)

    Napoli Christian

    2012-08-01

    Full Text Available Abstract Background Since air can play a central role as a reservoir for microorganisms, in controlled environments such as operating theatres regular microbial monitoring is useful to measure air quality and identify critical situations. The aim of this study is to assess microbial contamination levels in operating theatres using both an active and a passive sampling method and then to assess if there is a correlation between the results of the two different sampling methods. Methods The study was performed in 32 turbulent air flow operating theatres of a University Hospital in Southern Italy. Active sampling was carried out using the Surface Air System and passive sampling with settle plates, in accordance with ISO 14698. The Total Viable Count (TVC was evaluated at rest (in the morning before the beginning of surgical activity and in operational (during surgery. Results The mean TVC at rest was 12.4 CFU/m3 and 722.5 CFU/m2/h for active and passive samplings respectively. The mean in operational TVC was 93.8 CFU/m3 (SD = 52.69; range = 22-256 and 10496.5 CFU/m2/h (SD = 7460.5; range = 1415.5-25479.7 for active and passive samplings respectively. Statistical analysis confirmed that the two methods correlate in a comparable way with the quality of air. Conclusion It is possible to conclude that both methods can be used for general monitoring of air contamination, such as routine surveillance programs. However, the choice must be made between one or the other to obtain specific information.

  13. Evaluation of air pollution due to natural radioactive elements; Evaluacion de contaminacion del aire debido a elementos radiactivos naturales

    Energy Technology Data Exchange (ETDEWEB)

    Perez, B. A.; Lopez, M. E., E-mail: bertin.perez@pucp.edu.pe [Pontificia Universidad Catolica del Peru, Seccion Fisica, Av. Universitaria 1801, San Miguel, Lima (Peru)

    2014-08-15

    The presence of radioactive materials in the crustal and as consequence present in the surface, originate the natural radioactive contamination in the different solid, liquid and gaseous materials; particularly in the air that we breathe. Among these radioactive materials that contribute to the environmental pollution are the presences of uranium, radio, thorium and their respective disintegration chains, as the gas radon (Rn-222) that spreads in the air; whose presence increases in areas where the seismic activity is notorious or other natural events take place, case of the Lima (Peru) City. In this work we show the measurements realized during two consecutive years in the roof of a building of three floors in the Lima City, with the purpose of establishing the fluctuations of this gassy pollutant in the surrounding air. The measurements were made using nitrocellulose detectors (Lr-115 type 2) applying the nuclear prints technique. The obtained results allowing to have an indicator of the Rn-222 presence in the air during different seasons of the year and also the presence of other possible radioactive pollutants. The use of this technique allows obtaining and studying the prints that generate the alpha particles that are emitted during the Rn-222 disintegration or by means of their descendants or predecessors; also allowing to discriminate between the short-range tracers or lineal type prints and other very different prints obtained during some of the measurements. The results analyzed according to proposed models are presented in this work. (author)

  14. Nitric Oxide and Oxygen Air-Contamination Effects on Extinction Limits of Non-Premixed Hydrocarbon-Air Flames for a HIFiRE Scramjet

    Science.gov (United States)

    Pellett, Gerald L.; Dawson, Lucy C.; Vaden, Sarah N.; Wilson, Lloyd G.

    2009-01-01

    Unique nitric oxide (NO) and oxygen air-contamination effects on the extinction Flame Strength (FS) of non-premixed hydrocarbon (HC) vs. air flames are characterized for 7 gaseous HCs, using a new idealized 9.3 mm straight-tube Opposed Jet Burner (OJB) at 1 atm. FS represents a laminar strain-induced extinction limit based on cross-section-average air jet velocity, Uair, that sustains combustion of a counter jet of gaseous fuel just before extinction. Besides ethane, propane, butane, and propylene, the HCs include ethylene, methane, and a 64 mole-% ethylene / 36 % methane mixture, the writer s previously recommended gaseous surrogate fuel for HIFiRE scramjet tests. The HC vs. clean air part of the work is an extension of a May 2008 JANNAF paper that characterized surrogates for the HIFiRE project that should mimic the flameholding of reformed (thermally- or catalytically-cracked) endothermic JP-like fuels. The new FS data for 7 HCs vs. clean air are thus consolidated with the previously validated data, normalized to absolute (local) axial-input strain rates, and co-plotted on a dual kinetically dominated reactivity scale. Excellent agreement with the prior data is obtained for all 7 fuels. Detailed comparisons are also made with recently published (Univ. Va) numerical results for ethylene extinction. A 2009-revised ethylene kinetic model (Univ. Southern Cal) led to predicted limits within approx. 5 % (compared to 45 %, earlier) of this writer s 2008 (and present) ethylene FSs, and also with recent independent data (Univ. Va) obtained on a new OJB system. These +/- 5 % agreements, and a hoped-for "near-identically-performing" reduced kinetics model, would greatly enhance the capability for accurate numerical simulations of surrogate HC flameholding in scramjets. The measured air-contamination effects on normalized FS extinction limits are projected to assess ongoing Arc-Heater-induced "facility test effects" of NO production (e.g., 3 mole-%) and resultant oxygen

  15. Contamination of indoor dust and air by polychlorinated biphenyls and brominated flame retardants and relevance of non-dietary exposure in Vietnamese informal e-waste recycling sites.

    Science.gov (United States)

    Tue, Nguyen Minh; Takahashi, Shin; Suzuki, Go; Isobe, Tomohiko; Viet, Pham Hung; Kobara, Yuso; Seike, Nobuyasu; Zhang, Gan; Sudaryanto, Agus; Tanabe, Shinsuke

    2013-01-01

    This study investigated the occurrence of polychlorinated biphenyls (PCBs), and several additive brominated flame retardants (BFRs) in indoor dust and air from two Vietnamese informal e-waste recycling sites (EWRSs) and an urban site in order to assess the relevance of these media for human exposure. The levels of polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD), 1,2-bis-(2,4,6-tribromophenoxy)ethane (BTBPE) and decabromodiphenyl ethane (DBDPE) in settled house dust from the EWRSs (130-12,000, 5.4-400, 5.2-620 and 31-1400 ng g(-1), respectively) were significantly higher than in urban house dust but the levels of PCBs (4.8-320 ng g(-1)) were not higher. The levels of PCBs and PBDEs in air at e-waste recycling houses (1000-1800 and 620-720 pg m(-3), respectively), determined using passive sampling, were also higher compared with non-e-waste houses. The composition of BFRs in EWRS samples suggests the influence from high-temperature processes and occurrence of waste materials containing older BFR formulations. Results of daily intake estimation for e-waste recycling workers are in good agreement with the accumulation patterns previously observed in human milk and indicate that dust ingestion contributes a large portion of the PBDE intake (60%-88%), and air inhalation to the low-chlorinated PCB intake (>80% for triCBs) due to their high levels in dust and air, respectively. Further investigation of both indoor dust and air as the exposure media for other e-waste recycling-related contaminants and assessment of health risk associated with exposure to these contaminant mixtures is necessary. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Compressed breathing air - the potential for evil from within.

    Science.gov (United States)

    Millar, Ian L; Mouldey, Peter G

    2008-06-01

    Human underwater activities rely on an adequate supply of breathable compressed gas, usually air, free from contaminants that could cause incapacitation underwater or post-dive or longer-term health effects. Potentially fatal but well-known hazards are hypoxia secondary to steel cylinder corrosion and carbon monoxide (CO) poisoning due to contaminated intake air. Another phenomenon may be behind some previously unexplained episodes of underwater incapacitation and perhaps death: low-level CO poisoning and/or the effects of gaseous contaminants generated within the compressor, including toluene and other volatile compounds. Many low molecular weight volatile contaminants are anaesthetic and will be potentiated by pressure and nitrogen narcosis. In sub-anaesthetic doses, impaired judgement, lowered seizure threshold and sensitisation of the heart to arrhythmias may occur. Toxic compounds can be volatilised from some compressor oils, especially mineral oils, in overheated compressors, or be created de novo under certain combinations of temperature, humidity and pressure, perhaps catalysed by metal traces from compressor wear and tear. Most volatiles can be removed by activated carbon filtration but many filters are undersized and may overload in hot, moist conditions and with short dwell times. A compressor that passes normal testing could contaminate one or more cylinders after heating up and then return to producing clean air as the filters dry and the systems cool. The scope of this problem is very unclear as air quality is tested infrequently and often inadequately, even after fatalities. More research is needed as well as better education regarding the safe operation and limitations of high-pressure breathing air compressors.

  17. Nosocomial Mycobacterium bovis-bacille Calmette-Guérin infections due to contamination of chemotherapeutics: case finding and route of transmission

    NARCIS (Netherlands)

    Vos, Margreet C.; de Haas, Petra E. W.; Verbrugh, Henri A.; Renders, Nicole H. M.; Hartwig, Nico G.; de Man, Peter; Kolk, Arend H. J.; van Deutekom, Henk; Yntema, J. L.; Vulto, Arnold G.; Messemaker, Marja; van Soolingen, Dick

    2003-01-01

    We studied nosocomial infections due to Mycobacterium bovis bacille Calmette-Guérin (BCG) Onco-TICE bacteria, transmitted by contamination of medication prepared in BCG Onco-TICE-contaminated hoods in the pharmacy, in 5 immunocompromised patients at 3 hospitals. The BCG strains cultured from the

  18. Evaluation of decontamination during dismantling of plutonium-contaminated glove boxes

    International Nuclear Information System (INIS)

    Kinugasa, Manabu; Taguchi, Seigi; Ohzeki, Satoru; Inoue, Yoshiaki; Kashima, Sadamitsu

    1981-01-01

    The dismantling work of plutonium-contaminated glove boxes was carried out. These glove boxes had been used for the R and D of plutonium-uranium mixed oxide fuel for 15 years. The work was carried out in a pressure-controlled greenhouse, and the contamination of air in the greenhouse was monitored continuously. In order to reduce the contamination of air during dismantling, the decontamination and fixation of loose contaminants on the surfaces of glove boxes were very important. The correlation between decontamination and the contamination of air regarding dismantling is reported in this paper. The surface contamination density of the glove boxes was measured utilizing the smear method before and after the decontamination, and the decontamination effects were estimated. The contamination of air during dismantling was continuously measured with a plutonium dust monitor. It was found that loose contamination exponentially decreased by the decontamination process. When the so-called wet glove boxes, which contained wet recovery and waste disposal apparatus, were dismantled, the contamination of air did not exceed 500 (MPC) a. However, the contamination of air exceeded 500 (MPC) a several times in the present work of dismantling the so-called dry glove boxes which had been used for the fabrication of plutonium-uranium mixed oxide pellets. (Kato, T.)

  19. Dispersion of Contaminants in Indoor Climate

    DEFF Research Database (Denmark)

    Heiselberg, Per

    In rooms ventilated by mixing ventilation, in order to remove contaminants from the occupied zone, the goal of the air distribution system is to achieve a low and even concentration distribution in the room. The experiments showed that the contaminant distribution in a room always will depend...... on the location of the contamination source and in practice also on the supplied air flow rate and the contaminant density. The results showed that it is important for the removal of contaminants in a room that the ventilation system is working in the same direction as the existing buoyancy forces....

  20. Traffic in the operating room: a review of factors influencing air flow and surgical wound contamination.

    Science.gov (United States)

    Pokrywka, Marian; Byers, Karin

    2013-06-01

    Surgical wound contamination leading to surgical site infection can result from disruption of the intended airflow in the operating room (OR). When personnel enter and exit the OR, or create unnecessary movement and traffic during the procedure, the intended airflow in the vicinity of the open wound becomes disrupted and does not adequately remove airborne contaminants from the sterile field. An increase in the bacterial counts of airborne microorganisms is noted during increased activity levels within the OR. Researchers have studied OR traffic and door openings as a determinant of air contamination. During a surgical procedure the door to the operating room may be open as long as 20 minutes out of each surgical hour during critical procedures involving implants. Interventions into limiting excessive movement and traffic in the OR may lead to reductions in surgical site infections in select populations.

  1. Comparison of personal air samplers and static air samplers

    International Nuclear Information System (INIS)

    Carter, M.W.; Lumsden, B.

    1979-01-01

    The authors demonstrate that radioactive air contamination levels calculated from PAS results will always be higher than air contamination levels calculated from SAS results, other conditions being equal. The most probable explanation seems to be in a relationship between the sampling velocity and the particle size of the dust sampled

  2. Detection of the contamination of air by tritiated water vapour around the reactor EL3

    International Nuclear Information System (INIS)

    Lebouleux, P.; Ardellier, A.; Valero, S.

    1968-01-01

    The authors describe the apparatus used for the detection of the tritiated water vapour contamination in the air around the reactor EL 3. The apparatus consists of two air-circulation ionisation chambers; the air in one of these is dried by passage through a silica-gel column. By carrying out a differential measurement of the ionization currents, it is possible to measure the tritiated water vapour concentration. A theoretical study of the response of the chambers is carried out for two types of emission of the tritiated water vapour: continuous, or in bursts. The experimental work comprises: calibration in the measurement range employed; study of the selectivity for other active gases; study of typical accidents; the interpretation of the results in the case of discontinuous emission, taking into account the desorption from the walls of the measurement chamber, a phenomenon which is observed during the emptying process. The authors give finally actual examples of how to use the results. The apparatus built makes it possible to detect, in less than ten minutes, contamination by tritiated water vapour in the presence of other active gases, in a measurement range of between 3 and 2200 MPC, and with an accuracy of about 25 per cent. A transposition to calculations of the risk to workers should be made with the utmost caution; an envelope of this risk can be drawn up more or less accurately depending on particular cases. (authors) [fr

  3. Uptake of toluene and ethylbenzene by plants: removal of volatile indoor air contaminants.

    Science.gov (United States)

    Sriprapat, Wararat; Suksabye, Parinda; Areephak, Sirintip; Klantup, Polawat; Waraha, Atcharaphan; Sawattan, Anuchit; Thiravetyan, Paitip

    2014-04-01

    Air borne uptake of toluene and ethylbenzene by twelve plant species was examined. Of the twelve plant species examined, the highest toluene removal was found in Sansevieria trifasciata, while the ethylbenzene removal from air was with Chlorophytum comosum. Toluene and ethylbenzene can penetrate the plant׳s cuticle. However, the removal rates do not appear to be correlated with numbers of stomata per plant. It was found that wax of S. trifasciata and Sansevieria hyacinthoides had greater absorption of toluene and ethylbenzene, and it contained high hexadecanoic acid. Hexadecanoic acid might be involved in toluene and ethylbenzene adsorption by cuticles wax of plants. Chlorophyll fluorescence analysis or the potential quantum yield of PSII (Fv/Fm) in toluene exposed plants showed no significant differences between the control and the treated plants, whereas plants exposed to ethylbenzene showed significant differences or those parameters, specifically in Dracaena deremensis (Lemon lime), Dracaena sanderiana, Kalanchoe blossfeldiana, and Cordyline fruticosa. The Fv/Fm ratio can give insight into the ability of plants to tolerate (indoor) air pollution by volatile organic chemicals (VOC). This index can be used for identification of suitable plants for treating/sequestering VOCs in contaminated air. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Visualization of a prosthetic vascular graft due to platelet contamination during 111Indium-labeled leukocyte scintigraphy

    International Nuclear Information System (INIS)

    Oates, E.; Ramberg, K.

    1988-01-01

    A prosthetic axillo-femoral bypass graft was visualized during 111 In-labeled leukocyte scintigraphy in a patient referred for possible abdominal abscess. The presence of significant cardiac blood-pool activity raised the possibility that this uptake was due to deposition of contaminating labeled platelets rather than labeled leukocytes. An analysis of a small sample of the patient's blood confirmed that the circulating activity was due to labeled platelets. Increased activity along prosthetic vascular grafts in patients undergoing 111 In-labeled leukocyte scintigraphy may be due to adherent platelet, and not indicative of infection

  5. Indoor air pollution caused by wood-burning in Brazilian and Danish dwellings

    DEFF Research Database (Denmark)

    Luis Teles de Carvalho, Ricardo; Jensen, Ole Michael; da Cruz Tarelho, Luís António

    2013-01-01

    Residential wood-burning is considered by the scientific community as the 4th major cause of deaths in the developing countries due to the indoor air contamination and a cause of regional air pollution in the northern countries. In the first case, wood is being used by low income people that stil...

  6. Urban atmospheric contamination

    International Nuclear Information System (INIS)

    Baldasano Jose, M.

    1997-01-01

    The problems of contamination are not only limited to this century, pale pathology evidences of the effects of the contamination of the air exist in interiors in the health of the old ones; the article mention the elements that configure the problem of the atmospheric contamination, atmospheric pollutants and emission sources, orography condition and effects induced by the urbanization process

  7. Endocrinair : contamination de l'air ambiant : Contamination de l’air ambiant par les perturbateurs endocriniens en Ile de France et caractérisation d’effets toxiques associés

    OpenAIRE

    Chevreuil , Marc; Oziol , Lucie

    2012-01-01

    National audience; En Ile de France, la contamination permanente de l’air ambiant soulève de nouvelles interrogations quant à l’exposition de l’Homme à des perturbateurs endocriniens par cette voie et à la possibilité d’effets sur sa santé, même si ceux-ci sont à faible concentration (micropolluants). Ce qui constitue l’aspect innovant de ce programme, c’est la recherche de molécules semi-volatiles à l’état gazeux ou liées à des particules à l’extérieur et à l’intérieur de locaux (appartement...

  8. Impact of ventilation/pressurization on indoor air contaminants in schools

    International Nuclear Information System (INIS)

    Shaughnessy, R.J.; Levetin, E.; Fisher, E.J.; Ligman, B.K.

    1993-01-01

    As part of a continuing technology development effort to control radon in schools, The U.S. Environmental Protection Agency's (EPA) School Evaluation Program (SEP) team in cooperation with U.S. EPA's Region 6 office has performed radon mitigation in two Southwestern United States schools utilizing the method of ventilation/pressurization control technology. Schools were inspected and IAQ measurements made with respect to carbon dioxide, bioaerosols, volatile organic compounds, and respirable particles. Premitigation results indicated poor ventilation conditions existed throughout the school buildings. Elevated levels of respirable particles were measured, yet no conclusions with respect to health could be implied. Post-mitigation results support, but do not prove the hypothesis that improved ventilation to control radon will also reduce other indicator indoor air contaminants. (orig.). (9 refs., 4 tabs.)

  9. Deaths Due to Accidental Air Conditioner Compressor Explosion: A Case Series.

    Science.gov (United States)

    Behera, Chittaranjan; Bodwal, Jatin; Sikary, Asit K; Chauhan, Mohit Singh; Bijarnia, Manjul

    2017-01-01

    In an air-conditioning system, the compressor is a large electric pump that pressurizes the refrigerant gas as part of the process of turning it back into a liquid. The explosion of an air conditioner (AC) compressor is an uncommon event, and immediate death resulted from the blast effect is not reported in forensic literature. We report three such cases in which young AC mechanics were killed on the spot due to compressor blast, while repairing the domestic split AC unit. The autopsy findings, the circumstances leading to the explosion of the compressor, are discussed in this study. © 2016 American Academy of Forensic Sciences.

  10. A new method for calculation of an air quality index

    Energy Technology Data Exchange (ETDEWEB)

    Ilvessalo, P. [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1995-12-31

    Air quality measurement programs in Finnish towns have expanded during the last few years. As a result of this it is more and more difficult to make use of all the measured concentration data. Citizens of Finnish towns are nowadays taking more of an interest in the air quality of their surroundings. The need to describe air quality in a simplified form has increased. Air quality indices permit the presentation of air quality data in such a way that prevailing conditions are more easily understandable than when using concentration data as such. Using an air quality index always means that some of the information about concentrations of contaminants in the air will be lost. How much information is possible to extract from a single index number depends on the calculation method. A new method for the calculation of an air quality index has been developed. This index always indicates the overstepping of an air quality guideline level. The calculation of this air quality index is performed using the concentrations of all the contaminants measured. The index gives information both about the prevailing air quality and also the short-term trend. It can also warn about the expected exceeding of guidelines due to one or several contaminants. The new index is especially suitable for the real-time monitoring and notification of air quality values. The behaviour of the index was studied using material from a measurement period in the spring of 1994 in Kaepylae, Helsinki. Material from a pre-operational period in the town of Oulu was also available. (author)

  11. A new method for calculation of an air quality index

    Energy Technology Data Exchange (ETDEWEB)

    Ilvessalo, P [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1996-12-31

    Air quality measurement programs in Finnish towns have expanded during the last few years. As a result of this it is more and more difficult to make use of all the measured concentration data. Citizens of Finnish towns are nowadays taking more of an interest in the air quality of their surroundings. The need to describe air quality in a simplified form has increased. Air quality indices permit the presentation of air quality data in such a way that prevailing conditions are more easily understandable than when using concentration data as such. Using an air quality index always means that some of the information about concentrations of contaminants in the air will be lost. How much information is possible to extract from a single index number depends on the calculation method. A new method for the calculation of an air quality index has been developed. This index always indicates the overstepping of an air quality guideline level. The calculation of this air quality index is performed using the concentrations of all the contaminants measured. The index gives information both about the prevailing air quality and also the short-term trend. It can also warn about the expected exceeding of guidelines due to one or several contaminants. The new index is especially suitable for the real-time monitoring and notification of air quality values. The behaviour of the index was studied using material from a measurement period in the spring of 1994 in Kaepylae, Helsinki. Material from a pre-operational period in the town of Oulu was also available. (author)

  12. Effects of low-pressure air on oxygen contamination and lithium corrosion of a tantalum alloy, T-111, at 980 and 1260 C

    Science.gov (United States)

    Gahn, R. F.

    1974-01-01

    The effects were studied of low-pressure air on contamination and corrosion in the tantalum alloy T-111/lithium system at 980 and 1260 C. Capsules of T-111 containing lithium were exposed to six vacuum levels between 1 x 10 to the 8th power and 0.0003 torr by controlled air leakage into a vacuum system. Capsules exposed at 980 C and 0.0002 torr failed from intragranular oxidation. The remainder of the capsules completed the 96-hour tests. The depth of oxygen contamination was greater at 980 C than at 1260 C. Tests made at 0.0001 and 0.00001 torr levels caused large increases in the oxygen content of the T-111. Tests at 0.000001 torr or less produced no significant contamination. No lithium corrosion of the T-111 was observed under any of the conditions.

  13. Microbial contamination of central supply systems for medical air Contaminação microbiana dos sistemas centrais de abastecimento de ar medicinal

    Directory of Open Access Journals (Sweden)

    Carolina Machado Andrade

    2003-11-01

    Full Text Available There are many standards and recommendations for breathing air quality associated with respiratory protection equipment, but little has been done regarding the possible microbial contamination of medical air. The present study demonstrates quantitatively and qualitatively that pipelines might be incriminated as source of microbial contamination of compressed and synthetic air for medical use. Air samples were drawn into an especially pressure-resistant device and the bacterial and fungi contents were identified after growth on agar plates. The bacterial flora isolated from peripheral air outlets was virtually the same as that found in the central air-generating installations, consisting of a mixture of pathogens and normal skin bacteria. Several factors contributing to microbial contamination of medical air are mentioned and preventive measures are discussed.Existem vários padrões e recomendações para a qualidade do ar respirável relacionado aos equipamentos de proteção respiratória, mas pouco tem sido feito em relação a uma possível contaminação microbiana do ar medicinal. O presente trabalho demonstra quantitativa e qualitativamente que as linhas de ar estão relacionadas à contaminação microbiológica do ar comprimido e ar sintético para uso medicinal. Amostras de ar foram coletadas por um equipamento especialmente resistente a pressão, e o conteúdo bacteriano e fúngico foi identificado após crescimento em placa. A flora bacteriana isolada tanto dos sistema periféricos de ar foi virtualmente a mesma encontrada nas instalações centralizadas, sendo uma mistura de patógenos e bactérias normais da pele. Vários fatores contribuintes para a contaminação microbiana do ar medicinal e medidas preventivas são discutidas.

  14. Comparison of arterial and venous blood gases and the effects of analysis delay and air contamination on arterial samples in patients with chronic obstructive pulmonary disease and healthy controls.

    LENUS (Irish Health Repository)

    O'Connor, T M

    2012-01-31

    BACKGROUND: Arterial blood gases (ABGs) are often sampled incorrectly, leading to a \\'mixed\\' or venous sample. Delays in analysis and air contamination are common. OBJECTIVES: We measured the effects of these errors in patients with chronic obstructive pulmonary disease (COPD) exacerbations and controls. METHODS: Arterial and venous samples were analyzed from 30 patients with COPD exacerbation and 30 controls. Venous samples were analysed immediately and arterial samples separated into non-air-contaminated and air-contaminated specimens and analysed at 0, 30, 60, 90 and 180 min. RESULTS: Mean venous pH was 7.371 and arterial pH was 7.407 (p < 0.0001). There was a correlation between venous and arterial pH (r = 0.5347, p < 0.0001). The regression equation to predict arterial pH was: arterial pH = 4.2289 + 0.43113 . venous pH. There were no clinically significant differences in arterial PO associated with analysis delay. A statistically significant decline in pH was detected at 30 min in patients with COPD exacerbation (p = 0.0042) and 90 min in controls (p < 0.0001). A clinically significant decline in pH emerged at 73 min in patients with COPD exacerbation and 87 min in controls. Air contamination was associated with a clinically significant increase in PO in all samples, including those that were immediately analyzed. CONCLUSIONS: Arterial and venous pH differ significantly. Venous pH cannot accurately replace arterial pH. Temporal delays in ABG analysis result in a significant decline in measured pH. ABGs should be analysed within 30 min. Air contamination leads to an immediate increase in measured PO, indicating that air-contaminated ABGs should be discarded.

  15. Risk assessment of atmospheric contamination due to combustion of fossil-fuels in Japan and possible application of fuzzy set

    International Nuclear Information System (INIS)

    Nishiwaki, Y.; Shah, S.M.; Kanoh, E.

    1983-01-01

    For risk assessment of atmospheric contamination due to fossil-fuel combustion in Japan, epidemiological studies have been conducted since 1961. Health effects of sulfur dioxide in industrial areas of Japan where fossil-fuel power stations are located have been investigated. The dose-response relationship between prevalence rates of chronic bronchitis and sulphur dioxide was established. Various efforts have been made to reduce the concentrations of sulfur dioxide in the atmosphere. However, the average concentration of NO 2 tended to increase gradually. It was therefore considered important to study the health effects of nitrogen dioxide. In different areas of Japan with varying atmospheric concentrations of nitrogen dioxide, an extensive epidemiological survey was conducted with over 10,000 school-children. The results of the survey indicate that the prevalence rates of asthma and wheezing were higher with the higher degree of air pollution, and that the indoor pollution is important. It is also attempted to compare hazard indices of the air-borne wastes from fossil-fuel power plants and those from nuclear power plants. The conventional pollutants seem to be much more important as compared with the radioactive releases under normal conditions of operation. The survey of stochastic effects with very small chances of occurrence was not attempted because of the great uncertainties and difficulties in identifying a small signal within a large noise. The possible application of the theory of Fuzzy Set for risk analysis is suggested

  16. Recalls of foods due to microbiological contamination classified by the U.S. Food and Drug Administration, fiscal years 2003 through 2011.

    Science.gov (United States)

    Dey, Manashi; Mayo, Jonathan A; Saville, Deborah; Wolyniak, Cecilia; Klontz, Karl C

    2013-06-01

    Recalls of foods contaminated with pathogens help reduce the transmission of infectious diseases. Here, we summarize the number and nature of foods recalled as a result of microbiological contamination, classified by the U.S. Food and Drug Administration for the period 1 October 2002 through 30 September 2011. Microbiological contamination accounted for 1,395 (42%) of 3,360 recalls of food during this period. Nuts and edible seeds, followed by fishery-seafood products and spices, were the types of products most commonly recalled for microbiological contamination. Salmonella contamination accounted for the greatest number of food products recalled due to microbiological contamination, and was the pathogen most often linked to reported outbreaks involving recalled food products.

  17. Basic radiological studies contamination control experiments

    International Nuclear Information System (INIS)

    Duce, S.W.; Winberg, M.R.; Freeman, A.L.

    1989-09-01

    This report describes the results of experiments relating to contamination control performed in support of the Environmental Restoration Programs Retrieval Project. During the years 1950 to 1970 waste contaminated with plutonium and other transuranic radionuclides was disposed of in shallow land-filled pits and trenches at the Idaho National Engineering Laboratory. Due to potential for migration of radionuclides to an existing aquifer the feasibility of retrieving and repackaging the waste for placement in a final repository is being examined as part of a retrieval project. Contamination control experiments were conducted to determine expected respirable and nonrespirable plutonium contaminated dust fractions and the effectiveness of various dust suppression techniques. Three soil types were tested to determine respirable fractions: Rocky Flats Plant generic soil, Radioactive Waste Management Complex generic soil, and a 1:1 blend of the two soil types. Overall, the average respirable fraction of airborne dust was 5.4% by weight. Three contamination control techniques were studied: soil fixative sprays, misting agents, and dust suppression agents. All of the tested agents proved to be effective in reducing dust in the air. Details of product performance and recommended usage are discussed

  18. Biological air contamination in elderly care centers: geria project.

    Science.gov (United States)

    Aguiar, Lívia; Mendes, Ana; Pereira, Cristiana; Neves, Paula; Mendes, Diana; Teixeira, João Paulo

    2014-01-01

    Indoor air quality (IAQ) affects health particularly in susceptible individuals such as the elderly. It has been estimated that the older population spends approximately 19-20 h/d indoors, and the majority of the elderly spend all of their time indoors in elderly care centers (ECC). Older individuals may be particularly at risk of exposure to detrimental effects from pollutants, even at low concentrations, due to common and multiple underlying chronic diseases that increase susceptibility. This study, aimed to assess the impact of indoor biological agents in 22 ECC located in Porto, was conducted during summer and winter from November 2011 to August 2013 at a total of 141 areas within dining rooms, drawing rooms, medical offices, and bedrooms (including the bedridden). Air sampling was carried out with a microbiological air sampler (Merck MAS-100) and using tryptic soy agar for bacteria and malt extract agar for fungi. The results obtained were compared with the recently revised Portuguese standards. In winter, mean fungi concentration exceeded reference values, while bacteria concentrations were within the new standards in both seasons. The main fungi species found indoors were Cladosporium (73%) in summer and Penicillium (67%) in winter. Aspergillus fumigatus, Aspergillus niger, and Aspergillus flavus, known potential pathogenic/toxigenic species, were also identified. Although the overall rate and mean values of bacteria and fungi found in ECC indoor air met Portuguese legislation, some concern is raised by the presence of pathogenic microorganisms. Simple measures, like opening windows and doors to promote air exchange and renewal, may improve effectiveness in enhancing IAQ.

  19. Selective Detection of Target Volatile Organic Compounds in Contaminated Humid Air Using a Sensor Array with Principal Component Analysis

    Science.gov (United States)

    Itoh, Toshio; Akamatsu, Takafumi; Tsuruta, Akihiro; Shin, Woosuck

    2017-01-01

    We investigated selective detection of the target volatile organic compounds (VOCs) nonanal, n-decane, and acetoin for lung cancer-related VOCs, and acetone and methyl i-butyl ketone for diabetes-related VOCs, in humid air with simulated VOC contamination (total concentration: 300 μg/m3). We used six “grain boundary-response type” sensors, including four commercially available sensors (TGS 2600, 2610, 2610, and 2620) and two Pt, Pd, and Au-loaded SnO2 sensors (Pt, Pd, Au/SnO2), and two “bulk-response type” sensors, including Zr-doped CeO2 (CeZr10), i.e., eight sensors in total. We then analyzed their sensor signals using principal component analysis (PCA). Although the six “grain boundary-response type” sensors were found to be insufficient for selective detection of the target gases in humid air, the addition of two “bulk-response type” sensors improved the selectivity, even with simulated VOC contamination. To further improve the discrimination, we selected appropriate sensors from the eight sensors based on the PCA results. The selectivity to each target gas was maintained and was not affected by contamination. PMID:28753948

  20. Drinking Water Contamination Due To Lead-based Solder

    Science.gov (United States)

    Garcia, N.; Bartelt, E.; Cuff, K. E.

    2004-12-01

    The presence of lead in drinking water creates many health hazards. Exposure to lead-contaminated water can affect the brain, the central nervous system, blood cells, and kidneys, causing such problems as mental retardation, kidney disease, heart disease, stroke, and death. One way in which lead can contaminate our water supply is through the use of lead solder to join pipes. Lead solder was widely used in the past because of its ease of application as well as its low cost. Lead contamination in residential areas has previously been found to be a particularly serious problem in first-draw samples, of water that has sat stagnant in pipes overnight. To investigate the time-dependence of drinking water lead contamination, we analyzed samples taken hourly of water exposed to lead solder. While our preliminary data was insufficient to show more than a rough correlation between time of exposure and lead concentration over short periods (1-3 hours), we were able to confirm that overnight exposure of water to lead-based solder results in the presence high levels of lead. We also investigated other, external factors that previous research has indicated contribute to increased concentrations of lead. Our analysis of samples of lead-exposed water at various pH and temperatures suggests that these factors can be equally significant in terms of their contribution to elevated lead concentration levels. In particular, water that is slightly corrosive appears to severely impact the solubility of lead. As this type of water is common in much of the Northeast United States, the presence of lead-based solder in residential areas there is especially problematic. Although lead-based solder has been banned since the 1980s, it remains a serious concern, and a practical solution still requires further research.

  1. A comparative study on laser induced shock cleaning of radioactive contaminants in air and water

    Science.gov (United States)

    Kumar, Aniruddha; Prasad, Manisha; Bhatt, R. B.; Behere, P. G.; Biswas, D. J.

    2018-03-01

    Efficient removal of Uranium-di-oxide (UO2) particulates from stainless steel surface was effected by Nd-YAG laser induced plasma shock waves in air as well as in water environment. The propagation velocity of the generated shock wave was measured by employing the photo-acoustic probe deflection method. Monitoring of the alpha activity of the sample with a ZnS (Ag) scintillation detector before and after the laser exposure allowed the estimation of decontamination efficiency defined as the percentage removal of the initial activity. Experiments were carried out to study the effect of laser pulse energy, number of laser exposures, orientation of the sample, the separation between the substrate surface and the onset point of the shock wave on the de-contamination efficiency. The most optimised cleaning was found to occur when the laser beam impinged normally on the sample that was immersed in water and placed at a distance of ∼0.7 mm from the laser focal spot. Analysis of the cleaned surface by optical microscopes established that laser induced shock cleaning in no way altered the surface property. The shock force generated in both air and water has been estimated theoretically and has been found to exceed the Van der Waal's binding force for spherical contaminant particulate.

  2. Evaluation of surface contamination due to alpha using large area contamination monitors

    International Nuclear Information System (INIS)

    Raghavayya, M.

    1998-01-01

    Radioactive contamination at work places is evaluated routinely using either the swipe sampling technique or a contamination monitor. Commercially available alpha probes used for the purpose are usually circular and have a face diameter of 50 or 100 mm. Square faced probes are also available. A thin aluminized mylar membrane of thickness 0.45 to 0.9 mg.cm -2 is used to screen the phosphor in the alpha probe to protect it from external light. The membrane cuts off more alphas from low energy emitters than from higher energy alpha emitters. Moreover the response of the detector for alphas originating at all points under the detector face is not uniform, especially when the large area alpha monitors are used. These factors can introduce errors as high as 40% into the measurements. This paper aims to quantify these errors and describe a procedure to overcome the limitations. (author)

  3. Systematic bias in genomic classification due to contaminating non-neoplastic tissue in breast tumor samples.

    Science.gov (United States)

    Elloumi, Fathi; Hu, Zhiyuan; Li, Yan; Parker, Joel S; Gulley, Margaret L; Amos, Keith D; Troester, Melissa A

    2011-06-30

    Genomic tests are available to predict breast cancer recurrence and to guide clinical decision making. These predictors provide recurrence risk scores along with a measure of uncertainty, usually a confidence interval. The confidence interval conveys random error and not systematic bias. Standard tumor sampling methods make this problematic, as it is common to have a substantial proportion (typically 30-50%) of a tumor sample comprised of histologically benign tissue. This "normal" tissue could represent a source of non-random error or systematic bias in genomic classification. To assess the performance characteristics of genomic classification to systematic error from normal contamination, we collected 55 tumor samples and paired tumor-adjacent normal tissue. Using genomic signatures from the tumor and paired normal, we evaluated how increasing normal contamination altered recurrence risk scores for various genomic predictors. Simulations of normal tissue contamination caused misclassification of tumors in all predictors evaluated, but different breast cancer predictors showed different types of vulnerability to normal tissue bias. While two predictors had unpredictable direction of bias (either higher or lower risk of relapse resulted from normal contamination), one signature showed predictable direction of normal tissue effects. Due to this predictable direction of effect, this signature (the PAM50) was adjusted for normal tissue contamination and these corrections improved sensitivity and negative predictive value. For all three assays quality control standards and/or appropriate bias adjustment strategies can be used to improve assay reliability. Normal tissue sampled concurrently with tumor is an important source of bias in breast genomic predictors. All genomic predictors show some sensitivity to normal tissue contamination and ideal strategies for mitigating this bias vary depending upon the particular genes and computational methods used in the predictor.

  4. Extensive Viable Middle East Respiratory Syndrome (MERS) Coronavirus Contamination in Air and Surrounding Environment in MERS Isolation Wards.

    Science.gov (United States)

    Kim, Sung-Han; Chang, So Young; Sung, Minki; Park, Ji Hoon; Bin Kim, Hong; Lee, Heeyoung; Choi, Jae-Phil; Choi, Won Suk; Min, Ji-Young

    2016-08-01

    The largest outbreak of Middle East respiratory syndrome coronavirus (MERS-CoV) outside the Middle East occurred in South Korea in 2015 and resulted in 186 laboratory-confirmed infections, including 36 (19%) deaths. Some hospitals were considered epicenters of infection and voluntarily shut down most of their operations after nearly half of all transmissions occurred in hospital settings. However, the ways that MERS-CoV is transmitted in healthcare settings are not well defined. We explored the possible contribution of contaminated hospital air and surfaces to MERS transmission by collecting air and swabbing environmental surfaces in 2 hospitals treating MERS-CoV patients. The samples were tested by viral culture with reverse transcription polymerase chain reaction (RT-PCR) and immunofluorescence assay (IFA) using MERS-CoV Spike antibody, and electron microscopy (EM). The presence of MERS-CoV was confirmed by RT-PCR of viral cultures of 4 of 7 air samples from 2 patients' rooms, 1 patient's restroom, and 1 common corridor. In addition, MERS-CoV was detected in 15 of 68 surface swabs by viral cultures. IFA on the cultures of the air and swab samples revealed the presence of MERS-CoV. EM images also revealed intact particles of MERS-CoV in viral cultures of the air and swab samples. These data provide experimental evidence for extensive viable MERS-CoV contamination of the air and surrounding materials in MERS outbreak units. Thus, our findings call for epidemiologic investigation of the possible scenarios for contact and airborne transmission, and raise concern regarding the adequacy of current infection control procedures. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.

  5. Air permitting of IGCC plants

    Energy Technology Data Exchange (ETDEWEB)

    Chitikela, S.R.

    2007-07-01

    The IGCC process is, currently, the preferred choice over conventional thermal power production in regard to cleanup of fuel and significantly reduced contaminant emissions. The air permitting requirements include the review of: feed preparation and PM emissions; feed gasification and contaminant emissions; elemental sulfur recovery and SO{sub 2} emissions; options for carbon-dioxide recovery; syngas characteristics for combustion; CT design and combustion mechanisms; air contaminant emissions of CT; controlled CT emissions of nitrogen-oxides and carbon-monoxide gases using the SCR and oxidation catalysts, respectively; and, emission of volatile organic compounds (VOCs), and hazardous air pollutants (HAPs). However, the IGCC processes are being rigorously reviewed for the system integration and reliability, and significant reduction of air contaminant emissions (including the greenhouse gases). This paper included a review of IGCC air contaminant emission rates, and various applicable regulatory requirements, such as NSR (New Source Review), NSPS (New Source Performance Standards), and MACT (Maximum Achievable Control Technology). The IGCC facility's NOX, CO, SO{sub 2}, PM, VOCs, and HAPs emission rates would be significantly low. Thus, effective, construction and installation, and operation air permits would be necessary for IGCC facilities.

