WorldWideScience

Sample records for air bases

  1. US Air Force Base Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly observations taken by U.S. Air Force personnel at bases in the United States and around the world. Foreign observations concentrated in the Middle East and...

  2. CATS-based Air Traffic Controller Agents

    Science.gov (United States)

    Callantine, Todd J.

    2002-01-01

    This report describes intelligent agents that function as air traffic controllers. Each agent controls traffic in a single sector in real time; agents controlling traffic in adjoining sectors can coordinate to manage an arrival flow across a given meter fix. The purpose of this research is threefold. First, it seeks to study the design of agents for controlling complex systems. In particular, it investigates agent planning and reactive control functionality in a dynamic environment in which a variety perceptual and decision making skills play a central role. It examines how heuristic rules can be applied to model planning and decision making skills, rather than attempting to apply optimization methods. Thus, the research attempts to develop intelligent agents that provide an approximation of human air traffic controller behavior that, while not based on an explicit cognitive model, does produce task performance consistent with the way human air traffic controllers operate. Second, this research sought to extend previous research on using the Crew Activity Tracking System (CATS) as the basis for intelligent agents. The agents use a high-level model of air traffic controller activities to structure the control task. To execute an activity in the CATS model, according to the current task context, the agents reference a 'skill library' and 'control rules' that in turn execute the pattern recognition, planning, and decision-making required to perform the activity. Applying the skills enables the agents to modify their representation of the current control situation (i.e., the 'flick' or 'picture'). The updated representation supports the next activity in a cycle of action that, taken as a whole, simulates air traffic controller behavior. A third, practical motivation for this research is to use intelligent agents to support evaluation of new air traffic control (ATC) methods to support new Air Traffic Management (ATM) concepts. Current approaches that use large, human

  3. Indoor air quality analysis based on Hadoop

    International Nuclear Information System (INIS)

    The air of the office environment is our research object. The data of temperature, humidity, concentrations of carbon dioxide, carbon monoxide and ammonia are collected peer one to eight seconds by the sensor monitoring system. And all the data are stored in the Hbase database of Hadoop platform. With the help of HBase feature of column-oriented store and versioned (automatically add the time column), the time-series data sets are bulit based on the primary key Row-key and timestamp. The parallel computing programming model MapReduce is used to process millions of data collected by sensors. By analysing the changing trend of parameters' value at different time of the same day and at the same time of various dates, the impact of human factor and other factors on the room microenvironment is achieved according to the liquidity of the office staff. Moreover, the effective way to improve indoor air quality is proposed in the end of this paper

  4. Indoor air quality analysis based on Hadoop

    Science.gov (United States)

    Tuo, Wang; Yunhua, Sun; Song, Tian; Liang, Yu; Weihong, Cui

    2014-03-01

    The air of the office environment is our research object. The data of temperature, humidity, concentrations of carbon dioxide, carbon monoxide and ammonia are collected peer one to eight seconds by the sensor monitoring system. And all the data are stored in the Hbase database of Hadoop platform. With the help of HBase feature of column-oriented store and versioned (automatically add the time column), the time-series data sets are bulit based on the primary key Row-key and timestamp. The parallel computing programming model MapReduce is used to process millions of data collected by sensors. By analysing the changing trend of parameters' value at different time of the same day and at the same time of various dates, the impact of human factor and other factors on the room microenvironment is achieved according to the liquidity of the office staff. Moreover, the effective way to improve indoor air quality is proposed in the end of this paper.

  5. Air Quality Monitoring: Risk-Based Choices

    Science.gov (United States)

    James, John T.

    2009-01-01

    Air monitoring is secondary to rigid control of risks to air quality. Air quality monitoring requires us to target the credible residual risks. Constraints on monitoring devices are severe. Must transition from archival to real-time, on-board monitoring. Must provide data to crew in a way that they can interpret findings. Dust management and monitoring may be a major concern for exploration class missions.

  6. A dual pore carbon aerogel based air cathode for a highly rechargeable lithium-air battery

    OpenAIRE

    Wang, Fang; Xu, Yang-Hai; Luo, Zhong-Kuan; PANG, YAN; Liang, Chun-Sheng; Chen, Jing; Liu, Dong; Zhang, Xianghua

    2014-01-01

    International audience Cathode structure plays a vital role in lithium-air battery for that it can provide space for discharged products accommodation and free path for oxygen, e− and Li+ transport. However, pore blockage, cathode passivation and degradation all result in low discharge rates and poor cycling capability. To get rid of these predicaments, a novel highly conductive dual pore carbon aerogel based air cathode is fabricated to construct a lithium-air battery, which exhibits 18 t...

