WorldWideScience

Sample records for air bases

  1. US Air Force Base Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly observations taken by U.S. Air Force personnel at bases in the United States and around the world. Foreign observations concentrated in the Middle East and...

  2. SOLVENT RECOVERY AT VANDENBERG AIR FORCE BASE

    Science.gov (United States)

    The report gives results of a feasibility study of the addition of vapor recovery and solvent purification equipment for Vandenberg Air Force Base (VAFB) to reuse the large quantities of waste solvent generated in space shuttle preparation operations. (NOTE: Operation of VAFB as ...

  3. CATS-based Air Traffic Controller Agents

    Science.gov (United States)

    Callantine, Todd J.

    2002-01-01

    This report describes intelligent agents that function as air traffic controllers. Each agent controls traffic in a single sector in real time; agents controlling traffic in adjoining sectors can coordinate to manage an arrival flow across a given meter fix. The purpose of this research is threefold. First, it seeks to study the design of agents for controlling complex systems. In particular, it investigates agent planning and reactive control functionality in a dynamic environment in which a variety perceptual and decision making skills play a central role. It examines how heuristic rules can be applied to model planning and decision making skills, rather than attempting to apply optimization methods. Thus, the research attempts to develop intelligent agents that provide an approximation of human air traffic controller behavior that, while not based on an explicit cognitive model, does produce task performance consistent with the way human air traffic controllers operate. Second, this research sought to extend previous research on using the Crew Activity Tracking System (CATS) as the basis for intelligent agents. The agents use a high-level model of air traffic controller activities to structure the control task. To execute an activity in the CATS model, according to the current task context, the agents reference a 'skill library' and 'control rules' that in turn execute the pattern recognition, planning, and decision-making required to perform the activity. Applying the skills enables the agents to modify their representation of the current control situation (i.e., the 'flick' or 'picture'). The updated representation supports the next activity in a cycle of action that, taken as a whole, simulates air traffic controller behavior. A third, practical motivation for this research is to use intelligent agents to support evaluation of new air traffic control (ATC) methods to support new Air Traffic Management (ATM) concepts. Current approaches that use large, human

  4. Indoor air quality analysis based on Hadoop

    International Nuclear Information System (INIS)

    The air of the office environment is our research object. The data of temperature, humidity, concentrations of carbon dioxide, carbon monoxide and ammonia are collected peer one to eight seconds by the sensor monitoring system. And all the data are stored in the Hbase database of Hadoop platform. With the help of HBase feature of column-oriented store and versioned (automatically add the time column), the time-series data sets are bulit based on the primary key Row-key and timestamp. The parallel computing programming model MapReduce is used to process millions of data collected by sensors. By analysing the changing trend of parameters' value at different time of the same day and at the same time of various dates, the impact of human factor and other factors on the room microenvironment is achieved according to the liquidity of the office staff. Moreover, the effective way to improve indoor air quality is proposed in the end of this paper

  5. Indoor air quality analysis based on Hadoop

    Science.gov (United States)

    Tuo, Wang; Yunhua, Sun; Song, Tian; Liang, Yu; Weihong, Cui

    2014-03-01

    The air of the office environment is our research object. The data of temperature, humidity, concentrations of carbon dioxide, carbon monoxide and ammonia are collected peer one to eight seconds by the sensor monitoring system. And all the data are stored in the Hbase database of Hadoop platform. With the help of HBase feature of column-oriented store and versioned (automatically add the time column), the time-series data sets are bulit based on the primary key Row-key and timestamp. The parallel computing programming model MapReduce is used to process millions of data collected by sensors. By analysing the changing trend of parameters' value at different time of the same day and at the same time of various dates, the impact of human factor and other factors on the room microenvironment is achieved according to the liquidity of the office staff. Moreover, the effective way to improve indoor air quality is proposed in the end of this paper.

  6. A dual pore carbon aerogel based air cathode for a highly rechargeable lithium-air battery

    OpenAIRE

    Wang, Fang; Xu, Yang-Hai; Luo, Zhong-Kuan; PANG, YAN; Liang, Chun-Sheng; Chen, Jing; Liu, Dong; Zhang, Xianghua

    2014-01-01

    International audience Cathode structure plays a vital role in lithium-air battery for that it can provide space for discharged products accommodation and free path for oxygen, e− and Li+ transport. However, pore blockage, cathode passivation and degradation all result in low discharge rates and poor cycling capability. To get rid of these predicaments, a novel highly conductive dual pore carbon aerogel based air cathode is fabricated to construct a lithium-air battery, which exhibits 18 t...

  7. Upper limits for air humidity based on human comfort

    DEFF Research Database (Denmark)

    Toftum, Jørn; Fanger, Povl Ole; Jørgensen, Anette S.

    1998-01-01

    The purpose of this study was to verify the hypothesis that insufficient respiratory cooling and a high level of skin humidity are two reasons for thermal discomfort at high air humidities, and to prescribe upper limits for humidity based on discomfort due to elevated skin humidity and insufficient...... respiratory cooling. Human subjects perceived the condition of their skin to be less acceptable with increasing skin humidity. Inhaled air was rated warmer, more stuffy and less acceptable with increasing air humidity and temperature. Based on the subjects' comfort responses, new upper limits for air humidity...

  8. LAWRENCE RISK-BASED AIR SCREENING

    Science.gov (United States)

    The pediatric asthma rate in the city of Lawrence is the highest in the state of Massachusetts. This project will evaluate whether the cumulative risks due to the air pollution in Lawrence is contributing to the high asthma rates and other respiratory problems. The project will...

  9. Place-Based Stressors Associated with Industry and Air Pollution

    OpenAIRE

    Kondo, Michelle C.; Gross-Davis, Carol Ann; May, Katlyn; Davis, Lauren O.; Johnson, Tyiesha; Mallard, Mable; Gabbadon, Alice; Sherrod, Claudia; Branas, Charles C.

    2014-01-01

    Exposure to air pollution and its sources is increasingly viewed as a psychosocial stress, however its nature is not understood. This article explores the role of the concept of place on risk perception and community stress within data collected from eight focus groups in Philadelphia, USA. Discussions focused on air pollution, a nearby oil refinery, health, and a proposal for air monitoring. We present a framework of place-based elements of risk perception that includes place identity, stigm...

  10. Studies of urban air quality using electrochemical based sensor instruments

    OpenAIRE

    Popoola, Olalekan Abdul Muiz

    2012-01-01

    Poor air quality has been projected to be the world?s top cause of environmental premature mortality by 2050 surpassing poor sanitation and dirty water (IGBP / IGAC press release, 2012 ). One of the major challenges of air quality management is how to adequately quantify both the spatial and temporal variations of pollutants for the purpose of implementing necessary mitigation measures. The work described in this thesis aims to address this problem using novel electrochemical based air qualit...

  11. Aluminum-based metal-air batteries

    Science.gov (United States)

    Friesen, Cody A.; Martinez, Jose Antonio Bautista

    2016-01-12

    Provided in one embodiment is an electrochemical cell, comprising: (i) a plurality of electrodes, comprising a fuel electrode that comprises aluminum and an air electrode that absorbs gaseous oxygen, the electrodes being operable in a discharge mode wherein the aluminum is oxidized at the fuel electrode and oxygen is reduced at the air electrode, and (ii) an ionically conductive medium, comprising an organic solvent; wherein during non-use of the cell, the organic solvent promotes formation of a protective interface between the aluminum of the fuel electrode and the ionically conductive medium, and wherein at an onset of the discharge mode, at least some of the protective interface is removed from the aluminum to thereafter permit oxidation of the aluminum during the discharge mode.

  12. A Physically Based Model for Air-Lift Pumping

    Science.gov (United States)

    FrançOis, Odile; Gilmore, Tyler; Pinto, Michael J.; Gorelick, Steven M.

    1996-08-01

    A predictive, physically based model for pumping water from a well using air injection (air-lift pumping) was developed for the range of flow rates that we explored in a series of laboratory experiments. The goal was to determine the air flow rate required to pump a specific flow rate of water in a given well, designed for in-well air stripping of volatile organic compounds from an aquifer. The model was validated against original laboratory data as well as data from the literature. A laboratory air-lift system was constructed that consisted of a 70-foot-long (21-m-long) pipe, 5.5 inches (14 cm) inside diameter, in which an air line of 1.3 inches (3.3 cm) outside diameter was placed with its bottom at different elevations above the base of the long pipe. Experiments were conducted for different levels of submergence, with water-pumping rates ranging from 5 to 70 gallons/min (0.32-4.4 L/s), and air flow ranging from 7 to 38 standard cubic feet/min (0.2-1.1 m3 STP/min). The theoretical approach adopted in the model was based on an analysis of the system as a one-dimensional two-phase flow problem. The expression for the pressure gradient includes inertial energy terms, friction, and gas expansion versus elevation. Data analysis revealed that application of the usual drift-flux model to estimate the air void fraction is not adequate for the observed flow patterns: either slug or churn flow. We propose a modified drift-flux model that accurately predicts air-lift pumping requirements for a range of conditions representative of in-well air-stripping operations.

  13. Performance and evaluation of desiccant based air conditioning system.

    Directory of Open Access Journals (Sweden)

    Gaurav S. Wani

    2014-12-01

    Full Text Available This Project work presents study and experimental analysis of Desiccant based air conditioning system.The main purpose of this project is to increase the efficency of air conditioning system.In the convenstional air conditioning system cooling coli has two load latent load and sensible load. Cooling has to cool the air and simultaneously to dehumidify it.It increases load on cooling coil and affects performance to the system. To increase the efficiency the air conditioning system desiccant materials are used at the inlet of the air conditioning test rig. Desiccant materials attract moisture based on differences in vapor pressure. Due to their enormous affinity to absorb water and considerable ability to hold water. Due to use of desiccant material load on the cooling coil reduces since moisture is absorbed by desiccant; cooling coil has to take only sensible load. Analysis is done using different desiccant materials and based on the observation, power consumption before and after desiccant is calculated. From this conclusion is made that desiccant material improves the efficiency of air conditioning test rig

  14. Real-Time Air Pollutants Rendering based on Image Processing

    Directory of Open Access Journals (Sweden)

    Demin Wang

    2011-11-01

    Full Text Available This paper presents a new method for realistic real-time rendering of air pollutants based on image processing. The air pollutants’ variable density can create many shapes of mist what can add a realistic environment to virtual scene. In order to achieve a realistic effect, we further enhance thus obtained air pollution data getting from monitor in spatial domain. In the proposed method we map the densities of air pollutants to different gray levels, and visualize them by blending those gray levels with background images. The proposed method can also visualize large-scale air pollution data from different viewpoints in real-time and provide the resulting image with any resolution theoretically, which is very important and favorable for the Internet transmission.

  15. Air-Based Remediation Workshop - Section 8 Air-Based Remediation Technology Selection Logic

    Science.gov (United States)

    Pursuant to the EPA-AIT Implementing Arrangement 7 for Technical Environmental Collaboration, Activity 11 "Remediation of Contaminated Sites," the USEPA Office of International Affairs Organized a Forced Air Remediation Workshop in Taipei to deliver expert training to the Environ...

  16. Image-based air target identification

    Science.gov (United States)

    Glais, Thierry; Ayoun, Andre

    1994-09-01

    This paper presents the main results obtained through a study on aircraft identification and attitude estimation conducted by Thomson TRT Defense for the French Ministry of Defense/Direction Generale de l'Armement/Direction des Constructions Aeronautiques. The purpose of this study was automatic assistance to aircraft identification. Indeed, modern fight airplanes are equipped with optronic systems capable of detecting and tracking enemy aircraft. In order to react quickly, the pilot must know at least the target type and possibly its identity. Recognition of the target type and attitude is obtained by matching the observed image with patterns belonging to a database. Two matching algorithms, which have been tested, are presented. The first one, based on the contour Fourier transform, needs the complete target silhouette extraction. The second one, belonging to the class of prediction and verification algorithms, compares the individual parts of the target to the database and is able to recognize the target, even when it is partially occluded or ill-segmented due to the lack of contrast between the target and its environment. An original feature of the algorithm stays in a validation process which increases the reliability of transmitted answers. In case of low confidence, no answer is provided. In addition, successive answers are consolidated. This strategy is interesting especially for image sequences where the tracked airplane achieves attitude evolution or even simply flies over various backgrounds. The main output of this study is the parametric analysis of various factors which influence performance such as contrast, background complexity, distance, attitude and type. The evaluation method, largely based on image synthesis (including image sequences), allows fine interpretation of statistical results. Misclassification errors occur when resolution is not sufficient or when complex backgrounds cause erroneous segmentation. Best results are obtained when the

  17. Modelling heat and mass transfer in a membrane-based air-to-air enthalpy exchanger

    Science.gov (United States)

    Dugaria, S.; Moro, L.; Del, D., Col

    2015-11-01

    The diffusion of total energy recovery systems could lead to a significant reduction in the energy demand for building air-conditioning. With these devices, sensible heat and humidity can be recovered in winter from the exhaust airstream, while, in summer, the incoming air stream can be cooled and dehumidified by transferring the excess heat and moisture to the exhaust air stream. Membrane based enthalpy exchangers are composed by different channels separated by semi-permeable membranes. The membrane allows moisture transfer under vapour pressure difference, or water concentration difference, between the two sides and, at the same time, it is ideally impermeable to air and other contaminants present in exhaust air. Heat transfer between the airstreams occurs through the membrane due to the temperature gradient. The aim of this work is to develop a detailed model of the coupled heat and mass transfer mechanisms through the membrane between the two airstreams. After a review of the most relevant models published in the scientific literature, the governing equations are presented and some simplifying assumptions are analysed and discussed. As a result, a steady-state, two-dimensional finite difference numerical model is setup. The developed model is able to predict temperature and humidity evolution inside the channels. Sensible and latent heat transfer rate, as well as moisture transfer rate, are determined. A sensitive analysis is conducted in order to determine the more influential parameters on the thermal and vapour transfer.

  18. A physically based analytical spatial air temperature and humidity model

    Science.gov (United States)

    Yang, Yang; Endreny, Theodore A.; Nowak, David J.

    2013-09-01

    Spatial variation of urban surface air temperature and humidity influences human thermal comfort, the settling rate of atmospheric pollutants, and plant physiology and growth. Given the lack of observations, we developed a Physically based Analytical Spatial Air Temperature and Humidity (PASATH) model. The PASATH model calculates spatial solar radiation and heat storage based on semiempirical functions and generates spatially distributed estimates based on inputs of topography, land cover, and the weather data measured at a reference site. The model assumes that for all grids under the same mesoscale climate, grid air temperature and humidity are modified by local variation in absorbed solar radiation and the partitioning of sensible and latent heat. The model uses a reference grid site for time series meteorological data and the air temperature and humidity of any other grid can be obtained by solving the heat flux network equations. PASATH was coupled with the USDA iTree-Hydro water balance model to obtain evapotranspiration terms and run from 20 to 29 August 2010 at a 360 m by 360 m grid scale and hourly time step across a 285 km2 watershed including the urban area of Syracuse, NY. PASATH predictions were tested at nine urban weather stations representing variability in urban topography and land cover. The PASATH model predictive efficiency R2 ranged from 0.81 to 0.99 for air temperature and 0.77 to 0.97 for dew point temperature. PASATH is expected to have broad applications on environmental and ecological models.

  19. Li-air batteries having ether-based electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Amine, Khalil; Curtiss, Larry A; Lu, Jun; Lau, Kah Chun; Zhang, Zhengcheng; Sun, Yang-Kook

    2015-03-03

    A lithium-air battery includes a cathode including a porous active carbon material, a separator, an anode including lithium, and an electrolyte including a lithium salt and polyalkylene glycol ether, where the porous active carbon material is free of a metal-based catalyst.

  20. Fiber-optic based instrumentation for water and air monitoring

    International Nuclear Information System (INIS)

    In this paper real-time in-situ water and air monitoring capabilities based on fiber-optic sensing technology are described. This relatively new technology combines advances in fiber optic and optoelectronics with chemical spectorscopic techniques to enable field environmental monitoring of sub ppm quantities of specific pollutants. The advantages of this technology over conventional sampling methods are outlined. As it is the more developed area the emphasis is on water quality monitoring rather than air. Examples of commercially available, soon-to be available and laboratory systems are presented. One such example is a system used to detect hydrocarbon spills and leaking of underground hydrocarbon storage tanks

  1. Geothermal-resource verification for Air Force bases

    Energy Technology Data Exchange (ETDEWEB)

    Grant, P.R. Jr.

    1981-06-01

    This report summarizes the various types of geothermal energy reviews some legal uncertainties of the resource and then describes a methodology to evaluate geothermal resources for applications to US Air Force bases. Estimates suggest that exploration costs will be $50,000 to $300,000, which, if favorable, would lead to drilling a $500,000 exploration well. Successful identification and development of a geothermal resource could provide all base, fixed system needs with an inexpensive, renewable energy source.

  2. Time-based collision risk modeling for air traffic management

    Science.gov (United States)

    Bell, Alan E.

    Since the emergence of commercial aviation in the early part of last century, economic forces have driven a steadily increasing demand for air transportation. Increasing density of aircraft operating in a finite volume of airspace is accompanied by a corresponding increase in the risk of collision, and in response to a growing number of incidents and accidents involving collisions between aircraft, governments worldwide have developed air traffic control systems and procedures to mitigate this risk. The objective of any collision risk management system is to project conflicts and provide operators with sufficient opportunity to recognize potential collisions and take necessary actions to avoid them. It is therefore the assertion of this research that the currency of collision risk management is time. Future Air Traffic Management Systems are being designed around the foundational principle of four dimensional trajectory based operations, a method that replaces legacy first-come, first-served sequencing priorities with time-based reservations throughout the airspace system. This research will demonstrate that if aircraft are to be sequenced in four dimensions, they must also be separated in four dimensions. In order to separate aircraft in four dimensions, time must emerge as the primary tool by which air traffic is managed. A functional relationship exists between the time-based performance of aircraft, the interval between aircraft scheduled to cross some three dimensional point in space, and the risk of collision. This research models that relationship and presents two key findings. First, a method is developed by which the ability of an aircraft to meet a required time of arrival may be expressed as a robust standard for both industry and operations. Second, a method by which airspace system capacity may be increased while maintaining an acceptable level of collision risk is presented and demonstrated for the purpose of formulating recommendations for procedures

  3. Marin recipientundersøgelse ved Thule Air Base 2002

    DEFF Research Database (Denmark)

    Glahder, C. M.; Asmund, G.; Mayer, P.; Lassen, P.; Strand, J.; Riget, F. F.

    I 2002 gennemførte Danmarks Miljøundersøgelser en recipientundersøgelse ud for Thule Air Base (TAB) for at vurdere, om aktiviteterne og specielt de efterladte dumpe på TAB har belastet det marine miljø med forurenende stoffer. Undersøgelsen viser, at der findes flere forurenings-kilder som f. eks...... findes i Wolstenholme Fjord og Bylot Sund området og regionen som helhed. Det væsentligste forureningsproblem i forbindelse med akti-viteterne på Thule Air Base synes at være PCBerne, idet denne kontaminantgruppe viser forhøjede koncentrationer på 2-30 gange både lokalt og regionalt. PCB...

  4. Improved air ventilation rate estimation based on a statistical model

    International Nuclear Information System (INIS)

    A new approach to air ventilation rate estimation from CO measurement data is presented. The approach is based on a state-space dynamic statistical model, allowing for quick and efficient estimation. Underlying computations are based on Kalman filtering, whose practical software implementation is rather easy. The key property is the flexibility of the model, allowing various artificial regimens of CO level manipulation to be treated. The model is semi-parametric in nature and can efficiently handle time-varying ventilation rate. This is a major advantage, compared to some of the methods which are currently in practical use. After a formal introduction of the statistical model, its performance is demonstrated on real data from routine measurements. It is shown how the approach can be utilized in a more complex situation of major practical relevance, when time-varying air ventilation rate and radon entry rate are to be estimated simultaneously from concurrent radon and CO measurements

  5. Eielson Air Force Base Operable Unit 2 baseline risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, R.E.; Jarvis, T.T.; Jarvis, M.R.; Whelan, G.

    1994-10-01

    Operable Unit 2 at Eielson Air Force Base (AFB) near Fairbanks, is one of several operable units characterized by petroleum, oil, and lubricant contamination, and by the presence of organic products floating at the water table, as a result of Air Force operations since the 1940s. The base is approximately 19,270 acres in size, and comprises the areas for military operations and a residential neighborhood for military dependents. Within Operable Unit 2, there are seven source areas. These source areas were grouped together primarily because of the contaminants released and hence are not necessarily in geographical proximity. Source area ST10 includes a surface water body (Hardfill Lake) next to a fuel spill area. The primary constituents of concern for human health include benzene, toluene, ethylbenzene, and xylenes (BTEX). Monitored data showed these volatile constituents to be present in groundwater wells. The data also showed an elevated level of trace metals in groundwater.

  6. SAMIRA - SAtellite based Monitoring Initiative for Regional Air quality

    Science.gov (United States)

    Schneider, Philipp; Stebel, Kerstin; Ajtai, Nicolae; Diamandi, Andrei; Horalek, Jan; Nicolae, Doina; Stachlewska, Iwona; Zehner, Claus

    2016-04-01

    Here, we present a new ESA-funded project entitled Satellite based Monitoring Initiative for Regional Air quality (SAMIRA), which aims at improving regional and local air quality monitoring through synergetic use of data from present and upcoming satellites, traditionally used in situ air quality monitoring networks and output from chemical transport models. Through collaborative efforts in four countries, namely Romania, Poland, the Czech Republic and Norway, all with existing air quality problems, SAMIRA intends to support the involved institutions and associated users in their national monitoring and reporting mandates as well as to generate novel research in this area. Despite considerable improvements in the past decades, Europe is still far from achieving levels of air quality that do not pose unacceptable hazards to humans and the environment. Main concerns in Europe are exceedances of particulate matter (PM), ground-level ozone, benzo(a)pyrene (BaP) and nitrogen dioxide (NO2). While overall sulfur dioxide (SO2) emissions have decreased in recent years, regional concentrations can still be high in some areas. The objectives of SAMIRA are to improve algorithms for the retrieval of hourly aerosol optical depth (AOD) maps from SEVIRI, and to develop robust methods for deriving column- and near-surface PM maps for the study area by combining satellite AOD with information from regional models. The benefit to existing monitoring networks (in situ, models, satellite) by combining these datasets using data fusion methods will be tested for satellite-based NO2, SO2, and PM/AOD. Furthermore, SAMIRA will test and apply techniques for downscaling air quality-related EO products to a spatial resolution that is more in line with what is generally required for studying urban and regional scale air quality. This will be demonstrated for a set of study sites that include the capitals of the four countries and the highly polluted areas along the border of Poland and the

  7. Place-based stressors associated with industry and air pollution.

    Science.gov (United States)

    Kondo, Michelle C; Gross-Davis, Carol Ann; May, Katlyn; Davis, Lauren O; Johnson, Tyiesha; Mallard, Mable; Gabbadon, Alice; Sherrod, Claudia; Branas, Charles C

    2014-07-01

    Exposure to air pollution and its sources is increasingly viewed as a psychosocial stress, however its nature is not understood. This article explores the role of the concept of place on risk perception and community stress within data collected from eight focus groups in Philadelphia, USA. Discussions focused on air pollution, a nearby oil refinery, health, and a proposal for air monitoring. We present a framework of place-based elements of risk perception that includes place identity, stigma and social control. Our findings indicate that air pollution contributes to physical and psychosocial conditions that act as community-level social stressors. Findings also suggest that programs which seek to change behaviors and gather or spread information on issues such as pollution and other environmental concerns will be challenged unless they directly address: (1) the public׳s identification with a place or industry, (2) immediate environmental stressors such as abandonment, waste and odors, and (3) public perceptions of lack of social control and fear of displacement. PMID:24721738

  8. Eielson Air Force Base OU-1 baseline risk assessment

    International Nuclear Information System (INIS)

    This Baseline Risk Assessment report is the second volume in a set of three volumes for operable Unit 1 (OU-1). The companion documents contain the Remedial Investigation and the Feasibility Study. Operable Unit 1 (OU-1) is one of several groups of hazardous waste sites located at Eielson Air Force Base (AFB) near Fairbanks, Alaska. The operable units at Eielson are typically characterized by petroleum, oil, lubricant/solvent contamination, and by the presence of organics floating at the water table. In 1989 and 1990, firms under contract to the Air Force conducted field studies to gather information about the extent of chemical contamination in soil, groundwater, and soil air pore space (soil gas) at the site. This report documents the results of a baseline risk assessment, which uses the 1989 and 1991 site characterization database to quantify the potential human health risk associated with past Base industrial activities in the vicinity of OU-1. Background data collected in 1992 were also used in the preparation of this report

  9. Plastic media blasting activities at Hill Air Force Base

    Science.gov (United States)

    Christensen, J. D.

    1993-03-01

    Hill Air Force Base in Utah developed plastic media blasting (PMB) paint removal process for removing paint from Air Force aircraft. The development of the process involved extensive testing of various abrasives and subsequent parameters to end up with an approved production process. Hill AFB has been using PMB in a production mode since 1985, and completely discontinued chemical stripping of airframes in 1989. We have recently installed and began operating a fully automated PMB facility that utilizes two nine-axis robots to strip an aircraft. This system has enabled us to further reduce the manhours required to strip an aircraft, and also allowed us to remove the employee from the blasting atmosphere into a control room. We have, and will continue to realize, significant environmental and economic savings by using PMB. Hill is also actively involved with the development of future paint stripping technologies.

  10. Application of Residual-Based EWMA Control Charts for Detecting Faults in Variable-Air-Volume Air Handling Unit System

    OpenAIRE

    Haitao Wang

    2016-01-01

    An online robust fault detection method is presented in this paper for VAV air handling unit and its implementation. Residual-based EWMA control chart is used to monitor the control processes of air handling unit and detect faults of air handling unit. In order to provide a level of robustness with respect to modeling errors, control limits are determined by incorporating time series model uncertainty in EWMA control chart. The fault detection method proposed was tested and validated using re...

  11. Air

    Science.gov (United States)

    ... house) Industrial emissions (like smoke and chemicals from factories) Household cleaners (spray cleaners, air fresheners) Car emissions (like carbon monoxide) *All of these things make up “particle pollution.” They mostly come from cars, trucks, buses, and ...

  12. HADOOP-BASED DISTRIBUTED SYSTEM FOR ONLINE PREDICTION OF AIR POLLUTION BASED ON SUPPORT VECTOR MACHINE

    Directory of Open Access Journals (Sweden)

    Z. Ghaemi

    2015-12-01

    Full Text Available The critical impact of air pollution on human health and environment in one hand and the complexity of pollutant concentration behavior in the other hand lead the scientists to look for advance techniques for monitoring and predicting the urban air quality. Additionally, recent developments in data measurement techniques have led to collection of various types of data about air quality. Such data is extremely voluminous and to be useful it must be processed at high velocity. Due to the complexity of big data analysis especially for dynamic applications, online forecasting of pollutant concentration trends within a reasonable processing time is still an open problem. The purpose of this paper is to present an online forecasting approach based on Support Vector Machine (SVM to predict the air quality one day in advance. In order to overcome the computational requirements for large-scale data analysis, distributed computing based on the Hadoop platform has been employed to leverage the processing power of multiple processing units. The MapReduce programming model is adopted for massive parallel processing in this study. Based on the online algorithm and Hadoop framework, an online forecasting system is designed to predict the air pollution of Tehran for the next 24 hours. The results have been assessed on the basis of Processing Time and Efficiency. Quite accurate predictions of air pollutant indicator levels within an acceptable processing time prove that the presented approach is very suitable to tackle large scale air pollution prediction problems.

  13. Hadoop-Based Distributed System for Online Prediction of Air Pollution Based on Support Vector Machine

    Science.gov (United States)

    Ghaemi, Z.; Farnaghi, M.; Alimohammadi, A.

    2015-12-01

    The critical impact of air pollution on human health and environment in one hand and the complexity of pollutant concentration behavior in the other hand lead the scientists to look for advance techniques for monitoring and predicting the urban air quality. Additionally, recent developments in data measurement techniques have led to collection of various types of data about air quality. Such data is extremely voluminous and to be useful it must be processed at high velocity. Due to the complexity of big data analysis especially for dynamic applications, online forecasting of pollutant concentration trends within a reasonable processing time is still an open problem. The purpose of this paper is to present an online forecasting approach based on Support Vector Machine (SVM) to predict the air quality one day in advance. In order to overcome the computational requirements for large-scale data analysis, distributed computing based on the Hadoop platform has been employed to leverage the processing power of multiple processing units. The MapReduce programming model is adopted for massive parallel processing in this study. Based on the online algorithm and Hadoop framework, an online forecasting system is designed to predict the air pollution of Tehran for the next 24 hours. The results have been assessed on the basis of Processing Time and Efficiency. Quite accurate predictions of air pollutant indicator levels within an acceptable processing time prove that the presented approach is very suitable to tackle large scale air pollution prediction problems.

  14. Geothermally Coupled Well-Based Compressed Air Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Casie L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bearden, Mark D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Horner, Jacob A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cabe, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Appriou, Delphine [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B. Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-20

    . This project assessed the technical and economic feasibility of implementing geothermally coupled well-based CAES for grid-scale energy storage. Based on an evaluation of design specifications for a range of casing grades common in U.S. oil and gas fields, a 5-MW CAES project could be supported by twenty to twenty-five 5,000-foot, 7-inch wells using lower-grade casing, and as few as eight such wells for higher-end casing grades. Using this information, along with data on geothermal resources, well density, and potential future markets for energy storage systems, The Geysers geothermal field was selected to parameterize a case study to evaluate the potential match between the proven geothermal resource present at The Geysers and the field’s existing well infrastructure. Based on calculated wellbore compressed air mass, the study shows that a single average geothermal production well could provide enough geothermal energy to support a 15.4-MW (gross) power generation facility using 34 to 35 geothermal wells repurposed for compressed air storage, resulting in a simplified levelized cost of electricity (sLCOE) estimated at 11.2 ¢/kWh (Table S.1). Accounting for the power loss to the geothermal power project associated with diverting geothermal resources for air heating results in a net 2-MW decrease in generation capacity, increasing the CAES project’s sLCOE by 1.8 ¢/kWh.

  15. Geothermally Coupled Well-Based Compressed Air Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, C L [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bearden, Mark D [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Horner, Jacob A [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Appriou, Delphine [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    . This project assessed the technical and economic feasibility of implementing geothermally coupled well-based CAES for grid-scale energy storage. Based on an evaluation of design specifications for a range of casing grades common in U.S. oil and gas fields, a 5-MW CAES project could be supported by twenty to twenty-five 5,000-foot, 7-inch wells using lower-grade casing, and as few as eight such wells for higher-end casing grades. Using this information, along with data on geothermal resources, well density, and potential future markets for energy storage systems, The Geysers geothermal field was selected to parameterize a case study to evaluate the potential match between the proven geothermal resource present at The Geysers and the field’s existing well infrastructure. Based on calculated wellbore compressed air mass, the study shows that a single average geothermal production well could provide enough geothermal energy to support a 15.4-MW (gross) power generation facility using 34 to 35 geothermal wells repurposed for compressed air storage, resulting in a simplified levelized cost of electricity (sLCOE) estimated at 11.2 ¢/kWh (Table S.1). Accounting for the power loss to the geothermal power project associated with diverting geothermal resources for air heating results in a net 2-MW decrease in generation capacity, increasing the CAES project’s sLCOE by 1.8 ¢/kWh.

  16. [Calculating method for crop water requirement based on air temperature].

    Science.gov (United States)

    Tao, Guo-Tong; Wang, Jing-Lei; Nan, Ji-Qin; Gao, Yang; Chen, Zhi-Fang; Song, Ni

    2014-07-01

    The importance of accurately estimating crop water requirement for irrigation forecast and agricultural water management has been widely recognized. Although it has been broadly adopted to determine crop evapotranspiration (ETc) via meteorological data and crop coefficient, most of the data in whether forecast are qualitative rather than quantitative except air temperature. Therefore, in this study, how to estimate ETc precisely only using air temperature data in forecast was explored, the accuracy of estimation based on different time scales was also investigated, which was believed to be beneficial to local irrigation forecast as well as optimal management of water and soil resources. Three parameters of Hargreaves equation and two parameters of McClound equation were corrected by using meteorological data of Xinxiang from 1970 to 2010, and Hargreaves equation was selected to calculate reference evapotranspiration (ET0) during the growth period of winter wheat. A model of calculating crop water requirement was developed to predict ETc at time scales of 1, 3, and 7 d intervals through combining Hargreaves equation and crop coefficient model based on air temperature. Results showed that the correlation coefficients between measured and predicted values of ETc reached 0.883 (1 d), 0.933 (3 d), and 0.959 (7 d), respectively. The consistency indexes were 0.94, 0.95 and 0.97, respectively, which showed that forecast error decreased with the increasing time scales. Forecasted accuracy with an error less than 1 mm x d(-1) was more than 80%, and that less than 2 mm x d(-1) was greater than 90%. This study provided sound basis for irrigation forecast and agricultural management in irrigated areas since the forecasted accuracy at each time scale was relatively high. PMID:25345053

  17. Air

    International Nuclear Information System (INIS)

    In recent years several regulations and standards for air quality and limits for air pollution were issued or are in preparation by the European Union, which have severe influence on the environmental monitoring and legislation in Austria. This chapter of the environmental control report of Austria gives an overview about the legal situation of air pollution control in the European Union and in specific the legal situation in Austria. It gives a comprehensive inventory of air pollution measurements for the whole area of Austria of total suspended particulates, ozone, volatile organic compounds, nitrogen oxides, sulfur dioxide, carbon monoxide, heavy metals, benzene, dioxin, polycyclic aromatic hydrocarbons and eutrophication. For each of these pollutants the measured emission values throughout Austria are given in tables and geographical charts, the environmental impact is discussed, statistical data and time series of the emission sources are given and legal regulations and measures for an effective environmental pollution control are discussed. In particular the impact of fossil-fuel power plants on the air pollution is analyzed. (a.n.)

  18. A new circulation type classification based upon Lagrangian air trajectories

    Science.gov (United States)

    Ramos, Alexandre; Sprenger, Michael; Wernli, Heini; Durán-Quesada, Ana María; Lorenzo, Maria Nieves; Gimeno, Luis

    2014-10-01

    A new classification method of the large-scale circulation characteristic for a specific target area (NW Iberian Peninsula) is presented, based on the analysis of 90-h backward trajectories arriving in this area calculated with the 3-D Lagrangian particle dispersion model FLEXPART. A cluster analysis is applied to separate the backward trajectories in up to five representative air streams for each day. Specific measures are then used to characterise the distinct air streams (e.g., curvature of the trajectories, cyclonic or anticyclonic flow, moisture evolution, origin and length of the trajectories). The robustness of the presented method is demonstrated in comparison with the Eulerian Lamb weather type classification. A case study of the 2003 heatwave is discussed in terms of the new Lagrangian circulation and the Lamb weather type classifications. It is shown that the new classification method adds valuable information about the pertinent meteorological conditions, which are missing in an Eulerian approach. The new method is climatologically evaluated for the five-year time period from December 1999 to November 2004. The ability of the method to capture the inter-seasonal circulation variability in the target region is shown. Furthermore, the multi-dimensional character of the classification is shortly discussed, in particular with respect to inter-seasonal differences. Finally, the relationship between the new Lagrangian classification and the precipitation in the target area is studied.

  19. A new circulation type classification based upon Lagrangian air trajectories

    Directory of Open Access Journals (Sweden)

    Alexandre M. Ramos

    2014-10-01

    Full Text Available A new classification method of the large-scale circulation characteristic for a specific target area (NW Iberian Peninsula is presented, based on the analysis of 90-h backward trajectories arriving in this area calculated with the 3-D Lagrangian particle dispersion model FLEXPART. A cluster analysis is applied to separate the backward trajectories in up to five representative air streams for each day. Specific measures are then used to characterise the distinct air streams (e.g., curvature of the trajectories, cyclonic or anticyclonic flow, moisture evolution, origin and length of the trajectories. The robustness of the presented method is demonstrated in comparison with the Eulerian Lamb weather type classification.A case study of the 2003 heatwave is discussed in terms of the new Lagrangian circulation and the Lamb weather type classifications. It is shown that the new classification method adds valuable information about the pertinent meteorological conditions, which are missing in an Eulerian approach. The new method is climatologically evaluated for the five-year time period from December 1999 to November 2004. The ability of the method to capture the inter-seasonal circulation variability in the target region is shown. Furthermore, the multi-dimensional character of the classification is shortly discussed, in particular with respect to inter-seasonal differences. Finally, the relationship between the new Lagrangian classification and the precipitation in the target area is studied.

  20. Radiation contamination air monitoring basing on NATO normalization documents

    International Nuclear Information System (INIS)

    The conditions and actions connected with conducting of the air radiation monitoring have been described in the article. The staff and tasks of special military troops for air sampling as well as commonly used methods for air sampling have been presented and discussed

  1. Dehumidifying Air for Cooling & Refrigeration: Nanotechnology Membrane-based Dehumidifier

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-10-01

    Broad Funding Opportunity Announcement Project: Dais is developing a product called NanoAir which dehumidifies the air entering a building to make air conditioning more energy efficient. The system uses a polymer membrane that allows moisture but not air to pass through it. A vacuum behind the membrane pulls water vapor from the air, and a second set of membranes releases the water vapor outside. The membrane’s high selectivity translates into reduced energy consumption for dehumidification. Dais’ design goals for NanoAir are the use of proprietary materials and processes and industry-standard installation techniques. NanoAir is also complementary to many other energy saving strategies, including energy recovery.

  2. Identification of Chlorinated Solvent Sources in the Indoor Air of Private Residences around Hill Air Force Base, Utah

    OpenAIRE

    Hall, Andrew Jensen

    2008-01-01

    Volatile chlorinated solvents such as trichloroethylene (TCE), 1,2 dichloroethane (1,2 DCA), and perchloroethylene (PCE) have been identified in the indoor air of residences located near Hill Air Force Base (AFB), Utah. These vapors can originate from either volatilization of contaminates from shallow contaminated groundwater and transport into residences or from sources within the residence. The focus of the thesis was the development of a testing strategy for determining sources of TCE, 1,2...

  3. Sitewide feasibility study Eielson Air Force Base, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Last, G.V.; Lanigan, D.C.; Josephson, G.B.; Bagaasen, L.M.

    1995-09-01

    The Sitewide Feasibility Study (FS) is required under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), the National Contingency Plan (NCP), and the Federal Facility Agreement (FFA) for Eielson Air Force Base (AFB). It is based on findings presented in the Sitewide Remedial Investigation (RI) Report (USAF 1995a), and the Sitewide Baseline Risk Assessment (BLRA) Report (USAF 1995b). Under the FFA, 64 potential source areas were placed in one of six operable units, based on similar contaminant and environmental characteristics, or were included for evaluation under a Source Evaluation Report (SER). The sitewide RI was directed at contamination that was not confined to an operable unit (OU) or SER source area. The objectives of the sitewide RI were to: Provide information about site characteristics to support individual OU RI/FS efforts and the sitewide RI/FS, including site hydrogeology and determination of background soil and groundwater characteristics; identify and characterize contamination that is not confined or attributable to a specific source area through sitewide monitoring of groundwater and surface water; evaluate cumulative risks to human health and the environment from contamination on a sitewide basis; and provide a mechanism for continued cohesive sitewide monitoring.

  4. The system of thermoelectric air conditioning based on permeable thermoelements

    OpenAIRE

    Cherkez R. G.

    2009-01-01

    There is thermoelectric air conditioner unit on the basis of permeable cooling thermoelements presented. In thermoelectric air conditioner unit the thermoelectric effects and the Joule–Thomson effect have been used for the air stream cooling. There have been described the method of temperature distribution analysis, the determinations of energy conversion power characteristics and design style of permeable thermoelement with maximum coefficient of performance described. The results of compute...

  5. FUZZY MODELLING OF LIQUID DESICCANT BASED AIR DEHUMIDIFICATION SYSTEM

    OpenAIRE

    Harpreet Singh; Jagdev Singh; Simranpreet Singh Gill

    2011-01-01

    This paper describes the Mamdani fuzzy models of heat exchanger and dehumidifier (absorber) of an air dehumidification process occurring in a packed bed using liquid desiccant. Temperature of water used ascooling medium at the inlet of heat exchanger, temperature of desiccant solution(from the regenerator) ,inlet air humidity ratio of humid air, flow rate per unit cross-sectional area, temperature of desiccant solution(from the heat exchanger) have been taken as different variables for packed...

  6. Model Based Diagnosis of an Air Source Heat Pump

    OpenAIRE

    Alfredsson, Sandra

    2011-01-01

    The purpose of a heat pump is to control the temperature of an enclosed space. This is done by using heat exchange with a heat source, for example water, air, or ground. In the air source heat pump that has been studied during this master thesis, a refrigerant exchanges heat with the outdoor air and with a water distribution system. The heat pump is controlled through the circuit containing the refrigerant and it is therefore crucial that this circuit is functional. To ensure this, a diagnosi...

  7. SEPARATION AND ANALYSIS OF OIL BASED AEROSOLS FROM COMPRESSED AIR

    Directory of Open Access Journals (Sweden)

    N.Azhaguvel,

    2011-04-01

    Full Text Available Air braking system is one of the critical component in ensuring the safety of the commercial vehicle. Quality of air supplied to the brake system should be dry and free form impurities. Some amountof lubrication oil of the compressor will get carried along with the compressed air. Oil which was carried away will be in the form of aerosols. These oil aerosols will reduce the absorptive capacity of the desiccant of air dryer, wear out of valves of brake chamber and also erode system components. This work focus on developing a concept to remove the oil aerosols. Multiphase CFD simulation has been carried out to find the efficiency of filter in removing the oil aerosols, and pressure drop across the filter. This work also includes developing a prototype of filter and performing experimental analysis. Both the results of CFD analysis as well as the experimental analysis are matching.

  8. FUZZY MODELLING OF LIQUID DESICCANT BASED AIR DEHUMIDIFICATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Harpreet Singh,

    2011-04-01

    Full Text Available This paper describes the Mamdani fuzzy models of heat exchanger and dehumidifier (absorber of an air dehumidification process occurring in a packed bed using liquid desiccant. Temperature of water used ascooling medium at the inlet of heat exchanger, temperature of desiccant solution(from the regenerator ,inlet air humidity ratio of humid air, flow rate per unit cross-sectional area, temperature of desiccant solution(from the heat exchanger have been taken as different variables for packed bed using liquid desiccant .Mamdani Fuzzy model is developed using the above mentioned variables to predict the water condensation rate from the air to the desiccant solution in terms of known operating parameters. The model predictions were compared against a reliable set of experimental data available in the literature and respective mathematical models for their validation. Integrated fuzzy model was also developed forliquid desiccant system

  9. Avian survey and field guide for Osan Air Base, Korea.

    Energy Technology Data Exchange (ETDEWEB)

    Levenson, J.

    2006-12-05

    This report summarizes the results of the avian surveys conducted at Osan Air Base (AB). This ongoing survey is conducted to comply with requirements of the Environmental Governing Standards (EGS) for the Republic of Korea, the Integrated Natural Resources Management Plan (INRMP) for Osan AB, and the 51st Fighter Wing's Bird Aircraft Strike Hazard (BASH) Plan. One hundred ten bird species representing 35 families were identified and recorded. Seven species are designated as Natural Monuments, and their protection is accorded by the Korean Ministry of Culture and Tourism. Three species appear on the Korean Association for Conservation of Nature's (KACN's) list of Reserved Wild Species and are protected by the Korean Ministry of Environment. Combined, ten different species are Republic of Korea (ROK)-protected. The primary objective of the avian survey at Osan AB was to determine what species of birds are present on the airfield and their respective habitat requirements during the critical seasons of the year. This requirement is specified in Annex J.14.c of the 51st Fighter BASH Plan 91-212 (51 FW OPLAN 91-212). The second objective was to initiate surveys to determine what bird species are present on Osan AB throughout the year and from the survey results, determine if threatened, endangered, or other Korean-listed bird species are present on Osan AB. This overall census satisfies Criterion 13-3.e of the EGS for Korea. The final objective was to formulate management strategies within Osan AB's operational requirements to protect and enhance habitats of known threatened, endangered, and ROK-protected species in accordance with EGS Criterion 13-3.a that are also favorable for the reproduction of indigenous species in accordance with the EGS Criterion 13-3.h.

  10. Avian Field guide and checklist for Kunsan Air Base, Korea.

    Energy Technology Data Exchange (ETDEWEB)

    Levenson, J. B.; Environmental Assessment

    2005-11-15

    This report summarizes the results of the avian surveys conducted at Kunsan Air Base (AB). This on-going survey is conducted to comply with requirements of the Environmental Governing Standards (EGS) for the Republic of Korea, the Integrated Natural Resources Management Plan (INRMP) for Kunsan AB, and the 8th Fighter Wing's Bird Aircraft Strike Hazard (BASH) Plan. One hundred sixteen bird species representing 34 families were identified and recorded. Seven species are designated as Cultural Property Monuments, and their protection is accorded by the Korean Ministry of Culture and Tourism. Six species appear on the Korean Association for Conservation of Nature's(KACN's) list of Reserved Wild Species and are protected by the Korean Ministry of Environment. Combined, only ten different species are Republic of Korea (ROK)-protected because the Eurasian Spoonbill, Peregrine Falcon, and Eurasian Oystercatcher are listed by both agencies. The primary objective of the avian survey at Kunsan AB was to determine what species of birds are present on the airfield and their respective habitat requirements during the critical seasons of the year. This requirement is specified in Annex C.4.a.(1-4) of the 8th Fighter Wing BASH Plan(8FWOPLAN 91-202). The second objective was to initiate surveys to determine what bird species are present on Kunsan AB throughout the year, and from the survey results determine if threatened, endangered, or other Korean-listed bird species are present on Kunsan AB. This overall census satisfies Criterion 13-3.e of the EGS for Korea. The final objective was to formulate management strategies within Kunsan AB's operational requirements to protect and enhance habitats of known threatened, endangered, and ROK-protected species in accordance with EGS Criterion 13-3.a and also that are favorable for the reproduction of indigenous species in accordance with the EGS Criterion 13-3.h.

  11. Tolerance Levels of Roadside Trees to Air Pollutants Based on Relative Growth Rate and Air Pollution Tolerance Index

    Directory of Open Access Journals (Sweden)

    SULISTIJORINI

    2008-09-01

    Full Text Available Motor vehicles release carbon monoxide, nitrogen dioxide, sulphur dioxide, and particulate matters to the air as pollutants. Vegetation can absorb these pollutants through gas exchange processes. The objective of this study was to examine the combination of the relative growth rate (RGR and physiological responses in determining tolerance levels of plant species to air pollutants. Physiological responses were calculated as air pollution tolerance index (APTI. Eight roadside tree species were placed at polluted (Jagorawi highway and unpolluted (Sindangbarang field area. Growth and physiological parameters of the trees were recorded, including plant height, leaf area, total ascorbate, total chlorophyll, leaf-extract pH, and relative water content. Scoring criteria for the combination of RGR and APTI method was given based on means of the two areas based on two-sample t test. Based on the total score of RGR and APTI, Lagerstroemia speciosa was categorized as a tolerant species; and Pterocarpus indicus, Delonix regia, Swietenia macrophylla were categorized as moderately tolerant species. Gmelina arborea, Cinnamomum burmanii, and Mimusops elengi were categorized as intermediate tolerant species. Lagerstroemia speciosa could be potentially used as roadside tree. The combination of RGR and APTI value was better to determinate tolerance level of plant to air pollutant than merely APTI method.

  12. Mortality and hospitalization incidence among employees of the Thule air-base 1963-1971

    International Nuclear Information System (INIS)

    January 21th 1968 an American B52 bomber with nuclear weapons aboard crashed close to the Thule air-base on Greenland. This report considers mortality and hospitalization incidence among the 4322 persons employed at the air-base. (EG)

  13. The system of thermoelectric air conditioning based on permeable thermoelements

    Directory of Open Access Journals (Sweden)

    Cherkez R. G.

    2009-04-01

    Full Text Available There is thermoelectric air conditioner unit on the basis of permeable cooling thermoelements presented. In thermoelectric air conditioner unit the thermoelectric effects and the Joule–Thomson effect have been used for the air stream cooling. There have been described the method of temperature distribution analysis, the determinations of energy conversion power characteristics and design style of permeable thermoelement with maximum coefficient of performance described. The results of computer analysis concerning the application of the thermoelement legs material on the basis of Bi2Te3 have shown the possibility of coefficient of performance increase by a factor of 1,6—1,7 as compared with conventional thermoelectric systems.

  14. Experimental investigation of the influence of the air jet trajectory on convective heat transfer in buildings equipped with air-based and radiant cooling systems

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    2015-01-01

    -state and dynamic conditions. With the air-based cooling system, a dependency of the convective heat transfer on the air jet trajectory has been observed. New correlations have been developed, introducing a modified Archimedes number to account for the air flow pattern. The accuracy of the new correlations has been...

  15. Air Conditioning, Heating, and Refrigeration. Competency-Based Curriculum Manual.

    Science.gov (United States)

    Gourley, Frank A., Jr.

    This manual was developed to serve as an aid to administrators and instructors involved with postsecondary air conditioning, heating, and refrigeration programs. The first of six chapters contains general information on program implementation, the curriculum design, facilities and equipment requirements, and textbooks and references. Chapter 2…

  16. Independent air dehumidification with membrane-based total heat recovery: Modeling and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Liang, C.H.; Zhang, L.Z.; Pei, L.X. [Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Education Ministry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China)

    2010-03-15

    Fresh air ventilation is helpful for the control of epidemic respiratory disease like Swine flu (H1N1). Fresh air dehumidification systems with energy recovery measures are the key equipments to realize this goal. As a solution, an independent air dehumidification system with membrane-based total heat recovery is proposed. A prototype is built in laboratory. A detailed model is proposed and a cell-by-cell simulation technique is used in simulation to evaluate performances. The results indicate that the model can predict the system accurately. The effects of varying operating conditions like air-flow rates, temperature, and air relative humidity on the air dehumidification rates, cooling powers, electric power consumption, and thermal coefficient of performance are evaluated. The prototype has a COP of 6.8 under nominal operating conditions with total heat recovery. The performance is rather robust to outside weather conditions with a membrane-based total heat exchanger. (author)

  17. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air Part 1: Sorbent-based air monitoring options.

    Science.gov (United States)

    Woolfenden, Elizabeth

    2010-04-16

    Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Target compounds range in volatility from acetylene and freons to phthalates and PCBs and include apolar, polar and reactive species. Airborne vapour concentrations will vary depending on the nature of the location, nearby pollution sources, weather conditions, etc. Levels can range from low percent concentrations in stack and vent emissions to low part per trillion (ppt) levels in ultra-clean outdoor locations. Hundreds, even thousands of different compounds may be present in any given atmosphere. GC is commonly used in combination with mass spectrometry (MS) detection especially for environmental monitoring or for screening uncharacterised workplace atmospheres. Given the complexity and variability of organic vapours in air, no one sampling approach suits every monitoring scenario. A variety of different sampling strategies and sorbent media have been developed to address specific applications. Key sorbent-based examples include: active (pumped) sampling onto tubes packed with one or more sorbents held at ambient temperature; diffusive (passive) sampling onto sorbent tubes/cartridges; on-line sampling of air/gas streams into cooled sorbent traps; and transfer of air samples from containers (canisters, Tedlar) bags, etc.) into cooled sorbent focusing traps. Whichever sampling approach is selected, subsequent analysis almost always involves either solvent extraction or thermal desorption (TD) prior to GC(/MS) analysis. The overall performance of the air monitoring method will depend heavily on appropriate selection of key sampling and analytical parameters. This comprehensive review of air monitoring using sorbent tubes/traps is divided into 2 parts. (1) Sorbent-based air sampling option. (2) Sorbent selection and other aspects of optimizing sorbent-based air monitoring methods. The paper presents

  18. CAN SORBENT-BASED GAS PHASE AIR CLEANING FOR VOCS SUBSTITUTE FOR VENTILATION IN COMMERCIAL BUILDINGS?

    OpenAIRE

    Fisk, William J.

    2008-01-01

    This paper reviews current knowledge about the suitability of sorbent-based air cleaning for removing volatile organic compounds (VOCs) from the air in commercial buildings, as needed to enable reductions in ventilation rates and associated energy savings. The principles of sorbent air cleaning are introduced, criteria are suggested for sorbent systems that can counteract indoor VOC concentration increases from reduced ventilation, major findings from research on sorbent performance for this...

  19. Simulation of C-CP Fiber-Based Air Filtration

    Directory of Open Access Journals (Sweden)

    Christopher L. Cox, Ph.D.

    2008-06-01

    Full Text Available The overall goal of this project is to develop High Efficiency Particulate Air (HEPA filter media, using conventional fiber spinning techniques, with lower pressure drop than current media through the use of shaped fibers. Capillary-channeled polymer (C-CP fibers are gaining interest for use in a range of separations applications. This paper focuses on modeling air filtration where the filter consists of C-CP fibers. A variety of numerical tools are being used in this effort, including a finite element flow solver and Brownian dynamics simulation. Aspects of these techniques in relation to the problem at hand will be described, and simulation results including comparisons to round-fiber filters will be presented. The primary result presented here is the significant difference in predicted pressure drop between a prototype C-CP filter and a round-fiber filter with equal total cross-sectional area.

  20. Macroscopic treatment of radio emission from cosmic ray air showers based on shower simulations

    NARCIS (Netherlands)

    Werner, Klaus; Scholten, Olaf

    2008-01-01

    We present a macroscopic calculation of coherent electro-magnetic radiation from air showers initiated by ultra-high energy cosmic rays, based on currents obtained from Monte Carlo simulations of air showers in a realistic geo-magnetic field. We can clearly relate the time signal to the time depende

  1. Plug and Play web-based visualization of mobile air monitoring data (Abstract)

    Science.gov (United States)

    EPA’s Real-Time Geospatial (RETIGO) Data Viewer web-based tool is a new program reducing the technical barrier to visualize and understand geospatial air data time series collected using wearable, bicycle-mounted, or vehicle-mounted air sensors. The RETIGO tool, with anticipated...

  2. A Physically Based Spatial Expansion Algorithm for Surface Air Temperature and Humidity

    Directory of Open Access Journals (Sweden)

    Hongbo Su

    2013-01-01

    Full Text Available An algorithm was developed to expand the surface air temperature and air humidity to a larger spatial domain, based on the fact that the variation of surface air temperature and air humidity is controlled jointly by the local turbulence and the horizontal advection. This study proposed an algorithm which considers the advective driving force outside the thermal balance system and the turbulent driving force and radiant driving force inside the thermal balance system. The surface air temperature is determined by a combination of the surface observations and the regional land surface temperature observed from a satellite. The average absolute difference of the algorithm is 0.65 degree and 0.31 mb, respectively, for surface air temperature and humidity expansion, which provides a promising approach to downscale the two surface meteorological variables.

  3. Performance and cycle life of carbon- and conductive-based air electrodes for rechargeable Zn-air battery applications

    Science.gov (United States)

    Chellapandi Velraj, Samgopiraj

    The development of high-performance, cyclically stable bifunctional air electrodes are critical to the commercial deployment of rechargeable Zn-air batteries. The carbon material predominantly used as support material in the air electrodes due to its higher surface area and good electrical conductivity suffers from corrosion at high oxygen evolution overpotentials. This study addresses the carbon corrosion issues and suggests alternate materials to replace the carbon as support in the air electrode. In this study, Sm0.5Sr0.5CoO3-delta with good electrochemical performance and cyclic lifetime was identified as an alternative catalyst material to the commonly used La0.4Ca 0.6CoO3 catalyst for the carbon-based bifunctional electrodes. Also, a comprehensive study on the effects of catalyst morphology, testing conditions on the cycle life as well as the relevant degradation mechanism for the carbon-based electrode was conducted in this dissertation. The cyclic life of the carbon-based electrodes was strongly dependent on the carbon support material, while the degradation mechanisms were entirely controlled by the catalyst particle size/morphology. Some testing conditions like resting time and electrolyte concentration did not change the cyclic life or degradation mechanism of the carbon-based electrode. The current density used for cyclic testing was found to dictate the degradation mechanism leading to the electrode failure. An alternate way to circumvent the carbon corrosion is to replace the carbon support with a suitable electrically-conductive ceramic material. In this dissertation, LaNi0.9Mn0.1O3, LaNi 0.8Co0.2O3, and NiCo2O4 were synthesized and evaluated as prospective support materials due to their good electrical conductivity and their ability to act as the catalyst needed for the bifunctional electrode. The carbon-free electrodes had remarkably higher catalytic activity for oxygen evolution reaction (OER) when compared to the carbon-based electrode. However

  4. Time-based air traffic management using expert systems

    Science.gov (United States)

    Tobias, L.; Scoggins, J. L.

    1986-01-01

    A prototype expert system was developed for the time scheduling of aircraft into the terminal area. The three functions of the air traffic control schedule advisor are as follows: first, for each new arrival, it develops an admissible flight plan for that aircraft. Second, as the aircraft progresses through the terminal area, it monitors deviations from the flight plan and provides advisories to return the aircraft to its assigned schedule. Third, if major disruptions such as missed approaches occur, it develops a revised plan. The advisor is operational on a Symbolics 3600, and is programed in MRS (a logic programming language), Lisp, and FORTRAN.

  5. Recent development of VUV-based processes for air pollutants degradation

    Directory of Open Access Journals (Sweden)

    Haibao eHuang

    2016-03-01

    Full Text Available As air pollution become more and more serious nowadays, it is essential to find out a way to efficiently degrade the air pollutants. Vacuum ultraviolet (VUV-based processes are an emerging and promising technologies for environmental remediation such as air cleaning, wastewater treatment and air/water disinfection. With VUV irradiation, photolysis, photocatalyst is and ozone-assisted oxidation are involved at the same time, resulting in the fast degradation of air pollutants because of their strong oxidizing capacity. The mechanisms of how the oxidants are produced and reacted are discussed in this review. This paper mainly focuses on the three VUV-based oxidation processes including VUV photolysis, VUV combined with ozone-assisted oxidation and VUV-PCO with emphasis on their mechanisms and applications. Also, the outlooks of these processes are outlined in this paper.

  6. Thermistor based, low velocity isothermal, air flow sensor

    International Nuclear Information System (INIS)

    The semiconductor thermistor technology is applied as a flow sensor to measure low isothermal air velocities (<2 ms−1). The sensor is subjected to heating and cooling cycles controlled by a multifunctional timer. In the heating stage, the alternating current of a main AC power supply source guarantees a uniform thermistor temperature distribution. The conditioning circuit assures an adequate increase of the sensors temperature and avoids the thermal disturbance of the flow. The power supply interruption reduces the consumption from the source and extends the sensors life time. In the cooling stage, the resistance variation of the flow sensor is recorded by the measuring chain. The resistive sensor parameters proposed vary significantly and feature a high sensitivity to the flow velocity. With the aid of a computer, the data transfer, storage and analysis provides a great advantage over the traditional local anemometer readings. The data acquisition chain has a good repeatability and low standard uncertainties. The proposed method measures isothermal air mean velocities from 0.1 ms−1 to 2 ms−1 with a standard uncertainty error less than 4%. (paper)

  7. 2008 Northwest Florida Water Management District Lidar: Eglin Air Force Base, Walton County, FL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In the summer of 2008, the Northwest Florida Water Management District collected lidar data over a portion of Walton County, FL (Eglin Air force Base) to support...

  8. 2008 Northwest Florida Water Management District (NWFWMD) Lidar: Eglin Air Force Base, Walton County, FL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In the summer of 2008, the Northwest Florida Water Management District collected lidar data over a portion of Walton County, FL (Eglin Air force Base) to support...

  9. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This report presents information concerning field procedures employed during the monitoring, well construction, well purging, sampling, and well logging at the Wright-Patterson Air Force Base. Activities were conducted in an effort to evaluate ground water contamination.

  10. Characterization of Air-Based Photovoltaic Thermal Panels with Bifacial Solar Cells

    OpenAIRE

    Ooshaksaraei, P.; K. Sopian; Zulkifli, R.; Saleem H. Zaidi

    2013-01-01

    Photovoltaic (PV) panels account for a majority of the cost of photovoltaic thermal (PVT) panels. Bifacial silicon solar panels are attractive for PVT panels because of their potential to enhance electrical power generation from the same silicon wafer compared with conventional monofacial solar panels. This paper examines the performance of air-based bifacial PVT panels with regard to the first and second laws of thermodynamics. Four air-based bifacial PVT panels were designed. The maximum ef...

  11. Measurement of air refractive index fluctuation based on a laser synthetic wavelength interferometer

    International Nuclear Information System (INIS)

    A novel method for measuring air refractive index fluctuation based on a laser synthetic wavelength interferometer is proposed. The change of air refractive index is regarded as an equivalent measured displacement in the measurement arm, which can be realized by tracking a large compensative displacement of the reference mirror in the reference arm of the laser synthetic wavelength interferometer. The merit of the proposed method is that the slight air refractive index fluctuation is magnified to a large displacement on the order of millimeters or micrometers. To verify the feasibility of the proposed method, the correlation experiment between the displacement of the reference mirror and the air refractive index fluctuation and the comparison experiments with Edlén equations both in short time and long time were performed. Experimental results show that the measurement accuracy of the air refractive index fluctuation is better than 3.7 × 10–8. (paper)

  12. Web-based GIS: the vector-borne disease airline importation risk (VBD-AIR tool

    Directory of Open Access Journals (Sweden)

    Huang Zhuojie

    2012-08-01

    Full Text Available Abstract Background Over the past century, the size and complexity of the air travel network has increased dramatically. Nowadays, there are 29.6 million scheduled flights per year and around 2.7 billion passengers are transported annually. The rapid expansion of the network increasingly connects regions of endemic vector-borne disease with the rest of the world, resulting in challenges to health systems worldwide in terms of vector-borne pathogen importation and disease vector invasion events. Here we describe the development of a user-friendly Web-based GIS tool: the Vector-Borne Disease Airline Importation Risk Tool (VBD-AIR, to help better define the roles of airports and airlines in the transmission and spread of vector-borne diseases. Methods Spatial datasets on modeled global disease and vector distributions, as well as climatic and air network traffic data were assembled. These were combined to derive relative risk metrics via air travel for imported infections, imported vectors and onward transmission, and incorporated into a three-tier server architecture in a Model-View-Controller framework with distributed GIS components. A user-friendly web-portal was built that enables dynamic querying of the spatial databases to provide relevant information. Results The VBD-AIR tool constructed enables the user to explore the interrelationships among modeled global distributions of vector-borne infectious diseases (malaria. dengue, yellow fever and chikungunya and international air service routes to quantify seasonally changing risks of vector and vector-borne disease importation and spread by air travel, forming an evidence base to help plan mitigation strategies. The VBD-AIR tool is available at http://www.vbd-air.com. Conclusions VBD-AIR supports a data flow that generates analytical results from disparate but complementary datasets into an organized cartographical presentation on a web map for the assessment of vector-borne disease movements

  13. INDOOR AIR QUALITY DATA BASE FOR ORGANIC COMPOUNDS

    Science.gov (United States)

    The report gives results of the compilation of a data base for concentrations of organic compounds measured indoors. ased on a review of the literature from 1979 through 1990, the data base contains information on over 220 compounds ranging in molecular weight from 30 to 446. he ...

  14. Central air conditioning based on adsorption and solar energy

    International Nuclear Information System (INIS)

    This paper presents the characterization and the pre-dimensioning of an adsorption chiller as part of a 20 kW air conditioning central unit for cooling a set of rooms that comprises an area of 110 m2. The system is basically made up of a cold water storage tank supplied by an activated carbon-methanol adsorption chiller, a hot water storage tank, fed by solar energy and natural gas, and a fan-coil. During an acclimatization of 8 h (9-17 h), the following parameters were obtained for dimensioning the cooling system: 504 kg of activated carbon, 180 L of methanol, 7000 L of hot water, 10,300 L of cold water with its temperature varying in the fan-coil from 1 deg. C to 14 C. Considering the mean value of the total daily irradiation in Joao Pessoa (7o8'S, 34o50'WG), and a cover of regenerating heat supplied by solar energy equivalent to 70%, the adsorption chiller's expected coefficient of performance (COP) was found to be around 0.6.

