WorldWideScience

Sample records for air contaminants combining

  1. Performance of personalized ventilation combined with chilled ceiling in an office room: inhaled air quality and contaminant distribution

    DEFF Research Database (Denmark)

    Lipczynska, Aleksandra; Kaczmarczyk, Jan; Melikov, Arsen Krikor

    2014-01-01

    In a simulated two persons’ office room inhaled air quality and contaminant distribution provided with personalized ventilation combined with chilled ceiling, mixing ventilation only, chilled ceiling with mixing ventilation and chilled ceiling with mixing and personalized ventilation was studied...

  2. Control of aerosol contaminants in indoor air: combining the particle concentration reduction with microbial inactivation.

    Science.gov (United States)

    Grinshpun, Sergey A; Adhikari, Atin; Honda, Takeshi; Kim, Ki Youn; Toivola, Mika; Rao, K S Ramchander; Reponen, Tiina

    2007-01-15

    An indoor air purification technique, which combines unipolar ion emission and photocatalytic oxidation (promoted by a specially designed RCI cell), was investigated in two test chambers, 2.75 m3 and 24.3 m3, using nonbiological and biological challenge aerosols. The reduction in particle concentration was measured size selectively in real-time, and the Air Cleaning Factor and the Clean Air Delivery Rate (CADR) were determined. While testing with virions and bacteria, bioaerosol samples were collected and analyzed, and the microorganism survival rate was determined as a function of exposure time. We observed that the aerosol concentration decreased approximately 10 to approximately 100 times more rapidly when the purifier operated as compared to the natural decay. The data suggest that the tested portable unit operating in approximately 25 m3 non-ventilated room is capable to provide CADR-values more than twice as great than the conventional closed-loop HVAC system with a rating 8 filter. The particle removal occurred due to unipolar ion emission, while the inactivation of viable airborne microorganisms was associated with photocatalytic oxidation. Approximately 90% of initially viable MS2 viruses were inactivated resulting from 10 to 60 min exposure to the photocatalytic oxidation. Approximately 75% of viable B. subtilis spores were inactivated in 10 min, and about 90% or greater after 30 min. The biological and chemical mechanisms that led to the inactivation of stress-resistant airborne viruses and bacterial spores were reviewed.

  3. Advanced air distribution method combined with deodorant material for exposure reduction to bioeffluents contaminants in hospitals

    DEFF Research Database (Denmark)

    Bivolarova, Mariya Petrova; Mizutani, Chiyomi; Melikov, Arsen Krikor

    2015-01-01

    -bed hospital patient room at reduced background ventilation rare of 1.6 air changes per hour. The bed of the patient was equipped with the ventilated mattress (VM) having an exhaust opening from which bioeffluents generated from human body were sucked and discharged from the room. To enhance the pollutant......The separate and combined effect of a ventilated mattress and acid-treated activated carbon fibre (ACF) fabric on reducing the exposure to body generated gaseous pollutants in hospital environment was studied. Full-scale experiments were performed in a climate chamber furnished as a single...... removal, acid-treated activated carbon fibre material was used in some of the experiments in the form of patient’s cover. The simulated pollution source was ammonia gas released from the patient’s groins. The results show that when using the ventilated mattress the ammonia gas concentration in the room...

  4. Bioaccumulation Potential Of Air Contaminants: Combining Biological Allometry, Chemical Equilibrium And Mass-Balances To Predict Accumulation Of Air Pollutants In Various Mammals

    Energy Technology Data Exchange (ETDEWEB)

    Veltman, Karin; McKone, Thomas E.; Huijbregts, Mark A.J.; Hendriks, A. Jan

    2009-03-01

    In the present study we develop and test a uniform model intended for single compartment analysis in the context of human and environmental risk assessment of airborne contaminants. The new aspects of the model are the integration of biological allometry with fugacity-based mass-balance theory to describe exchange of contaminants with air. The developed model is applicable to various mammalian species and a range of chemicals, while requiring few and typically well-known input parameters, such as the adult mass and composition of the species, and the octanol-water and air-water partition coefficient of the chemical. Accumulation of organic chemicals is typically considered to be a function of the chemical affinity forlipid components in tissues. Here, we use a generic description of chemical affinity for neutral and polar lipids and proteins to estimate blood-air partition coefficients (Kba) and tissue-air partition coefficients (Kta) for various mammals. This provides a more accurate prediction of blood-air partition coefficients, as proteins make up a large fraction of total blood components. The results show that 75percent of the modeled inhalation and exhalation rate constants are within a factor of 2 from independent empirical values for humans, rats and mice, and 87percent of the predicted blood-air partition coefficients are within a factor of 5 from empirical data. At steady-state, the bioaccumulation potential of air pollutants is shown to be mainly a function of the tissue-air partition coefficient and the biotransformation capacity of the species and depends weakly on the ventilation rate and the cardiac output of mammals.

  5. Air Contamination With Fungals In Museum

    Science.gov (United States)

    Scarlat, Iuliana; Haiducu, Maria; Stepa, Raluca

    2015-07-01

    The aim of the studies was to determine the level and kind of fungal contamination of air in museum, deposits patrimony, restoration and conservation laboratories and their effects on health of workers. Microbiological air purity was measured with a SAS-100 Surface Air System impactor. The fungal contamination was observed in all 54 rooms where we made determinations. The highest levels of fungal were recorded at rooms with hygroscopic patrimony objects, eg carpets, chairs, upholstered chairs, books etc. The most species identified included under common allergens: Aspergillus, Penicillium, and Mucor. There fungal species belonging to the genus identified in this study, can trigger serious diseases museum workers, such as for example Aspergillus fumigatus, known allergies and toxic effects that may occur. In some places of the museum, occupational exposure limit values to fungi present in the air in the work environment, recommended by the specialized literature, have been overcome.

  6. Fungi as contaminants in indoor air

    Science.gov (United States)

    Miller, J. David

    This article reviews the subject of contamination of indoor air with fungal spores. In the last few years there have been advances in several areas of research on this subject. A number of epidemiological studies have been conducted in the U.K., U.S.A. and Canada. These suggest that exposure to dampness and mold in homes is a significant risk factor for a number of respiratory symptoms. Well-known illnesses caused by fungi include allergy and hypersensitivity pneumonitis. There is now evidence that other consequences of exposure to spores of some fungi may be important. In particular, exposure to low molecular weight compounds retained in spores of some molds such as mycotoxins and β 1,3 glucans appears to contribute to some symptoms reported. Fungal contamination of building air is almost always caused by poor design and/or maintenance. Home owners and building operators need to take evidence of fungal contamination seriously.

  7. Air cleaning issues with contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    Bellamy, R.R. [Nuclear Regulatory Commission, King of Prussia, PA (United States)

    1997-08-01

    The US Nuclear Regulatory Commission has developed a list of contaminated sites that warrant special USNRC attention because they pose unique or complex decommissioning issues. This list of radiologically contaminated sites is termed the Site Decommissioning Management Plan (SDMP), and was first issued in 1990. A site is placed on the SDMP list if it has; (1) Problems with the viability of the responsible organization (e.g., the licensee for the site is unable or unwilling to pay for the decommissioning); (2) Large amounts of soil contamination or unused settling ponds or burial grounds that may make the waste difficult to dispose of; (3) The long-term presence of contaminated, unused buildings; (4) A previously terminated license; or (5) Contaminated or potential contamination of the ground water from on-site wastes. In deciding whether to add a site to the SDMP list, the NRC also considers the projected length of time for decommissioning and the willingness of the responsible organization to complete the decommissioning in a timely manner. Since the list was established, 9 sites have been removed from the list, and the current SDMP list contains 47 sites in 11 states. The USNRC annually publishes NUREG-1444, {open_quotes}Site Decommissioning Management Plan{close_quotes}, which updates the status of each site. This paper will discuss the philosophical goals of the SDMP, then will concentrate on the regulatory requirements associated with air cleaning issues at the SDMP sites during characterization and remediation. Both effluent and worker protection issues will be discussed. For effluents, the source terms at sites will be characterized, and measurement techniques will be presented. Off-site dose impacts will be included. For worker protection issues, air sampling analyses will be presented in order to show how the workers are adequately protected and their doses measured to satisfy regulatory criteria during decontamination operations. 1 tab.

  8. Wash-out of ambient air contaminations for breath measurements.

    Science.gov (United States)

    Maurer, F; Wolf, A; Fink, T; Rittershofer, B; Heim, N; Volk, T; Baumbach, J I; Kreuer, S

    2014-06-01

    In breath analysis, ambient air contaminations are ubiquitous and difficult to eliminate. This study was designed to investigate the reduction of ambient air background by a lung wash-out with synthetic air. The reduction of the initial ambient air volatile organic compound (VOC) intensity was investigated in the breath of 20 volunteers inhaling synthetic air via a sealed full face mask in comparison to inhaling ambient air. Over a period of 30 minutes, breath analysis was conducted using ion mobility spectrometry coupled to a multi-capillary column. A total of 68 VOCs were identified for inhaling ambient air or inhaling synthetic air. By treatment with synthetic air, 39 VOCs decreased in intensity, whereas 29 increased in comparison to inhaling ambient air. In total, seven VOCs were significantly reduced (P-value ambient air contaminations from the airways by a lung wash-out with synthetic air.

  9. 40 CFR 52.1988 - Air contaminant discharge permits.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Air contaminant discharge permits. 52.1988 Section 52.1988 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) APPROVAL AND PROMULGATION OF IMPLEMENTATION PLANS (CONTINUED) Oregon § 52.1988 Air...

  10. Micro GC's for Contaminant Monitoring in Spacecraft Air Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is to create new gas chromatographs (GCs) for contaminant monitoring in spacecraft air that do not require any reagents or special...

  11. Trace Contaminant Monitor for Air in Spacecraft Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A need exists for analyzers that can measure trace contaminants in air on board spacecraft. Toxic gas buildup can endanger the crew particularly during long...

  12. Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants

    Science.gov (United States)

    Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.

    1998-01-01

    Control of air contaminants is a crucial factor in the safety considerations of crewed space flight. Indoor air quality needs to be closely monitored during long range missions such as a Mars mission, and also on large complex space structures such as the International Space Station. This work mainly pertains to the detection and simulation of air contaminants in the space station, though much of the work is easily extended to buildings, and issues of ventilation systems. Here we propose a method with which to track the presence of contaminants using an accurate physical model, and also develop a robust procedure that would raise alarms when certain tolerance levels are exceeded. A part of this research concerns the modeling of air flow inside a spacecraft, and the consequent dispersal pattern of contaminants. Our objective is to also monitor the contaminants on-line, so we develop a state estimation procedure that makes use of the measurements from a sensor system and determines an optimal estimate of the contamination in the system as a function of time and space. The real-time optimal estimates in turn are used to detect faults in the system and also offer diagnoses as to their sources. This work is concerned with the monitoring of air contaminants aboard future generation spacecraft and seeks to satisfy NASA's requirements as outlined in their Strategic Plan document (Technology Development Requirements, 1996).

  13. Wire-Mesh-Based Sorber for Removing Contaminants from Air

    Science.gov (United States)

    Perry, Jay; Roychoudhury, Subir; Walsh, Dennis

    2006-01-01

    A paper discusses an experimental regenerable sorber for removing CO2 and trace components principally, volatile organic compounds, halocarbons, and NH3 from spacecraft cabin air. This regenerable sorber is a prototype of what is intended to be a lightweight alternative to activated-carbon and zeolite-pellet sorbent beds now in use. The regenerable sorber consists mainly of an assembly of commercially available meshes that have been coated with a specially-formulated washcoat containing zeolites. The zeolites act as the sorbents while the meshes support the zeolite-containing washcoat in a configuration that affords highly effective surface area for exposing the sorbents to flowing air. The meshes also define flow paths characterized by short channel lengths to prevent excessive buildup of flow boundary layers. Flow boundary layer resistance is undesired because it can impede mass and heat transfer. The total weight and volume comparison versus the atmosphere revitalization equipment used onboard the International Space Station for CO2 and trace-component removal will depend upon the design details of the final embodiment. However, the integrated mesh-based CO2 and trace-contaminant removal system is expected to provide overall weight and volume savings by eliminating most of the trace-contaminant control equipment presently used in parallel processing schemes traditionally used for spacecraft. The mesh-based sorbent media enables integrating the two processes within a compact package. For the purpose of regeneration, the sorber can be heated by passing electric currents through the metallic meshes combined with exposure to space vacuum. The minimal thermal mass of the meshes offers the potential for reduced regeneration-power requirements and cycle time required for regeneration compared to regenerable sorption processes now in use.

  14. U. S. Air Force approach to plume contamination

    Science.gov (United States)

    Furstenau, Ronald P.; McCay, T. Dwayne; Mann, David M.

    1980-08-01

    Exhaust products from rocket engine firings can produce undesirable effects on sensitive satellite surfaces, such as optical systems, solar cells, and thermal control surfaces. The Air Force has an objective of minimizing the effect of rocket plume contamination on space-craft mission effectiveness. Plume contamination can result from solid rocket motors, liquid propellant engines, and electric thrusters. To solve the plume contamination problem, the Air Force Rocket Propulsion Laboratory (AFRPL) has developed a plume contamination computer model which predicts the production, transport, and deposition of rocket exhaust products. In addition, an experimental data base is being obtained through ground-based vacuum chamber experiments and in-flight measurements with which to compare the analytical results. Finally, the experimental data is being used to verify and improve the analytical model. The plume contamination model, known as CONTAM, has been used to make contamination predictions for various engines. The experimental programs have yielded quantitative data, such as species concentrations and temperatures, in all regions of the plume. The result of the modelling and experimental programs will ultimately be computer models which can be used by the satellite designer to analyze and to minimize the effect plume contamination will have on a particular spacecraft system.

  15. Circumventing shallow air contamination in Mid Ocean Ridge Basalts

    Science.gov (United States)

    Mukhopadhyay, Sujoy; Parai, Rita; Tucker, Jonathan; Middleton, Jennifer; Langmuir, Charles

    2016-04-01

    Noble gases in mantle-derived basalts provide a rich portrait of mantle degassing and surface-interior volatile exchange. However, the ubiquity of shallow-level air contamination frequently obscures the mantle noble gas signal. In a majority of samples, shallow air contamination dominates the noble gas budget. As a result, reconstructing the variability in heavy noble gas mantle source compositions and inferring the history of deep recycling of atmospheric noble gases is difficult. For example, in the gas-rich popping rock 2ΠD43, 129Xe/130Xe ratios reach 7.7±0.23 in individual step-crushes, but the bulk composition of the sample is close to air (129Xe/130Xe of 6.7). Here, we present results from experiments designed to elucidate the source of shallow air contamination in MORBs. Step-crushes were carried out to measure He, Ne, Ar and Xe isotopic compositions on two aliquots of a depleted popping glass that was dredged from between the Kane and Atlantis Fracture Zones of the Mid-Atlantic Ridge in May 2012. One aliquot was sealed in ultrapure N2 after dredge retrieval, while the other aliquot was left exposed to air for 3.5 years. The bulk 20Ne/22Ne and 129Xe/130Xe ratios measured in the aliquot bottled in ultrapure N2 are 12.3 and 7.6, respectively, and are nearly identical to the estimated mantle source values. On the other hand, step crushes in the aliquot left exposed to air for several years show Ne isotopic compositions that are shifted towards air, with a bulk 20Ne/22Ne of 11.5; the bulk 129Xe/130Xe, however, was close to 7.6. These results indicate that lighter noble gases exchange more efficiently between the bubbles trapped in basalt glass and air, suggesting a diffusive or kinetic mechanism for the incorporation of the shallow air contamination. Importantly, in Ne-Ar or Ar-Xe space, step-crushes from the bottled aliquot display a trend that can be easily fit with a simple two-component hyperbolic mixing between mantle and atmosphere noble gases. Step

  16. Concentrations of selected contaminants in cabin air of airbus aircrafts.

    Science.gov (United States)

    Dechow, M; Sohn, H; Steinhanses, J

    1997-07-01

    The concentrations of selected air quality parameters in aircraft cabins were investigated including particle numbers in cabin air compared to fresh air and recirculation air, the microbiological contamination and the concentration of volatile organic compounds (VOC). The Airbus types A310 of Swissair and A340 of Lufthansa were used for measurements. The particles were found to be mainly emitted by the passengers, especially by smokers. Depending on recirculation filter efficiency the recirculation air contained a lower or equal amount of particles compared to the fresh air, whereas the amount of bacteria exceeded reported concentrations within other indoor spaces. The detected species were mainly non-pathogenic, with droplet infection over short distances identified as the only health risk. The concentration of volatile organic compounds (VOC) were well below threshold values. Ethanol was identified as the compound with the highest amount in cabin air. Further organics were emitted by the passengers--as metabolic products or by smoking--and on ground as engine exhaust (bad airport air quality). Cleaning agents may be the source of further compounds.

  17. Combined air and water pollution control system

    Science.gov (United States)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  18. Biofiltration of air contaminated with methanol and toluene

    Directory of Open Access Journals (Sweden)

    Pakamas Chetpattananondh

    2005-12-01

    Full Text Available Biofiltration of air contaminated with VOCs is inexpensive compared with the conventional techniques and very effective for treating large volumes of moist air streams with low concentrations of VOCs. In this study, biofiltration for the purification of polluted air from methanol, a hydrophilic VOC, and toluene, a hydrophobic VOC, was investigated. The experiments were operated using three separated stainless steel biofilters, for methanol, toluene, and a mixture of methanol and toluene, respectively. Biofilter consisted of a mixture of palm shells and activated sludge as a filter-bed material. Only the indigenous microorganisms of the bed medium without any addition of extra inoculum were used throughout the whole process. The polluted air inlet concentration was varied from 0.3-4.7 g/m3 with flow rates ranging from 0.06-0.45 m3/h, equivalent to the empty bed residence times of 9-71 sec. Polluted air was successfully treated by biofiltration, 100% removal efficiencies would be obtained when the air flow rate was lower than 0.45 m3/h. The presence of toluene did not affect the removal rate of methanol while the removal rate of toluene was decreased with the presence of methanol in air stream according to the competition phenomenon.

  19. Recommended Concentration Limits of Typical Indoor Air Contaminants

    Institute of Scientific and Technical Information of China (English)

    LV Chao; JIANG Yun-tao; ZHAO Jia-ning

    2009-01-01

    From the view of both objective and subjective factors.the indoor air quality(IAQ)evaluation was considered.Carbon dioxide (CO2) and formaldehyde (HCHO) were selected as the typical contaminants of indoor air,and the evaluation method of logarithmic index was adopted as the evaluation means of IAQ.Then the recommended limits (RL) of typical contaminants CO2 and HCHO were given through analysis and calcula-tion.The limits of CO2 and HCHO in Indoor Air Quahty Standard of China or other existing standards probably correspond to the level of PD=25(%).The result shows that the existing standards fail to meet the require-ment of the definition of"acceptable indoor air quality",that is to say,less than 20% of the people express dis-satisfaction.When PD=20%,RL of CO2 and HCHO are 728×10-6 and 0.068×10-6 respectively,which are stricter than the limits in the existing standards.The method proposed in this paper is applicable to 13.1%≤PD≤86.7%.

  20. Ozone production by a dc corona discharge in air contaminated by n-heptane

    Science.gov (United States)

    Pekárek, S.

    2008-01-01

    Beneficial purposes of ozone such as elimination of odours, harmful bacteria and mildew can be used for transportation of food, fruits and vegetables with the aim to extend their storage life. To date the main technique used for this purpose in the transportation of these commodities, e.g. by trucks, was cooling. Here a combination of cooling together with the supply of ozone into containers with these commodities is considered. For these purposes we studied the effect of air contamination by n-heptane (part of automotive fuels) and humidity on ozone production by a dc hollow needle to mesh corona discharge. We found that, for both polarities of the needle electrode, addition of n-heptane to air (a) decreases ozone production; (b) causes discharge poisoning to occur at lower current than for air; (c) does not substantially influence the current for which the ozone production reaches the maximum. Finally the maximum ozone production for the discharge in air occurs for the same current as the maximum ozone production for the discharge contaminated by n-heptane. We also found that humidity decreases ozone production from air contaminated by n-heptane irrespective of the polarity of the coronating needle electrode. This dependence is stronger for the discharge with the needle biased positively.

  1. Reactive Distillation and Air Stripping Processes for Water Recycling and Trace Contaminant Control

    Science.gov (United States)

    Boul, Peter J.; Lange, Kevin E.; Conger, Bruce; Anderson, Molly

    2009-01-01

    Reactive distillation designs are considered to reduce the presence of volatile organic compounds in the purified water. Reactive distillation integrates a reactor with a distillation column. A review of the literature in this field has revealed a variety of functional reactive columns in industry. Wastewater may be purified by a combination of a reactor and a distiller (e.g., the EWRS or VPCAR concepts) or, in principle, through a design which integrates the reactor with the distiller. A review of the literature in reactive distillation has identified some different designs in such combinations of reactor and distiller. An evaluation of reactive distillation and reactive air stripping is presented with regards to the reduction of volatile organic compounds in the contaminated water and air. Among the methods presented, an architecture is presented for the evaluation of the simultaneous oxidation of organics in air and water. These and other designs are presented in light of potential improvements in power consumptions and air and water purities for architectures which include catalytic activity integrated into the water processor. In particular, catalytic oxidation of organics may be useful as a tool to remove contaminants that more traditional distillation and/or air stripping columns may not remove. A review of the current leading edge at the commercial level and at the research frontier in catalytically active materials is presented. Themes and directions from the engineering developments in catalyst design are presented conceptually in light of developments in the nanoscale chemistry of a variety of catalyst materials.

  2. Methodology for modeling the microbial contamination of air filters.

    Directory of Open Access Journals (Sweden)

    Yun Haeng Joe

    Full Text Available In this paper, we propose a theoretical model to simulate microbial growth on contaminated air filters and entrainment of bioaerosols from the filters to an indoor environment. Air filter filtration and antimicrobial efficiencies, and effects of dust particles on these efficiencies, were evaluated. The number of bioaerosols downstream of the filter could be characterized according to three phases: initial, transitional, and stationary. In the initial phase, the number was determined by filtration efficiency, the concentration of dust particles entering the filter, and the flow rate. During the transitional phase, the number of bioaerosols gradually increased up to the stationary phase, at which point no further increase was observed. The antimicrobial efficiency and flow rate were the dominant parameters affecting the number of bioaerosols downstream of the filter in the transitional and stationary phase, respectively. It was found that the nutrient fraction of dust particles entering the filter caused a significant change in the number of bioaerosols in both the transitional and stationary phases. The proposed model would be a solution for predicting the air filter life cycle in terms of microbiological activity by simulating the microbial contamination of the filter.

  3. contamination nucléaire par laser UV

    Science.gov (United States)

    Delaporte, Ph.; Gastaud, M.; Marine, W.; Sentis, M.; Uteza, O.; Thouvenot, P.; Alcaraz, J. L.; Le Samedy, J. M.; Blin, D.

    2003-06-01

    Le développement et l'utilisation de procédés propres pour le nettoyage ou la préparation de surfaces est l'une des priorités du milieu industriel. Cet intérêt est d'autant plus grand dans le domaine du nucléaire pour lequel la réduction des déchets est un axe de recherche important. Un dispositif de décontamination nucléaire par laser UV impulsionnel a été développé et testé. Il est composé. d'un laser à excimères de 1kW, d'un faisceau de fibres optiques et d'un dispositif de récupération des particules. Les essais réalisés en milieu actif ont démontré sa capacité à nettoyer des surfaces métalliques polluées par différents radioéléments avec des facteurs de décontamination généralement supérieurs à 10. Ce dispositif permet de décontaminer de grandes surfaces de géométrie simple en réduisant fortement la génération de déchets secondaires. Il est, à ce jour et dans ces conditions d'utilisations, le procédé de décontamination par voie sèche le plus efficace.

  4. Impact of airflow interaction on inhaled air quality and transport of contaminants in rooms with personalized and total volume ventilation

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Cermak, Radim; Kovar, O.

    2003-01-01

    The impact of airflow interaction on inhaled air quality and transport of contaminants between occupants was studied in regard to pollution from floor covering, human bioeffluents and exhaled air, with combinations of two personalized ventilation systems (PV) with mixing and displacement ventilat......The impact of airflow interaction on inhaled air quality and transport of contaminants between occupants was studied in regard to pollution from floor covering, human bioeffluents and exhaled air, with combinations of two personalized ventilation systems (PV) with mixing and displacement...... ventilation. In total, 80 L/s of clean air supplied at 20°C was distributed between the ventilation systems at different combinations of personalized airflow rate. Two breathing thermal manikins were used to simulate occupants in a full-scale test room. Regardless of the airflow interaction, the inhaled air......, at low flow rates of personalized air a decrease in the quality of the inhaled air compared to displacement ventilation alone. The PV system supplying air against the face improved the ventilation efficiency in regard to the floor pollution up to 20 times and up to 13 times in regard to bioeffluents...

  5. Application of air ions for bacterial de-colonization in air filters contaminated by aerosolized bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yang Seon, E-mail: rup2r@yonsei.ac.kr [School of Mechanical Engineering, Yonsei University, 262 Seongsanno, Seodaemun-Gu, Seoul, 120-749 (Korea, Republic of); Yoon, Ki Young, E-mail: yky810921@yonsei.ac.kr [Exhaust Emission Engineering Team, Hyundai Motor Company, Hwaseong 445-706, Republic of Korea (Korea, Republic of); Park, Jae Hong, E-mail: cheap@yonsei.ac.kr [School of Mechanical Engineering, Yonsei University, 262 Seongsanno, Seodaemun-Gu, Seoul, 120-749 (Korea, Republic of); Hwang, Jungho, E-mail: hwangjh@yonsei.ac.kr [School of Mechanical Engineering, Yonsei University, 262 Seongsanno, Seodaemun-Gu, Seoul, 120-749 (Korea, Republic of)

    2011-01-15

    We aerosolized the Escherichia coli (E. coli) and Staphylococcus epidermidis (S. epidermidis) bacteria and collected them on membrane filters. Then we generated air ions by applying a high voltage to a carbon fiber tip and applied them to the contaminated filters. The antibacterial efficiency was not significantly affected by the bacteria being Gram-positive or Gram-negative, however, negative ions showed a lower antibacterial efficiency than positive ions to both E. coli and S. epidermidis, even though the concentration of negative air ions was much higher than that of positive air ions. With a field emission scanning electron microscope (FE-SEM) images and fluorescence microscopy images using a LIVE/DEAD BacLight Bacterial Viability Kit, electrostatic disruption of the bacteria was found to be the dominant antibacterial effect. - Research Highlights: {yields}This study examined the effects of air ions generated by a carbon fiber ionizer on the inactivation of bioaerosols. {yields}When the ion exposure time and the ion generation concentration were increased, the antibacterial efficiency increased. {yields}The bioaerosols carried a significant number of negative electrical charges. {yields}Negative ions showed lower antibacterial efficiency than positive ions to both E. coli and S. epidermidis, even though the concentration of negative air ions was much higher than that of positive air ions.

  6. Indoor air contamination during a waterpipe (narghile) smoking session.

    Science.gov (United States)

    Fromme, Hermann; Dietrich, Silvio; Heitmann, Dieter; Dressel, Holger; Diemer, Jürgen; Schulz, Thomas; Jörres, Rudolf A; Berlin, Knut; Völkel, Wolfgang

    2009-07-01

    The smoke of waterpipe contains numerous substances of health concern, but people mistakenly believe that this smoking method is less harmful and addictive than cigarettes. An experiment was performed in a 57 m3 room on two dates with no smoking on the first date and waterpipe smoking for 4h on the second date. We measured volatile organic compounds (VOC), polycyclic aromatic hydrocarbons (PAH), metals, carbon monoxide (CO), nitrogen oxides (e.g. NO), as well as particle mass (PM), particle number concentration (PNC) and particle surface area in indoor air. High concentrations were observed for the target analytes during the 4-h smoking event. The median (90th percentile) values of PM(2.5), PNC, CO and NO were 393 (737 microg/m(3)), 289,000 (550,000 particles/cm(3)), 51 (65 ppm) and 0.11 (0.13 ppm), respectively. The particle size distribution has a maximum of particles relating to a diameter of 17 nm. The seven carcinogenic PAH were found to be a factor 2.6 higher during the smoking session compared to the control day. In conclusion, the observed indoor air contamination of different harmful substances during a WP session is high, and exposure may pose a health risk for smokers but in particular for non-smokers who are exposed to ETS.

  7. Methods for Sampling and Measurement of Compressed Air Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Stroem, L.

    1976-10-15

    In order to improve the technique for measuring oil and water entrained in a compressed air stream, a laboratory study has been made of some methods for sampling and measurement. For this purpose water or oil as artificial contaminants were injected in thin streams into a test loop, carrying dry compressed air. Sampling was performed in a vertical run, down-stream of the injection point. Wall attached liquid, coarse droplet flow, and fine droplet flow were sampled separately. The results were compared with two-phase flow theory and direct observation of liquid behaviour. In a study of sample transport through narrow tubes, it was observed that, below a certain liquid loading, the sample did not move, the liquid remaining stationary on the tubing wall. The basic analysis of the collected samples was made by gravimetric methods. Adsorption tubes were used with success to measure water vapour. A humidity meter with a sensor of the aluminium oxide type was found to be unreliable. Oil could be measured selectively by a flame ionization detector, the sample being pretreated in an evaporation- condensation unit

  8. Indoor Air Contaminant Adsorption By Palm Shell Activated Carbon Filter – A Proposed Study

    Directory of Open Access Journals (Sweden)

    Leman A.M

    2016-01-01

    Full Text Available Indoor air contaminant is a public issue. High Volatile Organic Compound (VOC, Carbon monoxide (CO, Carbon dioxide (CO2, and particulate matter is becoming main issue that needs to solve. Therefore, this study focus on improving indoor air quality by using activated carbon (AC for Ventilation and Air-Conditioning (VAC. It investigated because AC is widely explored but developing AC as a filter for VAC is not developed yet. The AC prepared by physical and chemical activation process and combination both of process and it was activated by H3PO4 and NaOH. Characterization and analysis process are consists of water content, ash content, bulk density, adsorption capacity, iodine number and indoor air filtering analysis. Treated activated carbon potential in achieving higher surface area of the structure to the range of 950 to 1150 m2/g for gas phase application. The higher surface area will adsorb more air pollution. Maintained properties of activated carbon such as hardness, density, pore, extractable ash, particle size (12 by 40 mesh and pH are becoming the main concern in achieving high quality of activated carbon.

  9. Assessment of combined electro–nanoremediation of molinate contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Helena I., E-mail: hrg@campus.fct.unl.pt [CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); CERNAS — Research Center for Natural Resources, Environment and Society, Escola Superior Agraria de Coimbra, Instituto Politecnico de Coimbra, Bencanta, 3045-601 Coimbra (Portugal); Fan, Guangping [CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences (ISSCAS), East Beijing Road, Nanjing 210008 (China); Mateus, Eduardo P. [CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); Dias-Ferreira, Celia [CERNAS — Research Center for Natural Resources, Environment and Society, Escola Superior Agraria de Coimbra, Instituto Politecnico de Coimbra, Bencanta, 3045-601 Coimbra (Portugal); Ribeiro, Alexandra B. [CENSE, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal)

    2014-09-15

    Molinate is a pesticide widely used, both in space and time, for weed control in rice paddies. Due to its water solubility and affinity to organic matter, it is a contaminant of concern in ground and surface waters, soils and sediments. Previous works have showed that molinate can be removed from soils through electrokinetic (EK) remediation. In this work, molinate degradation by zero valent iron nanoparticles (nZVI) was tested in soils for the first time. Soil is a highly complex matrix, and pollutant partitioning between soil and water and its degradation rates in different matrices is quite challenging. A system combining nZVI and EK was also set up in order to study the nanoparticles and molinate transport, as well as molinate degradation. Results showed that molinate could be degraded by nZVI in soils, even though the process is more time demanding and degradation percentages are lower than in an aqueous solution. This shows the importance of testing contaminant degradation, not only in aqueous solutions, but also in the soil-sorbed fraction. It was also found that soil type was the most significant factor influencing iron and molinate transport. The main advantage of the simultaneous use of both methods is the molinate degradation instead of its accumulation in the catholyte. - Highlights: • Molinate is degraded in soil by zero valent iron nanoparticles (nZVI). • Higher contact time of nZVI with soil facilitates molinate degradation. • Soil type was the most significant factor influencing iron and molinate transport. • When using nZVI and EK molinate is not only transported to catholyte, but also degraded.

  10. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This report presents information concerning field procedures employed during the monitoring, well construction, well purging, sampling, and well logging at the Wright-Patterson Air Force Base. Activities were conducted in an effort to evaluate ground water contamination.

  11. Report of Findings: Cold Bay Air Force Station (Grant Point) military contaminants: Fiscal year 1988 collections

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report summarizes our contaminants investigation at the abandoned Cold Bay Air Force Station (Station), located on the Izembek National Wildlife Refuge at Grant...

  12. Study on influence of characteristics of air-supply jet on drain contamination efficiency and air quality in heading

    Institute of Scientific and Technical Information of China (English)

    LIU He-qing; SHI Shi-liang; LIU Rong-hua; WANG H ai-qiao

    2001-01-01

    Based on the theory of air-supply jet, the conception and theory o f the air quality and the drain-contamination efficiency, the results achieved b y comparing the circular cross-section wall jet with the plane wall jet were fo l lowing: firstly, within the limitation of the ventilation distance at the tunnel heading in a coal mine, there were a better air quality and a higher efficiency of drain-contamination with application of the plane wall jet ventilation. Sec o ndly, there was a advantage to improve the air quality of the workers breathin g area with mounting the air-supply outlet on the top but not on the side of the tunnel heading.

  13. Evaluation of bioaerosol sampling techniques for the detection of Chlamydophila psittaci in contaminated air.

    Science.gov (United States)

    Van Droogenbroeck, Caroline; Van Risseghem, Marleen; Braeckman, Lutgart; Vanrompay, Daisy

    2009-03-16

    Chlamydophila (C.) psittaci, a category B bioterrorism agent, causes respiratory disease in birds and psittacosis or parrot fever in man. The disease spreads aerogenically and no vaccines are available for either birds or man. Highly sensitive C. psittaci bioaerosol monitoring methods are unavailable. We evaluated: (1) dry filtration for collecting C. psittaci from contaminated air using different samplers and membrane filters, (2) impingement into different liquid collection media by use of the AGI-30 impinger and the BioSampler and (3) impaction into newly designed C. psittaci media utilizing the MAS-100 aerosol impactor. For personal bioaerosol sampling, we recommend the use of a gelatin filter in combination with the IOM inhalable dust sampler at an airflow rate of 2L/min. This allowed the detection of 10 organisms of C. psittaci by both PCR and culture. For stationary bioaerosol monitoring, sampling 1000L of air in 10min with the MAS-100 impactor and ChlamyTrap 1 impaction medium was most efficient and made it possible to detect 1 and 10 C. psittaci organisms by PCR and culture, respectively. ChlamyTrap 1 in combination with the MAS-100 impactor might also be applicable for bioaerosol monitoring of viruses.

  14. [Ambient and enclosed space air sampling for determination of contaminants].

    Science.gov (United States)

    Dorogova, V B

    2010-01-01

    The paper touches upon the issues how to correctly and maximally take single and average daily samples of ambient, residential and public building, and enclosed space air for further tests for the content of hazardous substances. The paper is debated.

  15. Thermal air contamination in urban environment. Contaminacion termica del aire en el medio ambiente urbano

    Energy Technology Data Exchange (ETDEWEB)

    Munoz Machado, A.

    1994-01-01

    This article summarizes the necessity of thermal contamination control. The principal contaminant is the loss of heat from buildings. There is not a regulation and the environmental regulation has not a special article to regulate this topic.

  16. INTEGRATION OF PHOTOCATALYTIC OXIDATION WITH AIR STRIPPING OF CONTAMINATED AQUIFERS

    Science.gov (United States)

    Bench scale laboratory studies and pilot scale studies in a simulated field-test situation were performed to evaluate the integration of gas-solid ultaviolet (UV) photocatalytic oxidation (PCO) downstream if an air stripper unit as a technology for cost-effectively treating water...

  17. An indoor air aerosol model for outdoor contaminant transmission into occupied rooms

    Institute of Scientific and Technical Information of China (English)

    XIE Hui; ZHAO Shen; CAO Guo-qing

    2014-01-01

    The paper presents a simple model for outdoor air contaminant transmission into occupied rooms. In the model, several factors such as filtration, ventilation, deposition, re-emission, outdoor concentration and indoor sources are included. The model results show that the air exchange rate plays an important role in the transmission of outdoor contaminants into the indoor environment. The model shows that increasing the value of the filtration efficiency decreases the mass concentration of indoor particles. In addition, if outdoor aerosol particles have a periodic behaviour, indoor aerosol particles also behave periodically but smoother. Indoor sources are found to be able to increase indoor concentrations greatly and continuously.

  18. Biological air contamination in elderly care centers: geria project.

    Science.gov (United States)

    Aguiar, Lívia; Mendes, Ana; Pereira, Cristiana; Neves, Paula; Mendes, Diana; Teixeira, João Paulo

    2014-01-01

    Indoor air quality (IAQ) affects health particularly in susceptible individuals such as the elderly. It has been estimated that the older population spends approximately 19-20 h/d indoors, and the majority of the elderly spend all of their time indoors in elderly care centers (ECC). Older individuals may be particularly at risk of exposure to detrimental effects from pollutants, even at low concentrations, due to common and multiple underlying chronic diseases that increase susceptibility. This study, aimed to assess the impact of indoor biological agents in 22 ECC located in Porto, was conducted during summer and winter from November 2011 to August 2013 at a total of 141 areas within dining rooms, drawing rooms, medical offices, and bedrooms (including the bedridden). Air sampling was carried out with a microbiological air sampler (Merck MAS-100) and using tryptic soy agar for bacteria and malt extract agar for fungi. The results obtained were compared with the recently revised Portuguese standards. In winter, mean fungi concentration exceeded reference values, while bacteria concentrations were within the new standards in both seasons. The main fungi species found indoors were Cladosporium (73%) in summer and Penicillium (67%) in winter. Aspergillus fumigatus, Aspergillus niger, and Aspergillus flavus, known potential pathogenic/toxigenic species, were also identified. Although the overall rate and mean values of bacteria and fungi found in ECC indoor air met Portuguese legislation, some concern is raised by the presence of pathogenic microorganisms. Simple measures, like opening windows and doors to promote air exchange and renewal, may improve effectiveness in enhancing IAQ.

  19. [Quality of interior air: biological contaminants and their effects on health; bioaerosols and gathering techniques].

    Science.gov (United States)

    Bălan, Gabriela

    2007-01-01

    Indoor Air Quality: biological contaminants and health effects; airborne organisms and sampling instruments. Biological contaminants include bacteria, molds, viruses, animal dander and cat saliva, house dust, mites, cockroaches and pollen. Symptoms of health problems caused by biological pollutants include sneezing, watery eyes, coughing, shortness of breath, dizziness, lethargy, fevers. Children, elderly people with breathing problems, allergies and lung diseases are particularly susceptible to disease-causing biological agents in the indoor air. It is convenient to consider microbiological samplers for collecting organisms in air as falling into several broad categories. Many popular microbiological air samplers use the principle of impaction to trap the organisms by impacting them directly on to agar. Further distinct groups are the impingers, which operate by impinging organisms into liquid.

  20. Impacts of contaminant storage on indoor air quality: Model development

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.; Hult, Erin L.

    2013-02-26

    A first-order, lumped capacitance model is used to describe the buffering of airborne chemical species by building materials and furnishings in the indoor environment. The model is applied to describe the interaction between formaldehyde in building materials and the concentration of the species in the indoor air. Storage buffering can decrease the effect of ventilation on the indoor concentration, compared to the inverse dependence of indoor concentration on the air exchange rate that is consistent with a constant emission rate source. If the exposure time of an occupant is long relative to the time scale of depletion of the compound from the storage medium, however, the total exposure will depend inversely on the air exchange rate. This lumped capacitance model is also applied to moisture buffering in the indoor environment, which occurs over much shorter depletion timescales of the order of days. This model provides a framework to interpret the impact of storage buffering on time-varying concentrations of chemical species and resulting occupant exposure. Pseudo-steady state behavior is validated using field measurements. Model behavior over longer times is consistent with formaldehyde and moisture concentration measurements in previous studies.

  1. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This report presents information related to the sampling of ground water at the Wright-Patterson Air Force Base. It is part of an investigation into possible ground water contamination. Information concerns well drilling/construction; x-ray diffraction and sampling; soil boring logs; and chain-of-custody records.

  2. Environmental contaminants in golden shiners from Picnic Pond, U.S. Naval Air Station, Brunswick, Maine

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — On July 25, 1995, the U.S. Fish and Wildlife Service conducted a contaminant survey of fish from Picnic Pond on the U.S. Naval Air Station in Brunswick, Maine...

  3. Vision and air flow combine to streamline flying honeybees.

    Science.gov (United States)

    Taylor, Gavin J; Luu, Tien; Ball, David; Srinivasan, Mandyam V

    2013-01-01

    Insects face the challenge of integrating multi-sensory information to control their flight. Here we study a 'streamlining' response in honeybees, whereby honeybees raise their abdomen to reduce drag. We find that this response, which was recently reported to be mediated by optic flow, is also strongly modulated by the presence of air flow simulating a head wind. The Johnston's organs in the antennae were found to play a role in the measurement of the air speed that is used to control the streamlining response. The response to a combination of visual motion and wind is complex and can be explained by a model that incorporates a non-linear combination of the two stimuli. The use of visual and mechanosensory cues increases the strength of the streamlining response when the stimuli are present concurrently. We propose this multisensory integration will make the response more robust to transient disturbances in either modality.

  4. Effect of Air Stability on the Dispersal of Exhaled Contaminant in Rooms

    DEFF Research Database (Denmark)

    Xu, Chunwen; Gong, Guangcai; Nielsen, Peter V.

    2013-01-01

    Experiments are conducted in a full-scale chamber equipped with whole floor and whole ceiling supply or exhaust to form approximately zero and larger temperature gradients corresponding to unstable and stable air conditions. It can be observed that the air with smoke exhaled from a life-sized the......Experiments are conducted in a full-scale chamber equipped with whole floor and whole ceiling supply or exhaust to form approximately zero and larger temperature gradients corresponding to unstable and stable air conditions. It can be observed that the air with smoke exhaled from a life......-sized thermal manikin is locked and stratified at certain heights at stable condition while it mixes well with the ambient air and is diluted quickly through upper openings when the air is relatively unstable. The concentration of contaminant simulated by tracer gas (N2O) is measured both around and 0.35m from...... the manikin, indicating that the person who exhales the contaminant may not be polluted by himself as the protective effect of the thermal boundary layer around the body, especially in stable condition with two concentration zones and clean air drawn from the inlets. However, other persons facing...

  5. Temporal variability of combined sewer overflow contaminants: evaluation of wastewater micropollutants as tracers of fecal contamination.

    Science.gov (United States)

    Madoux-Humery, Anne-Sophie; Dorner, Sarah; Sauvé, Sébastien; Aboulfadl, Khadija; Galarneau, Martine; Servais, Pierre; Prévost, Michèle

    2013-09-01

    A monitoring program was initiated for two sewage outfalls (OA and OB) with different land uses (mainly residential versus institutional) over the course of a year. Eleven CSO events resulting from fall and summer precipitations and a mixture of snowmelt and precipitation in late winter and early spring were monitored. Median concentrations measured in CSOs were 1.5 × 10(6)Escherichia coli/100 mL, 136.0 mg/L of Total Suspended Solids (TSS), 4599.0 ng/L of caffeine (CAF), 158.9 ng/L of carbamazepine (CBZ), in outfall OA and 5.1 × 10(4)E. coli/100 mL, 167.0 mg TSS/L, 300.8 ng CAF/L, 4.1 ng CBZ/L, in outfall OB. Concentration dynamics in CSOs were mostly related to the dilution by stormwater and the time of day of the onset of overflows. Snowmelt was identified as a critical period with regards to the protection of drinking water sources given the high contaminant concentrations and long duration of events in addition to a lack of restrictions on overflows during this period. Correlations among measured parameters reflected the origins and transport pathways of the contaminants, with E. coli being correlated with CBZ. TSS were not correlated with E. coli because E. coli was found to be mostly associated with raw sewage whereas TSS were additionally from the resuspension of in-sewer deposits and surface runoff. In receiving waters, E. coli remained the best indicator of fecal contamination in strongly diluted water samples as compared to WWMPs because WWMPs can be diluted to below their detection limits.

  6. Ventilation as mitigation of PCB contaminated air in buildings

    DEFF Research Database (Denmark)

    Lyng, Nadja; Trap, Niels; Andersen, Helle Vibeke;

    2014-01-01

    The effect of ventilation on indoor concentrations was evaluated in 9 buildings constituting a total of 30 rooms. All cases had interior and/or exterior sealants containing PCB as primary source. Criteria for inclusion in the evaluation were that the indoor concentrations of PCBtotal In the remai......The effect of ventilation on indoor concentrations was evaluated in 9 buildings constituting a total of 30 rooms. All cases had interior and/or exterior sealants containing PCB as primary source. Criteria for inclusion in the evaluation were that the indoor concentrations of PCBtotal...... In the remaining four cases, the pressure difference between the room measured and the surroundings showed a tremendous effect on the concentration as opposed to the effect of ventilation. Pressure differences might affect the emission of PCB by motion of air through gaps and cracks along the PCB sealants. were...... measured in the same room at least twice and under different ventilation conditions. In general, PCB concentrations decrease with increased ventilation making the effect of ventilation to reduce human exposure feasible. In 26 case rooms, the mean reduction of the concentration was found to be 51% (median...

  7. Hazard Assessment of Chemical Air Contaminants Measured in Residences

    Energy Technology Data Exchange (ETDEWEB)

    Logue, J.M.; McKone, T.E.; Sherman, M. H.; Singer, B.C.

    2010-05-10

    Identifying air pollutants that pose a potential hazard indoors can facilitate exposure mitigation. In this study, we compiled summary results from 77 published studies reporting measurements of chemical pollutants in residences in the United States and in countries with similar lifestyles. These data were used to calculate representative mid-range and upper bound concentrations relevant to chronic exposures for 267 pollutants and representative peak concentrations relevant to acute exposures for 5 activity-associated pollutants. Representative concentrations are compared to available chronic and acute health standards for 97 pollutants. Fifteen pollutants appear to exceed chronic health standards in a large fraction of homes. Nine other pollutants are identified as potential chronic health hazards in a substantial minority of homes and an additional nine are identified as potential hazards in a very small percentage of homes. Nine pollutants are identified as priority hazards based on the robustness of measured concentration data and the fraction of residences that appear to be impacted: acetaldehyde; acrolein; benzene; 1,3-butadiene; 1,4-dichlorobenzene; formaldehyde; naphthalene; nitrogen dioxide; and PM{sub 2.5}. Activity-based emissions are shown to pose potential acute health hazards for PM{sub 2.5}, formaldehyde, CO, chloroform, and NO{sub 2}.

  8. Negotiating indoor air-case report on negotiation of teachers' union, school board on air contaminants.

    Science.gov (United States)

    Gibson, Sarah; Levenstein, Charles

    2010-01-01

    School districts increasingly understand the need for an indoor air quality plan, but may have difficulty in producing a plan that all necessary parties will accept. This article provides a case study of how one Massachusetts school district, after experiencing environmental problems in an elementary school, worked with parents and unions to develop a comprehensive indoor air quality plan.

  9. Characterization of the frequency and nature of bleed air contamination events in commercial aircraft.

    Science.gov (United States)

    Shehadi, M; Jones, B; Hosni, M

    2016-06-01

    Contamination of the bleed air used to pressurize and ventilate aircraft cabins is of concern due to the potential health and safety hazards for passengers and crew. Databases from the Federal Aviation Administration, NASA, and other sources were examined in detail to determine the frequency of bleed air contamination incidents. The frequency was examined on an aircraft model basis with the intent of identifying aircraft make and models with elevated frequencies of contamination events. The reported results herein may help investigators to focus future studies of bleed air contamination incidents on smaller number of aircrafts. Incident frequency was normalized by the number of aircraft, number of flights, and flight hours for each model to account for the large variations in the number of aircraft of different models. The focus of the study was on aircraft models that are currently in service and are used by major airlines in the United States. Incidents examined in this study include those related to smoke, oil odors, fumes, and any symptom that might be related to exposure to such contamination, reported by crew members, between 2007 and 2012, for US-based carriers for domestic flights and all international flights that either originated or terminated in the US. In addition to the reported frequency of incidents for different aircraft models, the analysis attempted to identify propulsion engines and auxiliary power units associated with aircrafts that had higher frequencies of incidents. While substantial variations were found in frequency of incidents, it was found that the contamination events were widely distributed across nearly all common models of aircraft.

  10. Forced-air warming: a source of airborne contamination in the operating room?

    Directory of Open Access Journals (Sweden)

    David Leaper

    2009-12-01

    Full Text Available Forced-air-warming (FAW is an effective and widely used means for maintaining surgical normothermia, but FAW also has the potential to generate and mobilize airborne contamination in the operating room. We measured the emission of viable and non-viable forms of airborne contamination from an arbitrary selection of FAW blowers (n=25 in the operating room. A laser particle counter measured particulate concentrations of the air near the intake filter and in the distal hose airstream. Filtration efficiency was calculated as the reduction in particulate concentration in the distal hose airstream relative to that of the intake. Microbial colonization of the FAW blower’s internal hose surfaces was assessed by culturing the microorganisms recovered through swabbing (n=17 and rinsing (n=9 techniques. Particle counting revealed that 24% of FAW blowers were emitting significant levels of internally generated airborne contamination in the 0.5 to 5.0 mm size range, evidenced by a steep decrease in FAW blower filtration efficiency for particles 0.5 to 5.0 mm in size. The particle size-range-specific reduction in efficiency could not be explained by the filtration properties of the intake filter. Instead, the reduction was found to be caused by size-range-specific particle generation within the FAW blowers. Microorganisms were detected on the internal air path surfaces of 94% of FAW blowers. The design of FAW blowers was found to be questionable for preventing the build-up of internal contamination and the emission of airborne contamination into the operating room. Although we did not evaluate the link between FAW and surgical site infection rates, a significant percentage of FAW blowers with positive microbial cultures were emitting internally generated airborne contamination within the size range of free floating bacteria and fungi (<4 mm that could, conceivably, settle onto the surgical site.

  11. Electroremediation of PCB contaminated soil combined with iron nanoparticles: Effect of the soil type

    DEFF Research Database (Denmark)

    Gomes, Helena I.; Dias-Ferreira, Celia; Ottosen, Lisbeth M.

    2015-01-01

    Polychlorinated biphenyls (PCB) are carcinogenic and persistent organic pollutants that accumulate in soils and sediments. Currently, there is no cost-effective and sustainable remediation technology for these contaminants. In this work, a new combination of electrodialytic remediation and zero...... nanoparticles. Remediation experiments are made with two different historically PCB contaminated soils, which differ in both soil composition and contamination source. Soil 1 is a mix of soils with spills of transformer oils, while Soil 2 is a superficial soil from a decommissioned school where PCB were used...

  12. Portable RF-Sensor System for the Monitoring of Air Pollution and Water Contamination

    Directory of Open Access Journals (Sweden)

    Joonhee Kang

    2012-01-01

    Full Text Available Monitoring air pollution including the contents of VOC, O3, NO2, and dusts has attracted a lot of interest in addition to the monitoring of water contamination because it affects directly to the quality of living conditions. Most of the current air pollution monitoring stations use the expensive and bulky instruments and are only installed in the very limited area. To bring the information of the air and water quality to the public in real time, it is important to construct portable monitoring systems and distribute them close to our everyday living places. In this work, we have constructed a low-cost portable RF sensor system by using 400 MHz transceiver to achieve this goal. Accuracy of the measurement was comparable to the ones used in the expensive and bulky commercial air pollution forecast systems.

  13. Storage of LWR spent fuel in air. Volume 3, Results from exposure of spent fuel to fluorine-contaminated air

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, M.E.; Thomas, L.E.

    1995-06-01

    The Behavior of Spent Fuel in Storage (BSFS) Project has conducted research to develop data on spent nuclear fuel (irradiated U0{sub 2}) that could be used to support design, licensing, and operation of dry storage installations. Test Series B conducted by the BSFS Project was designed as a long-term study of the oxidation of spent fuel exposed to air. It was discovered after the exposures were completed in September 1990 that the test specimens had been exposed to an atmosphere of bottled air contaminated with an unknown quantity of fluorine. This exposure resulted in the test specimens reacting with both the oxygen and the fluorine in the oven atmospheres. The apparent source of the fluorine was gamma radiation-induced chemical decomposition of the fluoro-elastomer gaskets used to seal the oven doors. This chemical decomposition apparently released hydrofluoric acid (HF) vapor into the oven atmospheres. Because the Test Series B specimens were exposed to a fluorine-contaminated oven atmosphere and reacted with the fluorine, it is recommended that the Test Series B data not be used to develop time-temperature limits for exposure of spent nuclear fuel to air. This report has been prepared to document Test Series B and present the collected data and observations.

  14. An approach to represent a combined exposure to air pollution

    Directory of Open Access Journals (Sweden)

    Mieczyslaw Szyszkowicz

    2015-10-01

    Full Text Available Objectives: The objective of this study was to present a technique for estimating the effect of ambient air pollution mix on health outcomes. Material and Methods: We created a technique of indexing air pollution mix as a cause of the increased odds of health problems. As an illustrative example, we analyzed the impact of pollution on the frequency of emergency department (ED visits due to colitis among young patients (age < 15 years, N = 11 110. Our technique involves 2 steps. First, we considered 6 ambient air pollutants (carbon monoxide, nitrogen dioxide, sulphur dioxide, ozone, and 2 measures of particulate matter treating each pollutant as a single exposure. Odds ratios (ORs for ED visits associated with a standard increase (interquartile range – IQR in the pollutants levels were calculated using the case-crossover technique. The ORs and their 95% confidence intervals (95% CIs were also found for lagged exposures (for lags 1–9 days. Second, we defined a Health Air Study Index (HASI to represent the combined impact of the 6 air pollutants. Results: We obtained positive and statistically significant results for individual air pollutants and among them the following estimations: OR = 1.06 (95% CI: 1.02–1.1, NO2 lag 3, IQR = 12.8 ppb, OR = 1.04 (95% CI: 1.01–1.07, SO2 lag 4, IQR = 2.3 ppb, OR = 1.04 (95% CI: 1–1.06, PM lag 3, IQR = 6.2 μg/m3. Among the re-calculated ORs with the HASI values as an exposure, the highest estimated value was OR = 1.37 (95% CI: 1.12–1.68, for 1 unit of the HASI, lag 3. Conclusions: The proposed index (HASI allows to confirm the pattern of associations for lags obtained for individual air pollutants. In the presented example the used index (HASI indicates the strongest relation with the exposure lagged by 3 days.

  15. Measurements of air contaminants during the Cerro Grande fire at Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Eberhart, Craig

    2010-08-01

    Ambient air sampling for radioactive air contaminants was continued throughout the Cerro Grande fire that burned part of Los Alamos National Laboratory. During the fire, samples were collected more frequently than normal because buildup of smoke particles on the filters was decreasing the air flow. Overall, actual sampling time was 96% of the total possible sampling time for the May 2000 samples. To evaluate potential human exposure to air contaminants, the samples were analyzed as soon as possible and for additional specific radionuclides. Analyses showed that the smoke from the fire included resuspended radon decay products that had been accumulating for many years on the vegetation and the forest floor that burned. Concentrations of plutonium, americium, and depleted uranium were also measurable, but at locations and concentrations comparable to non-fire periods. A continuous particulate matter sampler measured concentrations that exceeded the National Ambient Air Quality Standard for PM-10 (particles less than 10 micrometers in diameter). These high concentrations were caused by smoke from the fire when it was close to the sampler.

  16. (Environmental investigation of ground water contamination at Wright- Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This Health and Safety Plan (HSP) was developed for the Environmental Investigation of Ground-water Contamination Investigation at Wright-Patterson Air Force Base near Dayton, Ohio, based on the projected scope of work for the Phase 1, Task 4 Field Investigation. The HSP describes hazards that may be encountered during the investigation, assesses the hazards, and indicates what type of personal protective equipment is to be used for each task performed. The HSP also addresses the medical monitoring program, decontamination procedures, air monitoring, training, site control, accident prevention, and emergency response.

  17. Implications of OSHA's reliance on TLVs in developing the air contaminants standard

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, J.C.; Paxman, D.G.; Rappaport, S.M. (Univ. of California, Berkeley (USA))

    1991-01-01

    This paper evaluates the decision by the Occupational Safety and Health Administration (OSHA) to base its Air Contaminants Standard on the threshold limit values (TLVs) of the American Conference of Governmental Industrial Hygienists. Contrary to the claim made by OSHA in promulgating the standard, the TLV list was not the sole available basis for a generic standard covering toxic air contaminants. The National Institute for Occupational Safety and Health (NIOSH) presented data indicating that the TLVs were insufficiently protective for 98 substances. NIOSH Recommended Exposure Limits (RELs) were available for 59 of these substances. The ratio of PEL to REL ranged up to 1,000, with a median of 2.5 and a mean of 71.4. OSHA excluded 42 substances from the standard altogether despite the availability of NIOSH RELs, solely because no TLV had been established.

  18. Distribution of Exhaled Contaminants and Personal Exposure in a Room using Three Different Air Distribution Strategies

    DEFF Research Database (Denmark)

    Olmedo, Inés; Nielsen, Peter V.; Adana, M. Ruiz de;

    2012-01-01

    . Human exhalation is studied in detail for different distribution systems: displacement and mixing ventilation as well as a system without mechanical ventilation. Two thermal manikins breathing through the mouth are used to simulate the exposure to human exhaled contaminants. The position and distance...... between the manikins are changed to study the influence on the level of exposure. The results show that the air exhaled by a manikin flows a longer distance with a higher concentration in case of displacement ventilation than in the other two cases, indicating a significant exposure to the contaminants...... for one person positioned in front of another. However, in all three cases, the exhalation flow of the source penetrates the thermal plume, causing an increase in the concentration of contaminants in front of the target person. The results are significantly dependent on the distance and position between...

  19. Technological, economic, and political feasibility in OSHA's Air Contaminants Standard

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, J.C.; Paxman, D.G. (Univ. of California, Berkeley (USA))

    In 1989, after almost two decades of substance-by-substance standard setting, the Occupational Safety and Health Administration (OSHA) promulgated its Air Contaminants Standard, imposing new exposure limits for 376 toxic substances encountered in U.S. industry. In marked contrast to earlier regulations, the Air Contaminants Standard has generated relatively little industry opposition. This paper analyzes the standard in the context of the twenty-year debate over the appropriate role for technological feasibility and economic compliance costs in occupational health policy. The political feasibility of the new standard is traced to OSHA's abandonment of technology forcing in favor of reliance on off-the-shelf technologies already in use in major firms. While important as an embodiment of OSHA's new generic approach to regulation, the Air Contaminants Standard cannot serve as a model for future occupational health policy, due to its reliance on informal, closed-door mechanisms for establishing regulatory priorities and permissible exposure limits. 20 refs.

  20. The contaminant removal efficiency of an air cleaner using the adsorption/desorption effect

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Hiroshi [Toyohashi University of Technology, 1-1 Hibariga-oka, Tempakucho, Toyohashi 441-8580 (Japan); Shimizu, Masayuki [Sala Housing Corporation, Toyohashi 441-8021 (Japan); Sato, Hiroyasu [TOENEC Corporation, Nagoya 460-0008 (Japan)

    2009-07-15

    The adsorption and desorption of volatile organic compounds (VOCs) in relation to material surfaces were conducted to control indoor air quality. The VOC removal performance of building materials using sorption effects was validated in cases related to poor indoor air quality that occurred during non-ventilation periods during intermittent-ventilation situations. The objective of this investigation is to present the contaminant removal efficiency and practicality of a prototype air cleaner which uses sorption effects. Toluene and formaldehyde were used as pollutant sources and were continuously emitted into the test chamber. Effects due to the number of sorption units, operation time and mode of contaminant removal performance were examined. The sorption materials evaluated in this investigation were a porous material, zeolite, pumice stone and hydro-corn. As a result of the experiments, zeolite exhibited relatively high contaminant removal efficiency with toluene, and zeolite and the porous material exhibited high removal efficiency with formaldehyde for both one-cycle and two-cycle sorption modes. Moreover, significant removal performances were observed in the numerical analysis of the continuous-operation mode. (author)

  1. Well site conditions associated with nitrate contamination in a multilayer semiconfined aquifer of Buenos Aires, Argentina

    Science.gov (United States)

    Carbó, L. I.; Flores, M. C.; Herrero, M. A.

    2009-06-01

    A stepwise logistic regression (LR) model was generated to evaluate the association between contamination of groundwater by nitrates with several risk factors such as soil types, farm facilities and practises, and well characteristics. The odds ratio was calculated to estimate the degree of impact that the associated variables had on the risk of contamination in a semiconfined multilayer aquifer underlying rural areas of Buenos Aires, Argentina. Duplicate farm groundwater samples ( n = 160) were taken and nitrate was analyzed. Data, involving various farm factors, was gathered via two questionnaires concerning farm’s general and productive aspects, and well characteristics. Statistical tests were run between nitrates and each variable present in the survey. A 96.25% of the samples presented detectable nitrate levels, 40.91% of which had more than 45 ppm nitrates. The final LR model involved five of the variables under study: well age, soil permeability, depth of water table, location, and distance from well to contamination sources. Cross validation proved to be a good estimator of nitrate water contamination. Suspicions about how these characteristics influence groundwater contamination by nitrates were confirmed, and as these five factors represent a higher risk for this type of aquifer, their proper management may contribute to a better resource protection.

  2. Effects of contaminants on reproductive success of aquatic birds nesting at Edwards Air Force Base, California

    Science.gov (United States)

    Hothem, R.L.; Crayon, J.J.; Law, M.A.

    2006-01-01

    Contamination by organochlorine pesticides (OCs), polychlorinated biphenyls, metals, and trace elements at Edwards Air Force Base (EAFB), located in the Mojave Desert, could adversely affect nesting aquatic birds, especially at the sewage lagoons that comprise Piute Ponds. Estimates of avian reproduction, in conjunction with analyses of eggs and avian foods for contaminant residues, may indicate the potential for negative effects on avian populations. From 1996 to 1999, we conducted studies at the Piute Ponds area of EAFB to evaluate the impacts of contaminants on nesting birds. Avian reproduction was evaluated in 1999. Eggs were collected for chemical analyses in 1996 and 1999, and African clawed frogs (Xenopus laevis), a likely food source, were collected for chemical analyses in 1998. Avian species occupying the higher trophic levels-black-crowned night-heron (Nycticorax nycticorax), white-faced ibis (Plegadis chihi), and American avocet (Recurvirostra americana)-generally bioaccumulated higher concentrations of contaminants in their eggs. Reproductive success and egg hatchability of night-herons and white-faced ibises in the Piute Ponds were similar to results observed at other western colonies. Deformities were observed in only one embryo in this study, but concentrations of contaminants evaluated in this ibis embryo were considered insufficient to have caused the deformities. Because clawed frogs, a primary prey item for night-herons at Piute Ponds, had no detectable levels of any OCs, it is likely that OCs found in night-heron eggs were acquired from the wintering grounds rather than from EAFB. The presence of isomers of dichlorodiphenyltrichloroethane (DDT) in ibis eggs indicated recent exposure, but invertebrates used for food by ibises were not sampled at Piute Ponds, and conclusions about the source of OCs in ibis eggs could not be made. Concentrations of contaminants in random and failed eggs of individual species were not different, and we concluded

  3. Combined drug and surgery treatment of plutonium-contaminated wounds: indications obtained using a rodent model.

    Science.gov (United States)

    Griffiths, Nina M; Coudert, Sylvie; Wilk, Jean Claude; Renault, Daniel; Angulo, Jaime F; Van der Meeren, Anne

    2014-06-01

    There is an important requirement following accidental actinide contamination of wounds to limit the dissemination and retention of such alpha-emitting radionuclides. To reduce wound and systemic contamination, treatment approaches include chelation therapy with or without wound excision. However, it has been hypothesized that wound excision could lead to increased contaminant release and systemic organ retention. This study in the rat addresses this question. Anesthetized rats were contaminated with plutonium nitrate following wounding by deep incision of hind leg muscle. Excision of tissue at the contaminated site was performed 7 d later with or without Diethylene Triamine Pentaacetic Acid (DTPA) treatment (30 μmol kg⁻¹ i.v.). Pu urinary excretion was then measured for a further 3 d, and animals were euthanized at 14 d after contamination. Tissue samples were evaluated for Pu activity and histology. At 7 d after contamination, around 50% of the initial activity remained at the wound site. An average of 16% of this activity was then removed by surgery. Surgery alone resulted in increased urinary excretion, suggesting release from the wound site, but no subsequent increases in organ retention (bone, liver) were observed at 14 d. Indeed, organ Pu activity was slightly reduced. The combination of surgery and DTPA or DTPA treatment alone was much more effective than excision alone as shown by the markedly increased urinary Pu excretion and decreased tissue levels. This is the first report in an experimental rodent model of resection of Pu-contaminated wound. Urinary excretion data provide evidence for the release of activity as a result of surgery, but this does not appear to lead to further Pu organ retention. However, a combination of prior DTPA treatment with wound excision is particularly effective.

  4. Hydrocarbon removal from bilgewater by a combination of air-stripping and photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Cazoir, D., E-mail: david.cazoir@ircelyon.univ-lyon1.fr [University Lyon 1, Lyon, F-69626, France, CNRS, UMR5256, IRCELYON, Institut de Recherches sur la Catalyse et l' Environnement de Lyon, Villeurbanne, F-69626 (France); Fine, L.; Ferronato, C.; Chovelon, J.-M. [University Lyon 1, Lyon, F-69626, France, CNRS, UMR5256, IRCELYON, Institut de Recherches sur la Catalyse et l' Environnement de Lyon, Villeurbanne, F-69626 (France)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Bilge water is an oily effluent that contaminates oceans and seas (MARPOL73/78). Black-Right-Pointing-Pointer Hydrocarbon removal was studied by photocatalysis and air-stripping, together used. Black-Right-Pointing-Pointer Both aqueous and gaseous phases were monitored by GC-MS during the process. Black-Right-Pointing-Pointer The combined process showed a better efficiency and a synergistic effect. Black-Right-Pointing-Pointer N-Alkanes (N{sub C} > 15) appeared as being the most refractory compounds. - Abstract: In order to prevent hydrocarbon discharge at sea from the bilge of ships, the International Maritime Organization (IMO) enacted the MARPOL 73/78 convention in which effluents are now limited to those with maximum oil content of 15 ppmv. Thus, photocatalysis and air-stripping were combined for the hydrocarbon removal from a real oily bilgewater sample and an original monitoring of both aqueous and gaseous phases was performed by GC/MS to better understand the process. Our results show that the hydrocarbon oil index [HC] can be reduced to its maximum permissible value of 15 ppmv (MARPOL) in only 8.5 h when photocatalysis and air-stripping are used together in a synergistic way, as against 17 h when photocatalysis is used alone. However, this air-assisted photocatalytic process emits a large quantity of volatile organic compounds (VOC) and, within the first four hours, ca. 10% of the hydrocarbon removal in the aqueous phase is actually just transferred into the gaseous one. Finally, we highlight that the n-alkanes with a number of carbon atoms higher than 15 (N{sub C} > 15) are those which most decrease the rate of [HC] removal.

  5. Air bottoming cycle, an alternative to combined cycles. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kaikko, J. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Energy Technology

    2002-02-01

    In this work, the idea of Air Bottoming Cycle (ABC) has been studied. The objectives for the work have been to establish an understanding of the concept for power and heat generation as well as to find - if possible - feasible concepts for future use in the Swedish energy system. Combined cycle in power generation is an established technology. In the conventional combined cycle, a gas turbine works as a topping cycle together with the steam (Rankine) bottoming cycle. In the ABC the steam bottoming cycle is replaced with a gas turbine (Brayton) bottoming cycle having air as a working fluid. The two gas turbines are thermally connected over a gas-to-gas heat exchanger. This concept promises savings in weight and cost, as well as operating benefits, compared to the Rankine bottoming technology. The ABC has been modelled using a heat balance program, and a parametric study for the concept optimisation as well as for off-design analysis has been performed. Performance of the ABC has been compared to other, established technologies. A preliminary economic evaluation has been made. As a result of the study, it is clarified that the Rankine bottoming cycle with steam remains superior to the ABC as regards electrical efficiency in the medium and large power scale. For small-scale applications (<10 MW{sub e}) where the thermodynamic advantage of the Rankine cycle is not dominating any longer and its economy is burdened by the heavy investment structure, the ABC becomes the better alternative for energy utilisation. A preliminary economic evaluation shows that (at energy prices autumn 2000) the ABC is at the same level as the comparable small-scale cogeneration installations. Due to high power-to-heat ratio however, higher electricity prices will favour the ABC. One interesting feature of the ABC is that about 50% of the dissipated low-value heat from the cycle is carried by clean (sterile) air at the temperature around 200 deg C. This air can be utilised for space heating or

  6. Air bottoming cycle, an alternative to combined cycles. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kaikko, J. [Royal Inst. of Techn., Stockholm (Sweden). Dept. of Energy Technology

    2001-10-01

    In this work, the idea of Air Bottoming Cycle (ABC) has been studied. The objectives for the work have been to establish an understanding of the concept for power and heat generation as well as to find - if possible - feasible concepts for future use in the Swedish energy system. Combined cycle in power generation is an established technology. In the conventional combined cycle, a gas turbine works as a topping cycle together with the steam (Rankine) bottoming cycle. In the ABC the steam bottoming cycle is replaced with a gas turbine (Brayton) bottoming cycle having air as a working fluid. The two gas turbines are thermally connected over a gas-to-gas heat exchanger. This concept promises savings in weight and cost, as well as operating benefits, compared to the Rankine bottoming technology. The ABC has been modelled using a heat balance program, and a parametric study for the concept optimisation as well as for off-design analysis has been performed. Performance of the ABC has been compared to other, established technologies. A preliminary economic evaluation has been made. As a result of the study, it is clarified that the Rankine bottoming cycle with steam remains superior to the ABC as regards electrical efficiency in the medium and large power scale. For small-scale applications (<10 MW{sub e}) where the thermodynamic advantage of the Rankine cycle is not dominating any longer and its economy is burdened by the heavy investment structure, the ABC becomes the better alternative for energy utilisation. A preliminary economic evaluation shows that (at energy prices autumn 2000) the ABC is at the same level as the comparable small-scale cogeneration installations. Due to high power-to-heat ratio however, higher electricity prices will favour the ABC. One interesting feature of the ABC is that about 50% of the dissipated low-value heat from the cycle is carried by clean (sterile) air at the temperature around 200 deg C. This air can be utilised for space heating or

  7. Numerical Assessment of Indoor Air Exposure Risk from Subsurface NAPL Contamination under Hydrologic Uncertainties

    Science.gov (United States)

    Unger, A.; Yu, S.

    2007-12-01

    Understanding the risk of indoor air exposure to residual contaminants in the subsurface following the redevelopment of contaminated land redevelopment project is a central issue at many brownfield sites. In this study, we examine various mechanisms controlling vapor phase intrusion into the indoor air of a typical residential dwelling from a NAPL source located below the water table, and consequently assess the indoor air exposure risk under multiple hydrologic uncertainties. For this purpose, a multi-phase multi-component numerical model, CompFlow Bio is used to simulate the evolution of a TCE source zone and dissolved plume in a variably saturated heterogeneous aquifer, along with the transport of dissolved TCE upwards through the capillary fringe with subsequent migration of TCE vapors in the vadose zone subject to barometric pressure fluctuations. The TCE vapors then enter the basement of the residential dwelling through a crack in the foundation slab, driven by a slight vacuum within the basement relative to the ambient atmosphere as well as the barometric pressure fluctuations. Hydrologic uncertainties affecting the indoor air concentration of TCE include the vacuum in the basement, the aperture of the crack in the foundation slab, the heterogeneous permeability field, the thickness of the capillary fringe, barometric fluctuations, recharge rates and the location of the TCE source zone. CompFlow Bio is then used to determine the future concentration of TCE into the basement as a consequence of imperfect knowledge in the various hydrologic parameters, and to evaluate the effectiveness of alternative remedial and foundation design options to minimize the exposure risk to the indoor air conditional upon the available data collected at the site. The outcome of this approach is two-fold. First, the owner of the site can reasonably evaluate the future indoor air exposure risk following the redevelopment of a formerly contaminated site following remediation

  8. Remediation of arsenic contaminated soil by coupling oxalate washing with subsequent ZVI/Air treatment.

    Science.gov (United States)

    Cao, Menghua; Ye, Yuanyao; Chen, Jing; Lu, Xiaohua

    2016-02-01

    The application of a novel coupled process with oxalate washing and subsequent zero-valent iron (ZVI)/Air treatment for remediation of arsenic contaminated soil was investigated in the present study. Oxalate is biodegradable and widely present in the environment. With addition of 0.1 mol L(-1) oxalate under circumneutral condition, 83.7% and 52.6% of arsenic could be removed from a spiked kaolin and an actual contaminated soil respectively. Much more oxalate adsorption on the actual soil was attributed to the higher soil organic matter and clay content. Interestingly, oxalate retained in the washing effluent could act as an organic ligand to promote the oxidation efficiency of ZVI/Air at near neutral pH. Compared with the absence of oxalate, much more As(III) was oxidized. Arsenic was effectively adsorbed on iron (hydr)oxides as the consumption of oxalate and the increase of pH value. For the actual soil washing effluent, about 94.9% of total arsenic was removed after 120 min's treatment without pH adjustment. It has been demonstrated that As(V) was the dominant arsenic speciation adsorbed on iron (hydr)oxides. This study provides a promising alternative for remediation of arsenic contaminated soil in view of its low cost and environmental benign.