  7. Evaluation of AirGIS: a GIS-based air pollution and human exposure modelling system

    DEFF Research Database (Denmark)

    Ketzel, Matthias; Berkowicz, Ruwim; Hvidberg, Martin;

    2011-01-01

    This study describes in brief the latest extensions of the Danish Geographic Information System (GIS)-based air pollution and human exposure modelling system (AirGIS), which has been developed in Denmark since 2001 and gives results of an evaluation with measured air pollution data. The system...... shows, in general, a good performance for both long-term averages (annual and monthly averages), short-term averages (hourly and daily) as well as when reproducing spatial variation in air pollution concentrations. Some shortcomings and future perspectives of the system are discussed too....

  8. A novel, fuzzy-based air quality index (FAQI) for air quality assessment

    Science.gov (United States)

    Sowlat, Mohammad Hossein; Gharibi, Hamed; Yunesian, Masud; Tayefeh Mahmoudi, Maryam; Lotfi, Saeedeh

    2011-04-01

    The ever increasing level of air pollution in most areas of the world has led to development of a variety of air quality indices for estimation of health effects of air pollution, though the indices have their own limitations such as high levels of subjectivity. Present study, therefore, aimed at developing a novel, fuzzy-based air quality index (FAQI ) to handle such limitations. The index developed by present study is based on fuzzy logic that is considered as one of the most common computational methods of artificial intelligence. In addition to criteria air pollutants (i.e. CO, SO 2, PM 10, O 3, NO 2), benzene, toluene, ethylbenzene, xylene, and 1,3-butadiene were also taken into account in the index proposed, because of their considerable health effects. Different weighting factors were then assigned to each pollutant according to its priority. Trapezoidal membership functions were employed for classifications and the final index consisted of 72 inference rules. To assess the performance of the index, a case study was carried out employing air quality data at five different sampling stations in Tehran, Iran, from January 2008 to December 2009, results of which were then compared to the results obtained from USEPA air quality index (AQI). According to the results from present study, fuzzy-based air quality index is a comprehensive tool for classification of air quality and tends to produce accurate results. Therefore, it can be considered useful, reliable, and suitable for consideration by local authorities in air quality assessment and management schemes. Fuzzy-based air quality index (FAQI).

  9. Upper limits for air humidity based on human comfort

    DEFF Research Database (Denmark)

    Toftum, Jørn; Fanger, Povl Ole; Jørgensen, Anette S.

    1998-01-01

    respiratory cooling. Human subjects perceived the condition of their skin to be less acceptable with increasing skin humidity. Inhaled air was rated warmer, more stuffy and less acceptable with increasing air humidity and temperature. Based on the subjects' comfort responses, new upper limits for air humidity......The purpose of this study was to verify the hypothesis that insufficient respiratory cooling and a high level of skin humidity are two reasons for thermal discomfort at high air humidities, and to prescribe upper limits for humidity based on discomfort due to elevated skin humidity and insufficient...... are proposed. The limits relating to respiratory requirements are much more stringent than those relating to skin humidity....

  10. LAWRENCE RISK-BASED AIR SCREENING

    Science.gov (United States)

    The pediatric asthma rate in the city of Lawrence is the highest in the state of Massachusetts. This project will evaluate whether the cumulative risks due to the air pollution in Lawrence is contributing to the high asthma rates and other respiratory problems. The project will...

  11. Aluminum-based metal-air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, Cody A.; Martinez, Jose Antonio Bautista

    2016-01-12

    Provided in one embodiment is an electrochemical cell, comprising: (i) a plurality of electrodes, comprising a fuel electrode that comprises aluminum and an air electrode that absorbs gaseous oxygen, the electrodes being operable in a discharge mode wherein the aluminum is oxidized at the fuel electrode and oxygen is reduced at the air electrode, and (ii) an ionically conductive medium, comprising an organic solvent; wherein during non-use of the cell, the organic solvent promotes formation of a protective interface between the aluminum of the fuel electrode and the ionically conductive medium, and wherein at an onset of the discharge mode, at least some of the protective interface is removed from the aluminum to thereafter permit oxidation of the aluminum during the discharge mode.