  15. Feasibility study of a green energy powered thermoelectric chip based air conditioner for electric vehicles

    International Nuclear Information System (INIS)

    Traditional compressed-refrigerant air conditioning systems consume substantial energy that may reduce the driving performance and cruising mileage of electric vehicles considerably. It is crucial to design a new climate control system, using a direct energy conversion principle, to further aid in the commercialization of modern electric vehicles. A solid state air conditioner model consisting on TECs (thermoelectric chips) as the load, DSSCs (dye sensitized solar cells) as the renewable energy source and high power LiBs (lithium-ion batteries) as an energy storage device are considered for a personal mobility vehicle. The power management between the main power net and the solid state air conditioner interface is designed with an outer proportional-integral controller and an inner passivity based current controller with a loss included model for perfect tracking. This model is intended to comprise thermal and electrical elements which can be tunable for performance benchmarking and optimization of a solid state air conditioning system. Dynamic performance simulations of the solid-state air conditioner are performed, alongside guidelines for feasibility. - Highlights: • Alternative model extraction for dye sensitized solar cells. • Improved and computationally fast model for the cabin air temperature dynamics. • Euler–Lagrange loss included modeling of a buck converter. • Loss-included passivity based inner loop current control. • The thermoelectric chip air conditioner is tested in simulated cooling/heating scenarios

  16. Current status of ceramic-based membranes for oxygen separation from air.

    Science.gov (United States)

    Hashim, Salwa Meredith; Mohamed, Abdul Rahman; Bhatia, Subhash

    2010-10-15

    There has been tremendous progress in membrane technology for gas separation, in particular oxygen separation from air in the last 20 years. It provides an alternative route to the existing conventional separation processes such as cryogenic distillation and pressure swing adsorption as well as cheaper production of oxygen with high purity. This review presents the recent advances of ceramic membranes for the separation of oxygen from air at high temperature. It covers the issues and problems with respect to the selectivity and separation performance. The paper also presents different approaches applied to overcome these challenges. The future directions of ceramic-based membranes for oxygen separation from air are also presented. PMID:20813344

  17. 78 FR 27126 - East Bay, St. Andrews Bay and the Gulf of Mexico at Tyndall Air Force Base, Florida; Restricted...

    Science.gov (United States)

    2013-05-09

    ... Gulf of Mexico and Apalachicola Bay south of Apalachicola, Fla., Drone Recovery Area, Tyndall Air Force... at Tyndall Air Force Base, Florida; Restricted Areas AGENCY: U.S. Army Corps of Engineers, DoD... establishing six new restricted areas along the Tyndall Air Force Base (AFB) facility shoreline. Tyndall AFB...

  18. Air Pollution Monitoring and Mining Based on Sensor Grid in London

    OpenAIRE

    John Hassard; Yike Guo; Moustafa Ghanem; Mark Richards; Yajie Ma

    2008-01-01

    In this paper, we present a distributed infrastructure based on wireless sensors network and Grid computing technology for air pollution monitoring and mining, which aims to develop low-cost and ubiquitous sensor networks to collect real-time, large scale and comprehensive environmental data from road traffic emissions for air pollution monitoring in urban environment. The main informatics challenges in respect to constructing the high-throughput sensor Grid are discussed in this paper. We pr...

  19. Study of measurements of air velocity transducer deriving average air velocity of roadway based on one-dimensional linear regression

    Institute of Scientific and Technical Information of China (English)

    ZHAO Dan; LIU Jian; PAN Jing-tao; LI Zong-xiang

    2012-01-01

    One-dimensional linear regression equation between measured value of air velocity transducer and the average air velocity was established by experimental data.The effect is to be evaluated.Through judging the parameters,one-dimensional linear equation established is valid.Regression equation can approximately put the measurements of air velocity transducer into the value of average air velocity.The distribution of air velocity field is simulated using Comsol in the conditions of the same length of roadway,the same air velocity and different sections.

  20. Low Cost Earth Sensor Based on Oxygen Airglow (AIRES)

    OpenAIRE

    Scheidegger, N.; Shea, H.; Charbon, E.; Rugi-Grond, E

    2008-01-01

    This project has demonstrated the feasibility of a low-cost Earth sensor based on imaging oxygen airglow, allowing 0.4° accuracy from GEO under any illumination condition. Available Earth Sensor (ES) are based on the measurement of the earth’s infrared radiation to determine the vector to the Earth’s centre. These designs provide excellent accuracies over a large field of view, but are often heavy, large, require cooling or temperature stabilization and are power hungry. In addition, the sens...

  1. Problem based teaching in indoor Air Science and Practice

    DEFF Research Database (Denmark)

    Kjærgaard, Søren K.

    1999-01-01

    common core curriculum is constructed as a 1. Spiraled curriculum, so that students can start at different levels, 2) That subjects is based on a public health point of view, 3) that students should first of all be trained as experts within their discipline, and 4) that training is done as cross...

  2. Humidifying system design of PEMFC test platform based on the mixture of dry and wet air

    Directory of Open Access Journals (Sweden)

    Tiancai Ma

    2015-01-01

    Full Text Available Based on the present humidifying system of PEMFC test platform, a novel design based on dry and wet air mixture is proposed. Key parameters are calculated, and test platform is built. Three experiments are implemented to test the performance of proposed design. Results show that the new design can meet the requirements, and realize the quick response and accurate control.

  3. Performance Evaluation of Air-Based Heat Rejection Systems

    OpenAIRE

    Hannes Fugmann; Björn Nienborg; Gregor Trommler; Antoine Dalibard; Lena Schnabel

    2015-01-01

    On the basis of the Number of Transfer Units (NTU) method a functional relation between electric power for fans/pumps and effectiveness in dry coolers and wet cooling towers is developed. Based on this relation, a graphical presentation method of monitoring and simulation data of heat rejection units is introduced. The functional relation allows evaluating the thermodynamic performance of differently sized heat rejection units and comparing performance among them. The method is used to evalua...

  4. Preparation of Fiber Based Binder Materials to Enhance the Gas Adsorption Efficiency of Carbon Air Filter.

    Science.gov (United States)

    Lim, Tae Hwan; Choi, Jeong Rak; Lim, Dae Young; Lee, So Hee; Yeo, Sang Young

    2015-10-01

    Fiber binder adapted carbon air filter is prepared to increase gas adsorption efficiency and environmental stability. The filter prevents harmful gases, as well as particle dusts in the air from entering the body when a human inhales. The basic structure of carbon air filter is composed of spunbond/meltblown/activated carbon/bottom substrate. Activated carbons and meltblown layer are adapted to increase gas adsorption and dust filtration efficiency, respectively. Liquid type adhesive is used in the conventional carbon air filter as a binder material between activated carbons and other layers. However, it is thought that the liquid binder is not an ideal material with respect to its bonding strength and liquid flow behavior that reduce gas adsorption efficiency. To overcome these disadvantages, fiber type binder is introduced in our study. It is confirmed that fiber type binder adapted air filter media show higher strip strength, and their gas adsorption efficiencies are measured over 42% during 60 sec. These values are higher than those of conventional filter. Although the differential pressure of fiber binder adapted air filter is relatively high compared to the conventional one, short fibers have a good potential as a binder materials of activated carbon based air filter. PMID:26726459

  5. Preliminary verification of instantaneous air temperature estimation for clear sky conditions based on SEBAL

    Science.gov (United States)

    Zhu, Shanyou; Zhou, Chuxuan; Zhang, Guixin; Zhang, Hailong; Hua, Junwei

    2016-03-01

    Spatially distributed near surface air temperature at the height of 2 m is an important input parameter for the land surface models. It is of great significance in both theoretical research and practical applications to retrieve instantaneous air temperature data from remote sensing observations. An approach based on Surface Energy Balance Algorithm for Land (SEBAL) to retrieve air temperature under clear sky conditions is presented. Taking the meteorological measurement data at one station as the reference and remotely sensed data as the model input, the research estimates the air temperature by using an iterative computation. The method was applied to the area of Jiangsu province for nine scenes by using MODIS data products, as well as part of Fujian province, China based on four scenes of Landsat 8 imagery. Comparing the air temperature estimated from the proposed method with that of the meteorological station measurement, results show that the root mean square error is 1.7 and 2.6 °C at 1000 and 30 m spatial resolution respectively. Sensitivity analysis of influencing factors reveals that land surface temperature is the most sensitive to the estimation precision. Research results indicate that the method has great potentiality to be used to estimate instantaneous air temperature distribution under clear sky conditions.

  6. Design, simulation, and fabrication of a MEMS-based air amplifier for electrospray ionization

    Science.gov (United States)

    Jurčíček, Petr; Zou, Helin; Gao, Shuai

    2013-04-01

    Recent developments in electrospray ionization mass spectrometry (ESI-MS) show that air amplifiers can be utilized to significantly enhance droplet desolvation and to focus gas-phase ions when provided between an electrospray (ES) source and the mass spectrometer (MS). However, these devices are bulky and expensive, which may be a factor prohibiting their broader utilization. We have developed a simple but effective method based on Bernoulli's principle, the Coanda effect and MEMS processing to focus electrosprayed droplets and liberated gas-phase ions. We demonstrate a computer simulation and fabrication process for a micromachined air amplifier. The simulation results are used to optimize the geometry and to meet performance requirements. The optimized results then provide a design guideline for the device's fabrication. The air amplifier is formed from two bonded polydimethylsiloxane (PDMS) casts. Each PDMS cast is fabricated through a molding process using a micromachined two-layer SU-8 mold. Experimental results show a 30-fold improvement in the ES current for certain operation conditions while the air amplifier is incorporated in the nano-electrospray ionization (nano-ESI) process. Compared with traditional air amplifiers, the micro-electro-mechanical systems (MEMS) based air amplifier provides good performance while keeping the fabrication process simple and cost effective.

  7. Performance Evaluation of Air-Based Heat Rejection Systems

    Directory of Open Access Journals (Sweden)

    Hannes Fugmann

    2015-01-01

    Full Text Available On the basis of the Number of Transfer Units (NTU method a functional relation between electric power for fans/pumps and effectiveness in dry coolers and wet cooling towers is developed. Based on this relation, a graphical presentation method of monitoring and simulation data of heat rejection units is introduced. The functional relation allows evaluating the thermodynamic performance of differently sized heat rejection units and comparing performance among them. The method is used to evaluate monitoring data of dry coolers of different solar cooling field projects. The novelty of this approach is that performance rating is not limited by a design point or standardized operating conditions of the heat exchanger, but is realizable under flexible conditions.

  8. (Environmental investigation of ground water contamination at Wright- Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This Health and Safety Plan (HSP) was developed for the Environmental Investigation of Ground-water Contamination Investigation at Wright-Patterson Air Force Base near Dayton, Ohio, based on the projected scope of work for the Phase 1, Task 4 Field Investigation. The HSP describes hazards that may be encountered during the investigation, assesses the hazards, and indicates what type of personal protective equipment is to be used for each task performed. The HSP also addresses the medical monitoring program, decontamination procedures, air monitoring, training, site control, accident prevention, and emergency response.

  9. Chitosan-based Matrix, Used to Determine the Bacterial Lipopolysaccharide in Air

    Directory of Open Access Journals (Sweden)

    Dmitry M. Frolov

    2013-12-01

    Full Text Available The article describes the technology of chitosan-based matrix creation, and results of the study of its affine properties to bacterial lipopolysaccharide in aerosol dispersion. High degree of deacylation of polymer (over 97%, three-dimensional-porous structure, and multilayer packaging in analytical cartridge were the features of this matrix. Specified air volume, containing aerosol concentration of bacterial lipopolysaccharide, was passed through the glass cylinder with analytical container. The share of captured molecules ranged from 1.0% to 1.5%, demonstrating the efficiency of chitosan matrix. It is suitable for the creation of the devices for bacterial lipopolysaccharide detection in the air, based on the obtained matrix.

  10. A dynamic model for air-based photovoltaic thermal systems working under real operating conditions

    International Nuclear Information System (INIS)

    Highlights: • A dynamic model suitable for air-based photovoltaic thermal (PVT) systems is presented. • The model is validated with PVT data from two unique buildings. • The simulated output variables match very well with the experimental data. • The performance of the PVT system under changing working condition is analysed. - Abstract: In this paper a dynamic model suitable for simulating real operating conditions of air-based photovoltaic thermal (PVT) systems is presented. The performance of the model is validated by using the operational data collected from the building integrated photovoltaic (PVT) systems installed in two unique buildings. The modelled air outlet temperature and electrical power match very well with the experimental data. In Solar Decathlon house PVT, the average (RMS) error in air outlet temperatures was 4.2%. The average (RMS) error in electrical power was also 4.2%. In the Sustainable Buildings Research Centre PVT, the average errors (RMS) of PV and air temperatures were 3.8% and 2.2%, respectively. The performance of the PVT system under changing working condition is also analysed in this paper. The analysis includes the effect of ambient air temperature, air inlet temperature, air flow rate and solar irradiation on thermal, electrical, first law and second law efficiencies. Both the thermal and the 1st law efficiencies almost linearly increased with the increase of the ambient temperature. However, the PVT electrical efficiency and the second law efficiency decreased with the increase of the ambient temperature. All efficiencies expect the second law efficiency decreased with increase of the PVT air inlet temperature. The second law efficiency first increased and then reduced. With increasing the air flow rate all the efficiencies increased. The electrical and second law efficiencies become less sensitive when the air flow rate exceeded 300 l/s. Both the thermal and the 1st law efficiencies decreased while the electrical

  11. Analysis of radon and thoron progeny measurements based on air filtration

    International Nuclear Information System (INIS)

    Measuring of radon and thoron progeny concentrations in air, based on air filtration, was analysed in order to assess the reliability of the method. Changes of radon and thoron progeny activities on the filter during and after air sampling were investigated. Simulation experiments were performed involving realistic measuring parameters. The sensitivity of results (radon and thoron concentrations in air) to the variations of alpha counting in three and five intervals was studied. The concentration of 218Po showed up to be the most sensitive to these changes, as was expected because of its short half-life. The well-known method for measuring of progeny concentrations based on air filtration is rather unreliable and obtaining unrealistic or incorrect results appears to be quite possible. A simple method for quick estimation of radon potential alpha energy concentration (PAEC), based on measurements of alpha activity in a saturation regime, was proposed. Thoron PAEC can be determined from the saturation activity on the filter, through beta or alpha measurements. (authors)

  12. Cloud-based large-scale air traffic flow optimization

    Science.gov (United States)

    Cao, Yi

    The ever-increasing traffic demand makes the efficient use of airspace an imperative mission, and this paper presents an effort in response to this call. Firstly, a new aggregate model, called Link Transmission Model (LTM), is proposed, which models the nationwide traffic as a network of flight routes identified by origin-destination pairs. The traversal time of a flight route is assumed to be the mode of distribution of historical flight records, and the mode is estimated by using Kernel Density Estimation. As this simplification abstracts away physical trajectory details, the complexity of modeling is drastically decreased, resulting in efficient traffic forecasting. The predicative capability of LTM is validated against recorded traffic data. Secondly, a nationwide traffic flow optimization problem with airport and en route capacity constraints is formulated based on LTM. The optimization problem aims at alleviating traffic congestions with minimal global delays. This problem is intractable due to millions of variables. A dual decomposition method is applied to decompose the large-scale problem such that the subproblems are solvable. However, the whole problem is still computational expensive to solve since each subproblem is an smaller integer programming problem that pursues integer solutions. Solving an integer programing problem is known to be far more time-consuming than solving its linear relaxation. In addition, sequential execution on a standalone computer leads to linear runtime increase when the problem size increases. To address the computational efficiency problem, a parallel computing framework is designed which accommodates concurrent executions via multithreading programming. The multithreaded version is compared with its monolithic version to show decreased runtime. Finally, an open-source cloud computing framework, Hadoop MapReduce, is employed for better scalability and reliability. This framework is an "off-the-shelf" parallel computing model

  13. Fluctuation analysis-based risk assessment for respiratory virus activity and air pollution associated asthma incidence.

    Science.gov (United States)

    Liao, Chung-Min; Hsieh, Nan-Hung; Chio, Chia-Pin

    2011-08-15

    Asthma is a growing epidemic worldwide. Exacerbations of asthma have been associated with bacterial and viral respiratory tract infections and air pollution. We correlated the asthma admission rates with fluctuations in respiratory virus activity and traffic-related air pollution, namely particulate matter with an aerodynamic diameter ≤ 10 μm (PM₁₀), nitrogen dioxide (NO₂), carbon monoxide (CO), sulfur dioxide (SO₂), and ozone (O₃). A probabilistic risk assessment framework was developed based on a detrended fluctuation analysis to predict future respiratory virus and air pollutant associated asthma incidence. Results indicated a strong association between asthma admission rate and influenza (r=0.80, pinfluenza to below 0.9. We concluded that fluctuation analysis based risk assessment provides a novel predictor of asthma incidence. PMID:21663946

  14. Tolerance Levels of Roadside Trees to Air Pollutants Based on Relative Growth Rate and Air Pollution Tolerance Index

    OpenAIRE

    SULISTIJORINI; ZAINAL ALIM MAS’UD; NIZAR NASRULLAH; AHMAD BEY; SOEKISMAN TJITROSEMITO

    2008-01-01

    Motor vehicles release carbon monoxide, nitrogen dioxide, sulphur dioxide, and particulate matters to the air as pollutants. Vegetation can absorb these pollutants through gas exchange processes. The objective of this study was to examine the combination of the relative growth rate (RGR) and physiological responses in determining tolerance levels of plant species to air pollutants. Physiological responses were calculated as air pollution tolerance index (APTI). Eight roadside tree species wer...

  15. Air-breathing membraneless laminar flow-based fuel cells: Do they breathe enough oxygen?

    International Nuclear Information System (INIS)

    Highlights: ► Limiting factors of air-breathing laminar-flow based fuel cell (LFFC) is analyzed. ► A numerical model for LFFC is developed. ► Air breathing process is not a limiting factor at the present stage. ► Oxygen starvation is significant when the cell current density exceeds 200 mA cm−2. - Abstract: Laminar flow-based fuel cell (LFFC) is a relatively new type of fuel cell that does not require the use of proton exchange membrane. While the first-generation LFFC uses dissolved oxygen at the cathode, the second-generation LFFC (2G-LFFC) adopts a more advanced air-breathing design for achieving high power density. The architecture and operational mechanisms of a 2G-LFFC are more complex. In order to gain detailed understanding of the 2G-LFFC, an integrated CFD/electrochemical kinetics modeling study has been conducted to analyze the cell limiting factors and sufficiency of the oxidant supply from air. It is found that under most typical operating conditions, the 2G-LFFC free-breathing mode can supply sufficient oxygen to the electrode reactive surface for cathode half-cell reaction, indicating that the air breathing process is not a limiting factor to the cell performance. However, oxygen starvation will become a major performance limiting factor when the anode is enhanced for higher current density. The results presented in this paper provide useful design guidance for future development of LFFC

  16. FEASIBILITY OF PRODUCING COMMODITIES AND ELECTRICITY FOR SPACE SHUTTLE OPERATIONS AT VANDENBERG AIR FORCE BASE

    Science.gov (United States)

    The report gives results of a preliminary screening study of the technical and economic feasibility of the on-site production of commodities (liquid propellant and gases) and electricity to support space shuttle launch activities at Vandenberg Air Force Base (VAFB). Both commerci...

  17. 33 CFR 334.560 - Banana River at Patrick Air Force Base, Fla.; restricted area.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Banana River at Patrick Air Force Base, Fla.; restricted area. 334.560 Section 334.560 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.560...

  18. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This report presents information related to the sampling of ground water at the Wright-Patterson Air Force Base. It is part of an investigation into possible ground water contamination. Information concerns well drilling/construction; x-ray diffraction and sampling; soil boring logs; and chain-of-custody records.

  19. Assessment and mitigation of the environmental burdens to air from land applied food-based digestate

    International Nuclear Information System (INIS)

    Anaerobic digestion (AD) of putrescible urban waste for energy recovery has seen rapid growth over recent years. In order to ascertain its systems scale sustainability, however, determination of the environmental fate of the large volume of digestate generated during the process is indispensable. This paper evaluates the environmental burdens to air associated with land applied food-based digestate in terms of primary pollutants (ammonia, nitrogen dioxide) and greenhouse gases (methane and nitrous oxide). The assessments have been made in two stages – first, the emissions from surface application of food-based digestate are quantified for the business as usual (BAU). In the next step, environmental burden minimisation potentials for the following three mitigation measures are estimated – mixed waste digestate (MWD), soil-incorporated digestate (SID), and post-methanated digestate (PMD). Overall, the mitigation scenarios demonstrated considerable NH3, CH4 and N2O burden minimisation potentials, with positive implications for both climate change and urban pollution. - Highlights: • In situ air pollution assessment of land applied digestate is performed. • Environmental burden minimisation scenarios for digestate bio fertiliser presented. • Food-based digestate show high ammonia volatilisation potential. • Soil incorporated digestate effectively reduces NH3 but elevates N2O emissions. • Managing digestate emissions mitigate both climate change and air pollution. - In situ monitoring and analyses demonstrate the role of post-processing in greenhouse gases and air pollution mitigation from food-based digestate use as bio fertiliser

  20. Corrosion of copper-based materials in irradiated moist air systems

    International Nuclear Information System (INIS)

    The atmospheric corrosion of oxygen-free copper (CDA-102), 70/30 copper-nickel (CDA-715), and 7% aluminum bronze (CDA-613) in an irradiated moist air environment was investigated. Experiments were performed in both dry and 40% RH (at sign 90 degree C) air at temperatures of 90 and 150 degree C. Initial corrosion rates were determined based on a combination of weight gain and weight loss measurements. Corrosion products observed were identified. These experiments support efforts by the Yucca Mountain Project (YMP) to evaluate possible metallic barrier materials for nuclear waste containers. 8 refs., 1 fig., 2 tabs

  1. A MEMS-based Air Flow Sensor with a Free-standing Micro-cantilever Structure

    OpenAIRE

    Che-Ming Chiang; Chia-Yen Lee; Yu-Hsiang Wang

    2007-01-01

    This paper presents a micro-scale air flow sensor based on a free-standing cantilever structure. In the fabrication process, MEMS techniques are used to deposit a silicon nitride layer on a silicon wafer. A platinum layer is deposited on the silicon nitride layer to form a piezoresistor, and the resulting structure is then etched to create a freestanding micro-cantilever. When an air flow passes over the surface of the cantilever beam, the beam deflects in the downward direction, resulting in...

  2. Air Pollution and Newly Diagnostic Autism Spectrum Disorders: A Population-Based Cohort Study in Taiwan

    OpenAIRE

    Jung, Chau-Ren; Lin, Yu-Ting; Hwang, Bing-Fang

    2013-01-01

    There is limited evidence that long-term exposure to ambient air pollution increases the risk of childhood autism spectrum disorder (ASD). The objective of the study was to investigate the associations between long-term exposure to air pollution and newly diagnostic ASD in Taiwan. We conducted a population-based cohort of 49,073 children age less than 3 years in 2000 that were retrieved from Taiwan National Insurance Research Database and followed up from 2000 through 2010. Inverse distance w...

  3. Early ship-based upper-air data and comparison with the Twentieth Century Reanalysis

    OpenAIRE

    Brönnimann, S.; Compo, G. P.; R. Spadin; R. Allan; Adam, W.

    2010-01-01

    Extension of 3-D atmospheric data products back into the past is desirable for a wide range of applications. Historical upper-air data are important in this endeavour, particularly in the maritime regions of the tropics and the southern hemisphere, where observations are extremely sparse. Here we present newly digitized and re-evaluated early ship-based upper-air data from two cruises: (1) kite and registering balloon profiles from onboard the ship SMS Planet on a cruise fr...

  4. Early ship-based upper-air data and comparison with the Twentieth Century Reanalysis

    OpenAIRE

    Brönnimann, S.; Compo, G. P.; R. Spadin; R. Allan; Adam, W.

    2011-01-01

    Extension of 3-D atmospheric data products back into the past is desirable for a wide range of applications. Historical upper-air data are important in this endeavour, particularly in the maritime regions of the tropics and the southern hemisphere, where observations are extremely sparse. Here we present newly digitized and re-evaluated early ship-based upper-air data from two cruises: (1) kite and registering balloon profiles from onboard the ship SMS Planet on a cruise fr...

  5. Early ship-based upper-air data and comparison with the Twentieth Century

    OpenAIRE

    Brönnimann, Stefan; Compo, Gilbert P.; Spadin, Reto; Allan, Rob; Adam, Wolfgang

    2011-01-01

    Extension of 3-D atmospheric data products back into the past is desirable for a wide range of applications. Historical upper-air data are important in this endeavour, particularly in the maritime regions of the tropics and the southern hemisphere, where observations are extremely sparse. Here we present newly digitized and re-evaluated early ship-based upper-air data from two cruises: (1) kite and registering balloon profiles from onboard the ship SMS Planet on a cruise from Europe around So...

  6. Mountain Home Air Force Base, Idaho Geothermal Resource Assessment and Future Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Joseph C. Armstrong; Robert P. Breckenridge; Dennis L. Nielson; John W. Shervais; Thomas R. Wood

    2013-03-01

    The U.S. Air Force is facing a number of challenges as it moves into the future, one of the biggest being how to provide safe and secure energy to support base operations. A team of scientists and engineers met at Mountain Home Air Force Base in early 2011 near Boise, Idaho, to discuss the possibility of exploring for geothermal resources under the base. The team identified that there was a reasonable potential for geothermal resources based on data from an existing well. In addition, a regional gravity map helped identify several possible locations for drilling a new well. The team identified several possible sources of funding for this well—the most logical being to use U.S. Department of Energy funds to drill the upper half of the well and U.S. Air Force funds to drill the bottom half of the well. The well was designed as a slimhole well in accordance with State of Idaho Department of Water Resources rules and regulations. Drilling operations commenced at the Mountain Home site in July of 2011 and were completed in January of 2012. Temperatures increased gradually, especially below a depth of 2000 ft. Temperatures increased more rapidly below a depth of 5500 ft. The bottom of the well is at 5976 ft, where a temperature of about 140°C was recorded. The well flowed artesian from a depth below 5600 ft, until it was plugged off with drilling mud. Core samples were collected from the well and are being analyzed to help understand permeability at depth. Additional tests using a televiewer system will be run to evaluate orientation and directions at fractures, especially in the production zone. A final report on the well exploitation will be forthcoming later this year. The Air Force will use it to evaluate the geothermal resource potential for future private development options at Mountain Home Air Force Base. In conclusion, Recommendation for follow-up efforts include the following:

  7. Hill Air Force Base, Utah, Final Record of Decision and Responsiveness Summary for Operable Unit 2

    OpenAIRE

    Ogden ALC

    1997-01-01

    This decision document presents the selected remedy for Operable Unit 2 (OU2) at Hill Air Force Base (HAFB), Utah. It was selected in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), and to the extent practicable, the National Oil and Hazardous Substances Pollution Contingency Plan (NCP). This decision is based on the Administrative Record for this site. Th...

  8. Characterization of a silicon nanowire-based cantilever air-flow sensor

    International Nuclear Information System (INIS)

    Silicon nanowire (SiNW)-based cantilever flow sensors with three different cantilever sizes (10 × 50, 20 × 90 and 40 × 100 µm2) and various SiNW lengths (2, 5 and 10 µm) have been designed for air velocity sensing. The total device thickness is around 3 µm, which consists of the bottom SiO2 layer (0.5 µm) and the top SiNx layer (2.5 µm). In addition, the SiNx layer is used to compensate the initial stress and also enhance the device immunity to air-flow-induced vibrations significantly. To experience the maximum strain induced by the air flow, SiNWs are embedded at the clamp point where the cantilever is anchored to the substrate. Taking advantage of the superior properties of SiNWs, the reported flow sensor shows outstanding air-flow-sensing capability in terms of sensitivity, linearity and hysteresis. With only a supply voltage of 0.1 V and the high initial resistance of the piezoresistive SiNWs, significant energy saving is reached in contrast to the thermal-based flow sensors as well as other recently reported piezoresistive designs. Last but not least, the significant size reduction of our device demonstrates the great scalability of SiNW-based flow sensors. (paper)

  9. Adaptive fuzzy multivariable controller design based on genetic algorithm for an air handling unit

    International Nuclear Information System (INIS)

    In HVAC (Heating, Ventilation and Air Conditioning systems, effective thermal management is required because energy and operation costs of buildings are directly influenced by how well an air-conditioning system performs. HVAC systems are typically nonlinear time varying with disturbances, where conventional PID controllers may trade-off between stability and rise time. To overcome this limitation, a Genetic Algorithm based AFLC (Adaptive Fuzzy Logic Controller design has been proposed for the multivariable control of temperature and humidity of a typical AHU (air handling unit by manipulating valve positions to adjust the water and steam flow rates. Modulating equal percentage Globe valves for chilled water and steam have been modeled according to exact flow rates of water and steam. A novel method for the adaptation of FLC (Fuzzy Logic Controller by modifying FRM (Fuzzy Rule Matrix based on GA (genetic algorithm) has been proposed. This requires re-designing the complete FLC in MATLAB/Simulink whose procedure has also been proposed. The proposed adaptive controller outperforms the existing fuzzy controller in terms of steady state error, rise time and settling time. - Highlights: • GA based Adaptive Fuzzy Logic Controller to improve performance of HVAC system. • Multivariable control of an air handling unit to adjust the water and steam flow rates. • Significant improvement in steady state error, rise time and settling time of the control system

  10. Automatic Kappa Angle Estimation for Air Photos Based on Phase Only Correlation

    Science.gov (United States)

    Xiong, Z.; Stanley, D.; Xin, Y.

    2016-06-01

    The approximate value of exterior orientation parameters is needed for air photo bundle adjustment. Usually the air borne GPS/IMU can provide the initial value for the camera position and attitude angle. However, in some cases, the camera's attitude angle is not available due to lack of IMU or other reasons. In this case, the kappa angle needs to be estimated for each photo before bundle adjustment. The kappa angle can be obtained from the Ground Control Points (GCPs) in the photo. Unfortunately it is not the case that enough GCPs are always available. In order to overcome this problem, an algorithm is developed to automatically estimate the kappa angle for air photos based on phase only correlation technique. This function has been embedded in PCI software. Extensive experiments show that this algorithm is fast, reliable, and stable.

  11. Client Server Model Based DAQ System for Real-Time Air Pollution Monitoring

    Directory of Open Access Journals (Sweden)

    Vetrivel. P

    2014-01-01

    Full Text Available The proposed system consists of client server model based Data-Acquisition Unit. The Embedded Web Server integrates Pollution Server and DAQ that collects air Pollutants levels (CO, NO2, and SO2. The Pollution Server is designed by considering modern resource constrained embedded systems. In contrast, an application server is designed to the efficient execution of programs and scripts for supporting the construction of various applications. While a pollution server mainly deals with sending HTML for display in a web browser on the client terminal, an application server provides access to server side logic for pollutants levels to be use by client application programs. The Embedded Web Server is an arm mcb2300 board with internet connectivity and acts as air pollution server as this standalone device gathers air pollutants levels and as a Server. Embedded Web server is accessed by various clients.

  12. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems.

    Science.gov (United States)

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-01-01

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems. PMID:26703598

  13. A combined air cycle used for IC engine supercharging based on waste heat recovery

    International Nuclear Information System (INIS)

    Highlights: • A combined air cycle is proposed for IC engine supercharging based on WHR. • Cycle efficiency and energy recovery efficiency depend largely on working pressure. • Exhaust gas pressure of IC engine with combined air cycle is reduced largely. • IC engine fuel efficiency can be increased by 4.1% points at most. - Abstract: A combined air cycle is designed for internal combustion (IC) engine supercharging, which consists of IC engine working cycle and bottom cycle of waste heat recovery (WHR). The bottom cycle uses IC engine exhaust gas as cycle heat source, and its output power is used to drive the gas compressor. Both the heat transfer and thermodynamic processes of combined air cycle were investigated by numerical calculation under various cycle parameters and IC engine operating conditions. On this basis, the performances of combined air cycle and the improvement to IC engine performances were analyzed. Results show that, the cycle efficiency and exhaust gas energy recovery efficiency depend largely on the working pressure, and their maximum values appear at the working pressure of 0.35 MPa and 0.2 MPa, respectively. Compared with the naturally aspirated (NA) engine and turbocharging engine, this approach can make the fuel utilization efficiency of IC engine increase by 8.9% points and 4.1% points at most, respectively, due to the reduction of exhaust gas pressure. All these demonstrate that the proposed concept is a potentially useful approach for IC engine energy saving

  14. AirLab: a cloud-based platform to manage and share antibody-based single-cell research.

    Science.gov (United States)

    Catena, Raúl; Özcan, Alaz; Jacobs, Andrea; Chevrier, Stephane; Bodenmiller, Bernd

    2016-01-01

    Single-cell analysis technologies are essential tools in research and clinical diagnostics. These methods include flow cytometry, mass cytometry, and other microfluidics-based technologies. Most laboratories that employ these methods maintain large repositories of antibodies. These ever-growing collections of antibodies, their multiple conjugates, and the large amounts of data generated in assays using specific antibodies and conditions makes a dedicated software solution necessary. We have developed AirLab, a cloud-based tool with web and mobile interfaces, for the organization of these data. AirLab streamlines the processes of antibody purchase, organization, and storage, antibody panel creation, results logging, and antibody validation data sharing and distribution. Furthermore, AirLab enables inventory of other laboratory stocks, such as primers or clinical samples, through user-controlled customization. Thus, AirLab is a mobile-powered and flexible tool that harnesses the capabilities of mobile tools and cloud-based technology to facilitate inventory and sharing of antibody and sample collections and associated validation data. PMID:27356760

  15. A safety assessment methodology applied to CNS/ATM-based air traffic control system

    International Nuclear Information System (INIS)

    In the last decades, the air traffic system has been changing to adapt itself to new social demands, mainly the safe growth of worldwide traffic capacity. Those changes are ruled by the Communication, Navigation, Surveillance/Air Traffic Management (CNS/ATM) paradigm , based on digital communication technologies (mainly satellites) as a way of improving communication, surveillance, navigation and air traffic management services. However, CNS/ATM poses new challenges and needs, mainly related to the safety assessment process. In face of these new challenges, and considering the main characteristics of the CNS/ATM, a methodology is proposed at this work by combining 'absolute' and 'relative' safety assessment methods adopted by the International Civil Aviation Organization (ICAO) in ICAO Doc.9689 , using Fluid Stochastic Petri Nets (FSPN) as the modeling formalism, and compares the safety metrics estimated from the simulation of both the proposed (in analysis) and the legacy system models. To demonstrate its usefulness, the proposed methodology was applied to the 'Automatic Dependent Surveillance-Broadcasting' (ADS-B) based air traffic control system. As conclusions, the proposed methodology assured to assess CNS/ATM system safety properties, in which FSPN formalism provides important modeling capabilities, and discrete event simulation allowing the estimation of the desired safety metric.

  16. The influence of air cavities within the PTV on Monte Carlo-based IMRT optimization

    Energy Technology Data Exchange (ETDEWEB)

    Smedt, Bart de [Department of Medical Physics, Ghent University, Gent (Belgium); Vanderstraeten, Barbara [Department of Medical Physics, Ghent University, Gent (Belgium); Reynaert, Nick [Department of Medical Physics, Ghent University, Gent (Belgium); Gersem, Werner de [Department of Radiotherapy, Ghent University Hospital, Gent (Belgium); Neve, Wilfried de [Department of Radiotherapy, Ghent University Hospital, Gent (Belgium); Thierens, Hubert [Department of Medical Physics, Ghent University, Gent (Belgium)

    2007-06-15

    Integrating Monte Carlo calculated dose distributions into an iterative aperture-based IMRT optimization process can improve the final treatment plan. However, the influence of large air cavities in the planning target volume (PTV) on the outcome of the optimization process should not be underestimated. To study this influence, the treatment plan of an ethmoid sinus cancer patient, which has large air cavities included in the PTV, is iteratively optimized in two different situations, namely when the large air cavities are included in the PTV and when these air cavities are excluded from the PTV. Two optimization methods were applied to integrate the Monte Carlo calculated dose distributions into the optimization process, namely the 'Correction-method' and the 'Per Segment-method'. The 'Correction-method' takes the Monte Carlo calculated global dose distribution into account in the optimization process by means of a correction matrix, which is in fact a dose distribution that is equal to the difference between the Monte Carlo calculated global dose distribution and the global dose distribution calculated by a conventional dose calculation algorithm. The 'Per Segment-method' uses directly the Monte Carlo calculated dose distributions of the individual segments in the optimization process. Both methods tend to converge whether or not large air cavities are excluded from the PTV during the optimization process. However, the 'Per Segment-method' performs better than the 'Correction-method' in both situations and the 'Per Segment-method' in the case where the large air cavities are excluded from the PTV leads to a better treatment plan then when these air cavities are included. Therefore we advise to exclude large air cavities and to apply the 'Per Segment-method' to integrate the Monte Carlo dose calculations into an iterative aperture-based optimization process. Nevertheless, the &apos

  17. 33 CFR 334.740 - Weekley Bayou, an arm of Boggy Bayou, Fla., at Eglin Air Force Base; restricted area.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Weekley Bayou, an arm of Boggy Bayou, Fla., at Eglin Air Force Base; restricted area. 334.740 Section 334.740 Navigation and Navigable... REGULATIONS § 334.740 Weekley Bayou, an arm of Boggy Bayou, Fla., at Eglin Air Force Base; restricted area....

  18. Comparison of Gravity Wave Temperature Variances from Ray-Based Spectral Parameterization of Convective Gravity Wave Drag with AIRS Observations

    Science.gov (United States)

    Choi, Hyun-Joo; Chun, Hye-Yeong; Gong, Jie; Wu, Dong L.

    2012-01-01

    The realism of ray-based spectral parameterization of convective gravity wave drag, which considers the updated moving speed of the convective source and multiple wave propagation directions, is tested against the Atmospheric Infrared Sounder (AIRS) onboard the Aqua satellite. Offline parameterization calculations are performed using the global reanalysis data for January and July 2005, and gravity wave temperature variances (GWTVs) are calculated at z = 2.5 hPa (unfiltered GWTV). AIRS-filtered GWTV, which is directly compared with AIRS, is calculated by applying the AIRS visibility function to the unfiltered GWTV. A comparison between the parameterization calculations and AIRS observations shows that the spatial distribution of the AIRS-filtered GWTV agrees well with that of the AIRS GWTV. However, the magnitude of the AIRS-filtered GWTV is smaller than that of the AIRS GWTV. When an additional cloud top gravity wave momentum flux spectrum with longer horizontal wavelength components that were obtained from the mesoscale simulations is included in the parameterization, both the magnitude and spatial distribution of the AIRS-filtered GWTVs from the parameterization are in good agreement with those of the AIRS GWTVs. The AIRS GWTV can be reproduced reasonably well by the parameterization not only with multiple wave propagation directions but also with two wave propagation directions of 45 degrees (northeast-southwest) and 135 degrees (northwest-southeast), which are optimally chosen for computational efficiency.

  19. Fisk-based criteria to support validation of detection methods for drinking water and air.

    Energy Technology Data Exchange (ETDEWEB)

    MacDonell, M.; Bhattacharyya, M.; Finster, M.; Williams, M.; Picel, K.; Chang, Y.-S.; Peterson, J.; Adeshina, F.; Sonich-Mullin, C.; Environmental Science Division; EPA

    2009-02-18

    This report was prepared to support the validation of analytical methods for threat contaminants under the U.S. Environmental Protection Agency (EPA) National Homeland Security Research Center (NHSRC) program. It is designed to serve as a resource for certain applications of benchmark and fate information for homeland security threat contaminants. The report identifies risk-based criteria from existing health benchmarks for drinking water and air for potential use as validation targets. The focus is on benchmarks for chronic public exposures. The priority sources are standard EPA concentration limits for drinking water and air, along with oral and inhalation toxicity values. Many contaminants identified as homeland security threats to drinking water or air would convert to other chemicals within minutes to hours of being released. For this reason, a fate analysis has been performed to identify potential transformation products and removal half-lives in air and water so appropriate forms can be targeted for detection over time. The risk-based criteria presented in this report to frame method validation are expected to be lower than actual operational targets based on realistic exposures following a release. Note that many target criteria provided in this report are taken from available benchmarks without assessing the underlying toxicological details. That is, although the relevance of the chemical form and analogues are evaluated, the toxicological interpretations and extrapolations conducted by the authoring organizations are not. It is also important to emphasize that such targets in the current analysis are not health-based advisory levels to guide homeland security responses. This integrated evaluation of chronic public benchmarks and contaminant fate has identified more than 200 risk-based criteria as method validation targets across numerous contaminants and fate products in drinking water and air combined. The gap in directly applicable values is

  20. Radioactive waste disposal sites: Two successful closures at Tinker Air Force Base

    International Nuclear Information System (INIS)

    This article describes remediation and closure of two radioactive waste disposal sites at Tinker Air Force Base, Oklahoma, making them exemption regulatory control. The approach consisted of careful exhumation and assessment of soils in sites expected to be contaminated based on historical documentation, word of mouth, and geophysical surveys; removal of buried objects that had gamma radiation exposure levels above background; and confirmation that the soil containing residual radium-226 was below an activity level equal to no more than a 10 mrem/yr annual dose equivalent. In addition, 4464 kg of chemically contaminated excavated soils were removed for disposal. After remediation, the sites met standards for unrestricted use. These sites were two of the first three Air Force radioactive disposal sites to be closed and were the first to be closed under Draft NUREG/CR-5512

  1. Data mining based sensor fault diagnosis and validation for building air conditioning system

    International Nuclear Information System (INIS)

    A strategy based on the data mining (DM) method is developed to detect and diagnose sensor faults based on the past running performance data in heating, ventilating and air conditioning (HVAC) systems, combining a rough set approach and an artificial neural network (ANN). The reduced information is used to develop classification rules and train the neural network to infer appropriate parameters. The differences between measured thermodynamic states and predicted states obtained from models for normal performance (residuals) are used as performance indices for sensor fault detection and diagnosis. Real test results from a real HVAC system show that only the temperature and humidity measurements of many air handling units (AHU) can work very well as the measurements to distinguish simultaneous temperature sensor faults of the supply chilled water (SCW) and return chilled water (RCW)

  2. Kriging analysis of uranium concentrations in Test Area C-74L, Eglin Air Force Base, Florida

    International Nuclear Information System (INIS)

    Soil samples from Test Area C-74L, Eglin Air Force Base, Florida, were analyzed for depleted uranium by instrumental epithermal neutron activation analysis. The sampling design used was a modified polar coordinate scheme. The resulting data were analyzed with a statistical procedure called kriging to obtain a contour map of concentration and a 95% confidence interval map. The majority of uranium remains in the center of the area near the target abutment

  3. Online data mining services for dynamic spatial databases II: air quality location based services and sonification

    OpenAIRE

    Teixeira, Luís; Barbosa, Álvaro; Jorge C. S. Cardoso; Carvalhos, Vasco; Manuel COSTA; Sousa, Inês; Franco, Ivan; Fonseca, Alexandra; Henriques, Diana; Rosa, Paulo

    2005-01-01

    This paper introduces online data mining services for dynamic spatial databases associated with environmental monitoring networks. In particular, it describes an application that uses these services with sonification for air quality location based information services to the general public. The data mining services use Artificial Neural Networks, to find temporal relations in the monitored parameters. The execution of the algorithms performed at the server side and a distrib...

  4. Chitosan-based Matrix, Used to Determine the Bacterial Lipopolysaccharide in Air

    OpenAIRE

    Dmitry M. Frolov; Valery G. Zaitsev

    2013-01-01

    The article describes the technology of chitosan-based matrix creation, and results of the study of its affine properties to bacterial lipopolysaccharide in aerosol dispersion. High degree of deacylation of polymer (over 97%), three-dimensional-porous structure, and multilayer packaging in analytical cartridge were the features of this matrix. Specified air volume, containing aerosol concentration of bacterial lipopolysaccharide, was passed through the glass cylinder with analytical container...

  5. A NEW AIR CONDITIONING SYSTEM FAN MODEL BASED ON NUMERICAL ANALYSIS

    OpenAIRE

    Nabil Nassif; Raymond Tesiero; Nihal AlRaees

    2014-01-01

    A large portion of energy use in buildings is attributed to air movement devices. Accurate estimation of fan performance is a key element in maximizing fan efficiency. This study proposes a new fan model that can be used in several applications such as optimization and fault detection and can also be incorporated into any commercial building models. The model uses a numerical analysis based on an interpolation technique for the data generated by basic fan laws. It can use any two variables am...

  6. Bilirubin oxidase based enzymatic air-breathing cathode: Operation under pristine and contaminated conditions

    OpenAIRE

    Santoro, Carlo; Babanova, Sofia; Erable, Benjamin; Schuler, Andrew; Atanassov, Plamen

    2016-01-01

    The performance of bilirubin oxidase (BOx) based air breathing cathode was constantly monitored over 45 days. The effect of electrolyte composition on the cathode oxygen reduction reaction (ORR) output was investigated. Particularly, deactivation of the electrocatalytic activity of the enzyme in phosphate buffer saline (PBS) solution and in activated sludge (AS) was evaluated. The greatest drop in current density was observed during the first 3 days of constant operation with a decrease of ~6...

  7. Measuring the Removal of Trichloroethylene from Phytoremediation Sites at Travis and Fairchild Air Force Bases

    OpenAIRE

    Klein, Heather A

    2011-01-01

    Past use of trichloroethylene (TCE) as a degreasing solvent for aircraft maintenance has resulted in widespread groundwater contamination at Air Force Bases around the world. Travis AFB in California and Fairchild AFB in Washington are evaluating phytoremediation as a treatment option, since trees have been reported to take up dissolved TCE from shallow groundwater and volatilize it to the atmosphere while enhancing the volatilization of TCE from surrounding soil. Previous studies generally...

  8. Exploration and Resource Assessment at Mountain Home Air Force Base, Idaho Using an Integrated Team Approach

    Energy Technology Data Exchange (ETDEWEB)

    Joseph C. Armstrong; Robert P. Breckenridge; Dennis L. Nielson; John W. Shervais; Thomas R. Wood

    2012-10-01

    The U.S. Air Force is facing a number of challenges as it moves into the future, one of the biggest being how to provide safe and secure energy to support base operations. A team of scientists and engineers met at Mountain Home Air Force Base near Boise, Idaho, to discuss the possibility of exploring for geothermal resources under the base. The team identified that there was a reasonable potential for geothermal resources based on data from an existing well. In addition, a regional gravity map helped identify several possible locations for drilling a new well. The team identified several possible sources of funding for this well—the most logical being to use U.S. Department of Energy funds to drill the upper half of the well and U.S. Air Force funds to drill the bottom half of the well. The well was designed as a slimhole well in accordance with State of Idaho Department of Water Resources rules and regulations. Drilling operations commenced at the Mountain Home site in July of 2011 and were completed in January of 2012. Temperatures increased gradually, especially below a depth of 2000 ft. Temperatures increased more rapidly below a depth of 5500 ft. The bottom of the well is at 5976 ft, where a temperature of about 140°C was recorded. The well flowed artesian from a depth below 5600 ft, until it was plugged off with drilling mud. Core samples were collected from the well and are being analyzed to help understand permeability at depth. Additional tests using a televiewer system will be run to evaluate orientation and directions at fractures, especially in the production zone. A final report on the well exploitation will be forthcoming later this year. The Air Force will use it to evaluate the geothermal resource potential for future private development options at Mountain Home AFB.

  9. Geothermal exploration program, Hill Air Force Base, Davis and Weber Counties, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, W.E.; Chapman, D.S.; Foley, D.; Capuano, R.M.; Cole, D.; Sibbett, B.; Ward, S.H.

    1980-03-01

    Results obtained from a program designed to locate a low- or moderate-temperature geothermal resource that might exist beneath Hill Air Force Base (AFB), Ogden, Utah are discussed. A phased exploration program was conducted at Hill AFB. Published geological, geochemical, and geophysical reports on the area were examined, regional exploration was conducted, and two thermal gradient holes were drilled. This program demonstrated that thermal waters are not present in the shallow subsurface at this site. (MHR)

  10. Research of Air-Magnet Active Vibration Isolation System Based on H∞ Control

    Directory of Open Access Journals (Sweden)

    Wen Xianglong

    2015-01-01

    Full Text Available Considering the uncertainty of air-magnet active vibration isolation system (AMAVIS, passive vibration isolation was combined with active vibration isolation, which adopted H∞ control strategies. System identification method was used to get the channel model. By adopting mixed sensitivity design strategy, weighting functions were chosen and H∞ controller was designed. Both simulation results and experimental results show AMAVIS based on H∞ control had satisfying effect of vibration reduction in assigned frequency band.

  11. Air temperature measurements based on the speed of sound to compensate long distance interferometric measurements

    Directory of Open Access Journals (Sweden)

    Astrua Milena

    2014-01-01

    Full Text Available A method to measure the real time temperature distribution along an interferometer path based on the propagation of acoustic waves is presented. It exploits the high sensitivity of the speed of sound in air to the air temperature. In particular, it takes advantage of a special set-up where the generation of the acoustic waves is synchronous with the amplitude modulation of a laser source. A photodetector converts the laser light to an electronic signal considered as reference, while the incoming acoustic waves are focused on a microphone and generate a second signal. In this condition, the phase difference between the two signals substantially depends on the temperature of the air volume interposed between the sources and the receivers. The comparison with the traditional temperature sensors highlighted the limit of the latter in case of fast temperature variations and the advantage of a measurement integrated along the optical path instead of a sampling measurement. The capability of the acoustic method to compensate the interferometric distance measurements due to air temperature variations has been demonstrated for distances up to 27 m.

  12. An emission source inversion model based on satellite data and its application in air quality forecasts

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper aims at constructing an emission source inversion model using a variational processing method and adaptive nudging scheme for the Community Multiscale Air Quality Model (CMAQ) based on satellite data to investigate the applicability of high resolution OMI (Ozone Monitoring Instrument) column concentration data for air quality forecasts over the North China. The results show a reasonable consistency and good correlation between the spatial distributions of NO2 from surface and OMI satellite measurements in both winter and summer. Such OMI products may be used to implement integrated variational analysis based on observation data on the ground. With linear and variational corrections made, the spatial distribution of OMI NO2 clearly revealed more localized distributing characteristics of NO2 concentration. With such information, emission sources in the southwest and southeast of North China are found to have greater impacts on air quality in Beijing. When the retrieved emission source inventory based on high-resolution OMI NO2 data was used, the coupled Weather Research Forecasting CMAQ model (WRF-CMAQ) performed significantly better in forecasting NO2 concentration level and its tendency as reflected by the more consistencies between the NO2 concentrations from surface observation and model result. In conclusion, satellite data are particularly important for simulating NO2 concentrations on urban and street-block scale. High-resolution OMI NO2 data are applicable for inversing NOx emission source inventory, assessing the regional pollution status and pollution control strategy, and improving the model forecasting results on urban scale.

  13. Characterization of background air pollution exposure in urban environments using a metric based on Hidden Markov Models

    Science.gov (United States)

    Gómez-Losada, Álvaro; Pires, José Carlos M.; Pino-Mejías, Rafael

    2016-02-01

    Urban area air pollution results from local air pollutants (from different sources) and horizontal transport (background pollution). Understanding urban air pollution background (lowest) concentration profiles is key in population exposure assessment and epidemiological studies. To this end, air pollution registered at background monitoring sites is studied, but background pollution levels are given as the average of the air pollutant concentrations measured at these sites over long periods of time. This short communication shows how a metric based on Hidden Markov Models (HMMs) can characterise the air pollutant background concentration profiles. HMMs were applied to daily average concentrations of CO, NO2, PM10 and SO2 at thirteen urban monitoring sites from three cities from 2010 to 2013. Using the proposed metric, the mean values of background and ambient air pollution registered at these sites for these primary pollutants were estimated and the ratio of ambient to background air pollution and the difference between them were studied. The ratio indicator for the studied air pollutants during the four-year study sets the background air pollution at 48%-69% of the ambient air pollution, while the difference between these values ranges from 101 to 193 μg/m3, 7-12 μg/m3, 11-13 μg/m3 and 2-3 μg/m3 for CO, NO2, PM10 and SO2, respectively.

  14. Operational experience of air washer based ventilation system for power conditioning system of Indus-2

    International Nuclear Information System (INIS)

    Indus-2 Synchrotron Accelerator requires high quality conditioned uninterrupted AC mains power for their smooth and reliable operation. Three units of 1670 kVA and one unit of 1100 kVA capacity rotary uninterruptible power conditioning systems (UPS) were installed and commissioned. These UPS units require dust free and cool ambient conditions for smooth operation. In order to meet the ventilation requirements, an evaporative cooling system of 80000 cubic meter/hour capacity with filtration units was designed, installed and commissioned in February 2011 and is operational on round-the-clock basis. Evaporative cooling scheme was chosen as has various advantages over a refrigerated system like lower initial capital costs, lower energy usage, lower running costs, less greenhouse gas and it does not contribute to ozone depletion. The ventilation system filters the environment air in stages up to 5 micron level and being conditioned with an automatic controlled soft water circulating system with cooling pads. An instrumentation and control scheme is included in the system to provide the automation requirements for operating 24 x 7 through the year. All the mechanical, hydraulic and electrical devices are maintained by providing preventive maintenance work without affecting the accelerator machine operation. Availability and reliability of the system was analysed based on the failure data. In Year 2014, the ventilation system was upgraded to accommodate standby blower unit, coupling unit and improved quality of supply air with new air conditioning devices. The control panel monitors the condition of air in the UPS hall and maintainsup to 28°C air temperature and 85% maximum relative humidity in round-the clock shift with more than 98% operational reliability. In this paper, we present design philosophy, installation, instrumentation, testing, operation experience and availability of the ventilation system for Power Conditioning System, Indus complex. (author)

  15. Comparison of residential geocoding methods in population-based study of air quality and birth defects.

    Science.gov (United States)

    Gilboa, Suzanne M; Mendola, Pauline; Olshan, Andrew F; Harness, Catherine; Loomis, Dana; Langlois, Peter H; Savitz, David A; Herring, Amy H

    2006-06-01

    Our population-based case-control study of air quality and birth defects in Texas relied on the geocoding of maternal residence from vital records for the assignment of air pollution exposures during early pregnancy. We attempted to geocode the maternal addresses for 5,338 birth defect cases and 4,574 frequency-matched controls using an automated procedure with standard matching criteria in ArcGIS 8.2 and 8.3. Initially, we matched 7,266 observations (73%). To increase the proportion of successful matches, we used an interactive procedure for the 2,646 addresses that were initially not geocoded by the software. This yielded an additional 985 matches (37%). Using the same 2,646 initially unmatched addresses, we compared the results of this interactive procedure to those of an automated procedure using lower standards. The automated procedure with lower standards yielded more matches (n=1,559, 59%) but with questionable accuracy. We included the interactively geocoded observations in our final data set. Their inclusion did not affect the estimates of air pollution exposure but increased our statistical power to detect associations between air quality and risk of selected birth defects. The geocoded and not geocoded populations differed in the distribution of Latino ethnicity (51% vs 59%) and ethnicity was independently associated with air pollution exposures (Pbirth defects; Latina women appeared to have a slightly lower risk of birth defects than non-Latina women in the geocoded population and to have a slightly higher risk in the not geocoded population. Incomplete geocoding may have resulted in a selection bias because of the under-representation of Latinas in our study population. PMID:16483563

  16. A Belief-Based Model of Air Traffic Controllers Performing Separation Assurance

    Science.gov (United States)

    Landry, S.J.

    2009-01-01

    A model of an air traffic controller performing a separation assurance task was produced. The model was designed to be simple to use and deploy in a simulator, but still provide realistic behavior. The model is based upon an evaluation of the safety function of the controller for separation assurance, and utilizes fast and frugal heuristics and belief networks to establish a knowledge set for the controller model. Based on this knowledge set, the controller acts to keep aircraft separated. Validation results are provided to demonstrate the model s performance.

  17. Evaluation of ozone generation and indoor organic compounds removal by air cleaners based on chamber tests

    Science.gov (United States)

    Yu, Kuo-Pin; Lee, Grace Whei-May; Hsieh, Ching-Pei; Lin, Chi-Chi

    2011-01-01

    Ozone can cause many health problems, including exacerbation of asthma, throat irritation, cough, chest ache, shortness of breath, and respiratory infections. Air cleaners are one of the sources of indoor ozone, and thus the evaluation of ozone generated by air cleaners is desired significant issue. Most evaluation methods proposed are based on chamber tests. However, the adsorption and desorption of ozone on the wall of test chamber and the deposition of ozone resulted from the surface reaction can influence the evaluation results. In this study, we developed a mass balance model that took the adsorption, desorption and deposition of ozone into consideration to evaluate the effective ozone emission rates of six selected air cleaners. The experiments were conducted in a stainless steel chamber with a volume of 11.3 m 3 at 25 °C and 60% relative humidity. The adsorption, desorption and deposition rate constants of ozone obtained by fitting the model to the experimental data were k a = 0.149 ± 0.052 m h -1, k d = 0.013 ± 0.007 h -1, and k r = 0.050 ± 0.020 h -1, respectively. The effective ozone emission rates of Air Cleaners No. 1, 2, and 3 ranged between 13,400-24,500 μg h -1, 7190-10,400 μg h -1, and 4880-6560 μg h -1, respectively, which were more stable than those of No.4, 5, and 6. The effective ozone emission rates of Air Cleaners No. 4, 5, and 6 increased with the time of operation which might be relevant to the decrease of ozone removal by the "aging" filter installed in these cleaners. The removal of toluene and formaldehyde by these six air cleaners were also evaluated and the clean air delivery rates (CADRs) of these two pollutants ranged from non-detectable to 0.42 ± 0.08 m 3 h -1, and from non-detectable to 0.75 ± 0.07 m 3 h -1, respectively. The CADRs showed an insignificant relationship with the effective ozone emission rates. Thus, the removal of toluene and formaldehyde might be resulted from the adsorption on the filters and the

  18. Thin-film encapsulation of the air-sensitive organic-based ferrimagnet vanadium tetracyanoethylene

    Energy Technology Data Exchange (ETDEWEB)

    Froning, I. H.; Harberts, M.; Yu, H.; Johnston-Halperin, E., E-mail: ejh@physics.osu.edu [Department of Physics, The Ohio State University, Columbus, Ohio 43210-1117 (United States); Lu, Y. [Department of Chemistry, The Ohio State University, Columbus, Ohio 43210-1173 (United States); Epstein, A. J. [Department of Physics, The Ohio State University, Columbus, Ohio 43210-1117 (United States); Department of Chemistry, The Ohio State University, Columbus, Ohio 43210-1173 (United States)

    2015-03-23

    The organic-based ferrimagnet vanadium tetracyanoethylene (V[TCNE]{sub x∼2}) has demonstrated potential for use in both microwave electronics and spintronics due to the combination of high temperature magnetic ordering (T{sub C} > 600 K), extremely sharp ferromagnetic resonance (peak to peak linewidth of 1 G), and low-temperature conformal deposition via chemical vapor deposition (deposition temperature of 50 °C). However, air-sensitivity leads to the complete degradation of the films within 2 h under ambient conditions, with noticeable degradation occurring within 30 min. Here, we demonstrate encapsulation of V[TCNE]{sub x∼2} thin films using a UV-cured epoxy that increases film lifetime to over 710 h (30 days) as measured by the remanent magnetization. The saturation magnetization and Curie temperature decay more slowly than the remanence, and the coercivity is unchanged after 340 h (14 days) of air exposure. Fourier transform infrared spectroscopy indicates that the epoxy does not react with the film, and magnetometry measurements show that the presence of the epoxy does not degrade the magnetic properties. This encapsulation strategy directly enables a host of experimental protocols and investigations not previously feasible for air-sensitive samples and lays the foundation for the development of practical applications for this promising organic-based magnetic material.

  19. A robust model-based approach to diagnosing faults in air-handling units

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, D.; Dexter, A.L.

    1999-07-01

    This paper describes the development of a robust model-based approach to diagnosing faults in air-handling units that avoids false alarms caused by sensor bias but does not require application-dependent thresholds to be selected. The diagnosis is based on a semi-qualitative analysis of the measured data using generic fuzzy reference models to describe the behavior of the equipment, with and without faults. The scheme is applied to the cooling-coil subsystem of an air-handling unit, and the sensitivity of the diagnosis to sensor bias and fault size is examined. The results of the diagnosis are compared to those obtained using reference models that describe the behavior of a specific design. The scheme is also used to commission the cooling-coil subsystem of an air-handling unit in an office building. Results are presented that demonstrate the proposed scheme does not generate false alarms in practice. It is concluded that the accuracy of sensors currently used means it is likely that only large faults can be detected in practice and that more accurate measurements are required if a higher level of fault sensitivity is needed.

  20. Radar Scan Strategies for the Patrick Air Force Base Weather Surveillance Radar, Model-74C, Replacement

    Science.gov (United States)

    Short, David

    2008-01-01

    The 45th Weather Squadron (45 WS) is replacing the Weather Surveillance Radar, Model 74C (WSR-74C) at Patrick Air Force Base (PAFB), with a Doppler, dual polarization radar, the Radtec 43/250. A new scan strategy is needed for the Radtec 43/250, to provide high vertical resolution data over the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) launch pads, while taking advantage of the new radar's advanced capabilities for detecting severe weather phenomena associated with convection within the 45 WS area of responsibility. The Applied Meteorology Unit (AMU) developed several scan strategies customized for the operational needs of the 45 WS. The AMU also developed a plan for evaluating the scan strategies in the period prior to operational acceptance, currently scheduled for November 2008.

  1. Air Pollution Monitoring and Mining Based on Sensor Grid in London

    Directory of Open Access Journals (Sweden)

    John Hassard

    2008-06-01

    Full Text Available In this paper, we present a distributed infrastructure based on wireless sensors network and Grid computing technology for air pollution monitoring and mining, which aims to develop low-cost and ubiquitous sensor networks to collect real-time, large scale and comprehensive environmental data from road traffic emissions for air pollution monitoring in urban environment. The main informatics challenges in respect to constructing the high-throughput sensor Grid are discussed in this paper. We present a twolayer network framework, a P2P e-Science Grid architecture, and the distributed data mining algorithm as the solutions to address the challenges. We simulated the system in TinyOS to examine the operation of each sensor as well as the networking performance. We also present the distributed data mining result to examine the effectiveness of the algorithm.

  2. Quantum cascade laser-based spectrometer for high sensitive measurements of trace gases in air

    Institute of Scientific and Technical Information of China (English)

    Yuanyuan Tang; Wenqing Liu; Ruifeng Kan; Yujun Zhang; Dong Chen; Shuai Zhang; Jun Ruan

    2012-01-01

    A quantum cascade (QC) laser-based spectrometer is developed to measure trace gases in air.The proposed spectrometer is tested for N2O,and the results presented in this letter.This system takes advantage of recent technology in QC lasers by utilizing intra-pulse scan spectroscopy,which allows high sensitive measurement.Without calibration gases,the gas concentration can be calculated with scan integration and the corresponding values from the HITRAN04 database.By analyzing the Allan variance,a detection limit of 2 ppb is obtained.Continuous measurement of N2O sampled from ambient air shows the applicability of the proposed system for the field measurements of gases of environmental concern.

  3. 77 FR 73924 - Approval and Promulgation of Air Quality Implementation Plans; West Virginia; The 2002 Base Year...

    Science.gov (United States)

    2012-12-12

    ... Fine Particulate Matter National Ambient Air Quality Standard AGENCY: Environmental Protection Agency... 2.5 National Ambient Air Quality Standard (NAAQS). EPA is approving the 2002 base year PM 2.5..., Carbon monoxide, Incorporation by reference, Nitrogen dioxide, Particulate matter, Reporting...