  9. Effect of negative air ions on the potential for bacterial contamination of plastic medical equipment

    Directory of Open Access Journals (Sweden)

    Kerr Kevin G

    2010-04-01

    acrylonitrile, did however develop a positive charge in the presence of the ionizer. Conclusion The findings of the study suggest that the action of negative air ionizers significantly alters the electrostatic landscape of the clinical environment, and that this has the potential to cause any Acinetobacter-bearing particles in the air to be strongly repelled from some plastic surfaces and attracted to others. In so doing, this may prevent critical items of equipment from becoming contaminated with the bacterium.

  10. Tolerance of non-platinum group metals cathodes proton exchange membrane fuel cells to air contaminants

    Science.gov (United States)

    Reshetenko, Tatyana; Serov, Alexey; Artyushkova, Kateryna; Matanovic, Ivana; Sarah Stariha; Atanassov, Plamen

    2016-08-01

    The effects of major airborne contaminants (SO2, NO2 and CO) on the spatial performance of Fe/N/C cathode membrane electrode assemblies were studied using a segmented cell system. The injection of 2-10 ppm SO2 in air stream did not cause any performance decrease and redistribution of local currents due to the lack of stably adsorbed SO2 molecules on Fe-Nx sites, as confirmed by density functional theory (DFT) calculations. The introduction of 5-20 ppm of CO into the air stream also did not affect fuel cell performance. The exposure of Fe/N/C cathodes to 2 and 10 ppm NO2 resulted in performance losses of 30 and 70-75 mV, respectively. DFT results showed that the adsorption energies of NO2 and NO were greater than that of O2, which accounted for the observed voltage decrease and slight current redistribution. The cell performance partially recovered when the NO2 injection was stopped. The long-term operation of the fuel cells resulted in cell performance degradation. XPS analyses of Fe/N/C electrodes revealed that the performance decrease was due to catalyst degradation and ionomer oxidation. The latter was accelerated in the presence of air contaminants. The details of the spatial performance and electrochemical impedance spectroscopy results are presented and discussed.

  11. Hospital ventilation standards and energy conservation: chemical contamination of hospital air. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rainer, D.; Michaelsen, G.S.

    1980-03-01

    In an era of increasing energy conservation consciousness, a critical reassessment of the validity of hospital ventilation and thermal standards is made. If current standards are found to be excessively conservative, major energy conservation measures could be undertaken by rebalancing and/or modification of current HVAC systems. To establish whether or not reducing ventilation rates would increase airborne chemical contamination to unacceptable levels, a field survey was conducted to develop an inventory and dosage estimates of hospital generated airborne chemical contaminants to which patients, staff, and visitors are exposed. The results of the study are presented. Emphasis is on patient exposure, but an examination of occupational exposure was also made. An in-depth assessment of the laboratory air environment is documented. Housekeeping products used in survey hospitals, hazardous properties of housekeeping chemicals and probable product composition are discussed in the appendices.

  12. Volatile tritiated organic acids in stack effluents and in air surrounding contaminated materials

    Energy Technology Data Exchange (ETDEWEB)

    Belot, Y.; Camus, H.; Marini, T.; Raviart, S. (Institut de Protection et de Surete Nucleaire (France))

    1993-06-01

    A small fraction of the tritium released into the atmosphere from tritium-handling or solid waste storage facilities was shown to be in the form of volatile organic acids. The same compounds were also found, but at a much higher proportion, in the tritium evolved at room temperature from highly contaminated materials placed under air atmospheres. This might be due to the oxidation and labeling of hydrocarbon(s) by mechanisms that are presumably of a radiolytic nature. The new forms could have an impact on operational requirements and waste management strategies within a tritium facility and a fusion reactor hall. Further data are needed to assess the related doses.

  13. [Role of environment in complex diseases: air pollution and food contaminants].

    Science.gov (United States)

    Scheen, A J; Giet, D

    2012-01-01

    Our polluted environment exposes human beings, along their life, to various toxic compounds that could trigger and aggravate different complex diseases. Such a phenomenon is well recognized for cardiovascular diseases, respiratory diseases and cancers, but other chronic inflammatory disorders may also been implicated. The most common factors, but also the most toxic, and thereby the most extensively investigated, are air pollutants (both indoor and outdoor pollution) and various contaminants present in drinking water and food (organic compounds, chemical products, heavy metals, ...). The complex interrelationships between food and pollutants, on the one hand, and between gene and environmental pollutants, including the influence of epigenetics, on the other hand, deserve further careful studies.

  14. Electroremediation of PCB contaminated soil combined with iron nanoparticles: Effect of the soil type

    DEFF Research Database (Denmark)

    Gomes, Helena I.; Dias-Ferreira, Celia; Ottosen, Lisbeth M.;

    2015-01-01

    Polychlorinated biphenyls (PCB) are carcinogenic and persistent organic pollutants that accumulate in soils and sediments. Currently, there is no cost-effective and sustainable remediation technology for these contaminants. In this work, a new combination of electrodialytic remediation and zero...... nanoparticles. Remediation experiments are made with two different historically PCB contaminated soils, which differ in both soil composition and contamination source. Soil 1 is a mix of soils with spills of transformer oils, while Soil 2 is a superficial soil from a decommissioned school where PCB were used...... as windows sealants. Saponin, a natural surfactant, was also tested to increase the PCB desorption from soils and enhance dechlorination. Remediation of Soil 1 (with highest pH, carbonate content, organic matter and PCB concentrations) obtained the maximum 83% and 60% PCB removal with the two...

  15. Remediation of nitrobenzene contaminated soil by combining surfactant enhanced soil washing and effluent oxidation with persulfate.

    Directory of Open Access Journals (Sweden)

    Jingchun Yan

    Full Text Available The combination of surfactant enhanced soil washing and degradation of nitrobenzene (NB in effluent with persulfate was investigated to remediate NB contaminated soil. Aqueous solution of sodium dodecylbenzenesulfonate (SDBS, 24.0 mmol L-1 was used at a given mass ratio of solution to soil (20:1 to extract NB contaminated soil (47.3 mg kg-1, resulting in NB desorption removal efficient of 76.8%. The washing effluent was treated in Fe2+/persulfate and Fe2+/H2O2 systems successively. The degradation removal of NB was 97.9%, being much higher than that of SDBS (51.6% with addition of 40.0 mmol L-1 Fe2+ and 40.0 mmol L-1 persulfate after 15 min reaction. The preferential degradation was related to the lone pair electron of generated SO4•-, which preferably removes electrons from aromatic parts of NB over long alkyl chains of SDBS through hydrogen abstraction reactions. No preferential degradation was observed in •OH based oxidation because of its hydrogen abstraction or addition mechanism. The sustained SDBS could be reused for washing the contaminated soil. The combination of the effective surfactant-enhanced washing and the preferential degradation of NB with Fe2+/persulfate provide a useful option to remediate NB contaminated soil.

  16. Uptake of toluene and ethylbenzene by plants: removal of volatile indoor air contaminants.

    Science.gov (United States)

    Sriprapat, Wararat; Suksabye, Parinda; Areephak, Sirintip; Klantup, Polawat; Waraha, Atcharaphan; Sawattan, Anuchit; Thiravetyan, Paitip

    2014-04-01

    Air borne uptake of toluene and ethylbenzene by twelve plant species was examined. Of the twelve plant species examined, the highest toluene removal was found in Sansevieria trifasciata, while the ethylbenzene removal from air was with Chlorophytum comosum. Toluene and ethylbenzene can penetrate the plant׳s cuticle. However, the removal rates do not appear to be correlated with numbers of stomata per plant. It was found that wax of S. trifasciata and Sansevieria hyacinthoides had greater absorption of toluene and ethylbenzene, and it contained high hexadecanoic acid. Hexadecanoic acid might be involved in toluene and ethylbenzene adsorption by cuticles wax of plants. Chlorophyll fluorescence analysis or the potential quantum yield of PSII (Fv/Fm) in toluene exposed plants showed no significant differences between the control and the treated plants, whereas plants exposed to ethylbenzene showed significant differences or those parameters, specifically in Dracaena deremensis (Lemon lime), Dracaena sanderiana, Kalanchoe blossfeldiana, and Cordyline fruticosa. The Fv/Fm ratio can give insight into the ability of plants to tolerate (indoor) air pollution by volatile organic chemicals (VOC). This index can be used for identification of suitable plants for treating/sequestering VOCs in contaminated air.

  17. Ambient air sampling for radioactive air contaminants at Los Alamos National Laboratory: A large research and development facility

    Energy Technology Data Exchange (ETDEWEB)

    Eberhart, C.F.

    1998-09-01

    This paper describes the ambient air sampling program for collection, analysis, and reporting of radioactive air contaminants in and around Los Alamos National Laboratory (LANL). Particulate matter and water vapor are sampled continuously at more than 50 sites. These samples are collected every two weeks and then analyzed for tritium, and gross alpha, gross beta, and gamma ray radiation. The alpha, beta, and gamma measurements are used to detect unexpected radionuclide releases. Quarterly composites are analyzed for isotopes of uranium ({sup 234}U, {sup 235}U, {sup 238}U), plutonium ({sup 238}Pu, {sup 239/249}Pu), and americium ({sup 241}Am). All of the data is stored in a relational database with hard copies as the official records. Data used to determine environmental concentrations are validated and verified before being used in any calculations. This evaluation demonstrates that the sampling and analysis process can detect tritium, uranium, plutonium, and americium at levels much less than one percent of the public dose limit of 10 millirems. The isotopic results also indicate that, except for tritium, off-site concentrations of radionuclides potentially released from LANL are similar to typical background measurements.

  18. Dioxin-like PCB in indoor air contaminated with different sources

    Energy Technology Data Exchange (ETDEWEB)

    Heinzow, B.G.J.; Mohr, S.; Ostendorp, G. [Landesamt fuer Gesundheit und Arbeitssicherheit des Landes Schleswig-Holstein, Flintbek (Germany); Kerst, M.; Koerner, W. [Bayerisches Landesamt fuer Umweltschutz, Augsburg (Germany)

    2004-09-15

    Polychlorinated biphenyls (PCB) have been used in public building constructions for various purposes in the 1960s and 1970s, mainly as an additive to concrete, caulking, grout, paints, as a major constitutent of permanent elastic Thiokol rubber sealants and flame retardant coatings of acoustic ceiling tiles. Offgazing of semivolatile PCB from building materials can nowadays still result in considerable house-dust contamination and in indoor air concentrations exceeding 10,000 ng/m{sup 3}. In Germany, PCB levels in indoor air in non-occupational settings have been regulated with a tolerable total PCB concentration of 300 ng /m{sup 3} and an intervention level of 3000 ng/m{sup 3}. Lower re-entry criteria have been proposed by Michaud et al. Technical mixtures of PCB contain dioxin-like non- and mono-ortho substituted PCB congeners and are contaminated with trace amounts of polychlorinated dibenzodioxins (PCDD) and mainly dibenzofurans (PCDF), sharing overlapping toxic effects and physicochemical properties. We report here on levels of dioxinlike PCB measured in buildings with various PCB sources and correlations among PCDD/PCDF and dioxin-like PCB and di-ortho PCB.

  19. Impact of clay mineral on air oxidation of PAH-contaminated soils.

    Science.gov (United States)

    Biache, Coralie; Kouadio, Olivier; Lorgeoux, Catherine; Faure, Pierre

    2014-09-01

    This work investigated the impact of a clay mineral (bentonite) on the air oxidation of the solvent extractable organic matters (EOMs) and the PAHs from contaminated soils. EOMs were isolated from two coking plant soils and mixed with silica sand or bentonite. These samples, as well as raw soils and bentonite/soil mixtures, were oxidized in air at 60 and 100 °C for 160 days. Mineralization was followed by measuring the CO2 produced over the experiments. EOM, polycyclic aromatic compound (PAC), including PAH, contents were also determined. Oxidation led to a decrease in EOM contents and PAH concentrations, these diminutions were enhanced by the presence of bentonite. Transfer of carbon from EOM to insoluble organic matter pointed out a condensation phenomenon leading to a stabilization of the contamination. Higher mineralization rates, observed during the oxidation of the soil/bentonite mixtures, seem to indicate that this clay mineral had a positive influence on the transformation of PAC into CO2.

  20. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Bill

    1991-10-01

    In April 1990, Wright-Patterson Air Force Base (WPAFB), initiated an investigation to evaluate a potential Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action to prevent, to the extent practicable, the offsite migration of contaminated ground water from WPAFB. WPAFB retained the services of the Environmental Management Operations (EMO) and its principle subcontractor, International Technology Corporation (IT) to complete Phase 1 of the environmental investigation of ground-water contamination at WPAFB. Phase 1 of the investigation involves the short-term evaluation and potential design for a program to remove ground-water contamination that appears to be migrating across the western boundary of Area C, and across the northern boundary of Area B along Springfield Pike. Primarily, Task 4 of Phase 1 focuses on collection of information at the Area C and Springfield Pike boundaries of WPAFB. This Sampling and Analysis Plan (SAP) has been prepared to assist in completion of the Task 4 field investigation and is comprised of the Quality Assurance Project Plan (QAPP) and the Field Sampling Plan (FSP).

  1. Contact angles at the water-air interface of hydrocarbon-contaminated soils and clay minerals

    Science.gov (United States)

    Sofinskaya, O. A.; Kosterin, A. V.; Kosterina, E. A.

    2016-12-01

    Contact angles at the water-air interface have been measured for triturated preparations of clays and soils in order to assess changes in their hydrophobic properties under the effect of oil hydrocarbons. Tasks have been to determine the dynamics of contact angle under soil wetting conditions and to reveal the effect of chemical removal of organic matter from soils on the hydrophilicity of preparations. The potentialities of static and dynamic drop tests for assessing the hydrophilic-hydrophobic properties of soils have been estimated. Clays (kaolinite, gumbrine, and argillite) have been investigated, as well as plow horizons of soils from the Republic of Tatarstan: heavy loamy leached chernozem, medium loamy dark gray forest soil, and light loamy soddy-calcareous soil. The soils have been contaminated with raw oil and kerosene at rates of 0.1-3 wt %. In the uncontaminated and contaminated chernozem, capillary water capacity has been maintained for 250 days. The contact angles have been found to depend on the degree of dispersion of powdered preparation, the main type of clay minerals in the soil, the presence and amount of oxidation-resistant soil organic matter, and the soil-water contact time. Characteristic parameters of mathematical models for drop behavior on triturated preparations have been calculated. Contamination with hydrocarbons has resulted in a reliable increase in the contact angles of soil preparations. The hydrophobization of soil surface in chernozem is more active than in soils poorer in organic matter. The complete restoration of the hydrophilic properties of soils after hydrocarbon contamination is due to the oxidation of easily oxidizable organic matter at the low content of humus, or to wetting during several months in the absence of the mazut fraction.

  2. Microbiological Contamination at Workplaces in a Combined Heat and Power (CHP) Station Processing Plant Biomass

    Science.gov (United States)

    Szulc, Justyna; Otlewska, Anna; Okrasa, Małgorzata; Majchrzycka, Katarzyna; Sulyok, Michael; Gutarowska, Beata

    2017-01-01

    The aim of the study was to evaluate the microbial contamination at a plant biomass processing thermal power station (CHP). We found 2.42 × 103 CFU/m3 of bacteria and 1.37 × 104 CFU/m3 of fungi in the air; 2.30 × 107 CFU/g of bacteria and 4.46 × 105 CFU/g of fungi in the biomass; and 1.61 × 102 CFU/cm2 bacteria and 2.39 × 101 CFU/cm2 fungi in filtering facepiece respirators (FFRs). Using culture methods, we found 8 genera of mesophilic bacteria and 7 of fungi in the air; 10 genera each of bacteria and fungi in the biomass; and 2 and 5, respectively, on the FFRs. Metagenomic analysis (Illumina MiSeq) revealed the presence of 46 bacterial and 5 fungal genera on the FFRs, including potential pathogens Candida tropicalis, Escherichia coli, Prevotella sp., Aspergillus sp., Penicillium sp.). The ability of microorganisms to create a biofilm on the FFRs was confirmed using scanning electron microscopy (SEM). We also identified secondary metabolites in the biomass and FFRs, including fumigaclavines, quinocitrinines, sterigmatocistin, and 3-nitropropionic acid, which may be toxic to humans. Due to the presence of potential pathogens and mycotoxins, the level of microbiological contamination at workplaces in CHPs should be monitored. PMID:28117709

  3. Microbiological Contamination at Workplaces in a Combined Heat and Power (CHP Station Processing Plant Biomass

    Directory of Open Access Journals (Sweden)

    Justyna Szulc

    2017-01-01

    Full Text Available The aim of the study was to evaluate the microbial contamination at a plant biomass processing thermal power station (CHP. We found 2.42 × 103 CFU/m3 of bacteria and 1.37 × 104 CFU/m3 of fungi in the air; 2.30 × 107 CFU/g of bacteria and 4.46 × 105 CFU/g of fungi in the biomass; and 1.61 × 102 CFU/cm2 bacteria and 2.39 × 101 CFU/cm2 fungi in filtering facepiece respirators (FFRs. Using culture methods, we found 8 genera of mesophilic bacteria and 7 of fungi in the air; 10 genera each of bacteria and fungi in the biomass; and 2 and 5, respectively, on the FFRs. Metagenomic analysis (Illumina MiSeq revealed the presence of 46 bacterial and 5 fungal genera on the FFRs, including potential pathogens Candida tropicalis, Escherichia coli, Prevotella sp., Aspergillus sp., Penicillium sp.. The ability of microorganisms to create a biofilm on the FFRs was confirmed using scanning electron microscopy (SEM. We also identified secondary metabolites in the biomass and FFRs, including fumigaclavines, quinocitrinines, sterigmatocistin, and 3-nitropropionic acid, which may be toxic to humans. Due to the presence of potential pathogens and mycotoxins, the level of microbiological contamination at workplaces in CHPs should be monitored.

  4. Combining Solvent Extraction and Bioremediation for Removing Weathered Petroleum from Contaminated Soil

    Institute of Scientific and Technical Information of China (English)

    WU Guo-Zhong; F.COULON; YANG Yue-Wei; LI Hong; SUI Hong

    2013-01-01

    This study aimed to evaluate the efficacy,practicality and sustainability of a combined approach based on solvent extraction and biodegradation to remediate the soils contaminated with high levels of weathered petroleum hydrocarbons.The soils used in this study were obtained from the Shengli Oilfield in China,which had a long history of contamination with high concentrations of petroleum hydrocarbons.The contaminated soils were washed using a composite organic solvent consisting of hexane and pentane (4:1,v/v) and then bioremediated in microcosms which were bioaugmentated with Bacillus subtilis FQ06 strains and/or rhamnolipid.The optimal solvent extraction conditions were determined as extraction for 20 min at 25 ℃ with solvent-soil ratio of 6:1 (v/w).On this basis,total petroleum hydrocarbon was decreased from 140000 to 14000 mg kg-1,which was further reduced to < 4000 mg kg-1 by subsequent bioremediation for 132 d.Sustainability assessment of this integrated technology showed its good performance for both short-and long-term effectiveness.Overall the results encouraged its application for remediating contaminated sites especially with high concentration weathered hydrocarbons.

  5. Plasticizers, antioxidants, and other contaminants found in air delivered by PVC tubing used in respiratory therapy.

    Science.gov (United States)

    Hill, Sandra S; Shaw, Brenda R; Wu, Alan H B

    2003-06-01

    Of the many compounds that leach from respiratory therapy tubing into air passing through it, we selected five compounds to analyze. The five compounds are known to be potentially carcinogenic, toxic or known to induce estrogenic activity. Parts-per-million and parts-per-billion concentrations of these species were found in the air passing through the tubing: the plasticizers di-(2-ethylhexyl) phthalate (DEHP) and di-ethyl phthalate (DEP), the antioxidants butylated hydroxy toluene (BHT) and p-nonylphenol (p-NP), and the contaminant (from commercial preparation of DEHP) 2-ethylhexanol (2-EH). These levels are high enough to cause some concern about exposure for patients who use oxygen on a long-term basis, those sensitive or allergic to these species, or those with asthma. A method was developed for analysis of solid tubing samples, showing great variability in concentrations of small, volatile molecules from sample to sample. A method was also developed for pre-concentration of small molecules onto Tenax adsorbants from air passing through the tubing. Both solid samples and adsorbant loaded with analyte were analyzed by direct dynamic thermal desorption gas chromatography mass spectrometry (GCMS). This study does not imply that adverse reactions by patients to chemical compounds leaching from respiratory medical tubing will occur but that further investigation is warranted.

  6. Evaluation of a Combined Ultraviolet Photocatalytic Oxidation(UVPCO)/Chemisorbent Air Cleaner for Indoor Air Applications

    Energy Technology Data Exchange (ETDEWEB)

    Hodgson, Alfred T.; Destaillats, Hugo; Hotchi, Toshifumi; Fisk,William J.

    2007-02-01

    acetaldehyde removal efficiency decreased to less than 10% with extended use of the device. The folded bed was considerably more effective; formaldehyde was removed with greater than 90% efficiency, and acetaldehyde was removed at about 70% efficiency. With the combined UVPCO/chemisorbent system, the net removal efficiencies for formaldehyde and acetaldehyde were 90% and 40%, respectively. In summary, the use of a multi-panel, folded scrubber filled with NaMnO{sub 4}{center_dot}H{sub 2}O chemisorbent media downstream of the prototype UVPCO air cleaner effectively counteracted the generation of formaldehyde and acetaldehyde due to incomplete oxidation of VOCs in the UVPCO reactor. Thus, this combined UVPCO air cleaner and chemisorbent system appears to have sufficient VOC removal efficiency to enable a 50 % reduction in ventilation rate without increasing indoor aldehyde concentrations.

  7. Contribution of combined sewer overflows to trace contaminant loads in urban streams.

    Science.gov (United States)

    Weyrauch, Philip; Matzinger, Andreas; Pawlowsky-Reusing, Erika; Plume, Stephan; von Seggern, Dörthe; Heinzmann, Bernd; Schroeder, Kai; Rouault, Pascale

    2010-08-01

    The present study examines the contribution of combined sewer overflows (CSO) to loads and concentrations of trace contaminants in receiving surface water. A simple method to assess the ratio of CSO to wastewater treatment plant (WWTP) effluents was applied to the urban River Spree in Berlin, Germany. The assessment indicated that annual loads are dominated by CSO for substances with removal in WWTP above approximately 95%. Moreover, it showed that substances with high removal in WWTP can lead to concentration peaks in the river during CSO events. The calculated results could be verified based on eight years of monitoring data from the River Spree, collected between 2000 and 2007. Substances that are well removed in WWTP such as NTA (nitrilotriacetic acid) were found to occur in significantly increased concentration during CSO, while the concentration of substances that are poorly removable in WWTP such as EDTA (ethylenediaminetetraacetic acid) decreased in CSO-influenced samples due to dilution effects. The overall results indicate the potential importance of the CSO pathway of well-removable sewage-based trace contaminants to rivers. In particular, high concentrations during CSO events may be relevant for aquatic organisms. Given the results, it is suggested to include well-removable, sewage-based trace contaminants, a substance group often neglected in the past, in future studies on urban rivers in case of combined sewer systems. The presented methodology is suggested for a first assessment, since it is based solely on urban drainage data, which is available in most cities.

  8. An Evaluation of Antifungal Agents for the Treatment of Fungal Contamination in Indoor Air Environments

    Directory of Open Access Journals (Sweden)

    Senthaamarai Rogawansamy

    2015-06-01

    Full Text Available Fungal contamination in indoor environments has been associated with adverse health effects for the inhabitants. Remediation of fungal contamination requires removal of the fungi present and modifying the indoor environment to become less favourable to growth.  This may include treatment of indoor environments with an antifungal agent to prevent future growth. However there are limited published data or advice on chemical agents suitable for indoor fungal remediation. The aim of this study was to assess the relative efficacies of five commercially available cleaning agents with published or anecdotal use for indoor fungal remediation. The five agents included two common multi-purpose industrial disinfectants (Cavicide® and Virkon®, 70% ethanol, vinegar (4.0%-4.2% acetic acid, and a plant-derived compound (tea tree (Melaleuca alternifolia oil tested in both a liquid and vapour form. Tea tree oil has recently generated interest for its antimicrobial efficacy in clinical settings, but has not been widely employed for fungal remediation. Each antifungal agent was assessed for fungal growth inhibition using a disc diffusion method against a representative species from two common fungal genera, (Aspergillus fumigatus and Penicillium chrysogenum, which were isolated from air samples and are commonly found in indoor air. Tea tree oil demonstrated the greatest inhibitory effect on the growth of both fungi, applied in either a liquid or vapour form. Cavicide® and Virkon® demonstrated similar, although less, growth inhibition of both genera. Vinegar (4.0%–4.2% acetic acid was found to only inhibit the growth of P. chrysogenum, while 70% ethanol was found to have no inhibitory effect on the growth of either fungi. There was a notable inhibition in sporulation, distinct from growth inhibition after exposure to tea tree oil, Virkon®, Cavicide® and vinegar. Results demonstrate that common cleaning and antifungal agents differ in their capacity to

  9. Testing Single and Combinations of Amendments for Stabilization of Metals in Contrasting Extremely Contaminated Soils

    Directory of Open Access Journals (Sweden)

    Siebielec G.

    2013-04-01

    Full Text Available Metals can be stabilized by soil amendments that increase metals adsorption or alter their chemical forms. Such treatments may limit the risk related to the contamination through reduction of metal transfer to the food chain (reduction of metal uptake by plants and its availability to soil organisms and metals migration within the environment. There is a need for experiments comparing various soil amendments available at reasonable amounts under similar environmental conditions. The other question is whether all components of soil environment or soil functions are similarly protected after remediation treatment. We conducted a series of pot studies to test some traditional and novel amendments and their combinations. The treatments were tested for several highly Zn/Cd/Pb contaminated soils. Among traditional amendments composts were the most effective – they ensured plant growth, increased soil microbial activity, reduced Cd in earthworms, reduced Pb bioaccessibility and increased share of unavailable forms of Cd and Pb.

  10. Evaluation of bacterial contamination on surgical drapes following use of the Bair Hugger(®) forced air warming system.

    Science.gov (United States)

    Occhipinti, Lindsay L; Hauptman, Joe G; Greco, Justin J; Mehler, Stephen J

    2013-12-01

    This pilot study determined the rate of bacterial contamination on surgical drapes of small animal patients warmed intra-operatively with the Bair Hugger(®) forced air warming system compared to a control method. Surgical drapes of 100 patients undergoing clean surgical procedures were swabbed with aerobic culturettes at the beginning and end of surgery. Samples were cultured on Trypticase soy agar. Contamination of the surgical drapes was identified in 6/98 cases (6.1%). There was no significant difference in the number of contaminated surgical drapes between the Bair Hugger(®) and control groups (P = 0.47).

  11. Association of plant injury with an air contaminant in a controlled environment facility

    Energy Technology Data Exchange (ETDEWEB)

    Knudson, L.L.; Tibbitts, T.W.

    1974-01-01

    Gaseous compounds are common, yet seldom recognized contaminants in controlled environments. Injury to several plant species has been observed in the Biotron which uses trichloroethylene as a coolant in its centrally controlled system. Sometimes this compound is present in the rooms at an average level of 2 ppm, as measured by gas chromatography. Injury symptoms, which vary between species, are characteristic of air pollution injury. Present studies with Tagetes patula show a distinctive necrosis on the upper leaf surfaces. Experiments are being conducted to determine whether trichloroethylene is the agent involved and to investigate aspects of the physiology of injury utilizing a procedure which may be applicable to other long-term, low-level pollution studies.

  12. Synergistic effects of the combination of oxalate and ascorbate on arsenic extraction from contaminated soils.

    Science.gov (United States)

    Lee, Jae-Cheol; Kim, Eun Jung; Baek, Kitae

    2017-02-01

    Arsenic is often associated with iron oxides in soils due to its high affinity with iron oxides and the abundance of iron oxides in the environment. Dissolution of iron oxides can subsequently release arsenic associated with them into the environment, which results in the increase of arsenic mobility in the soil environment. In this study, arsenic extraction from soils via the dissolution of iron oxides was investigated using oxalate, ascorbate, and their combination in order to effectively remediate arsenic-contaminated soils. Oxalate mainly extracted iron from soils via a ligand-promoted reaction, while ascorbate extracted iron mainly via a reductive reaction. Arsenic extractions from soils by oxalate and ascorbate were shown to behave similarly to iron extractions, indicating the concurrent release of arsenic adsorbed on iron oxides upon the dissolution of iron oxides. The combination of oxalate and ascorbate greatly increased arsenic extraction, indicating the synergistic effects of the combination of oxalate and ascorbate on iron and arsenic extraction from soils. Oxalate and ascorbate are naturally-occurring organic reagents that have chelating and reducing capacity. Therefore, the use of oxalate and ascorbate is environmentally friendly and effective for the remediation of arsenic-contaminated soils.

  13. Single versus combined exposure of Hyalella azteca to zinc contaminated sediment and food.

    Science.gov (United States)

    Nguyen, Lien T H; Muyssen, Brita T A; Janssen, Colin R

    2012-03-01

    The amphipod Hyalella azteca was exposed for 28 d to different combinations of Zn contaminated sediment and food. Sediment exposure (+clean food) resulted in increased Zn body burdens, increased mortality and decreased body mass when the molar concentrations of simultaneously extracted Zn were greater than the molar concentration of Acid Volatile Sulfide (SEM(Zn)-AVS>0), suggesting that dissolved Zn was a dominant route of exposure. No adverse effect was noted in the food exposure (+clean sediment), suggesting selective feeding or regulation. Combined exposure (sediment+food) significantly increased adverse effects in comparison with sediment exposure, indicating contribution of dietary Zn to toxicity and bioaccumulation. The observed enhanced toxicity also supports the assumption on the presence of an avoidance/selective feeding reaction of the amphipods in the single sediment or food exposures. During 14 d post-exposure in clean medium, the organisms from the same combined exposure history received two feeding regimes, i.e. clean food and Zn spiked food. Elevated Zn bioaccumulation and reduced reproduction were noted in amphipods that were offered Zn spiked food compared to the respective organisms that were fed clean food. This was explained by the failure of avoidance/selective feeding behavior in the absence of an alternative food source (sediment), forcing the amphipods to take up Zn while feeding. Increasing Zn body burdens rejected the assumption that Zn uptake from food was regulated by H. azteca. Our results show that the selective feeding behavior should be accounted for when assessing ecological effects of Zn or other contaminants, especially when contaminated food is a potential exposure route.

  14. Air sparging as a supporting measure to redevelopment of a LCFC-contaminated industrial site; Air-Sparging als begleitende Sanierungsmassnahme an einem LCKW-kontaminierten Industriestandort

    Energy Technology Data Exchange (ETDEWEB)

    Breh, W.; Suttheimer, J. [Karlsruhe Univ. (T.H.) (Germany). Lehrstuhl fuer Angewandte Geologie; Holub, B. [G.U.T Linz (Austria)

    1998-12-31

    On a company ground in Vorchdorf, Austria, from the 23{sup rd} to 26{sup th} of July 1996 an air-sparging experiment has been carried out as a supporting measure to a running redevelopment of an LCKW-contamination case. On this occasion compressed air, from which the oil had been extracted, was blown into the contaminated aquifer through a well with a maximum excess pressure of 0,6 MPa. The blowing-in of compressed air caused a mobilisation of the harmful substances in the ground water and the soil air. As a result circa 2,7 kg LCKW could be removed from the underground through neighbouring ground water and soil air wells. For the observed period of time this meant a tripling of the rate of discharge. On the basis of the obtained data we suggested a routine interval of blowing in compressed air into the well 1516. A blowing-in of compressed air into the highly contaminated wells 1617 and 1625 can not be realised until the construction of upstream situated injection wells, because of the danger of an uncontrollable spread of the harmful substances. (orig.) [Deutsch] Auf einem Firmengelaende in Vorchdorf, Oesterreich, wurde vom 23.07. bis 26.07.1996 ein Air-Sparging-Versuch als unterstuetzende Massnahme zur laufenden hydraulisch-pneumatischen Sanierung eines LCKW-Schadensfalles durchgefuehrt. Hierbei wurde entoelte Druckluft ueber einen Brunnen mit einem maximalen Ueberdruck von 600 mbar in den kontaminierten Aquifer eingeblasen. Die Drucklufteinblasung fuehrte zu einer Mobilisierung von Schadstoffen im Grundwasser und in der Bodenluft, so dass ueber benachbarte Grundwasser- und Bodenluftfoerderbrunnen ca. 2,7 kg LCKW aus dem Untergrund entfernt werden konnten. Fuer den Beobachtungszeitraum bedeutet dies eine Verdreifachung des Schadstoffaustrags. Aufgrund der gewonnenen Daten wird ein routinemaessiger Intervallbetrieb der Drucklufteinblasung in einen der Brunnen vorgeschlagen. Fuer zwei kontaminierte Brunnen ist eine Drucklufteinblasung wegen der Gefahr einer

  15. Air purification from TCE and PCE contamination in a hybrid bioreactors and biofilter integrated system.

    Science.gov (United States)

    Tabernacka, Agnieszka; Zborowska, Ewa; Lebkowska, Maria; Borawski, Maciej

    2014-01-15

    A two-stage waste air treatment system, consisting of hybrid bioreactors (modified bioscrubbers) and a biofilter, was used to treat waste air containing chlorinated ethenes - trichloroethylene (TCE) and tetrachloroethylene (PCE). The bioreactor was operated with loadings in the range 0.46-5.50gm(-3)h(-1) for TCE and 2.16-9.02gm(-3)h(-1) for PCE. The biofilter loadings were in the range 0.1-0.97gm(-3)h(-1) for TCE and 0.2-2.12gm(-3)h(-1) for PCE. Under low pollutant loadings, the efficiency of TCE elimination was 23-25% in the bioreactor and 54-70% in the biofilter. The efficiency of PCE elimination was 44-60% in the bioreactor and 50-75% in the biofilter. The best results for the bioreactor were observed one week after the pollutant loading was increased. However, the process did not stabilize. In the next seven days contaminant removal efficiency, enzymatic activity and biomass content were all diminished.

  16. Effect of Air Pollution, Contamination and High Altitude on Bronchial Asthma

    Directory of Open Access Journals (Sweden)

    Nesriene El margoushy*, Mohamad El Nashar**, Hatem Khairy*, Nihad El Nashar*, Hala Mohamad

    2013-01-01

    Full Text Available Epidemiological studies have shown that the prevalence of asthma has risen dramatically worldwide and evidence suggests that environmental factors have an important role in the etiology of the disease. Most respiratory diseases are caused by airborne agents. Our lungs are uniquely vulnerable to contamination from the air we breathe. Air pollution exposure is associated with increased asthma and allergy morbidity and is a suspected contributor to the increasing prevalence of allergic conditions. Observational studies continue to strengthen the association between air pollution and allergic respiratory disease. The effects of air pollution should be viewed in two different groups: healthy people and people with chronic heart or lung disease. Although the fundamental causes of asthma are not completely understood, the strongest risk factors for developing asthma are inhaled asthma triggers. These include: indoor allergens (for example house dust mites in bedding, carpets and stuffed furniture, pollution and pet dander, outdoor allergens (such as pollens and moulds, tobacco smoke and chemical irritants in the workplace. Other triggers can include cold air, extreme emotional arousal such as anger or fear, and physical exercise. Even certain medications can trigger asthma such as aspirin and other non-steroid anti-inflammatory drugs, and beta-blockers. Urbanization has also been associated with an increase in asthma; however the exact nature of this relationship is unclear. Medication is not the only way to control asthma. It is also important to avoid asthma triggers - stimuli that irritate and inflame the airways. Prevalence of asthma is generally low within the Middle East, although high rates have been recorded in the Kingdom of Saudi Arabia, Kuwait, Lebanon, and Israel. The prevalence of asthma and asthma-related symptoms is high among 16- to 18-year-old adolescents in Saudi Arabia, and the symptoms are more common in boys than in girls

  17. Cat serum contamination by phthalates, PCBs, and PBDEs versus food and indoor air.

    Science.gov (United States)

    Braouezec, Clélie; Enriquez, Brigitte; Blanchard, Martine; Chevreuil, Marc; Teil, Marie-Jeanne

    2016-05-01

    A wide variety of endocrine disrupting compounds (EDCs) with semi-volatile properties are emitted to indoor air and, thus, humans might get exposed to these compounds. Pet cats spend the major part of their lifetime at home and might integrate indoor contamination so that they could mirror the human exposure. Three classes of EDCs, polybromodiphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), and phthalates (PAEs), were simultaneously considered and quantified in the serum of cats (Felis silvestris catus) living in the Paris area (France). The main compound concentrations by decreasing importance order were as follows: for PAEs, di-n-butyl phthalate (79,900 ng L(-1)) next di-iso-butyl phthalate (53,200 ng L(-1)), di-iso-nonyl phthalate (43,800 ng L(-1)), and di-ethylhexyl phthalate (32,830 ng L(-1)); for PCBs, CB153 (1378 ng L(-1)) next CB52 (509 ng L(-1)), CB101 (355 ng L(-1)), CB110 (264 ng L(-1)), and CB118 (165 ng L(-1)); and for PBDEs, BDE 153/154 (35 ng L(-1)) next BDE47 (10.7 ng L(-1)). Total serum concentrations as mean ± standard deviation were 107 ± 98 μg L(-1) for ∑9PAEs, 2799 ± 944 ng L(-1) for ∑19PCBs, and 56 ± 21 ng L(-1) for ∑9BDEs. The three chemical groups were found in cat food: 0.088 ng g(-1) for ∑9BDEs, 1.7 ng g(-1) for ∑19PCBs, and 2292 ng g(-1) for ∑9PAEs and in indoor air: 0.063 ng m(-3) for ∑9BDEs, 1.5 ng m(-3) for ∑19PCBs, and 848 ng m(-3) for ∑9PAEs. Contaminant intake by food ingestion was approximately 100-fold higher than that by indoor air inhalation.

  18. Data mining of plasma peptide chromatograms for biomarkers of air contaminant exposures

    Directory of Open Access Journals (Sweden)

    Vincent Renaud

    2008-01-01

    Full Text Available Abstract Background Interrogation of chromatographic data for biomarker discovery becomes a tedious task due to stochastic variability in retention times arising from solvent and column performance. The difficulty is further compounded when the effects of exposure (e.g. to environmental contaminants and biological variability result in varying numbers and intensities of peaks among chromatograms. Results We developed a software tool to correct the stochastic time shifts in chromatographic data through iterative selection of landmark peaks and isometric interpolation to improve alignment of all chromatographic peaks. To illustrate application of the tool, plasma peptides from Fischer rats exposed for 4 h to clean air or Ottawa urban particles (EHC-93 were separated by HPLC with autofluorescence detection, and the retention time shifts between chromatograms were corrected (dewarped. Both dewarped and non-dewarped datasets were then mined for models containing peptide peaks that best discriminate among the treatment groups using ClinproTools™. In general, models generated by dewarped datasets were able to better classify test sample chromatograms into either clean air or EHC-93 exposure groups, and 0 or 24 h post-recovery time groups. Peak areas of peptides in a model that produced the best discrimination of treatment groups were analyzed by two-way ANOVA with exposure (clean air, EHC-93 and recovery time (0 h, 24 h as factors. Statistically significant (p Conclusion Our software tool provides a simple and portable approach for alignment of chromatograms with complex, bi-directional retention time shifts prior to data mining. Reliable biomarker discovery can be achieved through chromatographic dewarping using our software followed by pattern recognition by commercial data mining applications.

  19. Removal of methanethiol, dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide from contaminated air by Thiobacillus thioparus TK-m.

    OpenAIRE

    Kanagawa, T; Mikami, E.

    1989-01-01

    Methanethiol, dimethyl sulfide, dimethyl disulfide, and hydrogen sulfide were efficiently removed from contaminated air by Thiobacillus thioparus TK-m and oxidized to sulfate stoichiometrically. More than 99.99% of dimethyl sulfide was removed when the load was less than 4.0 g of dimethyl sulfide per g (dry cell weight) per day.

  20. Dispersion modeling of selected PAHs in urban air: A new approach combining dispersion model with GIS and passive air sampling

    Science.gov (United States)

    Sáňka, Ondřej; Melymuk, Lisa; Čupr, Pavel; Dvorská, Alice; Klánová, Jana

    2014-10-01

    This study introduces a new combined air concentration measurement and modeling approach that we propose can be useful in medium and long term air quality assessment. A dispersion study was carried out for four high molecular weight polycyclic aromatic hydrocarbons (PAHs) in an urban area with industrial, traffic and domestic heating sources. A geographic information system (GIS) was used both for processing of input data as well as visualization of the modeling results. The outcomes of the dispersion model were compared to the results of passive air sampling (PAS). Despite discrepancies between measured and modeled concentrations, an approach combining the two techniques is promising for future air quality assessment. Differences between measured and modeled concentrations, in particular when measured values exceed the modeled concentrations, are indicative of undocumented, sporadic pollutant sources. Thus, these differences can also be useful for assessing and refining emission inventories.

  1. Hot air injection for removal of dense, non-aqueous-phase liquid contaminants from low-permeability soils

    Energy Technology Data Exchange (ETDEWEB)

    Payne, F.C.

    1996-08-01

    The performance of soil vapor extraction systems for the recovery of volatile and semi-volatile organic compounds is potentially enhanced by the injection of heated air to increase soil temperatures. The soil temperature increase is expected to improve soil vapor extraction (SVE) performance by increasing target compound vapor pressures and by increasing soil permeability through drying. The vapor pressure increase due to temperature rise relieves the vapor pressure limit on the feasibility of soil vapor extraction. However, the system still requires an air flow through the soil system to deliver heat and to recover mobilized contaminants. Although the soil permeability can be increased through drying, very low permeability soils and low permeability soils adjacent to high permeability air flow pathways will be treated slowly, if at all. AR thermal enhancement methods face this limitation. Heated air injection offers advantages relative to other thermal techniques, including low capital and operation costs. Heated air injection is at a disadvantage relative to other thermal techniques due to the low heat capacity of air. To be effective, heated air injection requires that higher air flows be established than for steam injection or radio frequency heating. Heated air injection is not economically feasible for the stratified soil system developed as a standard test for this document. This is due to the inability to restrict heated air flow to the clay stratum when a low-resistance air flow pathway is available in the adjoining sand. However, the technology should be especially attractive, both technically and economically, for low-volatile contaminant recovery from relatively homogeneous soil formations. 16 refs., 2 tabs.

  2. Optimizing the combined application of amendments to allow plant growth in a multielement-contaminated soil.

    Science.gov (United States)

    Sevilla-Perea, A; Romero-Puertas, M C; Mingorance, M D

    2016-04-01

    This study was aimed to 1) properly understand the dynamics of toxic elements (Al, Fe, Mn, Cu, Pb, Zn and As) in a sulphide-mine soil after combined application of compost from urban sewage sludge (SVC) and bottom ashes from biomass combustion (BA) and to 2) optimize the combination of both amendments for vegetation growth. Soil was amended following a D-optimal design and the mixtures (15 in total) were incubated during 30 d. At the end of the incubation, the effects of amendments on the assessed variables as well as the process modelling were evaluated by Response Surface Methodology (RSM). The process modelling confirmed that quadratic models were adequate to explain the behaviour of the assessed variables (R(2) ≥ 0.94 and Q(2) ≥ 0.75). Both amendments significantly increased pH and electrical conductivity, while reduced metal extractability. A different behaviour of As respect to metals was observed and high doses of BA sharply increased its extractability. The optimization process indicated that adequate conditions for vegetation growth would be reached adding the soil with 6.8% of SVC and 3.1% of BA (dry weight). After amendments application the germination and root elongation of three energy crops were significantly increased while lipid peroxidation was decreased. Therefore, the combined application of SVC and BA to a contaminated soil could improve soil conditions and might be expected to have an advantage during plant growth. Moreover, the RSM could be a powerful technique for the assessment of combined amendment effects on soil properties and their effective application in multielement-contaminated soils.

  3. Simultaneous removal of formaldehyde and benzene in indoor air with a combination of sorption- and decomposition-type air filters.

    Science.gov (United States)

    Sekine, Yoshika; Fukuda, Mitsuru; Takao, Yosuke; Ozano, Takahiro; Sakuramoto, Hikaru; Wang, Kuan Wei

    2011-12-01

    Urgent measures for indoor air pollution caused by volatile organic compounds are required in urban areas of China. Considering indoor air concentration levels and hazardous properties, formaldehyde and benzene should be given priority for pollution control in China. The authors proposed the use of air-cleaning devices, including stand-alone room air cleaners and in-duct devices. This study aimed to find the best combination of sorption and decomposition filters for the simultaneous removal of formaldehyde and benzene, employing four types of air filter units: an activated charcoal filter (ACF), an ACF impregnated with a trapping agent for acidic gases (ACID), a MnO2 filter (MDF) for oxidative decomposition of formaldehyde at room temperature and a photocatalyst filter (PHOTO) coupled with a parallel beam ultraviolet (UV) irradiation device. The performance of the combined systems under air flow rates of 35-165 m3 h(-1) was evaluated in a test chamber (2 m3) with a constant gas generation system. The experimental results and data analysis using a kinetic approach showed the combined system of ACF, PHOTO and MDF significantly reduced both concentrations of formaldehyde and benzene in air without any unpleasant odours caused by the UV-induced photocatalytic reaction. The system was then evaluated in a full-size laboratory (22 m3). This test proved the practical performance of the system even at full scale, and also suggested that the filters should be arranged in the order of PHOTO/ACF/MDF from upstream to downstream. The proposed system has the potential of being used for improving indoor air quality of houses and buildings in China.

  4. Combined effects of road traffic noise and ambient air pollution in relation to risk for stroke?

    DEFF Research Database (Denmark)

    Sørensen, Mette; Lühdorf, Pernille; Ketzel, Matthias

    2014-01-01

    Exposure to road traffic noise and air pollution have both been associated with risk for stroke. The few studies including both exposures show inconsistent results. We aimed to investigate potential mutual confounding and combined effects between road traffic noise and air pollution in association...... to 2009 were identified in national registers and road traffic noise and air pollution were modeled for all addresses. Analyses were done using Cox regression. A higher mean annual exposure at time of diagnosis of 10µg/m(3) nitrogen dioxide (NO2) and 10dB road traffic noise at the residential address...... was found for combination of high noise and high NO2 (IRR=1.28; 95% CI=1.09-1.52). Fatal stroke was positively associated with air pollution and not with traffic noise. In conclusion, in mutually adjusted models road traffic noise and not air pollution was associated ischemic stroke, while only air...

  5. Treatment of Perchlorate-Contaminated Groundwater Using Highly-Selective, Regenerable Anion-Exchange Resins at Edwards Air Force Base

    Energy Technology Data Exchange (ETDEWEB)

    Gu, B.

    2003-05-30

    Selective ion exchange is one of the most effective treatment technologies for removing low levels of perchlorate (ClO{sub 4}{sup -}) from contaminated water because of its high efficiency without adverse impacts on the water quality caused by adding or removing any chemicals or nutrients. This report summarizes both the laboratory and a field pilot-scale studies to determine the ability and efficiency of the bifunctional synthetic resins to remove ClO{sub 4}{sup -} from the contaminated groundwater at the Edwards Air Force Base in California. Regeneration of the resins after groundwater treatment was also evaluated using the FeCl{sub 3}-HCl regeneration technique recently developed at Oak Ridge National Laboratory. On the basis of this study, the bifunctional resin, D-3696 was found to be highly selective toward ClO{sub 4}{sup -} and performed much better than one of the best commercial nitrate-selective resins (Purolite A-520E) and more than an order of magnitude better than the Purolite A-500 resin (with a relatively low selectivity). At an influent concentration of {approx} 450 {micro}g/L ClO{sub 4}{sup -} in groundwater, the bifunctional resin bed treated {approx} 40,000 empty bed volumes of groundwater before a significant breakthrough of ClO{sub 4}{sup -} occurred. The presence of relatively high concentrations of chloride and sulfate in site groundwater did not appear to affect the ability of the bifunctional resin to remove ClO{sub 4}{sup -}. However, the presence of high iron or iron oxyhydroxides and/or biomass in groundwater caused a significant fouling of the resin beds and greatly influenced the effectiveness in regenerating the resins sorbed with ClO{sub 4}{sup -}. Under such circumstances, a prefilter ({approx} 0.5-1 {micro}m) was found to be necessary to remove these particulates and to reduce the risk of fouling of the resin beds. Without significant fouling, the resin bed could be effectively regenerated by the FeCl{sub 3} displacement technique

  6. Microlith-Based Catalytic Reactor for Air Quality and Trace Contaminant Control Applications

    Science.gov (United States)

    Vilekar, Saurabh; Hawley, Kyle; Junaedi, Christian; Crowder, Bruce; Prada, Julian; Mastanduno, Richard; Perry, Jay L.; Kayatin, Matthew J.

    2015-01-01

    Traditionally, gaseous compounds such as methane, carbon monoxide, and trace contaminants have posed challenges for maintaining clean air in enclosed spaces such as crewed spacecraft cabins as they are hazardous to humans and are often difficult to remove by conventional adsorption technology. Catalytic oxidizers have provided a reliable and robust means of disposing of even trace levels of these compounds by converting them into carbon dioxide and water. Precision Combustion, Inc. (PCI) and NASA - Marshall (MSFC) have been developing, characterizing, and optimizing high temperature catalytic oxidizers (HTCO) based on PCI's patented Microlith® technology to meet the requirements of future extended human spaceflight explorations. Current efforts have focused on integrating the HTCO unit with a compact, simple recuperative heat exchanger to reduce the overall system size and weight while also reducing its energy requirements. Previous efforts relied on external heat exchangers to recover the waste heat and recycle it to the oxidizer to minimize the system's power requirements; however, these units contribute weight and volume burdens to the overall system. They also result in excess heat loss due to the separation of the HTCO and the heat recuperator, resulting in lower overall efficiency. Improvements in the recuperative efficiency and close coupling of HTCO and heat recuperator lead to reductions in system energy requirements and startup time. Results from testing HTCO units integrated with heat recuperators at a variety of scales for cabin air quality control and heat melt compactor applications are reported and their benefits over previous iterations of the HTCO and heat recuperator assembly are quantified in this paper.

  7. Model evaluation of faecal contamination in coastal areas affected by urban rivers receiving combined sewer overflows.

    Science.gov (United States)

    Shibata, T; Kojima, K; Lee, S A; Furumai, H

    2014-01-01

    Odaiba seaside park is one of the most popular waterfronts in Tokyo Bay, but is easily affected by wet weather pollutant loads through combined sewer overflows (CSOs). The monitoring data of Escherichia coli clearly showed high faecal contamination after a rainfall event on 9-11 November 2007. We estimated the amounts of discharge volume and E. coli pollutant loads of urban rivers receiving CSO from rainfall chambers as well as pumping stations and primary effluent discharge. The result suggested that Sumida River and Meguro River were more influential to the Odaiba coastal area than other sources including the nearest wastewater treatment plant. Subsequently, we simulated the dynamic behaviour of E. coli by a three-dimensional (3D) hydro-dynamic and water quality model. The model simulation reproduced that E. coli concentration after the rainfall event increased rapidly at first and later gradually decreased. The simulations with and without inflow pollutant loads from urban rivers suggested that the E. coli concentration can be influenced by the Meguro River just after the rainfall event and Sumida River about 1 week later. From the spatial and temporal distribution of surface E. coli concentration, after at least 6 days from the rainfall event, high faecal contamination spread to the whole of the coastal area.

  8. Bioremediation of petroleum-contaminated soil by a combined system of biostimulation-bioaugmentation with yeast.

    Science.gov (United States)

    Fan, Mei-Ying; Xie, Rui-Jie; Qin, Gang

    2014-01-01

    This paper presents a study of the effect of a combined biostimulation-bioaugmentation treatment applied to a clay-loam soil contaminated with 16,300 mg/kg of total petroleum hydrocarbons (TPH), which comprised 51% saturated hydrocarbons and 31% aromatic hydrocarbons. The bioaugmentation was performed with yeast Candida tropicalis SK21 isolated from petroleum-contaminated soil. The strain was able to grow in a pH range of 3-9 in liquid culture, and the optimum pH was found to be 6 for both growth and biosurfactant production. At pH 6, 96% and 42% of TPH were degraded by the strain at the initial diesel oil concentrations of 0.5% and 5% (v/v), respectively. The remediation via inoculating the yeast removed 83% of TPH in 180 days while the experiment with the indigenous microorganisms alone removed 61%. Microbial enumeration showed that the yeast SK21 could grow good in the soil. It was also found that dehydrogenase and polyphenoloxidase activities in soil were remarkably enhanced by the inoculation of the yeast.

  9. Factors affecting xylene-contaminated air removal by the ornamental plant Zamioculcas zamiifolia.

    Science.gov (United States)

    Sriprapat, Wararat; Boraphech, Phattara; Thiravetyan, Paitip

    2014-02-01

    Fifteen plant species-Alternanthera bettzickiana, Drimiopsis botryoides, Aloe vera, Chlorophytum comosum, Aglaonema commutatum, Cordyline fruticosa, Philodendron martianum, Sansevieria hyacinthoides, Aglaonema rotundum, Fittonia albivenis, Muehlenbeckia platyclada, Tradescantia spathacea, Guzmania lingulata, Zamioculcas zamiifolia, and Cyperus alternifolius-were evaluated for the removal efficiency of xylene from contaminated air. Among the test plants, Z. zamiifolia showed the highest xylene removal efficiency. Xylene was toxic to Z. zamiifolia with an LC50 of 3,464 ppm. Higher concentrations of xylene exhibited damage symptoms, including leaf tips turning yellow, holonecrosis, and hydrosis. TEM images showed that a low concentration of xylene vapors caused minor changes in the chloroplast, while a high concentration caused swollen chloroplasts and damage. The effect of photosynthetic types on xylene removal efficiency suggests that a mixture of Z. zamiifolia, S. hyacinthoides, and A. commutatum which represent facultative CAM, CAM, and C3 plants, is the most suitable system for xylene removal. Therefore, for maximum improvement in removing xylene volatile compounds under various conditions, multiple species are needed. The effect of a plant's total leaf area on xylene removal indicates that at lower concentrations of xylene, a small leaf area might be as efficient as a large leaf area.

  10. Bilirubin oxidase based enzymatic air-breathing cathode: Operation under pristine and contaminated conditions.

    Science.gov (United States)

    Santoro, Carlo; Babanova, Sofia; Erable, Benjamin; Schuler, Andrew; Atanassov, Plamen

    2016-04-01

    The performance of bilirubin oxidase (BOx) based air breathing cathode was constantly monitored over 45 days. The effect of electrolyte composition on the cathode oxygen reduction reaction (ORR) output was investigated. Particularly, deactivation of the electrocatalytic activity of the enzyme in phosphate buffer saline (PBS) solution and in activated sludge (AS) was evaluated. The greatest drop in current density was observed during the first 3 days of constant operation with a decrease of ~60 μA cm(-2) day(-1). The rate of decrease slowed to ~10 μA cm(-2) day(-1) (day 3 to 9) and then to ~1.5 μA cm(-2)day(-1) thereafter (day 9 to 45). Despite the constant decrease in output, the BOx cathode generated residual current after 45 days operations with an open circuit potential (OCP) of 475 mV vs. Ag/AgCl. Enzyme deactivation was also studied in AS to simulate an environment close to the real waste operation with pollutants, solid particles and bacteria. The presence of low-molecular weight soluble contaminants was identified as the main reason for an immediate enzymatic deactivation within few hours of cathode operation. The presence of solid particles and bacteria does not affect the natural degradation of the enzyme.

  11. Numerical Simulation of Inter-Flat Air Cross-Contamination under the Condition of Single-Sided Natural Ventilation

    DEFF Research Database (Denmark)

    Liu, Xiaoping; Niu, Jianlei; Perino, Marco;

    2008-01-01

    the two sides, each of which has a flat fa ade with openable windows. When the wind speed is extremely low, with doors closed and windows opened, the flats become single-sided naturally ventilated driven by buoyancy effects. The air pollutants can travel from a lower flat to a vertically adjacent upper...... flat through open windows, caused by indoor/outdoor temperature-difference induced buoyancy. Computational fluid dynamics is employed to explore the characteristics of this process. Based on the comparison with experimental data about the air flow distribution in and around a single-sided naturally...... be a major route of the air cross-contamination in high-rise residential buildings. Finally, an assessment index is proposed to evaluate the potential infection risks associated with this inter-flat air flow occurring in high-rise residential buildings....

  12. Global carbon monoxide products from combined AIRS, TES and MLS measurements on A-train satellites

    Directory of Open Access Journals (Sweden)

    J. X. Warner

    2013-06-01

    Full Text Available This study tests a novel methodology to add value to satellite datasets. This methodology, data fusion, is similar to data assimilation, except that the background model-based field is replaced by a satellite dataset, in this case AIRS (Atmospheric Infrared Sounder carbon monoxide (CO measurements. The observational information comes from CO measurements with lower spatial coverage than AIRS, namely, from TES (Tropospheric Emission Spectrometer and MLS (Microwave Limb Sounder. We show that combining these datasets with data fusion uses the higher spectral resolution of TES to extend AIRS CO observational sensitivity to the lower troposphere, a region especially important for air quality studies. We also show that combined CO measurements from AIRS and MLS provide enhanced information in the UTLS (upper troposphere/lower stratosphere region compared to each product individually. The combined AIRS/TES and AIRS/MLS CO products are validated against DACOM (differential absorption mid-IR diode laser spectrometer in situ CO measurements from the INTEX-B (Intercontinental Chemical Transport Experiment: MILAGRO and Pacific phases field campaign and in situ data from HIPPO (HIAPER Pole-to-Pole Observations flights. The data fusion results show improved sensitivities in the lower and upper troposphere (20–30% and above 20%, respectively as compared with AIRS-only retrievals, and improved coverage compared with TES and MLS CO data.

  13. An experimental study of thermal comfort at different combinations of air and mean radiant temperature

    DEFF Research Database (Denmark)

    Simone, Angela; Olesen, Bjarne W.

    2009-01-01

    , a lower air temperature is preferred. This paper presents an experimental study with 30 human subjects exposed to three different combinations of air- and mean radiant temperature with an operative temperature around 23 °C. The subjects gave subjective evaluations of thermal comfort and perceived air...... quality during the experiments. The PMV-index gave a good estimation of thermal sensation vote (TSV) when the air and mean radiant temperature were the same. In the environment with different air- and mean radiant temperatures, a thermal comfort evaluation shows an error up to 1 scale unit on the 7-point...... thermal sensation scale. The study could not confirm any preference regarding air and mean radiant temperature....

  14. COMBINATION OF A SOURCE REMOVAL REMEDY AND BIOREMEDIATION FOR THE TREATMENT OF A TCE CONTAMINATED AQUIFER

    Science.gov (United States)

    Historical disposal practices of chlorinated solvents have resulted in the widespread contamination of ground-water resources. These ground-water contaminants exist in the subsurface as free products, residual and vapor phases, and in solution. The remediation of these contamin...

  15. CAirTOX, An inter-media transfer model for assessing indirect exposures to hazardous air contaminants

    Energy Technology Data Exchange (ETDEWEB)

    McKone, T.E.

    1994-01-01

    Risk assessment is a quantitative evaluation of information on potential health hazards of environmental contaminants and the extent of human exposure to these contaminants. As applied to toxic chemical emissions to air, risk assessment involves four interrelated steps. These are (1) determination of source concentrations or emission characteristics, (2) exposure assessment, (3) toxicity assessment, and (4) risk characterization. These steps can be carried out with assistance from analytical models in order to estimate the potential risk associated with existing and future releases. CAirTOX has been developed as a spreadsheet model to assist in making these types of calculations. CAirTOX follows an approach that has been incorporated into the CalTOX model, which was developed for the California Department of Toxic Substances Control, With CAirTOX, we can address how contaminants released to an air basin can lead to contamination of soil, food, surface water, and sediments. The modeling effort includes a multimedia transport and transformation model, exposure scenario models, and efforts to quantify uncertainty in multimedia, multiple-pathway exposure assessments. The capacity to explicitly address uncertainty has been incorporated into the model in two ways. First, the spreadsheet form of the model makes it compatible with Monte-Carlo add-on programs that are available for uncertainty analysis. Second, all model inputs are specified in terms of an arithmetic mean and coefficient of variation so that uncertainty analyses can be carried out.

  16. Comparative Studies on Methane Upgradation of Biogas by Removing of Contaminant Gases Using Combined Chemical Methods

    Directory of Open Access Journals (Sweden)

    Muhammad Rashed Al Mamun

    2015-07-01

    Full Text Available Biogas, which generated from renewable sources can be used as a sustainable energy to achieve resourceful targets of biofuel for internal combustion engines. This process can be achieved in combined absorption and adsorption chemical way. This method can be employed by aqueous solutions of calcium hydroxide, activated carbon, iron(II chloride, silica gel and sodium sulfate respectively. The presence of CO2, H2S and H2O in the biogas has lowering the calorific value and detrimental corrosion effects on the metal components. Removal of these contaminants from the biogas can therefore significantly improve the gas quality. A comparison study was investigated using combined chemical methods of improving the calorific value of biogas. Experiment results revealed that the aqueous solution used effectively in reacting with CO2 in biogas (over 85-90% removal efficiency, creating CH4 enriched biogas. The removal efficiency was the highest in method 1, where efficiency results were 91.5%, 97.1% and 91.8%, for CO2, H2S, and H2O, respectively. The corresponding CH4 enrichment was 97.5%. These results indicate that the method 1 is more suitable compare to method 2. However, both methane enrichment processes might be useful for cleaning and upgrading methane quality in biogas.

  17. Lichen (Xanthoria parietina) biomonitoring of trace element contamination and air quality assessment in Livorno Province (Tuscany, Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Scerbo, R.; Barghigiani, C.; Ristori, T. [CNR Istituto di Biofisica, Via S. Lorenzo 26, 56127 Pisa (Italy); Possenti, L.; Barale, R. [Dipartimento di Scienze dell' Ambiente e del Territorio, Via Volta, Pisa (Italy); Lampugnani, L. [CNR Istituto di Chimica Analitica Strumentale, Via Risorgimento, Pisa (Italy)

    1999-10-29

    This paper deals with the biomonitoring of air in Livorno Province (Tuscany, Italy) using lichens for both quantitative monitoring of airborne metals and air quality assessment. On the basis of the possible sources of metal pollution in the study area, the following elements were analyzed: As, Cd, Cr, Ni, Pb, V, Zn and Hg. The small number of lichen species, the often stunted appearance of the specimens, and metal analysis revealed widespread atmospheric pollution in the study area. The results indicate extensive anthropic impact. The highest levels of contamination were recorded for Hg, Cd, Pb, and V concentrations. Good agreement was found between bioindication and metal concentrations in lichens. The impact of anthropic activities is particularly due to steelworks and chemical plants, combustion processes related to energy production and vehicle emissions. In addition to air pollution, some natural factors, such as climate, rocky shores or ozone, were assumed to affect lichen occurrence. Comparison with the Lake Orta area in northern Italy showed Livorno Province was more contaminated by trace elements. Similar contamination levels were found in another area of Tuscany, probably due to the geological characteristics of this region.

  18. Effects of walk-by and sash movement on contaminant leakage of air curtain-isolated fume hood.

    Science.gov (United States)

    Huang, Rong Fung; Chen, Hong Da; Hung, Chien-Hsiung

    2007-12-01

    The effects of the walk-by motion and sash movement on the containment leakage of an air curtain-isolated fume hood were evaluated and compared with the results of a corresponding conventional fume hood. The air curtain was generated by a narrow planar jet issued from the double-layered sash and a suction slot-flow arranged on the floor of the hood just behind the doorsill. The conventional fume hood used for comparison had the major dimensions identical to the air-curtain hood. SF tracer-gas concentrations were released and measured following the prEN 14175-3:2003 protocol to examine the contaminant leakage levels. Experimental results showed that operating the air-curtain hood at the suction velocity above about 6 m/s and jet velocity about 1 m/s could provide drastically high containment performance when compared with the corresponding conventional fume hood operated at the face velocity of 0.5 m/s. The total air flow required for the air-curtain hood operated at 6 m/s suction velocity and 1 m/s jet velocity was about 20% less than that exhausted by the conventional fume hood. If the suction velocity of the air-curtain hood was increased above 8 m/s, the containment leakage during dynamic motions could be reduced to ignorable level (about 10(3) ppm).

  19. 空气细菌真菌污染的分级评价构建方法%Establishment of Assessment Method for Air Bacteria and Fungi Contamination

    Institute of Scientific and Technical Information of China (English)

    张华玲; 姚大军; 张雨; 方子梁

    2016-01-01

    In this paper, in order to settle existing problems in the assessment of air bacteria and fungi contamination, the indoor and outdoor air bacteria and fungi filed concentrations by impact method and settlement method in existing documents were collected and analyzed, then the goodness of chi square was used to test whether these concentration data obeyed normal distribution at the significant level of α = 0. 05, and combined with the 3σ principle of normal distribution and the current assessment standards, the suggested concentrations ranges of air microbial concentrations were determined. The research results could provide a reference for developing air bacteria and fungi contamination assessment standards in the future.%针对空气细菌真菌污染评价存在的不足,搜集整理现有研究文献中对室内外空气细菌和真菌的现场实测数据,利用拟合优度χ2检验法证明了在显著性水平α为0.05时,室内外空气细菌和真菌分别采用撞击法和沉降法的8组浓度数据均服从正态分布,并结合正态分布的3σ原则和现行评价标准,给出了可用于空气细菌真菌分级评价的浓度建议区间,研究成果可为将来制定空气细菌真菌污染的评价标准提供参考.

  20. Cumulative effects of fecal contamination from combined sewer overflows: Management for source water protection.

    Science.gov (United States)

    Jalliffier-Verne, Isabelle; Heniche, Mourad; Madoux-Humery, Anne-Sophie; Galarneau, Martine; Servais, Pierre; Prévost, Michèle; Dorner, Sarah

    2016-06-01

    The quality of a drinking water source depends largely on upstream contaminant discharges. Sewer overflows can have a large influence on downstream drinking water intakes as they discharge untreated or partially treated wastewaters that may be contaminated with pathogens. This study focuses on the quantification of Escherichia coli discharges from combined sewer overflows (CSOs) and the dispersion and diffusion in receiving waters in order to prioritize actions for source water protection. E. coli concentrations from CSOs were estimated from monitoring data at a series of overflow structures and then applied to the 42 active overflow structures between 2009 and 2012 using a simple relationship based upon the population within the drainage network. From these estimates, a transport-dispersion model was calibrated with data from a monitoring program from both overflow structures and downstream drinking water intakes. The model was validated with 15 extreme events such as a large number of overflows (n > 8) or high concentrations at drinking water intakes. Model results demonstrated the importance of the cumulative effects of CSOs on the degradation of water quality downstream. However, permits are typically issued on a discharge point basis and do not consider cumulative effects. Source water protection plans must consider the cumulative effects of discharges and their concentrations because the simultaneous discharge of multiple overflows can lead to elevated E. coli concentrations at a drinking water intake. In addition, some CSOs have a disproportionate impact on peak concentrations at drinking water intakes. As such, it is recommended that the management of CSOs move away from frequency based permitting at the discharge point to focus on the development of comprehensive strategies to reduce cumulative and peak discharges from CSOs upstream of drinking water intakes.

  1. Identification of the source of PFOS and PFOA contamination at a military air base site.

    Science.gov (United States)

    Arias E, Victor A; Mallavarapu, Megharaj; Naidu, Ravi

    2015-01-01

    Although the use of perfluorooctane sulfonic acid (PFOS)/perfluorooctanoic acid (PFOA)-based aqueous fire-fighting foams (AFFF) has been banned due to their persistence, bioaccumulation and toxicity to biota, PFOS and PFOA are still present at significant levels in the environment due to their past usage. This study investigated the reasons for detection of PFOS and PFOA in an evaporation pond used to collect the wastewater arising from fire-fighting exercises at a military air base despite the replacement of PFOS/PFOA-based foam with no PFOS/PFOA-foam about 6 years ago. Concentrations in the wastewater stored in this pond ranged from 3.6 to 9.7 mg/L for PFOS and between 0.6 and 1.7 mg/L for PFOA. The hypothesis tested in a laboratory study was that PFOS and PFOA have accumulated in the sediments of the pond and can be released into the main body of the water. Concentrations detected in the sediments were 38 and 0.3 mg/g for PFOS and PFOA, respectively. These values exceed the recently reported average global values for sediments (0.2-3.8 ng/g for PFOS and from 0.1 to 0.6 ng/g for PFOA) by a factor of several thousands. PFOS and PFOA distribution coefficients were derived for the organic content of the pond sediment (1.6%). Identification of the source of contamination and knowledge of the partition between soil and aqueous phases are vital first steps in developing a sustainable remediation technology to remove the source from the site. This study clearly suggests that unless the sediment is cleaned of PFOS/PFOA, these chemicals will continue to be detected for a long period in the pond water, with potential adverse impacts on the ecosystem.

  2. Electrical Characteristics, Electrode Sheath and Contamination Layer Behavior of a Meso-Scale Premixed Methane-Air Flame Under AC/DC Electric Fields

    Institute of Scientific and Technical Information of China (English)

    CHEN Qi; YAN Limin; ZHANG Hao; LI Guoxiu

    2016-01-01

    Electrical characteristics of a nozzle-attached meso-scale premixed methane-air flame under low-frequency AC (0-4300 V,0-500 Hz) and DC (0-3300 V) electric fields were studied.Ⅰ-Ⅴ curves were measured under different experimental conditions to estimate the magnitude of the total current 100-102 μA,the electron density 1015-1016 m-3 and further the power dissipation ≤ 0.7 W in the reaction zone.At the same time,the meso-scale premixed flame conductivity 10-4-10-3 Ω-1.m-1 as a function of voltage and frequency was experimentally obtained and was believed to represent a useful order-of magnitnde estimate.Moreover,the influence of the collision sheath relating to Debye length (31-98 μm) and the contamination layer of an active electrode on measurements was discussed,based on the combination of simulation and theoretical analysis.As a result,the electrode sheath dimension was evaluated to less than 0.5 mm,which indicatcd a complex effect of the collisiou sheath on the current measurements.The surface contamination effect of an active electrode was further analyzed using the SEM imaging method,which showed elements immigration during the contamination layer formation process.

  3. Thermal environment and air quality in office with personalized ventilation combined with chilled ceiling

    DEFF Research Database (Denmark)

    Lipczynska, Aleksandra; Kaczmarczyk, Jan; Melikov, Arsen Krikor

    2015-01-01

    with the temperature of 25°C. PV improved thermal conditions and was up to nearly 10 times more efficient in delivering clean air at workstations than mixing ventilation systems, which resulted in strong protection of occupants from the cross-infection. In the room space outside workstations no substantial differences......The thermal environment and air quality conditions provided with combined system of chilled ceiling and personalized ventilation (PV) were studied in a simulated office room for two occupants. The proposed system was compared with total volume HVAC solutions used today, namely mixing ventilation...... and chilled ceiling combined with mixing ventilation. The objective of the study was to evaluate whether PV can be the only ventilation system in the rooms equipped with chilled ceiling. The room air temperature was 26°C in cases with traditional systems and 28°C when PV was used. PV supplied air...