  12. Design of Piston Air Compressor Unit Control System based Converter

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>Based on the running characteristics and high energy consumption of air compressors in coal mines,an air pressure PID closed loop control system has been designed in this paper.The system is composed of PLC, converter and sensors etc and adopts the control method of converter triple-evaporator which makes air supply"need-based".The designed system has been applied in multiple coal mines and the results show its energy saving is remarkable and potential application is widely.

  13. Performance and evaluation of desiccant based air conditioning system.

    Directory of Open Access Journals (Sweden)

    Gaurav S. Wani

    2014-12-01

    Full Text Available This Project work presents study and experimental analysis of Desiccant based air conditioning system.The main purpose of this project is to increase the efficency of air conditioning system.In the convenstional air conditioning system cooling coli has two load latent load and sensible load. Cooling has to cool the air and simultaneously to dehumidify it.It increases load on cooling coil and affects performance to the system. To increase the efficiency the air conditioning system desiccant materials are used at the inlet of the air conditioning test rig. Desiccant materials attract moisture based on differences in vapor pressure. Due to their enormous affinity to absorb water and considerable ability to hold water. Due to use of desiccant material load on the cooling coil reduces since moisture is absorbed by desiccant; cooling coil has to take only sensible load. Analysis is done using different desiccant materials and based on the observation, power consumption before and after desiccant is calculated. From this conclusion is made that desiccant material improves the efficiency of air conditioning test rig

  14. Li-air batteries having ether-based electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Amine, Khalil; Curtiss, Larry A; Lu, Jun; Lau, Kah Chun; Zhang, Zhengcheng; Sun, Yang-Kook

    2015-03-03

    A lithium-air battery includes a cathode including a porous active carbon material, a separator, an anode including lithium, and an electrolyte including a lithium salt and polyalkylene glycol ether, where the porous active carbon material is free of a metal-based catalyst.

  15. Lithium air batteries having ether-based electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Amine, Khalil; Curtiss, Larry A.; Lu, Jun; Lau, Kah Chun; Zhang, Zhengcheng; Sun, Yang-Kook

    2016-10-25

    A lithium-air battery includes a cathode including a porous active carbon material, a separator, an anode including lithium, and an electrolyte including a lithium salt and polyalkylene glycol ether, where the porous active carbon material is free of a metal-based catalyst.

  16. Geothermal-resource verification for Air Force bases

    Energy Technology Data Exchange (ETDEWEB)

    Grant, P.R. Jr.

    1981-06-01

    This report summarizes the various types of geothermal energy reviews some legal uncertainties of the resource and then describes a methodology to evaluate geothermal resources for applications to US Air Force bases. Estimates suggest that exploration costs will be $50,000 to $300,000, which, if favorable, would lead to drilling a $500,000 exploration well. Successful identification and development of a geothermal resource could provide all base, fixed system needs with an inexpensive, renewable energy source.

  17. Eielson Air Force Base Operable Unit 2 baseline risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, R.E.; Jarvis, T.T.; Jarvis, M.R.; Whelan, G.

    1994-10-01

    Operable Unit 2 at Eielson Air Force Base (AFB) near Fairbanks, is one of several operable units characterized by petroleum, oil, and lubricant contamination, and by the presence of organic products floating at the water table, as a result of Air Force operations since the 1940s. The base is approximately 19,270 acres in size, and comprises the areas for military operations and a residential neighborhood for military dependents. Within Operable Unit 2, there are seven source areas. These source areas were grouped together primarily because of the contaminants released and hence are not necessarily in geographical proximity. Source area ST10 includes a surface water body (Hardfill Lake) next to a fuel spill area. The primary constituents of concern for human health include benzene, toluene, ethylbenzene, and xylenes (BTEX). Monitored data showed these volatile constituents to be present in groundwater wells. The data also showed an elevated level of trace metals in groundwater.