  4. Standard Air Pollution Classification Network: A Thesaurus of Terms (As Used in the APTIC Data Base). Second Edition.

    Science.gov (United States)

    Halpin, Peter

    This thesaurus presents the specialized terminology and air pollution indexing terms used for the storage of, and search for, information in the Air Pollution Technical Information Center (APTIC) data base file, and illustrates the rules formulated for their use. The meanings of the terms are implied rather than defined, being implicit in the…

  5. The Second Order Guided Modes Based on Photonic Bandgap Effects in Air/Glass Photonic Crystal Fibers

    International Nuclear Information System (INIS)

    We introduce a defect site in the periodic structure of a photonic bandgap fiber, to confine and guide the second order mode by photonic bandgap effects. Based on a high air-filling fraction photonic crystal cladding structure, a simplified model with an equivalent air cladding was proposed to explore and analyze the properties of this second order guided mode

  6. The Research on Programmable Control System of Lithium-Bromide Absorption Refrigerating Air Conditioner Based on the Network

    Directory of Open Access Journals (Sweden)

    Sun Lunan

    2016-01-01

    Full Text Available This article regard the solar lithium-bromide absorption refrigerating air conditioning system as the research object, and it was conducting adequate research of the working principle of lithium bromide absorption refrigerating machine, also it was analyzing the requirements of control system about solar energy air conditioning. Then the solar energy air conditioning control system was designed based on PLC, this system was given priority to field bus control system, and the remote monitoring is complementary, which was combining the network remote monitoring technology. So that it realized the automatic control and intelligent control of new lithium bromide absorption refrigerating air conditioning system with solar energy, also, it ensured the control system can automatically detect and adjust when the external conditions was random changing, to make air conditioning work effectively and steadily, ultimately ,it has great research significance to research the air conditioning control system with solar energy.

  7. A framework for air quality monitoring based on free public data and open source tools

    Science.gov (United States)

    Nikolov, Hristo; Borisova, Denitsa

    2014-10-01

    In the recent years more and more widely accepted by the Space agencies (e.g. NASA, ESA) is the policy toward provision of Earth observation (EO) data and end products concerning air quality especially in large urban areas without cost to researchers and SMEs. Those EO data are complemented by increasing amount of in-situ data also provided at no cost either from national authorities or having crowdsourced origin. This accessibility together with the increased processing capabilities of the free and open source software is a prerequisite for creation of solid framework for air modeling in support of decision making at medium and large scale. Essential part of this framework is web-based GIS mapping tool responsible for dissemination of the output generated. In this research an attempt is made to establish a running framework based solely on openly accessible data on air quality and on set of freely available software tools for processing and modeling taking into account the present status quo in Bulgaria. Among the primary sources of data, especially for bigger urban areas, for different types of gases and dust particles, noted should be the National Institute of Meteorology and Hydrology of Bulgaria (NIMH) and National System for Environmental Monitoring managed by Bulgarian Executive Environmental Agency (ExEA). Both authorities provide data for concentration of several gases just to mention CO, CO2, NO2, SO2, and fine suspended dust (PM10, PM2.5) on monthly (for some data on daily) basis. In the framework proposed these data will complement the data from satellite-based sensors such as OMI instrument aboard EOS-Aura satellite and from TROPOMI instrument payload for future ESA Sentinel-5P mission. Integral part of the framework is the modern map for the land use/land cover which is provided from EEA by initiative GIO Land CORINE. This map is also a product from EO data distributed at European level. First and above all, our effort is focused on provision to the

  8. Evaluating network analysis and agent based modeling for investigating the stability of commercial air carrier schedules

    Science.gov (United States)

    Conway, Sheila Ruth

    For a number of years, the United States Federal Government has been formulating the Next Generation Air Transportation System plans for National Airspace System improvement. These improvements attempt to address air transportation holistically, but often address individual improvements in one arena such as ground or in-flight equipment. In fact, air transportation system designers have had only limited success using traditional Operations Research and parametric modeling approaches in their analyses of innovative operations. They need a systemic methodology for modeling of safety-critical infrastructure that is comprehensive, objective, and sufficiently concrete, yet simple enough to be deployed with reasonable investment. The methodology must also be amenable to quantitative analysis so issues of system safety and stability can be rigorously addressed. The literature suggests that both agent-based models and network analysis techniques may be useful for complex system development and analysis. The purpose of this research is to evaluate these two techniques as applied to analysis of commercial air carrier schedule (route) stability in daily operations, an important component of air transportation. Airline-like routing strategies are used to educe essential elements of applying the method. Two main models are developed, one investigating the network properties of the route structure, the other an Agent-based approach. The two methods are used to predict system properties at a macro-level. These findings are compared to observed route network performance measured by adherence to a schedule to provide validation of the results. Those interested in complex system modeling are provided some indication as to when either or both of the techniques would be applicable. For aviation policy makers, the results point to a toolset capable of providing insight into the system behavior during the formative phases of development and transformation with relatively low investment

  9. Fall 1994 wildlife and vegetation survey, Norton Air Force Base, California

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-15

    The fall 1994 wildlife and vegetation surveys were completed October 3-7, 1994, at Norton Air Force Base (AFB), California. Two biologists from CDM Federal Programs, the U.S. Environmental Protection Agency (EPA) regional biologist and the Oak Ridge National Laboratory (ORNL) lead biologist conducted the surveys. A habitat assessment of three Installation Restoration Project (IRP) sites at Norton Air Force Base was also completed during the fall survey period. The IRP sites include: Landfill No. 2 (Site 2); the Industrial Wastewater Treatment Plant (IWTP) area; and Former Fire Training Area No. 1 (Site 5). The assessments were designed to qualitatively characterize the sites of concern, identify potential ecological receptors, and provide information for Remedial Design/Remedial Action activities. A Reference Area (Santa Ana River Wash) and the base urban areas were also characterized. The reference area assessment was performed to provide a baseline for comparison with the IRP site habitats. The fall 1994 survey is the second of up to four surveys that may be completed. In order to develop a complete understanding of all plant and animal species using the base, these surveys were planned to be conducted over four seasons. Species composition can vary widely during the course of a year in Southern California, and therefore, seasonal surveys will provide the most complete and reliable data to address changes in habitat structure and wildlife use of the site. Subsequent surveys will focus on seasonal wildlife observations and a spring vegetation survey.

  10. Local and Regional Interactions Between Air Quality and Climate in New Delhi -- a Sector Based Analysis

    Science.gov (United States)

    Marrapu, P.; Cheng, Y.; Carmichael, G. R.; Beig, G.; Spak, S.; Lin, M.; Decker, M.; Schultz, M. G.; Winiwarter, W.

    2011-12-01

    Out of the 26 mega-cities in the world, 13 of them are affected by atmospheric brown clouds with high aerosol loadings and 5 of them are in South Asia. New Delhi (India) is one of the world's most polluted megacities. In this study we evaluate the air pollution levels in Delhi and their impacts on weather and climate. The two way interactions between pollution and meteorology are evaluated using the WRF-Chem model. The analysis period is focused on October 2010, the time period of the Commonwealth Games. The model is compared to BC and PM2.5 measurements at 11 sites. A sector based analysis is performed to assess the contributions to pollution and direct radiative forcing from transport, residential, power and industrial emissions. The contributions from emissions outside of Delhi are also evaluated to see the extent that regional emissions need to be controlled to meet air quality targets in Delhi. Results of simulations for emission scenarios generated by the GAINS model that address air quality and climate strategies are also discussed

  11. A basic condition-based maintenance strategy for air-cooled turbine generators

    Energy Technology Data Exchange (ETDEWEB)

    Laird, T; Griffith, G [Mechanical Dynamics and Analysis LLC, Generator Repair Services, Sunset Hills, MO (United States); Hoof, M. [Univ. of Applied Sciences, High Voltage and Power Systems Lab, Kaiserslautern (Germany)

    2005-07-01

    Generator components require regular maintenance to prevent failures. It is important to detect degradation of critical generator components such as stator windings, stator core, rotor windings, rotor retaining rings, generator bearings and high voltage bushings which are all exposed to high stresses. The methods of using condition-based maintenance (CBM) for turbine generators was discussed with particular focus on the maintenance strategy for air-cooled generators. Higher unit rated air-cooled machines typically designed as hydrogen-cooled machines are being used more frequently by the power industry to reduce costs. Since more compact machines are being built to reduce material costs, thermal and electrical design stresses have increased, resulting in higher utilization of the machines and reduced long-term reliability in service. It was noted that CBM will not completely eliminate all forced outage situations, but will greatly reduce their occurrence and will help avoid catastrophic machine situations. This paper outlined basic maintenance strategies for nuclear power plants, major utilities including fossil-fuel power plants, and minor utilities including industrial power plant producers. The economic strategy for air-cooled turbine generators was outlined with reference to unit condition assessment, trending assessed condition of major generator components, and unknown component weaknesses. The CBM maintenance can be applied to all types of power producers that can benefit from an improved, low cost maintenance strategy. Detailed knowledge of the unit design, operational weakness, cost of maintenance and operational capabilities is needed in order to conduct a reliable assessment. 19 refs., 2 figs.

  12. Model-based control strategies in the dynamic interaction of air supply and fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Grujicic, M.; Chittajallu, K.M.; Law, E.H. [Clemson University, SC (United States). Dept. of Mechanical Engineering; Pukrushpan, J.T. [University of Michigan, Ann Arbor, MI (United States). Dept. of Mechanical Engineering

    2004-12-01

    Model-based control strategies are utilized to analyse and optimize the transient behaviour of a polymer electrolyte membrane (PEM) fuel cell system consisting of air and fuel supply subsystems, a perfect air/fuel humidifier and a fuel cell stack at constant fuel cell temperature. The model is used to analyse the control of the fuel cell system with respect to maintaining a necessary level of oxygen partial pressure in the cathode during abrupt changes in the current demanded by the user. Maintaining the oxygen partial pressure in the cathode is necessary to prevent short circuit and membrane damage. The results obtained indicate that the oxygen level in the cathode can be successfully maintained through feedforward control of the air compressor motor voltage. However, the net power provided by the fuel cell system is compromised during the transients following abrupt changes in the stack current, suggesting a need for power management via the use of a secondary power source such as a battery. (author)

  13. AQUIS: A PC-based air quality and permit information system

    International Nuclear Information System (INIS)

    The Air Quality Utility Information System (AQUIS) was developed to calculate and track emissions, permits, and related information. The system runs on IBM-compatible personal computers using dBASE IV. AQUIS tracks more than 900 data items distributed among various source categories and allows the user to enter specific information on permit control devices, stacks, and related regulatory requirements. The system is currently operating at seven US Air Force Materiel Command facilities, large industrial operations involved in the repair and maintenance of aircraft. Environmental management personnel are responsible for the compliance status of as many as l,000 sources at each facility. The usefulness of the system has been enhanced by providing a flexible reporting capability that permits users who are unfamiliar with database structure to design and prepare reports containing specified information. In addition to the standard six pollutants, AQUIS calculates compound-specific emissions and allows users to enter their own emission estimates. This capability will be useful in developing air toxics inventories and control plans

  14. Triple-bore hollow fiber membrane contactor for liquid desiccant based air dehumidification

    KAUST Repository

    Bettahalli, N.M. Srivatsa

    2016-04-26

    Dehumidification is responsible for a large part of the energy consumption in cooling systems in high humidity environments worldwide. Improving efficiency is therefore essential. Liquid desiccants offer a promising solution for dehumidification, as desired levels of humidity removal could be easily regulated. The use of membrane contactors in combination with liquid desiccant is attractive for dehumidification because they prevent direct contact between the humid air and the desiccant, removing both the potential for desiccant carryover to the air and the potential for contamination of the liquid desiccant by dust and other airborne materials, as well as minimizing corrosion. However, the expected additional mass transport barrier of the membrane surface can lower the expected desiccation rate per unit of desiccant surface area. In this context, hollow fiber membranes present an attractive option for membrane liquid desiccant contactors because of their high surface area per unit volume. We demonstrate in this work the performance of polyvinylidene fluoride (PVDF) based triple-bore hollow fiber membranes as liquid desiccant contactors, which are permeable to water vapor but impermeable to liquid water, for dehumidification of hot and humid air.

  15. Air Pollution and the Risk of Cardiac Defects: A Population-Based Case-Control Study.

    Science.gov (United States)

    Hwang, Bing-Fang; Lee, Yungling Leo; Jaakkola, Jouni J K

    2015-11-01

    Previous epidemiologic studies have assessed the role of the exposure to ambient air pollution in the development of cardiac birth defects, but they have provided somewhat inconsistent results. To assess the associations between exposure to ambient air pollutants and the risk of cardiac defects, a population-based case-control study was conducted using 1087 cases of cardiac defects and a random sample of 10,870 controls from 1,533,748 Taiwanese newborns in 2001 to 2007.Logistic regression was performed to calculate odds ratios for 10 ppb increases in O3 and 10 μg/m increases in PM10. In addition, we compared the risk of cardiac defects in 4 categories-high exposure (>75th percentile); medium exposure (75th to 50th percentile); low exposure (patent ductus arteriosus (PDA) were associated with 10 ppb increases in O3 exposure during the first 3 gestational months among term and preterm babies. In comparison between high PM10 exposure and reference category, there were statistically significant elevations in the effect estimates of ASD for all and terms births. In addition, there was a negative or weak association between SO2, NO2, CO, and cardiac defects.The study proved that exposure to outdoor air O3 and PM10 during the first trimester of gestation may increase the risk of VSD, ASD, and PDA. PMID:26554783

  16. Air pollution and newly diagnostic autism spectrum disorders: a population-based cohort study in Taiwan.

    Directory of Open Access Journals (Sweden)

    Chau-Ren Jung

    Full Text Available There is limited evidence that long-term exposure to ambient air pollution increases the risk of childhood autism spectrum disorder (ASD. The objective of the study was to investigate the associations between long-term exposure to air pollution and newly diagnostic ASD in Taiwan. We conducted a population-based cohort of 49,073 children age less than 3 years in 2000 that were retrieved from Taiwan National Insurance Research Database and followed up from 2000 through 2010. Inverse distance weighting method was used to form exposure parameter for ozone (O3, carbon monoxide (CO, nitrogen dioxide (NO2, sulfur dioxide (SO2, and particles with aerodynamic diameter less than 10 µm (PM10. Time-dependent Cox proportional hazards (PH model was performed to evaluate the relationship between yearly average exposure air pollutants of preceding years and newly diagnostic ASD. The risk of newly diagnostic ASD increased according to increasing O3, CO, NO2, and SO2 levels. The effect estimate indicating an approximately 59% risk increase per 10 ppb increase in O3 level (95% CI 1.42-1.79, 37% risk increase per 10 ppb in CO (95% CI 1.31-1.44, 340% risk increase per 10 ppb increase in NO2 level (95% CI 3.31-5.85, and 17% risk increase per 1 ppb in SO2 level (95% CI 1.09-1.27 was stable with different combinations of air pollutants in the multi-pollutant models. Our results provide evident that children exposure to O3, CO, NO2, and SO2 in the preceding 1 year to 4 years may increase the risk of ASD diagnosis.

  17. Air pollution and newly diagnostic autism spectrum disorders: a population-based cohort study in Taiwan.

    Science.gov (United States)

    Jung, Chau-Ren; Lin, Yu-Ting; Hwang, Bing-Fang

    2013-01-01

    There is limited evidence that long-term exposure to ambient air pollution increases the risk of childhood autism spectrum disorder (ASD). The objective of the study was to investigate the associations between long-term exposure to air pollution and newly diagnostic ASD in Taiwan. We conducted a population-based cohort of 49,073 children age less than 3 years in 2000 that were retrieved from Taiwan National Insurance Research Database and followed up from 2000 through 2010. Inverse distance weighting method was used to form exposure parameter for ozone (O3), carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), and particles with aerodynamic diameter less than 10 µm (PM10). Time-dependent Cox proportional hazards (PH) model was performed to evaluate the relationship between yearly average exposure air pollutants of preceding years and newly diagnostic ASD. The risk of newly diagnostic ASD increased according to increasing O3, CO, NO2, and SO2 levels. The effect estimate indicating an approximately 59% risk increase per 10 ppb increase in O3 level (95% CI 1.42-1.79), 37% risk increase per 10 ppb in CO (95% CI 1.31-1.44), 340% risk increase per 10 ppb increase in NO2 level (95% CI 3.31-5.85), and 17% risk increase per 1 ppb in SO2 level (95% CI 1.09-1.27) was stable with different combinations of air pollutants in the multi-pollutant models. Our results provide evident that children exposure to O3, CO, NO2, and SO2 in the preceding 1 year to 4 years may increase the risk of ASD diagnosis. PMID:24086549

  18. Arduino-based control system for measuring ammonia in air using conditionally-deployed diffusive samplers

    Science.gov (United States)

    Ham, J. M.; Williams, C.; Shonkwiler, K. B.

    2012-12-01

    Arduino microcontrollers, wireless modules, and other low-cost hardware were used to develop a new type of air sampler for monitoring ammonia at strong areal sources like dairies, cattle feedlots, and waste treatment facilities. Ammonia was sampled at multiple locations on the periphery of an operation using Radiello diffusive passive samplers (Cod. RAD168- and RAD1201-Sigma-Aldrich). However, the samplers were not continuously exposed to the air. Instead, each sampling station included two diffusive samplers housed in specialized tubes that sealed the cartridges from the atmosphere. If a user-defined set of wind and weather conditions were met, the Radiellos were deployed into the air using a micro linear actuator. Each station was solar-powered and controlled by Arduinos that were linked to a central weather station using Xbee wireless modules (Digi International Inc.). The Arduinos also measured the total time of exposure using hall-effect sensors to verify the position of the cartridge (i.e., deployed or retracted). The decision to expose or retract the samplers was made every five minutes based on wind direction, wind speed, and time of day. Typically, the diffusive samplers were replaced with fresh cartridges every two weeks and the used samplers were analyzed in the laboratory using ion chromatography. Initial studies were conducted at a commercial dairy in northern Colorado. Ammonia emissions along the Front Range of Colorado can be transported into the mountains where atmospheric deposition of nitrogen can impact alpine ecosystems. Therefore, low-cost air quality monitoring equipment is needed that can be widely deployed in the region. Initial work at the dairy showed that ammonia concentrations ranged between 600 to 1200 ppb during the summer; the highest concentrations were downwind of a large anaerobic lagoon. Time-averaged ammonia concentrations were also used to approximate emissions using inverse dispersion models. This methodology provides a

  19. Agent Based Modeling of Air Carrier Behavior for Evaluation of Technology Equipage and Adoption

    Science.gov (United States)

    Horio, Brant M.; DeCicco, Anthony H.; Stouffer, Virginia L.; Hasan, Shahab; Rosenbaum, Rebecca L.; Smith, Jeremy C.

    2014-01-01

    As part of ongoing research, the National Aeronautics and Space Administration (NASA) and LMI developed a research framework to assist policymakers in identifying impacts on the U.S. air transportation system (ATS) of potential policies and technology related to the implementation of the Next Generation Air Transportation System (NextGen). This framework, called the Air Transportation System Evolutionary Simulation (ATS-EVOS), integrates multiple models into a single process flow to best simulate responses by U.S. commercial airlines and other ATS stakeholders to NextGen-related policies, and in turn, how those responses impact the ATS. Development of this framework required NASA and LMI to create an agent-based model of airline and passenger behavior. This Airline Evolutionary Simulation (AIRLINE-EVOS) models airline decisions about tactical airfare and schedule adjustments, and strategic decisions related to fleet assignments, market prices, and equipage. AIRLINE-EVOS models its own heterogeneous population of passenger agents that interact with airlines; this interaction allows the model to simulate the cycle of action-reaction as airlines compete with each other and engage passengers. We validated a baseline configuration of AIRLINE-EVOS against Airline Origin and Destination Survey (DB1B) data and subject matter expert opinion, and we verified the ATS-EVOS framework and agent behavior logic through scenario-based experiments. These experiments demonstrated AIRLINE-EVOS's capabilities in responding to an input price shock in fuel prices, and to equipage challenges in a series of analyses based on potential incentive policies for best equipped best served, optimal-wind routing, and traffic management initiative exemption concepts..

  20. American Recovery and Reinvestment Act (ARRA) Federal Energy Management Program Technical Assistance Project 224 Altus Air Force Base Solar Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Bryan J.

    2010-09-30

    The principal goal of this project was to evaluate altus Air Force Base for building integrated silicon or thin film module photovoltaic opportunities. This report documents PNNL's efforts and documents study conclusions.

  1. Development of a health effects based priority ranking system for air emissions reductions from oil refineries in Canada

    International Nuclear Information System (INIS)

    This paper presents the concept and methodologies behind the development of a health effects priority ranking tool for the reduction of air emissions from oil refineries. The Health Effects Indicators Decision Index- Versions 2 (Heidi II) was designed to assist policy makers in prioritizing air emissions reductions on the basis of estimated risk to human health. Inputs include facility level rankings of potential health impacts associated with carcinogenic air toxics, non-carcinogenic air toxics and criteria air contaminants for each of the 20 refineries in Canada. Rankings of estimated health impacts are presented on predicted incidence of health effects. Heidi II considers site-specific annual pollutant emission data, ambient air concentrations associated with releases and concentration response functions for various types of health effects. Additional data includes location specific background air concentrations, site-specific population densities, and the baseline incidence of different health effects endpoints, such as cancer, non-cancer illnesses and cardiorespiratory illnesses and death. Air pollutants include the 29 air toxics reported annually in Environment Canada's National Pollutant Release Inventory. Three health impact ranking outputs are provided for each facility: ranking of pollutants based on predicted number of annual cases of health effects; ranking of pollutants based on simplified Disability Adjusted Life Years (DALYs); and ranking of pollutants based on more complex DALYs that consider types of cancer, systemic disease or types of cardiopulmonary health effects. Rankings rely on rough statistical estimates of predicted incidence rates for health endpoints. The models used to calculate rankings can provide useful guidance by comparing estimated health impacts. Heidi II has demonstrated that it is possible to develop a consistent and objective approach for ranking priority reductions of air emissions. Heidi II requires numerous types and

  2. New methodology to determine air quality in urban areas based on runs rules for functional data

    Science.gov (United States)

    Sancho, J.; Martínez, J.; Pastor, J. J.; Taboada, J.; Piñeiro, J. I.; García-Nieto, P. J.

    2014-02-01

    Functional data appear in a multitude of industrial applications and processes. However, in many cases at present, such data continue to be studied from the conventional standpoint based on Statistical Process Control (SPC), losing the capacity of analysing different aspects over the time. In this study, the well-known runs rules for Shewhart Type Control Charts are adapted to the case of functional data. Also, in the application of this functional approach, a number of advantages over the classical one are described. Furthermore, the results of applying this new methodology are analysed to determine the air quality of urban areas from the gas emissions at different weather stations.

  3. Cubic PdNP-based air-breathing cathodes integrated in glucose hybrid biofuel cells

    Science.gov (United States)

    Faggion Junior, D.; Haddad, R.; Giroud, F.; Holzinger, M.; Maduro de Campos, C. E.; Acuña, J. J. S.; Domingos, J. B.; Cosnier, S.

    2016-05-01

    Cubic Pd nanoparticles (PdNPs) were synthesized using ascorbic acid as a reducing agent and were evaluated for the catalytic oxygen reduction reaction. PdNPs were confined with multiwalled carbon nanotube (MWCNT) dispersions to form black suspensions and these inks were dropcast onto glassy carbon electrodes. Different nanoparticle sizes were synthesized and investigated upon oxygen reduction capacities (onset potential and electrocatalytic current densities) under O2 saturated conditions at varying pH values. Strong evidence of O2 diffusion limitation was demonstrated. In order to overcome oxygen concentration and diffusion limitations in solution, we used a gas diffusion layer to create a PdNP-based air-breathing cathode, which delivered -1.5 mA cm-2 at 0.0 V with an onset potential of 0.4 V. This air-breathing cathode was combined with a specially designed phenanthrolinequinone/glucose dehydrogenase-based anode to form a complete glucose/O2 hybrid bio-fuel cell providing an open circuit voltage of 0.554 V and delivering a maximal power output of 184 +/- 21 μW cm-2 at 0.19 V and pH 7.0.Cubic Pd nanoparticles (PdNPs) were synthesized using ascorbic acid as a reducing agent and were evaluated for the catalytic oxygen reduction reaction. PdNPs were confined with multiwalled carbon nanotube (MWCNT) dispersions to form black suspensions and these inks were dropcast onto glassy carbon electrodes. Different nanoparticle sizes were synthesized and investigated upon oxygen reduction capacities (onset potential and electrocatalytic current densities) under O2 saturated conditions at varying pH values. Strong evidence of O2 diffusion limitation was demonstrated. In order to overcome oxygen concentration and diffusion limitations in solution, we used a gas diffusion layer to create a PdNP-based air-breathing cathode, which delivered -1.5 mA cm-2 at 0.0 V with an onset potential of 0.4 V. This air-breathing cathode was combined with a specially designed phenanthrolinequinone

  4. Sequential maneuvering decisions based on multi-stage influence diagram in air combat

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A multi-stage influence diagram is used to model the pilot's sequential decision making in one on one air combat.The model based on the multi-stage influence diagram graphically describes the elements of decision process,and contains a point-mass model for the dynamics of an aircraft and takes into account the decision maker's Dreferences under uncertain conditions.Considering an active opponent,the opponent's maneuvers can be modeled stochastically.The solution of multistage influence diagram Can be obtained by converting the multistage influence diagram into a two-level optimization problem.The simulation results show the model is effective.

  5. STS-30 crew egresses OV-104 via stairway at Edwards Air Force Base (EAFB)

    Science.gov (United States)

    1989-01-01

    STS-30 crewmembers egress Atlantis, Orbiter Vehicle (OV) 104, via mobile stairway at Edwards Air Force Base (EAFB), California. Crewmembers who spent just over four full days in space exit OV-104 for a welcome meeting with terra firma. From bottom of the stairs to the top are Commander David M. Walker, Pilot Ronald J. Grabe, Mission Specialist (MS) Norman E. Thagard, MS Mary L. Cleave, and MS Mark C. Lee. NASA Deputy Administrator Dale D. Myers awaits at lower right to greet the crewmembers. Minutes earlier, OV-104 came to a stop at 12:44:33 pm (Pacific Daylight Time (PDT)) on EAFB concrete runway 22.

  6. A Study of Maneuvering Control for an Air Cushion Vehicle Based on Back Propagation Neural Network

    Institute of Scientific and Technical Information of China (English)

    LU Jun; HUANG Guo-liang; LI Shu-zhi

    2009-01-01

    A back propagation (BP) neural network mathematical model was established to investigate the maneuvering control of an air cushion vehicle (ACV). The calculation was based on four-freedom-degree model experiments of hydrodynamics and aerodynamics. It is necessary for the ACV to control the velocity and the yaw rate as well as the velocity angle at the same time. The yaw rate and the velocity angle must be controlled correspondingly because of the whipping, which is a special characteristic for the ACV. The calculation results show that it is an efficient way for the ACV's maneuvering control by using a BP neural network to adjust PID parameters online.

  7. Review of the Lightning Shielding Against Direct Lightning Strokes Based on Laboratory Long Air Gap Discharges

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    It is one of the most effective ways to use laboratory long air gap discharges tbr investigating the fundamental process involved in the lightning strike. During the 1960s and the 1970s, the electro-geometrical method (EGM) and the rolling sphere method were developed base on the breakdown characteristics of negative long spark discharges, which have been widely used to design the lightning shielding system of transmission lines and structures. In recent years, the scale of the power facilities is increased dramatically with the rising of power grid's voltage level.

  8. Characterization of Air-Based Photovoltaic Thermal Panels with Bifacial Solar Cells

    Directory of Open Access Journals (Sweden)

    P. Ooshaksaraei

    2013-01-01

    Full Text Available Photovoltaic (PV panels account for a majority of the cost of photovoltaic thermal (PVT panels. Bifacial silicon solar panels are attractive for PVT panels because of their potential to enhance electrical power generation from the same silicon wafer compared with conventional monofacial solar panels. This paper examines the performance of air-based bifacial PVT panels with regard to the first and second laws of thermodynamics. Four air-based bifacial PVT panels were designed. The maximum efficiencies of 45% to 63% were observed for the double-path-parallel bifacial PVT panel based on the first law of thermodynamics. Single-path bifacial PVT panel represents the highest exergy efficiency (10%. Double-path-parallel bifacial PVT panel is the second preferred design as it generates up to 20% additional total energy compared with the single-path panel. However, the daily average exergy efficiency of a double-path-parallel panel is 0.35% lower than that of a single-path panel.

  9. Operable Unit 1 remedial investigation report, Eielson Air Force Base, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, T.J.; Fruland, R.M.; Liikala, T.L. [and others

    1994-06-01

    This remedial investigation report for operable Unit 1 (OU-1) at Eielson Air Force Base presents data, calculations, and conclusions as to the nature and extent of surface and subsurface contamination at the eight source areas that make up OU-1. The information is based on the 1993 field investigation result and previous investigations. This report is the first in a set of three for OU-1. The other reports are the baseline risk assessment and feasibility study. The information in these reports will lead to a Record of Decision that will guide and conclude the environmental restoration effort for OU-1 at Eielson Air Force Base. The primary contaminants of concern include fuels and fuel-related contaminants (diesel; benzene, toluene, ethylbenzene, and xylene; total petroleum hydrocarbon; polycyclic aromatic hydrocarbons), maintenance-related solvents and cleaners (volatile chlorinated hydrocarbons such as trichloroothylene), polychlorinated biphenyls, and dichlorodiphenyltrichloroethane (DDT). The origins of contaminants of concern include leaks from storage tanks, drums and piping, and spills. Ongoing operations and past sitewide practices also contribute to contaminants of concern at OU-1 source areas. These include spraying mixed oil and solvent wastes on unpaved roads and aerial spraying of DDT.

  10. Operable Unit 1 remedial investigation report, Eielson Air Force Base, Alaska

    International Nuclear Information System (INIS)

    This remedial investigation report for operable Unit 1 (OU-1) at Eielson Air Force Base presents data, calculations, and conclusions as to the nature and extent of surface and subsurface contamination at the eight source areas that make up OU-1. The information is based on the 1993 field investigation result and previous investigations. This report is the first in a set of three for OU-1. The other reports are the baseline risk assessment and feasibility study. The information in these reports will lead to a Record of Decision that will guide and conclude the environmental restoration effort for OU-1 at Eielson Air Force Base. The primary contaminants of concern include fuels and fuel-related contaminants (diesel; benzene, toluene, ethylbenzene, and xylene; total petroleum hydrocarbon; polycyclic aromatic hydrocarbons), maintenance-related solvents and cleaners (volatile chlorinated hydrocarbons such as trichloroothylene), polychlorinated biphenyls, and dichlorodiphenyltrichloroethane (DDT). The origins of contaminants of concern include leaks from storage tanks, drums and piping, and spills. Ongoing operations and past sitewide practices also contribute to contaminants of concern at OU-1 source areas. These include spraying mixed oil and solvent wastes on unpaved roads and aerial spraying of DDT

  11. Tribological Performance of MoS2-based Coatings after Deposition and Storage in Humid Air

    Institute of Scientific and Technical Information of China (English)

    JINGYang; LUOJian-bin; PANGSi-qin

    2004-01-01

    MoS2-based composite coatings were deposited with the nano-compound unbalanced plasma plating technique the effects of processing parameters and working enwironments on the tribological properties of the coatings were examined by the drilling experiuments and XPS.the distances between substrate and Ti larget, Ti content and deposition pressure were varied in order to determine the optimun conditions for producing lubricious,long-lasting MoS2-based coatings,IT is found that the tribological performance of Tin-MoS2 roating decreases rqapidly in humid air but the humid resistant property of Tin-MoS2/Ti coating improves evidently it is indicated that the humid-resistantance property and the abrasion durability of MoS2-based coatings can be enhanced markedly by adding Ti with a certain contents.

  12. Development of a health-based air quality index for Canada : public opinion research 2004-05 : final report

    International Nuclear Information System (INIS)

    Canadians rely on an air quality indexes (AQIs) to inform them about air pollution conditions in their communities. However, there is no AQI common to all of Canada, and there is a lack of consistency in the way in which air quality is calculated and reported, as well as in the use of health-based messages. This paper reported findings of a public opinion research survey conducted to gauge Canadians' awareness, perceptions and behavioural responses to air quality, air pollution and AQIs. The aim of the study was to guide the development of health messages to more effectively communicate the AQI to Canadians with respect to the health risks associated with poor air quality. Telephone surveys were conducted immediately following a poor air quality episode to measure the public's awareness and response to these events, as well as residents' general awareness and use of AQIs. A separate research project was then conducted which consisted of in-depth qualitative interviews with 28 individuals recruited from the general population. A comprehensive national telephone survey was then conducted following the summer 2004 'smog season', which focused on the public's awareness of air pollution and AQIs. Results from the first 2 phases of the research were then presented at a workshop comprised of health and environmental communities specializing in air issues in Canada. Focus groups were then held to test public reaction to new AQI communications concepts derived from the research. Results indicated that Canadians widely identify air pollution as a significant environmental problem. However, the information from AQIs had a limited impact in terms of prompting actions to reduce personal exposure. A new type of national AQI for Canada was developed that conveyed information on air quality conditions and their significance. Key features include a 0 to 10 point unbounded scale showing current air quality conditions; a forecast of future conditions; standardized information

  13. The fabrication of polyfluorene and polycarbazole-based photovoltaic devices using an air-stable process route

    Energy Technology Data Exchange (ETDEWEB)

    Bovill, E.; Lidzey, D. G., E-mail: d.g.lidzey@sheffield.ac.uk [Department of Physics and Astronomy, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Yi, H.; Iraqi, A. [Department of Chemistry, The University of Sheffield, The Dainton Building, Sheffield S3 7HF (United Kingdom)

    2014-12-01

    We report a comparative study based on the fabrication of polymer:fullerene photovoltaic (PV) devices incorporating carbazole, fluorene, and a PTB based co-polymer. We have explored the efficiency and performance of such devices when the active polymer:fullerene layer is deposited by spin-casting either under nitrogen or ambient conditions. We show that PV devices based on carbazole and fluorene based materials have very similar power conversion efficiencies when processed under both air and nitrogen, with other photobleaching measurements suggesting that such materials have comparatively enhanced photostability. Devices based on the PTB co-polymer, however, have reduced efficiency when processed in air.

  14. Reporting of the air pollution situation in Norway according to EU's new air quality directives. Proposal of a GIS-based tool for reporting on visualisation of the air pollution situation in Norway

    International Nuclear Information System (INIS)

    Norway shall, after 2001, annually report to the EU on the air quality situation in all zones. This report presents a proposal on a data (GIS)-based tool that will make this reporting more efficient. the concept is to visualise the AQ situation in the zones by means of values and isolines on maps, with zooming possibilities. (author)

  15. A WebGIS-based system for analyzing and visualizing air quality data for Shanghai Municipality

    Science.gov (United States)

    Wang, Manyi; Liu, Chaoshun; Gao, Wei

    2014-10-01

    An online visual analytical system based on Java Web and WebGIS for air quality data for Shanghai Municipality was designed and implemented to quantitatively analyze and qualitatively visualize air quality data. By analyzing the architecture of WebGIS and Java Web, we firstly designed the overall scheme for system architecture, then put forward the software and hardware environment and also determined the main function modules for the system. The visual system was ultimately established with the DIV + CSS layout method combined with JSP, JavaScript, and some other computer programming languages based on the Java programming environment. Moreover, Struts, Spring, and Hibernate frameworks (SSH) were integrated in the system for the purpose of easy maintenance and expansion. To provide mapping service and spatial analysis functions, we selected ArcGIS for Server as the GIS server. We also used Oracle database and ESRI file geodatabase to store spatial data and non-spatial data in order to ensure the data security. In addition, the response data from the Web server are resampled to implement rapid visualization through the browser. The experimental successes indicate that this system can quickly respond to user's requests, and efficiently return the accurate processing results.

  16. Effects of shift work in air traffic controllers: a systematic review based on the Prisma method

    Directory of Open Access Journals (Sweden)

    Alisson Vieira Marcolino

    2015-07-01

    Full Text Available Air Traffic Controllers (ATC perform very complex functions of great responsibility. Due to the necessities of the job, they are submitted to a work shift system which makes their schedule irregular. The alternation of work shifts can result in effects that cause damages to their work performance and quality of life. Objective: To explore the effects of shift work in ATCs through a systematic review based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis model (PRISMA. Methodological procedures: The systematic review was conducted based on three databases: PubMed, Science Direct and Web of Science. Results: A total of 748 articles were found, 487 from PubMed, 240 from Science Direct and 21 from Web of Science; seven articles were included in the review after the application of eligibility criteria. Conclusions: The researches showed effects that affect mainly the night shifts, caused by alteration in sleep quality, somnolence and fatigue, resulting in decreased performance and increasing the risk of air accidents.

  17. Cubic PdNP-based air-breathing cathodes integrated in glucose hybrid biofuel cells.

    Science.gov (United States)

    Faggion Junior, D; Haddad, R; Giroud, F; Holzinger, M; Maduro de Campos, C E; Acuña, J J S; Domingos, J B; Cosnier, S

    2016-05-21

    Cubic Pd nanoparticles (PdNPs) were synthesized using ascorbic acid as a reducing agent and were evaluated for the catalytic oxygen reduction reaction. PdNPs were confined with multiwalled carbon nanotube (MWCNT) dispersions to form black suspensions and these inks were dropcast onto glassy carbon electrodes. Different nanoparticle sizes were synthesized and investigated upon oxygen reduction capacities (onset potential and electrocatalytic current densities) under O2 saturated conditions at varying pH values. Strong evidence of O2 diffusion limitation was demonstrated. In order to overcome oxygen concentration and diffusion limitations in solution, we used a gas diffusion layer to create a PdNP-based air-breathing cathode, which delivered -1.5 mA cm(-2) at 0.0 V with an onset potential of 0.4 V. This air-breathing cathode was combined with a specially designed phenanthrolinequinone/glucose dehydrogenase-based anode to form a complete glucose/O2 hybrid bio-fuel cell providing an open circuit voltage of 0.554 V and delivering a maximal power output of 184 ± 21 μW cm(-2) at 0.19 V and pH 7.0. PMID:27142300

  18. A model-based framework for air quality indices and population risk evaluation, with an application to the analysis of Scottish air quality data

    OpenAIRE

    Finazzi, Francesco; Scott, E Marian; Fassò, Alessandro

    2013-01-01

    The paper is devoted to the development of a statistical framework for air quality assessment at the country level and for the evaluation of the ambient population exposure and risk with respect to airborne pollutants. The framework is based on a multivariate space–time model and on aggregated indices defined at different levels of aggregation in space and time. The indices are evaluated, uncertainty included, by considering both the model outputs and the information on the population spatial...

  19. A model based framework for air quality indices and population risk evaluation, with an application to the analysis of Scottish air quality data

    OpenAIRE

    Finazzi, F.; Scott, E.M.; Fasso, A.

    2013-01-01

    The paper is devoted to the development of a statistical framework for air quality assessment at the country level and for the evaluation of the ambient population exposure and risk with respect to airborne pollutants. The framework is based on a multivariate space–time model and on aggregated indices defined at different levels of aggregation in space and time. The indices are evaluated, uncertainty included, by considering both the model outputs and the information on the population spatial...

  20. Development and case study of a science-based software platform to support policy making on air quality

    Institute of Scientific and Technical Information of China (English)

    Yun Zhu; Yahweh Lao; Carey Jang; Chen-Jen Lin; Jia Xing; Shuxiao Wang; Joshua S.Fu

    2015-01-01

    This article describes the development and implementations of a novel software platform that supports real-time,science-based policy making on air quality through a user-friendly interface.The software,RSM-VAT,uses a response surface modeling (RSM) methodology and serves as a visualization and analysis tool (VAT) for three-dimensional air quality data obtained by atmospheric models.The software features a number of powerful and intuitive data visualization functions for illustrating the complex nonlinear relationship between emission reductions and air quality benefits.The case study of contiguous U.S.demonstrates that the enhanced RSM-VAT is capable of reproducing the air quality model results with Normalized Mean Bias <2% and assisting in air quality policy making in near real time.

  1. Eielson Air Force Base operable unit 2 and other areas record of decision

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, R.E.; Smith, R.M.

    1994-10-01

    This decision document presents the selected remedial actions and no action decisions for Operable Unit 2 (OU2) at Eielson Air Force Base (AFB), Alaska, chosen in accordance with state and federal regulations. This document also presents the decision that no further action is required for 21 other source areas at Eielson AFB. This decision is based on the administrative record file for this site. OU2 addresses sites contaminated by leaks and spills of fuels. Soils contaminated with petroleum products occur at or near the source of contamination. Contaminated subsurface soil and groundwater occur in plumes on the top of a shallow groundwater table that fluctuates seasonally. These sites pose a risk to human health and the environment because of ingestion, inhalation, and dermal contact with contaminated groundwater. The purpose of this response is to prevent current or future exposure to the contaminated groundwater, to reduce further contaminant migration into the groundwater, and to remediate groundwater.

  2. Eielson Air Force Base operable unit 2 and other areas record of decision

    International Nuclear Information System (INIS)

    This decision document presents the selected remedial actions and no action decisions for Operable Unit 2 (OU2) at Eielson Air Force Base (AFB), Alaska, chosen in accordance with state and federal regulations. This document also presents the decision that no further action is required for 21 other source areas at Eielson AFB. This decision is based on the administrative record file for this site. OU2 addresses sites contaminated by leaks and spills of fuels. Soils contaminated with petroleum products occur at or near the source of contamination. Contaminated subsurface soil and groundwater occur in plumes on the top of a shallow groundwater table that fluctuates seasonally. These sites pose a risk to human health and the environment because of ingestion, inhalation, and dermal contact with contaminated groundwater. The purpose of this response is to prevent current or future exposure to the contaminated groundwater, to reduce further contaminant migration into the groundwater, and to remediate groundwater

  3. Multitemporal Monitoring of the Air Quality in Bulgaria by Satellite Based Instruments

    Science.gov (United States)

    Nikolov, Hristo; Borisova, Denitsa

    2015-04-01

    Nowadays the effect on climate changes on the population and environment caused by air pollutants at local and regional scale by pollution concentrations higher than allowed is undisputable. Main sources of gas releases are due to anthropogenic emissions caused by the economic and domestic activities of the inhabitants, and to less extent having natural origin. Complementary to pollutants emissions the local weather parameters such as temperature, precipitation, wind speed, clouds, atmospheric water vapor, and wind direction control the chemical reactions in the atmosphere. It should be noted that intrinsic property of the air pollution is its "transboundary-ness" and this is why the air quality (AQ) is not affecting the population of one single country only. This why the exchange of information concerning AQ at EU level is subject to well established legislation and one of EU flagship initiatives for standardization in data exchange, namely INSPIRE, has to cope with. It should be noted that although good reporting mechanism with regard to AQ is already established between EU member states national networks suffer from a serious disadvantage - they don't form a regular grid which is a prerequisite for verification of pollutants transport modeling. Alternative sources of information for AQ are the satellite observations (i.e. OMI, TOMS instruments) providing daily data for ones of the major contributors to air pollution such as O3, NOX and SO2. Those data form regular grids and are processed the same day of the acquisition so they could be used in verification of the outputs generated by numerical modeling of the AQ and pollution transfer. In this research we present results on multitemporal monitoring of several regional "hot spots" responsible for greenhouse gases emissions in Bulgaria with emphasis on satellite-based instruments. Other output from this study is a method for validation of the AQ forecasts and also providing feedback to the service that prepares

  4. Chemiluminescence-based multivariate sensing of local equivalence ratios in premixed atmospheric methane-air flames

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Markandey M.; Krishnan, Sundar R.; Srinivasan, Kalyan K.; Yueh, Fang-Yu; Singh, Jagdish P.

    2011-09-07

    Chemiluminescence emissions from OH*, CH*, C2, and CO2 formed within the reaction zone of premixed flames depend upon the fuel-air equivalence ratio in the burning mixture. In the present paper, a new partial least square regression (PLS-R) based multivariate sensing methodology is investigated and compared with an OH*/CH* intensity ratio-based calibration model for sensing equivalence ratio in atmospheric methane-air premixed flames. Five replications of spectral data at nine different equivalence ratios ranging from 0.73 to 1.48 were used in the calibration of both models. During model development, the PLS-R model was initially validated with the calibration data set using the leave-one-out cross validation technique. Since the PLS-R model used the entire raw spectral intensities, it did not need the nonlinear background subtraction of CO2 emission that is required for typical OH*/CH* intensity ratio calibrations. An unbiased spectral data set (not used in the PLS-R model development), for 28 different equivalence ratio conditions ranging from 0.71 to 1.67, was used to predict equivalence ratios using the PLS-R and the intensity ratio calibration models. It was found that the equivalence ratios predicted with the PLS-R based multivariate calibration model matched the experimentally measured equivalence ratios within 7%; whereas, the OH*/CH* intensity ratio calibration grossly underpredicted equivalence ratios in comparison to measured equivalence ratios, especially under rich conditions ( > 1.2). The practical implications of the chemiluminescence-based multivariate equivalence ratio sensing methodology are also discussed.

  5. Flexible Wing Base Micro Aerial Vehicles: Towards Flight Autonomy: Vision-Based Horizon Detection for Micro Air Vehicles

    Science.gov (United States)

    Nechyba, Michael C.; Ettinger, Scott M.; Ifju, Peter G.; Wazak, Martin

    2002-01-01

    Recently substantial progress has been made towards design building and testifying remotely piloted Micro Air Vehicles (MAVs). This progress in overcoming the aerodynamic obstacles to flight at very small scales has, unfortunately, not been matched by similar progress in autonomous MAV flight. Thus, we propose a robust, vision-based horizon detection algorithm as the first step towards autonomous MAVs. In this paper, we first motivate the use of computer vision for the horizon detection task by examining the flight of birds (biological MAVs) and considering other practical factors. We then describe our vision-based horizon detection algorithm, which has been demonstrated at 30 Hz with over 99.9% correct horizon identification, over terrain that includes roads, buildings large and small, meadows, wooded areas, and a lake. We conclude with some sample horizon detection results and preview a companion paper, where the work discussed here forms the core of a complete autonomous flight stability system.

  6. Demonstration of Security Benefits of Renewable Generation at FE Warren Air Force Base

    International Nuclear Information System (INIS)

    Report detailing field demonstration of security benefits of renewable generation at FE Warren Air Force Base. The 2006 National Defense Appropriations Act directed the Department of Defense (DOD) to coordinate the testing of a wind turbine (new to the U.S. market) at an Air Force installation as a follow on to analyses conducted by the Pacific Northwest National Laborabory (PNNL) as part of the 2005 DOD Renewable Assessment. The earlier study simulated the performance of renewable power produced from wind turbines, solar photovoltaics and geothermal energy as part of a Base-wide energy security solution. The simulation concluded that integration of renewable generating resources with emergency generators, typically diesel-fired, could significantly enhance energy security and extend power supplies during prolonged commercial grid power outages. A simulation is insufficient to convince skeptics of the reliability of renewable resources, especially those that produce power only intermittently, like wind and solar. Therefore, Congress requested a field demonstration be performed using a wind turbine because wind power is the most erratic of all renewable resources. Following this direction, the Air Force identified a site for the wind turbine demonstration and contracted with the Idaho National Laboratory (INL) and PNNL to conduct the demonstration and implement other provisions in the appropriation bill. INL identified a wind turbine that met the legislative requirements (the Gamesa G-80), and with the support of PNNL and the Air Force, selected FE Warren Air Force Base for the demonstration. FE Warren has an excellent wind resource and was already a host to two wind turbines and could accommodate a third. The G-80 is rated at 2 MWs versus the two existing 660 kW turbines, consequently wind production would more than double. Procurement, siting, and acceptance testing of the new turbine was completed in early 2010. The field test was conducted in late April 2010

  7. Satellite-based Estimates of Ambient Air Pollution and Global Variations in Childhood Asthma Prevalence

    Science.gov (United States)

    Anderson, H. Ross; Butland, Barbara K.; Donkelaar, Aaron Matthew Van; Brauer, Michael; Strachan, David P.; Clayton, Tadd; van Dingenen, Rita; Amann, Marcus; Brunekreef, Bert; Cohen, Aaron; Dentener, Frank; Lai, Christopher; Lamsal, Lok N.; Martin, Randall V.

    2012-01-01

    Background: The effect of ambient air pollution on global variations and trends in asthma prevalence is unclear. Objectives: Our goal was to investigate community-level associations between asthma prevalence data from the International Study of Asthma and Allergies in Childhood (ISAAC) and satellite-based estimates of particulate matter with aerodynamic diameter asthma as the outcome and multilevel models to adjust for gross national income (GNI) and center- and country-level sex, climate, and population density. We examined associations (adjusting for GNI) between air pollution and asthma prevalence over time in centers with data from ISAAC Phase One (mid-1900s) and Phase Three (2001-2003). Results: For the 13- to 14-year age group (128 centers in 28 countries), the estimated average within-country change in center-level asthma prevalence per 100 children per 10% increase in center-level PM2.5 and NO2 was -0.043 [95% confidence interval (CI): -0.139, 0.053] and 0.017 (95% CI: -0.030, 0.064) respectively. For ozone the estimated change in prevalence per parts per billion by volume was -0.116 (95% CI: -0.234, 0.001). Equivalent results for the 6- to 7-year age group (83 centers in 20 countries), though slightly different, were not significantly positive. For the 13- to 14-year age group, change in center-level asthma prevalence over time per 100 children per 10% increase in PM2.5 from Phase One to Phase Three was -0.139 (95% CI: -0.347, 0.068). The corresponding association with ozone (per ppbV) was -0.171 (95% CI: -0.275, -0.067). Conclusion: In contrast to reports from within-community studies of individuals exposed to traffic pollution, we did not find evidence of a positive association between ambient air pollution and asthma prevalence as measured at the community level.

  8. Modelling of flow rate in a photovoltaic-driven roof slate-based solar ventilation air preheating system

    International Nuclear Information System (INIS)

    This paper describes the modelling of flow rate in a photovoltaic (PV) driven, roof slate based solar system for preheating ventilation air in cold climates. The system consists of a photovoltaic driven, attic mounted fan, which draws air through the spaces between the warm slates and delivers it through a metallic flexible duct into a house. A model for predicting the flow rate of air as a function of irradiance and ambient temperature is developed based on the measured performance of the different components of the system. Considering all experimental sources of error, the model predicts the flow rate of air with a maximum error of 12%. The model is validated for different combinations of components in a roof section constructed at Napier University in Edinburgh. The predicted flow rates are within 10% of the measured values. The model is extended so that it can be applied for different locations and different roof tilts and orientations. A future paper will make use of the model developed herein for system optimisation based on maximum monthly volume of preheated ventilation air delivered. The model will also be used to investigate the effectiveness of PV driven, roof slate based systems as solar air heaters

  9. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    In April 1990, Wright-Patterson Air Force Base (WPAFB) initiated an effort for the evaluation of potential removal of ground water contamination at the Base. This report presents a current assessment of the nature and extent of the contamination believed to be migrating across the southwestern boundary of Area C and the northern boundary of Area B based upon analysis of existing environmental data obtained from several sources. The existing data base indicates widespread, low-level contamination moving across Base boundaries at levels that pose no immediate threat to the Mad River Valley well fields. An investigation by the City of Dayton in May and June 1990, however, implies that a more identifiable plume of PCE and TCE may be crossing the southwestern boundary of Area C immediately downgradient of Landfill 5. More data is needed to delineate ground water contamination and to design and implement a suitable control system. This report concludes that although an extensive study of the boundaries in question would be the preferred approach, a limited, focused investigation and subsequent feasibility study can be accomplished with a reasonable certainty of achieving the desired outcome of this project.

  10. Using Neutron Radiography to Quantify Water Transport and the Degree of Saturation in Entrained Air Cement Based Mortar

    Science.gov (United States)

    Lucero, Catherine L.; Bentz, Dale P.; Hussey, Daniel S.; Jacobson, David L.; Weiss, W. Jason

    Air entrainment is commonly added to concrete to help in reducing the potential for freeze thaw damage. It is hypothesized that the entrained air voids remain unsaturated or partially saturated long after the smaller pores fill with water. Small gel and capillary pores in the cement matrix fill quickly on exposure to water, but larger pores (entrapped and entrained air voids) require longer times or other methods to achieve saturation. As such, it is important to quantitatively determine the water content and degree of saturation in air entrained cementitious materials. In order to further investigate properties of cement-based mortar, a model based on Beer's Law has been developed to interpret neutron radiographs. This model is a powerful tool for analyzing images acquired from neutron radiography. A mortar with a known volume of aggregate, water to cement ratio and degree of hydration can be imaged and the degree of saturation can be estimated.

  11. Field investigation source area ST58 old Quartermaster service station, Eielson Air Force Base, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Liikala, T.L.; Evans, J.C.

    1995-01-01

    Source area ST58 is the site of the old Quartermaster service station at Eielson Air Force Base, Alaska. The source area is one of several Source Evaluation Report sites being investigated by Pacific Northwest Laboratory for the US Air Force as candidates for no further remedial action, interim removal action, or a remedial investigation/feasibility study under a Federal Facilities Agreement. The purpose of this work was to characterize source area ST58 and excavate the most contaminated soils for use in composting treatability studies. A field investigation was conducted to determine the nature and extent of soil contamination. The field investigation entailed a records search; grid node location, surface geophysical, and soil gas surveys; and test pit soil sampling. Soil excavation followed based on the results of the field investigation. The site was backfilled with clean soil. Results from this work indicate close spatial correlation between screening instruments, used during the field investigation and soil excavation, and laboratory analyses. Gasoline was identified as the main subsurface contaminant based on the soil gas surveys and test pit soil sampling. A center of contamination was located near the northcentral portion of the source area, and a center was located in the northwestern comer. The contamination typically occurred near or below a former soil horizon probably as a result of surface spills and leaks from discontinuities and/or breaks in the underground piping. Piping locations were delineated during the surface geophysical surveys and corresponded very well to unscaled drawings of the site. The high subsurface concentrations of gasoline detected in the northwestern comer of the source area probably reflect ground-water contamination and/or possibly floating product.

  12. TRASGO: A proposal for a timing RPCs based detector for analyzing cosmic ray air showers

    International Nuclear Information System (INIS)

    The study of the properties of primary cosmic rays with energies above 100 TeV is only accessible indirectly through the use of detector arrays at the Earth surface. Despite the extremely high multiplicity of the air showers produced in their interactions at the highest layers of the atmosphere, only a fraction of those particles arrive to the ground over surfaces from ∼0.1 to ∼100km2. The lack of information on the primary interaction and the low density of particles at the detection plane make the event by event analysis very complicated and usually only mean analysis are possible, sometimes with the help of simulation programs. The necessity of covering big surfaces to gather a significant sample of information usually leads to the use of big volume detectors with limited performances, giving only access to a small part of the information carried out by the swarm of secondary particles of the shower. In this article, we propose the development of an affordable detector, the TRASGO, based on timing RPCs (Resistive Plate Chambers) offering at the same time very good timing and tracking performances. TRASGO would allow a better and more accurate reconstruction of the air shower properties either working stand-alone or in big surface arrays.

  13. Patrick Air Force Base integrated resource assessment. Volume 3, Resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sandusky, W.F.; Parker, S.A.; King, D.A.; Wahlstrom, R.R.; Elliott, D.B.; Shankle, S.A.

    1993-12-01

    The US Air Force has tasked the Pacific Northwest Laboratory (PNL) in support of the US Department of Energy Federal Energy Management Program to identify, evaluate, and assist in acquiring all cost effective energy projects at Patrick Air Force Base (AFB). This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at Patrick AFB which is located south of Cocoa Beach, Florida. It is a companion report to Volume 1, Executive Summary, and Volume.2, Baseline Detail. The results of the analyses of EROs are presented in 11 common energy end-use categories. A narrative description of each ERO is provided, including information on the installed cost, energy and dollar savings, impacts on operations and maintenance, and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO and present the results of the life-cycle cost analysis indicating the net present value and value index of each ERO.

  14. Robins Air Force Base integrated resource assessment. Volume 3, Resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, G.P.; Keller, J.M.; Stucky, D.J.; Wahlstrom, R.R.; Larson, L.L.

    1993-10-01

    The US Air Force Materiel Command (AFMC) has tasked the US Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory (PNL), to identify, evaluate, and assist in acquiring all cost-effective energy projects at Robins Air Force Base (AFB). This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the AFMC Robins AFB facility located approximately 15 miles south of Macon, Georgia. It is a companion report to Volume 1, Executive Summary, and Volume 2, Baseline Detail. The results of the analyses of EROs are presented in 13 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative-description of each ERO is provided, including information on the installed cost, energy and dollar savings; impacts on operation and maintenance (O&M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO and present the results of the life-cycle cost (LCC) analysis indicating the net present value (NPV) and savings to investment ratio (SIR) of each ERO.

  15. AN AIR POLLUTION PREDICTION TECHNIQUE FOR URBAN DISTRICTS BASED ON MESO-SCALE NUMERICAL MODEL

    Institute of Scientific and Technical Information of China (English)

    YAN Jing-hua; XU Jian-ping

    2005-01-01

    Taking Shenzhen city as an example, the statistical and physical relationship between the density of pollutants and various atmospheric parameters are analyzed in detail, and a space-partitioned city air pollution potential prediction scheme is established based on it. The scheme considers quantitatively more than ten factors at the surface and planetary boundary layer (PBL), especially the effects of anisotropy of geographical environment, and treats wind direction as an independent impact factor. While the scheme treats the prediction equation respectively for different pollutants according to their differences in dilute properties, it considers as well the possible differences in dilute properties at different districts of the city under the same atmospheric condition, treating predictions respectively for different districts. Finally, the temporally and spatially high resolution predictions for the atmospheric factors are made with a high resolution numerical model, and further the space-partitioned and time-variational city pollution potential predictions are made. The scheme is objective and quantitative, and with clear physical meaning, so it is suitable to use in making high resolution air pollution predictions.

  16. Zigbee Based Wireless Air Pollution Monitoring System Using Low Cost and Energy Efficient Sensors

    OpenAIRE

    Mr.Vasim K. Ustad; Prof.A.S.Mali; Suhas S.Kibile*1

    2014-01-01

    Air pollution is a major environmental health problem affecting the developing and the developed countries alike. The effects of air pollution on health are very complex as there are many different sources and their individual effects vary from one to the other. These chemicals cause a variety of human and environmental health problems Increase in air pollution effects on environment as well on human health, so this paper contain brief introduction about air pollution. To monitor this poll...

  17. Development of an Indoor Air Quality Monitoring System based on a Microcontroller

    OpenAIRE

    Witte, Torben Felix

    2014-01-01

    With the increasing time people spend indoor, the importance of the Indoor Air Quality increases.Especially in learning facilities, a high Indoor Air Quality is required to provide a good learning situation to students and teachers. This project is targeted on improving the Indoor Air Quality in a learning environment by monitoring the Indoor Air Quality and to provide information and reasoned advice to the users. The operation principles of gas sensors are explained. A special focus lies...

  18. Indoor Air Quality Assessment Based on Human Physiology - Part 2. Limits

    Directory of Open Access Journals (Sweden)

    M. V. Jokl

    2003-01-01

    Full Text Available In order to evaluate indoor air quality in practice it is necessary to establish limits, or more exactly, tolerable ranges for unadapted and adapted persons. The optimal value overwhelmingly corresponds to PD 20 %. A better value of PD 10 % could be prescribed for asthmatics and for persons with increased requirements, i.e. those allergic to the environment and operators in airport control towers and atomic power stations. A worse value PD 30 % could be accepted as an admissible value. These values differ for unadapted and adapted persons (as introduced by BSR/ASHRAE 62-1989 R. The long-term tolerable value is the end of SBS range (for CO2 it is based on USSR space research, for TVOC on Molhave. The short-term tolerable value is the beginning of the toxic range (for CO2 it is taken from British Guidance Note EH 40/90; for TVOC from Molhave.

  19. 1995 Area 1 bird survey/Zone 1, Operable Unit 2, Robins Air Force Base, Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Wade, M.C.

    1995-08-01

    Robins Air Force Base is located in Warner Robins, Georgia, approximately 90 miles southeast of Atlanta, Georgia. As part of the Baseline Investigation (CDM Federal 1994) a two day bird survey was conducted by M. C. Wade (Oak Ridge National Laboratory) and B.A. Beatty (CDM Federal Programs) in May 1995. The subject area of investigation includes the sludge lagoon, Landfill No. 4, and the wetland area east of the landfill and west of Hannah Road (including two ponds). This is known as Area 1. The Area 1 wetlands include bottomland hardwood forest, stream, and pond habitats. The objectives of this survey were to document bird species using the Area I wetlands and to see if the change in hydrology (due to the installation of the Sewage Treatment Plant effluent diversion and stormwater runon control systems) has resulted in changes at Area 1 since the previous survey of May 1992 (CDM Federal 1994).

  20. Corrosion of copper-based materials in gamma-irradiated air/water vapor systems

    International Nuclear Information System (INIS)

    Experiments were performed to investigate the atmospheric corrosion of copper-based materials in an irradiated air/water vapor system. The three materials investigated were oxygen-free copper (CDA-102), 7% aluminum-bronze (CDA-613), and 70-30 cupronickel (CDA-715). To support the corrosion studies, a number of irradiation studies were performed to characterize the gas phase radiation chemistry of the system. Both copper oxide and nitrate phases were identified as corrosion products depending on the dose rate, humidity and temperature. Uniform corrosion rates increased with temperature, humidity, and dose rate. A clear tie between the radiolytic products generated in the gas phase and the corrosion observed was established

  1. An Explosive Range Model Based on the Gas Composition, Temperature, and Pressure during Air Drilling

    Directory of Open Access Journals (Sweden)

    Xiangyu Fan

    2016-01-01

    Full Text Available Air drilling is low cost and effectively improves the penetration rate and causes minimal damage to liquid-sensitive pay zones. However, there is a potential downhole explosion when combustible gas mixed with drilling fluid reaches the combustible condition. In this paper, based on the underground combustion mechanism, an explosive range calculation model is established. This model couples the state equation and the empirical formula method, which considers the inert gas content, pressure, mixed gas component, and temperature. The result shows that increase of the inert gas content narrows the explosive range, while increase of the gas temperature and pressure improves the explosive range. A case in Chongqing, China, is used to validate the explosive range calculation model.

  2. A low-cost hybrid drivetrain concept based on compressed air energy storage

    International Nuclear Information System (INIS)

    Highlights: • A new pneumatic hybrid concept is introduced. • A proof-of-concept prototype system is built and tested. • The experimental system has a round-trip efficiency of just under 10%. • A thermodynamics model is used to predict the performance of modified designs. • An efficiency of nearly 50% is possible with reasonable design changes. - Abstract: This paper introduces a new low-cost hybrid drivetrain concept based on compressed air energy storage. In contrast to most contemporary approaches to pneumatic hybridization, which require modification to the primary power plant, this concept is based on a stand-alone pneumatic system that could be readily integrated with existing vehicles. The pneumatic system consists of an air tank and a compressor–expander that is coupled to the rest of the drivetrain via an infinitely variable transmission. Rather than incorporating more expensive technologies such as variable valve timing or a variable compression ratio compressor, a fixed valve system consisting of a rotary valve and passive check valves is optimized to operate efficiently over a range of tank pressures. The feasibility of this approach is established by thermodynamic modeling and the construction of a proof-of-concept prototype, which is also used to fine tune model parameters. While the proof-of-concept system shows a round trip efficiency of just under 10%, modeling shows that a round trip efficiency of 26% is possible with a revised design. If waste heat from the engine is used to maintain an elevated tank temperature, efficiencies of nearly 50% may be possible, indicating that the concept could be effective for practical hybridization of passenger vehicles

  3. Performance assessment and optimization of a combined heat and power system based on compressed air energy storage system and humid air turbine cycle

    International Nuclear Information System (INIS)

    Highlights: • A combined heat and power system based on CAES and HAT is proposed. • The design and modeling of the CAES–HAT based CHP system are laid out. • The performance assessment of the proposed system is carried out. • The system optimization is conducted to decide the maximum conditions. - Abstract: Renewable energy based power sources have grown rapidly in the past few years owing to the dual constraint of climate change and pollution control. Compressed air energy storage (CAES), as a large-scale energy storage system (ESS) technology, has huge potential to manage the intermittent renewable energy based power sources effectively. However, the compression heat generated during charge and waste heat carried in turbine exhaust during discharge are not fully recuperated in current stage. A combined heat and power (CHP) system consisting of a CAES system and a humid air turbine (HAT) system is proposed to utilize the both types of heat energy. The proposed system can boost the power output, enhance performance and improve efficiency through a simultaneous supply of power and heat. The thermodynamic analysis shows that the expansion train power can be improved about 26% compared with the conventional CAES system. The parametric analysis reveals that the exergy efficiency increases with the turbine inlet temperature (TIT) of high pressure turbine (HPT) and inlet pressure of low pressure turbine (LPT), but decreases with the TIT of LPT, L/G ratio and dry air inlet temperature of saturator. Meanwhile, the system optimization is carried out via particle swarm optimization (PSO) to determine the maximum power and exergy efficiency conditions

  4. Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation

    Science.gov (United States)

    Feng, Xiao; Li, Qi; Zhu, Yajie; Hou, Junxiong; Jin, Lingyan; Wang, Jingjie

    2015-04-01

    In the paper a novel hybrid model combining air mass trajectory analysis and wavelet transformation to improve the artificial neural network (ANN) forecast accuracy of daily average concentrations of PM2.5 two days in advance is presented. The model was developed from 13 different air pollution monitoring stations in Beijing, Tianjin, and Hebei province (Jing-Jin-Ji area). The air mass trajectory was used to recognize distinct corridors for transport of "dirty" air and "clean" air to selected stations. With each corridor, a triangular station net was constructed based on air mass trajectories and the distances between neighboring sites. Wind speed and direction were also considered as parameters in calculating this trajectory based air pollution indicator value. Moreover, the original time series of PM2.5 concentration was decomposed by wavelet transformation into a few sub-series with lower variability. The prediction strategy applied to each of them and then summed up the individual prediction results. Daily meteorological forecast variables as well as the respective pollutant predictors were used as input to a multi-layer perceptron (MLP) type of back-propagation neural network. The experimental verification of the proposed model was conducted over a period of more than one year (between September 2013 and October 2014). It is found that the trajectory based geographic model and wavelet transformation can be effective tools to improve the PM2.5 forecasting accuracy. The root mean squared error (RMSE) of the hybrid model can be reduced, on the average, by up to 40 percent. Particularly, the high PM2.5 days are almost anticipated by using wavelet decomposition and the detection rate (DR) for a given alert threshold of hybrid model can reach 90% on average. This approach shows the potential to be applied in other countries' air quality forecasting systems.