  4. Does the soil-air-plant pathway contribute to the PCB contamination of apples from allotment gardens?

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, M.; Moering, J.; Amelung, W. [Dept. of Soil Science, Inst. of Ecology, Berlin Univ. of Tech. (Germany)

    2004-09-15

    The presence of persistent organic pollutants (POPs) like PCBs in plants poses a risk to humans and animals as it determines an exposure through the terrestrial food chain. A number of studies have shown that the transfer from the atmosphere is the dominant pathway for an uptake of POPs by aboveground parts of plants, in which dry gaseous as well as wet and dry particulate deposition are involved. The relative contribution of the different pathways to the overall deposition depends strongly on the physical-chemical properties of the compounds, but also on microclimatic conditions and characteristics of the plant, which both contribute to diffusive resistance at the its surface. In contrast, root uptake and translocation in the shoot is probably much less important for these highly hydrophobic compounds, although there are contradicting results in the literature. While the air-plant distribution of POPs received increasing attention, the importance of the soilair- plant pathway has rarely been studied. It is not known whether the volatilisation of POPs from contaminated soils and subsequent deposition to plants may be a significant source compared to ''background'' deposition in the field, as well as a deposition of contaminated soil dust raised by wind or rain splash. Particularly the latter pathway can hardly be assessed under exposure chamber conditions; instead a field study is required despite the increased overall complexity, which renders process identification more difficult. The objective of our study was to assess whether the local soil contamination (soil-air-plant pathway) could contribute to the PCB contamination of apples (Malus domestica Borkh.) at an allotment garden site additionally to background deposition (air-plant pathway).

  5. Air sampling procedures to evaluate microbial contamination: a comparison between active and passive methods in operating theatres

    Directory of Open Access Journals (Sweden)

    Napoli Christian

    2012-08-01

    Full Text Available Abstract Background Since air can play a central role as a reservoir for microorganisms, in controlled environments such as operating theatres regular microbial monitoring is useful to measure air quality and identify critical situations. The aim of this study is to assess microbial contamination levels in operating theatres using both an active and a passive sampling method and then to assess if there is a correlation between the results of the two different sampling methods. Methods The study was performed in 32 turbulent air flow operating theatres of a University Hospital in Southern Italy. Active sampling was carried out using the Surface Air System and passive sampling with settle plates, in accordance with ISO 14698. The Total Viable Count (TVC was evaluated at rest (in the morning before the beginning of surgical activity and in operational (during surgery. Results The mean TVC at rest was 12.4 CFU/m3 and 722.5 CFU/m2/h for active and passive samplings respectively. The mean in operational TVC was 93.8 CFU/m3 (SD = 52.69; range = 22-256 and 10496.5 CFU/m2/h (SD = 7460.5; range = 1415.5-25479.7 for active and passive samplings respectively. Statistical analysis confirmed that the two methods correlate in a comparable way with the quality of air. Conclusion It is possible to conclude that both methods can be used for general monitoring of air contamination, such as routine surveillance programs. However, the choice must be made between one or the other to obtain specific information.

  6. A Novel Pumped Hydro Combined with Compressed Air Energy Storage System

    OpenAIRE

    Erren Yao; Xinbing Wang; Liqin Wang; Huanran Wang

    2013-01-01

    A novel pumped hydro combined with compressed air energy storage (PHCA) system is proposed in this paper to resolve the problems of bulk energy storage in the wind power generation industry over an area in China, which is characterised by drought and water shortages. Thermodynamic analysis of the energy storage system, which focuses on the pre-set pressure, storage volume capacity, water air volume ratio, pump performance, and water turbine performance of the storage system, is also presented...

  7. Combined use of environmental data and biomarkers in fish (Liza aurata) inhabiting a eutrophic and metal-contaminated coastal system - Gills reflect environmental contamination.

    Science.gov (United States)

    Pereira, Patrícia; de Pablo, Hilda; Vale, Carlos; Pacheco, Mário

    2010-03-01

    An investigative biomonitoring study was carried out in a eutrophic coastal system with a moderate contamination by metals (Obidos lagoon, Portugal), combining the evaluation of exposure concentrations with metals accumulation and oxidative stress responses in gills of the golden grey mullet (Liza aurata). Two contrasting seasons (winter and summer) were considered at three sites: Barrosa (BB) and Bom-Sucesso (BS) branches; Middle lagoon (ML). Data on the water column pointed to a higher metals and nutrients availability at BB that was reflected in the higher metal concentrations in gills, particularly in winter. Similarly, oxidative stress responses demonstrated a pro-oxidant challenge at BB (winter and summer), which was corroborated by an integrated biomarker response index (IBR). Metal concentrations in gills were higher in summer than winter, reflecting the increased environmental concentrations in combination with elevated metabolic rates. Catalase (CAT), glutathione-S-transferase (GST), total glutathione (GSH(t)) and lipid peroxidation (LPO) increases observed in winter at BB were related with metal accumulation, while summer enhancement of glutathione peroxidase (GPx), glutathione reductase (GR), GST and GSH(t) was associated with other stressors. Inter-site differences on the basis of IBR were more accentuated in winter. Gills can be considered as an important route of entry for contaminants and were demonstrated to reflect water contamination and are therefore useful in the context of environmental assessment.

  8. The Contaminant Distribution in a Ventilated Room with Different Air Terminal Devices

    DEFF Research Database (Denmark)

    Heiselberg, Per; Nielsen, Peter V.

    of the jets and the comfort requirements applied to measured air velocities in the occupied zone. Normalized concentration distribution in the test room is determined along a vertical line through the middle of the room as a function of the air exchange rate and the density of the tracer gas. The relative......The room ventilation is investigated for three different air terminal devices under isothermal conditions. Velocity distribution in the occupied zone is measured for each air terminal device at different air exchange rates. The maximum air exchange rate is determined on the base of both the throw...... ventilation efficiency, , based on the room average concentration is also determined as a function of the air exchange rate and the density of the tracer gas. The influence from the position of the return opening on the relative ventilation efficiency is found for one air terminal device....

  9. Combining pump-and-treat and physical barriers for contaminant plume control.

    Science.gov (United States)

    Bayer, Peter; Finkel, Michael; Teutsch, Georg

    2004-01-01

    A detailed analysis is presented of the hydraulic efficiency of plume management alternatives that combine a conventional pump-and-treat system with vertical, physical hydraulic barriers such as slurry walls or sheet piles. Various design settings are examined for their potential to reduce the pumping rate needed to obtain a complete capture of a given contaminated area. Using established modeling techniques for flow and transport, those barrier configurations (specified by location, shape, and length) that yield a maximum reduction of the pumping rate are identified assuming homogeneous aquifer conditions. Selected configurations are further analyzed concerning their hydraulic performance under heterogeneous aquifer conditions by means of a stochastic approach (Monte Carlo simulations) with aquifer transmissivity as a random space function. The results show that physical barriers are an appropriate means to decrease expected (mean) pumping rates, as well as the variance of the corresponding pumping rate distribution at any given degree of heterogeneity. The methodology presented can be transferred easily to other aquifer scenarios, provided some basic premises are fulfilled, and may serve as a basis for reducing the pumping rate in existing pump-and-treat systems.

  10. Nitric Oxide and Oxygen Air-Contamination Effects on Extinction Limits of Non-Premixed Hydrocarbon-Air Flames for a HIFiRE Scramjet

    Science.gov (United States)

    Pellett, Gerald L.; Dawson, Lucy C.; Vaden, Sarah N.; Wilson, Lloyd G.

    2009-01-01

    Unique nitric oxide (NO) and oxygen air-contamination effects on the extinction Flame Strength (FS) of non-premixed hydrocarbon (HC) vs. air flames are characterized for 7 gaseous HCs, using a new idealized 9.3 mm straight-tube Opposed Jet Burner (OJB) at 1 atm. FS represents a laminar strain-induced extinction limit based on cross-section-average air jet velocity, Uair, that sustains combustion of a counter jet of gaseous fuel just before extinction. Besides ethane, propane, butane, and propylene, the HCs include ethylene, methane, and a 64 mole-% ethylene / 36 % methane mixture, the writer s previously recommended gaseous surrogate fuel for HIFiRE scramjet tests. The HC vs. clean air part of the work is an extension of a May 2008 JANNAF paper that characterized surrogates for the HIFiRE project that should mimic the flameholding of reformed (thermally- or catalytically-cracked) endothermic JP-like fuels. The new FS data for 7 HCs vs. clean air are thus consolidated with the previously validated data, normalized to absolute (local) axial-input strain rates, and co-plotted on a dual kinetically dominated reactivity scale. Excellent agreement with the prior data is obtained for all 7 fuels. Detailed comparisons are also made with recently published (Univ. Va) numerical results for ethylene extinction. A 2009-revised ethylene kinetic model (Univ. Southern Cal) led to predicted limits within approx. 5 % (compared to 45 %, earlier) of this writer s 2008 (and present) ethylene FSs, and also with recent independent data (Univ. Va) obtained on a new OJB system. These +/- 5 % agreements, and a hoped-for "near-identically-performing" reduced kinetics model, would greatly enhance the capability for accurate numerical simulations of surrogate HC flameholding in scramjets. The measured air-contamination effects on normalized FS extinction limits are projected to assess ongoing Arc-Heater-induced "facility test effects" of NO production (e.g., 3 mole-%) and resultant oxygen

  11. A combined approach of physicochemical and biological methods for the characterization of petroleum hydrocarbon-contaminated soil.

    Science.gov (United States)

    Masakorala, Kanaji; Yao, Jun; Chandankere, Radhika; Liu, Haijun; Liu, Wenjuan; Cai, Minmin; Choi, Martin M F

    2014-01-01

    Main physicochemical and microbiological parameters of collected petroleum-contaminated soils with different degrees of contamination from DaGang oil field (southeast of Tianjin, northeast China) were comparatively analyzed in order to assess the influence of petroleum contaminants on the physicochemical and microbiological properties of soil. An integration of microcalorimetric technique with urease enzyme analysis was used with the aim to assess a general status of soil metabolism and the potential availability of nitrogen nutrient in soils stressed by petroleum-derived contaminants. The total petroleum hydrocarbon (TPH) content of contaminated soils varied from 752.3 to 29,114 mg kg(−1). Although the studied physicochemical and biological parameters showed variations dependent on TPH content, the correlation matrix showed also highly significant correlation coefficients among parameters, suggesting their utility in describing a complex matrix such as soil even in the presence of a high level of contaminants. The microcalorimetric measures gave evidence of microbial adaptation under highest TPH concentration; this would help in assessing the potential of a polluted soil to promote self-degradation of oil-derived hydrocarbon under natural or assisted remediation. The results highlighted the importance of the application of combined approach in the study of those parameters driving the soil amelioration and bioremediation.

  12. Modelling total suspended solids, E. coli and carbamazepine, a tracer of wastewater contamination from combined sewer overflows

    Science.gov (United States)

    Pongmala, Khemngeun; Autixier, Laurène; Madoux-Humery, Anne-Sophie; Fuamba, Musandji; Galarneau, Martine; Sauvé, Sébastien; Prévost, Michèle; Dorner, Sarah

    2015-12-01

    Urban source water protection requires knowledge of sources of fecal contamination upstream of drinking water intakes. Combined and sanitary sewer overflows (CSOs and SSOs) are primary sources of microbiological contamination and wastewater micropollutants (WWMPs) in urban water supplies. To quantify the impact of sewer overflows, predictive simulation models are required and have not been widely applied for microbial contaminants such as fecal indicator bacteria and pathogens in urban drainage networks. The objective of this study was to apply a simulation model to estimate the dynamics of three contaminants in sewer overflows - total suspended solids, Escherichia coli (E. coli) and carbamazepine, a WWMP. A mixed combined and pseudo-sanitary drainage network in Québec, Canada was studied and modelled for a total of 7 events for which water quality data were available. Model results were significantly correlated with field water quality data. The model confirmed that the contributions of E. coli from runoff and sewer deposits were minor and their dominant source was from sewage. In contrast, the main sources of total suspended solids were stormwater runoff and sewer resuspension. Given that it is not present in stormwater, carbamazepine was found to be a useful stable tracer of sewage contributions to total contaminant loads and also provided an indication of the fraction of total suspended solids originating from sewer deposits because of its similar response to increasing flowrates.

  13. Pump combiner for air-clad fiber with PM single-mode signal feed-through

    DEFF Research Database (Denmark)

    Noordegraaf, Danny; Nielsen, Martin D.; Skovgaard, Peter M.W.;

    2009-01-01

    A pump combiner with single-mode PM signal feed-through designed for an air-clad photonic crystal fiber is demonstrated. Signal coupling is realized by a novel taper element allowing single-mode guidance at a taper ratio of 3.7.......A pump combiner with single-mode PM signal feed-through designed for an air-clad photonic crystal fiber is demonstrated. Signal coupling is realized by a novel taper element allowing single-mode guidance at a taper ratio of 3.7....

  14. Predicting Air-Water Geysers and Their Implications on Reducing Combined Sewer Overflows

    Science.gov (United States)

    Choi, Y.; Leon, A.; Apte, S.

    2014-12-01

    An air-water geyser in a closed conduit system is characterized by an explosive jetting of a mixture of air and water through drop-shafts. In this study, three scenarios of geysers are numerically simulated using a 3D computational fluid dynamics (CFD) model. The three tested scenarios are comprised of a drop shaft that is closed at its bottom and partially or fully open at the top. Initially, the lower section of the drop shaft is filled with pressurized air, the middle section with stagnant water and the upper section with air at atmospheric pressure. The pressure and volume of the pressurized air, and hence the stored energy, is different for all three test cases. The volume of the stagnant water and the air at atmospheric pressure are kept constant in the tests. The numerical simulations aim to identify the correlation between dimensionless energy stored in the pressurized air pocket and dimensionless maximum pressure reached at the outlet. This dimensionless correlation could be used to determine the energy threshold that does not produce air-water geyser, which in turn could be used in the design of combined sewer systems for minimizing geysers.

  15. Performance of personalized ventilation in a room with an underfloor air distribution system: transport of contaminants between occupants

    DEFF Research Database (Denmark)

    Cermak, Radim; Melikov, Arsen Krikor

    2003-01-01

    Studies have documented that personalized ventilation, which provides clean air at each office workplace, is able to improve substantially the quality of air inhaled by occupants. However, the interaction between the airflow generated by personalized ventilation and the airflow pattern outside...... two occupants was examined using a tracer-gas. Two breathing thermal manikins were used to simulate occupants. The results show that the tested combination of personalized and underfloor ventilation was not able to decrease concentration of the human-produced airborne pollutants in air inhaled...

  16. Applicability of the environmental relative moldiness index for quantification of residential mold contamination in an air pollution health effects study.

    Science.gov (United States)

    Kamal, Ali; Burke, Janet; Vesper, Stephen; Batterman, Stuart; Vette, Alan; Godwin, Christopher; Chavez-Camarena, Marina; Norris, Gary

    2014-01-01

    The Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS) investigated the impact of exposure to traffic-related air pollution on the respiratory health of asthmatic children in Detroit, Michigan. Since indoor mold exposure may also contribute to asthma, floor dust samples were collected in participants homes (n = 112) to assess mold contamination using the Environmental Relative Moldiness Index (ERMI). The repeatability of the ERMI over time, as well as ERMI differences between rooms and dust collection methods, was evaluated for insights into the application of the ERMI metric. ERMI values for the standard settled floor dust samples had a mean ± standard deviation of 14.5 ± 7.9, indicating high levels of mold contamination. ERMI values for samples collected from the same home 1 to 7 months apart (n = 52) were consistent and without systematic bias. ERMI values for separate bedroom and living room samples were highly correlated (r = 0.69, n = 66). Vacuum bag dust ERMI values were lower than for floor dust but correlated (r = 0.58, n = 28). These results support the use of the ERMI to evaluate residential mold exposure as a confounder in air pollution health effects studies.

  17. Applicability of the Environmental Relative Moldiness Index for Quantification of Residential Mold Contamination in an Air Pollution Health Effects Study

    Directory of Open Access Journals (Sweden)

    Ali Kamal

    2014-01-01

    Full Text Available The Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS investigated the impact of exposure to traffic-related air pollution on the respiratory health of asthmatic children in Detroit, Michigan. Since indoor mold exposure may also contribute to asthma, floor dust samples were collected in participants homes (n=112 to assess mold contamination using the Environmental Relative Moldiness Index (ERMI. The repeatability of the ERMI over time, as well as ERMI differences between rooms and dust collection methods, was evaluated for insights into the application of the ERMI metric. ERMI values for the standard settled floor dust samples had a mean ± standard deviation of 14.5±7.9, indicating high levels of mold contamination. ERMI values for samples collected from the same home 1 to 7 months apart (n=52 were consistent and without systematic bias. ERMI values for separate bedroom and living room samples were highly correlated (r=0.69, n=66. Vacuum bag dust ERMI values were lower than for floor dust but correlated (r=0.58, n=28. These results support the use of the ERMI to evaluate residential mold exposure as a confounder in air pollution health effects studies.

  18. Applicability of the Environmental Relative Moldiness Index for Quantification of Residential Mold Contamination in an Air Pollution Health Effects Study

    Science.gov (United States)

    Kamal, Ali; Vesper, Stephen; Batterman, Stuart; Godwin, Christopher; Chavez-Camarena, Marina; Norris, Gary

    2014-01-01

    The Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS) investigated the impact of exposure to traffic-related air pollution on the respiratory health of asthmatic children in Detroit, Michigan. Since indoor mold exposure may also contribute to asthma, floor dust samples were collected in participants homes (n = 112) to assess mold contamination using the Environmental Relative Moldiness Index (ERMI). The repeatability of the ERMI over time, as well as ERMI differences between rooms and dust collection methods, was evaluated for insights into the application of the ERMI metric. ERMI values for the standard settled floor dust samples had a mean ± standard deviation of 14.5 ± 7.9, indicating high levels of mold contamination. ERMI values for samples collected from the same home 1 to 7 months apart (n = 52) were consistent and without systematic bias. ERMI values for separate bedroom and living room samples were highly correlated (r = 0.69, n = 66). Vacuum bag dust ERMI values were lower than for floor dust but correlated (r = 0.58, n = 28). These results support the use of the ERMI to evaluate residential mold exposure as a confounder in air pollution health effects studies. PMID:25431602

  19. Micrometeorological Measurement of Fetch- and Atmospheric Stability-Dependent Air- Water Exchange of Legacy Semivolatile Organic Contaminants in Lake Superior

    Science.gov (United States)

    Perlinger, J. A.; Tobias, D. E.; Rowe, M. D.

    2008-12-01

    Coastal waters including the Laurentian Great Lakes are particularly susceptible to local, regional, and long- range transport and deposition of semivolatile organic contaminants (SOCs) as gases and/or associated with particles. Recently-marketed SOCs can be expected to undergo net deposition in surface waters, whereas legacy SOCs such as polychlorinated biphenyls (PCBs) are likely to be at equilibrium with respect to air-water exchange, or, if atmospheric concentrations decrease through, e.g., policy implementation, to undergo net gas emission. SOC air-water exchange flux is usually estimated using the two-film model. This model describes molecular diffusion through the air and water films adjacent to the air-water interface. Air-water exchange flux is estimated as the product of SOC fugacity, typically based on on-shore gaseous concentration measurements, and a transfer coefficient, the latter which is estimated from SOC properties and environmental conditions. The transfer coefficient formulation commonly applied neglects resistance to exchange in the internal boundary layer under atmospherically stable conditions, and the use of on-shore gaseous concentration neglects fetch-dependent equilibration, both of which will tend to cause overestimation of flux magnitude. Thus, for legacy chemicals or in any highly contaminated surface water, the rate at which the water is cleansed through gas emission tends to be over-predicted using this approach. Micrometeorological measurement of air-water exchange rates of legacy SOCs was carried out on ships during four transect experiments during off-shore flow in Lake Superior using novel multicapillary collection devices and thermal extraction technology to measure parts-per-quadrillion SOC levels. Employing sensible heat in the modified Bowen ratio, fluxes at three over-water stations along the transects were measured, along with up-wind, onshore gaseous concentration and aqueous concentration. The atmosphere was unstable for

  20. Measuring Carbon-based Contaminant Mineralization Using Combined CO2 Flux and Radiocarbon Analyses

    Science.gov (United States)

    Boyd, Thomas J.; Montgomery, Michael T.; Cuenca, Richard H.; Hagimoto, Yutaka

    2016-01-01

    A method is described which uses the absence of radiocarbon in industrial chemicals and fuels made from petroleum feedstocks which frequently contaminate the environment. This radiocarbon signal — or rather the absence of signal — is evenly distributed throughout a contaminant source pool (unlike an added tracer) and is not impacted by biological, chemical or physical processes (e.g., the 14C radioactive decay rate is immutable). If the fossil-derived contaminant is fully degraded to CO2, a harmless end-product, that CO2 will contain no radiocarbon. CO2 derived from natural organic matter (NOM) degradation will reflect the NOM radiocarbon content (usually <30,000 years old). Given a known radiocarbon content for NOM (a site background), a two end-member mixing model can be used to determine the CO2 derived from a fossil source in a given soil gas or groundwater sample. Coupling the percent CO2 derived from the contaminant with the CO2 respiration rate provides an estimate for the total amount of contaminant degraded per unit time. Finally, determining a zone of influence (ZOI) representing the volume from which site CO2 is collected allows determining the contaminant degradation per unit time and volume. Along with estimates for total contaminant mass, this can ultimately be used to calculate time-to-remediate or otherwise used by site managers for decision-making. PMID:27805601

  1. Distribution pathways of hexachlorocyclohexane isomers in a soil-plant-air system. A case study with Cynara scolymus L. and Erica sp. plants grown in a contaminated site

    Energy Technology Data Exchange (ETDEWEB)

    Calvelo Pereira, R. [Departamento de Edafoloxia e Quimica Agricola, Facultade de Bioloxia, Universidade de Santiago de Compostela, Campus Sur, 15782 Santiago de Compostela (Spain)], E-mail: edrobert@usc.es; Monterroso, C.; Macias, F.; Camps-Arbestain, M. [Departamento de Edafoloxia e Quimica Agricola, Facultade de Bioloxia, Universidade de Santiago de Compostela, Campus Sur, 15782 Santiago de Compostela (Spain)

    2008-09-15

    This study focuses on the main routes of distribution and accumulation of different hexachlorocyclohexane (HCH) isomers (mainly {alpha}-, {beta}-, {gamma}- and {delta}-HCH) in a soil-plant-air system. A field assay was carried out with two plant species, Cynara scolymus L. and Erica sp., which were planted either: (i) directly in the HCH-contaminated soil; or (ii) in pots filled with uncontaminated soil, which were placed in the HCH-contaminated soil. Both plant species accumulated HCH in their tissues, with relatively higher accumulation in above-ground biomass than in roots. The {beta}-HCH isomer was the main isomer in all plant tissues. Adsorption of HCH by the roots from contaminated soil (soil {yields} root pathway) and adsorption through the aerial biomass from either the surrounding air, following volatilization of the contaminant (soil {yields} air {yields} shoot pathway), and/or contact with air-suspended particles contaminated with HCH (soil particles {yields} shoot pathway) were the main mechanisms of accumulation. These results may have important implications for the use of plants for reducing the transfer of contaminants via the atmosphere. - Hexachlorocyclohexane isomers are preferentially accumulated in above-ground tissues of plants grown in a heavily contaminated site.

  2. Cardiovascular effects of the combined exposure to noise and outdoor air pollution: A review

    NARCIS (Netherlands)

    Lekaviciute, J.; Kluizenaar, Y. de; Laszlo, H.E.; Hansell, A.; Floud, S.; Lercher, P.; Babisch, W.; Kephalopoulos, S.

    2012-01-01

    The combination of noise with other environmental stressors, particularly traffic-related air pollution, has been of growing interest in recent years. Cardiovascular effects are among the most evidence-based physical health outcomes. Moreover, the European Network on Noise and Health (ENNAH), which

  3. A NEW COMBINED LOCAL AND NON-LOCAL PBL MODEL FOR METEOROLOGY AND AIR QUALITY MODELING

    Science.gov (United States)

    A new version of the Asymmetric Convective Model (ACM) has been developed to describe sub-grid vertical turbulent transport in both meteorology models and air quality models. The new version (ACM2) combines the non-local convective mixing of the original ACM with local eddy diff...

  4. Perfluorinated acids in air, rain, snow, surface runoff, and lakes: relative importance of pathways to contamination of urban lakes.

    Science.gov (United States)

    Kim, Seung-Kyu; Kannan, Kurunthachalam

    2007-12-15

    Concentrations of perfluorinated acids (PFAs) were measured in various environmental matrices (air, rain, snow, surface runoff water, and lake water) in an urban area, to enable identification of sources and pathways of PFAs to urban water bodies. Total PFA concentrations ranged from 8.28 to 16.0 pg/ m3 (mean 11.3) in bulk air (sum of vapor and particulate phases), 0.91 to 13.2 ng/L (6.19) in rainwater, 0.91 to 23.9 ng/L (7.98) in snow, 1.11-81.8 ng/L (15.1 ng/L) in surface runoff water (SRW), and 9.49 to 35.9 ng/L (21.8) in lake water. Perfluorooctanoic acid (PFOA) was the predominant compound, accounting for > 35% of the total PFA concentrations, in all environmental matrices analyzed. Concentrations and relative compositions of PFAs in SRW were similar to those found for urban lakes. SRW contributes to contamination by PFOA in urban lakes. The measured concentration ratios of FTOH to PFOA in air were 1-2 orders of magnitude lower than the ratios calculated based on an assumption of exclusive atmospheric oxidation of FTOHs. Nevertheless, the mass balance analysis suggested the presence of an unknown input pathway that could contribute to a significant amount of total PFOA loadings to the lake. Flux estimates of PFOA at the air-water interface in the urban lake suggest net volatilization from water.

  5. DFT Study On Effects of CO2 Contamination in Non-Aqueous Li-Air Batteries

    DEFF Research Database (Denmark)

    Mekonnen, Yedilfana Setarge; Mýrdal, Jón Steinar Garðarsson; Vegge, Tejs

    2013-01-01

    Density Functional Theory (DFT) studies on the effects of carbon dioxide (CO2) contamination at the cathode of rechargeable non-aqueous Li-O2 batteries, where the insulating material Lithium peroxide (Li2O2) is the main discharge product. The Li2O2 growth mechanism and overpotentials are investig......Density Functional Theory (DFT) studies on the effects of carbon dioxide (CO2) contamination at the cathode of rechargeable non-aqueous Li-O2 batteries, where the insulating material Lithium peroxide (Li2O2) is the main discharge product. The Li2O2 growth mechanism and overpotentials...

  6. Combined effects of road traffic noise and ambient air pollution in relation to risk for stroke?

    Science.gov (United States)

    Sørensen, Mette; Lühdorf, Pernille; Ketzel, Matthias; Andersen, Zorana J; Tjønneland, Anne; Overvad, Kim; Raaschou-Nielsen, Ole

    2014-08-01

    Exposure to road traffic noise and air pollution have both been associated with risk for stroke. The few studies including both exposures show inconsistent results. We aimed to investigate potential mutual confounding and combined effects between road traffic noise and air pollution in association with risk for stroke. In a population-based cohort of 57,053 people aged 50-64 years at enrollment, we identified 1999 incident stroke cases in national registries, followed by validation through medical records. Mean follow-up time was 11.2 years. Present and historical residential addresses from 1987 to 2009 were identified in national registers and road traffic noise and air pollution were modeled for all addresses. Analyses were done using Cox regression. A higher mean annual exposure at time of diagnosis of 10 µg/m(3) nitrogen dioxide (NO2) and 10 dB road traffic noise at the residential address was associated with ischemic stroke with incidence rate ratios (IRR) of 1.11 (95% CI: 1.03, 1.20) and 1.16 (95% CI: 1.07, 1.24), respectively, in single exposure models. In two-exposure models road traffic noise (IRR: 1.15) and not NO2 (IRR: 1.02) was associated with ischemic stroke. The strongest association was found for combination of high noise and high NO2 (IRR=1.28; 95% CI=1.09-1.52). Fatal stroke was positively associated with air pollution and not with traffic noise. In conclusion, in mutually adjusted models road traffic noise and not air pollution was associated ischemic stroke, while only air pollution affected risk for fatal strokes. There were indications of combined effects.

  7. Assessment of internal contamination problems associated with bioregenerative air/water purification systems

    Science.gov (United States)

    Johnson, Anne H.; Bounds, B. Keith; Gardner, Warren

    1990-01-01

    The emphasis is to characterize the mechanisms of bioregenerative revitalization of air and water as well as to assess the possible risks associated with such a system in a closed environment. Marsh and aquatic plants are utilized for purposes of wastewater treatment as well as possible desalinization and demineralization. Foliage plants are also being screened for their ability to remove toxic organics from ambient air. Preliminary test results indicate that treated wastewater is typically of potable quality with numbers of pathogens such as Salmonella and Shigella significantly reduced by the artificial marsh system. Microbiological analyses of ambient air indicate the presence of bacilli as well as thermophilic actinomycetes.

  8. Air Pollution and Preterm Birth in the U.S. State of Georgia (2002–2006): Associations with Concentrations of 11 Ambient Air Pollutants Estimated by Combining Community Multiscale Air Quality Model (CMAQ) Simulations with Stationary Monitor Measurements

    Science.gov (United States)

    Hao, Hua; Chang, Howard H.; Holmes, Heather A.; Mulholland, James A.; Klein, Mitch; Darrow, Lyndsey A.; Strickland, Matthew J.

    2015-01-01

    Background: Previous epidemiologic studies suggest associations between preterm birth and ambient air pollution. Objective: We investigated associations between 11 ambient air pollutants, estimated by combining Community Multiscale Air Quality model (CMAQ) simulations with measurements from stationary monitors, and risk of preterm birth (Darrow LA, Strickland MJ. 2016. Air pollution and preterm birth in the U.S. state of Georgia (2002–2006): associations with concentrations of 11 ambient air pollutants estimated by combining Community Multiscale Air Quality Model (CMAQ) simulations with stationary monitor measurements. Environ Health Perspect 124:875–880; http://dx.doi.org/10.1289/ehp.1409651 PMID:26485731

  9. Sensory and Physiological Effects on Humans of Combined Exposures to Air Temperatures and Volatile Organic Compounds

    DEFF Research Database (Denmark)

    Mølhave, Lars; Liu, Zunyong; Jørgensen, Anne Hempel

    1993-01-01

    Ten healthy humans were exposed to combinations of volatile organic compounds (VOCs) and air temperature (0 mg/m3 and 10 mg/m3 of a mixture of 22 volatile organic compounds and 18, 22 and 26° C). Previously demonstrated effects of VOCs and thermal exposures were replicated. For the first time nasal...... cross-sectional areas and nasal volumes, as measured by acoustic rhinometry, were shown to decrease with decreasing temperature and increasing VOC exposure. Temperature and pollutant exposures affected air quality, the need for more ventilation, skin humidity on the forehead, sweating, acute sensory...

  10. Distribution pathways of hexachlorocyclohexane isomers in a soil-plant-air system. A case study with Cynara scolymus L. and Erica sp. plants grown in a contaminated site.

    Science.gov (United States)

    Pereira, R Calvelo; Monterroso, C; Macías, F; Camps-Arbestain, M

    2008-09-01

    This study focuses on the main routes of distribution and accumulation of different hexachlorocyclohexane (HCH) isomers (mainly alpha-, beta-, gamma- and delta-HCH) in a soil-plant-air system. A field assay was carried out with two plant species, Cynara scolymus L. and Erica sp., which were planted either: (i) directly in the HCH-contaminated soil; or (ii) in pots filled with uncontaminated soil, which were placed in the HCH-contaminated soil. Both plant species accumulated HCH in their tissues, with relatively higher accumulation in above-ground biomass than in roots. The beta-HCH isomer was the main isomer in all plant tissues. Adsorption of HCH by the roots from contaminated soil (soil-->root pathway) and adsorption through the aerial biomass from either the surrounding air, following volatilization of the contaminant (soil-->air-->shoot pathway), and/or contact with air-suspended particles contaminated with HCH (soil particles-->shoot pathway) were the main mechanisms of accumulation. These results may have important implications for the use of plants for reducing the transfer of contaminants via the atmosphere.

  11. Monitoring of environmental contaminants in air and precipitation, annual report 2014

    OpenAIRE

    Nizzetto, Pernilla Bohlin; Aas, Wenche; Warner, Nicholas Alexander

    2015-01-01

    This report presents results from 2014 for persistent organic pollutants (POPs) and heavy metals from the rural air- and precipitation chemistry monitoring network in Norway. These results are compared to previous years.

  12. Environmental contaminants in fish from Mere Brook - U.S. Naval Air Station, Brunswick, Maine

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Mere Brook bisects three former landfills at the U.S. Naval Air Station in Brunswick, Maine (NASB). Leachate, soil, and sediment analyzed during Superfund remedial...

  13. Innovative open air brayton combined cycle systems for the next generation nuclear power plants

    Science.gov (United States)

    Zohuri, Bahman

    The purpose of this research was to model and analyze a nuclear heated multi-turbine power conversion system operating with atmospheric air as the working fluid. The air is heated by a molten salt, or liquid metal, to gas heat exchanger reaching a peak temperature of 660 0C. The effects of adding a recuperator or a bottoming steam cycle have been addressed. The calculated results are intended to identify paths for future work on the next generation nuclear power plant (GEN-IV). This document describes the proposed system in sufficient detail to communicate a good understanding of the overall system, its components, and intended uses. The architecture is described at the conceptual level, and does not replace a detailed design document. The main part of the study focused on a Brayton --- Rankine Combined Cycle system and a Recuperated Brayton Cycle since they offer the highest overall efficiencies. Open Air Brayton power cycles also require low cooling water flows relative to other power cycles. Although the Recuperated Brayton Cycle achieves an overall efficiency slightly less that the Brayton --- Rankine Combined Cycle, it is completely free of a circulating water system and can be used in a desert climate. Detailed results of modeling a combined cycle Brayton-Rankine power conversion system are presented. The Rankine bottoming cycle appears to offer a slight efficiency advantage over the recuperated Brayton cycle. Both offer very significant advantages over current generation Light Water Reactor steam cycles. The combined cycle was optimized as a unit and lower pressure Rankine systems seem to be more efficient. The combined cycle requires a lot less circulating water than current power plants. The open-air Brayton systems appear to be worth investigating, if the higher temperatures predicted for the Next Generation Nuclear Plant do materialize.

  14. On-site application of air cleaner emitting plasma ion to reduce airborne contaminants in pig building

    Science.gov (United States)

    Cho, Man Su; Ko, Han Jong; Kim, Daekeun; Kim, Ki Youn

    2012-12-01

    The objective of this field study is to evaluate temporal reduction efficiency of air cleaner emitting plasma ion on airborne pollutants emitted from pig building. The operation principle of air cleaner based on plasma ion is that hydrogen atoms and oxygen ions combine to form hydroperoxyl radicals (HOO-), which surround and attach to surface of airborne microorganisms and eliminate them by breaking the hydrogen bond in their protein structure. In gaseous pollutants, it was found that there is no reduction effect of the air cleaner on ammonia and hydrogen sulfide (p > 0.05). In particulate pollutants, the air cleaner showed mean 79%(±6.1) and 78%(±3.0) of reduction efficiency for PM2.5. and PM1, respectively, compared to the control without air cleaner (p 0.05). In biological pollutants, the mean reduction efficiencies for airborne bacteria and fungi by application of air cleaner were 22%(±6.6) and 25%(±8.7), respectively (p effect on PM2.5, PM1, airborne bacteria and airborne fungi among airborne pollutants distributed in pig building while it did not lead to significant reduction of ammonia and hydrogen sulfide.

  15. Analytical techniques combined with chemometrics for authentication and determination of contaminants in condiments

    NARCIS (Netherlands)

    Reinholds, Ingars; Bartkevics, Vadims; Silvis, Isabelle C.J.; Ruth, van Saskia M.; Esslinger, Susanne

    2015-01-01

    Spices and herbs play an important role as flavorings, colorants, and also as bioactive compounds used in medicine and cosmetics. The presence of common contaminants, e.g., mycotoxins, pesticide residues, heavy metals, and the adulterants, e.g., azo dyes, filth and extraneous matter have been per

  16. Nonlinear Least-Squares Based Method for Identifying and Quantifying Single and Mixed Contaminants in Air with an Electronic Nose

    Directory of Open Access Journals (Sweden)

    Margaret A. Ryan

    2005-12-01

    Full Text Available The Jet Propulsion Laboratory has recently developed and built an electronic nose(ENose using a polymer-carbon composite sensing array. This ENose is designed to be usedfor air quality monitoring in an enclosed space, and is designed to detect, identify andquantify common contaminants at concentrations in the parts-per-million range. Itscapabilities were demonstrated in an experiment aboard the National Aeronautics and SpaceAdministration’s Space Shuttle Flight STS-95. This paper describes a modified nonlinearleast-squares based algorithm developed to analyze data taken by the ENose, and itsperformance for the identification and quantification of single gases and binary mixtures oftwelve target analytes in clean air. Results from laboratory-controlled events demonstrate theeffectiveness of the algorithm to identify and quantify a gas event if concentration exceedsthe ENose detection threshold. Results from the flight test demonstrate that the algorithmcorrectly identifies and quantifies all registered events (planned or unplanned, as singles ormixtures with no false positives and no inconsistencies with the logged events and theindependent analysis of air samples.

  17. Enhancement of the microbial community biomass and diversity during air sparging bioremediation of a soil highly contaminated with kerosene and BTEX.

    Science.gov (United States)

    Kabelitz, Nadja; Machackova, Jirina; Imfeld, Gwenaël; Brennerova, Maria; Pieper, Dietmar H; Heipieper, Hermann J; Junca, Howard

    2009-03-01

    In order to obtain insights in complexity shifts taking place in natural microbial communities under strong selective pressure, soils from a former air force base in the Czech Republic, highly contaminated with jet fuel and at different stages of a bioremediation air sparging treatment, were analyzed. By tracking phospholipid fatty acids and 16S rRNA genes, a detailed monitoring of the changes in quantities and composition of the microbial communities developed at different stages of the bioventing treatment progress was performed. Depending on the length of the air sparging treatment that led to a significant reduction in the contamination level, we observed a clear shift in the soil microbial community being dominated by Pseudomonads under the harsh conditions of high aromatic contamination to a status of low aromatic concentrations, increased biomass content, and a complex composition with diverse bacterial taxonomical branches.

  18. Enhancement of the microbial community biomass and diversity during air sparging bioremediation of a soil highly contaminated with kerosene and BTEX

    Energy Technology Data Exchange (ETDEWEB)

    Kabelitz, Nadja; Heipieper, Hermann J. [Helmholtz Centre for Environmental Research (UFZ), Leipzig (Germany). Dept. of Bioremediation; Machackova, Jirina [Earth Tech CZ s.r.o., Prague (Czech Republic); Imfeld, Gwenael [Helmholtz Centre for Environmental Research (UFZ), Leipzig (Germany). Dept. of Isotope Biogeochemistry; Brennerova, Maria [Czech Academy of Sciences, Prague (CZ). Inst. of Microbiology (IMIC); Pieper, Dietmar H.; Junca, Howard [Helmholtz Centre for Infection Research (HZI), Braunschweig (Germany). Biodegradation Research Group

    2009-03-15

    In order to obtain insights in complexity shifts taking place in natural microbial communities under strong selective pressure, soils from a former air force base in the Czech Republic, highly contaminated with jet fuel and at different stages of a bioremediation air sparging treatment, were analyzed. By tracking phospholipid fatty acids and 16S rRNA genes, a detailed monitoring of the changes in quantities and composition of the microbial communities developed at different stages of the bioventing treatment progress was performed. Depending on the length of the air sparging treatment that led to a significant reduction in the contamination level, we observed a clear shift in the soil microbial community being dominated by Pseudomonads under the harsh conditions of high aromatic contamination to a status of low aromatic concentrations, increased biomass content, and a complex composition with diverse bacterial taxonomical branches. (orig.)

  19. Analysis and Optimization of a Compressed Air Energy Storage—Combined Cycle System

    OpenAIRE

    Wenyi Liu; Linzhi Liu; Luyao Zhou; Jian Huang; Yuwen Zhang; Gang Xu; Yongping Yang

    2014-01-01

    Compressed air energy storage (CAES) is a commercial, utility-scale technology that provides long-duration energy storage with fast ramp rates and good part-load operation. It is a promising storage technology for balancing the large-scale penetration of renewable energies, such as wind and solar power, into electric grids. This study proposes a CAES-CC system, which is based on a conventional CAES combined with a steam turbine cycle by waste heat boiler. Simulation and thermodynamic analysis...

  20. Room air stratification in combined chilled ceiling and displacement ventilation systems.

    OpenAIRE

    Schiavon, Stefano; Bauman, Fred; Tully, Brad; Rimmer, Julian

    2012-01-01

    Radiant chilled ceilings (CC) with displacement ventilation (DV) represent a promising integrated system design that combines the energy efficiency of both sub-systems with the opportunity for improved ventilation performance resulting from the thermally stratified environment of DV systems. The purpose of this study was to conduct laboratory experiments for a typical U.S. interior zone office to investigate how room air stratification is affected by the ratio of cooling load removed by a chi...

  1. Evaluation of co-benefits from combined climate change and air pollution reduction strategies

    Science.gov (United States)

    Leitao, Joana; Van Dingenen, Rita; Dentener, Frank; Rao, Shilpa

    2014-05-01

    The connection of climate change and air pollution is becoming more relevant in the process of policy making and implementation of emission control strategies because of resulting co-benefits and trade-offs. Some sectors, such as fossil fuel combustion, are sources of both pollutants (NOx and PM) as well as greenhouse gas (CO2). Additionally, the use of wood burning as biofuel to reduce climate impact may in fact deteriorate air quality. Furthermore, several air pollutants are important radiative forcers and regulating their emissions impacts on climate. It is evident that both problems need to be undertaken with a common strategy and the existence of cross-policy with co-benefits may encourage their implementation. The LIMITS FP7 project (http://www.feem-project.net/limits/index.html) was designed with the main goal of assessing strategies for reduction of GHG emissions so that the 2°C target can be achieved. The work developed focus on the evaluation of the implementation of strategies analysing several aspects of different scenarios, namely: the feasibility of low carbon scenarios in terms of available technologies and infrastructure, the required financial mechanisms, and also the co-benefits regarding energy security, economic development and air pollution. For the latter, five integrated assessment models (IAMs) provided greenhouse gases and pollutant emission values for several scenarios. These were based on air pollution scenarios defined according to stringency and implementation of future global legislation. They which were also combined with 2 climate policy scenarios (no climate policy and 2.8 W/m2 target). The former are mostly focused on non-climate policies and technical control measures for emissions of air pollutants, such as PM2.5, NOx and SO2, with their emission factors harmonized between the IAMs. With the global air quality source-receptor model TM5-FASST the impact of the resulting emissions was analysed and the co-benefits of combined

  2. Study on Decomposition of Indoor Air Contaminants by Pulsed Atmospheric Microplasma

    OpenAIRE

    Tomoya Kuwabara; Marius Blajan; Kazuo Shimizu

    2012-01-01

    Decomposition of formaldehyde (HCHO) by a microplasma reactor in order to improve Indoor Air Quality (IAQ) was achieved. HCHO was removed from air using one pass through reactor treatment (5 L/min). From an initial concentration of HCHO of 0.7 ppm about 96% was removed in one pass treatment using a discharge power of 0.3 W provided by a high voltage amplifier and a Marx Generator with MOSFET switches as pulsed power supplies. Moreover microplasma driven by the Marx Generator did not generate ...

  3. Mass spectrometry of solid samples in open air using combined laser ionization and ambient metastable ionization

    Science.gov (United States)

    He, X. N.; Xie, Z. Q.; Gao, Y.; Hu, W.; Guo, L. B.; Jiang, L.; Lu, Y. F.

    2012-01-01

    Mass spectrometry of solid samples in open air was carried out using combined laser ionization and metastable ionization time-of-flight mass spectrometry (LI-MI-TOFMS) in ambient environment for qualitative and semiquantitative (relative analyte information, not absolute information) analysis. Ambient metastable ionization using a direct analysis in realtime (DART) ion source was combined with laser ionization time-of-flight mass spectrometry (LI-TOFMS) to study the effects of combining metastable and laser ionization. A series of metallic samples from the National Institute of Standards and Technology (NIST 494, 495, 498, 499, and 500) and a pure carbon target were characterized using LI-TOFMS in open air. LI-MI-TOFMS was found to be superior to laser-induced breakdown spectroscopy (LIBS). Laser pulse energies between 10 and 200 mJ at the second harmonic (532 nm) of an Nd:YAG laser were applied in the experiment to obtain a high degree of ionization in plasmas. Higher laser pulse energy improves signal intensities of trace elements (such as Fe, Cr, Mn, Ni, Ca, Al, and Ag). Data were analyzed by numerically calculating relative sensitivity coefficients (RSCs) and limit of detections (LODs) from mass spectrometry (MS) and LIBS spectra. Different parameters, such as boiling point, ionization potential, RSC, LOD, and atomic weight, were shown to analyze the ionization and MS detection processes in open air.

  4. Microbial Contamination on Used Surgical Masks among Hospital Personnel and Microbial Air Quality in their Working Wards: A Hospital in Bangkok

    Directory of Open Access Journals (Sweden)

    Pipat Luksamijarulkul

    2014-09-01

    Full Text Available Objective: To assess the relationship of bacterial and fungal contamination on used surgical masks worn by the hospital personnel and microbial air quality in their working wards. Methods: This is a cross-sectional study of 230 used surgical masks collected from 214 hospital personnel, and 215 indoor air samples collected from their working wards to culture for bacterial and fungal counts. This study was carried out at the hospital in Bangkok. Group or genus of isolated bacteria and fungi were preliminarily identified by Gram’s stain and lacto-phenol cotton blue. Data were analyzed using paired t-test and Pearson’s correlation coefficient at the significant level of p<0.050. Results: Means and standard deviation of bacterial and fungal contamination on inside area of the used masks were 47 ± 56 and 15 ± 9 cfu/ml/piece, and on outside area were 166 ± 199 and 34 ± 18 cfu/ml/piece, respectively, p<0.001. The bacterial and fungal contamination on used masks from hospital personnel working in the male and female medical wards and out-patient department, as well as the bacterial and fungal counts of the indoor air sample collected from the same area were relatively higher than the other wards. The predominant isolated bacteria and fungi contaminated on inside and outside areas of the used masks and air samples were similar (Staphylococcus spp. and Aspergillus spp.; respectively. For its relationship, results found that bacterial and fungal counts in air samples showed significantly positive correlation with the bacterial contamination load on outside area of the used masks, r=0.16, p=0.018 and r=0.21, p=0.003, respectively. Conclusion: High bacterial contamination on outside area of the used masks was demonstrated, and it showed a significant correlation with microbial air quality of working wards.

  5. A RAPID DNA EXTRACTION METHOD FOR PCR IDENTIFICATION OF FUNGAL INDOOR AIR CONTAMINANTS

    Science.gov (United States)

    Following air sampling, fungal DNA needs to be extracted and purified to a state suitable for laboratory use. Our laboratory has developed a simple method of extraction and purification of fungal DNA appropriate for enzymatic manipulation and polymerase chain reaction (PCR) appli...

  6. Acute and chronic toxicity of emerging contaminants, alone or in combination, in Chlorella vulgaris and Daphnia magna.

    Science.gov (United States)

    Pablos, María Victoria; García-Hortigüela, Pilar; Fernández, Carlos

    2015-04-01

    This work presents the toxicity results of different compounds classified as emerging contaminants on primary producers and primary consumers in the aquatic compartment. The objectives were to (1) obtain acute and chronic toxicity results for algae and Daphnia magna using standardised or currently used tests, (2) study the relationship between the effects on the impaired feeding rate for daphnia and the effects of reproduction and (3) examine the responses on daphnia and algae after binary combinations of environmentally relevant compounds and perfluorooctane sulfonate (PFOS). Toxicity data on personal care products (PCPs), not reported in the scientific literature up to now, are presented. The results confirmed that the Daphnia feeding bioassay can be a sensitive, ecologically relevant endpoint to detect sublethal effects and could complement the information obtained with the reproduction test on Daphnia. The results also suggested that the concomitant occurrence of PFOS and other emerging contaminants in the aquatic compartment could affect the toxicity of some compounds according to their lipophilicity.

  7. Secondary pollutants or macro ecological contamination: A biotic contamination of the air. Contaminantes secundarios o contaminacion macroecologica: contaminacion abiotica de la atmosfera

    Energy Technology Data Exchange (ETDEWEB)

    Moreno Abil, O. (Catedra de Medicina Preventiva y Salud Publica Facultad de Medicina, Universidad de Granada (Spain))

    1994-01-01

    The primary and secondary contaminants are analyzed by the author. As well the effects of these contaminants by man and the ecosystem. The main topics are: (1) Photochemistry contamination (photo chemical smog) (2) Acid rain and its effects. (3) Depletion of ozone layer.

  8. Growth under elevated air temperature alters secondary metabolites in Robinia pseudoacacia L. seedlings in Cd- and Pb-contaminated soils.

    Science.gov (United States)

    Zhao, Y H; Jia, X; Wang, W K; Liu, T; Huang, S P; Yang, M Y

    2016-09-15

    Plant secondary metabolites play a pivotal role in growth regulation, antioxidant activity, pigment development, and other processes. As the global climate changes, increasing atmospheric temperatures and contamination of soil by heavy metals co-occur in natural ecosystems, which alters the pH of rhizosphere soil and influences the bioavailability and mobility of metals. Elevated temperatures in combination with heavy metals are expected to affect plant secondary metabolites, but this issue has not been extensively examined. Here, we investigated secondary metabolites in Robiniapseudoacacia seedlings exposed to elevated temperatures using a passive warming device in combination with Cd- and Pb-contaminated soils. Heavy metals significantly stimulated the accumulation of saponins, phenolic compounds, and flavonoids in leaves and stems; alkaloid compounds increased in leaves and decreased in stems, and condensed tannins fluctuated. Elevated temperatures, alone and in combination with Cd and Pb, caused increases in secondary metabolites in the plant tissues. Phenolic compounds showed the greatest changes among the secondary metabolites and significant interactive effects of temperature and metals were observed. These results suggest that slightly elevated temperature could enhance protective and defense mechanisms of Robinia pseudoacacia seedlings exposed to heavy metals by stimulating the production of secondary metabolites.

  9. Particle re-entrainment from a powder deposit in an horizontal air flow; Mise en suspension d'une contamination particulaire par ecoulement d'air

    Energy Technology Data Exchange (ETDEWEB)

    Alloul, L.; Witschger, O. [CEA/Saclay, Inst. de Protection et de Surete Nucleaire, IPSN/DPEA/SERAC, Lab. de Physique et Metrologie des Aerosols et du Confinement, 91 - Gif-sur-Yvette (France); Renoux, A. [Paris-12 Univ., Lab. de Physique des Aerosols et de Transfert des Contaminations, 94 - Creteil (France); Le Dur, D. [Aerolab, 91 - Courtaboeuf (France); Monnatte, J. [COGEMA, Branche Combustible et Recyclage, Service Qualite Surete, 78 - Saint-Quentin-en-Yvelines (France)

    2000-07-01

    Particle re-entrainment from surfaces to turbulent air flow is an important subject in many different fields like nuclear safety, environmental air pollution, sediment transport by wind, surface contamination in semiconductor operations. Theoretical and experimental studies have been numerous and cover different aspects of the phenomena. Although a number of theoretical works have been devoted for describing the mechanisms of detachment of primary spherical particles form flat smooth surfaces in a turbulent flow, experimental data are still needed in order to comparison. Moreover, the knowledge of the effect of parameters related to the deposit (monolayer, multilayer, cone-like pile), the powder particles (particle-size distribution, adhesive properties), the surface (roughness,...),the airflow (velocity, acceleration, turbulence) or the environment (humidity,...) is still in an elementary stage. The main objective of our work is to contribute to the understanding and quantification of the parameters that govern the particle re-entrainment from a powder deposit in an turbulent horizontal airflow. Therefore, a new experimental facility called BISE (french acronym for wind tunnel for studying particle re-entrainment by airflow) has been designed and built in our laboratory. (authors)

  10. Combined effects of temperature changes and metal contamination at different levels of biological organization in yellow perch

    Energy Technology Data Exchange (ETDEWEB)

    Grasset, Julie [Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC G1K 9A9 (Canada); Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6 (Canada); Ollivier, Élodie [Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC G1K 9A9 (Canada); Bougas, Bérénice [Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6 (Canada); Yannic, Glenn [Laboratoire d’Écologie Alpine, UMR CNRS 5553, Université de Savoie Mont Blanc, 73376 Le Bourget-du-lac (France); Campbell, Peter G.C. [Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC G1K 9A9 (Canada); Bernatchez, Louis [Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6 (Canada); Couture, Patrice, E-mail: patrice.couture@ete.inrs.ca [Institut National de la Recherche Scientifique (INRS), Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC G1K 9A9 (Canada)

    2016-08-15

    Highlights: • Yellow perch were exposed to a combination of heat and metal (Cd or Ni) stress. • Kidney metal accumulation was greatly enhanced at higher temperatures. • Elevated temperatures negatively affected several indicators of condition and metabolic capacities. • Exposure to Ni stimulated gonad development. • Metal stress modified the normal response of antioxidant capacities and apoptosis to heat stress. - Abstract: In this study, we measured the effects of temperature (9 °C, 20 °C, and 28 °C), metal contamination (cadmium and nickel) and their interaction on yellow perch (Perca flavescens) using liver enzymatic and transcriptomic endpoints and biometric indices. Kidney metal concentrations increased with a rise of temperature. The biometric indices analysed (Fulton condition factor, pyloric cæca, hepatosomatic and gonadosomatic indices) generally decreased with an increase of temperature but not with metal contamination. At the enzymatic level, the activity of superoxide dismutase (SOD), involved in antioxidant response, was affected by both temperature and metal contamination, whereas the activity of glucose-6-phosphate dehydrogenase (G6PDH), involved in energy accumulation but also in antioxidant response, was only affected by metal exposure. The response of perch to the stressors at the transcriptional level differed from the metabolic response. In particular, the transcription level of the cco and g6pdh genes sharply decreased with increasing temperature, while the activities of the corresponding enzymes remained stable. The normal response of the transcription level of the apoptotic gene (diablo) to heat stress was also altered in metal-contaminated fish. The combination of metal and temperature stresses also modified the response of antioxidant metabolism induced by these stressors individually. This study contributes to a better understanding of the influences of natural stressors like temperature on biomarkers commonly used in

  11. Integration of processes induced air flotation and photo-Fenton for treatment of residual waters contaminated with xylene

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Syllos S. da [Departamento Engenharia Quimica, NUPEG, Universidade Federal do Rio Grande do Norte, Campus Universitario, Lagoa Nova, Natal 59066-800, RN (Brazil); Chiavone-Filho, Osvaldo, E-mail: osvaldo@eq.ufrn.br [Departamento Engenharia Quimica, NUPEG, Universidade Federal do Rio Grande do Norte, Campus Universitario, Lagoa Nova, Natal 59066-800, RN (Brazil); Barros Neto, Eduardo L. de [Departamento Engenharia Quimica, NUPEG, Universidade Federal do Rio Grande do Norte, Campus Universitario, Lagoa Nova, Natal 59066-800, RN (Brazil); Nascimento, Claudio A.O. [Departamento de Engenharia Quimica, Escola Politecnica, Universidade de Sao Paulo, Cidade Universitaria, Sao Paulo 05508-900, SP (Brazil)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer We have studied the treatment of wastewater contaminated with hydrocarbons represented by the xylene, using these processes in an integrated mode: induced air flotation and photo-Fenton. Black-Right-Pointing-Pointer We have selected xylene as representative contaminant due to properties of toxicity, solubility in water and vapor pressure. Black-Right-Pointing-Pointer The manuscript presents a series of accurate experimental data that can be useful for material and energy optimization purposes in the xylene removal aiming the treatment of oil field produced water. - Abstract: Produced water in oil fields is one of the main sources of wastewater generated in the industry. It contains several organic compounds, such as benzene, toluene, ethyl benzene and xylene (BTEX), whose disposal is regulated by law. The aim of this study is to investigate a treatment of produced water integrating two processes, i.e., induced air flotation (IAF) and photo-Fenton. The experiments were conducted in a column flotation and annular lamp reactor for flotation and photodegradation steps, respectively. The first order kinetic constant of IAF for the wastewater studied was determined to be 0.1765 min{sup -1} for the surfactant EO 7. Degradation efficiencies of organic loading were assessed using factorial planning. Statistical data analysis shows that H{sub 2}O{sub 2} concentration is a determining factor in process efficiency. Degradations above 90% were reached in all cases after 90 min of reaction, attaining 100% mineralization in the optimized concentrations of Fenton reagents. Process integration was adequate with 100% organic load removal in 20 min. The results of the integration of the IAF with the photo-Fenton allowed to meet the effluent limits established by Brazilian legislation for disposal.

  12. Long-term experiment on in-situ sanitation of a MHC/BTEX contamination: Effectivity of air sparging and denitrification in the saturated zone; Langzeitversuch zur In situ-Sanierung einer MKW/BTEX Kontamination: Effektivitaet von Air Sparging und Denitrifikation in der gesaettigten Zone

    Energy Technology Data Exchange (ETDEWEB)

    Wuerdemann, H. [Umwelt-Geotechnik, GeoForschungsZentrum Potsdam (Germany); Hoch, S.; Bieberstein, A. [Univ. Karlsruhe (T.H.) (Germany). Inst. fuer Bodenmechanik und Felsmechanik

    2005-07-01

    In a tank farm, combined methods for in-situ sanitation were tested for a period of about 8.5 years. Both the partly saturated and the saturated zone were contaminated, so a combination of in-situ and on-site processes were used. In the partly saturated zone, biodegradation of pollutants was enhanced by oxygen supply. In the saturated zone, a water cycle was initiated for providing the soil with electron acceptors (O{sub 2} Nd NO{sub 3}). In view of the high oxygen consumption, further O{sub 2} ws supplied to the saturated zone by air sparging. (orig.)

  13. Is Distant Pollution Contaminating Local Air? Analyzing the Origins of Atmospheric Aerosols

    Directory of Open Access Journals (Sweden)

    David Geng

    2012-01-01

    Full Text Available Understanding the origin of aerosols in the atmosphere is important because of visual pollution, climate impacts, and deleterious health effects due to the inhalation of fine particles. This research analyzed aerosols characterized by their chloride, sulfate, and nitrate content as a function of size over a 3-month period. Due to wind patterns over coal-burning power plants, a higher concentration of local sulfate pollution was expected. Aerosols were harvested on the Purdue University campus using a high-volume air sampler with glass fiber filters and a five-stage impactor that separates the aerosols into five sizes. The filters were extracted in water to dissolve anions and the solution was analyzed using high-pressure liquid ion chromatography. Only trace amounts of chloride with no distinct patterns in size were detected. In total, nitrate content ranged from 0.12 to 2.10 μg/m3 and sulfate content ranged from 0.44 to 6.45 μg/m3 over a 3-month period. As for fine particles, a higher concentration of sulfate was observed. The Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT model determines air mass origin, and in this study, higher total sulfate content was observed when the air mass moved out of the southwest, and higher total nitrate content was observed when the air mass originated from the southeast. The author concluded that small particles resulted in sulfate from sulfur dioxide, typically from gas to particle conversion. High sulfur dioxide levels are directly correlated with coal-burning power plant density. Small particulate sulfate found in West Lafayette, Indiana, was determined to originate primarily from power plants in southwest Indiana. Though the results do show a significant amount of potentially harmful aerosols in West Lafayette, there is still further research to be done concerning isotopic composition of those particles in attempts to better explain the chemical pathways.

  14. Bed-integrated local exhaust ventilation system combined with local air cleaning for improved IAQ in hospital patient rooms

    DEFF Research Database (Denmark)

    Bivolarova, Mariya Petrova; Melikov, Arsen Krikor; Mizutani, Chiyomi;

    2016-01-01

    The performance of a ventilated mattress (VM) used as a bed-integrated local exhaust ventilation system combined with air cleaning fabric (acid-treated activated carbon fibre (ACF) fabric) was developed and studied. The separate and combined effect of the VM and the local air cleaning for reducing...... micro-environment was exhausted. Two modes of operation were studied: 1) the exhausted polluted air was discharged out of the room and 2) the polluted air was cleaned by the ACF material installed inside the mattress and recirculated back into the room. Both modes of operation efficiently reduced...

  15. Air mercury contamination in the gold mining town of Portovelo, Ecuador.

    Science.gov (United States)

    González-Carrasco, Víctor; Velasquez-Lopez, Patricio C; Olivero-Verbel, Jesús; Pájaro-Castro, Nerlis

    2011-09-01

    Portovelo is one of the oldest gold mining towns in Ecuador. Artisanal gold mining still uses mercury in the process of gold recovery. In this study, mercury concentrations in the air of Portovelo were evaluated. High mercury levels in the ambient were found in El Pache sector, where most gold mining processing plants are located. These varied between 2,356.7 ± 1,807.6 and 3,699.5 ± 1,225.3 ng/m(3) during the rainy and dry seasons, respectively. Lower levels were detected in the urban (central) area of Portovelo, with 214.6 ± 43.7 ng/m(3) in the rainy season and 574.2 ± 72.8 ng/m(3) in the dry season, exceeding the Agency for Toxic Substances and Disease Registry minimum risk level of 200 ng/m(3). Average mercury concentrations in exhaled air from miners, measured before and after amalgam burning ranged between 179-1,352 and 2,007-3,389 ng/m(3), respectively. These data suggest Portovelo air is polluted with mercury and humans are being dangerously exposed. Therefore, strong actions must be undertaken to protect human and environmental health, including changing gold recovery systems.

  16. Organophosphates in aircraft cabin and cockpit air--method development and measurements of contaminants.

    Science.gov (United States)

    Solbu, Kasper; Daae, Hanne Line; Olsen, Raymond; Thorud, Syvert; Ellingsen, Dag Gunnar; Lindgren, Torsten; Bakke, Berit; Lundanes, Elsa; Molander, Paal

    2011-05-01

    Methods for measurements and the potential for occupational exposure to organophosphates (OPs) originating from turbine and hydraulic oils among flying personnel in the aviation industry are described. Different sampling methods were applied, including active within-day methods for OPs and VOCs, newly developed passive long-term sample methods (deposition of OPs to wipe surface areas and to activated charcoal cloths), and measurements of OPs in high-efficiency particulate air (HEPA) recirculation filters (n = 6). In total, 95 and 72 within-day OP and VOC samples, respectively, have been collected during 47 flights in six different models of turbine jet engine, propeller and helicopter aircrafts (n = 40). In general, the OP air levels from the within-day samples were low. The most relevant OP in this regard originating from turbine and engine oils, tricresyl phosphate (TCP), was detected in only 4% of the samples (min-max cockpit air, was an order of magnitude higher as compared to after engine replacement (p = 0.02).

  17. Spatial structure of floodplain soil radionuclide contamination of the Enisey River near the Krasnoyarsk Mining and Chemical Combine

    Science.gov (United States)

    Linnik, V. G.; Brown, J. E.; Potapov, V. N.; Surkov, V. V.

    2012-04-01

    Enisey River floodplain soils were contaminated by technogenic radionuclides arising from operations at the Krasnoyarsk Mining Chemical Combine (KMCC) from 1958 to 1992. The radioecological situtation of the Enisey flood plain landscapes has been formed by the interaction of two factors: (i) characteristics of radionuclide discharges to the aquatic environment, (ii) hydrological regime of the Enisey River. The radionuclide discharge determined the potential extent of contamination, while the river hydrology was responsible for its transport over considerable distances. The erection of the dam of the Krasnoyarsk power station in 1970 changed the hydrological regime of the Enisey River. The water discharge and suspended sediments became uniform in all seasons and extreme floods, extending over high floodplain areas, ceased. The distribution of radioactive contamination within floodplain soils downstream from the KMCC was studied with the objectives of mapping contamination levels and analyzing the spatial structure of radionuclide distributions arising from floodplain formation. Based on a digital elevation model of floodplain landscapes at a strip of KMCC-Strelka the flooded area of the Enisey River was determined. In 1960 to 1970, deposition of contaminated sediments occurred at heights less than 6 m over an area of 99,2 km2, in 1970-1992 the flooded area with a height less than 3,5 m was of 38,2 km2. Since radiocaesium in the Enisey River primarily occurs in a well fixed sediment-associated form it is possible to use the analysis of landscape structure within the floodplain to detect lithologo-geomorphological zones corresponding to a varying degree of 137Cs contamination. Radionuclide contamination was measured using in situ gamma spectrometry and soil sampling undertaken at control points. Maximum 137Cs contamination densities (700 kBq m-2) were found on low- and middle-level floodplains of Beriozovy Island (16 km from the KMCC). The contamination density of 60

  18. Parametric analysis of a combined dew point evaporative-vapour compression based air conditioning system

    Directory of Open Access Journals (Sweden)

    Shailendra Singh Chauhan

    2016-09-01

    Full Text Available A dew point evaporative-vapour compression based combined air conditioning system for providing good human comfort conditions at a low cost has been proposed in this paper. The proposed system has been parametrically analysed for a wide range of ambient temperatures and specific humidity under some reasonable assumptions. The proposed system has also been compared from the conventional vapour compression air conditioner on the basis of cooling load on the cooling coil working on 100% fresh air assumption. The saving of cooling load on the coil was found to be maximum with a value of 60.93% at 46 °C and 6 g/kg specific humidity, while it was negative for very high humidity of ambient air, which indicates that proposed system is applicable for dry and moderate humid conditions but not for very humid conditions. The system is working well with an average net monthly power saving of 192.31 kW h for hot and dry conditions and 124.38 kW h for hot and moderate humid conditions. Therefore it could be a better alternative for dry and moderate humid climate with a payback period of 7.2 years.

  19. Efficacy of Vitrectomy Combined with Subretinal rtPA Injection with Gas or Air Tamponade.

    Science.gov (United States)

    Waizel, M; Todorova, M G; Rickmann, A; Blanke, B R; Szurman, P

    2017-01-31

    Background Functional and anatomical outcome after vitrectomy with rtPA combined with gas or air tamponade. Patients and methods Retrospective analysis of pseudophakic patients treated with subretinal rtPA and gas or air tamponade. The primary endpoint was displacement of haemorrhage six months after surgery. The secondary endpoints were visual acuity (BCVA), haemorrhage diameter (MHD) and central macular thickness (CMT), as measured by SD-OCT. Results 53 of 85 eyes were pseudophakic. 27 of these eyes were treated with air tamponade and 26 with gas tamponade. For patients with air tamponade, the mean BCVA improved from 20/530 to 20/355 (p = 0.01). MHD and CMT decreased from 6386 ± 2281 µm to 3805 ± 2397 µm (p tamponade, the mean BCVA improved only slightly, from 20/471 to 20/394 (p = 0.17). MHD and CMT exhibited statistically significant decreases from 6759 ± 1773 µm to 3525 ± 1548 µm (p tamponade.

  20. Analyzing the possibility of constructing the air heating system for an integrated solid fuel gasification combined-cycle power plant

    Science.gov (United States)

    Mikula, V. A.; Ryzhkov, A. F.; Val'tsev, N. V.

    2015-11-01

    Combined-cycle power plants operating on solid fuel have presently been implemented only in demonstration projects. One of possible ways for improving such plants consists in making a shift to hybrid process circuits of integrated gasification combined-cycle plants with external firing of solid fuel. A high-temperature air heater serving to heat compressed air is a key element of the hybrid process circuit. The article describes application of a high-temperature recuperative metal air heater in the process circuit of an integrated gasification combined-cycle power plant (IGCC). The available experience with high-temperature air heating is considered, and possible air heater layout arrangements are analyzed along with domestically produced heat-resistant grades of steel suitable for manufacturing such air heater. An alternative (with respect to the traditional one) design is proposed, according to which solid fuel is fired in a noncooled furnace extension, followed by mixing the combustion products with recirculation gases, after which the mixture is fed to a convective air heater. The use of this design makes it possible to achieve considerably smaller capital outlays and operating costs. The data obtained from thermal and aerodynamic calculations of the high-temperature air heater with a thermal capacity of 258 MW for heating air to a temperature of up to 800°C for being used in the hybrid process circuit of a combined-cycle power plant are presented.

  1. A Novel Pumped Hydro Combined with Compressed Air Energy Storage System

    Directory of Open Access Journals (Sweden)

    Erren Yao

    2013-03-01

    Full Text Available A novel pumped hydro combined with compressed air energy storage (PHCA system is proposed in this paper to resolve the problems of bulk energy storage in the wind power generation industry over an area in China, which is characterised by drought and water shortages. Thermodynamic analysis of the energy storage system, which focuses on the pre-set pressure, storage volume capacity, water air volume ratio, pump performance, and water turbine performance of the storage system, is also presented. This paper discovers how such parameters affect the performance of the whole system. The ideal performance of this novel system has the following advantages: a simple, highly effective and low cost structure, which is comparable to the efficiency of a traditional pumped hydro storage system. Research results show a great solution to the current storage constraints encountered in the development of the wind power industry in China, which have been widely recognised as a bottleneck in the wind energy storage industry.

  2. Novel atmospheric pressure plasma device releasing atomic hydrogen: reduction of microbial-contaminants and OH radicals in the air

    Science.gov (United States)

    Nojima, Hideo; Park, Rae-Eun; Kwon, Jun-Hyoun; Suh, Inseon; Jeon, Junsang; Ha, Eunju; On, Hyeon-Ki; Kim, Hye-Ryung; Choi, Kyoung Hui; Lee, Kwang-Hee; Seong, Baik-Lin; Jung, Hoon; Kang, Shin Jung; Namba, Shinichi; Takiyama, Ken

    2007-01-01

    A novel atmospheric pressure plasma device releasing atomic hydrogen has been developed. This device has specific properties such as (1) deactivation of airborne microbial-contaminants, (2) neutralization of indoor OH radicals and (3) being harmless to the human body. It consists of a ceramic plate as a positive ion generation electrode and a needle-shaped electrode as an electron emission electrode. Release of atomic hydrogen from the device has been investigated by the spectroscopic method. Optical emission of atomic hydrogen probably due to recombination of positive ions, H+(H2O)n, generated from the ceramic plate electrode and electrons emitted from the needle-shaped electrode have been clearly observed in the He gas (including water vapour) environment. The efficacy of the device to reduce airborne concentrations of influenza virus, bacteria, mould fungi and allergens has been evaluated. 99.6% of airborne influenza virus has been deactivated with the operation of the device compared with the control test in a 1 m3 chamber after 60 min. The neutralization of the OH radical has been investigated by spectroscopic and biological methods. A remarkable reduction of the OH radical in the air by operation of the device has been observed by laser-induced fluorescence spectroscopy. The cell protection effects of the device against OH radicals in the air have been observed. Furthermore, the side effects have been checked by animal experiments. The harmlessness of the device has been confirmed.

  3. Combining modeling and monitoring to study fecal contamination in a small rural catchment.

    Science.gov (United States)

    Bougeard, Morgane; Le Saux, Jean-Claude; Teillon, Anna; Belloir, Jérôme; Le Mennec, Cécile; Thome, Sterenn; Durand, Gael; Pommepuy, Monique

    2011-09-01

    The present study sought to identify Escherichia coli sources in a small catchment and to use the agro-hydrological model soil and water assessment tool (SWAT) to estimate their impact on river water quality. The innovative aspects of this research are to assess the hourly variations of fecal contamination and to take these variations into account in the model to provide a better evaluation of river quality. Thus, water samples were taken weekly at the river outlet (n = 4) and 24-h monitoring sessions were performed during low and high-flow periods (n = 74). E. coli variations were found to be primarily linked to rainfall and not to resuspension mechanisms. Subdaily fluctuations and deviations were ±0.33 log(10) cfu/100 mL and ±0.70 log(10) cfu/100 mL for dry (3 mm/day) weather, respectively. After river flow calibration, all known pollution sources (septic systems, manure spreading, farm discharges) were introduced into SWAT. The model reproduced the fecal contamination in the river and the use of subdaily deviations allowed us to evaluate the simulation quality and compare grab samplings with simulated daily E. coli concentration, thus confirming that the performance of the model is better when additional information on hourly concentration variations is used.

  4. Determining aerosol particles by in-air micro-IL analysis combined with micro-PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Kada, Wataru, E-mail: kada.wataru@jaea.go.jp [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan); Satoh, Takahiro; Yokoyama, Akihito; Koka, Masashi; Kamiya, Tomihiro [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, 1233 Watanuki-machi, Takasaki, Gunma 370-1292 (Japan)

    2013-07-01

    A new external ion microbeam ion luminescence (micro-IL) imaging system was developed on a microbeam line of a 3 MV single-ended accelerator at the TIARA facility of the Japan Atomic Energy Agency. Micro-IL was combined with an in-air micro-PIXE (particle-induced X-ray emission) system to determine the chemical composition and structures of microscopic airborne particles of several micrometers in size. The hardware and software for the combined in-air micro-IL analysis system, called ion luminescence microscopic imaging and spectroscopy (ILUMIS), were studied. Wavelength-dispersive optics, including a collimator lens, a monochromator, and a photon-counting photomultiplier, were installed on the beam line. The signal processing of the IL photon signals, which were collected as spectra and two-dimensional microscopic images, was examined. Several aerosol particles were characterized to demonstrate the ILUMIS/PIXE combined analysis. The external microbeam ILUMIS analysis method provided a variety of information on the chemical and elemental composition of the micrometer-sized aerosol targets under ambient atmospheric conditions.