  6. System calibration for air control of radioactive gases [contamination control]; Kalibracija sistema za kontrolu vazduha na radioaktivne gasove

    Energy Technology Data Exchange (ETDEWEB)

    Zecevic, V; Milosevic, M [Institute of Nuclear Sciences Boris Kidric, Reaktor RA, Vinca, Beograd (Serbia and Montenegro)

    1963-02-15

    Testing of the system for air contamination control at the RA reactor was done and calibrated by Ar{sup 41}. This report contains the report on testing and calibration. This activity was necessary in order to achieve its performance with existing dosimetry system in the RA reactor building.

  7. Photo-acoustic sensor for detection of oil contamination in compressed air systems.

    Science.gov (United States)

    Lassen, Mikael; Harder, David Baslev; Brusch, Anders; Nielsen, Ole Stender; Heikens, Dita; Persijn, Stefan; Petersen, Jan C

    2017-02-06

    We demonstrate an online (in-situ) sensor for continuous detection of oil contamination in compressed air systems complying with the ISO-8573 standard. The sensor is based on the photo-acoustic (PA) effect. The online and real-time PA sensor system has the potential to benefit a wide range of users that require high purity compressed air. Among these are hospitals, pharmaceutical industries, electronics manufacturers, and clean room facilities. The sensor was tested for sensitivity, repeatability, robustness to molecular cross-interference, and stability of calibration. Explicit measurements of hexane (C6H14) and decane (C10H22) vapors via excitation of molecular C-H vibrations at approx. 2950 cm-1 (3.38 μm) were conducted with a custom made interband cascade laser (ICL). For the decane measurements a (1 σ) standard deviation (STD) of 0.3 ppb was demonstrated, which corresponds to a normalized noise equivalent absorption (NNEA) coefficient for the prototype PA sensor of 2.8×10-9 W cm-1 Hz1/2.

  8. Annoyance due to noise and air pollution to the residents of heavily frequented streets

    Science.gov (United States)

    Wanner, H. U.; Wehrli, B.; Nemecek, J.; Turrian, V.

    1980-01-01

    The residents of different streets with varying traffic density and building density were questioned about annoyance due to traffic noise and air pollution. Results show that annoyance felt is dependent not only on the measured noise levels and/or air pollution concentrations, but that there do exist interactions between the residential quarters and annoyance. These interactions should be considered when fixing the limits and standards.

  9. NSF-RANN trace contaminants abstracts

    International Nuclear Information System (INIS)

    Copenhaver, E.D.; Harnden, D.S.

    1976-10-01

    Specific areas of interest of the Environmental Aspects of Trace Contaminants Program are organic chemicals of commerce, metals and organometallic compounds, air-borne contaminants, and environmental assay methodology. Fifty-three abstracts of literature on trace contaminants are presented. Author, keyword, and permuted title indexes are included

  10. Air pollution effects due to deregulation of the electric industry

    Science.gov (United States)

    Davoodi, Khojasteh Riaz

    ) nuclear sources until the year 2005. Each module was analyzed separately and the result from each module was transferred into the Air Quality Impact model. The model assesses the changes in electricity generation within each module due to deregulation and these changes can then be correlated to the emission of air pollutants in the United States.

  11. Contamination of the Arctic by exotic air toxics

    International Nuclear Information System (INIS)

    Ford, J.; Landers, D.

    1991-01-01

    Various kinds of atmospheric pollutants are commonly known to occur in arctic environments. These include organic contaminants, pollutants associated with fossil fuel combustion, smelting, industrial development, and radionuclides. Recently, additional concern has arisen from studies suggesting that at least some atmospheric contaminants may be susceptible to poleward redistribution as a result of their physical and chemical properties. Thus, contamination of the arctic may be exacerbated by the tendency of selected contaminants produced at lower latitudes to be transported to polar regions and incorporated into high latitude food chains. Although awareness of exotic contaminants in high latitude food chains is not new, regional baseline data are needed to document the spatial extent and magnitude of this potentially serious problem. The US Arctic is little studied in this regard relative to several other circumpolar nations (e.g., Canada, Sweden); over the next year the authors will be designing a regional survey to begin remedying this information gap. A major focus of this activity will be to ensure compatibility with both ongoing international studies of arctic contamination, and the USEPA Environmental Monitoring and Assessment Program. Issues related to sampling design will be outlined and discussed

  12. An Evaluation of Antifungal Agents for the Treatment of Fungal Contamination in Indoor Air Environments

    Directory of Open Access Journals (Sweden)

    Senthaamarai Rogawansamy

    2015-06-01

    Full Text Available Fungal contamination in indoor environments has been associated with adverse health effects for the inhabitants. Remediation of fungal contamination requires removal of the fungi present and modifying the indoor environment to become less favourable to growth.  This may include treatment of indoor environments with an antifungal agent to prevent future growth. However there are limited published data or advice on chemical agents suitable for indoor fungal remediation. The aim of this study was to assess the relative efficacies of five commercially available cleaning agents with published or anecdotal use for indoor fungal remediation. The five agents included two common multi-purpose industrial disinfectants (Cavicide® and Virkon®, 70% ethanol, vinegar (4.0%-4.2% acetic acid, and a plant-derived compound (tea tree (Melaleuca alternifolia oil tested in both a liquid and vapour form. Tea tree oil has recently generated interest for its antimicrobial efficacy in clinical settings, but has not been widely employed for fungal remediation. Each antifungal agent was assessed for fungal growth inhibition using a disc diffusion method against a representative species from two common fungal genera, (Aspergillus fumigatus and Penicillium chrysogenum, which were isolated from air samples and are commonly found in indoor air. Tea tree oil demonstrated the greatest inhibitory effect on the growth of both fungi, applied in either a liquid or vapour form. Cavicide® and Virkon® demonstrated similar, although less, growth inhibition of both genera. Vinegar (4.0%–4.2% acetic acid was found to only inhibit the growth of P. chrysogenum, while 70% ethanol was found to have no inhibitory effect on the growth of either fungi. There was a notable inhibition in sporulation, distinct from growth inhibition after exposure to tea tree oil, Virkon®, Cavicide® and vinegar. Results demonstrate that common cleaning and antifungal agents differ in their capacity to

  13. An evaluation of antifungal agents for the treatment of fungal contamination in indoor air environments.

    Science.gov (United States)

    Rogawansamy, Senthaamarai; Gaskin, Sharyn; Taylor, Michael; Pisaniello, Dino

    2015-06-02

    Fungal contamination in indoor environments has been associated with adverse health effects for the inhabitants. Remediation of fungal contamination requires removal of the fungi present and modifying the indoor environment to become less favourable to growth.  This may include treatment of indoor environments with an antifungal agent to prevent future growth. However there are limited published data or advice on chemical agents suitable for indoor fungal remediation. The aim of this study was to assess the relative efficacies of five commercially available cleaning agents with published or anecdotal use for indoor fungal remediation. The five agents included two common multi-purpose industrial disinfectants (Cavicide® and Virkon®), 70% ethanol, vinegar (4.0%-4.2% acetic acid), and a plant-derived compound (tea tree (Melaleuca alternifolia) oil) tested in both a liquid and vapour form. Tea tree oil has recently generated interest for its antimicrobial efficacy in clinical settings, but has not been widely employed for fungal remediation. Each antifungal agent was assessed for fungal growth inhibition using a disc diffusion method against a representative species from two common fungal genera, (Aspergillus fumigatus and Penicillium chrysogenum), which were isolated from air samples and are commonly found in indoor air. Tea tree oil demonstrated the greatest inhibitory effect on the growth of both fungi, applied in either a liquid or vapour form. Cavicide® and Virkon® demonstrated similar, although less, growth inhibition of both genera. Vinegar (4.0%-4.2% acetic acid) was found to only inhibit the growth of P. chrysogenum, while 70% ethanol was found to have no inhibitory effect on the growth of either fungi. There was a notable inhibition in sporulation, distinct from growth inhibition after exposure to tea tree oil, Virkon®, Cavicide® and vinegar. Results demonstrate that common cleaning and antifungal agents differ in their capacity to inhibit the growth

  14. Air contamination measurements for the evaluation of internal dose to workers in nuclear medicine departments

    Science.gov (United States)

    De Massimi, B.; Bianchini, D.; Sarnelli, A.; D'Errico, V.; Marcocci, F.; Mezzenga, E.; Mostacci, D.

    2017-11-01

    Radionuclides handled in nuclear medicine departments are often characterized by high volatility and short half-life. It is generally difficult to monitor directly the intake of these short-lived radionuclides in hospital staff: this makes measuring air contamination of utmost interest. The aim of the present work is to provide a method for the evaluation of internal doses to workers in nuclear medicine, by means of an air activity sampling detector, to ensure that the limits prescribed by the relevant legislation are respected. A continuous air sampling system measures isotope concentration with a Nal(TI) detector. Energy efficiency of the system was assessed with GEANT4 and with known activities of 18F. Air is sampled in a number of areas of the nuclear medicine department of the IRST-IRCCS hospital (Meldola- Italy). To evaluate committed doses to hospital staff involved (doctors, technicians, nurses) different exposure situations (rooms, times, radionuclides etc) were considered. After estimating the intake, the committed effective dose has been evaluated, for the different radionuclides, using the dose coefficients mandated by the Italian legislation. Error propagation for the estimated intake and personal dose has been evaluated, starting from measurement statistics.

  15. Air sampler performance at Ford's farm range

    International Nuclear Information System (INIS)

    Glissmeyer, J.A.; Johnston, J.W.

    1984-07-01

    An air-sampling system for a large-caliber depleted uranium (DU) penetrator firing range was tested. The objectives of the test were: to determine the bias between the monitoring readings and DU concentrations; and to determine if the target bay real-time monitor (RTM) tracks the decaying dust concentration. The test procedure was to operate total and respirable airborne particle samplers adjacent to the target bay monitors. A series of air samples was also taken after the test firings adjacent to the target bay RTM. Exhaust particle samples were analyzed for gross alpha, gross beta and uranium content. The target bay RTM correlated well (0.977) with the sequential samples. Average concentration from the RTM did not correlate with either the long-term total or respirable sampler DU concentrations. The monitor used to confirm a low dust concentration when the door is open correlated well (0.810) with the RTM; the other bay monitor did not. In the ventilation discharge, the long-term average monitor readings did not correlate with DU concentrations, probably due to levels near lower detection limits. Smearable surface-contamination samples showed highest contamination on the equipment, gravel floor and exhaust intake. The location air-intake contamination increased over the first 3 rounds. Contamination was reduced by a low-pressure water spray washdown to about the same concentration as often the second round, then remained at about twice the level. 2 references, 18 figures, 16 tables. (MF)

  16. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    An environmental investigation of ground water conditions has been undertaken at Wright-Patterson Air Force Base (WPAFB), Ohio to obtain data to assist in the evaluation of a potential removal action to prevent, to the extent practicable, migration of the contaminated ground water across Base boundaries. Field investigations were limited to the central section of the southwestern boundary of Area C and the Springfield Pike boundary of Area B. Further, the study was limited to a maximum depth of 150 feet below grade. Three primary activities of the field investigation were: (1) installation of 22 monitoring wells, (2) collection and analysis of ground water from 71 locations, (3) measurement of ground water elevations at 69 locations. Volatile organic compounds including trichloroethylene, perchloroethylene, and/or vinyl chloride were detected in concentrations exceeding Maximum Contaminant Levels (MCL) at three locations within the Area C investigation area. Ground water at the Springfield Pike boundary of Area B occurs in two primary units, separated by a thicker-than-expected clay layers. One well within Area B was determined to exceed the MCL for trichloroethylene.

  17. Impact of airflow interaction on inhaled air quality and transport of contaminants in rooms with personalized and total volume ventilation

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Cermak, Radim; Kovar, O.

    2003-01-01

    The impact of airflow interaction on inhaled air quality and transport of contaminants between occupants was studied in regard to pollution from floor covering, human bioeffluents and exhaled air, with combinations of two personalized ventilation systems (PV) with mixing and displacement...... quality with personalized and mixing ventilation was higher or at least similar compared to mixing ventilation alone. In the case of PV combined with displacement ventilation, the interaction caused mixing of the room air, an increase in the transport of bioeffluents and exhaled air between occupants and...... ventilation. In total, 80 L/s of clean air supplied at 20°C was distributed between the ventilation systems at different combinations of personalized airflow rate. Two breathing thermal manikins were used to simulate occupants in a full-scale test room. Regardless of the airflow interaction, the inhaled air...

  18. Multiscale structure of Cs-137 soil contamination on the Bryansk Region (Russia) due to the accident at the Chernobyl NPP

    Science.gov (United States)

    Linnik, Vitaly; Sokolov, Alexander

    2013-04-01

    The Cs-137 contamination of the Bryansk Region occurred in the period from April 27 to May 10 into several stages. The complicated character of the soil radionuclide contamination on the Bryansk Region is caused by different nature of the radioactive fallout: dry and wet. Thus, in a number of cases Cs-137 soil pollution is directly connected with the rain intensity, which is well known, have multifractal nature. In some parts of contaminated territory the overlay of different types of fallout was observed. The radioactive contamination of the landscape is a result from nonlinear interplay of geophysical factors which intervene over a large range of scale. As a result of the fallout Cs-137 pattern can be described as a multifractal. Consequently, fields of contamination observed have an extreme spatial variability, frequently cited "hot spots" or "leopard's skin. As an estimate of background radiation levels, we relied on a dataset of air-gamma-survey of the Bryansk Region, carried out by SSC AEROGEOFIZIKA in the summer of 1993. This dataset includes geo-positioned data of Cs-137 deposition in a grid of 100x100 m with values range from 3 to 11*104 kBq/m2. Airborne gamma survey gave the smoothed values of the Cs-137 density of contamination in comparison with the data, obtained directly as a result of soil sampling. However, even in this case in the east part of the Bryansk test site we can observed the"hot spots" (by size several hundred meters) as natural phenomenon. The article presents the results of the geostatistical and multifractal analysis of the Cs-137 contamination. Scaling analysis was conducted to investigate the linkages between the spatial variability of soil Cs-137 contamination and some landscape characteristics.

  19. [Investigation of microbial contamination of the air and equipment of a biological waste water purification station].

    Science.gov (United States)

    Alikbaeva, L A; Figurovskiĭ, A P; Vasil'ev, O D; Ermolaev-Makovskiĭ, M A; Merkur'eva, M A

    2010-01-01

    The paper describes the results of a study of ambient air microbiological pollution in the working premises and equipment surfaces in the main shops of the biological waste water purification station of a cardboard-polygraphic plant. The findings suggest that there is high microbial contamination of the working environment, which should be born in mind on developing measures to optimize working conditions and on studying morbidity rates among the workers.

  20. The radioactive contamination of milk and milk products due to the Chernobyl reactor accident

    International Nuclear Information System (INIS)

    Wiechen, A.

    1987-01-01

    The situation in the area around the town of Kiel in a given period of time is taken as the example to explain the radioactive contamination of milk and milk products due to the Chernobyl fallout. The measured data reported refer to the nuclides I-131 and Cs-137 in milk, and are compared with data on the I-131 and Cs-137 activity measured in raw milk collected in southern Bavaria, and in other Lands of the F.R.G. (DG) [de

  1. Mapping elemental contamination on Palmyra Atoll National Wildlife Refuge

    Science.gov (United States)

    Struckhoff, Matthew A.; Orazio, Carl E.; Tillitt, Donald E.; Shaver, David K.; Papoulias, Diana M.

    2018-01-01

    Palmyra Atoll, once a WWII U.S. Navy air station, is now a U.S. National Wildlife Refuge with nearly 50 km2 of coral reef and 275 ha of emergent lands with forests of Pisonia grandistrees and colonies of several bird species. Due to the known elemental and organic contamination from chemicals associated with aviation, power generation and transmission, waste management, and other air station activities, a screening survey to map elemental concentrations was conducted. A map of 1944 Navy facilities was georeferenced and identifiable features were digitized. These data informed a targeted survey of 25 elements in soils and sediment at locations known or suspected to be contaminated, using a hand-held X-ray fluorescence spectrometer. At dozens of locations, concentrations of elements exceeded established soil and marine sediment thresholds for adverse ecological effects. Results were compiled into a publically available geospatial dataset to inform potential remediation and habitat restoration activities.

  2. Ambient air sampling for radioactive air contaminants at Los Alamos National Laboratory: A large research and development facility

    International Nuclear Information System (INIS)

    Eberhart, C.F.

    1998-01-01

    This paper describes the ambient air sampling program for collection, analysis, and reporting of radioactive air contaminants in and around Los Alamos National Laboratory (LANL). Particulate matter and water vapor are sampled continuously at more than 50 sites. These samples are collected every two weeks and then analyzed for tritium, and gross alpha, gross beta, and gamma ray radiation. The alpha, beta, and gamma measurements are used to detect unexpected radionuclide releases. Quarterly composites are analyzed for isotopes of uranium ( 234 U, 235 U, 238 U), plutonium ( 238 Pu, 239/249 Pu), and americium ( 241 Am). All of the data is stored in a relational database with hard copies as the official records. Data used to determine environmental concentrations are validated and verified before being used in any calculations. This evaluation demonstrates that the sampling and analysis process can detect tritium, uranium, plutonium, and americium at levels much less than one percent of the public dose limit of 10 millirems. The isotopic results also indicate that, except for tritium, off-site concentrations of radionuclides potentially released from LANL are similar to typical background measurements

  3. Internal contamination in nurses attending patients, that received therapeutic amounts of radioiodine-131

    International Nuclear Information System (INIS)

    Termorshuizen, W.; Gerritsen, A.J.M.

    1988-01-01

    The most frequent and often very successful used unsealed source in Nuclear Medicine and Radiotherapy is the radioiodine-131 for the treatment of thyroid carcinoma and hyperthyroidism. Always there is a great concern about the health physics of radioiodine and possible internal contamination involved in high level 131-I thyroid therapy cases, in particular to the thyroid as target and limiting organ. This report deals with 131-I air concentrations and internal contamination in nurses attending these patients under two different conditions. During the past three years a change took place from the old building, where we had an unventilated two-bed nursing room, to a new building were we have rooms with forced ventilation and air-conditioning (refreshment five times per hour). From both external exposure caused by radioiodine treated patients and internal contamination due to ingestion and inhalation of 131-I, we calculated the dose-equivalent to the thyroid and the effective dose-equivalent to our health care personnel

  4. Guidance for air sampling at nuclear facilities

    International Nuclear Information System (INIS)

    Breslin, A.J.

    1976-11-01

    The principal uses of air sampling at nuclear facilities are to monitor general levels of radioactive air contamination, identify sources of air contamination, and evaluate the effectiveness of contaminant control equipment, determine exposures of individual workers, and provide automatic warning of hazardous concentrations of radioactivity. These applications of air sampling are discussed with respect to standards of occupational exposure, instrumentation, sample analysis, sampling protocol, and statistical treatment of concentration data. Emphasis is given to the influence of spacial and temporal variations of radionuclide concentration on the location, duration, and frequency of air sampling

  5. Cesium-137 deposition and contamination of Japanese soils due to the Fukushima nuclear accident.

    Science.gov (United States)

    Yasunari, Teppei J; Stohl, Andreas; Hayano, Ryugo S; Burkhart, John F; Eckhardt, Sabine; Yasunari, Tetsuzo

    2011-12-06

    The largest concern on the cesium-137 ((137)Cs) deposition and its soil contamination due to the emission from the Fukushima Daiichi Nuclear Power Plant (NPP) showed up after a massive quake on March 11, 2011. Cesium-137 ((137)Cs) with a half-life of 30.1 y causes the largest concerns because of its deleterious effect on agriculture and stock farming, and, thus, human life for decades. Removal of (137)Cs contaminated soils or land use limitations in areas where removal is not possible is, therefore, an urgent issue. A challenge lies in the fact that estimates of (137)Cs emissions from the Fukushima NPP are extremely uncertain, therefore, the distribution of (137)Cs in the environment is poorly constrained. Here, we estimate total (137)Cs deposition by integrating daily observations of (137)Cs deposition in each prefecture in Japan with relative deposition distribution patterns from a Lagrangian particle dispersion model, FLEXPART. We show that (137)Cs strongly contaminated the soils in large areas of eastern and northeastern Japan, whereas western Japan was sheltered by mountain ranges. The soils around Fukushima NPP and neighboring prefectures have been extensively contaminated with depositions of more than 100,000 and 10,000 MBq km(-2), respectively. Total (137)Cs depositions over two domains: (i) the Japan Islands and the surrounding ocean (130-150 °E and 30-46 °N) and, (ii) the Japan Islands, were estimated to be approximately 6.7 and 1.3 PBq, [corrected] respectively.We hope our (137)Cs deposition maps will help to coordinate decontamination efforts and plan regulatory measures in Japan.

  6. An assessment of subsurface contamination of an urban coastal aquifer due to oil spill.

    Science.gov (United States)

    Nambi, Indumathi M; Rajasekhar, Bokam; Loganathan, Vijay; RaviKrishna, R

    2017-04-01

    Incidences of leakages of chemicals from underground oil storage tanks or oil-carrying pipelines have posed huge threat to the coastal aquifers around the world. One such leak was recently identified and notified by the people of Tondiarpet, Chennai, India. The assessment of the contamination level was done by obtaining electrical resistivity maps of the subsurface, drilling of 20 new borewells for soil and water analysis, and testing the water quality of 30 existing borewells. Samples were collected from the borewells, and observations were made that included parameters such as odor, moisture, contamination characteristics, lithology, groundwater level, thickness of the free product that are used to demarcate the extent of soil, and water contamination. Furthermore, a multigas detector was used to detect hydrocarbon presence as soil vapor. Moreover, to capture the transport of dissolved hydrocarbons, 10 samples were collected in the periphery of the study area and were analyzed for the presence of petroleum hydrocarbon and polyaromatic hydrocarbon. Analysis of the data indicated the presence of free-phase hydrocarbon in soil and groundwater close to the junction of Thiruvottiyur high (TH) road (TH) and Varadaja Perumal Koil (VPK) street. Although the contaminant plume is confined to a limited area, it has spread more to the southern and eastern side of the pipeline possibly due to continuous abstraction of groundwater by residential apartments. After cutting a trench along the VPK street and plotting of the plume delineation map, observations indicated that the source of the hydrocarbon leak is present in VPK street close to TH road. A multipronged strategy was suggested targeting the remediation of oil in various phases.

  7. Environmental contamination from a ground-level release of fission products

    International Nuclear Information System (INIS)

    Stupka, R.C.; Kephart, G.S.; Rittmann, P.D.

    1986-08-01

    On January 11, 1985, a ground-level release of fission products, primarily 90 Sr, occurred at the Hanford Site in southeastern Washington State. The release was detected during routine surveys and the majority of the contamination was confined to the immediate area where the release occurred. Response to the incident was complicated by a strong inversion that resulted in a buildup of 222 Rn daughter products on environmental air samples and outdoor surfaces. The cause of the release appears to have been the operation of a transfer jet that inadvertently pressurized an unblanked line leading to the 241-C-151 Diversion Box. A buildup of pressure inside the diversion box forced contaminated air through gaps in the diversion box cover blocks resulting in an unmonitored, short duration release to the environment. The source term was estimated using data obtained from environmental air samplers. The ground deposition speed was calculated using the integrated exposure (air samples) and surface contamination levels obtained from recently fallen snow. The total release was estimated to be 1.4 Ci 90 Sr and 0.02 Ci 137 Cs. Based on this source term, the maximum 50-yr dose commitment to onsite pesonnel was 50 mrem whole body and 600 mrem bone. No detectable internal deposition occurred during the incident and corrective action which followed; this was probably due to several factors: (1) prompt detection of the release; (2) localized contamination control; (3) excellent personnel protection practices; and (4) the protection offered by building ventilation systems. The theoretical maximum offsite individual would receive a potential 1-yr dose commitment of 0.01 mrem whole body and 0.2 mrem bone from this incident. The potential 50-yr dose commitment would be 0.13 mrem whole body and 2.0 mrem bone. In actuality, neither onsite or offsite individuals would be expected to receive even these small dose commitments

  8. Hot air vapor extraction system for remediation of petroleum contaminated sites

    International Nuclear Information System (INIS)

    Pal, D.; Karr, L.; Fann, S.; Mathews, A.P.; Price, P.A.; Linginemi, S.

    1996-01-01

    This paper describes the results of a demonstration of a technology entitled ''Hot Air Vapor Extraction (HAVE)'' at the Hydrocarbon National Test Site (HNTS), Port Hueneme, California. The demonstration of the HAVE technology at HNTS was conducted over a 3-month period between August 21, 1995 and November 22, 1995 and the lessons learned from the demonstration are discussed in details to guide the Department of Defense decision makers in analyzing the applicability of this technology to their contaminated sites. This technology demonstration was conducted under the Department of Defense Strategic Environmental Research and Development Program (SERDP) as part of the National Environmental Technology Demonstration Program (NETDP). The primary objectives of the demonstration were to (1) validate the efficacy of the HAVE technology to treat a wide range of hydrocarbons contaminated soils, (2) gather data to estimate treatment costs, and (3) develop engineering guidance needed to apply this remediation technology DoD-wide. Test runs were made on 5 different treatment cells containing various fuel hydrocarbons, ranging from gasoline to heavier petroleum fractions such as lubricating oil. Computer modeling was conducted to analyze the test results and also to optimize the HAVE system design. An economic analysis conducted for various remediation project sizes ranging from 750 to 9,000 cubic yards, the per cubic yard treatment costs are found to vary from $64.05 down to $36.54 respectively

  9. Energy buildup factor for ICRU 33 sphere surrounded by an air layer

    International Nuclear Information System (INIS)

    Ochiana, G.; Oncescu, M.

    1994-01-01

    The buildup factor due to the air surrounding an ICRU 33 sphere is a desirable quantity in the assessment of the air kerma rate for external exposure to gamma emitters distributed on the ground. A Monte Carlo algorithm has been developed to perform the photon transport calculation within the air layer around the sphere. The energy buildup factor due to the air layer has been calculated for an extended radioactive source - the contaminated ground. The transport of photons within the air layer surrounding a sphere -ICRU 33 phantom - is done by calculating separately the energies deposited by photons into the sphere when this one is in vacuum and when it is surrounded by the air, respectively. The results are given for an air layer of 100 m thickness and photon energy between 0.01 and 3.0 MeV. (Author) 1 Fig., 1 Tab., 9 Refs

  10. High Concentrations of Organic Contaminants in Air from Ship Breaking Activities in Chittagong, Bangladesh.

    Science.gov (United States)

    Nøst, Therese H; Halse, Anne K; Randall, Scott; Borgen, Anders R; Schlabach, Martin; Paul, Alak; Rahman, Atiqur; Breivik, Knut

    2015-10-06

    The beaches on the coast of Chittagong in Bangladesh are one of the most intense ship breaking areas in the world. The aim of the study was to measure the concentrations of organic contaminants in the air in the city of Chittagong, including the surrounding ship breaking areas using passive air samplers (N = 25). The compounds detected in the highest amounts were the polycyclic aromatic hydrocarbons (PAHs) and short-chain chlorinated paraffins (SCCPs), whereas dichlorodiphenyltrichloroethanes (DDTs), hexachlorobenzene (HCB), and polychlorinated biphenyls (PCBs) were several orders of magnitude lower in comparison. PCBs, PAHs, and HCB were highest at sites near the ship breaking activities, whereas DDTs and SCCPs were higher in the urban areas. Ship breaking activities likely act as atmospheric emission sources of PCBs, PAHs, and HCB, thus adding to the international emphasis on responsible recycling of ships. Concentrations of PAHs, PCBs, DDTs, HCB, and SCCPs in ambient air in Chittagong are high in comparison to those found in similar studies performed in other parts of Asia. Estimated toxic equivalent quotients indicate elevated human health risks caused by inhalation of PAHs at most sites.

  11. Indoor Air Pollution in Non Ac Passenger Bus

    Science.gov (United States)

    El Husna, Iksiroh; Unzilatirrizqi, Rizal D. Yan El; Karyanto, Yudi; Sunoko, Henna R.

    2018-02-01

    Passenger buses have been one of favorite means of transportation in Indonesia due to its affordability and flexibility. Intensity of human activities during the trip in the buses have a potential of causing indoor air pollution (polusi udara dalam ruang; PUDR). The indoor air pollution has an impact of 1000-time bigger than outdoor air pollution (polusi udara luar ruang; PULR) on lung. This study aimed to find out indoor air pollution rate of non air conditioned buses using an approach to biological agent pollutant source. The study applied an analysis restricted to microorganisms persistence as one of the sources of the indoor air pollution. The media were placed in different parts of the non AC buses. This study revealed that fungs were found in the non AC buses. They became contaminants and developed pathogenic bacteria that caused air pollution.

  12. Indoor Air Pollution in Non Ac Passenger Bus

    Directory of Open Access Journals (Sweden)

    El Husna Iksiroh

    2018-01-01

    Full Text Available Passenger buses have been one of favorite means of transportation in Indonesia due to its affordability and flexibility. Intensity of human activities during the trip in the buses have a potential of causing indoor air pollution (polusi udara dalam ruang; PUDR. The indoor air pollution has an impact of 1000-time bigger than outdoor air pollution (polusi udara luar ruang; PULR on lung. This study aimed to find out indoor air pollution rate of non air conditioned buses using an approach to biological agent pollutant source. The study applied an analysis restricted to microorganisms persistence as one of the sources of the indoor air pollution. The media were placed in different parts of the non AC buses. This study revealed that fungs were found in the non AC buses. They became contaminants and developed pathogenic bacteria that caused air pollution.

  13. 30 CFR 56.5005 - Control of exposure to airborne contaminants.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Control of exposure to airborne contaminants... Air Quality and Physical Agents Air Quality § 56.5005 Control of exposure to airborne contaminants. Control of employee exposure to harmful airborne contaminants shall be, insofar as feasible, by prevention...

  14. Environmental contamination, product contamination and workers exposure using a robotic system for antineoplastic drug preparation.

    Science.gov (United States)

    Sessink, Paul J M; Leclercq, Gisèle M; Wouters, Dominique-Marie; Halbardier, Loïc; Hammad, Chaïma; Kassoul, Nassima

    2015-04-01

    Environmental contamination, product contamination and technicians exposure were measured following preparation of iv bags with cyclophosphamide using the robotic system CytoCare. Wipe samples were taken inside CytoCare, in the clean room environment, from vials, and prepared iv bags including ports and analysed for contamination with cyclophosphamide. Contamination with cyclophosphamide was also measured in environmental air and on the technicians hands and gloves used for handling the drugs. Exposure of the technicians to cyclophosphamide was measured by analysis of cyclophosphamide in urine. Contamination with cyclophosphamide was mainly observed inside CytoCare, before preparation, after preparation and after daily routine cleaning. Contamination outside CytoCare was incidentally found. All vials with reconstituted cyclophosphamide entering CytoCare were contaminated on the outside but vials with powdered cyclophosphamide were not contaminated on the outside. Contaminated bags entering CytoCare were also contaminated after preparation but non-contaminated bags were not contaminated after preparation. Cyclophosphamide was detected on the ports of all prepared bags. Almost all outer pairs of gloves used for preparation and daily routine cleaning were contaminated with cyclophosphamide. Cyclophosphamide was not found on the inner pairs of gloves and on the hands of the technicians. Cyclophosphamide was not detected in the stationary and personal air samples and in the urine samples of the technicians. CytoCare enables the preparation of cyclophosphamide with low levels of environmental contamination and product contamination and no measurable exposure of the technicians. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  15. Characterization and remediation of a mixed waste-contaminated site at Kirtland Air Force Base, New Mexico

    International Nuclear Information System (INIS)

    Johnston, J.W.; Thacker, M.S.; DeWitt, C.B.

    1997-01-01

    In the area of environmental restoration, one of the most challenging problems is the task of remediating mixed waste-contaminated sites. This paper discusses a successful Interim Corrective Measure (ICM) performed at a mixed waste-contaminated site on Kirtland Air Force Base (AFB) in Albuquerque, New Mexico. The site, known as RW-68, Cratering Area and Radium Dump/Slag Piles, was used during the late 1940s and early 1950s for the destruction and incineration of captured World War II aircraft. It contained 19 slag piles totaling approximately 150 tons of slag, ash, refractory brick, and metal debris. The piles were contaminated with radium-226 and RCRA-characteristic levels of heavy metals. Therefore, the piles were considered mixed waste. To eliminate the threat to human health and the environment, an ICM of removal, segregation, stabilization, and disposal was conducted from October through December 1996. Approximately 120 cubic yards (cu yds) of mixed waste, 188 cu yds of low-level radioactive-contaminated soil, 1 cu yd of low-level radioactive-contaminated debris, 5 cu yds of RCRA-characteristic hazardous waste, and 45 tons of nonhazardous debris were stabilized and disposed of during the ICM. To render the RCRA metals and radionuclides insoluble, stabilization was performed on the mixed and RCRA-characteristic waste streams. All stabilized material was subjected to TCLP analysis to verify it no longer exhibited RCRA-characteristic properties. Radiological and geophysical surveys were conducted concurrently with site remediation activities. These surveys provided real-time documentation of site conditions during each phase of the ICM and confirmed successful cleanup of the site. The three radioactive waste streams, stabilized mixed waste, low-level radioactive-contaminated soil, and low-level radioactive-contaminated debris, were disposed of at the Envirocare low-level radioactive disposal facility

  16. A review of centrifugal testing of gasoline contamination and remediation.

    Science.gov (United States)

    Meegoda, Jay N; Hu, Liming

    2011-08-01

    Leaking underground storage tanks (USTs) containing gasoline represent a significant public health hazard. Virtually undetectable to the UST owner, gasoline leaks can contaminate groundwater supplies. In order to develop remediation plans one must know the extent of gasoline contamination. Centrifugal simulations showed that in silty and sandy soils gasoline moved due to the physical process of advection and was retained as a pool of free products above the water table. However, in clayey soils there was a limited leak with lateral spreading and without pooling of free products above the water table. Amount leaked depends on both the type of soil underneath the USTs and the amount of corrosion. The soil vapor extraction (SVE) technology seems to be an effective method to remove contaminants from above the water table in contaminated sites. In-situ air sparging (IAS) is a groundwater remediation technology for contamination below the water table, which involves the injection of air under pressure into a well installed into the saturated zone. However, current state of the art is not adequate to develop a design guide for site implementation. New information is being currently generated by both centrifugal tests as well as theoretical models to develop a design guide for IAS. The petroleum contaminated soils excavated from leaking UST sites can be used for construction of highway pavements, specifically as sub-base material or blended and used as hot or cold mix asphalt concrete. Cost analysis shows that 5% petroleum contaminated soils is included in hot or cold mix asphalt concrete can save US$5.00 production cost per ton of asphalt produced.

  17. A Review of Centrifugal Testing of Gasoline Contamination and Remediation

    Directory of Open Access Journals (Sweden)

    Jay N. Meegoda

    2011-08-01

    Full Text Available Leaking underground storage tanks (USTs containing gasoline represent a significant public health hazard. Virtually undetectable to the UST owner, gasoline leaks can contaminate groundwater supplies. In order to develop remediation plans one must know the extent of gasoline contamination. Centrifugal simulations showed that in silty and sandy soils gasoline moved due to the physical process of advection and was retained as a pool of free products above the water table. However, in clayey soils there was a limited leak with lateral spreading and without pooling of free products above the water table. Amount leaked depends on both the type of soil underneath the USTs and the amount of corrosion. The soil vapor extraction (SVE technology seems to be an effective method to remove contaminants from above the water table in contaminated sites. In-situ air sparging (IAS is a groundwater remediation technology for contamination below the water table, which involves the injection of air under pressure into a well installed into the saturated zone. However, current state of the art is not adequate to develop a design guide for site implementation. New information is being currently generated by both centrifugal tests as well as theoretical models to develop a design guide for IAS. The petroleum contaminated soils excavated from leaking UST sites can be used for construction of highway pavements, specifically as sub-base material or blended and used as hot or cold mix asphalt concrete. Cost analysis shows that 5% petroleum contaminated soils is included in hot or cold mix asphalt concrete can save US$5.00 production cost per ton of asphalt produced.

  18. Fungal contamination in hospital environments.

    Science.gov (United States)

    Perdelli, F; Cristina, M L; Sartini, M; Spagnolo, A M; Dallera, M; Ottria, G; Lombardi, R; Grimaldi, M; Orlando, P

    2006-01-01

    To assess the degree of fungal contamination in hospital environments and to evaluate the ability of air conditioning systems to reduce such contamination. We monitored airborne microbial concentrations in various environments in 10 hospitals equipped with air conditioning. Sampling was performed with a portable Surface Air System impactor with replicate organism detection and counting plates containing a fungus-selective medium. The total fungal concentration was determined 72-120 hours after sampling. The genera most involved in infection were identified by macroscopic and microscopic observation. The mean concentration of airborne fungi in the set of environments examined was 19 +/- 19 colony-forming units (cfu) per cubic meter. Analysis of the fungal concentration in the different types of environments revealed different levels of contamination: the lowest mean values (12 +/- 14 cfu/m(3)) were recorded in operating theaters, and the highest (45 +/- 37 cfu/m(3)) were recorded in kitchens. Analyses revealed statistically significant differences between median values for the various environments. The fungal genus most commonly encountered was Penicillium, which, in kitchens, displayed the highest mean airborne concentration (8 +/- 2.4 cfu/m(3)). The percentage (35%) of Aspergillus documented in the wards was higher than that in any of the other environments monitored. The fungal concentrations recorded in the present study are comparable to those recorded in other studies conducted in hospital environments and are considerably lower than those seen in other indoor environments that are not air conditioned. These findings demonstrate the effectiveness of air-handling systems in reducing fungal contamination.

  19. Radiation protection at the RA Reactor in 1985, Part -2, Annex 2b, Environmental Radioactivity control, Control of air contamination

    International Nuclear Information System (INIS)

    Patic, D.; Smiljanic, R.; Zaric, M.; Savic, Z.; Ristic, D.

    1985-01-01

    During the period from November 1984 - November 1985, within the radioactivity control on the Vinca Institute site air contamination radioactive aerosol contents was measured. Control was done on 4 measuring stations, two in the Institute and two locations in the direction of wind i.e. Belgrade, 2 km and 7 km away from the Institute respectively. This position of the measuring locations enables control of radiation safety of the Institute, as well as environment of Belgrade taking into account the existence of the reactor and other possible contaminants in the Institute [sr

  20. Cleaning products and air fresheners: exposure to primary and secondary air pollutants

    DEFF Research Database (Denmark)

    Nazaroff, W.; Weschler, Charles J.

    2004-01-01

    Building occupants, including cleaning personnel, are exposed to a wide variety of airborne chemicals when cleaning agents and air fresheners are used in buildings. Certain of these chemicals are listed by the state of California as toxic air contaminants (TACs) and a subset of these are regulated...... by the US federal government as hazardous air pollutants (HAPs). California's Proposition 65 list of species recognized as carcinogens or reproductive toxicants also includes constituents of certain cleaning products and air fresheners. In addition, many cleaning agents and air fresheners contain chemicals...... that can react with other air contaminants to yield potentially harmful secondary products. For example, terpenes can react rapidly with ozone in indoor air generating many secondary pollutants, including TACs such as formaldehyde. Furthermore, ozone-terpene reactions produce the hydroxyl radical, which...

  1. Air Filtration as Protection against Fouling of Ventilation and Air Conditioning Units

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Lajčíková, Ariana

    2005-01-01

    Currently, air filters are one of the most critical components of air treatment systems as they decontaminate the air delivered to living space. During the operation, however, the level of harmful surface deposits increases, and at certain times, an uncleaned filter can itself become a source...... of undesirable contaminents influencing negatively the IAQ of a living space. This is the phenomenon that has been a subject of the current research. The article presents a new, alternative view on indoor air contaminents and filtration requirements. It describes alternative means of filtration and assesses...... issues of inadequate maintenance and/or long term use of applied air filters. An experimental method of evealuating the air quality by means of chemical analysis and state-of-the-art spectrometer is also described....