  5. Capillary based Li-air batteries for in situ synchrotron X-ray powder diffraction studies

    DEFF Research Database (Denmark)

    Storm, Mie Møller; Johnsen, Rune E.; Younesi, Reza;

    2015-01-01

    For Li-air batteries to reach their full potential as energy storage system, a complete understanding of the conditions and reactions in the battery during operation is needed. To follow the reactions in situ a capillary-based Li-O2 battery has been developed for synchrotron-based in situ X...

  6. Assessment of China's virtual air pollution transport embodied in trade by using a consumption-based emission inventory

    Science.gov (United States)

    Zhao, H. Y.; Zhang, Q.; Guan, D. B.; Davis, S. J.; Liu, Z.; Huo, H.; Lin, J. T.; Liu, W. D.; He, K. B.

    2015-05-01

    Substantial anthropogenic emissions from China have resulted in serious air pollution, and this has generated considerable academic and public concern. The physical transport of air pollutants in the atmosphere has been extensively investigated; however, understanding the mechanisms how the pollutant was transferred through economic and trade activities remains a challenge. For the first time, we quantified and tracked China's air pollutant emission flows embodied in interprovincial trade, using a multiregional input-output model framework. Trade relative emissions for four key air pollutants (primary fine particle matter, sulfur dioxide, nitrogen oxides and non-methane volatile organic compounds) were assessed for 2007 in each Chinese province. We found that emissions were significantly redistributed among provinces owing to interprovincial trade. Large amounts of emissions were embodied in the imports of eastern regions from northern and central regions, and these were determined by differences in regional economic status and environmental policy. It is suggested that measures should be introduced to reduce air pollution by integrating cross-regional consumers and producers within national agreements to encourage efficiency improvement in the supply chain and optimize consumption structure internationally. The consumption-based air pollutant emission inventory developed in this work can be further used to attribute pollution to various economic activities and final demand types with the aid of air quality models.

  7. Ground-based VHE γ ray astronomy with air Cherenkov imaging telescopes

    International Nuclear Information System (INIS)

    The history of astronomy has been one of the scientific discovery following immediately the introduction of new technology. In this report, we will review shortly the basic development of the atmospheric air Cherenkov light detection technique, particularly the imaging telescope technique, which in the last years led to the firm establishment of a new branch in experimental astronomy, namely ground-based very high-energy (VHE) γ ray astronomy. Milestones in the technology and in the analysis of imaging technique will be discussed. The design of the 17 m diameter MAGIC Telescope, being currently under construction, is based on the development of new technologies for all its major parts and sets new standards in the performance of the ground-based γ detectors. MAGIC is one of the next major steps in the development of the technique being the first instrument that will allow one to carry out measurements also in the not yet investigated energy gap i.e. between 10 and 300 GeV

  8. Agent-based organizational modelling for analysis of safety culture at an air navigation service provider

    International Nuclear Information System (INIS)

    Assessment of safety culture is done predominantly by questionnaire-based studies, which tend to reveal attitudes on immaterial characteristics (values, beliefs, norms). There is a need for a better understanding of the implications of the material aspects of an organization (structures, processes, etc.) for safety culture and their interactions with the immaterial characteristics. This paper presents a new agent-based organizational modelling approach for integrated and systematic evaluation of material and immaterial characteristics of socio-technical organizations in safety culture analysis. It uniquely considers both the formal organization and the value- and belief-driven behaviour of individuals in the organization. Results are presented of a model for safety occurrence reporting at an air navigation service provider. Model predictions consistent with questionnaire-based results are achieved. A sensitivity analysis provides insight in organizational factors that strongly influence safety culture indicators. The modelling approach can be used in combination with attitude-focused safety culture research, towards an integrated evaluation of material and immaterial characteristics of socio-technical organizations. By using this approach an organization is able to gain a deeper understanding of causes of diverse problems and inefficiencies both in the formal organization and in the behaviour of organizational agents, and to systematically identify and evaluate improvement options.

  9. Soil erosion and causative factors at Vandenberg Air Force Base, California

    Science.gov (United States)

    Butterworth, Joel B.

    1988-01-01

    Areas of significant soil erosion and unvegetated road cuts were identified and mapped for Vandenberg Air Force Base. One hundred forty-two eroded areas (most greater than 1.2 ha) and 51 road cuts were identified from recent color infrared aerial photography and ground truthed to determine the severity and causes of erosion. Comparison of the present eroded condition of soils (as shown in the 1986 photography) with that in historical aerial photography indicates that most erosion on the base took place prior to 1928. However, at several sites accelerated rates of erosion and sedimentation may be occurring as soils and parent materials are eroded vertically. The most conspicuous erosion is in the northern part of the base, where severe gully, sheet, and mass movement erosion have occurred in soils and in various sedimentary rocks. Past cultivation practices, compounded by highly erodible soils prone to subsurface piping, are probably the main causes. Improper range management practices following cultivation may have also increased runoff and erosion. Aerial photography from 1986 shows that no appreciable headward erosion or gully sidewall collapse have occurred in this area since 1928.

  10. Hybrid Modeling of Flotation Height in Air Flotation Oven Based on Selective Bagging Ensemble Method

    Directory of Open Access Journals (Sweden)

    Shuai Hou

    2013-01-01

    Full Text Available The accurate prediction of the flotation height is very necessary for the precise control of the air flotation oven process, therefore, avoiding the scratch and improving production quality. In this paper, a hybrid flotation height prediction model is developed. Firstly, a simplified mechanism model is introduced for capturing the main dynamic behavior of the process. Thereafter, for compensation of the modeling errors existing between actual system and mechanism model, an error compensation model which is established based on the proposed selective bagging ensemble method is proposed for boosting prediction accuracy. In the framework of the selective bagging ensemble method, negative correlation learning and genetic algorithm are imposed on bagging ensemble method for promoting cooperation property between based learners. As a result, a subset of base learners can be selected from the original bagging ensemble for composing a selective bagging ensemble which can outperform the original one in prediction accuracy with a compact ensemble size. Simulation results indicate that the proposed hybrid model has a better prediction performance in flotation height than other algorithms’ performance.

  11. A Proposed Method for Measurement of Absolute Air Fluorescence Yield based on High Resolution Optical Emission Spectroscopy

    CERN Document Server

    Gika, V; Maltezos, S

    2016-01-01

    In this work, we present a method for absolute measurement of air fluorescence yield based on high resolution optical emission spectroscopy. The absolute measurement of the air fluorescence yield is feasible using the Cherenkov light, emitted by an electron beam simultaneously with the fluorescence light, as a "standard candle". The separation of these two radiations can be accomplished exploiting the "dark" spectral regions of the emission band systems of the molecular spectrum of nitrogen. In these "dark" regions the net Cherenkov light can be recorded experimentally and be compared with the calculated one. The instrumentation for obtaining the nitrogen molecular spectra in high resolution and the noninvasive method for monitoring the rotational temperature of the emission process are also described. For the experimental evaluation of the molecular spectra analysis we used DC normal glow discharges in air performed in an appropriate spectral lamp considered as an air-fluorescence light emulator. The propose...

  12. A review on the recent development of solar absorption and vapour compression based hybrid air conditioning with low temperature storage

    Directory of Open Access Journals (Sweden)

    Noor D. N.

    2016-01-01

    Full Text Available Conventional air conditioners or vapour compression systems are main contributors to energy consumption in modern buildings. There are common environmental issues emanating from vapour compression system such as greenhouse gas emission and heat wastage. These problems can be reduced by adaptation of solar energy components to vapour compression system. However, intermittence input of daily solar radiation was the main issue of solar energy system. This paper presents the recent studies on hybrid air conditioning system. In addition, the basic vapour compression system and components involved in the solar air conditioning system are discussed. Introduction of low temperature storage can be an interactive solution and improved economically which portray different modes of operating strategies. Yet, very few studies have examined on optimal operating strategies of the hybrid system. Finally, the findings of this review will help suggest optimization of solar absorption and vapour compression based hybrid air conditioning system for future work while considering both economic and environmental factors.

  13. Performance analysis of small capacity liquid nitrogen generator based on Joule-Thomson refrigerator coupled with air separation membrane

    Science.gov (United States)

    Piotrowska-Hajnus, Agnieszka; Chorowski, Maciej

    2012-06-01

    Joule - Thomson small capacity refrigerators supplied with gas mixture are studied theoretically and experimentally for a variety of applications. They can be especially promising when coupled with membrane air separators. We present liquid nitrogen generation system based on Joule - Thomson cooler joined with air separation membrane. Hollow fiber membrane is used for nitrogen separation from compressed and purified atmospheric air. Joule-Thomson refrigerator operates with a dedicated nitrogen - hydrocarbons mixture and provides a cooling power used for the separated nitrogen liquefaction. Special attention has been paid to a heat exchanger coupling the Joule- Thomson refrigerator with the membrane air separator. This paper describes the system design, the procedure of its working parameters optimization and tests results.

  14. Compact mobile lidar system based on the LabVIEW code: applications in urban air pollution monitoring in Athens, Greece

    Science.gov (United States)

    Papayannis, Alexandros D.; Tsaknakis, Giorgos; Chourdakis, Giorgos; Serafetinides, Alexander A.

    1999-09-01

    The LIDAR technique is an efficient tool for continuous monitoring of air pollution over urban areas, with high temporal and range resolution. The urban areas of Athens, Greece, exhibit high air pollution levels, especially those regarding suspended particulates, mainly linked with car traffic and industrial emissions. In this paper, we present the first mobile Greek LIDAR system, based on the LabVIEW code, now located at the Athens Technical University Campus, nearby the urban area of the city. The LIDAR dataset acquired, under various air pollution and meteorological conditions, gives specific indications of the diurnal variation of the backscattering coefficient and relative backscatter of the suspended particulates in the first 2500 - 3000 m ASL over the city of Athens. The LIDAR dataset acquired is analyzed in conjunction with meteorological data (temperature, humidity) and air pollution data (O3 CO, NOx), acquired at the same site, and conclusions are drawn.

  15. Life cycle cost reduction through high efficiency membrane based air intake filters; Reduzierung der Lebensdauerzykluskosten durch hocheffiziente Zuluftfilter auf Membranbasis

    Energy Technology Data Exchange (ETDEWEB)

    Krah, Helmut [W.L. Gore and Associates GmbH, Putzbrunn (Germany)

    2011-07-01

    The use of highly efficient, membrane-based air intake filters means that massive savings can be made in the operation of gas turbines: on the one hand, a higher degree of efficiency can be achieved, which leads to lower fuel consumption and better turbine performance, and on the other, maintenance costs can be reduced thanks to the avoidance of erosion and corrosion. EPA (Efficient Particulate Air) filters based on fibreglass have the disadvantage that they exhibit a relatively high differential pressure, and they can frequently only be used by converting the filter house. This is where the tremendous advantage of membrane-based EPA filters comes in. Its core, a micro-porous PTFE membrane with excellent air permeability. (orig.)

  16. Analysis of radionuclide concentration in air released through the stack of a radiopharmaceutical production facility based on a medical cyclotron

    Science.gov (United States)

    Giardina, M.; Tomarchio, E.; Greco, D.

    2015-11-01

    Positron emitting radionuclides are increasingly used in medical diagnostics and the number of radiopharmaceutical production facilities have been estimated to be growing worldwide. During the process of production and/or patient administration of radiopharmaceuticals, an amount of these radionuclides might become airborne and escape into the environment. Therefore, the analysis of radionuclide concentration in the air released to the stack is a very important issue to evaluate the dose to the population living around the plant. To this end, sampling and measurement of radionuclide concentration in air released through the stack of a Nuclear Medicine Center (NMC), provided with a cyclotron for radiopharmaceuticals production, must be routinely carried out with an automatic measurement system. In this work is presented the air monitoring system realized at "San Gaetano" NMC at Bagheria (Italy) besides the analysis of the recorded stack relesead air concentration data. Sampling of air was carried out continuously and gamma-ray spectrometric measurement are made on-line and for a short time by using a shielded Marinelli beaker filled with sampled air and a gamma detector. The use of this system allows to have 1440 values of air concentration per day from 2002, year of the start of operation with the cyclotron. Therefore, the concentration values are very many and an analysis software is needed to determine the dose to the population. A comparison with the results of a simulation code based on a Gaussian Plume air dispersion modelling allow us to confirm the no-radiological significance of the stack effluent releases in terms of dose to population and to evaluate possible improvements in the plant devices to reduce the air concentration at stack.

  17. Catalytic wet air oxidation of 2-chlorophenol over sewage sludge-derived carbon-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Yuting [Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON), CNRS – Université Claude Bernard Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France); School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Xiong, Ya; Tian, Shuanghong [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275 (China); Kong, Lingjun [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Descorme, Claude, E-mail: claude.descorme@ircelyon.univ-lyon1.fr [Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON), CNRS – Université Claude Bernard Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France)

    2014-07-15

    Highlights: • A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared. • FeSC exhibited high catalytic activity in the wet air oxidation of 2-chlorophenol. • A strong correlation was observed between the 2-CP conversion, the iron leaching and the pH. • Using an acetate buffer, the iron leaching was suppressed while keeping some catalytic activity. • A simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst. - Abstract: A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared and used in the Catalytic Wet Air Oxidation (CWAO) of 2-chlorophenol (2-CP). The catalysts were characterized in terms of elemental composition, surface area, pH{sub PZC}, XRD and SEM. The performances of the FeSC catalyst in the CWAO of 2-CP was assessed in a batch reactor operated at 120 °C under 0.9 MPa oxygen partial pressure. Complete decomposition of 2-CP was achieved within 5 h and 90% Total Organic Carbon (TOC) was removed after 24 h of reaction. Quite a straight correlation was observed between the 2-CP conversion, the amount of iron leached in solution and the pH of the reaction mixture at a given reaction time, indicating a strong predominance of the homogeneous catalysis contribution. The iron leaching could be efficiently prevented when the pH of the solution was maintained at values higher than 4.5, while the catalytic activity was only slightly reduced. Upon four successive batch CWAO experiments, using the same FeSC catalyst recovered by filtration after pH adjustment, only a very minor catalyst deactivation was observed. Finally, based on all the identified intermediates, a simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst.

  18. Vandenberg Air Force Base integrated resource assessment. Volume 3, Resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Daellenbach, K.K.; Dagle, J.E.; Dittmer, A.L.; Elliott, D.B.; Halverson, M.A.; Hickman, B.J.; Parker, G.B.; Richman, E.E.; Shankle, S.A.

    1993-06-01

    The US Air Force Space Command (SPACECOM) has tasked the Pacific Northwest Laboratory (PNL), as the lead laboratory supporting the US Department of Energy (DOE) Federal Energy Management Program (FEMP), to identify, evaluate, and assist in acquiring all cost-effective energy projects at Vandenberg Air Force Base (VAFB). This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the SPACECOM VAFB facility located approximately 50 miles northwest of Santa Barbara, California. It is a companion report to Volume 1, Executive Summary, and Volume 2, Baseline Detail. The results of the analysis of EROs are presented in ten common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). In addition, a case study of process loads at Space Launch Complex-4 (SLC-4) is included. A narrative description of each ERO is provided, including information on the installed cost, energy and dollar savings; impacts on operation and maintenance (O and M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO and present the results of the life-cycle cost (LCC) analysis indicating the net present value (NPV) and value index (VI) of each ERO. Finally, an appendix includes a summary of an economic analysis case study of the South Vandenberg Power Plant (SVPP) operating scenarios.

  19. Air traffic management system design using satellite based geo-positioning and communications assets

    Science.gov (United States)

    Horkin, Phil

    1995-01-01

    The current FAA and ICAO FANS vision of Air Traffic Management will transition the functions of Communications, Navigation, and Surveillance to satellite based assets in the 21st century. Fundamental to widespread acceptance of this vision is a geo-positioning system that can provide worldwide access with best case differential GPS performance, but without the associated problems. A robust communications capability linking-up aircraft and towers to meet the voice and data requirements is also essential. The current GPS constellation does not provide continuous global coverage with a sufficient number of satellites to meet the precision landing requirements as set by the world community. Periodic loss of the minimum number of satellites in view creates an integrity problem, which prevents GPS from becoming the primary system for navigation. Furthermore, there is reluctance on the part of many countries to depend on assets like GPS and GLONASS which are controlled by military communities. This paper addresses these concerns and provides a system solving the key issues associated with navigation, automatic dependent surveillance, and flexible communications. It contains an independent GPS-like navigation system with 27 satellites providing global coverage with a minimum of six in view at all times. Robust communications is provided by a network of TDMA/FDMA communications payloads contained on these satellites. This network can support simultaneous communications for up to 30,000 links, nearly enough to simultaneously support three times the current global fleet of jumbo air passenger aircraft. All of the required hardware is directly traceable to existing designs.

  20. Catalytic wet air oxidation of 2-chlorophenol over sewage sludge-derived carbon-based catalysts

    International Nuclear Information System (INIS)

    Highlights: • A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared. • FeSC exhibited high catalytic activity in the wet air oxidation of 2-chlorophenol. • A strong correlation was observed between the 2-CP conversion, the iron leaching and the pH. • Using an acetate buffer, the iron leaching was suppressed while keeping some catalytic activity. • A simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst. - Abstract: A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared and used in the Catalytic Wet Air Oxidation (CWAO) of 2-chlorophenol (2-CP). The catalysts were characterized in terms of elemental composition, surface area, pHPZC, XRD and SEM. The performances of the FeSC catalyst in the CWAO of 2-CP was assessed in a batch reactor operated at 120 °C under 0.9 MPa oxygen partial pressure. Complete decomposition of 2-CP was achieved within 5 h and 90% Total Organic Carbon (TOC) was removed after 24 h of reaction. Quite a straight correlation was observed between the 2-CP conversion, the amount of iron leached in solution and the pH of the reaction mixture at a given reaction time, indicating a strong predominance of the homogeneous catalysis contribution. The iron leaching could be efficiently prevented when the pH of the solution was maintained at values higher than 4.5, while the catalytic activity was only slightly reduced. Upon four successive batch CWAO experiments, using the same FeSC catalyst recovered by filtration after pH adjustment, only a very minor catalyst deactivation was observed. Finally, based on all the identified intermediates, a simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst

  1. Optical characterization of MEMS-based multiple air-dielectric blue-spectrum distributed Bragg reflectors

    Science.gov (United States)

    Ghaderi, M.; Ayerden, N. P.; de Graaf, G.; Wolffenbuttel, R. F.

    2015-05-01

    The optical performance of a distributed Bragg reflector (DBR) is typically the determining factor in many optical MEMS devices and is mainly limited by the number of the periods (number of layers) and the refractive index contrast (RIC) of the materials used. The number of suitable available materials is limited and implementing a large number of periods increases the process complexity. Using air as a low-index material improves the RIC by almost 50% as compared with most conventional layer combinations and hence provides a higher optical performance at a given number of layers. This paper presents the design, fabrication, and optical characterization of multiple air-SiO2 Bragg reflectors with two airgap layers designed for the visible spectrum. Alternate polysilicon deposition and silicon-dioxide growth on the wafers followed by the selective etching of polysilicon layers in a TMAH-based solution results in a layer stack according to the optical design. However, unlike the conventional MEMS processes, fabrication of a blue-band airdielectric DBR demands several sacrificial layers in the range of 100 nm. Therefore, a successful release of the membrane after wet-etching is critical to the successful performance of the device. In this study, several DBRs with two periods have been fabricated using a CO2 supercritical drying process. The wide-area reflection measurements showed a peak reflectance of 65% and an FWHM of about 100 nm for a DBR centered at 500 nm. DBRs centered on 400 nm gave a much wider spectral response. This paper presents preliminary optical characterization results and discusses the challenges for a reflector design in the blue-visible range.

  2. Identification of aerosol types over an urban site based on air-mass trajectory classification

    Science.gov (United States)

    Pawar, G. V.; Devara, P. C. S.; Aher, G. R.

    2015-10-01

    Columnar aerosol properties retrieved from MICROTOPS II Sun Photometer measurements during 2010-2013 over Pune (18°32‧N; 73°49‧E, 559 m amsl), a tropical urban station in India, are analyzed to identify aerosol types in the atmospheric column. Identification/classification is carried out on the basis of dominant airflow patterns, and the method of discrimination of aerosol types on the basis of relation between aerosol optical depth (AOD500 nm) and Ångström exponent (AE, α). Five potential advection pathways viz., NW/N, SW/S, N, SE/E and L have been identified over the observing site by employing the NOAA-HYSPLIT air mass back trajectory analysis. Based on AE against AOD500 nm scatter plot and advection pathways followed five major aerosol types viz., continental average (CA), marine continental average (MCA), urban/industrial and biomass burning (UB), desert dust (DD) and indeterminate or mixed type (MT) have been identified. In winter, sector SE/E, a representative of air masses traversed over Bay of Bengal and Eastern continental Indian region has relatively small AOD (τpλ = 0.43 ± 0.13) and high AE (α = 1.19 ± 0.15). These values imply the presence of accumulation/sub-micron size anthropogenic aerosols. During pre-monsoon, aerosols from the NW/N sector have high AOD (τpλ = 0.61 ± 0.21), and low AE (α = 0.54 ± 0.14) indicating an increase in the loading of coarse-mode particles over Pune. Dominance of UB type in winter season for all the years (i.e. 2010-2013) may be attributed to both local/transported aerosols. During pre-monsoon seasons, MT is the dominant aerosol type followed by UB and DD, while the background aerosols are insignificant.

  3. Early ship-based upper-air data and comparison with the Twentieth Century Reanalysis

    Directory of Open Access Journals (Sweden)

    S. Brönnimann

    2011-03-01

    Full Text Available Extension of 3-D atmospheric data products back into the past is desirable for a wide range of applications. Historical upper-air data are important in this endeavour, particularly in the maritime regions of the tropics and the southern hemisphere, where observations are extremely sparse. Here we present newly digitized and re-evaluated early ship-based upper-air data from two cruises: (1 kite and registering balloon profiles from onboard the ship SMS Planet on a cruise from Europe around South Africa and across the Indian Ocean to the western Pacific in 1906/1907, and (2 ship-based radiosonde data from onboard the MS Schwabenland on a cruise from Europe across the Atlantic to Antarctica and back in 1938/1939. We describe the data and provide estimations of the errors. We compare the data with a recent reanalysis (the Twentieth Century Reanalysis Project, 20CR, Compo et al., 2011 that provides global 3-D data back to the 19th century based on an assimilation of surface pressure data only (plus monthly mean sea-surface temperatures. In cruise (1, the agreement is generally good, but large temperature differences appear during a period with a strong inversion. In cruise (2, after a subset of the data are corrected, close agreement between observations and 20CR is found for geopotential height (GPH and temperature notwithstanding a likely cold bias of 20CR at the tropopause level. Results are considerably worse for relative humidity, which was reportedly inaccurately measured. Note that comparing 20CR, which has limited skill in the tropical regions, with measurements from ships in remote regions made under sometimes difficult conditions can be considered a worst case assessment. In view of that fact, the anomaly correlations for temperature of 0.3–0.6 in the lower troposphere in cruise (1 and of 0.5–0.7 for tropospheric temperature and GPH in cruise (2 are considered as promising results. Moreover, they are consistent with the

  4. Early ship-based upper-air data and comparison with the Twentieth Century Reanalysis

    Directory of Open Access Journals (Sweden)

    S. Brönnimann

    2010-11-01

    Full Text Available Extension of 3-D atmospheric data products back into the past is desirable for a wide range of applications. Historical upper-air data are important in this endeavour, particularly in the maritime regions of the tropics and the southern hemisphere, where observations are extremely sparse. Here we present newly digitized and re-evaluated early ship-based upper-air data from two cruises: (1 kite and registering balloon profiles from onboard the ship SMS Planet on a cruise from Europe around South Africa and across the Indian Ocean to the western Pacific in 1906/1907, and (2 ship-based radiosonde data from onboard the MS Schwabenland on a cruise from Europe across the Atlantic to Antarctica and back in 1938/1939. We describe the data and provide estimations of the errors. We compare the data with a recent reanalysis (the Twentieth Century Reanalysis Project, 20CR, Compo et al., 2010 that provides global 3-D data back to the 19th century based on an assimilation of surface pressure data only (plus monthly mean sea-surface temperatures. In cruise (1, the agreement is generally good, but large temperature differences appear during a period with a strong inversion. In cruise (2, after a correction to a subset of data, a good agreement between observations and 20CR is found for geopotential height (GPH and temperature except for a likely cold bias of 20CR at the tropopause level. Results are considerably worse for relative humidity, which was reportedly inaccurately measured. Note that comparing 20CR, which has limited skill in the tropical regions, with measurements form ships in remote regions made under sometimes difficult conditions can be considered a worst case assessment. In view of that fact, the anomaly correlations for temperature of 0.3–0.6 in the lower troposphere in cruise (1 and of 0.5–0.7 for tropospheric temperature and GPH in cruise (2 are considered as promising results. Moreover, they are consistent with the error

  5. Analysis of air transportation competitiveness based on consumer evaluation of service quality [paper in Portuguese

    OpenAIRE

    Marcus Vinícius Nascimento

    2013-01-01

    This paper presents a critical analysis about the quality service observed by users of air transportation. It uses the specific literature to determine how users evaluate the level of service and how it can be applied on air transportation system. After that, it was submitted an indicative of user poor quality perception against criterions, such as the luggage restitution time, that are considered by specialists, responsible for worst quality perception of air transportation on USA. The resul...

  6. Use of Air2Air Technology to Recover Fresh-Water from the Normal Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ken Mortensen

    2009-06-30

    This program was undertaken to build and operate the first Air2Air{trademark} Water Conservation Cooling Tower at a power plant, giving a validated basis and capability for water conservation by this method. Air2Air{trademark} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10%-25% annually, depending on the cooling tower location (climate).

  7. Remediation of the low-level radioactive waste burial site at Williams Air Force Base

    International Nuclear Information System (INIS)

    The Air Force initiated a contract to develop and prepare detailed work plans for the removal of five concrete cylinders and associated field activities at site RW-11 at Williams AFB. Cylinders were believed to contain low-level radioactive waste including radium-luminous painted dials and radium-bearing parts. Although the general location of the cylinders was known, the exact configuration and contents of the cylinders was unknown. Plans included site preparation, excavation, monitoring, packaging, disposal, closure, and health and safety. The Health and Safety Plan was developed based on the premise that Radium 226 was the primary isotope of concern. The primary health hazard for workers and the public associated with site excavation was inhalation of airborne radioactive dust. Contingency plans were prepared in the event any radiation activity was detected above background levels or other radioactive isotopes were detected at the site. Criteria used to determine whether the site posed a threat to human health or the environment was based on an action level of 10 millirem Total Effective Dose Equivalent. Williams AFB is a closed installation that was placed on the Superfund National Priorities List. This paper discusses the plans what were developed to remove the buried waste, the execution of the plans, and closure of the site RW-11

  8. Non-contact evaluation of milk-based products using air-coupled ultrasound

    Science.gov (United States)

    Meyer, S.; Hindle, S. A.; Sandoz, J.-P.; Gan, T. H.; Hutchins, D. A.

    2006-07-01

    An air-coupled ultrasonic technique has been developed and used to detect physicochemical changes of liquid beverages within a glass container. This made use of two wide-bandwidth capacitive transducers, combined with pulse-compression techniques. The use of a glass container to house samples enabled visual inspection, helping to verify the results of some of the ultrasonic measurements. The non-contact pulse-compression system was used to evaluate agglomeration processes in milk-based products. It is shown that the amplitude of the signal varied with time after the samples had been treated with lactic acid, thus promoting sample destabilization. Non-contact imaging was also performed to follow destabilization of samples by scanning in various directions across the container. The obtained ultrasonic images were also compared to those from a digital camera. Coagulation with glucono-delta-lactone of skim milk poured into this container could be monitored within a precision of a pH of 0.15. This rapid, non-contact and non-destructive technique has shown itself to be a feasible method for investigating the quality of milk-based beverages, and possibly other food products.

  9. Exergy analysis of a novel configuration of desiccant based evaporative air conditioning system

    International Nuclear Information System (INIS)

    Highlights: • A procedure is developed for exergy analyses of the system. • The exergy transports between the components are determined. • The exergy efficiency of the whole system is 40.7% at 15 °C reference temperature. - Abstract: In this work, a process is developed for exergy analyses of a novel configuration of desiccant based an evaporative air conditioning system. The exergy transfer and destruction between the components of the system are defined for the average measured variables obtained from the experimental results. The exergy formulations are carried out to the experimental system using the data collected during a typical operation of the system. The exergy output, specific flow exergy, exergy destruction, exergy input and exergy efficiency are determined. Furthermore, the sustainability assessment and relative irreversibility of components are obtained. It is found that the exergy efficiency of the entire experimental unit is 40.7% at a reference temperature of 15 °C. It is also observed that the exergy efficiencies of the entire system varies between 56% and 25% for reference temperature of 0–30 °C, respectively. The effects of reference temperature on the performance of the studied system are investigated. Based on the investigation, it is seen that an exergy analysis can provide beneficial knowledge with respect to the theoretical upper limit of the system performance

  10. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    An environmental investigation of ground water conditions has been undertaken at Wright-Patterson Air Force Base (WPAFB), Ohio to obtain data to assist in the evaluation of a potential removal action to prevent, to the extent practicable, migration of the contaminated ground water across Base boundaries. Field investigations were limited to the central section of the southwestern boundary of Area C and the Springfield Pike boundary of Area B. Further, the study was limited to a maximum depth of 150 feet below grade. Three primary activities of the field investigation were: (1) installation of 22 monitoring wells, (2) collection and analysis of ground water from 71 locations, (3) measurement of ground water elevations at 69 locations. Volatile organic compounds including trichloroethylene, perchloroethylene, and/or vinyl chloride were detected in concentrations exceeding Maximum Contaminant Levels (MCL) at three locations within the Area C investigation area. Ground water at the Springfield Pike boundary of Area B occurs in two primary units, separated by a thicker-than-expected clay layers. One well within Area B was determined to exceed the MCL for trichloroethylene.

  11. An architecture for integrating distributed and cooperating knowledge-based Air Force decision aids

    Science.gov (United States)

    Nugent, Richard O.; Tucker, Richard W.

    1988-01-01

    MITRE has been developing a Knowledge-Based Battle Management Testbed for evaluating the viability of integrating independently-developed knowledge-based decision aids in the Air Force tactical domain. The primary goal for the testbed architecture is to permit a new system to be added to a testbed with little change to the system's software. Each system that connects to the testbed network declares that it can provide a number of services to other systems. When a system wants to use another system's service, it does not address the server system by name, but instead transmits a request to the testbed network asking for a particular service to be performed. A key component of the testbed architecture is a common database which uses a relational database management system (RDBMS). The RDBMS provides a database update notification service to requesting systems. Normally, each system is expected to monitor data relations of interest to it. Alternatively, a system may broadcast an announcement message to inform other systems that an event of potential interest has occurred. Current research is aimed at dealing with issues resulting from integration efforts, such as dealing with potential mismatches of each system's assumptions about the common database, decentralizing network control, and coordinating multiple agents.

  12. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    In April 1990 Wright-Patterson Air Force Base (WPAFB) initiated an investigation to evaluate a potential CERCLA removal action to prevent, to the extent practicable, the migration of ground-water contamination in the Mad River Valley Aquifer within and across WPAFB boundaries. The action will be based on a Focused Feasibility Study with an Action Memorandum serving as a decision document that is subject to approval by the Ohio Environmental Protection Agency. The first phase (Phase 1) of this effort involves an investigation of ground-water contamination migrating across the southwest boundary of Area C and across Springfield Pike adjacent to Area B. Task 4 of Phase 1 is a field investigation to collect sufficient additional information to evaluate removal alternatives. The field investigation will provide information in the following specific areas of study: water-level data which will be used to permit calibration of the ground-water flow model to a unique time in history; and ground-water quality data which will be used to characterize the current chemical conditions of ground water.

  13. Mortality weighting-based method for aggregate urban air risk assessment

    Institute of Scientific and Technical Information of China (English)

    Qing-yu ZHANG; Guo-jin SUN; Wei-li TIAN; Yu-mei WEI; Si-mai FANG; Jin-feng RUAN; Guo-rong SHAN; Yao SHI

    2011-01-01

    This paper deals with a mortality-weighted synthetic evaluation (MWSE) method for evaluating urban air risk.Sulphur dioxide (SO2),nitrogen oxide (NOx),and particulate matter (PM10) were used as pollution indices.The urban area of Hangzhou,China is divided into 756 grid cells,with a resolution of 1 km× 1 km,and is evaluated using the MWSE and the air quality index (AQI),a widely-used method to evaluate ambient air quality and air risk.In an evaluation of one day in April 2004,the surface areas categorized as levels Ⅰ and Ⅲ,as defined by the integrated air risk evaluation,were 27.3% and 3.3% lower,respectively,than grades Ⅰ and Ⅲ defined by the AQI evaluation.Meanwhile,the areas classified as level Ⅱ or above level Ⅲ by the integrated air risk evaluation were 55.1% and 101.1% higher,respectively,than grade Ⅱ or above grade Ⅲ when using the AQI evaluation.From this comparison,we find that the MWSE method is more sensitive than the AQI method.The AQI method uses a single index to assess integrated air quality and is therefore unable to evaluate integrated air risks due to multiple pollutants.The MWSE method overcomes this problem,providing improved accuracy in air risk assessment.

  14. Energy and Exergy Performances of Air-Based vs. Water-Based Heating and Cooling Systems: A Case Study of a Single-Family House

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    terms of energy and exergy. In addition to the energy and exergy input required at the heating and cooling plants, the energy use of auxiliary components (fans and pumps) also vary depending on the chosen terminal unit. In order to study the energy and exergy performances of air-based and water......Different indoor terminal units can be used to heat and cool indoor spaces. These terminal units mostly rely on convection and radiation heat transfer mechanisms but their relative ratios can vary significantly for air-based and water-based systems with implications on whole system performance, in......-based systems, an air heating and cooling system, and a radiant floor heating and cooling system were chosen, respectively. A single-family house was used as a case study assuming that different space heating and cooling systems were used to condition the indoor space of this house. In addition to the thermal...

  15. Assessment of China's virtual air pollution transport embodied in trade by a consumption-based emission inventory

    Science.gov (United States)

    Zhao, H. Y.; Zhang, Q.; Davis, S. J.; Guan, D.; Liu, Z.; Huo, H.; Lin, J. T.; Liu, W. D.; He, K. B.

    2014-10-01

    High anthropogenic emissions from China have resulted in serious air pollution, and it has attracted considerable academic and public concern. The physical transport of air pollutants in the atmosphere has been extensively investigated, however, understanding the mechanisms how the pollutants were transferred through economic and trade activities remains challenge. In this work, we assessed China's virtual air pollutant transport embodied in trade, by using consumption-based accounting approach. We first constructed a consumption-based emission inventory for China's four key air pollutants (primary PM2.5, sulfur dioxide (SO2), nitrogen oxides (NOx) and non-methane volatile organic compounds (NMVOC)) in 2007, based on the bottom-up sectoral emission inventory concerning their production activities - a production-based inventory. We used a multiregional input-output (MRIO) model to integrate the sectoral production-based emissions and the associated economic and trade activities, and finally obtained consumption-based inventory. Unlike the production-based inventory, the consumption-based inventory tracked emissions throughout the supply chain related to the consumption of goods and services and hereby identified the emission flows followed the supply chains. From consumption-based perspective, emissions were significantly redistributed among provinces due to interprovincial trade. Large amount of emissions were embodied in the net imports of east regions from northern and central regions; these were determined by differences in the regional economic status and environmental policies. We also calculated the emissions embodied in exported and imported goods and services. It is found that 15-23% of China's pollutant emissions were related to exports for foreign consumption; that proportion was much higher for central and export-oriented coastal regions. It is suggested that measures should be introduced to reduce air pollution by integrating cross-regional consumers

  16. Variability and Risk Analysis of Hong Kong Air Quality Based on Monsoon and El Ni(n)o Conditions

    Institute of Scientific and Technical Information of China (English)

    Jong-Suk KIM; ZHOU Wen; Ho Nam CHEUNG; Chak Hang CHOW

    2013-01-01

    This study presents an exploratory analysis aimed at improving understanding of the variability of Hong Kong air quality associated with different climate conditions.Significantly negative correlations were found when Nifio 3 led particulate matter ≤10 μm PM10) and NO2 by 2-3 months over the Hong Kong territory,while the other pollutants (e.g.,O3,SO2) showed modest correlations.A significant decreasing trend in visibility was observed during the autumn and winter,which has potential implications for the air-quality degradation and the endangerment of human health in Hong Kong.In an El Ni(n)o summer,the visibility was relatively better,while visibility in other seasons was diminished.On the other hand,in La Ni(n)a events,significant changes occurred in visibility in winter and autumn.Air pollution indices were less sensitive to the South China Summer Monsoon (SCSM),but a relatively high correlation existed between the East Asian Winter Monsoon (EAWM) and air pollutants.Rainfall was lower during most of the strong EAWM years compared to the weak years.This result suggests that the pollutants that accumulate in Hong Kong are not easy to wash out,so concentrations remain at a higher level.Finally,based on the conditional Air Pollution Index (API) risk assessment,site-specific vulnerabilities were analyzed to facilitate the development of the air-quality warning systems in Hong Kong.

  17. A passive decay heat removal system for LWRs based on air cooling

    International Nuclear Information System (INIS)

    Highlights: • A passive decay heat removal system for LWRs is discussed. • An air cooler model which condenses steam is developed. • The decay heat can be removed by air coolers with forced convection. • The dimensions of the air cooler are proposed. - Abstract: The present paper describes the capability of an air cooling system (ACS) to remove decay heat from a core of LWR such as an advanced boiling water reactor (ABWR) and a pressurized water reactor (PWR). The motivation of the present research is the Fukushima severe accident (SA) on 11 March 2011. Since emergency cooling systems using electricity were not available due to station blackout (SBO) and malfunctions, many engineers might understand that water cooling was not completely reliable. Therefore, a passive decay heat removal (DHR) system would be proposed in order to prevent such an SA under the conditions of an SBO event. The plant behaviors during the SBO are calculated using the system code NETFLOW++ for the ABWR and PWR with the ACS. Two types of air coolers (ACs) are applied for the ABWR, i.e., a steam condensing air cooler (SCAC) of which intake for heat transfer tubes is provided in the steam region, and single-phase type of which intake is provided in the water region. The DHR characteristics are calculated under the conditions of the forced air circulation and also the natural air convection. As a result of the calculations, the decay heat can be removed safely by the reasonably sized ACS when heat transfer tubes are cooled with the forced air circulation. The heat removal rate per one finned heat transfer tube is evaluated as a function of air flow rate. The heat removal rate increases as a function of the air flow rate

  18. A passive decay heat removal system for LWRs based on air cooling

    Energy Technology Data Exchange (ETDEWEB)

    Mochizuki, Hiroyasu, E-mail: mochizki@u-fukui.ac.jp [Research Institute of Nuclear Engineering, University of Fukui, 1-2-4 Kanawa-cho, Tsuruga, Fukui 914-0055 (Japan); Yano, Takahiro [Graduate School of Engineering, University of Fukui, 1-2-4 Kanawa-cho, Tsuruga, Fukui 914-0055 (Japan)

    2015-05-15

    Highlights: • A passive decay heat removal system for LWRs is discussed. • An air cooler model which condenses steam is developed. • The decay heat can be removed by air coolers with forced convection. • The dimensions of the air cooler are proposed. - Abstract: The present paper describes the capability of an air cooling system (ACS) to remove decay heat from a core of LWR such as an advanced boiling water reactor (ABWR) and a pressurized water reactor (PWR). The motivation of the present research is the Fukushima severe accident (SA) on 11 March 2011. Since emergency cooling systems using electricity were not available due to station blackout (SBO) and malfunctions, many engineers might understand that water cooling was not completely reliable. Therefore, a passive decay heat removal (DHR) system would be proposed in order to prevent such an SA under the conditions of an SBO event. The plant behaviors during the SBO are calculated using the system code NETFLOW++ for the ABWR and PWR with the ACS. Two types of air coolers (ACs) are applied for the ABWR, i.e., a steam condensing air cooler (SCAC) of which intake for heat transfer tubes is provided in the steam region, and single-phase type of which intake is provided in the water region. The DHR characteristics are calculated under the conditions of the forced air circulation and also the natural air convection. As a result of the calculations, the decay heat can be removed safely by the reasonably sized ACS when heat transfer tubes are cooled with the forced air circulation. The heat removal rate per one finned heat transfer tube is evaluated as a function of air flow rate. The heat removal rate increases as a function of the air flow rate.

  19. Autonomous Landing and Ingress of Micro-Air-Vehicles in Urban Environments Based on Monocular Vision

    Science.gov (United States)

    Brockers, Roland; Bouffard, Patrick; Ma, Jeremy; Matthies, Larry; Tomlin, Claire

    2011-01-01

    Unmanned micro air vehicles (MAVs) will play an important role in future reconnaissance and search and rescue applications. In order to conduct persistent surveillance and to conserve energy, MAVs need the ability to land, and they need the ability to enter (ingress) buildings and other structures to conduct reconnaissance. To be safe and practical under a wide range of environmental conditions, landing and ingress maneuvers must be autonomous, using real-time, onboard sensor feedback. To address these key behaviors, we present a novel method for vision-based autonomous MAV landing and ingress using a single camera for two urban scenarios: landing on an elevated surface, representative of a rooftop, and ingress through a rectangular opening, representative of a door or window. Real-world scenarios will not include special navigation markers, so we rely on tracking arbitrary scene features; however, we do currently exploit planarity of the scene. Our vision system uses a planar homography decomposition to detect navigation targets and to produce approach waypoints as inputs to the vehicle control algorithm. Scene perception, planning, and control run onboard in real-time; at present we obtain aircraft position knowledge from an external motion capture system, but we expect to replace this in the near future with a fully self-contained, onboard, vision-aided state estimation algorithm. We demonstrate autonomous vision-based landing and ingress target detection with two different quadrotor MAV platforms. To our knowledge, this is the first demonstration of onboard, vision-based autonomous landing and ingress algorithms that do not use special purpose scene markers to identify the destination.

  20. Oxidation characteristics of nickel-base superalloys at high temperature in air and helium atmospheres

    International Nuclear Information System (INIS)

    Nickel-base superalloys are considered as materials for piping and structural materials in a very high temperature gas cooled reactor (VHTR). They are subjected to the environmental degradation caused by a continuous process for oxidation due to small amount of impurities in He coolant during long term operation. In the present study, the oxidation behaviors of several nickel-base superalloys such as Alloy-617, Haynes-214 and Haynes-230 in particular, were studied at the temperature of 900 and 1100 C degrees in air, and in the high purity He environment. Oxide layers were analyzed by SEM (Scanning Electron Microscope) and EDX (Energy Dispersive X-ray analysis). The differences in oxidation behaviors of these alloys were mainly caused by different protective oxide layers on surface. In the case of Alloy-617 and Haynes-230, Cr2O3 layer formed on the surface which is not stable at 1100 C degrees. Therefore, the weight increased significantly due to oxidation at the initial stage, which followed by a decrease due to the scaling and volatilization of Cr2O3 layer. On the other hand, since Haynes-214 has mainly Al2O3 oxide layer on surface which is more stable and has more dense structure at higher temperature, the weight gain eventually reaches to parabolic. Microstructural characteristics of internal carbides and carbide depletion zone were analyzed. With oxidation time, continuous grain boundary carbides of M23C6 type were getting thin or it disappeared partially. Especially, carbides on grain boundary disappeared entirely below oxide layer (carbide depletion zone). It was getting wide with oxidation time. For Haynes-214, the size of carbide depletion zone was smaller than other alloys because Al2O3 layer acted as a diffusion layer prevented effectively the penetration of oxygen into base metal. (authors)

  1. PERSONAL EXPOSURE TO JP-8 JET FUEL VAPORS AND EXHAUST AT AIR FORCE BASES

    Science.gov (United States)

    JP-8 jet fuel (similar to commercial/international jet A-1 fuel) is the standard military fuel for all types of vehicles, including the U.S. Air Force aircraft inventory. As such, JP-8 presents the most common chemical exposure in the Air Force, particularly for flight and gro...

  2. Data from accelerator-based experiments of relevance to the air shower observations

    Directory of Open Access Journals (Sweden)

    Itow Yoshitaka

    2013-06-01

    Full Text Available Implications of air shower of ultra high energy cosmic rays (UHECRs need precise knowledge on hadronic interactions at very high energy. From this point of view recent LHC data have great impacts on the UHECR observation. Here various data from accelerator experiments including recent LHC data, of relevance to the air shower measurements, are briefly overviewed.

  3. Source evaluation report phase 2 investigation: Limited field investigation. Final report: United States Air Force Environmental Restoration Program, Eielson Air Force Base, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    This report describes the limited field investigation work done to address issues and answer unresolved questions regarding a collection of potential contaminant sources at Eielson Air Force Base (AFB), near Fairbanks, Alaska. These sources were listed in the Eielson AFB Federal Facility Agreement supporting the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup of the base. The limited field investigation began in 1993 to resolve all remaining technical issues and provide the data and analysis required to evaluate the environmental hazard associated with these sites. The objective of the limited field investigation was to allow the remedial project managers to sort each site into one of three categories: requiring remedial investigation/feasibility study, requiring interim removal action, or requiring no further remedial action.

  4. Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ken Mortensen

    2011-12-31

    This program was undertaken to enhance the manufacturability, constructability, and cost of the Air2Air{TM} Water Conservation and Plume Abatement Cooling Tower, giving a validated cost basis and capability. Air2Air{TM} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10% - 25% annually, depending on the cooling tower location (climate). This program improved the efficiency and cost of the Air2Air{TM} Water Conservation Cooling Tower capability, and led to the first commercial sale of the product, as described.

  5. Pollution resistance assessment of existing landscape plants on Beijing streets based on air pollution tolerance index method.

    Science.gov (United States)

    Zhang, Peng-Qian; Liu, Yan-Ju; Chen, Xing; Yang, Zheng; Zhu, Ming-Hao; Li, Yi-Ping

    2016-10-01

    Various plant species of green belt in urban traffic area help to reduce air pollution and beautify the city environment. Those plant species growing healthily under long-term atmospheric pollution environment are considered to be resilient. This study aims to identify plant species that are more tolerant to air pollution from traffic and to give recommendations for future green belt development in urban areas. Leaf samples of 47 plant species were collected from two heavy traffic roadside sites and one suburban site in Beijing during summer 2014. Four parameters in leaves were separately measured including relative water content (RWC), total chlorophyll content (TCH), leaf-extract pH (pH), and ascorbic acid (AA). The air pollution tolerance index (APTI) method was adopted to assess plants' resistance ability based on the above four parameters. The tolerant levels of plant species were classified using two methods, one by comparing the APTI value of individual plant to the average of all species and another by using fixed APTI values as standards. Tolerant species were then selected based on combination results from both methods. The results showed that different tolerance orders of species has been found at the three sampling sites due to varied air pollution and other environmental conditions. In general, plant species Magnolia denudata, Diospyros kaki, Ailanthus altissima, Fraxinus chinensis and Rosa chinensis were identified as tolerant species to air pollution environment and recommend to be planted at various location of the city, especially at heavy traffic roadside. PMID:27326901

  6. Low-carbon energy policy and ambient air pollution in Shanghai, China: A health-based economic assessment

    International Nuclear Information System (INIS)

    Energy and related health issues are of growing concern worldwide today. To investigate the potential public health and economic impact of ambient air pollution under various low-carbon energy scenarios in Shanghai, we estimated the exposure level of Shanghai residents to air pollution under various planned scenarios, and assessed the public health impact using concentration-response functions derived from available epidemiologic studies. We then estimated the corresponding economic values of the health effects based on unit values for each health outcome. Our results show that ambient air pollution in relation to low-carbon energy scenarios could have a significant impact on the future health status of Shanghai residents, both in physical and monetary terms. Compared with the base case scenario, implementation of various low-carbon energy scenarios could prevent 2804-8249 and 9870-23,100 PM10-related avoidable deaths (mid-value) in 2010 and 2020, respectively. It could also decrease incidence of several relevant diseases. The corresponding economic benefits could reach 507.31-1492.33 and 2642.45-6192.11 million U.S. dollars (mid-value) in 2010 and 2020, respectively. These findings illustrate that a low-carbon energy policy will not only decrease the emission of greenhouse gases, but also play an active role in the reduction of air pollutant emissions, improvement of air quality, and promotion of public health. Our estimates can provide useful information to local decision-makers for further cost-benefit analysis

  7. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique.

    Science.gov (United States)

    Battista, L; Sciuto, S A; Scorza, A

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10(-4) m(3)∕s (18.0 l∕min) for the mono-directional sensor and a measurement range of ±3.00 × 10(-4) m(3)∕s (±18.0 l∕min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono

  8. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    International Nuclear Information System (INIS)

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10−4 m3/s (18.0 l/min) for the mono-directional sensor and a measurement range of ±3.00 × 10−4 m3/s (±18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the

  9. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    Science.gov (United States)

    Battista, L.; Sciuto, S. A.; Scorza, A.

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10-4 m3/s (18.0 l/min) for the mono-directional sensor and a measurement range of ±3.00 × 10-4 m3/s (±18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the

  10. Approaches for controlling air pollutants and their environmental impacts generated from coal-based electricity generation in China.

    Science.gov (United States)

    Xu, Changqing; Hong, Jinglan; Ren, Yixin; Wang, Qingsong; Yuan, Xueliang

    2015-08-01

    This study aims at qualifying air pollutants and environmental impacts generated from coal-based power plants and providing useful information for decision makers on the management of coal-based power plants in China. Results showed that approximately 9.03, 54.95, 62.08, and 12.12% of the national carbon dioxide, sulfur dioxide, nitrogen oxides, and particulate matter emissions, respectively, in 2011were generated from coal-based electricity generation. The air pollutants were mainly generated from east China because of the well-developed economy and energy-intensive industries in the region. Coal-washing technology can simply and significantly reduce the environmental burden because of the relativity low content of coal gangue and sulfur in washed coal. Optimizing the efficiency of raw materials and energy consumption is additional key factor to reduce the potential environmental impacts. In addition, improving the efficiency of air pollutants (e.g., dust, mercury, sulfur dioxide, nitrogen oxides) control system and implementing the strict requirements on air pollutants for power plants are important ways for reducing the potential environmental impacts of coal-based electricity generation in China. PMID:25903190

  11. Power generation from a new air-based Marnoch heat engine

    International Nuclear Information System (INIS)

    This paper examines the performance of a new Marnoch heat engine, which uses dry air and a pneumatic piston assembly to convert thermal energy to electricity. The system has unique capabilities of operating over temperature differentials less than 100 K. Unlike a common Stirling engine, the heat exchangers and piston assembly are not co-located, which is beneficial for positioning of heat exchangers in various configurations. This paper presents an operational laboratory-scale, proof-of-concept Marnoch heat engine (MHE), including its performance and power generation capabilities. It also presents a thermodynamic analysis of the system. Based on the MHE results, component modifications are made to improve its performance. The configuration has an efficiency of about thirty percent of a Carnot heat engine operating in the temperature range between 272 K and 372 K. Experimental data is acquired to provide verification of the predictive model, as well as demonstration of the MHE’s capabilities for efficient generation of electricity from waste heat sources. -- Highlights: ► This paper presents a thermodynamic analysis and experimental data for a Marnoch heat engine (MHE). ► The MHE has an efficiency of about thirty percent of a Carnot heat engine between 272 K and 372 K. ► Experimental data is successfully compared to the predictive model. ► The MHE shows promising performance for generation of electricity from waste heat sources.

  12. A NEW AIR CONDITIONING SYSTEM FAN MODEL BASED ON NUMERICAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Nabil Nassif

    2014-01-01

    Full Text Available A large portion of energy use in buildings is attributed to air movement devices. Accurate estimation of fan performance is a key element in maximizing fan efficiency. This study proposes a new fan model that can be used in several applications such as optimization and fault detection and can also be incorporated into any commercial building models. The model uses a numerical analysis based on an interpolation technique for the data generated by basic fan laws. It can use any two variables among all four variables of airflow rate, total fan pressure, speed and power as inputs or outputs. Another advantage of this model is the flexibility of using any size of data for calibration, obtained either from manufacturers or field measured data. The model was tested for accuracy using two different manufacturers’ data of roof top unit packages with capacity ranging from 2 to 20 tons. Furthermore, the model was evaluated and tested on an actual VAV system using three months’ worth of measured data. The results show that the model can provide accurate estimation with the Coefficient of Variance (CV less than 2% and it can be used for several applications.

  13. Geophysical characterization of fractured bedrock at Site 8, former Pease Air Force Base, Newington, New Hampshire

    Science.gov (United States)

    Mack, Thomas J.; Degnan, James R.

    2003-01-01

    Borehole-geophysical logs collected from eight wells and direct-current resistivity data from three survey lines were analyzed to characterize the fractured bedrock and identify transmissive fractures beneath the former Pease Air Force Base, Newington, N.H. The following logs were used: caliper, fluid temperature and conductivity, natural gamma radiation, electromagnetic conductivity, optical and acoustic televiewer, and heat-pulse flowmeter. The logs indicate several foliation and fracture trends in the bedrock. Two fracture-correlated lineaments trending 28? and 29?, identified with low-altitude aerial photography, are coincident with the dominant structural trend. The eight boreholes logged at Site 8 generally have few fractures and have yields ranging from 0 to 40 gallons per minute. The fractures that probably resulted in high well yields (20?40 gallons per minute) strike northeast-southwest or by the right hand rule, have an orientation of 215?, 47?, and 51?. Two-dimensional direct-current resistivity methods were used to collect detailed subsurface information about the overburden, bedrock-fracture zone depths, and apparent-dip directions. Analysis of data inversions from data collected with dipole-dipole and Schlumberger arrays indicated electrically conductive zones in the bedrock that are probably caused by fractured rock. These zones are coincident with extensions of fracture-correlated lineaments. The fracture-correlated lineaments and geophysical-survey results indicate a possible northeast-southwest anisotropy to the fractured rock.

  14. Space-based detection of missing sulfur dioxide sources of global air pollution

    Science.gov (United States)

    McLinden, Chris A.; Fioletov, Vitali; Shephard, Mark W.; Krotkov, Nick; Li, Can; Martin, Randall V.; Moran, Michael D.; Joiner, Joanna

    2016-07-01

    Sulfur dioxide is designated a criteria air contaminant (or equivalent) by virtually all developed nations. When released into the atmosphere, sulfur dioxide forms sulfuric acid and fine particulate matter, secondary pollutants that have significant adverse effects on human health, the environment and the economy. The conventional, bottom-up emissions inventories used to assess impacts, however, are often incomplete or outdated, particularly for developing nations that lack comprehensive emission reporting requirements and infrastructure. Here we present a satellite-based, global emission inventory for SO2 that is derived through a simultaneous detection, mapping and emission-quantifying procedure, and thereby independent of conventional information sources. We find that of the 500 or so large sources in our inventory, nearly 40 are not captured in leading conventional inventories. These missing sources are scattered throughout the developing world--over a third are clustered around the Persian Gulf--and add up to 7 to 14 Tg of SO2 yr-1, or roughly 6-12% of the global anthropogenic source. Our estimates of national total emissions are generally in line with conventional numbers, but for some regions, and for SO2 emissions from volcanoes, discrepancies can be as large as a factor of three or more. We anticipate that our inventory will help eliminate gaps in bottom-up inventories, independent of geopolitical borders and source types.

  15. Real-time threat evaluation in a ground based air defence environment

    Directory of Open Access Journals (Sweden)

    JN Roux

    2008-06-01

    Full Text Available In a military environment a ground based air defence operator is required to evaluate the tactical situation in real-time and protect Defended Assets (DAs on the ground against aerial threats by assigning available Weapon Systems (WSs to engage enemy aircraft. Since this aerial environment requires rapid operational planning and decision making in stress situations, the associated responsibilities are typically divided between a number of operators and computerized systems that aid these operators during the decision making processes. One such a Decision Support System (DSS, a threat evaluation and weapon assignment system, assigns threat values to aircraft (with respect to DAs in real-time and uses these values to propose possible engagements of observed enemy aircraft by anti-aircraft WSs. In this paper a design of the threat evaluation part of such a DSS is put forward. The design follows the structured approach suggested in [Roux JN & van Vuuren JH, 2007, Threat evaluation and weapon assignment decision support: A review of the state of the art, ORiON, 23(2, pp. 151-187], phasing in a suite of increasingly complex qualitative and quantitative model components as more (reliable data become available.

  16. [Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio

    International Nuclear Information System (INIS)

    This Removal Action System Design has been prepared as a Phase I Volume for the implementation of the Phase II removal action at Wright-Patterson Air Force Base (WPAFB) near Dayton, Ohio. The objective of the removal action is to prevent, to the extent practicable, the migration of ground water contaminated with chlorinated volatile organic compounds (VOCS) across the southwest boundary of Area C. The Phase 1, Volume 9 Removal Action System Design compiles the design documents prepared for the Phase II Removal Action. These documents, which are presented in Appendices to Volume 9, include: Process Design, which presents the 30 percent design for the ground water treatment system (GWTS); Design Packages 1 and 2 for Earthwork and Road Construction, and the Discharge Pipeline, respectively; no drawings are included in the appendix; Design Package 3 for installation of the Ground Water Extraction Well(s); Design Package 4 for installation of the Monitoring Well Instrumentation; and Design Package 5 for installation of the Ground Water Treatment System; this Design Package is incorporated by reference because of its size

  17. Possible configurations for an air independent propulsion (AIP) system for submarines based on fuel cells

    International Nuclear Information System (INIS)

    'Full text:' Conventional submarines employ an electric propulsion system, based on energy storage in batteries which are recharged using diesel motors connected to generator alternators. This limits their autonomy underwater given that it will be depend on the amount of energy that can be stored in the batteries; currently, a normal value is to have energy to navigate for three days at low speed. As of from the WWII, several shipyards began to carry out research on propulsion systems for submarines that would be capable of operating under anaerobic conditions, independent of the air (AIP Systems). Since then, several proposals have been considered, but there is one option that several navies are currently putting their trust in: fuel cells. The objective of this Project is to stress the different configurations that can be considered to this end, as regards the transportation of hydrogen and oxygen. From the hydrogen point of view, the possibilities of transporting it in metal hydrides or its on-board production through the reforming of different fuels (gas-oil, ethanol, methanol), are analyzed. This study also compares auxiliary systems (including CO2 removers), and proposes solutions, some of which are under development, indicating which are currently being considered to a greater extent. (author)

  18. Natural attenuation of chlorinated solvents at Area 6, Dover Air Force Base: groundwater biogeochemistry.

    Science.gov (United States)

    Witt, Michael E; Klecka, Gary M; Lutz, Edward J; Ei, Tom A; Grosso, Nancy R; Chapelle, Francis H

    2002-07-01

    Monitored natural attenuation (MNA) has recently emerged as a viable groundwater remediation technology in the United States. Area 6 at Dover Air Force Base (Dover, DE) was chosen as a test site to examine the potential for MNA of tetrachloroethene (PCE) and trichloroethene (TCE) in groundwater and aquifer sediments. A "lines of evidence" approach was used to document the occurrence of natural attenuation. Chlorinated hydrocarbon and biogeochemical data were used to develop a site-specific conceptual model where both anaerobic and aerobic biological processes are responsible for the destruction of PCE, TCE, and daughter metabolites. An examination of groundwater biogeochemical data showed a region of depleted dissolved oxygen with elevated dissolved methane and hydrogen concentrations. Reductive dechlorination likely dominated in the anaerobic portion of the aquifer where PCE and TCE levels were observed to decrease with a simultaneous increase in cis-1,2-dichloroethene (cis-DCE), vinyl chloride (VC), ethene, and dissolved chloride. Near the anaerobic/ aerobic interface, concentrations of cis-DCE and VC decreased to below detection limits, presumably due to aerobic biotransformation processes. Therefore, the contaminant and daughter product plumes present at the site appear to have been naturally atteuated by a combination of active anaerobic and aerobic biotransformation processes. PMID:12143993

  19. Patterns of intrinsic bioremediation at two U.S. Air Force bases

    International Nuclear Information System (INIS)

    Intrinsic bioremediation of benzene, toluene, ethylbenzene, and xylenes (BTEX) occurs when indigenous microorganisms work to reduce the total mass of contamination in the subsurface without the addition of nutrients. A conservative tracer, such as trimethylbenzene, found commingled with the contaminant plume can be used to distinguish between attenuation caused by dispersion, dilution from recharge, volatilization, and sorption and attenuation caused by biodegradation. Patterns of intrinsic bioremediation can vary markedly from site to site depending on governing physical, biological, and chemical processes. Intrinsic bioremediation causes measurable changes in groundwater chemistry. Specifically, concentrations of contaminants, dissolved oxygen, nitrate, ferrous iron, sulfate, and methane in groundwater change both temporally and spatially as biodegradation proceeds Operations at Hill Air Force Base (AFB) and Patrick AFB resulted in fuel-hydrocarbon contamination of soil and groundwater. In both cases, trimethylbenzene data confirm that dissolved BTEX is biodegrading. Geochemical evidence from the Hill AFB site suggests that aerobic respiration, denitrification, iron reduction, sulfate reduction, and methanogenesis all are contributing to intrinsic bioremediation of dissolved BTEX. Sulfate reduction is the dominant biodegradation mechanism at this site. Geochemical evidence from Patrick AFB suggests that aerobic respiration, iron reduction, and methanogenesis are contributing to intrinsic bioremediation of dissolved BTEX. Methanogenesis is the dominant biodegradation mechanism at this site

  20. Nonlinear Adaptive Equivalent Control Based on Interconnection Subsystems for Air-Breathing Hypersonic Vehicles

    Directory of Open Access Journals (Sweden)

    Chaofang Hu

    2013-01-01

    Full Text Available For the nonminimum phase behavior of the air-breathing hypersonic vehicle model caused by elevator-to-lift coupling, a nonlinear adaptive equivalent control method based on interconnection subsystems is proposed. In the altitude loop, the backstepping strategy is applied, where the virtual control inputs about flight-path angle and attack angle are designed step by step. In order to avoid the inaccurately direct cancelation of elevator-to-lift coupling when aerodynamic parameters are uncertain, the real control inputs, that is, elevator deflection and canard deflection, are linearly converted into the equivalent control inputs which are designed independently. The reformulation of the altitude-flight-path angle dynamics and the attack angle-pitch rate dynamics is constructed into interconnection subsystems with input-to-state stability via small-gain theorem. For the velocity loop, the dynamic inversion controller is designed. The adaptive approach is used to identify the uncertain aerodynamic parameters. Simulation of the flexible hypersonic vehicle demonstrates effectiveness of the proposed method.