  5. Analysis of an Air Conditioning Coolant Solution for Metal Contamination Using Atomic Absorption Spectroscopy: An Undergraduate Instrumental Analysis Exercise Simulating an Industrial Assignment

    Science.gov (United States)

    Baird, Michael J.

    2004-01-01

    A real-life analytical assignment is presented to students, who had to examine an air conditioning coolant solution for metal contamination using an atomic absorption spectroscopy (AAS). This hands-on access to a real problem exposed the undergraduate students to the mechanism of AAS, and promoted participation in a simulated industrial activity.

  6. [Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 5, Appendix A, Part 1, Field Investigation report

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This report presents information related to the sampling of ground water at the Wright-Patterson Air Force Base. It is part of an investigation into possible ground water contamination. Information concerns well drilling/construction; x-ray diffraction and sampling; soil boring logs; and chain-of-custody records.

  7. Air-borne microbial contamination of surfaces in a UK dental clinic.

    Science.gov (United States)

    Decraene, Valérie; Ready, Derren; Pratten, Jonathan; Wilson, Michael

    2008-08-01

    Little is known about the number, type, or antibiotic resistance profiles, of air-borne microbes present in hospital settings yet such information is important in designing effective measures to reduce cross-infection. In this study settle plates were used to identify and quantify the air-borne microbes present in a dental clinic. All isolates were identified to species level using partial 16S ribosomal RNA gene sequencing and their susceptibility to ampicillin, chloramphenicol, erythromycin, gentamicin, penicillin, tetracycline or vancomycin was performed. The mean numbers of viable bacteria detected for each sampling occasion during periods of clinical activity and in the absence of such activity were 21.9 x 10(2 )cfu/m2/h and 2.3 x 10(2 )cfu/m2/h respectively. One hundred ninety-three distinct colony morphotypes, comprising 73 species, were isolated during the study and 48% of these were resistant to at least one antibiotic. The mean numbers of different morphotypes detected per sampling occasion were 14.3 and 5 during periods of clinical activity and inactivity respectively. Propionibacterium acnes, Micrococcus luteus and Staphylococcus epidermidis were frequently isolated regardless of whether any clinical activities were taking place. These findings highlight the importance of preventing surfaces from becoming reservoirs of antibiotic-resistant bacteria and thereby contributing to cross-infection in the dental clinic.

  8. Study on Decomposition of Indoor Air Contaminants by Pulsed Atmospheric Microplasma

    Directory of Open Access Journals (Sweden)

    Tomoya Kuwabara

    2012-10-01

    Full Text Available Decomposition of formaldehyde (HCHO by a microplasma reactor in order to improve Indoor Air Quality (IAQ was achieved. HCHO was removed from air using one pass through reactor treatment (5 L/min. From an initial concentration of HCHO of 0.7 ppm about 96% was removed in one pass treatment using a discharge power of 0.3 W provided by a high voltage amplifier and a Marx Generator with MOSFET switches as pulsed power supplies. Moreover microplasma driven by the Marx Generator did not generate NOx as detected by a chemiluminescence NOx analyzer. In the case of large volume treatment the removal ratio of HCHO (initial concentration: 0.5 ppm after 60 minutes was 51% at 1.2 kV when using HV amplifier considering also a 41% natural decay ratio of HCHO. The removal ratio was 54% at 1.2 kV when a Marx Generator energized the electrodes with a 44% natural decay ratio after 60 minutes of treatment.

  9. Study on decomposition of indoor air contaminants by pulsed atmospheric microplasma.

    Science.gov (United States)

    Shimizu, Kazuo; Kuwabara, Tomoya; Blajan, Marius

    2012-10-29

    Decomposition of formaldehyde (HCHO) by a microplasma reactor in order to improve Indoor Air Quality (IAQ) was achieved. HCHO was removed from air using one pass through reactor treatment (5 L/min). From an initial concentration of HCHO of 0.7 ppm about 96% was removed in one pass treatment using a discharge power of 0.3 W provided by a high voltage amplifier and a Marx Generator with MOSFET switches as pulsed power supplies. Moreover microplasma driven by the Marx Generator did not generate NOx as detected by a chemiluminescence NOx analyzer. In the case of large volume treatment the removal ratio of HCHO (initial concentration: 0.5 ppm) after 60 minutes was 51% at 1.2 kV when using HV amplifier considering also a 41% natural decay ratio of HCHO. The removal ratio was 54% at 1.2 kV when a Marx Generator energized the electrodes with a 44% natural decay ratio after 60 minutes of treatment.

  10. Novel method for determining DDT in vapour and particulate phases within contaminated indoor air in a malaria area of South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Naude, Yvette, E-mail: yvette.naude@up.ac.za [Department of Chemistry, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria (South Africa); Rohwer, Egmont R., E-mail: egmont.rohwer@up.ac.za [Department of Chemistry, University of Pretoria, Private Bag X20, Hatfield 0028, Pretoria (South Africa)

    2012-06-12

    Highlights: Black-Right-Pointing-Pointer We present a novel denuder for the determination of DDT in contaminated indoor air. Black-Right-Pointing-Pointer Single step concentration of vapour phase on PDMS, particulate phase on filter. Black-Right-Pointing-Pointer Solvent-free green technique, sample extraction not required. Black-Right-Pointing-Pointer Ratios of airborne p,p Prime -DDD/p,p Prime -DDT and of o,p Prime -DDT/p,p Prime -DDT are unusual. Black-Right-Pointing-Pointer Insecticidal efficacy of technical DDT may be compromised. - Abstract: The organochlorine insecticide DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane) is still used for malaria vector control in certain areas of South Africa. The strict Stockholm Convention on Persistent Organic Pollutants (POPs) allows spraying on the inside of traditional dwellings with DDT. In rural villages contaminated dust presents an additional pathway for exposure to DDT. We present a new method for the determination of DDT in indoor air where separate vapour and particulate samples are collected in a single step with a denuder configuration of a multi-channel open tubular silicone rubber (polydimethylsiloxane (PDMS)) trap combined with a micro quartz fibre filter. The multi-channel PDMS trap section of the denuder concentrates vapour phase insecticide whereas particle associated insecticide is transferred downstream where it is collected on a micro-fibre filter followed by a second multi-channel PDMS trap to capture the blow-off from the filter. The multi-channel PDMS trap and filter combination are designed to fit a commercial thermal desorber for direct introduction of samples into a GC-MS. The technique is solvent-free. Analyte extraction and sample clean-up is not required. Two fractions, vapour phase and particulate phase p,p Prime -DDT, o,p Prime -DDT; p,p Prime -DDD, o,p Prime -DDD; p,p Prime -DDE and o,p Prime -DDE in 4 L contaminated indoor air, were each quantitatively analysed by GC-MS using

  11. The potential of combining ion trap/MS/MS and TOF/MS for identification of emerging contaminants

    Science.gov (United States)

    Ferrer, I.; Furlong, E.T.; Heine, C.E.; Thurman, E.M.

    2002-01-01

    The use of a method combining ion trap tandem mass spectrometry (MS/MS) and time of flight mass spectrometry (TOF/MS) for identification of emerging contaminates was discussed. The two tools together complemented each other in sensitivity, fragmentation and accurate mass determination. Liquid chromatography/electrospray ionization/ion-trap tandem mass spectrometry (LC/ESI/MS/MS), in positive ion mode of operation, was used to separate and identify specific compounds. Diagnostic fragment ions were obtained for a polyethyleneglycol(PEG) homolog by ion trap MS/MS, and fragments were measured by TOF/MS. It was observed that the combined method gave an exact mass measurement that differed from the calculated mass.

  12. Combining Geoelectrical Measurements and CO2 Analyses to Monitor the Enhanced Bioremediation of Hydrocarbon-Contaminated Soils: A Field Implementation

    Directory of Open Access Journals (Sweden)

    Cécile Noel

    2016-01-01

    Full Text Available Hydrocarbon-contaminated aquifers can be successfully remediated through enhanced biodegradation. However, in situ monitoring of the treatment by piezometers is expensive and invasive and might be insufficient as the information provided is restricted to vertical profiles at discrete locations. An alternative method was tested in order to improve the robustness of the monitoring. Geophysical methods, electrical resistivity (ER and induced polarization (IP, were combined with gas analyses, CO2 concentration, and its carbon isotopic ratio, to develop a less invasive methodology for monitoring enhanced biodegradation of hydrocarbons. The field implementation of this monitoring methodology, which lasted from February 2014 until June 2015, was carried out at a BTEX-polluted site under aerobic biotreatment. Geophysical monitoring shows a more conductive and chargeable area which corresponds to the contaminated zone. In this area, high CO2 emissions have been measured with an isotopic signature demonstrating that the main source of CO2 on this site is the biodegradation of hydrocarbon fuels. Besides, the evolution of geochemical and geophysical data over a year seems to show the seasonal variation of bacterial activity. Combining geophysics with gas analyses is thus promising to provide a new methodology for in situ monitoring.

  13. Removal of heavy metals and arsenic from a co-contaminated soil by sieving combined with washing process.

    Science.gov (United States)

    Liao, Xiaoyong; Li, You; Yan, Xiulan

    2016-03-01

    Batch experiments were conducted with a heavy metals and arsenic co-contaminated soil from an abandoned mine to evaluate the feasibility of a remediation technology that combines sieving with soil washing. Leaching of the arsenic and heavy metals from the different particle size fractions was found to decrease in the order: 2mm. With increased contact time, the concentration of heavy metals in the leachate was significantly decreased for small particles, probably because of adsorption by the clay soil component. For the different particle sizes, the removal efficiencies for Pb and Cd were 75%-87%, and 61%-77% for Zn and Cu, although the extent of removal was decreased for As and Cr at soil particles >2mm, although good metal removal efficiencies were also achieved in the small particle size fractions. Through SEM-EDS observations and correlation analysis, the leaching regularity of the heavy metals and arsenic was found to be closely related to Fe, Mn, and Ca contents of the soil fractions. The remediation of heavy metal-contaminated soil by sieving combined with soil washing was proven to be efficient, and practical remediation parameters were also recommended.

  14. Successful bioremediation of an aged and heavily contaminated soil using a microbial/plant combination strategy.

    Science.gov (United States)

    Xu, Yang; Sun, Guang-Dong; Jin, Jing-Hua; Liu, Ying; Luo, Mu; Zhong, Zhi-Ping; Liu, Zhi-Pei

    2014-01-15

    Bioremediation of an aged and heavily contaminated soil was performed using microbial remediation, phytoremediation, and microbial/phytoremediation. The removal efficiency of polycyclic aromatic hydrocarbons (PAHs) was in the order microbial/phytoremediation>microbial remediation≈phytoremediation>control. The removal percentage of microbial/phytoremediation (69.6%) was twice that of control. Kocuria sp. P10 significantly enhanced PAH removal (Psoil microbial communities were also detected by pyrosequencing. The results indicated that biodiversity of the soil bacterial community gradually increased with time and was slightly lower in control, as indicated by operational taxonomic unit (OTU) numbers and Shannon-Wiener indices. Proportions of Betaproteobacteria and Gammaproteobacteria were consistently high in all groups. Actinobacteridae were initially predominant (>37.8%) but rapidly decreased to bioremediation process and a possible basis for ecological assessment for bioremediation on a large scale.

  15. Identification of the epidural space: loss of resistance with air, lidocaine, or the combination of air and lidocaine.

    Science.gov (United States)

    Evron, Samuel; Sessler, Daniel; Sadan, Oscar; Boaz, Mona; Glezerman, Marek; Ezri, Tiberiu

    2004-07-01

    The ideal technique for identifying the epidural space remains unclear. Five-hundred-forty-seven women in labor who requested epidural analgesia were randomly allocated to three groups according to the technique by which the epidural space was identified: 1) loss-of-resistance with air (air; n = 180), 2) loss-of-resistance with lidocaine (lidocaine; n = 185), and 3) loss-of-resistance with both air and lidocaine (air-plus-lidocaine; n = 182). We assessed ease of epidural catheter insertion, characteristics of the blockade, quality of analgesia, and complications. The inability to thread the epidural catheter occurred in 16% of the air, 4% of the lidocaine, and 3% of the air-plus-lidocaine patients (P air group had unblocked segments (6.6% versus 3.2% and 2.2%, respectively; P air group (1.7% versus 0% in the other two groups; P space with air was more difficult and caused more dural punctures than with lidocaine or air plus lidocaine. Additionally, sequential use of air and lidocaine had no advantage over lidocaine alone.

  16. Mercury poisoning dentistry: high-level indoor air mercury contamination at selected dental sites.

    Science.gov (United States)

    Khwaja, Mahmood A; Abbasi, Maryam Shabbir

    2014-01-01

    Mercury (Hg), also known as quick silver, is an essential constituent of dental amalgam. It is a toxic substance of global concern. Children are more at risk from mercury poisoning which affects their neurological development and brain. In the past, a number of studies at dental sites in many countries have been carried out and reported. The present report briefly describes and discusses our recent investigations carried out at 34 dental sites (teaching institutions, hospitals and private clinics) in Pakistan. It is evident from the data that at many sites the indoor mercury vapor levels exceed far above the permissible limit recommended for safe physical and mental health. At these sites, public in general and the medical, paramedical staff and vulnerable population in particular, are at most serious risk to health resulting from exposure to toxic and hazardous mercury. To minimize such risk, some of the recommendations are, best in-house environmental practices for occupational health and safety, mercury contaminated waste reduction at source, mercury specific legislation and ratification of Minamata convention on mercury by Pakistan and other world governments at the earliest time possible.

  17. In situ stabilization/solidification pilot testing of coal tar contaminated sediment focusing on air quality testing program, Sydney, Nova Scotia

    Energy Technology Data Exchange (ETDEWEB)

    Raphael, A. [AECOM, Calgary, AB (Canada); Hilchey, J. [AECOM, Sydney, NS (Canada)

    2010-07-01

    This paper presented the results of a pilot-scale demonstration project conducted to test air quality contaminant emissions at a remediation project in Sydney, Nova Scotia. In situ sediment solidification/stabilization (S/S) was selected as a remedial solutions for sediments in an estuarine pond contaminated with polycyclic aromatic hydrocarbons (PAHs). The aim of the air monitoring program was to determine the emission rates of sediment contaminants that became airborne during remediation activities and to monitor the off-site environmental impacts of the emissions. The pilot project included driving interlocking steel sheet pile (SSP) through the sediment into the underlying natural soils, removing overlying water, homogenizing the sediment, and mixing S/S reagents into the sediment over a period of 4 days at 2 different sites. Air sampling equipment was used to monitor volumetric flow rates, benzene, naphthalene and particulate matter concentrations. Continuous real-time monitoring was used at downwind fence line perimeters and by time-weighted ambient air sampling at 6 community stations near the sites. Results of the study showed that the site-specific benzene and naphthalene emission rates were significantly lower than emission rates calculated using theoretical models. No exceedances of established community air quality limits were observed. 8 refs., 3 tabs., 3 figs.

  18. Combining active chilled beams and air-cleaning technologies to improve the indoor climate in offices

    DEFF Research Database (Denmark)

    Ardkapan, Siamak Rahimi; Afshari, Alireza; Bergsøe, Niels Christian

    2013-01-01

    of air in offices. For this purpose, a mechanical filter with low pressure drop was selected for testing in a laboratory environment. The measurements included tests of the filter in a ductwork to study the efficiency of the filter. Moreover, the combined system of the filter and a chilled beam...... was tested in a room. The efficiency of the mechanical filter to remove ultrafine particles was examined using pure wax candles and salt as sources of emission of particles. The measurements in the duct showed that the efficiency of the filter ranged between 54% and 78% and that the pressure loss was less...... than 5 Pa (0.104 Ibf /ft2). Furthermore, the measurement results of the combined system showed that adding the filter accelerated the removal rate of the particles by 2 h-1. However, the efficiency of the chilled beam in exchanging heat was reduced by 38%....

  19. A Novel Constant-Pressure Pumped Hydro Combined with Compressed Air Energy Storage System

    Directory of Open Access Journals (Sweden)

    Erren Yao

    2014-12-01

    Full Text Available As intermittent renewable energy is receiving increasing attention, the combination of intermittent renewable energy with large-scale energy storage technology is considered as an important technological approach for the wider application of wind power and solar energy. Pumped hydro combined with compressed air energy storage system (PHCA is one of the energy storage systems that not only integrates the advantages but also overcomes the disadvantages of compressed air energy storage (CAES systems and pumped hydro energy storage systems to solve the problem of energy storage in China’s arid regions. Aiming at the variable working conditions of PHCA system technology, this study proposes a new constant-pressure PHCA. The most significant characteristics of this system were that the water pump and hydroturbine work under stable conditions and this improves the working efficiency of the equipment without incurring an energy loss. In addition, the constant-pressure PHCA system was subjected to energy and exergy analysis, in expectation of exploring an attractive solution for the large-scale storage of existing intermittent renewable energy.

  20. MATERIAL PARAMETER OF RUBBER GLOVE VULCANIZED USING COMBINED INFRARED AND HOT-AIR HEATING

    Directory of Open Access Journals (Sweden)

    Tipapon Khamdaeng

    2014-01-01

    Full Text Available Vulcanization is an important chemical-thermal process in production of rubber products resulting in change of material properties, increased elasticity and strength. In general, Young’s modulus is used as an indicator of elastic deformation at loading configuration. However, rubber is not truly elastic and a single parameter is insufficient to describe the whole deformation contributed by microstructure of rubber network. Therefore, we present the material parameters concerning the mechanical interaction of rubber constituents. In this study, tensile force and elongation were measured to analyze the rubber deformation. In order to describe the deformation behavior of the combined infrared and hot-air vulcanized rubber glove, the material properties, stress and stretch, were therefore presented. The stress-stretch relationships of the vulcanized rubber gloves were established based on previously well-known hyperelastic material model and their material parameters were determined using a parameter estimation technique. In conclusion, the stress-stretch relationships of the combined infrared and hot-air vulcanized rubber glove can be successfully established with our optimized material parameters; the magnitudes of rubber modulus (CR and locking stretch (λL were in a range of 0.041-0.079 MPa and 10.27-70.12, respectively. Furthermore, the resulting material parameters can be properly used to indicate the micro structural deformation.

  1. Mathematical Modeling on Combined Mid-infrared and Hot Air Drying of Beef Meat

    Directory of Open Access Journals (Sweden)

    Xiao-Lei Xie

    2015-05-01

    Full Text Available To investigate the drying models and characteristics of Combined Mid-Infrared and Hot Air (CMIHA drying BEEF MEAT (BM, a laboratory scale CMIHA dryer was applied to the treatment of BM samples in a temperature range from 40-70°C, with air velocity of 1m/s and mid-infrared of 2.8-3.1 m. Microsoft visual C sharp (C# was used to develop a Moisture Prediction System (MPS to digitize the prediction process. The results indicated that the Modified Henderson and Pabis model could present better predictions for the moisture transfer than others and the MPS could predict the moisture ratio through the whole drying process conveniently. Besides, higher temperature could accelerate effective diffusivities to increase drying rate, thus shorten the drying time. The activation energy of BM dried with CMIHA was 32.83 kJ/mol. All of these could be used in the design and operation of the combination drying beef meat.

  2. Characterization of microbial contamination in United States Air Force aviation fuel tanks.

    Science.gov (United States)

    Rauch, Michelle E; Graef, Harold W; Rozenzhak, Sophie M; Jones, Sharon E; Bleckmann, Charles A; Kruger, Randell L; Naik, Rajesh R; Stone, Morley O

    2006-01-01

    Bacteria and fungi, isolated from United States Air Force (USAF) aviation fuel samples, were identified by gas chromatograph fatty acid methyl ester (GC-FAME) profiling and 16S or 18S rRNA gene sequencing. Thirty-six samples from 11 geographically separated USAF bases were collected. At each base, an above-ground storage tank, a refueling truck, and an aircraft wing tank were sampled at the lowest sample point, or sump, to investigate microbial diversity and dispersion within the fuel distribution chain. Twelve genera, including four Bacillus species and two Staphylococcus species, were isolated and identified. Bacillus licheniformis, the most prevalent organism isolated, was found at seven of the 11 bases. Of the organisms identified, Bacillus sp., Micrococcus luteus, Sphinogmonas sp., Staphylococcus sp., and the fungus Aureobasidium pullulans have previously been isolated from aviation fuel samples. The bacteria Pantoea ananatis, Arthrobacter sp., Alcaligenes sp., Kocuria rhizophilia, Leucobacter komagatae, Dietza sp., and the fungus Discophaerina fagi have not been previously reported in USAF aviation fuel. Only at two bases were the same organisms isolated from all three sample points in the fuel supply distribution chain. Isolation of previously undocumented organisms suggests either, changes in aviation fuel microbial community in response to changes in aviation fuel composition, additives and biocide use, or simply, improvements in isolation and identification techniques.

  3. Combined bioremediation of atrazine-contaminated soil by Pennisetum and Arthrobacter sp. strain DNS10.

    Science.gov (United States)

    Zhang, Ying; Ge, Shijie; Jiang, Mingyue; Jiang, Zhao; Wang, Zhigang; Ma, Bingbing

    2014-05-01

    Strain DNS10 was isolated from the black soil collected from the northeast of China which had been cultivated with atrazine as the sole nitrogen source. Pennisetum is a common plant in Heilongjiang Province of China. The main objective of this paper was to evaluate the efficiency of plant-microbe joint interactions (Arthrobacter sp. DNS10 + Pennisetum) in atrazine degradation compared with single-strain and single-plant effects. Plant-microbe joint interactions degraded 98.10 % of the atrazine, while single strain and single plant only degraded 87.38 and 66.71 % after a 30-day experimental period, respectively. The results indicated that plant-microbe joint interactions had a better degradation effect. Meanwhile, we found that plant-microbe joint interactions showed a higher microbial diversity. The results of microbial diversity illustrated that the positive effects of cropping could improve soil microbial growth and activity. In addition, we planted atrazine-sensitive plants (soybean) in the soil after repair. The results showed that soybean growth in soil previously treated with the plant-microbe joint interactions treatment was better compared with other treatments after 20 days of growth. This was further proved that the soil is more conducive for crop cultivation. Hence, plant-microbe joint interactions are considered to be a potential tool in the remediation of atrazine-contaminated soil.

  4. Adsorption of Emerging Munitions Contaminants on Cellulose Surface: A Combined Theoretical and Experimental Investigation.

    Science.gov (United States)

    Shukla, Manoj K; Poda, Aimee

    2016-06-01

    This manuscript reports results of an integrated theoretical and experimental investigation of adsorption of two emerging contaminants (DNAN and FOX-7) and legacy compound TNT on cellulose surface. Cellulose was modeled as trimeric form of the linear chain of 1 → 4 linked of β-D-glucopyranos in (4)C1 chair conformation. Geometries of modeled cellulose, munitions compounds and their complexes were optimized at the M06-2X functional level of Density Functional Theory using the 6-31G(d,p) basis set in gas phase and in water solution. The effect of water solution was modeled using the CPCM approach. Nature of potential energy surfaces was ascertained through harmonic vibrational frequency analysis. Interaction energies were corrected for basis set superposition error and the 6-311G(d,p) basis set was used. Molecular electrostatic potential mapping was performed to understand the reactivity of the investigated systems. It was predicted that adsorbates will be weakly adsorbed on the cellulose surface in water solution than in the gas phase.

  5. Organochlorine pesticides in surface soils from obsolete pesticide dumping ground in Hyderabad City, Pakistan: contamination levels and their potential for air-soil exchange.

    Science.gov (United States)

    Alamdar, Ambreen; Syed, Jabir Hussain; Malik, Riffat Naseem; Katsoyiannis, Athanasios; Liu, Junwen; Li, Jun; Zhang, Gan; Jones, Kevin C

    2014-02-01

    This study was conducted to examine organochlorine pesticides (OCPs) contamination levels in the surface soil and air samples together with air-soil exchange fluxes at an obsolete pesticide dumping ground and the associated areas from Hyderabad City, Pakistan. Among all the sampling sites, concentrations of OCPs in the soil and air samples were found highest in obsolete pesticide dumping ground, whereas dominant contaminants were dichlorodiphenyltrichloroethane (DDTs) (soil: 77-212,200 ng g(-1); air: 90,700 pg m(-3)) and hexachlorocyclohexane (HCHs) (soil: 43-4,090 ng g(-1); air: 97,400 pg m(-3)) followed by chlordane, heptachlor and hexachlorobenzene (HCB). OCPs diagnostic indicative ratios reflect historical use as well as fresh input in the study area. Moreover, the air and soil fugacity ratios (0.9-1.0) at the dumping ground reflecting a tendency towards net volatilization of OCPs, while at the other sampling sites, the fugacity ratios indicate in some cases deposition and in other cases volatilization. Elevated concentrations of DDTs and HCHs at pesticide dumping ground and its surroundings pose potential exposure risk to biological organisms, to the safety of agricultural products and to the human health. Our study thus emphasizes the need of spatio-temporal monitoring of OCPs at local and regional scale to assess and remediate the future adverse implications.

  6. Continuous combined Fenton's oxidation and biodegradation for the treatment of pentachlorophenol-contaminated water.

    Science.gov (United States)

    Zimbron, Julio A; Reardon, Kenneth F

    2011-11-01

    Pentachlorophenol (PCP) was studied as a model recalcitrant compound for a sequential chemical oxidation and biodegradation treatment, in a continuous laboratory-scale system that combined a Fenton's chemical reactor and a packed-bed bioreactor. PCP degradation and dechlorination were observed in the Fenton's reactor at a residence time of 1.5 h, although no reduction of total organic carbon (TOC) was observed. Both PCP degradation and dechlorination were strongly dependent on the H(2)O(2) dose to the chemical reactor. The PCP degradation intermediates tetrachlorohydroquinone and dichloromaleic acid were identified in this reactor. Further treatment of the Fenton's reactor effluent with a packed-bed bioreactor (operating at a residence time of 5.5 h) resulted in partial biodegradation of PCP degradation intermediates and reduction in TOC, although no further reduction of PCP or dechlorination was achieved in the bioreactor. Increased residence time in the bioreactor had no significant impact on degradation of TOC. Recycle of the effluent from the bioreactor to the chemical reactor increased the TOC degradation, but not the extent of the PCP degradation or dechlorination. A mathematical model of the combined Fenton's oxidation and biodegradation system supported the experimental results. While the model over-predicted the PCP and TOC degradation in the combined system, it adequately predicted the sensitivity of these parameters to different H(2)O(2) doses and recycle rates. The model indicated that high recycle rates would improve TOC degradation.

  7. Microbial contamination of central supply systems for medical air Contaminação microbiana dos sistemas centrais de abastecimento de ar medicinal

    Directory of Open Access Journals (Sweden)

    Carolina Machado Andrade

    2003-11-01

    Full Text Available There are many standards and recommendations for breathing air quality associated with respiratory protection equipment, but little has been done regarding the possible microbial contamination of medical air. The present study demonstrates quantitatively and qualitatively that pipelines might be incriminated as source of microbial contamination of compressed and synthetic air for medical use. Air samples were drawn into an especially pressure-resistant device and the bacterial and fungi contents were identified after growth on agar plates. The bacterial flora isolated from peripheral air outlets was virtually the same as that found in the central air-generating installations, consisting of a mixture of pathogens and normal skin bacteria. Several factors contributing to microbial contamination of medical air are mentioned and preventive measures are discussed.Existem vários padrões e recomendações para a qualidade do ar respirável relacionado aos equipamentos de proteção respiratória, mas pouco tem sido feito em relação a uma possível contaminação microbiana do ar medicinal. O presente trabalho demonstra quantitativa e qualitativamente que as linhas de ar estão relacionadas à contaminação microbiológica do ar comprimido e ar sintético para uso medicinal. Amostras de ar foram coletadas por um equipamento especialmente resistente a pressão, e o conteúdo bacteriano e fúngico foi identificado após crescimento em placa. A flora bacteriana isolada tanto dos sistema periféricos de ar foi virtualmente a mesma encontrada nas instalações centralizadas, sendo uma mistura de patógenos e bactérias normais da pele. Vários fatores contribuintes para a contaminação microbiana do ar medicinal e medidas preventivas são discutidas.

  8. Influence of combined dust reducing carpet and compact air filtration unit on the indoor air quality of a classroom

    NARCIS (Netherlands)

    Scheepers, P.T.J.; Hartog, J.J. de; Reijnaerts, J.; Beckmann, G.; Anzion, R.B.M.; Poels, K.; Godderis, L.

    2015-01-01

    Primary schools mostly rely on natural ventilation but also have an interest in affordable technology to improve indoor air quality (IAQ). Laboratory tests show promising results for dust reducing carpets and compact air filtration systems but there is no information available on the performance of

  9. A combination of electrokinetics and Pd/Fe PRB for the remediation of pentachlorophenol-contaminated soil.

    Science.gov (United States)

    Li, Zhirong; Yuan, Songhu; Wan, Jinzhong; Long, Huayun; Tong, Man

    2011-06-01

    Electrokinetic (EK) remediation of pentachlorophenol (PCP)-contaminated soil is difficult because PCP dissociates at different pH values along soil column and shows different transport behaviors near anode and cathode. In the present study, a permeable reactive barrier (PRB) filled with reactive Pd/Fe particles was installed between anode and cathode to reach the dechlorination of PCP during its EK movement. When PRB was installed at the position of 0.3 (normalized distance from anode), PCP in the section from anode to PRB could transport through PRB, while PCP in the section from cathode to PRB was accumulated near PRB. PCP was hardly dechlorinated by PRB wherein high pH was reached. When PRB was installed at the position of 0.5 and the pH in the PRB was decreased by periodical injection of HAc, 49% of PCP was removed, and 22.9% was recovered as phenol which was mostly collected in catholyte. The mechanism of PCP removal was proposed as the EK movement of PCP into the PRB compartment, the complete dechlorination of PCP to phenol by Pd/Fe in the PRB compartment, and the subsequent removal of phenol by electroosmosis. This study proved that the combination of electrokinetics and Pd/Fe PRB was effective for the remediation of PCP-contaminated soil.

  10. Remediation of PAH-contaminated soil by the combination of tall fescue, arbuscular mycorrhizal fungus and epigeic earthworms.

    Science.gov (United States)

    Lu, Yan-Fei; Lu, Mang

    2015-03-21

    A 120-day experiment was performed to investigate the effect of a multi-component bioremediation system consisting of tall fescue (Festuca arundinacea), arbuscular mycorrhizal fungus (AMF) (Glomus caledoniun L.), and epigeic earthworms (Eisenia foetida) for cleaning up polycyclic aromatic hydrocarbons (PAHs)-contaminated soil. Inoculation with AMF and/or earthworms increased plant yield and PAH accumulation in plants. However, PAH uptake by tall fescue accounted for a negligible portion of soil PAH removal. Mycorrhizal tall fescue significantly enhanced PAH dissipation, PAH degrader density and polyphenol oxidase activity in soil. The highest PAH dissipation (93.4%) was observed in the combination treatment: i.e., AMF+earthworms+tall fescue, in which the soil PAH concentration decreased from an initial value of 620 to 41 mg kg(-1) in 120 days. This concentration is below the threshold level required for Chinese soil PAH quality (45 mg kg(-1) dry weight) for residential use.

  11. Fenton oxidation and combined Fenton-microbial treatment for remediation of crude oil contaminated soil in Assam - India.

    Science.gov (United States)

    Buragohain, Surabhi; Deka, Dibakar Chandra; Devi, Arundhuti

    2013-10-01

    The study is aimed at the remediation of soil spiked with crude oil (5%) by employing Fenton oxidation, biological treatment and combined Fenton-biological treatment. A spiked concentration of 5% crude oil was selected on the basis of contamination levels of 0-5% as found in the soil of upper Assam oil fields (India). The degradation of the aliphatic fraction (C14-C28) of the crude oil was investigated by gas chromatography. Fenton oxidation was carried out at different pH (3 to 8) in a laboratory batch reactor and maximum oxidative degradation was observed at pH 3-5. At pH 3, single Fenton oxidation resulted in 36 and 57% degradation in 5 and 10 days respectively. Biological treatment (with Fusarium solani) and combined Fenton-biological treatment were carried out with a one month incubation period. Biological treatment alone brought about 61% degradation of the crude oil while the combined process could achieve as much as 75% degradation of the aliphatic fractions of the crude oil.

  12. Enhancement of Methane Concentration by Removing Contaminants from Biogas Mixtures Using Combined Method of Absorption and Adsorption

    Directory of Open Access Journals (Sweden)

    Muhammad Rashed Al Mamun

    2017-01-01

    Full Text Available We report a laboratory scale combined absorption and adsorption chemical process to remove contaminants from anaerobically produced biogas using cafeteria (food, vegetable, fruit, and cattle manure wastes. Iron oxide (Fe2O3, zero valent iron (Feo, and iron chloride (FeCl2 react with hydrogen sulfide (H2S to deposit colloidal sulfur. Silica gel, sodium sulfate (Na2SO4, and calcium oxide (CaO reduce the water vapour (H2O and carbon dioxide (CO2. It is possible to upgrade methane (CH4 above 95% in biogas using chemical or physical absorption or adsorption process. The removal efficiency of CO2, H2S, and H2O depends on the mass of removing agent and system pH. The results showed that Ca(OH2 solutions are capable of reducing CO2 below 6%. The H2S concentration was reduced to 89%, 90%, 86%, 85%, and 96% for treating with 10 g of FeCl2, Feo (with pH, Fe2O3, Feo, and activated carbon, respectively. The H2O concentration was reduced to 0.2%, 0.7%, 0.2%, 0.2%, and 0.3% for treating raw biogas with 10 g of silica gel and Na2SO4 for runs R1, R2, R3, R4, and R5, respectively. Thus, given the successful contaminant elimination, the combined absorption and adsorption process is a feasible system for biogas purification.

  13. Probabilistic analysis showing that a combination of bacteroides and methanobrevibacter source tracking markers is effective for identifying waters contaminated by human fecal pollution

    Science.gov (United States)

    Johnston, Christopher; Byappanahalli, Muruleedhara N.; Gibson, Jacqueline MacDonald; Ufnar, Jennifer A.; Whitman, Richard L.; Stewart, Jill R.

    2013-01-01

    Microbial source tracking assays to identify sources of waterborne contamination typically target genetic markers of host-specific microorganisms. However, no bacterial marker has been shown to be 100% host-specific, and cross-reactivity has been noted in studies evaluating known source samples. Using 485 challenge samples from 20 different human and animal fecal sources, this study evaluated microbial source tracking markers including the Bacteroides HF183 16S rRNA, M. smithii nifH, and Enterococcus esp gene targets that have been proposed as potential indicators of human fecal contamination. Bayes' Theorem was used to calculate the conditional probability that these markers or a combination of markers can correctly identify human sources of fecal pollution. All three human-associated markers were detected in 100% of the sewage samples analyzed. Bacteroides HF183 was the most effective marker for determining whether contamination was specifically from a human source, and greater than 98% certainty that contamination was from a human source was shown when both Bacteroides HF183 and M. smithii nifH markers were present. A high degree of certainty was attained even in cases where the prior probability of human fecal contamination was as low as 8.5%. The combination of Bacteroides HF183 and M. smithii nifH source tracking markers can help identify surface waters impacted by human fecal contamination, information useful for prioritizing restoration activities or assessing health risks from exposure to contaminated waters.

  14. Analysis and Optimization of a Compressed Air Energy Storage—Combined Cycle System

    Directory of Open Access Journals (Sweden)

    Wenyi Liu

    2014-06-01

    Full Text Available Compressed air energy storage (CAES is a commercial, utility-scale technology that provides long-duration energy storage with fast ramp rates and good part-load operation. It is a promising storage technology for balancing the large-scale penetration of renewable energies, such as wind and solar power, into electric grids. This study proposes a CAES-CC system, which is based on a conventional CAES combined with a steam turbine cycle by waste heat boiler. Simulation and thermodynamic analysis are carried out on the proposed CAES-CC system. The electricity and heating rates of the proposed CAES-CC system are lower than those of the conventional CAES by 0.127 kWh/kWh and 0.338 kWh/kWh, respectively, because the CAES-CC system recycles high-temperature turbine-exhausting air. The overall efficiency of the CAES-CC system is improved by approximately 10% compared with that of the conventional CAES. In the CAES-CC system, compressing intercooler heat can keep the steam turbine on hot standby, thus improving the flexibility of CAES-CC. This study brought about a new method for improving the efficiency of CAES and provided new thoughts for integrating CAES with other electricity-generating modes.

  15. Remediation in Situ of Hydrocarbons by Combined Treatment in a Contaminated Alluvial Soil due to an Accidental Spill of LNAPL

    Directory of Open Access Journals (Sweden)

    Ettore Trulli

    2016-10-01

    Full Text Available Soil contamination represents an environmental issue which has become extremely important in the last decades due to the diffusion of industrial activities. Accidents during transport of dangerous materials and fuels may cause severe pollution. The present paper describes the criteria of the actions which were operated to remediate the potential risk and observed negative effects on groundwater and soil originating from an accidental spill of diesel fuel from a tank truck. With the aim to evaluate the quality of the involved environmental matrices in the “emergency” phase, in the following “safety” operation and during the remediation action, a specific survey on hydrocarbons, light and heavy, was carried out in the sand deposits soil. Elaboration of collected data allows us to observe the movement of pollutants in the unsaturated soil. The remediation action was finalized to improve the groundwater and soil quality. The former was treated by a so called “pump and treat” system coupled with air sparging. A train of three different technologies was applied to the unsaturated soil in a sequential process: soil vapour extraction, bioventing and enhanced bioremediation. Results showed that the application of sequential remediation treatments allowed us to obtain a state of quality in unsaturated soil and groundwater as required by Italian law.

  16. Combined laser induced ignition and plasma spectroscopy: Fundamentals and application to a hydrogen-air combustor

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, L. [Aeroengine Technology Center, Japan Aerospace Exploration Agency, 7-44-1 Jindaiji-Higashi Chofu, 182-8522 Tokyo (Japan)], E-mail: laurent.zimmer@em2c.ecp.fr; Okai, K. [Aeroengine Technology Center, Japan Aerospace Exploration Agency, 7-44-1 Jindaiji-Higashi Chofu, 182-8522 Tokyo (Japan)], E-mail: okai@chofu.jaxa.jp; Kurosawa, Y. [Clean engine team, Japan Aerospace Exploration Agency, 7-44-1 Jindaiji-Higashi Chofu, 182-8522 Tokyo (Japan)], E-mail: kuro@chofu.jaxa.jp

    2007-12-15

    Combined Laser Induced Ignition and Plasma Spectroscopy (LI2PS) has the potential to give the exact local composition of a mixture at the ignition point and at the ignition time. However, as different laser energies are required to ignite a particular mixture as function of space, the typical approach using two power meters to calibrate the plasma spectroscopy measurement is not well suited. Furthermore, LI2PS requires single shot measurements and therefore high accuracy. In this paper, a novel calibration scheme is presented for application of Laser Induced Plasma Spectroscopy (LIPS) to gaseous analyses. Numerical simulations of air spectra are used to show that species emission can be used directly from the broadband spectra to determine the plasma conditions. The ratio of nitrogen emission around 744 nm and around 870 nm is found to be a sensitive indication of temperature in the emission ranging from 700 to 890 nm. Comparisons with experimental spectra show identical tendencies and validate the findings of the simulations. This approach is used in a partially-premixed hydrogen-air burner. First, helium is used instead of hydrogen. After an explanation of timing issue related to LIPS, it is shown that the calibration required depends only on nitrogen excitation and nitrogen-hydrogen ratio, without the need to know the deposited power. Measurements of the fuel distribution as function of injection momentum and spatial localization are reported. To illustrate the use of such a single shot approach, combined laser ignition and plasma spectroscopy is proposed. In this case, the calibration is based on hydrogen excitation and hydrogen-oxygen and hydrogen-nitrogen ratio. Results obtained with LI2PS show that ignition is successful only for high power and relatively high hydrogen concentration compared to the local mean. It is expected that LI2PS will become an important tool when dealing with partially-premixed or diffusion flame ignition.

  17. [Environmental investigation of ground water contamination at Wright- Patterson Air Force Base, Ohio]. Volume 4, Health and Safety Plan (HSP); Phase 1, Task 4 Field Investigation report: Draft

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This Health and Safety Plan (HSP) was developed for the Environmental Investigation of Ground-water Contamination Investigation at Wright-Patterson Air Force Base near Dayton, Ohio, based on the projected scope of work for the Phase 1, Task 4 Field Investigation. The HSP describes hazards that may be encountered during the investigation, assesses the hazards, and indicates what type of personal protective equipment is to be used for each task performed. The HSP also addresses the medical monitoring program, decontamination procedures, air monitoring, training, site control, accident prevention, and emergency response.

  18. Combined hardware--software considerations for triage of internally contaminated personnel.

    Science.gov (United States)

    Waller, Edward J

    2010-11-01

    Medical response to a radiological emergency involves first assessing, triaging and treating trauma, followed by determining potential hazard from radiological intake. A combined hardware-software strategy is required for this mission. The hardware strategy should consist of a dedicated detector suite capable of alpha, beta and gamma radiation detection, identification and quantification suitable for order of magnitude dose assessment. The hardware platform should provide a simple user interface suitable for field deployment. The software should provide first-on-the-scene responders with the ability to perform radiological triage in a mass casualty type event, physicians with the ability to assign treatment regimes, and long-term care medical personnel with information to provide continual risk reassessment of the patient taking into account toxicology of the decorporation therapy and dose aversion. The software should be rich in data, yet accessible through a simple user interface. Practicing in a radiological emergency exercise environment with the equipment is crucial to its efficacy in a real emergency.

  19. A combined approach to assess the microbial contamination of the archimedes palimpsest.

    Science.gov (United States)

    Piñar, Guadalupe; Sterflinger, Katja; Ettenauer, Jörg; Quandt, Abigail; Pinzari, Flavia

    2015-01-01

    A combined approach, using molecular and microscopic techniques, was used to identify the microbiota associated with the Archimedes Palimpsest, an unusual parchment manuscript. SEM analyses revealed the microbial damage to the collagen fibers and the presence of characteristic cell chains typical of filamentous bacteria and fungal spores. Molecular analysis confirmed a homogeneous bacterial community colonizing the manuscript. The phyla Proteobacteria and Actinobacteria were associated with this ancient parchment; the sequences were most related to uncultured clones detected in the human skin microbiome and in ephitelium, and to cultivated species of the genera Acinetobacter and Nocardiopsis. Nevertheless, a great variation was observed among the different sampled areas indicating fungal diversity. Blumeria spp. dominated in the healthy areas of the parchment while degraded areas showed disparate fungal communities, with dominant members of the genera Mucor and Cladosporium. In addition, the quantification of the β-actin gene by real-time PCR analyses (qPCR) revealed a higher fungal abundance on degraded areas than on the healthy ones.

  20. The frequency of chromosomal aberrations in sheep from the area contaminated by depleted uranium during NATO air strikes in 1999

    Directory of Open Access Journals (Sweden)

    Fišter Svetlana L.

    2014-01-01

    Full Text Available This paper presents the results of cytogenetic studies in sheep from the region of Bujanovac that was contaminated by depleted uranium during the NATO air strikes in 1999. The study was conducted on sheep blood lymphocytes, in order to determine the frequency of chromosomal aberrations and to assess the presence of genetic risk as a result of the possible impact of depleted uranium. Blood samples for lymphocyte cultures were taken at random from the 20 animals of the households in the village of Borovac, near Bujanovac. The animals were chosen because they were pastured, fed, and watered in the NATO bombing area. With the purpose of comparing the results two control groups were cytogenetically analyzed, each consisted of 20 sheep from Zemun and Ovča, two northern localities that were not contaminated with depleted uranium. The established structural chromosomal changes were of breaks and gap types, and their frequencies in sheep of all surveyed localities were within the range of basic level values that are commonly found in the sheep lymphocyte cultures analyses. Significant differences are apparent between the values defined in the sheep from Bujanovac compared to those obtained in the sheep from the northern locality (Zemun, probably as a result of breeding of animals in the farm conditions and their being less exposed to the impact of environmental agents. There were neither elevated values of polyploid and aneuploid cells nor significant differences between the sites. According to earlier known data, depleted uranium was below the detection limit of the method applied both in the soil and feed given to cytogenetically analyzed animals. Based on the low-level changes that are in the range of the basic level changes, commonly observed in sheep lymphocytes control cultures, it cannot be said with certainty that it was depleted uranium that caused the changes, or that it is wide-spread in the region of Bujanovac. [Projekat Ministarstva nauke

  1. Combined effects of low-molecular-weight organic acids on mobilization of arsenic and lead from multi-contaminated soils.

    Science.gov (United States)

    Onireti, Olaronke O; Lin, Chuxia; Qin, Junhao

    2017-03-01

    A batch experiment was conducted to examine the combined effects of three common low-molecular-weight organic acids (LMWOAs) on the mobilization of arsenic and lead in different types of multi-contaminated soils. The capacity of individual LMWOAs (at a same molar concentration) to mobilize soil-borne As and Pb varied significantly. The combination of the organic acids did not make a marked "additive" effect on the mobilization of the investigated three elements. An "antagonistic" effect on element mobilization was clear in the treatments involving oxalic acid for some soils. The acid strength of a LMWOA did not play an important role in controlling the mobilization of elements. While the mobilization of As and Pb was closely associated with the dissolution of soil-borne Fe, soil properties such as original soil pH, organic matter contents and the total amount of the element relative to the total Fe markedly complicated the mobility of that element. Aging led to continual consumption of proton introduced from addition of LMWOAs and consequently caused dramatic changes in solution-borne Fe, which in turn resulted in change in As and Pb in the soil solution though different elements behaved differently.

  2. Treatment of biomass gasification wastewater using a combined wet air oxidation/activated sludge process

    Energy Technology Data Exchange (ETDEWEB)

    English, C.J.; Petty, S.E.; Sklarew, D.S.

    1983-02-01

    A lab-scale treatability study for using thermal and biological oxidation to treat a biomass gasification wastewater (BGW) having a chemical oxygen demand (COD) of 46,000 mg/l is described. Wet air oxidation (WA0) at 300/sup 0/C and 13.8 MPa (2000 psi) was used to initially treat the BGW and resulted in a COD reduction of 74%. This was followed by conventional activated sludge treatment using operating conditions typical of municipal sewage treatment plants. This resulted in an additional 95% COD removal. Overall COD reduction for the combined process was 99%. A detailed chemical analysis of the raw BGW and thermal and biological effluents was performed using gas chromatography/mass spectrometry (GC/MS). These results showed a 97% decrease in total extractable organics with WA0 and a 99.6% decrease for combined WA0 and activated sludge treatment. Components of the treated waters tended to be fewer in number and more highly oxidized. An experiment was conducted to determine the amount of COD reduction caused by volatilization during biological treatment. Unfortunately, this did not yield conclusive results. Treatment of BGW using WA0 followed by activated sludge appears to be very effective and investigations at a larger scale are recommended.

  3. Steam and hot air injection for thermal rehabilitation of contaminated sites; Wasserdampf- und Heissluftinjektion zur thermischen Sanierung kontaminierter Standorte

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, R.

    2001-07-01

    Thermal in situ rehabilitation technologies are a promising alternative to conventional methods of cleaning up contaminated sites. The fact that an increase in temperature changes the physical properties of materials makes it possible, in principle, to release large quantities of pollutants within short time periods. The use of pure steam or steam/air mixtures as fluid thermal carriers permits converting subterranean non-aqueous-phase pollutants into the gas phase through increased vapour pressure and transporting them to the surface by means of soil air aspiration for further treatment. The purpose of the present two-stage research project was to systematically develop a thermal in situ rehabilitation technology using steam as fluid heat carrier and use it for land rehabilitation operations on a pilot basis. In the first, fundamental project phase aspects of heat transport (Faerber, 1997) and pollutant behaviour (Betz, 1998)in homogenous porous media upon pure steam injection were explored at a laboratory and technical scale using containers of different sizes (1D, 2D, 3D). The results were used to derive application criteria for this technology. [German] Thermische In-situ-Sanierungstechnologien stellen bei der Reinigung kontaminierter Standorte eine vielversprechende Alternative zu konventionellen Verfahren dar. Die Veraenderung physikalischer Stoffeigenschaften mit steigender Temperatur ermoeglicht grundsaetzlich hohe Schadstoffaustraege innerhalb kurzer Zeitraeume. Beim Einsatz von reinem Wasserdampf oder Wasserdampf-Luft-Gemischen als Waermetraegerfluid koennen im Untergrund in nicht waessriger Phase vorliegende Schadstoffe hauptsaechlich wegen der erhoehten Dampfdruecke in die Gasphase ueberfuehrt, ueber eine Bodenluftabsaugung an die Oberflaeche transportiert und dann einer weiteren Behandlung zugefuehrt werden. Zielsetzung eines zweistufigen Forschungsvorhabens war die systematische Entwicklung einer thermischen In-situ-Sanierungstechnologie unter

  4. The Combination of DGT Technique and Traditional Chemical Methods for Evaluation of Cadmium Bioavailability in Contaminated Soils with Organic Amendment

    Directory of Open Access Journals (Sweden)

    Yu Yao

    2016-06-01

    Full Text Available Organic amendments have been proposed as a means of remediation for Cd-contaminated soils. However, understanding the inhibitory effects of organic materials on metal immobilization requires further research. In this study colza cake, a typical organic amendment material, was investigated in order to elucidate the ability of this material to reduce toxicity of Cd-contaminated soil. Available concentrations of Cd in soils were measured using an in situ diffusive gradients in thin films (DGT technique in combination with traditional chemical methods, such as HOAc (aqua regia, EDTA (ethylene diamine tetraacetic acid, NaOAc (sodium acetate, CaCl2, and labile Cd in pore water. These results were applied to predict the Cd bioavailability after the addition of colza cake to Cd-contaminated soil. Two commonly grown cash crops, wheat and maize, were selected for Cd accumulation studies, and were found to be sensitive to Cd bioavailability. Results showed that the addition of colza cake may inhibit the growth of wheat and maize. Furthermore, the addition of increasing colza cake doses led to decreasing shoot and root biomass accumulation. However, increasing colza cake doses did lead to the reduction of Cd accumulation in plant tissues, as indicated by the decreasing Cd concentrations in shoots and roots. The labile concentration of Cd obtained by DGT measurements and the traditional chemical extraction methods, showed the clear decrease of Cd with the addition of increasing colza cake doses. All indicators showed significant positive correlations (p < 0.01 with the accumulation of Cd in plant tissues, however, all of the methods could not reflect plant growth status. Additionally, the capability of Cd to change from solid phase to become available in a soil solution decreased with increasing colza cake doses. This was reflected by the decreases in the ratio (R value of CDGT to Csol. Our study suggests that the sharp decrease in R values could not only

  5. The Combination of DGT Technique and Traditional Chemical Methods for Evaluation of Cadmium Bioavailability in Contaminated Soils with Organic Amendment.

    Science.gov (United States)

    Yao, Yu; Sun, Qin; Wang, Chao; Wang, Pei-Fang; Miao, Ling-Zhan; Ding, Shi-Ming

    2016-06-15

    Organic amendments have been proposed as a means of remediation for Cd-contaminated soils. However, understanding the inhibitory effects of organic materials on metal immobilization requires further research. In this study colza cake, a typical organic amendment material, was investigated in order to elucidate the ability of this material to reduce toxicity of Cd-contaminated soil. Available concentrations of Cd in soils were measured using an in situ diffusive gradients in thin films (DGT) technique in combination with traditional chemical methods, such as HOAc (aqua regia), EDTA (ethylene diamine tetraacetic acid), NaOAc (sodium acetate), CaCl₂, and labile Cd in pore water. These results were applied to predict the Cd bioavailability after the addition of colza cake to Cd-contaminated soil. Two commonly grown cash crops, wheat and maize, were selected for Cd accumulation studies, and were found to be sensitive to Cd bioavailability. Results showed that the addition of colza cake may inhibit the growth of wheat and maize. Furthermore, the addition of increasing colza cake doses led to decreasing shoot and root biomass accumulation. However, increasing colza cake doses did lead to the reduction of Cd accumulation in plant tissues, as indicated by the decreasing Cd concentrations in shoots and roots. The labile concentration of Cd obtained by DGT measurements and the traditional chemical extraction methods, showed the clear decrease of Cd with the addition of increasing colza cake doses. All indicators showed significant positive correlations (p plant tissues, however, all of the methods could not reflect plant growth status. Additionally, the capability of Cd to change from solid phase to become available in a soil solution decreased with increasing colza cake doses. This was reflected by the decreases in the ratio (R) value of CDGT to Csol. Our study suggests that the sharp decrease in R values could not only reflect the extremely low capability of labile Cd to

  6. Combined nano-biotechnology for in-situ remediation of mixed contamination of groundwater by hexavalent chromium and chlorinated solvents.

    Science.gov (United States)

    Němeček, Jan; Pokorný, Petr; Lhotský, Ondřej; Knytl, Vladislav; Najmanová, Petra; Steinová, Jana; Černík, Miroslav; Filipová, Alena; Filip, Jan; Cajthaml, Tomáš

    2016-09-01

    The present report describes a 13month pilot remediation study that consists of a combination of Cr(VI) (4.4 to 57mg/l) geofixation and dechlorination of chlorinated ethenes (400 to 6526μg/l), achieved by the sequential use of nanoscale zerovalent iron (nZVI) particles and in situ biotic reduction supported by whey injection. The remediation process was monitored using numerous techniques, including physical-chemical analyses and molecular biology approaches which enabled both the characterization of the mechanisms involved in pollutant transformation and the description of the overall background processes of the treatment. The results revealed that nZVI was efficient toward Cr(VI) by itself and completely removed it from the groundwater (LOQ 0.05mg/l) and the subsequent application of whey resulted in a high removal of chlorinated ethenes (97 to 99%). The persistence of the reducing conditions, even after the depletion of the organic substrates, indicated a complementarity between nZVI and the whey phases in the combined technology as the subsequent application of whey phase partially assisted the microbial regeneration of the spent nZVI by promoting its reduction into Fe(II), which further supported remediation conditions at the site. Illumina sequencing and the detection of functional vcrA and bvcA genes documented a development in the reducing microbes (iron-reducing, sulfate-reducing and chlororespiring bacteria) that benefited under the conditions of the site and that was probably responsible for the high dechlorination and/or Cr(VI) reduction. The results of this study demonstrate the feasibility and high efficiency of the combined nano-biotechnological approach of nZVI and whey application in-situ for the removal of Cr(VI) and chlorinated ethenes from the groundwater of the contaminated site.

  7. Assessment of intrinsic bioremediation of gasoline contamination in the shallow aquifer, Laurel Bay Exchange, Marine Corps Air Station Beaufort, South Carolina

    Science.gov (United States)

    Landmeyer, J.E.; Chapelle, Francis; Bradley, P.M.

    1996-01-01

    Laboratory, field, and digital solute-transport- modeling studies demonstrate that microorganisms indigenous to the shallow ground-water system at Laurel Bay Exchange, Marine Corps Air Station Beaufort, South Carolina, can degrade petroleum hydrocarbons in gasoline released at the site. Microorganisms in aquifer sediments incubated in the laboratory under aerobic and anaerobic conditions mineralized radiolabeled carbon 14-toluene to 14C-carbon dioxide with first-order rate constants of Kbio = -0.640 per day and Kbio = -0.003 per day, respectively. Digital solute- transport modeling using the numerical code SUTRA revealed that anaerobic biodegradation of benzene occurs with a first-order rate constant near Kbio = -0.00025 per day. Sandy aquifer material beneath Laurel Bay Exchange is characterized by relatively high hydraulic conductivities (Kaq = 8.9 to 17.3 feet per day), average ground-water flow rate of about 60 feet per year, and a relatively uniform hydraulic gradient of 0.004 feet per foot. The sandy aquifer material also has low adsorptive potentials for toluene and benzene (both about Kad = 2.0 x 10-9 cubic feet per milligram), because of the lack of natural organic matter in the aquifer. The combination of this ground-water-flow rate and absence of significant adsorptive capacity in the aquifer permits toluene and benzene concentrations to be detected downgradient from the source area in monitoring wells, even though biodegradation of these compounds has been demonstrated. Solute-transport simulations, however, indicate that toluene and benzene will not reach the Broad River, the nearest point of contact with wildlife or human populations, about 3,600 feet west of the site boundary. These simulations also show that contamination will not be transported to the nearest Marine Corps property line about 2,400 feet south of the site. This is primarily because the source of contaminants has essentially been removed, and the low adsorptive capacity of the aquifer

  8. Testing an innovative device against airborne Aspergillus contamination.

    Science.gov (United States)

    Desoubeaux, Guillaume; Bernard, Marie-Charlotte; Gros, Valérie; Sarradin, Pierre; Perrodeau, Elodie; Vecellio, Laurent; Piscopo, Antoine; Chandenier, Jacques; Bernard, Louis

    2014-08-01

    Aspergillus fumigatus is a major airborne nosocomial pathogen that is responsible for severe mycosis in immunocompromised patients. We studied the efficacy of an innovative mobile air-treatment device in eliminating A. fumigatus from the air following experimental massive contamination in a high-security room. Viable mycological particles were isolated from sequential air samples in order to evaluate the device's effectiveness in removing the fungus. The concentration of airborne conidia was reduced by 95% in 18 min. Contamination was reduced below the detection threshold in 29 min, even when the machine was at the lowest airflow setting. In contrast, during spontaneous settling with no air treatment, conidia remained airborne for more than 1 h. This indoor air contamination model provided consistent and reproducible results. Because the air purifier proved to be effective at eliminating a major contaminant, it may prove useful in preventing air-transmitted disease agents. In an experimental space mimicking a hospital room, the AirLyse air purifier, which uses a combination of germicidal ultraviolet C irradiation and titanium photocatalysis, effectively eliminated Aspergillus conidia. Such a mobile device may be useful in routine practice for lowering microbiological air contamination in the rooms of patients at risk.

  9. Characterization of chlorinated solvent contamination in limestone using innovative FLUTe® technologies in combination with other methods in a line of evidence approach

    DEFF Research Database (Denmark)

    Broholm, Mette Martina; Janniche, Gry Sander; Mosthaf, Klaus

    2016-01-01

    , hydrogeology and contaminant distribution. The FACT™ is a new technology and it was applied and tested at a contaminated site with a limestone aquifer, together with a number of existing methods including wire-line coring with core subsampling, FLUTe® transmissivity profiling and multilevel water sampling......Characterization of dense non-aqueous phase liquid (DNAPL) source zones in limestone aquifers/bedrock is essential to develop accurate site-specific conceptual models and perform risk assessment. Here innovative field methods were combined to improve determination of source zone architecture....... Laboratory sorption studies were combined with a model of contaminant uptake on the FACT™ for data interpretation. Limestone aquifers were found particularly difficult to sample with existing methods because of core loss, particularly from soft zones in contact with chert beds. Water FLUTe™ multilevel...

  10. [Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 3, Appendix A, Draft standard operating procedures and elements: Sampling and Analysis Plan (SAP): Phase 1, Task 4, Field Investigation, Draft

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This report presents information concerning field procedures employed during the monitoring, well construction, well purging, sampling, and well logging at the Wright-Patterson Air Force Base. Activities were conducted in an effort to evaluate ground water contamination.

  11. Is there an environmental benefit from remediation of a contaminated site? Combined assessments of the risk reduction and life cycle impact of remediation

    DEFF Research Database (Denmark)

    Lemming, Gitte; Chambon, Julie Claire Claudia; Binning, Philip John;

    2012-01-01

    determined by a numerical risk assessment and remedial performance model, which predicted the contaminant mass discharge over time at a point of compliance in the aquifer and at the waterworks. The combined assessment of risk reduction and life cycle impacts showed that all management options result...

  12. Development of a Computer-Based Air Force Installation Restoration Workstation for Contaminant Modeling and Decision-Making

    Science.gov (United States)

    1994-01-01

    suggests no risk of contamination, no information is provided as to the certainty of this conclusion. The recommended alternativo is to explicitly consider...granular materials with some sorption capacity. It is a less significant factor in fractured materials or cavernous rock , where contamination is likely

  13. Combination of biochar amendment and mycoremediation for polycyclic aromatic hydrocarbons immobilization and biodegradation in creosote-contaminated soil.

    Science.gov (United States)

    García-Delgado, Carlos; Alfaro-Barta, Irene; Eymar, Enrique

    2015-03-21

    Soils impregnated with creosote contain high concentrations of polycyclic aromatic hydrocarbons (PAH). To bioremediate these soils and avoid PAH spread, different bioremediation strategies were tested, based on natural attenuation, biochar application, wheat straw biostimulation, Pleurotus ostreatus mycoremediation, and the novel sequential application of biochar for 21 days and P. ostreatus 21 days more. Soil was sampled after 21 and 42 days after the remediation application. The efficiency and effectiveness of each remediation treatment were assessed according to PAH degradation and immobilization, fungal and bacterial development, soil eco-toxicity and legal considerations. Natural attenuation and biochar treatments did not achieve adequate PAH removal and soil eco-toxicity reduction. Biostimulation showed the highest bacterial development but low PAH degradation rate. Mycoremediation achieved the best PAH degradation rate and the lowest bioavailable fraction and soil eco-toxicity. This bioremediation strategy achieved PAH concentrations below Spanish legislation for contaminated soils (RD 9/2005). Sequential application of biochar and P. ostreatus was the second treatment most effective for PAH biodegradation and immobilization. However, the activity of P. ostreatus was increased by previous biochar application and PAH degradation efficiency was increased. Therefore, the combined strategy for PAH degradation have high potential to increase remediation efficiency.

  14. Performance analysis of a combined cycle gas turbine power plant by using various inlet air cooling systems

    Energy Technology Data Exchange (ETDEWEB)

    Rahim, Murad A. [Department of Mechanical Engineering, Gazi University (Turkey)], e-mail: mrahim@gazi.edu.tr

    2011-07-01

    In recent years, the use of gas turbines in combined cycle power plants has increased. Turbine inlet air cooling appears to be the best solution for maximizing both production and efficiency, particularly in a hot climate. The aim of this study is to determine the impact of different air cooling systems on the gas turbine's performance and carbon dioxide emissions. Computer simulations were carried out, using the THERMOFLEX program, on fogging, evaporative cooling, adsorption cooling, and electrical chiller cooling systems as well as on a base case without cooling system. Results showed that inlet air cooling systems are effective in increasing the efficiency of gas turbine power plants. In addition it was found that absorption chillers are the best system for increasing power generation but that economic and source analyses should be conducted before installing a cooling system. This paper demonstrated that inlet air cooling systems have the ability to increase net power generation of gas turbine power plants.

  15. Preliminary Analysis on Heat Removal Capacity of Passive Air-Water Combined Cooling Heat Exchanger Using MARS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung-Sin; Jeon, Seong-Su; Hong, Soon-Joon [FNC Tech, Yongin (Korea, Republic of); Bae, Sung-Won; Kwon, Tae-Soon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Current design requirement for working time of PAFS heat exchanger is about 8 hours. Thus, it is not satisfied with the required cooling capability for the long term SBO(Station Black-Out) situation that is required to over 72 hours cooling. Therefore PAFS is needed to change of design for 72 hours cooling. In order to acquirement of long terms cooling using PAFS, heat exchanger tube has to be submerged in water tank for long time. However, water in the tank is evaporated by transferred heat from heat exchanger tubes, so water level is gradually lowered as time goes on. The heat removal capacity of air cooling heat exchanger is core parameter that is used for decision of applicability on passive air-water combined cooling system using PAFS in long term cooling. In this study, the development of MARS input model and plant accident analysis are performed for the prediction of the heat removal capacity of air cooling heat exchanger. From analysis result, it is known that inflow air velocity is the decisive factor of the heat removal capacity and predicted air velocity is lower than required air velocity. But present heat transfer model and predicted air velocity have uncertainty. So, if changed design of PAFS that has over 4.6 kW heat removal capacity in each tube, this type heat exchanger can be applied to long term cooling of the nuclear power plant.

  16. Evaluations of combined zebrafish (Danio rerio) embryo and marine phytoplankton (Diacronema lutheri) toxicity of dissolved organic contaminants in the Ythan catchment, Scotland, UK.

    Science.gov (United States)

    Emelogu, Emmanuel S; Seiler, Thomas-Benjamin; Pollard, Pat; Robinson, Craig D; Webster, Lynda; McKenzie, Craig; Heger, Sebastian; Hollert, Henner; Bresnan, Eileen; Best, Jennifer; Moffat, Colin F

    2014-04-01

    A wide variety of organic contaminants including pesticides, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) have previously been detected in surface waters in the river Ythan catchment, North East Scotland UK. While the concentrations detected were below Water Framework Directive Environmental Quality Standards (WFD-EQSs) environmental exposures to the diverse mixtures of contaminants, known and unknown, may pose chronic and/or sublethal effects to non target organisms. The present study assessed the embryo and algal toxicity potential of freely dissolved organic contaminants from the Ythan catchment using silicone rubber passive sampling devices (SR-PSDs) and miniaturised bioassay techniques. Zebrafish (Danio rerio) embryos and marine phytoplankton species (Diacronema lutheri) were exposed to extracts from SR-PSDs deployed at different locations along the river Ythan and an undeployed procedural blank. Statistically significant developmental and algal toxicities were measured in all tests of extracts from deployed samples compared with the procedural blanks. This indicates environmental exposure to, and the combined toxicity potential of, freely dissolved organic contaminants in the catchment. The present and previous studies in the Ythan catchment, coupling SR-PSDs and bioassay techniques, have both helped to understand the interactions and combined effects of dissolved organic contaminants in the catchment. They have further revealed the need for improvement in the techniques currently used to assess environmental impact.

  17. Cryogenic hydrogen-induced air-liquefaction technologies for combined-cycle propulsion applications

    Science.gov (United States)

    Escher, William J. D.

    1992-01-01

    Given here is a technical assessment of the realization of cryogenic hydrogen induced air liquefaction technologies in a prospective onboard aerospace vehicle process setting. The technical findings related to the status of air liquefaction technologies are reviewed. Compact lightweight cryogenic heat exchangers, heat exchanger atmospheric constituent fouling alleviation measures, para/ortho-hydrogen shift-conversion catalysts, cryogenic air compressors and liquid air pumps, hydrogen recycling using slush hydrogen as a heat sink, liquid hydrogen/liquid air rocket-type combustion devices, and technically related engine concepts are discussed. Much of the LACE work is related to aerospaceplane propulsion concepts that were developed in the 1960's. Emphasis is placed on the Liquid Air Cycle Engine (LACE).

  18. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil.

    Science.gov (United States)

    Cassidy, Daniel P; Srivastava, Vipul J; Dombrowski, Frank J; Lingle, James W

    2015-10-30

    Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks.

  19. Contamination of indoor dust and air by polychlorinated biphenyls and brominated flame retardants and relevance of non-dietary exposure in Vietnamese informal e-waste recycling sites.

    Science.gov (United States)

    Tue, Nguyen Minh; Takahashi, Shin; Suzuki, Go; Isobe, Tomohiko; Viet, Pham Hung; Kobara, Yuso; Seike, Nobuyasu; Zhang, Gan; Sudaryanto, Agus; Tanabe, Shinsuke

    2013-01-01

    This study investigated the occurrence of polychlorinated biphenyls (PCBs), and several additive brominated flame retardants (BFRs) in indoor dust and air from two Vietnamese informal e-waste recycling sites (EWRSs) and an urban site in order to assess the relevance of these media for human exposure. The levels of polybrominated diphenyl ethers (PBDEs), hexabromocyclododecane (HBCD), 1,2-bis-(2,4,6-tribromophenoxy)ethane (BTBPE) and decabromodiphenyl ethane (DBDPE) in settled house dust from the EWRSs (130-12,000, 5.4-400, 5.2-620 and 31-1400 ng g(-1), respectively) were significantly higher than in urban house dust but the levels of PCBs (4.8-320 ng g(-1)) were not higher. The levels of PCBs and PBDEs in air at e-waste recycling houses (1000-1800 and 620-720 pg m(-3), respectively), determined using passive sampling, were also higher compared with non-e-waste houses. The composition of BFRs in EWRS samples suggests the influence from high-temperature processes and occurrence of waste materials containing older BFR formulations. Results of daily intake estimation for e-waste recycling workers are in good agreement with the accumulation patterns previously observed in human milk and indicate that dust ingestion contributes a large portion of the PBDE intake (60%-88%), and air inhalation to the low-chlorinated PCB intake (>80% for triCBs) due to their high levels in dust and air, respectively. Further investigation of both indoor dust and air as the exposure media for other e-waste recycling-related contaminants and assessment of health risk associated with exposure to these contaminant mixtures is necessary.

  20. Measuring combined exposure to environmental pressures in urban areas: an air quality and noise pollution assessment approach.

    Science.gov (United States)

    Vlachokostas, Ch; Achillas, Ch; Michailidou, A V; Moussiopoulos, Nu

    2012-02-01

    This study presents a methodological scheme developed to provide a combined air and noise pollution exposure assessment based on measurements from personal portable monitors. Provided that air and noise pollution are considered in a co-exposure approach, they represent a significant environmental hazard to public health. The methodology is demonstrated for the city of Thessaloniki, Greece. The results of an extensive field campaign are presented and the variations in personal exposure between modes of transport, routes, streets and transport microenvironments are evaluated. Air pollution and noise measurements were performed simultaneously along several commuting routes, during the morning and evening rush hours. Combined exposure to environmental pollutants is highlighted based on the Combined Exposure Factor (CEF) and Combined Dose and Exposure Factor (CDEF). The CDEF takes into account the potential relative uptake of each pollutant by considering the physical activities of each citizen. Rather than viewing environmental pollutants separately for planning and environmental sustainability considerations, the possibility of an easy-to-comprehend co-exposure approach based on these two indices is demonstrated. Furthermore, they provide for the first time a combined exposure assessment to these environmental pollutants for Thessaloniki and in this sense they could be of importance for local public authorities and decision makers. A considerable environmental burden for the citizens of Thessaloniki, especially for VOCs and noise pollution levels is observed. The material herein points out the importance of measuring public health stressors and the necessity of considering urban environmental pollution in a holistic way.

  1. Analysis and evaluation methods for chemical contaminants in clean room air; Kagaku osen no bunseki hyokaho clean room kukichu no kagaku osen busshitsu ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, T.

    1998-07-31

    As for, chemical contamination in a cleanroom air has taken up as a important problem. As the main source is building materials, after construction the execution of countermeasures is difficult. Out-gas evaluation and selection in building materials, chemical filters for removing specific organic matter and so on, are a large technical theme in the future and analytical techniques corresponding them become necessary. In this paper, analytical methods of airborne molecular contaminants (AMCs) are introduced. Main samples are AMCs in cleanroom atmosphere, on silicon wafer surface and out-gas from raw materials for cleanroom construction materials such as sealant, plastics and so on. Analytical methods consist of quantification of inorganic compounds, organic compounds and identification of abnormal spot with local/surface analysis. Various interesting findings with analytical data are obtained and investigated. 22 refs., 6 figs., 5 tabs.

  2. Characterization of chlorinated solvent contamination in limestone using innovative FLUTe® technologies in combination with other methods in a line of evidence approach

    Science.gov (United States)

    Broholm, Mette M.; Janniche, Gry S.; Mosthaf, Klaus; Fjordbøge, Annika S.; Binning, Philip J.; Christensen, Anders G.; Grosen, Bernt; Jørgensen, Torben H.; Keller, Carl; Wealthall, Gary; Kerrn-Jespersen, Henriette

    2016-06-01

    Characterization of dense non-aqueous phase liquid (DNAPL) source zones in limestone aquifers/bedrock is essential to develop accurate site-specific conceptual models and perform risk assessment. Here innovative field methods were combined to improve determination of source zone architecture, hydrogeology and contaminant distribution. The FACT™ is a new technology and it was applied and tested at a contaminated site with a limestone aquifer, together with a number of existing methods including wire-line coring with core subsampling, FLUTe® transmissivity profiling and multilevel water sampling. Laboratory sorption studies were combined with a model of contaminant uptake on the FACT™ for data interpretation. Limestone aquifers were found particularly difficult to sample with existing methods because of core loss, particularly from soft zones in contact with chert beds. Water FLUTe™ multilevel groundwater sampling (under two flow conditions) and FACT™ sampling and analysis combined with FLUTe® transmissivity profiling and modeling were used to provide a line of evidence for the presence of DNAPL, dissolved and sorbed phase contamination in the limestone fractures and matrix. The combined methods were able to provide detailed vertical profiles of DNAPL and contaminant distributions, water flows and fracture zones in the aquifer and are therefore a powerful tool for site investigation. For the limestone aquifer the results indicate horizontal spreading in the upper crushed zone, vertical migration through fractures in the bryozoan limestone down to about 16-18 m depth with some horizontal migrations along horizontal fractures within the limestone. Documentation of the DNAPL source in the limestone aquifer was significantly improved by the use of FACT™ and Water FLUTe™ data.