  2. Organochlorine pesticides in surface soils from obsolete pesticide dumping ground in Hyderabad City, Pakistan: contamination levels and their potential for air-soil exchange.

    Science.gov (United States)

    Alamdar, Ambreen; Syed, Jabir Hussain; Malik, Riffat Naseem; Katsoyiannis, Athanasios; Liu, Junwen; Li, Jun; Zhang, Gan; Jones, Kevin C

    2014-02-01

    This study was conducted to examine organochlorine pesticides (OCPs) contamination levels in the surface soil and air samples together with air-soil exchange fluxes at an obsolete pesticide dumping ground and the associated areas from Hyderabad City, Pakistan. Among all the sampling sites, concentrations of OCPs in the soil and air samples were found highest in obsolete pesticide dumping ground, whereas dominant contaminants were dichlorodiphenyltrichloroethane (DDTs) (soil: 77-212,200 ng g(-1); air: 90,700 pg m(-3)) and hexachlorocyclohexane (HCHs) (soil: 43-4,090 ng g(-1); air: 97,400 pg m(-3)) followed by chlordane, heptachlor and hexachlorobenzene (HCB). OCPs diagnostic indicative ratios reflect historical use as well as fresh input in the study area. Moreover, the air and soil fugacity ratios (0.9-1.0) at the dumping ground reflecting a tendency towards net volatilization of OCPs, while at the other sampling sites, the fugacity ratios indicate in some cases deposition and in other cases volatilization. Elevated concentrations of DDTs and HCHs at pesticide dumping ground and its surroundings pose potential exposure risk to biological organisms, to the safety of agricultural products and to the human health. Our study thus emphasizes the need of spatio-temporal monitoring of OCPs at local and regional scale to assess and remediate the future adverse implications. © 2013.

  3. Assessment of correlation between leucocytes migration reaction and level of inhalation exposure to priority air contaminants

    Directory of Open Access Journals (Sweden)

    L.B. Masnavieva

    2017-09-01

    Full Text Available Nowadays each forth person suffers from allergic diseases and allergic pathology prevalence is constantly growing. There are compounds in air which are generally toxic, or have sensitizing or allergenic effects on a body. For example, we can name formaldehyde and nitrogen dioxide. Our research goal was to reveal a correlation between reaction of leucocytes migration inhibition to formaldehyde and level of inhalation exposure to the examined chemicals. We examined 410 teenag-ers who permanently lived in industrial cities in Irkutsk region. We studied individual load as per formaldehyde and nitrogen dioxide. We estimated eosinophils content in nasal mucus and determined indexes of leucocytes migration inhibition to for-maldehyde. Index of formaldehyde effects danger was detected to exceed 1 in 54% teenagers. The greatest value of danger coefficient in terms of exposure to this substance was equal to 1.76. anger index in terms of exposure to nitrogen dioxide didn't exceed 0.7 in the examined teenagers. The obtained results prove that inhalation formaldehyde load influences teenag-ers from industrial centers as sensitization to this substance evolves in them. We found out that true inhibition reaction of leucocytes migration in a reaction with formaldehyde more frequently occurred in people with danger index in terms of ex-posure to this substance being lower than 1. We obtained models which described correlation between level of sensitization to formaldehyde and a number of eosinophils in nasal mucus and it allowed us to detect that sensitization depended on the examined contaminants content in the air. The sensitization to chemical air contaminants which we revealed in teenagers calls for necessary activities aimed at reducing risks of allergenic pathology evolvement in them.

  4. Cat serum contamination by phthalates, PCBs, and PBDEs versus food and indoor air.

    Science.gov (United States)

    Braouezec, Clélie; Enriquez, Brigitte; Blanchard, Martine; Chevreuil, Marc; Teil, Marie-Jeanne

    2016-05-01

    A wide variety of endocrine disrupting compounds (EDCs) with semi-volatile properties are emitted to indoor air and, thus, humans might get exposed to these compounds. Pet cats spend the major part of their lifetime at home and might integrate indoor contamination so that they could mirror the human exposure. Three classes of EDCs, polybromodiphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and phthalates (PAEs), were simultaneously considered and quantified in the serum of cats (Felis silvestris catus) living in the Paris area (France). The main compound concentrations by decreasing importance order were as follows: for PAEs, di-n-butyl phthalate (79,900 ng L(-1)) next di-iso-butyl phthalate (53,200 ng L(-1)), di-iso-nonyl phthalate (43,800 ng L(-1)), and di-ethylhexyl phthalate (32,830 ng L(-1)); for PCBs, CB153 (1378 ng L(-1)) next CB52 (509 ng L(-1)), CB101 (355 ng L(-1)), CB110 (264 ng L(-1)), and CB118 (165 ng L(-1)); and for PBDEs, BDE 153/154 (35 ng L(-1)) next BDE47 (10.7 ng L(-1)). Total serum concentrations as mean ± standard deviation were 107 ± 98 μg L(-1) for ∑9PAEs, 2799 ± 944 ng L(-1) for ∑19PCBs, and 56 ± 21 ng L(-1) for ∑9BDEs. The three chemical groups were found in cat food: 0.088 ng g(-1) for ∑9BDEs, 1.7 ng g(-1) for ∑19PCBs, and 2292 ng g(-1) for ∑9PAEs and in indoor air: 0.063 ng m(-3) for ∑9BDEs, 1.5 ng m(-3) for ∑19PCBs, and 848 ng m(-3) for ∑9PAEs. Contaminant intake by food ingestion was approximately 100-fold higher than that by indoor air inhalation.

  5. Assessing indoor air quality in New York City nail salons.

    Science.gov (United States)

    Pavilonis, Brian; Roelofs, Cora; Blair, Carly

    2018-05-01

    Nail salons are an important business and employment sector for recent immigrants offering popular services to a diverse range of customers across the United States. However, due to the nature of nail products and services, salon air can be burdened with a mix of low levels of hazardous airborne contaminants. Surveys of nail technicians have commonly found increased work-related symptoms, such as headaches and respiratory irritation, that are consistent with indoor air quality problems. In an effort to improve indoor air quality in nail salons, the state of New York recently promulgated regulations to require increased outdoor air and "source capture" of contaminants. Existing indoor air quality in New York State salons is unknown. In advance of the full implementation of the rules by 2021, we sought to establish reliable and usable baseline indoor air quality metrics to determine the feasibility and effectiveness of the requirement. In this pilot study, we measured total volatile organic compounds (TVOC) and carbon dioxide (CO 2 ) concentrations in 10 nail salons located in New York City to assess temporal and spatial trends. Within salon contaminant variation was generally minimal, indicating a well-mixed room and similar general exposure despite the task being performed. TVOC and CO 2 concentrations were strongly positively correlated (ρ = 0.81; p air quality for the purposes of compliance with the standard. An almost tenfold increase in TVOC concentration was observed when the American National Standards Institute/American Society of Heating, Refrigerating and Air-Conditioning Engineers (ANSI/ASHRAE) target CO 2 concentration of 850 ppm was exceeded compared to when this target was met.

  6. Salivary contamination during bonding procedures with a one-bottle adhesive system.

    Science.gov (United States)

    Fritz, U B; Finger, W J; Stean, H

    1998-09-01

    The effect of salivary contamination of enamel and dentin on bonding efficacy of an experimental one-bottle resin adhesive was investigated. The adhesive was a light-curing urethane dimethacrylate/hydroxyethyl methacrylate/4-methacryloxyethyl trimellitate anhydride mixture dissolved in acetone. Evaluation parameters were shear bond strength and marginal gap width in a dental cavity. Apart from a control group without contamination (group 1), etched enamel and dentin were (2) contaminated with saliva and air dried; (3) contaminated, rinsed, and blot dried; (4) coated with adhesive, contaminated, rinsed, and blot dried; (5) coated with adhesive, light cured, contaminated, rinsed, and air dried; or (6) treated as in group 5, with additional adhesive application after air drying. There was no negative effect in groups 3 and 4, compared with control. Air drying after salivary contamination (group 2) resulted in low shear bond strengths and wide marginal gaps. Contamination of the cured adhesive layer (groups 5 and 6) had no adverse effect on enamel shear bond strengths, but resulted in 50% reduced dentin shear bond strengths and wide marginal gaps. The one-bottle adhesive system is relatively insensitive to salivary contamination, provided that the contamination occurs prior to light curing of the adhesive and is carefully rinsed and blot dried. Salivary contact after adhesive curing must be avoided.

  7. Contamination due to radioactive materials

    International Nuclear Information System (INIS)

    Woodhead, D.S.

    1984-01-01

    The peaceful exploitation of radioactivity and the expansion of the nuclear power programme ensure that the disposal of radioactive wastes will cause contamination of the marine environment in the foreseeable future. The exposure of marine organisms to radioactivity from wastes has been studied in depth and related to exposure to natural background radiation. Concentrations of natural radionuclides and those from marine waste disposal have been measured at various stations in the oceans and seas around the world. The fate of radionuclides at four representative sites has been studied and the concentrations of radionuclides in oysters, porphyra, plaice in the Windscale discharge area have been measured. The extent of human exposure, particularly with reference to seafood consumption in local fishing communities, has been assessed. Effects of radiation on developing fish embryos and eggs and genetic radiation effects in aquatic organisms has been studied. The above studies reveal that the controls applied to the discharge of radioactive wastes to limit hazards to humans also provide adequate protection for populations of marine organisms. (U.K.)

  8. Prevention of airborne contamination and cross-contamination in germ-free mice by laminar flow

    NARCIS (Netherlands)

    Waaij, D. van der; Andres, A.H.

    1971-01-01

    The efficacy of horizontal and vertical laminar flow units (equipped with high-efficiency air filters) in the prevention of cross-contamination between cages and of contamination from outside has been demonstrated. With germ-free mice and using germ-free standard techniques for sterilization and for

  9. Air conditioning systems to clean radioactive air

    International Nuclear Information System (INIS)

    Ganz, G.

    1987-01-01

    The author reports a study by the Institutes fuer Klimatechnik and Umweltschutz Giessen that shows that air conditioning systems not only make the atmosphere more comfortable, they also extract dust particles. This cleaning action is also valid for radioactively contaminated air. (G.T.H./Auth.)

  10. Death from Barotrauma Due to Compressed Air: A Medico-legal Analysis.

    Science.gov (United States)

    Giugliano, Pasquale; Massoni, Francesco; Crisci, Antonello; Ricci, Serafino

    2016-11-01

    Lesions of the digestive tract due to barotrauma resulting from compressed air application are not common, are rarely lethal, and largely affect the sigmoid and descending colon. Moreover, their pathogenic mechanism is a topic of discussion because these lesions have multiple characteristics. Here, the authors describe an autoptic case of death from lesions of the ascending and transverse segments, with perforations and bleeding suffusions as well as ischemic areas covered the colonic wall that was extremely thinned, congested, and hemorrhagic, with considerable flattening leading to disappearance of the mucosal folds and with numerous petechial hemorrhages. The pathological framework of lung congestion made it possible to identify the mechanism responsible for this death as depletion of the heart's pumping function, which contributed significantly to the acute respiratory failure due to respiratory distress as well as to reduced mobility of the diaphragm due to intestinal distension. Acute heart failure played an important role in this death. © 2016 American Academy of Forensic Sciences.

  11. Status on contamination monitoring in China

    Energy Technology Data Exchange (ETDEWEB)

    Quanlu, Gou [China Institute for Radiation Protection, Taiyuan (China)

    1997-06-01

    The air contaminated by radioactive materials in nuclear enterprises and radioactive workplaces and forming radioactive aerosol and the leakage of radioactive materials in operation cause internal exposure damage in workers. It is necessary and important to monitor air and surface contaminations for the health of public and workers, and for protecting environment. At present, many institutes engage in the studies on surface contamination monitoring in China, and the government has formulated the control limits of surface contamination in the Regulations of Radiation Protection. The monitors for surface contamination monitoring are almost home-made. The methods being used often are smear test and placing surface sample test. Scintillation counters, semiconductor detectors and G-M counters have been used for detecting alpha surface contamination. Plastic scintillator meters and thin wall/window G-M counters are used for beta surface contamination. Special detectors have been designed for monitoring low energy nuclides. The status of airborne contamination monitoring in China is reported. As the studies for future, the development of the surface contamination monitor for low energy beta nuclides, especially H-3, the monitoring methods for the special shapes of surfaces, the technology of decontamination and the calibration method and device for on-line radioactive aerosol continuous monitors are taken up. (K.I.)

  12. Long-Term Effects of Legacy Copper Contamination on Microbial Activity and Soil Physical Properties

    DEFF Research Database (Denmark)

    Arthur, Emmanuel; Møldrup, Per; Holmstrup, Martin

    Soils heavily contaminated with copper (Cu) are considered unsuitable for agricultural use due to adverse impacts on microbial activity, soil physical properties, and direct toxicity to crops. This study investigated effects of Cu pollution from timber preservation activities between 1911 and 1924...... on soil micro-organisms and subsequent effects on physical properties of a sandy loam soil. Tillage operations over the last 70 years have caused spreading of the initially localized contamination and have created a Cu concentration gradient from 20 to 3800 mg kg-1 across an agricultural field in Hygum......, Denmark. Soil samples obtained from the fallow field were used to determine total microbial activity using fluorescein diacetate and dehydrogenase assays. The physical properties measured included water-dispersible clay, bulk density, air permeability and air-filled porosity. Significant differences...

  13. Dynamics of natural rehabilitation of Cs 137 soil contamination at the late stage due to the Chernobyl NPP accident

    International Nuclear Information System (INIS)

    Germenchuk, M.G.; Zhukova, O.M.; Tretyakevich, S.S.; Koreniak, A.P.

    2006-01-01

    As a result of Chernobyl NPP accident, the greatest quantity of radionuclides has fallen on the territory of Belarus, therefore 23% of the territory have been contaminated with Cs 137 with a level exceeding 37 kBq/m 2 on the total area of 46.45 thousand km 2 that has led to the exclusion from an agricultural rotation 2,64 thousand km 2 of farmland. Now, external gamma-radiation on the territory of Belarus is formed due to 'Chernobyl' and 'global' (caused by tests of the nuclear weapon) radioactive losses. A contribution is also done by natural radioactivity. To-date, due to natural radionuclides decay a radiation conditions in zones of Chernobyl contamination has been stabilized and main dose formation radionuclide is Cs 137. In conformity with clause 4 of the Law 'On legal regime of territories, exposed to radioactive contamination after the Chernobyl nuclear power plant accident' the territory of the Republic of Belarus is divided into zones depending on radioactive contamination of soil by radionuclides and sizes of a mean-annual effective dose. The estimation of a dose of external irradiation demands establishment of interrelation between the level of soil contamination with radionuclides and created by them exposure dose power (EDP). As a quantitative size of this link, a normalized on density of contamination of soil Cs 137 EDP at 1 m height is most used which is formed by all radionuclides and is called the transition coefficient 'density of contamination of soil Cs 137 - EDP'. In the given work, empirical values of factor of transition on items of supervision of a network of the radiation monitoring, registered in National System of Environment Monitoring (NSEM) Republic of Belarus have been determined. The carried out data analysis for 1993-2003 showed, that: Value of transition factor within 10 years have changed from 0,054 μR/h/kBq·m 2 to 0,041 μR/h/kBq·m 2 (with 2,0 μR/h/Ci·km 2 to 1,5 μR/h/Ci·km 2 ). Decrease of EDP from 'Chernobyl' radioactive

  14. Applicability of the Environmental Relative Moldiness Index for Quantification of Residential Mold Contamination in an Air Pollution Health Effects Study

    Directory of Open Access Journals (Sweden)

    Ali Kamal

    2014-01-01

    Full Text Available The Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS investigated the impact of exposure to traffic-related air pollution on the respiratory health of asthmatic children in Detroit, Michigan. Since indoor mold exposure may also contribute to asthma, floor dust samples were collected in participants homes (n=112 to assess mold contamination using the Environmental Relative Moldiness Index (ERMI. The repeatability of the ERMI over time, as well as ERMI differences between rooms and dust collection methods, was evaluated for insights into the application of the ERMI metric. ERMI values for the standard settled floor dust samples had a mean ± standard deviation of 14.5±7.9, indicating high levels of mold contamination. ERMI values for samples collected from the same home 1 to 7 months apart (n=52 were consistent and without systematic bias. ERMI values for separate bedroom and living room samples were highly correlated (r=0.69, n=66. Vacuum bag dust ERMI values were lower than for floor dust but correlated (r=0.58, n=28. These results support the use of the ERMI to evaluate residential mold exposure as a confounder in air pollution health effects studies.

  15. Novel atmospheric pressure plasma device releasing atomic hydrogen: reduction of microbial-contaminants and OH radicals in the air

    International Nuclear Information System (INIS)

    Nojima, Hideo; Park, Rae-Eun; Kwon, Jun-Hyoun; Suh, Inseon; Jeon, Junsang; Ha, Eunju; On, Hyeon-Ki; Kim, Hye-Ryung; Choi, KyoungHui; Lee, Kwang-Hee; Seong, Baik-Lin; Jung, Hoon; Kang, Shin Jung; Namba, Shinichi; Takiyama, Ken

    2007-01-01

    A novel atmospheric pressure plasma device releasing atomic hydrogen has been developed. This device has specific properties such as (1) deactivation of airborne microbial-contaminants, (2) neutralization of indoor OH radicals and (3) being harmless to the human body. It consists of a ceramic plate as a positive ion generation electrode and a needle-shaped electrode as an electron emission electrode. Release of atomic hydrogen from the device has been investigated by the spectroscopic method. Optical emission of atomic hydrogen probably due to recombination of positive ions, H + (H 2 O)n, generated from the ceramic plate electrode and electrons emitted from the needle-shaped electrode have been clearly observed in the He gas (including water vapour) environment. The efficacy of the device to reduce airborne concentrations of influenza virus, bacteria, mould fungi and allergens has been evaluated. 99.6% of airborne influenza virus has been deactivated with the operation of the device compared with the control test in a 1 m 3 chamber after 60 min. The neutralization of the OH radical has been investigated by spectroscopic and biological methods. A remarkable reduction of the OH radical in the air by operation of the device has been observed by laser-induced fluorescence spectroscopy. The cell protection effects of the device against OH radicals in the air have been observed. Furthermore, the side effects have been checked by animal experiments. The harmlessness of the device has been confirmed

  16. Mixed function oxidase induction in Carcinus aestuarii. Field and experimental studies for the evaluation of toxicological risk due to Mediterranean contaminants

    International Nuclear Information System (INIS)

    Fossi, M.C.; Savelli, C.; Casini, S.

    1998-01-01

    The aim of this study was to test and validate the use of mixed function oxidase (MFO) induction, in the crab Carcinus aestuarii, under experimental and field studies, for the evaluation of toxicological risk due to the main contaminants in the Mediterranean. Two different experiments were performed in the laboratory in order to identify the most suitable tissues for MFO studies in this species and the most suitable and sensitive MFO responses for evaluating chemical stress due to lipophilic contaminants. In order to validate this methodology in the field, two studies were carried out in two polluted Mediterranean lagoons: a transplant experiment in Orbetello Lagoon and an in situ experiment in Venice Lagoon. The following MFO responses were investigated in hepatopancres and gills of the crabs: ethoxyresorufin-O-deethylase (EROD) and benzo(a)pyrene hydroxylase (BPH) activities and reductase enzyme activities. The main results can be summarised as follows: midgut-gland and gills were confirmed to be useful for MFO tests; BPH activity in hepatopancreas was the most suitable and sensitive MFO response for evaluating chemical stress due to Mediterranean contaminants in laboratory and field studies; in the Orbetello Lagoon experiment, a statistically significant difference was found between sites subject to different human impact. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)

  17. Ambient air monitoring for mercury around an industrial complex

    International Nuclear Information System (INIS)

    Turner, R.R.; Bogle, M.A.

    1991-01-01

    Public and scientific interest in mercury in the environment has experienced an upsurge in the past few years, due in part to disclosures that fish in certain waters, which have apparently received no direct industrial discharges, were contaminated with mercury. Atmospheric releases of mercury from fossil fuel energy generators, waste incinerators and other industrial sources are suspected to be contributing to this problem. Such releases can be evaluated in a variety of ways, including stack sampling, material balance studies, soil/vegetation sampling and ambient air monitoring. Ambient air monitoring of mercury presents significant challenges because of the typically low concentrations (ng/m 3 ) encountered and numerous opportunities for sample contamination or analyte loss. There are presently no EPA-approved protocols for such sampling and analysis. Elemental mercury was used in large quantities at a nuclear weapons plant in Oak Ridge, Tennessee between 1950 and 1963 in a process similar to chloralkali production. Soil and water contamination with mercury were known to be present at the facility but outdoor ambient air contamination had not been investigated prior to the present study. In addition, one large building still contained original process equipment with mercury residuals. The objectives of this study were to establish a monitoring network for mercury which could be used (1) to demonstrate whether or not human health and the environment was being protected, and (2), to establish a decommissioning activities at the facility

  18. Degradation of Nafion due to contamination from Swelling-Dehydration Cycles

    DEFF Research Database (Denmark)

    Andersen, Shuang Ma; Morgen, Per; Skou, Eivind Morten

    degradation in direct methanol fuel cells (DMFCs), where liquid water has direct contact with the electrolyte. An ex-situ experiment was established with swelling-dehydration cycles on the membrane. However, formation of sulfonic anhydride was not detected during the entire treatment; instead contamination...... from traces calcium in the nominally pure water used in the experiment was found to be the primary reason for the deterioration of the membrane properties. Trace impurities in the liquid methanol feed in DMFC may therefore represent an important contamination source....

  19. Effects of contaminants on reproductive success of aquatic birds nesting at Edwards Air Force Base, California

    Science.gov (United States)

    Hothem, R.L.; Crayon, J.J.; Law, M.A.

    2006-01-01

    Contamination by organochlorine pesticides (OCs), polychlorinated biphenyls, metals, and trace elements at Edwards Air Force Base (EAFB), located in the Mojave Desert, could adversely affect nesting aquatic birds, especially at the sewage lagoons that comprise Piute Ponds. Estimates of avian reproduction, in conjunction with analyses of eggs and avian foods for contaminant residues, may indicate the potential for negative effects on avian populations. From 1996 to 1999, we conducted studies at the Piute Ponds area of EAFB to evaluate the impacts of contaminants on nesting birds. Avian reproduction was evaluated in 1999. Eggs were collected for chemical analyses in 1996 and 1999, and African clawed frogs (Xenopus laevis), a likely food source, were collected for chemical analyses in 1998. Avian species occupying the higher trophic levels-black-crowned night-heron (Nycticorax nycticorax), white-faced ibis (Plegadis chihi), and American avocet (Recurvirostra americana)-generally bioaccumulated higher concentrations of contaminants in their eggs. Reproductive success and egg hatchability of night-herons and white-faced ibises in the Piute Ponds were similar to results observed at other western colonies. Deformities were observed in only one embryo in this study, but concentrations of contaminants evaluated in this ibis embryo were considered insufficient to have caused the deformities. Because clawed frogs, a primary prey item for night-herons at Piute Ponds, had no detectable levels of any OCs, it is likely that OCs found in night-heron eggs were acquired from the wintering grounds rather than from EAFB. The presence of isomers of dichlorodiphenyltrichloroethane (DDT) in ibis eggs indicated recent exposure, but invertebrates used for food by ibises were not sampled at Piute Ponds, and conclusions about the source of OCs in ibis eggs could not be made. Concentrations of contaminants in random and failed eggs of individual species were not different, and we concluded

  20. Nitric oxide contamination of hospital compressed air improves gas exchange in patients with acute lung injury.

    Science.gov (United States)

    Tan, P Seow Koon; Genc, F; Delgado, E; Kellum, J A; Pinsky, M R

    2002-08-01

    We tested the hypothesis that NO contamination of hospital compressed air also improves PaO(2) in patients with acute lung injury (ALI) and following lung transplant (LTx). Prospective clinical study. Cardiothoracic intensive care unit. Subjects following cardiac surgery (CABG, n=7); with ALI (n=7), and following LTx (n=5). Four sequential 15-min steps at a constant FiO(2) were used: hospital compressed air-O(2) (H1), N(2)-O(2) (A1), repeat compressed air-O(2) (H2), and repeat N(2)-O(2) (A2). NO levels were measured from the endotracheal tube. Cardiorespiratory values included PaO(2) were measured at the end of each step. FiO(2) was 0.46+/-0.05, 0.53+/-0.15, and 0.47+/-0.06 (mean+/-SD) for three groups, respectively. Inhaled NO levels during H1 varied among subjects (30-550 ppb, 27-300 ppb, and 5-220 ppb, respectively). Exhaled NO levels were not detected in 4/7 of CABG (0-300 ppb), 3/6 of ALI (0-140 ppb), and 3/5 of LTx (0-59 ppb) patients during H1, whereas during A1 all but one patient in ALI and three CABG patients had measurable exhaled NO levels (P<0.05). Small but significant decreases in PaO(2) occurred for all groups from H1 to A1 and H2 to A2 (132-99 Torr and 128-120 Torr, P <0.01, respectively). There was no correlation between inhaled NO during H1 and exhaled NO during A1 or the change in PaO(2) from H1 to A1. Low-level NO contamination improves PaO(2) in patients with ALI and following LTx.

  1. A Breath of Fresh Air: Addressing Indoor Air Quality

    Science.gov (United States)

    Palliser, Janna

    2011-01-01

    Indoor air pollution refers to "chemical, biological, and physical contamination of indoor air," which may result in adverse health effects (OECD 2003). The causes, sources, and types of indoor air pollutants will be addressed in this article, as well as health effects and how to reduce exposure. Learning more about potential pollutants in home…

  2. Mold contamination of automobile air conditioner systems.

    Science.gov (United States)

    Kumar, P; Lopez, M; Fan, W; Cambre, K; Elston, R C

    1990-02-01

    Eight cars belonging to patients who were found to have exacerbation of allergic rhinitis and bronchial asthma after turning on the air conditioner in their cars were examined. Mold concentrations inside the passenger compartment with the a/c turned off and at different climate control settings were lower than concentrations in the outside air. After turning on the air conditioner to "Max", cultures obtained at various intervals revealed that mold concentrations decreased significantly with time. Furthermore, placement of a filter at the portal of entry of outside air significantly reduced the mold concentration in the passenger compartment.

  3. Contamination levels observed on the Belgian territory subsequent to the Chernobyl accident

    Energy Technology Data Exchange (ETDEWEB)

    Hoof, J van [State University of Ghent, Faculty of Veterinary Medicine, Gent (Belgium); Maghuin-Rogister, G [Universite de Liege, Brussels (Belgium)

    1986-07-01

    Contaminated air masses reached the Belgian territory from the South during the night of the first to the second of May. At this stage however the origin of this contamination was already identified through earlier observations over the Scandinavian area and the subsequent message about the reactor accident at the Chernobyl site. Later on radioactive clouds were also detected over the central part of Europe, demonstrating the persistent nature of the emissions from the damaged reactor. Consequently the influence on the Belgian territory was not unexpected. The authorities called on the SCK/CEN at Mol, and the IRE at Fleurus to assist the IHE at Brussels in collecting the necessary data for judging the radiological situation in our country. The KMI/IRM at Brussels was involved for the follow-up of meteorological conditions and analysis of the trajectories of contaminated air masses. Early detection possibilities for the arrival of contaminated air were provided by the continuous environmental monitoring apparatus for ambient {gamma}-dose rate or for {beta} activity of airborne dust, available at nuclear institutions and nuclear power plants. On detection of enhanced air radioactivity, the sampling period of routine air dust samplers was significantly shortened to allow for the hour to hour renewal of data for gross {beta} activity as a general indication of the evolution of the air contamination. {gamma}-spectrometric analysis of those filters provided the necessary data for the estimation of the dose equivalent due to inhalation. Ground deposition data at the location of the participating institutions were obtained by daily analysis of the radioactivity contents of a water container collecting both dust and rainwater. Field gamma spectrometry was used later on at a number of other locations, to estimate the integrated ground deposition of radioactivity and its distribution over the country. As the grazing season was just started or was about to be started in the

  4. Contamination levels observed on the Belgian territory subsequent to the Chernobyl accident

    International Nuclear Information System (INIS)

    Hoof, J. van; Maghuin-Rogister, G.

    1986-01-01

    Contaminated air masses reached the Belgian territory from the South during the night of the first to the second of May. At this stage however the origin of this contamination was already identified through earlier observations over the Scandinavian area and the subsequent message about the reactor accident at the Chernobyl site. Later on radioactive clouds were also detected over the central part of Europe, demonstrating the persistent nature of the emissions from the damaged reactor. Consequently the influence on the Belgian territory was not unexpected. The authorities called on the SCK/CEN at Mol, and the IRE at Fleurus to assist the IHE at Brussels in collecting the necessary data for judging the radiological situation in our country. The KMI/IRM at Brussels was involved for the follow-up of meteorological conditions and analysis of the trajectories of contaminated air masses. Early detection possibilities for the arrival of contaminated air were provided by the continuous environmental monitoring apparatus for ambient γ-dose rate or for Β activity of airborne dust, available at nuclear institutions and nuclear power plants. On detection of enhanced air radioactivity, the sampling period of routine air dust samplers was significantly shortened to allow for the hour to hour renewal of data for gross Β activity as a general indication of the evolution of the air contamination. γ-spectrometric analysis of those filters provided the necessary data for the estimation of the dose equivalent due to inhalation. Ground deposition data at the location of the participating institutions were obtained by daily analysis of the radioactivity contents of a water container collecting both dust and rainwater. Field gamma spectrometry was used later on at a number of other locations, to estimate the integrated ground deposition of radioactivity and its distribution over the country. As the grazing season was just started or was about to be started in the following days for

  5. Measurement of HOx· production rate due to radon decay in air

    International Nuclear Information System (INIS)

    Ding, Huiling.

    1993-08-01

    Radon in indoor air may cause the exposure of the public to excessive radioactivity. Radiolysis of water vapor in indoor air due to radon decay could produce (·OH and HO 2 ·) that may convert atmospheric constituents to compounds of lower vapor pressure. These lower vapor pressure compounds might then nucleate to form new particles in the indoor atmosphere. Chemical amplification was used to determine HO x · production rate in indoor air caused by radon decay. Average HO x · production rate was found to be (4.31±0.07) x 10 5 HO x · per Rn decay per second (Bq) 3.4 to 55.0% at 22C. This work provided G (HO x ·) -value, 7.86±0.13 No./100 eV in air by directly measuring [HO x ·] formed from the radiolysis procedure. This G value implies that HO x · produced by radon decay in air might be formed by multiple processes and may be result of positive ion-molecule reactions, primary radiolysis, and radical reactions. There is no obvious relation between HO x · production rate and relative humidity. A laser-induced fluorescence (LIF) system has been used for ·OH production rate measurement; it consists of an excimer laser, a dye laser, a frequency doubler, a gaseous fluorescence chamber, and other optical and electronic parts. This system needs to be improved to eliminate the interferences of light scattering and artificial ·OH produced from the photolysis of O 3 /H 2 O

  6. Method, system and apparatus for monitoring and adjusting the quality of indoor air

    Science.gov (United States)

    Hartenstein, Steven D.; Tremblay, Paul L.; Fryer, Michael O.; Hohorst, Frederick A.

    2004-03-23

    A system, method and apparatus is provided for monitoring and adjusting the quality of indoor air. A sensor array senses an air sample from the indoor air and analyzes the air sample to obtain signatures representative of contaminants in the air sample. When the level or type of contaminant poses a threat or hazard to the occupants, the present invention takes corrective actions which may include introducing additional fresh air. The corrective actions taken are intended to promote overall health of personnel, prevent personnel from being overexposed to hazardous contaminants and minimize the cost of operating the HVAC system. The identification of the contaminants is performed by comparing the signatures provided by the sensor array with a database of known signatures. Upon identification, the system takes corrective actions based on the level of contaminant present. The present invention is capable of learning the identity of previously unknown contaminants, which increases its ability to identify contaminants in the future. Indoor air quality is assured by monitoring the contaminants not only in the indoor air, but also in the outdoor air and the air which is to be recirculated. The present invention is easily adaptable to new and existing HVAC systems. In sum, the present invention is able to monitor and adjust the quality of indoor air in real time by sensing the level and type of contaminants present in indoor air, outdoor and recirculated air, providing an intelligent decision about the quality of the air, and minimizing the cost of operating an HVAC system.

  7. Lower operating cost due to compressed-air recirculation

    Energy Technology Data Exchange (ETDEWEB)

    Schauwecker, F

    1979-01-01

    Compressed air containing dirt and aggressive substances may cause damage in pipelines and pneumatic tools, equipment and systems. In consequence, operating costs can be greatly reduced by cleaning and recirculation of compressed air. Compressed-air driers are among the most common systems used for this purpose. Most of these driers are refrigeration driers; adsorption driers are less common. Refrigeration driers consist of a heat exchanger system, a separation system, and a power-controlled refrigerator. The water vapour concentration is proportional to the air temperature; for this reason, the pressure dew point should be as low as possible, i.e. about 1.5/sup 0/C.

  8. Radiation surveys in contaminated communities

    International Nuclear Information System (INIS)

    Knight, G.B.

    1977-01-01

    Radiation surveys of uranium contamination in Uranium City and Port Hope, Canada, are described. Samples of soil, water, and crops grown in contaminated soil and air in homes were analyzed for radon content. Following decontamination, measurements were made of γ exposure rates both inside and outside of buildings

  9. Uptake of Organic Contaminants from Soil into Vegetables and Fruits

    DEFF Research Database (Denmark)

    Trapp, Stefan; Legind, Charlotte Nielsen

    2011-01-01

    Contaminants may enter vegetables and fruits by several pathways: by uptake with soil pore water, by diffusion from soil or air, by deposition of soil or airborne particles, or by direct application. The contaminant-specific and plantspecific properties that determine the importance of these path......Contaminants may enter vegetables and fruits by several pathways: by uptake with soil pore water, by diffusion from soil or air, by deposition of soil or airborne particles, or by direct application. The contaminant-specific and plantspecific properties that determine the importance...... of these pathways are described in this chapter. A variety of models have been developed, specific for crop types and with steady-state or dynamic solutions. Model simulations can identify sensitive properties and relevant processes. Persistent, polar (log KOW ... particles, or from air. Volatile contaminants have a low potential for accumulation because they quickly escape to air. Experimental data are listed that support these model predictions, but underline also the high variability of accumulation under field conditions. Plant uptake predictions are uncertain...

  10. Electronic air cleaners and the indoor environment

    International Nuclear Information System (INIS)

    Krafthefer, B.

    1986-01-01

    The growing awareness over the quality of air in the indoor environment is driving the search for effective control methods for the contaminants of concern. Electronic air cleaners can control such pollutants as dust, pollen, tobacco smoke, radon decay products, and other particulates. This paper presents an examination of the various types of electronic air cleaners and their effects on indoor pollutants. It also examines the mechanism for contaminant removal, the relationship of the efficiency to the characteristics of the contaminant, and what type of contaminants can be controlled with the electronic air cleaner, with particular emphasis placed on the removal of radon decay products. From a study on radon product removal in residences, the electronic air cleaner was found to have an efficiency of up to 70%. Not only was there a reduction in the residential working level, but the fluctuations in the working level were also reduced. With this information, they can better understand how to solve the air treatment problem of the inhabited space. 17 references, 8 figures

  11. Experimental and Numerical Investigation of Effect of Air Stability on Exhaled Air Dispersion

    DEFF Research Database (Denmark)

    Xu, Chunwen; Gong, Guangcai; Nielsen, Peter Vilhelm

    2014-01-01

    studies. As the thermal stratification under displacement ventilation blocks the vertical movement of exhaled air, the exhaled contaminant may be trapped between temperature stratifications. As the dispersion of contaminant is closely related to the health of human indoors, the temperature structure...... was used for experimental study, and a numerical person was built to simulate the manikin. The velocity, temperature and concentration of tracer gas in exhaled air are affected by air stability to different degrees. The similarity of this effect among these parameters can also be observed through numerical...

  12. Assessment of air and water contamination by disinfection by-products at 41 indoor swimming pools.

    Science.gov (United States)

    Tardif, Robert; Catto, Cyril; Haddad, Sami; Simard, Sabrina; Rodriguez, Manuel

    2016-07-01

    This study was aimed at assessing the profiles (occurrence and speciation) of disinfection by-product (DBP) contamination in air and water of a group of 41 public indoor swimming pools in Québec (Canada). The contaminants measured in the water included the traditional DBPs [i.e., four trihalomethanes (THMs), six haloacetic acids (HAAs)] but also several emergent DBPs [i.e., halonitriles, halonitromethanes, haloketones and nitrosodimethylamine (NDMA)]. Those measured in the air comprised THMs and chloramines (CAMs). Overall, extremely variable DBP levels were found from one pool to another (both quantitatively and in terms of speciation). For instance, in water, among the four THMs, chloroform was usually the most abundant compound (37.9±25.7µg/L). Nevertheless, the sum of the three other brominated THMs represented more than 25% of total THMs at almost half the facilities visited (19 cases). In 13 of them, the levels of brominated THMs (66±24.2µg/L) even greatly outweighed the levels of chloroform (15.2±6.31µg/L). Much higher levels of HAAs (294.8±157.6µg/L) were observed, with a consistent preponderance of brominated HAAs in the swimming pools with more brominated THMs. NDMA levels which were measured in a subset of 8 pools ranged between 2.8ng/L and 105ng/L. With respect to air, chloroform was still the most abundant THM globally (119.4±74.2µg/m(3)) but significant levels of brominated THMs were also observed in various cases, particularly in the previously evoked group of 13 swimming pools with preponderant levels of brominated THMs in water. CAM levels (0.23±0.15mg/m(3)) varied highly, ranging from not detected to 0.56mg/m(3). Overall, the levels were generally relatively high compared to current guidelines or reference values from several countries, and they point to a relatively atypical presence of brominated compounds, and to significant levels of emergent DBPs for which health risk is less documented. Copyright © 2016 Elsevier Inc. All rights

  13. Contamination of a church ceiling due to the burning of candles in combination with floor heating

    NARCIS (Netherlands)

    Schellen, H.L.; Deelman, J.; Aarle, van M.A.P.

    2005-01-01

    An air heating system originally heated St. Martinus’ church in Weert. Together with a large restoration in 1984 a floor heating system replaced this heating system. After this major renovation a number of problems arose: due to the floor heating system and massive granite floor the church could

  14. Contamination of a church ceiling due to the burning of candles in combination with floor heating

    NARCIS (Netherlands)

    Schellen, H.L.; Aarle, van M.A.P.

    2005-01-01

    An air heating system originally heated St. Martin's church in Weert. Together with an extensive restoration in 1984 a floor heating system replaced this heating system. After this major renovation a number of problems arose: due to the floor heating System and massive granite floor the church could

  15. Effect of negative air ions on the potential for bacterial contamination of plastic medical equipment.

    Science.gov (United States)

    Shepherd, Simon J; Beggs, Clive B; Smith, Caroline F; Kerr, Kevin G; Noakes, Catherine J; Sleigh, P Andrew

    2010-04-12

    presence of the ionizer. The findings of the study suggest that the action of negative air ionizers significantly alters the electrostatic landscape of the clinical environment, and that this has the potential to cause any Acinetobacter-bearing particles in the air to be strongly repelled from some plastic surfaces and attracted to others. In so doing, this may prevent critical items of equipment from becoming contaminated with the bacterium.

  16. Effect of negative air ions on the potential for bacterial contamination of plastic medical equipment

    Directory of Open Access Journals (Sweden)

    Kerr Kevin G

    2010-04-01

    acrylonitrile, did however develop a positive charge in the presence of the ionizer. Conclusion The findings of the study suggest that the action of negative air ionizers significantly alters the electrostatic landscape of the clinical environment, and that this has the potential to cause any Acinetobacter-bearing particles in the air to be strongly repelled from some plastic surfaces and attracted to others. In so doing, this may prevent critical items of equipment from becoming contaminated with the bacterium.

  17. Visible-Light Responsive Catalysts Using Quantum Dot-Modified TiO2 for Air and Water Purification

    Science.gov (United States)

    Coutts, Janelle L.; Hintze, Paul E.; Clausen, Christian A.; Richards, Jeffrey T.