  18. Marin recipientundersøgelse ved Thule Air Base 2002

    DEFF Research Database (Denmark)

    Glahder, C. M.; Asmund, G.; Mayer, P.;

    I 2002 gennemførte Danmarks Miljøundersøgelser en recipientundersøgelse ud for Thule Air Base (TAB) for at vurdere, om aktiviteterne og specielt de efterladte dumpe på TAB har belastet det marine miljø med forurenende stoffer. Undersøgelsen viser, at der findes flere forurenings-kilder som f. eks...... findes i Wolstenholme Fjord og Bylot Sund området og regionen som helhed. Det væsentligste forureningsproblem i forbindelse med akti-viteterne på Thule Air Base synes at være PCBerne, idet denne kontaminantgruppe viser forhøjede koncentrationer på 2-30 gange både lokalt og regionalt. PCB...

  19. SAMIRA - SAtellite based Monitoring Initiative for Regional Air quality

    Science.gov (United States)

    Schneider, Philipp; Stebel, Kerstin; Ajtai, Nicolae; Diamandi, Andrei; Horalek, Jan; Nicolae, Doina; Stachlewska, Iwona; Zehner, Claus

    2016-04-01

    Here, we present a new ESA-funded project entitled Satellite based Monitoring Initiative for Regional Air quality (SAMIRA), which aims at improving regional and local air quality monitoring through synergetic use of data from present and upcoming satellites, traditionally used in situ air quality monitoring networks and output from chemical transport models. Through collaborative efforts in four countries, namely Romania, Poland, the Czech Republic and Norway, all with existing air quality problems, SAMIRA intends to support the involved institutions and associated users in their national monitoring and reporting mandates as well as to generate novel research in this area. Despite considerable improvements in the past decades, Europe is still far from achieving levels of air quality that do not pose unacceptable hazards to humans and the environment. Main concerns in Europe are exceedances of particulate matter (PM), ground-level ozone, benzo(a)pyrene (BaP) and nitrogen dioxide (NO2). While overall sulfur dioxide (SO2) emissions have decreased in recent years, regional concentrations can still be high in some areas. The objectives of SAMIRA are to improve algorithms for the retrieval of hourly aerosol optical depth (AOD) maps from SEVIRI, and to develop robust methods for deriving column- and near-surface PM maps for the study area by combining satellite AOD with information from regional models. The benefit to existing monitoring networks (in situ, models, satellite) by combining these datasets using data fusion methods will be tested for satellite-based NO2, SO2, and PM/AOD. Furthermore, SAMIRA will test and apply techniques for downscaling air quality-related EO products to a spatial resolution that is more in line with what is generally required for studying urban and regional scale air quality. This will be demonstrated for a set of study sites that include the capitals of the four countries and the highly polluted areas along the border of Poland and the

  20. Air

    Science.gov (United States)

    ... house) Industrial emissions (like smoke and chemicals from factories) Household cleaners (spray cleaners, air fresheners) Car emissions (like carbon monoxide) *All of these things make up “particle pollution.” They mostly come from cars, trucks, buses, and ...

  1. Application of Residual-Based EWMA Control Charts for Detecting Faults in Variable-Air-Volume Air Handling Unit System

    OpenAIRE

    Haitao Wang

    2016-01-01

    An online robust fault detection method is presented in this paper for VAV air handling unit and its implementation. Residual-based EWMA control chart is used to monitor the control processes of air handling unit and detect faults of air handling unit. In order to provide a level of robustness with respect to modeling errors, control limits are determined by incorporating time series model uncertainty in EWMA control chart. The fault detection method proposed was tested and validated using re...

  2. Problem based teaching in indoor Air Science and Practice

    DEFF Research Database (Denmark)

    Kjærgaard, Søren K.

    1999-01-01

    on the experiment was that the method was useful even in a very mixed group, and highly motivating for the teachers. Similarly, at the MPH-school at Aarhus University, the method has given good experiences in a multidisciplinary group of mature students. Their task have been to evaluate health problems during...... a month achieving, evaluating literature, and using a strategic algorithm based on 1) problem analysis, 2) setting goals and target groups, 3) selecting intervention, 3) implementation of intervention, and 4) evaluation. An example has been childhood asthma and indoor air pollution. It is suggested......-disciplinary group work with facilitating tutors using a problem based training technique....