  3. Nuclear Air-Brayton Combined Cycle Power Conversion Design, Physical Performance Estimation and Economic Assessment

    Science.gov (United States)

    Andreades, Charalampos

    The combination of an increased demand for electricity for economic development in parallel with the widespread push for adoption of renewable energy sources and the trend toward liberalized markets has placed a tremendous amount of stress on generators, system operators, and consumers. Non-guaranteed cost recovery, intermittent capacity, and highly volatile market prices are all part of new electricity grids. In order to try and remediate some of these effects, this dissertation proposes and studies the design and performance, both physical and economic, of a novel power conversion system, the Nuclear Air-Brayton Combined Cycle (NACC). The NACC is a power conversion system that takes a conventional industrial frame type gas turbine, modifies it to accept external nuclear heat at 670°C, while also maintaining its ability to co-fire with natural gas to increase temperature and power output at a very quick ramp rate. The NACC addresses the above issues by allowing the generator to gain extra revenue through the provision of ancillary services in addition to energy payments, the grid operator to have a highly flexible source of capacity to back up intermittent renewable energy sources, and the consumer to possibly see less volatile electricity prices and a reduced probability of black/brown outs. This dissertation is split into six sections that delve into specific design and economic issues related to the NACC. The first section describes the basic design and modifications necessary to create a functional externally heated gas turbine, sets a baseline design based upon the GE 7FB, and estimates its physical performance under nominal conditions. The second section explores the off-nominal performance of the NACC and characterizes its startup and shutdown sequences, along with some of its safety measures. The third section deals with the power ramp rate estimation of the NACC, a key performance parameter in a renewable-heavy grid that needs flexible capacity. The

  4. Environmental continuous air monitor inlet with combined preseparator and virtual impactor

    Science.gov (United States)

    Rodgers, John C.

    2007-06-19

    An inlet for an environmental air monitor is described wherein a pre-separator interfaces with ambient environment air and removes debris and insects commonly associated with high wind outdoors and a deflector plate in communication with incoming air from the pre-separator stage, that directs the air radially and downward uniformly into a plurality of accelerator jets located in a manifold of a virtual impactor, the manifold being cylindrical and having a top, a base, and a wall, with the plurality of accelerator jets being located in the top of the manifold and receiving the directed air and accelerating directed air, thereby creating jets of air penetrating into the manifold, where a major flow is deflected to the walls of the manifold and extracted through ports in the walls. A plurality of receiver nozzles are located in the base of the manifold coaxial with the accelerator jets, and a plurality of matching flow restrictor elements are located in the plurality of receiver nozzles for balancing and equalizing the total minor flow among all the plurality of receiver nozzles, through which a lower, fractional flow extracts large particle constituents of the air for collection on a sample filter after passing through the plurality of receiver nozzles and the plurality of matching flow restrictor elements.

  5. Sampling artifacts in active air sampling of semivolatile organic contaminants: Comparing theoretical and measured artifacts and evaluating implications for monitoring networks.

    Science.gov (United States)

    Melymuk, Lisa; Bohlin-Nizzetto, Pernilla; Prokeš, Roman; Kukučka, Petr; Klánová, Jana

    2016-10-01

    The effects of sampling artifacts are often not fully considered in the design of air monitoring with active air samplers. Semivolatile organic contaminants (SVOCs) are particularly vulnerable to a range of sampling artifacts because of their wide range of gas-particle partitioning and degradation rates, and these can lead to erroneous measurements of air concentrations and a lack of comparability between sites with different environmental and sampling conditions. This study used specially adapted filter-sorbent sampling trains in three types of active air samplers to investigate breakthrough of SVOCs, and the possibility of other sampling artifacts. Breakthrough volumes were experimentally determined for a range of polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs) in sampling volumes from 300 to 10,000 m(3), and sampling durations of 1-7 days. In parallel, breakthrough was estimated based on theoretical sorbent-vapor pressure relationships. The comparison of measured and theoretical determinations of breakthrough demonstrated good agreement between experimental and estimated breakthrough volumes, and showed that theoretical breakthrough estimates should be used when developing air monitoring protocols. Significant breakthrough in active air samplers occurred for compounds with vapor pressure >0.5 Pa at volumes Sample volumes between 700 and 10,000 m(3) may lead to breakthrough for compounds with vapor pressures between 0.005 and 0.5 Pa. Breakthrough is largely driven by sample volume and compound volatility (therefore indirectly by temperature) and is independent of sampler type. The presence of significant breakthrough at "typical" sampling conditions is relevant for air monitoring networks, and may lead to under-reporting of more volatile SVOCs.

  6. Remediation of highly contaminated soils from an industrial site by employing a combined treatment with exogeneous humic substances and oxidative biomimetic catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Sannino, Filomena, E-mail: fsannino@unina.it [Dipartimento di Agraria, Università di Napoli “Federico II”, Via Università 100, 80055 Portici (Italy); Spaccini, Riccardo [Dipartimento di Agraria, Università di Napoli “Federico II”, Via Università 100, 80055 Portici (Italy); Centro Interdipartimentale di Ricerca sulla Risonanza Magnetica Nucleare per l’Ambiente, l’Agro-Alimentare ed i Nuovi Materiali (CERMANU), Via Università 100, 80055 Portici (Italy); Savy, Davide [Dipartimento di Agraria, Università di Napoli “Federico II”, Via Università 100, 80055 Portici (Italy); Piccolo, Alessandro [Dipartimento di Agraria, Università di Napoli “Federico II”, Via Università 100, 80055 Portici (Italy); Centro Interdipartimentale di Ricerca sulla Risonanza Magnetica Nucleare per l’Ambiente, l’Agro-Alimentare ed i Nuovi Materiali (CERMANU), Via Università 100, 80055 Portici (Italy)

    2013-10-15

    Highlights: • Remediation of two polluted soils from a highly contaminated industrial site in Italy. • Restoration of soil quality by introducing additional carbon into polluted soil with humic matter amendments. • Detoxification of contaminants by covalent binding to humic molecules. • Prevention of environmental transport of pollutants. -- Abstract: Remediation of two polluted soils from a northern Italian industrial site heavily contaminated with organic contaminants was attempted here by subjecting soils first to addition with an exogenous humic acid (HA), and, then, to an oxidation reaction catalyzed by a water-soluble iron-porphyrin (FeP). An expected decrease of detectable organic pollutants (>50%) was already observed when soils were treated only with the H{sub 2}O{sub 2} oxidant. This reduction was substantially enhanced when oxidation was catalyzed by iron-porphyrin (FeP + H{sub 2}O{sub 2}) and the largest effect was observed for the most highly polluted soil. Even more significant was the decrease in detectable pollutants (70–90%) when soils were first amended with HA and then subjected to the FeP + H{sub 2}O{sub 2} treatment. This reduction in extractable pollutants after the combined HA + FeP + H{sub 2}O{sub 2} treatment was due to formation of covalent C-C and C-O-C bonds between soil contaminants and amended humic molecules. Moreover, the concomitant detection of condensation products in soil extracts following FeP addition confirmed the occurrence of free-radical coupling reactions catalyzed by FeP. These findings indicate that a combined technique based on the action of both humic matter and a metal-porhyrin catalyst, may become useful to quantitatively reduce the toxicity of heavily contaminated soils and prevent the environmental transport of pollutants.

  7. Combined remediation of Cd-phenanthrene co-contaminated soil by Pleurotus cornucopiae and Bacillus thuringiensis FQ1 and the antioxidant responses in Pleurotus cornucopiae.

    Science.gov (United States)

    Jiang, Juan; Liu, Hongying; Li, Qiao; Gao, Ni; Yao, Yuan; Xu, Heng

    2015-10-01

    Remediation of soil co-contaminated with heavy metals and PAHs by mushroom and bacteria is a novel technique. In this study, the combined remediation effect of mushroom (Pleurotus cornucopiae) and bacteria (FQ1, Bacillus thuringiensis) on Cd and phenanthrene co-contaminated soil was investigated. The effect of bacteria (B. thuringiensis) on mushroom growth, Cd accumulation, phenanthrene degradation by P. cornucopiae and antioxidative responses of P. cornucopiae were studied. P. cornucopiae could adapt easily and grow well in Cd-phenanthrene co-contaminated soil. It was found that inoculation of FQ1 enhanced mushroom growth (biomass) and Cd accumulation with the increment of 26.68-43.58% and 14.29-97.67% respectively. Up to 100% and 95.07% of phenanthrene were removed in the bacteria-mushroom (B+M) treatment respectively spiked with 200mg/kg and 500mg/kg phenanthrene. In addition, bacterial inoculation alleviated oxidative stress caused by co-contamination with relative decreases in lipid peroxidation and enzyme activity, including malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). This study demonstrated that the integrated remediation strategy of bacteria and mushroom is an effective and promising method for Cd-phenanthrene co-contaminated soil bioremediation.

  8. Procedures for addressing uncertainty and variability in exposure to characterize potential health risk from trichloroethylene contaminated groundwater at Beale Air Force Base in California

    Energy Technology Data Exchange (ETDEWEB)

    Bogen, K T; Daniels, J I; Hall, L C

    1999-09-01

    This study was designed to accomplish two objectives. The first was to provide to the US Air Force and the regulatory community quantitative procedures that they might want to consider using for addressing uncertainty and variability in exposure to better characterize potential health risk. Such methods could be used at sites where populations may now or in the future be faced with using groundwater contaminated with low concentrations of the chemical trichloroethylene (TCE). The second was to illustrate and explain the application of these procedures with respect to available data for TCE in ground water beneath an inactive landfill site that is undergoing remediation at Beale Air Force Base in California. The results from this illustration provide more detail than the more traditional conservative deterministic, screening-level calculations of risk, also computed for purposes of comparison. Application of the procedures described in this report can lead to more reasonable and equitable risk-acceptability criteria for potentially exposed populations at specific sites.

  9. Polychlorinated biphenyls (PCBs) in indoor air originating from sealants in contaminated and uncontaminated apartments within the same housing estate

    DEFF Research Database (Denmark)

    Frederiksen, Marie; Meyer, Harald William; Ebbehøj, Niels Erik;

    2012-01-01

    Twenty-four congeners of polychlorinated biphenyls (PCBs) were measured in 83 air samples and 20 elastic sealants samples of apartments with PCB-containing sealants. In addition, PCBs were measured in 21 air samples from reference apartments located in an uncontaminated section of the same estate...

  10. Removal of Contaminant DNA by Combined UV-EMA Treatment Allows Low Copy Number Detection of Clinically Relevant Bacteria Using Pan-Bacterial Real-Time PCR.

    Directory of Open Access Journals (Sweden)

    Bruce Humphrey

    Full Text Available More than two decades after its discovery, contaminant microbial DNA in PCR reagents continues to impact the sensitivity and integrity of broad-range PCR diagnostic techniques. This is particularly relevant to their use in the setting of human sepsis, where a successful diagnostic on blood samples needs to combine universal bacterial detection with sensitivity to 1-2 genome copies, because low levels of a broad range of bacteria are implicated.We investigated the efficacy of ethidium monoazide (EMA and propidium monoazide (PMA treatment as emerging methods for the decontamination of PCR reagents. Both treatments were able to inactivate contaminating microbial DNA but only at concentrations that considerably affected assay sensitivity. Increasing amplicon length improved EMA/PMA decontamination efficiency but at the cost of assay sensitivity. The same was true for UV exposure as an alternative decontamination strategy, likely due to damage sustained by oligonucleotide primers which were a significant source of contamination. However, a simple combination strategy with UV-treated PCR reagents paired with EMA-treated primers produced an assay capable of two genome copy detection and a <5% contamination rate. This decontamination strategy could have important utility in developing improved pan-bacterial assays for rapid diagnosis of low pathogen burden conditions such as in the blood of patients with suspected blood stream infection.

  11. Removal of petroleum hydrocarbons from contaminated groundwater by the combined technique of adsorption onto perlite followed by the O3/H2O2 process.

    Science.gov (United States)

    Moussavi, Gholamreza; Bagheri, Amir

    2012-09-01

    Groundwater contaminated with petroleum hydrocarbons was treated using a combined system of adsorption onto powdered expanded perlite (PEP) followed by the O3/H2O2 process. The pretreatment investigations indicated a high capacity for PEP to remove petroleum hydrocarbons from the contaminated water. An experimental total petroleum hydrocarbon (TPH) adsorption capacity of 275 mg/g PEP was obtained at the natural pH of water. The experimental data fit best with the Freundlich isotherm model and pseudo-second-order adsorption model. The second phase of the experiment evaluated the performance of the O3/H2O2 process in the removal of residual TPH from pretreated water and compared the results with that of raw water. The O3/H202 process attained a maximum TPH removal rate for the pretreated water after 70 min, when 93% of the residual TPH in the effluent of the adsorption system was removed. Overall, the combination of adsorption onto PEP for 100 min and the subsequent treatment with the O3/H2O2 process for 70min eliminated over 99% of the TPH of highly petroleum-contaminated groundwater, with initial values of 162 mg/L. Therefore, we can conclude that the developed treatment system is an appropriate method of remediation for petroleum-contaminated waters.

  12. (Contaminated soil)

    Energy Technology Data Exchange (ETDEWEB)

    Siegrist, R.L.

    1991-01-08

    The traveler attended the Third International Conference on Contaminated Soil, held in Karlsruhe, Germany. The Conference was a status conference for worldwide research and practice in contaminated soil assessment and environmental restoration, with more than 1500 attendees representing over 26 countries. The traveler made an oral presentation and presented a poster. At the Federal Institute for Water, Soil and Air Hygiene, the traveler met with Dr. Z. Filip, Director and Professor, and Dr. R. Smed-Hildmann, Research Scientist. Detailed discussions were held regarding the results and conclusions of a collaborative experiment concerning humic substance formation in waste-amended soils.

  13. Polychlorinated biphenyls (PCBs) in air and soil from a high-altitude pasture in the Italian Alps: evidence of CB-209 contamination.

    Science.gov (United States)

    Tremolada, Paolo; Guazzoni, Niccolò; Comolli, Roberto; Parolini, Marco; Lazzaro, Serena; Binelli, Andrea

    2015-12-01

    This study analyses the seasonal trend of polychlorinated biphenyls (PCB) concentrations in air and soil from a high-altitude mountain pasture in the Italian Alps. PCB concentrations in soil were generally comparable to background levels and were lower than those previously measured in the same area. Only CB-209 unexpectedly showed high concentrations with respect to the other congeners. GC-MS-MS identification was very clear, rising a new problem of increasing PCB contamination concerning only CB-209, which is not present in commercial mixtures used in the past in Italy and Europe. Considering all of the congeners, seasonal PCB trends were observed both in air and in soil that were related to the temperature and precipitation measured specifically in the study area. Highly significant relationships were found between the temperature-normalised concentrations in soil and the precipitation amounts. A north/south enrichment factor was present only in soil with rapid early summer re-volatilisation kinetics from soil to air and autumn re-deposition events from air to soil. Fugacity ratio calculations confirmed these trends. Surface soils respond rapidly to meteorological variables, while subsurface soils respond much more slowly. Seasonal trends were different for the northern and southern sides of the mountain. A detailed picture of the interactions among temperature, precipitation, mountain aspects and soil features was obtained.

  14. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil

    Energy Technology Data Exchange (ETDEWEB)

    Cassidy, Daniel P., E-mail: daniel.cassidy@wmich.edu [Department of Geosciences, Western Michigan University, Kalamazoo, MI 49008 (United States); Srivastava, Vipul J., E-mail: vipul.srivastava@ch2m.com [CH2M HILL, 125S Wacker, Ste 3000, Chicago, IL 60606 (United States); Dombrowski, Frank J., E-mail: frank.dombrowski@we-energies.com [We Energies, 333W Everett St., A231, Milwaukee, WI 53203 (United States); Lingle, James W., E-mail: jlingle@epri.com [Electric Power Research Institute (EPRI), 4927W Willow Road, Brown Deer, WI 53223 (United States)

    2015-10-30

    Highlights: • Portland cement and lime activated persulfate by increasing pH and temperature. • Chemical oxidation achieved BTEX and PAH removal ranging from 55% to 75%. • Activating persulfate with ISS amendments reduced leachability more than NaOH. • Native sulfate-reducing bacteria degraded PAHs within weeks after ISCO finished. • ISCO, ISS, and anaerobic bioremediation were combined in a single application. - Abstract: Laboratory batch reactors were maintained for 32 weeks to test the potential for an in situ remedy that combines chemical oxidation, stabilization, and anaerobic bioremediation in a single application to treat soil from a manufactured gas plant, contaminated with polycyclic aromatic hydrocarbons (PAH) and benzene, toluene, ethylbenzene, and xylenes (BTEX). Portland cement and slaked lime were used to activate the persulfate and to stabilize/encapsulate the contaminants that were not chemically oxidized. Native sulfate-reducing bacteria degraded residual contaminants using the sulfate left after persulfate activation. The ability of the combined remedy to reduce contaminant mass and leachability was compared with NaOH-activated persulfate, stabilization, and sulfate-reducing bioremediation as stand-alone technologies. The stabilization amendments increased pH and temperature sufficiently to activate the persulfate within 1 week. Activation with both stabilization amendments and NaOH removed between 55% and 70% of PAH and BTEX. However, combined persulfate and stabilization significantly reduced the leachability of residual BTEX and PAH compared with NaOH activation. Sulfide, 2-naphthoic acid, and the abundance of subunit A of the dissimilatory sulfite reductase gene (dsrA) were used to monitor native sulfate-reducing bacteria, which were negatively impacted by activated persulfate, but recovered completely within weeks.

  15. Performance analysis of a direct expansion air dehumidification system combined with membrane-based total heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Cai-Hang; Zhang, Li-Zhi; Pei, Li-Xia [Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Education Ministry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China)

    2010-09-15

    A direct expansion (DX) air dehumidification system is an efficient way to supply fresh and dry air to a built environment. It plays a key role in preventing the spread of respiratory disease like Swine flu (H1N1). To improve the efficiency of a conventional DX system in hot and humid regions, a new system of DX in combination with a membrane-based total heat exchanger is proposed. Air is supplied with dew points. A detailed mathematical modeling is performed. A cell-by-cell simulation technique is used to simulate its performances. A real prototype is built in our laboratory in South China University of Technology to validate the model. The effects of inlet air humidity and temperature, evaporator and condenser sizes on the system performance are investigated. The results indicate that the model can predict the system accurately. Compared to a conventional DX system, the air dehumidification rate (ADR) of the novel system is 0.5 times higher, and the coefficient of performance (COP) is 1 times higher. Furthermore, the system performs well even under harsh hot and humid weather conditions. (author)

  16. Effects of warming on uptake and translocation of cadmium (Cd) and copper (Cu) in a contaminated soil-rice system under Free Air Temperature Increase (FATI).

    Science.gov (United States)

    Ge, Li-Qiang; Cang, Long; Liu, Hui; Zhou, Dong-Mei

    2016-07-01

    Global warming has received growing attentions about its potential threats to human in recent, however little is known about its effects on transfer of heavy metals in agro-ecosystem, especially for Cd in rice. Pot experiments were conducted to evaluate Cd/Cu translocation in a contaminated soil-rice system under Free Air Temperature Increase (FATI). The results showed that warming gradually decreased soil porewater pH and increased water-soluble Cd/Cu concentration, reduced formation of iron plaque on root surface, and thus significantly increased total uptake of Cd/Cu by rice. Subsequently, warming significantly promoted Cd translocation from root to shoot, and increased Cd distribution percentage in shoot, while Cu was not significantly affected. Enhanced Cd uptake and translocation synergistically resulted in higher rice grain contamination with increasing concentration from 0.27 to 0.65 and 0.14-0.40 mg kg(-1) for Indica and Japonica rice, respectively. However increase of Cu in brown grain was only attributed to its uptake enhancement under warming. Our study provides a new understanding about the food production insecurity of heavy metal contaminated soil under the future global warming.

  17. Direct quantitative analysis of phthalate esters as micro-contaminants in cleanroom air and wafer surfaces by auto-thermal desorption--gas chromatography--mass spectrometry.

    Science.gov (United States)

    Kang, Yuhao; Den, Walter; Bai, Hsunling; Ko, Fu-Hsiang

    2005-04-01

    This study established an analytical method for the trace analyses of two phthalate esters, including diethyl phthalate (DEP) and di-n-butyl phthalate (DBP), known as the major constituents of cleanroom micro-contamination detrimental to the reliability of semiconductor devices. Using thermal desorption coupled with a GC-MS system, standard tubes were prepared by delivering liquid standards pre-vaporized by a quasi-vaporizer into Tenax GR tubes for calibration. This method was capable of achieving detection limits of 0.05 microg m(-3) for 0.1 m3 air samples and 0.03 ng cm(-2) for 150-mm wafer surface density. Actual samples collected from a semiconductor cleanroom showed that the concentration of DBP in a polypropylene wafer box (0.45 microg m(-3)) was nearly four times higher than that in the cleanroom environment (0.12 microg m(-3)). The surface contamination of DBP was 0.67 ng cm(-2) for a wafer stored in the wafer box for 24 h. Furthermore, among the three types of heat-resistant O-ring materials tested, Kalrez was found to be particularly suitable for high-temperature processes in semiconductor cleanrooms due to their low emissions of organic vapors. This analytical procedure should serve as an effective monitoring method for the organic micro-contamination in cleanroom environments.

  18. [Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 3, Sampling and analysis plan (SAP): Phase 1, Task 4, Field Investigation: Draft

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    In April 1990, Wright-Patterson Air Force Base (WPAFB), initiated an investigation to evaluate a potential Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action to prevent, to the extent practicable, the offsite migration of contaminated ground water from WPAFB. WPAFB retained the services of the Environmental Management Operations (EMO) and its principle subcontractor, International Technology Corporation (IT) to complete Phase 1 of the environmental investigation of ground-water contamination at WPAFB. Phase 1 of the investigation involves the short-term evaluation and potential design for a program to remove ground-water contamination that appears to be migrating across the western boundary of Area C, and across the northern boundary of Area B along Springfield Pike. Primarily, Task 4 of Phase 1 focuses on collection of information at the Area C and Springfield Pike boundaries of WPAFB. This Sampling and Analysis Plan (SAP) has been prepared to assist in completion of the Task 4 field investigation and is comprised of the Quality Assurance Project Plan (QAPP) and the Field Sampling Plan (FSP).

  19. Procedures for addressing uncertainty and variability in exposure to characterize potential health risk from trichloroethylene contaminated ground water at Beale Air Force Base in California

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, J I; Bogen, K T; Hall, L C

    1999-10-05

    Conservative deterministic, screening-level calculations of exposure and risk commonly are used in quantitative assessments of potential human-health consequences from contaminants in environmental media. However, these calculations generally are based on multiple upper-bound point estimates of input parameters, particularly for exposure attributes, and can therefore produce results for decision makers that actually overstate the need for costly remediation. Alternatively, a more informative and quantitative characterization of health risk can be obtained by quantifying uncertainty and variability in exposure. This process is illustrated in this report for a hypothetical population at a specific site at Beale Air Force Base in California, where there is trichloroethylene (TCE) contaminated ground water and a potential for future residential use. When uncertainty and variability in exposure were addressed jointly for this case, the 95th-percentile upper-bound value of individual excess lifetime cancer risk was a factor approaching 10 lower than the most conservative deterministic estimate. Additionally, the probability of more than zero additional cases of cancer can be estimated, and in this case it is less than 0.5 for a hypothetical future residential population of up to 26,900 individuals present for any 7.6-y interval of a 70-y time period. Clearly, the results from application of this probabilistic approach can provide reasonable and equitable risk-acceptability criteria for a contaminated site.

  20. ON THE RELATIONSHIP BETWEEN AMBIENT DOSE EQUIVALENT AND ABSORBED DOSE IN AIR IN THE CASE OF LARGE-SCALE CONTAMINATION OF THE ENVIRONMENT BY RADIOACTIVE CESIUM

    Directory of Open Access Journals (Sweden)

    V. P. Ramzaev

    2015-01-01

    Full Text Available One of the main aims of the study was an experimental determination of the conversion coefficient from ambient dose equivalent rate, Н*(10, to absorbed dose rate in air, D, in the case of radioactive contamination of the environment following the Chernobyl accident. More than 800 measurements of gamma-dose rates in air were performed at the typical locations (one-storey residential house, street, yard, kitchen-garden, ploughed field, undisturbed grassland, forest of rural settlements and their surroundings in the heavily contaminated areas of the Bryansk region, Russia in the period of 1996–2010. Five commercially available models of portable gamma-ray dosimeters were employed in the investigation. All tested dosimeters were included into the State register of approved measuring instruments of Russia. In all dosimeters, scintillation detectors are used as detection elements. A photon spectrometry technique is applied in the dosimeters to determine gamma dose rate in air. The dosimeters are calibrated in terms of exposure rate, X, absorbed dose rate in air, D, and ambient dose equivalent rate, Н*(10. A very good agreement was found between different dosimeters calibrated in the same units; the reading ratios were close to 1 and the correlation coefficients (Pearson’s or Spearman’s were higher than 0.99. The Н*(10/D ratio values were location-specific ranging from 1.23 Sv/Gy for undisturbed grasslands and forests to 1.47 Sv/Gy for wooden houses and asphalted streets. A statistically significant negative correlation (Spearman’s coefficient = -0.833; P<0.01; n=9 was found between the Н*(10/D ratio and the average energy of gamma-rays determined with a NaI(Tl-based gamma-ray monitor. For the whole area of a settlement and its surroundings, the average ratio of Н*(10 to D was calculated as 1.33 Sv/Gy. The overall conversion coefficient from ambient dose equivalent rate, Н*(10, to external effective dose rate, Ė, for adults was estimated

  1. Development of open air silicon deposition technology by silane-free atmospheric pressure plasma enhanced chemical transport under local ambient gas control

    Science.gov (United States)

    Naito, Teruki; Konno, Nobuaki; Yoshida, Yukihisa

    2016-07-01

    Open air silicon deposition was performed by combining silane-free atmospheric pressure plasma-enhanced chemical transport and a newly developed local ambient gas control technology. The effect of air contamination on silicon deposition was investigated using a vacuum chamber, and the allowable air contamination level was confirmed to be 3 ppm. The capability of the local ambient gas control head was investigated numerically and experimentally. A safe and clean process environment with air contamination less than 1 ppm was achieved. Combining these technologies, a microcrystalline silicon film was deposited in open air, the properties of which were comparable to those of silicon films deposited in a vacuum chamber.

  2. Surgical area contamination--comparable bacterial counts using disposable head and mask and helmet aspirator system, but dramatic increase upon omission of head-gear: an experimental study in horizontal laminar air-flow.

    Science.gov (United States)

    Friberg, B; Friberg, S; Ostensson, R; Burman, L G

    2001-02-01

    The effect of different head coverings on air-borne transmission of bacteria and particles in the surgical area was studied during 30 strictly standardized sham operations performed in a horizontal laminar air flow (LAF) unit. The operating team members wore disposable gowns plus either a non-sterile head covering consisting of a squire type disposable hood and triple laminar face mask, a sterilized helmet aspirator system or no head cover at all. In the wound area both types of head cover resulted in low and comparable air (means of 8 and 4cfu/m(3)) and surface contamination (means of 69 and 126cfu/m(2)/h) rates. Omission of head-gear resulted in a three- to five-fold increase (P > or = 0.01- 0.001), depending on site sampled air contamination rate (mean of 22cfu/m(3)) whereas the bacterial sedimentation rate in the wound area increased about 60-fold ( P > or = 0.0001). A proper head cover minimized the emission of apparently heavy particles that were not removed by the horizontal LAF and contained mainly streptococci, presumably of respiratory tract origin. Dust particle counts revealed no differences between the three experimental situations. No correlation between air and surface contamination rates or between air contamination and air particle counts was found. We conclude that, from a bacteriological point of view, disposable hoods of squire type and face masks are equally as efficient as a helmet aspirator system and both will efficiently contain the substantial emission of bacteria-carrying droplets from the respiratory tract occurring when head cover is omitted. Finally, the use of bacterial air counts to assess surgical site surface contamination in horizontal LAF units must be seriously questioned.

  3. Combined analysis of job and task benzene air exposures among workers at four US refinery operations.

    Science.gov (United States)

    Burns, Amanda; Shin, Jennifer Mi; Unice, Ken M; Gaffney, Shannon H; Kreider, Marisa L; Gelatt, Richard H; Panko, Julie M

    2017-03-01

    Workplace air samples analyzed for benzene at four US refineries from 1976 to 2007 were pooled into a single dataset to characterize similarities and differences between job titles, tasks and refineries, and to provide a robust dataset for exposure reconstruction. Approximately 12,000 non-task (>180 min) personal samples associated with 50 job titles and 4000 task (job titles and task codes across all four refineries, and (5) our analysis of variance (ANOVA) of the distribution of benzene air concentrations for select jobs/tasks across all four refineries. The jobs and tasks most frequently sampled included those with highest potential contact with refinery product streams containing benzene, which reflected the targeted sampling approach utilized by the facility industrial hygienists. Task and non-task data were analyzed to identify and account for significant differences within job-area, task-job, and task-area categories. This analysis demonstrated that in general, areas with benzene containing process streams were associated with greater benzene air concentrations compared to areas with process streams containing little to no benzene. For several job titles and tasks analyzed, there was a statistically significant decrease in benzene air concentration after 1990. This study provides a job and task-focused analysis of occupational exposure to benzene during refinery operations, and it should be useful for reconstructing refinery workers' exposures to benzene over the past 30 years.

  4. Algorithm and simulation development in support of response strategies for contamination events in air and water systems.

    Energy Technology Data Exchange (ETDEWEB)

    Waanders, Bart Van Bloemen

    2006-01-01

    Chemical/Biological/Radiological (CBR) contamination events pose a considerable threat to our nation's infrastructure, especially in large internal facilities, external flows, and water distribution systems. Because physical security can only be enforced to a limited degree, deployment of early warning systems is being considered. However to achieve reliable and efficient functionality, several complex questions must be answered: (1) where should sensors be placed, (2) how can sparse sensor information be efficiently used to determine the location of the original intrusion, (3) what are the model and data uncertainties, (4) how should these uncertainties be handled, and (5) how can our algorithms and forward simulations be sufficiently improved to achieve real time performance? This report presents the results of a three year algorithmic and application development to support the identification, mitigation, and risk assessment of CBR contamination events. The main thrust of this investigation was to develop (1) computationally efficient algorithms for strategically placing sensors, (2) identification process of contamination events by using sparse observations, (3) characterization of uncertainty through developing accurate demands forecasts and through investigating uncertain simulation model parameters, (4) risk assessment capabilities, and (5) reduced order modeling methods. The development effort was focused on water distribution systems, large internal facilities, and outdoor areas.

  5. A combined PHREEQC-2/parallel fracture model for the simulation of laminar/non-laminar flow and contaminant transport with reactions

    Science.gov (United States)

    Masciopinto, Costantino; Volpe, Angela; Palmiotta, Domenico; Cherubini, Claudia

    2010-09-01

    A combination of a parallel fracture model with the PHREEQC-2 geochemical model was developed to simulate sequential flow and chemical transport with reactions in fractured media where both laminar and turbulent flows occur. The integration of non-laminar flow resistances in one model produced relevant effects on water flow velocities, thus improving model prediction capabilities on contaminant transport. The proposed conceptual model consists of 3D rock-blocks, separated by horizontal bedding plane fractures with variable apertures. Particle tracking solved the transport equations for conservative compounds and provided input for PHREEQC-2. For each cluster of contaminant pathways, PHREEQC-2 determined the concentration for mass-transfer, sorption/desorption, ion exchange, mineral dissolution/precipitation and biodegradation, under kinetically controlled reactive processes of equilibrated chemical species. Field tests have been performed for the code verification. As an example, the combined model has been applied to a contaminated fractured aquifer of southern Italy in order to simulate the phenol transport. The code correctly fitted the field available data and also predicted a possible rapid depletion of phenols as a result of an increased biodegradation rate induced by a simulated artificial injection of nitrates, upgradient to the sources.

  6. Comparison of arterial and venous blood gases and the effects of analysis delay and air contamination on arterial samples in patients with chronic obstructive pulmonary disease and healthy controls.

    LENUS (Irish Health Repository)

    O'Connor, T M

    2012-01-31

    BACKGROUND: Arterial blood gases (ABGs) are often sampled incorrectly, leading to a \\'mixed\\' or venous sample. Delays in analysis and air contamination are common. OBJECTIVES: We measured the effects of these errors in patients with chronic obstructive pulmonary disease (COPD) exacerbations and controls. METHODS: Arterial and venous samples were analyzed from 30 patients with COPD exacerbation and 30 controls. Venous samples were analysed immediately and arterial samples separated into non-air-contaminated and air-contaminated specimens and analysed at 0, 30, 60, 90 and 180 min. RESULTS: Mean venous pH was 7.371 and arterial pH was 7.407 (p < 0.0001). There was a correlation between venous and arterial pH (r = 0.5347, p < 0.0001). The regression equation to predict arterial pH was: arterial pH = 4.2289 + 0.43113 . venous pH. There were no clinically significant differences in arterial PO associated with analysis delay. A statistically significant decline in pH was detected at 30 min in patients with COPD exacerbation (p = 0.0042) and 90 min in controls (p < 0.0001). A clinically significant decline in pH emerged at 73 min in patients with COPD exacerbation and 87 min in controls. Air contamination was associated with a clinically significant increase in PO in all samples, including those that were immediately analyzed. CONCLUSIONS: Arterial and venous pH differ significantly. Venous pH cannot accurately replace arterial pH. Temporal delays in ABG analysis result in a significant decline in measured pH. ABGs should be analysed within 30 min. Air contamination leads to an immediate increase in measured PO, indicating that air-contaminated ABGs should be discarded.

  7. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by native microflora and combinations of white-rot fungi in a coal-tar contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Canet, R.; Birnstingl, J.G.; Malcolm, D.G.; Lopez-Real, J.M.; Beck, A.J. [Inst. of Valenciano Invest. Agency, Valencia (Spain)

    2001-07-01

    Four white-rot fungi (Phanerochaete chrysosporium IMI 232175, Pleurotus ostreatus from the University of Alberta Microfungus Collection IMI 341687, Coriolus versicolor IMI210866 and Wye isolate No. 7) and all possible combinations of two or more of these fungi, were incubated in microcosms containing wheat straw and non-sterile coal-tar contaminated soil to determine their potential to degrade polycyclic aromatic hydrocarbons (PAHs). Biotic and abiotic controls were prepared similarly and PAH concentrations remaining in each microcosm were determined after 8, 16 and 32 weeks by GC-MS following extraction with dichloromethane. The greatest PAH losses were in the biotic control. Soil cultures prepared at the end of the experiment showed that though introduced fungi were still alive, they were unable to thrive and degrade PAH in such a highly contaminated soil and remained in a metabolically inactive form.

  8. Abiotic reductive extraction of arsenic from contaminated soils enhanced by complexation: Arsenic extraction by reducing agents and combination of reducing and chelating agents

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Eun Jung [Department of Bioactive Material Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabukdo 561-675 (Korea, Republic of); Lee, Jae-Cheol [Department of Environmental Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabukdo 561-675 (Korea, Republic of); Baek, Kitae, E-mail: kbaek@jbnu.ac.kr [Department of Bioactive Material Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabukdo 561-675 (Korea, Republic of); Department of Environmental Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabukdo 561-675 (Korea, Republic of)

    2015-02-11

    Highlights: • Abiotic reductive extraction of As from contaminated soils was studied. • Oxalate/ascorbate were effective in extracting As bound to amorphous iron oxides. • Reducing agents were not effective in extracting As bound to crystalline oxides. • Reductive As extraction was greatly enhanced by complexation. • Combination of dithionite and EDTA could extract about 90% of the total As. - Abstract: Abiotic reductive extraction of arsenic from contaminated soils was studied with various reducing agents and combinations of reducing and chelating agents in order to remediate arsenic-contaminated soils. Oxalate and ascorbic acid were effective to extract arsenic from soil in which arsenic was associated with amorphous iron oxides, but they were not effective to extract arsenic from soils in which arsenic was bound to crystalline oxides or those in which arsenic was mainly present as a scorodite phase. An X-ray photoelectron spectroscopy study showed that iron oxides present in soils were transformed to Fe(II,III) or Fe(II) oxide forms such as magnetite (Fe{sub 3}O{sub 4}, Fe{sup II}Fe{sub 2}{sup III}O{sub 4}) by reduction with dithionite. Thus, arsenic extraction by dithionite was not effective due to the re-adsorption of arsenic to the newly formed iron oxide phase. Combination of chelating agents with reducing agents greatly improved arsenic extraction from soil samples. About 90% of the total arsenic could be extracted from all soil samples by using a combination of dithionite and EDTA. Chelating agents form strong complexation with iron, which can prevent precipitation of a new iron oxide phase and also enhance iron oxide dissolution via a non-reductive dissolution pathway.

  9. Modeled effectiveness of ventilation with contaminant control devices on indoor air quality in a swine farrowing facility.

    Science.gov (United States)

    Anthony, T Renée; Altmaier, Ralph; Park, Jae Hong; Peters, Thomas M

    2014-01-01

    Because adverse health effects experienced by swine farm workers in concentrated animal feeding operations (CAFOs) have been associated with exposure to dust and gases, efforts to reduce exposures are warranted, particularly in winter seasons when exposures increase due to decreased ventilation. Simulation of air quality and operating costs for ventilating swine CAFO, including treating and recirculating air through a farrowing room, was performed using mass and energy balance equations over a 90-day winter season. System operation required controlling heater operation to achieve room temperatures optimal to ensure animal health (20 to 22.5 °C). Five air pollution control devices, four room ventilation rates, and five recirculation patterns were examined. Inhalable dust concentrations were easily reduced using standard industrial air pollution control devices, including a cyclone, filtration, and electrostatic precipitator. Operating ventilation systems at 0.94 m3 s(-1) (2000 cfm) with 75 to 100% recirculation of treated air from cyclone, electrostatic precipitator, and shaker dust filtration system achieves adequate particle control with operating costs under $1.00 per pig produced ($0.22 to 0.54), although carbon dioxide (CO2) concentrations approach 2000 ppm using in-room ventilated gas fired heaters. In no simulation were CO2 concentrations below industry recommended concentrations (1540 ppm), but alternative heating devices could reduce CO2 to acceptable concentrations. While this investigation does not represent all production swine farrowing barns, which differ in characteristics including room dimensions and swine occupancy, the simulation model and ventilation optimization methods can be applied to other production sites. This work shows that ventilation may be a cost-effective control option in the swine industry to reduce exposures.

  10. Analgesic efficacy using loss of resistance to air vs. saline in combined spinal epidural technique for labour analgesia.

    Science.gov (United States)

    Leo, S; Lim, Y; Sia, A T H

    2008-09-01

    Identification of the epidural space is often performed using the loss of resistance technique to either air or saline. We sought to investigate if the medium used affected the quality of analgesia obtained by parturients who received labour epidurals. We conducted a retrospective audit of labour epidurals performed on nulliparous parturients in our institution from May 2003 to March 2005. All epidural catheters were inserted by senior obstetric anaesthetists using a combined spinal epidural technique. The following information was recorded: parturients' demographic data, loss of resistance technique used, type and amount of local anaesthetic solution administered, complications encountered during procedure, pre-block and post-block pain scores, incidence of breakthrough pain requiring supplemental medication and post-block side-effects. Data from 2848 patients were collected and analysed; 56% of patients made up the saline group and 44% the air group. Patients in both groups had similar demographic profiles and similar incidences of complications and post-block side-effects. However patients in the air group had a higher incidence of recurrent breakthrough pain P = 0.023). We also identified three other factors that were associated with an increased incidence of recurrent breakthrough pain; administration of pre-block oxytocin, sitting position of the parturient during the procedure and the use of intrathecal bupivacaine for induction of analgesia. Our findings suggest that a loss of resistance to air is associated with a higher incidence of recurrent breakthrough pain among parturients who received combined spinal epidural analgesia for labour than a loss of resistance to saline.

  11. COP Prediction of an ejector refrigeration cycle combined with a vapour compression cycle for automotive air conditioning

    Directory of Open Access Journals (Sweden)

    Nat Suvarnakuta

    2014-03-01

    Full Text Available This paper presents the COP prediction of an ejector refrigeration cycle combined with a vapour compression cycle for automotive air conditioning. Using computational fluid dynamics (CFD technique, the performance of an ejector was analyzed in term of the entrainment ratio (Rm and critical back pressure (CBP. The results from this study were compared with a previous study of combined ejector refrigeration system for automotive air conditioning application [1] which the entrainment ratio (Rm were predicted from one-dimensional (1-D equation. The performance of an ejector (Rm and CBP from CFD and onedimensional method were analyzed and used as database for a mathematical modeling. In order to predict the COP of the combined system, a set of mathematical equations was developed using EES. The operating conditions are chosen accordingly as, intercooler temperature between 15 ๐ C and 25 ๐ C, condenser temperature equal to 35 ๐ C and evaporator temperature equal to 5 ๐ C. However, when generator temperatures are 80 ๐ C, 85 ๐ C and 90 ๐ C, the results showed average relative errors of the COP of an ejector refrigeration cycle (COPej, between CFD and 1-D are 44.64%, 50.47% and 59.68% respectively, and between CFD and 1-D NEW are 1.54%, 0.08% and 6.49% respectively.

  12. {sup 21}Pb dating of sediments in a heavily contaminated drainage channel to the La Plata estuary in Buenos Aires, Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Di Gregorio, D.E. [Departamento de Fisica, Comision Nacional de Energia Atomica, Av. Gral. Paz 1499, 1650 San Martin, Provincia de Buenos Aires (Argentina) and Escuela de Ciencia y Tecnologia, Universidad Nacional de Gral. San Martin, Martin de Irigoyen 3100, 1650 San Martin, Provincia de Buenos Aires (Argentina)]. E-mail: digregorio@tandar.cnea.gov.ar; Fernandez Niello, J.O. [Departamento de Fisica, Comision Nacional de Energia Atomica, Av. Gral. Paz 1499, 1650 San Martin, Provincia de Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia, Universidad Nacional de Gral. San Martin, Martin de Irigoyen 3100, 1650 San Martin, Provincia de Buenos Aires (Argentina); Huck, H. [Departamento de Fisica, Comision Nacional de Energia Atomica, Av. Gral. Paz 1499, 1650 San Martin, Provincia de Buenos Aires (Argentina); Escuela de Ciencia y Tecnologia, Universidad Nacional de Gral. San Martin, Martin de Irigoyen 3100, 1650 San Martin, Provincia de Buenos Aires (Argentina); Somacal, H. [Escuela de Ciencia y Tecnologia, Universidad Nacional de Gral. San Martin, Martin de Irigoyen 3100, 1650 San Martin, Provincia de Buenos Aires (Argentina); Curutchet, G. [Escuela de Ciencia y Tecnologia, Universidad Nacional de Gral. San Martin, Martin de Irigoyen 3100, 1650 San Martin, Provincia de Buenos Aires (Argentina)

    2007-01-15

    Concentrations of {sup 21}Pb and {sup 137}Cs in sediment samples collected from two cores at a drainage channel to the La Plata river estuary in Buenos Aires, Argentina, were measured using ultralow-background detection systems. The {sup 21}Pb data were used to determine the rate of sediment accumulation of the sites. These results were correlated with some heavy metal (chromium and lead) concentrations of the samples in an attempt to characterize the historical input of contaminants due to the industrial development, which has taken place in this area over the last century. The {sup 137}Cs measurements demonstrate that cesium dating is not adequate in regions of the southern hemisphere.

  13. The passive control of air pollution exposure in Dublin, Ireland: a combined measurement and modelling case study.

    Science.gov (United States)

    Gallagher, J; Gill, L W; McNabola, A

    2013-08-01

    This study investigates the potential real world application of passive control systems to reduce personal pollutant exposure in an urban street canyon in Dublin, Ireland. The implementation of parked cars and/or low boundary walls as a passive control system has been shown to minimise personal exposure to pollutants on footpaths in previous investigations. However, previous research has been limited to generic numerical modelling studies. This study combines real-time traffic data, meteorological conditions and pollution concentrations, in a real world urban street canyon before and after the implementation of a passive control system. Using a combination of field measurements and numerical modelling this study assessed the potential impact of passive controls on personal exposure to nitric oxide (NO) concentrations in the street canyon in winter conditions. A calibrated numerical model of the urban street canyon was developed, taking into account the variability in traffic and meteorological conditions. The modelling system combined the computational fluid dynamic (CFD) simulations and a semi-empirical equation, and demonstrated a good agreement with measured field data collected in the street canyon. The results indicated that lane distribution, fleet composition and vehicular turbulence all affected pollutant dispersion, in addition to the canyon geometry and local meteorological conditions. The introduction of passive controls displayed mixed results for improvements in air quality on the footpaths for different wind and traffic conditions. Parked cars demonstrated the most comprehensive passive control system with average improvements in air quality of up to 15% on the footpaths. This study highlights the potential of passive controls in a real street canyon to increase dispersion and improve air quality at street level.

  14. Decorporation approach following rat lung contamination with a moderately soluble compound of plutonium using local and systemic Ca-DTPA combined chelation.

    Science.gov (United States)

    Grémy, Olivier; Tsapis, Nicolas; Bruel, Sylvie; Renault, Daniel; Van der Meeren, Anne

    2012-09-01

    Decorporation efficacy of prompt pulmonary delivery of DTPA dry powder was assessed following lung contamination with plutonium nitrate and compared to an intravenous injection of DTPA solution and a combined administration of both DTPA compounds. In addition, efficacy of a delayed treatment was assessed. In case of either early or late administration, insufflated DTPA was more efficient than intravenously injected DTPA in reducing the plutonium lung burden due to its high local concentration. Prompt treatment with DTPA powder was also more effective in limiting extrapulmonary deposits by removing the early transportable fraction of plutonium from lungs prior its absorption into blood. Translocation of DTPA from lungs to blood may also contribute to the decrease in extrapulmonary retention, as shown by reduced liver deposit after delayed pulmonary administration of DTPA. Efficacy of DTPA dry powder was further increased by the combined intravenous administration of DTPA solution for reducing extrapulmonary deposits of plutonium and promoting its urinary excretion. According to our results, the most effective treatment protocol for plutonium decorporation was the early pulmonary delivery of DTPA powder supplemented by an intravenous injection of DTPA solution. Following inhalation of plutonium as nitrate chemical form, this combined chelation therapy should provide a more effective method of treatment than conventional intravenous injection alone. At later stages following lung contamination, pulmonary administration of DTPA should also be considered as the treatment of choice for decreasing the lung burden.

  15. A Next Generation Air Monitor: Combining Orion and ISS Requirements for a Common Major Constituent Analyzer

    Science.gov (United States)

    Burchfield, David E.; Tissandier, Michael; Niu, William Hsein-Chi; Lewis, John F.

    2013-01-01

    The Major Constituent Analyzer (MCA) is a mass spectrometer-based instrument designed to provide critical monitoring of six major atmospheric constituents; nitrogen, oxygen, hydrogen, carbon dioxide, methane, and water vapor on-board the International Space Station. The analyzer has been an integral part of the Environmental Control and Life Support System (ECLSS) since the station went on-line. The Orion Air Monitor (OAM) was derived from the MCA and heavily optimized for reduced mass, lower power, faster water vapor response, and maintenance-free operation. The resulting OAM is approximately the size of the analyzer portion of the MCA, orbital-replacement unit 02 (ORU 02), while incorporating the functions of three other modules: Data Processing and Communication (ORU 01), Verification Gas Assembly (ORU 08), and Low Voltage Power Supply (ORU 04). The overlap in MCA and OAM requirements makes it possible to derive a common Air Monitor design that spans both applications while minimally impacting the weight and power limits imposed by the Multipurpose Crew Vehicle (MPCV). Benefits to ISS include the retirement of ORUs 01, 04, and 08, reducing up-mass and eliminating EEE parts obsolescence issues through the extended ISS mission phases. Benefits to MPCV and future deployed habitats under the Constellation program include greater interchangeability across ECLSS subsystems. This paper discusses the results of the requirements development study, where a superset of ISS and Orion air monitoring requirements were distilled; evaluated against increases in OAM functionality, mass, and power; and traded-off where possible using simple operating mode modifications. A system architecture and preliminary design addressing the common requirements will be presented.

  16. Increasing reliability of gas-air systems of piston and combined internal combustion engines by improving thermal and mechanic flow characteristics

    Science.gov (United States)

    Brodov, Yu. M.; Grigor'ev, N. I.; Zhilkin, B. P.; Plotnikov, L. V.; Shestakov, D. S.

    2015-12-01

    Results of experimental study of thermal and mechanical characteristics of gas exchange flow in piston and combined engines are presented. Ways for improving intake and exhaust processes to increase reliability of gas-air engine systems are proposed.

  17. Combination sound and vibration isolation curb for rooftop air-handling systems

    Science.gov (United States)

    Paige, Thomas S.

    2005-09-01

    This paper introduces the new Model ESSR Sound and Vibration Isolation Curb manufactured by Kinetics Noise Control, Inc. This product was specially designed to address all of the common transmission paths associated with noise and vibration sources from roof-mounted air-handling equipment. These include: reduction of airborne fan noise in supply and return air ductwork, reduction of duct rumble and breakout noise, reduction of direct airborne sound transmission through the roof deck, and reduction of vibration and structure-borne noise transmission to the building structure. Upgrade options are available for increased seismic restraint and wind-load protection. The advantages of this new system over the conventional approach of installing separate duct silencers in the room ceiling space below the rooftop unit are discussed. Several case studies are presented with the emphasis on completed projects pertaining to classrooms and school auditorium applications. Some success has also been achieved by adding active noise control components to improve low-frequency attenuation. This is an innovative product designed for conformance with the new classroom acoustics standard ANSI S12.60.

  18. Distribution of contaminants in the occupied zone of a room with personalized and displacement ventilation

    DEFF Research Database (Denmark)

    Cermak, Radim; Melikov, Arsen Krikor; Forejt, L.

    2004-01-01

    A distribution of contaminants from floor covering, exhaled air and human bioeffluents was examined in a mock-up of a typical two-person office by means of tracer-gases. The distribution was studied with two types of air terminal device for personalized ventilation combined with displacement...

  19. Combined Ground and Space-Based Measurements of Air Quality during the London Olympic Games 2012

    Science.gov (United States)

    Graves, R. R.; Leigh, R. J.; Singh Anand, J.; McNally, M.; Lawrence, J.; Remedios, J.; Monks, P. S.

    2012-12-01

    During July and August 2012 the Summer Olympic Games were held in London. During this period, unusually high levels of traffic and visitors to the city were expected, it is important to understand the effect this had on the air quality in London during this period. To this end three novel CityScan instruments were installed in London from the 20th July though to the end of September; affording the unique opportunity to monitor the spatial and vertical structure of nitrogen dioxide within the boundary layer in unprecedented detail. The deployment was included as part of the large NERC funded ClearfLo project (Clean Air for London) involving many other institutions and complementary measurement techniques. CityScan is a Hemispherical Scanning Imaging Differential Optical Absorption Spectrometer (HSI-DOAS) which is has been optimised to measure concentrations of nitrogen dioxide. CityScan has a 95° field of view (FOV) between the zenith and 5° below the horizon. Across this FOV there are 128 resolved elements which are measured concurrently, the spectrometer is rotated azimuthally 1° per second providing full hemispherical coverage every 6 minutes. CityScan measures concentrations of nitrogen dioxide over specific lines of sight and due to the extensive field of view of the instrument this produces measurements which are representative over city-wide scales. Nitrogen dioxide is an important air pollutant which is produced in all combustion processes and can reduce lung function; especially in sensitised individuals. These instruments aim to bridge the gap in spatial scales between point source measurements of air quality and satellite measurements of air quality offering additional information on emissions, transport and the chemistry of nitrogen dioxide. More information regarding the CityScan technique can be found at http://www.leos.le.ac.uk/aq/index.html. The first of the three CityScan instruments was located in North Kensington, the second in Soho and third

  20. Measure Guideline: Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, A.

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  1. Measure Guideline. Combination Forced-Air Space and Tankless Domestic Hot Water Heating Systems

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, Armin [Building Science Corporation Industry Team (BSC), Somerville, MA (United States)

    2012-08-01

    This document describes design and application guidance for combination space and tankless domestic hot water heating systems (combination systems) used in residential buildings, based on field evaluation, testing, and industry meetings conducted by Building Science Corporation. As residential building enclosure improvements continue to drive heating loads down, using the same water heating equipment for both space heating and domestic water heating becomes attractive from an initial cost and space-saving perspective. This topic is applicable to single- and multi-family residential buildings, both new and retrofitted.

  2. Characterization of dissolved organic matter in landfill leachate during the combined treatment process of air stripping, Fenton, SBR and coagulation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, ZhiPing, E-mail: liulqs@163.com [Key Laboratory of Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045 (China); Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400020 (China); Wu, WenHui; Shi, Ping [Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400020 (China); Guo, JinSong [Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400045 (China); Cheng, Jin [Faculty of Urban Construction and Environmental Engineering, Chongqing University, Chongqing 400020 (China)

    2015-07-15

    Highlights: • DOM fractions spectra analysis during the whole treatment process. • Efficient method was achieved to remove organic matters in landfill leachate. • Molecular weight distribution and fractions were discussed. - Abstract: A combined treatment process of air stripping + Fenton + sequencing batch reactor (SBR)+ coagulation was performed to remove the pollutants in landfill leachate. Molecular weight (MW) distribution and fractions of dissolved organic matter (DOM) were discussed to study the characteristics. The experiment showed that the removal rate of chemical oxygen demand (COD), five day biological oxygen demand (BOD{sub 5}) and ammonia nitrogen (NH{sub 3}−N) by the combined process were 92.8%, 87.8% and 98.0%, respectively. Humic acid (HA) and fulvic acid (FA) were the main fractions in raw leachate with 81.8% of the total COD concentration, while hydrophilic organic matter (HyI) was the dominant fraction in the final effluent of the combined process with 63.5% of the total COD concentration. After the combined treatment process, the removal rate of DOM and fractions HA, FA, HyI were 91.9%, 97.1%, 95.8% and 71.7%, respectively. Organic matters of MW < 2 k and MW > 100 k were removed with 90.5% and 97.9% COD concentration after the treatment. The ultraviolet–visible spectra (UV–vis), Fourier transform infrared spectra (FTIR) and three-dimensional excitation-emission matrices spectra (EEMs) indicated that benzene materials and phenol compounds were preferentially removed in air stripping. High MW matters, aromatic rings, conjugated moieties and some functional groups were mainly removed by Fenton. While small MW fractions, carboxylic acids, alcohols and protein-like materials were preferentially biodegraded via SBR. Fulvic-like and humic-like materials were mainly destroyed via Fenton oxidation and coagulation.

  3. Application of post-discharge region of atmospheric pressure argon and air plasma jet in the contamination control of Candida albicans biofilms

    Directory of Open Access Journals (Sweden)

    Anelise Cristina Osório Cesar Doria

    Full Text Available Introduction:Candida species are responsible for about 80% of hospital fungal infections. Non-thermal plasmas operated at atmospheric pressure are increasingly used as an alternative to existing antimicrobial strategy. This work investigates the action of post-discharge region of a non-thermal atmospheric plasma jet, generated by a gliding arc reactor, on biofilms of standard strain of Candida albicans grown on polyurethane substrate. Methods Samples were divided into three groups: (i non-treated; (ii treated with argon plasma, and (iii treated with argon plus air plasma. Subsequently to plasma treatment, counting of colony-forming units (CFU/ml and cell viability tests were performed. In addition, the surface morphology of the samples was evaluated by scanning electron microscopy (SEM and optical profilometry (OP. Results Reduction in CFU/ml of 85% and 88.1% were observed in groups ii and iii, respectively. Cell viability after treatment also showed reduction of 33% in group ii and 8% in group iii, in comparison with group i (100%. The SEM images allow observation of the effect of plasma chemistry on biofilm structure, and OP images showed a reduction of its surface roughness, which suggests a possible loss of biofilm mass. Conclusion The treatment in post-discharge region and the chemistries of plasma jet tested in this work were effective in controlling Candida albicans biofilm contamination. Finally, it was evidenced that argon plus air plasma was the most efficient to reduce cell viability.

  4. Performance analysis of a bio-gasification based combined cycle power plant employing indirectly heated humid air turbine

    Science.gov (United States)

    Mukherjee, S.; Mondal, P.; Ghosh, S.

    2016-07-01

    Rapid depletion of fossil fuel has forced mankind to look into alternative fuel resources. In this context, biomass based power generation employing gas turbine appears to be a popular choice. Bio-gasification based combined cycle provides a feasible solution as far as grid-independent power generation is concerned for rural electrification projects. Indirectly heated gas turbine cycles are promising alternatives as they avoid downstream gas cleaning systems. Advanced thermodynamic cycles have become an interesting area of study to improve plant efficiency. Water injected system is one of the most attractive options in this field of applications. This paper presents a theoretical model of a biomass gasification based combined cycle that employs an indirectly heated humid air turbine (HAT) in the topping cycle. Maximum overall electrical efficiency is found to be around 41%. Gas turbine specific air consumption by mass is minimum when pressure ratio is 6. The study reveals that, incorporation of the humidification process helps to improve the overall performance of the plant.

  5. High volume air sampler for environmental nanoparticles using a sharp-cut inertial filter combined with an impactor

    Science.gov (United States)

    Zhang, Tong; Zhao, Tianren; Takahashi, Hideaki; Hata, Mitsuhiko; Toriba, Akira; Ikeda, Takuji; Otani, Yoshio; Furuuchi, Masami

    2017-02-01

    A multi-nozzle layered mesh inertial filter, developed by the authors based on inertial filter technology for separating ultrafine particles (UFPs) at a moderate pressure drop, was investigated in an attempt to improve the steepness of the separation efficiency curve by combining an inertial filter and an impactor. In this system, the separation curves overlap each other, while maintaining about a 100 nm difference in cutoff size d p50. Such a combination, which we refer to as a ‘hybrid inertial filter’, was validated for a single nozzle geometry. Using a multi nozzle geometry, it was scaled up to a high volume air sampling flow rate of 400 l min-1 at a pressure drop of  filter using multi-nozzle geometry was confirmed. The features of the hybrid inertial filter included the suppression of the bouncing of particles with sizes  >300 nm, a steeper collection efficiency curve and less pressure drop than those of a previous type of inertial filter. The ambient PM0.13 evaluated for the present unit was found to be in good agreement with values obtained for 2 different types of cascade air samplers.

  6. Ability of humans to smell geosmin, 2-MIB and nonadienal in indoor air when using contaminated drinking water.

    Science.gov (United States)

    Omür-Ozbek, P; Little, J C; Dietrich, A M

    2007-01-01

    The most common compounds responsible for off flavours are geosmin, 2-MIB, and nonadienal which are poorly removed by conventional water treatment operations and hence result in customer complaints. Because these odourants are moderately volatile and have very low odour threshold values, it is necessary to determine their concentrations in air when water is used indoors. If the detectable aqueous concentrations for these odourants are known, the utilities may take action to treat their water at times when the concentration of the raw water exceeds the threshold concentration. To predict the concentration in the shower stall and bathroom air after showering, recently published Henry's law constants for the selected odourants and a model developed to determine the volatilization of the odourous compounds by applying two-resistance theory were used. Then the results were compared with the odour threshold concentration data to determine under which conditions the odourants become detectable. For parameters representing a typical bathroom and shower stall setting, the results showed that the odourants become detectable when the aqueous concentration of geosmin and nonadienal exceed 10 ng/L at 42 degrees C. As the aqueous concentration increases, geosmin and nonadienal become detectable at lower temperatures, however 2-MIB is only detectable above 20 ng/L and at 42 degrees C.

  7. Persistent organic contaminants in Saharan dust air masses in West Africa, Cape Verde and the eastern Caribbean.

    Science.gov (United States)

    Garrison, V H; Majewski, M S; Foreman, W T; Genualdi, S A; Mohammed, A; Massey Simonich, S L

    2014-01-15

    Anthropogenic semivolatile organic compounds (SOCs) that persist in the environment, bioaccumulate, are toxic at low concentrations, and undergo long-range atmospheric transport (LRT) were identified and quantified in the atmosphere of a Saharan dust source region (Mali) and during Saharan dust incursions at downwind sites in the eastern Caribbean (U.S. Virgin Islands, Trinidad and Tobago) and Cape Verde. More organochlorine and organophosphate pesticides (OCPPs), polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyl (PCB) congeners were detected in the Saharan dust region than at downwind sites. Seven of the 13 OCPPs detected occurred at all sites: chlordanes, chlorpyrifos, dacthal, dieldrin, endosulfans, hexachlorobenzene (HCB), and trifluralin. Total SOCs ranged from 1.9-126 ng/m(3) (mean = 25 ± 34) at source and 0.05-0.71 ng/m(3) (mean = 0.24 ± 0.18) at downwind sites during dust conditions. Most SOC concentrations were 1-3 orders of magnitude higher in source than downwind sites. A Saharan source was confirmed for sampled air masses at downwind sites based on dust particle elemental composition and rare earth ratios, atmospheric back trajectory models, and field observations. SOC concentrations were considerably below existing occupational and/or regulatory limits; however, few regulatory limits exist for these persistent organic compounds. Long-term effects of chronic exposure to low concentrations of SOCs are unknown, as are possible additive or synergistic effects of mixtures of SOCs, biologically active trace metals, and mineral dust particles transported together in Saharan dust air masses.

  8. Effect of Gas/Steam Turbine Inlet Temperatures on Combined Cycle Having Air Transpiration Cooled Gas Turbine

    Science.gov (United States)

    Kumar, S.; Singh, O.

    2012-10-01

    Worldwide efforts are being made for further improving the gas/steam combined cycle performance by having better blade cooling technology in topping cycle and enhanced heat recovery in bottoming cycle. The scope of improvement is possible through turbines having higher turbine inlet temperatures (TITs) of both gas turbine and steam turbine. Literature review shows that a combined cycle with transpiration cooled gas turbine has not been analyzed with varying gas/steam TITs. In view of above the present study has been undertaken for thermodynamic study of gas/steam combined cycle with respect to variation in TIT in both topping and bottoming cycles, for air transpiration cooled gas turbine. The performance of combined cycle with dual pressure heat recovery steam generator has been evaluated for different cycle pressure ratios (CPRs) varying from 11 to 23 and the selection diagrams presented for TIT varying from 1,600 to 1,900 K. Both the cycle efficiency and specific work increase with TIT for each pressure ratio. For each TIT there exists an optimum pressure ratio for cycle efficiency and specific work. For the CPR of 23 the best cycle performance is seen at a TIT of 1,900 K for maximum steam temperature of 570 °C, which gives the cycle efficiency of 60.9 % with net specific work of 909 kJ/kg.

  9. A Combined Hydrological, Geochemical and Geophysical Reconnaissance of Groundwater Contamination In Oilfield Environment (republic of Tatarstan, Russia)

    Science.gov (United States)

    Levitski, A.; Titov, K.; Buès, M.; Ilyin, Yu.; Konosavski, P.; Kharkhordin, I.; Uchaev, V.; Sapozhnikov, B.; Kharkovski, K.

    Numerous brine leakages from production and injection wells and pipelines were ob- served at the site of study situated in Romashkinskoye oilfield. The groundwater flow, which follows the relief, is manifested by five springs. The salinity of these springs significantly increased during 20 years of oil exploitation at the site. The subsurface consists of sandstone, clayey sandstone, siltstone and limestone. Sampling of spring water and soils, as well as geophysical investigations, were carried out to develop the groundwater and contamination flow model of the site. In addition to the traditional bulk soil sampling, the mobile forms of chemical elements were investigated using the diffusion sampling technique (Levitski et al., 1995). The dipole-dipole resistivity and Spontaneous Polarization (SP) maps of the site were obtained. One prospecting bore- hole of 40 m was sunk. Vertical Electrical Sounding (VES) and Time Domain Spec- tral Induced Polarization Sounding (SIP), conducted at several points, were inverted to obtain rock and soil resistivity. The SIP measurements were performed to help geo- logical interpretation of the obtained resistivity cross-sections. The groundwater flow model was developed on the basis of borehole data, debits of the observed springs, and surface geophysical data. The model was calibrated using numerical modelling of SP. The 2D program GWFGEM based on the SillSs approach (1983) was applied. First, the preliminary groundwater flow model was obtained. Based on the coupling flow theory, sources of SP were calculated from water heads. Then, SP was calculated on the basis of SP sources and subsurface resistivity derived from the VES inversion. The above procedure was repeated several times to minimise the discrepancy between the observed and calculated SP. The flow balance for the whole site was obtained. The best indicators of the oil-related contamination at the site were found to be: (1) in groundwater U K, Na and Sr; (2) in bulk soil U Ca

  10. Combining active chilled beams and air cleaning technologies to improve indoor climate in offices

    DEFF Research Database (Denmark)

    Ardkapan, Siamak Rahimi; Afshari, Alireza; Bergsøe, Niels Christian

    2012-01-01

    in offices. For this purpose, a mechanical filter with low pressure drop was selected to be tested in a laboratory environment. The measurements included tests of the filter in a ductwork to study the efficiency of the filter. Moreover, the combined system of the filter and a chilled beam was tested...... in a room. The removal efficiency of the mechanical filter for ultrafine particles was examined using burning candles as sources for emission of particles. The measurements in the duct showed that the efficiency of the filter ranged between 54% and 78% and the pressure loss was less than 5 Pascal....... Furthermore, the measurement results of the combined system showed that adding the filter accelerated the removal rate of the particles by 2 (h-1). However, the efficiency of the chilled beam in exchanging the heat reduced by 38%....

  11. Combined iron and sulfate reduction biostimulation as a novel approach to enhance BTEX and PAH source-zone biodegradation in biodiesel blend-contaminated groundwater.

    Science.gov (United States)

    Müller, Juliana B; Ramos, Débora T; Larose, Catherine; Fernandes, Marilda; Lazzarin, Helen S C; Vogel, Timothy M; Corseuil, Henry X

    2017-03-15

    The use of biodiesel as a transportation fuel and its growing mandatory blending percentage in diesel increase the likelihood of contaminating groundwater with diesel/biodiesel blends. A 100L-field experiment with B20 (20% biodiesel and 80% diesel, v/v) was conducted to assess the potential for the combined biostimulation of iron and sulfate reducing bacteria to enhance BTEX and PAH biodegradation in a diesel/biodiesel blend-contaminated groundwater. A B20 field experiment under monitored natural attenuation (MNA) was used as a baseline control. Ammonium acetate and a low-cost and sustainable product recovered from acid mine drainage treatment were used to stimulate iron and sulfate-reducing conditions. As a result, benzene and naphthalene concentrations (maximum concentrations were 28.1μgL(-1) and 10.0μgL(-1), respectively) remained lower than the MNA experiment (maximum concentrations were 974.7μgL(-1) and 121.3μgL(-1), respectively) over the whole experiment. Geochemical changes were chronologically consistent with the temporal change of the predominance of Geobacter and GOUTA19 which might be the key players responsible for the rapid attenuation of benzene and naphthalene. To the best of our knowledge, this is the first field experiment to demonstrate the potential for the combined iron and sulfate biostimulation to enhance B20 source-zone biodegradation.

  12. Water quality deterioration at a karst spring (Gallusquelle, Germany) due to combined sewer overflow: evidence of bacterial and micro-pollutant contamination

    Science.gov (United States)

    Heinz, B.; Birk, S.; Liedl, R.; Geyer, T.; Straub, K. L.; Andresen, J.; Bester, K.; Kappler, A.

    2009-04-01

    The concurrent use of karst aquifers as drinking water resources and receptors of combined sewer overflow lacking appropriate pre-treatment may cause conflicts between drinking water supply and storm water management. A storm water tank (SWT) for combined wastewater is identified as the source of sporadic contamination of a karst spring (Gallusquelle, “Schwäbische Alb”, SW Germany) used for public water supply. Spring water quality was examined by routine and event sampling and by evaluating physicochemical and microbiological parameters. The total number of microbial colonies growing at 20°C and the number of Escherichia coli colonies rose to values up to four orders of magnitude higher than background, 2-5 days after overflow of the SWT. High concentrations of chloride, sodium, and total organic carbon (TOC) and high values of turbidity coincide with this increase. However, high bacterial contamination is also observed while turbidity and TOC are low. Several wastewater-related organic micro-pollutants such as chlorinated and non-chlorinated organophosphates were detected in the SWT and, depending on their K ow values and their biodegradability, in lower concentrations at the spring.

  13. Combination of synoptical-analogous and dynamical methods to increase skill score of monthly air temperature forecasts over Northern Eurasia

    Science.gov (United States)

    Khan, Valentina; Tscepelev, Valery; Vilfand, Roman; Kulikova, Irina; Kruglova, Ekaterina; Tischenko, Vladimir

    2016-04-01

    Long-range forecasts at monthly-seasonal time scale are in great demand of socio-economic sectors for exploiting climate-related risks and opportunities. At the same time, the quality of long-range forecasts is not fully responding to user application necessities. Different approaches, including combination of different prognostic models, are used in forecast centers to increase the prediction skill for specific regions and globally. In the present study, two forecasting methods are considered which are exploited in operational practice of Hydrometeorological Center of Russia. One of them is synoptical-analogous method of forecasting of surface air temperature at monthly scale. Another one is dynamical system based on the global semi-Lagrangian model SL-AV, developed in collaboration of Institute of Numerical Mathematics and Hydrometeorological Centre of Russia. The seasonal version of this model has been used to issue global and regional forecasts at monthly-seasonal time scales. This study presents results of the evaluation of surface air temperature forecasts generated with using above mentioned synoptical-statistical and dynamical models, and their combination to potentially increase skill score over Northern Eurasia. The test sample of operational forecasts is encompassing period from 2010 through 2015. The seasonal and interannual variability of skill scores of these methods has been discussed. It was noticed that the quality of all forecasts is highly dependent on the inertia of macro-circulation processes. The skill scores of forecasts are decreasing during significant alterations of synoptical fields for both dynamical and empirical schemes. Procedure of combination of forecasts from different methods, in some cases, has demonstrated its effectiveness. For this study the support has been provided by Grant of Russian Science Foundation (№14-37-00053).

  14. Atomic oxygen dynamics in an air dielectric barrier discharge: a combined diagnostic and modeling approach

    Science.gov (United States)

    Baldus, Sabrina; Schröder, Daniel; Bibinov, Nikita; Schulz-von der Gathen, Volker; Awakowicz, Peter

    2015-06-01

    Cold atmospheric pressure plasmas are a promising alternative therapy for treatment of chronic wounds, as they have already shown in clinical trials. In this study an air dielectric barrier discharge (DBD) developed for therapeutic use in dermatology is characterized with respect to the plasma produced reactive oxygen species, namely atomic oxygen and ozone, which are known to be of great importance to wound healing. To understand the plasma chemistry of the applied DBD, xenon-calibrated two-photon laser-induced fluorescence spectroscopy and optical absorption spectroscopy are applied. The measured spatial distributions are shown and compared to each other. A model of the afterglow chemistry based on optical emission spectroscopy is developed to cross-check the measurement results and obtain insight into the dynamics of the considered reactive oxygen species. The atomic oxygen density is found to be located mostly between the electrodes with a maximum density of {{n}\\text{O}}=6× {{10}16} cm-3 . Time resolved measurements reveal a constant atomic oxygen density between two high voltage pulses. The ozone is measured up to 3 mm outside the active plasma volume, reaching a maximum value of {{n}{{\\text{O}3}}}=3× {{10}16} cm-3 between the electrodes.

  15. Soil washing in combination with homogeneous Fenton-like oxidation for the removal of 2,4,4'-trichlorodiphenyl from soil contaminated with capacitor oil.

    Science.gov (United States)

    Ma, Xiao-Hong; Zhao, Ling; Lin, Zhi-Rong; Dong, Yuan-Hua

    2016-04-01

    Detoxification by chemical oxidation of polychlorinated biphenyls (PCBs) in contaminated soils is very difficult and inefficient because PCBs typically associate with the solid phase or exist as non-aqueous-phase liquids due to their low solubility and slow desorption rates, and thus, they are difficult to remove from soils by using traditional, water-based elution techniques. Surfactant can enhance washing efficiency of PCBs from contaminated soils. This study used Brij 58, Brij 30, Tween 80, and 2-hydroxypropyl-β-cyclodextrin (HPCD) to solubilize 2,4,4'-trichlorodiphenyl (PCB28) from soil contaminated with capacitor oil into solution. The feasibility of PCB28 oxidation in soil washing wastewater through a Fe(3+)-catalyzed Fenton-like reaction was subsequently examined. Washing with 10 g L(-1) Brij 58 solution showed the highest extraction efficiency (up to 61.5 %) compared with that of the three other surfactants. The total concentration of PCB28 in contaminated soil at 25 °C after 48-h extraction was 286 mg L(-1). In contrast to conditions in which no washing agent was added, addition of the four washing agents decreased the efficiency of PCB28 degradation by the Fenton-like reaction, with the decrease due to addition of 10 g L(-1) Brij 58 solution being the smallest. The optimal concentration of H2O2 for preventing its useless decomposition was found to be 50 mM. The efficiency of PCB28 removal was lower when the initial concentration of PCB28 treated in the Fenton-like reaction was higher. The degradation efficiencies of PCB28 at initial concentrations of 0.1, 10, and 176 mg L(-1) in 10 g L(-1) Brij 58 solution at 25 °C and pH 3.0 and 9 h of reaction using 50 mM H2O2 were 64.1, 42.0, and 34.6 %, respectively. This result indicates that soil washing combined with Fenton-like oxidation may be a practical approach for the remediation of PCB-contaminated soil.