    2014-01-01

    Photocatalysis, the oxidation or reduction of contaminants by light-activated catalysts, utilizing titanium dioxide (TiO2) as the catalytic substrate has been widely studied for trace contaminant control in both air and water applications. The interest in this process is due primarily to its low energy consumption and capacity for catalyst regeneration. Titanium dioxide requires ultraviolet light for activation due to its relatively large band gap energy of 3.2 eV. Traditionally, Hg-vapor fluorescent light sources are used in PCO reactors; however, the use of mercury precludes the use of this PCO technology in a spaceflight environment due to concerns over crew Hg exposure.

  18. Techniques for the measurement of the contamination of air; Technique de mesure de la contamination de l'air

    Energy Technology Data Exchange (ETDEWEB)

    Labeyrie, J [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    This lecture has been given at the International Symposium of Riso 1959. Methods for measuring radioactive content of the atmosphere are described, and main results found at Saclay are given, for the following contaminants: Rn, Tn and their daughter, H-3, C-14, A-41, Kr-85, I-131, and fission products as a whole. (author) [French] Ce texte est celui d'une conference-rapport prononcee au Colloque International de Riso en 1959. On indique les techniques de mesures de la contamination radioactive de l'atmosphere et les principaux resultats obtenus jusqu'ici au CEA pour: Rn et Tn et leurs derives, H-3, C-14, A-41, Kr-85, I-131, et l'ensemble des produits de fission. (auteur)

  19. Auburn Steel Company radioactive contamination incident

    International Nuclear Information System (INIS)

    Bradley, F.J.; Cabasino, L.; Kelly, R.; Awai, A.; Kasyk, G.

    1986-04-01

    On February 21, 1983, workers at the Auburn Steel Company, Auburn, New York discovered that about 120 tons of steel poured that day had become contaminated with 60 Co. In addition to the steel, the air cleaning system and portions of the mill used in casting the steel were contaminated. Approximately 25 curies of 60 Co were involved. Decontamination and disposal of the contamination cost in excess of $2,200,000. This report details the discovery of the contamination, decontamination of the plant and disposal of the contamination

  20. Development and Testing of an Air Fluorescence Imaging System for the Detection of Radiological Contamination

    International Nuclear Information System (INIS)

    Inrig, Elizabeth; Koslowsky, Vern; Andrews, Bob; Dick, Michael; Forget, Patrick; Ing, Harry; Hugron, Roger; Wong, Larry

    2011-01-01

    Detection of radionuclides emitting short-range radiation, such as α and low-energy β particles, has always presented a challenge, particularly when such radionuclides are dispersed over a wide area. In this situation, conventional detection methods require the area of interest to be surveyed using a fragile probe at very close range--a slow, error-prone, and potentially dangerous process that may take many hours for a single room. The instrument under development uses a novel approach by imaging radiation-induced fluorescence in the air surrounding a contaminated area, rather than detecting the radiation directly. A robust and portable system has been designed and built that will allow contaminated areas to be rapidly detected and delineated. The detector incorporates position-sensitive photo-multiplier tubes, UV filters, a fast electronic shutter and an aspherical phase mask that significantly increases the depth-of-field. Preliminary tests have been conducted using sealed 241 Am sources of varying activities and surface areas. The details of the instrument design will be described and the results of recent testing will be presented.

  1. Remediation in Situ of Hydrocarbons by Combined Treatment in a Contaminated Alluvial Soil due to an Accidental Spill of LNAPL

    Directory of Open Access Journals (Sweden)

    Ettore Trulli

    2016-10-01

    Full Text Available Soil contamination represents an environmental issue which has become extremely important in the last decades due to the diffusion of industrial activities. Accidents during transport of dangerous materials and fuels may cause severe pollution. The present paper describes the criteria of the actions which were operated to remediate the potential risk and observed negative effects on groundwater and soil originating from an accidental spill of diesel fuel from a tank truck. With the aim to evaluate the quality of the involved environmental matrices in the “emergency” phase, in the following “safety” operation and during the remediation action, a specific survey on hydrocarbons, light and heavy, was carried out in the sand deposits soil. Elaboration of collected data allows us to observe the movement of pollutants in the unsaturated soil. The remediation action was finalized to improve the groundwater and soil quality. The former was treated by a so called “pump and treat” system coupled with air sparging. A train of three different technologies was applied to the unsaturated soil in a sequential process: soil vapour extraction, bioventing and enhanced bioremediation. Results showed that the application of sequential remediation treatments allowed us to obtain a state of quality in unsaturated soil and groundwater as required by Italian law.

  2. Impacts of Changes of Indoor Air Pressure and Air Exchange Rate in Vapor Intrusion Scenarios.

    Science.gov (United States)

    Shen, Rui; Suuberg, Eric M

    2016-02-01

    There has, in recent years, been increasing interest in understanding the transport processes of relevance in vapor intrusion of volatile organic compounds (VOCs) into buildings on contaminated sites. These studies have included fate and transport modeling. Most such models have simplified the prediction of indoor air contaminant vapor concentrations by employing a steady state assumption, which often results in difficulties in reconciling these results with field measurements. This paper focuses on two major factors that may be subject to significant transients in vapor intrusion situations, including the indoor air pressure and the air exchange rate in the subject building. A three-dimensional finite element model was employed with consideration of daily and seasonal variations in these factors. From the results, the variations of indoor air pressure and air exchange rate are seen to contribute to significant variations in indoor air contaminant vapor concentrations. Depending upon the assumptions regarding the variations in these parameters, the results are only sometimes consistent with the reports of several orders of magnitude in indoor air concentration variations from field studies. The results point to the need to examine more carefully the interplay of these factors in order to quantitatively understand the variations in potential indoor air exposures.

  3. Safety against radioactive contamination

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The ALWIT anticontamination suit is briefly described, consisting of lasting antistatic ''NDMEX III''. It was specially developed for the fire brigade who are exposed to a particular kind of contamination while carrying out radiation measurements during fire fighting, rescue and clearing up work. The ALWIT suit reliably prevents radioactive contamination of the surface of the body while wearing a breathing apparatus, independent of the ambient air. Tightly fitting cuffs on the neck, arms and legs together with zippers placed behind prevent contamination even with extreme movement. (P.F.K.)

  4. Phytoforensics—Using trees to find contamination

    Science.gov (United States)

    Wilson, Jordan L.

    2017-09-28

    The water we drink, air we breathe, and soil we come into contact with have the potential to adversely affect our health because of contaminants in the environment. Environmental samples can characterize the extent of potential contamination, but traditional methods for collecting water, air, and soil samples below the ground (for example, well drilling or direct-push soil sampling) are expensive and time consuming. Trees are closely connected to the subsurface and sampling tree trunks can indicate subsurface pollutants, a process called phytoforensics. Scientists at the Missouri Water Science Center were among the first to use phytoforensics to screen sites for contamination before using traditional sampling methods, to guide additional sampling, and to show the large cost savings associated with tree sampling compared to traditional methods. 

  5. the role of industry in air pollution

    International Nuclear Information System (INIS)

    Kdeih, Naji

    1998-01-01

    Industry is among the main sources of air pollution in Lebanon. Industrial plants emits dangerous effluents affecting on human health and on population living in industrial zones. Personnel within industries ignore the dangerous effect of substances they use in their work and the toxic effect of gaseous, liquid and solid wastes produced and their impact on health and on environment. A major attention should be paid by Lebanese government to avoid the increasing of atmospheric pollution and must encourage the monitoring of air pollution and its effect on human target organs in the influenced zones. Within industries air is contaminated by gases, vapor, dusts in high rates. Attention has to be focused to the diseases due to breathing diseases, Asbestos, arterial high blood pressure, stress, digestive diseases and other

  6. Stability of plutonium contaminated sediments in the Miami--Erie Canal

    International Nuclear Information System (INIS)

    Farmer, B.M.; Carfagno, D.G.

    1978-01-01

    This study was conducted to evaluate the stability of plutonium-contaminated sediment in the Miami-Erie Canal. Correlations were sought to relate concentrations at air sampling stations to plutonium-238 concentrations in air and stack emissions, wind direction, particulate loading, rainfall, and construction activities. There appears to be some impact on airborne concentrations at air sampling stations 122 and 123 from the contaminated sediment in the canal and ponds area. For purposes of this evaluation, it was assumed that the plutonium-238 found in the air samples came from the contaminated sediment in the canal/ponds area. To complete the evaluation of the inhalation pathway, dose calculations were performed using actual airborne concentrations of plutonium-238 measured at sampler 123. The dose equivalent to an individual in that area was calculated for 1 yr and 70 yr. Dose calculations were also performed on potential uptake of contaminated vegetation from that area for 1 yr and 70 yr. This study indicates that, although the contaminated sediments in the canal and pond area appear to contribute to airborne plutonium-238, the observed maximum monthly concentration of plutonium-238 in air is a small fraction of the DOE Radioactivity Concentration Guide (RCG) and the nine-month average concentration of plutonium-238 in air observed thus far during 1977 is less than 1% of the RCG. Dose equivalents, conservatively calculated from these actual data, are well within existing DOE standards and proposed EPA guidance

  7. Contamination control methods for gases used in the microlithography process

    Science.gov (United States)

    Rabellino, Larry; Applegarth, Chuck; Vergani, Giorgio

    2002-07-01

    Sensitivity to contamination continues to increase as the technology shrinks from 365 nm I-line lamp illumination to 13.4 nm Extreme Ultraviolet laser activated plasma. Gas borne impurities can be readily distributed within the system, remaining both suspended in the gas and attached to critical surfaces. Effects from a variety of contamination, some well characterized and others not, remain a continuing obstacle for stepper manufacturers and users. Impurities like oxygen, moisture and hydrocarbons in parts per billion levels can absorb light, reducing the light intensity and subsequently reducing the consistence of the process. Moisture, sulfur compounds, ammonia, acid compounds and organic compounds such as hydrocarbons can deposit on lens or mirror surfaces affecting image quality. Regular lens replacement or removal for cleaning is a costly option and in-situ cleaning processes must be carefully managed to avoid recontamination of the system. The contamination can come from outside the controlled environment (local gas supply, piping system, & leaks), or from the materials moving into the controlled environment; or contamination may be generated inside the controlled environment as a result of the process itself. The release of amines can occur as a result of the degassing of the photo-resists. For the manufacturer and user of stepper equipment, the challenge is not in predictable contamination, but the variable or unpredictable contamination in the process. One type of unpredictable contamination may be variation in the environmental conditions when producing the nitrogen gas and Clean Dry Air (CDA). Variation in the CDA, nitrogen and xenon may range from parts per billion to parts per million. The risk due to uncontrolled or unmonitored variation in gas quality can be directly related to product defects. Global location can significantly affect the gas quality, due to the ambient air quality (for nitrogen and CDA), production methods, gas handling equipment

  8. Dispersion, deposition and resuspension of atmospheric contaminants

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The following topics are discussed: dry deposition, oil shale fugitive air emissions, particle resuspension and translocation, theoretical studies and applications, and processing of emissions by clouds and precipitation. The concentration of contaminant species in air is governed by the rate of input from sources, the rate of dilution or dispersion as a result of air turbulence, and the rate of removal to the surface by wet and dry deposition processes. Once on the surface, contaminants also may be resuspended, depending on meteorological and surface conditions. An understanding of these processes is necessary for accurate prediction of exposures of hazardous or harmful contaminants to humans, animals, and crops. In the field, plume dispersion and plume depletion by dry deposition were studied by the use of tracers. Dry deposition was investigated for particles of both respiration and inhalation interest. Complementary dry deposition studies of particles to rock canopies were conducted under controlled conditions in a wind tunnel. Because of increasing concern about hazardous, organic gases in the atmosphere some limited investigations of the dry deposition of nitrobenzene to a lichen mat were conducted in a stirred chamber. Resuspension was also studied using tracers and contaminated surfaces and in the wind tunnel. The objective of the resuspension studies was to develop and verify models for predicting the airborne concentrations of contaminants over areas with surface contamination, develop resuspension rate predictors for downwind transport, and develop predictors for resuspension input to the food chain. These models will be of particular relevance to the evaluation of deposition and resuspension of both radionuclides and chemical contaminants

  9. [Bone and joint changes due to compressed air in divers and Caisson workers (author's transl)].

    Science.gov (United States)

    Poser, H; Gabriel-Jürgens, P

    1977-02-01

    The radiological and morphological changes of Caisson disease in the skeleton are well known. The findings of interest to radiologists are described. Because of its position, its was possible to review a large number of divers in Kiel; these have been under observation for years, and even decades. The development, manifestation and course of chronic skeletal changes due to compressed air are described to compressed air are described and, according to severity, are classified into types 1 to 4. Late changes are discussed in detail, since these are of importance in relation to compensation.

  10. Dimerization Products of Chloroprene are Background Contaminants Emitted from ALTEF (Polyvinylidene Difluoride) Gas Sampling Bags.

    Science.gov (United States)

    Kwak, Jae; Fan, Maomian; Martin, Jennifer A; Ott, Darrin K; Grigsby, Claude C

    2017-01-01

    Gas sampling bags have been used for collecting air samples. Tedlar bags are most commonly used, but bleed background chemicals such as N,N-dimethylacetamide and phenol. It is often necessary to remove the contaminant by flushing the bags with pure nitrogen or air. In this study, we identified four chloroprene dimerization products as background contaminants emitted from ALTEF bags that are made of a proprietary polyvinylidene difluoride (PVDF). No monomer chloroprene was detected in the bags analyzed. All of the dimers gradually increased once bags were filled with nitrogen due to diffusion from the bag surface. Flushing the bags with nitrogen reduced their concentrations, but was not effective for removing the contaminants. When the bags that had been flushed with nitrogen 5 times were left for 24 h, they increased again, indicating that the dimers were constantly emitted from the ALTEF bag surface. To our knowledge, these compounds have never been demonstrated in ALTEF or other PVDF bags. Our finding indicates that ALTEF might be incorporated with Neoprene (chloroprene-based polymer) during its manufacturing process.

  11. Long-range alpha detection applied to soil contamination and waste monitoring

    International Nuclear Information System (INIS)

    MacArthur, D.W.; Allander, K.S.; Bounds, J.A.; Close, D.A.; McAtee, J.L.

    1992-01-01

    Alpha contamination monitoring has been traditionally limited by the short range of alpha particles in air and through detector windows. The long-range alpha detector (LRAD) described in this paper circumvents that limitation by detecting alpha-produced ions, rather than alpha particles directly. Since the LRAD is sensitive to all ions, it can monitor all contamination present on a large surface at one time. Because air is the ''detector gas,'' the LRAD can detect contamination on any surface to which air can penetrate. We present data showing the sensitivity of LRAD detectors, as well as documenting their ability to detect alpha sources in previously unmonitorable locations, and verifying the ion lifetime. Specific designs and results for soil contamination and waste monitors are also included

  12. Waste Contaminants at Military Bases Working Group report

    International Nuclear Information System (INIS)

    1993-01-01

    The Waste Contaminants at Military Bases Working Group has screened six prospective demonstration projects for consideration by the Federal Advisory Committee to Develop On-Site Innovative Technologies (DOIT). These projects include the Kirtland Air Force Base Demonstration Project, the March Air Force Base Demonstration Project, the McClellan Air Force Base Demonstration Project, the Williams Air Force Base Demonstration Project, and two demonstration projects under the Air Force Center for Environmental Excellence. A seventh project (Port Hueneme Naval Construction Battalion Center) was added to list of prospective demonstrations after the September 1993 Working Group Meeting. This demonstration project has not been screened by the working group. Two additional Air Force remediation programs are also under consideration and are described in Section 6 of this document. The following information on prospective demonstrations was collected by the Waste Contaminants at Military Bases Working Group to assist the DOIT Committee in making Phase 1 Demonstration Project recommendations. The remainder of this report is organized into seven sections: Work Group Charter's mission and vision; contamination problems, current technology limitations, and institutional and regulatory barriers to technology development and commercialization, and work force issues; screening process for initial Phase 1 demonstration technologies and sites; demonstration descriptions -- good matches;demonstration descriptions -- close matches; additional candidate demonstration projects; and next steps

  13. Time-lapse electrical resistivity anomalies due to contaminant transport around landfills

    Directory of Open Access Journals (Sweden)

    J. Yang

    2007-06-01

    Full Text Available The extent of landfill leachate can be delineated by geo-electrical imaging as a response to the varying electrical resistivity in the contaminated area. This research was based on a combination of hydrogeological numerical simulation followed by geophysical forward and inversion modeling performed to evaluate the migration of a contaminant plume from a landfill. As a first step, groundwater flow and contaminant transport was simulated using the finite elements numerical modeling software FEFLOW. The extent of the contaminant plume was acquired through a hydrogeological model depicting the distributions of leachate concentration in the system. Next, based on the empirical relationship between the concentration and electrical conductivity of the leachate in the porous media, the corresponding geo-electrical structure was derived from the hydrogeological model. Finally, forward and inversion computations of geo-electrical anomalies were performed using the finite difference numerical modeling software DCIP2D/DCIP3D. The image obtained by geophysical inversion of the electric data was expected to be consistent with the initial hydrogeological model, as described by the distribution of leachate concentration. Numerical case studies were conducted for various geological conditions, hydraulic parameters and electrode arrays, from which conclusions were drawn regarding the suitability of the methodology to assess simple to more complex geo-electrical models. Thus, optimal mapping and monitoring configurations were determined.

  14. Assessment of ambient air quality in Chidambaram a south Indian town

    Directory of Open Access Journals (Sweden)

    P. Balashanmugam

    2012-06-01

    Full Text Available Worldwide preliminary studies in large number are advocated to create data base, to identify potential cities / towns that warrant “continuous ambient air quality monitoring and control mechanism” and to evolve priorities for clean air target. The results reported pertain to an eight hour random preliminary air sampling exercise carried out at each of the eight select locations in Chidambaram, a southern semi urban settlement in India. Criteria pollutants SPM, CO, SO2 and NO2 measured are found to have either crossed or on the verge of crossing the limits, necessitating the immediate installation of a continuous monitoring and control mechanism. While transport related emissions are the major sources of air contamination, increasing civil construction activities also contribute to particulates. The exponential rise in volume of vehicles, disadvantageous traffic flow pattern, differing driving cycle pattern and human interceptions deserve due attention. It is concluded that Chidambaram town is a strong case for continuous monitoring of ambient air quality due to alarming and increasing level of pollutants.

  15. Combined in-situ and ex-situ bioremediation of petroleum hydrocarbon contaminated soils by closed-loop soil vapor extraction and air injection

    International Nuclear Information System (INIS)

    Hu, S.S.; Buckler, M.J.

    1993-01-01

    Treatment and restoration of petroleum hydrocarbon contaminated soils at a bulk petroleum above-ground storage tank (AST) site in Michigan is being conducted through in-situ and ex-situ closed-loop soil vapor extraction (SVE), soil vapor treatment, and treated air injection (AI) processes. The soil vapor extraction process applies a vacuum through the petroleum hydrocarbon affected soils in the ex-situ bio-remediation pile (bio-pile) and along the perimeter of excavated area (in-situ area) to remove the volatile or light petroleum hydrocarbons. This process also draws ambient air into the ex-situ bio-pile and in-situ vadose zone soil along the perimeter of excavated area to enhance biodegradation of light and heavy petroleum hydrocarbons in the soil. The extracted soil vapor is treated using a custom-designed air bio-remediation filter (bio-filter) to degrade the petroleum hydrocarbon compounds in the soil vapor extraction air streams. The treated air is then injected into a flush grade soil bed in the backfill area to perform final polishing of the air stream, and to form a closed-loop air flow with the soil vapor extraction perforated pipes along the perimeter of the excavated area

  16. Identification of the source of PFOS and PFOA contamination at a military air base site.

    Science.gov (United States)

    Arias E, Victor A; Mallavarapu, Megharaj; Naidu, Ravi

    2015-01-01

    Although the use of perfluorooctane sulfonic acid (PFOS)/perfluorooctanoic acid (PFOA)-based aqueous fire-fighting foams (AFFF) has been banned due to their persistence, bioaccumulation and toxicity to biota, PFOS and PFOA are still present at significant levels in the environment due to their past usage. This study investigated the reasons for detection of PFOS and PFOA in an evaporation pond used to collect the wastewater arising from fire-fighting exercises at a military air base despite the replacement of PFOS/PFOA-based foam with no PFOS/PFOA-foam about 6 years ago. Concentrations in the wastewater stored in this pond ranged from 3.6 to 9.7 mg/L for PFOS and between 0.6 and 1.7 mg/L for PFOA. The hypothesis tested in a laboratory study was that PFOS and PFOA have accumulated in the sediments of the pond and can be released into the main body of the water. Concentrations detected in the sediments were 38 and 0.3 mg/g for PFOS and PFOA, respectively. These values exceed the recently reported average global values for sediments (0.2-3.8 ng/g for PFOS and from 0.1 to 0.6 ng/g for PFOA) by a factor of several thousands. PFOS and PFOA distribution coefficients were derived for the organic content of the pond sediment (1.6%). Identification of the source of contamination and knowledge of the partition between soil and aqueous phases are vital first steps in developing a sustainable remediation technology to remove the source from the site. This study clearly suggests that unless the sediment is cleaned of PFOS/PFOA, these chemicals will continue to be detected for a long period in the pond water, with potential adverse impacts on the ecosystem.

  17. JPL Contamination Control Engineering

    Science.gov (United States)

    Blakkolb, Brian

    2013-01-01

    JPL has extensive expertise fielding contamination sensitive missions-in house and with our NASA/industry/academic partners.t Development and implementation of performance-driven cleanliness requirements for a wide range missions and payloads - UV-Vis-IR: GALEX, Dawn, Juno, WFPC-II, AIRS, TES, et al - Propulsion, thermal control, robotic sample acquisition systems. Contamination control engineering across the mission life cycle: - System and payload requirements derivation, analysis, and contamination control implementation plans - Hardware Design, Risk trades, Requirements V-V - Assembly, Integration & Test planning and implementation - Launch site operations and launch vehicle/payload integration - Flight ops center dot Personnel on staff have expertise with space materials development and flight experiments. JPL has capabilities and expertise to successfully address contamination issues presented by space and habitable environments. JPL has extensive experience fielding and managing contamination sensitive missions. Excellent working relationship with the aerospace contamination control engineering community/.

  18. The Fate of Trace Contaminants in a Crewed Spacecraft Cabin Environment

    Science.gov (United States)

    Perry, Jay L.; Kayatin, Matthew J.

    2016-01-01

    Trace chemical contaminants produced via equipment offgassing, human metabolic sources, and vehicle operations are removed from the cabin atmosphere by active contamination control equipment and incidental removal by other air quality control equipment. The fate of representative trace contaminants commonly observed in spacecraft cabin atmospheres is explored. Removal mechanisms are described and predictive mass balance techniques are reviewed. Results from the predictive techniques are compared to cabin air quality analysis results. Considerations are discussed for an integrated trace contaminant control architecture suitable for long duration crewed space exploration missions.

  19. Evaluation of the internal contamination risk for isotope laboratory workers

    International Nuclear Information System (INIS)

    Adamiak-Ziemba, J.; Doniec, J.; Kocznow, W.; Hawrynski, M.

    1985-01-01

    The investigation covered 484 workers. Altogether 1787 determinations have been made, in this - 1648 internal contaminations and 139 contaminations of air, hand skin and working surfaces. The internal contaminations (22% of results) resulted mainly from deviation from radiological protection rules and were reduced by certain changes. Those were tritium contaminations (application of tritium radioluminescence dyes) and 125, 131 J. The highest levels of which were 20 mSv and 0.25% ALI respectively. The results of 238 Pu air contamination measurements indicates that the dust arising during the production of smoke detectors (with 238 PuO 2 sources) probably has no respirable fraction properties, what confines its absorption in lower parts of the respiratory tract. It has been demonstrated that in Poland is no need of a central system of permanent internal contamination control. (author)

  20. [Microbial air purity in hospitals. Operating theatres with air conditioning system].

    Science.gov (United States)

    Krogulski, Adam; Szczotko, Maciej

    2010-01-01

    The aim of this study was to show the influence of air conditioning control for microbial contamination of air inside the operating theatres equipped with correctly working air-conditioning system. This work was based on the results of bacteria and fungi concentration in hospital air obtained since 2001. Assays of microbial air purity conducted on atmospheric air in parallel with indoor air demonstrated that air filters applied in air-conditioning systems worked correctly in every case. To show the problem of fluctuation of bacteria concentration more precisely, every sequences of single results from successive measure series were examined independently.

  1. A Study on health damage due to air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Han, Hwa Jin; Oh, So Young [Korea Environment Institute, Seoul (Korea)

    1998-12-01

    According to the domestic and foreign change in given conditions of air preservation policy, the air preservation policy in Korea should be implemented scientifically and reasonably. A gradual turnover to receptor-oriented reflecting human health and ecological effect is needed to establish and promote the air preservation policy systemically and in a long-term basis. Based on the quantified health damage of a people, air preservation policy in Korea should develop as a management policy to develop and implement an optimum management mechanism to minimized health damage of receptor. 19 refs., 2 figs., 25 tabs.

  2. Air purification from TCE and PCE contamination in a hybrid bioreactors and biofilter integrated system.

    Science.gov (United States)

    Tabernacka, Agnieszka; Zborowska, Ewa; Lebkowska, Maria; Borawski, Maciej

    2014-01-15

    A two-stage waste air treatment system, consisting of hybrid bioreactors (modified bioscrubbers) and a biofilter, was used to treat waste air containing chlorinated ethenes - trichloroethylene (TCE) and tetrachloroethylene (PCE). The bioreactor was operated with loadings in the range 0.46-5.50gm(-3)h(-1) for TCE and 2.16-9.02gm(-3)h(-1) for PCE. The biofilter loadings were in the range 0.1-0.97gm(-3)h(-1) for TCE and 0.2-2.12gm(-3)h(-1) for PCE. Under low pollutant loadings, the efficiency of TCE elimination was 23-25% in the bioreactor and 54-70% in the biofilter. The efficiency of PCE elimination was 44-60% in the bioreactor and 50-75% in the biofilter. The best results for the bioreactor were observed one week after the pollutant loading was increased. However, the process did not stabilize. In the next seven days contaminant removal efficiency, enzymatic activity and biomass content were all diminished. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Environment of care: Is it time to reassess microbial contamination of the operating room air as a risk factor for surgical site infection in total joint arthroplasty?

    Science.gov (United States)

    Parvizi, Javad; Barnes, Sue; Shohat, Noam; Edmiston, Charles E

    2017-11-01

    In the modern operating room (OR), traditional surgical mask, frequent air exchanges, and architectural barriers are viewed as effective in reducing airborne microbial populations. Intraoperative sampling of airborne particulates is rarely performed in the OR because of technical difficulties associated with sampling methodologies and a common belief that airborne contamination is infrequently associated with surgical site infections (SSIs). Recent studies suggest that viable airborne particulates are readily disseminated throughout the OR, placing patients at risk for postoperative SSI. In 2017, virtually all surgical disciplines are engaged in the implantation of selective biomedical devices, and these implants have been documented to be at high risk for intraoperative contamination. Approximately 1.2 million arthroplasties are performed annually in the United States, and that number is expected to increase to 3.8 million by the year 2030. The incidence of periprosthetic joint infection is perceived to be low (<2.5%); however, the personal and fiscal morbidity is significant. Although the pharmaceutic and computer industries enforce stringent air quality standards on their manufacturing processes, there is currently no U.S. standard for acceptable air quality within the OR environment. This review documents the contribution of air contamination to the etiology of periprosthetic joint infection, and evidence for selective innovative strategies to reduce the risk of intraoperative microbial aerosols. Copyright © 2017 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  4. Is Distant Pollution Contaminating Local Air? Analyzing the Origins of Atmospheric Aerosols

    Directory of Open Access Journals (Sweden)

    David Geng

    2012-01-01

    Full Text Available Understanding the origin of aerosols in the atmosphere is important because of visual pollution, climate impacts, and deleterious health effects due to the inhalation of fine particles. This research analyzed aerosols characterized by their chloride, sulfate, and nitrate content as a function of size over a 3-month period. Due to wind patterns over coal-burning power plants, a higher concentration of local sulfate pollution was expected. Aerosols were harvested on the Purdue University campus using a high-volume air sampler with glass fiber filters and a five-stage impactor that separates the aerosols into five sizes. The filters were extracted in water to dissolve anions and the solution was analyzed using high-pressure liquid ion chromatography. Only trace amounts of chloride with no distinct patterns in size were detected. In total, nitrate content ranged from 0.12 to 2.10 μg/m3 and sulfate content ranged from 0.44 to 6.45 μg/m3 over a 3-month period. As for fine particles, a higher concentration of sulfate was observed. The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT model determines air mass origin, and in this study, higher total sulfate content was observed when the air mass moved out of the southwest, and higher total nitrate content was observed when the air mass originated from the southeast. The author concluded that small particles resulted in sulfate from sulfur dioxide, typically from gas to particle conversion. High sulfur dioxide levels are directly correlated with coal-burning power plant density. Small particulate sulfate found in West Lafayette, Indiana, was determined to originate primarily from power plants in southwest Indiana. Though the results do show a significant amount of potentially harmful aerosols in West Lafayette, there is still further research to be done concerning isotopic composition of those particles in attempts to better explain the chemical pathways.

  5. Experimental study on mass transfer of contaminants through an enthalpy recovery unit with polymer membrane foils

    DEFF Research Database (Denmark)

    Nie, Jinzhe; Fang, Lei

    2014-01-01

    Laboratory experimental studies were conducted to investigate the mass transfer of contaminants through a total heat recovery unit with polymer membranes foils. The studies were conducted in twin climate chambers which simulated outdoor and indoor thermal climates. One manufacturd total heat...... chemical gases were used to simulate air contaminants. The concentrations of dosed contaminants in the supply and exhaust air upstream and downstream of the total heat recovery unit were measured with Multi-Gas Monitor Innova 1316 in real time. Experiment results showed that 5% to 9% of dosed contaminants...... could transfer from exhaust air to supply air through the enthalpy recovery unit. The mass transfer efficiency of contaminants was independent of the hygro-thermal differences between indoor and outdoor climate conditions. The mass transfer ratio of the chemical contaminants in the total heat recovery...

  6. Heavy metals contamination of air and soil in Karak solid waste disposal site, Jordan

    International Nuclear Information System (INIS)

    Jiries, A. G.; Jaradat, Q. M.; Momani, K. A.

    1996-01-01

    The level of air and soil pollution in the municipal solid waste disposal site of Karak(Jordan) were investigated during spring of 1995 by monitoring the amounts of heavy metals. The concentration (mg/kg)of Cu, Pb, and Zn in the upper soil were found to have a range of 15.3-39.3, 21.2-38.0 and 60.0-127.0 respectively. However, for the lower soil, the ranges are 13.4-18.9, 18.5-23.7, and 50.6-90.4, respectively. The soil contamination with heavy metals was almost confined to the upper soil in the locations closely surrounding the burning site, which could be accounted to the arid climate conditions of the area. (authors). 20 refs., 3 tabs., 5 figs

  7. The effect of storage in damp air and damp argon on pond water contaminated CAGR fuel cladding steels

    International Nuclear Information System (INIS)

    Simpson, P.W.G.

    1986-10-01

    Retention of the mechanical integrity of fuel element assemblies during dry storage forms part of the strategy for any dry-store and is important for the ease of eventual reprocessing or disposal. This report describes a number of corrosion experiments which have been carried out on coupons of unirradiated CAGR fuel cladding steel which have been contaminated with simulated pond water. Two potential dry-store problem areas have been addressed. First is the possibility of failure of the dry-store mild steel container, allowing damp air to replace the nominally dry argon cover gas. Second is the possibility of water-logged failed fuel being inadvertently containerised giving rise to a humid argon atmosphere within the dry-store container. Specimens of niobium stabilised and titanium nitride strengthened CAGR fuel cladding steels in virgin, pre-oxidised and laboratory sensitised states have been exposed at temperatures of 150 0 C and 400 0 C, to air saturated with water at 10 0 C and to argon saturated at 25 0 C. Most specimens were contaminated with simulated pond water deposits containing chloride anion concentrations up to 10 ppm. No deleterious effects were observed either gravimetrically or metallographically after exposures between 10039 hours and 13152 hours. However, the absence of stress and radiation in these experiments means that caution should be exercised in applying the results to situations in which those conditions are present. (author)

  8. Internal contamination by tritium caused by radioluminescent paints

    Energy Technology Data Exchange (ETDEWEB)

    Adamiak-Ziemba, J.; Doniec, J.

    1985-01-01

    The internal contamination investigations covered 23 persons using radioluminescence paints containing tritium, assembling devices painted with those paints, and those having no contact with active paints but working next to the painting room. Determined were concentrations of tritium excreted with urine, air contamination at workplaces, contamination of workplace areas and hand skin. At the time covered by the investigations, the mean annual equivalent doses for those using tritium paints were reduced from 14-20 mSv to about 5 mSv. In those working next to the painting room they were reduced from 5.8-15 to 0.23 mSv. The exposure of those assembling the devices does not exceed 1 mSv. It was demonstrated that the main cause of the tritium exposure level was air contamination in working rooms.

  9. Air mycopopulations in Petrovská klobása producing facility

    Directory of Open Access Journals (Sweden)

    Škrinjar Marija M.

    2011-01-01

    Full Text Available Different types of filamentous fungi periodically cause problems in small-scale facilities for traditional dry fermented sausages, such as Petrovská klobása from Vojvodina province (Serbia. Mould contamination can be observed during processing, ripening, and storage. Sausages may become spoiled due to visible mould colonies on the surface and off-flavours they produce. The most important - if mycotoxin production occurs it might promote a number of health disorders. Knowledge and control of filamentous fungi are, therefore, essential to produce sausages that satisfy the criteria of hygienic quality, sensorial characteristics, and food safety. The aim of this study was to survey mycoflora of a small-scale facility producing traditional dry fermented sausage - Petrovská klobása. The mould contamination of the air in processing unit and ripening chambers was investigated, in order to determine the important fungi in terms of spoilage of the products and ability to produce mycotoxins. The mould contamination of air in processing unit and ripening chambers examined was in range 0.22 - 1.89 log CFU/P.d. Isolated moulds belong to 6 genera: Aspergillus (3 species, Cladosporium (1 species, Eurotium (2 species, Fusarium (1 species, Penicillium (12 species and Scopulariopsis (1 species. The most abundant were species of Penicillium genus, many of which are capable for mycotoxin production. The level and diversity of fungal contamination of air varied between samples, influenced by the general hygiene, the buildings, the airflow, the outdoor environments, and the time of year. This knowledge is crucial for the improvement of hygiene control systems in small-scale processing units.

  10. Alpha contamination assessment for D ampersand D activities: Monitoring pipe interiors

    International Nuclear Information System (INIS)

    Rawool-Sullivan, M.W.; Conaway, J.G.; MacArthur, D.W.; Vaccarella, J.

    1996-02-01

    We have developed a prototype instrument capable of assessing alpha-emitting contamination on interior surfaces of ducts, pipes, tanks, and other enclosed volumes without inserting a probe. Air is drawn through the potentially contaminated volume and then through a detection grid, where ions created in the air by alpha particles are collected and the resulting charge measured with a sensitive electrometer. A filter at the intake end of the contaminated volume excludes externally created ions, so only ions generated inside the volume are detected. We have studied the response of this prototype in initial experiments using calibrated alpha sources with various pipe diameters and configurations, air flows, and source locations in the pipes. The results of these experiments indicate that this method can be an effective approach to assessing internal contamination

  11. Radon concentrations in contaminated and uncontaminated premises in two Ontario towns

    International Nuclear Information System (INIS)

    Aitken, J.H.; Baker, E.G.; Chatterjee, R.M.; Kusiak, R.; Tai-Pow, J.

    1977-01-01

    Radon-222 concentrations in air were measured by grab sampling in a large number of private homes and other buildings in the town of Port Hope, Ontario. The purpose of the measurements is to identify places where a health hazard might exist due to improper disposal of radium-contaminated materials. Contaminated fill, rubble, lumber, and other building materials have been found in a number of premises in the town. Radon concentrations up to 750 pCi/l have been found in some homes. The thrust of the program is to identify quickly places where concentrations might be high enough to justify some prompt interim remedial action such as installation of special ventilation systems, pending final remedial work by removal of the contamination. The methods and instrumentation immediately available are those formerly used for radon-in-breath analysis in radium workers. Grab sampling for radon and gamma surveying in every building in town are used together in a screening program. Experience showed that both radon sampling and gamma surveying are required to identify contaminated locations

  12. Contamination by trace elements at e-waste recycling sites in Bangalore, India.

    Science.gov (United States)

    Ha, Nguyen Ngoc; Agusa, Tetsuro; Ramu, Karri; Tu, Nguyen Phuc Cam; Murata, Satoko; Bulbule, Keshav A; Parthasaraty, Peethmbaram; Takahashi, Shin; Subramanian, Annamalai; Tanabe, Shinsuke

    2009-06-01

    The recycling and disposal of electronic waste (e-waste) in developing countries is causing an increasing concern due to its effects on the environment and associated human health risks. To understand the contamination status, we measured trace elements (TEs) in soil, air dust, and human hair collected from e-waste recycling sites (a recycling facility and backyard recycling units) and the reference sites in Bangalore and Chennai in India. Concentrations of Cu, Zn, Ag, Cd, In, Sn, Sb, Hg, Pb, and Bi were higher in soil from e-waste recycling sites compared to reference sites. For Cu, Sb, Hg, and Pb in some soils from e-waste sites, the levels exceeded screening values proposed by US Environmental Protection Agency (EPA). Concentrations of Cr, Mn, Co, Cu, In, Sn, Sb, Tl, Pb and Bi in air from the e-waste recycling facility were relatively higher than the levels in Chennai city. High levels of Cu, Mo, Ag, Cd, In, Sb, Tl, and Pb were observed in hair of male workers from e-waste recycling sites. Our results suggest that e-waste recycling and its disposal may lead to the environmental and human contamination by some TEs. To our knowledge, this is the first study on TE contamination at e-waste recycling sites in Bangalore, India.

  13. Radioactive contamination of oil produced from nuclear-broken shale

    International Nuclear Information System (INIS)

    Arnold, W.D.; Crouse, D.J.

    1970-01-01

    The results of small-scale exposure and retorting tests indicate that oil recovered from shale that has been broken with nuclear explosives will be contaminated with tritium. When oil shale was heated in sealed flasks with tritiated water vapor or with tritiated hydrogen, both the shale and the oil subsequently retorted from the shale contained tritium. There was much less contamination of the shale or oil, however, when the shale was exposed to tritiated methane and ethane. Contamination of shale and oil with tritium, as the result, of exposure to tritiated water, increased as the exposure temperature, exposure pressure, and the tritium concentration in the water were increased. This contamination also increased as the exposure time was increased up to 25 days, but not significantly thereafter. More than 90% of the tritium was removed from contaminated shale by treating the shale with moist air at elevated temperatures. Only small amounts of the tritium were removed from crude oil by contacting it with solid drying agents or with water. When tritium-contaminated shale oil was distilled, the tritium contents of the recovered fractions were found to be approximately equal. After being heated with a sample of underground test-shot debris, liquid shale oil became contaminated with radioactive fission products. Most of the radioactivity of the oil was due to finely dispersed solids rather than to dissolved radionuclides. Filtration of the oil removed a major fraction of the radioactive material. When the contaminated oil was distilled, more than 99% of the radionuclides remained in the pot residue. (author)

  14. Radioactive contamination of oil produced from nuclear-broken shale

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, W D; Crouse, D J

    1970-05-15

    The results of small-scale exposure and retorting tests indicate that oil recovered from shale that has been broken with nuclear explosives will be contaminated with tritium. When oil shale was heated in sealed flasks with tritiated water vapor or with tritiated hydrogen, both the shale and the oil subsequently retorted from the shale contained tritium. There was much less contamination of the shale or oil, however, when the shale was exposed to tritiated methane and ethane. Contamination of shale and oil with tritium, as the result, of exposure to tritiated water, increased as the exposure temperature, exposure pressure, and the tritium concentration in the water were increased. This contamination also increased as the exposure time was increased up to 25 days, but not significantly thereafter. More than 90% of the tritium was removed from contaminated shale by treating the shale with moist air at elevated temperatures. Only small amounts of the tritium were removed from crude oil by contacting it with solid drying agents or with water. When tritium-contaminated shale oil was distilled, the tritium contents of the recovered fractions were found to be approximately equal. After being heated with a sample of underground test-shot debris, liquid shale oil became contaminated with radioactive fission products. Most of the radioactivity of the oil was due to finely dispersed solids rather than to dissolved radionuclides. Filtration of the oil removed a major fraction of the radioactive material. When the contaminated oil was distilled, more than 99% of the radionuclides remained in the pot residue. (author)

  15. Economic discounting in the assessment of detriment due to biosphere contamination by nuclear power enterprises

    International Nuclear Information System (INIS)

    Demin, V.F.; Ermakova, E.I.; Shevelev, Ya.V.