  1. Bilirubin oxidase based enzymatic air-breathing cathode: Operation under pristine and contaminated conditions.

    Science.gov (United States)

    Santoro, Carlo; Babanova, Sofia; Erable, Benjamin; Schuler, Andrew; Atanassov, Plamen

    2016-04-01

    The performance of bilirubin oxidase (BOx) based air breathing cathode was constantly monitored over 45 days. The effect of electrolyte composition on the cathode oxygen reduction reaction (ORR) output was investigated. Particularly, deactivation of the electrocatalytic activity of the enzyme in phosphate buffer saline (PBS) solution and in activated sludge (AS) was evaluated. The greatest drop in current density was observed during the first 3 days of constant operation with a decrease of ~60 μA cm(-2) day(-1). The rate of decrease slowed to ~10 μA cm(-2) day(-1) (day 3 to 9) and then to ~1.5 μA cm(-2)day(-1) thereafter (day 9 to 45). Despite the constant decrease in output, the BOx cathode generated residual current after 45 days operations with an open circuit potential (OCP) of 475 mV vs. Ag/AgCl. Enzyme deactivation was also studied in AS to simulate an environment close to the real waste operation with pollutants, solid particles and bacteria. The presence of low-molecular weight soluble contaminants was identified as the main reason for an immediate enzymatic deactivation within few hours of cathode operation. The presence of solid particles and bacteria does not affect the natural degradation of the enzyme. PMID:26544631

  2. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This Removal Action System Design has been prepared as a Phase I Volume for the implementation of the Phase II removal action at Wright-Patterson Air Force Base (WPAFB) near Dayton, Ohio. The objective of the removal action is to prevent, to the extent practicable, the migration of ground water contaminated with chlorinated volatile organic compounds (VOCS) across the southwest boundary of Area C. The Phase 1, Volume 9 Removal Action System Design compiles the design documents prepared for the Phase II Removal Action. These documents, which are presented in Appendices to Volume 9, include: Process Design, which presents the 30 percent design for the ground water treatment system (GWTS); Design Packages 1 and 2 for Earthwork and Road Construction, and the Discharge Pipeline, respectively; no drawings are included in the appendix; Design Package 3 for installation of the Ground Water Extraction Well(s); Design Package 4 for installation of the Monitoring Well Instrumentation; and Design Package 5 for installation of the Ground Water Treatment System; this Design Package is incorporated by reference because of its size.

  3. Prediction of blast-induced air overpressure: a hybrid AI-based predictive model.

    Science.gov (United States)

    Jahed Armaghani, Danial; Hajihassani, Mohsen; Marto, Aminaton; Shirani Faradonbeh, Roohollah; Mohamad, Edy Tonnizam

    2015-11-01

    Blast operations in the vicinity of residential areas usually produce significant environmental problems which may cause severe damage to the nearby areas. Blast-induced air overpressure (AOp) is one of the most important environmental impacts of blast operations which needs to be predicted to minimize the potential risk of damage. This paper presents an artificial neural network (ANN) optimized by the imperialist competitive algorithm (ICA) for the prediction of AOp induced by quarry blasting. For this purpose, 95 blasting operations were precisely monitored in a granite quarry site in Malaysia and AOp values were recorded in each operation. Furthermore, the most influential parameters on AOp, including the maximum charge per delay and the distance between the blast-face and monitoring point, were measured and used to train the ICA-ANN model. Based on the generalized predictor equation and considering the measured data from the granite quarry site, a new empirical equation was developed to predict AOp. For comparison purposes, conventional ANN models were developed and compared with the ICA-ANN results. The results demonstrated that the proposed ICA-ANN model is able to predict blast-induced AOp more accurately than other presented techniques. PMID:26433903

  4. Indoor Air Quality Assessment Based on Human Physiology - Part 1. New Criteria Proposal

    Directory of Open Access Journals (Sweden)

    M. V. Jokl

    2003-01-01

    Full Text Available Human physiology research makes evident that the Weber-Fechner law applies not only to noise perception but also to the perception of other environmental components. Based on this fact, new decibel units for dor component representing indoor air quality in majority locations have been proposed: decicarbdiox dCd (for carbon dioxide CO2 and decitvoc dTv (for total volatile organic compound TVOC. Equations of these new units have been proved by application of a experimental relationships between odor intensity (representing odor perception by the human body and odor concentrations of CO2 and TVOC, b individually  measured CO2 and TVOC levels (concentrations – from these new decibel units can be calculated and their values compared with decibel units of noise measured in the same locations. The undoubted benefit of using the decibel scale is that it gives much better approximation to human perception of odor intensity compared to the CO2 and TVOC concentration scales.

  5. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Bill

    1991-10-01

    In April 1990, Wright-Patterson Air Force Base (WPAFB), initiated an investigation to evaluate a potential Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action to prevent, to the extent practicable, the offsite migration of contaminated ground water from WPAFB. WPAFB retained the services of the Environmental Management Operations (EMO) and its principle subcontractor, International Technology Corporation (IT) to complete Phase 1 of the environmental investigation of ground-water contamination at WPAFB. Phase 1 of the investigation involves the short-term evaluation and potential design for a program to remove ground-water contamination that appears to be migrating across the western boundary of Area C, and across the northern boundary of Area B along Springfield Pike. Primarily, Task 4 of Phase 1 focuses on collection of information at the Area C and Springfield Pike boundaries of WPAFB. This Sampling and Analysis Plan (SAP) has been prepared to assist in completion of the Task 4 field investigation and is comprised of the Quality Assurance Project Plan (QAPP) and the Field Sampling Plan (FSP).

  6. Natural attenuation of chlorinated solvents at Area 6, Dover Air Force Base: Groundwater biogeochemistry

    Science.gov (United States)

    Witt, M.E.; Klecka, G.M.; Lutz, E.J.; Ei, T.A.; Grosso, N.R.; Chapelle, F.H.

    2002-01-01

    Monitored natural attenuation (MNA) has recently emerged as a viable groundwater remediation technology in the United States. Area 6 at Dover Air Force Base (Dover, DE) was chosen as a test site to examine the potential for MNA of tetrachloroethene (PCE) and trichloroethene (TCE) in groundwater and aquifer sediments. A "lines of evidence" approach was used to document the occurrence of natural attenuation. Chlorinated hydrocarbon and biogeochemical data were used to develop a site-specific conceptual model where both anaerobic and aerobic biological processes are responsible for the destruction of PCE, TCE, and daughter metabolites. An examination of groundwater biogeochemical data showed a region of depleted dissolved oxygen with elevated dissolved methane and hydrogen concentrations. Reductive dechlorination likely dominated in the anaerobic portion of the aquifer where PCE and TCE levels were observed to decrease with a simultaneous increase in cis-1,2-dichloroethene (cis-DCE), vinyl chloride (VC), ethene, and dissolved chloride. Near the anaerobic/aerobic interface, concentrations of cis-DCE and VC decreased to below detection limits, presumably due to aerobic biotransformation processes. Therefore, the contaminant and daughter product plumes present at the site appear to have been naturally attenuated by a combination of active anaerobic and aerobic biotransformation processes. ?? 2002 Elsevier Science B.V. All rights reserved.

  7. Space-Based Detection of Missing Sulfur Dioxide Sources of Global Air Pollution

    Science.gov (United States)

    McLinden, Chris A.; Fioletov, Vitali; Shephard, Mark W.; Krotkov, Nick; Li, Can; Martin, Randall V.; Moran, Michael D.; Joiner, Joanna

    2016-01-01

    Sulfur dioxide is designated a criteria air contaminant (or equivalent) by virtually all developed nations. When released into the atmosphere, sulfur dioxide forms sulfuric acid and fine particulate matter, secondary pollutants that have significant adverse effects on human health, the environment and the economy. The conventional, bottom-up emissions inventories used to assess impacts, however, are often incomplete or outdated, particularly for developing nations that lack comprehensive emission reporting requirements and infrastructure. Here we present a satellite-based, global emission inventory for SO2 that is derived through a simultaneous detection, mapping and emission-quantifying procedure, and thereby independent of conventional information sources. We find that of the 500 or so large sources in our inventory, nearly 40 are not captured in leading conventional inventories. These missing sources are scattered throughout the developing world-over a third are clustered around the Persian Gulf-and add up to 7 to 14 Tg of SO2 yr(exp -1), or roughly 6-12% of the global anthropogenic source. Our estimates of national total emissions are generally in line with conventional numbers, but for some regions, and for SO2 emissions from volcanoes, discrepancies can be as large as a factor of three or more. We anticipate that our inventory will help eliminate gaps in bottom-up inventories, independent of geopolitical borders and source types.

  8. An Interoperable Architecture for Air Pollution Early Warning System Based on Sensor Web

    Science.gov (United States)

    Samadzadegan, F.; Zahmatkesh, H.; Saber, M.; Ghazi khanlou, H. J.

    2013-09-01

    Environmental monitoring systems deal with time-sensitive issues which require quick responses in emergency situations. Handling the sensor observations in near real-time and obtaining valuable information is challenging issues in these systems from a technical and scientific point of view. The ever-increasing population growth in urban areas has caused certain problems in developing countries, which has direct or indirect impact on human life. One of applicable solution for controlling and managing air quality by considering real time and update air quality information gathered by spatially distributed sensors in mega cities, using sensor web technology for developing monitoring and early warning systems. Urban air quality monitoring systems using functionalities of geospatial information system as a platform for analysing, processing, and visualization of data in combination with Sensor Web for supporting decision support systems in disaster management and emergency situations. This system uses Sensor Web Enablement (SWE) framework of the Open Geospatial Consortium (OGC), which offers a standard framework that allows the integration of sensors and sensor data into spatial data infrastructures. SWE framework introduces standards for services to access sensor data and discover events from sensor data streams as well as definition set of standards for the description of sensors and the encoding of measurements. The presented system provides capabilities to collect, transfer, share, process air quality sensor data and disseminate air quality status in real-time. It is possible to overcome interoperability challenges by using standard framework. In a routine scenario, air quality data measured by in-situ sensors are communicated to central station where data is analysed and processed. The extracted air quality status is processed for discovering emergency situations, and if necessary air quality reports are sent to the authorities. This research proposed an

  9. AN INTEROPERABLE ARCHITECTURE FOR AIR POLLUTION EARLY WARNING SYSTEM BASED ON SENSOR WEB

    Directory of Open Access Journals (Sweden)

    F. Samadzadegan

    2013-09-01

    Full Text Available Environmental monitoring systems deal with time-sensitive issues which require quick responses in emergency situations. Handling the sensor observations in near real-time and obtaining valuable information is challenging issues in these systems from a technical and scientific point of view. The ever-increasing population growth in urban areas has caused certain problems in developing countries, which has direct or indirect impact on human life. One of applicable solution for controlling and managing air quality by considering real time and update air quality information gathered by spatially distributed sensors in mega cities, using sensor web technology for developing monitoring and early warning systems. Urban air quality monitoring systems using functionalities of geospatial information system as a platform for analysing, processing, and visualization of data in combination with Sensor Web for supporting decision support systems in disaster management and emergency situations. This system uses Sensor Web Enablement (SWE framework of the Open Geospatial Consortium (OGC, which offers a standard framework that allows the integration of sensors and sensor data into spatial data infrastructures. SWE framework introduces standards for services to access sensor data and discover events from sensor data streams as well as definition set of standards for the description of sensors and the encoding of measurements. The presented system provides capabilities to collect, transfer, share, process air quality sensor data and disseminate air quality status in real-time. It is possible to overcome interoperability challenges by using standard framework. In a routine scenario, air quality data measured by in-situ sensors are communicated to central station where data is analysed and processed. The extracted air quality status is processed for discovering emergency situations, and if necessary air quality reports are sent to the authorities. This research

  10. Conducting polymer actuator based on chemically deposited polypyrrole and polyurethane-based solid polymer electrolyte working in air

    International Nuclear Information System (INIS)

    Conducting polymers (CPs), such as polypyrrole, polythiophene, and polyaniline, are unique in that they have switchable properties due to their two or more mechanically stable oxidation states. Thus, their films or coatings can be easily switched by the application of a small voltage and current to change their volume during electrochemical redox processes. In particular, polypyrrole (PPy) has been studied most extensively because of its high electrical conductivity and good environmental stability under ambient conditions. In this work, we have studied a new CP actuator, fully polymeric, assembled with two PPy film electrodes and a solid polymer electrolyte (SPE), polyurethane/Mg(ClO4)2. Polyurethanes (PUs) were synthesized from 4,4'-diphenylmethane diisocyanate (MDI), 1,4-butanediol (1,4-BD) and three types of polyol: poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG), and PPG-block-PEG-block-PPG (PPG-co-PEG). The chemical polymerization of PPy by immersion in Py monomer aqueous solution and oxidant aqueous solution is an adequate method to prepare PU/PPy composite film as an actuator. To find the proper thickness of the PPy coating layer for actuation, we measured the displacements of the actuators according to the thickness of the PPy coating layer. The displacement of all actuators is discussed in connection with the properties of the SPE and PPy. All the results obtained in this work show the feasibility of electrochemomechanical devices based on PPy and SPE film being able to work in air

  11. A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity

    International Nuclear Information System (INIS)

    Accurate non-invasive assessment of tissue elasticity in vivo is required for early diagnostics of many tissue abnormalities. We have developed a focused air-pulse system that produces a low-pressure and short-duration air stream, which can be used to excite transient surface waves (SWs) in soft tissues. System characteristics were studied using a high-resolution analog pressure transducer to describe the excitation pressure. Results indicate that the excitation pressure provided by the air-pulse system can be easily controlled by the air source pressure, the angle of delivery, and the distance between the tissue surface and the port of the air-pulse system. Furthermore, we integrated this focused air-pulse system with phase-sensitive optical coherence tomography (PhS-OCT) to make non-contact measurements of tissue elasticity. The PhS-OCT system is used to assess the group velocity of SW propagation, which can be used to determine Young’s modulus. Pilot experiments were performed on gelatin phantoms with different concentrations (10%, 12% and 14% w/w). The results demonstrate the feasibility of using this focused air-pulse system combined with PhS-OCT to estimate tissue elasticity. This easily controlled non-contact technique is potentially useful to study the biomechanical properties of ocular and other tissues in vivo. (letter)

  12. Plume-based analysis of vehicle fleet air pollutant emissions and the contribution from high emitters

    Science.gov (United States)

    Wang, J. M.; Jeong, C.-H.; Zimmerman, N.; Healy, R. M.; Wang, D. K.; Ke, F.; Evans, G. J.

    2015-08-01

    An automated identification and integration method has been developed for in-use vehicle emissions under real-world conditions. This technique was applied to high-time-resolution air pollutant measurements of in-use vehicle emissions performed under real-world conditions at a near-road monitoring station in Toronto, Canada, during four seasons, through month-long campaigns in 2013-2014. Based on carbon dioxide measurements, over 100 000 vehicle-related plumes were automatically identified and fuel-based emission factors for nitrogen oxides; carbon monoxide; particle number; black carbon; benzene, toluene, ethylbenzene, and xylenes (BTEX); and methanol were determined for each plume. Thus the automated identification enabled the measurement of an unprecedented number of plumes and pollutants over an extended duration. Emission factors for volatile organic compounds were also measured roadside for the first time using a proton transfer reaction time-of-flight mass spectrometer; this instrument provided the time resolution required for the plume capture technique. Mean emission factors were characteristic of the light-duty gasoline-dominated vehicle fleet present at the measurement site, with mean black carbon and particle number emission factors of 35 mg kg fuel-1 and 7.5 × 1014 # kg fuel-1, respectively. The use of the plume-by-plume analysis enabled isolation of vehicle emissions, and the elucidation of co-emitted pollutants from similar vehicle types, variability of emissions across the fleet, and the relative contribution from heavy emitters. It was found that a small proportion of the fleet (fleet emissions: 100, 100, 81, and 77 % for black carbon, carbon monoxide, BTEX, and particle number, respectively. Emission factors of a single pollutant may help classify a vehicle as a high emitter; however, regulatory strategies to more efficiently target multi-pollutant mixtures may be better developed by considering the co-emitted pollutants as well.

  13. Plume-based analysis of vehicle fleet air pollutant emissions and the contribution from high emitters

    Directory of Open Access Journals (Sweden)

    J. M. Wang

    2015-03-01

    Full Text Available An automated identification and integration method has been developed to investigate in-use vehicle emissions under real-world conditions. This technique was applied to high time resolution air pollutant measurements of in-use vehicle emissions performed under real-world conditions at a near-road monitoring station in Toronto, Canada during four seasons, through month-long campaigns in 2013–2014. Based on carbon dioxide measurements, over 100 000 vehicle-related plumes were automatically identified and fuel-based emission factors for nitrogen oxides; carbon monoxide; particle number, black carbon; benzene, toluene, ethylbenzene, and xylenes (BTEX; and methanol were determined for each plume. Thus the automated identification enabled the measurement of an unprecedented number of plumes and pollutants over an extended duration. Emission factors for volatile organic compounds were also measured roadside for the first time using a proton transfer reaction time-of-flight mass spectrometer; this instrument provided the time resolution required for the plume capture technique. Mean emission factors were characteristic of the light-duty gasoline dominated vehicle fleet present at the measurement site, with mean black carbon and particle number emission factors of 35 mg kg−1 and 7.7 × 1014 kg−1, respectively. The use of the plume-by-plume analysis enabled isolation of vehicle emissions, and the elucidation of co-emitted pollutants from similar vehicle types, variability of emissions across the fleet, and the relative contribution from heavy emitters. It was found that a small proportion of the fleet (< 25% contributed significantly to total fleet emissions; 95, 93, 76, and 75% for black carbon, carbon monoxide, BTEX, and particle number, respectively. Emission factors of a single pollutant may help classify a vehicle as a high emitter. However, regulatory strategies to more efficiently target multi-pollutants mixtures may be better developed by

  14. Research on precise modeling of buildings based on multi-source data fusion of air to ground

    Science.gov (United States)

    Li, Yongqiang; Niu, Lubiao; Yang, Shasha; Li, Lixue; Zhang, Xitong

    2016-03-01

    Aims at the accuracy problem of precise modeling of buildings, a test research was conducted based on multi-source data for buildings of the same test area , including top data of air-borne LiDAR, aerial orthophotos, and façade data of vehicle-borne LiDAR. After accurately extracted the top and bottom outlines of building clusters, a series of qualitative and quantitative analysis was carried out for the 2D interval between outlines. Research results provide a reliable accuracy support for precise modeling of buildings of air ground multi-source data fusion, on the same time, discussed some solution for key technical problems.

  15. Observations of surface radiation and stratospheric processes at Thule Air Base, Greenland, during the IPY

    Directory of Open Access Journals (Sweden)

    Giovanni Muscari

    2014-06-01

    Full Text Available Ground-based measurements of atmospheric parameters have been carried out for more than 20 years at the Network for the Detection of Atmospheric Composition Change (NDACC station at Thule Air Base (76.5°N, 68.8°W, on the north-western coast of Greenland. Various instruments dedicated to the study of the lower and middle polar atmosphere are installed at Thule in the framework of a long standing collaboration among Danish, Italian, and US research institutes and universities. This effort aims at monitoring the composition, structure and dynamics of the polar stratosphere, and at studying the Arctic energy budget and the role played by different factors, such as aerosols, water vapour, and surface albedo. During the International Polar Year (IPY, in winter 2008-2009, an intensive measurement campaign was conducted at Thule within the framework of the IPY project “Ozone layer and UV radiation in a changing climate evaluated during IPY” (ORACLE-O3 which sought to improve our understanding of the complex mechanisms that lead to the Arctic stratospheric O3 depletion. The campaign involved a lidar system, measuring aerosol backscatter and depolarization ratios up to 35 km and atmospheric temperature profiles from 25 to 70 km altitude, a ground-based millimeter-wave spectrometer (GBMS used to derive stratospheric mixing ratio profiles of different chemical species involved in the stratospheric ozone depletion cycle, and then ground-based radiometers and a Cimel sunphotometer to study the Arctic radiative budget at the surface. The observations show that the surface radiation budget is mainly regulated by the longwave component throughout most of the year. Clouds have a significant impact contributing to enhance the role of longwave radiation. Besides clouds, water vapour seasonal changes produce the largest modification in the shortwave component at the surface, followed by changes in surface albedo and in aerosol amounts. For what concerns the

  16. System analysis of dry black liquor gasification based synthetic gas production comparing oxygen and air blown gasification systems

    International Nuclear Information System (INIS)

    Highlights: ► Circulating fluidized bed system for black liquor gasification with direct causticization. ► Effects of gasifying medium i.e. oxygen or air, on gasification are studied. ► Direct causticization eliminates energy intensive limekiln reducing biomass use. ► Results show 10% higher SNG production from O2 blown system than air blown system. ► SNG production is higher in O2 blown system than air blown system. - Abstract: The black liquor gasification based bio-fuel production at chemical pulp mill is an attractive option to replace conventional recovery boilers increasing system energy efficiency. The present paper studies circulating fluidized bed system with direct causticization using TiO2 for the gasification of the black liquor to the synthesis gas. The advantage of using direct causticization is the elimination of energy-intensive lime kiln which is an integral part of the conventional black liquor recovery system. The study evaluates the effects of gasifying medium i.e. oxygen or air, on the fluidized bed gasification system, the synthesis gas composition, and the downstream processes for the synthesis gas conversion to the synthetic natural gas (SNG). The results showed higher synthetic natural gas production potential with about 10% higher energy efficiency using oxygen blown gasification system than the air blown system. From the pulp mill integration perspective, the material and energy balance results in better integration of air blown system than the oxygen blown system, e.g. less steam required to be generated in the power boiler, less electricity import, and less additional biomass requirement. However, the air blown system still requires a significant amount of energy in terms of the synthesis gas handling and gas upgrading using the nitrogen rejection system

  17. Assessing Expected Fractional Damage of Above-ground Buildings from Air-to-surface Weapons based on Indirect Fire Concept

    Directory of Open Access Journals (Sweden)

    Jong Yil Park

    2010-08-01

    Full Text Available For the expected fractional damage of building targets from air-to-surface weapons, the US has used the JMEM/AS method, which is based on the direct-fire concept. However, the damage redistribution assumption in the direct-fire concept could induce serious errors in damage estimation of building targets. In this paper, a method for the expected fractional damage of building targets is proposed based on the indirect-fire concept. From the proposed model, it is shown that the joint munitions effectiveness manuals/air-to-surface (JMEM/AS method is not appropriate for building targets, especially for attacks with multiple aiming points. It is recommended that the indirect-fire concept should be adopted for weaponeering even for air-to-surface weapons. fire concept could induce serious errors in damage estimation of building targets. In this paper, a method for the expected fractional damage of building targets is proposed based on the indirect-fire concept. From the proposed model, it is shown that the JMEM/AS method is not appropriate for building targets, especially for attacks with multiple aiming points. It is recommended that the indirect-fire concept should be adopted for weaponeering even for air-to-surface weapons.Defence Science Journal, 2010, 60(5, pp.491-496, DOI:http://dx.doi.org/10.14429/dsj.60.571

  18. Thermal profile analysis of Doubly-Fed induction generator based wind power converter with air and liquid cooling methods

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede; Lau, Mogens; Tonnes, Michael

    cooling seen from a thermal profile assessment point of view. Firstly, an analytical approach from loss profile to thermal profile for the power semiconductor is proposed and verified in a 2 MW Doubly-Fed Induction Generator (DFIG) based wind turbine system. Then, the typical air cooling and liquid......Today, wind power generation system keeps on moving from onshore to offshore and also upscaling in size. As the lifetime of the wind power converter is prolonged to 20–25 years, this paper will investigate and compare different cooling methods for power modules — the air cooling and the liquid...... cooling in wind power converter are analyzed and compared in terms of the mean junction temperature and the junction temperature fluctuation. It is concluded that the liquid cooling approach has a similar junction temperature fluctuation but gives a lower mean junction temperature than the air cooling...

  19. Ultraviolet-B radiation enhancement in dielectric barrier discharge based xenon chloride exciplex source by air

    International Nuclear Information System (INIS)

    A single barrier dielectric barrier discharge tube of quartz with multi-strip Titanium-Gold (Ti-Au) coatings have been developed and utilized for ultraviolet-B (UV-B) radiation production peaking at wavelength 308 nm. The observed radiation at this wavelength has been examined for the mixtures of the Xenon together with chlorine and air admixtures. The gas mixture composition, chlorine gas content, total gas pressure, and air pressure dependency of the UV intensity, has been analyzed. It is found that the larger concentration of Cl2 deteriorates the performance of the developed source and around 2% Cl2 in this source produced optimum results. Furthermore, an addition of air in the xenon and chlorine working gas environment leads to achieve same intensity of UV-B light but at lower working gas pressure where significant amount of gas is air.

  20. Indoor particles affect vascular function in the aged - An air filtration-based intervention study

    DEFF Research Database (Denmark)

    Brauner, E.V.; Forchhammer, L.; Moller, P.;

    2008-01-01

    factors, P-selectin, plasma amyloid A, C-reactive protein, fibrinogen, IL-6, tumor necrosis factor-alpha, protein oxidation measured as 2-aminoadipic semialdehyde in plasma, urinary 8-iso-prostaglandin F-2 alpha, and blood pressure. Indoor air filtration significantly improved MVF by 8.1% (95% confidence......Rationale: Exposure to particulate matter is associated with risk of cardiovascular events, possibly through endothelial dysfunction, and indoor air may be most important. Objectives: We investigated effects of controlled exposure to indoor air particles on microvascular function (MVF) as the...... nonfiltered air (2,533-4,058 and 7,718-12,988 particles/cm(3), respectively) in their homes. Measurements and Main Results: MVF was assessed noninvasively by measuring digital peripheral artery tone after arm ischemia. Secondary endpoints included hemoglobin, red blood cells, platelet count, coagulation...

  1. Kids Making Sense of Air Quality Around Them Through a Hands-On, STEM-Based Program

    Science.gov (United States)

    Dye, T.

    2015-12-01

    Air pollution in many parts of the world is harming millions of people, shortening lives, and taking a toll on our ecosystem. Cities in India, China, and even the United States frequently exceed air quality standards. The use of localized data is a powerful enhancement to regulatory monitoring site data. Learning about air quality at a local level is a powerful driver for change. The Kids Making Sense program unites Science, Technology, Engineering, and Mathematics (STEM) education with a complete measurement and environmental education system that teaches youth about air pollution and empowers them to drive positive change in their communities. With this program, youth learn about particle pollution, its sources, and health effects. A half-day lecture is followed by hands-on activity using handheld air sensors paired with an app on smartphones. Students make measurements around schools to discover pollution sources and cleaner areas. Next, the data they collect are crowdsourced on a website for guided discussion and data interpretation. This program meets Next Generation Science Standards, encourages project-based learning and deep understanding of applied science, and allows students to practice science like real scientists. The program has been successfully implemented in several schools in the United States and Asia, including New York City, San Francisco, Los Angeles, and Sacramento in the United States, and Taipei and Taichung in Taiwan. During this talk, we'll provide an overview of the program, discuss some of the challenges, and lay out the next steps for Kids Making Sense.

  2. Performance analysis of a direct expansion air dehumidification system combined with membrane-based total heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Cai-Hang; Zhang, Li-Zhi; Pei, Li-Xia [Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Education Ministry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China)

    2010-09-15

    A direct expansion (DX) air dehumidification system is an efficient way to supply fresh and dry air to a built environment. It plays a key role in preventing the spread of respiratory disease like Swine flu (H1N1). To improve the efficiency of a conventional DX system in hot and humid regions, a new system of DX in combination with a membrane-based total heat exchanger is proposed. Air is supplied with dew points. A detailed mathematical modeling is performed. A cell-by-cell simulation technique is used to simulate its performances. A real prototype is built in our laboratory in South China University of Technology to validate the model. The effects of inlet air humidity and temperature, evaporator and condenser sizes on the system performance are investigated. The results indicate that the model can predict the system accurately. Compared to a conventional DX system, the air dehumidification rate (ADR) of the novel system is 0.5 times higher, and the coefficient of performance (COP) is 1 times higher. Furthermore, the system performs well even under harsh hot and humid weather conditions. (author)

  3. Air-void embedded GaN-based light-emitting diodes grown on laser drilling patterned sapphire substrates

    Science.gov (United States)

    Liu, Hao; Li, Yufeng; Wang, Shuai; Feng, Lungang; Xiong, Han; Su, Xilin; Yun, Feng

    2016-07-01

    Air-void structure was introduced in GaN-based blue light-emitting diodes (LED) with one-step growth on periodic laser drilling patterned sapphire substrate, which free of any photolithography or wet/dry etching process. The influence of filling factors (FF) of air-void on crystal quality and optical performance were investigate. Transmission electron microscopy images and micro-Raman spectroscopy indicated that the dislocation was bended and the partially compressed strain was released. When FF was 55.43%, compared with the LED structure grown on flat sapphire substrate, the incorporation of air-void was observed to reduce the compressed stress of ˜20% and the luminance intensity has improved by 128%. Together with the simulated reflection intensity enhancement by finite difference time-domain (FDTD) method, we attribute the enhanced optical performance to the combined contribution of strong back-side light reflection of air-void and better GaN epitaxial quality. This approach provides a simple replacement to the conventional air-void embedded LED process.

  4. Information-based mid-upper tropospheric methane derived from Atmospheric Infrared Sounder (AIRS) and its validation

    Science.gov (United States)

    Xiong, X.; Barnet, C.; Wei, J.; Maddy, E.

    2009-07-01

    Atmospheric Infrared Sounder (AIRS) measurements of methane (CH4) generally contain about 1.0 degree of freedom and are therefore dependent on a priori assumptions about the vertical methane distribution as well as the temperature lapse rate and the amount of moisture. Thus it requires that interpretation and/or analysis of the CH4 spatial and temporal variation based on the AIRS retrievals need to use the averaging kernels (AK). To simplify the use of satellite retrieved products for scientific analysis, a method based on the information content of the retrievals is developed, in which the AIRS retrieved CH4 in the layer from 50 to 250 hPa below the tropopause is used to characterize the mid-upper tropospheric CH4 in the mid-high latitude regions. The basis of this method is that in the mid-high latitude regions the maximum sensitive layers of AIRS to CH4 have a good correlation with the tropopause heights, and these layers are usually between 50 and 250 hPa below the tropopause. Validation using the aircraft measurements from NOAA/ESRL/GMD and the campaigns INTEX-A and -B indicated that the correlation of AIRS mid-upper tropospheric CH4 with aircraft measurements is ~0.6-0.7, and its the bias and rms difference are less than ±1% and 1.2%, respectively. Further comparison of the CH4 seasonal cycle indicated that the cycle from AIRS mid-upper tropospheric CH4 is in a reasonable agreement with NOAA aircraft measurements. This method provides a simple way to use the thermal infrared sounders data to approximately analyze the spatial and temporal variation CH4 in the upper free tropospere without referring the AK. This method is applicable to derive tropospheric CH4 as well as other trace gases for any thermal infrared sensors.

  5. Gunship Diplomacy : carrier based close air support for joint expeditionary forces

    OpenAIRE

    Emanuel, Taylor C.

    1994-01-01

    This study examines whether current and future strategy, doctrine, and programmed systems are suitable to perform fire support and specifically, close air support (CAS)and close air support/troops-in-contact (CAS/TIC) missions for joint expeditionary warfare. Naval forces will provide the "enabling" power for this new come-as-you-are environment. To offset reductions in organic fire support, more frequent and sustained application of CAS and CAS/TIC will be required by joint expeditionary f...

  6. Crystallization Analysis and Control of Ammonia-Based Air Source Absorption Heat Pump in Cold Regions

    OpenAIRE

    Wu, Wei; Wang, Baolong; Shi, Wenxing; Li, Xianting

    2013-01-01

    Energy consumption of heating and domestic hot water is very high and will keep increasing. Air source absorption heat pump (ASAHP) was proposed to overcome the problems of low energy efficiency and high air pollution existing in boiler systems, as well as the problem of bad performance under low ambient temperatures for electrical heat pumps. In order to investigate the crystallization possibility of ammonia-salt ASAHP, crystallization margin (evaluated by solution mass concentration) at gen...

  7. Microstructures and Bending Property of Mesophase Based C/C Composites withAir Oxidation Process

    OpenAIRE

    LI Hai-Liang, LI He-Jun, LU Jin-Hua, LI Ke-Zhi, YAO Dong-Jia, WU Heng

    2010-01-01

    Carbon―carbon composites werefabricated in short period by LPIC (low pressure impregnation carbonization) processwith 225¡æ air oxidation using mesophase pitch as precursor. The microstructureswere observed by PLM (polarizingmicroscope ). The bending property and fracture surface were tested byuniversaltesting machineand S EM (scanningelectron microscope), respectively. The results show that the carbon yield isimproved remarkably with 225¡æ air oxidation c...

  8. A Predictive Model for Vehicle Air Exchange Rates based on a Large, Representative Sample

    OpenAIRE

    Fruin, Scott A.; Hudda, Neelakshi; Sioutas, Constantinos; Delfino, Ralph J.

    2011-01-01

    The in-vehicle microenvironment is an important route of exposure to traffic-related pollutants, particularly ultrafine particles. However, significant particle losses can occur under conditions of low air exchange rate (AER) when windows are closed and air is recirculating. AERs are lower for newer vehicles and at lower speeds. Despite the importance of AER in affecting in-vehicle particle exposures, few studies have characterized AER and all have tested only a small number of cars. One reas...

  9. Exposure-response functions for health effects of air pollutants based on epidemiological findings

    OpenAIRE

    Aunan, Kristin

    1995-01-01

    Quantitative knowledge about health damage due to air pollution is an important element in analyses of cost-effective abatement strategies, and it is also essential for setting Air Quality Standards. In this context epidemiological studies, in spite of the numerous problems and caveats connected to them, provide a sound basis for exposure-response functions, because they generally involve a random cross section of the population regarding sensitive populations, age and gender, and also regard...

  10. The study of leachate treatment by using three advanced oxidation process based wet air oxidation

    OpenAIRE

    Mokhtari Mehdi; Ebrahimi Asghar; Ehrampoush Mohammad Hassan; Karimi Behroz

    2013-01-01

    Abstract Wet air oxidation is regarded as appropriate options for wastewater treatment with average organic compounds. The general purpose of this research is to determine the efficiency of three wet air oxidation methods, wet oxidation with hydrogen peroxide and absorption with activated carbon in removing organic matter and nitrogenous compounds from Isfahan's urban leachate. A leachate sample with the volume of 1.5 liters entered into a steel reactor with the volume of three liters and was...

  11. The Study of LeachateTreatment by Using Three Advanced Oxidation Process Based Wet air Oxidation

    OpenAIRE

    Behroz Karimi; Mohammad Hassan Ehrampoush; Asghar Ebrahimi; Mehdi Mokhtari

    2013-01-01

    Wet air oxidation is regarded as appropriate options for wastewater treatment with average organic compounds. The general purpose of this research is to determine the efficiency of three wet air oxidation methods, wet oxidation with hydrogen peroxide and absorption with activated carbon in removing organic matter and nitrogenous compounds from Isfahan's urban leachate. A leachate sample with the volume of 1.5 liters entered into a steel reactor with the volume of three liters and was put unde...

  12. Risk-Based Prioritization among Air Pollution Control Strategies in the Yangtze River Delta, China

    OpenAIRE

    Fu, Joshua S.; Zhuang, Guoshun; Zhou, Ying; Levy, Jonathan Ian

    2010-01-01

    Background: The Yangtze River Delta (YRD) in China is a densely populated region with recent dramatic increases in energy consumption and atmospheric emissions. Objectives: We studied how different emission sectors influence population exposures and the corresponding health risks, to inform air pollution control strategy design. Methods: We applied the Community Multiscale Air Quality (CMAQ) Modeling System to model the marginal contribution to baseline concentrations from different sectors. ...

  13. A comparative study on energetic, exergetic and environmental performance assessments of novel M-Cycle based air coolers for buildings

    International Nuclear Information System (INIS)

    Highlights: ► Applying exergy, environment and sustainability analyses to the three (novel M-Cycle based) air coolers. ► Assessing energy and exergy efficiencies, environmental impact and sustainability. ► Proposing System II (using PV-based electricity) as the most environmentally friendly air cooler. ► Proposing System III (using coal-based electricity) as the most efficient air cooler. - Abstract: In this study, three various novel air coolers based on M-Cycle are evaluated using energy and exergy analyses based efficiency assessments along with environmental impact and sustainability parameters. The M-Cycle systems are considered to cool a building room air while their inlet air parameters are same, but outlet cooled air parameters are different. Systems I and III draw electricity directly taken from an electric grid in the building while System II, which is stand alone system, produces and draws electricity from its solar PV panels. In the energy analysis, wet bulb effectiveness, cooling capacity, Coefficient of Performance (energetic COP) and Primary Energy Ratio (PER) are found. In the exergy analysis, exergy input and output rates, exergy loss rate, exergy destruction rate, Exergetic Coefficient of Performance (COPex), Primary Exergy Ratio (PExR) and exergy efficiency are obtained for six different dead state temperatures changing between 10 °C and 35 °C. Also, sustainability assessments of the systems are obtained using sustainability index (SI) tool for these various dead state temperatures. Finally, environmental assessments of the systems are calculated from their greenhouse gas (GHG) emissions (gCO2/kW h) due to their electricity consumptions. Maximum exergy efficiencies and sustainability assessments are found to be 35.13% and 1.5415 for System III and 34.94% and 1.5372 for System II, respectively. GHG emissions of the systems are calculated to be 2119.68 gCO2/day, 153.6 gCO2/day and 3840 gCO2/day for Systems I, II and III respectively. So

  14. Hydrologic transport of depleted uranium associated with open air dynamic range testing at Los Alamos National Laboratory, New Mexico, and Eglin Air Force Base, Florida

    Energy Technology Data Exchange (ETDEWEB)

    Becker, N.M. [Los Alamos National Lab., NM (United States); Vanta, E.B. [Wright Laboratory Armament Directorate, Eglin Air Force Base, FL (United States)

    1995-05-01

    Hydrologic investigations on depleted uranium fate and transport associated with dynamic testing activities were instituted in the 1980`s at Los Alamos National Laboratory and Eglin Air Force Base. At Los Alamos, extensive field watershed investigations of soil, sediment, and especially runoff water were conducted. Eglin conducted field investigations and runoff studies similar to those at Los Alamos at former and active test ranges. Laboratory experiments complemented the field investigations at both installations. Mass balance calculations were performed to quantify the mass of expended uranium which had transported away from firing sites. At Los Alamos, it is estimated that more than 90 percent of the uranium still remains in close proximity to firing sites, which has been corroborated by independent calculations. At Eglin, we estimate that 90 to 95 percent of the uranium remains at test ranges. These data demonstrate that uranium moves slowly via surface water, in both semi-arid (Los Alamos) and humid (Eglin) environments.

  15. Hydrologic transport of depleted uranium associated with open air dynamic range testing at Los Alamos National Laboratory, New Mexico, and Eglin Air Force Base, Florida

    International Nuclear Information System (INIS)

    Hydrologic investigations on depleted uranium fate and transport associated with dynamic testing activities were instituted in the 1980's at Los Alamos National Laboratory and Eglin Air Force Base. At Los Alamos, extensive field watershed investigations of soil, sediment, and especially runoff water were conducted. Eglin conducted field investigations and runoff studies similar to those at Los Alamos at former and active test ranges. Laboratory experiments complemented the field investigations at both installations. Mass balance calculations were performed to quantify the mass of expended uranium which had transported away from firing sites. At Los Alamos, it is estimated that more than 90 percent of the uranium still remains in close proximity to firing sites, which has been corroborated by independent calculations. At Eglin, we estimate that 90 to 95 percent of the uranium remains at test ranges. These data demonstrate that uranium moves slowly via surface water, in both semi-arid (Los Alamos) and humid (Eglin) environments

  16. Energy Performance of Water-based and Air-based Cooling Systems in Plus-energy Housing

    DEFF Research Database (Denmark)

    Andersen, Mads E.; Schøtt, Jacob; Kazanci, Ongun Berk;

    2016-01-01

    previous study. The effects of the cooling demand (internal vs. external solar shading), the space cooling method (floor cooling vs. air-cooling with ventilation system), and the availability of a nearby natural heat sink (intake air for the ventilation system being outdoor air vs. air from the crawl...... certain issues regarding thermal indoor environments, such as overheating. Thermal comfort of occupants should not be sacrificed for energy efficiency but rather, these should be achieved simultaneously. Although the priority should be to minimize the cooling demand during the design, this is not always...... achieved and cooling might be needed even in residential buildings. This paper focuses on the cooling operation of a detached, single-family house, which was designed as a plus-energy house in Denmark. The simulation model of the house was created in IDA ICE and it was validated with measurement data in a...

  17. Culturing Life from Air: Using a Surface Air System to Introduce Discovery-Based Research in Aerobiology into the Undergraduate Biology Curriculum

    Directory of Open Access Journals (Sweden)

    Carolyn F. Weber

    2015-02-01

    Full Text Available Although the field of aerobiology predates Louis Pasteur’s classic experiments in the late 19th century, the atmosphere has recently emerged as one of the last great frontiers in the field of microbiology. Recent research has demonstrated that airborne microbes are more diverse than previously thought and are metabolically active in some cases, influencing atmospheric chemistry and meteorological patterns.  Furthermore, concern continues to grow regarding airborne travel of biothreat agents and emerging infectious diseases in an increasingly global society.  Despite the increased recognition of the atmosphere as a frontier for microbiological exploration in both basic and applied sciences, students are generally not exposed to this field of research in the undergraduate biology curriculum.  We describe the use of the Surface Air System (SAS SUPER 180 (Bioscience International, Rockville, MD, an extremely rugged, easy-to-use, portable and nearly maintenance-free instrument that impacts defined volumes of air directly onto petri dishes to facilitate the study of culturable airborne microorganisms.  We successfully employed this instrument in a Biology I course in which freshmen, with no prior research experiences, conducted discovery-based research that produced data that was presented at a national meeting and made a genuine contribution to the field of aerobiology.  We also describe how such discovery-based research experiences in aerobiology can be used as a platform for teaching core biological concepts and basic laboratory skills. Editor's Note:The ASM advocates that students must successfully demonstrate the ability to explain and practice safe laboratory techniques. For more information, read the laboratory safety section of the ASM Curriculum Recommendations: Introductory Course in Microbiology and the Guidelines for Biosafety in Teaching Laboratories, available at www.asm.org. The Editors of JMBE recommend that adopters of the

  18. Energy flow and thermal comfort in buildings: Comparison of radiant and air-based heating & cooling systems

    DEFF Research Database (Denmark)

    Le Dréau, Jérôme

    based on both radiation and convection. This thesis focuses on characterizing the heat transfer from the terminal towards the space and on the parameters influencing the effectiveness of terminals. Therefore the comfort conditions and energy consumption of four types of terminals (active chilled beam......, radiant floor, wall and ceiling) have been compared for a typical office room, both numerically and experimentally. From the steady-state numerical analysis and the full-scale experiments, it has been observed that the difference between the two types of terminals is mainly due to changes in the...... back losses, and an air-based terminal might be more energy-efficient than a radiant terminal (in terms of delivered energy). Regarding comfort, a similar global level has been observed for the radiant and air-based terminals in both numerical and experimental investigations. But the different...

  19. Tentative detection of clear-air turbulence using a ground-based Rayleigh lidar.

    Science.gov (United States)

    Hauchecorne, Alain; Cot, Charles; Dalaudier, Francis; Porteneuve, Jacques; Gaudo, Thierry; Wilson, Richard; Cénac, Claire; Laqui, Christian; Keckhut, Philippe; Perrin, Jean-Marie; Dolfi, Agnès; Cézard, Nicolas; Lombard, Laurent; Besson, Claudine

    2016-05-01

    Atmospheric gravity waves and turbulence generate small-scale fluctuations of wind, pressure, density, and temperature in the atmosphere. These fluctuations represent a real hazard for commercial aircraft and are known by the generic name of clear-air turbulence (CAT). Numerical weather prediction models do not resolve CAT and therefore provide only a probability of occurrence. A ground-based Rayleigh lidar was designed and implemented to remotely detect and characterize the atmospheric variability induced by turbulence in vertical scales between 40 m and a few hundred meters. Field measurements were performed at Observatoire de Haute-Provence (OHP, France) on 8 December 2008 and 23 June 2009. The estimate of the mean squared amplitude of bidimensional fluctuations of lidar signal showed excess compared to the estimated contribution of the instrumental noise. This excess can be attributed to atmospheric turbulence with a 95% confidence level. During the first night, data from collocated stratosphere-troposphere (ST) radar were available. Altitudes of the turbulent layers detected by the lidar were roughly consistent with those of layers with enhanced radar echo. The derived values of turbulence parameters Cn2 or CT2 were in the range of those published in the literature using ST radar data. However, the detection was at the limit of the instrumental noise and additional measurement campaigns are highly desirable to confirm these initial results. This is to our knowledge the first successful attempt to detect CAT in the free troposphere using an incoherent Rayleigh lidar system. The built lidar device may serve as a test bed for the definition of embarked CAT detection lidar systems aboard airliners. PMID:27140350

  20. Effects of contaminants on reproductive success of aquatic birds nesting at Edwards Air Force Base, California.

    Science.gov (United States)

    Hothem, R L; Crayon, J J; Law, M A

    2006-11-01

    Contamination by organochlorine pesticides (OCs), polychlorinated biphenyls, metals, and trace elements at Edwards Air Force Base (EAFB), located in the Mojave Desert, could adversely affect nesting aquatic birds, especially at the sewage lagoons that comprise Piute Ponds. Estimates of avian reproduction, in conjunction with analyses of eggs and avian foods for contaminant residues, may indicate the potential for negative effects on avian populations. From 1996 to 1999, we conducted studies at the Piute Ponds area of EAFB to evaluate the impacts of contaminants on nesting birds. Avian reproduction was evaluated in 1999. Eggs were collected for chemical analyses in 1996 and 1999, and African clawed frogs (Xenopus laevis), a likely food source, were collected for chemical analyses in 1998. Avian species occupying the higher trophic levels--black-crowned night-heron (Nycticorax nycticorax), white-faced ibis (Plegadis chihi), and American avocet (Recurvirostra americana)--generally bioaccumulated higher concentrations of contaminants in their eggs. Reproductive success and egg hatchability of night-herons and white-faced ibises in the Piute Ponds were similar to results observed at other western colonies. Deformities were observed in only one embryo in this study, but concentrations of contaminants evaluated in this ibis embryo were considered insufficient to have caused the deformities. Because clawed frogs, a primary prey item for night-herons at Piute Ponds, had no detectable levels of any OCs, it is likely that OCs found in night-heron eggs were acquired from the wintering grounds rather than from EAFB. The presence of isomers of dichlorodiphenyltrichloroethane (DDT) in ibis eggs indicated recent exposure, but invertebrates used for food by ibises were not sampled at Piute Ponds, and conclusions about the source of OCs in ibis eggs could not be made. Concentrations of contaminants in random and failed eggs of individual species were not different, and we concluded

  1. Geologic investigation :an update of subsurface geology on Kirtland Air Force Base, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Van Hart, Dirk (GRAM, Inc.)

    2003-06-01

    The objective of this investigation was to generate a revised geologic model of Kirtland Air Force Base (KAFB) incorporating the geological and geophysical data produced since the Site-Wide Hydrogeologic Characterization Project (SWHC) of 1994 and 1995. Although this report has certain stand-alone characteristics, it is intended to complement the previous work and to serve as a status report as of late 2002. In the eastern portion of KAFB (Lurance Canyon and the Hubbell bench), of primary interest is the elevation to which bedrock is buried under a thin cap of alluvium. Elevation maps of the bedrock top reveal the paleodrainage that allows for the interpretation of the area's erosional history. The western portion of KAFB consists of the eastern part of the Albuquerque basin where bedrock is deeply buried under Santa Fe Group alluvium. In this area, the configuration of the down-to-the-west, basin-bounding Sandia and West Sandia faults is of primary interest. New geological and geophysical data and the reinterpretation of old data help to redefine the location and magnitude of these elements. Additional interests in this area are the internal stratigraphy and structure of the Santa Fe Group. Recent data collected from new monitoring wells in the area have led to a geologic characterization of the perched Tijeras Arroyo Groundwater system and have refined the known limits of the Ancestral Rio Grande fluvial sediments within the Santa Fe Group. Both the reinterpretation of the existing data and a review of the regional geology have shown that a segment of the boundary between the eastern and western portions of KAFB is a complicated early Tertiary (Laramide) wrench-fault system, the Tijeras/Explosive Ordnance Disposal Area/Hubbell Spring system. A portion of this fault zone is occupied by a coeval ''pull-apart'' basin filled with early Tertiary conglomerates, whose exposures form the ''Travertine Hills''.

  2. Radiological safety system based on real-time tritium-in-air monitoring in room and effluents

    International Nuclear Information System (INIS)

    The conceptual design of the radiological safety system based on real time-in-air monitoring in room and effluents is intended to provide the maximum achievable safety level, basing no the ALARA concept. the capabilities of this system are not only to inform any time personnel about tritium in air concentration level, but it will be able to: initiate the shut down procedure and drain off the plant, as well to start the Air cleaning System when the tritium-in-air concentration exceed pre-established threshold; estimate tritium effective dose rate before starting an activity into the monitored area, or during this activity, or soon as the activity was finished; estimate tritium effective dose and instantly record and update individual effective doses, using a special computer application called 'dose record'; lock access into the radiological area for individuals when tritium dose rate in the monitoring area will exceed the pre-established thresholds, or when any individual dose data provided by 'dose records' application ask for, or for other protection consideration; calculate the total tritium activity released to the environment (per day, week, or month). (N.C.)

  3. A simplified physically-based model to calculate surface water temperature of lakes from air temperature in climate change scenarios

    Science.gov (United States)

    Piccolroaz, S.; Toffolon, M.

    2012-12-01

    Modifications of water temperature are crucial for the ecology of lakes, but long-term analyses are not usually able to provide reliable estimations. This is particularly true for climate change studies based on Global Circulation Models, whose mesh size is normally too coarse for explicitly including even some of the biggest lakes on Earth. On the other hand, modeled predictions of air temperature changes are more reliable, and long-term, high-resolution air temperature observational datasets are more available than water temperature measurements. For these reasons, air temperature series are often used to obtain some information about the surface temperature of water bodies. In order to do that, it is common to exploit regression models, but they are questionable especially when it is necessary to extrapolate current trends beyond maximum (or minimum) measured temperatures. Moreover, water temperature is influenced by a variety of processes of heat exchange across the lake surface and by the thermal inertia of the water mass, which also causes an annual hysteresis cycle between air and water temperatures that is hard to consider in regressions. In this work we propose a simplified, physically-based model for the estimation of the epilimnetic temperature in lakes. Starting from the zero-dimensional heat budget, we derive a simplified first-order differential equation for water temperature, primarily forced by a seasonally varying external term (mainly related to solar radiation) and an exchange term explicitly depending on the difference between air and water temperatures. Assuming annual sinusoidal cycles of the main heat flux components at the atmosphere-lake interface, eight parameters (some of them can be disregarded, though) are identified, which can be calibrated if two temporal series of air and water temperature are available. We note that such a calibration is supported by the physical interpretation of the parameters, which provide good initial

  4. 冬季基于地道风空气源热泵系统实验测试%EXPERIMENTAL RESEARCH OF AIR SOURCE HEAT PUMP BASED ON THE UNDERGROUND TUNNEL AIR IN WINTER

    Institute of Scientific and Technical Information of China (English)

    高亚南; 林清丽

    2013-01-01

    The cold and heat source of air source heat pump based on the underground tunnel air is heat exchanging air through tunnel. The coefficient of performance of this system is always high because the temperature of underground tunnel air is higher than atmosphere air. The heating capacity and coefficient of performance are tested. Compared the air source heat pump system, the experimental data show that air source heat pump based on the underground tunnel air is efficient manner of building energy saving. The advantage is more obvious when this system applies lower temperatures area in cold winter.%基于地道风的空气源热泵系统是以经地道换热后的空气作为冷热源的热泵系统,这种系统由于室外机环境的改善,其制热效率大大提高.本文对该系统冬季运行时的制热量、输入功率及性能系数进行了实验测试及结果分析.实验数据结果证明基于地道风的空气源热泵系统是一种较高效的建筑节能方式,在温度极低的寒冷地区应用优势愈加明显.

  5. Easily regenerable solid adsorbents based on polyamines for carbon dioxide capture from the air.

    Science.gov (United States)

    Goeppert, Alain; Zhang, Hang; Czaun, Miklos; May, Robert B; Prakash, G K Surya; Olah, George A; Narayanan, S R

    2014-05-01

    Adsorbents prepared easily by impregnation of fumed silica with polyethylenimine (PEI) are promising candidates for the capture of CO2 directly from the air. These inexpensive adsorbents have high CO2 adsorption capacity at ambient temperature and can be regenerated in repeated cycles under mild conditions. Despite the very low CO2 concentration, they are able to scrub efficiently all CO2 out of the air in the initial hours of the experiments. The influence of parameters such as PEI loading, adsorption and desorption temperature, particle size, and PEI molecular weight on the adsorption behavior were investigated. The mild regeneration temperatures required could allow the use of waste heat available in many industrial processes as well as solar heat. CO2 adsorption from the air has a number of applications. Removal of CO2 from a closed environment, such as a submarine or space vehicles, is essential for life support. The supply of CO2-free air is also critical for alkaline fuel cells and batteries. Direct air capture of CO2 could also help mitigate the rising concerns about atmospheric CO2 concentration and associated climatic changes, while, at the same time, provide the first step for an anthropogenic carbon cycle. PMID:24644023

  6. Air Pollution Monitoring and Use of Nanotechnology Based Solid State Gas Sensors in Greater Cairo Area, Egypt

    Science.gov (United States)

    Ramadan, A. B. A.

    Air pollution is a serious problem in thickly populated and industrialized areas in Egypt, especially in greater Cairo area. Economic growth and industrialization are proceeding at a rapid pace, accompanied by increasing emissions of air polluting sources. Furthermore, though the variety and quantities of polluting sources have increased dramatically, the development of a suitable method for monitoring the pollution causing sources has not followed at the same pace. Environmental impacts of air pollutants have impact on public health, vegetation, material deterioration etc. To prevent or minimize the damage caused by atmospheric pollution, suitable monitoring systems are urgently needed that can rapidly and reliably detect and quantify polluting sources for monitoring by regulating authorities in order to prevent further deterioration of the current pollution levels. Consequently, it is important that the current real-time air quality monitoring system, controlled by the Egyptian Environmental Affairs Agency (EEAA), should be adapted or extended to aid in alleviating this problem. Nanotechnology has been applied to several industrial and domestic fields, for example, applications for gas monitoring systems, gas leak detectors in factories, fire and toxic gas detectors, ventilation control, breath alcohol detectors, and the like. Here we report an application example of studying air quality monitoring based on nanotechnology `solid state gas sensors'. So as to carry out air pollution monitoring over an extensive area, a combination of ground measurements through inexpensive sensors and wireless GIS will be used for this purpose. This portable device, comprising solid state gas sensors integrated to a Personal Digital Assistant (PDA) linked through Bluetooth communication tools and Global Positioning System (GPS), will allow rapid dissemination of information on pollution levels at multiple sites simultaneously.

  7. Prediction of air leakage and aerosol transport through concrete cracks with a fractal based crack morphology model

    Energy Technology Data Exchange (ETDEWEB)

    Bishnoi, L.R., E-mail: lrbishnoi@aerb.gov.in [Siting and Structural Engineering Division, Atomic Energy Regulatory Board, Mumbai 400 094 (India); Vedula, R.P., E-mail: rpv@iitb.ac.in [Mechanical Engineering Department, Indian Institute of Technology, Mumbai 400 076 (India)

    2013-12-15

    Highlights: • A fractal based numerical concrete crack morphology model is presented. • Computational studies conducted for airflow and aerosol transport through cracks. • Results are compared with experimental data and other empirical relations. • Comparative studies demonstrate model effectiveness and versatility of application. - Abstract: Cracks may appear in pressurized concrete containment of a nuclear power plant during a severe accident and provide leak paths for release of radioactive aerosols dispersed in the contained air. In this paper, a fractal based crack morphology model is presented for prediction of air leakage and aerosol transport through cracks in concrete. Airflow field generated in air leakage studies is used for aerosol transport studies with the Lagrangian discrete phase model using CFD code FLUENT. Computational studies conducted with the fractal based model are compared with the experimental data as well as the predictions from empirical relations available in open literature. The comparative studies demonstrate effectiveness of the proposed fractal based model and its versatility for practical applications.

  8. Air filtration in HVAC systems

    CERN Document Server

    Ginestet, Alain; Tronville, Paolo; Hyttinen, Marko

    2010-01-01

    Air filtration Guidebook will help the designer and user to understand the background and criteria for air filtration, how to select air filters and avoid problems associated with hygienic and other conditions at operation of air filters. The selection of air filters is based on external conditions such as levels of existing pollutants, indoor air quality and energy efficiency requirements.

  9. Lowland rice yield estimates based on air temperature and solar radiation

    International Nuclear Information System (INIS)

    Two regression equations were developed to estimate lowland rice yield as a function of air temperature and incoming solar radiation, during the crop yield production period in Pindamonhangaba, SP, Brazil. The following rice cultivars were used: IAC-242, IAC-100, IAC-101 and IAC-102. The value of optimum air temperature obtained was 25.0°C and of optimum global solar radiation was 475 cal.cm-2, day-1. The best agrometeorological model was the one that related least deviation of air temperature and solar radiation in relation to the optimum value obtained through a multiple linear regression. The yield values estimated by the model showed good fit to actual yields of lowland rice (less than 10%). (author)

  10. A genetic algorithm based stochastic programming model for air quality management

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper presents a model that can aid planners in defining the total allowable pollutant discharge in the planning region,accounting for the dynamic and stochastic character of meteorological conditions.This is accomplished by integrating Monte Carlo simulation and using genetic algorithm to solve the model.The model is demonstrated by using a realistic air urban-scale SO2 control problem in the Yuxi City of China.To evaluate effectiveness of the model,results of the approach are shown to compare with those of the linear deterministic procedures.This paper also provides a valuable insight into how air quality targets should be made when the air pollutant will not threat the residents'health.Finally,a discussion of the areas for further research are briefly delineated.

  11. A SnO2-Based Cathode Catalyst for Lithium-Air Batteries.

    Science.gov (United States)

    Mei, Delong; Yuan, Xianxia; Ma, Zhong; Wei, Ping; Yu, Xuebin; Yang, Jun; Ma, Zi-Feng

    2016-05-25

    SnO2 and SnO2@C have been successfully synthesized with a simple hydrothermal procedure combined with heat treatment, and their performance as cathode catalysts of Li-air batteries has been comparatively evaluated and discussed. The results show that both SnO2 and SnO2@C are capable of catalyzing oxygen reduction reactions (ORR) and oxygen evolution reactions (OER) at the cathode of Li-air batteries, but the battery with SnO2@C displays better performance due to its unique higher conductivity, larger surface area, complex pore distribution, and huge internal space. PMID:27152996

  12. Performance Testing of a Magnetically Suspended Double Gimbal Control Moment Gyro Based on the Single Axis Air Bearing Table

    OpenAIRE

    2012-01-01

    Integrating the advantage of magnetic bearings with a double gimble control moment gyroscope (DGCMG), a magnetically suspended DGCMG (MSDGCMG) is an ideal actuator in high-precision, long life, and rapid maneuver attitude control systems. The work presented here mainly focuses on performance testing of a MSDGCMG independently developed by Beihang University, based on the single axis air bearing table. In this paper, taking into sufficient consideration to the moving-gimbal effects and the res...

  13. Calculation software for efficiency and penetration of a fibrous filter medium based on the mathematical models of air filtration

    OpenAIRE

    Kouropoulos, Giorgos

    2014-01-01

    At this article will be created a software written in visual basic for efficiency and penetration calculation in a fibrous filter medium for given values of particles diameter that are retained in the filter. Initially, will become report of mathematical models of air filtration in fibrous filters media and then will develop the code and the graphical interface of application, that are the base for software creation in the visual basic platform.

  14. Waste site characterization through digital analysis of historical aerial photographs at Los Alamos National Laboratory and Eglin Air Force Base

    International Nuclear Information System (INIS)

    Historical aerial photographs are used to provide a physical history and preliminary mapping information for characterizing hazardous waste sites at Los Alamos National Laboratory and Eglin Air Force Base. The examples cited show how imagery was used to accurately locate and identify previous activities at a site, monitor changes that occurred over time, and document the observable of such activities today. The methodology demonstrates how historical imagery (along with any other pertinent data) can be used in the characterization of past environmental damage

  15. Incidence and prevalence of lupus in Buenos Aires, Argentina: a 11-year health management organisation-based study

    OpenAIRE

    Scolnik, M; Marin, J.; Valeiras, S M; Marchese, M F; Talani, A S; Avellaneda, N L; Etchepare, A; Etchepare, P; Plou, M S; Soriano, E. R.

    2014-01-01

    Objectives Studies regarding the epidemiology of systemic lupus erythematosus (SLE) are lacking in Argentina. Our purpose was to estimate the incidence and prevalence of SLE in a university hospital-based health management organisation in Buenos Aires (HIMCP). Methods For incidence calculation, the population at risk included all adult members of the HIMCP, with continuous affiliation for at least 1 year from January 1998 to January 2009. Each person was followed until he/she voluntarily left...

  16. Energy efficient hybrid nanocomposite-based cool thermal storage air conditioning system for sustainable buildings

    International Nuclear Information System (INIS)

    The quest towards energy conservative building design is increasingly popular in recent years, which has triggered greater interests in developing energy efficient systems for space cooling in buildings. In this work, energy efficient silver–titania HiTES (hybrid nanocomposites-based cool thermal energy storage) system combined with building A/C (air conditioning) system was experimentally investigated for summer and winter design conditions. HiNPCM (hybrid nanocomposite particles embedded PCM) used as the heat storage material has exhibited 7.3–58.4% of improved thermal conductivity than at its purest state. The complete freezing time for HiNPCM was reduced by 15% which was attributed to its improved thermophysical characteristics. Experimental results suggest that the effective energy redistribution capability of HiTES system has contributed for reduction in the chiller nominal cooling capacity by 46.3% and 39.6% respectively, under part load and on-peak load operating conditions. The HiTES A/C system achieved 27.3% and 32.5% of on-peak energy savings potential in summer and winter respectively compared to the conventional A/C system. For the same operating conditions, this system yield 8.3%, 12.2% and 7.2% and 10.2% of per day average and yearly energy conservation respectively. This system can be applied for year-round space conditioning application without sacrificing energy efficiency in buildings. - Highlights: • Energy storage is acquired by HiTES (hybrid nanocomposites-thermal storage) system. • Thermal conductivity of HiNPCM (hybrid nanocomposites-PCM) was improved by 58.4%. • Freezing time of HiNPCM was reduced by 15% that enabled improved energy efficiency. • Chiller nominal capacity was reduced by 46.3% and 39.6% in on-peak and part load respectively. • HiTES A/C system achieved appreciable energy savings in the range of 8.3–12.2%

  17. OAFlux Satellite-Based High-Resolution Analysis of Air-Sea Turbulent Heat, Moisture, and Momentum Fluxes

    Science.gov (United States)

    Yu, Lisan

    2016-04-01

    The Objectively Analyzed air-sea Fluxes (OAFlux) project at the Woods Hole Oceanographic Institution has recently developed a new suite of products: the satellite-based high-resolution (HR) air-sea turbulent heat, moisture, and momentum fluxes over the global ocean from 1987 to the present. The OAFlux-HR fluxes are computed from the COARE bulk algorithm using air-sea variables (vector wind, near-surface humidity and temperature, and ocean surface temperature) derived from multiple satellite sensors and multiple missions. The vector wind time series are merged from 14 satellite sensors, including 4 scatterometers and 10 passive microwave radiometers. The near-surface humidity and temperature time series are retrieved from 11 satellite sensors, including 7 microwave imagers and 4 microwave sounders. The endeavor has greatly improved the depiction of the air-sea turbulent exchange on the frontal and meso-scales. The OAFlux-HR turbulent flux products are valuable datasets for a broad range of studies, including the study of the long-term change and variability in the oean-surface forcing functions, quantification of the large-scale budgets of mass, heat, and freshwater, and assessing the role of the ocean in the change and variability of the Earth's climate.