  16. A model for dispersion of contaminants in the subway environment

    Energy Technology Data Exchange (ETDEWEB)

    Coke, L. R.; Sanchez, J. G.; Policastro, A. J.

    2000-05-03

    Although subway ventilation has been studied extensively, very little has been published on dispersion of contaminants in the subway environment. This paper presents a model that predicts dispersion of contaminants in a complex subway system. It accounts for the combined transient effects of train motion, station airflows, train car air exchange rates, and source release properties. Results are presented for a range of typical subway scenarios. The effects of train piston action and train car air exchange are discussed. The model could also be applied to analyze the environmental impact of hazardous materials releases such as chemical and biological agents.

  17. Contaminación fecal canina en plazas y veredas de Buenos Aires, 1991-2006 Dog fouling and helminth contamination in parks and sidewalks of Buenos Aires City, 1991-2006

    Directory of Open Access Journals (Sweden)

    Diana Rubel

    2010-08-01

    Full Text Available El objetivo del trabajo fue presentar y analizar los datos de contaminación fecal canina y parasitaria en plazas y veredas de Buenos Aires obtenidos entre 1991 y 2006 por la Cátedra Parasitología General (Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Se censaron las heces en varias plazas cada año en un único día entre 1991-2006. A partir del año 2000 se censaron heces en veredas circundantes. En cada plaza se seleccionaron al azar 30 heces frescas que se conservaron en formol 5% para su análisis parasitológico por el método de flotación de Willis con solución saturada de ClNa. Los 51 censos presentaron una mediana de heces de 288; un 82% de las heces se observaron en los canteros de tierra o pasto. La contaminación fecal en las plazas fue mayor en el período 2000-06 que en el anterior (p = 0.0000. La contaminación fecal de las plazas aumentó con la densidad humana en las manzanas lindantes (p = 0.0076. Las veredas mostraron un patrón inverso, ya que la contaminación fecal fue mayor en las áreas menos densamente pobladas (p = 0.0000. Se detectaron parásitos en un número variable de las heces colectadas en todas las plazas. Los géneros más frecuentes fueron Ancylostoma (20.47%, Trichuris (2.59% y Toxocara (1.70%. Nuestros resultados indican un aumento en la contaminación fecal de las plazas, posiblemente asociado con el aumento del número de perros en la ciudad combinado con las deficiencias en la implementación y el seguimiento de las medidas de control.The aim of this study was to provide data on canine fecal and helminthic contamination from parks and sidewalks in Buenos Aires City, collected by the Laboratory of General Parasitology, School of Sciences, University of Buenos Aires. A census of dog feces was performed in 1-11 parks per year between 1991 and 2006, a single day each year. In the period 2000-2006, the census included feces on sidewalks surrounding the park. Thirty fresh fecal

  18. LOCAL AIR: Local Aerosol monitoring combining in-situ and Remote Sensing observations

    Science.gov (United States)

    Mona, Lucia; Caggiano, Rosa; Donvito, Angelo; Giannini, Vincenzo; Papagiannopoulos, Nikolaos; Sarli, Valentina; Trippetta, Serena

    2015-04-01

    local sources, which in the troposphere, where there are aerosols transported over long distances by the phenomena of atmospheric circulation. The purpose of the LOCAL AIR project is the development of a methodology for using synergistic data at different resolutions (ground measurements, remote sensing from ground and satellite) as an effective tool for the characterization of tropospheric aerosols on a local scale. The backbone of the project is the long-term ground-based measurements collected at CIAO (CNR-IMAA Atmospheric Observatory) plus the CALIPSO observations.. The location of the plethora of instruments and measurements of atmospheric interest available at CNR-IMAA makes it a sample site not only for the realization of the methodology, but also allows a feasibility study of this method in the absence of some by analysis of the measures considered in the scaling down of the algorithm developed. It will be evaluated the applicability and reliability of the algorithm implemented for the characterization of the aerosol content to the ground in other places of special interest. Acknowledgments: LOCAL AIR is supported by PO FSE Basilicata 2007-2013 Azione n. 45/AP/05/2013/REG - CUP: G53G13000300009.

  19. CPC air-blown integrated gasification combined cycle project. Quarterly report, October--December 1992

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    The overall project cost and schedule. The combustion turbine commercial operation date is scheduled for 7/1/95 with the combined cycle commercial operation date of 7/1/96. A two year demonstration period will commence after IGCC commercial operation. Details of costs on a total project and DOE Envelope basis along with detailed schedule components were covered. Major cost variances to date were discussed. The major variances this year relate to contracts which were anticipated to be finalized mid 1992 but which are not executed. These include GEESI, the ASU and key vessels. Some of these contracts are almost in place and others are scheduled for the first quarter 1993. Numerous project specifications, process flow diagrams, piping and instrument diagrams and other drawings have been reviewed and approved as part of the preliminary engineering process.

  20. Microbial survey of the mummies from the Capuchin Catacombs of Palermo, Italy: biodeterioration risk and contamination of the indoor air.

    Science.gov (United States)

    Piñar, Guadalupe; Piombino-Mascali, Dario; Maixner, Frank; Zink, Albert; Sterflinger, Katja

    2013-11-01

    The Capuchin Catacombs of Palermo contain over 1800 preserved bodies dating from the 16th to 20th centuries AD and showing evidence of biodeterioration. An extensive microbiological and molecular investigation was recently performed. Samples were taken from skin, muscle, hair, bone, stuffing materials, clothes, and surrounding walls as well as from the indoor air. In this study, we witnessed that the different degradation phenomena observed on the variety of materials located at the Capuchin Catacombs of Palermo are biological in origin. Molecular techniques showed the dominance of halophilic species of the domains Bacteria and Archaea on the walls and - as a result of salt emanating from the walls - on the mummies themselves. Nevertheless, specialized microorganisms belonging to taxa well-known for their cellulolytic and proteolytic activities were detected on clothes and stuffing material, and on skin, muscle, hair, and bone, respectively. This specialized microbiota is threatening the conservation of the mummies themselves. Additionally, sequences related to the human skin microbiome and to some pathogenic Bacteria (order Clostridiales) and fungi (genus Phialosimplex) were identified on samples derived from the mummies. Furthermore, a phosphate-reducing fungus, Penicillium radicum, was detected on bone. Finally, the high concentration of airborne fungal spores is not conducive to the conservation of the human remains and is posing a potential health risk for visitors.

  1. Investigation of the contamination of air and articles in ambulance and the effect of disinfection observation%救护车内空气、物品染菌量调查及干预效果观察

    Institute of Scientific and Technical Information of China (English)

    杨丽萍

    2011-01-01

    Objective: To investigate the bacterial contamination of air and articles in ambulance, and observe the effect of disinfection. Methods: The bacterial contamination of the air and articles in one ambulance were detected before and after disinfection in early,middle and end per month from May. 2009 to Oct. 2009. Results :The pollution situation of air and articles in ambulance was serious before disinfection. The bacterial contamination was decreased significantly after disinfection. And the difference was statistically significant( P < 0.01 ). Conclusions: The pollution situation of air and articles in ambulance is serious. It is necessary to establish a strict disinfection management system.%目的:调查救护车内空气、物品的染菌量情况,观察消毒处理的效果.方法:2009年5~10月的每月上、中、下旬对3辆救护车内空气和物品表面进行消毒前后染菌量监测.结果:消毒前救护车内空气和物品的污染情况严重,消毒后染菌量明显下降(P<0.01).结论:救护车内空气和物品的污染状况严重,需加强其消毒和监测工作.

  2. Mapping of Cu and Pb Contaminations in Soil Using Combined Geochemistry, Topography, and Remote Sensing: A Case Study in the Le’an River Floodplain, China

    Directory of Open Access Journals (Sweden)

    Yin Gao

    2012-05-01

    Full Text Available Heavy metal pollution in soil is becoming a widely concerning environmental problem in China. The aim of this study is to integrate multiple sources of data, namely total Cu and Pb contents, digital elevation model (DEM data, remote sensing image and interpreted land-use data, for mapping the spatial distribution of total Cu and Pb contamination in top soil along the Le’an River and its branches. Combined with geographical analyses and watershed delineation, the source and transportation route of pollutants are identified. Regions at high risk of Cu or Pb pollution are suggested. Results reveal that topography is the major factor that controls the spatial distribution of Cu and Pb. Watershed delineation shows evidence that the streamflow resulting from rainfall is the major carrier of metal pollutants.

  3. Combined use of alkane-degrading and plant growth-promoting bacteria enhanced phytoremediation of diesel contaminated soil.

    Science.gov (United States)

    Tara, Nain; Afzal, Muhammad; Ansari, Tariq M; Tahseen, Razia; Iqbal, Samina; Khan, Qaiser M

    2014-01-01

    Inoculation of plants with pollutant-degrading and plant growth-promoting microorganisms is a simple strategy to enhance phytoremediation activity. The objective of this study was to determine the effect of inoculation of different bacterial strains, possessing alkane-degradation and 1-amino-cyclopropane-1 -carboxylic acid (ACC) deaminase activity, on plant growth and phytoremediation activity. Carpet grass (Axonopus affinis) was planted in soil spiked with diesel (1% w/w) for 90 days and inoculated with different bacterial strains, Pseudomonas sp. ITRH25, Pantoea sp. BTRH79 and Burkholderia sp. PsJN, individually and in combination. Generally, bacterial application increased total numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere ofcarpet grass, plant biomass production, hydrocarbon degradation and reduced genotoxicity. Bacterial strains possessing different beneficial traits affect plant growth and phytoremediation activity in different ways. Maximum bacterial population, plant biomass production and hydrocarbon degradation were achieved when carpet grass was inoculated with a consortium of three strains. Enhanced plant biomass production and hydrocarbon degradation were associated with increased numbers of culturable hydrocarbon-degrading bacteria in the rhizosphere of carpet grass. The present study revealed that the combined use of different bacterial strains, exhibiting different beneficial traits, is a highly effective strategy to improve plant growth and phytoremediation activity.

  4. Evidence of polycyclic aromatic hydrocarbon biodegradation in a contaminated aquifer by combined application of in situ and laboratory microcosms using (13)C-labelled target compounds.

    Science.gov (United States)

    Bahr, Arne; Fischer, Anko; Vogt, Carsten; Bombach, Petra

    2015-02-01

    The number of approaches to evaluate the biodegradation of polycyclic aromatic hydrocarbons (PAHs) within contaminated aquifers is limited. Here, we demonstrate the applicability of a novel method based on the combination of in situ and laboratory microcosms using (13)C-labelled PAHs as tracer compounds. The biodegradation of four PAHs (naphthalene, fluorene, phenanthrene, and acenaphthene) was investigated in an oxic aquifer at the site of a former gas plant. In situ biodegradation of naphthalene and fluorene was demonstrated using in situ microcosms (BACTRAP(®)s). BACTRAP(®)s amended with either [(13)C6]-naphthalene or [(13)C5/(13)C6]-fluorene (50:50) were incubated for a period of over two months in two groundwater wells located at the contaminant source and plume fringe, respectively. Amino acids extracted from BACTRAP(®)-grown cells showed significant (13)C-enrichments with (13)C-fractions of up to 30.4% for naphthalene and 3.8% for fluorene, thus providing evidence for the in situ biodegradation and assimilation of those PAHs at the field site. To quantify the mineralisation of PAHs, laboratory microcosms were set up with BACTRAP(®)-grown cells and groundwater. Naphthalene, fluorene, phenanthrene, or acenaphthene were added as (13)C-labelled substrates. (13)C-enrichment of the produced CO2 revealed mineralisation of between 5.9% and 19.7% for fluorene, between 11.1% and 35.1% for acenaphthene, between 14.2% and 33.1% for phenanthrene, and up to 37.0% for naphthalene over a period of 62 days. Observed PAH mineralisation rates ranged between 17 μg L(-1) d(-1) and 1639 μg L(-1) d(-1). The novel approach combining in situ and laboratory microcosms allowed a comprehensive evaluation of PAH biodegradation at the investigated field site, revealing the method's potential for the assessment of PAH degradation within contaminated aquifers.

  5. Effectiveness of hand sorting, flotation/washing, dehulling and combinations thereof on the decontamination of mycotoxin-contaminated white maize.

    Science.gov (United States)

    Matumba, Limbikani; Van Poucke, Christof; Njumbe Ediage, Emmanuel; Jacobs, Bart; De Saeger, Sarah

    2015-01-01

    Maize is one of the major staple foods of Sub-Saharan Africa and is consumed as whole or dehulled grain. In this region, where the environmental conditions favour fungal growth and mycotoxin production, the majority of the population are subsistence consumers who, unfortunately, have little or no access to mycotoxin testing of their food. In an attempt to develop feasible reduction strategies in dietary mycotoxin exposure of the population, a three-factorial design experiment was conducted to examine and compare the efficacy of hand sorting, flotation, dehulling and combinations thereof in removing naturally occurring aflatoxins, fumonisins, nivalenol, deoxynivalenol and alternariol in shelled white maize. Regression analysis was used to determine the significant (p mycotoxins from the maize. Results from this experiment indicated that hand sorting had the greatest effect on mycotoxin removal, while flotation yielded the least effect. In particular hand sorting left mycotoxin exposure among subsistence consumers.

  6. Bioremediation of contaminated groundwater

    Science.gov (United States)

    Hazen, Terry C.; Fliermans, Carl B.

    1995-01-01

    An apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants; an oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth; withholding it periodicially forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene.

  7. Mapping real-time air pollution health risk for environmental management: Combining mobile and stationary air pollution monitoring with neural network models.

    Science.gov (United States)

    Adams, Matthew D; Kanaroglou, Pavlos S

    2016-03-01

    Air pollution poses health concerns at the global scale. The challenge of managing air pollution is significant because of the many air pollutants, insufficient funds for monitoring and abatement programs, and political and social challenges in defining policy to limit emissions. Some governments provide citizens with air pollution health risk information to allow them to limit their exposure. However, many regions still have insufficient air pollution monitoring networks to provide real-time mapping. Where available, these risk mapping systems either provide absolute concentration data or the concentrations are used to derive an Air Quality Index, which provides the air pollution risk for a mix of air pollutants with a single value. When risk information is presented as a single value for an entire region it does not inform on the spatial variation within the region. Without an understanding of the local variation residents can only make a partially informed decision when choosing daily activities. The single value is typically provided because of a limited number of active monitoring units in the area. In our work, we overcome this issue by leveraging mobile air pollution monitoring techniques, meteorological information and land use information to map real-time air pollution health risks. We propose an approach that can provide improved health risk information to the public by applying neural network models within a framework that is inspired by land use regression. Mobile air pollution monitoring campaigns were conducted across Hamilton from 2005 to 2013. These mobile air pollution data were modelled with a number of predictor variables that included information on the surrounding land use characteristics, the meteorological conditions, air pollution concentrations from fixed location monitors, and traffic information during the time of collection. Fine particulate matter and nitrogen dioxide were both modelled. During the model fitting process we reserved

  8. Rice grain yield and quality responses to free-air CO2 enrichment combined with soil and water warming.

    Science.gov (United States)

    Usui, Yasuhiro; Sakai, Hidemitsu; Tokida, Takeshi; Nakamura, Hirofumi; Nakagawa, Hiroshi; Hasegawa, Toshihiro

    2016-03-01

    Rising air temperatures are projected to reduce rice yield and quality, whereas increasing atmospheric CO2 concentrations ([CO2 ]) can increase grain yield. For irrigated rice, ponded water is an important temperature environment, but few open-field evaluations are available on the combined effects of temperature and [CO2 ], which limits our ability to predict future rice production. We conducted free-air CO2 enrichment and soil and water warming experiments, for three growing seasons to determine the yield and quality response to elevated [CO2 ] (+200 μmol mol(-1) , E-[CO2 ]) and soil and water temperatures (+2 °C, E-T). E-[CO2 ] significantly increased biomass and grain yield by approximately 14% averaged over 3 years, mainly because of increased panicle and spikelet density. E-T significantly increased biomass but had no significant effect on the grain yield. E-T decreased days from transplanting to heading by approximately 1%, but days to the maximum tiller number (MTN) stage were reduced by approximately 8%, which limited the panicle density and therefore sink capacity. On the other hand, E-[CO2 ] increased days to the MTN stage by approximately 4%, leading to a greater number of tillers. Grain appearance quality was decreased by both treatments, but E-[CO2 ] showed a much larger effect than did E-T. The significant decrease in undamaged grains (UDG) by E-[CO2 ] was mainly the result of an increased percentage of white-base grains (WBSG), which were negatively correlated with grain protein content. A significant decrease in grain protein content by E-[CO2 ] accounted in part for the increased WBSG. The dependence of WBSG on grain protein content, however, was different among years; the slope and intercept of the relationship were positively correlated with a heat dose above 26 °C. Year-to-year variation in the response of grain appearance quality demonstrated that E-[CO2 ] and rising air temperatures synergistically reduce grain appearance quality of

  9. Application of cinder gel-beads/reeds combination strategy for bioremediation of pyrene- and indeno(1,2,3-cd)pyrene-contaminated estuarine wetlands.

    Science.gov (United States)

    Tian, Weijun; Liu, Qing; Huang, Ruying; Jin, Xin; Qiao, Kaili

    2016-06-01

    Pseudomonas putida PYR1 and Acinetobacter baumannii INP1 isolated from Liaohe estuarine wetlands were entrapped in cinder beads to make cinder gel-beads. They were combined with reeds for bioremediation of pyrene- and indeno(1,2,3-cd)pyrene-contaminated estuarine wetlands. The results showed that the removal percentages of pyrene and indeno(1,2,3-cd)pyrene (69.2 and 89.8 % respectively) in 40 days using cinder gel-beads/reeds were obviously higher than those using cinder gel-beads(52.6 and 70.0 %) and reeds (33.5 and 78.6 %) alone, about four times those of the control (13.8 and 31.1 %). The removal efficiency of pyrene was in the order cinder gel-beads/reeds > cinder gel-beads > reeds > control, which was different from cinder gel-beads/reeds > reeds > cinder gel-beads > control of indeno(1,2,3-cd)pyrene. This result indicated that the functional mechanism to remove indeno(1,2,3-cd)pyrene with six benzene rings was different from that of pyrene. The synergistic effect of reeds and cinder gel-beads for indeno(1,2,3-cd)pyrene removal was weaker than that of pyrene. But the absorption and transformation of reeds with high efficiency were beneficial to indeno(1,2,3-cd)pyrene removal from wetlands. Additionally, microbial analysis with high-throughput sequencing presented that Gammaproteobacteria were dominant PAH-degrading groups in bioremediation with immobilized bacteria. This strategy can serve as a model system for the removal of more complex or structurally related organic compounds from contaminated sites.

  10. Compounding of a Combinable Surfactant for Oil-Contaminated Soil Washing%石油污染土壤淋洗配方的比选

    Institute of Scientific and Technical Information of China (English)

    李诗殷; 宁小兵; 蔡信德; 詹重贵

    2011-01-01

    This paper reports a lab-scaled experiment intended to develop an efficient surfactant for oil-contaminated soil remediation, focusing on selecting an optimal combinable surfactant formula. The washing of contaminated-soil packed in PVC colunms is conducted by solutions containing the suffactants, and an empirical model is employed to describe the oil desorption from the soil. The experiment indicates that the best compounding of suffactant as 5% of triton, 10% of sodium lignosulfonate, 42% sodium silicate, 43% of sodium carbonate, and oil-washing rate attains to 29.3% under the condition of continuous 96 hour washing and 0.4 mL/min of washing rate.%以广州市某废弃工业场地的石油污染土壤为研究对象,采用室内模拟试验的方法,考察了不同的pH、淋洗液配方、淋洗时间、以及土柱淋洗流量等因素对石油污染土壤淋洗修复效果的影响;并利用一级反应动力学模型对试验数据进行拟合.结果表明pH=8时水溶液对油的解吸量最大;最优淋洗液配方为5(曲拉通):10(本素钠):42(硅酸钠):43(碳酸钠).土柱淋洗效果与淋洗液使用量有较大关系,在0.40 mL/min用量时,96 h的除油率为29.3%,土壤中石油的含量由32 273 mg/kg下降至22 820 mg/kg.

  11. Modeling for Airborne Contamination

    Energy Technology Data Exchange (ETDEWEB)

    F.R. Faillace; Y. Yuan

    2000-08-31

    The objective of Modeling for Airborne Contamination (referred to from now on as ''this report'') is to provide a documented methodology, along with supporting information, for estimating the release, transport, and assessment of dose to workers from airborne radioactive contaminants within the Monitored Geologic Repository (MGR) subsurface during the pre-closure period. Specifically, this report provides engineers and scientists with methodologies for estimating how concentrations of contaminants might be distributed in the air and on the drift surfaces if released from waste packages inside the repository. This report also provides dose conversion factors for inhalation, air submersion, and ground exposure pathways used to derive doses to potentially exposed subsurface workers. The scope of this report is limited to radiological contaminants (particulate, volatile and gaseous) resulting from waste package leaks (if any) and surface contamination and their transport processes. Neutron activation of air, dust in the air and the rock walls of the drift during the preclosure time is not considered within the scope of this report. Any neutrons causing such activation are not themselves considered to be ''contaminants'' released from the waste package. This report: (1) Documents mathematical models and model parameters for evaluating airborne contaminant transport within the MGR subsurface; and (2) Provides tables of dose conversion factors for inhalation, air submersion, and ground exposure pathways for important radionuclides. The dose conversion factors for air submersion and ground exposure pathways are further limited to drift diameters of 7.62 m and 5.5 m, corresponding to the main and emplacement drifts, respectively. If the final repository design significantly deviates from these drift dimensions, the results in this report may require revision. The dose conversion factors are further derived by using concrete of

  12. Research on laser melting-alloying combined strengthening of the camshaft of air-cooled diesel engine

    Science.gov (United States)

    Liu, Wenjin; Zhong, Minlin; Zhao, Haiyun; Zhang, Hongjun; Zhang, Weimin; Huang, Guoqing

    1996-04-01

    This paper reported the research results on 3 kw cw CO2 laser melting-alloying combined strengthening of the camshaft of air-cooled diesel engine used in the desert oil field. The 45 steel camshaft was pretreated with the conventional quenching and high temperature tempering. A focused laser beam with power density 1.5 - 1.7 X 104 w/cm2 was used to alloy the cam lobe area, while the other area of the cam was treated by laser melting using a focused 12 X 1.5 mm rectangular beam (power density 1.1 X 104 w/cm2) produced by a newly developed binary optics. The microstructure of the laser alloyed region is fine Fe-Cr-Si-B multi-element hypereutectic structure with hardness HRC 63 - 64. The melted layer consists of fine needle-shaped martensite and residual austenite structure with hardness HRC 58 - 61. The strengthened layer is 1.0 - 1.3 mm in thickness with pore-free and crack-free and good surface quality. Under the same condition, the Ring-block (SiN ceramic) wear test proves that the wear of the laser alloyed 45 steel ring is only 29 percent of that of induction quenching 45 steel ring. And a 500 hours test engine experiment demonstrates that the average wear of the laser alloyed cam is only 20 percent of that of induction quenched one.

  13. Experimental Study of Air Distribution and Ventilation Effectiveness in a Room with a Combination of Different Mechanical Ventilation and Heating/Cooling Systems

    DEFF Research Database (Denmark)

    Olesen, Bjarne W.; Simone, Angela; Krajcik, Michal;

    2011-01-01

    Mixing and displacement ventilation are common systems in commercial buildings, while mixing ventilation is used in residential buildings. Displacement ventilation provides fresh air to the occupied zone in a more efficient way than mixing ventilation but it is important to know how well it works...... with a floor system for heating or cooling. Can, for example, a floor heating system warm up the supply air too fast and destroy the displacement effect? Will floor cooling, combined with displacement ventilation, result in too high a vertical temperature difference and too low a temperature at feet level......? The required amount of ventilation depends on the ventilation effectiveness. In standards, the recommended values for ventilation effectiveness depend on the position of the supply and exhaust device and on the difference between supply and room air temperature. Among others, for warm air heating...

  14. Research on the water hammer protection of the long distance water supply project with the combined action of the air vessel and over-pressure relief valve

    Science.gov (United States)

    Li, D. D.; Jiang, J.; Zhao, Z.; Yi, W. S.; Lan, G.

    2013-12-01

    We take a concrete pumping station as an example in this paper. Through the calculation of water hammer protection with a specific pumping station water supply project, and the analysis of the principle, mathematical models and boundary conditions of air vessel and over-pressure relief valve we show that the air vessel can protect the water conveyance system and reduce the transient pressure damage due to various causes. Over-pressure relief valve can effectively reduce the water hammer because the water column re-bridge suddenly stops the pump and prevents pipeline burst. The paper indicates that the combination set of air vessel and over-pressure relief valve can greatly reduce the quantity of the air valve and can eliminate the water hammer phenomenon in the pipeline system due to the vaporization and water column separation and re-bridge. The conclusion could provide a reference for the water hammer protection of long-distance water supply system.

  15. A new procedure combining GC-MS with accelerated solvent extraction for the analysis of phthalic acid esters in contaminated soils

    Institute of Scientific and Technical Information of China (English)

    Tingting MA; Ying TENG; Peter CHRISTIE; Yongming LUO; Yongshan CHEN; Mao YE

    2013-01-01

    An optimized procedure based on gas chromatography-mass spectrometry (GC-MS) combined with accelerated solvent extraction (ASE) is developed for the analysis of six phthalic acid esters (PAEs), which are priority soil pollutants nominated by United States Environmental Protection Agency (USEPA). Quantification of PAEs in soil employs ultrasonic extraction (UE) (USEPA 3550) and ASE (USEPA 3545), followed by clean up procedures involving three different chromatography columns and two combined elution methods. GC-MS conditions under selected ion monitoring (SIM) mode are described and quality assurance and quality control (QA/ QC) criteria with high accuracy and sensitivity for target analytes were achieved. Method reliability is assured with the use of an isotopically labeled PAE, di-n-butyl phthalate-d4 (DnBP-D4), as a surrogate, and benzyl benzoate (BB) as an internal standard, and with the analysis of certified reference materials (CRM). QA/QC for the developed procedure was tested in four PAE-spiked soils and one PAE-contaminated soil. The four spiked soils were originated from typical Chinese agricultural fields and the contaminated soil was obtained from an electronic waste dismantling area. Instrument detection limits (IDLs) for the six PAEs ranged 0.10-0.31 μg·L-1 and method detection limits (MDLs) of the four spiked soils varied from a range of 20-70 μg· kg -1 to a range of 90-290 μg· kg-1. Lineal-iVy of response between 20 μg· L-1 and 2mg.L~ was also established and the correlation coefficients (R) were a11〉0.998. Spiked soil matrix showed relative recovery rates between 75 and 120% for the six target compounds and about 93% for the surrogate substance. The developed procedure is anticipated to be highly applicable for field surveys of soil PAE pollution in China.

  16. Air-water flow in subsurface systems

    Science.gov (United States)

    Hansen, A.; Mishra, P.

    2013-12-01

    Groundwater traces its roots to tackle challenges of safe and reliable drinking water and food production. When the groundwater level rises, air pressure in the unsaturated Vadose zone increases, forcing air to escape from the ground surface. Abnormally high and low subsurface air pressure can be generated when the groundwater system, rainfall, and sea level fluctuation are favorably combined [Jiao and Li, 2004]. Through this process, contamination in the form of volatile gases may diffuse from the ground surface into residential areas, or possibly move into groundwater from industrial waste sites. It is therefore crucial to understand the combined effects of air-water flow in groundwater system. Here we investigate theoretically and experimentally the effects of air and water flow in groundwater system.

  17. Parameter sets for upper and lower bounds on soil-to-indoor-air contaminant attenuation predicted by the Johnson and Ettinger vapor intrusion model

    Science.gov (United States)

    Tillman, Fred D.; Weaver, James W.

    Migration of volatile chemicals from the subsurface into overlying buildings is known as vapor intrusion (VI). Under certain circumstances, people living in homes above contaminated soil or ground water may be exposed to harmful levels of these vapors. A popular VI screening-level algorithm widely used in the United States, Canada and the UK to assess this potential risk is the "Johnson and Ettinger" (J&E) model. Concern exists over using the J&E model for deciding whether or not further action is necessary at sites, as many parameters are not routinely measured (or are un-measurable). Using EPA-recommended ranges of parameter values for nine soil-type/source depth combinations, input parameter sets were identified that correspond to bounding results of the J&E model. The results established the existence of generic upper and lower bound parameter sets for maximum and minimum exposure for all soil types and depths investigated. Using the generic upper and lower bound parameter sets, an analysis can be performed that, given the limitations of the input ranges and the model, bounds the attenuation factor in a VI investigation.

  18. Combination of magnetic parameters and heavy metals to discriminate soil-contamination sources in Yinchuan--a typical oasis city of Northwestern China.

    Science.gov (United States)

    Xia, Dunsheng; Wang, Bo; Yu, Ye; Jia, Jia; Nie, Yan; Wang, Xin; Xu, Shujing

    2014-07-01

    Various industrial processes and vehicular traffic result in harmful emissions containing both magnetic minerals and heavy metals. In this study, we investigated the levels of magnetic and heavy metal contamination of topsoils from Yinchuan city in northwestern China. The results demonstrate that magnetic mineral assemblages in the topsoil are dominated by pseudo-single domain (PSD) and multi-domain (MD) magnetite. The concentrations of anthropogenic heavy metals (Cr, Cu, Pb and Zn) and the magnetic properties of χlf, SIRM, χARM, and 'SOFT' and 'HARD' remanence are significantly correlated, suggesting that the magnetic minerals and heavy metals have common sources. Combined use of principal components and fuzzy cluster analysis of the magnetic and chemical data set indicates that the magnetic and geochemical properties of the particulates emitted from different sources vary significantly. Samples from university campus and residential areas are mainly affected by crustal material, with low concentrations of magnetic minerals and heavy metals, while industrial pollution sources are characterized by high concentrations of coarse magnetite and Cr, Cu, Pb and Zn. Traffic pollution is characterized by Pb and Zn, and magnetite. Magnetic measurements of soils are capable of differentiating sources of magnetic minerals and heavy metals from industrial processes, vehicle fleets and soil parent material.

  19. Microbial community dynamics of soil mesocosms using Orychophragmus violaceus combined with Rhodococcus ruber Em1 for bioremediation of highly PAH-contaminated soil.

    Science.gov (United States)

    Sun, Guang-Dong; Xu, Yang; Liu, Ying; Liu, Zhi-Pei

    2014-12-01

    Understanding of the effects of perturbation strategies on soil microorganisms is helpful in optimizing bioremediation systems and enhancing their efficiency. Four soil mesocosms were constructed for bioremediation of highly polycyclic aromatic hydrocarbon-contaminated soil using the flowering plant Orychophragmus violaceus and/or bacterium Rhodococcus ruber Em1. Bacterial community dynamics were evaluated by 454 pyrosequencing, and Em1 abundance was assessed by quantitative polymerase chain reaction. The results showed that the diversity of the bacterial community increased gradually with time; the degree of increase was in the order mesocosm PE (combination of O. violaceus and Em1), mesocosm WE (Em1), mesocosm PC (O. violaceus only), mesocosm WA (attenuation). Increased diversity may be predictive of PAH degradation. O. violaceus had a marked effect on bacterial community evolution and promoted the growth of Em1. The bacterial community of mesocosm PE gradually separated from the others, as indicated by Venn diagrams and weight-principal component analysis. Abundances of the families Cytophagaceae + Nocardioidaceae + Iamiacaeae (Actinobacteria), and Alcanivoracaceae + Pseodomonadaceae + Xanthomonadaceae (Gammaproteobacteria) were positively correlated with PAH degradation. Our findings help bridge the gap between field bioremediation and laboratory approaches, provide insight into processes of microbial ecological recovery, and will be useful in developing strategies to optimize bioremediation by modifying plant-microbe interaction patterns.

  20. Understanding bioavailability and toxicity of sediment-associated contaminants by combining passive sampling with in vitro bioassays in an urban river catchment.

    Science.gov (United States)

    Li, Juan-Ying; Tang, Janet Yat Man; Jin, Ling; Escher, Beate I

    2013-12-01

    Bioavailable and bioaccessible fractions of sediment-associated contaminants are considered as better dose metrics for sediment-quality assessment than total concentrations. The authors applied exhaustive solvent extraction and nondepletive equilibrium sampling techniques to sediment samples collected along the Brisbane River in South East Queensland, Australia, which range from pristine environments to urban and industry-impacted areas. The wide range of chemicals expected prevents comprehensive chemical analysis, but a battery of cell-based bioassays sheds light on mixture effects of chemicals in relation to various modes of toxic action. Toxic effects were expressed as bioanalytical equivalent concentrations (BEQs) normalized to the organic carbon content of each sediment sample. Bioanalytical equivalent concentrations from exhaustive extraction agreed fairly well with values estimated from polydimethylsiloxane passive sampling extracts via the constant organic carbon to polydimethylsiloxane partition coefficient. Agreement was best for bioassays indicative of photosynthesis inhibition and oxidative stress response and discrepancy within a factor of 3 for the induction of the aryl hydrocarbon receptor. For nonspecific cytotoxicity, BEQ from exhaustive extraction were 1 order of magnitude higher than values from equilibrium sampling, possibly because of coextraction of bioactive natural organic matter that led to an overestimation of toxicity in the exhaustive extracts, which suggests that passive sampling is better suited in combination with bioanalytical assessment than exhaustive extraction.

  1. High-throughput transcriptome sequencing reveals the combined effects of key e-waste contaminants, decabromodiphenyl ether (BDE-209) and lead, in zebrafish larvae.

    Science.gov (United States)

    Chen, Lianguo; Zhu, Biran; Guo, Yongyong; Xu, Tao; Lee, Jae-Seong; Qian, Pei-Yuan; Zhou, Bingsheng

    2016-07-01

    PBDEs and heavy metals are two major contaminants at e-waste disposal sites, but their combined effects remain largely unexplored. In the present study, the transcriptomic profiles of zebrafish larvae were examined after acute exposure of embryos to 200 μg/L BDE-209, 20 μg/L lead (Pb) or their mixture (Mix). Stimulation of steroidogenic pathway and vitellogenesis in the BDE-209 and Mix treatments indicated the estrogenic activities of BDE-209, while Pb antagonized those estrogenic effects in the Mix treatment. Increased heart rates were observed in zebrafish exposed to the Pb and Mix treatments. The cardiac dysfunction probably resulted from the promotion of angiogenesis, increased adrenergic drive and induction of the formation of blood clot. Furthermore, the Pb and Mix treatments activated neuroendocrine regulation of the pituitary in a positive feedback loop, via the thyrotropin-releasing hormone receptor, thus increasing thyroid hormone production self-adaptively. Overall, the interaction between BDE-209 and Pb led to synergistic and antagonistic effects on gene transcriptions, with concerted contribution from their individual toxicological properties.

  2. Cavity cutting efficiency of a Bioglass$^{\\rm TM}$ and alumina powder combination utilized in an air abrasion system

    Indian Academy of Sciences (India)

    IMRAN FAROOQ; IMRAN ALAM MOHEET; EMAD ALSHWAIMI

    2016-10-01

    This study investigated the attempt to replace alumina in the air abrasion system with an alternative material that is effective at cutting and also has remineralization potential. The powder samples were randomized into three groups: group 1—alumina (composed of aluminium and oxygen), group 2—45S5 (composed of 45% silica, 24.5% calcium oxide, 24.5% sodium oxide and 6% phosphorus pentoxide in weight percentage) and group 3—alumina + 45S5. Thirty human enamel blocks and microscope glass slides of 0.5mm thickness were randomly divided into these three groups. The time taken to cut a hole through the glass slide and for the cutting of human enamel blocks was recorded, the cutting time was fixed at 15 s. The depths of the cavities were measured using a periodontal probe and the enamel blocks were then analysed by scanning electronmicroscope (SEM). The mean time taken to cut a hole through the microscope glass slide was 2.96, 23.01 and 3.02 s for groups 1, 2 and 3, respectively. After cutting the human enamel blocks, the mean cavity depths produced were measured to be 2.5, 1.0 and 2.0 mm for groups 1, 2 and 3, respectively. The SEM micrographs revealed that the cavities formed by 45S5 were more conical in shape, whereas cavities produced by alumina and alumina + 45S5 were more cylindrical. The combined use of alumina and 45S5 has demonstrated a promising cutting efficiency and it has the potential to achieve effective cutting with the possibility of the remineralization.

  3. A Study of the Combined Effects of Physical Activity and Air Pollution on Mortality in Elderly Urban Residents

    DEFF Research Database (Denmark)

    Andersen, Zorana Jovanovic; de Nazelle, Audrey; Mendez, Michelle A

    2015-01-01

    : To examine whether benefits of physical activity on mortality are moderated by long-term exposure to high air pollution levels in an urban setting. METHODS: 52,061 subjects (50-65 years) from the Danish Diet, Cancer, and Health cohort, living in Aarhus and Copenhagen reported data on physical activity......BACKGROUND: Physical activity reduces, whereas exposure to air pollution increases the risk of premature mortality. Physical activity amplifies respiratory uptake and deposition of air pollutants in the lung, which may augment acute harmful effects of air pollution during exercise. OBJECTIVES...... exposure (HR = 0.77; 95% CI: 0.54, 1.11 and HR = 0.81; 95% CI: 0.55, 1.18, p-interaction = 0.09 and 0.02, respectively). CONCLUSIONS: In general, exposure to high levels of traffic-related air pollution did not modify associations indicating beneficial effects of physical activity on mortality. These novel...

  4. Pulmonary Metastasis of Combined Hepatocellular and Cholangiocarcinoma: A Unique Radiographic Presentation with Air-space Consolidation Masquerading as Pneumonia and Primary Pulmonary Adenocarcinoma.

    Science.gov (United States)

    Ishii, Takashi; Goto, Yasushi; Matsuzaki, Hirotaka; Ohishi, Nobuya; Sakamoto, Yoshihiro; Saito, Ruri; Matsusaka, Keisuke; Shibahara, Junji; Nagase, Takahide

    2015-01-01

    Lung metastasis showing radiographic findings of air-space consolidation is considered to be rare. This report describes the case of a man with progressive left lower lobe air-space consolidation with a history of hepatocellular carcinoma. The pulmonary lesion was initially suspected to be infection and later clinically diagnosed as primary adenocarcinoma of the lung. Although the patient was treated with systemic chemotherapy, the disease progressed very rapidly. A postmortem examination revealed that the alveolar spaces were filled with neoplastic cells subsequently proven to be metastases of combined hepatocellular and cholangiocarcinoma.

  5. Long-term (1992-2004) record of lead, cadmium, and zinc air contamination in Warsaw, Poland: Determination by chemical analysis of moss bags and leaves of Crimean linden

    Energy Technology Data Exchange (ETDEWEB)

    Dmuchowski, Wojciech, E-mail: dmuchowski@ob.neostrada.p [Botanical Garden-Center for Conservation of Biological Diversity, Polish Academy of Sciences, 2 Prawdziwka St., 02-973 Warszawa (Poland); Warsaw University of Life Sciences-SGGW, Faculty of Agriculture and Biology, 159 Nowoursynowska St., 02-776 Warszawa (Poland); Bytnerowicz, Andrzej [US Forest Service, Pacific Southwest Research Station, 4955 Canyon Crest Drive, Riverside, CA 92507 (United States)

    2009-12-15

    Between 1992 and 2004, air contamination with lead (Pb), cadmium (Cd), and zinc (Zn) in Warsaw, Poland, was monitored annually with moss (Sphagnum fallax) bags on a network of 230 sites covering the entire city. During the study the highest contamination was near the Warszawa Steel Mill, northwestern Warsaw. Lead concentrations in moss bags decreased in time, while those of Cd and Zn did not show clear trends. Between 1994 and 2004, Pb, Cd, and Zn were also monitored in the Crimean linden (Tilia Euchlora) foliage along the main city avenue and in a northwestern warsaw park. Lead concentrations decreased more near the avenue than in the park, indicating that the phasing-out of leaded gasoline had a major effect on reduced Pb contamination in Warsaw. At the same time, foliar concentrations of Cd and Zn in both areas decreased much less. - Between 1992 and 2004, concentrations of Pb decreased, while those of Cd and Zn remained little changed in moss bags and linden foliage exposed to ambient air in Warsaw, Poland.

  6. 16种EPA-PAHs复合污染土壤的菌群修复%Bioremediation of 16 EPA-PAHs combined contaminated-soil with microbial consortium

    Institute of Scientific and Technical Information of China (English)

    李政; 赵朝成; 张云波; 赵东风

    2012-01-01

    通过富集筛选获得一组PAHs降解混合菌群和3株降解单菌,利用变性梯度凝胶电泳(DGGE)技术分析混合菌群的组成,对16种多环芳烃(PAHs)复合污染土壤进行生物修复,同时考察混合菌群和单菌株在PAHs复合污染土壤中的生物修复效果.结果表明:混合菌群主要由3株已分离获得的降解单菌和5株未可分离培养的单菌组成;经过30 d的生物修复,混合菌群对土壤中总PAHs的降解率(54.17%)高于单一菌株(28.40%,31.95%,24.64%),并且对高相对分子质量PAHs的降解表现出了较大的优势,4环、5环、6环PAHs的降解率分别可达到71.26%、39.76%和42.86%;利用混合菌群来修复16种PAHs复合污染的土壤,可以避免一些未可分离培养的关键菌株的丢失,使PAHs的降解更加全面有效.%For bioremediation of polycyclic aromatic hydrocarbons ( PAHs) combined contaminated-soil, a microbial consortium and three strains were isolated from PAHs contaminated-soil containing sixteen US Environmental Protection Agency priority control PAHs. Denaturing gradient gel electrophoresis (DGGE) was used to analyze the structure of the microbial consortium , and the biodegradation effect of PAHs mixtures with the inoculation of mixed microbial consortium and single strain was studied. The results show that the consortium is mainly composed of three isolated strains and five uncultured bacterias. After 30 days bioremediation, the degradation efficiency of total PAHs by microbial consortium (54. 17% ) is higher than any single strain's (28. 40% ,31. 95% ,24. 64% ). Microbial consortium shows a great advantage in degradation of high relative molecular mass PAHs, and the degradation efficiencies of four-rings, five-rings and six-rings PAHs are 71. 26% , 39. 76% , 42. 86% , respectively. Microbial consortium is capable of degrading PAHs which can avoid the loss of key strains and has a good application prospect in the bioremediation of PAHs

  7. External dose-rate conversion factors of radionuclides for air submersion, ground surface contamination and water immersion based on the new ICRP dosimetric setting.

    Science.gov (United States)

    Yoo, Song Jae; Jang, Han-Ki; Lee, Jai-Ki; Noh, Siwan; Cho, Gyuseong

    2013-01-01

    For the assessment of external doses due to contaminated environment, the dose-rate conversion factors (DCFs) prescribed in Federal Guidance Report 12 (FGR 12) and FGR 13 have been widely used. Recently, there were significant changes in dosimetric models and parameters, which include the use of the Reference Male and Female Phantoms and the revised tissue weighting factors, as well as the updated decay data of radionuclides. In this study, the DCFs for effective and equivalent doses were calculated for three exposure settings: skyshine, groundshine and water immersion. Doses to the Reference Phantoms were calculated by Monte Carlo simulations with the MCNPX 2.7.0 radiation transport code for 26 mono-energy photons between 0.01 and 10 MeV. The transport calculations were performed for the source volume within the cut-off distances practically contributing to the dose rates, which were determined by a simplified calculation model. For small tissues for which the reduction of variances are difficult, the equivalent dose ratios to a larger tissue (with lower statistical errors) nearby were employed to make the calculation efficient. Empirical response functions relating photon energies, and the organ equivalent doses or the effective doses were then derived by the use of cubic-spline fitting of the resulting doses for 26 energy points. The DCFs for all radionuclides considered important were evaluated by combining the photon emission data of the radionuclide and the empirical response functions. Finally, contributions of accompanied beta particles to the skin equivalent doses and the effective doses were calculated separately and added to the DCFs. For radionuclides considered in this study, the new DCFs for the three exposure settings were within ±10 % when compared with DCFs in FGR 13.

  8. Encouraging overweight students with intellectual disability to actively perform walking activity using an air mouse combined with preferred stimulation.

    Science.gov (United States)

    Chang, Chia-Jui; Chang, Man-Ling; Shih, Ching-Hsiang

    2016-08-01

    This study continues the research on using an air mouse as a physical activity detector. An air mouse is embedded with a MEMS (Micro Electro Mechanical Systems) gyro sensor, which can measure even the slightest movement in the air. The air mouse was strapped to one of each participant's calves to detect walking activity. This study was conducted to evaluate whether four students with intellectual disability who were overweight and disliked exercising could be motivated to engage in walking actively by linking the target response with preferred stimulation. Single-subject research with ABAB design was adopted in this study. The experimental data showed substantial increases in the participants' target responses (i.e. the performance of the activity of walking) during the intervention phases compared to the baseline phases. The practical and developmental implications of the findings are discussed.

  9. Improving IAQ Via Air Filtration.

    Science.gov (United States)

    Monk, Brian

    1999-01-01

    Provides tips on using air filtration to control indoor air quality in educational facilities, including dedicated spaces with unique air quality conditions such as in libraries, museums and archival storage areas, kitchens and dining areas, and laboratories. The control of particulate contaminants, gaseous contaminants, and moisture buildup are…

  10. Study on the Optimizing Operation of Exhaust Air Heat Recovery and Solar Energy Combined Thermal Compensation System for Ground-Coupled Heat Pump

    Directory of Open Access Journals (Sweden)

    Kuan Wang

    2017-01-01

    Full Text Available This study proposed an exhaust air heat recovery and solar energy combined thermal compensation system (ESTC for ground-coupled heat pumps. Based on the prediction of the next day’s exhaust air temperature and solar irradiance, an optimized thermal compensation (OTC method was developed in this study as well, in which the exhaust air heat recovery compensator and solar energy compensator in the ESTC system run at high efficiency throughout various times of day. Moreover, a modified solar term similar days group (STSDG method was proposed to improve the accuracy of solar irradiance prediction in hazy weather. This modified STSDG method was based on air quality forecast and AQI (air quality index correction factors. Through analyzing the operating parameters and the simulation results of a case study, the ESTC system proved to have good performance and high efficiency in eliminating the heat imbalance by using the OTC method. The thermal compensation quantity per unit energy consumption (TEC of ESTC under the proposed method was 1.25 times as high as that under the traditional operation method. The modified STSDG method also exhibited high accuracy. For the accumulated solar irradiance of the four highest daily radiation hours, the monthly mean absolute percentage error (MAPE between the predicted values and the measured values was 6.35%.

  11. Lichens biomonitoring as feasible methodology to assess air pollution in natural ecosystems: combined study of quantitative PAHs analyses and lichen biodiversity in the Pyrenees Mountains.

    Science.gov (United States)

    Blasco, María; Domeño, Celia; Nerín, Cristina

    2008-06-01

    The air quality in the Aragón valley, in the central Pyrenees, has been assessed by evaluation of lichen biodiversity and mapped by elaboration of the Index of Air Purity (IAP) based on observations of the presence and abundance of eight kinds of lichen with different sensitivity to air pollution. The IAP values obtained have been compared with quantitative analytical measures of 16 PAHs in the lichen Evernia prunastri, because this species was associated with a wide range of traffic exposure and levels of urbanization. Analyses of PAHs were carried out by the DSASE method followed by an SPE clean-up step and GC-MS analysis. The concentration of total PAHs found in lichen samples from the Aragón valley ranged from 692 to 6420 ng g(-1) and the PAHs profile showed predominance of compounds with three aromatic rings. The influence of the road traffic in the area has been shown because values over the median concentration of PAHs (>1092 ng g(-1)), percentage of combustion PAHs (>50%), and equivalent toxicity (>169) were found in lichens collected at places exposed to the influence of traffic. The combination of both methods suggests IAP as a general method for evaluating the air pollution referenced to PAHs because it can be correlated with the content of combustion PAHs and poor lichen biodiversity can be partly explained by the air pollution caused by specific PAHs.

  12. PREDICTION OF GAS HOLD-UP IN A COMBINED LOOP AIR LIFT FLUIDIZED BED REACTOR USING NEWTONIAN AND NON-NEWTONIAN LIQUIDS

    OpenAIRE

    2011-01-01

    Many experiments have been conducted to study the hydrodynamic characteristics of column reactors and loop reactors. In this present work, a novel combined loop airlift fluidized bed reactor was developed to study the effect of superficial gas and liquid velocities, particle diameter, fluid properties on gas holdup by using Newtonian and non-Newtonian liquids. Compressed air was used as gas phase. Water, 5% n-butanol, various concentrations of glycerol (60 and 80%) were used as Newtonian liqu...

  13. Air Cleaning Technologies

    Science.gov (United States)

    2005-01-01

    Executive Summary Objective This health technology policy assessment will answer the following questions: When should in-room air cleaners be used? How effective are in-room air cleaners? Are in-room air cleaners that use combined HEPA and UVGI air cleaning technology more effective than those that use HEPA filtration alone? What is the Plasmacluster ion air purifier in the pandemic influenza preparation plan? The experience of severe acute respiratory syndrome (SARS) locally, nationally, and internationally underscored the importance of administrative, environmental, and personal protective infection control measures in health care facilities. In the aftermath of the SARS crisis, there was a need for a clearer understanding of Ontario’s capacity to manage suspected or confirmed cases of airborne infectious diseases. In so doing, the Walker Commission thought that more attention should be paid to the potential use of new technologies such as in-room air cleaning units. It recommended that the Medical Advisory Secretariat of the Ontario Ministry of Health and Long-Term Care evaluate the appropriate use and effectiveness of such new technologies. Accordingly, the Ontario Health Technology Advisory Committee asked the Medical Advisory Secretariat to review the literature on the effectiveness and utility of in-room air cleaners that use high-efficiency particle air (HEPA) filters and ultraviolet germicidal irradiation (UVGI) air cleaning technology. Additionally, the Ontario Health Technology Advisory Committee prioritized a request from the ministry’s Emergency Management Unit to investigate the possible role of the Plasmacluster ion air purifier manufactured by Sharp Electronics Corporation, in the pandemic influenza preparation plan. Clinical Need Airborne transmission of infectious diseases depends in part on the concentration of breathable infectious pathogens (germs) in room air. Infection control is achieved by a combination of administrative, engineering

  14. Contamination monitoring activities in Kanupp

    Energy Technology Data Exchange (ETDEWEB)

    Naqvi, S.S. [Karachi Nuclear Power Plant (Pakistan)

    1997-06-01

    The Karachi Nuclear Power Plant (Kanupp) is a 137 MWe pressurized heavy water reactor, designed and erected by the Canadian General Electric Company as a turn key project. The plant is in operation since it was commissioned in the year 1972. It is located at the Arabian Sea Coast about 15 miles to the west of Karachi. During its more than two decades of operation, the plant has generated about 8 billion units of electricity with an average life time availability factor of 60%. In Kanupp, radioactive contamination may exit due to the release of fission product, activation products etc., which may somehow escape from its confinement and may contaminate surface or other media such as air, water etc. In this paper, following items are described: main aspects of contamination, status of contamination monitoring, need of contamination monitoring, radiation protection activity, instruments, contamination, current status of contamination survey materials and their disposal, and environmental monitoring. (G.K.)

  15. Radiant Floor Cooling Combined with Mixing Ventilation in a Residential Room

    DEFF Research Database (Denmark)

    Krajcik, Michal; Simone, Angela; Tomasi, Roberta

    and by thermal manikin equivalent temperatures. Contaminant removal effectiveness and air change efficiency were used to characterize the ventilation effectiveness. The vertical air temperature differences that occurred when floor cooling was combined with cold conditioned air supply were well within the limits...... for comfortable thermal environment recommended by the standards. The cooler supply air mixed well and the effect of the position of air terminal devices was small. When warm unconditioned outside air was supplied by mixing ventilation in combination with the radiant floor cooling, low floor temperature......Mixing air ventilation system is one of the main ventilation concepts applied in residential buildings. The effect of combining the mixing ventilation system with the radiant floor heating has been well established, whereas the validation of using the floor for cooling in summer is still...

  16. Contamination of terrestrial gastropods, Helix aspersa maxima, with {sup 137}Cs, {sup 85}Sr, {sup 133}Ba and {sup 123m}Te by direct, trophic and combined pathways

    Energy Technology Data Exchange (ETDEWEB)

    Madoz-Escande, C. [Laboratory of Radioecology and Ecotoxicology, Institute for Radioprotection and Nuclear Safety, IRSN/DEI/SECRE/LRE, Cadarache, Bld 186, BP 3, 13115 St-Paul-lez-Durance Cedex (France)]. E-mail: chantal.madoz-escande@irsn.fr; Simon, O. [Laboratory of Radioecology and Ecotoxicology, Institute for Radioprotection and Nuclear Safety, IRSN/DEI/SECRE/LRE, Cadarache, Bld 186, BP 3, 13115 St-Paul-lez-Durance Cedex (France)

    2006-07-01

    {sup 137}Cs, {sup 85}Sr, {sup 133}Ba and {sup 123m}Te contaminations of terrestrial gastropods, Helix aspersa maxima, by direct deposition, labelled food ingestion or combined (trophic and direct pathways) exposure were carried out under laboratory conditions. The aim of this study was to compare the three contamination pathways: direct, trophic and combined, in terms of individual mortality, radionuclide uptake, depuration and distribution in the tissues. An initial group of 30 snails (2 years old) was exposed to radioactive aerosols during a 20-h period. These aerosols were assumed to be representative of those that would be released during a nuclear accident occurring in a PWR. A second group of 50 snails (same age) was submitted to an ingestion of commercial food contaminated by the same aerosols, twice a week for 21 days (flour at a feeding rate of about 0.2 g). A third group of 40 snails was submitted to a combined exposure: exposure to radioactive aerosols (20 h), followed by ingestion of flour contaminated by the same aerosols, twice a week for 21 days. No significant difference between the three groups and a reference group of 10 snails was observed, neither in growth nor in mortality. Concerning the direct pathway, at the end of direct deposition (about 1 day after the beginning), cesium was the most bioavailable element, distributed rather homogeneously throughout the whole body (13% of the total Cs in all organs excepting the digestive system and 28% in the muscle). Strontium was measured in the shell (about 70%). Barium was found in the muscle (20%) and in the shell (65%). Tellurium was mainly present in the shell (70%) and in the digestive system (20%). After 21 days of depuration, the faeces eliminated 42% of the Te. As for contamination by ingestion, Te mainly accumulated in the digestive system (72% of Te present in the total body), Ba accumulated in the muscle (75%) and Sr in the shell (70%). Concerning contamination by combined pathways, at the

  17. 9 CFR 381.91 - Contamination.

    Science.gov (United States)

    2010-01-01

    ... § 381.91 Contamination. (a) Carcasses of poultry contaminated by volatile oils, paints, poisons, gases, scald vat water in the air sac system, or other substances which render the carcasses adulterated shall... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Contamination. 381.91 Section...

  18. NSF-RANN trace contaminants abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Copenhaver, E.D.; Harnden, D.S. (eds.)

    1976-10-01

    Specific areas of interest of the Environmental Aspects of Trace Contaminants Program are organic chemicals of commerce, metals and organometallic compounds, air-borne contaminants, and environmental assay methodology. Fifty-three abstracts of literature on trace contaminants are presented. Author, keyword, and permuted title indexes are included. (HLW)

  19. The lichen Parmelia physodes (L. Ach. as indicator for determination of the degree of atmospheric air pollution in the area contaminated by flourine and sulphur dioxide emission

    Directory of Open Access Journals (Sweden)

    M. Świeboda

    2015-01-01

    Full Text Available On the area involved in the influence of conteminations emitted by the aluminium works and electric power plant, the degree of atmospheric air pollution was evaluated on the basis of the behaviour of healthy thallus of the lichen Parmelia physodes, analysis of fluorine and sulphur content in this thallus and in the bark substrate and the F and SO2 concentrations in the air.

  20. Geothermal energy combined with thermal reserves at 740 Bel-Air; La geothermie couplee a une reserve thermique au 740 Bel-Air

    Energy Technology Data Exchange (ETDEWEB)

    Genest, F. [Pageau, Morel et Associes, Montreal, PQ (Canada)

    2008-03-15

    This article described the design and construction of a multi-use office building in Montreal. It was built in 2002 and serves as a prototype for sustainable construction with LEED certification in Canada. With an area of 15,700 m{sup 2}, it has a capacity for 400 people. It includes office space, conference rooms, warehouses and a gymnasium. The design team used several strategies to lower annual energy consumption. This article focused primarily on the design of the geothermal exchange unit, the ground source heat pump, the thermal reserve and their combined application. The central geothermal pump was illustrated and its operation was described. Although the initial design included two coolers with 100 wells, only one cooler with 60 wells was installed due to limited space underneath the building, and to cut costs. This change of plan provided extra space without generating thermal interference. Energy simulations were performed using the EE4-PEBC software version 1.6 to establish the energy performance of the building. The building was monitored from April 2006 to March 2007 in order to record electricity and natural gas consumption. According to the EE4-PEBC software, there was a 61 per cent reduction of energy consumption, and a 55 per cent reduction in energy costs. It was concluded that the combined application of a cooling heat pump system, a geothermal exchange unit, as well as geothermal reserves has had a significant impact on energy cost savings. 3 figs.

  1. Comparison of subtypes of Listeria monocytogenes isolates from naturally contaminated watershed samples using a combination of non-selective and selective enrichment methods

    Science.gov (United States)

    Two enrichment methods for Listeria monocytogenes using Immuno Magnetic Separation were tested to determine if they selected the same subtypes of isolates. Both methods included a non-selective enrichment and one included subculture in Fraser Broth. Naturally contaminated watershed samples from the ...

  2. Adhesive-tape recovery combined with molecular and microscopic testing for the detection of Cryptosporidium oocysts on experimentally contaminated fresh produce

    Science.gov (United States)

    Cryptosporidium parvum suspended in water were applied to the surface of apples, cucumbers, peaches, and tomatoes at concentrations of 100, 50 or 10 oocysts within circles drawn with a permanent marker. Approximately 18 hr later, skin containing uncontaminated and contaminated circles from each prod...

  3. A Study of the Combined Effects of Physical Activity and Air Pollution on Mortality in Elderly Urban Residents: The Danish Diet, Cancer, and Health Cohort

    Science.gov (United States)

    de Nazelle, Audrey; Mendez, Michelle Ann; Garcia-Aymerich, Judith; Hertel, Ole; Tjønneland, Anne; Overvad, Kim; Raaschou-Nielsen, Ole; Nieuwenhuijsen, Mark J.

    2015-01-01

    K, Raaschou-Nielsen O, Nieuwenhuijsen MJ. 2015. A study of the combined effects of physical activity and air pollution on mortality in elderly urban residents: the Danish Diet, Cancer, and Health cohort. Environ Health Perspect 123:557–563; http://dx.doi.org/10.1289/ehp.1408698 PMID:25625237

  4. Combined effects of wind and solar irradiance on the spatial variation of midday air temperature over a mountainous terrain

    Science.gov (United States)

    Kim, Soo-Ock; Kim, Jin-Hee; Kim, Dae-Jun; Shim, Kyo Moon; Yun, Jin I.

    2015-08-01

    When the midday temperature distribution in a mountainous region was estimated using data from a nearby weather station, the correction of elevation difference based on temperature lapse caused a large error. An empirical approach reflecting the effects of solar irradiance and advection was suggested in order to increase the reliability of the results. The normalized slope irradiance, which was determined by normalizing the solar irradiance difference between a horizontal surface and a sloping surface from 1100 to 1500 LST on a clear day, and the deviation relationship between the horizontal surface and the sloping surface at the 1500 LST temperature on each day were presented as simple empirical formulas. In order to simulate the phenomenon that causes immigrant air parcels to push out or mix with the existing air parcels in order to decrease the solar radiation effects, an advection correction factor was added to exponentially reduce the solar radiation effect with an increase in wind speed. In order to validate this technique, we estimated the 1500 LST air temperatures on 177 clear days in 2012 and 2013 at 10 sites with different slope aspects in a mountainous catchment and compared these values to the actual measured data. The results showed that this technique greatly improved the error bias and the overestimation of the solar radiation effect in comparison with the existing methods. By applying this technique to the Korea Meteorological Administration's 5-km grid data, it was possible to determine the temperature distribution at a 30-m resolution over a mountainous rural area south of Jiri Mountain National Park, Korea.

  5. Water, Air Emissions, and Cost Impacts of Air-Cooled Microturbines for Combined Cooling, Heating, and Power Systems: A Case Study in the Atlanta Region

    Directory of Open Access Journals (Sweden)

    Jean-Ann James

    2016-12-01

    Full Text Available The increasing pace of urbanization means that cities and global organizations are looking for ways to increase energy efficiency and reduce emissions. Combined cooling, heating, and power (CCHP systems have the potential to improve the energy generation efficiency of a city or urban region by providing energy for heating, cooling, and electricity simultaneously. The purpose of this study is to estimate the water consumption for energy generation use, carbon dioxide (CO2 and NOx emissions, and economic impact of implementing CCHP systems for five generic building types within the Atlanta metropolitan region, under various operational scenarios following the building thermal (heating and cooling demands. Operating the CCHP system to follow the hourly thermal demand reduces CO2 emissions for most building types both with and without net metering. The system can be economically beneficial for all building types depending on the price of natural gas, the implementation of net metering, and the cost structure assumed for the CCHP system. The greatest reduction in water consumption for energy production and NOx emissions occurs when there is net metering and when the system is operated to meet the maximum yearly thermal demand, although this scenario also results in an increase in greenhouse gas emissions and, in some cases, cost. CCHP systems are more economical for medium office, large office, and multifamily residential buildings.

  6. Naphthalene contamination of sterilized milk drinks contained in low-density polyethylene bottles. Part 2. Effect of naphthalene vapour in air.

    Science.gov (United States)

    Lau, O W; Wong, S K; Leung, K S

    1995-04-01

    A survey on naphthalene vapour in air was conducted, revealing that the ambient atmosphere contained concentrations of naphthalene in the range of 0.005-0.100 mg m-3. The level of naphthalene vapour in air increased to 0.35 and 4.00 mg m-3 in places exposed to lacquer paint and naphthalene-based moth-repellent, respectively. The effect of naphthalene vapour in air on milk drinks contained in low-density polyethylene (LDPE) bottles was assessed. A mathematical model was suggested to describe the migration of naphthalene from the atmosphere into milk. The model was proved to be valid for milk drinks exposed to naphthalene-based moth-repellent during storage. Moreover, the extent of migration was found to increase with the fat content of foods, which might be ascribed to an increase in diffusion, in addition to the kinetic factor, that affects naphthalene migration.

  7. Comparison between Different Air Distribution Systems

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    The aim of an air conditioning system is to remove excess heat in a room and replace room air with fresh air to obtain a high air quality. It is not sufficient to remove heat and contaminated air, it is also necessary to distribute and control the air movement in the room to create thermal comfort...

  8. Analysis of phthalates in wine using liquid chromatography tandem mass spectrometry combined with a hold-back column: Chromatographic strategy to avoid the influence of pre-existing phthalate contamination in a liquid chromatography system.

    Science.gov (United States)

    Hayasaka, Y

    2014-11-01

    This paper describes the development and application of a novel method for the analysis of phthalates in wine using HPLC-MS/MS combined with a hold-back column. Phthalates are ubiquitous contaminants in the environment and can be widely found in laboratory materials and equipment. A HPLC system is no exception and can be the source of contamination affecting the accuracy and precision of analytical results. The new method successfully separates phthalates from the different sources, a wine sample and HPLC system by a simple technique using an additional HPLC column (a hold-back column) placed upstream of the injection valve. The hold-back column effectively retains the HPLC-derived contaminants during column equilibrium time and delays their elution times from an analytical column. Consequently, a phthalate from a wine sample can be baseline separated as it elutes sufficiently earlier than the same phthalate from the HPLC system. HPLC-MS/MS analysis combined with the hold-back column demonstrated virtually no influence of the HPLC contaminants on the quantification of phthalates present in wine. Together with a simple and rapid sample preparation and the use of labeled internal standards, the method was confirmed to be robust and reliable to determine concentrations of phthalates in wine. Quantification limits were within the range of 1.6-9.8μgL(-1) for dimethyl, diethyl, dibutyl, benzylbutyl, bis(2-ethylhexyl) and dioctyl phthalates, and 7.5-26.6μgL(-1) for multiple isomeric phthalates, di-iso-nonyl and di-iso-dodecyl phthalates.

  9. Determination of zinc, cadmium and lead bioavailability in contaminated soils at the single-cell level by a combination of whole-cell biosensors and flow cytometry.

    Science.gov (United States)

    Hurdebise, Quentin; Tarayre, Cédric; Fischer, Christophe; Colinet, Gilles; Hiligsmann, Serge; Delvigne, Frank

    2015-01-01

    Zinc, lead and cadmium are metallic trace elements (MTEs) that are widespread in the environment and tend to accumulate in soils because of their low mobility and non-degradability. The purpose of this work is to evaluate the applicability of biosensors as tools able to provide data about the bioavailability of such MTEs in contaminated soils. Here, we tested the genetically-engineered strain Escherichia coli pP(ZntA)gfp as a biosensor applicable to the detection of zinc, lead and cadmium by the biosynthesis of green fluorescent protein (GFP) accumulating inside the cells. Flow cytometry was used to investigate the fluorescence induced by the MTEs. A curvilinear response to zinc between 0 and 25 mg/L and another curvilinear response to cadmium between 0 and 1.5 mg/L were highlighted in liquid media, while lead did not produce exploitable results. The response relating to a Zn2+/Cd2+ ratio of 10 was further investigated. In these conditions, E. coli pP(ZntA)gfp responded to cadmium only. Several contaminated soils with a Zn2+/Cd2+ ratio of 10 were analyzed with the biosensor, and the metallic concentrations were also measured by atomic absorption spectroscopy. Our results showed that E. coli pP(ZntA)gfp could be used as a monitoring tool for contaminated soils being processed.

  10. Determination of Zinc, Cadmium and Lead Bioavailability in Contaminated Soils at the Single-Cell Level by a Combination of Whole-Cell Biosensors and Flow Cytometry

    Directory of Open Access Journals (Sweden)

    Quentin Hurdebise

    2015-04-01

    Full Text Available Zinc, lead and cadmium are metallic trace elements (MTEs that are widespread in the environment and tend to accumulate in soils because of their low mobility and non-degradability. The purpose of this work is to evaluate the applicability of biosensors as tools able to provide data about the bioavailability of such MTEs in contaminated soils. Here, we tested the genetically-engineered strain Escherichia coli pPZntAgfp as a biosensor applicable to the detection of zinc, lead and cadmium by the biosynthesis of green fluorescent protein (GFP accumulating inside the cells. Flow cytometry was used to investigate the fluorescence induced by the MTEs. A curvilinear response to zinc between 0 and 25 mg/L and another curvilinear response to cadmium between 0 and 1.5 mg/L were highlighted in liquid media, while lead did not produce exploitable results. The response relating to a Zn2+/Cd2+ ratio of 10 was further investigated. In these conditions, E. coli pPZntAgfp responded to cadmium only. Several contaminated soils with a Zn2+/Cd2+ ratio of 10 were analyzed with the biosensor, and the metallic concentrations were also measured by atomic absorption spectroscopy. Our results showed that E. coli pPZntAgfp could be used as a monitoring tool for contaminated soils being processed.

  11. Dynamic performance of a combined gas turbine and air bottoming cycle plant for off-shore applications

    DEFF Research Database (Denmark)

    Benato, Alberto; Pierobon, Leonardo; Haglind, Fredrik;

    2014-01-01

    and the air bottoming cycle turbogenerator includes dynamic equations for the combustion chamber, the shell-and-tube recuperator and the turbine shafts. Turbines are modelled by the Stodola equation and by a correlation between the isentropic efficiency and the non-dimensional flow coefficient. Compressors...... are modelled using quasi steady-state conditions by scaling the maps of axial compressors employing a similar design point. The recuperator, which recovers the exhaust heat from the gas turbine, is modelled using correlations relating the heat transfer coefficient and the pressure drop at part......, findings suggest that decreasing the core weight of the recuperator leads to limiting the frequency fluctuations, thus minimizing the risk of failure of the power system....

  12. Combining Shapley value and statistics to the analysis of gene expression data in children exposed to air pollution

    Directory of Open Access Journals (Sweden)

    Kleinjans Jos

    2008-09-01

    Full Text Available Abstract Background In gene expression analysis, statistical tests for differential gene expression provide lists of candidate genes having, individually, a sufficiently low p-value. However, the interpretation of each single p-value within complex systems involving several interacting genes is problematic. In parallel, in the last sixty years, game theory has been applied to political and social problems to assess the power of interacting agents in forcing a decision and, more recently, to represent the relevance of genes in response to certain conditions. Results In this paper we introduce a Bootstrap procedure to test the null hypothesis that each gene has the same relevance between two conditions, where the relevance is represented by the Shapley value of a particular coalitional game defined on a microarray data-set. This method, which is called Comparative Analysis of Shapley value (shortly, CASh, is applied to data concerning the gene expression in children differentially exposed to air pollution. The results provided by CASh are compared with the results from a parametric statistical test for testing differential gene expression. Both lists of genes provided by CASh and t-test are informative enough to discriminate exposed subjects on the basis of their gene expression profiles. While many genes are selected in common by CASh and the parametric test, it turns out that the biological interpretation of the differences between these two selections is more interesting, suggesting a different interpretation of the main biological pathways in gene expression regulation for exposed individuals. A simulation study suggests that CASh offers more power than t-test for the detection of differential gene expression variability. Conclusion CASh is successfully applied to gene expression analysis of a data-set where the joint expression behavior of genes may be critical to characterize the expression response to air pollution. We demonstrate a

  13. Indoor and Outdoor Air Contaminations Relationship and Measures of Improving Indoor Air Quality%室内外空气污染物的耦合关系及提高室内空气品质的措施

    Institute of Scientific and Technical Information of China (English)

    肖明星; 耿世彬; 陈莎莎; 马奕炜

    2012-01-01

    利用几种不同的物理模型对室内外空气污染物的耦合关系进行了数学表达,分析了空气过滤器的空气净化原理,讨论了位于不同处理过程的过滤器对于提高室内空气品质(IAQ)的作用。%This article use several different physical model to describe coupling relationship between indoor and outdoor air pollution ,analysis the principle of the air filter air purification, discuss all the filters' roles in improving IAQ.

  14. The atmospheric distribution of contaminated air masses from the reactors in Fukushima Daiichi - nuclide spectra and dose reduction; Die atmosphaerische Ausbreitung kontaminierter Luftmassen aus den Reaktoren von Fukushima Daiichi - Nuklidspektrum und Dosisrekonstruktion

    Energy Technology Data Exchange (ETDEWEB)

    Zaehringer, Matthias [Bundesamt fuer Strahlenschutz, Freiburg (Germany); Gering, Florian [Bundesamt fuer Strahlenschutz, Oberschleissheim (Germany). Abt. Notfallschutz

    2015-06-01

    The compiled information is based on the data from the United Nations scientific committee on the effects of atomic radiation (UNSCEAR). Due to the earthquake and tsunami only few measurements have been performed during the first days after the reactor accidents in Fukushima Daiichi. In the vicinity of the nuclear power plant no radiation monitoring network comparable to the German IMIS was installed. There are only few data on the air contamination are available. Worldwide in CTBT stations measured activity data of Te-132 and Cs-137 are correlated with estimated data from reactor inventories. It is assumed that the complete rare earth inventories were released - available data of Xe-133 and Kr-85 are analyzed. The UNSCEAR estimation on radiological consequences has to use estimated source terms reconstructed data for the radionuclide migration.

  15. Kentucky Department for Natural Resources and Environmental Protection permit application for air contaminant source: SRC-I demonstration plant, Newman, Kentucky. Supplement I. [Additional information on 38 items requested by KY/DNREP

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, Jr., John F.