    1983-01-01

    In addition to existing concepts of total and partial expected collective doze, discounting expected collective dose Ssup(c)d is suggested to be introduced as the basis for estimation of the detriment due to biosphere contamination by wastes from enterprises of nuclear power. Unlike the total expected dose. the Ssup(c)d value is evaluated taking into account the discounting function known in economy. Calculation Ssup(c)d values for different stages of nuclear fuel cycle with a light-water reactor are given. For the cycle on the whole, the Ssup(c)d value is approximately by 2 or 3 orders of masnitude lower than the corresponding total expected collective dose

  16. Indoor air quality handbook: for designers, builders, and users of energy efficient residences

    International Nuclear Information System (INIS)

    1982-09-01

    The purpose of this handbook is to assist designers, builders, and users of energy efficient residences to achieve the goals of energy efficiency and maintenance of high indoor air quality simultaneously. The handbook helps in identifying and controlling potential problems of indoor air quality. It identifies sources and discusses effective ways to decrease concentrations of air contaminants. It focuses on indoor air quality in both single and multifamily energy-efficient residences. Information about commercial structures such as hospitals and office buildings is presented when it also applies to residences. Basic concepts of contaminants and their concentrations, sources and removal mechanisms, contaminant distribution, heat transfer, and air exchange are discussed. The effects of the building system on indoor air quality are examined. The effects of the external environment, building envelope, environmental control systems, interior design, furnishings, and inhabitants on the emission, dispersion, and removal of indoor air contaminants as well as direct and indirect effects of energy-efficient features are discussed. The health effects of specific air contaminants and the health standards developed for them are examined. Available methods for predicting and measuring contaminants and for evaluating human responses are discussed. Methods and equipment available for the control of indoor air pollution once the contaminants have been identified are also evaluated. The potential legal aspects, including regulatory intervention and civil lawsuits, of failure to evaluate and control indoor air pollution are discussed. A list of references, a glossary, and an index are also included

  17. First characterization of the endocrine-disrupting potential of indoor gaseous and particulate contamination: comparison with urban outdoor air (France).

    Science.gov (United States)

    Oziol, Lucie; Alliot, Fabrice; Botton, Jérémie; Bimbot, Maya; Huteau, Viviane; Levi, Yves; Chevreuil, Marc

    2017-01-01

    The composition of endocrine-disrupting compounds (EDCs) in the ambient air of indoor environments has already been described, but little is known about the inherent endocrine-disrupting potential of indoor air contamination. We therefore aimed to study the distribution of bioactive EDCs in the gaseous and particulate phases of indoor air using a cellular bioassay approach that integrates the interaction effects between chemicals. Organic air extracts, both gaseous and particulate, were taken from three indoor locations (office, apartment, and children's day care) in France and sampled in two different seasons in order to study their interference with the signaling of estrogen, androgen, and thyroid receptors. The experiments were also conducted on aerial extracts from an outdoor site (urban center). We found that gaseous and/or particulate extracts from all locations displayed estrogenicity, anti-androgenicity, and thyroidicity. Overall, indoor air extracts had a higher endocrine-disrupting potential compared to outdoor ones, especially during winter and in the day care. The biological activities were predominant for the gaseous extracts and tended to increase for the particulate extracts in cool conditions. In conclusion, our data confirmed the presence of bioactive EDCs in a gaseous state and highlighted their indoor origin and concentration, especially in the cold season.

  18. The consequences of radioactive contamination of forest ecosystems due to Chernobyl accident

    International Nuclear Information System (INIS)

    Tikhomirov, F.A.; Shcheglova, A.I.

    1997-01-01

    The effect of forests on the radionuclide primary distribution in different components of the contaminated ecosystems is considered by the example of Chernobyl accident. A basic mathematical model is developed describing 137 Cs biogeochemical cycling under conditions of quasi-steady state radionuclide redistribution in the ecosystem. Forest ecosystems are proved to diminish radionuclide migration in the environment, and forest should be regarded as an important sanitary factor. The contribution of contaminated forests and forest products to the total irradiation dose to local population is estimated. Special countermeasures are elaborated in order to diminish unfavorable consequences of forest radioactive contamination. A long-term dynamics of radioactive situation in the forest ecosystems in forecasted and further studies on the subject are drafted

  19. Local Outbreak of Listeria monocytogenes Serotype 4b Sequence Type 6 Due to Contaminated Meat Pâté.

    Science.gov (United States)

    Althaus, Denise; Jermini, Marco; Giannini, Petra; Martinetti, Gladys; Reinholz, Danuta; Nüesch-Inderbinen, Magdalena; Lehner, Angelika; Stephan, Roger

    2017-04-01

    In January and February 2016, five cases of confirmed and two cases of probable infection due to Listeria monocytogenes serotype 4b, sequence type (ST) 6 belonging to a single pulsed-field gel electrophoresis pulsotype pattern were registered in a region of southern Switzerland. L. monocytogenes was detected in blood samples (four cases) and pleural fluid (one case). Furthermore, L. monocytogenes 4b ST6 was detected in a stool sample of an asymptomatic person exposed to a common food. Forthwith, the food safety authority and a local gourmet meat producer reported L. monocytogenes contamination of meat pâté. Analysis of further food and environmental samples from the premises of the producer yielded isolates matching the clinical strains and confirmed the presence of L. monocytogenes 4b ST6 in the mincing machine as the cause of the food contamination.

  20. The impact of indoor air quality and contaminants on respiratory health of older people living in long-term care residences in Porto.

    Science.gov (United States)

    Mendes, Ana; Papoila, Ana Luísa; Carreiro-Martins, Pedro; Bonassi, Stefano; Caires, Iolanda; Palmeiro, Teresa; Aguiar, Lívia; Pereira, Cristiana; Neves, Paula; Mendes, Diana; Botelho, Maria Amália Silveira; Neuparth, Nuno; Teixeira, João Paulo

    2016-01-01

    persons who are 65 years or older often spend an important part of their lives indoors thus adverse indoor climate might influence their health status. to evaluate the influence of indoor air quality and contaminants on older people's respiratory health. cross-sectional study. 21 long-term care residences (LTC) in the city of Porto, Portugal. older people living in LTC with ≥65 years old. the Portuguese version of BOLD questionnaire was administered by an interviewer to older residents able to participate (n = 143). Indoor air contaminants (IAC) were measured twice, during winter and summer in 135 areas. Mixed effects logistic regression models were used to study the association between the health questionnaire results and the monitored IAC, adjusted for age, smoking habits, gender and number of years living in the LTC. cough (23%) and sputum (12%) were the major respiratory symptoms, and allergic rhinitis (22%) the main self-reported illness. Overall particulate matter up to 2.5 micrometres in size median concentration was above the reference levels both in winter and summer seasons. Peak values of particulate matter up to 10 micrometres in size (PM10), total volatile organic compounds, carbon dioxide, bacteria and fungi exceeded the reference levels. Older people exposed to PM10 above the reference levels demonstrated higher odds of allergic rhinitis (OR = 2.9, 95% CI: 1.1-7.2). high levels of PM10 were associated with 3-fold odds of allergic rhinitis. No association was found between indoor air chemical and biological contaminants and respiratory symptoms. © The Author 2015. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Preliminary assessment of using tree-tissue analysis and passive-diffusion samplers to evaluate trichloroethene contamination of ground water at Site SS-34N, McChord Air Force Base, Washington, 2001

    Science.gov (United States)

    Cox, S.E.

    2002-01-01

    Two low-cost innovative sampling procedures for characterizing trichloroethene (TCE) contamination in ground water were evaluated for use at McChord Air Force Base (AFB) by the U.S. Geological Survey, in cooperation with the U.S. Air Force McChord Air Force Base Installation Restoration Program, in 2001. Previous attempts to characterize the source of ground-water contamination in the heterogeneous glacial outwash aquifer at McChord site SS-34N using soil-gas surveys, direct-push exploration, and more than a dozen ground-water monitoring wells have had limited success. The procedures assessed in this study involved analysis of tree-tissue samples to map underlying ground-water contamination and deploying passive-diffusion samplers to measure TCE concentrations in existing monitoring wells. These procedures have been used successfully at other U.S. Department of Defense sites and have resulted in cost avoidance and accelerated site characterization. Despite the presence of TCE in ground water at site SS-34N, TCE was not detected in any of the 20 trees sampled at the site during either early spring or late summer sampling. The reason the tree tissue procedure was not successful at the McChord AFB site SS-34N may have been due to an inability of tree roots to extract moisture from a water table 30 feet below the land surface, or that concentrations of TCE in ground water were not large enough to be detectable in the tree tissue at the sampling point. Passive-diffusion samplers were placed near the top, middle, and bottom of screened intervals in three monitoring wells and TCE was observed in all samplers. Concentrations of TCE from the passive-diffusion samplers were generally similar to concentrations found in samples collected in the same wells using conventional pumping methods. In contrast to conventional pumping methods, the collection of ground-water samples using the passive-diffusion samples did not generate waste purge water that would require hazardous

  2. Dose factors to calculate the radiation exposure due to radioactive waste air from nuclear facilities

    International Nuclear Information System (INIS)

    Brenk, H.D.; Vogt, K.J.

    1977-01-01

    An evaluation of the environmental impact of nuclear plants according to paragraph 45 of the Radiation Protection Directive of the Federal Republic of Germany requires the calculation of dose conversion factors indicating the correlation between the contaminated medium and individual radiation exposure. The present study is to be conceived as a contribution to discussion on this subject. For the determination of radiation exposure caused by the waste air of nuclear plants, models are being specified for computing the dose conversion factors for the external exposure pathways of β-submersion, γ-submersion and γ-radiation from contaminated ground as well as the internal exposure pathways of inhalation and ingestion, which further elaborate and improve the models previously applied, especially as far as the ingestion pathway is concerned, which distinguishes between 6 major food categories. The computer models are applied to those radionuclides which are significan for nuclear emitters, in particular nuclear light-water power stations. The results obtained for the individual exposure pathways and affected organs are specified in the form of tables. For this purpose, calculations were first of all carried out for the so-called 'reference man'. The results can be transferred to population groups with different consumption habits (e.g. vegetarians) by the application of correction factors. The models are capable of being extended with a view to covering other age groups. (orig.) [de

  3. Airborne radioactive contamination following aerosol ventilation studies

    International Nuclear Information System (INIS)

    Mackie, A.; Hart, G.C.; Ibbett, D.A.; Whitehead, R.J.S.

    1994-01-01

    Lung aerosol ventilation studies may be accompanied by airborne contamination, with subsequent surface contamination. Airborne contamination has been measured prior to, during and following 59 consecutive 99 Tc m -diethylenetriamine pentaacetate (DTPA) aerosol studies using a personal air sampler. Airborne contamination ranging between 0 and 20 330 kBq m -3 has been measured. Airborne contamination increases with degree of patient breathing difficulty. The effective dose equivalent (EDE) to staff from ingested activity has been calculated to be 0.3 μSv per study. This figure is supported by data from gamma camera images of a contaminated staff member. However, surface contamination measurements reveal that 60% of studies exceed maximum permissible contamination limits for the hands; 16% of studies exceed limits for controlled area surfaces. (author)

  4. Release of Streptomyces albus propagules from contaminated surfaces

    International Nuclear Information System (INIS)

    Gorny, R.L.; Mainelis, Gediminas; Grinshpun, Sergey A.; Willeke, Klaus; Dutkiewicz, Jacek; Reponen, Tiina

    2003-01-01

    The release of Streptomyces albus propagules from contaminated agar an ceiling tile surfaces was studied under controlled environmental condition in a newly developed aerosolization chamber. The experiments revealed tha both spores and cell fragments can be simultaneously released from the colonized surface by relatively gentle air currents of 0.3 m s -1 . A 100x increase of the air velocity can result in a 50-fold increase in the number of released propagules. The aerosolization rate depends strongly on the typ and roughness of the contaminated surface. Up to 90% of available actinomycete propagules can become airborne during the first 10 min of th release process. Application of vibration to the surface did not reveal an influence on the aerosolization process of S. albus propagules under th tested conditions. This study has shown that propagules in the fine particle size range can be released in large amounts from contaminated surfaces Measurement of the number of S. albus fragments in the vicinity of contaminated area, as an alternative to conventional air or surface sampling appears to be a promising approach for quantitative exposure assessment

  5. Radiologically contaminated lead shot reuse at the Idaho National Engineering Laboratory (INEL)

    International Nuclear Information System (INIS)

    Heileson, W.M.; Grant, R.P.

    1995-01-01

    This project involved the utilization of radioactively contaminated lead shot located at the Radioactive Waste Management Complex (RWMC) for radiation shielding on a radioactive liquid process tank located at Argonne National Laboratory-West (ANL-W). The use of previously contaminated shot precludes the radioactive contamination of clean shot. With limited treatment and disposal options for contaminated lead shot, the reuse of lead for shielding is significant due to the inherent characteristic of becoming a mixed waste when radiologically contaminated. The INEL conducted a lead cleanup campaign in 1990. This was designed to ensure control of potential Resource Conservation and Recovery Act (RCRA) regulated waste. Contaminated lead from throughout the INEL, was containerized per the lead Waste Acceptance Criteria at the generator sites. Limited areas at the INEL are designated for mixed waste storage. As a result, some of the lead was stored at the RWMC in the air support weather shield (ASWS). This lead was contaminated with small amounts of fission product contamination. The lead was in the form of shot, brick, sheet, casks, and other various sized pieces. In 1993, ANL-W identified a need for lead shot to be used as shielding in a radioactive liquid waste storage and processing tank at the Fuel Cycle Facility (FCF). The contaminated lead used on this project had been in storage as mixed waste at the RWMC. This paper will focus on the processes and problems encountered to utilize the contaminated lead shot

  6. The Compounds Responsible for Air Pollution

    Directory of Open Access Journals (Sweden)

    Magdalena Kostrz

    2017-12-01

    Full Text Available Air quality in Poland poses a serious threat for boththe society and the environment. According to the WHO research Poland is located on the 14th place as a country most contaminated by particulate matter (PM10. Equally health-threatening substances are ozone, PAH, nitrogen dioxide, sulfur oxide, carbon oxide and heavy metals. Long-lasting exposure to high concentrations of ozone and nitrogen dioxide may lead to many irreversible changes in lungs, pulmonary oedema and even death. The main PAH, which cumulates in the organism is benzopyrene. This substance has been described by the IARC as a the most cancerogenic factor. High concentration of sulfur oxide in the air may cause severe damage of upper respiratory tract, sulfur oxide contributes greatly also to the appearance of acid rain and is an ingredient of a London type smog. Heavy metals polluting the air are one of the most severe health threat for people, due to the ability to cumulate in the organism.

  7. Effect of mobile unidirectional air flow unit on microbial contamination of air in standard urologic procedures.

    Science.gov (United States)

    Ferretti, Stefania; Pasquarella, Cesira; Fornia, Samanta; Saccani, Elisa; Signorelli, Carlo; Vitali, Pietro; Sansebastiano, Giuliano Ezio

    2009-12-01

    Infection is one of the most feared complications of surgery. New instrumentation is being developed to reduce deposition of bacteria. We investigated 45 major surgical procedures (21 radical nephrectomies [RN] and 24 radical retropubic prostatectomies [RRP]) in our urology department during 2007. In about one-half of the interventions, an ultraclean air flow mobile (UAF) unit was used. Bacterial sedimentation was evaluated by nitrocellulose membranes placed on the instrument tray and by settle plates positioned at four points in the operating room. In 27 operations, an additional membrane was located near the incision. Bacterial counts on the nitrocellulose membranes during RN were 230 colony-forming units (cfu)/m(2)/h with the UAF unit and 2,254 cfu/m(2)/h without the unit (p = 0.001). During RRP, the values were 288 cfu/m(2)/h and 3,126 cfu/m(2)/h respectively (p = 0.001). The membrane placed near the incision during RN showed a microbial count of 1,235 cfu/m(2)/h with the UAF unit and 5,093 cfu/m(2)/h without the unit (p = 0.002); during RRP, the values were 1,845 cfu/m(2)/h and 3,790 cfu/m(2)/h, respectively (difference not significant). Bacterial contamination detected by settle plates during RN showed a mean value of 2,273 cfu/m(2)/h when the UAF unit was used and 2,054 cfu/m(2)/h without the unit; during RRP, the values were 2,332 cfu/m(2)/h and 2,629 cfu/m(2)/h with and without the UAF unit, respectively (NS). No statistically significant differences were detected in the clinical data registered in patients operated on under standard conditions and while the UAF unit was functioning. The UAF appears able to reduce microbial contamination at the operating table, reaching a bacterial number obtained in ultraclean operating theatres.

  8. 30 CFR 56.5001 - Exposure limits for airborne contaminants.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Exposure limits for airborne contaminants. 56... Quality and Physical Agents Air Quality § 56.5001 Exposure limits for airborne contaminants. Except as... contaminants shall not exceed, on the basis of a time weighted average, the threshold limit values adopted by...

  9. Radiological surveillance of airborne contaminants in the working environment

    International Nuclear Information System (INIS)

    1979-01-01

    Contamination of the air of the working environment may result from incidental or accidental releases during the handling of radioactive materials. Representative sampling and measurement are complicated by a variety of factors, arising mainly from the physical and chemical properties of radioactive aerosols. The following topics are presented in detail: sources and types of airborne contaminants, sampling techniques and instruments, measurement techniques and instruments, interpretation of measurements, examples of air monitoring programmes

  10. The Thirty Years’ Results of Radiation Hygienic Monitoring of Tula Region territories contaminated due to the Chernobyl NPP accident

    Directory of Open Access Journals (Sweden)

    V. V. Boldyreva

    2016-01-01

    Full Text Available Over 50% of Tula Region areas were contaminated after the Chernobyl NPP accident. The article provides the thirty years’ results of radiation hygienic monitoring of the Chernobyl accidental fallout - affected areas in Tula Region. The radiation situation is assessed at the initial accidental period and at the current stage. The initial levels of gamma - radiation dose intensity (up to 35 mcSv/hr are identified for the period of the “iodine” hazard along with the tabular data on the dose intensity relative stabilization by the beginning of August 1986 due to iodine-131 decay. The information is presented regarding iodine-131 tentative maximum permissible level exceedance in the dairy products of the two most contaminated regional areas - Plavskoye and Arsenievskoye. The article also provides the laboratory data on the total beta - activity in the foodstuffs in 1986-1987 and cesium-137 maximum permissible level exceedence in 1986. The radionuclide maximum permissible level exceedances in foodstuffs were registered only in 1986 due to the plants surface contamination whereas in the forest mushrooms those exceedances were repeatedly found until 2004. The black earths and grey forest soils had a benign impact upon the intensity of the radionuclide transfer into plants which resulted in the formation of internal radiation doses.At the current stage, the content of cesium-137 and strontium- 90 in the foodstuffs can only be quantified by a radiochemical method. The table covers all the districts within the boundaries of radiation contaminated zones. The radiochemical studies indicate the main dose - forming products. The article contains the table of internal and external radiation doses of the population in Plavsk town over 1986-1990 and displays the factors impacting population’s internal and external exposure. The Chernobyl - affected exposure dose of the population is mostly attributed to the external radiation and, for over twenty years, it

  11. The Use of Numerical Modeling to Address Surface and Subsurface Water Contamination due to Fracwater Spills in Larry's Creek, Pennsylvania

    Science.gov (United States)

    Simon, C. A.; Arjmand, S.; Abad, J. D.

    2012-12-01

    Because of its relatively low carbon dioxide emissions, natural gas is considered to be more efficient and environmentally friendly than other non-renewable fuels. As a result of this, among other factors, in recent years natural gas has become one of the world's primary energy sources. In the United States, drilling to extract natural gas has substantially increased over the past few years. In the Marcellus Shale, unconventional gas is currently extracted by using two new techniques: horizontal drilling and hydraulic fracturing. Today, fracking fluids which have been applied as part of the hydraulic fracturing process to fracture the shale rock and release the gas, pose a major environmental concern. These fluids are highly contaminated with radionuclides and toxic metals and any exposure of this highly polluted water to surface water or soil could heavily contaminate the media. The area selected for the current study is the Larry's Creek, located in Lycoming County in Pennsylvania. Larry's Creek Watershed was adversely affected by coal and iron mines activities in the 19th century. Though, the water quality in this creek was considered to be good as of 2006. Recently, oil and gas drilling activities have raised concerns about the creek's water quality again. A major environmental hazard is the freshwater contamination by frac/flowback water. Drilling companies are using impoundments on site to keep fracwater, and to store and evaporate flowback water. However, these ponds may fail or leak due to construction problems and/or accidents. Close to Saladasburg, Larry's Creek's stream was observed running rich with clay in October 19, 2011. Historical measurements show very high turbidity during this period which has raised questions about water contamination by the gas industry activities in the upper stream of the watershed. An interstate watershed agency has reported spills in Wolf Run in different drilling sites in the Larry's Creek basin. The focus of this study

  12. Clean Air and Water

    Centers for Disease Control (CDC) Podcasts

    The air we breathe and the water we drink are both vital components of our health. Nevertheless, bacteria, pollutants, and other contaminates can alter life-giving air and water into health-threatening hazards. Learn about how scientists at the Centers for Disease Control and Prevention work to protect the public from air and water-related health risks.

  13. Extensive severe fever with thrombocytopenia syndrome virus contamination in surrounding environment in patient rooms.

    Science.gov (United States)

    Ryu, B-H; Kim, J Y; Kim, T; Kim, M-C; Kim, M J; Chong, Y-P; Lee, S-O; Choi, S-H; Kim, Y S; Woo, J H; Kim, S-H

    2018-01-31

    Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne disease in Korea and China. Although there is previous evidence of person-to-person transmission via direct contact with body fluids, the role of environmental contamination by SFTS virus (SFTSV) in healthcare settings has not been established. We therefore investigated the contamination of the healthcare environment by SFTSV. We investigated the possible contamination of hospital air and surfaces with SFTSV transmission by collecting air and swabbing environmental surface samples in two hospitals treating six SFTS patients between March and September 2017. The samples were tested using real-time RT-PCR for SFTS M and S segments. Of the six SFTS patients, four received mechanical ventilation and three died. Five rooms were occupied by those using mechanical ventilation or total plasma exchange therapy in isolation rooms without negative pressure and one room was occupied by a patient bedridden due to SFTS. SFTSV was detected in 14 (21%) of 67 swab samples. Five of 24 swab samples were obtained from fomites including stethoscopes, and 9 of 43 were obtained from fixed structures including doorknobs and bed guardrails. Some samples from fixed structures such as television monitors and sink tables were obtained in areas remote from the patients. SFTSV RNA was not detected in five air samples from three patients' rooms. Our data suggest that SFTSV contamination was extensive in surrounding environments in SFTS patients' rooms. Therefore, more strict isolation methods and disinfecting procedures should be considered when managing SFTS patients. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  14. Contamination and radiation exposure in Germany following the accident at the Chernobyl nuclear power plant

    International Nuclear Information System (INIS)

    Ettenhuber, E.; Winkelmann, I.; Ruehle, H.R.; Bayer, A.; Wirth, E.; Haubelt, R.; Koenig, K.

    1997-01-01

    The radioactive substances released following the accident at the Chernobyl nuclear power plant were distributed by atmospheric transport over large parts of Europe. Due to dry and wet deposition processes, soil and Plants were contaminated. The ''radioactive cloud'' was first monitored on the 29th of April by near surface measurement stations; by the 30th of April the whole of southern Germany was affected. The contaminated air then spread out in both westerly and northerly directions, resulting in increased airborne radioactivity over the entire country within the following days. Airborne radionuclides were deposited on soil and plants in dry form as well as by precipitation. Locally varying deposits resulted from different activity concentrations in aerosols and very large differences in the intensity of precipitation during the passage of contaminated air masses. Rain fails were particularly heavy in Germany during the time the cloud was passing, especially south of the Danube where on average 2,000 to 50,000 Bq of Cs-137 was deposited per square meter on soil, and in some cases even as much as 100,000 Bq per square meter

  15. Contamination and radiation exposure in Germany following the accident at the Chernobyl nuclear power plant

    Energy Technology Data Exchange (ETDEWEB)

    Ettenhuber, E; Winkelmann, I; Ruehle, H R [Bundesamt fuer Strahlenschutz, Berlin (Germany); Bayer, A; Wirth, E; Haubelt, R; Koenig, K [Bundesamt fuer Strahlenschutz, Muenchen (Germany)

    1997-09-01

    The radioactive substances released following the accident at the Chernobyl nuclear power plant were distributed by atmospheric transport over large parts of Europe. Due to dry and wet deposition processes, soil and Plants were contaminated. The ``radioactive cloud`` was first monitored on the 29th of April by near surface measurement stations; by the 30th of April the whole of southern Germany was affected. The contaminated air then spread out in both westerly and northerly directions, resulting in increased airborne radioactivity over the entire country within the following days. Airborne radionuclides were deposited on soil and plants in dry form as well as by precipitation. Locally varying deposits resulted from different activity concentrations in aerosols and very large differences in the intensity of precipitation during the passage of contaminated air masses. Rain fails were particularly heavy in Germany during the time the cloud was passing, especially south of the Danube where on average 2,000 to 50,000 Bq of Cs-137 was deposited per square meter on soil, and in some cases even as much as 100,000 Bq per square meter. 2 refs, 3 figs, 1 tab.

  16. Model for Predicting DC Flashover Voltage of Pre-Contaminated and Ice-Covered Long Insulator Strings under Low Air Pressure

    Directory of Open Access Journals (Sweden)

    Zhijin Zhang

    2011-04-01

    Full Text Available In the current study, a multi-arc predicting model for DC critical flashover voltage of iced and pre-contaminated long insulator strings under low atmospheric pressure is developed. The model is composed of a series of different polarity surface arcs, icicle-icicle air gap arcs, and residual layer resistance. The calculation method of the residual resistance of the ice layer under DC multi-arc condition is established. To validate the model, 7-unit and 15-unit insulator strings were tested in a multi-function artificial climate chamber under the coexistent conditions of low air pressure, pollution, and icing. The test results showed that the values calculated by the model satisfactorily agreed with those experimentally measured, with the errors within the range of 10%, validating the rationality of the model.

  17. Long-term (1992-2004) record of lead, cadmium, and zinc air contamination in Warsaw, Poland: Determination by chemical analysis of moss bags and leaves of Crimean linden

    Energy Technology Data Exchange (ETDEWEB)

    Dmuchowski, Wojciech, E-mail: dmuchowski@ob.neostrada.p [Botanical Garden-Center for Conservation of Biological Diversity, Polish Academy of Sciences, 2 Prawdziwka St., 02-973 Warszawa (Poland); Warsaw University of Life Sciences-SGGW, Faculty of Agriculture and Biology, 159 Nowoursynowska St., 02-776 Warszawa (Poland); Bytnerowicz, Andrzej [US Forest Service, Pacific Southwest Research Station, 4955 Canyon Crest Drive, Riverside, CA 92507 (United States)

    2009-12-15

    Between 1992 and 2004, air contamination with lead (Pb), cadmium (Cd), and zinc (Zn) in Warsaw, Poland, was monitored annually with moss (Sphagnum fallax) bags on a network of 230 sites covering the entire city. During the study the highest contamination was near the Warszawa Steel Mill, northwestern Warsaw. Lead concentrations in moss bags decreased in time, while those of Cd and Zn did not show clear trends. Between 1994 and 2004, Pb, Cd, and Zn were also monitored in the Crimean linden (Tilia Euchlora) foliage along the main city avenue and in a northwestern warsaw park. Lead concentrations decreased more near the avenue than in the park, indicating that the phasing-out of leaded gasoline had a major effect on reduced Pb contamination in Warsaw. At the same time, foliar concentrations of Cd and Zn in both areas decreased much less. - Between 1992 and 2004, concentrations of Pb decreased, while those of Cd and Zn remained little changed in moss bags and linden foliage exposed to ambient air in Warsaw, Poland.

  18. Long-term (1992-2004) record of lead, cadmium, and zinc air contamination in Warsaw, Poland: Determination by chemical analysis of moss bags and leaves of Crimean linden

    International Nuclear Information System (INIS)

    Dmuchowski, Wojciech; Bytnerowicz, Andrzej

    2009-01-01

    Between 1992 and 2004, air contamination with lead (Pb), cadmium (Cd), and zinc (Zn) in Warsaw, Poland, was monitored annually with moss (Sphagnum fallax) bags on a network of 230 sites covering the entire city. During the study the highest contamination was near the Warszawa Steel Mill, northwestern Warsaw. Lead concentrations in moss bags decreased in time, while those of Cd and Zn did not show clear trends. Between 1994 and 2004, Pb, Cd, and Zn were also monitored in the Crimean linden (Tilia Euchlora) foliage along the main city avenue and in a northwestern warsaw park. Lead concentrations decreased more near the avenue than in the park, indicating that the phasing-out of leaded gasoline had a major effect on reduced Pb contamination in Warsaw. At the same time, foliar concentrations of Cd and Zn in both areas decreased much less. - Between 1992 and 2004, concentrations of Pb decreased, while those of Cd and Zn remained little changed in moss bags and linden foliage exposed to ambient air in Warsaw, Poland.

  19. Analysis of an Air Conditioning Coolant Solution for Metal Contamination Using Atomic Absorption Spectroscopy: An Undergraduate Instrumental Analysis Exercise Simulating an Industrial Assignment

    Science.gov (United States)

    Baird, Michael J.

    2004-01-01

    A real-life analytical assignment is presented to students, who had to examine an air conditioning coolant solution for metal contamination using an atomic absorption spectroscopy (AAS). This hands-on access to a real problem exposed the undergraduate students to the mechanism of AAS, and promoted participation in a simulated industrial activity.

  20. General dosimetry model for internal contamination with radioisotopes

    International Nuclear Information System (INIS)

    Nino, L.

    1989-01-01

    Radiation dose by inner contamination with radioisotopes is not measured directly but evaluated by the application of mathematical models of fixation and elimination, taken into account biological activity of each organ with respect to the incorporated material. Models proposed by ICRP for the respiratory and gastrointestinal tracts (30) seems that they should not be applied independently because of the evident correlation between them. In this paper both models are integrated in a more general one with neither modification nor limitation of the starting models. It has been applied to some patients in the Instituto Nacional de Cancerologia, who received some I-131 dose via oral and results are quite similar to dose experimentally obtained via urine spectrograms. Based on this results the method was formalized and applied to professional exposed personnel of the medical staff at the same Institute; due to high doses found in some of the urine samples, probable I-131 air contamination could be supposed

  1. Heavy metal contamination of soil and sediment in Zambia

    African Journals Online (AJOL)

    USER

    Key words: Heavy metal, contamination, mining, soil, sediment. INTRODUCTION ... drinking water and inhaling air or soil contaminated by mining activities and the ..... indicates that copper waste discharged into the upper reaches of the Kafue ...

  2. Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change

    International Nuclear Information System (INIS)

    Silva, Raquel A; West, J Jason; Zhang Yuqiang; Anenberg, Susan C; Lamarque, Jean-François; Shindell, Drew T; Faluvegi, Greg; Collins, William J; Dalsoren, Stig; Skeie, Ragnhild; Folberth, Gerd; Rumbold, Steven; Horowitz, Larry W; Nagashima, Tatsuya; Naik, Vaishali; Sudo, Kengo; Takemura, Toshihiko; Bergmann, Daniel; Cameron-Smith, Philip; Cionni, Irene

    2013-01-01

    Increased concentrations of ozone and fine particulate matter (PM 2.5 ) since preindustrial times reflect increased emissions, but also contributions of past climate change. Here we use modeled concentrations from an ensemble of chemistry–climate models to estimate the global burden of anthropogenic outdoor air pollution on present-day premature human mortality, and the component of that burden attributable to past climate change. Using simulated concentrations for 2000 and 1850 and concentration–response functions (CRFs), we estimate that, at present, 470 000 (95% confidence interval, 140 000 to 900 000) premature respiratory deaths are associated globally and annually with anthropogenic ozone, and 2.1 (1.3 to 3.0) million deaths with anthropogenic PM 2.5 -related cardiopulmonary diseases (93%) and lung cancer (7%). These estimates are smaller than ones from previous studies because we use modeled 1850 air pollution rather than a counterfactual low concentration, and because of different emissions. Uncertainty in CRFs contributes more to overall uncertainty than the spread of model results. Mortality attributed to the effects of past climate change on air quality is considerably smaller than the global burden: 1500 (−20 000 to 27 000) deaths yr −1 due to ozone and 2200 (−350 000 to 140 000) due to PM 2.5 . The small multi-model means are coincidental, as there are larger ranges of results for individual models, reflected in the large uncertainties, with some models suggesting that past climate change has reduced air pollution mortality. (letter)

  3. Helium Tracer Tests for Assessing Air Recovery and Air Distribution During In Situ Air Sparging

    National Research Council Canada - National Science Library

    Johnson, Richard

    2001-01-01

    ...) systems for capturing contaminant vapors liberated by in situ air sparging (IAS). The tracer approach is simple to conduct and provides more direct and reliable measures than the soil-gas pressure approach...

  4. A Qualitative and Quantitative Survey on Air-Transmitted Fungal Contamination in Different Wards of Kamkar Hospital in Qom, Iran, in 2007

    Directory of Open Access Journals (Sweden)

    M Azizifar

    2012-05-01

    Full Text Available

    Background and Objectives: Fungi spores can be found everywhere. The amount and variety of fungal spores and their vast spread could be a preliminary step to the initiation of different diseases in people with different levels of health.

    Methods: In the present study six wards including nephrology, internal ward for women, surgery ward for men, operating theater for E.N.T., ophthalmology, infectious diseases ward and the laboratory were chosen for sampling on the basis of their types of activities and their in-patients. We used Anderson sampling method, collected samples within two minutes with flow rate of 28.3 L/Min in sabouraud medium.

    Results: Maximum contamination in the infectious diseases ward was 300 CFU/m3 and minimum contamination in E.N.T. was 94 CFU/m3. The maximum percentage of fungal spores in the hospital air was observed to be as follows: penicillin with 36.36%, Cladosporium 24.74%, A.niger 17.97%, Rhizopus 10.57% and A.flavus 2.74A%.

    Conclusion: Fungal contamination concentration in hospital indoor air in this study was higher than the recommended limits and other similar studies from a quantitative point of view, but it was similar to other studies in terms of identified species.

  5. A pilot study to determine medical laser generated air contaminant emission rates for a simulated surgical procedure.

    Science.gov (United States)

    Lippert, Julia F; Lacey, Steven E; Lopez, Ramon; Franke, John; Conroy, Lorraine; Breskey, John; Esmen, Nurtan; Liu, Li

    2014-01-01

    The U.S. Occupational Safety and Health Administration (OSHA) estimates that half a million health-care workers are exposed to laser surgical smoke each year. The purpose of this study was to establish a methodology to (1) estimate emission rates of laser-generated air contaminants (LGACs) using an emission chamber, and to (2) perform a screening study to differentiate the effects of three laser operational parameters. An emission chamber was designed, fabricated, and assessed for performance to estimate the emission rates of gases and particles associated with LGACs during a simulated surgical procedure. Two medical lasers (Holmium Yttrium Aluminum Garnet [Ho:YAG] and carbon dioxide [CO2]) were set to a range of plausible medical laser operational parameters in a simulated surgery to pyrolyze porcine skin generating plume in the emission chamber. Power, pulse repetition frequency (PRF), and beam diameter were evaluated to determine the effect of each operational parameter on emission rate using a fractional factorial design. The plume was sampled for particulate matter and seven gas phase combustion byproduct contaminants (benzene, ethylbenzene, toluene, formaldehyde, hydrogen cyanide, carbon dioxide, and carbon monoxide): the gas phase emission results are presented here. Most of the measured concentrations of gas phase contaminants were below their limit of detection (LOD), but detectable measurements enabled us to determine laser operation parameter influence on CO2 emissions. Confined to the experimental conditions of this screening study, results indicated that beam diameter was statistically significantly influential and power was marginally statistically significant to emission rates of CO2 when using the Ho:YAG laser but not with the carbon dioxide laser; PRF was not influential vis-a-vis emission rates of these gas phase contaminants.

  6. Catalyst Substrates Remove Contaminants, Produce Fuel

    Science.gov (United States)

    2012-01-01

    A spacecraft is the ultimate tight building. We don t want any leaks, and there is very little fresh air coming in, says Jay Perry, an aerospace engineer at Marshall Space Flight Center. As a result, there is a huge potential for a buildup of contaminants from a host of sources. Inside a spacecraft, contaminants can be introduced from the materials that make spacecraft components, electronics boxes, or activities by the crew such as food preparation or cleaning. Humans also generate contaminants by breathing and through the body s natural metabolic processes. As part of the sophisticated Environmental Control and Life Support System on the International Space Station (ISS), a trace contaminant control system removes carbon dioxide and other impurities from the cabin atmosphere. To maintain healthy levels, the system uses adsorbent media to filter chemical contaminant molecules and a high-temperature catalytic oxidizer to change the chemical structure of the contaminants to something more benign, usually carbon dioxide and water. In the 1990s, while researching air quality control technology for extended spaceflight travel, Perry and others at Marshall were looking for a regenerable process for the continuous removal of carbon dioxide and trace chemical contaminants on long-duration manned space flights. At the time, the existing technology used on U.S. spacecraft could only be used once, which meant that a spacecraft had to carry additional spare parts for use in case the first one was depleted, or the spacecraft would have to return to Earth to exchange the components.

  7. Fungal endophthalmitis caused by Paecilomyces variotii following cataract surgery: a presumed operating room air-conditioning system contamination.

    Science.gov (United States)

    Tarkkanen, Ahti; Raivio, Virpi; Anttila, Veli-Jukka; Tommila, Petri; Ralli, Reijo; Merenmies, Lauri; Immonen, Ilkka

    2004-04-01

    To report a case of delayed fungal endophthalmitis by Paecilomyces variotii following uncomplicated cataract surgery. To our knowledge this is the first reported case of postoperative endophthalmitis by this species. We report the longterm clinical follow-up of an 83-year-old female who underwent uncomplicated sutureless, small-incision cataract surgery. She developed recurring uveitis 4 months after surgery. Vitreous tap and finally complete vitrectomy with removal of the capsular bag including the intraocular lens were performed. Fungi were studied by histopathology and culture. At histopathological examination, the fungi were found to be closely related with the capsular bag. A few mononuclear inflammatory cells were encountered. At culture, Paecilomyces variotii, a common ubiquitous non-pathogenic saprophyte, was identified. Despite systemic, intravitreal and topical antifungal therapy after vitrectomy the uveitis recurred several times, but no fungal organisms were isolated from the repeat intraocular specimen. At 18 months postoperatively the subject's visual acuity was finger counting at 2 metres. At the time of surgery the operating room air-conditioning system was undergoing repairs. Cases of fungal endophthalmitis after contamination from air-conditioning ventilation systems have been reported before, but none of the cases reported have been caused by P. variotii. P. variotii, a non-pathogenic environmental saprophyte, may be disastrous if introduced into the eye. International recommendations on the environmental control of the operating room air-conditioning ventilation system should be strictly followed. No intraoperative surgery should be undertaken while the air-conditioning system is undergoing repairs or service.