  18. Former warehouse area, site investigation report; Volume 2 (appendices): Buckley Air National Guard Base, Aurura, Colorado. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-22

    This Site Investigation (SI) Report presents the results of the Former Warehouse Area (FWA) Site Investigation at the Buckley Air National Guard Base (Buckley ANGB or Base) located in Aurora, Colorado. Work was conducted under the Installation Restoration Program (IRP). The purpose of the SI was to confirm the presence and determine the nature of soil and groundwater COPC at the FWA. The FWA SI was accomplished by conducting a sequential environmental field investigation involving a geophysical survey, followed by a drilling and sampling program that included collecting and analyzing soil gas, soil, and groundwater samples within the FWA. This FWA SI report defines the nature of COPC present at the FWA, identifies potential source areas for COPC, and characterizes site geology and hydrogeology. All site investigation activities were conducted in accordance with the Final Former Warehouse Area Site Investigation Work Plan, dated October 4, 1996, prepared by Stone Webster for the Departments of the Army and the Air Force National Guard Bureau. The methods and procedures presented in the Work Plan followed U.S. EPA guidance documents and Air National Guard (ANG) requirements. Detailed background information based on previous investigations conducted at the Buckley ANGB are not presented in this report. Instead, summary information is presented and documents containing the detailed site information are referenced.

  19. Former warehouse area, site investigation report; Volume 1 (report): Buckley Air National Guard Base, Aurura, Colorado. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-22

    This Site Investigation (SI) Report presents the results of the Former Warehouse Area (FWA) Site Investigation at the Buckley Air National Guard Base (Buckley ANGB or Base) located in Aurora, Colorado. Work was conducted under the Installation Restoration Program (IRP). The purpose of the SI was to confirm the presence and determine the nature of soil and groundwater COPC at the FWA. The FWA SI was accomplished by conducting a sequential environmental field investigation involving a geophysical survey, followed by a drilling and sampling program that included collecting and analyzing soil gas, soil, and groundwater samples within the FWA. This FWA SI report defines the nature of COPC present at the FWA, identifies potential source areas for COPC, and characterizes site geology and hydrogeology. All site investigation activities were conducted in accordance with the Final Former Warehouse Area Site Investigation Work Plan, dated October 4, 1996, prepared by Stone Webster for the Departments of the Army and the Air Force National Guard Bureau. The methods and procedures presented in the Work Plan followed U.S. EPA guidance documents and Air National Guard (ANG) requirements. Detailed background information based on previous investigations conducted at the Buckley ANGB are not presented in this report. Instead, summary information is presented and documents containing the detailed site information are referenced.

  20. Air-coupled ultrasonic transducers based on cellular polypropylene ferroelectret films

    Czech Academy of Sciences Publication Activity Database

    Bovtun, Viktor; Döring, J.; Bartusch, J.; Beck, U.; Erhard, A.; Yakymenko, Y.

    2007-01-01

    Roč. 353, - (2007), 186-192. ISSN 0015-0193 Institutional research plan: CEZ:AV0Z10100520 Keywords : air-coupled ultrasonics * non-contact transducers * ferroelectrets * electromechanical properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.427, year: 2007

  1. 75 FR 958 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; 2002 Base Year Emission...

    Science.gov (United States)

    2010-01-07

    ...-road small gasoline engines, non-road diesel engines (Tier I and Tier II), marine engine standards... information on contingency measures, see the April 16, 1992 General Preamble (57 FR 13512) and the November 29... national ambient air quality standard (NAAQS) and demonstrates further progress in reducing...

  2. Agent-based modeling and simulation of emergent behavior in air transportation

    NARCIS (Netherlands)

    Bouarfa, S.; Blom, H.A.P.; Curran, R.; Everdij, M.H.C.

    2013-01-01

    Purpose Commercial aviation is feasible thanks to the complex socio-technical air transportation system, which involves interactions between human operators, technical systems, and procedures. In view of the expected growth in commercial aviation, significant changes in this socio-technical system a

  3. Acid-base regulation in intensively farmed air-breathing fish

    DEFF Research Database (Denmark)

    Bayley, Mark; Damsgaard, Christian; Thomsen, Mikkel;

    Hypercapnia in slow moving organically loaded tropical waters is a natural occurrence with several records of pCO2 at 60 mm Hg. Despite this, studies on South American air-breathing fish have revealed a low capacity for extracellular pH (pHe) regulation. The two underlying reasons proposed are; 1...

  4. Exposure-response functions for health effects of air pollutants based on epidemiological findings

    Energy Technology Data Exchange (ETDEWEB)

    Aunan, K.

    1995-10-01

    The objective of this report is to provide exposure-response functions for health effects and air pollution, which can be used in cost-effectiveness analyses of abatement measures. When cost-effective abatement strategies for air pollution are analyzed, and when air quality standards are set, it is important to have quantitative knowledge about health damage. In spite of their shortcomings, epidemiological studies provide a sound basis for exposure-response functions because they involve a random cross section of the population. In this report the exposure-response functions apply to the relation between air pollutant concentrations and relative effect frequencies, and involve the following health effect end-points: acute and chronic respiratory symptoms in children and adults, asthma episodes in children and adults, eye irritations, headache, lung damage in children, excess mortality, lung cancer incidence. The effects are attributed to one indicator component, which in many cases is particles, but for some effects NO{sub 2}, SO{sub 2}, O{sub 3}, or CO. A calculation procedure is suggested which makes it possible to estimate excess annual symptom-days for short-term effects using the annual average concentration. 103 refs., 1 table

  5. Simulation of Population-Based Commuter Exposure to NO2 Using Different Air Pollution Models

    Directory of Open Access Journals (Sweden)

    Martina S. Ragettli

    2014-05-01

    Full Text Available We simulated commuter routes and long-term exposure to traffic-related air pollution during commute in a representative population sample in Basel (Switzerland, and evaluated three air pollution models with different spatial resolution for estimating commute exposures to nitrogen dioxide (NO2 as a marker of long-term exposure to traffic-related air pollution. Our approach includes spatially and temporally resolved data on actual commuter routes, travel modes and three air pollution models. Annual mean NO2 commuter exposures were similar between models. However, we found more within-city and within-subject variability in annual mean (±SD NO2 commuter exposure with a high resolution dispersion model (40 ± 7 µg m−3, range: 21–61 than with a dispersion model with a lower resolution (39 ± 5 µg m−3; range: 24–51, and a land use regression model (41 ± 5 µg m−3; range: 24–54. Highest median cumulative exposures were calculated along motorized transport and bicycle routes, and the lowest for walking. For estimating commuter exposure within a city and being interested also in small-scale variability between roads, a model with a high resolution is recommended. For larger scale epidemiological health assessment studies, models with a coarser spatial resolution are likely sufficient, especially when study areas include suburban and rural areas.

  6. Assessing Expected Fractional Damage of Above-ground Buildings from Air-to-surface Weapons based on Indirect Fire Concept

    OpenAIRE

    Jong Yil Park

    2010-01-01

    For the expected fractional damage of building targets from air-to-surface weapons, the US has used the JMEM/AS method, which is based on the direct-fire concept. However, the damage redistribution assumption in the direct-fire concept could induce serious errors in damage estimation of building targets. In this paper, a method for the expected fractional damage of building targets is proposed based on the indirect-fire concept. From the proposed model, it is shown that the joint munitions ef...

  7. Threatened and Endangered Species Survey for Patrick Air Force Base, Florida

    Science.gov (United States)

    Oddy, Donna M.; Stolen, Eric D.; Schmalzer, Paul A.; Larson, Vickie L.; Hall, Patrice; Hensley, Melissa A.

    1997-01-01

    A review of previous environmental work conducted at Patrick Air Force Base (PAFB) indicated that several threatened, endangered, or species of special concern occurred or had the potential to occur there. This study was implemented to collect more information on protected species at PAFB. A map of landcover types was prepared for PAFB using aerial photography, groundtruthing, and a geographic information system (GIS). Herbaceous vegetation was the most common vegetation type. The second most abundant vegetation type was disturbed shrubs/exotics. The beach and associated dune vegetation comprised 3.2% of the land area, but was the most extensive natural community within PAFB. A few isolated mangrove communities exist along the Banana River. Seventy-seven species of vascular plants occurred on the dunes, including four species listed by state agencies: spider lily (Hymenocallis latifolia), prickly pear cactus (Opuntia stricta), beach star (Remirea maritima), and inkberry (Scaevola plumien). Surveys of other habitats revealed eighty-four species of vascular plants including two state-listed species: spider lily and prickly pear cactus. Many of these areas are dominated by invasive, exotic species, particularly Brazilian pepper (Schinus terebinthifolius) and Australian pine (Casuarina equisetifolia), and native species of open or disturbed sites such as camphorweed (Heterotheca subaxillaris) and beardgrass (Andropogon spp.). Due to the isolation of PAFB from other natural areas, most exotic plant populations on the base are not an immediate threat to intact native plant communities. Dune habitat was surveyed for the southeastem beach mouse (Peromyscus polionotus niveiventris) by quarterly trapping along eight 100 m transects. No beach mice were found. The limited extent of dune habitat, its fragmented condition, and the isolation of PAFB from extant populations of the beach mouse probably accounts for its absence. Surveys of birds on PAFB found an avifauna

  8. Adaptive neuro-fuzzy based inferential sensor model for estimating the average air temperature in space heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Jassar, S.; Zhao, L. [Department of Electrical and Computer Engineering, Ryerson University, 350 Victoria Street, Toronto, ON (Canada); Liao, Z. [Department of Architectural Science, Ryerson University (Canada)

    2009-08-15

    The heating systems are conventionally controlled by open-loop control systems because of the absence of practical methods for estimating average air temperature in the built environment. An inferential sensor model, based on adaptive neuro-fuzzy inference system modeling, for estimating the average air temperature in multi-zone space heating systems is developed. This modeling technique has the advantage of expert knowledge of fuzzy inference systems (FISs) and learning capability of artificial neural networks (ANNs). A hybrid learning algorithm, which combines the least-square method and the back-propagation algorithm, is used to identify the parameters of the network. This paper describes an adaptive network based inferential sensor that can be used to design closed-loop control for space heating systems. The research aims to improve the overall performance of heating systems, in terms of energy efficiency and thermal comfort. The average air temperature results estimated by using the developed model are strongly in agreement with the experimental results. (author)

  9. The Roland Maze Project - school-based extensive air shower network

    International Nuclear Information System (INIS)

    We plan to construct the large area network of extensive air shower detectors placed on the roofs of high school buildings in the city of Lodz. Detection points will be connected by INTERNET to the central server and their work will be synchronized by GPS. The main scientific goal of the project are studies of ultra high energy cosmic rays. Using existing town infrastructure (INTERNET, power supply, etc.) will significantly reduce the cost of the experiment. Engaging high school students in the research program should significantly increase their knowledge of science and modern technologies, and can be a very efficient way of science popularisation. We performed simulations of the projected network capabilities of registering Extensive Air Showers and reconstructing energies of primary particles. Results of the simulations and the current status of project realisation will be presented

  10. GIS-based Analysis of Main Air Pollutants of Changchun City in Summer

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To gain a better understanding of the characteristics of air pollution of Changchun city, P. R. China, in summer, the analytical methods of geographical information system(GIS) and statistical analysis software SPSS were applied to the analysis of the monitored concentrations of SO2, NO2, and O3 in July of 2002 to 2004 in Changchun city. The results obtained show that the average hourly O3 concentrations in July 2002 and 2004 were higher than the first-level hourly standard of China. At the same time, the dynamic distribution of the O3 concentration and the relationship between the concentration of O3 and that of NOx were studied. The air quality evaluation result of Changchun city indicates that the southwest of this city was heavily polluted during the monitored period.

  11. Automobile air pollution: public health (citations from the NTIS data base). Report for 1964-Mar 80

    Energy Technology Data Exchange (ETDEWEB)

    Cavagnaro, D.M.

    1980-03-01

    The annotated bibliography deals with information on the human effects of the major components of automobile exhaust gases. These include carbon monoxide, nitrogen oxides, aldehydes, hydrocarbons, and lead. Also included are data on platinum, palladium, and manganese salts, which are exhausts from air pollution control devices, specifically catalytic converters. Studies which do not identify the automobile as the source of these gases have been excluded. (This updated bibliography contains 75 abstracts, 5 of which are new entries to the previous edition.)

  12. Fault Detection And Diagnosis For Air Conditioners And Heat Pumps Based On Virtual Sensors

    OpenAIRE

    Kim, Woohyun

    2013-01-01

    The primary goal of this research is to develop and demonstrate an integrated, on-line performance monitoring and diagnostic system with low cost sensors for air conditioning and heat pump equipment. Automated fault detection and diagnostics (FDD) has the potential for improving energy efficiency along with reducing service costs and comfort complaints. To achieve this goal, virtual sensors with low cost measurements and simple models were developed to estimate quantities that would be expens...

  13. Pattern recognition methods and air pollution source identification. [based on wind direction

    Science.gov (United States)

    Leibecki, H. F.; King, R. B.

    1978-01-01

    Directional air samplers, used for resolving suspended particulate matter on the basis of time and wind direction were used to assess the feasibility of characterizing and identifying emission source types in urban multisource environments. Filters were evaluated for 16 elements and X-ray fluorescence methods yielded elemental concentrations for direction, day, and the interaction of direction and day. Large numbers of samples are necessary to compensate for large day-to-day variations caused by wind perturbations and/or source changes.

  14. Simulation of air shower image in fluorescence light based on energy deposits derived from CORSIKA

    OpenAIRE

    Gora, D.; Heck, D.; Homola, P.; Klages, H.; Pekala, J.; Risse, M.; Wilczynska, B.; Wilczynski, H.

    2004-01-01

    Spatial distributions of energy deposited by an extensive air shower in the atmosphere through ionization, as obtained from the CORSIKA simulation program, are used to find the fluorescence light distribution in the optical image of the shower. The shower image derived in this way is somewhat smaller than that obtained from the NKG lateral distribution of particles in the shower. The size of the image shows a small dependence on the primary particle type.

  15. Agent-based modeling and simulation of emergent behavior in air transportation

    OpenAIRE

    Bouarfa, S.; Blom, H.A.P.; Curran, R.; Everdij, M.H.C.

    2013-01-01

    Purpose Commercial aviation is feasible thanks to the complex socio-technical air transportation system, which involves interactions between human operators, technical systems, and procedures. In view of the expected growth in commercial aviation, significant changes in this socio-technical system are in development both in the USA and Europe. Such a complex socio-technical system may generate various types of emergent behavior, which may range from simple emergence, through weak emergence, u...

  16. Hybrid Modeling of Flotation Height in Air Flotation Oven Based on Selective Bagging Ensemble Method

    OpenAIRE

    Shuai Hou; Fuan Hua; Wu Lv; Zhaodong Wang; Yujia Liu; Guodong Wang

    2013-01-01

    The accurate prediction of the flotation height is very necessary for the precise control of the air flotation oven process, therefore, avoiding the scratch and improving production quality. In this paper, a hybrid flotation height prediction model is developed. Firstly, a simplified mechanism model is introduced for capturing the main dynamic behavior of the process. Thereafter, for compensation of the modeling errors existing between actual system and mechanism model, an error compensation ...

  17. Web-based GIS: the vector-borne disease airline importation risk (VBD-AIR) tool

    OpenAIRE

    Huang Zhuojie; Das Anirrudha; Qiu Youliang; Tatem Andrew J

    2012-01-01

    Abstract Background Over the past century, the size and complexity of the air travel network has increased dramatically. Nowadays, there are 29.6 million scheduled flights per year and around 2.7 billion passengers are transported annually. The rapid expansion of the network increasingly connects regions of endemic vector-borne disease with the rest of the world, resulting in challenges to health systems worldwide in terms of vector-borne pathogen importation and disease vector invasion event...

  18. Simulation based energy consumption calculation of an office building using solar-assisted air conditioning

    OpenAIRE

    Thomas, Sébastien; Andre, Philippe

    2008-01-01

    To minimize environmental impact and CO2 production associated with air-conditioning system operation, it is reasonable to evaluate the prospects of a clean energy source. The targets of the study are to evaluate cooling energy consumption to maintain thermal comfort in an office building and to point out solar energy to satisfy these cooling needs. Simulations were carried out with three different cooling systems in the same operating conditions to determine as accurately as possible the pot...

  19. Air-water upward flow in prismatic channel of rectangular base

    International Nuclear Information System (INIS)

    Experiments had carried out to investigate the two-phase upward air-water flow structure, in a rectangular test section, by using independent measuring techniques, which comprise direct viewing and photography, electrical probes and gamma-ray attenuation. Flow pattern maps and correlations for flow pattern transitions, void fraction profiles, liquid film thickness and superficial average void fraction are proposed and compared to available data. (Author)

  20. Modeling natural emissions in the Community Multiscale Air Quality (CMAQ Model–I: building an emissions data base

    Directory of Open Access Journals (Sweden)

    S. F. Mueller

    2010-05-01

    Full Text Available A natural emissions inventory for the continental United States and surrounding territories is needed in order to use the US Environmental Protection Agency Community Multiscale Air Quality (CMAQ Model for simulating natural air quality. The CMAQ air modeling system (including the Sparse Matrix Operator Kernel Emissions (SMOKE emissions processing system currently estimates non-methane volatile organic compound (NMVOC emissions from biogenic sources, nitrogen oxide (NOx emissions from soils, ammonia from animals, several types of particulate and reactive gas emissions from fires, as well as sea salt emissions. However, there are several emission categories that are not commonly treated by the standard CMAQ Model system. Most notable among these are nitrogen oxide emissions from lightning, reduced sulfur emissions from oceans, geothermal features and other continental sources, windblown dust particulate, and reactive chlorine gas emissions linked with sea salt chloride. A review of past emissions modeling work and existing global emissions data bases provides information and data necessary for preparing a more complete natural emissions data base for CMAQ applications. A model-ready natural emissions data base is developed to complement the anthropogenic emissions inventory used by the VISTAS Regional Planning Organization in its work analyzing regional haze based on the year 2002. This new data base covers a modeling domain that includes the continental United States plus large portions of Canada, Mexico and surrounding oceans. Comparing July 2002 source data reveals that natural emissions account for 16% of total gaseous sulfur (sulfur dioxide, dimethylsulfide and hydrogen sulfide, 44% of total NOx, 80% of reactive carbonaceous gases (NMVOCs and carbon monoxide, 28% of ammonia, 96% of total chlorine (hydrochloric acid, nitryl chloride and sea salt chloride, and 84% of fine particles (i.e., those smaller than 2.5 μm in size released into the

  1. Modeling natural emissions in the Community Multiscale Air Quality (CMAQ model – Part 1: Building an emissions data base

    Directory of Open Access Journals (Sweden)

    S. N. Smith

    2010-01-01

    Full Text Available A natural emissions inventory for the continental United States and surrounding territories is needed in order to use the US Environmental Protection Agency Community Multiscale Air Quality (CMAQ Model for simulating natural air quality. The CMAQ air modeling system (including the Sparse Matrix Operator Kernel Emissions (SMOKE emissions processing system currently estimates volatile organic compound (VOC emissions from biogenic sources, nitrogen oxide (NOx emissions from soils, ammonia from animals, several types of particulate and reactive gas emissions from fires, as well as windblown dust and sea salt emissions. However, there are several emission categories that are not commonly treated by the standard CMAQ Model system. Most notable among these are nitrogen oxide emissions from lightning, reduced sulfur emissions from oceans, geothermal features and other continental sources, and reactive chlorine gas emissions linked with sea salt chloride. A review of past emissions modeling work and existing global emissions data bases provides information and data necessary for preparing a more complete natural emissions data base for CMAQ applications. A model-ready natural emissions data base is developed to complement the anthropogenic emissions inventory used by the VISTAS Regional Planning Organization in its work analyzing regional haze based on the year 2002. This new data base covers a modeling domain that includes the continental United States plus large portions of Canada, Mexico and surrounding oceans. Comparing July 2002 source data reveals that natural emissions account for 16% of total gaseous sulfur (sulfur dioxide, dimethylsulfide and hydrogen sulfide, 44% of total NOx, 80% of reactive carbonaceous gases (VOCs and carbon monoxide, 28% of ammonia, 96% of total chlorine (hydrochloric acid, nitryl chloride and sea salt chloride, and 84% of fine particles (i.e., those smaller than 2.5 μm in size released into the

  2. Results from prototypes of environmental and health alarm devices based on gaseous detectors operating in air in counting mode

    CERN Document Server

    Martinengo, P; Peskov, V; Benaben, P; Charpak, G; Breuil, P

    2011-01-01

    We have developed and successfully tested two prototypes of detectors of dangerous gases based on wire-type counters operating in air in avalanche mode: one is for radon (Rn) detection whereas the other one is for the detection of gases with an ionization potential less than the air components. Due to the operation in pulse counting mode these prototypes have sensitivities comparable to (in the case of the Rn detector) or much higher than (in the case of the detector for low ionization gases) the best commercial devices currently available on the market. We believe that due to their high sensitivity, simplicity and low cost such new detectors will find massive applications. One of them, discussed in this paper, could be the on-line monitoring of Rn for the prediction of earthquakes. (C) 2010 Elsevier B.V. All rights reserved.

  3. Cosmic ray air shower characteristics in the framework of the parton-based Gribov-Regge model nexus

    Energy Technology Data Exchange (ETDEWEB)

    Bossard, G.; Drescher, H.J.; Ostapchenko, S.; Pierog, T.; Werner, K. [SUBATECH, Nantes Univ., IN2P3/CNRS, Ecole des Mines, 44 (France); Kalmykov, N.N.; Pavlov, A.I.; Vishnevskaya, E.A. [Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow (Russian Federation)

    2000-08-01

    The purpose of this paper is twofold: first we want to introduce a new type of hadronic interaction model (NEXUS), which has a much more solid theoretical basis as, for example, presently used models like QGSJET and VENUS, and ensures therefore a much more reliable extrapolation towards high energies. Secondly, we want to promote an extensive air shower (EAS) calcination scheme, based on cascade equations rather than explicit Monte Carlo simulations, which is very accurate in calcination of main EAS characteristics and extremely fast concerning computing time. We employ the NEXUS model to provide the necessary data on particle production in hadron-air collisions and present the average EAS characteristics for energies 10{sup 14} - 10{sup 17} eV. The experimental data of the CASA-BLANKA group are analyzed in the framework of the new model. (authors)

  4. Loyalty programmes as a direct sales platform: a cardholder segmentation based on air flight redemptions

    Directory of Open Access Journals (Sweden)

    José Manuel Ponzoa Casado

    2010-12-01

    Full Text Available There are increasingly more loyalty programmes that offer cardholders the opportunity of buying additional programme points or obtaining rewards, such as package holidays or air flights, by paying some of the cost in cash. This feature of the programmes, together with their very nature and structure and the current situation in which the tourism sector finds itself, has allowed for their development as sales platforms offering services directly to their members.This work discusses the potential of such programmes as a tool for a better knowledge and segmentation of customers by differentiating between them on the basis of those who redeem their rewards on a points-only basis and those that do so using points-plus-cash.Using information from a leading, Spanish, multi-sponsor, loyalty programme, this article analyses the importance of redeeming air tickets only, as against other rewards, and cash contributions as a means of completing the redemption transaction. By means of decision trees, as a segmentation method, it can be seen how variables related with buying behaviour, within the programme member companies, have an influence on the redemption of air tickets by the programme’s cardholders.

  5. Numerical simulation of the pulsing air separation field based on CFD

    Institute of Scientific and Technical Information of China (English)

    He Jingfeng; He Yaqun; Zhao Yuemin; Duan Chenlong; Ye Cuiling

    2012-01-01

    The flow field of pulsing air separation is normally in an unsteady turbulence state.With the application of the basic principles of multiphase turbulent flows,we established the dynamical computational model,which shows a remarkable variation of the unstable pulsing air flow field.CFD (computational fluid dynamics) was used to conduct the numerical simulation of the actual geometric model of the classifier.The inside velocity of the flowing fields was analyzed later.The simulation results indicate that the designed structure of the active pulsing air classifier provided a favorable environment for the separation of the particles with different physical characters by density.We shot the movement behaviors of the typical tracer grains in the active pulsing flow field using a high speed dynamic camera.The displacement and velocity curves of the particles in the continuous impulse periods were then analyzed.The experimental results indicate that the effective separation by density of the particles with the same settling velocity and different ranges of the density and particle size can be achieved in the active pulsing airflow field.The experimental results provide an agreement with the simulation results.

  6. Thermal properties in phase change wallboard room based on air conditioning cold storage

    Institute of Scientific and Technical Information of China (English)

    陈其针; 刘鑫; 牛润萍; 王琳

    2009-01-01

    By comparing the thermal performance parameters of an ordinary wall room with a phase change wall (PCW) room,the effect of phase change wallboard on the fluctuation of temperature in air-conditioning room in summer was studied. And PCW room and an ordinary wall room,which are cooled by air-conditioner,were built up. Differential scanning calorimetry (DSC) was used to test the temperature field and heat flow fluctuation in these rooms. Through analyzing the data tested,it is found that the mean temperature of PCW is lower than that of ordinary wall room by 1-2 ℃,and PCW can lower the heat flow by 4.6 W/m2. Combining phase change material to building envelope can lower the indoor temperature,make the room thermal comfortable,and cut down the turn-on-and-off frequency of air-conditioner,the primary investment and operating costs. It alleviates urgent need of the electric power. Building envelope which contains phase change wallboard can improve the indoor thermal environment,and decrease energy consumption in buildings. Phase change wallboard can make impressive effect on energy efficiency of buildings.

  7. An overview of the Noncyanide Metal Stripper program conducted at Kelly Air Force Base

    Energy Technology Data Exchange (ETDEWEB)

    Argyle, M.D.; Cowan, R.L.

    1995-01-01

    The Noncyanide Metal Stripper Program was a waste minimization effort aimed at identifying and testing suitable noncyanide stripping solutions that could replace the cyanide stripping solutions found in the United States Air Force (USAF) Air Logistics Centers (ALC). The program started with laboratory testing of commercial stripping solutions. The performance of these solutions was compared with the cyanide process solutions C-101 and C-106 targeted for replacement. Plate metal stripping rate, basis metal corrosion, and compatibility with masking materials and biodegradability were all used to determine the performance of each product. Those products that passed the acceptance criteria were field tested using 25 to 50-gallon solutions to determine optimum operating conditions, stripper maintenance requirements, and maximum solution loading and longevity. The program included investigating any adverse effects these new products might have on existing chemical and biological waste treatment processes. All cyanide stripping solutions at the San Antonio Air Logistics Command Center have been successfully replaced with commercial noncyanide products. Generally, these replacements were less toxic and generated less waste and had longer lifetimes than their cyanide counterparts.

  8. Distributed pheromone-based swarming control of unmanned air and ground vehicles for RSTA

    Science.gov (United States)

    Sauter, John A.; Mathews, Robert S.; Yinger, Andrew; Robinson, Joshua S.; Moody, John; Riddle, Stephanie

    2008-04-01

    The use of unmanned vehicles in Reconnaissance, Surveillance, and Target Acquisition (RSTA) applications has received considerable attention recently. Cooperating land and air vehicles can support multiple sensor modalities providing pervasive and ubiquitous broad area sensor coverage. However coordination of multiple air and land vehicles serving different mission objectives in a dynamic and complex environment is a challenging problem. Swarm intelligence algorithms, inspired by the mechanisms used in natural systems to coordinate the activities of many entities provide a promising alternative to traditional command and control approaches. This paper describes recent advances in a fully distributed digital pheromone algorithm that has demonstrated its effectiveness in managing the complexity of swarming unmanned systems. The results of a recent demonstration at NASA's Wallops Island of multiple Aerosonde Unmanned Air Vehicles (UAVs) and Pioneer Unmanned Ground Vehicles (UGVs) cooperating in a coordinated RSTA application are discussed. The vehicles were autonomously controlled by the onboard digital pheromone responding to the needs of the automatic target recognition algorithms. UAVs and UGVs controlled by the same pheromone algorithm self-organized to perform total area surveillance, automatic target detection, sensor cueing, and automatic target recognition with no central processing or control and minimal operator input. Complete autonomy adds several safety and fault tolerance requirements which were integrated into the basic pheromone framework. The adaptive algorithms demonstrated the ability to handle some unplanned hardware failures during the demonstration without any human intervention. The paper describes lessons learned and the next steps for this promising technology.

  9. Study on an Air Quality Evaluation Model for Beijing City Under Haze-Fog Pollution Based on New Ambient Air Quality Standards

    OpenAIRE

    Li Li(State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China); Dong-Jun Liu

    2014-01-01

    Since 2012, China has been facing haze-fog weather conditions, and haze-fog pollution and PM2.5 have become hot topics. It is very necessary to evaluate and analyze the ecological status of the air environment of China, which is of great significance for environmental protection measures. In this study the current situation of haze-fog pollution in China was analyzed first, and the new Ambient Air Quality Standards were introduced. For the issue of air quality evaluation, a comprehensive eval...

  10. Analysis of Aerosol Properties in Beijing Based on Ground-Based Sun Photometer and Air Quality Monitoring Observations from 2005 to 2014

    OpenAIRE

    Wei Chen; Hongzhao Tang; Haimeng Zhao; Lei Yan

    2016-01-01

    Aerosol particles are the major contributor to the deterioration of air quality in China’s capital, Beijing. Using ground-based sun photometer observations from 2005 to 2014, the long-term variations in optical properties and microphysical properties of aerosol in and around Beijing were investigated in this study. The results indicated little inter-annual variations in aerosol optic depth (AOD) but an increase in the fine mode AODs both in and outside Beijing. Furthermore, the single scatter...

  11. Improving air pollution control policy in China--A perspective based on cost-benefit analysis.

    Science.gov (United States)

    Gao, Jinglei; Yuan, Zengwei; Liu, Xuewei; Xia, Xiaoming; Huang, Xianjin; Dong, Zhanfeng

    2016-02-01

    To mitigate serious air pollution, the State Council of China promulgated the Air Pollution Prevention and Control Action Plan in 2013. To verify the feasibility and validity of industrial energy-saving and emission-reduction policies in the action plan, we conducted a cost-benefit analysis of implementing these policies in 31 provinces for the period of 2013 to 2017. We also completed a scenario analysis in this study to assess the cost-effectiveness of different measures within the energy-saving and the emission-reduction policies individually. The data were derived from field surveys, statistical yearbooks, government documents, and published literatures. The results show that total cost and total benefit are 118.39 and 748.15 billion Yuan, respectively, and the estimated benefit-cost ratio is 6.32 in the S3 scenario. For all the scenarios, these policies are cost-effective and the eastern region has higher satisfactory values. Furthermore, the end-of-pipe scenario has greater emission reduction potential than energy-saving scenario. We also found that gross domestic product and population are significantly correlated with the benefit-cost ratio value through the regression analysis of selected possible influencing factors. The sensitivity analysis demonstrates that benefit-cost ratio value is more sensitive to unit emission-reduction cost, unit subsidy, growth rate of gross domestic product, and discount rate among all the parameters. Compared with other provinces, the benefit-cost ratios of Beijing and Tianjin are more sensitive to changes of unit subsidy than unit emission-reduction cost. These findings may have significant implications for improving China's air pollution prevention policy. PMID:26595398

  12. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants.

    Science.gov (United States)

    Meng, Qing-chun; Rong, Xiao-xia; Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi

    2016-01-01

    CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996-2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated. PMID:27010658

  13. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants.

    Directory of Open Access Journals (Sweden)

    Qing-chun Meng

    Full Text Available CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996-2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated.

  14. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants

    Science.gov (United States)

    Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi

    2016-01-01

    CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996–2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated. PMID:27010658

  15. MODIS-based air temperature estimation in the southeastern Tibetan Plateau and neighboring areas

    Institute of Scientific and Technical Information of China (English)

    YAO Yonghui; ZHANG Baiping

    2012-01-01

    Climatic conditions are difficult to obtain in high mountain regions due to few meteorological stations and,if any,their poorly representative location designed for convenient operation.Fortunately,it has been shown that remote sensing data could be used to estimate near-surface air temperature (Ta) and other climatic conditions.This paper makes use of recorded meteorological data and MODIS data on land surface temperature (Ts) to estimate monthly mean air temperatures in the southeastern Tibetan Plateau and its neighboring areas.A total of 72 weather stations and 84 MODIS images for seven years (2001 to 2007) are used for analysis.Regression analysis and spatio-temporal analysis of monthly mean Ts vs.monthly mean Ta are carried out,showing that recorded Ta is closely related to MODIS Ts in the study region.The regression analysis of monthly mean Ts vs.Ta for every month of all stations shows that monthly mean Ts can be rather accurately used to estimate monthly mean Ta (R2 ranging from 0.62 to 0.90 and standard error between 2.25 ℃ and 3.23℃).Thirdly,the retrieved monthly mean Ta for the whole study area varies between 1.62℃ (in January,the coldest month) and 17.29 ℃ (in July,the warmest month),and for the warm season (May-September),it is from 13.1 ℃ to 17.29℃.Finally,the elevation of isotherms is higher in the central mountain ranges than in the outer margins; the 0℃ isotherm occurs at elevation of about 4500±500 m in October,dropping to 3500±500 m in January,and ascending back to 4500±500 m in May next year.This clearly shows that MODIS Ts data combining with observed data could be used to rather accurately estimate air temperature in mountain regions.

  16. Field Demonstration of Active Desiccant-Based Outdoor Air Preconditioning Systems, Final Report: Phase 3; FINAL

    International Nuclear Information System (INIS)

    This report summarizes an investigation of the performance of two active desiccant cooling systems that were installed as pilot systems in two locations-a college dormitory and a research laboratory-during the fall of 1999. The laboratory system was assembled in the field from commercially available Trane air-handling modules combined with a standard total energy recovery module and a customized active desiccant wheel, both produced by SEMCO. The dormitory system was a factory-built, integrated system produced by SEMCO that included both active desiccant and sensible-only recovery wheels, a direct-fired gas regeneration section, and a pre-piped Trane heat pump condensing section. Both systems were equipped with direct digital control systems, complete with full instrumentation and remote monitoring capabilities. This report includes detailed descriptions of these two systems, installation details, samples of actual performance, and estimations of the energy savings realized. These pi lot sites represent a continuation of previous active desiccant product development research (Fischer, Hallstrom, and Sand 2000; Fischer 2000). Both systems performed as anticipated, were reliable, and required minimal maintenance. The dehumidification/total-energy-recovery hybrid approach was particularly effective in all respects. System performance showed remarkable improvement in latent load handling capability and operating efficiency compared with the original conventional cooling system and with the conventional system that remained in another, identical wing of the facility. The dehumidification capacity of the pilot systems was very high, the cost of operation was very low, and the system was cost-effective, offering a simple payback for these retrofit installations of approximately 5 to 6 years. Most important, the dormitory system resolved numerous indoor air quality problems in the dormitory by providing effective humidity control and increased, continuous ventilation air

  17. A regression-based method for mapping traffic-related air pollution. Application and testing in four contrasting urban environments

    International Nuclear Information System (INIS)

    Accurate, high-resolution maps of traffic-related air pollution are needed both as a basis for assessing exposures as part of epidemiological studies, and to inform urban air-quality policy and traffic management. This paper assesses the use of a GIS-based, regression mapping technique to model spatial patterns of traffic-related air pollution. The model - developed using data from 80 passive sampler sites in Huddersfield, as part of the SAVIAH (Small Area Variations in Air Quality and Health) project - uses data on traffic flows and land cover in the 300-m buffer zone around each site, and altitude of the site, as predictors of NO2 concentrations. It was tested here by application in four urban areas in the UK: Huddersfield (for the year following that used for initial model development), Sheffield, Northampton, and part of London. In each case, a GIS was built in ArcInfo, integrating relevant data on road traffic, urban land use and topography. Monitoring of NO2 was undertaken using replicate passive samplers (in London, data were obtained from surveys carried out as part of the London network). In Huddersfield, Sheffield and Northampton, the model was first calibrated by comparing modelled results with monitored NO2 concentrations at 10 randomly selected sites; the calibrated model was then validated against data from a further 10-28 sites. In London, where data for only 11 sites were available, validation was not undertaken. Results showed that the model performed well in all cases. After local calibration, the model gave estimates of mean annual NO2 concentrations within a factor of 1.5 of the actual mean (approx. 70-90%) of the time and within a factor of 2 between 70 and 100% of the time. r2 values between modelled and observed concentrations are in the range of 0.58-0.76. These results are comparable to those achieved by more sophisticated dispersion models. The model also has several advantages over dispersion modelling. It is able, for example, to provide

  18. Residual oil monitoring in pressurised air with SnO2-based gas sensors

    OpenAIRE

    Papamichail, Nikos

    2004-01-01

    The doctoral thesis at hand describes the investigations undertaken in order to develop a newly invented procedure for the monitoring of residual oil in pressurised air. The problem of this application lies on the one hand in the state of aggregation of the oil, most of it is liquid and forms aerosols, and on the other hand in the general challenge to measure a small concentration in a changing matrix by means of unspecific sensors. The oil origins from the compressors, which typically us...

  19. An analysis of flame instabilities for hydrogen-air mixtures based on Sivashinsky equation

    Science.gov (United States)

    Yanez, J.; Kuznetsov, M.

    2016-07-01

    In this paper flame instabilities are analyzed utilizing the Sivashinsky equation in order to derive the flame wrinkling factor. This is a synthetic variable representing the excess of flame surface which is obtained for a wide range of hydrogen concentrations, considering the Darrieus-Landau and the Thermo-Diffusive instabilities, and also taking into account the effect of acceleration. Additionally, the time for the development of the cellularity is also analyzed. The study is carried out for a wide range of hydrogen-air mixtures as well as for a large domain of accelerations. Models representing both the wrinkling factor and the time of development of the instabilities are obtained.

  20. Enhanced filament ablation of metals based on plasma grating in air

    Directory of Open Access Journals (Sweden)

    Di Wang

    2015-09-01

    Full Text Available We demonstrate efficient ablation of metals with filamentary plasma grating generated by two intense blue femtosecond filaments and a third focused infrared pulse. This scheme leads to significant promotion of ablation efficiency on metal targets in air in comparison with single infrared or blue filament with equal pulse energy. The reason is that the blue plasma grating firstly provides stronger intensity and a higher density of background electrons, then the delayed infrared pulse accelerates local electrons inside the plasma grating. These two processes finally results in robustly increased electron density and highly ionized metallic atoms.

  1. Modelling and simulation of a Three-Stage Air Compressor Based on Dry Piston Technology

    OpenAIRE

    Heidari, Mahbod; Barrade, Philippe; Rufer, Alfred

    2011-01-01

    The core of this modelling is to study heat transfer and fluid dynamics processes for a compression expansion system, and the main particularity is that heat transfer and air movement are due to the movement of the piston. We have implemented a "moving mesh" solver to compute the volume changes of the compression chamber followed by a "Fluid dynamics" type solver. It allows correct computation of the fluid behavior in the system and enable us to identify the pressure change of the fluid, and ...

  2. Spatial Modeling of Air Pollution Based on Traffic Emissions in Urban Areas

    Czech Academy of Sciences Publication Activity Database

    Matějíček, L.; Jaňour, Zbyněk; Střižík, Michal

    New York: Nova Science Publishers, 2011 - (Matějíček, L.), s. 85-98 ISBN 978-1-60876-363-4 R&D Projects: GA TA ČR TA01020428; GA AV ČR 1ET400760405; GA ČR GA205/02/0898 Institutional research plan: CEZ:AV0Z20760514 Keywords : air pollution * atmosphere * GIS Subject RIV: DG - Athmosphere Sciences, Meteorology https://www.novapublishers.com/catalog/product_info.php?products_id=11446

  3. A new heating system based on coupled air source absorption heat pump for cold regions: Energy saving analysis

    International Nuclear Information System (INIS)

    Highlights: • A double-stage coupled air source absorption heat pump (ASAHP) is proposed. • The coupled ASAHP exhibits stable and high performance in very cold regions. • Energy-saving rate of the coupled ASAHP in all the typical cities is above 20%. - Abstract: Energy consumption for heating and domestic hot water is very high. The heating system based on an air source absorption heat pump (ASAHP) had been assessed to have great energy saving potential. However, the single-stage ASAHP exhibits poor performance when the outdoor air temperature is very low. A double-stage coupled ASAHP is proposed to improve the energy-saving potential of single-stage ASAHP in cold regions. The heating capacity and primary energy efficiency (PEE) of the proposed system operated in both coupled mode and single-stage mode are simulated under various working conditions. The building load and primary energy consumption of different heating systems applied in cold regions are analyzed comparatively to investigate the energy-saving potential of the coupled ASAHP. Results show that the coupled ASAHP exhibits stable PEE and provides high heating capacity in very cold conditions. The energy-saving rate of the coupled ASAHP in all the typical cities is above 20%. In addition, the energy-saving potential of the single-stage ASAHP in severely cold areas can be improved obviously by coupled ASAHP, with an improvement of 7.73% in Harbin

  4. Nonlinear Least-Squares Based Method for Identifying and Quantifying Single and Mixed Contaminants in Air with an Electronic Nose

    Directory of Open Access Journals (Sweden)

    Margaret A. Ryan

    2005-12-01

    Full Text Available The Jet Propulsion Laboratory has recently developed and built an electronic nose(ENose using a polymer-carbon composite sensing array. This ENose is designed to be usedfor air quality monitoring in an enclosed space, and is designed to detect, identify andquantify common contaminants at concentrations in the parts-per-million range. Itscapabilities were demonstrated in an experiment aboard the National Aeronautics and SpaceAdministration’s Space Shuttle Flight STS-95. This paper describes a modified nonlinearleast-squares based algorithm developed to analyze data taken by the ENose, and itsperformance for the identification and quantification of single gases and binary mixtures oftwelve target analytes in clean air. Results from laboratory-controlled events demonstrate theeffectiveness of the algorithm to identify and quantify a gas event if concentration exceedsthe ENose detection threshold. Results from the flight test demonstrate that the algorithmcorrectly identifies and quantifies all registered events (planned or unplanned, as singles ormixtures with no false positives and no inconsistencies with the logged events and theindependent analysis of air samples.

  5. Friction and wear properties of Cu-based self-lubricating composites in air and vacuum conditions

    Institute of Scientific and Technical Information of China (English)

    Shiyin HUANG; Yi FENG; Kewang DING; Gang QIAN; Hongjuan LIU; Yang WANG

    2012-01-01

    Cu-based self-lubricating materials containing two different solid lubricants (graphite and MoS2) were fabricated by P/M hot pressing techniques.Physical and mechanical properties of the samples were examined.The effects of graphite and MoS2contents on friction coefficient and wear rate were investigated by a ring-on-disc wear machine in air and vacuum conditions,respectively.Tribo-films formed on the worn surfaces were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS).The results indicated that density,hardness and bending strength all increased with the increasing content of MoS2,while the relative density was opposite.Sample B containing 15 vol.pct graphite and 15 vol.pct MoS2 possessed superior tribological properties both in air and vacuum conditions.However,the tribo-films formed on the worn surfaces of the sample B were greatly discrepant in composition at different testing conditions.In air,the volume ratio of MoS2 and graphite in the tribo-films is 0.31∶1 whereas the ratio in vacuum is 1.07∶1.

  6. Performance study on three-stage power system of compressed air vehicle based on single-screw expander

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A new compressed-air engine system based on three-stage single screw expander was proposed to improve the performance of power system.Three different structure styles were presented,and the studies on the power performance and the distribution of expansion ratios between stages were carried out by programming and mathematical modeling of each style.Research results indicated that the best matches of expansion ratios with equal heat temperature for the air tank of pressure 30 MPa were seven-five-three for"first-stage heating"style,eight-five-three for"two-stage heating"style and five-five-four for"three-stage heating"style,respectively.Results also showed that heating up inlet air or increasing the expander efficiency might improve the power performance.The output power of the"two-stage heating"style is far higher than that of"first-stage heating"style and is a little lower than that of"three-stage heating"style.The new system showed good structure and power performances.

  7. Near-IR laser-based spectrophotometer for comparative analysis of isotope content of CO2 in exhale air samples

    International Nuclear Information System (INIS)

    We present a laser spectrophotometer aimed at high-accuracy comparative analysis of content of 12CO2 and 13CO2 isotope modifications in the exhale air samples and based on a tunable near-IR diode laser (2.05 μm). The two-channel optical scheme of the spectrophotometer and the special digital system for its control are described. An algorithm of spectral data processing aimed at determining the difference in the isotope composition of gas mixtures is proposed. A few spectral regions (near 4880 cm-1) are determined to be optimal for analysis of relative content of 12CO2 and 13CO2 in the exhale air. The use of the proposed spectrophotometer scheme and the developed algorithm makes the results of the analysis less susceptible to the influence of the interference in optical elements, to the absorption in the open atmosphere, to the slow drift of the laser pulse envelope, and to the offset of optical channels. The sensitivity of the comparative analysis of the isotope content of CO2 in exhale air samples, achieved using the proposed scheme, is estimated to be nearly 0.1‰.

  8. Cellular attachment and differentiation on titania nanotubes exposed to air- or nitrogen-based non-thermal atmospheric pressure plasma.

    Directory of Open Access Journals (Sweden)

    Hye Yeon Seo

    Full Text Available The surface topography and chemistry of titanium implants are important factors for successful osseointegration. However, chemical modification of an implant surface using currently available methods often results in the disruption of topographical features and the loss of beneficial effects during the shelf life of the implant. Therefore, the aim of this study was to apply the recently highlighted portable non-thermal atmospheric pressure plasma jet (NTAPPJ, elicited from one of two different gas sources (nitrogen and air, to TiO2 nanotube surfaces to further improve their osteogenic properties while preserving the topographical morphology. The surface treatment was performed before implantation to avoid age-related decay. The surface chemistry and morphology of the TiO2 nanotube surfaces before and after the NTAPPJ treatment were determined using a field-emission scanning electron microscope, a surface profiler, a contact angle goniometer, and an X-ray photoelectron spectroscope. The MC3T3-E1 cell viability, attachment and morphology were confirmed using calcein AM and ethidium homodimer-1 staining, and analysis of gene expression using rat mesenchymal stem cells was performed using a real-time reverse-transcription polymerase chain reaction. The results indicated that both portable nitrogen- and air-based NTAPPJ could be used on TiO2 nanotube surfaces easily and without topographical disruption. NTAPPJ resulted in a significant increase in the hydrophilicity of the surfaces as well as changes in the surface chemistry, which consequently increased the cell viability, attachment and differentiation compared with the control samples. The nitrogen-based NTAPPJ treatment group exhibited a higher osteogenic gene expression level than the air-based NTAPPJ treatment group due to the lower atomic percentage of carbon on the surface that resulted from treatment. It was concluded that NTAPPJ treatment of TiO2 nanotube surfaces results in an increase in

  9. A novel Fast Gas Chromatography based technique for higher time resolution measurements of speciated monoterpenes in air

    Science.gov (United States)

    Jones, C. E.; Kato, S.; Nakashima, Y.; Kajii, Y.

    2013-12-01

    Biogenic emissions supply the largest fraction of non-methane volatile organic compounds (VOC) from the biosphere to the atmospheric boundary layer, and typically comprise a complex mixture of reactive terpenes. Due to this chemical complexity, achieving comprehensive measurements of biogenic VOC (BVOC) in air within a satisfactory time resolution is analytically challenging. To address this, we have developed a novel, fully automated Fast Gas Chromatography (Fast-GC) based technique to provide higher time resolution monitoring of monoterpenes (and selected other C9-C15 terpenes) during plant emission studies and in ambient air. To our knowledge, this is the first study to apply a Fast-GC based separation technique to achieve quantification of terpenes in air. Three chromatography methods have been developed for atmospheric terpene analysis under different sampling scenarios. Each method facilitates chromatographic separation of selected BVOC within a significantly reduced analysis time compared to conventional GC methods, whilst maintaining the ability to quantify individual monoterpene structural isomers. Using this approach, the C10-C15 BVOC composition of single plant emissions may be characterised within a ~ 14 min analysis time. Moreover, in situ quantification of 12 monoterpenes in unpolluted ambient air may be achieved within an ~ 11 min chromatographic separation time (increasing to ~ 19 min when simultaneous quantification of multiple oxygenated C9-C10 terpenoids is required, and/or when concentrations of anthropogenic VOC are significant). This corresponds to a two- to fivefold increase in measurement frequency compared to conventional GC methods. Here we outline the technical details and analytical capability of this chromatographic approach, and present the first in situ Fast-GC observations of 6 monoterpenes and the oxygenated BVOC linalool in ambient air. During this field deployment within a suburban forest ~ 30 km west of central Tokyo, Japan, the

  10. Frequency Comb-Based Remote Sensing of Greenhouse Gases over Kilometer Air Paths

    CERN Document Server

    Rieker, Gregory B; Swann, William C; Kofler, Jon; Zolot, Alex M; Sinclair, Laura C; Baumann, Esther; Cromer, Christopher; Petron, Gabrielle; Sweeney, Colm; Tans, Pieter P; Coddington, Ian; Newbury, Nathan R

    2014-01-01

    We demonstrate coherent dual frequency-comb spectroscopy for detecting variations in greenhouse gases. High signal-to-noise spectra are acquired spanning 5990 to 6260 cm^-1 (1600 to 1670 nm) covering ~700 absorption features from CO2, CH4, H2O, HDO, and 13CO2, across a 2-km open-air path. The transmission of each frequency comb tooth is resolved, leading to spectra with <1 kHz frequency accuracy, no instrument lineshape, and a 0.0033-cm^-1 point spacing. The fitted path-averaged concentrations and temperature yield dry-air mole fractions. These are compared with a point sensor under well-mixed conditions to evaluate current absorption models for real atmospheres. In heterogeneous conditions, time-resolved data demonstrate tracking of strong variations in mole fractions. A precision of <1 ppm for CO2 and <3 ppb for CH4 is achieved in 5 minutes in this initial demonstration. Future portable systems could support regional emissions monitoring and validation of the spectral databases critical to global s...

  11. Regional scale synoptic air monitoring for visibility evaluation based on PIXE analyses

    International Nuclear Information System (INIS)

    The western part of the United States is characterized both by major scenic attractions (Grand Canyon, Yellowstone National Park, etc.) and the excellent visibilities necessary to enjoy the vistas. Recent legislation has been enacted to protect such visibilities from degradation associated with energy and resource development, and the U.S. Environmental Protection Agency has been charged with establishing baseline values for both visibility and fine particles. For this purpose, a network of forty air sampling stations has been established in remote locations of the study area (representing about 25% of the contiguous forty-eight states) on a 150 km grid spacing. Each sampler collects coarse and fine (less than 2.5 μm diameter) particles through sequential filtration over two three-day periods per week. Four central stations are operated with a larger variety of meteorological and air sampling instruments, as well as visibility probes, allowing daily samples in numerous size ranges. Many of these instruments were designed around the capabilities of PIXE, resulting in highly quantitative data at major savings in cost for such a large array. Particulate sources are being evaluated through elemental tracer and meteorological trajectory analyses, and the effects on visibility are being studied through statistical methodologies. (orig.)

  12. District Heating Mode Analysis Based on an Air-cooled Combined Heat and Power Station

    Directory of Open Access Journals (Sweden)

    Pei Feng Li

    2014-03-01

    Full Text Available As an important research subject, district heating with combined heat and power (CHP has significant potential for energy conservation. This paper utilised a 200 MW air-cooled unit as an actual case and presented a design scheme and energy consumption analysis of three typical CHP modes, including the low vacuum mode (LVM, the extraction condensing mode (ECM, and the absorbing heat pump mode (AHPM. The advantages and disadvantages of each mode (including their practical problems were analysed, and suggestions for the best mode were proposed. The energy consumption of the three heating modes changed with the heating load. When the heating load was increased, the net power of the entire system decreased to different degrees. In this paper, the energy conservation effect of the LVM was the most ideal, followed by the ECM and the AHPM. Besides, the LVM and AHPM were able to supply larger heat loads than the ECM, which was limited by the minimum cooling flow of the low pressure cylinder. Furthermore, in order to get a more general conclusion, a similar case with an air-cooled 300 MW unit is studied, showing that the fuel consumption levels of ECM and AHPM have changed.

  13. A work procedure of utilising PCMs as thermal storage systems based on air-TES systems

    International Nuclear Information System (INIS)

    Highlights: • A procedure to design effective thermal energy storage (TES) system. • A guidance for the selection of the working material (PCM) and the heat exchanger development. • Suggestions for heat transfer enhancement techniques for the air-TES system. • Mathematical, computational and experimental methods optimising the air-TES system. - Abstract: The paper seeks to offer a procedure to design an effective short term thermal energy storage (TES) system using phase change materials. The methodology focus on two main aspects: the selection of the working material and the heat exchanger development. The selection of the appropriate PCMs is one of the main keys for any TES therefore their classifications, properties, advantages and disadvantages need to be investigated. Due to the intensive researches using this kind of materials in the recent years, there are a range of commercial PCMs available and supplied by different companies. However, all types of PCM present their specific problems and therefore requirements are defined in order to select the most suitable PCMs. The other main key when designing TES is related to the heat exchanger formed by the PCM and the cold/hot heat sources. For this step, the choice of the appropriate container to encapsulate the PCM and the heat transfer enhancement techniques are analysed. Distinct methodologies such as experimental and numerical study methods and modelling software tools are presented to analyse the thermal energy performance of the system and achieve the optimal design of the TES system

  14. Combined Ground and Space-Based Measurements of Air Quality during the London Olympic Games 2012

    Science.gov (United States)

    Graves, R. R.; Leigh, R. J.; Singh Anand, J.; McNally, M.; Lawrence, J.; Remedios, J.; Monks, P. S.

    2012-12-01

    During July and August 2012 the Summer Olympic Games were held in London. During this period, unusually high levels of traffic and visitors to the city were expected, it is important to understand the effect this had on the air quality in London during this period. To this end three novel CityScan instruments were installed in London from the 20th July though to the end of September; affording the unique opportunity to monitor the spatial and vertical structure of nitrogen dioxide within the boundary layer in unprecedented detail. The deployment was included as part of the large NERC funded ClearfLo project (Clean Air for London) involving many other institutions and complementary measurement techniques. CityScan is a Hemispherical Scanning Imaging Differential Optical Absorption Spectrometer (HSI-DOAS) which is has been optimised to measure concentrations of nitrogen dioxide. CityScan has a 95° field of view (FOV) between the zenith and 5° below the horizon. Across this FOV there are 128 resolved elements which are measured concurrently, the spectrometer is rotated azimuthally 1° per second providing full hemispherical coverage every 6 minutes. CityScan measures concentrations of nitrogen dioxide over specific lines of sight and due to the extensive field of view of the instrument this produces measurements which are representative over city-wide scales. Nitrogen dioxide is an important air pollutant which is produced in all combustion processes and can reduce lung function; especially in sensitised individuals. These instruments aim to bridge the gap in spatial scales between point source measurements of air quality and satellite measurements of air quality offering additional information on emissions, transport and the chemistry of nitrogen dioxide. More information regarding the CityScan technique can be found at http://www.leos.le.ac.uk/aq/index.html. The first of the three CityScan instruments was located in North Kensington, the second in Soho and third

  15. Long-term Operation of an External Cavity Quantum Cascade Laser-based Trace-gas Sensor for Building Air Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Mark C.; Craig, Ian M.

    2013-11-03

    We analyze the long-term performance and stability of a trace-gas sensor based on an external cavity quantum cascade laser using data collected over a one-year period in a building air monitoring application.

  16. Analysis of Aerosol Properties in Beijing Based on Ground-Based Sun Photometer and Air Quality Monitoring Observations from 2005 to 2014

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2016-02-01

    Full Text Available Aerosol particles are the major contributor to the deterioration of air quality in China’s capital, Beijing. Using ground-based sun photometer observations from 2005 to 2014, the long-term variations in optical properties and microphysical properties of aerosol in and around Beijing were investigated in this study. The results indicated little inter-annual variations in aerosol optic depth (AOD but an increase in the fine mode AODs both in and outside Beijing. Furthermore, the single scattering albedo in urban Beijing is larger, while observations at the site that is southeast of Beijing suggested that the aerosol there has become more absorbing. The intra-annual aspects were as follow: The largest AOD and high amount of fine mode aerosols are observed in the summer. However, the result of air pollution index (API that mainly affected by the dry density of near-surface aerosol indicated that the air quality has been improving since 2006. Winter and spring were the most polluted seasons considering only the API values. The inconsistency between AOD and API suggested that fine aerosol particles may have a more important role in the deterioration of air quality and that neglecting particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5 in the calculation of API might not be appropriate in air quality evaluation. Through analysis of the aerosol properties in high API days, the results suggested that the fine mode aerosol, especially PM2.5 has become a major contributor to the aerosol pollution in Beijing.

  17. Technical and economic assessment for asbestos abatement within Facility 20470, Wright-Patterson Air Force Base, Ohio

    International Nuclear Information System (INIS)

    This report presents the results of a technical and economic assessment of available alternatives for asbestos abatement within Facility 20470 at the Wright-Patterson Air Force Base in Dayton, Ohio. Each alternative was screened on the basis of technical feasibility, environmental impact, economics, and fulfillment of the IRP goals. Four alternatives for study are: establishing a special operations and maintenance program; enclosure; encapsulation with sealants; and removal, disposal, and replacement. Each of these alternatives was assessed for capability to control the release of asbestos fibers within Facility 20470. Alternatives 1 and 4 were determined to be acceptable, while Alternatives 2 and 3 were found to be unacceptable. 2 refs., 6 figs

  18. Performance analysis of a bio-gasification based combined cycle power plant employing indirectly heated humid air turbine

    Science.gov (United States)

    Mukherjee, S.; Mondal, P.; Ghosh, S.

    2016-07-01

    Rapid depletion of fossil fuel has forced mankind to look into alternative fuel resources. In this context, biomass based power generation employing gas turbine appears to be a popular choice. Bio-gasification based combined cycle provides a feasible solution as far as grid-independent power generation is concerned for rural electrification projects. Indirectly heated gas turbine cycles are promising alternatives as they avoid downstream gas cleaning systems. Advanced thermodynamic cycles have become an interesting area of study to improve plant efficiency. Water injected system is one of the most attractive options in this field of applications. This paper presents a theoretical model of a biomass gasification based combined cycle that employs an indirectly heated humid air turbine (HAT) in the topping cycle. Maximum overall electrical efficiency is found to be around 41%. Gas turbine specific air consumption by mass is minimum when pressure ratio is 6. The study reveals that, incorporation of the humidification process helps to improve the overall performance of the plant.

  19. Quantifying the Removal of Trichloroethylene via Phytoremediation a Hill Air Force Base, Utah Operational Unit 2 Using Recent and Historical Data

    OpenAIRE

    Diamond, J. Oliver

    2016-01-01

    Trichloroethylene (TCE) is a carcinogenic, chlorinated volatile organic compound that was commonly used as a degreasing solvent for aircraft maintenance at many US Air Force bases. Past improper disposal of TCE has resulted in contaminated groundwater at many of these facilities. Phytoremediation, defined as the use of plants and their associated microorganisms to stabilize or remove contamination, has been implemented as part of a TCE groundwater cleanup at Travis Air Force base near Sacrame...

  20. Air Pollution

    Science.gov (United States)

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, dust, ... a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  1. Air Pollution

    Science.gov (United States)

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, dust, pollen and ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, ...

  2. A complexity measure based method for studying the dependence of 222Rn concentration time series on indoor air temperature and humidity

    CERN Document Server

    Mihailovic, Dragutin T; Krmar, Miodrag; Arsenić, Ilija

    2013-01-01

    We have suggested a complexity measure based method for studying the dependence of measured 222Rn concentration time series on indoor air temperature and humidity. This method is based on the Kolmogorov complexity (KL). We have introduced (i) the sequence of the KL, (ii) the Kolmogorov complexity highest value in the sequence (KLM) and (iii) the KL of the product of time series. The noticed loss of the KLM complexity of 222Rn concentration time series can be attributed to the indoor air humidity that keeps the radon daughters in air.

  3. Testing of Large Diameter Fresnel Optics for Space Based Observations of Extensive Air Showers

    Science.gov (United States)

    Adams, James H.; Christl, Mark J.; Young, Roy M.

    2011-01-01

    The JEM-EUSO mission will detect extensive air showers produced by extreme energy cosmic rays. It operates from the ISS looking down on Earth's night time atmosphere to detect the nitrogen fluorescence and Cherenkov produce by the charged particles in the EAS. The JEM-EUSO science objectives require a large field of view, sensitivity to energies below 50 EeV, and must fit within available ISS resources. The JEM-EUSO optic module uses three large diameter, thin plastic lenses with Fresnel surfaces to meet the instrument requirements. A bread-board model of the optic has been manufactured and has undergone preliminary tests. We report the results of optical performance tests and evaluate the present capability to manufacture these optical elements.

  4. Research on segregation evaluation methods of asphalt pavement based on air voids distribution

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Eye observation was used to evaluate the segregation degree of asphalt pavement, which was not much creditable. To the asphalt pavement, road surface texture measuring method which has appeared recently can identify gradational segregation; but it can't reflect the influence of the temperature segregation. However,using infrared temperature detector to evaluate the segregation must be taken during paving, which brings much inconvenience. In this paper, measuring the air voids distribution using non-nuclear density gauge to evaluate asphalt pavement segregation was introduced. Result shows that this method can directly reflect the comprehensive results of the two types of segregation in a high efficient and accurate way. Moreover, using the sketch map of segregation area can help to analyze the segregation reason visually.

  5. Novel adaptive neural control of flexible air-breathing hypersonic vehicles based on sliding mode differentiator

    Directory of Open Access Journals (Sweden)

    Bu Xiangwei

    2015-08-01

    Full Text Available A novel adaptive neural control strategy is exploited for the longitudinal dynamics of a generic flexible air-breathing hypersonic vehicle (FAHV. By utilizing functional decomposition method, the dynamics of FAHV is decomposed into the velocity subsystem and the altitude subsystem. For each subsystem, only one neural network is employed for the unknown function approximation. To further reduce the computational burden, minimal-learning parameter (MLP technology is used to estimate the norm of ideal weight vectors rather than their elements. By introducing sliding mode differentiator (SMD to estimate the newly defined variables, there is no need for the strict-feedback form and virtual controller. Hence the developed control law is considerably simpler than the ones derived from back-stepping scheme. Finally, simulation studies are made to illustrate the effectiveness of the proposed control approach in spite of the flexible effects, system uncertainties and varying disturbances.

  6. Air Oxidation Behavior of Two Ti-Base Alloys Synthesized by HIP

    Science.gov (United States)

    Liu, S.; Guo, Q. Q.; Liu, L. L.; Xu, L.; Liu, Y. Y.

    2016-04-01

    The oxidation behavior of Ti-5Al-2.5Sn and Ti-6Al-4V produced by hot isostatic pressing (HIP) has been studied at 650-850°C in air for 24 h. The oxidation kinetics of both alloys followed the parabolic law with good approximation, except for Ti-5Al-2.5Sn oxidized at 850°C. Multi-layered scales formed on both alloys at 750°C and 850°C. Ternary additions of Sn and V accounted for the different morphology of the scales formed on these two alloys. In addition, the oxidation behavior of HIP alloys is compared with that of the corresponding cast alloys and the scaling mechanism is discussed.

  7. An Empirically grounded Agent Based simulator for the Air Traffic Management in the SESAR scenario

    CERN Document Server

    Gurtner, Gérald; Ducci, Marco; Miccichè, Salvatore

    2016-01-01

    In this paper we present a simulator allowing to perform policy experiments relative to the air traffic management. Different SESAR solutions can be implemented in the model to see the reaction of the different stakeholders as well as other relevant metrics (delays, safety, etc). The model describes both the strategic phase associated to the planning of the flight trajectories and the tactical modifications occurring in the en-route phase. An implementation of the model is available as open-source and freely accessible by any user. More specifically, different procedures related to business trajectories and free-routing are tested and we illustrate the capabilities of the model on airspace implementing these concepts. After performing numerical simulations with the model, we show that in a free-routing scenario the controllers perform less operations although they are dispersed over a larger portion of the airspace. This can potentially increase the complexity of conflict detection and resolution for controll...