    1981-02-13

    In response to a letter from KY/DNREP, January 19, 1981, ICRC and DOE have prepared the enclosed supplement to the Kentucky Department for Natural Resources and Environmental Protection Permit Application for Air Contaminant Source for the SRC-I Demonstration Plant. Each of the 38 comments contained in the letter has been addressed in accordance with the discussions held in Frankfort on January 28, 1981, among representatives of KY/DNREP, EPA Region IV, US DOE, and ICRC. The questions raised involve requests for detailed information on the performance and reliability of proprietary equipment, back-up methods, monitoring plans for various pollutants, composition of wastes to flares, emissions estimates from particular operations, origin of baseline information, mathematical models, storage tanks, dusts, etc. (LTN)

  16. Combined microscopies study of the C-contamination induced by extreme-ultraviolet radiation: A surface-dependent secondary-electron-based model

    Science.gov (United States)

    Prezioso, S.; Donarelli, M.; Bisti, F.; Palladino, L.; Santucci, S.; Spadoni, S.; Avaro, L.; Liscio, A.; Palermo, V.; Ottaviano, L.

    2012-05-01

    SiO2 and Al2O3 surfaces exposed to periodically modulated extreme ultraviolet (EUV) light (λ = 46.9 nm) have been investigated at the μm scale by optical microscopy, scanning electron microscopy, scanning Auger microscopy, atomic force microscopy, and Kelvin probe force microscopy. The formation of a carbon contamination layer preserving the same periodical modulation of the EUV dose has been observed. The mechanisms of hydrocarbon molecules deposition have been studied with the help of correlation plots between the modulated Auger signal and the corresponding EUV dose. A surface-dependent secondary-electron-based model has been proposed.

  17. Combined microscopies study of the C-contamination induced by extreme-ultraviolet radiation: A surface-dependent secondary-electron-based model

    Energy Technology Data Exchange (ETDEWEB)

    Prezioso, S.; Donarelli, M.; Bisti, F.; Palladino, L.; Santucci, S.; Ottaviano, L. [Dip. di Fisica, Universita dell' Aquila, Via Vetoio, 67100 L' Aquila (Italy); Spadoni, S.; Avaro, L. [Micron, Process R and D, Via C. Olivetti 2, 20864 Agrate Brianza (Italy); Liscio, A.; Palermo, V. [CNR-ISOF, Via Gobetti 101, 40129 Bologna (Italy)

    2012-05-14

    SiO{sub 2} and Al{sub 2}O{sub 3} surfaces exposed to periodically modulated extreme ultraviolet (EUV) light ({lambda} = 46.9 nm) have been investigated at the {mu}m scale by optical microscopy, scanning electron microscopy, scanning Auger microscopy, atomic force microscopy, and Kelvin probe force microscopy. The formation of a carbon contamination layer preserving the same periodical modulation of the EUV dose has been observed. The mechanisms of hydrocarbon molecules deposition have been studied with the help of correlation plots between the modulated Auger signal and the corresponding EUV dose. A surface-dependent secondary-electron-based model has been proposed.

  18. Surface modification on a glass surface with a combination technique of sol–gel and air brushing processes

    KAUST Repository

    Tsai, Meng-Yu

    2011-08-01

    This study fabricated the large area and optically transparent superhydrophobic silica based films on glass surface with optimized hardness. A silane coupling agent, tetraethoxysilane (TEOS), effectively bonds silica particles onto the glass substrate. Desired surface roughness was obtained by adjusting nano silica particles concentration of the precursors prepared by the sol-gel process. Silica suspension was coated onto the glass substrate by the air brushing methods. This method can deposit a uniform, transparent coating on the glass substrate efficiently. Diluting the precursor by adding ethanol or a mixture of D.I. water and ethanol further improved the transmittance and superhydrophobicity efficiency. The results showed that as the silica particle concentration and the thickness of the coating were increased, the surface roughness was enhanced. Rougher surface displayed a higher superhydrophobicity and lower transmittance. Therefore, the concentration of silica particle, volume of coatings, and the ratio of ethanol and D.I. water are of great importance to deposit a transparent, superhydrophobic coating on glass. © 2011 Elsevier B.V. All rights reserved.

  19. Environmental contamination, product contamination and workers exposure using a robotic system for antineoplastic drug preparation.

    Science.gov (United States)

    Sessink, Paul J M; Leclercq, Gisèle M; Wouters, Dominique-Marie; Halbardier, Loïc; Hammad, Chaïma; Kassoul, Nassima

    2015-04-01

    Environmental contamination, product contamination and technicians exposure were measured following preparation of iv bags with cyclophosphamide using the robotic system CytoCare. Wipe samples were taken inside CytoCare, in the clean room environment, from vials, and prepared iv bags including ports and analysed for contamination with cyclophosphamide. Contamination with cyclophosphamide was also measured in environmental air and on the technicians hands and gloves used for handling the drugs. Exposure of the technicians to cyclophosphamide was measured by analysis of cyclophosphamide in urine. Contamination with cyclophosphamide was mainly observed inside CytoCare, before preparation, after preparation and after daily routine cleaning. Contamination outside CytoCare was incidentally found. All vials with reconstituted cyclophosphamide entering CytoCare were contaminated on the outside but vials with powdered cyclophosphamide were not contaminated on the outside. Contaminated bags entering CytoCare were also contaminated after preparation but non-contaminated bags were not contaminated after preparation. Cyclophosphamide was detected on the ports of all prepared bags. Almost all outer pairs of gloves used for preparation and daily routine cleaning were contaminated with cyclophosphamide. Cyclophosphamide was not found on the inner pairs of gloves and on the hands of the technicians. Cyclophosphamide was not detected in the stationary and personal air samples and in the urine samples of the technicians. CytoCare enables the preparation of cyclophosphamide with low levels of environmental contamination and product contamination and no measurable exposure of the technicians.

  20. ATEMAC - Usage of passive tracer gases for air flow and indoor pollution measurements; ATEMAC - Application des traceurs passifs pour l'etude des mouvements d'air et de contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Roulet, C.-A.

    2001-07-01

    Tracer gases are used in Switzerland for more than 15 years for air flow and ventilation rate measurements as well as for the simulation of air pollutants. The measurement equipment available in Switzerland is accurate and well performing, but rather expensive and voluminous. Moreover, preparing and carrying out the measurements is relatively time consuming. The general objective of the project was the development of a simple, efficient and cheap methodology for the measurement of air flow rates in buildings. Originally, it was thought that a procedure developed at Brookhaven National Laboratory could be transferred to Switzerland. However, measurements at the Swiss Federal Laboratories for Materials Testing and Research (EMPA) indicated that the used tracer gases were adsorbed in an unpredictable way by building materials and pieces of furniture, leading to a massive overestimation of air flow rates. Accordingly, the research work plan was modified in the course of 2000 in order to explore three alternative approaches: (1) the aerosol method, using a photo-ionisation particulate counter; (2) identification and evaluation of new analyzer types; (3) analysis of CO{sub 2} concentration recordings. The conclusions were: (1) the aerosol method is not yet reliable. (2) On the market, a number of analyzers are available at a reasonable price and new devices are currently being developed, especially at the Swiss Federal Institutes of Technology. (3) In numerous cases, the CO{sub 2} concentration methodology is easy to apply, particularly since a computer code for easy interpretation of the concentration measurements was developed and validated. Moreover, the measurements give an estimate of the air-tightness of the building envelope. (author)

  1. Study of particle-flow interactions: applications in the analysis of air contamination in bio-climatology and urban pollution; Etude de l'interaction particules-ecoulement: applications a l'analyse de la contamination aerienne en bioclimatologie et en pollution urbaine

    Energy Technology Data Exchange (ETDEWEB)

    Rambert, A.

    1998-07-01

    The study of particle-flow interaction sheds light on air contamination in bio-climatology and on urban pollution. In both phenomena the stage of particle releasing plays an important role. We propose a new approach of the simulation of the releasing of particles that are situated in the laminar sub-layer of a turbulent boundary layer. We have developed an experimental installation designed to characterize particle releasing experimentally. Laser velocimetry based on Doppler effect has been used to measure spores velocity, this method does not interact with the system and is very accurate. The knowledge of the velocity field and of the size of the particles allows a better understanding of particle transport in a fixed flow configuration. We have studied another type of particle-flow interaction, it concerns the scattering of polluting agents in a canyon street. This interaction has been simulated by an interaction between a boundary layer and a notch.

  2. Expedition surveys of the sea water and atmospheric air radioactive contamination in the Russian Far Eastern coastal areas and in the North Western Pacific in connection with accident at the "Fukushima-1" NPP

    Science.gov (United States)

    Nikitin, Aleksandr; Shershakov, Vjacheslav

    2013-04-01

    In accordance with decision of the Russian Federation Federal Service on Hydrometeorology and Environmental Monitoring (Roshydromet) on assessment of the sea water and atmospheric air radioactive contamination in the Sea of Japan and in Kurile-Kamchatka region of the Pacific ocean, in connection with accident at the "Fukushima-1" NPP, two expedition surveys were conducted in the Sea of Japan and in the North-Western Pacific (in the area adjacent to Kurile Islands and in the Kuroshio current selected area (coordinates 36°00'-39°33' n., 146°33'-150°00' e.): first survey April - May 2011, second survey August-September 2012. Both surveys were conducted under the Russian Geographical Society patronage. The results of measurements of Cs-137, Cs-134, Sr-90, Pu-239,240 and H-3 concentrations in the sea water samples and I-131, Cs-137 and Cs-134 concentrations in atmospheric aerosol samples are presented and discussed. The data received allowed to conclude that the levels of contamination by products of accidental releases and discharges at "Fukushima-1" NPP observed in investigated water areas near the Russian Federation coast of the Sea of Japan and of the Kurile- Kamchatka region of the Pacific ocean have no hazard. However, these expedition surveys revealed large-scale contamination by Cs-137 and Cs-134 of water areas of the North-Western Pacific in the investigated region of the Kuroshio current. The Cs-137 concentration in sea water at a distance about 400 km from accidental NPP in April-May, 2011 reached 30 Bq/m3, which approximately 20 times exceed preaccidental level, and it was found that water mass till more than 100 m below the surface was contaminated. For correct estimation of current and potential consequences of the "Fukushima-1" accident for the Far-Eastern water areas a special study is reasonable to perform of transport with marine currents of products of accidental releases and discharges at "Fukushima-1" NPP.

  3. Combination evaluation method of air transport industry competence%民航运输产业竞争力的组合评价方法

    Institute of Scientific and Technical Information of China (English)

    褚衍昌; 于剑; 李艳伟

    2009-01-01

    Air transport industry competence was evaluated by using combination evaluation method, and its denotation and influencing factors were analyzed. A competence evaluation index system of air transport industry was built, the weights of evaluation indices were determined by synthetical weight method, and air transport industry competences of China, USA, Germany,Singapore, Japan and Korea from 2004 to 2006 were studied. Analysis result indicates that the competence order is USA, Germany, Singapore, Japan, Korea and China from strong to weak in 2006. The evaluation result can reflect the general level of every county objectively, so the evaluation method is reasonable. 5 tabs, 3 figs, 15 refs.%应用组合评价方法评价了民航运输产业竞争力,研究了民航运输产业竞争力的内涵与影响因素,建立了民航运输产业竞争力评价指标体系,运用组合赋权法确定了各层次指标权重,并对2004~2006年中国、美国、德国、新加坡、日本和韩国的民航运输产业竞争力进行了实证分析.研究结果表明:2006年各国民航运输产业竞争力强弱依次为美国、德国、新加坡、日本、韩国和中国,评价结果能够客观反映各国民航运输产业竞争力的总体水平,评价方法科学合理.

  4. AIR RADIOACTIVITY MONITOR

    Science.gov (United States)

    Bradshaw, R.L.; Thomas, J.W.

    1961-04-11

    The monitor is designed to minimize undesirable background buildup. It consists of an elongated column containing peripheral electrodes in a central portion of the column, and conduits directing an axial flow of radioactively contaminated air through the center of the column and pure air through the annular portion of the column about the electrodes. (AEC)

  5. Comparison of Air Pollution in Metropolises in China (Beijing) and Japan (Osaka and Nagoya) on the Basis of the Levels of Contaminants and Mutagenicity.

    Science.gov (United States)

    Coulibaly, Souleymane; Minami, Hiroki; Abe, Maho; Furukawa, Nami; Ono, Ryo; Hasei, Tomohiro; Toriba, Akira; Tang, Ning; Hayakawa, Kazuichi; Funasaka, Kunihiro; Asakawa, Daichi; Ikemori, Fumikazu; Watanabe, Masanari; Honda, Naoko; Wakabayashi, Keiji; Watanabe, Tetsushi

    2016-01-01

    Public concern regarding the transport of air pollutants from mainland East Asia to the leeward area by the prevailing westerlies in spring and winter monsoon has been growing in recent years. We collected total suspended particle (TSP) in Beijing, a metropolis of China located windward of Japan, in spring (late February 2011-May 2011) and in winter (November 2012-early February 2013), then analyzed metals, ions, and organic compounds and mutagenicity, and compared the pollution levels with samples collected at two Japanese metropolises (Osaka and Nagoya) during the same periods. The medians of concentration of TSP and other factors in Beijing were much larger than those in the Japanese metropolises. Especially, the concentrations of polycyclic aromatic hydrocarbons (PAHs) were remarkably high in Beijing in winter, and the median of total PAHs concentration in Beijing was 62-63 times larger than that in the Japanese sites. The mutagenicity of TSP from Beijing toward Salmonella typhimurium YG1024, with and without a mammalian metabolic system (S9 mix), was 13-25 times higher than that from the Japanese sites in winter. These results suggest that air pollution levels in Beijing are very high compared with those at the two Japanese metropolises we evaluated. The diagnostic ratios of PAHs and nitrated polycyclic aromatic hydrocarbons (NPAHs) suggest that the major sources of PAHs and NPAHs in Beijing are different from those at the two Japanese sites in winter, and that the major source in Beijing is coal/biomass combustion.

  6. Mercury Contamination in Costa Rica

    Science.gov (United States)

    Varekamp, J. C.; Haynes, A.; Balcom, P. H.

    2012-12-01

    Recent measurements of Hg in air in the central valley of Costa Rica produced some remarkably high values (up to 700 ng Hg/m3;Castillo et al., 2011), raising concerns for public health. We made a broad assessment of Hg as an environmental contaminant in Costa Rica, and sampled and analyzed lake and wetland sediment and soils to derive atmospheric Hg deposition rates. We also measured Hg(0) in air in three locations, and sampled local fish that were analyzed for Hg. We set up a sampling program of Hg in hair of Costa Ricans, sampling hair from a broad crossection of the population, in combination with dietary and personal information. The lake sediments had Hg concentrations between 34 and 316 ppb Hg, with several lakes at common natural background concentrations (20-100 ppb Hg). Some lakes showed a Hg contamination component with concentrations well above simple background values. These sediments also were very rich in organic matter, and the high Hg concentrations may be a result of Hg focusing from the watersheds into the lake depositional environments. Deduced atmospheric deposition rates of Hg range from 0.16-0.25 ng Hg/cm2 per year, which is at the low end of the global range of measured wet atmospheric deposition rates. The observed Hg concentrations in sediment and soils thus can be characterized as natural background to mildly contaminated, but nothing that would indicate Hg inventories as expected from the reported high Hg air burdens. Some of our Hg(0) in air measurements were done at the same locations as those done earlier and yielded values between 0.6-4.2 ng Hg/m3; these values are similar to the low range measurements of Castillo et al. (their night time values), but we found no evidence in 2011 for their high daytime values. The range of a few ng Hg/m3 in air is compatible with global Hg dispersion modeling. Fish tissue of Trout and Tilapia gave a range of 68-112 ppb Hg (wet weight base), well below the 300 ppb Hg EPA alert level. Overall, these

  7. Fate of polychlorinated biphenyls in a contaminated lake ecosystem: Combining equilibrium passive sampling of sediment and water with total concentration measurements of biota

    DEFF Research Database (Denmark)

    Mäenpää, Kimmo; Leppänen, Matti T.; Figueiredo, Kaisa;

    2015-01-01

    of hydrophobic organic chemicals in biota lipids. The authors' aim was to assess the equilibrium status of polychlorinated biphenyls (PCBs) in a contaminated lake ecosystem and along its discharge course using equilibrium sampling devices for measurements in sediment and water and by also analyzing biota...... in model lipids. Overall, the studied ecosystem appeared to be in disequilibrium for the studied phases: sediment, water, and biota. Chemical activities of PCBs were higher in sediment than in water, which implies that the sediment functioned as a partitioning source of PCBs and that net diffusion occurred...... from the sediment to the water column. Measured lipid-normalized PCB concentrations in biota were generally below equilibrium lipid concentrations relative to the sediment (CLip ⇌Sed ) or water (CLip ⇌W ), indicating that PCB levels in the organisms were below the maximum partitioning levels...

  8. Turnkey Heating, Ventilating, and Air Conditioning and Lighting Retrofit Solution Combining Energy Efficiency and Demand Response Benefits

    Energy Technology Data Exchange (ETDEWEB)

    Doebber, Ian [National Renewable Energy Lab. (NREL), Golden, CO (United States); Deru, Michael [National Renewable Energy Lab. (NREL), Golden, CO (United States); Trenbath, Kim [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-04-12

    NREL worked with the Bonneville Power Administration's Technology Innovation Office to demonstrate a turnkey, retrofit technology that combines demand response (DR) and energy efficiency (EE) benefits for HVAC and lighting in retail buildings. As a secondary benefit, we also controlled various plug loads and electric hot water heaters (EHWH). The technology demonstrated was Transformative Wave's eIQ Building Management System (BMS) automatically responding to DR signals. The BMS controlled the HVAC rooftop units (RTU) using the CATALYST retrofit solution also developed by Transformative Wave. The non-HVAC loads were controlled using both hardwired and ZigBee wireless communication. The wireless controllers, manufactured by Autani, were used when the building's electrical layout was too disorganized to leverage less expensive hardwired control. The six demonstration locations are within the Seattle metro area. Based on the assets curtailed by the BMS at each location, we projected the DR resource. We were targeting a 1.7 W/ft2 shed for the summer Day-Ahead events and a 0.7 W/ft2 shed for the winter events. While summarized in Table ES-1, only one summer DR event was conducted at Casino #2.

  9. Performance of air breathing combined cycle engines with a turbofan; Leistungsverhalten luftatmender Kombinationstriebwerke mit Zweistrom-Turboteil

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, H.

    2003-07-01

    In this paper the influence of the design and control parameters on the performance characteristic of a combined cycle engine consisting of a turbofan engine with a reheat system and a convergent-divergent nozzle is investigated. The studies are not based on a special mission but the two sections of a mission dominating the fuel consumption of the propulsion system - the acceleration flight and the cruise segment - are considered seperately. By that it is shown which design of the turbo engine is suitable for each section of the mission and how far these designs differ from each other. The studies start with the so-called baseline engine. Applying a performance calculation program the performance characteristic of the engine is calculated for given flight conditions and engine control parameter settings. The particularly for high speed propulsion systems important interaction between the engine and the aircraft is considered, iteratively adjusting the angle of attack of the aircraft given for the performance calculation to the one fulfilling the equations of motion of the aircraft. Based on the results of the baseline engine the design parameters of the turbo engine, namely (a) the turbine inlet temperature T{sub t4,A}, (b) the overall pressure ratio {pi}{sub tV,A} and (c) the bypass ratio {mu}{sub A} are varied systematically and the effect of these changes on the performance of the engine along the flight Mach Number is investigated. First the studies are carried out for the acceleration flight and afterwards they are being extended to the cruise flight segment. The valuation criteria for the engine performance in the acceleration section is the so-called acceleration efficiency. This efficiency is defined as the ratio of the potential and kinetic energy rise and the therefore needed fuel energy. In the cruise section the engine performance is valuated using a so-called cruise number which considers the quality of the conversion of fuel energy into propulsive

  10. Interior Landscape Plants for Indoor Air Pollution Abatement

    Science.gov (United States)

    Wolverton, B. C.; Johnson, Anne; Bounds, Keith

    1989-01-01

    In this study, the leaves, roots, soil, and associated microorganisms of plants have been evaluated as a possible means of reducing indoor air pollutants. Additionally, a novel approach of using plant systems for removing high concentrations of indoor air pollutants such as cigarette smoke, organic solvents, and possibly radon has been designed from this work. This air filter design combines plants with an activated carbon filter. The rationale for this design, which evolved from wastewater treatment studies, is based on moving large volumes of contaminated air through an activated carbon bed where smoke, organic chemicals, pathogenic microorganisms (if present), and possibly radon are absorbed by the carbon filter. Plant roots and their associated microorganisms then destroy the pathogenic viruses, bacteria, and the organic chemicals, eventually converting all of these air pollutants into new plant tissue. It is believed that the decayed radon products would be taken up the plant roots and retained in the plant tissue.

  11. A Breath of Fresh Air: Addressing Indoor Air Quality

    Science.gov (United States)

    Palliser, Janna

    2011-01-01

    Indoor air pollution refers to "chemical, biological, and physical contamination of indoor air," which may result in adverse health effects (OECD 2003). The causes, sources, and types of indoor air pollutants will be addressed in this article, as well as health effects and how to reduce exposure. Learning more about potential pollutants in home…

  12. Subclinical effects of groundwater contaminants. Pt. 4. Effects of repeated oral exposure to combinations of benzene and toluene on regional brain monoamine metabolism in mice

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, G.C.; Parker, R.D.R. (Utah State Univ., Logan, UT (USA). Dept. of Biology); Sharma, R.P. (Utah State Univ., Logan, UT (USA). Dept. of Animal, Dairy and Veterinary Sciences)

    1990-11-01

    The effect of combined treatment with benzene and toluene on the endogenous concentrations of the catecholamines norepinephrine (NE) and dopamine (DA), the catecholamine metabolites vanillylmandelic acid (VMA), 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and the indoleamine serotonin (5-HT) and its metabolite 5-hydroxyindoleacetic acid (5-HIAA), were investigated in six discrete brain regions of CD-1 mice. Groups of male, adult mice were continuously exposed to benzene (166 mg/l), toluene (80 and 325 mg/l), and combinations of benzene + toluene (80 or 325 mg/l) in drinking water for 4 weeks. Benzene produced increases of NE in the hypothalamus, cortex, midbrain and medulla oblongata, DA in the hypothalamus and corpus striatum, and 5-HT in all dissected brain regions except cerebellum. Elevated levels of various monoamine metabolites were also observed in these brain areas. Toluene ingestion alone also significantly increased the concentrations of NE, DA, 5-HT, and their metabolites in several brain regions. Mice given the combined treatments exhibited raised regional neurochemical levels when compared to the untreated controls. Increased concentrations of biogenic amine metabolites in several brain regions were greater in the combined exposures of benzene and toluene than when either chemical was used alone. The findings were different from those observed on immune parameters using similar treatment protocols, where simultaneous exposure to toluene prevented the immunotoxic effects of benzene. (orig./MG).

  13. Expedition surveys of the sea water and atmospheric air radioactive contamination in the Russian Far Eastern coastal areas and in the North- Western Pacific in connection with accident at the 'Fukushima-1' NPP

    Energy Technology Data Exchange (ETDEWEB)

    Nikitin, Aleksandr; Shershakov, Viacheslav; Artemev, Georgii [Research and Production Association ' Typhoon' (RPA ' Typhoon' ), Obninsk, Kaluga Region (Russian Federation); Ramzaev, Valery [Ramzaev Saint-Petersburg Research Institute of Radiation Hygiene, Saint-Petersburg (Russian Federation); Osokin, Vladimir [V.G.Khlopin Radium institute, Saint-Petersburg (Russian Federation); Sevastianov, Aleksandr [Far Eastern Regional Hydrometeorological Research Institute, Vladivostok (Russian Federation)

    2014-07-01

    In accordance with decision of the Russian Federation Federal Service on Hydro-meteorology and Environmental Monitoring (Roshydromet) on assessment of the sea water and atmospheric air radioactive contamination in the Russian coastal areas of the Far East in connection with accident at the 'Fukushima-1' NPP in Japan, two radioecological expedition surveys were conducted onboard of research vessels of the Far Eastern Regional Hydro-meteorological Research Institute (FERHRI) of Roshydromet in the Sea of Japan and in the North-Western Pacific (in the area adjacent to Kurile Islands and in the Kuroshio current selected area (coordinates 36 deg. 00'- 39 deg. 33' n., 146 deg. 33'- 150 deg. 00' e.): first survey in April-May 2011, onboard R/V 'Pavel Gordienko', second survey in August-September 2012, onboard R/V 'Akademik Shokalsky'. Both surveys were conducted under the Russian Geographical Society patronage. The leading Russian institutions dealing with ensuring of population radiation safety and protection of environment from radioactive contamination were enlisted to investigations. The following main observations were performed during the surveys: constant measurement of gamma-radiation dose rate above the sea surface; twenty-four hour sampling of atmospheric aerosols, sea water sampling from the surface and deep water horizons with preliminary concentrating of radionuclides for onboard gamma-spectrometry and for subsequent transportation to the shore laboratories for further analysis. During the expeditions, a real-time data were received onboard of research vessels which characterize impact of input of radioactive products of the 'Fukushima-1' NPP accident on radioactive contamination of environment existed on that period (these are onboard estimates of {sup 137}Cs and {sup 134}Cs concentrations in the sea water samples and {sup 131}I, {sup 137}Cs, {sup 134}Cs content in atmospheric aerosol samples, data

  14. Air quality control in the ART laboratory is a major determinant of IVF success

    Science.gov (United States)

    Esteves, Sandro C; Bento, Fabiola C

    2016-01-01

    A recently published article described how a fertility center in the United States implemented air quality control to newly designed in vitro fertilization (IVF) laboratory.1 A highly-efficient air filtration was achieved by installing a centered system supplying filtered air to the IVF laboratory and related critical areas, combining air particulate and volatile organic compound (VOC) filtration. As a consequence, live birth rates were increased by improvements in air quality. This article highlights the key aspects of air contamination in the IVF context. The topic is important not only to IVF specialists but also to Andrologists due to the great number of male infertility patients referred to assisted reproductive technology (ART) treatments. The evidence is growing that laboratory air quality is paramount importance for improved IVF outcome. PMID:26585700

  15. Methods for removing contaminants from algal oil

    Energy Technology Data Exchange (ETDEWEB)

    Lupton, Francis Stephen

    2016-09-27

    Methods for removing contaminants from algal oil are provided. In an embodiment, a method comprises the steps of combining a sulfuric acid-aqueous solution that has a pH of about 1 or less with a contaminant-containing algal oil at treatment conditions effective to form an effluent. The effluent comprises a treated algal oil phase and contaminants in an acidic aqueous phase. The contaminants comprise metals, phosphorus, or combinations thereof. The acidic aqueous phase is removed from the effluent to form a contaminant-depleted algal oil.

  16. Characteristics, Control and Remediation of Soil Contaminated with Combined Pollution from a Solid Waste Dismantling Area%固废拆解土壤的复合污染特性及其控制与修复

    Institute of Scientific and Technical Information of China (English)

    于红艳; 张昕欣; 杨伟群; 陈红云; 杨雪雪; 朱梦琪

    2012-01-01

    The dismantling of solid waste has resulted in severe contamination of toxic heavy metals, persistant organic pollutant( POPs) , pol-ycyclic aromatic hydrocarbons (PAHs) , polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polybrominated diphenyl ethers (PBDEs) for soil in these areas. The methods of control of soil pollutants and remediation of contaminated soil were put forward in the basis of analysis of pollutants environmental behavior in the soil and its migration and transformation laws, which to provide a reliable basis for green dismantling industry and provide reference for remediation of soil contaminated with combined pollution from a solid waste dismantling area.%固废拆解造成了包括重金属、持久性有机污染物(POPs)[多环芳烃(PAHs)、多氯联苯(PCBs)、二噁英(PCDD/Fs)及多溴联苯醚(PBDEs)]的土壤复合污染.探讨了固废拆解土壤的污染源及污染现状,分析了复合污染物在土壤中的环境行为及迁移转化规律,提出了控制土壤污染物对策及污染土壤修复方法,旨在为发展绿色拆解产业提供可靠的依据,为固废拆解导致的土壤污染控制与修复提供参考.

  17. Trace Contaminant Control: An In-Depth Study of a Silica-Titania Composite for Photocatalytic Remediation of Closed-Environment Habitat Air

    Science.gov (United States)

    Coutts, Janelle L.

    2013-01-01

    This collection of studies focuses on a PCO system for the oxidation of a model compound, ethanol, using an adsorption-enhanced silica-TiO2 composite (STC) as the photocatalyst; studies are aimed at addressing the optimization of various parameters including light source, humidity, temperature, and possible poisoning events for use as part of a system for gaseous trace-contaminant control system in closed-environment habitats. The first goal focused on distinguishing the effect of photon flux (i.e., photons per unit time reaching a surface) from that of photon energy (i.e., wavelength) of a photon source on the PCO of ethanol. Experiments were conducted in a bench-scale annular reactor packed with STC pellets and irradiated with either a UV-A fluorescent black light blue lamp O max=365 nm) at its maximum light intensity or a UV-C germicidal lamp O. max=254 nm) at three levels of light intensity. The STC-catalyzed oxidation of ethanol was found to follow zero-order kinetics with respect to CO2 production, regardless of the photon source. Increased photon flux led to increased EtOH removal, mineralization, and oxidation rate accompanied by lower intermediate concentration in the effluent. The oxidation rate was higher in the reactor irradiated by UV-C than by UV-A (38.4 vs. 31.9 nM s-1 ) at the same photon flux, with similar trends for mineralization (53.9 vs. 43.4%) and reaction quantum efficiency (i.e., photonic efficiency, 63.3 vs. 50.1 nmol C02 mol photons-1 ). UV-C irradiation also led to decreased intermediate concentration in the effluent compared to UV -A irradiation. These results demonstrated that STC-catalyzed oxidation is enhanced by both increased photon flux and photon energy. The effect of temperature and relative humidity on the STC-catalyzed degradation of ethanol was also determined using the UV-A light source at its maximum intensity.

  18. Contamination by mercury in air of the mining district of San Martin de Loba in Bolivar's Department, Colombia; Contaminacion por mercurio en aire del distrito minero de San Martin de loba en el Departamento de Bolivar, Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Olivero V, J.; Young C, F.; Caballero G, K., E-mail: jolivero@unicartagena.edu.co [Universidad de Cartagena, Facultad de Ciencias Farmaceuticas, Grupo de Quimica Ambiental y Computacional, Calle de la Universidad 36-100, Cartagena de Indias (Colombia)

    2014-06-01

    Mercury (Hg) is a heavy metal, considered a highly toxic pollutant. In its elemental state is volatile, making it easy to transport over long distances through the atmosphere, so that environmental pollution caused by it is a serious problem worldwide. Activities such as gold mining, where metallic Hg is used, have contributed with its global distribution, affecting ecosystems and human health. The aim of this study was to determine the levels of total mercury (T-Hg) in air in gold mining areas in Southern Bolivar, particularly in the mining district of San Martin de Loba, in the municipalities of San Martin de Loba and Barranco de Loba (Mina Santa Cruz), Colombia. In situ analyses were performed by atomic absorption spectroscopy, using a portable Ra-915 + Zeeman mercury analyzer. In Mina Santa Cruz, one of the most important gold mines in Colombia, concentrations of Hg in air ranged between 163.7 ± 6.6 and 40 455 ± 2154 mg/m{sup 3}, while in the urban area of San Martin de Loba varied from 223.6 ± 20.8 to 27 140 ± 212.5 ng/m{sup 3}. In those places where an amalgam burning process was taking place at the time of the measurements, Hg concentrations reached values of 40 455 ± 2154 ng/m{sup 3}. These data imply a severe occupational exposure to Hg for operators and citizens living in cities located near mines. Therefore, it is important to regulate and control the use of Hg in gold mining, avoiding a chronic impact of the metal on the health of people and the environment. (author)

  19. Tritium in the food chain. Intercomparison of model predictions of contamination in soil, crops, milk and beef after a short exposure to tritiated water vapour in air

    Energy Technology Data Exchange (ETDEWEB)

    Barry, P. [PJS Barry (Canada)] [and others

    1996-09-01

    Future fusion reactors using tritium as fuel will contain large inventories of the gas. The possibility that a significant fraction of an inventory may accidentally escape into the atmosphere from this and other potential sources such as tritium handling facilities and some fission reactors e g, PWRs has to be recognized and its potential impact on local human populations and biota assessed. Tritium gas is relatively inert chemically and of low radiotoxicity but it is readily oxidized by soil organisms to the mixed oxide, HTO or tritiated water. In this form it is highly mobile, strongly reactive biologically and much more toxic. Models of how tritiated water vapour is transported through the biosphere to foodstuffs important to man are essential components of such an assessment and it is important to test the models for their suitability when used for this purpose. To evaluate such models, access to experimental measurements made after actual releases are needed. There have however, been very few accidental releases of tritiated water to the atmosphere and the experimental findings of those that have occurred have been used to develop the models under test. Models must nevertheless be evaluated before their predictions can be used to decide the acceptability or otherwise of designing and operating major nuclear facilities. To fulfil this need a model intercomparison study was carried out for a hypothetical release scenario. The study described in this report is a contribution to the development of model evaluation procedures in general as well as a description of the results of applying these procedures to the particular case of models of HTO transport in the biosphere which are currently in use or being developed. The study involved eight modelers using seven models in as many countries. In the scenario farmland was exposed to 1E10 Bq d/m{sup 3} of HTO in air during 1 hour starting at midnight in one case and at 10.00 a.m. in the other, 30 days before harvest of

  20. Monitoring personnel-contamination in biology cabinet with air borne microbes instrument%空气微生物检测仪对生物安全柜中人员污染的监测

    Institute of Scientific and Technical Information of China (English)

    魏贤莉; 胡良勇

    2011-01-01

    Currently, traditional sedimentation method widely used in pharmaceuticals industry and construction industry to detect personnel-contamination, one item of three biology cabinet examination indicates, was regarded as complex operation, low detection efficiency, etc. In order to improve the status, the authors employed the new multi-function instrument for air borne microbes (JWL-ⅡC) to collect and monitor the bacterial particles in biology cabinets for different laboratories. The results indicated that the new multi-function instrument for air borne microbes has the features of simple operation, excellent portability, wide application, high rate and high accuracy in comparison to traditional sedimentation method. In addition, the experimental results confirmed that the biology cabinet indeed could effectively ensure the bio-safety of operators by preventing the aerosol leakage.%目前医药行业及建筑行业对生物安全柜有关人员污染保护指标的检测普遍采用沉降法,其操作复杂、效率低,为了改变这种现状,采用新型多功能空气微生物检测仪(JWL-IIC)对各级实验室内生物安全柜关于人员保护项目中细菌进行采集和监测.结果表明:相比于沉降法而言,它不仅操作简便、便于携带,而且使用范围广、捕获率高、结果准确;实验数据还证实,生物安全柜的合理使用确实能有效防止气溶胶的泄漏,保护操作人员的生物安全.

  1. Contaminación de carne molida con cepas de Escherichia coli shigatoxigénico (STEC provenientes de comercios minoristas de San Martín, Buenos Aires, categorizados según nivel socioeconómico Contamination of Shiga toxin-producing Escherichia coli (STEC in fresh ground beef from butcher shops in San Martin, Buenos Aires Province, among different socioeconomic strata

    Directory of Open Access Journals (Sweden)

    L Miccio

    2011-06-01

    Full Text Available Escherichia coli shigatoxigénico (STEC produce enfermedades de transmisión alimentaria, desde diarreas leves a Síndrome Urémico Hemolítico, enfermedad de impacto en Argentina. Dentro de los alimentos implicados se destaca la carne bovina insuficientemente cocida. La contaminación de la carne molida y su relación con los estratos socioeconómicos no ha sido estudiada. El objetivo de este trabajo fue identificar en muestras de carne cepas STEC y establecer su perfil de virulencia, considerando la zona socioeconómica de procedencia y la persistencia de la contaminación en el local de venta. Se seleccionó el 30% de las bocas de expendio habilitadas en cada nivel socioeconómico. Se analizaron 72 muestras provenientes de 36 carnicerías de San Martín, Buenos Aires, en dos muestreos independientes utilizando PCR múltiple para stx1/stx2 e inmunocaptura para O157 al tamizaje. Se obtuvieron 11 cepas de 26 muestras sospechosas, 7% de los aislamientos fueron STEC O157. La proporción en la contaminación ponderada fue mayor en las zonas media y baja. No se comprobó persistencia. El grado de contaminación por STEC en carne para el área estudiada fue elevado y las cepas aisladas fueron altamente virulentas. En consideración a ello es necesario implementar programas de capacitación y control para reducir los riesgos para la salud pública.Shiga toxin-producing Escherichia coli (STEC causes foodborne diseases, from mild diarrhea to hemolytic uremic syndrome which impact in Argentina. Many human infections were acquired from eating undercooked contaminated beef. The contamination of ground beef and their relation to socio-economic strata has not been studied. The aim of this study was to identify STEC in meat samples and establish virulence profile, considering the socio-economic area of origin and persistence of contamination in local sales. It was selected 30% of the butcher shop of each socioeconomic level. It was analyzed 72 samples from 36

  2. Evaluation of contaminant removal of reverse osmosis and advanced oxidation in full-scale operation by combining passive sampling with chemical analysis and bioanalytical tools.

    Science.gov (United States)

    Escher, Beate I; Lawrence, Michael; Macova, Miroslava; Mueller, Jochen F; Poussade, Yvan; Robillot, Cedric; Roux, Annalie; Gernjak, Wolfgang

    2011-06-15

    Advanced water treatment of secondary treated effluent requires stringent quality control to achieve a water quality suitable for augmenting drinking water supplies. The removal of micropollutants such as pesticides, industrial chemicals, endocrine disrupting chemicals (EDC), pharmaceuticals, and personal care products (PPCP) is paramount. As the concentrations of individual contaminants are typically low, frequent analytical screening is both laborious and costly. We propose and validate an approach for continuous monitoring by applying passive sampling with Empore disks in vessels that were designed to slow down the water flow, and thus uptake kinetics, and ensure that the uptake is only marginally dependent on the chemicals' physicochemical properties over a relatively narrow molecular size range. This design not only assured integrative sampling over 27 days for a broad range of chemicals but also permitted the use of a suite of bioanalytical tools as sum parameters, representative of mixtures of chemicals with a common mode of toxic action. Bioassays proved to be more sensitive than chemical analysis to assess the removal of organic micropollutants by reverse osmosis, followed by UV/H₂O₂ treatment, as many individual compounds fell below the quantification limit of chemical analysis, yet still contributed to the observed mixture toxicity. Nonetheless in several cases, the responses in the bioassays were also below their quantification limits and therefore only three bioassays were evaluated here, representing nonspecific toxicity and two specific end points for estrogenicity and photosynthesis inhibition. Chemical analytical techniques were able to quantify 32 pesticides, 62 PCPPs, and 12 EDCs in reverse osmosis concentrate. However, these chemicals could explain only 1% of the nonspecific toxicity in the Microtox assay in the reverse osmosis concentrate and 0.0025% in the treated water. Likewise only 1% of the estrogenic effect in the E-SCREEN could be

  3. Remediation of Oil-Contaminated Soil in Greenland

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne; Jensen, Pernille Erland

    2013-01-01

    This paper present the recent research conducted at the Arctic Technology Centre, where different solutions for remediation of excavated oil contaminated soil in Greenlandic towns were tested. In the first work, soil polluted by light oil was treated with two different nutrient sources (substrate....... The degradation proceeded further at the elevated temperature and even more when heat and nutrients were combined. In the second work, a nutrient rich soil highly polluted by weathered heavy oil was aerated by insertion of air-channels, and heated to 20°C. Between 19 % and 34 % of the oil pollution was removed...

  4. Contain contaminated groundwater

    Energy Technology Data Exchange (ETDEWEB)

    Mutch, R.D. Jr.; Caputi, J.R. [Eckenfelder, Inc., Mahwah, NJ (United States); Ash, R.E. IV [Eckenfelder Inc., Nashville, TN (United States)

    1997-05-01

    Despite recent progress in innovative treatment technologies, many problems with contaminated groundwater still require the use of barrier walls, typically in combination with extraction and treatment systems. New technologies for subsurface barrier walls, mostly based on geomembranes, advancements in self-hardening slurries and permeation grouts with materials such as colloidal silica gel and montan wax emulsions, are being developed at an unprecedented pace. The paper discusses deep soil mixing, jet grouting, slurry trenches, and permeation grouting.

  5. Removal of phenanthrene from contaminated soil by a combination of pre-ozonation and composting%臭氧预氧化-堆肥去除污染土壤中菲实验研究

    Institute of Scientific and Technical Information of China (English)

    牛秋雅; 曾光明; 牛一乐; 曾凡凡

    2009-01-01

    分别将菲的丙酮溶液喷洒入未被污染的表层红壤和次表层红壤制成含菲的模拟土样.通过监测堆体温度、有机物含量、菲的残留率和种子发芽指数试验研究了臭氧预氧化-堆肥法去除污染土壤中菲的可行性.结果表明,臭氧预氧化-堆肥是一种有效去除土壤中菲污染的方法,污染土壤经处理后减弱了菲污染对植物的毒害作用,且加入的有机物经堆制腐熟后促进了植物的萌发.臭氧预氧化能够加快后续堆肥处理的启动过程并可使堆料中菲的残留率进一步降低,而土壤中有机质含量显著影响臭氧氧化的效率.臭氧处理100min时,有机质含量分别为7.73%和3.64%的表层土壤和次表层土壤中菲的去除率分别达到52.1%和76.4%.堆肥31d,经臭氧预氧化的表层土壤和次表层土壤菲的残留率分别为1.1%和0.9%,而未经臭氧预氧化样品的菲的残留率分别为15.0%和14.5%.各堆制样品种子发芽指数均可达到130%以上.%Phenanthrene (phe) -contaminated soil samples were prepared by spraying phe / acetone solution into uncontaminated surface and subsurface red soils, and the feasibility to remove phe from the contaminated soil samples was investigated using a combination of pre-ozonation and composting. The organic content, temperature, phe concentration, and the germination index of the composting soil were monitored in this study. Results showed that the combined process with pre-ozonation and composting was effective for removing phe from the contaminated soil. Toxicity of the contaminated soil to plants was greatly decreased, and germination of the botanic seeds was increased due to the maturity of organic materials in composting. Ozonation quickened the startup of the following composting, and further decreased the residual concentration of phe. The organic content in soil greatly affected the efficiency of ozonation. After ozonation for 100 min, the removal efficiencies of phe from

  6. PREDICTION OF GAS HOLD-UP IN A COMBINED LOOP AIR LIFT FLUIDIZED BED REACTOR USING NEWTONIAN AND NON-NEWTONIAN LIQUIDS

    Directory of Open Access Journals (Sweden)

    Sivakumar Venkatachalam

    2011-09-01

    Full Text Available Many experiments have been conducted to study the hydrodynamic characteristics of column reactors and loop reactors. In this present work, a novel combined loop airlift fluidized bed reactor was developed to study the effect of superficial gas and liquid velocities, particle diameter, fluid properties on gas holdup by using Newtonian and non-Newtonian liquids. Compressed air was used as gas phase. Water, 5% n-butanol, various concentrations of glycerol (60 and 80% were used as Newtonian liquids, and different concentrations of carboxy methyl cellulose aqueous solutions (0.25, 0.6 and 1.0% were used as non-Newtonian liquids. Different sizes of spheres, Bearl saddles and Raschig rings were used as solid phases. From the experimental results, it was found that the increase in superficial gas velocity increases the gas holdup, but it decreases with increase in superficial liquid velocity and viscosity of liquids. Based on the experimental results a correlation was developed to predict the gas hold-up for Newtonian and non-Newtonian liquids for a wide range of operating conditions at a homogeneous flow regime where the superficial gas velocity is approximately less than 5 cm/s

  7. Fabrication of macromolecular gradients in aligned fiber scaffolds using a combination of in-line blending and air-gap electrospinning.

    Science.gov (United States)

    Kishan, Alysha P; Robbins, Andrew B; Mohiuddin, Sahar F; Jiang, Mingliang; Moreno, Michael R; Cosgriff-Hernandez, Elizabeth M

    2016-12-22

    Although a variety of fabrication methods have been developed to generate electrospun meshes with gradient properties, no platform has yet to achieve fiber alignment in the direction of the gradient that mimics the native tendon-bone interface. In this study, we present a method combining in-line blending and air-gap electrospinning to address this limitation in the field. A custom collector with synced rotation permitted fiber collection with uniform mesh thickness and periodic copper wires were used to induce fiber alignment. Two poly(ester urethane ureas) with different hard segment contents (BPUR 50, BPUR 10) were used to generate compositional gradient meshes with and without fiber alignment. The compositional gradient across the length of the mesh was characterized using a fluorescent dye and the results indicated a continuous transition from the BPUR 50 to the BPUR 10. As expected, the fiber alignment of the gradient meshes induced a corresponding alignment of adherent cells in static culture. Tensile testing of the sectioned meshes confirmed a graded transition in mechanical properties and an increase in anisotropy with fiber alignment. Finite element modeling was utilized to illustrate the gradient mechanical properties across the full length of the mesh and lay the foundation for future computational development work. Overall, these results indicate that this electrospinning method permits the fabrication of macromolecular gradients in the direction of fiber alignment and demonstrate its potential for use in interfacial tissue engineering.

  8. Huizhou air-conditioning corps bacteria contamination and population survey report%惠州市集中空调军团菌污染现状及人群感染调查报告

    Institute of Scientific and Technical Information of China (English)

    张健; 徐励琴; 罗泽燕; 冯伟明; 曾健君; 刘燕; 严宇斌

    2009-01-01

    Objective:To investigate the status of the Legionella contamination and infection in crowd in Huizhou City,in order to constitute the prevention and control strategy of Legionella infection.Methods:186 Cooling tower water samples from central air conditioning system in Huizhou City were cultured and then Legionella was isolated and identified;The antibodies IgG against Legionella of 215 dangerous group and 152 control were detected by Enzyme-linked Immunosorbent Assay(ELISA).Results:The detection rate of Legionella pneumophilia in this survey of central air conditioning system is 51.3%,62 strains of Legionella pneumophilia were isolated,among them 37 strains were serovar LP1,and 25 strains were serovar LP2~LP14;There were 29 cases of anti-Legionella positive in the 215 dangerous group,with the positive rate of 13.4%,and there were 7 cases of anti-Legionella positive in the 152 control,with the positive rate of 4.6%;Conclusion:The water in cooling tower of central air conditioning system in Huizhou city has been contaminated seriously with Legionella,and it has already being a latent threat to the health of dangerous group,thus spatial and effective preventive measures to this potential source of infection should be taken as soon as possible.%目的:了解惠州市军团菌的污染现状及人群军团菌的感染程度,为制定预防和控制军团菌感染策略提供依据.方法:采用分离鉴定与ELISA方法,对惠州市186份集中空调冷却塔水进行军团菌分离鉴定,对215例暴露人群及152例对照人群进行军团菌抗体IgG检测.结果:本次调查集中空调嗜肺军团菌检出率为51.3%,共检出62株嗜肺军团菌,其中,LP1型37株、LP2~LP14型25株;215份暴露人群中检出军团菌抗体阳性29份,阳性率13.4%,152份对照人群中检出军团菌抗体阳性7份,阳性率4.6%.结论:惠州市集中空调冷却塔水中军团菌污染现状较为严重,已对暴露人群的健康造成潜在威胁,对这一潜

  9. Surface micropattern limits bacterial contamination

    OpenAIRE

    Mann, Ethan E.; Manna, Dipankar; Mettetal, Michael R; May, Rhea M.; Dannemiller, Elisa M; Chung, Kenneth K.; Brennan, Anthony B; Reddy, Shravanthi T

    2014-01-01

    Background Bacterial surface contamination contributes to transmission of nosocomial infections. Chemical cleansers used to control surface contamination are often toxic and incorrectly implemented. Additional non-toxic strategies should be combined with regular cleanings to mitigate risks of human error and further decrease rates of nosocomial infections. The Sharklet micropattern (MP), inspired by shark skin, is an effective tool for reducing bacterial load on surfaces without toxic additiv...

  10. Generic aspects of the airborne spread of human pathogens indoors and emerging air decontamination technologies.

    Science.gov (United States)

    Ijaz, M Khalid; Zargar, Bahram; Wright, Kathryn E; Rubino, Joseph R; Sattar, Syed A

    2016-09-02

    Indoor air can be an important vehicle for a variety of human pathogens. This review provides examples of airborne transmission of infectious agents from experimental and field studies and discusses how airborne pathogens can contaminate other parts of the environment to give rise to secondary vehicles leading air-surface-air nexus with possible transmission to susceptible hosts. The following groups of human pathogens are covered because of their known or potential airborne spread: vegetative bacteria (staphylococci and legionellae), fungi (Aspergillus, Penicillium, and Cladosporium spp and Stachybotrys chartarum), enteric viruses (noro- and rotaviruses), respiratory viruses (influenza and coronaviruses), mycobacteria (tuberculous and nontuberculous), and bacterial spore formers (Clostridium difficile and Bacillus anthracis). An overview of methods for experimentally generating and recovering airborne human pathogens is included, along with a discussion of factors that influence microbial survival in indoor air. Available guidelines from the U.S. Environmental Protection Agency and other global regulatory bodies for the study of airborne pathogens are critically reviewed with particular reference to microbial surrogates that are recommended. Recent developments in experimental facilities to contaminate indoor air with microbial aerosols are presented, along with emerging technologies to decontaminate indoor air under field-relevant conditions. Furthermore, the role that air decontamination may play in reducing the contamination of environmental surfaces and its combined impact on interrupting the risk of pathogen spread in both domestic and institutional settings is discussed.

  11. Linking air and water transport in intact soils to macro-porosity by combining laboratory measurements and X-ray Computed Tomography

    DEFF Research Database (Denmark)

    Katuwal, Sheela; Norgaard, Trine; Møldrup, Per

    with air permeability and 5% arrival time. Even in the same field high variability in air permeability, ranging from 4.66 to 78.10 µm2, and 5% arrival time of tracer (0.07 to 2.36 h) were observed between the samples. Both air permeability and 5% arrival time of tracer were strongly correlated with macro-porosity...... (R2 = 0.80 for air permeability: R2= 0.61 for 5% arrival time) and macro-porosity of the restricting layer (R2=0.83 for air permeability: R2= 0.71 for 5% arrival time) over air-filled porosity and all the correlations were positive. The high positive correlation these air and water transport...... functions with macro-porosity stressed the importance of continuity and tortuosity of pores in air, water and solute flow and transport through the soils. Negative correlations of air permeability, 5% arrival time of tracer and macro-porosity were obtained with bulk density whereas with other soil physical...

  12. Innovative combined in-situ sanitation of the saturated and unsaturated soil zone using air sparging technology; Innovative kombinierte In-situ-Sanierung der gesaettigten und der ungesaettigten Bodenzone mittels Air-Sparging-Technologie

    Energy Technology Data Exchange (ETDEWEB)

    Menschner, K.; Munkelt, K. [CDM Jessberger Leipzig GmbH, Abt. Umwelt, Leipzig (Germany)

    2005-07-01

    Air sparging is an innovative, efficient method for sanitation of VHHC, BTEX and mineral oil hydrocarbons in groundwater and soil air, which has been tried in practice with good results. The principle of the process is explained, and a practical example is given. (orig.)

  13. Status on contamination monitoring in China

    Energy Technology Data Exchange (ETDEWEB)

    Gou Quanlu [China Institute for Radiation Protection, Taiyuan (China)

    1997-06-01

    The air contaminated by radioactive materials in nuclear enterprises and radioactive workplaces and forming radioactive aerosol and the leakage of radioactive materials in operation cause internal exposure damage in workers. It is necessary and important to monitor air and surface contaminations for the health of public and workers, and for protecting environment. At present, many institutes engage in the studies on surface contamination monitoring in China, and the government has formulated the control limits of surface contamination in the Regulations of Radiation Protection. The monitors for surface contamination monitoring are almost home-made. The methods being used often are smear test and placing surface sample test. Scintillation counters, semiconductor detectors and G-M counters have been used for detecting alpha surface contamination. Plastic scintillator meters and thin wall/window G-M counters are used for beta surface contamination. Special detectors have been designed for monitoring low energy nuclides. The status of airborne contamination monitoring in China is reported. As the studies for future, the development of the surface contamination monitor for low energy beta nuclides, especially H-3, the monitoring methods for the special shapes of surfaces, the technology of decontamination and the calibration method and device for on-line radioactive aerosol continuous monitors are taken up. (K.I.)

  14. 29 CFR 1915.1000 - Air contaminants.

    Science.gov (United States)

    2010-07-01

    ... § 1915.1014 53-96-3 Acetylene 74-86-2 E Acetylene dichloride; see 1,2-Dichloroethylene Acetylene... compounds (as As) 7440-38-2 — 0.5 — Arsine 7784-42-1 0.05 0.2 — Asbestos; see 1915.1001 Azinphos-methyl 86... oxide 1303-86-2 Total dust — 15 — Boron tribromide 10294-33-4 1 10 — Boron trifluoride 7637-07-2 (C)1...

  15. 29 CFR 1910.1000 - Air contaminants.

    Science.gov (United States)

    2010-07-01

    ...-Diethylaminoethanol 100-37-8 10 50 X Diethyl ether; see Ethyl ether. Difluorodibromomethane 75-61-6 100 860 Diglycidyl... 1000 2600 Ethyl ether 60-29-7 400 1200 Ethyl formate 109-94-4 100 300 Ethyl mercaptan 75-08-1 (C)10 (C... Aldrin 309-00-2 0.25 X Allyl alcohol 107-18-6 2 5 X Allyl chloride 107-05-1 1 3 Allyl glycidyl ether...

  16. Subsurface Contamination Control

    Energy Technology Data Exchange (ETDEWEB)

    Y. Yuan

    2001-12-12

    There are two objectives of this report, ''Subsurface Contamination Control''. The first is to provide a technical basis for recommending limiting radioactive contamination levels (LRCL) on the external surfaces of waste packages (WP) for acceptance into the subsurface repository. The second is to provide an evaluation of the magnitude of potential releases from a defective WP and the detectability of the released contents. The technical basis for deriving LRCL has been established in ''Retrieval Equipment and Strategy for Wp on Pallet'' (CRWMS M and O 2000g, 6.3.1). This report updates the derivation by incorporating the latest design information of the subsurface repository for site recommendation. The derived LRCL on the external surface of WPs, therefore, supercede that described in CRWMS M and O 2000g. The derived LRCL represent the average concentrations of contamination on the external surfaces of each WP that must not be exceeded before the WP is to be transported to the subsurface facility for emplacement. The evaluation of potential releases is necessary to control the potential contamination of the subsurface repository and to detect prematurely failed WPs. The detection of failed WPs is required in order to provide reasonable assurance that the integrity of each WP is intact prior to MGR closure. An emplaced WP may become breached due to manufacturing defects or improper weld combined with failure to detect the defect, by corrosion, or by mechanical penetration due to accidents or rockfall conditions. The breached WP may release its gaseous and volatile radionuclide content to the subsurface environment and result in contaminating the subsurface facility. The scope of this analysis is limited to radioactive contaminants resulting from breached WPs during the preclosure period of the subsurface repository. This report: (1) documents a method for deriving LRCL on the external surfaces of WP for acceptance into the

  17. The Application Research of the Solar Energy Combines with Air Source Heat Pump System%太阳能结合空气源热泵系统应用研究

    Institute of Scientific and Technical Information of China (English)

    王文周

    2014-01-01

    太阳能结合空气源热泵系统作为生活热水、低温采暖热源、空调冷源,通过系统智能化优化控制及精准控温运行模式,完全采集太阳能、空气能免费能源,实现了工程上的节能、经济运行。%Solar energy combines with air source heat pump system as domestic hot water, low temperature heat sources for heating, and air conditioning cold source, which achieve the project on energy saving and economic operation through the intel igent optimization control system and precise temperature control operation mode with the completely col ection of solar energy and free air source energy.

  18. Legacy of contaminant N sources to the NO3‑ signature in rivers: a combined isotopic (δ15N-NO3‑, δ18O-NO3‑, δ11B) and microbiological investigation

    Science.gov (United States)

    Briand, Cyrielle; Sebilo, Mathieu; Louvat, Pascale; Chesnot, Thierry; Vaury, Véronique; Schneider, Maude; Plagnes, Valérie

    2017-02-01

    Nitrate content of surface waters results from complex mixing of multiple sources, whose signatures can be modified through N reactions occurring within the different compartments of the whole catchment. Despite this complexity, the determination of nitrate origin is the first and crucial step for water resource preservation. Here, for the first time, we combined at the catchment scale stable isotopic tracers (δ15N and δ18O of nitrate and δ11B) and fecal indicators to trace nitrate sources and pathways to the stream. We tested this approach on two rivers in an agricultural region of SW France. Boron isotopic ratios evidenced inflow from anthropogenic waters, microbiological markers revealed organic contaminations from both human and animal wastes. Nitrate δ15N and δ18O traced inputs from the surface leaching during high flow events and from the subsurface drainage in base flow regime. They also showed that denitrification occurred within the soils before reaching the rivers. Furthermore, this study highlighted the determinant role of the soil compartment in nitrate formation and recycling with important spatial heterogeneity and temporal variability.

  19. Analysis on Combined Ventilation System Containing Both Jet Fan and Air Duct Used for Railway Tunnel%铁路隧道射流与洞口风道组合式通风效果分析

    Institute of Scientific and Technical Information of China (English)

    曾艳华; 周小涵; 袁建刚

    2013-01-01

    Consisting of both jet fan and portal air duct,the combined ventilation system is a critical scientific subject which is focused on all the time by both academic circle and engineering circle.In an internal combustion traction tunnel of more than 5 km long,it is impossible to achieve ideal designed ventilation efficiency only by using jet fans,because the jet fans cannot effectively stop the outflow of the air current from tunnel portal.For this reason,through establishing three-dimensional mechanical model by using FLUENT software of CFD series,this paper researched the influences of critical factors,including the connection ways of jet fans installed at the portal cross-section,the wind velocity of air supply outlet of axial flow fan,and the number of jet fans.The research shows that,after setting up a transition section at the place where the jet fans are,the air current blown from the jet fans can enter into the tunnel smoothly,that is to say,the fresh air can be effectively led into tunnel from the portal.On condition of the same air supply volume,the wind resistance will change with the change of wind velocity at the air supply outlet,which has effect on the fresh air importing from the portal,so the wind velocity should be appropriately weakened at the air supply outlet during design.On condition of the same jet fans,the situation of air current within tunnel portal is different when air supply volume from axial-flow air duct is different; and when the air supply volume rises up to a certain extent,the air current will outflow from the tunnel portal,so the number of jet fans at the portal should be adjusted according to the air supply volume of air duct during design.%射流风机与洞口风道组合通风效果一直是学术界和工程界关注的关键科学问题,在长度超过5km的内燃牵引隧道中,射流风机并未有效阻止风流从洞口隧道内流出,未达到设计通风效果.采用CFD计算软件FLUENT建立三维非线性力学模

  20. Assessing the fate of biodegradable volatile organic contaminants in unsaturated soil filter systems

    Science.gov (United States)

    Thullner, Martin; de Biase, Cecilia; Hanzel, Joanna; Reger, Daniel; Wick, Lukas; Oswald, Sascha; van Afferden, Manfred; Schmidt, Axel; Reiche, Nils; Jechalke, Sven

    2010-05-01

    The assessment of contaminant biodegradation in the subsurface is challenged by various abiotic processes leading to a reduction of contaminant concentration without a destructive mass removal of the contaminant. In unsaturated porous media, this interplay of processes is further complicated by volatilization. Many organic contaminants are sufficiently volatile to allow for significant fluxes from the water phase into the soil air, which can eventually lead to an emission of contaminants into the atmosphere. Knowledge of the magnitude of these emissions is thus required to evaluate the efficiency of bioremediation in such porous media and to estimate potential risks due to these emissions. In the present study, vertical flow constructed wetlands were investigated at the pilot scale as part of the SAFIRA II project. The investigated wetland system is intermittently irrigated by contaminated groundwater containing the volatile compounds benzene and MTBE. Measured concentration at the in- and outflow of the system demonstrate a high mass removal rate, but the highly transient flow and transport processes in the system challenge the quantification of biodegradation and volatilization and their contribution to the observed mass removal. By a combination of conservative solute tracer tests, stable isotope fractionation and measurements of natural radon concentration is the treated groundwater is was possible to determine the contribution of biodegradation and volatilization to total mass removal. The results suggest that for the investigated volatile compounds biodegradation is the dominating mass removal process with volatilization contributing only to minor or negligible amounts. These results can be confirmed by reactive transport simulations and were further supported by laboratory studies showing that also gas phase gradients of volatile compounds can be affected by biodegradation suggesting the unsaturated zone to act as a biofilter for contaminants in the soil air.

  1. Clean Air and Water

    Centers for Disease Control (CDC) Podcasts

    2007-04-10

    The air we breathe and the water we drink are both vital components of our health. Nevertheless, bacteria, pollutants, and other contaminates can alter life-giving air and water into health-threatening hazards. Learn about how scientists at the Centers for Disease Control and Prevention work to protect the public from air and water-related health risks.  Created: 4/10/2007 by CDC National Center for Environmental Health.   Date Released: 4/13/2007.

  2. 多氯联苯污染土壤的紫云英-根瘤菌联合修复效应%Combined Remediation Effects of Astragalus sinicus L.Inoculated with Rhizobium huakuii on PCBs Contaminated Soils

    Institute of Scientific and Technical Information of China (English)

    李秀芬; 滕应; 骆永明; 李振高; 潘澄; 张满云; 宋静

    2013-01-01

    选用紫云英(Astragalus sinicus L.)作为宿主植物,通过盆栽试验研究了接种紫云英根瘤菌(Rhizobium huakuii)对多氯联苯污染土壤的修复效应.结果表明,经过100天的修复作用后,单接种根瘤菌、种植紫云英以及紫云英接种根瘤菌处理土壤中多氯联苯的去除率分别为20.5%、23.0%、53.1%,均显著高于对照处理(P<0.01).而且发现接种根瘤菌显著增加了紫云英根际土壤的微生物生物量碳、氮,明显增强了土壤微生物群落的碳源利用能力,从而改善了微生物群落功能多样性.可见,紫云英-根瘤菌共生体对多氯联苯污染土壤表现出较好的修复潜力.%The combined remediation effects of host plant {Astragalus sinicus L.) inoculated with rhizobium Rhizobium huakuii on PCBs contaminated soils was studied using pot experiments. The results showed that soil PCBs concentrations of single incubation of Rhizobium huakuii (R) and single planting Astragalus sinicus L. (P) decreased by 20.5% and 23.0%, respectively. Astragalus sinicus L. with incubation of Rhizobium huakuii had a clear role in PCBs removal in soils, PCBs concentration in polluted soils decreased by 53.1%, all of which were significantly higher than the untreated soils (P<0.01). We also observed that soil microbial communities in Astragalus sinicus L. rhizosphere soils had a higher microbial biomass C and N and carbon utilization rate, improving the functional diversity of the soil microbial community. The results suggested the great potential of planting Astragalus sinicus L. with incubation of Rhizobium huakuii in remediation of PCBs contaminated soils.

  3. Two multidimensional chromatographic methods for enantiomeric analysis of o,p'-DDT and o,p'-DDD in contaminated soil and air in a malaria area of South Africa.

    Science.gov (United States)

    Naudé, Yvette; Rohwer, Egmont R

    2012-06-12

    In rural parts of South Africa the organochlorine insecticide DDT (1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane) is still used for malaria vector control where traditional dwellings are sprayed on the inside with small quantities of technical DDT. Since o,p'-DDT may show enantioselective oestrogenicity and biodegradability, it is important to analyse enantiomers of o,p'-DDT and its chiral degradation product, o,p'-DDD, for both health and environmental-forensic considerations. Generally, chiral analysis is performed using heart-cut multidimensional gas chromatography (MDGC) and, more recently, comprehensive two-dimensional gas chromatography (GC×GC). We developed an off-line gas chromatographic fraction collection (heart-cut) procedure for the selective capturing of the appropriate isomers from a first apolar column, followed by reinjection and separation on a second chiral column. Only the o,p'-isomers of DDT and DDD fractions from the first dimension complex chromatogram (achiral apolar GC column separation) were selectively collected onto a polydimethylsiloxane (PDMS) multichannel open tubular silicone rubber trap by simply placing the latter device on the flame tip of an inactivated flame ionisation detector (FID). The multichannel trap containing the o,p'-heart-cuts was then thermally desorbed into a GC with time-of-flight mass spectrometry detection (GC-TOFMS) for second dimension enantioselective separation on a chiral column (β-cyclodextrin-based). By selectively capturing only the o,p'-isomers from the complex sample chromatogram, (1)D separation of ultra-trace level enantiomers could be achieved on the second chiral column without matrix interference. Here, we present solventless concentration techniques for extraction of DDT from contaminated soil and air, and report enantiomeric fraction (EF) values of o,p'-DDT and o,p'-DDD obtained by a new multidimensional approach for heart-cut gas chromatographic fraction collection for off-line second dimension

  4. Dual-Mode Combined Infra Red and Air-Coupled Ultrasonic Technique for Real-Time Industrial Process Control with Special Reference to the Food Industry

    Science.gov (United States)

    Pallav, P.; Hutchins, D. A.; Diamond, G. G.; Gan, T. H.; Hellyer, J. E.

    2008-02-01

    This paper describes the use of air-coupled ultrasound and Near Infra red (NIR) as complimentary techniques for food quality assessment. A major study has been performed, in collaboration with four industrial food companies, to investigate the use of air-coupled ultrasound and NIR to both detect foreign bodies, and to measure certain parameters of interest, such as the amount of a certain additive. The research has demonstrated that air-coupled ultrasound can be used in on-line situations, measuring food materials such as chocolate and cheese. It is also capable of performing measurements on moving sealed metal cans containing food, and is able to detect foreign bodies with the top removed, as encountered just before sealing. NIR has been used as a complimentary technique to test food materials where propagation of air-coupled ultrasound was found to be difficult. This could be due to the presence of air pockets within the food material, as in the case of bread dough.

  5. Treatment of petroleum contaminated soils by hot alkaline water combined with mechanical dewatering process%热碱水洗-机械脱水工艺处理石油污染土壤

    Institute of Scientific and Technical Information of China (English)

    谭蔚; 邢帅; 贡皓霜; 刘丽艳

    2016-01-01

    The treatment of petroleum contaminated soils by hot alkaline water combined with mechanical dewatering process is conducted in an oil field in China.The effect of NaOH concentration,alkaline water-oily sludge ratio and temperature on the oil-removal effect is studied.The factors affecting the filtration and dewatering performance of the petroleum contaminated soils treated by hot alkaline water,such as the types and contents flocculating agents,are also investigated.The results show that residual oil is firstly decreased and then increased with increasing the concentration of NaOH and alkaline water-oily sludge ratio.But,the increase in temperature leds to th drastical decrease in residual oil.The proper parameters for hot alkaline water treatment are 0.2% of NaOH,4:1 of alkaline water-oily sludge ratio and 80℃ of temperature.In the experiments of dewatering,the flocculation capability of AlCl3,Fe2 (SO4) 3 and PAC are strongly influenced by pH.The Ca2+ ions effectively incresase the flocculation of tiny particles by forming Ca(OH) + and Ca(OH) 2,thus greatly improving the filtration and dewatering performance.When the concentration of CaCl2 is 0.8%,the best filtration and dewatering performance can be achieved based on the filtration rate,moisture content and residual oil ratio in the petroleum contaminated soils.%采用热碱水洗-机械脱水工艺对国内某油田区的石油污染土壤进行处理.考察了热碱水洗条件(包括NaOH质量分数、液固比、洗涤温度)对含油土壤脱油效果的影响,及絮凝剂种类、质量分数对热碱水洗法处理后的含油污泥过滤脱水性能的影响.结果表明,残余油质量分数随NaOH质量分数及液固比的升高呈现先下降后上升的趋势,而随温度的升高呈现持续下降的趋势.在探究含油污泥脱水性能实验中发现铝盐及铁盐类絮凝剂对于高碱性污泥的适应性较差,而钙盐可以很好地破坏油水细砂混合层,有效地改善含油

  6. An experimental study of Legionella contamination in train air-conditioning%列车空调军团菌污染状况及人群感染水平的实验研究

    Institute of Scientific and Technical Information of China (English)

    闫颖; 蒋林; 马萍

    2011-01-01

    目的 了解列车空调军团菌污染状况及相关人员军团菌感染情况.方法 从合肥车辆段徐州区间的客车服务人员中,抽取列车乘务人员和站台售货人员各400名,组成实验组(乘务人员组)和对照组(站台组),做血清军团菌抗体检测;采集的风管积尘样和空调冷凝水样按规范进行军团菌分离培养和鉴定,并以PCR方法确证.结果 乘务人员组军团菌感染阳性率为53.65%,与站台组阳性率(17.3%)差异有统计学意义(P<0.01),人群感染军团菌菌型主要为Lp6;列车空调军团菌污染率为19.39%,积尘中军团菌阳性率与冷凝水中阳性率差异有统计学意义(P<0.01),检出主要菌型为Lp1.结论 列车空调风管积尘的采集更具有军团菌流行病学的代表意义,健康人群中可能存在军团菌的机会性感染.%Objective We want to understand the case of Legionella pollution in the train and related personnel Legionella infection. Method Taking the train crew and station sales staff of 400 from Xuzhou, Hefei depot service staff,composed of test and control group, ingenious and to be detected with serum antibody of Legionella. Dust samples and water samples collected from train air - conditioning condensation were treated with acid - heating, then vaccinated in GVPC to isolating and identifying,finally verificated with PCR method. Results The rate of Legionella infection is 53.65% in train service people,being compared with the site, there are significant differences ( P <0. 0l ). The main Legionella type people infected was Lp6. The contamination rate of the train air - conditioning was 19.39%. Dust in Legionella - positive rate was far higher than the positive rate of water condensation ( P <0.01 ) ,and the main type detected in experiment was Lpl. Conclusion Collecting duet dust is more representative of epidemiological significance. Legionella opportunistic infections may exist in healthy population.

  7. [Microbial air purity in hospitals. Operating theatres with air conditioning system].

    Science.gov (United States)

    Krogulski, Adam; Szczotko, Maciej

    2010-01-01

    The aim of this study was to show the influence of air conditioning control for microbial contamination of air inside the operating theatres equipped with correctly working air-conditioning system. This work was based on the results of bacteria and fungi concentration in hospital air obtained since 2001. Assays of microbial air purity conducted on atmospheric air in parallel with indoor air demonstrated that air filters applied in air-conditioning systems worked correctly in every case. To show the problem of fluctuation of bacteria concentration more precisely, every sequences of single results from successive measure series were examined independently.

  8. 房间空调器综合性能优化及应用研究%Room Air Conditioner Combination Performance Optimization and Applied Research

    Institute of Scientific and Technical Information of China (English)

    王平; 张士友; 董际鼎

    2014-01-01

    制冷量、制热量、能效比和噪声是房间空调器最重要的性能指标。通过对空调器的噪声控制和降低噪声方法进行研究,合理处理空调器噪声、节能与产品成本的关系;采用提高空调器配机系数和高传热系数的热交换器提升空调器能效系数和冷重比。从理论分析结合实际操作方法,介绍了在降低噪声和产品成本的同时,提高空调器产品能效比、冷重比、配机系数等性能优化方法,并取得较好效果。%There are many performance indexes for room air conditioner, such as cooling capacity, heating capacity, EER and noise. Through research on the method of noise control and reducing of air conditioner, the relationship with noise, energy conservation and product cost of air conditioner is managed rationally. In order to increase the energy efficiency coefficient and cooling-weight ratio of air conditioner, the heat exchangers which could increase matching coefficient and heat transfer coefficient of air conditioner are used. The method of theoretical analysis and practical operating experience is used. Meanwhile the performance optimization methods for increasing EER, cooling-weight ratio and matching coefficient of air conditioner are introduced with inducing noise and product cost which achieve better efficiency.

  9. Monitoring and evaluation techniques for airborne contamination

    Energy Technology Data Exchange (ETDEWEB)

    Xia Yihua [China Inst. of Atomic Energy, Beijing (China)

    1997-06-01

    Monitoring and evaluation of airborne contamination are of great importance for the purpose of protection of health and safety of workers in nuclear installations. Because airborne contamination is one of the key sources to cause exposure to individuals by inhalation and digestion, and to cause diffusion of contaminants in the environment. The main objectives of monitoring and evaluation of airborne contamination are: to detect promptly a loss of control of airborne material, to help identify those individuals and predict exposure levels, to assess the intake and dose commitment to the individuals, and to provide sufficient documentation of airborne radioactivity. From the viewpoint of radiation protection, the radioactive contaminants in air can be classified into the following types: airborne aerosol, gas and noble gas, and volatile gas. In this paper, the following items are described: sampling methods and techniques, measurement and evaluation, and particle size analysis. (G.K.)