  8. Experimental evaluation of enthalpy efficiency and gas-phase contaminant transfer in an enthalpy recovery unit with polymer membrane foils

    DEFF Research Database (Denmark)

    Nie, Jinzhe; Yang, Jianrong; Fang, Lei

    2015-01-01

    Experimental studies were conducted in a laboratory setting to investigate the enthalpy efficiency and gas-phase contaminant transfer in a polymer membrane enthalpy recovery unit. One commercially available polymer membrane enthalpy recovery unit was used as a reference unit. Simulated indoor air...... and outdoor air by twin chambers was connected to the unit. Three chemical gases were dosed to the indoor exhaust air to mimic indoor air contaminants. Based on the measurements of temperature, humidity ratio, and contaminant concentrations of the indoor exhaust air and outdoor air supply upstream...

  9. Geotechnical properties of crude oil contaminated sand

    International Nuclear Information System (INIS)

    Puri, V.K.; Das, B.M.; Cook, E.E.; Shin, E.C.

    1994-01-01

    Contamination of soil due to an oil spill influences its subsequent engineering behavior. An investigation was conducted to study the effect of crude oil contamination on compaction characteristics, shear strength, one-dimensional compression, and coefficient of permeability. Water permeability was also determined by using commercial grade motor oils as contaminants. The test results indicate that the compaction characteristics are influenced by oil contamination. The angle of internal friction of sand (based on total stress condition) decreases due to presence of oil within the pore spaces in sand. One dimensional compression characteristics of sand are significantly influenced by oil contamination resulting in a decrease in the value of constrained modulus with increase in the degree of oil contamination compared to the case of dry sand. Water permeability was observed to be a function of the initial viscosity and the degree of saturation due to the contaminating oil

  10. Sub-soil contamination due to oil spills in zones surrounding oil pipeline-pump stations and oil pipeline right-of-ways in Southwest-Mexico.

    Science.gov (United States)

    Iturbe, Rosario; Flores, Carlos; Castro, Alejandrina; Torres, Luis G

    2007-10-01

    Oil spills due to oil pipelines is a very frequent problem in Mexico. Petroleos Mexicanos (PEMEX), very concerned with the environmental agenda, has been developing inspection and correction plans for zones around oil pipelines pumping stations and pipeline right-of-way. These stations are located at regular intervals of kilometres along the pipelines. In this study, two sections of an oil pipeline and two pipeline pumping stations zones are characterized in terms of the presence of Total Petroleum Hydrocarbons (TPHs) and Polycyclic Aromatic Hydrocarbons (PAHs). The study comprehends sampling of the areas, delimitation of contamination in the vertical and horizontal extension, analysis of the sampled soils regarding TPHs content and, in some cases, the 16 PAHs considered as priority by USEPA, calculation of areas and volumes contaminated (according to Mexican legislation, specifically NOM-EM-138-ECOL-2002) and, finally, a proposal for the best remediation techniques suitable for the contamination levels and the localization of contaminants.

  11. Cost-benefit functions for the allocation of security sensors for air contaminants

    International Nuclear Information System (INIS)

    Lambert, James H.; Farrington, Mark W.

    2007-01-01

    In this paper, we study various functional forms of the cost-benefit function in a context of risk analysis and multi-objective decision-making for the allocation of hazard protection. An approach of benefit-cost analysis under uncertainty is used. The study identifies measures of hazard intensity and population exposure as well as additional parameters that influence assessments of benefits and costs. Parameter uncertainties are propagated by numerical interval analysis. Several tiers of the uncertainty of the benefit-to-cost ratio are generated to compare hazard intensity and population exposure in multi-objective tradeoff analysis. We develop an example application with the allocation of chemical, biological, and radiological air contaminant sensors throughout a region. The sensors provide local protection to non-identical sectors of the population that are exposed to non-identical intensities of the hazard. The results illuminate the significance of the cost-benefit function for the allocation of sensors. The paper has implications for anti-terrorism, disaster preparedness, transportation safety, and other areas of public safety

  12. AIR RADIOACTIVITY MONITOR

    Science.gov (United States)

    Bradshaw, R.L.; Thomas, J.W.

    1961-04-11

    The monitor is designed to minimize undesirable background buildup. It consists of an elongated column containing peripheral electrodes in a central portion of the column, and conduits directing an axial flow of radioactively contaminated air through the center of the column and pure air through the annular portion of the column about the electrodes. (AEC)

  13. Air contamination during hemodialysis should be minimized.

    Science.gov (United States)

    Stegmayr, Bernd

    2017-04-01

    During preparation of the hemodialysis (HD) extracorporeal circuit (ECC) a priming solution is used to remove air from the tubes and dialyzer. Ultra sound techniques have verified micro embolic signals (MES) in the ECC that may derive from clots or gas embolies. In vitro studies could clarify that embolies of air develop within the ECC and also pass the safety systems such as air traps and enter the venous line that goes into the patient. Clinical studies have confirmed the presence of MES within the ECC that pass into the return-venous-line during conventional HD without inducing an alarm. In addition, studies confirmed that such MES were present within the AV fistula and subclavian vein, but also detected within the carotid artery. Autopsy studies revealed the presence of gas embolies surrounded by clots within the lung but also brain and myocardial tissue. This review will focus on how the MES develop and measures of how the exposure can be limited. © 2016 International Society for Hemodialysis.

  14. To study the effects of groundwater contamination in Kasur due to Nallah Rohi

    International Nuclear Information System (INIS)

    Ghumman, A.R.; Shamim, M.A.

    2005-01-01

    Groundwater contamination is a worldwide known problem. Pakistan, being a developing country, is also facing the problem created by groundwater pollution. Disposal of domestic wastes and agricultural treatments has been reported to be a considerable factor for causing the pollution, especially the groundwater contamination. In the rural areas of Pakistan, latrines and septic tanks have become common because of the advancement in the living standards. All of the domestic wastes is disposed off into the ponds or nearby passing streams. In the similar fashion, drains in the big and well developed cities of Pakistan lead the domestic waste, along with the industrial waste, into the passing by streams, canals and rivers. All of such disposed off waste is untreated because of the lack of legislation and its improper implementation. The contaminated water affects the health of human beings and also destroys the crops when this water is used for irrigation. So this paper deals with the effects and condition of the disposal of the harmful chemicals, which ultimately through seepage reach the groundwater and make it hazardous. Also, the lateral distances of the contaminated groundwater were found out. For experimentation, major city of Kasur which is in the vicinity of Nullah Rohi, was selected. All the wastes including both the industrial as well as domestic, of the whole area, is disposed off into the Nullah. The percolation of the harmful chemicals and its mixing with groundwater has resulted in the hazardous effects on the inhabitants of the area on the irrigation land as well. So the water in the vicinity, at different locations was tested and the degree of contamination and the lateral distances of contaminated water were also worked out. (author)

  15. Air contaminants and litter fall decomposition in urban forest areas: The case of São Paulo - SP, Brazil.

    Science.gov (United States)

    Lamano Ferreira, Maurício; Portella Ribeiro, Andreza; Rodrigues Albuquerque, Caroline; Ferreira, Ana Paula do Nascimento Lamano; Figueira, Rubens César Lopes; Lafortezza, Raffaele

    2017-05-01

    factors. Precipitation appeared to be an important factor to disperse air pollutants; one method to better regulate this process is the development and integration of green infrastructure at city level, which might contribute to nature-based solutions. Results suggest that although the Curucutu forest is not very far from the MRSP, which could result in heavy metal levels similar to those observed in the Guarapiranga forest, the weather conditions, geographic location and rainfall rates might act as efficient physical barriers against the dispersion of pollutants in the urban area. However, it is important to highlight that in the period studied (2012-2013), MRSP presented unusual features during the winter period marked by the highest levels of precipitation which was due to several numbers of frontal systems and also due to their permanence for a couple days in the region. Thus, it is recommended to continue this study in order to obtain a database for characterizing the seasonal variation of air pollution levels in the litter fall and their adverse effects on ecosystem processes in these remnants of the Atlantic Forest. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Infrequent air contamination with Acinetobacter baumannii of air surrounding known colonized or infected patients.

    Science.gov (United States)

    Rock, Clare; Harris, Anthony D; Johnson, J Kristie; Bischoff, Werner E; Thom, Kerri A

    2015-07-01

    Using a validated air sampling method we found Acinetobacter baumannii in the air surrounding only 1 of 12 patients known to be colonized or infected with A. baumannii. Patients' closed-circuit ventilator status, frequent air exchanges in patient rooms, and short sampling time may have contributed to this low burden.

  17. Operating theatre ventilation systems and microbial air contamination in total joint replacement surgery: results of the GISIO-ISChIA study.

    Science.gov (United States)

    Agodi, A; Auxilia, F; Barchitta, M; Cristina, M L; D'Alessandro, D; Mura, I; Nobile, M; Pasquarella, C

    2015-07-01

    Recent studies have shown a higher rate of surgical site infections in hip prosthesis implantation using unidirectional airflow ventilation compared with turbulent ventilation. However, these studies did not measure the air microbial quality of operating theatres (OTs), and assumed it to be compliant with the recommended standards for this ventilation technique. To evaluate airborne microbial contamination in OTs during hip and knee replacement surgery, and compare the findings with values recommended for joint replacement surgery. Air samplings were performed in 28 OTs supplied with unidirectional, turbulent and mixed airflow ventilation. Samples were collected using passive sampling to determine the index of microbial air contamination (IMA). Active sampling was also performed in some of the OTs. The average number of people in the OT and the number of door openings during the sampling period were recorded. In total, 1228 elective prosthesis procedures (60.1% hip and 39.9% knee) were included in this study. Of passive samplings performed during surgical activity in unidirectional airflow ventilation OTs (U-OTs) and mixed airflow OTs (M-OTs), 58.9% and 87.6% had IMA values >2, respectively. Of samplings performed during surgical activity in turbulent airflow OTs (T-OTs) and in turbulent airflow OTs with the surgical team wearing Steri-Shield Turbo Helmets (TH-OTs), 8.6% and 60% had IMA values ≤ 2, respectively. Positive correlation was found between IMA values and the number of people in the OT and the number of door openings (P systems always provide acceptable airborne bacterial counts. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  18. Assessment of microbiological indoor air quality in an Italian office building equipped with an HVAC system.

    Science.gov (United States)

    Bonetta, Sa; Bonetta, Si; Mosso, S; Sampò, S; Carraro, E

    2010-02-01

    The purpose of this study was to evaluate the level and composition of bacteria and fungi in the indoor air of an Italian office building equipped with a heating, ventilation and air conditioning (HVAC) system. Airborne bacteria and fungi were collected in three open-space offices during different seasons. The microbial levels in the outdoor air, supply air diffusers, fan coil air flow and air treatment unit humidification water tank were used to evaluate the influence of the HVAC system on indoor air quality (IAQ). A medium-low level of bacterial contamination (50-500 CFU/m(3)) was found in indoor air. Staphylococcus and Micrococcus were the most commonly found genera, probably due to human presence. A high fungal concentration was measured due to a flood that occurred during the winter. The indoor seasonal distribution of fungal genera was related to the fungal outdoor distribution. Significant seasonal and daily variation in airborne microorganisms was found, underlining a relationship with the frequency of HVAC system switching on/off. The results of this monitoring highlight the role of the HVAC system on IAQ and could be useful to better characterise bacterial and fungal population in the indoor air of office buildings.

  19. The secondary electron yield of air exposed metal surfaces at the example of niobium

    CERN Document Server

    Scheuerlein, C; Taborelli, M

    2002-01-01

    The secondary electron yield (SEY) variation of atomically clean metal surfaces due to air exposures and during subsequent heat treatments is described with the example of a sputter-deposited Nb thin film. Corresponding variations of the surface chemical composition have been monitored using AES and SSIMS. On the basis of these results and of previously obtained SEY results on metals and metal oxides the origin of the SEY variations is discussed. The SEY increase, which is generally observed during long lasting air exposures of clean metals, is mainly caused by the adsorption of an airborne carbonaceous contamination layer. The estimated value of about 3 for the maximum SEY of this layer is higher than that of all pure metals. Only in some cases the air-formed oxide can contribute to the air exposure induced SEY increase while many oxides have a lower SEY than their parent metals. From the experimental data it can also be excluded that the SEY increase during air exposures is mainly due to an increased second...

  20. Development and performance assessment of a luminex xMAP® direct hybridization assay for the detection and identification of indoor air fungal contamination.

    Science.gov (United States)

    Libert, Xavier; Packeu, Ann; Bureau, Fabrice; Roosens, Nancy H; De Keersmaecker, Sigrid C J

    2017-01-01

    Considered as a public health problem, indoor fungal contamination is generally monitored using classical protocols based on culturing. However, this culture dependency could influence the representativeness of the fungal population detected in an analyzed sample as this includes the dead and uncultivable fraction. Moreover, culture-based protocols are often time-consuming. In this context, molecular tools are a powerful alternative, especially those allowing multiplexing. In this study a Luminex xMAP® assay was developed for the simultaneous detection of 10 fungal species which are most frequently in indoor air and that may cause health problems. This xMAP® assay was found to be sensitive, i.e. its limit of detection is ranging between 0.05 and 0.01 ng of gDNA. The assay was subsequently tested with environmental air samples which were also analyzed with a classical protocol. All the species identified with the classical method were also detected with the xMAP® assay, however in a shorter time frame. These results demonstrate that the Luminex xMAP® fungal assay developed in this study could contribute to the improvement of public health and specifically to the indoor fungal contamination treatment.

  1. Development and performance assessment of a luminex xMAP® direct hybridization assay for the detection and identification of indoor air fungal contamination.

    Directory of Open Access Journals (Sweden)

    Xavier Libert

    Full Text Available Considered as a public health problem, indoor fungal contamination is generally monitored using classical protocols based on culturing. However, this culture dependency could influence the representativeness of the fungal population detected in an analyzed sample as this includes the dead and uncultivable fraction. Moreover, culture-based protocols are often time-consuming. In this context, molecular tools are a powerful alternative, especially those allowing multiplexing. In this study a Luminex xMAP® assay was developed for the simultaneous detection of 10 fungal species which are most frequently in indoor air and that may cause health problems. This xMAP® assay was found to be sensitive, i.e. its limit of detection is ranging between 0.05 and 0.01 ng of gDNA. The assay was subsequently tested with environmental air samples which were also analyzed with a classical protocol. All the species identified with the classical method were also detected with the xMAP® assay, however in a shorter time frame. These results demonstrate that the Luminex xMAP® fungal assay developed in this study could contribute to the improvement of public health and specifically to the indoor fungal contamination treatment.

  2. Ten years' experience in determining internal contamination among plutonium laboratory workers

    International Nuclear Information System (INIS)

    Deworm, J.; Fieuw, G.

    1976-01-01

    Glove boxes in plutonium laboratories are fitted with ''sniffers'' (air samplers), which evaluate atmospheric contamination. The results of the measurements over a ten-year period of operation are available, and cases of detection in this way of air contamination exceeding the maximum permissible concentrations are exceptional. During contamination aerodynamic particle diameters of 1 - 4 μm were measured. The concentration and characteristics of the aerosol have made it possible to ascertain the inhalable fraction and to estimate the pulmonary and systemic burden in workers. The workers exposed in the laboratories undergo a urine test each month. The results obtained show that there is little risk of internal contamination without the person concerned being aware of an abnormal situation. In the majority of cases it is possible to take proper precautions and to collect the data necessary for evaluating the body burden. Three cases of specific contamination are examined in detail: contamination by plutonium and americium from a non-identified source, detected by routine urine analysis; contamination by inhalation of plutonium; an injury to the left forefinger, accompanied by plutonium contamination. (author)

  3. Investigation of contaminated soil and water samples and their affirmativeness. Untersuchungen kontaminierter Boden- und Wasserproben und deren Aussagekraft

    Energy Technology Data Exchange (ETDEWEB)

    Brauch, H J; Eisenmann, R [Karlsruhe Univ. (T.H.) (Germany, F.R.). DVGW-Forschungsstelle am Engler-Bunte-Institut

    1989-09-01

    Contaminations in gas utility premises are a potential pollution hazard; hence, ground water, soil air and soil need to be tested. The authors describe major requirements for such analyses. Soil samples are a specific problem due to the heterogeneity of the material which can be solved only by performing a very great number of individual measurements. This is demonstrated by examples from practice. The existing limits are not suitable for a hazard assessment of gasworks-typical contaminations. Schematic application of standard value recommendations like the 'Dutch List' and their abuse as a compilation of limits should be rejected. (orig.).

  4. Environmental remediation through sequestration of airfall-derived metals contamination by selective revegetation strategies

    Science.gov (United States)

    Sahagian, D.; Peters, S.; Yasko, G.

    2006-12-01

    Industrial activities in the 20th century left a legacy of contaminated air, water, and soils. The relative environmental enlightenment of the 21st century has already led to reductions in pollution sources, and has improved air and surface water quality in many areas. However, the residence time of contaminants in soils can be lengthy, presenting a challenge to 21st century restoration of impacted ecosystems and communities. The present study is centered on the Borough of Palmerton, PA, and a broad region of adjacent communities that were affected by two zinc smelters that operated continuously for more than 80 years, emitting thousands of tons of heavy metals including zinc, cadmium, lead and arsenic. While the air quality has vastly improved since the closure of the zinc smelters, the community remains adversely affected by the ecological damage caused by the pollution. The north face of the Kittatiny ridge was completely denuded of vegetation from the high metals concentrations. The region suffers further due to the ongoing perception of contaminated soils and water, leaving the town and surrounding areas economically depressed. In this study, we are examining the impact of revegetation strategies, particularly those using warm season grasses to determine which species survive and indeed thrive in the metals-contaminated soils. Because of the large areal extent and locally steep slopes in the broad area of concern, removal of metals from the entire region is impractical. It is considered more effective to sequester the metals in the soil so that they do not leach into the rivers, or enter the food web. Vegetation that absorbs and transports the metals throughout its tissues would mobilize these pollutants into the food web as well as make the metals available to reach the river via leaves and other vegetative structures. In this study, we are monitoring the uptake of metals by test grasses and other plants that are colonizing the contaminated area, as well as

  5. Measures against radioactive contamination due to Fukushima First Nuclear Power Plant accidents. Part 3. Removing and decontamination of contaminated soil

    International Nuclear Information System (INIS)

    Ishii, K.; Terakawa, A.; Matsuyama, S.

    2012-01-01

    We studied the structure of radioactive cesium distribution in soil and found the exponential dependence. This behavior could be explained theoretically. We developed a useful method to decontaminate the soil contaminated with radioactive cesium atoms. We applied our method to the contaminated school yards of elementary schools of Marumori town and decontaminated total area of about 7000 m"2. (author)

  6. Industrially contaminated areas in Serbia as a potential public health threat to the exposed population

    Directory of Open Access Journals (Sweden)

    Matić Branislava I.

    2017-01-01

    Full Text Available Mining and mineral processing is still a vital source of income in Serbia, due to mineral abundance in copper, lead, zinc, antimony. Copper mining and metal-processing are located in the east: Bor, Veliki Krivelj, Cerovo, Majdanpek. Abandoned sites from antimony mining and processing and secondary lead smelter are at the western border: Zajača, Krupanj, Stolice. Coal mining and power plants are surrounding Belgrade: Obrenovac (2 power plants, Grabovac (plant ash landfill, Kolubara and Kostolac. Main objective is to focus on potential public health hazards from industrial contamination in Serbia. Key public health issue is presence of As and Cd in ambient air PM10 close to industrially contaminated sites due to the fact that ores have high naturally occurring contents of heavy metals and metalloids. Data originate from Serbian Environmental Protection Agency, Mining and Metallurgy Institute Bor, Belgrade Institute of Public Health, as part of continuous measurement of air quality within State network of automatic stations. Concentration of As in PM10 are extremely above the limit value in Bor and Lazarevac, with Cd values slightly increased in Bor. Serbia lacks the legal framework for continuous and institutionalized follow-up of population groups vulnerable to hazardous environmental exposure, although measured concentration indicate urgent need for such activities.

  7. Arsenic and dichlorvos: Possible interaction between two environmental contaminants.

    Science.gov (United States)

    Flora, Swaran J S

    2016-05-01

    Metals are ubiquitously present in the environment and pesticides are widely used throughout the world. Environmental and occupational exposure to metal along with pesticide is an area of great concern to both the public and regulatory authorities. Our major concern is that combination of these toxicant present in environment may elicit toxicity either due to additive or synergistic interactions or 'joint toxic actions' among these toxicants. It poses a rising threat to human health. Water contamination particularly ground water contamination with arsenic is a serious problem in today's scenario since arsenic is associated with several kinds of health problems, such arsenic associated health anomalies are commonly called as 'Arsenism'. Uncontrolled use and spillage of pesticides into the environment has resulted in alarming situation. Moreover serious concerns are being addressed due to their persistence in the environmental matrices such as air, soil and surface water runoff resulting in continuous exposure of these harmful chemicals to human beings and animals. Bio-availability of these environmental toxicants has been enhanced much due to anthropological activities. Dreadfully very few studies are available on combined exposures to these toxicants on the animal or human system. Studies on the acute and chronic exposure to arsenic and DDVP are well reported and well defined. Arsenic is a common global ground water contaminant while dichlorvos is one of the most commonly and widely employed organophosphate based insecticide used in agriculture, horticulture etc. There is thus a real situation where a human may get exposed to these toxicants while working in a field. This review highlights the individual and combined exposure to arsenic and dichlorvos on health. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Indoor air mycoflora of residential dwellings in Jos metropolis ...

    African Journals Online (AJOL)

    Background: The quality of air in the environment where one lives or works can have potential effects on human health. There are strong indications that in many parts of the world, our homes, schools and workplaces are heavily contaminated with air-borne molds and other biological contaminants. Objectives: This study ...

  9. The role of open-air inhalatoria in the air quality improvement in spa towns.

    Science.gov (United States)

    Burkowska-But, Aleksandra; Kalwasińska, Agnieszka; Brzezinska, Maria Swiontek

    2014-08-01

    The present study was aimed at evaluating microbiological contamination of air in Ciechocinek and Inowrocław - Polish lowland spa towns. Additionally, the impact of open-air inhalatoria on the quality of air was evaluated. Air samples were collected seasonally in the urban areas, in the recreation areas and in the vicinity of inhalatoria in both towns using impaction. The numbers of mesophilic bacteria, staphylococci, hemolytic bacteria and actinomycetes were determined on media according to the Polish Standard PN-86/Z-04111/02. The number of moulds was determined on media according to the Polish Standard PN-86/Z-04111/03. While the highest numbers of microorganisms were noted at the sites located in the urban areas, the lowest numbers were noted in the vicinity of the open-air inhalatoria. In all the investigated air samples the values of bioaerosol concentrations were below the recommended TLVs (≤ 5000 CFU×m(-3) for both bacteria and fungi in outdoor environments). Location of the sampling site was invariably a decisive factor in determining the number of microorganisms in the air. The aerosol which is formed in the open-air inhalatoria has a positive influence on microbiological air quality. Owing to a unique microclimate and low air contamination, Ciechocinek and Inowrocław comply with all necessary requirements set for health resorts specializing in treating upper respiratory tract infections.

  10. Analysis of copper contamination in transformer insulating material with nanosecond- and femtosecond-laser-induced breakdown spectroscopy

    Science.gov (United States)

    Aparna, N.; Vasa, N. J.; Sarathi, R.

    2018-06-01

    This work examines the oil-impregnated pressboard insulation of high-voltage power transformers, for the determination of copper contamination. Nanosecond- and femtosecond-laser-induced breakdown spectroscopy revealed atomic copper lines and molecular copper monoxide bands due to copper sulphide diffusion. X-ray diffraction studies also indicated the presence of CuO emission. Elemental and molecular mapping compared transformer insulating material ageing in different media—air, N2, He and vacuum.

  11. AIR POLLUTION FEATURES OF THE VALLEY-BASED TOWNS IN HUNGARY

    Directory of Open Access Journals (Sweden)

    Z. UTASI

    2016-03-01

    Full Text Available There are 30 valley-based towns with >10,000 inhabitants in Hungary, filled by 1.023 million people i.e. 10 % of the population. Two criteria are used to define the valley-based town. They are: (i Vertical difference between the lowest point in the town and the highest one around it should be >100 m. At the same time, (ii the same difference on the opposite side should be >50 m. Air pollution data by the National Air Pollution Observation Network are used. Five contaminants were selected and analysed for 2007, 2010 and 2013. Due to a sharp reduction in the network, we could find data for a small part of the valley-based towns. Control towns with equal air-quality observations and similar cumulative number of inhabitants were also selected. The contaminants and the number of the settlements are: NO2 manual (14 valley-based vs. 2x14 control, NO2 automatic (8 vs. 8, SO2 automatic (7 vs. 2x6, PM10 automatic (8 vs. 2x7 and PM10 deposition manual (6 vs. 8. Average values, as well as high concentration episodes (>98%thresholds are equally analysed and evaluated. The main conclusion is that there are so big differences between the years both in absolute values and relative sequence of valley-based and control groups that the analysed there years is not enough to make any final conclusion. For step-over frequencies, however valley-based towns have some advantage, possibly due to the valley-hill wind system.

  12. Field surveying of radionuclide contamination in forests

    International Nuclear Information System (INIS)

    Turunen, J.; Rantavaara, A.; Ammann, M.

    2009-01-01

    Field measurements of radionuclides after an accidental contamination of forests assume the capacity for identification of a number of nuclides in varying source geometries. The continuous redistribution of radionuclides in forests through natural processes implies a decrease of prevailing surface contamination of trees and an increase in activity density on the ground. Portable gamma spectrometers have long been based on Na(I) detectors which, due to their low energy resolution, are not the tool for analysis of contamination from accidental releases of fission and activation products in the first days or weeks after a deposition. Data of airborne radionuclides from the Chernobyl accident in April 1986 were used for demonstration of initial and later distribution of radionuclides as sources of air Kerma in forests. Forest model (FDMF, PV. 6.0) of the RODOS system was used for the assessment of time-dependent Kerma rate from different forest compartments. The results show the fast reduction of activities of short-lived nuclides and their contributions to the Kerma rate in the first weeks and months. The results also give an estimate for the time needed until a gamma spectrometer with a low energy resolution would give useful information about long-lived radioactivity on the forest floor. An example is given on a portable high resolution semiconductor spectrometer that has suitable characteristics for field surveying also during occurrence of a great number of radionuclides contributing to the gamma spectrum. The needs for further research of a recently deposited radionuclide contamination on forest vegetation and soil, and the efforts for improvement of portable radiation meters and their use in management planning and radioecological research on contaminated forests are discussed. (au)

  13. EXPERIMENTAL COMPARISON OF THE AEROSOL METHOD OF DISINFECTION OF AIR AND SURFACES CONTAMINATED BY M. TUBERCULOSIS

    Directory of Open Access Journals (Sweden)

    V. V. Kuzin

    2018-01-01

    instead of disinfectant for control tests treating the tests objects contaminated in the same manner.Results. The good disinfection properties of Green Dez aerosol were proved during the simulation of M. tuberculosis, H37Rv strain, disinfection on the surfaces and in the air.The efficiency analysis of the aerosol method of disinfection proved the reduction of disinfectant consumption by 4-5 times versus wiping and irrigation, due to this the aerosol treatment can be regarded as a safer and more environmentally friendly method.The finely dispersed disinfectant aerosol, produced by MNC, effectively decontaminated the whole space, including the remote and hard-to-reach places. Full automation of disinfection implies no human presence providing high safety of disinfection. 

  14. Radioactive contamination from Chernobyl accident over Alexandria city

    International Nuclear Information System (INIS)

    Ammar, E.A.; El-Khatib, A.M.; Wahba, A.G.; Elraey, M.

    1987-01-01

    The concentration of radioactive contamination in air resulting from the Chernobyl accident has been followed up. A sudden and sharp increase was detected seven days after the start of the accident. This increase amounted to about 650 times the normal air-borne activity. (author)

  15. Modelling assessment of regional groundwater contamination due to historic smelter emissions of heavy metals

    NARCIS (Netherlands)

    Grift, B. van der; Griffioen, J.

    2008-01-01

    Historic emissions from ore smelters typically cause regional soil contamination. We developed a modelling approach to assess the impact of such contamination on groundwater and surface water load, coupling unsaturated zone leaching modelling with 3D groundwater transport modelling. Both historic

  16. Mobile ultra-clean unidirectional airflow screen reduces air contamination in a simulated setting for intra-vitreal injection.

    Science.gov (United States)

    Lapid-Gortzak, Ruth; Traversari, Roberto; van der Linden, Jan Willem; Lesnik Oberstein, Sarit Y; Lapid, Oren; Schlingemann, Reinier O

    2017-02-01

    The aim of this study is to determine whether the use of a mobile ultra-clean laminar airflow screen reduces the air-borne particle counts in the setting of a simulated procedure of an intra-vitreal injection. A mobile ultra-clean unidirectional airflow (UDF) screen was tested in a simulated procedure for intra-vitreal injections in a treatment room without mechanical ventilation. One UDF was passed over the instrument tray and the surgical area. The concentration of particles was measured in the background, over the instrument table, and next to the ocular area. The degree of protection was calculated at the instrument table and at the surgical site. Use of the UDF mobile screen reduced the mean particle concentration (particles > 0.3 microns) on the instrument table by a factor of at least 100.000 (p air contamination. Mobile UDF screen reduces the mean particle concentration substantially. The mobile UDF screen may therefore allow for a safer procedural environment for ambulatory care procedures such as intra-vitreal injections in treatment rooms.

  17. Sizing of air cleaning systems for access to nuclear plant spaces

    International Nuclear Information System (INIS)

    Estreich, P.J.

    A mathematical basis is developed to provide the practicing engineer with a method for sizing air-cleaning systems for nuclear facilities. In particular, general formulas are provided to relate cleaning and contamination dynamics of an enclosure such that safe conditions are obtained when working crews enter. Included in these considerations is the sizing of an air-cleaning system to provide rapid decontamination of airborne radioactivity. Multiple-nuclide contamination sources, leak rate, direct radiation, contaminant mixing efficiency, filter efficiencies, air-cleaning-system operational modes, and criteria for maximum permissible concentrations are integrated into the procedure. (author)

  18. Air protection strategy in Poland

    Energy Technology Data Exchange (ETDEWEB)

    Blaszczyk, B.

    1995-12-31

    Air quality is one of the basic factors determining the environmental quality and influencing the life conditions of people. There is a shortage of proper quality air in many regions of Poland. In consequence, and due to unhindered transport, air pollution is the direct cause of losses in the national economy (reduction of crops, losses in forestry, corrosion of buildings and constructions, worsening of people`s health). Poland is believed to be one of the most contaminated European countries. The reason for this, primarily, is the pollution concomitant with energy-generating fuel combustion; in our case it means the use of solid fuels: hard coal and lignite. This monocultural economy of energy generation is accompanied by low efficiency of energy use (high rates of energy loss from buildings, heat transmission pipelines, energy-consuming industrial processes). This inefficiency results in the unnecessary production of energy and pollution. Among other reasons, this results from the fact that in the past Poland did not sign any international agreements concerning the reduction of the emission of pollution. The activities aimes at air protection in Poland are conducted based on the Environmental Formation and Protection Act in effect since 1980 (with many further amendments) and the The Ecological Policy of the state (1991). The goals of the Polish air pollution reduction program for the period 1994-2000 are presented.

  19. The radium contamination in the southern Black Forest

    International Nuclear Information System (INIS)

    Schuttelkopf, H.; Kiefer, H.

    1980-01-01

    The high natural radium contamination in the Southern Black Forest was used to evaluate the extent of contamination in the environment, the mechanisms of radium transport to man, and the radiation burden of the population due to natural Ra-226. Ra-226 was measured in air, soil, sediment and rock samples. Spring, surface and drinking water were examined. The contamination of fish, milk and practically all foodstuffs produced in the Southern Black Forest was measured. Grass and hay samples and many wild plants were also analyzed for Ra-226. Since water and fish samples, grass and milk samples, soil and grass samples were collected jointly in every case, it was possible to calculate the following transfer factors: fish/water, grass/soil, milk/grass, water/sediments, foodstuffs/soil. The latter includes the transfer factors for wheat, barley, oat, eggs, beef and deer, potatoes and vegetables. The natural radiation burden was calculated on the basis of the consumption habits by the average member of the population. Measurement in the body counter of the Ra-226 body burden of 28 persons living in the area under consideration concluded the research program. The radio-ecological and health physics aspects of the results are discussed. (H.K.)

  20. Cleanup of contaminated areas; La bonifica di aree contaminate

    Energy Technology Data Exchange (ETDEWEB)

    Beone, G; Carbone, A I; Zagaroli, M [ENEA - Dipartimento Protezione Ambientale e Salute dell' Uomo, Centro Ricerche Energia, Casaccia (Italy)

    1989-01-15

    The paper deals with the problem of contaminated areas cleanup, in order to eliminate every possible damage for man safety and environment and to site recovery for some utilization, The first step of cleanup operation is site characterization, that is followed by a pianificazion activity for a better definition of staff qualification, technology to be used, protection and prevention instruments for the risks due to contaminants handling. The second section describes the different remedial technologies for contaminated sites. Remedial technologies may be divided into on-site/off-site and in-situ treatments, according to whether materials (waste, soil, water) are moved to another location or not, respectively. Finally, it is outlined that contaminated areas cleanup is a typical multidisciplinary activity because very different competences are required. (author)

  1. [Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 5, Field Investigation report

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    An environmental investigation of ground water conditions has been undertaken at Wright-Patterson Air Force Base (WPAFB), Ohio to obtain data to assist in the evaluation of a potential removal action to prevent, to the extent practicable, migration of the contaminated ground water across Base boundaries. Field investigations were limited to the central section of the southwestern boundary of Area C and the Springfield Pike boundary of Area B. Further, the study was limited to a maximum depth of 150 feet below grade. Three primary activities of the field investigation were: (1) installation of 22 monitoring wells, (2) collection and analysis of ground water from 71 locations, (3) measurement of ground water elevations at 69 locations. Volatile organic compounds including trichloroethylene, perchloroethylene, and/or vinyl chloride were detected in concentrations exceeding Maximum Contaminant Levels (MCL) at three locations within the Area C investigation area. Ground water at the Springfield Pike boundary of Area B occurs in two primary units, separated by a thicker-than-expected clay layers. One well within Area B was determined to exceed the MCL for trichloroethylene.

  2. Decontamination method of contaminated metals

    International Nuclear Information System (INIS)

    Kawamura, Fumio; Ueda, Yoshihiro; Sato, Chikara; Komori, Itaru.

    1980-01-01

    Purpose: To effectively separate radioactive materials from molten metals in dry-processing method by heating metals contaminated with radioactive materials at a temperature below melting point to oxidize the surface thereof, then heating them to melt and include the radioactive materials into the oxides. Method: Metals contaminated with radioactive materials are heated at a temperature below the melting point thereof in an oxidizing atmosphere to oxidize the surface. Thereafter they are heated to melt at temperature above the melting point of the metals, and the molten metals are separated with the radioactive materials included in the oxides. For instance, radiation-contaminated aluminum pipe placed on the bed of an electrical heating furnace, and heated at 500 0 C which is lower than the melting point 660 0 C of aluminum for 1 - 2 hours while supplying air from an air pipe into the furnace, and an oxide film is formed on the surface of the aluminum pipe. Then, the furnace temperature is increased to 750 0 C wherein molten aluminum is flown down to a container and the oxide film is separated by floating it as the slug on the molten aluminum. (Horiuchi, T.)

  3. Does acute led (Pb) contamination influence membrane fatty acid composition and freeze tolerance in intertidal blue mussels in arctic Greenland?

    DEFF Research Database (Denmark)

    Thyrring, Jakob; Juhl, Bodil Klein; Holmstrup, Martin

    2015-01-01

    In their natural habitats, organisms are exposed to multiple stressors. Heavy metal contamination stresses the cell membrane due to increased peroxidation of lipids. Likewise, sub-zero air temperatures potentially reduce membrane functionality in ectothermal animals. We tested if acute lead (Pb......) exposure for 7 days would influence survival in intertidal blue mussels (Mytilus edulis) after exposure to realistic sub-zero air temperatures. A full factorial experiment with five tissue Pb concentrations between 0 and 3500 lg Pb/g and six sub-zero temperatures from 0 to -17 °C were used to test...

  4. Exposure Due to Interacting Air flows Between Two Persons

    DEFF Research Database (Denmark)

    Bjørn, Erik; Nielsen, Peter V.

    The contaminant concentration inhaled by an occupant (ie. the personal exposure) is usually less than the return concentration in displacement ventilated rooms. Two main questions are investigated: 1) Does the exhalation from one person penetrate the breathing zone of another person placed nearby...

  5. Involvement of the ORNL Chemical Technology Division in contaminated air and water handling at the Three Mile Island Nuclear Power Station

    International Nuclear Information System (INIS)

    Brooksbank, R.E.; King, L.J.

    1979-08-01

    The President's Commission on the Accident at Three Mile Island requested that Oak Ridge National Laboratory (ORNL) generate documents concerning two areas in which ORNL personnel provided on-site assistance following the accident on March 28, 1979. These are: instrumentation diagnostics, and the treatment of radioactive wastes and liquid effluents stemming from the accident. This report describes the involvement of the ORNL Chemical Technology Division (CTD) in contaminated air and water handling at Three Mile Island

  6. Outbreak of infection in a burns unit due to Pseudomonas aeruginosa originating from contaminated tubing used for irrigation of patients

    DEFF Research Database (Denmark)

    Kolmos, H J; Thuesen, B; Nielsen, S V

    1993-01-01

    water used for irrigation of the burns, as part of the first-aid treatment which the patients received when entering the hospital. Contamination was restricted to showers and tubing that were permanently connected to the taps, and the outbreak stopped after they had been disinfected. Tubing and showers...... used for irrigation of burns should be dismantled and heat-disinfected after each patient and not reconnected to the taps until immediately before the next treatment. Taps used for irrigation of burns should be monitored regularly for the presence of P. aeruginosa and other potentially pathogenic......Five patients with extensive deep burns developed septicaemia due to Pseudomonas aeruginosa serogroup O-7.8 and phage type 21 or 21/188 shortly after they had been admitted to hospital. Four other burned patients became colonized with the same strain. The source of infection was contaminated tap...

  7. Remediation of petroleum contaminated soils through bioventing in cold regions

    International Nuclear Information System (INIS)

    Brar, G.S.; Currier, P.M.; Reynolds, C.M.; Millhouse, J.B.

    1994-01-01

    Petroleum contaminated soils are found in many remote sites in Alaska where releases from bulk storage of fuel oil for heat and power generation have occurred. Bioventing, a process in which petroleum degradation by indigenous aerobic bacteria is enhanced by supplying oxygen and nutrients, may be a viable treatment technique for soils at remote sites if limitations due to low temperatures can be overcome. The objectives of this study were to: (1) test a design for ex-situ bioventing in cold regions, (2) evaluate biodegradation rates at low temperatures, and (3) determine the effects of applied nutrients on low-temperature biodegradation. Two aerated biopit remediation cells were constructed to treat previously excavated soils at Eareckson Air Force Station, Shemya, Alaska. Experimental treatments consisted of a fertilized pile (FP) and a nonfertilized pile (NFP). Hourly soil and air temperature data at 4 depths were recorded at 4 locations in each biopit. During 148 days of remediation, mean temperature ranged from -3 to 6 C for air at 100 cm. above the piles. The mean concentrations of TPH and DRO decreased from an initial 1,304 and 982 mg/kg of 139 and 82 mg/kg, respectively, with the FP, and 422 and 294 mg/kg with the NFP in 115 days. Cumulative degradation rates of TPH and DRO are significantly (P 2 = 0.94 for TPH. 0.93 for DRO). Pit bioventing technology was shown to be efficient, fast, and cost-effective in cold regions where temperature during winter months is a major constraint for the remediation of contaminated soils

  8. Bacterial community structures in air conditioners installed in Japanese residential buildings.

    Science.gov (United States)

    Hatayama, Kouta; Oikawa, Yurika; Ito, Hiroyuki

    2018-01-01

    The bacterial community structures in four Japanese split-type air conditioners were analyzed using a next-generation sequencer. A variety of bacteria were detected in the air filter of an air conditioner installed on the first floor. In the evaporator of this air conditioner, bacteria belonging to the genus Methylobacterium, or the family of Sphingomonadaceae, were predominantly detected. On the other hand, the majority of bacteria detected in the air filters and evaporators of air conditioners installed on the fifth and twelfth floors belonged to the family Enterobacteriaceae. The source of bacteria belonging to the family Enterobacteriaceae may have been aerosols generated by toilet flushing in the buildings. Our results suggested the possibility that the bacterial contamination in the air conditioners was affected by the floor level on which they were installed. The air conditioner installed on the lower floor, near the ground, may have been contaminated by a variety of outdoor bacteria, whereas the air conditioners installed on floors more distant from the ground may have been less contaminated by outdoor bacteria. However, these suppositions may apply only to the specific split-type air conditioners that we analyzed, because our sample size was small.