  8. The evolution of the clear air convective layer revealed by surface-based remote sensors

    Science.gov (United States)

    Noonkester, V. R.

    1976-01-01

    Results are reported for simultaneous observations of the growth and decay of the clear-air convective mixing layer near a coastline, which were made with an FM-CW radar, a high-power narrow-beam S-band radar, and an acoustic echo sounder. The main purpose of this study was to determine the relationship between the rise rate of the convective depth and the lapse rate of temperature, particularly in the morning hours. The results indicate that the three remote sensors can provide excellent mutually supporting data on the convective depth. It is found that this depth is well behaved during the day and that its rise rate varies roughly linearly with the inverse square root of the temperature lapse rate during the morning. The data suggest that some models concerning the rise rate require modification, since these models imply that the surface heat flux would have to be unreasonably large to produce the observed relationship.

  9. Genetic diversity among air yam (Dioscorea bulbifera) varieties based on single sequence repeat markers.

    Science.gov (United States)

    Silva, D M; Siqueira, M V B M; Carrasco, N F; Mantello, C C; Nascimento, W F; Veasey, E A

    2016-01-01

    Dioscorea is the largest genus in the Dioscoreaceae family, and includes a number of economically important species including the air yam, D. bulbifera L. This study aimed to develop new single sequence repeat primers and characterize the genetic diversity of local varieties that originated in several municipalities of Brazil. We developed an enriched genomic library for D. bulbifera resulting in seven primers, six of which were polymorphic, and added four polymorphic loci developed for other Dioscorea species. This resulted in 10 polymorphic primers to evaluate 42 air yam accessions. Thirty-three alleles (bands) were found, with an average of 3.3 alleles per locus. The discrimination power ranged from 0.113 to 0.834, with an average of 0.595. Both principal coordinate and cluster analyses (using the Jaccard Index) failed to clearly separate the accessions according to their origins. However, the 13 accessions from Conceição dos Ouros, Minas Gerais State were clustered above zero on the principal coordinate 2 axis, and were also clustered into one subgroup in the cluster analysis. Accessions from Ubatuba, São Paulo State were clustered below zero on the same principal coordinate 2 axis, except for one accession, although they were scattered in several subgroups in the cluster analysis. Therefore, we found little spatial structure in the accessions, although those from Conceição dos Ouros and Ubatuba exhibited some spatial structure, and that there is a considerable level of genetic diversity in D. bulbifera maintained by traditional farmers in Brazil. PMID:27323077

  10. MODIS-based estimation of air temperature of the Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    YAO Yonghui; ZHANG Baiping

    2013-01-01

    The immense and towering Tibetan Plateau acts as a heating source and,thus,deeply shapes the climate of the Eurasian continent and even the whole world.However,due to the scarcity of meteorological observation stations and very limited climatic data,little is quantitatively known about the heating effect and temperature pattern of the Tibetan Plateau.This paper collected time series of MODIS land surface temperature (LST) data,together with meteorological data of 137 stations and ASTER GDEM data for 2001-2007,to estimate and map the spatial distribution of monthly mean air temperatures in the Tibetan Plateau and its neighboring areas.Time series analysis and both ordinary linear regression (OLS) and geographical weighted regression (GWR) of monthly mean air temperature (Ta) with monthly mean land surface temperature (Ts) were conducted.Regression analysis shows that recorded Ta is rather closely related to Ts,and that the GWR estimation with MODIS Ts and altitude as independent variables,has a much better result with adjusted R2 > 0.91 and RMSE =1.13-1.53℃ than OLS estimation.For more than 80% of the stations,the Ta thus retrieved from Ts has residuals lower than 2℃.Analysis of the spatio-temporal pattern of retrieved Ta data showed that the mean temperature in July (the warmest month) at altitudes of 4500 m can reach 10℃.This may help explain why the highest timberline in the Northern Hemisphere is on the Tibetan Plateau.

  11. The Study of LeachateTreatment by Using Three Advanced Oxidation Process Based Wet air Oxidation

    Directory of Open Access Journals (Sweden)

    Behroz Karimi

    2013-01-01

    Full Text Available Wet air oxidation is regarded as appropriate options for wastewater treatment with average organic compounds. The general purpose of this research is to determine the efficiency of three wet air oxidation methods, wet oxidation with hydrogen peroxide and absorption with activated carbon in removing organic matter and nitrogenous compounds from Isfahan's urban leachate. A leachate sample with the volume of 1.5 liters entered into a steel reactor with the volume of three liters and was put under a 10-bar pressure, at temperatures of 100, 200, and 300[degree sign] as well as three retention times of 30, 60, and 90 minutes. The sample was placed at 18 stages of leachate storage ponds in Isfahan Compost Plant with the volume of 20 liters, using three WPO, WAO methods and a combination of WAO/GAC for leachate pre-treatment. Thirty percent of pure oxygen and hydrogen peroxide were applied as oxidation agents. The COD removal efficiency in WAO method is 7.8-33.3%, in BOD is 14.7-50.6%, the maximum removal percentage (efficiency for NH4-N is 53.3% and for NO3-N is 56.4-73.9%. The removal efficiency of COD and BOD5 is 4.6%-34 and 24%-50 respectively in WPO method. Adding GAC to the reactor, the removal efficiency of all parameters was improved. The maximum removal efficiency was increased 48% for COD, 31%-43.6 for BOD5 by a combinational method, and the ratio of BOD5/COD was also increased to 90%. In this paper, WAO and WPO process was used for Leachate pre-treatment and WAO/GAC combinational process was applied for improving the organic matter removal and leachate treatment; it was also determined that the recent process is much more efficient in removing resistant organic matter.

  12. Temporal Variation in Air Pollution Concentrations and Preterm Birth—A Population Based Epidemiological Study

    Directory of Open Access Journals (Sweden)

    Bertil Forsberg

    2012-01-01

    Full Text Available There is growing evidence of adverse birth outcomes due to exposure to air pollution during gestation. However, recent negative studies are also reported. The aim of this study was to assess the effect of ozone and vehicle exhaust exposure (NO2 on the length of the gestational period and risk of preterm delivery. We used data from the Swedish Medical Birth Registry on all vaginally delivered singleton births in the Greater Stockholm area who were conceived during 1987–1995 (n = 115,588. Daily average levels of NO2 (from three measuring stations and ozone (two stations were used to estimate trimester and last week of gestation average exposures. Linear regression models were used to assess the association between the two air pollutants and three exposure windows, while logistic regression models were used when analyzing associations with preterm delivery ( < 37 weeks gestation. Five percent were born preterm. The median gestational period was 40 weeks. Higher levels of ozone during the first trimester were associated with shorter gestation as well as with an elevated risk of preterm delivery, the odds ratio from the most complex model was 1.06 (95% CI: 1.00–1.13 per 10 μg/m3 increase in the mean daily 8-h maximum concentration. Higher levels of ozone during the second trimester were associated with shorter gestation but the elevated risk of preterm delivery was not statistically significant. Higher levels of ozone and NO2 during the last week of gestation were associated with a shorter duration of gestation and NO2 also with preterm delivery. There were no significant associations between first and second trimester NO2 exposure estimates and studied outcomes. The effect of first trimester ozone exposure, known to cause oxidative stress, was smallest among women who conceived during autumn when vitamin D status, important for fetal health, in Scandinavian women is the highest.

  13. A heat pump driven and hollow fiber membrane-based liquid desiccant air dehumidification system: Modeling and experimental validation

    International Nuclear Information System (INIS)

    A compression heat pump driven and membrane-based liquid desiccant air dehumidification system is presented. The dehumidifier and the regenerator are made of two hollow fiber membrane bundles packed in two shells. Water vapor can permeate through these membranes effectively, while the liquid desiccant droplets are prevented from cross-over. Simultaneous heating and cooling of the salt solution are realized with a heat pump system to improve energy efficiency. In this research, the system is built up and a complete modeling is performed for the system. Heat and mass transfer processes in the membrane modules, as well as in the evaporator, the condenser, and other key components are modeled in detail. The whole model is validated by experiment. The performances of SDP (specific dehumidification power), dehumidification efficiency, EER (energy efficiency ratio) of heat pump, and the COP (coefficient of performance) of the system are investigated numerically and experimentally. The results show that the model can predict the system accurately. The dehumidification capabilities and the energy efficiencies of the system are high. Further, it performs well even under the harsh hot and humid South China weather conditions. - Highlights: • A membrane-based and heat pump driven air dehumidification system is proposed. • A real experimental set up is built and used to validate the model for the whole system. • Performance under design and varying operation conditions is investigated. • The system performs well even under harsh hot and humid conditions

  14. A MEMS-enabled 3D zinc–air microbattery with improved discharge characteristics based on a multilayer metallic substructure

    International Nuclear Information System (INIS)

    This paper reports the design, fabrication and testing of a three-dimensional zinc–air microbattery with improved areal energy density and areal capacity, particularly at high discharge rates. The device is based on a multilayer, micron-scale, low-resistance metallic skeleton with an improved surface area. This skeleton consists of alternating Cu and Ni layers supporting Zn as electrodeposited anode electrode, and provides a high surface area, low-resistance path for electron transfer. A proof-of-concept zinc–air microbattery based on this technology was developed, characterized and compared with its two-dimensional thin-film counterparts fabricated on the same footprint area with equal amount of the Zn anode electrode. Using this approach, we were able to improve a single-layer initial structure with a surface area of 1.3 mm2 to a scaffold structure with ten layers having a surface area of 15 mm2. Discharging through load resistances ranging from 100 to 3000 Ω, the areal energy density and areal capacity of the microbattery were measured as 2.5–3 mWh cm−2 and ∼2.5 mAh cm−2, respectively.

  15. Real-Time Cell-Electronic Sensing of Coal Fly Ash Particulate Matter for Toxicity-Based Air Quality Monitoring.

    Science.gov (United States)

    Moe, Birget; Yuan, Chungang; Li, Jinhua; Du, Haiying; Gabos, Stephan; Le, X Chris; Li, Xing-Fang

    2016-06-20

    The development of a unique bioassay for cytotoxicity analysis of coal fly ash (CFA) particulate matter (PM) and its potential application for air quality monitoring is described. Using human cell lines, A549 and SK-MES-1, as live probes on microelectrode-embedded 96-well sensors, impedance changes over time are measured as cells are treated with varying concentrations (1 μg/mL-20 mg/mL) of CFA samples. A dose-dependent impedance change is determined for each CFA sample, from which an IC50 histogram is obtained. The assay was successfully applied to examine CFA samples collected from three coal-fired power plants (CFPs) in China. The samples were separated into three size fractions: PM2.5 (10 μm). Dynamic cell-response profiles and temporal IC50 histograms of all samples show that CFA cytotoxicity depends on concentration, exposure time (0-60 h), and cell-type (SK-MES-1 > A549). The IC50 values differentiate the cytotoxicity of CFA samples based on size fraction (PM2.5 ≈ PM10-2.5 ≫ PM10) and the sampling location (CFP2 > CFP1 ≈ CFP3). Differential cytotoxicity measurements of particulates in human cell lines using cell-electronic sensing provide a useful tool for toxicity-based air quality monitoring and risk assessment. PMID:27124590

  16. Spatiotemporal air pollution exposure assessment for a Canadian population-based lung cancer case-control study

    Directory of Open Access Journals (Sweden)

    Hystad Perry

    2012-04-01

    Full Text Available Abstract Background Few epidemiological studies of air pollution have used residential histories to develop long-term retrospective exposure estimates for multiple ambient air pollutants and vehicle and industrial emissions. We present such an exposure assessment for a Canadian population-based lung cancer case-control study of 8353 individuals using self-reported residential histories from 1975 to 1994. We also examine the implications of disregarding and/or improperly accounting for residential mobility in long-term exposure assessments. Methods National spatial surfaces of ambient air pollution were compiled from recent satellite-based estimates (for PM2.5 and NO2 and a chemical transport model (for O3. The surfaces were adjusted with historical annual air pollution monitoring data, using either spatiotemporal interpolation or linear regression. Model evaluation was conducted using an independent ten percent subset of monitoring data per year. Proximity to major roads, incorporating a temporal weighting factor based on Canadian mobile-source emission estimates, was used to estimate exposure to vehicle emissions. A comprehensive inventory of geocoded industries was used to estimate proximity to major and minor industrial emissions. Results Calibration of the national PM2.5 surface using annual spatiotemporal interpolation predicted historical PM2.5 measurement data best (R2 = 0.51, while linear regression incorporating the national surfaces, a time-trend and population density best predicted historical concentrations of NO2 (R2 = 0.38 and O3 (R2 = 0.56. Applying the models to study participants residential histories between 1975 and 1994 resulted in mean PM2.5, NO2 and O3 exposures of 11.3 μg/m3 (SD = 2.6, 17.7 ppb (4.1, and 26.4 ppb (3.4 respectively. On average, individuals lived within 300 m of a highway for 2.9 years (15% of exposure-years and within 3 km of a major industrial emitter for 6.4 years (32% of exposure-years. Approximately 50

  17. Characterization of oxide scales to evaluate high temperature oxidation behavior of Ti(C,N)-based cermets in static air

    International Nuclear Information System (INIS)

    Research highlights: → Oxide scales formed consisted of NiO outerlayer, NiTiO3 interlayer and TiO2-based innerlayer. → Transition layers formed consisted of Ti-, Ni- and Mo-based oxides. → Oxidation process was mainly controlled by O inward thermodynamic activity. → Cermet with Ni-20Cr binder exhibited better oxidation resistance, due to the richness of Cr in binder and rim phases. → Cr was completely and incompletely oxidized to form Cr0.17Mo0.83O2 and Cr-rich Ti-based oxides, respectively, thus decreasing O inward thermodynamic activity. - Abstract: Two Ti(C,N)-based cermets with Ni and Ni-20Cr metallic binder were oxidized at 800 oC and 1000 oC for up to 100 h in static air, and the oxide scales and the transition layers formed on both the cermets were characterized to evaluate their high temperature oxidation behavior in static air using XRD, SEM and EDS. The oxide scales formed on both the cermets at 800 oC and 1000 oC were not dense, and were multi-layered, consisting of NiO outerlayer, NiTiO3 interlayer and TiO2-based innerlayer. The transition layers were present between the oxide scales and the substrates with increasing oxidation time, which consisted of Ti-based, Ni-based and Mo-based oxides. Oxidation process of both the cermets was mainly controlled by O inward thermodynamic activity, and oxidation at 1000 oC was faster than that at 800 oC. However, cermet with Ni-20Cr metallic binder was oxidized slower than cermet with Ni metallic binder, due to the richness of Cr in Ni-based binder phase and the rim phase of Ti(C,N) ceramic grains. Cr was completely oxidized to form Cr0.17Mo0.83O2, and was incompletely oxidized to Cr-rich Ti-based oxides, leading to the decrease of O inward thermodynamic activity.

  18. Optimization of thermal performance of a smooth flat-plate solar air heater using teaching–learning-based optimization algorithm

    Directory of Open Access Journals (Sweden)

    R. Venkata Rao

    2015-12-01

    Full Text Available This paper presents the performance of teaching–learning-based optimization (TLBO algorithm to obtain the optimum set of design and operating parameters for a smooth flat plate solar air heater (SFPSAH. The TLBO algorithm is a recently proposed population-based algorithm, which simulates the teaching–learning process of the classroom. Maximization of thermal efficiency is considered as an objective function for the thermal performance of SFPSAH. The number of glass plates, irradiance, and the Reynolds number are considered as the design parameters and wind velocity, tilt angle, ambient temperature, and emissivity of the plate are considered as the operating parameters to obtain the thermal performance of the SFPSAH using the TLBO algorithm. The computational results have shown that the TLBO algorithm is better or competitive to other optimization algorithms recently reported in the literature for the considered problem.

  19. Air-coupled detection of the S1-ZGV lamb mode in a concrete plate based on backward wave propagation

    Science.gov (United States)

    Bjurström, H.; Ryden, N.

    2013-01-01

    Impact Echo is commonly used to determine thickness of concrete plate like structures. The method is based on the generation and detection of the plate thickness resonance frequency, where the group velocity of the first higher symmetric Lamb mode goes to zero (S1-ZGV). When using air-coupled microphones as receivers it is hard to determine the correct resonance frequency due to low signal to noise ratio. In this study multichannel signal processing is used to identify the S1-ZGV frequency, based on backward wave propagation instead of the conventional amplitude spectrum approach. The original PDF file of this article, as supplied to AIP Publishing, contained some minor font problems within Figures 1, 4, 7, 8, and 9. An updated PDF file using the correct font within those figures was issued on June 3, 2013. There are no other changes to the scientific content.

  20. Determining air pollutant emission rates based on mass balance using airborne measurement data over the Alberta oil sands operations

    Directory of Open Access Journals (Sweden)

    M. Gordon

    2015-05-01

    Full Text Available Top-down approaches to measure total integrated emissions provide verification of bottom-up, temporally-resolved, inventory-based estimations. Aircraft-based measurements of air pollutants from sources in the Canadian oil sands were made in support of the Joint Canada–Alberta Implementation Plan on Oil Sands Monitoring during a summer intensive field campaign between 13 August and 7 September 2013. The measurements contribute to knowledge needed in support of the Joint Canada–Alberta Implementation Plan on Oil Sands Monitoring. This paper describes a Top-down Emission Rate Retrieval Algorithm (TERRA to determine facility emissions of pollutants, using SO2 and CH4 as examples, based on the aircraft measurements. In this algorithm, the flight path around a facility at multiple heights is mapped to a two-dimensional vertical screen surrounding the facility. The total transport of SO2 and CH4 through this screen is calculated using aircraft wind measurements, and facility emissions are then calculated based on the divergence theorem with estimations of box-top losses, horizontal and vertical turbulent fluxes, surface deposition, and apparent losses due to air densification and chemical reaction. Example calculations for two separate flights are presented. During an upset condition of SO2 emissions on one day, these calculations are within 5% of the industry-reported, bottom-up measurements. During a return to normal operating conditions, the SO2 emissions are within 11% of industry-reported, bottom-up measurements. CH4 emissions calculated with the algorithm are relatively constant within the range of uncertainties. Uncertainty of the emission rates is estimated as 20%, which is primarily due to the unknown SO2 and CH4 mixing ratios near the surface below the lowest flight level.

  1. Determining air pollutant emission rates based on mass balance using airborne measurement data over the Alberta oil sands operations

    Science.gov (United States)

    Gordon, M.; Li, S.-M.; Staebler, R.; Darlington, A.; Hayden, K.; O'Brien, J.; Wolde, M.

    2015-09-01

    Top-down approaches to measure total integrated emissions provide verification of bottom-up, temporally resolved, inventory-based estimations. Aircraft-based measurements of air pollutants from sources in the Canadian oil sands were made in support of the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring during a summer intensive field campaign between 13 August and 7 September 2013. The measurements contribute to knowledge needed in support of the Joint Canada-Alberta Implementation Plan for Oil Sands Monitoring. This paper describes the top-down emission rate retrieval algorithm (TERRA) to determine facility emissions of pollutants, using SO2 and CH4 as examples, based on the aircraft measurements. In this algorithm, the flight path around a facility at multiple heights is mapped to a two-dimensional vertical screen surrounding the facility. The total transport of SO2 and CH4 through this screen is calculated using aircraft wind measurements, and facility emissions are then calculated based on the divergence theorem with estimations of box-top losses, horizontal and vertical turbulent fluxes, surface deposition, and apparent losses due to air densification and chemical reaction. Example calculations for two separate flights are presented. During an upset condition of SO2 emissions on one day, these calculations are within 5 % of the industry-reported, bottom-up measurements. During a return to normal operating conditions, the SO2 emissions are within 11 % of industry-reported, bottom-up measurements. CH4 emissions calculated with the algorithm are relatively constant within the range of uncertainties. Uncertainty of the emission rates is estimated as less than 30 %, which is primarily due to the unknown SO2 and CH4 mixing ratios near the surface below the lowest flight level.

  2. Indoor Air Contamination from Hazardous Waste Sites: Improving the Evidence Base for Decision-Making

    Science.gov (United States)

    Johnston, Jill; MacDonald Gibson, Jacqueline

    2015-01-01

    At hazardous waste sites, volatile chemicals can migrate through groundwater and soil into buildings, a process known as vapor intrusion. Due to increasing recognition of vapor intrusion as a potential indoor air pollution source, in 2015 the U.S. Environmental Protection Agency (EPA) released a new vapor intrusion guidance document. The guidance specifies two conditions for demonstrating that remediation is needed: (1) proof of a vapor intrusion pathway; and (2) evidence that human health risks exceed established thresholds (for example, one excess cancer among 10,000 exposed people). However, the guidance lacks details on methods for demonstrating these conditions. We review current evidence suggesting that monitoring and modeling approaches commonly employed at vapor intrusion sites do not adequately characterize long-term exposure and in many cases may underestimate risks. On the basis of this evidence, we recommend specific approaches to monitoring and modeling to account for these uncertainties. We propose a value of information approach to integrate the lines of evidence at a site and determine if more information is needed before deciding whether the two conditions specified in the vapor intrusion guidance are satisfied. To facilitate data collection and decision-making, we recommend a multi-directional community engagement strategy and consideration of environment justice concerns. PMID:26633433

  3. Laser-based measurements of OH in high pressure CH4/air flames

    Science.gov (United States)

    Battles, B. E.; Hanson, R. K.

    1991-01-01

    Narrow-linewidth laser absorption measurements are reported from which mole fraction and temperature of OH are determined in high-pressure (1-10 atm), lean CH4/air flames. These measurements were made in a new high pressure combustion facility which incorporates a traversable flat flame burner, providing spatially and temporally uniform combustion gases at pressures up to 10 am. A commercially avialable CW ring dye laser was used with an intracavity doubling crystal to provide near-UV single mode output at approximately 306 nm. The UV beam was rapidly scanned over 120 GHz (0.1 sec scan duration) to resolve the absorption lineshape of the A-X (0,0) R1(7)/R1(11) doublet of the OH radical. From the doublet's absorption lineshape, the temperature was determined; and from peak absorption, Beer's Law was employed to find the mole fraction of OH. These data were obtained as a function of height above the flame at various pressures.

  4. A Portable, Air-Jet-Actuator-Based Device for System Identification

    Science.gov (United States)

    Staats, Wayne; Belden, Jesse; Mazumdar, Anirban; Hunter, Ian

    2010-11-01

    System identification (ID) of human and robotic limbs could help in diagnosis of ailments and aid in optimization of control parameters and future redesigns. We present a self-contained actuator, which uses the Coanda effect to rapidly switch the direction of a high speed air jet to create a binary stochastic force input to a limb for system ID. The design of the actuator is approached with the goal of creating a portable device, which could deployed on robot or human limbs for in situ identification. The viability of the device is demonstrated by performing stochastic system ID on an underdamped elastic beam system with fixed inertia and stiffness, and variable damping. The non-parametric impulse response yielded from the stochastic system ID is modeled as a second order system, and the resultant parameters are found to be in excellent agreement with those found using more traditional system ID techniques. The current design could be further miniaturized and developed as a portable, wireless, on-site multi-axis system identification system for less intrusive and more widespread use.

  5. Evolutionary Agent-Based Simulation of the Introduction of New Technologies in Air Traffic Management

    Science.gov (United States)

    Yliniemi, Logan; Agogino, Adrian K.; Tumer, Kagan

    2014-01-01

    Accurate simulation of the effects of integrating new technologies into a complex system is critical to the modernization of our antiquated air traffic system, where there exist many layers of interacting procedures, controls, and automation all designed to cooperate with human operators. Additions of even simple new technologies may result in unexpected emergent behavior due to complex human/ machine interactions. One approach is to create high-fidelity human models coming from the field of human factors that can simulate a rich set of behaviors. However, such models are difficult to produce, especially to show unexpected emergent behavior coming from many human operators interacting simultaneously within a complex system. Instead of engineering complex human models, we directly model the emergent behavior by evolving goal directed agents, representing human users. Using evolution we can predict how the agent representing the human user reacts given his/her goals. In this paradigm, each autonomous agent in a system pursues individual goals, and the behavior of the system emerges from the interactions, foreseen or unforeseen, between the agents/actors. We show that this method reflects the integration of new technologies in a historical case, and apply the same methodology for a possible future technology.

  6. THREE-AXIS AIR-BEARING BASED PLATFORM FOR SMALL SATELLITE ATTITUDE DETERMINATION AND CONTROL SIMULATION.

    Directory of Open Access Journals (Sweden)

    F. Contreras

    2005-12-01

    Full Text Available A frictionless environment simulation platform, utilized for accomplishing three-axis attitude control tests in small satellites,is introduced. It is employed to develop, improve, and carry out objective tests of sensors, actuators, and algorithms in theexperimental framework. Different sensors (i.e. sun, earth, magnetometer, and an inertial measurement unit are utilizedto assess three-axis deviations. A set of three inertial wheels is used as primary actuators for attitude control, together withthree mutually perpendicular magnetic coils intended for desaturation purposes, and as a backup control system. Accuratebalancing, through the platform’s center of mass relocation into the geometrical center of the spherical air-bearing,significatively reduces gravitational torques, generating a virtually torque-free environment. A very practical balancingprocedure was developed for equilibrating the table in the local horizontal plane, with a reduced final residual torque. Awireless monitoring system was developed for on-line and post-processing analysis; attitude data are displayed and stored,allowing properly evaluate the sensors, actuators, and algorithms. A specifically designed onboard computer and a set ofmicrocontrollers are used to carry out attitude determination and control tasks in a distributed control scheme.The main components and subsystems of the simulation platform are described in detail.

  7. Durability of Silicide-Based Thermoelectric Modules at High Temperatures in Air

    Science.gov (United States)

    Funahashi, Ryoji; Matsumura, Yoko; Barbier, Tristan; Takeuchi, Tomonari; Suzuki, Ryosuke O.; Katsuyama, Shigeru; Yamamoto, Atsushi; Takazawa, Hiroyuki; Combe, Emmanuel

    2015-08-01

    Thermoelectric modules consisting of n-type Mn2.7Cr0.3Si4Al2 and p-type MnSi1.75 legs have been fabricated by use of composite pastes of Ag with Pt or Pd. For the module prepared by Ni-B plating and with Ag paste, the specific power density reached 370 mW/cm2 at a heat-source temperature of 873 K. Ni-B plating 5 μm thick on the surfaces of the silicide legs reduced both the internal resistance and degradation of the power generated by silicide modules at temperatures up to 873 K in air. This is because of oxidation of Al diffusing into the n-type legs and reaching the Ag electrodes on both the hot and cold sides. Ni-B plating can suppress Al diffusion into n-type legs. However, cracking was observed parallel to the contact surface in the middle of the Ni-B plating layer on the p-type legs. It was also found that incorporating Pt or Pd into the Ag paste effectively suppressed degradation of the contact resistance between the silicide legs and the Ag electrodes.

  8. Air Temperature Error Correction Based on Solar Radiation in an Economical Meteorological Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Xingming Sun

    2015-07-01

    Full Text Available Air temperature (AT is an extremely vital factor in meteorology, agriculture, military, etc., being used for the prediction of weather disasters, such as drought, flood, frost, etc. Many efforts have been made to monitor the temperature of the atmosphere, like automatic weather stations (AWS. Nevertheless, due to the high cost of specialized AT sensors, they cannot be deployed within a large spatial density. A novel method named the meteorology wireless sensor network relying on a sensing node has been proposed for the purpose of reducing the cost of AT monitoring. However, the temperature sensor on the sensing node can be easily influenced by environmental factors. Previous research has confirmed that there is a close relation between AT and solar radiation (SR. Therefore, this paper presents a method to decrease the error of sensed AT, taking SR into consideration. In this work, we analyzed all of the collected data of AT and SR in May 2014 and found the numerical correspondence between AT error (ATE and SR. This corresponding relation was used to calculate real-time ATE according to real-time SR and to correct the error of AT in other months.

  9. Nobel Method for Toluene Removal from Air Based on Ionic Liquid Modified Nano-Graphen

    Directory of Open Access Journals (Sweden)

    HAMID SHIRKHANLOO

    2015-10-01

    Full Text Available  The aim of this study was to investigate the removal of toluene from air through Nano-graphene modified by ionic liquid (NG-IL. The batch adsorption experiments in glass bottle of gas chromatography equipped with flame ionization detector (GC-FID were used. Graphene ultrahigh-quality synthesized by substrate-free gas-phase method in a single step and graphene sheets were deposited with ionic- liquid by thermal adsorption in acetone blank solution. Various conditions including contact time, amount of adsorbent, adsorbate concentration, humidity, and temperature were studied and optimized. NG-IL adsorbent was used for the adsorption of toluene vapor from gaseous media and the effect of different conditions such as; toluene concentration, humidity, and temperature on the adsorption were investigated. The Langmuir adsorption isotherms were employed for toluene by NG-IL adsorbent. The adsorption capacity was decreased by raising the sorbent humidity above 50 percent. The toluene capture capacity for NG-IL was 126 mg/g. The results of SEM, XRD, and TEM showed that, the NG-IL have beneficial surfaces for toluene removal. NG-IL as a novel adsorbent has not previously been used for the adsorption of pollutants.

  10. Ultra-Low Breakdown Voltage of Field Ionization in Atmospheric Air Based on Silicon Nanowires

    International Nuclear Information System (INIS)

    Classic field ionization requires extremely high positive electric fields, of the order of a few million volts per centimeter. Here we show that field ionization can occur at dramatically lower fields on the electrode of silicon nanowires (SiNWs) with dense surface states and large field enhancement factor. A field ionization structure using SiNWs as the anode has been investigated, in which the SiNWs were fabricated by improved chemical etching process. At room temperature and atmospheric pressure, breakdown of the air is reproducible with a fixed anode-to-cathode distance of 0.5 μm. The breakdown voltage is ∼38 V, low enough to be achieved by a battery-powered unit. Two reasons can be given for the low breakdown voltage. First, the gas discharge departs from the Paschen's law and the breakdown voltage decreases sharply as the gap distance falls in μm range. The other reason is the large electric field enhancement factor (β) and the high density of surface defects, which cause a highly non-uniform electric field for field emission to occur

  11. 基于复合热源的热泵型空调器%Heat pump air conditioner based on multiple heat sources

    Institute of Scientific and Technical Information of China (English)

    吴国珊; 凌勋

    2012-01-01

    It is proposed that the air-water multiple heat sources could be the heat source of heat pump air conditioner. Based on the current study condition, the heat pump air conditioner which has a air/family waste water multiple heat source is preliminary designed. The working cycle and characteristics of the air conditioner are analyzed by using the thermodynamic principle. The results show that the refrigeration performance of the heat pump air conditioner is better than that of air source heat pump air conditioner, the heating performance and the situation which the outdoor heat exchanger frosts are improved.%提出将空气-水作为热泵型空调器的复合热源.根据当前的研究状况,初步设计空气-水复合热源热泵型空调器,利用热力学原理分析该空调器的工作循环和特点,结果表明该空调器的制冷性能高于空气源热泵空调器,制热和室外换热器结霜状况得到一定改善.

  12. Towards Organized Hybrid Nanomaterials at the Air/Water Interface Based on Liquid-Crystal/ZnO Nanocrystals.

    Science.gov (United States)

    Paczesny, Jan; Wolska-Pietkiewicz, Małgorzata; Binkiewicz, Ilona; Wróbel, Zbigniew; Wadowska, Monika; Matuła, Kinga; Dzięcielewski, Igor; Pociecha, Damian; Smalc-Koziorowska, Julita; Lewiński, Janusz; Hołyst, Robert

    2015-11-16

    The ability to self-assemble nanosized ligand-stabilized metal oxide or semiconductor materials offers an intriguing route to engineer nanomaterials with new tailored properties from the disparate components. We describe a novel one-pot two-step organometallic approach to prepare ZnO nanocrystals (NCs) coated with deprotonated 4-(dodecyloxy)benzoic acid (i.e., an X-type liquid-crystalline ligand) as a model LC system (termed ZnO-LC1 NCs). Langmuir and Langmuir-Blodgett films of the resulting hybrids are investigated. The observed behavior of the ZnO NCs at the air/water interface is rationalized by invoking a ZnO-interdigitation process mediated by the anchored liquid-crystalline shell. The ordered superstructures form according to mechanism based on a ZnO-interdigitation process mediated by liquid crystals (termed ZIP-LC). The external and directed force applied upon compression at the air/water interface and the packing of the ligands that stabilize the ZnO cores drives the formation of nanorods of ordered internal structure. To study the process in detail, we follow a nontraditional protocol of thin-film investigation. We collect the films from the air/water interface in powder form (ZnO-LC1 LB), resuspend the powder in organic solvents and utilize otherwise unavailable experimental techniques. The structural and physical properties of the resulting superlattices were studied by using electron microscopy, atomic force microscopy, X-ray studies, dynamic light scattering, thermogravimetric analysis, UV/Vis absorption, and photoluminescence spectroscopy. PMID:26427916

  13. Radiological safety system based on real-time tritium-in-air monitoring indoors and in effluents

    International Nuclear Information System (INIS)

    Exposure to tritium is an important health hazard in any tritium processing facility so that implementing a real-time tritium monitoring system is necessary for its operation in safety conditions. The tritium processing facility operators need to be informed at any time about the in-air tritium concentration indoors or in the stack effluents, in order to detect immediately any leaks in tritium containments, or any releases inside the buildings or to the environment. This information is very important for adopting if necessary protection measures and correcting actions as quickly as possible. In this paper we describe an improved real-time tritium monitoring system designed for the Heavy Water Detritiation Pilot Plant of National Institute for Cryogenics and Isotopes Separation, Rm. Valcea, Romania. The design of the Radiological Safety System implemented for the ICIT Water Detritiation Pilot Plant is intended to provide the maximum safety level based on the ALARA concept. The main functions of tritium monitoring system are: - monitoring the working areas and gaseous effluents by determination of the tritium-in-air activity concentration; - local and remote data display; - assessing of environment dose equivalent rates and dose equivalents in the working environment (for personnel exposure control and work planning); - assessing the total tritium activity released to the environment through ventilation exhaust stack; - safety functions, i.e., local and remote, locking/unlocking personnel access, process shut-down in emergency conditions and start of the air cleaning systems. With all these features our tritium monitoring system is really a safety system adequate for personnel and environmental protection. (authors)

  14. [Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 1, Site assessment report

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    In April 1990, Wright-Patterson Air Force Base (WPAFB) initiated an effort for the evaluation of potential removal of ground water contamination at the Base. This report presents a current assessment of the nature and extent of the contamination believed to be migrating across the southwestern boundary of Area C and the northern boundary of Area B based upon analysis of existing environmental data obtained from several sources. The existing data base indicates widespread, low-level contamination moving across Base boundaries at levels that pose no immediate threat to the Mad River Valley well fields. An investigation by the City of Dayton in May and June 1990, however, implies that a more identifiable plume of PCE and TCE may be crossing the southwestern boundary of Area C immediately downgradient of Landfill 5. More data is needed to delineate ground water contamination and to design and implement a suitable control system. This report concludes that although an extensive study of the boundaries in question would be the preferred approach, a limited, focused investigation and subsequent feasibility study can be accomplished with a reasonable certainty of achieving the desired outcome of this project.

  15. An air-based corrugated cavity-receiver for solar parabolic trough concentrators

    International Nuclear Information System (INIS)

    Highlights: • We analyze a novel tubular cavity-receiver for solar parabolic trough collectors. • Four-fold solar concentration ratio is reached compared to conventional receivers. • Efficient operation at up to 500 °C is possible. • The pumping power requirement is found to be acceptably low. - Abstract: A tubular cavity-receiver that uses air as the heat transfer fluid is evaluated numerically using a validated heat transfer model. The receiver is designed for use on a large-span (9 m net concentrator aperture width) solar parabolic trough concentrator. Through the combination of a parabolic primary concentrator with a nonimaging secondary concentrator, the collector reaches a solar concentration ratio of 97.5. Four different receiver configurations are considered, with smooth or V-corrugated absorber tube and single- or double-glazed aperture window. The collector’s performance is characterized by its optical efficiency and heat loss. The optical efficiency is determined with the Monte Carlo ray-tracing method. Radiative heat exchange inside the receiver is calculated with the net radiation method. The 2D steady-state energy equation, which couples conductive, convective, and radiative heat transfer, is solved for the solid domains of the receiver cross-section, using finite-volume techniques. Simulations for Sevilla/Spain at the summer solstice at solar noon (direct normal solar irradiance: 847 W m−2, solar incidence angle: 13.9°) yield collector efficiencies between 60% and 65% at a heat transfer fluid temperature of 125 °C and between 37% and 42% at 500 °C, depending on the receiver configuration. The optical losses amount to more than 30% of the incident solar radiation and constitute the largest source of energy loss. For a 200 m long collector module operated between 300 and 500 °C, the isentropic pumping power required to pump the HTF through the receiver is between 11 and 17 kW

  16. Simulation Based Low-Cost Composite Process Development at the US Air Force Research Laboratory

    Science.gov (United States)

    Rice, Brian P.; Lee, C. William; Curliss, David B.

    2003-01-01

    Low-cost composite research in the US Air Force Research Laboratory, Materials and Manufacturing Directorate, Organic Matrix Composites Branch has focused on the theme of affordable performance. Practically, this means that we use a very broad view when considering the affordability of composites. Factors such as material costs, labor costs, recurring and nonrecurring manufacturing costs are balanced against performance to arrive at the relative affordability vs. performance measure of merit. The research efforts discussed here are two projects focused on affordable processing of composites. The first topic is the use of a neural network scheme to model cure reaction kinetics, then utilize the kinetics coupled with simple heat transport models to predict, in real-time, future exotherms and control them. The neural network scheme is demonstrated to be very robust and a much more efficient method that mechanistic cure modeling approach. This enables very practical low-cost processing of thick composite parts. The second project is liquid composite molding (LCM) process simulation. LCM processing of large 3D integrated composite parts has been demonstrated to be a very cost effective way to produce large integrated aerospace components specific examples of LCM processes are resin transfer molding (RTM), vacuum assisted resin transfer molding (VARTM), and other similar approaches. LCM process simulation is a critical part of developing an LCM process approach. Flow simulation enables the development of the most robust approach to introducing resin into complex preforms. Furthermore, LCM simulation can be used in conjunction with flow front sensors to control the LCM process in real-time to account for preform or resin variability.

  17. Nickel based alloys as electrocatalysts for oxygen evolution from alkaline solutions. [Metal--air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lu, P.W.T.; Srinivasan, S.

    1977-01-01

    The slowness of the oxygen evolution reaction is one of the main reasons for significant energy losses in water electrolysis cells and secondary air--metal batteries. To date, data on the kinetics of this reaction on alloys and intermetallic compounds are sparse. In this work, mechanically polished alloys of nickel with Ir, Ru or W and Ni--Ti intermetallic compounds were studied as oxygen electrodes. Since the oxygen evolution reaction always takes place on oxide-film covered surfaces, the nature of oxide films formed on these alloys were investigated using cyclic voltametric techniques. Steady-state potentiostatic and slow potentiodynamic (at 0.1 mV/s) methods were employed to obtain the electrode kinetic parameters for the oxygen evolution reaction in 30 wt. percent KOH at 80/sup 0/C, the conditions normally used in water electrolysis cells. The peaks for the formation or reduction of oxygen-containing layers appearing on the pure metals are not always found on the alloys. The maximum decreases in oxygen overpotential at an apparent current density of 20 mA cm/sup -2/ (as compared with that on Ni) were found for the alloys of 50Ni--50Ir and 75Ni--25Ru and the intermetallic compound Ni/sub 3/Ti, these decreases being about 40, 30, and 20 mV, respectively. On the long-term polarization in the potential region of oxygen evolution, the oxygen-containing layers on Ni--Ir or Ni--Ru alloys are essentially composed of nickel oxides instead of true mixed oxide films of two components. The present work confirms that, possibly because of coverage by oxide films, there is no direct dependence of the electrocatalytic activities of the alloys on their electronic properties. 11 figures, 1 table.

  18. A PD Law Based Fuzzy Logic Control Strategy For Simultaneous Control Of Indoor Temperature And Humidity Using A Variable Speed Direct Expansion Air Conditioner

    OpenAIRE

    Li, Zhao; Xu, Xiang Guo; Deng, Shi Ming; Pan, Dong Mei

    2014-01-01

    In small to medium scale buildings located in the subtropics, such as Hong Kong, direct expansion air conditioning (DX A/C) systems are widely applied. This is because, as compared to chilled water based central air conditioning systems, DX A/C systems are compact, flexible for multi-room services, energy efficient and cost less to maintain and operate. However, traditionally, a DX A/C system is equipped with a single-speed compressor and supply air fan, and employs ON / OFF control strategy ...

  19. Data fusion control and guidance of surface-to-air missile under the complex circumstance based on neural-net technology

    Institute of Scientific and Technical Information of China (English)

    Zhou Deyun; Zhou Feng

    2008-01-01

    Under the complicated electromagnetism circumstance,the model of data fusion control and guidance of surface-to-air missile weapon systems is established.Such ways and theories as Elman-NN,radar tracking and niter's data fusion net based on the group method for data-processing (GMRDF) are applied to constructing the model of data fusion.The highly reliable state estimation of the tracking targets and the improvement in accuracy of control and guidance are obtained.The purpose is optimization design of data fusion control and guidance of surface-to-air missile weapon systems and improving the fighting effectiveness of surface-to-air missile weapon systems.

  20. Hill Air Force Base: Archaeological Monitoring of Target and Access Road Development for the TS-5-2 Target Area, Utah Test and Training Range, Tooele County, Utah

    OpenAIRE

    Duke, Daron

    2002-01-01

    The U.S. Army Corps of Engineers, Fort Worth District, contracted with Geo-Marine, Inc., to conduct archaeologial monitoring for a U.S. Air Force Air Combat Command (ACC) project on the Utah Test and Training Range (UTTR), which is under the jurisdiction of Hill Air Force Base and located in Tooele County, western Utah. Monitoring of ground disturbing activities associated with ACC development of Target TS-5-2 and a 2.5-mile dirt access road on the TS-5 (Wild Isle) area of UTTR was undertake...

  1. A health-based assessment of particulate air pollution in urban areas of Beijing in 2000-2004

    International Nuclear Information System (INIS)

    Particulate air pollution is a serious problem in Beijing. The annual concentration of particulate matter with aerodynamic diameter less than 10 μm (PM10), ranging from 141 to 166 μg m-3 in 2000-2004, could be very harmful to human health. In this paper, we presented the mortality and morbidity effects of PM10 pollution based on statistical data and the epidemiological exposure-response function. The economic costs to health during the 5 years were estimated to lie between US$1670 and $3655 million annually, accounting for about 6.55% of Beijing's gross domestic product each year. The total costs were apportioned into two parts caused by: the local emissions and long-range transported pollution. The contribution from local emissions dominated the total costs, accounting on average for 3.60% of GDP. However, the contributions from transported pollution cannot be neglected, and the relative percentage to the total costs from the other regions could account for about 45%. An energy policy and effective measures should be proposed to reduce particulate matter, especially PM2.5 pollution in Beijing to protect public health. The Beijing government also needs to cooperate with the other local governments to reduce high background level of particulate air pollution

  2. Isothermal oxidation behavior of Ti3Al-based alloy at 700-1 000 ℃ in air

    Institute of Scientific and Technical Information of China (English)

    QIAN Yu-hai; LI Mei-shuan; LU Bin

    2009-01-01

    The isothermal oxidation behavior of a Ti3Al-based alloy (Ti-24Al-14Nb-3V-0.5Mo-0.3Si, molar fraction, %) at 700- 1 000 ℃ in air was investigated. The oxidation kinetics of tested alloy approximately obeys the parabolic law, which shows that the oxidation process is dominated by the diffusion of ions. The oxidation diffusion activity energy is 241.32 kJ/mol. The tested alloy exhibits good oxidation resistance at 700 ℃. However, when the temperature is higher than 900 ℃, the oxidation resistance becomes poor. The XRD results reveal that the oxide product consists of a mixture of TiO2 and Al2O3. Serious crack and spallation of oxide scale occur during cooling procedure after being exposed at 1 000 ℃ in air for 16 h. According to the analysis of SEM/EDS and XRD, it is concluded that the Al2O3 oxide forms at the initially transient oxidation stage and most of it keeps in the outer oxide layer during the subsequent oxidation procedure.

  3. Improved spatial monitoring of air temperature in forested complex terrain: an energy-balance based calibration method

    Science.gov (United States)

    Kennedy, A. M.; Thomas, C. K.; Pypker, T. G.; Bond, B. J.; Selker, J. S.; Unsworth, M. H.

    2009-12-01

    Fiber-optic distributed temperature sensing (DTS) has great potential for spatial monitoring in hydrology and atmospheric science. DTS systems have an advantage over conventional individual temperature sensors in that thousands of quasi-concurrent temperature measurements may be made along the entire length of a fiber at 1 meter increments by a single instrument, thus increasing measurement precision. However, like any other temperature sensors, the fiber temperature is influenced by energy exchange with its environment, particularly by radiant energy (solar and long-wave) and by wind speed. The objective of this research is to perform an energy-balance based calibration of a DTS fiber system that will reduce the uncertainty of air temperature measurements in open and forested environments. To better understand the physics controlling the fiber temperature reported by the DTS, alternating black and white fiber optic cables were installed on vertical wooden jigs inside a recirculating wind tunnel. A constant irradiance from six 600W halogen lamps was directed on a two meter section of fiber to permit controlled observations of the resulting temperature difference between the black and white fibers as wind speed was varied. The net short and longwave radiation balance of each fiber was measured with an Eppley pyranometer and Kipp and Zonen pyrgeometer. Additionally, accurate air temperature was recorded from a screened platinum resistance thermometer, and sonic anemometers were positioned to record wind speed and turbulence. Relationships between the temperature excess of each fiber, net radiation, and wind speed were developed and will be used to derive correction terms in future field work. Preliminary results indicate that differential heating of fibers (black-white) is driven largely by net radiation with wind having a smaller but consistent effect. Subsequent work will require field verification to confirm that the observed wind tunnel correction algorithms are

  4. Simulation evaluation of TIMER, a time-based, terminal air traffic, flow-management concept

    Science.gov (United States)

    Credeur, Leonard; Capron, William R.

    1989-01-01

    A description of a time-based, extended terminal area ATC concept called Traffic Intelligence for the Management of Efficient Runway scheduling (TIMER) and the results of a fast-time evaluation are presented. The TIMER concept is intended to bridge the gap between today's ATC system and a future automated time-based ATC system. The TIMER concept integrates en route metering, fuel-efficient cruise and profile descents, terminal time-based sequencing and spacing together with computer-generated controller aids, to improve delivery precision for fuller use of runway capacity. Simulation results identify and show the effects and interactions of such key variables as horizon of control location, delivery time error at both the metering fix and runway threshold, aircraft separation requirements, delay discounting, wind, aircraft heading and speed errors, and knowledge of final approach speed.

  5. Visual Servoing of Quadrotor Micro-Air Vehicle Using Color-Based Tracking Algorithm

    Science.gov (United States)

    Azrad, Syaril; Kendoul, Farid; Nonami, Kenzo

    This paper describes a vision-based tracking system using an autonomous Quadrotor Unmanned Micro-Aerial Vehicle (MAV). The vision-based control system relies on color target detection and tracking algorithm using integral image, Kalman filters for relative pose estimation, and a nonlinear controller for the MAV stabilization and guidance. The vision algorithm relies on information from a single onboard camera. An arbitrary target can be selected in real-time from the ground control station, thereby outperforming template and learning-based approaches. Experimental results obtained from outdoor flight tests, showed that the vision-control system enabled the MAV to track and hover above the target as long as the battery is available. The target does not need to be pre-learned, or a template for detection. The results from image processing are sent to navigate a non-linear controller designed for the MAV by the researchers in our group.

  6. 77 FR 73544 - Approval and Promulgation of Air Quality Implementation Plans; West Virginia; The 2002 Base Year...

    Science.gov (United States)

    2012-12-11

    ...).) List of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control, Carbon monoxide... Fine Particulate Matter National Ambient Air Quality Standard AGENCY: Environmental Protection Agency..., WV-KY-OH nonattainment area for the 1997 PM 2.5 National Ambient Air Quality Standard (NAAQS). EPA...

  7. Portable air quality sensor unit for participatory monitoring: an end-to-end VESNA-AQ based prototype

    Science.gov (United States)

    Vucnik, Matevz; Robinson, Johanna; Smolnikar, Miha; Kocman, David; Horvat, Milena; Mohorcic, Mihael

    2015-04-01

    Key words: portable air quality sensor, CITI-SENSE, participatory monitoring, VESNA-AQ The emergence of low-cost easy to use portable air quality sensors units is opening new possibilities for individuals to assess their exposure to air pollutants at specific place and time, and share this information through the Internet connection. Such portable sensors units are being used in an ongoing citizen science project called CITI-SENSE, which enables citizens to measure and share the data. The project aims through creating citizens observatories' to empower citizens to contribute to and participate in environmental governance, enabling them to support and influence community and societal priorities as well as associated decision making. An air quality measurement system based on VESNA sensor platform was primarily designed within the project for the use as portable sensor unit in selected pilot cities (Belgrade, Ljubljana and Vienna) for monitoring outdoor exposure to pollutants. However, functionally the same unit with different set of sensors could be used for example as an indoor platform. The version designed for the pilot studies was equipped with the following sensors: NO2, O3, CO, temperature, relative humidity, pressure and accelerometer. The personal sensor unit is battery powered and housed in a plastic box. The VESNA-based air quality (AQ) monitoring system comprises the VESNA-AQ portable sensor unit, a smartphone app and the remote server. Personal sensor unit supports wireless connection to an Android smartphone via built-in Wi-Fi. The smartphone in turn serves also as the communication gateway towards the remote server using any of available data connections. Besides the gateway functionality the role of smartphone is to enrich data coming from the personal sensor unit with the GPS location, timestamps and user defined context. This, together with an accelerometer, enables the user to better estimate ones exposure in relation to physical activities, time

  8. Numerical analysis of the in-well vapor-stripping system demonstration at Edwards Air Force Base

    Energy Technology Data Exchange (ETDEWEB)

    White, M.D.; Gilmore, T.J.

    1996-10-01

    Numerical simulations, with the Subsurface Transport Over Multiple Phases (STOMP) simulator, were applied to the field demonstration of an in-well vapor-stripping system at Edwards Air Force Base (AFB), near Mojave, California. The demonstration field site on the Edwards AFB was previously contaminated from traversing groundwater that was contained a varied composition of volatile organic compounds (VOCs), which primarily includes trichloroethylene (TCE). Contaminant TCE originated from surface basin that had been used to collect runoff during the cleaning of experimental rocket powered planes in the 1960s and 1970s. This report documents those simulations and associated numerical analyses. A companion report documents the in- well vapor-stripping demonstration from a field perspective.

  9. Cosmic ray measurements in the knee region: new perspectives for simultaneous air-borne and ground-based observations

    International Nuclear Information System (INIS)

    Direct measurements of cosmic ray composition and energy spectra in the knee region (1015 to 1016 eV) represent a real challenge for balloon and space borne experiments due to their limited exposure. On the other hand, ground-based extensive air shower arrays (EAS) can provide a measurement of the primary particle energy but fail to identify unambiguously its nature. The possibility to couple a large area instrument in flight, dedicated to the charge identification of the primary nucleus, with a ground array is explored. This task is within the reach of today detector technologies but requires a formidable step in the current development of stratospheric airship platforms capable of maintaining a long-duration stationary position above the EAS array

  10. Numerical analysis of the in-well vapor-stripping system demonstration at Edwards Air Force Base

    International Nuclear Information System (INIS)

    Numerical simulations, with the Subsurface Transport Over Multiple Phases (STOMP) simulator, were applied to the field demonstration of an in-well vapor-stripping system at Edwards Air Force Base (AFB), near Mojave, California. The demonstration field site on the Edwards AFB was previously contaminated from traversing groundwater that was contained a varied composition of volatile organic compounds (VOCs), which primarily includes trichloroethylene (TCE). Contaminant TCE originated from surface basin that had been used to collect runoff during the cleaning of experimental rocket powered planes in the 1960s and 1970s. This report documents those simulations and associated numerical analyses. A companion report documents the in- well vapor-stripping demonstration from a field perspective

  11. Cosmic ray measurements in the knee region: new perspectives for simultaneous air-borne and ground-based observations

    Energy Technology Data Exchange (ETDEWEB)

    Marrocchesi, P.S. [Physics Dept., Univ. of Siena and INFN, 56 via Roma, 53100 Siena (Italy)]. E-mail: marrocchesi@pi.infn.it

    2006-01-15

    Direct measurements of cosmic ray composition and energy spectra in the knee region (10{sup 15} to 10{sup 16} eV) represent a real challenge for balloon and space borne experiments due to their limited exposure. On the other hand, ground-based extensive air shower arrays (EAS) can provide a measurement of the primary particle energy but fail to identify unambiguously its nature. The possibility to couple a large area instrument in flight, dedicated to the charge identification of the primary nucleus, with a ground array is explored. This task is within the reach of today detector technologies but requires a formidable step in the current development of stratospheric airship platforms capable of maintaining a long-duration stationary position above the EAS array.

  12. Suitability of Semiconductor Heterostructure over SiO2-Air Composition for One-Dimensional Photonic Crystal based Bandpass Filter

    Directory of Open Access Journals (Sweden)

    Arka Karmakar

    2013-05-01

    Full Text Available Bandpass filter characteristics is numerically computed for semiconductor heterostructure based onedimensional photonic crystal at different optical wavelengths by varying the structural parameters taking GaAs/AlxGa1-xAs as a suitable composition subject to normal incidence of electromagnetic wave. Transfer matrix technique is used for numerical analysis. Results are compared with conventionally used SiO2-air material system and significance improvements are observed at few desired spectra. Heterostructure provides larger passbandwidth with almost negligible ripple than conventional material system at 1330 nm or 1550 nm, which is required for present day optical communication network. Efficient tuning can be achieved by varying different layer dimensions for the preferred material composition which effectively changes the filter bandwidth in either side of the central wavelength, but it cost generation of ripples for the conventional system.

  13. Use of aquifer testing to complete ground water remedial design, shallow aquifer Nellis Air Force Base, Las Vegas, Nevada

    International Nuclear Information System (INIS)

    As part of a US Army Corps of Engineers-directed remedial action, a ground water treatment system is being installed at Site 27, Nellis Air Force Base, Las Vegas, Nevada. Twenty-three extraction wells were installed in the center and on the leading edge of a jet fuel plume of free and dissolved product in the uppermost (nonpotable) aquifer. The purpose of the extraction well system is to contain and remediate the plume, and to recover free product, which is over 10 feet thick in one well. Aquifer testing, including step and constant discharge tests, was conducted during well installation in order to (1) assist in location of subsequent wells, (2) obtain dynamic product thickness data for selection of wells in which skimmer pumps will be installed, (3) determine initial pumping rates, (4) determine aquifer parameters for modeling and optimization, and (5) provide baseline data on well performance to evaluate possible future biofouling

  14. Community air monitoring for pesticides. Part 3: using health-based screening levels to evaluate results collected for a year.

    Science.gov (United States)

    Wofford, Pamela; Segawa, Randy; Schreider, Jay; Federighi, Veda; Neal, Rosemary; Brattesani, Madeline

    2014-03-01

    The CA Department of Pesticide Regulation (CDPR) and the CA Air Resources Board monitored 40 pesticides, including five degradation products, in Parlier, CA, to determine if its residents were exposed to any of these pesticides and, if so, in what amounts. They included 1,3-dichloropropene, acrolein, arsenic, azinphos-methyl, carbon disulfide, chlorpyrifos and its degradation product, chlorthalonil, copper, cypermethrin, diazinon and its degradation product, dichlorvos, dicofol, dimethoate and its degradation product, diuron, endosulfan and its degradation product, S-ethyl dipropylcarbamothioate (EPTC), formaldehyde, malathion and its degradation product, methyl isothiocyanate (MITC), methyl bromide, metolachlor, molinate, norflurazon, oryzalin, oxyfluorfen, permethrin, phosmet, propanil, propargite, simazine, SSS-tributylphosphorotrithioate, sulfur, thiobencarb, trifluralin, and xylene. Monitoring was conducted 3 days per week for a year. Twenty-three pesticides and degradation products were detected. Acrolein, arsenic, carbon disulfide, chlorpyrifos, copper, formaldehyde, methyl bromide, MITC, and sulfur were detected in more than half the samples. Since no regulatory ambient air standards exist for these pesticides, CDPR developed advisory, health-based non-cancer screening levels (SLs) to assess acute, subchronic, and chronic exposures. For carcinogenic pesticides, CDPR assessed risk using cancer potency values. Amongst non-carcinogenic agricultural use pesticides, only diazinon exceeded its SL. For carcinogens, 1,3-dichloropropene concentrations exceeded its cancer potency value. Based on these findings, CDPR has undertaken a more comprehensive evaluation of 1,3-dichloropropene, diazinon, and the closely related chlorpyrifos that was frequently detected. Four chemicals-acrolein, arsenic, carbon disulfide, and formaldehyde-sometimes used as pesticides were detected, although no pesticidal use was reported in the area during this study. Their presence was most

  15. Air Abrasion

    Science.gov (United States)

    ... delivered directly to your desktop! more... What Is Air Abrasion? Article Chapters What Is Air Abrasion? What Happens? The Pros and Cons Will I Feel Anything? Is Air Abrasion for Everyone? print full article print this ...

  16. Evaluation of physical sampling efficiency for cyclone-based personal bioaerosol samplers in moving air environments

    OpenAIRE

    Su, Wei-Chung; Tolchinsky, Alexander D.; Chen, Bean T; Sigaev, Vladimir I.; Cheng, Yung Sung

    2012-01-01

    The need to determine occupational exposure to bioaerosols has notably increased in the past decade, especially for microbiology-related workplaces and laboratories. Recently, two new cyclone-based personal bioaerosol samplers were developed by the National Institute for Occupational Safety and Health (NIOSH) in the USA and the Research Center for Toxicology and Hygienic Regulation of Biopreparations (RCT & HRB) in Russia to monitor bioaerosol exposure in the workplace. Here, a series of wind...

  17. Comparison of Highly Resolved Model-Based Exposure Metrics for Traffic-Related Air Pollutants to Support Environmental Health Studies

    Directory of Open Access Journals (Sweden)

    Shih Ying Chang

    2015-12-01

    Full Text Available Human exposure to air pollution in many studies is represented by ambient concentrations from space-time kriging of observed values. Space-time kriging techniques based on a limited number of ambient monitors may fail to capture the concentration from local sources. Further, because people spend more time indoors, using ambient concentration to represent exposure may cause error. To quantify the associated exposure error, we computed a series of six different hourly-based exposure metrics at 16,095 Census blocks of three Counties in North Carolina for CO, NOx, PM2.5, and elemental carbon (EC during 2012. These metrics include ambient background concentration from space-time ordinary kriging (STOK, ambient on-road concentration from the Research LINE source dispersion model (R-LINE, a hybrid concentration combining STOK and R-LINE, and their associated indoor concentrations from an indoor infiltration mass balance model. Using a hybrid-based indoor concentration as the standard, the comparison showed that outdoor STOK metrics yielded large error at both population (67% to 93% and individual level (average bias between −10% to 95%. For pollutants with significant contribution from on-road emission (EC and NOx, the on-road based indoor metric performs the best at the population level (error less than 52%. At the individual level, however, the STOK-based indoor concentration performs the best (average bias below 30%. For PM2.5, due to the relatively low contribution from on-road emission (7%, STOK-based indoor metric performs the best at both population (error below 40% and individual level (error below 25%. The results of the study will help future epidemiology studies to select appropriate exposure metric and reduce potential bias in exposure characterization.

  18. Performance Testing of a Magnetically Suspended Double Gimbal Control Moment Gyro Based on the Single Axis Air Bearing Table

    Directory of Open Access Journals (Sweden)

    Jiancheng Fang

    2012-07-01

    Full Text Available Integrating the advantage of magnetic bearings with a double gimble control moment gyroscope (DGCMG, a magnetically suspended DGCMG (MSDGCMG is an ideal actuator in high-precision, long life, and rapid maneuver attitude control systems. The work presented here mainly focuses on performance testing of a MSDGCMG independently developed by Beihang University, based on the single axis air bearing table. In this paper, taking into sufficient consideration to the moving-gimbal effects and the response bandwidth limit of the gimbal, a special MSDGCMG steering law is proposed subject to the limits of gimbal angle rate and angle acceleration. Finally, multiple experiments are carried out, with different MSDGCMG angular momenta as well as different desired attitude angles. The experimental results indicate that the MSDGCMG has a good gimbal angle rate and output torque tracking capabilities, and that the attitude stability with MSDGCMG as actuator is superior to 10−3°/s. The MSDGCMG performance testing in this paper, carried out under moving-base condition, will offer a technique base for the future research and application of MSDGCMGs.

  19. Performance testing of a magnetically suspended double gimbal control moment gyro based on the single axis air bearing table.

    Science.gov (United States)

    Cui, Peiling; Zhang, Huijuan; Yan, Ning; Fang, Jiancheng

    2012-01-01

    Integrating the advantage of magnetic bearings with a double gimble control moment gyroscope (DGCMG), a magnetically suspended DGCMG (MSDGCMG) is an ideal actuator in high-precision, long life, and rapid maneuver attitude control systems. The work presented here mainly focuses on performance testing of a MSDGCMG independently developed by Beihang University, based on the single axis air bearing table. In this paper, taking into sufficient consideration to the moving-gimbal effects and the response bandwidth limit of the gimbal, a special MSDGCMG steering law is proposed subject to the limits of gimbal angle rate and angle acceleration. Finally, multiple experiments are carried out, with different MSDGCMG angular momenta as well as different desired attitude angles. The experimental results indicate that the MSDGCMG has a good gimbal angle rate and output torque tracking capabilities, and that the attitude stability with MSDGCMG as actuator is superior to 10(-3)°/s. The MSDGCMG performance testing in this paper, carried out under moving-base condition, will offer a technique base for the future research and application of MSDGCMGs. PMID:23012536

  20. Local - Air Project: Tropospheric Aerosol Monitoring by CALIPSO Lidar Satellite and Ground-Based Observations

    Science.gov (United States)

    Sarli, V.; Trippetta, S.; Bitonto, P.; Papagiannopoulos, N.; Caggiano, R.; Donvito, A.; Mona, L.

    2016-06-01

    A new method for the detection of the Planetary Boundary Layer (PBL) height from CALIPSO space-borne lidar data was developed and the possibility to infer the sub-micrometric aerosol particle (i.e., PM1) concentrations at ground level from CALIPSO observations was also explored. The comparison with ground-based lidar measurements from an EARLINET (European Aerosol Research LIdar Network) station showed the reliability of the developed method for the PBL. Moreover, empirical relationships between integrated backscatter values from CALIPSO and PM1 concentrations were found thanks to the combined use of the retrieved PBL heights, CALIPSO aerosol profiles and typing and PM1 insitu measurements.

  1. Integrated Evaluation of Air Traffic Controller Workload Based on Matter-Element Analysis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming; HAN Song-chen

    2008-01-01

    A model for evaluating the controller workload was presented based on matter-element analysis, particularly from a man-machine-environment system engineering perspective. On the basis of a questionnaire survey, 18 kinds of indexes which influence the controller workload were determined. By establishing the classical field and node field of the controller workload, the correlation function of the controller workload grade was obtained; then the correlation degree and estimated grade of controller workload were given. A case study verifies the feasibility of the proposed evaluation method.

  2. 基于Gauss伪谱法的空空导弹最优中制导律设计%Midcourse guidance law optimal design for air-to-air missiles based on gauss pseudospectral method

    Institute of Scientific and Technical Information of China (English)

    杨希祥; 张为华

    2013-01-01

    The optimum design of midcourse guidance law for air-to-air missiles was researched based on Gauss Pseudospectral Method ( GPM) . The optimal control model for midcourse guidance law of air-to-air missiles was established, the idea to design optimal midcourse guidance law with GPM was proposed, the solving process was described in detail, and effectivity of the proposed method was verified with simulation cases. Simulation results show that GPM is dominant in performance index, computation accuracy and computation efficiency, compared with the traditional methods, such as proportional navigation and shooting method, and the computation accuracy and computation efficiency of GPM are determined by the number of collocation nodes. The above all can provide theoretical reference for research of midcourse guidance law for air-to-air missiles.%研究Gauss伪谱法在空空导弹最优中制导律设计中的应用.建立空空导弹中制导律设计问题最优控制模型,首次提出采用Gauss伪谱法求解最优中制导律设计问题的思路,详细阐述了求解流程,通过仿真算例验证了求解方法的有效性,并同比例导引、打靶法等传统方法进行了对比.仿真结果表明,综合考虑性能指标、计算精度、计算效率等因素,Gauss伪谱法具有明显优势,Gauss伪谱法求解结果和求解效率与配点个数密切相关.研究结果为空空导弹中制导律设计提供理论参考.