  10. Foreign body contamination during stent implantation.

    Science.gov (United States)

    Whelan, D M; van Beusekom, H M; van der Giessen, W J

    1997-03-01

    The treatment of coronary artery disease using stents has become a widely accepted technique. However, the inadvertent co-implantation of contaminating factors with the stent has received little attention. We studied histological cross-sections of stented porcine coronary arteries and observed contamination of some vessels with surgical glove powder and textile fibres. The contaminating particles were associated with a foreign body reaction. Such a reaction could delay the wound-healing response of a stented vessel and thereby prolong the period in which subacute thrombosis could occur. It is also proposed that air contamination could affect the thrombogenicity of the stent. Appropriate measures should be followed to reduce the chance of contamination occurring.

  11. Is the air pollution health research community prepared to support a multipollutant air quality management framework?

    Science.gov (United States)

    Mauderly, Joe L; Burnett, Richard T; Castillejos, Margarita; Ozkaynak, Halûk; Samet, Jonathan M; Stieb, David M; Vedal, Sverre; Wyzga, Ronald E

    2010-06-01

    Ambient air pollution is always encountered as a complex mixture, but past regulatory and research strategies largely focused on single pollutants, pollutant classes, and sources one-at-a-time. There is a trend toward managing air quality in a progressively "multipollutant" manner, with the idealized goal of controlling as many air contaminants as possible in an integrated manner to achieve the greatest total reduction of adverse health and environmental impacts. This commentary considers the current ability of the environmental air pollution exposure and health research communities to provide evidence to inform the development of multipollutant air quality management strategies and assess their effectiveness. The commentary is not a literature review, but a summary of key issues and information gaps, strategies for filling the gaps, and realistic expectations for progress that could be made during the next decade. The greatest need is for researchers and sponsors to address air quality health impacts from a truly multipollutant perspective, and the most limiting current information gap is knowledge of personal exposures of different subpopulations, considering activities and microenvironments. Emphasis is needed on clarifying the roles of a broader range of pollutants and their combinations in a more forward-looking manner; that is not driven by current regulatory structures. Although advances in research tools and outcome data will enhance progress, the greater need is to direct existing capabilities toward strategies aimed at placing into proper context the contributions of multiple pollutants and their combinations to the health burdens, and the relative contributions of pollutants and other factors influencing the same outcomes. The authors conclude that the research community has very limited ability to advise multipollutant air quality management and assess its effectiveness at this time, but that considerable progress can be made in a decade, even at

  12. Combining Experiments and Simulation of Gas Absorption for Teaching Mass Transfer Fundamentals: Removing CO2 from Air Using Water and NaOH

    Science.gov (United States)

    Clark, William M.; Jackson, Yaminah Z.; Morin, Michael T.; Ferraro, Giacomo P.

    2011-01-01

    Laboratory experiments and computer models for studying the mass transfer process of removing CO2 from air using water or dilute NaOH solution as absorbent are presented. Models tie experiment to theory and give a visual representation of concentration profiles and also illustrate the two-film theory and the relative importance of various…

  13. Air movement and perceived air quality

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Kaczmarczyk, J.

    2012-01-01

    The impact of air movement on perceived air quality (PAQ) and sick building syndrome (SBS) symptoms was studied. In total, 124 human subjects participated in four series of experiments performed in climate chambers at different combinations of room air temperature (20, 23, 26 and 28 °C), relative...... and the humidity of the room air. At a low humidity level of 30% an increased velocity could compensate for the decrease in perceived air quality due to an elevated temperature ranging from 20 °C to 26 °C. In a room with 26 °C, increased air movement was also able to compensate for an increase in humidity from 30...

  14. Multimedia contaminant environmental exposure assessment methodology as applied to Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Whelan, G.; Thompson, F.L.; Yabusaki, S.B.

    1983-02-01

    The MCEA (Multimedia Contaminant Environmental Exposure Assessment) methodology assesses exposures to air, water, soil, and plants from contaminants released into the environment by simulating dominant mechanisms of contaminant migration and fate. The methodology encompasses five different pathways (i.e., atmospheric, terrestrial, overland, subsurface, and surface water) and combines them into a highly flexible tool. The flexibility of the MCEA methodology is demonstrated by encompassing two of the pathways (i.e., overland and surface water) into an effective tool for simulating the migration and fate of radionuclides released into the Los Alamos, New Mexico region. The study revealed that: (a) the /sup 239/Pu inventory in lower Los Alamos Canyon increased by approximately 1.1 times for the 50-y flood event; (b) the average contaminant /sup 239/Pu concentrations (i.e., weighted according to the depth of the respective bed layer) in lower Los Alamos Canyon for the 50-y flood event decreased by 5.4%; (c) approx. 27% of the total /sup 239/Pu contamination resuspended from the entire bed (based on the assumed cross sections) for the 50-y flood event originated from lower Pueblo Canyon; (d) an increase in the /sup 239/Pu contamination of the bed followed the general deposition patterns experienced by the sediment in Pueblo-lower Los Alamos Canyon; likewise, a decrease in the /sup 239/Pu contamination of the bed followed general sediment resuspension patterns in the canyon; (e) 55% of the /sup 239/Pu reaching the San Ildefonso Pueblo in lower Los Alamos Canyon originated from lower Los Alamos Canyon; and (f) 56% of the /sup 239/Pu contamination reaching the San Ildefonso Pueblo in lower Los Alamos Canyon was carried through towards the Rio Grande. 47 references, 41 figures, 29 tables.

  15. 常温空分氧氮一体化联合分离系统%Design of Combined Air Separation System for Oxygen-Nitrogen at Normal Temperature

    Institute of Scientific and Technical Information of China (English)

    薛敏; 金正涛

    2011-01-01

    总结了目前船用分立制氧、制氮系统和氧、氮提纯系统的不足之处,得出开发常温空分氧氮一体化联合分离系统的必要性.在此基础上,探讨了常温空分氧氮一体化联合分离系统的总体设计,构建了一种基于常温空分的联合制氧、制氮的创新系统方案,即以变压吸附技术与膜分离技术耦合的工艺技术对空气组分进行分离,仅以空气为原料,无需任何辅料,在仅消耗电力资源的情况下同时获取氧气和氮气.最后指出了常温空分氧氮一体化联合分离系统的发展趋势和应用范围.%Current independent marine separators for individual oxygen & nitrogen generation along with purification system has many drawbacks, it necessitates the development of combined air separation system for oxygen-nitrogen. This paper gives a concept of overall design of such combined system at normal temperature condition. A novel scheme of combined solution for generating oxygen and nitrogen is presented. This design incorporates PSA-membrane separation technique, raw material used for separation process is air, consuming electric power and dispensing with any accessories. The paper also presents trends for the development of combined air separation system at normal temperature and indicates a range of applications possible in the future ship design.

  16. Air Pollution

    Science.gov (United States)

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, dust, ... a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  17. Toothbrush contamination: a review of the literature.

    Science.gov (United States)

    Frazelle, Michelle R; Munro, Cindy L

    2012-01-01

    Toothbrushes are commonly used in hospital settings and may harbor potentially harmful microorganisms. A peer-reviewed literature review was conducted to evaluate the cumulative state of knowledge related to toothbrush contamination and its possible role in disease transmission. A systematic review was conducted on adult human subjects through three distinct searches. The review resulted in seven experimental and three descriptive studies which identified multiple concepts related to toothbrush contamination to include contamination, methods for decontamination, storage, design, and environmental factors. The selected studies found that toothbrushes of healthy and oral diseased adults become contaminated with pathogenic bacteria from the dental plaque, design, environment, or a combination of factors. There are no studies that specifically examine toothbrush contamination and the role of environmental factors, toothbrush contamination, and vulnerable populations in the hospital setting (e.g., critically ill adults) and toothbrush use in nursing clinical practice.

  18. Toothbrush Contamination: A Review of the Literature

    Directory of Open Access Journals (Sweden)

    Michelle R. Frazelle

    2012-01-01

    Full Text Available Toothbrushes are commonly used in hospital settings and may harbor potentially harmful microorganisms. A peer-reviewed literature review was conducted to evaluate the cumulative state of knowledge related to toothbrush contamination and its possible role in disease transmission. A systematic review was conducted on adult human subjects through three distinct searches. The review resulted in seven experimental and three descriptive studies which identified multiple concepts related to toothbrush contamination to include contamination, methods for decontamination, storage, design, and environmental factors. The selected studies found that toothbrushes of healthy and oral diseased adults become contaminated with pathogenic bacteria from the dental plaque, design, environment, or a combination of factors. There are no studies that specifically examine toothbrush contamination and the role of environmental factors, toothbrush contamination, and vulnerable populations in the hospital setting (e.g., critically ill adults and toothbrush use in nursing clinical practice.

  19. 7+1 to 1 pump/signal combiner for air-clad fiber with 15 m MFD PM single-mode signal feed-through

    DEFF Research Database (Denmark)

    Noordegraaf, Danny; Nielsen, Martin D.; Skovgaard, Peter M. W.;

    2010-01-01

    A 7+1 to 1 pump/signal combiner with single-mode (SM) polarization maintaining (PM) 15 µm mode-field-diameter (MFD) signal feed-through is demonstrated. The combiner is designed for pulse amplification in an active Yb-doped airclad fiber operated in backward pumped configuration. Signal coupling ...

  20. Encouraging obese students with intellectual disabilities to engage in pedaling an exercise bike by using an air mouse combined with preferred environmental stimulation.

    Science.gov (United States)

    Chang, Man-Ling; Shih, Ching-Hsiang; Lin, Yen-Chung

    2014-12-01

    This study extended research into the application of high-tech products in the field of special education, using a standard air mouse with a newly developed pedal detection program (PDP) software. PDP is a new software program used to turn a standard air mouse into a pedal detector in order to evaluate whether two obese students with intellectual disabilities (ID) would be able to actively perform the activity of pedaling an exercise bike in order to control their preferred environmental stimulation. This study was performed according to an ABAB design. The data showed that both participants had more willingness to engage in the pedaling activity to activate the environmental stimulation in the intervention phases than in the baseline phase. The practical and developmental implications of the findings are discussed.

  1. Simulation of an air conditioning absorption refrigeration system in a co-generation process combining a proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Pilatowsky, I.; Gamboa, S.A.; Rivera, W. [Centro de Investigacion en Energia - UNAM, Temixco, Morelos (Mexico); Romero, R.J. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas - UAEM, Cuernavaca, Morelos (Mexico); Isaza, C.A. [Universidad Pontificia Bolivariana, Medellin (Colombia). Instituto de Energia y Termodinamica; Sebastian, P.J. [Centro de Investigacion en Energia - UNAM, Temixco, Morelos (Mexico); Cuerpo Academico de Energia y Sustentabilidad-UP Chiapas, Tuxtla Gutierrez, Chiapas (Mexico); Moreira, J. [Cuerpo Academico de Energia y Sustentabilidad-UP Chiapas, Tuxtla Gutierrez, Chiapas (Mexico)

    2007-10-15

    In this work, a computer simulation program was developed to determine the optimum operating conditions of an air conditioning system during the co-generation process. A 1 kW PEMFC was considered in this study with a chemical/electrical theoretical efficiency of 40% and a thermal efficiency of 30% applying an electrical load of 100%. A refrigeration-absorption cycle (RAC) operating with monomethylamine-water solutions (MMA-WS), with low vapor generation temperatures (up to 80 C) is proposed in this work. The computer simulation was based on the refrigeration production capacity at the maximum power capacity of the PEMFC. Heat losses between the fuel cell and the absorption air conditioning system at standard operating conditions were considered to be negligible. The results showed the feasibility of using PEMFC for cooling, increasing the total efficiency of the fuel cell system. (author)

  2. Experiment Research of Air Flowing Speed Distribution on Header for Stripper Combine%割前脱粒联合收割机摘脱割台 流场分布实验研究

    Institute of Scientific and Technical Information of China (English)

    陈树人

    2001-01-01

    The flowing speed distribution between stripper rotor and hood was qualitatively analyzed for stripper combine. With the Laser Dopper Velocimeter device, the velocity of air current around the stripper rotor was measured. By using the results the mathematical model of the air flowing velocity was constructed with regression method. It constructs the basis for accurately describing the threshed grain trace and falling place law.%应用激光多普勒测速装置对割前脱粒联合收割机摘脱滚筒周围气流速度大小进行了测试,利用所测的结果建立了气流分布的回归方程,为精确地描述摘脱割台脱出物的运动轨迹,找出其分布规律,减少割台损失奠定基础。

  3. FORMULASI MIKROEMULSI MINYAK DALAM AIR (O/W YANG STABIL MENGGUNAKAN KOMBINASI TIGA SURFAKTAN NON IONIK DENGAN NILAI HLB RENDAH, TINGGI DAN SEDANG Stable O/W Microemulsion Formulation Using Combination of Three Nonionic Surfactants with Low, High and Med

    Directory of Open Access Journals (Sweden)

    Sih Yuwanti

    2012-05-01

    Full Text Available The aim of this research was to determine the proportion of oil, surfactant and water which could produce a stable O/W microemulsion using combination of three nonionic surfactants with low, high and medium HLB values; and to determine the role of surfactant with a medium HLB value in O/W microemulsion formulation. The first group of microemulsions were prepared using combination of Tween 80, Span 80 and Span 40 (80 %:10 %:10 % with dif- ferent proportions of VCO:surfactant (1:3, 1:3.5 dan 1:4.  The second goups of microemulsion were prepared using combination of Tween 80, Span 80 and Span 40 (90 %:5 %:5 % with different proportions of VCO:surfactant 1:4,1:4.5 dan 1:5.  The stability of microemulsion was determined during storage at room temperature and after being ovened at 105 0C 5 hours and centrifuged at 2300 g 15 minutes. Microemulsion stability was determined by measur- ing absorbance of the microemulsion at 502 nm and then converted to turbidity (%.  In order to determine the role of surfactant with a medium HLB value in the formulation of O/W microemulsion, one set microemulsions were made without surfactant with a medium HLB value, and another set of microemulsions were prepared with different ratios of low and medium HLB surfactant (1:1, 2:1 and 1:2. The most stable microemulsion was achieved when the proportion of VCO:surfactant:water was 4:20:76 and combination of Tween 80:Span 80:Span 40 with the ratio of 90:3.33:6.67. A more stable O/W microemulsion could be obtained when surfactant with a medium HLB value was added to O/W microemulsion formulation. Surfactant with a medium HLB value would link the oil phase and water phase with sur- factant layer, interaction of surfactant-oil and surfactant-water increased. It provided a smooth transition between oil phase and water phase, and the microemulsion became more stable. ABSTRAK Tujuan dari penelitian ini adalah untuk menentukan proporsi minyak, surfaktan dan air yang dapat

  4. Studies of air showers produced by primaries 10(16) eV using a combined scintillation and water-Cerenkov array

    Science.gov (United States)

    Brooke, G.; Perrett, J. C.; Watson, A. A.

    1986-01-01

    An array of 8 x 1.0 sq m plastic scintillation counters and 13 water-Cerenkov detectors (1 to 13.5 sq m) were operated at the center of the Haverah Park array to study some features of air showers produced by 10(16) eV primaries. Measurements of the scintillator lateral distribution function, the water-Cerenkov lateral distribution function, and of the distance dependence of the Cerenkov/scintillator ratio are described.

  5. Methods for Addressing Uncertainty and Variability to Characterize Potential Health Risk from Trichloroethylene-Contaminated Ground Water at Beale Air Force Base in California:Integration of Uncertainty and Variability in Pharmacokinetics and Dose-Response

    Energy Technology Data Exchange (ETDEWEB)

    Bogen, K T

    2001-05-24

    Traditional estimates of health risk are typically inflated, particularly if cancer is the dominant endpoint and there is fundamental uncertainty as to mechanism(s) of action. Risk is more realistically characterized if it accounts for joint uncertainty and interindividual variability within a systematic probabilistic framework to integrate the joint effects on risk of distributed parameters of all (linear as well as nonlinear) risk-extrapolation models involved. Such a framework was used to characterize risks to potential future residents posed by trichloroethylene (TCE) in ground water at an inactive landfill site on Beale Air Force Base in California. Variability and uncertainty were addressed in exposure-route-specific estimates of applied dose, in pharmacokinetically based estimates of route-specific metabolized fractions of absorbed TCE, and in corresponding biologically effective doses estimated under a genotoxic/linear (MA{sub G}) vs. a cytotoxic/nonlinear (MA{sub c}) mechanistic assumption for TCE-induced cancer. Increased risk conditional on effective dose was estimated under MA{sub G} based on seven rodent-bioassay data sets, and under MA{sub c} based on mouse hepatotoxicity data. Mean and upper-bound estimates of combined risk calculated by the unified approach were <10{sup -6} and 10{sup -4}, respectively, while corresponding estimates based on traditional deterministic methods were >10{sup -5} and 10{sup -4}, respectively. It was estimated that no TCE-related harm is likely to occur due to any plausible residential exposure scenario involving the site. The systematic probabilistic framework illustrated is particularly suited to characterizing risks that involve uncertain and/or diverse mechanisms of action.

  6. Methods for Addressing Uncertainty and Variability to Characterize Potential Health Risk From Trichloroethylene-Contaminated Ground Water Beale Air Force Base in California: Integration of Uncertainty and Variability in Pharmacokinetics and Dose-Response

    Energy Technology Data Exchange (ETDEWEB)

    Bogen, K.T.

    1999-09-29

    Traditional estimates of health risk are typically inflated, particularly if cancer is the dominant endpoint and there is fundamental uncertainty as to mechanism(s) of action. Risk is more realistically characterized if it accounts for joint uncertainty and interindividual variability after applying a unified probabilistic approach to the distributed parameters of all (linear as well as nonlinear) risk-extrapolation models involved. Such an approach was applied to characterize risks to potential future residents posed by trichloroethylene (TCE) in ground water at an inactive landfill site on Beale Air Force Base in California. Variability and uncertainty were addressed in exposure-route-specific estimates of applied dose, in pharmacokinetically based estimates of route-specific metabolized fractions of absorbed TCE, and in corresponding biologically effective doses estimated under a genotoxic/linear (MA{sub g}) vs. a cytotoxic/nonlinear (MA{sub c}) mechanistic assumption for TCE-induced cancer. Increased risk conditional on effective dose was estimated under MA{sub G} based on seven rodent-bioassay data sets, and under MA, based on mouse hepatotoxicity data. Mean and upper-bound estimates of combined risk calculated by the unified approach were <10{sup -6} and <10{sup -4}, respectively, while corresponding estimates based on traditional deterministic methods were >10{sup -5} and >10{sup -4}, respectively. It was estimated that no TCE-related harm is likely occur due any plausible residential exposure scenario involving the site. The unified approach illustrated is particularly suited to characterizing risks that involve uncertain and/or diverse mechanisms of action.

  7. Air purification equipment combining a filter coated by silver nanoparticles with a nano-TiO2 photocatalyst for use in hospitals

    Science.gov (United States)

    Son Le, Thanh; Hien Dao, Trong; Nguyen, Dinh Cuong; Chau Nguyen, Hoai; Balikhin, I. L.

    2015-03-01

    X-ray diffraction, scanning electron microscopy and transmission electron microscopy showed that TiO2 particles synthesized by a sol-gel procedure exhibited uniform size about 16-20 nm. This nanopowder was deposited on a porous quartz tube (D = 74 mm, L = 418 mm, deposit density ˜16.4 mg cm-2) through an intermediate adhesive polymethylmethacrylate layer to manufacture a photocatalytic filter tube. A polypropylene pre-filter was coated with a nanosilver layer (particle size ˜20 nm) prepared by aqueous molecular solution method. An air cleaner of 250 m3 h-1 capacity equipped with this pre-filter, an electrostatic air filter, 4 photocatalytic filter tubes and 4 UV-A lamps (36 W) presented the high degradation ability for certain volatile organic compounds (VOCs), bacteria and fungi. The VOCs degradation performances of the equipment with respect to divers compounds are different: in a 10 m3 box, 91.6% of butanol was removed within 55 min, 80% of acetone within 100 min, 70.1% of diethyl ether within 120 min and only 43% of benzene was oxidized within 150 min. Over 99% of bacteria and fungi were killed after the air passage through the equipment. For application, it was placed in the intensive care room (volume of 125 m3) of E hospital in Hanoi; 69% of bacteria and 63% of fungi were killed within 6 h.

  8. Contamination monitoring in radiation protection activities in Myanmar

    Energy Technology Data Exchange (ETDEWEB)

    Thin, K.T.; Htoon, S. [Yangon Univ. (Myanmar). Dept. of Physics

    1997-06-01

    The radioactive contamination in rainwater, seawater, air, milk powder and other eatables were measured with low level counter assembly. The measured activities are found to be very low and well within the maximum permissible level. (author)

  9. DISTINGUISHING ANTHROPOGENIC AND GEOGENIC IMPACTS OF SEDIMENT CONTAMINATION

    Science.gov (United States)

    Environmental forensics is an area of scientific research that addresses contamination within the environmental media of air, water, soil and biota, and is subject to law court, arbitration, public debate, or formal argumentation. Environmental forensics involves scientific studi...

  10. Harvesting contaminants from liquid

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, John T.; Hunter, Scott R.

    2016-05-31

    Disclosed are examples of apparatuses for evaporative purification of a contaminated liquid. In each example, there is a vessel for storing the contaminated fluid. The vessel includes a surface coated with a layer of superhydrophobic material and the surface is at least partially in contact with the contaminated liquid. The contaminants do not adhere to the surface as the purified liquid evaporates, thus allowing the contaminants to be harvested.

  11. Using Tracer Technology to Characterize Contaminated Pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Maresca, Joseph, W., Jr., Ph.D.; Bratton, Wesley, L., Ph.D., P.E.; Dickerson, Wilhelmina; Hales, Rochelle

    2005-12-30

    The Pipeline Characterization Using Tracers (PCUT) technique uses conservative and partitioning, reactive or other interactive tracers to remotely determine the amount of contaminant within a run of piping or ductwork. The PCUT system was motivated by a method that has been successfully used to characterize subsurface soil contaminants and is similar in operation to that of a gas chromatography column. By injecting a ?slug? of both conservative and partitioning tracers at one end (or section) of the piping and measuring the time history of the concentration of the tracers at the other end (or another section) of the pipe, the presence, location, and amount of contaminant within the pipe or duct can be determined. The tracers are transported along the pipe or duct by a gas flow field, typically air or nitrogen, which has a velocity that is slow enough so that the partitioning tracer has time to interact with the contaminant before the tracer slug completely passes over the contaminate region. PCUT not only identifies the presence of contamination, it also can locate the contamination along the pipeline and quantify the amount of residual. PCUT can be used in support of deactivation and decommissioning (D&D) of piping and ducts that may have been contaminated with hazardous chemicals such as chlorinated solvents, petroleum products, radioactive materials, or heavy metals, such as mercury.

  12. Arsenic and dichlorvos: Possible interaction between two environmental contaminants.

    Science.gov (United States)

    Flora, Swaran J S

    2016-05-01

    Metals are ubiquitously present in the environment and pesticides are widely used throughout the world. Environmental and occupational exposure to metal along with pesticide is an area of great concern to both the public and regulatory authorities. Our major concern is that combination of these toxicant present in environment may elicit toxicity either due to additive or synergistic interactions or 'joint toxic actions' among these toxicants. It poses a rising threat to human health. Water contamination particularly ground water contamination with arsenic is a serious problem in today's scenario since arsenic is associated with several kinds of health problems, such arsenic associated health anomalies are commonly called as 'Arsenism'. Uncontrolled use and spillage of pesticides into the environment has resulted in alarming situation. Moreover serious concerns are being addressed due to their persistence in the environmental matrices such as air, soil and surface water runoff resulting in continuous exposure of these harmful chemicals to human beings and animals. Bio-availability of these environmental toxicants has been enhanced much due to anthropological activities. Dreadfully very few studies are available on combined exposures to these toxicants on the animal or human system. Studies on the acute and chronic exposure to arsenic and DDVP are well reported and well defined. Arsenic is a common global ground water contaminant while dichlorvos is one of the most commonly and widely employed organophosphate based insecticide used in agriculture, horticulture etc. There is thus a real situation where a human may get exposed to these toxicants while working in a field. This review highlights the individual and combined exposure to arsenic and dichlorvos on health.

  13. Air/liquid collectors

    DEFF Research Database (Denmark)

    Jensen, Søren Østergaard; Olesen, Ole; Kristiansen, Finn Harken

    1997-01-01

    This report determine efficiency equations for combined air/liquid solar collectors by measurements on to different air/liquid collectors. Equations which contain all relevant informations on the solar collectors. A simulation program (Kviksol) has been modified in order to be able to handle...

  14. Satellite material contaminant optical properties

    Science.gov (United States)

    Wood, B. E.; Bertrand, W. T.; Seiber, B. L.; Kiech, E. L.; Falco, P. M.; Holt, J. D.

    1990-03-01

    The Air Force Wright Research and Development Center and the Arnold Engineering Development Center are continuing a program for measuring optical effects of satellite material outgassing products on cryo-optic surfaces. Presented here are infrared (4000 to 700 cm(-1)) transmittance data for contaminant films condensed on a 77 K germanium window. From the transmittance data, the contaminant film refractive and absorptive indices (n, k) were derived using an analytical thin-film interference model with a nonlinear least-squares algorithm. To date 19 materials have been studied with the optical contents determined for 13 of those. The materials include adhesives, paints, composites, films, and lubricants. This program is continuing and properties for other materials will be available in the future.

  15. Thule-2003 - Investigation of radioactive contamination

    DEFF Research Database (Denmark)

    Nielsen, Sven Poul; Roos, Per

    2006-01-01

    relatively stable conditions and concentrations of plutonium in seawater and animals are low. However, the plutonium contamination of surface soil at Narssarssuk couldconstitute a small risk to humans visiting the location if radioactive particles are resuspended in the air so that they might be inhaled....

  16. Groundwater recharge and agricultural contamination

    Science.gov (United States)

    Böhlke, J.K.

    2002-01-01

    Agriculture has had direct and indirect effects on the rates and compositions of groundwater recharge and aquifer biogeochemistry. Direct effects include dissolution and transport of excess quantities of fertilizers and associated materials and hydrologic alterations related to irrigation and drainage. Some indirect effects include changes in water-rock reactions in soils and aquifers caused by increased concentrations of dissolved oxidants, protons, and major ions. Agrilcultural activities have directly or indirectly affected the concentrations of a large number of inorganic chemicals in groundwater, for example NO3-, N2, Cl, SO42-, H+, P, C, K, Mg, Ca, Sr, Ba, Ra, and As, as well a wide variety of pesticides and other organic compounds. For reactive contaminants like NO3-, a combination of chemical, isotopic, and environmental-tracer analytical approaches might be required to resolve changing inputs from subsequent alterations as causes of concentration gradients in groundwater. Groundwater records derived from multi-component hydrostratigraphic data can be used to quantify recharge rates and residence times of water and dissolved contaminants, document past variations in recharging contaminant loads, and identify natural contaminant-remediation processes. These data indicate that many of the world's surficial aquifers contain transient records of changing agricultural contamination from the last half of the 20th century. The transient agricultural groundwater signal has important implications for long-term trends and spatial heterogeneity in discharge.

  17. Phytoremediation Potential of Lead-Contaminated Soil Using Tropical Grasses

    Science.gov (United States)

    The global problem concerning contamination of the environment because of human activities is increasing. Most of the environmental contaminants are chemical by-products and heavy metals such as lead (Pb). Lead released into the environment makes its way into the air, soil and water. Lead contribute...

  18. Environmental contamination in Antarctic ecosystems.

    Science.gov (United States)

    Bargagli, R

    2008-08-01

    Although the remote continent of Antarctica is perceived as the symbol of the last great wilderness, the human presence in the Southern Ocean and the continent began in the early 1900s for hunting, fishing and exploration, and many invasive plant and animal species have been deliberately introduced in several sub-Antarctic islands. Over the last 50 years, the development of research and tourism have locally affected terrestrial and marine coastal ecosystems through fuel combustion (for transportation and energy production), accidental oil spills, waste incineration and sewage. Although natural "barriers" such as oceanic and atmospheric circulation protect Antarctica from lower latitude water and air masses, available data on concentrations of metals, pesticides and other persistent pollutants in air, snow, mosses, lichens and marine organisms show that most persistent contaminants in the Antarctic environment are transported from other continents in the Southern Hemisphere. At present, levels of most contaminants in Antarctic organisms are lower than those in related species from other remote regions, except for the natural accumulation of Cd and Hg in several marine organisms and especially in albatrosses and petrels. The concentrations of organic pollutants in the eggs of an opportunistic top predator such as the south polar skua are close to those that may cause adverse health effects. Population growth and industrial development in several countries of the Southern Hemisphere are changing the global pattern of persistent anthropogenic contaminants and new classes of chemicals have already been detected in the Antarctic environment. Although the Protocol on Environmental Protection to the Antarctic Treaty provides strict guidelines for the protection of the Antarctic environment and establishes obligations for all human activity in the continent and the Southern Ocean, global warming, population growth and industrial development in countries of the Southern

  19. Feasibility study to combine the evaluation of radiological and chemical-toxicological effects of old contaminated sites; Machbarkeitsstudie zur Verknuepfung der Bewertung radiologischer und chemisch-toxischer Wirkungen von Altlasten

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, P.; Proehl, G. [Gesellschaft fuer Strahlen- und Umweltforschung mbH Muenchen, Neuherberg (Germany). Inst. fuer Strahlenschutz; Schneider, K.; Voss, J.U. [FoBiG Forschungs- und Beratungsinstitut Gefahrstoffe GmbH, Freiburg im Breisgau (Germany)

    1997-08-01

    The uranium mining regions of the German Federal States Saxony, Thuringia and Saxony-Anhalt are contaminated by radionuclides and by chemical substances. For both, ionizing radiations and chemicals, concepts and models exists to assess possible health effects for the population living in such areas. However, these assessment models were developed independently for both kinds of contaminants. Therefore, the 9{sup th} Conference of the State Ministers for Environmental Protection have claimed that for the evaluation of contaminated sites the radiological and chemical contaminants should be integrated into a joint assessment. This feasibility study describes the state of the art of the concepts and models used for the evaluation of radiological and chemical contaminants. The similarities and differences of these evaluation methods are identified and discussed. Suggestions are made for an integrated assessment to standardize the evaluation of sites contaminated by radionuclides or chemicals. (orig.) [Deutsch] In den Gebieten des ehemaligen Uranbergbaus der Bundeslaender Sachsen, Thueringen und Sachsen-Anhalt treten neben den radioaktiven Kontaminationen auch andere Schadstoffe, insbesondere Schwermetalle, auf. Fuer ionisierende Strahlung und fuer chemische Noxen existieren unabhaengig voneinander entwickelte Bewertungssysteme zum Schutz vor Gesundheitsgefahren und Empfehlungen zum Umgang mit kontaminierten Standorten. Vor diesem Hintergrund forderte die 9. Umweltministerkonferenz - Ost am 17./18. Juni 1993 eine `Verknuepfung der radiologischen und konventionellen Altlastenbewertung`. Ob diese Verknuepfung moeglich ist und in welcher Weise diese vorgenommen werden kann, ist bisher nicht untersucht worden. Diese Machbarkeitsstudie unternimmt eine Bestandsaufnahme von Uebereinstimmungen und Unterschieden der beiden bestehenden Bewertungssysteme fuer Kontaminationen mit Radionukliden und mit chemisch-toxischen Stoffen und zeigt einen Weg auf zur Verinheitlichung der

  20. [Determination of short-chain chlorinated paraffins in ambient air using high-volume sampling combined with high resolutimi gas chromatography-electron capture negative ion-low resolution mass spectrometry].

    Science.gov (United States)

    Shi, Loimeng; Gao, Yuan; Hou, Xiaohong; Zhang, Haijun; Zhang, Yichi; Chen, Jiping

    2016-02-01

    An analytical method for quantifying short-chain chlorinated paraffins (SCCPs) in ambient air using high-volume sampling combined with high resolution gas chromatography-electron capture negative ion-low resolution mass spectrometry ( HRGC-ECNI-LRMS) was developed. An acidified silica gel column and a basic alumina column were used to optimize the cleanup procedures. The results showed a good linearity (R2>0. 99) between the total response factors and the degree of chlorination of SCCPs in the content range of 58. 1%-63. 3%. The limits of detection (S/N ≥3) and the limits of quantification (S/N ≥ 10) were 4. 2 and 12 µg, respectively. The method detection limit (MDL) for SCCPs was 0. 34 ng/m3 (n = 7). The recoveries of SCCPs in air samples were in the range of 81. 9% to 94. 2%. It is demonstrated that the method is suitable for the quantitative analysis of SCCPs in air samples.

  1. Real-time measurements of Hg0 and H2S at La Solfatara Crater (Campi Flegrei, Southern Italy) and Mt. Amiata volcano (Siena, Central Italy): a new geochemical approach to estimate the distribution of air contaminants

    Science.gov (United States)

    Cabassi, J.; Calabrese, S.; Tassi, F.; Venturi, S.; Capecchiacci, F.; Di Lonardo, C.; D'Alessandro, W.; Vaselli, O.

    2014-12-01

    The emission of Hg and H2S from natural and anthropogenic sources may have a great environmental impact in urban areas as well as in the surroundings of active and passive degassing volcanoes. Mercury is present in the atmosphere mainly in its elemental form (Hg0~98 %), which has a relatively high volatility, low solubility and chemical inertness. Hydrogen sulfide, one of the most abundant gas species in volcanic fluids, is highly poisoning and corrosive. In this study, an innovative real-time method for the measurements of Hg0 and H2S concentrations in air was carried out at La Solfatara Crater, a hydrothermally altered tuff-cone nested in the town of Pozzuoli (Southern Italy), and at Mt. Amiata volcano (Central Italy), where a world-class Hg mining district abandoned in the seventies and a presently-exploited geothermal field for the production of electrical energy occur. The main aims were (i) to test this new methodological approach and (ii) to investigate Hg0 and H2S concentrations and the chemical-physical parameters regulating their spatial distribution in polluted areas. A portable Zeeman atomic absorption spectrometer with high frequency modulation of light polarization (Lumex RA-915M) was used in combination with a pulsed fluorescence gas analyzer (Thermo Scientific Model 450i) to measure Hg0 and H2S, respectively. The instruments were synchronized and set at high-frequency acquisition (10 sec and 1 min, respectively). Measurements were carried out along pathways (up to 12 km long) at an average speed of <10 km/h and coupled with GPS data and meteorological parameters. In selected sites, passive samplers were positioned to determine the time-integrated Hg0 and H2S concentrations to be compared with the real-time measurements. The results indicate that this approach is highly efficient and effective in providing reliable and reproducible Hg0 and H2S concentrations and can be used to identify and characterize gas emitters in different environments.

  2. Evaluation of a portable air purifier.

    OpenAIRE

    Lawrence, J.C.; Lilly, H. A.; Wilkins, M. D.

    1981-01-01

    A portable air purifier significantly reduced mal odour in a small room. If the atmosphere was deliberately contaminated with Serratia marcescens the unit rapidly removed this organism. However, if incorrectly sited, the purifier could disperse organisms into the atmosphere.

  3. Plasma Air Decontamination System (PADS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Plasma Air Decontamination System (PADS) is a trace contaminant control device based on non-thermal atmospheric-pressure plasma technology. Compared to...

  4. Plasma Air Decontamination System (PADS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Plasma Air Decontamination System (PADS) is a trace contaminant control device based on non-thermal atmospheric pressure plasma technology that operates...

  5. A global indicator as a tool to follow airborne molecular contamination in a controlled environment.

    Science.gov (United States)

    Cariou, Stéphane; Guillot, Jean-Michel; Pépin, Laurence; Kaluzny, Pascal; Faure, Louis-Paul

    2005-02-01

    The impact of pollutants on production quality in nanotechnology necessitates reduction of contaminant levels in cleanrooms. So, devising a global airborne-pollutant indicator (GAPI) for rapid determination of the level of pollution and its danger to the process is justified. This tool used relative impact weights of the different molecules to quantify the pollution. A calculation of impact weight is proposed in this paper. Impact weights could take into account several characteristics of the molecules (molecular volume, sticking coefficient, ...). They could also be combined to be as close as possible to reality. An example of calculations of the impact of molecular volumes on air quality is given.

  6. Case studies illustrating in-situ remediation methods for soil and groundwater contaminated with petrochemicals

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, Robert A.; Lance, P.E.; Downs, A.; Kier, Brian P. [EMCON Northwest Inc., Portland, OR (United States)

    1993-12-31

    Four case studies of successful in-situ remediation are summarized illustrating cost-effective methods to remediate soil and groundwater contaminated with volatile and non-volatile petrochemicals. Each site is in a different geologic environment with varying soil types and with and without groundwater impact. The methods described include vadose zone vapor extraction, high-vacuum vapor extraction combined with groundwater tab.le depression, air sparging with groundwater recovery and vapor extraction, and bio remediation of saturated zone soils using inorganic nutrient and oxygen addition

  7. Variable pattern contamination control under positive pressure

    Energy Technology Data Exchange (ETDEWEB)

    Philippi, H.M. [Chalk River Labs., Ontario (Canada)

    1997-08-01

    Airborne contamination control in nuclear and biological laboratories is traditionally achieved by directing the space ventilation air at subatmospheric pressures in one fixed flow pattern. However, biological and nuclear contamination flow control in the new Biological Research Facility, to be commissioned at the Chalk River Laboratories in 1996, will have the flexibility to institute a number of contamination control patterns, all achieved at positive (above atmospheric) pressures. This flexibility feature, made possible by means of a digitally controlled ventilation system, changes the facility ventilation system from being a relatively rigid building service operated by plant personnel into a flexible building service which can be operated by the facility research personnel. This paper focuses on and describes the application of these unique contamination control features in the design of the new Biological Research Facility. 3 refs., 7 figs.

  8. Design of Marine Compressed Air Operation Training System with Virtual and Physical Combination%一种虚实结合的船舶压缩空气操作训练系统设计

    Institute of Scientific and Technical Information of China (English)

    邹文俊; 林洪贵; 孙美娜

    2015-01-01

    Marine power plant operation training system in shipping colleges has the disadvantages of large area, the high cost and the lack of real ship environment. Aimed at this problem,and taking marine compressed air system as an example, a combination of virtual and physical marine power plant operation training system is designed. The scene roaming and virtual operation function of the marine compressed air system is realized by Unity3D, the control task of the air compressor is completed by PLC control technology, and the problem of data communication between PLC Controllers and Unity3D is solved. Finally, the paper achieves the purpose of controlling the virtual air compressor through the physical control box.%针对航运院校采用真实船舶动力设备系统操作训练存在占地面积大、成本高且缺少实船环境的缺点,本文以船舶压缩空气系统为例设计出一种虚实结实的动力设备操作训练系统,建立了压缩空气系统的三维实体模型和设备的数学模型,通过 Unity3D 实现了船舶压缩空气系统的场景漫游和虚拟操作功能,采用PLC控制技术实现了空压机组的控制功能,解决了PLC控制器与Unity3D之间数据交互问题,最终实现了通过实物控制箱控制虚拟的空压机组的目的.

  9. 混凝气浮-SBR-CRI组合工艺处理低浓度农药废水%Treatment of low concentration pesticide wastewater by combined technology of coagulation air flotation-SBR-CRI

    Institute of Scientific and Technical Information of China (English)

    郑元武; 彭书传; 胡真虎; 盛国平; 施超

    2012-01-01

    采用混凝气浮-SBR-CRI组合工艺处理合肥循环经济示范园内的农药废水,结果表明:混凝气浮作为预处理措施,能够有效去除悬浮物和部分有机物;在生化池中添加大粪,提高了废水的可生化性,补充了碳源,使CODCr、BOD5、NH3-N和TP的去除率分别在80%、90%、70%、90%以上;CRI作为深度处理工艺,进一步降低废水毒性,确保系统出水达标排放.中试研究证明该组合工艺处理低浓度农药废水经济可行.%A combined technology of coagulation air flotation-SBR-CRI was used to treat low concentration pesticide wastewater from Hefei Circular Economy Demonstration Park. The results showed that: in the pretreatment stage, suspended solids and part of organics could be effectively removed by coagulation air flotation process; adding human excrement into the SBR biochemical pool, the carbon source was supplemented and the biodegradability of the wastewater was improved, the removal rates of CODo, BOD5, NH3-N and TP were above 80%, 90%, 70% and 90% respectively; in the CRI advanced treatment stage, the toxicity of the pesticide wastewater was further reduced and the effluent water quality could meet the discharge standard. The results of the pilot scale test showed that, coagulation air flotation-SBR-CRI combined technology was economical and feasible for low concentration pesticide wastewater treatment.

  10. 香蕉太阳能热风真空组合干燥设备设计%Design of Solar Hot-air Vacuum Combination Drying Device for Bananas

    Institute of Scientific and Technical Information of China (English)

    童亚子; 杨福孙

    2014-01-01

    为了缩短香蕉的干燥时间,降低干燥成本,将太阳能技术、真空技术和自动控制技术相结合,提出了一种能耗低、干燥效率高且能最大限度保存香蕉中各种生理活性营养成分和风味的香蕉太阳能热风真空组合干燥设备。该设备主要由空气预热器、智能控制器、太阳能热水器、真空泵、干燥箱、热风辅助加热器和引风机等组成,并通过理论计算、分析及实验,验证了该设备的科学性。该设备的成功设计对我国热带等地区的香蕉干燥具有积极的影响作用。%In order to shorten banana drying time and reduce drying costs ,low energy consumption ,high efficiency drying and keeping various physiological active nutrients in bananas of Solar Hot -air vacuum combination drying Device was pro-posed , which combined solar technology , vacuum technology with automatic control technology .The device contains air preheated , intelligent controller , solar water heater , vacuum pump , oven , hot-air auxiliary heater , fan and other compo-nents .According to theoretical analysis and experimental , the device is scientific .The successful design of the device plays a positive impact which dried banana in tropical area of China .

  11. Center for Contaminated Sediments

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Army Corps of Engineers Center for Contaminated Sediments serves as a clearinghouse for technology and expertise concerned with contaminated sediments. The...

  12. Contaminated Sites in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Sites contaminated by hazardous materials or wastes. These sites are those administered by the Contaminated Sites Section of Iowa DNR. Many are sites which are...

  13. Monitoring of surface and airborne contamination

    Energy Technology Data Exchange (ETDEWEB)

    Pradeep Kumar, K.S. [Bhabha Atomic Research Centre, Bombay (India)

    1997-06-01

    Indian nuclear energy programme aims at total safety in all activities involved in the entire fuel cycle for the occupational workers, members of the public and the environment as a whole. Routine radiation monitoring with clearly laid out procedures are followed for ensuring the safety of workers and public. Radiation monitoring carried out for the nuclear installations comprises of process monitoring, monitoring of effluent releases and also of the radiation protection monitoring of the individuals, work place and environment. Regulations like banning of smoking and consumption of food and drink etc. reduces the risk of direct ingestion even if inadvertent spread of contamination takes place. Though limit of transportable surface contamination is prescribed, the health physicists always follow a ``clean on swipe`` philosophy which compensates any error in the measurement of surface contamination. In this paper, the following items are contained: Necessity of contamination monitoring, accuracy required in the calibration of surface contamination monitors, methodology for contamination monitoring, air monitoring, guidelines for unrestricted release of scrap materials, and problems in contamination monitoring. (G.K.)

  14. Development and test of continuous combined mid-infrared with hot air drying equipment%连续式中红外-热风组合干燥设备的研制与试验

    Institute of Scientific and Technical Information of China (English)

    谢小雷; 张春晖; 贾伟; 李侠; 王兆进; 穆国锋

    2015-01-01

    Drying efficiency was always considered to be the most important factor by factories, however, low thermal conductivity and case hardening of the material slowed the moisture migration in hot air drying, and resulted in more time and energy consumption. So to solve the existing problems of present drying equipment, a continuous drying equipment of combined mid-infrared and hot air (CMIHA) was developed in this paper. This drying equipment included feed section, heating sections and cooling section, of which each heating section was made up of four parts, i.e. conveying system, heating system, convective circulation system and control system. As we all know, since infrared energy is converted into heat only when material absorbs the radiation, it was essential to select a heat source emitting radiation with the range in which the material to be processed had maximum absorption. So, the radiation wavelength of infrared was selected by the infrared spectra of meats, and the radiation intensity could be controlled by changing the amount of working lamps to make good use of the radiation energy. At the same time, this equipment was developed by calculating the main technological parameters of convection system, cooling system and heating system, and then the production verification test was also done to compare the difference between CMIHA drying and hot air drying on beef jerky. Results showed that, in the same conditions (heating power 105 kW, heating temperature 70℃, wind velocity 1 m/s, cooling wind velocity 3 m/s, heating distance 8 cm), compared with hot air drying, the continuous CMIHA drying equipment could speed up muscle protein denaturation, reduce activation energy, reduce the energy that jerky needed to accelerate moisture migration, and improve drying efficiency. The time consumption that the beef samples in the first row on the conveyor dehydrated from raw to weight reduction by 50%for CMIHA drying equipment was 120 min, and the production efficiency

  15. The combined effect of reduced fossil fuel consumption and increasing biomass combustion on Athens' air quality, as inferred from long term CO measurements.

    Science.gov (United States)

    Gratsea, Myrto; Liakakou, Eleni; Mihalopoulos, Nikos; Adamopoulos, Anastasios; Tsilibari, Eirini; Gerasopoulos, Evangelos

    2017-03-14

    To evaluate the role of biomass burning emissions, and in particular of residential wood heating, as a result of the economic recession in Greece, carbon monoxide (CO) atmospheric concentrations from five (5) stations of the National Air Pollution Monitoring Network in Athens, spanning the period 2000-2015, in conjunction with black carbon (BC) concentrations from the NOA (National Observatory of Athens) station at Thissio were analysed. The contribution of the different sources to the diurnal cycle of these two pollutants is clear, resulting to a morning peak, mainly due to traffic, and a late evening peak attributed both to fossil fuel (traffic plus central heating) and biomass combustion. Calculated morning and evening integrals of CO peaks, for the investigated period, show consistent seasonal modulations, characterised by low summer and high winter values. The summer and winter morning CO peak integrals demonstrate an almost constant decreasing trend of CO concentrations over time (by almost 50% since 2000), attributed to the renewal of passenger car fleet and to reduced anthropogenic activities during the last years. On the other hand, an increase of 23%-78% (depending on the monitoring site) in the winter evening integrals since 2012, provides evidence of the significant contribution of biomass combustion, which has prevailed over fossil fuel for domestic heating. CO emitted by wood burning was found to contribute almost 50% to the total CO emissions during night time (16:00-5:00), suggesting that emissions from biomass combustion have gained an increasing role in atmospheric pollution levels in Athens.

  16. Cooling system at the compressors air inlet of the gas turbines from the Tula`s combined cycle central; Sistema de enfriamiento en la succion del compresor de las turbinas de gas de la central de ciclo combinado de Tula

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez F, Oscar [Comision Federal de Electricidad, Tula (Mexico); Romero Paredes, Hernando; Vargas, Martin; Gomez, Jose Francisco [Universidad Autonoma Metropolitana-Iztapalapa, Mexico, D. F. (Mexico)

    1996-12-31

    It has been formerly evaluated that it is possible to enhance notably the electric power generation in gas turbine power plants by cooling the air at the compressor inlet. It has been pointed out that provided a source of waste heat is available it can be very attractive the use of absorption refrigeration systems. In this paper the technical and the economical benefits of bringing the air inlet temperature down 8 Celsius degrees of the four gas turbines of the Combined Cycle Central of Tula, in the State of Hidalgo (combined cycle central-Tula) are evaluated. The results show that it is possible to achieve an efficiency enhancement of at least 1%, and that in very warm days up to 48 additional Megawatts can be generated, or about 10% of the installed capacity. The final economic result is very encouraging and an annual economical benefit in the order of 50 million pesos can be obtained and the refrigeration units can be amortized in approximately one year. [Espanol] Se ha evaluado anteriormente que es posible mejorar notablemente la capacidad de generacion electrica en plantas que utilizan turbinas de gas, mediante el enfriamiento del aire de succion del compresor. Se ha senalado que en la medida en que se encuentre disponible una fuente termica de desecho puede ser muy atractivo el uso de sistemas de refrigeracion por absorcion. En el presente trabajo se evaluan los beneficios tecnicos y economicos que puede tener el llevar el aire de succion hasta una temperatura de 8 grados Celsius, de las cuatro unidades de gas de la Central de Ciclo Combinado de Tula, Hidalgo (CCC-Tula). Los resultados muestran que es posible alcanzar un aumento en la eficiencia de al menos 1% y que se pueden generar, en dias muy calurosos, hasta 48 MW extras, equivalente al 10% de la capacidad instalada. El resultado economico final es muy alentador y puede llegar a tenerse un beneficio economico del orden de los 50 millones de pesos anuales y las unidades de refrigeracion podran pagarse en

  17. Remediation technologies for oil-contaminated sediments.

    Science.gov (United States)

    Agarwal, Ashutosh; Liu, Yu

    2015-12-30

    Oil-contaminated sediments pose serious environmental hazards for both aquatic and terrestrial ecosystems. Innovative and environmentally compatible technologies are urgently required to remove oil-contaminated sediments. In this paper, various physical, chemical and biological technologies are investigated for the remediation of oil-contaminated sediments such as flotation and washing, coal agglomeration, thermal desorption, ultrasonic desorption, bioremediation, chemical oxidation and extraction using ionic liquids. The basic principles of these technologies as well as their advantages and disadvantages for practical application have been discussed. A combination of two or more technologies is expected to provide an innovative solution that is economical, eco-friendly and adaptable.

  18. Activated Natural Zeolites on Textiles: Protection from Radioactive Contamination

    Science.gov (United States)

    Grancaric, A. M.; Prlic, I.; Tarbuk, A.; Marovic, G.

    Clothing designed to protect against radioactive contamination was based on a simple principle. It was important not to inhale contaminated dust and air and to ensure that contaminated particles could not reach the skin. Therefore, the density of the textile was crucial. New developments, keeping in mind that textile should be lightweight, are focused on textiles which can chemically bind the contamination particles and not allow them either to diffuse to the skin or spread back into the environment. A great success would be if the clothing were made reusable (e.g., for use in the space station). Therefore, new methods (or chemical preparations) are being proposed for developing intelligent textiles.

  19. Contaminants in ventilated filling boxes

    Science.gov (United States)

    Bolster, D. T.; Linden, P. F.

    While energy efficiency is important, the adoption of energy-efficient ventilation systems still requires the provision of acceptable indoor air quality. Many low-energy systems, such as displacement or natural ventilation, rely on temperature stratification within the interior environment, always extracting the warmest air from the top of the room. Understanding buoyancy-driven convection in a confined ventilated space is key to understanding the flow that develops with many of these modern low-energy ventilation schemes. In this work we study the transport of an initially uniformly distributed passive contaminant in a displacement-ventilated space. Representing a heat source as an ideal sourced of buoyancy, analytical and numerical models are developed that allow us to compare the average efficiency of contaminant removal between traditional mixing and modern low-energy systems. A set of small-scale analogue laboratory experiments was also conducted to further validate our analytical and numerical solutions.We find that on average traditional and low-energy ventilation methods are similar with regard to pollutant flushing efficiency. This is because the concentration being extracted from the system at any given time is approximately the same for both systems. However, very different vertical concentration gradients exist. For the low-energy system, a peak in contaminant concentration occurs at the temperature interface that is established within the space. This interface is typically designed to sit at some intermediate height in the space. Since this peak does not coincide with the extraction point, displacement ventilation does not offer the same benefits for pollutant flushing as it does for buoyancy removal.

  20. Mercury Contamination: Fate and Risk Minimization Strategies

    Science.gov (United States)

    Charlet, L.

    Two river basins have been studied in French Guyana, which are subject to heavy mercury contamination, due to illegal gold mining. Within the framework of an interdisciplinary European project, the fate of mercury in water, air, soil, sediment has been studied, as well as its bio-accumulation in the food chain. This bioaccumulation results in the contamination of amerindian populations, through fish consumption. This study has been done in close contact with the economic and political actors. The results of the scientific interdisciplinary study has been translated in terms of risk minimization strategies, which are analyzed in the framework of the European Water Framework Directive.

  1. Hospital-acquired infections associated with poor air quality in air-conditioned environments

    OpenAIRE

    Daniela Pinheiro da Silva

    2014-01-01

    Backgound and Objectives: Individuals living in cities increasingly spend more time indoors in air-conditioned environments. Air conditioner contamination can be caused by the presence of aerosols from the external or internal environment, which may be associated with disease manifestations in patients present in this type of environment. Therefore, the aim of this review was to assess the air quality in air-conditioned hospital environments as a risk factor for hospital-acqui...

  2. Thermal Performance Experimental Research on The Heating System Combined Solar Air Collector with Floor Storage%太阳能空气集热耦合地板蓄热系统热特性实验研究

    Institute of Scientific and Technical Information of China (English)

    王闯; 赵金玲; 陈滨

    2014-01-01

    In this paper, we proposed a concrete floor thermal storage system suitable for passive solar air heating. we proceed experimental study on the thermal characteristics and influencing factors of heat storage system for rural residential in the cold regions; discussed the indoor thermal environment impact of heat storage system; analyzed the store-release characteristics of floor thermal storage system with different collector orientation, different air humidity and different supply wind speed. Experimental result shows that, the concrete floor thermal storage system combined with solar air collector take full advantage of building mechanical structure thermal storage, and improve the indoor temperature and stability of solar heating house effectively.%提出了一种适用于被动式太阳能空气供暖的混凝土地板蓄热系统,并对该蓄热系统在寒冷地区农村住宅中的应用进行了热特性及其影响因素实验研究。讨论了该蓄热系统对室内热环境的作用,不同集热器朝向、热气流湿度及供风速度作用下地板蓄热系统的蓄放热特性。实验结果表明,太阳能空气集热耦合混凝土地板蓄热系统充分利用建筑本体结构蓄热,有效提高了太阳能供暖房间的室内温度及其稳定性。

  3. Pre-Feasibility Analysis of Pellet Manufacturing on the Former Loring Air Force Base Site. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    Energy Technology Data Exchange (ETDEWEB)

    Hunsberger, R.; Mosey, G.

    2014-04-01

    The U.S. Environmental Protection Agency (EPA) Office of Solid Waste and Emergency Response, in accordance with the RE-Powering America's Lands initiative, engaged the U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to conduct feasibility studies to assess the viability of developing renewable energy generating facilities on contaminated sites. This site, in Limestone, Maine -- formerly the location of the Loring Air Force Base but now owned by the Aroostook Band of Micmac -- was selected for the potential to produce heating pellets from woody feedstock. Biomass was chosen as the renewable energy resource to evaluate based on abundant woody-biomass resources available in the area. NREL also evaluates potential savings from converting existing Micmac property from oil-fired heating to pellet heating.

  4. FINAL REPORT: MEMBRANE-MEDIATED EXTRACTION AND BIODEGRADATION OF VOLATILE ORGANIC COMPOUNDS FROM AIR

    Science.gov (United States)

    The report describes feasibility tests of a two-step strategy for air pollution control applicable to exhaust air contaminated with volatile organic compounds (VOCs) from painting aircraft. In the first step, the VOC-contaminated air passes over coated, polypropylene, hollow-fibe...

  5. Kentucky Department for Natural Resources and Environmental Protection permit application for air contaminant source: SRC-I demonstration plant, Newman, Kentucky. Appendix D. Impact assessment. [Demonstration plant at Newman, KY

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-11-21

    In appendix D, the air quality condition for various pollutants in the areas surrounding the proposed demonstration plant site is given with respect to attainment or non-attainment of US EPA regulations. The minimum pollutant emission rates for these regulated and for several other pollutants are given. Then the estimated emission rates from the proposed plant are given for a dozen pollutants which exceed these limits and therefore require an ambient air quality analysis. This involves taking into account the estimated emission of these pollutants from the proposed plant and from other sources in the surrounding area. Finally, background data from the surrounding area including meteorological data and sampling of regulated pollutants are given. (LTN)

  6. Detection, simulation, assessing environmental influences. Climate/shock/irradiation/vibrations/electromagnetism/air contamination/biological influences. Papers. Umwelteinfluesse erfassen, simulieren, bewerten. Klima/Schock/Strahlung/Vibrationen/Elektromagnetismus/Luftverunreinigung/Biologische Einfluesse. Vortraege

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Investigations using environmental simulation are designed to reveal cause-and-effect mechanisms in ageing and weathering processes. Issues of artificial ageing and timelapsing play an important role. The 29 contributions to the 21st Annual Conference deal in particular with the topics: strategies in environmental simulation, irradiation and exposure testing of polymers, atmospheric influences and air ingredients, and mechanical environmental influences. (orig./DG)

  7. Air Cleaning Devices for HVAC Supply Systems in Schools. Technical Bulletin.

    Science.gov (United States)

    Wheeler, Arthur E.

    Guidelines for maintaining indoor air quality in schools with HVAC air cleaning systems are provided in this document. Information is offered on the importance of air cleaning, sources of air contaminants and indoor pollutants, types of air cleaners and particulate filters used in central HVAC systems, vapor and gas removal, and performance…

  8. 热一次风加热器与低压省煤器的联合应用%Combined application of hot primary air heater and low pressure economizer

    Institute of Scientific and Technical Information of China (English)

    薛宁; 印旭洋; 王春昌

    2015-01-01

    A hot primary air heater (HPAH)technology was introduced,which uses the heater installed on the hot primary air duct to heat condensation water,so the steam extraction amount can be reduced to in﹣crease the turbine's work ability,thus to save the energy.Moreover,the combined application of the HPAH and low pressure economizer (LPE)was studied,and the its application in a 600MW unit was designed and calculated.The results show that,the HPAH is suitable for units with large quantity of cool air,high ex﹣haust temperature and surplus pressure margin of primary draft fan.The energy conservation potential of the LPE is lower at low load,but the HPAH is on the contrary.The combined application of them can save net coal consumption rate by more than 3 g/(kW•h)at both low and high load.%介绍了一种热一次风加热器技术,该技术通过在热一次风道上增加换热设备,加热凝结水,利用凝结水回收热量,减少汽轮机抽汽量,增加汽轮机做功能力,实现节能。同时,对热一次风加热器与低压省煤器联合应用技术进行了研究,并对某600 MW 机组的联合应用方案进行了设计与计算。结果表明:热一次风加热器技术适用于制粉系统冷风量较大、排烟温度高且一次风机压力具有一定裕量的机组;低压省煤器技术在低负荷时节能潜力降低,而热风加热器技术随负荷降低,节能能力增强,两者联合应用方案在机组高、低负荷段均可节省供电煤耗3 g/(kW•h)以上,节能效果明显。

  9. Laser Monitoring Of Phytoextraction Enhancement Of Lead Contaminated Soil Adopting EDTA And EDDS

    Science.gov (United States)

    Hassan, M.; Abdelhamied, M.; Hanafy, A. H.; Fantoni, R.; Harith, M. A.

    2011-09-01

    Removal of heavy metals (HMs) such as Pb from soil, wastewater, and air is essential for environment and human health. Phytoremediation is a well established technology based on the use of certain green plants for contaminants removal from soil, wastewater as well as air. Scented geranium, Pelargonium zonal, is a flowering plant recently used in HMs removal from contaminated soil. In the present work, EDTA (ethylenediaminetetraacetic acid) and EDDS (S, S-ethylenediaminedisuccinic acid) were used as chemical assistants providing higher Pb availability for extraction by plant roots. Lead was artificially added to the planting media, peatmoss, at different concentrations. Laser induced breakdown spectroscopy (LIBS) was used to follow up Pb relative concentrations in peatmoss as well as plant shoots, at different sampling times during the experiment period. Laser induced chlorophyll fluorescence (LICF), has been also used to evaluate chlorophyll formation and photosynthetic apparatus status in geranium plants. Such measurements were performed on geranium plants grown under various Pb levels, as well as EDTA and EDDS combinations. The combined effect of EDTA and EDDS was found to enhance Pb extraction with time. Good correlation was found between LICF results and chlorophyll (a) (Chl.a) concentrations in plant tissues extracted by chemical analysis.

  10. [Air quality monitoring on the International Space Station].

    Science.gov (United States)

    Pakhomova, A A; Mukhamedieva, L N; Mikos, K N

    2006-01-01

    Chemical contamination of air in space cabins occurs mainly due to permanent offgassing of equipment and materials, and leaks. Methods and means of qualitative and quantitative air monitoring on the ISS are powerful enough as for routine so emergency (e.g. local fire, toxic leak) air control. The ISS air quality has suited to the adopted standards and crew safety requirements. Yet, there is a broad field of action toward improvement of the space cabin air monitoring.

  11. Survey on microorganism contamination in air of dental clinic in a hospital%某部医院口腔科门诊空气微生物污染状况的调查

    Institute of Scientific and Technical Information of China (English)

    曹巧玲; 杨凯; 金世富; 潘朝阳; 王京

    2013-01-01

    目的 了解口腔科门诊空气中的微生物分布,以便更好地指导临床消毒工作,预防医院感染.方法 对某部医院口腔科门诊环境中空气污染细菌与真菌的含量进行检测,选择门诊高峰期后30 min,采用平板沉降法采集口腔科的空气样本,普通营养琼脂平板培养后计数菌落、革兰染色及分离鉴定进行判断分析.结果 口腔科空气中污染微生物以细菌为主,空气中细菌总数符合国家卫生标准.革兰染色结果表明,口腔科门诊室空气中细菌大多数为革兰阳性菌,占细菌总数的83.26%.口腔科门诊空气中的真菌含量较多.其中牙周科含菌量最高,达525个/m3空气.致病菌分离出3株葡萄球菌和2株乙型溶血性链菌.结论 口腔科门诊患者多,流动性大,各种急慢性感染性疾病的患者均在一般患者中间就诊,因此,提示需要进一步加强对口腔科门诊环境的消毒,以控制医院感染的发生及流行.%[Objective]To understand the distribution of microorganisms in air of dental clinic, provide the basis for guiding the clinical disinfection and preventing the nosocomial infection. [ Methods] The contents of bacteria and fungi in air of dental clinic in a hospital were detected. The air samples were collected by the flat sedimentation method at 30 minutes after visiting peak. After the ordinary nutrient agar plate culture, the colony counting, Gram's staining, isolation and identification were performed for analysis. [Results]The main microorganism of air pollution in dental clinic was bacteria, and the total bacteria count in air met the national health standards. The Crams staining showed that the bacteria in air of dental clinic mainly were Gram-positive bacteria, accounting for 83.26% of total bacteria count. The content of fungi in air of dental clinic was high. The content of microorganism in department of periodontology was the highest, which reached 525/m3. 3 strains of Staphylococcus and 2

  12. Uptake of polychlorinated biphenyls and organochlorine pesticides from soil and air into radishes (Raphanus sativus)

    DEFF Research Database (Denmark)

    Mikes, Ondrej; Cupr, P.; Trapp, Stefan

    2009-01-01

    Uptake of organochlorine pesticides and polychlorinated biphenyls from soil and air into radishes was measured at a heavily contaminated field site. The highest contaminant concentrations were found for DDT and its metabolites, and for beta-hexachlorocyclohexane. Bioconcentration factor (BCF...

  13. Fungal colonization of air-conditioning systems

    Directory of Open Access Journals (Sweden)

    Ljaljević-Grbić Milica

    2008-01-01

    Full Text Available Fungi have been implicated as quantitatively the most important bioaerosol component of indoor air associated with contaminated air-conditioning systems. rarely, indoor fungi may cause human infections, but more commonly allergenic responses ranging from pneumonitis to asthma-like symptoms. From all air conditioner filters analyzed, 16 fungal taxa were isolated and identified. Aspergillus fumigatus causes more lethal infections worldwide than any other mold. Air-conditioning filters that adsorb moisture and volatile organics appear to provide suitable substrates for fungal colonization. It is important to stress that fungal colonization of air-conditioning systems should not be ignored, especially in hospital environments.

  14. Fisk-based criteria to support validation of detection methods for drinking water and air.

    Energy Technology Data Exchange (ETDEWEB)

    MacDonell, M.; Bhattacharyya, M.; Finster, M.; Williams, M.; Picel, K.; Chang, Y.-S.; Peterson, J.; Adeshina, F.; Sonich-Mullin, C.; Environmental Science Division; EPA

    2009-02-18

    This report was prepared to support the validation of analytical methods for threat contaminants under the U.S. Environmental Protection Agency (EPA) National Homeland Security Research Center (NHSRC) program. It is designed to serve as a resource for certain applications of benchmark and fate information for homeland security threat contaminants. The report identifies risk-based criteria from existing health benchmarks for drinking water and air for potential use as validation targets. The focus is on benchmarks for chronic public exposures. The priority sources are standard EPA concentration limits for drinking water and air, along with oral and inhalation toxicity values. Many contaminants identified as homeland security threats to drinking water or air would convert to other chemicals within minutes to hours of being released. For this reason, a fate analysis has been performed to identify potential transformation products and removal half-lives in air and water so appropriate forms can be targeted for detection over time. The risk-based criteria presented in this report to frame method validation are expected to be lower than actual operational targets based on realistic exposures following a release. Note that many target criteria provided in this report are taken from available benchmarks without assessing the underlying toxicological details. That is, although the relevance of the chemical form and analogues are evaluated, the toxicological interpretations and extrapolations conducted by the authoring organizations are not. It is also important to emphasize that such targets in the current analysis are not health-based advisory levels to guide homeland security responses. This integrated evaluation of chronic public benchmarks and contaminant fate has identified more than 200 risk-based criteria as method validation targets across numerous contaminants and fate products in drinking water and air combined. The gap in directly applicable values is

  15. Air distribution and ventilation effectiveness in an occupied room heated by warm air

    DEFF Research Database (Denmark)

    Krajcik, Michal; Simone, Angela; Olesen, Bjarne W.

    2012-01-01

    and at different simulated outside conditions, internal heat gains and air change rates. Floor heating was also simulated and compared with the warm air heating system. Vertical air temperature profiles, air velocity profiles and equivalent temperatures were derived in order to describe the thermal environment......Air distribution, ventilation effectiveness and thermal environment were experimentally studied in a simulated room in a low-energy building heated and ventilated by warm air supplied by a mixing ventilation system. Measurements were performed for various positions of the air terminal devices....... Contaminant removal effectiveness and air change efficiency were used to evaluate ventilation effectiveness. No significant risk of thermal discomfort due to vertical air temperature differences or draught was found. When the room was heated by warm air, buoyancy forces were important for ventilation...

  16. Contamination Prediction on Insulators Considering of Meteorology,Geomentric Parameters and Air Pollutant%考虑气象、几何参数、大气污染物的绝缘子表面污秽度预测方法

    Institute of Scientific and Technical Information of China (English)

    王黎明; 刘霆; 黄睿; 梅红伟; 项阳

    2016-01-01

    In order to develop a model to predict the severity of contamination deposition whieh could take account of the effects of the meteorology, geometric parameters of insulators, and air pollutant ,we studied the contamination deposition characteristics of post insulators by means of computanational fluid dynamics.Moreover, we analyzed the chemical composition of salt in pollutant on insulators.The results demonstrate that as the wind speed grows, the contamination on the bottom suface rises and remains about the 80% of the maxmium value, while the contamination on the top sufaces increaces first and then decreases.Moreover, the contamination deposition grows as the relative humidity gets bigger, but it will be less than five times of the value as the relative humidity is 30%.The chemcial composition of the salt contamination on insulators is uniform in the same region.At last, the model is verified with an example, and it is revealed that if the relief effect of rainfall is thought over, the predicted value will be less than four times the samples' mesured value at its worst condition.The proposed new method of contamination prediction can be used for a reference for further researches.%为了提出一种能综合考虑气象、绝缘子几何参数、大气污染物影响的污秽度预测方法,利用计算流体力学的方法对绝缘子的积污特性进行了研究,并对换流站污秽盐分构成进行了分析.研究表明:随风速增加,下表面积污量增加并维持在最大值的80%左右,上表面的积污量先增大后减小;相对湿度增加将使上下表面的积污量均增加,最大值小于同等条件下相对湿度为30%时的5倍.盐分构成分析显示污秽盐分构成具有地区一致性的特点.在利用相关研究成果考虑降雨清洗效应的情况下,结合实例对模型进行了验算,偏差最大的预测值小于实测值的4倍.该新的污秽度预测方法可以为污秽预测的进一步研究提供借鉴.

  17. Evaluation of health factors in high-rise buildings. 2. Bioclimatological consequences resulting from comparative measurements of the air ionisation in a high-rise building located in a heavily contaminated suburban area and at certain altitudes

    Energy Technology Data Exchange (ETDEWEB)

    Moese, J.R.; Fischer, G.

    1981-01-01

    According to accepted scientific theories inhaled small ions deliver their charges in the pulmonary alveoli and this leads to local recharges. This process stimulates structures of the central nervous system and the activity of the endocrine is excited, resulting in an enhancement of the general well-being. These possibilities of interpretation regarding a biological ionic effect are supported, with reservations by positive medical effects during and after a stay in a well-ventilated mountain climate or also in a sea-climate. Owing to their lower mobility the large ions are inhaled as small ions to an increasing extent. The chemical and physical noxa are delivered and deposited in the respiratory tract. They stick the epithelia in the trachea and in the bronchi as well as the endothelia in the lung vesicles. The number of the ciliary movements is reduced. Similar effects are known to be caused also by nicotine abuse. This results in a decreased ability of expectoration and a lower intake of oxygen by the alveoli. These facts could furnish an explanation for the increased vulnerability of city dwellers to infections diseases and to catarrh. The changed ionisation of air in urbanised areas definitely represents only one of the many risk factors. In addition to the attempt to characterize bioclimatically local weather conditions by means of the non-conventional parameter air ionisation our study has also been intended to establish biologically oriented criteria for the living in a high-rise building in a particularly unfavourable location. Under specific microclimatic conditions the uppermost storeys were at times bioclimatically favoured over the lowermost, especially when shallow air inversion is present. In such cases, small ions exclusively were registered in the upper storeys and large ions in the lower floors.

  18. Experimental evaluation of enthalpy efficiency and gas-phase contaminant transfer in an enthalpy recovery unit with polymer membrane foils

    DEFF Research Database (Denmark)

    Nie, Jinzhe; Yang, Jianrong; Fang, Lei;

    2015-01-01

    Experimental studies were conducted in a laboratory setting to investigate the enthalpy efficiency and gas-phase contaminant transfer in a polymer membrane enthalpy recovery unit. One commercially available polymer membrane enthalpy recovery unit was used as a reference unit. Simulated indoor air...... and outdoor air by twin chambers was connected to the unit. Three chemical gases were dosed to the indoor exhaust air to mimic indoor air contaminants. Based on the measurements of temperature, humidity ratio, and contaminant concentrations of the indoor exhaust air and outdoor air supply upstream...... and downstream of the unit, the temperature efficiencies, humidity efficiencies, enthalpy efficiencies, and contaminant transfer ratios were calculated. The results showed that over 60% of enthalpy recovery efficiency could be achieved and that the contaminant transfer ratios were in the range of 5.4% to 9...

  19. Changes in air flow patterns using surfactants and thickeners during air sparging: bench-scale experiments.

    Science.gov (United States)

    Kim, Juyoung; Kim, Heonki; Annable, Michael D

    2015-01-01

    Air injected into an aquifer during air sparging normally flows upward according to the pressure gradients and buoyancy, and the direction of air flow depends on the natural hydrogeologic setting. In this study, a new method for controlling air flow paths in the saturated zone during air sparging processes is presented. Two hydrodynamic parameters, viscosity and surface tension of the aqueous phase in the aquifer, were altered using appropriate water-soluble reagents distributed before initiating air sparging. Increased viscosity retarded the travel velocity of the air front during air sparging by modifying the viscosity ratio. Using a one-dimensional column packed with water-saturated sand, the velocity of air intrusion into the saturated region under a constant pressure gradient was inversely proportional to the viscosity of the aqueous solution. The air flow direction, and thus the air flux distribution was measured using gaseous flux meters placed at the sand surface during air sparging experiments using both two-, and three-dimensional physical models. Air flow was found to be influenced by the presence of an aqueous patch of high viscosity or suppressed surface tension in the aquifer. Air flow was selective through the low-surface tension (46.5 dyn/cm) region, whereas an aqueous patch of high viscosity (2.77 cP) was as an effective air flow barrier. Formation of a low-surface tension region in the target contaminated zone in the aquifer, before the air sparging process is inaugurated, may induce air flow through the target zone maximizing the contaminant removal efficiency of the injected air. In contrast, a region with high viscosity in the air sparging influence zone may minimize air flow through the region prohibiting the region from de-saturating.

  20. Contaminated soil concrete blocks

    NARCIS (Netherlands)

    Korte, de A.C.J.; Brouwers, H.J.H.; Limbachiya, Mukesh C.; Kew, Hsein Y.

    2009-01-01

    According to Dutch law the contaminated soil needs to be remediated or immobilised. The main focus in this article is the design of concrete blocks, containing contaminated soil, that are suitable for large production, financial feasible and meets all technical and environmental requirements. In ord