  9. Assessment of natural attenuation of ground-water contamination at sites FT03, LF13, and WP14/LF15, Dover Air Force Base, Delaware

    Science.gov (United States)

    Barbaro, Jeffrey R.

    2002-01-01

    Water-quality, aquifer-sediment, and hydro-logic data were used to assess the effectiveness of natural attenuation of ground-water contamination at Fire Training Area Three, the Rubble Area Landfill, the Liquid Waste Disposal Landfill, and the Receiver Station Landfill in the East Management Unit of Dover Air Force Base, Delaware. These sites, which are contaminated with chlorinated solvents and fuel hydrocarbons, are under-going long-term monitoring to determine if natural attenuation continues to sufficiently reduce contaminant concentrations to meet regulatory requirements. This report is the first assessment of the effectiveness of natural attenuation at these sites since long-term monitoring began in 1999, and follows a preliminary investigation done in 1995?96. This assessment was done by the U.S. Geological Survey in cooperation with the U.S. Air Force.Since 1995?96, additional information has been collected and used in the current assessment. The conclusions in this report are based primarily on ground-water samples collected from January through March 2000. Previous analytical results from selected wells, available geologic and geo-physical well logs, and newly acquired information such as sediment organic-carbon measurements, hydraulic-conductivity measurements determined from slug tests on wells in the natural attenuation study area, and water-level measurements from surficial-aquifer wells also were used in this assessment. This information was used to: (1) calculate retardation factors and estimate contaminant migration velocities, (2) improve estimates of ground-water flow directions and inferred contaminant migration pathways, (3) better define the areal extent of contamination and the proximity of contaminants to discharge areas and the Base boundary, (4) develop a better under-standing of the vertical variability of contaminant concentrations and redox conditions, (5) evaluate the effects of temporal changes on concentrations in the plumes and

  10. [Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio

    International Nuclear Information System (INIS)

    1992-04-01

    This Removal Action System Design has been prepared as a Phase I Volume for the implementation of the Phase II removal action at Wright-Patterson Air Force Base (WPAFB) near Dayton, Ohio. The objective of the removal action is to prevent, to the extent practicable, the migration of ground water contaminated with chlorinated volatile organic compounds (VOCS) across the southwest boundary of Area C. The Phase 1, Volume 9 Removal Action System Design compiles the design documents prepared for the Phase II Removal Action. These documents, which are presented in Appendices to Volume 9, include: Process Design, which presents the 30 percent design for the ground water treatment system (GWTS); Design Packages 1 and 2 for Earthwork and Road Construction, and the Discharge Pipeline, respectively; no drawings are included in the appendix; Design Package 3 for installation of the Ground Water Extraction Well(s); Design Package 4 for installation of the Monitoring Well Instrumentation; and Design Package 5 for installation of the Ground Water Treatment System; this Design Package is incorporated by reference because of its size

  11. Equivalence in Ventilation and Indoor Air Quality

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max; Walker, Iain; Logue, Jennifer

    2011-08-01

    We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

  12. Toxicokinetics of Zn and Cd in the earthworm Eisenia andrei exposed to metal-contaminated soils under different combinations of air temperature and soil moisture content.

    Science.gov (United States)

    González-Alcaraz, M Nazaret; Loureiro, Susana; van Gestel, Cornelis A M

    2018-04-01

    This study evaluated how different combinations of air temperature (20 °C and 25 °C) and soil moisture content (50% and 30% of the soil water holding capacity, WHC), reflecting realistic climate change scenarios, affect the bioaccumulation kinetics of Zn and Cd in the earthworm Eisenia andrei. Earthworms were exposed for 21 d to two metal-contaminated soils (uptake phase), followed by 21 d incubation in non-contaminated soil (elimination phase). Body Zn and Cd concentrations were checked in time and metal uptake (k 1 ) and elimination (k 2 ) rate constants determined; metal bioaccumulation factor (BAF) was calculated as k 1 /k 2 . Earthworms showed extremely fast uptake and elimination of Zn, regardless of the exposure level. Climate conditions had no major impacts on the bioaccumulation kinetics of Zn, although a tendency towards lower k 1 and k 2 values was observed at 25 °C + 30% WHC. Earthworm Cd concentrations gradually increased with time upon exposure to metal-contaminated soils, especially at 50% WHC, and remained constant or slowly decreased following transfer to non-contaminated soil. Different combinations of air temperature and soil moisture content changed the bioaccumulation kinetics of Cd, leading to higher k 1 and k 2 values for earthworms incubated at 25 °C + 50% WHC and slower Cd kinetics at 25 °C + 30% WHC. This resulted in greater BAFs for Cd at warmer and drier environments which could imply higher toxicity risks but also of transfer of Cd within the food chain under the current global warming perspective. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Monitoring of surface and airborne contamination

    Energy Technology Data Exchange (ETDEWEB)

    Pradeep Kumar, K S [Bhabha Atomic Research Centre, Bombay (India)

    1997-06-01

    Indian nuclear energy programme aims at total safety in all activities involved in the entire fuel cycle for the occupational workers, members of the public and the environment as a whole. Routine radiation monitoring with clearly laid out procedures are followed for ensuring the safety of workers and public. Radiation monitoring carried out for the nuclear installations comprises of process monitoring, monitoring of effluent releases and also of the radiation protection monitoring of the individuals, work place and environment. Regulations like banning of smoking and consumption of food and drink etc. reduces the risk of direct ingestion even if inadvertent spread of contamination takes place. Though limit of transportable surface contamination is prescribed, the health physicists always follow a ``clean on swipe`` philosophy which compensates any error in the measurement of surface contamination. In this paper, the following items are contained: Necessity of contamination monitoring, accuracy required in the calibration of surface contamination monitors, methodology for contamination monitoring, air monitoring, guidelines for unrestricted release of scrap materials, and problems in contamination monitoring. (G.K.)

  14. Radiation hazard due to radon in indoor air

    International Nuclear Information System (INIS)

    Keller, G.

    1987-01-01

    Inhalation of the noble gas radon and its short-lived daughter products present in normal room air causes a considerable increase of the mean natural radiation exposure of the population. As there is an uncontested relationship between lung dose and cancer risk, measures should be taken to guarantee that the radon concentrations in room air do at least not reach maxima. The most simple measure is frequent, brief, good ventilation. Very high radon concentrations are measured in houses where radon pentrates direct from the soil into buildings. For this case, radon-tight insulation of the building from the soil is recommended. A forced ventilation system with heat recovery, installed by experts, has shown to be very successful in radon reduction in 'problematic' houses. (orig.) [de

  15. The supposed radioactive contamination of the Puelche aquifer

    International Nuclear Information System (INIS)

    Martini, Leopoldo E.

    2005-01-01

    The paper attempts to clarify the supposed radioactive contamination of the Puelche Aquifer in the Ezeiza Atomic Center Area, Ezeiza, province of Buenos Aires (Argentina). Reports are listed that show categorically that no anthropogenic uranium contamination is present. As far as the nitrates contamination is concerned, it is not generated by the Ezeiza Atomic Center, because the Center is downward from the contaminated zone. It is possible that the contamination is produced by houses in the area without suitable sewage. In the present case the best contribution to the environmental right, besides the adaptation and the systematization of the different legal instruments, is to found the analysis of the facts on the scientific and technical knowledge. (author) [es

  16. Environmental contaminants, ecosystems and human health

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, S.K.; Miller, E.W.; Brenner, F.J. [eds.] [Lafayette College, Easton, PA (United States). Dept. of Biology

    1995-12-31

    The authors cover a variety of concerns regarding the adverse impacts of contaminants on ecosystems and human health. The twelve chapters in the first section of the text address the impact of contaminants on ecosystem function, and ten of the remaining twenty-two chapters are devoted to the effects of contaminants on human health. Part three presents eight case studies in humans, while the final four chapters provide the reader with an assessment of environmental problems and analyses. Two chapters, on the health effects of power plant generated air pollution and on black lung disease, have been abstracted separately for the IEA Coal Research CD-ROM.

  17. Clean Air and Water

    Centers for Disease Control (CDC) Podcasts

    2007-04-10

    The air we breathe and the water we drink are both vital components of our health. Nevertheless, bacteria, pollutants, and other contaminates can alter life-giving air and water into health-threatening hazards. Learn about how scientists at the Centers for Disease Control and Prevention work to protect the public from air and water-related health risks.  Created: 4/10/2007 by CDC National Center for Environmental Health.   Date Released: 4/13/2007.

  18. Green remediation of contaminated sediment by stabilization/solidification with industrial by-products and CO2 utilization.

    Science.gov (United States)

    Wang, Lei; Chen, Liang; Tsang, Daniel C W; Li, Jiang-Shan; Yeung, Tiffany L Y; Ding, Shiming; Poon, Chi Sun

    2018-08-01

    Navigational dredging is an excavation of marine/freshwater sediment to maintain channels of sufficient depth for shipping safety. Due to historical inputs of anthropogenic contaminants, sediments are often contaminated by metals/metalloids, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, and other contaminants. Its disposal can present significant environmental and financial burdens. This study developed a novel and green remediation method for contaminated sediment using stabilization/solidification with calcium-rich/low-calcium industrial by-products and CO 2 utilization. The hydration products were evaluated by quantitative X-ray diffraction analysis and thermogravimetric analysis. The incorporation of calcium carbide residue (CCR) facilitated hydration reaction and provided relatively high 7-d strength. In contrast, the addition of Class-F pulverized fly ash (PFA) and ground granulated blast furnace slag (GGBS) was beneficial to the 28-d strength development due to supplementary pozzolanic and hydration reactions. The employment of 1-d CO 2 curing was found to promote strength development (98%) and carbon sequestration (4.3wt%), while additional 7-d air curing facilitated cement rehydration and further carbonation in the sediment blocks. The leachability tests indicated that all studied binders, especially CCR binder, effectively immobilized contaminants in the sediments. The calcium-rich CCR and GGBS were regarded as promising candidates for augmenting the efficacy of CO 2 curing, whereas GGBS samples could be applicable as eco-paving blocks in view of their superior 28-d strength. This study presents a new and sustainable way to transform contaminated sediment into value-added materials. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Application of the biological forced air soil treatment (BIOFAST trademark) technology to diesel contaminated soil

    International Nuclear Information System (INIS)

    Lyons, K.A.; Leavitt, M.E.; Graves, D.A.; Stanish, S.M.

    1993-01-01

    A subsurface Biological Forced Air Soil Treatment (BIOFAST trademark) system was constructed at the Yellow Freight System, Inc. (Yellow Freight) New Haven facility in Connecticut as a means of expediting the remediation of soils impacted by a diesel fuel release. Prior to beginning construction activities the soils were evaluated for the feasibility of bioremediation based on soil characteristics including contaminant degrading bacteria, moisture content, and pH. Based on results of stimulant tests with oxygen and nutrients, the addition of fertilizer during the construction of the cell was recommended. Following the removal of underground storage tanks, the bioremediation cell was constructed by lining the enlarged excavation with high density polyethylene (HDPE) and backfilling alternating layers of nutrient-laden soil and pea gravel. Passive and active soil vapor extraction (SVE) piping was included in the gravel layers and connected to a blower and vapor treatment unit, operated intermittently to supply oxygen to the subsurface cell. Operating data have indicated that the bacteria are generating elevated levels of CO 2 , and the SVE unit is evacuating the accumulated CO 2 from the soils and replacing it with fresh air. These data suggest that the bioremediation process is active in the soils. Soil samples collected from within the soil pit subsequent to installation and again after 10 months of operation indicate that TPH concentrations have decreased by as much as 50%

  20. GIS-based assessment of cancer risk due to benzene in Tehran ambient air.

    Science.gov (United States)

    Atabi, Farideh; Mirzahosseini, Seyed Alireza Hajiseyed

    2013-10-01

    The present study aimed to assess the risk of cancer due to benzene in the ambient air of gas stations and traffic zones in the north of Tehran. The cancer risk was estimated using the population distribution data for benzene levels and the unit risk for benzene proposed by the United States Environmental Protection Agency (US EPA). Sixteen sampling locations were monitored, once every week, during 5 April 2010 to 25 March 2011. The results showed that the mean annual benzene concentration was 14.51±3.17 parts per billion (ppb) for traffic zones and 29.01±1.32 ppb for outside gas stations. The risk calculated was 1026×10(-6) for gas station 27 and 955×10(-6) for gas station 139. According to our results, the annual benzene level in Tehran ambient air is 2 to 20 times higher than the respective value specified in International Standard (1.56 ppb). Moreover, the results showed a notable increase of cancer risks, ranging from 10% to 56%, for the vicinity population close to the gas stations in comparison to the vicinity population in the traffic zones.

  1. Air quality investigations of the Sandia National Laboratories Sol se Mete Aerial Cable Facility

    International Nuclear Information System (INIS)

    Gutman, W.M.; Silver, R.J.

    1994-12-01

    The air quality implications of the test and evaluation activities at the Sandia National Laboratories Sol se Mete Aerial Cable Facility are examined. All facets of the activity that affect air quality are considered. Air contaminants produced directly include exhaust products of rocket motors used to accelerate test articles, dust and gas from chemical explosives, and exhaust gases from electricity generators in the test arenas. Air contaminants produced indirectly include fugitive dust and exhaust contaminants from vehicles used to transport personnel and material to the test area, and effluents produced by equipment used to heat the project buildings. Both the ongoing program and the proposed changes in the program are considered. Using a reliable estimate of th maximum annual testing level, the quantities of contaminants released by project activities ar computed either from known characteristics of test items or from EPA-approved emission factors Atmospheric concentrations of air contaminants are predicted using EPA dispersion models. The predicted quantities and concentrations are evaluated in relation to Federal, New Mexico, an Bernalillo County air quality regulations and the human health and safety standards of the American Conference of Governmental Industrial Hygienists

  2. Evaluation of the risk of internal contamination of persons working in isotope laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Adamiak-Ziemba, J.; Doniec, J.; Kocznow, W.; Hawrynski, M.

    1985-01-01

    The investigation covered 484 workers. Altogether 1787 determinations have been made, in this--1648 internal contaminations and 139 contaminations of air, hand skin and working surfaces. The internal contaminations (22% of results) resulted mainly from deviation from radiological protection rules and were reduced through certain changes. Those were tritium contaminations (application of tritium radioluminiscence dyes) and 125--and 131-iodine radioisotopes (in nuclear medicine laboratories) the highest levels of which were 20 mSv and 0.25% ALI respectively. The results of /sup 238/Pu air contamination measurements have indicates that the dust arising during the production of smoke detectors (with /sup 238/PuO/sub 2/ sources) probably has no respirable fraction properties, which confines its absorption in lower segments of the respiratory tract. It has been demonstrated that in Poland there is no need of constructing a permanent central system of internal contamination control.

  3. Parent's Guide to School Indoor Air Quality. Revised

    Science.gov (United States)

    Healthy Schools Network, Inc., 2012

    2012-01-01

    Air pollution is air pollution, indoors or out. Good indoor air quality (IAQ) contributes to a favorable learning environment for students, protects health, and supports the productivity of school personnel. In schools in poor repair, leaky roofs and crumbling walls have caused additional indoor air quality problems, including contamination with…

  4. Flotation of PAH contaminated dredged sludge

    NARCIS (Netherlands)

    Mulleneers, H.; Roubroeks, S.; Bruning, H.; Rulkens, W.H.; Koopal, L.K.

    2000-01-01

    The applicability of dissolved air flotation to remediate contaminated sediments of "Overschie" (Rotterdam) and "Petrol Harbor" (Amsterdam) is studied. Several flotation reagents (Diesel Fuel, Montanol, Aerophine, Aerofroth) are applied to enhance the flotation efficiency. The physical chemical

  5. Performance of air sparging systems -- A review of case studies

    International Nuclear Information System (INIS)

    Bass, D.H.; Brown, R.A.

    1995-01-01

    In situ air sparging is a commonly used remediation technology which volatilizes and enhances aerobic biodegradation of contamination in Groundwater and saturated zone soil. Recently, some questions have been raised regarding the effectiveness of air sparging. To address these questions the results of 21 sparging case studies have been compiled to shed light on how well air sparging achieves permanent reduction in groundwater contaminant concentrations. The case studies included both chlorinated solvents and petroleum hydrocarbon contamination, and covered a wide range of soil conditions and sparge system parameters. In each case study, groundwater concentrations were compared before sparging was initiated, just before sparging was terminated, and in the months following shutdown of the sparging system

  6. Assessment of indoor air quality in comparison using air conditioning and fan system in printing premise

    OpenAIRE

    Ramlan Nazirah; Nurhalimatul Husna Ahmad Siti; Aminuddin Eeydzah; Abdul Hamid Hazrul; Khalijah Yaman Siti; Halid Abdullah Abd

    2017-01-01

    Printers contribute to various emissions consist with chemical contaminants. High concentration of the particulate matter can cause serious health problems. This study focuses on the indoor air quality in printing premise unit in Universiti Tun Hussein Onn, Malaysia. Field testing involving air sampling methods were taken from 900 hours to 1600 hours, for every 30 minutes using physical measurement which is Multi-Channel Air Quality Monitor (YESAIR), E-Sampler and Ozone Meter. Air sampling wa...

  7. Surfactant screening of diesel-contaminated soil

    International Nuclear Information System (INIS)

    Peters, R.W.; Shem, L.; Montemagno, C.D.; Lewis, B.

    1991-01-01

    At one installation, approximately 60,000 gal of No. 2 diesel fuel leaked into the subsurface environment, with contamination at depths of 6 to 34 m below the surface. Argonne National Laboratory was contracted to perform treatability studies for site remediation. The treatability studies focused on four separate phases: (1) leachability studies on the various contaminated soil borings, (2) air stripping studies, (3) bioremediation studies, and (4) surfactant screening/surfactant flooding studies. This paper summarizes the fourth phase of the research program in which 21 surfactants were screened for possible use to mobilize the organics from the contaminated soil prior to bioremediation. Anionic surfactants resulted in the greatest degree of diesel mobilization. The most promising surfactants will be employed on actual contaminated soil samples obtained from the site

  8. Distribution of contaminants in the occupied zone of a room with personalized and displacement ventilation

    DEFF Research Database (Denmark)

    Cermak, Radim; Melikov, Arsen Krikor; Forejt, L.

    2004-01-01

    A distribution of contaminants from floor covering, exhaled air and human bioeffluents was examined in a mock-up of a typical two-person office by means of tracer-gases. The distribution was studied with two types of air terminal device for personalized ventilation combined with displacement...... ventilation. The results document that the distribution of contaminants depends to a great extent on the type and operation of personalized ventilation, as well as on the type and location of contaminant sources....

  9. Estimating risk at a Superfund site contaminated with radiological and chemical wastes

    International Nuclear Information System (INIS)

    Temeshy, A.; Liedle, J.M.; Sims, L.M.; Efird, C.R.

    1992-01-01

    This paper describes the method and results for estimating carcinogenic and noncarcinogenic effects at a Superfund site that is radiologically and chemically contaminated. Risk to receptors from disposal of waste in soil and resulting contamination of groundwater, air, surface water, and sediment is quantified. Specific risk assessment components which are addressed are the exposure assessment, toxicity assessment, and the resulting risk characterization. In the exposure assessment, potential exposure pathways are identified using waste disposal inventory information for soil and modeled information for other media. Models are used to calculate future radionuclide concentrations in groundwater, soil, surface water and air. Chemical exposure concentrations are quantified using site characterization data. Models are used to determine concentrations of chemicals in surface water and in air. Toxicity parameters used to quantify the dose-response relationship associated with the carcinogenic contaminants are slope factors and with noncarcinogenic contaminants are reference doses. In the risk characterization step, results from the exposure assessment and toxicity assessment are summarized and integrated into quantitative risk estimates for carcinogens and hazard induces for noncarcinogens. Calculated risks for carcinogenic contaminants are compared with EPA's target risk range. At WAG 6, the risk from radionuclides and chemicals for an on-WAG homesteader exceeds EPA's target risk range. Hazard indices are compared to unity for noncarcinogenic contaminants. At WAG 6, the total pathway hazard index for the on-WAG homesteader exceeds unity

  10. Sensitivity/uncertainty analysis for free-in-air tissue kerma due to initial radiation at Hiroshima and Nagasaki

    International Nuclear Information System (INIS)

    Lillie, R.A.; Broadhead, B.L.; Pace, J.V. III

    1988-01-01

    Uncertainty estimates and cross correlations by range/survivor have been calculated for the Hiroshima and Nagasaki free-in-air (FIA) tissue kerma obtained from two-dimensional air/ground transport calculations. The uncertainties due to modeling parameter and basic nuclear transport data uncertainties were calculated for 700-, 1000-, and 1500-m ground ranges. Only the FIA tissue kerma due to initial radiation was treated in the analysis; the uncertainties associated with terrain and building shielding and phantom attenuation were not considered in this study. Uncertainties of --20% were obtained for the prompt neutron and secondary gamma kerma and 30% for the prompt gamma kerma at both cities. The uncertainties on the total prompt kerma at Hiroshima and Nagasaki are --18 and 15%, respectively. The estimated uncertainties vary only slightly by ground range and are fairly highly correlated. The total prompt kerma uncertainties are dominated by the secondary gamma uncertainties, which in turn are dominated by the modeling parameter uncertainties, particularly those associated with the weapon yield and radiation sources

  11. Estimation of radiation exposures due to the exemption of beta-contaminated radioactive materials

    International Nuclear Information System (INIS)

    Beltz, D.; Botsch, W.; Huettig, M.; Boerchers, F.

    2005-01-01

    The authors have checked the individual clearance levels of pure beta-emitters (Sr 89, Sr 90+) according to Anlage III, Table 1, column 8 and 10 StrlSchV for the clearance of buildings. According to Monte-Carlo simulations the direct exposure coming from contaminated parts of a building can exceed the range of trivial doses significantly, although the clearance levels are met. Furthermore, the high radiation level outside a barrel of beta-emitting waste showed that even the mass-specific clearance levels for the disposal of beta-contaminated waste need to be reviewed. (orig.)

  12. [Measures against Radiation Exposure Due to Large-Scale Nuclear Accident in Distant Place--Radioactive Materials in Nagasaki from Fukushima Daiichi Nuclear Power Plant].

    Science.gov (United States)

    Yuan, Jun; Sera, Koichiro; Takatsuji, Toshihiro

    2015-01-01

    To investigate human health effects of radiation exposure due to possible future nuclear accidents in distant places and other various findings of analysis of the radioactive materials contaminating the atmosphere of Nagasaki due to the Fukushima Daiichi Nuclear Power Plant accident. The concentrations of radioactive materials in aerosols in the atmosphere of Nagasaki were measured using a germanium semiconductor detector from March 2011 to March 2013. Internal exposure dose was calculated in accordance with ICRP Publ. 72. Air trajectories were analyzed using NOAA and METEX web-based systems. (134)Cs and (137)Cs were repeatedly detected. The air trajectory analysis showed that (134)Cs and (137)Cs flew directly from the Fukushima Daiichi Nuclear Power Plant from March to April 2011. However, the direct air trajectories were rarely detected after this period even when (134)Cs and (137)Cs were detected after this period. The activity ratios ((134)Cs/(137)Cs) of almost all the samples converted to those in March 2011 were about unity. This strongly suggests that the (134)Cs and (137)Cs detected mainly originated from the Fukushima Daiichi Nuclear Power Plant accident in March 2011. Although the (134)Cs and (137)Cs concentrations per air volume were very low and the human health effects of internal exposure via inhalation is expected to be negligible, the specific activities (concentrations per aerosol mass) were relatively high. It was found that possible future nuclear accidents may cause severe radioactive contaminations, which may require radiation exposure control of farm goods to more than 1000 km from places of nuclear accidents.

  13. Quadriplegia due to lead-contaminated opium--case report.

    Science.gov (United States)

    Beigmohammadi, Mohammad Taghi; Aghdashi, Moosa; Najafi, Atabak; Mojtahedzadeh, Mojtaba; Karvandian, Kassra

    2008-10-01

    Utilization of lead-contaminated opium may lead to severe motor neuron impairment and quadriplegia. Forty years oriented old male, opium addict, was admitted to the ICU, with headache, nausea and abdominal pain, and weakness in his lower and upper extremities without definitive diagnosis. The past medical and occupational history was negative. Laboratory investigation showed; anemia (Hb 7.7 g/dl), slightly elevated liver function tests, elevated total bilirubin, and ESR. Abdominal sonography and brain CT scan were normal. EMG and NCV results and neurologic examination were suggestive for Guillain-Barre. He underwent five sessions of plasmapheresis. Blood lead level was > 200 microg/dl. He received dimercaprol (BAL) and calcium disodium edetate (CaEDTA) for two five days session. Upon discharge from ICU all laboratory tests were normal and blood lead level was reduced, but he was quadriplegic. The delayed treatment of lead poisoning may lead to irreversible motor neuron defect.

  14. MICROBIOLOGICAL CHARACTERISTICS OF THE AIR BLOWN BY WARM AIR HAND DRYERS

    Directory of Open Access Journals (Sweden)

    Recai OÐUR; Omer Faruk TEKBAS; Osman HANCI; Umut OZCAN

    2005-02-01

    Full Text Available The aim of the study was to determine the microbiological characteristics of air blown from warm air hand dryers, and to compare findings with the microbiological characteristics of indoor air in which the dryer settled. Air samples was taken from different public places (shopping centers, restaurants and hospitals and investigated for total viable counts, coagulase negative Staphylococcus, E. Coli, Staphylococcus aureus and enteric pathogens. There were differences between sampling indoor places for some of the microorganisms, but all of the air samples taken from dryers contained more microorganisms than indoor air, and the differences between hand dryers and indoor air were statistically significant (p<0.05 except for enteric pathogens. As a result it could be said that warm air hand dryers could be microbiological contamination sources in restrooms or the other places that they are used. [TAF Prev Med Bull 2005; 4(1.000: 1-7

  15. Impacts of Mixing on Acceptable Indoor Air Quality in Homes

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.; Walker, Iain I.

    2010-01-01

    Ventilation reduces occupant exposure to indoor contaminants by diluting or removing them. In a multi-zone environment such as a house, every zone will have different dilution rates and contaminant source strengths. The total ventilation rate is the most important factor in determining occupant exposure to given contaminant sources, but the zone-specific distribution of exhaust and supply air and the mixing of ventilation air can play significant roles. Different types of ventilation systems will provide different amounts of mixing depending on several factors such as air leakage, air distribution system, and contaminant source and occupant locations. Most U.S. and Canadian homes have central heating, ventilation, and air conditioning systems, which tend to mix the air; thus, the indoor air in different zones tends to be well mixed for significant fractions of the year. This article reports recent results of investigations to determine the impact of air mixing on exposures of residential occupants to prototypical contaminants of concern. We summarize existing literature and extend past analyses to determine the parameters than affect air mixing as well as the impacts of mixing on occupant exposure, and to draw conclusions that are relevant for standards development and for practitioners designing and installing home ventilation systems. The primary conclusion is that mixing will not substantially affect the mean indoor air quality across a broad population of occupants, homes, and ventilation systems, but it can reduce the number of occupants who are exposed to extreme pollutant levels. If the policy objective is to minimize the number of people exposed above a given pollutant threshold, some amount of mixing will be of net benefit even though it does not benefit average exposure. If the policy is to minimize exposure on average, then mixing air in homes is detrimental and should not be encouraged. We also conclude that most homes in the US have adequate mixing

  16. The intake of contaminants via a diet according to the Dutch Wheel of Five Guidelines

    NARCIS (Netherlands)

    Boon PE; van Donkersgoed G; Wolterink G; Brants H; Drijvers J; Zeilmaker MJ; VVH; VPZ

    2017-01-01

    Food can become contaminated with substances not intentionally added (contaminants). They can occur in plants through, for example, absorption from the (contaminated) soil or deposition from the air. Contaminants can also find their way in food during the production process and preparation of food.

  17. A hospital outbreak of Legionella from a contaminated water supply.

    Science.gov (United States)

    Tercelj-Zorman, Marjeta; Seljak, Marija; Stare, Janez; Mencinger, Joze; Rakovec, Joze; Rylander, Ragnar; Strle, Franc

    2004-03-01

    The authors performed a cross-sectional epidemiological survey to investigate the source of a hospital Legionella outbreak originating in contaminated water. Water temperature and air humidity were measured around possible contamination sources. A dead-end pipe was found to contain Legionella pneumophila serogroup 1. All individuals who acquired legionellosis had spent at least 30 min within 2 m of the contamination source. Among staff, 41 of 71 were exposed, and 31 of these fell ill. All 7 patients exposed to the contaminated water acquired legionellosis. None of the 94 bed-ridden patients from the same units developed the disease. An aerosol with 60% relative air humidity was formed near the suspect water faucets, but the humidity fell rapidly farther from the water source, suggesting that desiccation decreased the risk of infection. The healthy personnel and patients closest to the source acquired legionellosis, suggesting that risk was related less to compromised patients than to exposure.

  18. Impact of an Ultraviolet Reactor on the Improvement of Air Quality Leaving a Direct Evaporative Cooler

    Directory of Open Access Journals (Sweden)

    Wonjun Kim

    2018-04-01

    Full Text Available The purpose of this study is to improve microbial air quality by improving water quality, particularly concerning microbiological aspects, by applying an ultraviolet water purifier system to a direct evaporative cooling (DEC system. A direct evaporative cooler is an air cooling technique that uses the evaporation of water. Most DECs recirculate water to reduce water use. Evaporative cooling pads and water are biologically contaminated by recirculating water. This contamination can develop into air contamination and cause respiratory illnesses in occupants. It is necessary to use sterilized water in a DEC to prevent respiratory diseases and maintain air quality. In this study, we examine whether improvements in water quality in a DEC affect air quality by dividing experiments into a control group (Control and a treated group (UV-treated. In the control group, the degree of contamination was measured when a DEC operated for four weeks without ultraviolet water treatment. In UV-treated, the degree of contamination was measured when UV water treatment was applied to a DEC for four weeks. In both Control and UV-treated, microbes were sampled from the water, the evaporative cooling pad surface, and the DEC inlet and outlet air samples in order to compare the levels of contamination. The surface was measured once at four points, and the air was measured four times at two points. A comparison of the two experiments indicated that the degree of microbial contamination of water and air was significantly reduced in the UV-treated group when compared to that in the control group. When the pollution degree of the evaporative cooling pad was compared to the degree of air pollution, it was difficult to obtain a correlation between the two factors, although the results confirmed that the contamination of the evaporative cooling pad caused water pollution. Therefore, it is necessary to operate a water treatment system to maintain the clean air in DECs.

  19. Evaluation of the environmental dose commitment due to radium-contaminated soil

    International Nuclear Information System (INIS)

    Feldman, J.; Eng, J.; Giardina, P.A.

    1979-01-01

    The Middlesex Sampling Plant located in Middlesex, NJ was a uranium ore sampling plant operating during the 1940s and 1950s. A radiological problem was identified during a routine program to resurvey selected former MED/AEC sites which are no longer under government control. The survey, when conducted by the US Department of Energy (DOE), indicated that the Middlesex facility had a radium and radon problem on-site as well as off-site, where some of the contaminated soil was used as landfill. The old sampling plant is presently being used as a Marine Corps Reserve Training Center. Subsequent, more detailed studies have identified possible solutions to the contamination problem. The US Environmental Protection Agency (EPA) is examining cleanup options based on a cost/benefit analysis utilizing the environmental dose commitment concept rather than an annual dose calculation. The practice of using dose to local populations as a basis for impact assessment can lead to a large underestimate of the total potential impact from the continuous environmental release of radon

  20. NCRP soil contamination task group

    International Nuclear Information System (INIS)

    Jacobs, D.G.

    1987-01-01

    The National Council of Radiation Protection and Measurements (NCRP) has recently established a Task Group on Soil Contamination to describe and evaluate the migration pathways and modes of radiation exposure that can potentially arise due to radioactive contamination of soil. The purpose of this paper is to describe the scientific principles for evaluation of soil contamination which can be used as a basis for derivation of soil contamination limits for specific situations. This paper describes scenarios that can lead to soil contamination, important characteristics of soil contamination, the subsequent migration pathways and exposure modes, and the application of principles in the report in deriving soil contamination limits. The migration pathways and exposure modes discussed in this paper include: direct radiation exposure; and exhalation of gases

  1. Formaldehyde: a candidate toxic air contaminant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Frye, B.; Parker, T.

    1988-03-01

    Formaldehyde (HCHO) is a gas widely used in adhesives and resins, textiles, embalming fluids, fungicides, air fresheners, and cosmetics. It is directly emitted into the ambient outdoor air from vehicular and stationary sources, and is also produced in the atmosphere from other substances by photochemical smog processes. The International Agency for Research on Cancer (IARC) has determined that there is sufficient evidence for carcinogenicity of formaldehyde to animals, and limited evidence for carcinogenicity to humans. EPA classifies formaldehyde as a probable human carcinogen with a one in a million risk concentration of 0.08 ppb.

  2. Documenting the Effectiveness of Cosorption of Airborne Contaminants by a Field-Installed Active Desiccant System: Final Report - Phase 2D

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, J

    2003-01-23

    The final report for Phase 1 of this research effort (ORNL/SUB/94-SV004/1) concluded that a significant market opportunity would exist for active desiccant systems if it could be demonstrated that they can remove a significant proportion of common airborne contaminants while simultaneously performing the primary function of dehumidifying a stream of outdoor air or recirculated building air. If the engineering community begins to follow the intent of ASHRAE Standard 62, now part of all major building codes, the outdoor air in many major cities may need to be pre-cleaned before it is introduced into occupied spaces. Common air contaminant cosorption capability would provide a solution to three important aspects of the ASHRAE 62-89 standard that have yet to be effectively addressed by heating, ventilation, and air-conditioning (HVAC) equipment manufacturers: (1) The ASHRAE standard defines acceptable outdoor air quality. If the outdoor air contains unacceptable levels of certain common outdoor air contaminants (e.g., sulfur dioxide, ozone), then the standard requires that these contaminants be removed from the outdoor air stream to reach compliance with the acceptable outdoor air quality guidelines. (2) Some engineers prefer to apply a filtration or prescriptive approach rather than a ventilation approach to solving indoor air quality problems. The ASHRAE standard recognizes this approach provided that the filtration technology exists to remove the gaseous contaminants encountered. The performance of current gaseous filtration technologies is not well documented, and they can be costly to maintain because the life of the filter is limited and the cost is high. Moreover, it is not easy to determine when the filters need changing. In such applications, an additional advantage provided by the active desiccant system would be that the same piece of equipment could control space humidity and provide filtration, even during unoccupied periods, if the active desiccant system

  3. Final work plan : indoor air and ambient air sampling near the former CCC/USDA grain storage facility in Everest, Kansas.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M. (Environmental Science Division)

    2010-05-24

    The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) operated a grain storage facility at the western edge of Everest, Kansas, from the early 1950s to the early 1970s. Sampling by the Kansas Department of Health and Environment (KDHE) in 1997 resulted in the detection of carbon tetrachloride in one domestic well (the Nigh well) northwest of the former facility. On behalf of the CCC/USDA, Argonne National Laboratory subsequently conducted a series of investigations to characterize the contamination (Argonne 2003, 2006a,b,c). Automatic, continuous monitoring of groundwater levels began in 2002 and is ongoing at six locations. The results have consistently indicated groundwater flow toward the north-northwest from the former CCC/USDA property to the Nigh property, then west-southwest from the Nigh property to the intermittent creek. Sitewide periodic groundwater and surface water sampling with analysis for volatile organic compounds (VOCs) began in 2008. Argonne's combined data indicate no significant downgradient extension of contamination since 2000. At present, the sampling is annual, as approved by the KDHE (2009) in response to a plan developed for the CCC/USDA (Argonne 2009). This document presents a plan for collecting indoor air samples in homes located along and adjacent to the defined extent of the carbon tetrachloride contamination. The plan was requested by the KDHE. Ambient air samples to represent the conditions along this pathway will also be taken. The purpose of the proposed work is to satisfy KDHE requirements and to collect additional data for assessing the risk to human health due to the potential upward migration of carbon tetrachloride and its primary degradation product (chloroform) into homes located in close proximity to the former grain storage facility, as well as along and within 100 ft laterally from the currently defined plume emanating from the former Everest facility. Investigation of the indoor air

  4. Micrometeorological methods for measurements of mercury emissions over contaminated soils

    International Nuclear Information System (INIS)

    Kim, K.H.; Lindberg, S.E.; Hanson, P.J.; Owens, J.; Myers, T.P.