  3. Ozone distributions over southern Lake Michigan: comparisons between ferry-based observations, shoreline-based DOAS observations and air quality forecast models

    Science.gov (United States)

    Cleary, P. A.; Fuhrman, N.; Schulz, L.; Schafer, J.; Fillingham, J.; Bootsma, H.; Langel, T.; Williams, E. J.; Brown, S. S.

    2014-09-01

    Air quality forecast models typically predict large ozone abundances over water relative to land in the Great Lakes region. While each state bordering Lake Michigan has dedicated monitoring systems, offshore measurements have been sparse, mainly executed through specific short-term campaigns. This study examines ozone abundances over Lake Michigan as measured on the Lake Express ferry, by shoreline Differential Optical Absorption Spectroscopy (DOAS) observations in southeastern Wisconsin, and as predicted by the National Air Quality Forecast System. From 2008-2009 measurements of O3, SO2, NO2 and formaldehyde were made in the summertime by DOAS at a shoreline site in Kenosha, WI. From 2008-2010 measurements of ambient ozone conducted on the Lake Express, a high-speed ferry that travels between Milwaukee, WI and Muskegon, MI up to 6 times daily from spring to fall. Ferry ozone observations over Lake Michigan were an average of 3.8 ppb higher than those measured at shoreline in Kenosha with little dependence on position of the ferry or temperature but with highest differences during evening and night. Concurrent ozone forecast images from National Weather System's National Air Quality Forecast System in the upper Midwestern region surrounding Lake Michigan were saved over the ferry ozone sampling period in 2009. The bias of the model O3 forecast was computed and evaluated with respect to ferry-based measurements. The model 1 and 8 h ozone mean biases were both 12 ppb higher than observed ozone, and maximum daily 1 h ozone mean bias was 10 ppb, indicating substantial ozone over-prediction over water. Trends in the bias with respect to location and time of day or month were also explored showing non-uniformity in model bias. Extreme ozone events were predicted by the model but not observed by ferry measurements.

  4. Limitations on Space-based Air Fluorescence Detector Apertures obtained from IR Cloud Measurements

    CERN Document Server

    Krizmanic, J F; Streitmatter, R E; Krizmanic, John; Sokolsky, Pierre; Streitmatter, Robert

    2003-01-01

    The presence of clouds between an airshower and a space-based detector can dramatically alter the measured signal characteristics due to absorption and scattering of the photonic signals. Furthermore, knowledge of the cloud cover in the observed atmosphere is needed to determine the instantaneous aperture of such a detector. Before exploring the complex nature of cloud-airshower interactions, we examine a simpler issue. We investigate the fraction of ultra-high energy cosmic ray events that may be expected to occur in volumes of the viewed atmosphere non-obscured by clouds. To this end, we use space-based IR data in concert with Monte Carlo simulated $10^{20}$ eV airshowers to determine the acceptable event fractions. Earth-observing instruments, such as MODIS, measure detailed cloud configurations via a CO$_2$-slicing technique that can be used to determine cloud-top altitudes over large areas. Thus, events can be accepted if their observed 3-dimensional endpoints occur above low clouds as well as from areas...

  5. Polydimethylsiloxane-air partition ratios for semi-volatile organic compounds by GC-based measurement and COSMO-RS estimation: Rapid measurements and accurate modelling.

    Science.gov (United States)

    Okeme, Joseph O; Parnis, J Mark; Poole, Justen; Diamond, Miriam L; Jantunen, Liisa M

    2016-08-01

    Polydimethylsiloxane (PDMS) shows promise for use as a passive air sampler (PAS) for semi-volatile organic compounds (SVOCs). To use PDMS as a PAS, knowledge of its chemical-specific partitioning behaviour and time to equilibrium is needed. Here we report on the effectiveness of two approaches for estimating the partitioning properties of polydimethylsiloxane (PDMS), values of PDMS-to-air partition ratios or coefficients (KPDMS-Air), and time to equilibrium of a range of SVOCs. Measured values of KPDMS-Air, Exp' at 25 °C obtained using the gas chromatography retention method (GC-RT) were compared with estimates from a poly-parameter free energy relationship (pp-FLER) and a COSMO-RS oligomer-based model. Target SVOCs included novel flame retardants (NFRs), polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), organophosphate flame retardants (OPFRs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). Significant positive relationships were found between log KPDMS-Air, Exp' and estimates made using the pp-FLER model (log KPDMS-Air, pp-LFER) and the COSMOtherm program (log KPDMS-Air, COSMOtherm). The discrepancy and bias between measured and predicted values were much higher for COSMO-RS than the pp-LFER model, indicating the anticipated better performance of the pp-LFER model than COSMO-RS. Calculations made using measured KPDMS-Air, Exp' values show that a PDMS PAS of 0.1 cm thickness will reach 25% of its equilibrium capacity in ∼1 day for alpha-hexachlorocyclohexane (α-HCH) to ∼ 500 years for tris (4-tert-butylphenyl) phosphate (TTBPP), which brackets the volatility range of all compounds tested. The results presented show the utility of GC-RT method for rapid and precise measurements of KPDMS-Air. PMID:27179237

  6. An aerial radiological survey of the Davis-Monthan Air Force Base and surrounding area, Tucson, Arizona

    International Nuclear Information System (INIS)

    An aerial radiological survey, which was conducted from March 1 to 13, 1995, covered a 51-square-mile (132-square-kilometer) area centered on the Davis-Monthan Air Force Base (DMAFB) in Tucson, Arizona. The results of the survey are reported as contours of bismuth-214 (214Bi) soil concentrations, which are characteristic of natural uranium and its progeny, and as contours of the total terrestrial exposure rates extrapolated to one meter above ground level. All data were scaled and overlaid on an aerial photograph of the DMAFB area. The terrestrial exposure rates varied from 9 to 20 microroentgens per hour at one meter above the ground. Elevated levels of terrestrial radiation due to increased concentrations of 214Bi (natural uranium) were observed over the Southern Pacific railroad yard and along portions of the railroad track bed areas residing both within and outside the base boundaries. No man-made, gamma ray-emitting radioactive material was observed by the aerial survey. High-purity germanium spectrometer and pressurized ionization chamber measurements at eight locations within the base boundaries were used to verify the integrity of the aerial results. The results of the aerial and ground-based measurements were found to be in agreement. However, the ground-based measurements were able to detect minute quantities of cesium-137 (137Cs) at six of the eight locations examined. The presence of 137Cs is a remnant of fallout from foreign and domestic atmospheric nuclear weapons testing that occurred in the 1950s and early 1960s. Cesium-137 concentrations varied from 0.1 to 0.3 picocuries per gram, which is below the minimum detectable activity of the aerial system

  7. Enhancement of Non-Air Conducted Speech Based on Wavelet-Packet Adaptive Threshold

    Directory of Open Access Journals (Sweden)

    Xijing Jing

    2013-01-01

    Full Text Available This study developed a new kind of speech detecting method by using millimeter wave. Because of the advantage of the millimeter wave, this speech detecting method has great potential application and may provide some exciting possibility for wide applications. However, the MMW conduct speech is in less intelligible and poor audibility since it is corrupted by additive combined noise. This paper, therefore, also developed an algorithm of wavelet packet threshold by using hard threshold and soft threshold for removing noise based on the good capability of wavelet packet for analyzing time-frequency signal. Comparing to traditional speech enhancement algorithm, the results from both simulation and listening evaluation suggest that the proposed algorithm takes on a better performance on noise removing while the distortion of MMW radar speech remains acceptable, the enhanced speech also sounds more pleasant to human listeners, resulting in improved results over classical speech enhancement algorithms.

  8. Radiation Control Coatings Installed on Federal Buildings at Tyndall Air Force Base

    Energy Technology Data Exchange (ETDEWEB)

    Kaba, R.L.; Petrie, T.W.

    1999-03-16

    The technical objectives of this CRADA comprise technology deployment and energy conservation efforts with the radiation control coatings industry and the utility sector. The results of this collaboration include a high-level data reporting, analysis and management system to support the deployment efforts. The technical objectives include successfully install, commission, operate, maintain and document the performance of radiation control coatings on roofs at Tyndall AFB and the Buildings Technology Center at the Oak Ridge National Laboratory; determine the life cycle savings that can be achieved by using radiation control coatings on entire roofs at Tyndall AFB, based on documented installed cost and operating maintenance costs with and without the coatings; determine if any specific improvements are required in the coatings before they can be successfully deployed in the federal sector; determine the most effective way to facilitate the widespread and rapid deployment of radiation control coatings in the federal sector; and clearly define any barriers to deployment.

  9. V-shape liquid crystal-based retromodulator air to ground optical communications

    CERN Document Server

    Geday, Morten A; Carrasco-Casado, Alberto; Bennis, Noureddine; Quintana, Xabier; Hernandez, Francisco Lopez; Sanchez, Jose Manuel Oton

    2015-01-01

    This paper describes the use of a 2D liquid crystal retro-modulator as a free space, wireless, optical link. The retro-modulator is made up of a retro-reflecting cornercube onto which 2 cascaded V-shape smectics liquid crystal modulators are mounted. The communication link differs with respect to more conventional optical links in not using amplitude (nor frequency) modulation, but instead state-of-polarisation (SOP) modulation known as Polarisation Shift Keying (PolSK). PolSK has the advantage over amplitude modulation, that it is less sensitive to changes in the visibility of the atmosphere, and increases inherently the bandwidth of the link. The implementation of PolSK both in liquid crystal based and in retro-modulated communication are novelties.

  10. Thermodynamic analysis of an integrated energy system based on compressed air energy storage (CAES) system and Kalina cycle

    International Nuclear Information System (INIS)

    Highlights: • An integrated energy system based on CAES and Kalina cycle is proposed. • The design and modeling of the CAES–KCS6 system are laid out. • The energy analysis and exergy analysis of the proposed system are carried out. • A parametric analysis is conducted to examine their effect on system performance. - Abstract: High penetration of renewable power sources into power system leads to significant challenge in balancing of power generation and consumption due to the highly erratic nature of renewable energies. Integrating the energy storage system (ESS) with power system can weaken these negative effects effectively. Compressed air energy storage (CAES) system as one of the grid-scale ESS technologies has grown rapidly in the past few years. However, the temperature of exhaust from low pressure turbine during discharge process is still high enough to utilize. An integrated energy system consisting of a CAES system and a Kalina cycle system 6 (KCS6) is proposed to recover this waste heat. The thermodynamic analyses including energy analysis and exergy analysis are evaluated by using steady-state mathematical model and thermodynamic laws. The second law efficiency of the proposed CAES–KCS6 system can be improved nearly 4% compared to that of the single conventional CAES system. Meanwhile, the parametric analysis is also carried out to evaluate the effects of some key parameters on system performance, such as the turbine inlet temperature (TIT), inlet pressure of low pressure turbine and the air storage cavern temperature. Results show that all of these parameters have positive effect on system exergy efficiency

  11. Paradigm shift from air-based concentrations to deposition-based measurements for radon/thoron progeny

    International Nuclear Information System (INIS)

    A long standing requirement of inhalation dosimetry has been the development of direct passive Radon-Thoron progeny monitors. At present, the dose estimates are carried out by two methods: i) Through active techniques such as short-term grab-filter paper sampling and counting for estimating the representative progeny concentration. However, it is difficult to capture all the concentration variations by short-term active sampling methods, and ii) Through passive techniques using SSNTD incorporated twin-cup dosimeters wherein radon or thoron gas concentrations are measured and the progeny concentrations are calculated using equilibrium factors. Also, it is not applicable for thoron progeny where assigning equilibrium factors is not feasible. To overcome these shortcomings, deposition based radon and thoron decay product monitoring techniques have been developed. There are three advantages of this technique: i) This technique estimates the decay product concentrations directly. So, there is no need to calculate the decay product concentration from radon and thoron gas concentration. ii) This technique can also be used for personal dosimetry. The detectors based on this technique known as Direct Radon and thoron progeny sensors (DRPS and DTPS) can be used as easy to use personal dosimeters, and iii) Due to the similarities in deposition in the human respiratory tract and detector surface, the deposited atom flux on the detector can be used to directly obtain the inhalation dose. These estimated values show that the Bremsstrahlung radiation absorbed dose contribution from an organ to itself is very small compared to that from the beta source, but contribution to other organs is not always negligible especially when large amounts of 89Sr may be involved as in therapy applications

  12. [Environmental investigation of ground water contamination at Wright- Patterson Air Force Base, Ohio]. Volume 4, Health and Safety Plan (HSP); Phase 1, Task 4 Field Investigation report: Draft

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This Health and Safety Plan (HSP) was developed for the Environmental Investigation of Ground-water Contamination Investigation at Wright-Patterson Air Force Base near Dayton, Ohio, based on the projected scope of work for the Phase 1, Task 4 Field Investigation. The HSP describes hazards that may be encountered during the investigation, assesses the hazards, and indicates what type of personal protective equipment is to be used for each task performed. The HSP also addresses the medical monitoring program, decontamination procedures, air monitoring, training, site control, accident prevention, and emergency response.

  13. Conductivity Studies and Performance of Chitosan Based Polymer Electrolyteyte in H_2/Air Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    S.R.Majid; A.K.Arof

    2007-01-01

    1 Resalts Four chitosan-based electrolyte systems chitosan-H3PO4, chitosan-H3PO4-NH4NO3, chitosan-H3PO4-NH4NO3-Al2SiO5 and chitosan-H3PO4-Al2SiO5 were studied. The samples (0.62 chitosan-0.38 H3PO4), (0.56 chitosan-0.34 H3PO4-0.10 NH4NO3), (0.557 2 chitosan-0.338 3 H3PO4-0.099 5 NH4NO3-0.005 Al2SiO5) and (0.615 chitosan-0.377 H3PO4-0.008 Al2SiO5), composition in weight fraction, exhibit the highest room temperature electrical conductivity of (5.36±1.32) × 10-5, (1.16±0.35) × 10-4, (1.82±0.10) × 10-4 an...

  14. Risk-based objectives for the allocation of chemical, biological, and radiological air emissions sensors.

    Science.gov (United States)

    Lambert, James H; Farrington, Mark W

    2006-12-01

    This article addresses the problem of allocating devices for localized hazard protection across a region. Each identical device provides only local protection, and the devices serve localities that are exposed to nonidentical intensities of hazard. A method for seeking the optimal allocation Policy Decisions is described, highlighting the potentially competing objectives of maximizing local risk reductions and coverage risk reductions. The metric for local risk reductions is the sum of the local economic risks avoided. The metric for coverage risk reductions is adapted from the p-median problem and equal to the sum of squares of the distances from all unserved localities to their closest associated served locality. Three graphical techniques for interpreting the Policy Decisions are presented. The three linked graphical techniques are applied serially. The first technique identifies Policy Decisions that are nearly Pareto optimal. The second identifies locations where sensor placements are most justified, based on a risk-cost-benefit analysis under uncertainty. The third displays the decision space for any particular policy decision. The method is illustrated in an application to chemical, biological, and/or radiological weapon sensor placement, but has implications for disaster preparedness, transportation safety, and other arenas of public safety. PMID:17184404

  15. Multi-media authoring - Instruction and training of air traffic controllers based on ASRS incident reports

    Science.gov (United States)

    Armstrong, Herbert B.; Roske-Hofstrand, Renate J.

    1989-01-01

    This paper discusses the use of computer-assisted instructions and flight simulations to enhance procedural and perceptual motor task training. Attention is called to the fact that incorporating the accident and incident data contained in reports filed with the Aviation Safety Reporting System (ASRS) would be a valuable training tool which the learner could apply for other situations. The need to segment the events is emphasized; this would make it possible to modify events in order to suit the needs of the training environment. Methods were developed for designing meaningful scenario development on runway incursions on the basis of analysis of ASRS reports. It is noted that, while the development of interactive training tools using the ASRS and other data bases holds much promise, the design and production of interactive video programs and laser disks are very expensive. It is suggested that this problem may be overcome by sharing the costs of production to develop a library of materials available to a broad range of users.

  16. Biofiltration of toluene-contaminated air using an agro by-product-based filter bed.

    Science.gov (United States)

    Krishnakumar, B; Hima, A M; Haridas, Ajit

    2007-02-01

    An innovative, coir-pith-based, filter bed for degrading vapor phase toluene in a gas biofilter over 160 days without any external nutrient supply is reported in this study. Indigenous microflora present in the coir pith as well as in the aerobic sludge added at the start-up stage metabolized the toluene, and correspondingly, CO(2) was produced in the biofilter. Inlet toluene concentration in the range of 0.75 to 2.63 g/m(3) was supplied to the biofilter in short acclimation periods. The maximum elimination capacity achieved was 96.75 g/m(3) x h at 120.72 g/m(3) x h loading where around 60% was recovered as CO(2). The filter bed maintained a stable low-pressure drop (0-4 mm H(2)O), neutral pH range (6.5-7.5), and moisture content of 60-80% (w/w) throughout the period. In addition to toluene-degrading microbial community, a grazing fauna including rotifer, bacteriovoric nematode, tardigrade, and fly larvae were also present in the filter bed. The overall performance of the biofilter bed in pollutant removal and sustainability was analyzed in this study. PMID:17024468

  17. Fiber methane gas detector based on harmonic detection and application in ventilation air methane power generation

    Science.gov (United States)

    Li, Yanfang; Wei, Yubin; Shang, Ying; Zhao, Yanjie; Zhang, Tingting; Zhao, Weisong; Wang, Chang; Liu, Tongyu

    2010-10-01

    A fiber methane detector based on spectrum absorption is reported. The methane monitor use a distributed feedback diode lasers(DFB) which is near infrared spectroscopy as the optic source, we realized online harmonic detection of the methane. The advantages of this detector include high precision, elimination of interference from humidity and other gases as well as long recalibration cycle. The detection of CH4 is very important in the methane power generation. Especially the detection of the tail gas with high temperature is the dependence to judge the generator. In this paper, we give some data witch gained from the local of methane power generation. The data reach an agreement with the measurements of the sensor using in mine. And the detector has the function of self reference, so the detector is more depended. This proved that the fiber methane detector can meet the needs of the generator. It have some contribution to the production safety of the mine and the energy saving and emission reduction and the environmental protection.

  18. Assessment of China's virtual air pollution transport embodied in trade by using a consumption-based emission inventory

    OpenAIRE

    H. Y. Zhao; Q. Zhang; D. B. Guan; S. J. Davis; Liu, Z.; H. Huo; J. T. Lin; Liu, W. D.; K. B. He

    2015-01-01

    © Author(s) 2015. Substantial anthropogenic emissions from China have resulted in serious air pollution, and this has generated considerable academic and public concern. The physical transport of air pollutants in the atmosphere has been extensively investigated; however, understanding the mechanisms how the pollutant was transferred through economic and trade activities remains a challenge. For the first time, we quantified and tracked China's air pollutant emission flows embodied in interpr...

  19. Modeling natural emissions in the Community Multiscale Air Quality (CMAQ) model – Part 1: Building an emissions data base

    OpenAIRE

    Smith, S. N.; S. F. Mueller

    2010-01-01

    A natural emissions inventory for the continental United States and surrounding territories is needed in order to use the US Environmental Protection Agency Community Multiscale Air Quality (CMAQ) Model for simulating natural air quality. The CMAQ air modeling system (including the Sparse Matrix Operator Kernel Emissions (SMOKE) emissions processing system) currently estimates volatile organic compound (VOC) emissions from biogenic sources, nitrogen oxide (NOx) emission...

  20. Modeling natural emissions in the Community Multiscale Air Quality (CMAQ) Model–I: building an emissions data base

    OpenAIRE

    Smith, S. N.; S. F. Mueller

    2010-01-01

    A natural emissions inventory for the continental United States and surrounding territories is needed in order to use the US Environmental Protection Agency Community Multiscale Air Quality (CMAQ) Model for simulating natural air quality. The CMAQ air modeling system (including the Sparse Matrix Operator Kernel Emissions (SMOKE) emissions processing system) currently estimates non-methane volatile organic compound (NMVOC) emissions from biogenic sources, nitrogen oxide (NOx) emissions from so...

  1. Distribution and Sources of Air pollutants in the North China Plain Based on On-Road Mobile Measurements

    OpenAIRE

    Zhu, Yi; Zhang, Jiping; Wang, Junxia; Chen, Wenyuan; Han, Yiqun; Ye, Chunxiang; Li, Yingruo; LIU Jun; Zeng, Limin; Wu, Yusheng; Wang, Xinfeng; Wang, Wenxing; Chen, Jianmin; Zhu, Tong

    2016-01-01

    The North China Plain (NCP) has been experiencing severe air pollution problems with rapid economic growth and urbanisation. Many field and model studies have examined the distribution of air pollutants in the NCP, but convincing results have not been achieved mainly due to a lack of direct measurements of pollutants over large areas. Here, we employed a mobile laboratory to observe the main air pollutants in a large part of the NCP from June 11 to July 15, 2013. High median concentrations of...

  2. [Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 5, Field Investigation report

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    An environmental investigation of ground water conditions has been undertaken at Wright-Patterson Air Force Base (WPAFB), Ohio to obtain data to assist in the evaluation of a potential removal action to prevent, to the extent practicable, migration of the contaminated ground water across Base boundaries. Field investigations were limited to the central section of the southwestern boundary of Area C and the Springfield Pike boundary of Area B. Further, the study was limited to a maximum depth of 150 feet below grade. Three primary activities of the field investigation were: (1) installation of 22 monitoring wells, (2) collection and analysis of ground water from 71 locations, (3) measurement of ground water elevations at 69 locations. Volatile organic compounds including trichloroethylene, perchloroethylene, and/or vinyl chloride were detected in concentrations exceeding Maximum Contaminant Levels (MCL) at three locations within the Area C investigation area. Ground water at the Springfield Pike boundary of Area B occurs in two primary units, separated by a thicker-than-expected clay layers. One well within Area B was determined to exceed the MCL for trichloroethylene.

  3. Hydrogen peroxide detection in wet air with a Prussian Blue based solid salt bridged three electrode system.

    Science.gov (United States)

    Komkova, Maria A; Karyakina, Elena E; Marken, Frank; Karyakin, Arkady A

    2013-03-01

    We report on a novel electroanalytical system for hydrogen peroxide (H2O2) detection in humidity or droplets of aerosol, formed by air bubbling through a washing chamber; the resulting flow mimics the exhaled human breath. The system is based on a planar three-electrode structure (with a Prussian Blue based H2O2 transducer modified working electrode) bridged by a solid salt-saturated filament material (filter paper, cotton textile). Respective to the hydrogen peroxide content in the washing valve, the response of the aerosol-sensing system is linear in the concentration range of 0.1-10 μM, which overlaps the generally accepted H2O2 content in exhaled breath condensate (EBC), with the sensitivity of 8 A M(-1) cm(-2). The response to the upper limit of the calibration range is stable for more than 50 injection cycles recorded within 3 days. Both the stability and the suitable calibration range allow one to consider the reported aerosol-sensing system as a prototype for a simple (avoiding intermediate EBC collection) noninvasive diagnostic tool for pulmonary patients. PMID:23374034

  4. The correlation based zonal method and its application to the back pass channel of oxy/air-fired CFB boiler

    International Nuclear Information System (INIS)

    A set of correlations for direct exchange area (DEA) between zones are presented. The correlations are simpler and much faster than the classical method used for DEA calculations in zone method. Additionally a unique form of correlation supports both singular and non-singular DEA calculation and no extra effort for non-singular cases is needed. Using the new correlations, the correlation based zone method (CBZM) is introduced and validated by several benchmarks. The CBZM results were in excellent agreement with the benchmark solutions. As an application case, by using the CZBM the gray and non-gray radiative heat transfer has been analyzed in a large back pass channel of a CFB boiler for the case of air and oxygen-fired combustion scenarios. The effect of the spectral radiative behavior of combustion gases on the predicted radiative heat fluxes on the walls is addressed. The effect of combustion scenario on the operation of the unit is also discussed. - Highlights: • Efficient correlations for DEA calculation are presented. • The gray and non-gray correlation based zone method is introduced. • The model is validated against several 3D benchmarks. • The effect of non-gray radiation in a large scale back pass channel is addressed. • The effect of combustion scenario on radiation in back pass channel is reported

  5. Rising critical emission of air pollutants from renewable biomass based cogeneration from the sugar industry in India

    Science.gov (United States)

    Sahu, S. K.; Ohara, T.; Beig, G.; Kurokawa, J.; Nagashima, T.

    2015-09-01

    In the recent past, the emerging India economy is highly dependent on conventional as well as renewable energy to deal with energy security. Keeping the potential of biomass and its plentiful availability, the Indian government has been encouraging various industrial sectors to generate their own energy from it. The Indian sugar industry has adopted and made impressive growth in bagasse (a renewable biomass, i.e. left after sugercane is crushed) based cogeneration power to fulfil their energy need, as well as to export a big chunk of energy to grid power. Like fossil fuel, bagasse combustion also generates various critical pollutants. This article provides the first ever estimation, current status and overview of magnitude of air pollutant emissions from rapidly growing bagasse based cogeneration technology in Indian sugar mills. The estimated emission from the world’s second largest sugar industry in India for particulate matter, NOX, SO2, CO and CO2 is estimated to be 444 ± 225 Gg yr-1, 188 ± 95 Gg yr-1, 43 ± 22 Gg yr-1, 463 ± 240 Gg yr-1 and 47.4 ± 9 Tg yr-1, respectively in 2014. The studies also analyze and identify potential hot spot regions across the country and explore the possible further potential growth for this sector. This first ever estimation not only improves the existing national emission inventory, but is also useful in chemical transport modeling studies, as well as for policy makers.

  6. Flexible Wing Base Micro Aerial Vehicles: Vision-Guided Flight Stability and Autonomy for Micro Air Vehicles

    Science.gov (United States)

    Ettinger, Scott M.; Nechyba, Michael C.; Ifju, Peter G.; Wazak, Martin

    2002-01-01

    Substantial progress has been made recently towards design building and test-flying remotely piloted Micro Air Vehicle's (MAVs). We seek to complement this progress in overcoming the aerodynamic obstacles to.flight at very small scales with a vision stability and autonomy system. The developed system based on a robust horizon detection algorithm which we discuss in greater detail in a companion paper. In this paper, we first motivate the use of computer vision for MAV autonomy arguing that given current sensor technology, vision may he the only practical approach to the problem. We then briefly review our statistical vision-based horizon detection algorithm, which has been demonstrated at 30Hz with over 99.9% correct horizon identification. Next we develop robust schemes for the detection of extreme MAV attitudes, where no horizon is visible, and for the detection of horizon estimation errors, due to external factors such as video transmission noise. Finally, we discuss our feed-back controller for self-stabilized flight, and report results on vision autonomous flights of duration exceeding ten minutes.

  7. Air-sea fluxes and satellite-based estimation of water masses formation

    Science.gov (United States)

    Sabia, Roberto; Klockmann, Marlene; Fernandez-Prieto, Diego; Donlon, Craig

    2015-04-01

    Recent work linking satellite-based measurements of sea surface salinity (SSS) and sea surface temperature (SST) with traditional physical oceanography has demonstrated the capability of generating routinely satellite-derived surface T-S diagrams [1] and analyze the distribution/dynamics of SSS and its relative surface density with respect to in-situ measurements. Even more recently [2,3], this framework has been extended by exploiting these T-S diagrams as a diagnostic tool to derive water masses formation rates and areas. A water mass describes a water body with physical properties distinct from the surrounding water, formed at the ocean surface under specific conditions which determine its temperature and salinity. The SST and SSS (and thus also density) at the ocean surface are largely determined by fluxes of heat and freshwater. The surface density flux is a function of the latter two and describes the change of the density of seawater at the surface. To obtain observations of water mass formation is of great interest, since they serve as indirect observations of the thermo-haline circulation. The SSS data which has become available through the SMOS [4] and Aquarius [5] satellite missions will provide the possibility of studying also the effect of temporally-varying SSS fields on water mass formation. In the present study, the formation of water masses as a function of SST and SSS is derived from the surface density flux by integrating the latter over a specific area and time period in bins of SST and SSS and then taking the derivative of the total density flux with respect to density. This study presents a test case using SMOS SSS, OSTIA SST, as well as Argo ISAS SST and SSS for comparison, heat fluxes from the NOCS Surface Flux Data Set v2.0, OAFlux evaporation and CMORPH precipitation. The study area, initially referred to the North Atlantic, is extended over two additional ocean basins and the study period covers the 2011-2012 timeframe. Yearly, seasonal

  8. Completion of the Edward Air Force Base Statistical Guidance Wind Tool

    Science.gov (United States)

    Dreher, Joseph G.

    2008-01-01

    The goal of this task was to develop a GUI using EAFB wind tower data similar to the KSC SLF peak wind tool that is already in operations at SMG. In 2004, MSFC personnel began work to replicate the KSC SLF tool using several wind towers at EAFB. They completed the analysis and QC of the data, but due to higher priority work did not start development of the GUI. MSFC personnel calculated wind climatologies and probabilities of 10-minute peak wind occurrence based on the 2-minute average wind speed for several EAFB wind towers. Once the data were QC'ed and analyzed the climatologies were calculated following the methodology outlined in Lambert (2003). The climatologies were calculated for each tower and month, and then were stratified by hour, direction (10" sectors), and direction (45" sectors)/hour. For all climatologies, MSFC calculated the mean, standard deviation and observation counts of the Zminute average and 10-minute peak wind speeds. MSFC personnel also calculated empirical and modeled probabilities of meeting or exceeding specific 10- minute peak wind speeds using PDFs. The empirical PDFs were asymmetrical and bounded on the left by the 2- minute average wind speed. They calculated the parametric PDFs by fitting the GEV distribution to the empirical distributions. Parametric PDFs were calculated in order to smooth and interpolate over variations in the observed values due to possible under-sampling of certain peak winds and to estimate probabilities associated with average winds outside the observed range. MSFC calculated the individual probabilities of meeting or exceeding specific 10- minute peak wind speeds by integrating the area under each curve. The probabilities assist SMG forecasters in assessing the shuttle FR for various Zminute average wind speeds. The A M ' obtained the processed EAFB data from Dr. Lee Bums of MSFC and reformatted them for input to Excel PivotTables, which allow users to display different values with point

  9. Application of Anti-slip/skid Re-adhesion Control System Based on Disturbance Observer to a Skid Control Considering Cooperation Control of Air Bake and Electric Brake

    Science.gov (United States)

    Kadowaki, Satoshi; Ohishi, Kiyoshi; Sano, Takashi; Yasukawa, Shinobu

    We have already proposed the anti-slip re-adhesion control based on disturbance observer and sensor-less vector control at acceleration mode. This paper proposes a new anti-skid re-adhesion control based on disturbance observer at braking mode. The numerical simulation and experimental results point out that the proposed anti-skid re-adhesion control system has the desired driving wheel torque response for the tested bogie system of electric train. An actual train uses both electric brake and air brake in the high-speed range. Hence, this paper proposes a new anti-skid re-adhesion control considering the air brake, which carries out the cooperation control of electric brake and air brake in order to realize a fine re-adhesion control. The numerical simulation results point out that the proposed system has the desired driving wheel torque response and a fine anti-skid re-adhesion control.

  10. Research on Low Cost Air-combat Training System Based on PC%基于PC的低成本空战训练系统研究

    Institute of Scientific and Technical Information of China (English)

    马潇潇; 戴革林; 李青; 刘志坚

    2014-01-01

    The training system based on PC is a kind of low cost training means,it can be used as the ef-fective additional complement to the traditional ground simulator and embedded training system.A type of training method was presented to build low-cost air combat training system based on SIMBox simulation platform.The basic framework of the system was designed,and the key technologies such as radar fire control system model,air-to-air missile traj ectory simulation and target damage model were researched in detail.The simulation results showed that the ballistic traj ectories can reflect the characteristics of air-to-air missile,and the system can provide a realistic virtual environment for air-combat training.The system can be used as an accessorial means for air-combat training.%基于PC的训练系统是一种低成本训练手段,可作为传统地面模拟器与嵌入式训练系统的有效补充。提出了一种基于 SIMBox仿真平台建立低成本空战训练系统的方法,设计了系统的基本架构,并对其中雷达火控系统建模、空空导弹弹道仿真和目标毁伤建模等关键技术进行了研究。仿真表明弹道轨迹反映了空空导弹特性,系统能够为空战训练提供较逼真的虚拟作战环境,可作为一种辅助性的空战训练手段。

  11. Development of the GAINS-KOREA Base Year Emission Inventory for Criteria Air Pollutants: Issues in Linking the Korea NEI to the GAINS Framework

    Science.gov (United States)

    Lee, Y. M.; Woo, J. H.; Kim, H. K.; Choi, K. C.; Kim, Y.; Ahn, Y. H.; Lee, J. B.; Song, C. K.; Han, J. S.

    2014-12-01

    In the era of air pollution and climate change, we should have reliable outlooks of national air pollutant and GHGs emission, which are also important components of international environmental policy negotiation. The Greenhouse gas - Air pollution Interactions and Synergies (GAINS) model has been developed as a tool to identify reasonable emission forecast and mitigation strategies that achieve air quality and greenhouse gas related targets simultaneously at least cost. Recently, Konkuk University and IIASA has been jointly developing the GAINS-Korea Model by reflecting domestic emission activities and environmental conditions. One of the most important challenges for developing GAINS-Korea model is to reproduce CAPSS - the national emissions inventory of Korea- in the GAINS framework. Matching two different databases are not easy because of different sector classification schemes, estimation methods, and etc. In this study, we developed a base year emissions of the GAINS-Korea for the criteria air pollutants using CAPSS. A new set of methodologies to link national inventory to international framework (GAINS) were introduced so that the GAINS-Korea can produce realistic emission outlooks and test control alternatives. We will discuss several underlying issues, such as improvement of accuracy for mapping, conversion, for our base year emission inventory development in site.

  12. Radioactive material air transportation

    International Nuclear Information System (INIS)

    As function of the high aggregated value, safety regulations and the useful life time, the air transportation has been used more regularly because is fast, reliable, and by giving great security to the cargo. Based on the International Atomic Energy Agency (IAEA), the IATA (International Air Transportation Association) has reproduced in his dangerous goods manual (Dangerous Goods Regulations - DGR IATA), the regulation for the radioactive material air transportation. Those documents support this presentation

  13. [Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 5, Appendix A, Part 1, Field Investigation report

    Energy Technology Data Exchange (ETDEWEB)

    1992-03-01

    This report presents information related to the sampling of ground water at the Wright-Patterson Air Force Base. It is part of an investigation into possible ground water contamination. Information concerns well drilling/construction; x-ray diffraction and sampling; soil boring logs; and chain-of-custody records.

  14. Water-surface elevations of wetlands and nearby wells at Arnold Air Force Base, near Manchester, Tennessee

    Science.gov (United States)

    Wolfe, W.J.; League, D.E.

    1996-01-01

    Surface-water stage, ground-water elevations, rainfall, and streamflow were monitored at or near four wetland sites at Arnold Air Force Base, Tennessee. Two of the wetland sites (Sinking Pond and Westall Swamp) included sinkholes with internal relief greater than 7 feet. The other two wetlands (Tupelo Swamp and Goose Pond) were shallow depressions with less than 5 feet internal relief. Stage rose and fell abruptly in the two sinkhole wetlands. Water depths ranged from 0 to 11.4 feet in Sinking Pond and from 0 to 8.5 feet in Westall Swamp. Water levels in wells adjacent to the sinkhole wetlands also rose and fell abruptly. The two shallow depressions filled and drained more gradually and remained flooded longer than the sinkhole wetlands. The maximum recorded water depths were 3.5 feet in Tupelo Swamp and 2.3 feet in Goose Pond. Water levels in nearby wells remained lower than surface-water elevations in the shallow depressions throughout the study period.

  15. State-based modeling of continuous human-integrated systems: An application to air traffic separation assurance

    International Nuclear Information System (INIS)

    A method for modeling the safety of human-integrated systems that have continuous dynamics is introduced. The method is intended to supplement more detailed reliability-based methods. Assumptions for the model are defined such that the model is demonstrably complete, enabling it to yield a set of key agent characteristics. These key characteristics identify a sufficient set of characteristics that can be used to establish the safety of particular system configurations. The method is applied for the analysis of the safety of strategic and tactical separation assurance algorithms for the next generation air transportation system. It is shown that the key characteristics for this problem include the ability of agents (human or automated) to identify configurations that can enable intense transitions from a safe to unsafe state. However, the most technologically advanced algorithm for separation assurance does not currently attempt to identify such configurations. It is also discussed how, although the model is in a form that lends itself to quantitative evaluations, such evaluations are complicated by the difficulty of accurately quantifying human error probabilities.

  16. Stability optimisation of molecular electronic devices based on  nanoelectrode–nanoparticle bridge platform in air and different storage liquids

    Energy Technology Data Exchange (ETDEWEB)

    Jafri, S. H. M. [Mirpur University of Science and Technology, Department of Electrical Engineering (Pakistan); Blom, T. [Uppsala University, The Ångström Laboratory, Department of Engineering Sciences (Sweden); Wallner, A.; Ottosson, H., E-mail: Henrik.Ottosson@kemi.uu.se [Uppsala University, The Biomedical Centre, Department of Chemistry (Sweden); Leifer, K., E-mail: Klaus.Leifer@angstrom.uu.se [Uppsala University, The Ångström Laboratory, Department of Engineering Sciences (Sweden)

    2014-12-15

    The long-term stability of metal nanoparticle–molecule junctions in molecular electronic devices based on nanoelectrodes (NEL) is a major challenge in the effort to bring related molecular electronic devices to application. To optimize the reproducibility of molecular electronic nanodevices, the time-dependent modification of such junctions as exposed to different media needs to be known. Here, we have studied (1) the stability of Au-NEL and (2) the electrical stability of molecule–Au nanoparticle (AuNP) junctions themselves with the molecule being  1,8-octanedithiol (ODT). Both the NELs only and the junctions were exposed to air and liquids such as deionized water, tetrahydrofuran, toluene and tetramethylethylenediamine (TMEDA) over a period of 1 month. The nanogaps remained stable in width when stored in either deionized water or toluene, whereas the current through 1,8-octanedithiol–NP junctions remained most stable when stored in TMEDA as compared to other solvents. Although it is difficult to follow the chemical processes in such devices in the 10-nm range with analytical methods, the behavior can be interpreted from known interactions of solvent molecules with electrodes and ODT.

  17. An aerial radiological survey of the Wright-Patterson Air Force Base and surrounding area, Fairborn, Ohio

    International Nuclear Information System (INIS)

    An aerial radiological survey was conducted over areas of Wright-Patterson Air Force Base (WPAFB) and the immediate surrounding area, during the period July 7 through 20, 1994. The survey was conducted to measure and map the gamma radiation in the area. This mission was the first aerial radiation survey conducted at WPAFB. In the surveyed area, five small localized sources of gamma radiation were detected which were atypical of naturally-occurring radionuclides. On WPAFB property, these sources included a radiation storage facility in Area B (krypton-85) and an ash pile near the Area C flight line (low energy gamma activity). In the area covered outside WPAFB boundaries, sources included cesium-137 in excess of worldwide fallout over a landfill in a northern Dayton industrial area, an X-ray radiography source over a steel plant in the same industrial area, and a mixture of cesium-137 in excess of worldwide fallout and possibly iridium-192 in an area near Crystal Lakes, Ohio. The naturally-occurring gamma emitters (uranium-238 and progeny, thorium and progeny, and potassium-40) were detected in the remaining area with a total exposure rate range of 4 to 16 μR/h; this range is typical of that found in the United States, 1 to 20 μR/h

  18. State-based modeling of continuous human-integrated systems: An application to air traffic separation assurance

    Energy Technology Data Exchange (ETDEWEB)

    Landry, Steven J., E-mail: slandry@purdue.ed [School of Industrial Engineering, Purdue University, 315 N. Grant St., West Lafayette, IN 47907 (United States); Lagu, Amit; Kinnari, Jouko [School of Industrial Engineering, Purdue University, 315 N. Grant St., West Lafayette, IN 47907 (United States)

    2010-04-15

    A method for modeling the safety of human-integrated systems that have continuous dynamics is introduced. The method is intended to supplement more detailed reliability-based methods. Assumptions for the model are defined such that the model is demonstrably complete, enabling it to yield a set of key agent characteristics. These key characteristics identify a sufficient set of characteristics that can be used to establish the safety of particular system configurations. The method is applied for the analysis of the safety of strategic and tactical separation assurance algorithms for the next generation air transportation system. It is shown that the key characteristics for this problem include the ability of agents (human or automated) to identify configurations that can enable intense transitions from a safe to unsafe state. However, the most technologically advanced algorithm for separation assurance does not currently attempt to identify such configurations. It is also discussed how, although the model is in a form that lends itself to quantitative evaluations, such evaluations are complicated by the difficulty of accurately quantifying human error probabilities.

  19. [Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 9, Removal action system design

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This Removal Action System Design has been prepared as a Phase I Volume for the implementation of the Phase II removal action at Wright-Patterson Air Force Base (WPAFB) near Dayton, Ohio. The objective of the removal action is to prevent, to the extent practicable, the migration of ground water contaminated with chlorinated volatile organic compounds (VOCS) across the southwest boundary of Area C. The Phase 1, Volume 9 Removal Action System Design compiles the design documents prepared for the Phase II Removal Action. These documents, which are presented in Appendices to Volume 9, include: Process Design, which presents the 30 percent design for the ground water treatment system (GWTS); Design Packages 1 and 2 for Earthwork and Road Construction, and the Discharge Pipeline, respectively; no drawings are included in the appendix; Design Package 3 for installation of the Ground Water Extraction Well(s); Design Package 4 for installation of the Monitoring Well Instrumentation; and Design Package 5 for installation of the Ground Water Treatment System; this Design Package is incorporated by reference because of its size.

  20. Assessing the Environmental Performance of a New Biotechnological Sensor for Air Quality Based on Devitalised Moss Clone

    Directory of Open Access Journals (Sweden)

    Carolina Alfonsín

    2015-05-01

    Full Text Available In recent years, mosses have been suggested as feasible biomonitors for the control of air quality. The most suitable type of biosensor consists of moss transplants that can be either harvested from unpolluted natural habitats or cultivated in photobioreactors. The production and devitalisation of moss was assessed with the aim of identifying the stages of the process with potential environmental impacts. The use of energy, especially associated with refrigeration in the cultivation stage, was the main factor contributing to the environmental impacts considered, ranging from 85% of the impact in marine eutrophication up to 95% for the rest of categories. Results were compared with previous studies dealing with algae production in photobioreactors, in which the electricity use for lighting also constituted a major hotspot. Scenarios based on reduced energy demand, and implementing alternative sources were proposed and showed better environmental profiles than the baseline scenario. Particularly, the use of photovoltaic energy could reduce the impacts by 50% in the analysed categories, except for terrestrial ecotoxicity, with significantly lower improvement ratios if photovoltaic energy was partially combined with conventional energy. The option of optimising the refrigeration system also provided significant reductions, ranking as the best alternative when terrestrial ecotoxicity was assessed.DOI: http://dx.doi.org/10.5755/j01.erem.71.1.10820

  1. Hot methanol extraction for the analysis of volatile organic chemicals in subsurface core samples from Dover Air Force Base, Delaware

    Energy Technology Data Exchange (ETDEWEB)

    Ball, W.P.; Xia, G.; Durfee, D.P.; Wilson, R.D.; Brown, M.J.; Mackay, D.M.

    1997-06-01

    The evaluation of contaminant concentrations in ground water and soil is an essential aspect of most hazardous waste remedial investigations. This paper describes methods applied toward obtaining, preserving, and analyzing subsurface samples for the determination of VOC concentration in the saturated region of an unconfined coastal plain aquifer at Dover Air Force Base (DAFB), Delaware. The described protocol involved headspace-free subsampling of cores, field preservation of subsamples in methanol, and overnight extraction of the VOCs at elevated temperature (70 C). Methanol-extracted compounds were subsequently transferred to hexane and analyzed by gas chromatography. The method was found to achieve quantitative extraction from the aquifer sands in a single step, although extraction from fine-grained and more strongly sorbing aquitard samples required multiple methanol extractions to achieve comparable recovery. An extensive set of DAFB results is presented as an indication of how these methods can be applied toward characterizing field-scale contamination with a high degree of resolution and accuracy.

  2. Ultrafast cooling of a hot moving steel plate by using alumina nanofluid based air atomized spray impingement

    International Nuclear Information System (INIS)

    The objective of the present work is to examine the heat transfer aspect of alumina nanofluid based air atomized spray impingement on a hot moving steel plate with an initial temperature well above the Leidenfrost point. The influence of surfactants in increasing the effectiveness of nanofluid as a heat transfer media has also been investigated. The experimental study has been conducted with four different types of coolants namely water, water-alumina, water-alumina-SDS and water-alumina-tween20. The thermo-physical properties (viscosity and thermal conductivity) of the coolants have been measured as they affect the heat transfer rate. The heat transfer result indicates that enhanced cooling rates are obtained using nanofluids as compared to that of water. - Highlights: • Enhancement of spray cooling heat transfer rate by alumina nanofluid is studied. • Cooling experiments are conducted from a high initial plate temperature of >900 °C. • Effect of surfactants on cooling capacity of alumina nanofluid is also investigated. • A cooling rate of 230 °C/s is achieved for application in ROT of a hot strip mill

  3. Stability optimisation of molecular electronic devices based on  nanoelectrode–nanoparticle bridge platform in air and different storage liquids

    International Nuclear Information System (INIS)

    The long-term stability of metal nanoparticle–molecule junctions in molecular electronic devices based on nanoelectrodes (NEL) is a major challenge in the effort to bring related molecular electronic devices to application. To optimize the reproducibility of molecular electronic nanodevices, the time-dependent modification of such junctions as exposed to different media needs to be known. Here, we have studied (1) the stability of Au-NEL and (2) the electrical stability of molecule–Au nanoparticle (AuNP) junctions themselves with the molecule being  1,8-octanedithiol (ODT). Both the NELs only and the junctions were exposed to air and liquids such as deionized water, tetrahydrofuran, toluene and tetramethylethylenediamine (TMEDA) over a period of 1 month. The nanogaps remained stable in width when stored in either deionized water or toluene, whereas the current through 1,8-octanedithiol–NP junctions remained most stable when stored in TMEDA as compared to other solvents. Although it is difficult to follow the chemical processes in such devices in the 10-nm range with analytical methods, the behavior can be interpreted from known interactions of solvent molecules with electrodes and ODT

  4. Biologic surveys for the Sandia National Laboratories, Coyote Canyon Test Complex, Kirtland Air Force Base, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, R.M. [4115 Allen Dr., Kingsville, TX (United States); Knight, P.J. [Marron and Associates, Inc., Corrales, NM (United States)

    1994-05-25

    This report provides results of a comprehensive biologic survey performed in Coyote Canyon Test Complex (CCTC), Sandia National Laboratories (SNL), Bernalillo County, New Mexico, which was conducted during the spring and summer of 1992 and 1993. CCTC is sited on land owned by the Department of Energy (DOE) and Kirtland Air Force Base and managed by SNL. The survey covered 3,760 acres of land, most of which is rarely disturbed by CCTC operations. Absence of grazing by livestock and possibly native ungulates, and relative to the general condition of private range lands throughout New Mexico, and relative to other grazing lands in central New Mexico. Widely dispersed, low intensity use by SNL as well as prohibition of grazing has probably contributed to abundance of special status species such as grama grass cactus within the CCTC area. This report evaluates threatened and endangered species found in the area, as well as comprehensive assessment of biologic habitats. Included are analyses of potential impacts and mitigative measures designed to reduce or eliminate potential impacts. Included is a summary of CCTC program and testing activities.

  5. Fast response air-to-fuel ratio measurements using a novel device based on a wide band lambda sensor

    International Nuclear Information System (INIS)

    A crucial parameter influencing the formation of pollutant gases in internal combustion engines is the air-to-fuel ratio (AFR). During transients on gasoline and diesel engines, significant AFR excursions from target values can occur, but cycle-by-cycle AFR resolution, which is helpful in understanding the origin of deviations, is difficult to achieve with existing hardware. This is because current electrochemical devices such as universal exhaust gas oxygen (UEGO) sensors have a time constant of 50–100 ms, depending on the engine running conditions. This paper describes the development of a fast reacting device based on a wide band lambda sensor which has a maximum time constant of ∼20 ms and enables cyclic AFR measurements for engine speeds of up to ∼4000 rpm. The design incorporates a controlled sensor environment which results in insensitivity to sample temperature and pressure. In order to guide the development process, a computational model was developed to predict the effect of pressure and temperature on the diffusion mechanism. Investigations regarding the sensor output and response were carried out, and sensitivities to temperature and pressure are examined. Finally, engine measurements are presented

  6. Laser-based imaging measurements in combustion: New results for fuel/air mixture and temperature diagnostics

    International Nuclear Information System (INIS)

    Advanced laser-based imaging diagnostics is an important tool for the development and optimization of modern combustion devices that can fulfil the future requirements in terms of energy efficiency maximization and pollutant minimization. The determination of the conditions prior to combustion in terms of fuel concentration, fuel/air equivalence ratio and temperature is crucial for the control of the subsequent combustion process. At the same time, fresh-gas and burned gas temperatures are important for modelling of combustion, spray evaporation and pollutant formation. These two tasks for diagnostics development have therefore been addressed recently. While laser-induced fluorescence of organic molecules in liquid fuels has frequently been carried out on a qualitative level, a more detailed understanding of individual molecules that are applied as 'fuel tracers' in an otherwise non-fluorescing fuel has developed in recent years (C Schulz and V Sick 2005 Tracer-LIF diagnostics: Quantitative measurement of fuel concentration, temperature and air/fuel ratio in practical combustion situations Prog. Energy Combust Sci. 31 75-121). The first applications were based on the pragmatic assumption that absorption cross-sections and fluorescence quantum yields were independent of temperature and pressure and that fluorescence was either independent of or inversely dependent (in the case of aromatic compounds) on oxygen partial pressure. Recent measurements of these interdependencies show that a quantitative interpretation of signals under combustion conditions (especially in internal-combustion-engines) requires a detailed understanding of the underlying photophysics (W Koban, J D Koch, V Sick, N Wermuth, R K Hanson and C Schulz 2005 Predicting LIF signal strength for toluene and 3-pentanone under engine-related temperature and pressure conditions Proc. Combust. Inst. 30 1545--53). The signal dependence on temperature and oxygen concentration, in turn, is strong enough to

  7. School-based exposure to hazardous air pollutants and grade point average: A multi-level study.

    Science.gov (United States)

    Grineski, Sara E; Clark-Reyna, Stephanie E; Collins, Timothy W

    2016-05-01

    The problem of environmental health hazards around schools is serious but it has been neglected by researchers and analysts. This is concerning because children are highly susceptible to the effects of chemical hazards. Some ecological studies have demonstrated that higher school-level pollution is associated with lower aggregate school-level standardized test scores likely, related to increased respiratory illnesses and/or impaired cognitive development. However, an important question remains unexamined: How do school-level exposures impact individual children's academic performance? To address this, we obtained socio-demographic and grades data from the parents of 1888 fourth and fifth grade children in the El Paso (Texas, USA) Independent School District in 2012. El Paso is located on the US-side of the Mexican border and has a majority Mexican-origin population. School-based hazardous air pollution (HAP) exposure was calculated using census block-level US Environmental Protection Agency National Air Toxics Assessment risk estimates for respiratory and diesel particulate matter (PM). School-level demographics were obtained from the school district. Multi-level models adjusting for individual-level covariates (e.g., age, sex, race/ethnicity, English proficiency, and economic deprivation) and school-level covariates (e.g., percent of students economically disadvantaged and student-teacher ratio) showed that higher school-level HAPs were associated with lower individual-level grade point averages. An interquartile range increase in school-level HAP exposure was associated with an adjusted 0.11-0.40 point decrease in individual students' grade point averages (GPAs), depending on HAP type and emission source. Respiratory risk from HAPs had a larger effect on GPA than did diesel PM risk. Non-road mobile and total respiratory risk had the largest effects on children's GPA of all HAP variables studied and only mother's level of education had a larger effect than those

  8. Rising critical emission of air pollutants from renewable biomass based cogeneration from the sugar industry in India

    International Nuclear Information System (INIS)

    In the recent past, the emerging India economy is highly dependent on conventional as well as renewable energy to deal with energy security. Keeping the potential of biomass and its plentiful availability, the Indian government has been encouraging various industrial sectors to generate their own energy from it. The Indian sugar industry has adopted and made impressive growth in bagasse (a renewable biomass, i.e. left after sugercane is crushed) based cogeneration power to fulfil their energy need, as well as to export a big chunk of energy to grid power. Like fossil fuel, bagasse combustion also generates various critical pollutants. This article provides the first ever estimation, current status and overview of magnitude of air pollutant emissions from rapidly growing bagasse based cogeneration technology in Indian sugar mills. The estimated emission from the world’s second largest sugar industry in India for particulate matter, NOX, SO2, CO and CO2 is estimated to be 444 ± 225 Gg yr−1, 188 ± 95 Gg yr−1, 43 ± 22 Gg yr−1, 463 ± 240 Gg yr−1 and 47.4 ± 9 Tg yr−1, respectively in 2014. The studies also analyze and identify potential hot spot regions across the country and explore the possible further potential growth for this sector. This first ever estimation not only improves the existing national emission inventory, but is also useful in chemical transport modeling studies, as well as for policy makers. (letter)

  9. Long-term exposure to air pollution and hospital admissions for ischemic stroke. A register-based case-control study using modelled NOx as exposure proxy

    OpenAIRE

    Oudin, Anna; Stroh, Emilie; Strömberg, Ulf; Jakobsson, Kristina; Björk, Jonas

    2009-01-01

    Background Long-term exposure to air pollution is a hypothesized risk factor for ischemic stroke. In a large case-control study with a complete study base, we investigated whether hospital admissions for ischemic stroke were associated with residential concentrations of outdoor NOx, as a proxy for exposure to air pollution, in the region of Scania, Southern Sweden. Methods We used a two-phase case-control study design, including as first-phase controls all individuals born between 1923 and 19...

  10. Experimental and numerical investigation of a cross flow air-to-water heat pipe-based heat exchanger used in waste heat recovery

    OpenAIRE

    J. Ramos; Chong, A.; Jouhara, H

    2016-01-01

    This paper applies CFD modelling and numerical calculations to predict the thermal performance of a cross flow heat pipe based heat exchanger. The heat exchanger under study transfers heat from air to water and it is equipped with six water-charged wickless heat pipes, with a single-pass flow pattern on the air side (evaporator) and two flow passes on the water side (condenser). For the purpose of CFD modelling, the heat pipes were considered as solid devices of a known thermal conductivity w...

  11. Reporting of the air pollution situation in Norway according to EU's new air quality directives. Proposal of a GIS-based tool for reporting on visualisation of the air pollution situation in Norway; Rapportering av forurensningstilstanden i Norge etter EUs nye luftkvalitetsdirektiver. Forslag til verktoey for rapportering og visualisering av forurensningstilstanden i Norge

    Energy Technology Data Exchange (ETDEWEB)

    Larssen, Steinar; Thanh, The Nguyen; Hagen, Leif Otto; Endregard, Geir

    1999-12-01

    Norway shall, after 2001, annually report to the EU on the air quality situation in all zones. This report presents a proposal on a data (GIS)-based tool that will make this reporting more efficient. the concept is to visualise the AQ situation in the zones by means of values and isolines on maps, with zooming possibilities. (author)

  12. Air-stable n-channel organic field-effect transistors based on N,N‧-bis(4-trifluoromethylbenzyl)perylene-3,4,9,10-tetracarboxylic diimide

    Science.gov (United States)

    Hosoi, Yoshinobu; Tsunami, Daisuke; Ishii, Hisao; Furukawa, Yukio

    2007-02-01

    Air-stable n-channel field-effect transistors based on thin films of the compound, N, N'-bis(4-trifluoromethylbenzyl)perylene-3,4,9,10-tetracarboxylic diimide (PTCDI-TFB), were fabricated, and the effects of surface treatment and substrate temperature at the film deposition on the electron mobility of the transistors were studied. The maximum mobility, 4.1 × 10 -2 cm 2 V -1 s -1 in the saturation region (1.7 × 10 -2 cm 2 V -1 s -1 in the linear region), was obtained in air for the film deposited at 95 °C on the SiO 2 surface modified with hexamethyldisilazane. The high electron affinity of PTCDI-TFB estimated at 4.8 eV by photoelectron yield spectroscopy and UV-Vis absorption spectroscopy, which is ascribable to the trifluoromethylbenzyl groups, is likely to result in the observed stable transistor operation in air.

  13. Nitrogen oxide air pollution: atmospheric chemistry. 1964-1978 (citations from the NTIS data base). Report for 1964-78

    Energy Technology Data Exchange (ETDEWEB)

    Cavagnaro, D.M.

    1980-10-01

    Research reports on photochemical air pollution models, smog chemistry and reactivity, and SSt exhaust effects are cited in the bibliography. Auroral and upper atmospheric in chemistry, and photochemistry of naturally occurring nitrogen oxides are excluded. (Contains 247 citations)

  14. A study on the environmental behavior of global air pollutants based on the continuous measurements of atmospheric radon concentrations

    International Nuclear Information System (INIS)

    Radon is a useful natural radioactive tracer of air transportation of atmospheric pollution, since radon is a noble gas and chemically inert. The atmospheric radon concentration is usually measured by a high-sensitivity electrostatic collection method or a two-filter method. The variations of radon concentrations observed over a solitary island and in the upper atmosphere are suitable for comparing with those of air pollutants. Some numerical simulation models were used to study the radon global transport in the atmosphere. In East Asia, atmospheric radon and air pollutants are transported with the air stream from the continent of China to the Northwestern Pacific Ocean. It is necessary to clarify the transport mechanism from both radon observations at various locations and numerical simulation. (author)

  15. A dynamic activity-based population modelling approach to evaluate exposure to air pollution: Methods and application to a Dutch urban area

    International Nuclear Information System (INIS)

    Recent air quality studies have highlighted that important differences in pollutant concentrations can occur over the day and between different locations. Traditional exposure analyses, however, assume that people are only exposed to pollution at their place of residence. Activity-based models, which recently have emerged from the field of transportation research, offer a technique to micro-simulate activity patterns of a population with a high resolution in space and time. Due to their characteristics, this model can be applied to establish a dynamic exposure assessment to air pollution. This paper presents a new exposure methodology, using a micro-simulator of activity-travel behaviour, to develop a dynamic exposure assessment. The methodology is applied to a Dutch urban area to demonstrate the advantages of the approach for exposure analysis. The results for the exposure to PM10 and PM2.5, air pollutants considered as hazardous for human health, reveal large differences between the static and the dynamic approach, mainly due to an underestimation of the number of hours spent in the urban region by the static method. We can conclude that this dynamic population modelling approach is an important improvement over traditional methods and offers a new and more sensitive way for estimating population exposure to air pollution. In the light of the new European directive, aimed at reducing the exposure of the population to PM2.5, this new approach contributes to a much more accurate exposure assessment that helps evaluate policies to reduce public exposure to air pollution

  16. CFD-Based Correlation Development For Air Side Performance Of Finned And Finless Tube Heat Exchangers With Small Diameter Tubes

    OpenAIRE

    Bacellar, Daniel; Aute, Vikrant; Radermacher, Reinhard

    2014-01-01

    Air-to-refrigerant heat exchangers are a key component in air-conditioning and heat pump systems. A great deal of effort is spent on the design and optimization of these heat exchangers. One path towards improving their performance is the transition to smaller hydraulic diameter flow channels. This is evident by the recent introduction of microchannel heat exchangers in the stationary HVAC market. Systematic analyses demonstrates a great potential for improvement in terms of size, weight, ref...

  17. Simulation of Air flow, Smoke Dispersion and Evacuation of the Monument Metro Station based on Subway Climatology

    OpenAIRE

    Qian, Zi; Agnew, Brian; Thompson, Emine Mine

    2014-01-01

    This research is creating a working laboratory in Newcastle Monument metro station to understand the details of how the over ground climate influences the internal airflow and the impact this has on evacuation strategies. It is intended to link weather data with the background air flow in the station and identify the main driving forces for the dispersion of smoke or toxic agents throughout the station. The subway air flow will be evaluated and then interfaced with a VR simulation of the stat...

  18. Experimental and simulative analysis of a microtrigeneration system based on an air handling unit with desiccant wheel

    OpenAIRE

    Angrisani, Giovanni

    2011-01-01

    During last years, air conditioning demand is spreading, both in the commercial (shops, warehouses, offices, schools…) and in the residential sector. This caused a sensible increase in primary energy consumption in these sectors, especially in industrialized countries, where people spend the major part of the day in confined environments, therefore it is very important to guarantee a high Indoor Air Quality and thermal comfort. Therefore, it is very important to investigate the possibility...

  19. Fundamentals and applications of on-chip interferometers based on deep-etched silicon-air multilayer reflectors

    Science.gov (United States)

    St-Gelais, Raphael

    Deep reactive ion etching (DRIE) of silicon can be used to fabricate vertical (i.e. in-plane) silicon-air multilayer mirrors. In comparison with out-of-plane reflectors fabricated by thin film deposition, in-plane multilayer assemblies can be monolithically integrated with a variety of useful structures such as passive optical fiber alignment grooves, microfluidic systems, waveguides, and microelectromechanical (MEMS) actuators. However, all previously reported devices suffered from high insertion losses (> 10 dB) which translated, in most cases, in weak light confinement abilities (e.g. low finesses in the case of Fabry-Perot cavities). The first objective of this work is therefore to investigate the sources of loss and the technological limitations that affect interferometers based on deep-etched multilayer reflectors. Theoretical models for the prediction of losses---due to Gaussian beam divergence, surface roughness at silicon-air material interfaces, imperfect verticality of the etch profiles, and misalignment between input and output coupling optical fibers---are provided. Of these four loss mechanisms, the first three are demonstrated to be generally significant. For the devices presented in the current thesis, however, verticality deviation of the etch profiles (etch angle error ~ 0.04°) is found to be negligible compared with the measured contributions of surface roughness (30 nm RMS) and Gaussian beam divergence. The fourth loss mechanism (fiber misalignment) is found to be essentially negligible in all cases. These theoretical models are demonstrated to correspond remarkably well with our experimental results, such that we are able to state clear boundaries on the possibilities and limitations of interferometers based on deep-etched silicon-air multilayer reflectors. Within these boundaries, three new devices---with potential applications in biomedical sensing, chemical sensing, and optical fiber telecommunications---are investigated. Firstly, a deep

  20. Assessing Resistance to Change During Shifting from Legacy to Open Web-Based Systems in the Air Transport Industry

    Science.gov (United States)

    Brewer, Denise

    The air transport industry (ATI) is a dynamic, communal, international, and intercultural environment in which the daily operations of airlines, airports, and service providers are dependent on information technology (IT). Many of the IT legacy systems are more than 30 years old, and current regulations and the globally distributed workplace have brought profound changes to the way the ATI community interacts. The purpose of the study was to identify the areas of resistance to change in the ATI community and the corresponding factors in change management requirements that minimize product development delays and lead to a successful and timely shift from legacy to open web-based systems in upgrading ATI operations. The research questions centered on product development team processes as well as the members' perceived need for acceptance of change. A qualitative case study approach rooted in complexity theory was employed using a single case of an intercultural product development team dispersed globally. Qualitative data gathered from questionnaires were organized using Nvivo software, which coded the words and themes. Once coded, themes emerged identifying the areas of resistance within the product development team. Results of follow-up interviews with team members suggests that intercultural relationship building prior to and during project execution; focus on common team goals; and, development of relationships to enhance interpersonal respect, understanding and overall communication help overcome resistance to change. Positive social change in the form of intercultural group effectiveness evidenced in increased team functioning during major project transitions is likely to result when global managers devote time to cultural understanding.