    1993-01-01

    As part of a larger study involving development and application of field and laboratory methods (micrometeorological, dynamic enclosure chamber, and controlled laboratory chamber methods) to measure the air/surface exchange of Hg vapor, we performed a series of preliminary measurements over contaminated soils. From March--April 1993, we used the modified Bowen ratio (MBR) method to measure emission rates of mercury over a floodplain contaminated with mercury near Oak Ridge, TN. The mercury emission rates measured from contaminated EFPC soils using the MBR method during early spring show that (1) in all cases, the contaminated soils acted as a source of mercury to the atmosphere with source strengths ranging from 17 to 160 ng m -2 h -1 ; and (2) the strengths of mercury emissions can be greatly influenced by the combined effects of surface soil temperature, residence time of air masses over the source area, and turbulence conditions. The mercury fluxes measured in a controlled flow chamber indicate that contaminated soils can exhibit up to an order of magnitude higher emission rates of Hg under conditions of elevated soil temperature, soil structure disturbance, and high turbulence. Mercury emissions from contaminated soils exceeded emissions from background soils by one to two orders of magnitude

  5. Studies on the radioactive contamination due to nuclear detonations I. Studies on the Radioactive dust due to nuclear detonation in Bikini on March 1, 1954

    Energy Technology Data Exchange (ETDEWEB)

    Nishiwaki, Yasushi [Nuclear Reactor Laboratory, Tokyo Institute of Technology, Tokyo (Japan); Nuclear Reactor Laboratoroy, Kinki University, Fuse City, Osaka Precture (Japan)

    1961-11-25

    A study has been made, from the health physics standpoint, of the radioactivity emitted from the dust collected from No. 5 Fukuryu Maru, which was showered by the strong radioactive ash at about 0-90 miles east of Bikini on March 1, 1954. The probable dose of external gamma radiation the crew might have received during their two weeks voyage may be estimated roughly about 500-800 rad. However,, judging from the strong radioactive contamination of the boat, it may be inferred that the crew might have received a considerable-degree of internal irradiation besides the external whole body gamma irradiation and the local beta irradiation on the skin where the radioactive dust directly contacted, The specific activity of the dust when it fell on the boat a few hours after the nuclear detonation may be estimated to be roughly about one curie per gram. From the radiochemical analysis and the beta-ray analysis, the major part of the radioactivity included in-the dust was found to be due to a mixture of various fission products, while the main chemical component of the dust (Bikini ash) itself consisted of a calcium compound. The alpha-ray was also detected by the use of an ionization chamber in that portion where transuranium elements, if present, were collected. The tuna fish and the shark fins which were brought back to Japan by No.5 Fukuryu Maru in the middle of March, 1954 were most strongly contaminated on the skin, but the fish caught later in the South Pacific were found to be contaminated more strongly in the internal organs rather than on the skin. The area in the Pacific where the radioactive contaminated fish were caught seemed to expand gradually with time. In the latter half of 1954, besides the ordinary fission products, the radioactive Zn{sup 65} which was not found in appreciable amount in the original Bikini ash has been detected from the internal organs of the contaminated fish. A possible production of Zn{sup 65} by the neutron activation of some metallic

  6. Studies on the radioactive contamination due to nuclear detonations I. Studies on the Radioactive dust due to nuclear detonation in Bikini on March 1, 1954

    International Nuclear Information System (INIS)

    Nishiwaki, Yasushi

    1961-01-01

    A study has been made, from the health physics standpoint, of the radioactivity emitted from the dust collected from No. 5 Fukuryu Maru, which was showered by the strong radioactive ash at about 0-90 miles east of Bikini on March 1, 1954. The probable dose of external gamma radiation the crew might have received during their two weeks voyage may be estimated roughly about 500-800 rad. However,, judging from the strong radioactive contamination of the boat, it may be inferred that the crew might have received a considerable-degree of internal irradiation besides the external whole body gamma irradiation and the local beta irradiation on the skin where the radioactive dust directly contacted, The specific activity of the dust when it fell on the boat a few hours after the nuclear detonation may be estimated to be roughly about one curie per gram. From the radiochemical analysis and the beta-ray analysis, the major part of the radioactivity included in-the dust was found to be due to a mixture of various fission products, while the main chemical component of the dust (Bikini ash) itself consisted of a calcium compound. The alpha-ray was also detected by the use of an ionization chamber in that portion where transuranium elements, if present, were collected. The tuna fish and the shark fins which were brought back to Japan by No.5 Fukuryu Maru in the middle of March, 1954 were most strongly contaminated on the skin, but the fish caught later in the South Pacific were found to be contaminated more strongly in the internal organs rather than on the skin. The area in the Pacific where the radioactive contaminated fish were caught seemed to expand gradually with time. In the latter half of 1954, besides the ordinary fission products, the radioactive Zn 65 which was not found in appreciable amount in the original Bikini ash has been detected from the internal organs of the contaminated fish. A possible production of Zn 65 by the neutron activation of some metallic part of

  7. Reducing loss in lateral charged-particle equilibrium due to air cavities present in x-ray irradiated media by using longitudinal magnetic fields

    International Nuclear Information System (INIS)

    Naqvi, Shahid A.; Li, X. Allen; Ramahi, Shada W.; Chu, James C.; Ye, Sung-Joon

    2001-01-01

    The underdosing of lesions distal to air cavities, such as those found in upper respiratory passages, occurs due to the loss in lateral charged-particle equilibrium (CPE). The degree of underdosing worsens for smaller field sizes, resulting in more frequent recurrence of the cancer treated. Higher photon energies further aggravate the outcome by producing longer second build-up regions beyond the cavity. Besides underdosing, the larger lateral spread of secondary electron fluence in the air cavity produces diffuse dose distributions at the tissue-air interface for shaped or intensity modulated fields. These disequilibrium effects create undesirable deviations from the intended treatment. The clinical concern is further intensified by the failure of traditional treatment planning systems to even account for such defects. In this work, the use of longitudinal magnetic fields on the order of 0.5 T is proposed for alleviating lateral electronic disequilibrium due to the presence of air cavities in the irradiated volume. The magnetic field enforces lateral CPE by restricting the lateral range of electrons in the air cavity. The problem is studied in a simple water-air-water slab geometry using EGS4 Monte Carlo simulations for 6 MV photons. Electronic disequilibrium is evaluated for beams of various sizes, shapes and intensity distributions constructed by linear superposition of the dose distributions for 0.5x0.5 cm 2 beamlets. Comparison is also made with 60 Co irradiation. The results indicate that the lateral confinement of secondary electrons in the air cavity by sub-MRI strength longitudinal fields is effective in reducing deterioration of dose distributions near tissue-air interfaces. This can potentially reduce recurrence rates of cancers such as the larynx carcinoma

  8. INVESTIGATION OF HEAVY METAL CONTAMINATION IN THE ROADSIDE SOIL AT MORENA DISTRICT IN INDIA

    OpenAIRE

    Laxmi Kant Sharma

    2016-01-01

    Pollution of natural environment due to release of heavy metals from various sources is a widespread problem throughout the world. This study explains the effect of heavy metal contaminants in Roadside soil of Morena district. Twelve air dried surface soil samples were collected from 50cm – 1m (point A) and twelve from 30m (point B) away from the roadside along a road with a distance of 50 km. Heavy metals were found in both points with highest concentration at 50cm – 1m (point A). Roadside s...

  9. A model for evaluating the radioactive contamination in the urban environment

    International Nuclear Information System (INIS)

    Hwang, Won Tae; Kim, Eun Han; Jeong, Hyo Joon; Suh, Kyung Suk; Han, Moon Hee

    2005-01-01

    A model for evaluating radioactive contamination in the urban environment, named METRO-K, was developed as a basic step for accident consequence analysis in case of an accidental release. The three kind of radionuclides ( 137 Cs, 106 Ru, 131 I) and the different chemical forms of iodine (particulate, organic and elemental forms) are considered in the model. The radioactive concentrations are evaluated for the five types of surface (roof, paved road, wall, lawn/soil, tree) as a function of time. Using the model, the contaminative impacts of the surfaces were intensively investigated with respect to with and without precipitation during the measurement periods of radionuclides in air. In addition, a practical application study was conducted using 137 Cs concentration in air and precipitation measured in an European country at the Chernobyl accident. As a result, precipitation was an influential factor in surface contamination. The degree of contamination was strongly dependent on the types of radionuclide and surface. Precipitation was more influential in contamination of 137 Cs than that of 131 I (elemental form)

  10. A model for dispersion of contaminants in the subway environment

    Energy Technology Data Exchange (ETDEWEB)

    Coke, L. R.; Sanchez, J. G.; Policastro, A. J.

    2000-05-03

    Although subway ventilation has been studied extensively, very little has been published on dispersion of contaminants in the subway environment. This paper presents a model that predicts dispersion of contaminants in a complex subway system. It accounts for the combined transient effects of train motion, station airflows, train car air exchange rates, and source release properties. Results are presented for a range of typical subway scenarios. The effects of train piston action and train car air exchange are discussed. The model could also be applied to analyze the environmental impact of hazardous materials releases such as chemical and biological agents.

  11. Air pollution episodes in Stockholm regional background air due to sources in Europe and their effects on human population

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, C. [Swedish Meteorological and Hydrological Inst., Norrkoping (Sweden)], E-mail: camilla.andersson@smhi.se; Joensson, O. [Stockholm Univ. (Sweden). Dept. of Applied Environmental Science; Forsberg, B. [Umea Univ. (Sweden), Occupational and Environmental Medicine; Johansson, C. [Environmental and Health Administration, Stockholm (Sweden)

    2013-09-01

    Using air quality measurements, we categorized air pollution according to source sectors in a rural background environment in southern Sweden based on hourly air-mass backward trajectories during 1997-2010. Concentrations of fine (PM{sub 2.5}) and sum of fine and coarse particulate matter (PM{sub 10}), accumulation mode particle number, black carbon and surface ozone were 4.0, 3.9, 4.5, 6.8 and 1.3 times higher, respectively, in air masses from the southeast as compared with those in air masses from the cleanest sector in the northwest, consistent with air-mass transport over areas with relatively high emissions of primary particulate matter (PM) and secondary PM precursors. The highest ultrafine particle numbers were associated with clean air from the northwest. We estimate that almost 7.8% and 0.6% higher premature human mortality is caused by PM{sub 2.5} and ozone exposure, respectively, when air originates from the southeast as compared with that when air originates from the northwest. Reductions of emissions in eastern Europe would reduce the highest air pollution concentrations and associated health risks. However, since air masses from the southwest are more frequent, emissions in the western part of Europe are more important for annual mean premature mortality. (orig.)

  12. Increased prevalence of IgG-induced sensitization and hypersensitivity pneumonitis (humidifier lung) in nonsmokers exposed to aerosols of a contaminated air conditioner.

    Science.gov (United States)

    Baur, X; Richter, G; Pethran, A; Czuppon, A B; Schwaiblmair, M

    1992-01-01

    Specific IgG antibodies against antigens of a contaminated air conditioner were estimated in serum of 134 workers of a printing company. Altogether 64% of the workers investigated revealed significantly elevated levels (> 3 U/ml) of IgG antibodies specific to these antigens as compared to a nonexposed control group. The occurrence of IgG antibodies for microbial extracts were 25% for Fusarium, 23% for Penicillium notatum, 13% for Alternaria tenuis, 12% for Aureobasidium pullulans, 9% for Sphaeropsidales species, 3% for Micropolyspora faeni, 2% for Aspergillus fumigatus and 2% for Thermoactionomyces vulgaris. Out of the 86 workers with elevated IgG antibodies for air conditioner antigens, 59 were nonsmokers. Considering a cut-off level of 10 U/ml IgG for high values, the proportion of smokers to nonsmokers becomes even more pronounced (6 to 36 respectively, binominal test p air conditioners are the best choice as antigen source for the diagnosis of humidifier lung in exposed workers. Nonsmokers are shown to have a high risk for immunological sensitization.

  13. AIR POLLUTION OF URBAN AREAS

    Directory of Open Access Journals (Sweden)

    MAKAROVA V. N.

    2016-04-01

    Full Text Available Raising of problem. Any manufacturing processes related to the generation of waste. Year after year, a growing mass of waste is one of the main factors reducing the quality of the environment and destruction of natural landscapes. Industrial development inevitably enhances human impacts on the environment and disrupts the ecological balance [3]. Atmospher air is a vital element of the environment. The development of industry, the growth of cities, increasing the number of transport, active exploration of near-Earth space lead to a change in the gas composition of the atmosphere and disruption of its natural balance. Air quality affects the health of the population [5]. Without water or food a person can do for a while, but without air he can not live a few minutes, therefore saving air breathable is an urgent problem. Purpose. The results of geological studies clearly indicate that the contamination of the surface layer of the atmosphere is the most powerful permanent factor of influence on the human food chain and the environment. This problem was reflected in the scientific literature [2; 3; 6], and the second significant indicator of ecological well-being of the region is the number of generation and accumulation of waste. According to this indicator, Dnipropetrovsk region is in the lead, as relates to the industrialized regions. The idea of the article is to consider the air pollution of the urban environment in terms of the accumulation of waste in the territory of enterprises, in particular slag dumps metallurgical production. Conclusion. Slag dumps located on the premises are a significant source of air pollution urbanized areas due to the permanent nature of the spread of contamination. Slag dump of PAT "Nikopol Ferroalloy Plant" is a source of manganese, zinc, nickel emissions. As a conclusion about the magnitude of pollution of the atmospheric boundary layer can say the following: on the border of the sanitary protection zone (SPZ, in

  14. Numerical analysis of ALADIN optics contamination due to outgassing of solar array materials

    Energy Technology Data Exchange (ETDEWEB)

    Markelov, G [Advanced Operations and Engineering Services (AOES) Group BV, Postbus 342, 2300 AH Leiden (Netherlands); Endemann, M [ESA-ESTEC/EOP-PAS, Postbus 299, 2200 AG Noordwijk (Netherlands); Wernham, D [ESA-ESTEC/EOP-PAQ, Postbus 299, 2200 AG Noordwijk (Netherlands)], E-mail: Gennady.Markelov@aoes.com

    2008-03-01

    ALADIN is the very first space-based lidar that will provide global wind profile and a special attention has been paid to contamination of ALADIN optics. The paper presents a numerical approach, which is based on the direct simulation Monte Carlo method. The method allows one to accurately compute collisions between various species, in the case under consideration, free-stream flow and outgassing from solar array materials. The collisions create a contamination flux onto the optics despite there is no line-of-sight from the solar arrays to the optics. Comparison of obtained results with a simple analytical model prediction shows that the analytical model underpredicts mass fluxes.

  15. Numerical analysis of ALADIN optics contamination due to outgassing of solar array materials

    International Nuclear Information System (INIS)

    Markelov, G; Endemann, M; Wernham, D

    2008-01-01

    ALADIN is the very first space-based lidar that will provide global wind profile and a special attention has been paid to contamination of ALADIN optics. The paper presents a numerical approach, which is based on the direct simulation Monte Carlo method. The method allows one to accurately compute collisions between various species, in the case under consideration, free-stream flow and outgassing from solar array materials. The collisions create a contamination flux onto the optics despite there is no line-of-sight from the solar arrays to the optics. Comparison of obtained results with a simple analytical model prediction shows that the analytical model underpredicts mass fluxes

  16. The use of sparge curtains for contaminant plume control

    International Nuclear Information System (INIS)

    Molnaa, B.; Dablow, J.

    1994-01-01

    Contamination by petroleum hydrocarbons and organic solvents represents a major impact to soil and groundwater. Following recent research and development, several technologies have evolved to treat saturated zone adsorbed- and dissolved-phase contaminants in situ. These technologies include bioremediation and air sparging. Funnel and gate approaches have been developed at the Waterloo Center for Groundwater Research to control contaminant plume migration and treat dissolved-phase contaminants before allowing migration downgradient and off site. The process consists of using low hydraulic conductivity cutoff walls to funnel groundwater flow through gates that contain in situ bioreactors. These systems can maintain hydraulic control and treat dissolved-phase contaminants at the downgradient margins of plumes, while minimizing, or in some cases eliminating, the need for groundwater pumping. Sparge curtains can be applied to treat dissolved-phase contaminants and prevent downgradient, off-site migration of contaminated groundwater

  17. Bioventing and air sparging: a field research study

    International Nuclear Information System (INIS)

    Moore, B.J.; Armstrong, J.E.; Hardisty, P.E.; Dupont, R.R.

    1997-01-01

    A study was conducted at Gulf Canada Resources' Strachan Gas Plant in Alberta, in which bioventing and air sparging were used individually and in combination to remediate a free-phase natural gas condensate plume estimated to cover approximately 65,000 m 2 . The condensate was composed of light hydrocarbons. Benzene, toluene, ethylbenzene and total xylenes (BTEX) made up a large portion of the dissolved plume. The objectives of the bioventing program were to: (1) study the use of biodegradation respiration rates and hydrocarbon vapour concentrations as indicators of soil clean-up progress, (2) study the effectiveness of bioventing during winter operations, (3) assess the degree of soil clean-up achievable through bioventing, and (4) evaluate the economics of bioventing. It was shown that bioventing is an economical in-situ remediation technique, costing about $10/m 3 . Air sparging involves the injection of air below the groundwater table to remove dissolved phased contaminants in-situ. The objectives of the air sparging program were to: (1) determine the zone of influence achievable through air sparging, (2) assess bioventing for treating hydrocarbon vapours introduced into the unsaturated zone during sparging, and (3) evaluate hydrocarbon mass removal effectiveness due to volatilization and biodegradation. It was shown that 90 per cent of the saturated zone hydrocarbon mass was removed during eight months of air sparging. 11 refs., 1 tab., 5 figs

  18. Technologies for remediation of radioactively contaminated sites

    International Nuclear Information System (INIS)

    1999-06-01

    This report presents particulars on environmental restoration technologies (control and treatment) which can be applied to land based, radioactively contaminated sites. The media considered include soils, groundwater, surface water, sediments, air, and terrestrial and aquatic vegetation. The technologies addressed in this report can be categorized as follows: self-attenuation (natural restoration); in-situ treatment; removal of contamination; ex-situ treatment; and transportation and final disposal. The report provides also background information about and a general approach to remediation of radioactively contaminated sites as well as some guidance for the selection of a preferred remediation technology. Examples of remediation experience in Australia and Canada are given it annexes

  19. Technologies for remediation of radioactively contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    1999-06-01

    This report presents particulars on environmental restoration technologies (control and treatment) which can be applied to land based, radioactively contaminated sites. The media considered include soils, groundwater, surface water, sediments, air, and terrestrial and aquatic vegetation. The technologies addressed in this report can be categorized as follows: self-attenuation (natural restoration); in-situ treatment; removal of contamination; ex-situ treatment; and transportation and final disposal. The report provides also background information about and a general approach to remediation of radioactively contaminated sites as well as some guidance for the selection of a preferred remediation technology. Examples of remediation experience in Australia and Canada are given it annexes Refs, figs, tabs

  20. Long-term (1992-2004) record of lead, cadmium, and zinc air contamination in Warsaw, Poland: determination by chemical analysis of moss bags and leaves of Crimean linden.

    Science.gov (United States)

    Dmuchowski, Wojciech; Bytnerowicz, Andrzej

    2009-12-01

    Between 1992 and 2004, air contamination with lead (Pb), cadmium (Cd), and zinc (Zn) in Warsaw, Poland, was monitored annually with moss (Sphagnum fallax) bags on a network of 230 sites covering the entire city. During the study the highest contamination was near the Warszawa Steel Mill, northwestern Warsaw. Lead concentrations in moss bags decreased in time, while those of Cd and Zn did not show clear trends. Between 1994 and 2004, Pb, Cd, and Zn were also monitored in the Crimean linden (Tilia Euchlora) foliage along the main city avenue and in a northwestern warsaw park. Lead concentrations decreased more near the avenue than in the park, indicating that the phasing-out of leaded gasoline had a major effect on reduced Pb contamination in Warsaw. At the same time, foliar concentrations of Cd and Zn in both areas decreased much less.

  1. Monitoring and evaluation techniques for airborne contamination

    Energy Technology Data Exchange (ETDEWEB)

    Yihua, Xia [China Inst. of Atomic Energy, Beijing (China)

    1997-06-01

    Monitoring and evaluation of airborne contamination are of great importance for the purpose of protection of health and safety of workers in nuclear installations. Because airborne contamination is one of the key sources to cause exposure to individuals by inhalation and digestion, and to cause diffusion of contaminants in the environment. The main objectives of monitoring and evaluation of airborne contamination are: to detect promptly a loss of control of airborne material, to help identify those individuals and predict exposure levels, to assess the intake and dose commitment to the individuals, and to provide sufficient documentation of airborne radioactivity. From the viewpoint of radiation protection, the radioactive contaminants in air can be classified into the following types: airborne aerosol, gas and noble gas, and volatile gas. In this paper, the following items are described: sampling methods and techniques, measurement and evaluation, and particle size analysis. (G.K.)

  2. Monitoring and evaluation techniques for airborne contamination

    International Nuclear Information System (INIS)

    Xia Yihua

    1997-01-01

    Monitoring and evaluation of airborne contamination are of great importance for the purpose of protection of health and safety of workers in nuclear installations. Because airborne contamination is one of the key sources to cause exposure to individuals by inhalation and digestion, and to cause diffusion of contaminants in the environment. The main objectives of monitoring and evaluation of airborne contamination are: to detect promptly a loss of control of airborne material, to help identify those individuals and predict exposure levels, to assess the intake and dose commitment to the individuals, and to provide sufficient documentation of airborne radioactivity. From the viewpoint of radiation protection, the radioactive contaminants in air can be classified into the following types: airborne aerosol, gas and noble gas, and volatile gas. In this paper, the following items are described: sampling methods and techniques, measurement and evaluation, and particle size analysis. (G.K.)

  3. Ultraviolet radiation and air contamination during total hip replacement

    International Nuclear Information System (INIS)

    Carlsson, A.S.; Nilsson, B.; Walder, M.H.; Osterberg, K.

    1986-01-01

    Ultraviolet (uv) radiation of the operating room was assessed bacteriologically in an open randomized study of 30 total hip procedures. Volumetric air-sampling demonstrated that the number of colony forming units (cfu m-3) were significantly reduced (P less than 0.001) by uv light, both close to the wound and in the periphery of the operating room. No adverse effects of the uv-irradiation were observed either in the patients or the staff. In operating rooms fitted with a zonal ventilation system and with an air change rate of about 70 h-1, the addition of uv irradiation during surgery may achieve ultra clean air. However, in conventionally ventilated operating rooms uv-irradiation alone is probably not sufficient to do so

  4. Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources

    International Nuclear Information System (INIS)

    Farooqi, Abida; Masuda, Harue; Firdous, Nousheen

    2007-01-01

    The present study is the first attempt to put forward possible sources of As, F - and SO 4 2- contaminated groundwater in the Kalalanwala area, Punjab, Pakistan. Five rainwater and 24 groundwater samples from three different depths were analyzed. Shallow groundwater from 24 to 27 m depth contained high F - (2.47-21.1 mg/L), while the groundwater samples from the deeper depth were free from fluoride contamination. All groundwater samples contained high As (32-1900 μg/L), in excess of WHO drinking water standards. The SO 4 2- ranges from 110 to 1550 mg/L. δ 34 S data indicate three sources for SO 4 2- air pollutants (5.5-5.7 per mille ), fertilizers (4.8 per mille ), and household waste (7.0 per mille ). Our important finding is the presence of SO 4 2- , As and F - in rainwater, indicating the contribution of these elements from air pollution. We propose that pollutants originate, in part, from coal combusted at brick factories and were mobilized promotionally by the alkaline nature of the local groundwater. - Simultaneous As and F - contamination of groundwater and possible pollutant sources are discussed

  5. Polonium-210 and lead-210 contamination of plants

    Energy Technology Data Exchange (ETDEWEB)

    Popova, O N; Taskaev, A I

    1977-01-01

    A model experiment with a water culture of barley grown in closed vessels, with an increased content of radon-222 in the air, has demonstrated an intensive contamination of the overground part and roots of the plant with polonium-210 and lead-210. Roots having no overground part were affected by radionuclides in a similar way as those of intact plants. Contamination was minimal in the plants grown from soil cultures.

  6. [Environmental investigation of ground water contamination at Wright- Patterson Air Force Base, Ohio]. Volume 4, Health and Safety Plan (HSP); Phase 1, Task 4 Field Investigation report: Draft

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This Health and Safety Plan (HSP) was developed for the Environmental Investigation of Ground-water Contamination Investigation at Wright-Patterson Air Force Base near Dayton, Ohio, based on the projected scope of work for the Phase 1, Task 4 Field Investigation. The HSP describes hazards that may be encountered during the investigation, assesses the hazards, and indicates what type of personal protective equipment is to be used for each task performed. The HSP also addresses the medical monitoring program, decontamination procedures, air monitoring, training, site control, accident prevention, and emergency response.

  7. Cold air plasma to decontaminate inanimate surfaces of the hospital environment.

    Science.gov (United States)

    Cahill, Orla J; Claro, Tânia; O'Connor, Niall; Cafolla, Anthony A; Stevens, Niall T; Daniels, Stephen; Humphreys, Hilary

    2014-03-01

    The hospital environment harbors bacteria that may cause health care-associated infections. Microorganisms, such as multiresistant bacteria, can spread around the patient's inanimate environment. Some recently introduced biodecontamination approaches in hospitals have significant limitations due to the toxic nature of the gases and the length of time required for aeration. This study evaluated the in vitro use of cold air plasma as an efficient alternative to traditional methods of biodecontamination of hospital surfaces. Cultures of methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli, and Acinetobacter baumannii were applied to different materials similar to those found in the hospital environment. Artificially contaminated sections of marmoleum, mattress, polypropylene, powder-coated mild steel, and stainless steel were then exposed to a cold air pressure plasma single jet for 30 s, 60 s, and 90 s, operating at approximately 25 W and 12 liters/min flow rate. Direct plasma exposure successfully reduced the bacterial load by log 3 for MRSA, log 2.7 for VRE, log 2 for ESBL-producing E. coli, and log 1.7 for A. baumannii. The present report confirms the efficient antibacterial activity of a cold air plasma single-jet plume on nosocomial bacterially contaminated surfaces over a short period of time and highlights its potential for routine biodecontamination in the clinical environment.

  8. Unintended inhalation of nitric oxide by contamination of compressed air: physiologic effects and interference with intended nitric oxide inhalation in acute lung injury.

    Science.gov (United States)

    Benzing, A; Loop, T; Mols, G; Geiger, K

    1999-10-01

    Compressed air from a hospital's central gas supply may contain nitric oxide as a result of air pollution. Inhaled nitric oxide may increase arterial oxygen tension and decrease pulmonary vascular resistance in patients with acute lung injury and acute respiratory distress syndrome. Therefore, the authors wanted to determine whether unintentional nitric oxide inhalation by contamination of compressed air influences arterial oxygen tension and pulmonary vascular resistance and interferes with the therapeutic use of nitric oxide. Nitric oxide concentrations in the compressed air of a university hospital were measured continuously by chemiluminescence during two periods (4 and 2 weeks). The effects of unintended nitric oxide inhalation on arterial oxygen tension (n = 15) and on pulmonary vascular resistance (n = 9) were measured in patients with acute lung injury and acute respiratory distress syndrome by changing the source of compressed air of the ventilator from the hospital's central gas supply to a nitric oxide-free gas tank containing compressed air. In five of these patients, the effects of an additional inhalation of 5 ppm nitric oxide were evaluated. During working days, compressed air of the hospital's central gas supply contained clinically effective nitric oxide concentrations (> 80 parts per billion) during 40% of the time. Change to gas tank-supplied nitric oxide-free compressed air decreased the arterial oxygen tension by 10% and increased pulmonary vascular resistance by 13%. The addition of 5 ppm nitric oxide had a minimal effect on arterial oxygen tension and pulmonary vascular resistance when added to hospital-supplied compressed air but improved both when added to tank-supplied compressed air. Unintended inhalation of nitric oxide increases arterial oxygen tension and decreases pulmonary vascular resistance in patients with acute lung injury and acute respiratory distress syndrome. The unintended nitric oxide inhalation interferes with the

  9. Air Monitoring to Control the Intake of Airborne Radioiodine-131 Contaminants by Nuclear Medicine Workers

    International Nuclear Information System (INIS)

    Jiemwutthisak, P.; Sritongkul, N.; Chaudakshetrin, P.; Kanchanaphiboon, P.; Tuntawiroon, M.

    2012-01-01

    Inhalation of radioiodine-131 is the largest cause of internal dose to nuclear medicine workers. The concentration of radioiodine-131 in air is limited by the Derived Air Concentration (DAC) of 416.67 Bq/m3. In this study air monitoring shall be performed to measure the radioiodine-131 contaminant in air by sample collection and analysis. Air samples were drawn from areas where there is a potential for I-131 airborne radioactivity e.g. in the hot laboratory, radioiodine treatment rooms, radioactive waste collection areas and waste water treatment plant. A portable battery-operated air sampler, Gilian BDX II with carbon- impregnated cellulose filters was used for air sampling. The flow rate was adjusted to 3 liters per minute and the sampler run for 180 minutes. Iodine-131 radioactivity on filter was measured for 10 minutes by 2 NaI(Tl) gamma counters, Perkin Elmer Wallac Wizard 1480 (3''x3'') and Atomlab 950 PC (2''x2'') with and objective for inter comparison. Counting efficiency of the counters are 57 and 39 percent respectively. Agreeable results of I-131 radioactivity were obtained from both gamma counters. The mean I-131 concentrations measured by Wallac(Atomlab) were 31.59±16.31 (29.84±14.74) Bq/m 3 in radioiodine fume hood for treatment dose dispensing, 8.98±4.33 (7.58±5.10) Bq/m 3 in fume hood accommodated with a dose calibrator, 7.80±5.39 (7.54±5.04) Bq/m 3 in radioactive waste storage area, 0.03±0.54 (0.03±0.57) Bq/m 3 in patient waiting area, 2.94±3.60 (2.55±2.98) Bq/m 3 in hospital ward waste collection area and 0.03±0.01 (0.03±0.01) Bq/m 3 in the water treatment plant area. Radioiodine concentrations in patient's room increases linearly as the administered dose was increasing. Mean±SD of the measured concentrations were 11.63±9.30 (9.86±8.98) Bq/m 3 , 18.57±13.24 (17.35±12.33) Bq/m 3 and 31.90±22.32 (30.90±22.49) Bq/m 3 for the administered doses of 3.7, 5.55 and 7.4 Bq respectively. Radioiodine concentrations in all specified areas

  10. Investigation of ground-water contamination at a drainage ditch, Installation Restoration Site 4, Naval Air Station Corpus Christi, Corpus Christi, Texas, 2005–06

    Science.gov (United States)

    Vroblesky, Don A.; Casey, Clifton C.

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Naval Facilities Engineering Command Southeast, used newly developed sampling methods to investigate ground-water contamination by chlorobenzenes beneath a drainage ditch on the southwestern side of Installation Restoration Site 4, Naval Air Station Corpus Christi, Corpus Christi, Texas, during 2005-06. The drainage ditch, which is a potential receptor for ground-water contaminants from Installation Restoration Site 4, intermittently discharges water to Corpus Christi Bay. This report uses data from a new type of pore-water sampler developed for this investigation and other methods to examine the subsurface contamination beneath the drainage ditch. Analysis of ground water from the samplers indicated that chlorobenzenes (maximum detected concentration of 160 micrograms per liter) are present in the ground water beneath the ditch. The concentrations of dissolved oxygen in the samples (less than 0.05-0.4 milligram per liter) showed that the ground water beneath and near the ditch is anaerobic, indicating that substantial chlorobenzene biodegradation in the aquifer beneath the ditch is unlikely. Probable alternative mechanisms of chlorobenzene removal in the ground water beneath the drainage ditch include sorption onto the organic-rich sediment and contaminant depletion by cattails through uptake, sorption, and localized soil aeration.

  11. CO{sub 2} emissions due to the air transportation in Brazil; Emissoes de CO{sub 2} devido ao transporte aereo no Brasil

    Energy Technology Data Exchange (ETDEWEB)

    Simoes, Andre Felipe; Schaeffer, Roberto [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Planejamento Energetico]. E-mail: afsimoes@antares.com.br; roberto@ppe.ufrj.br

    2002-07-01

    This work intends to to insert and understand the participation of the brazilian air transportation in the ambit of the global climate changes. Firstly an introduction is presented for positioning the Brazil, in the proposed subject; an approach of the tenuous relationship between the air transportation sector and atmospheric environment medium; the energy consumption associated to the growing demand; and the inventory of the CO{sub 2} emissions (Calculated by using the top-down methodology) due to the Brazilian air transportation activities. The work is globally discussed and analysed.

  12. Polychlorinated biphenyls (PCBs) in air and soil from a high-altitude pasture in the Italian Alps: evidence of CB-209 contamination.

    Science.gov (United States)

    Tremolada, Paolo; Guazzoni, Niccolò; Comolli, Roberto; Parolini, Marco; Lazzaro, Serena; Binelli, Andrea

    2015-12-01

    This study analyses the seasonal trend of polychlorinated biphenyls (PCB) concentrations in air and soil from a high-altitude mountain pasture in the Italian Alps. PCB concentrations in soil were generally comparable to background levels and were lower than those previously measured in the same area. Only CB-209 unexpectedly showed high concentrations with respect to the other congeners. GC-MS-MS identification was very clear, rising a new problem of increasing PCB contamination concerning only CB-209, which is not present in commercial mixtures used in the past in Italy and Europe. Considering all of the congeners, seasonal PCB trends were observed both in air and in soil that were related to the temperature and precipitation measured specifically in the study area. Highly significant relationships were found between the temperature-normalised concentrations in soil and the precipitation amounts. A north/south enrichment factor was present only in soil with rapid early summer re-volatilisation kinetics from soil to air and autumn re-deposition events from air to soil. Fugacity ratio calculations confirmed these trends. Surface soils respond rapidly to meteorological variables, while subsurface soils respond much more slowly. Seasonal trends were different for the northern and southern sides of the mountain. A detailed picture of the interactions among temperature, precipitation, mountain aspects and soil features was obtained.

  13. Light Ray Displacements due to Air Temperature Gradient

    CERN Document Server

    Teymurazyan, A; CERN. Geneva

    2000-01-01

    Abstract In the optical monitoring systems suggested to control the geometry of tracking spectrometers, light beams serve as reference frames for the measurement of the tracking chamber displacements and deformations. It is shown that air temperature gradients can induce systematic errors which considerably exceed the intrinsic resolution of the monitoring system.

  14. Aflatoxin B1 contamination in maize in Europe increases due to climate change

    Science.gov (United States)

    Battilani, P.; Toscano, P.; van der Fels-Klerx, H. J.; Moretti, A.; Camardo Leggieri, M.; Brera, C.; Rortais, A.; Goumperis, T.; Robinson, T.

    2016-04-01

    Climate change has been reported as a driver for emerging food and feed safety issues worldwide and its expected impact on the presence of mycotoxins in food and feed is of great concern. Aflatoxins have the highest acute and chronic toxicity of all mycotoxins; hence, the maximal concentration in agricultural food and feed products and their commodities is regulated worldwide. The possible change in patterns of aflatoxin occurrence in crops due to climate change is a matter of concern that may require anticipatory actions. The aim of this study was to predict aflatoxin contamination in maize and wheat crops, within the next 100 years, under a +2 °C and +5 °C climate change scenario, applying a modelling approach. Europe was virtually covered by a net, 50 × 50 km grids, identifying 2254 meshes with a central point each. Climate data were generated for each point, linked to predictive models and predictions were run consequently. Aflatoxin B1 is predicted to become a food safety issue in maize in Europe, especially in the +2 °C scenario, the most probable scenario of climate change expected for the next years. These results represent a supporting tool to reinforce aflatoxin management and to prevent human and animal exposure.

  15. Protocols of radiocontaminant air monitoring for inhalation exposure estimates

    International Nuclear Information System (INIS)

    Shinn, J.H.

    1995-09-01

    Monitoring the plutonium and americium particle emissions from soils contaminated during atmospheric nuclear testing or due to accidental releases is important for several reasons. First, it is important to quantify the extent of potential human exposure from inhalation of alpha-emitting particles, which is the major exposure pathway from transuranic radionuclides. Second, the information provided by resuspension monitoring is the basis of criteria that determine the target soil concentrations for management and cleanup of contaminated soil sites. There are other radioactive aerosols, such as the fission products (cesium and strontium) and neutron-activation products (europium isotopes), which may be resuspended and therefore necessary to monitor as well. This Standard Protocol (SP) provides the method used for radiocontaminant air monitoring by the Health and Ecological Assessment Division (formerly Environmental Sciences Division), Lawrence Livermore National Laboratory, as developed and tested at Nevada Test Site (NTS) and in the Marshall Islands. The objective of this SP is to document the applications and methods of monitoring of all the relevant variables. This protocol deals only with measuring air concentrations of radionuclides and total suspended particulates (TSP, or open-quotes dustclose quotes). A separate protocol presents the more difficult measurements required to determine transuranic aerosol emission rates, or open-quotes resuspension rateclose quotes

  16. Short-term effects of ambient air pollution on emergency room admissions due to cardiovascular causes in Beijing, China

    International Nuclear Information System (INIS)

    Ma, Yuxia; Zhao, Yuxin; Yang, Sixu; Zhou, Jianding; Xin, Jinyuan; Wang, Shigong; Yang, Dandan

    2017-01-01

    Ambient air pollution has been a major global public health issue. A number of studies have shown various adverse effects of ambient air pollution on cardiovascular diseases. In the current study, we investigated the short-term effects of ambient air pollution on emergency room (ER) admissions due to cardiovascular causes in Beijing from 2009 to 2012 using a time-series analysis. A total of 82430 ER cardiovascular admissions were recorded. Different gender (male and female) and age groups (15yrs ≤ age <65 yrs and age ≥ 65 yrs) were also examined by single model and multiple-pollutant model. Three major pollutants (SO 2 , NO 2 and PM 10 ) had lag effects of 0–2 days on cardiovascular ER admissions. The relative risks (95% CI) of per 10 μg/m 3 increase in PM 10 , SO 2 and NO 2 were 1.008 (0.997–1.020), 1.008(0.999–1.018) and 1.014(1.003–1.024), respectively. The effect was more pronounced in age ≥65 and males in Beijing. We also found the stronger acute effects on the elderly and females at lag 0 than on the younger people and males at lag 2. - Highlights: • Significant associations were found between air pollution and emergency admissions of cardiovascular diseases. • Air pollutants had lag effects on age and gender groups. • Stronger effects of air pollutants were observed for age ≥65 yrs and males. • More acute effects of air pollutants were found for age ≥65 yrs and females. - Air pollutants had significant lag effects on different age and gender groups. The effects were more pronounced in age ≥65 and males in Beijing, China.

  17. Molds contamination of raw milk and dairy products: Occurrence, diversity and contamination source

    Directory of Open Access Journals (Sweden)

    T Moshtaghi Maleki

    2015-11-01

    Full Text Available This study aimed to assess the occurrence and diversity of mold species in raw milk and its products along with the identification of potential contamination sources. For this reason, a total of 260 samples consisting of 80 raw milk, 100 dairy products (i.e., pasteurized milk, yoghurt, cheese and buttermilk and 80 environmental (i.e. ingredients, packaging materials, surface of processing equipments and air specimens were collected. Using culture assay and microscopic observation, the occurrence as well as the diversity of mold species was investigated. According to the results, 82.3% of the samples were identified as positive for mold contamination. The percentage of mold contamination for raw milk was estimated as 97.5%. In the case of pasteurized milk, yoghurt, buttermilk, cheese and environmental samples, it was determined as 52%, 76%, 52%, 56% and 96.25%, respectively. Mold diversity among various samples consisted of Aspergillus, Geotrichum, Penicillium, Mucor, Alternaria, Rhizopus, Stemphylium, Cladosporium, and Fusarium. Results revealed a significant (p < 0.01 correlation between kind of mold species isolated from raw milk and dairy products. Similarly, a correlation was observed between dairy products and environmental sources. Regarding the high occurrence of mold contamination in raw milk and environmental sources, it seems that in some instances heat treatment was not effective enough to inactivate all molds; whereas in some other cases, cross contamination may have resulted in mold contamination. Therefore, it is crucial to maintain hygienic conditions during raw milk handling as well as processing steps. These practices could efficiently reduce the occurrence of mold contaminations in dairy products.

  18. Accidental ammonia exposure to county fair show livestock due to contaminated drinking water.

    Science.gov (United States)

    Campagnolo, Enzo R; Kasten, Steve; Banerjee, Monty

    2002-10-01

    Nitrogen based fertilizers represent an important element in the farm economy, but their storage and use are associated with major risks to livestock and humans. An accidental ammonia exposure occurred at a Midwest county fair in Illinois. Six deaths occurred in show livestock; a Holstein cow, 3 Holstein heifers, a goat, and a lamb. Mortality was associated with consumption of water inadvertently contaminated with a liquid fertilizer containing ammonium nitrate and urea commonly used for irrigating agricultural crop fields and brought onto the fairgrounds by a tanker truck previously used to transport liquid fertilizer. The show animals that drank the contaminated water immediately became ill, developed seizures and died within a few hours. Postmortem findings were unremarkable to nonspecific. Rumen contents from the lamb, Holstein cow, and Holstein heifer had ammonia-nitrogen concentrations of l,000, 1,150 and 1,440 ppm, respectively. Water from the heifer's water bucket, the cow's water bucket, and the tanker truck, had nitrate levels of 6,336, 6,116, and 6,248 ppm, respectively. The ammonia toxicosis was attributed to the contaminated water brought onto the fairgrounds by the tankertruck that previously transported liquid ammonium nitrateand urea. This accident underscores the importance of meticulous observation of safety guidelines and measured working practices in agriculture and animal husbandry.

  19. Air-Based Remediation Workshop - Section 8 Air-Based Remediation Technology Selection Logic

    Science.gov (United States)

    Pursuant to the EPA-AIT Implementing Arrangement 7 for Technical Environmental Collaboration, Activity 11 "Remediation of Contaminated Sites," the USEPA Office of International Affairs Organized a Forced Air Remediation Workshop in Taipei to deliver expert training to the Environ...

  20. Risk assessment for cardiovascular and respiratory mortality due to air pollution and synoptic meteorology in 10 Canadian cities.

    Science.gov (United States)

    Vanos, Jennifer K; Hebbern, Christopher; Cakmak, Sabit

    2014-02-01

    Synoptic weather and ambient air quality synergistically influence human health. We report the relative risk of mortality from all non-accidental, respiratory-, and cardiovascular-related causes, associated with exposure to four air pollutants, by weather type and season, in 10 major Canadian cities for 1981 through 1999. We conducted this multi-city time-series study using Poisson generalized linear models stratified by season and each of six distinctive synoptic weather types. Statistically significant relationships of mortality due to short-term exposure to carbon monoxide, nitrogen dioxide, sulphur dioxide, and ozone were found, with significant modifications of risk by weather type, season, and mortality cause. In total, 61% of the respiratory-related mortality relative risk estimates were significantly higher than for cardiovascular-related mortality. The combined effect of weather and air pollution is greatest when tropical-type weather is present in the spring or summer. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.