  3. Eielson Air Force Base OU-1 baseline risk assessment

    International Nuclear Information System (INIS)

    This Baseline Risk Assessment report is the second volume in a set of three volumes for operable Unit 1 (OU-1). The companion documents contain the Remedial Investigation and the Feasibility Study. Operable Unit 1 (OU-1) is one of several groups of hazardous waste sites located at Eielson Air Force Base (AFB) near Fairbanks, Alaska. The operable units at Eielson are typically characterized by petroleum, oil, lubricant/solvent contamination, and by the presence of organics floating at the water table. In 1989 and 1990, firms under contract to the Air Force conducted field studies to gather information about the extent of chemical contamination in soil, groundwater, and soil air pore space (soil gas) at the site. This report documents the results of a baseline risk assessment, which uses the 1989 and 1991 site characterization database to quantify the potential human health risk associated with past Base industrial activities in the vicinity of OU-1. Background data collected in 1992 were also used in the preparation of this report

  4. Eielson Air Force Base OU-1 baseline risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, M.T.; Jarvis, T.T.; Van Houten, N.C.; Lewis, R.E.

    1993-09-01

    This Baseline Risk Assessment report is the second volume in a set of three volumes for operable Unit 1 (OU-1). The companion documents contain the Remedial Investigation and the Feasibility Study. Operable Unit 1 (OU-1) is one of several groups of hazardous waste sites located at Eielson Air Force Base (AFB) near Fairbanks, Alaska. The operable units at Eielson are typically characterized by petroleum, oil, lubricant/solvent contamination, and by the presence of organics floating at the water table. In 1989 and 1990, firms under contract to the Air Force conducted field studies to gather information about the extent of chemical contamination in soil, groundwater, and soil air pore space (soil gas) at the site. This report documents the results of a baseline risk assessment, which uses the 1989 and 1991 site characterization database to quantify the potential human health risk associated with past Base industrial activities in the vicinity of OU-1. Background data collected in 1992 were also used in the preparation of this report.

  5. Plastic media blasting activities at Hill Air Force Base

    Science.gov (United States)

    Christensen, J. D.

    1993-03-01

    Hill Air Force Base in Utah developed plastic media blasting (PMB) paint removal process for removing paint from Air Force aircraft. The development of the process involved extensive testing of various abrasives and subsequent parameters to end up with an approved production process. Hill AFB has been using PMB in a production mode since 1985, and completely discontinued chemical stripping of airframes in 1989. We have recently installed and began operating a fully automated PMB facility that utilizes two nine-axis robots to strip an aircraft. This system has enabled us to further reduce the manhours required to strip an aircraft, and also allowed us to remove the employee from the blasting atmosphere into a control room. We have, and will continue to realize, significant environmental and economic savings by using PMB. Hill is also actively involved with the development of future paint stripping technologies.

  6. Air

    International Nuclear Information System (INIS)

    In recent years several regulations and standards for air quality and limits for air pollution were issued or are in preparation by the European Union, which have severe influence on the environmental monitoring and legislation in Austria. This chapter of the environmental control report of Austria gives an overview about the legal situation of air pollution control in the European Union and in specific the legal situation in Austria. It gives a comprehensive inventory of air pollution measurements for the whole area of Austria of total suspended particulates, ozone, volatile organic compounds, nitrogen oxides, sulfur dioxide, carbon monoxide, heavy metals, benzene, dioxin, polycyclic aromatic hydrocarbons and eutrophication. For each of these pollutants the measured emission values throughout Austria are given in tables and geographical charts, the environmental impact is discussed, statistical data and time series of the emission sources are given and legal regulations and measures for an effective environmental pollution control are discussed. In particular the impact of fossil-fuel power plants on the air pollution is analyzed. (a.n.)

  7. Hadoop-Based Distributed System for Online Prediction of Air Pollution Based on Support Vector Machine

    Science.gov (United States)

    Ghaemi, Z.; Farnaghi, M.; Alimohammadi, A.

    2015-12-01

    The critical impact of air pollution on human health and environment in one hand and the complexity of pollutant concentration behavior in the other hand lead the scientists to look for advance techniques for monitoring and predicting the urban air quality. Additionally, recent developments in data measurement techniques have led to collection of various types of data about air quality. Such data is extremely voluminous and to be useful it must be processed at high velocity. Due to the complexity of big data analysis especially for dynamic applications, online forecasting of pollutant concentration trends within a reasonable processing time is still an open problem. The purpose of this paper is to present an online forecasting approach based on Support Vector Machine (SVM) to predict the air quality one day in advance. In order to overcome the computational requirements for large-scale data analysis, distributed computing based on the Hadoop platform has been employed to leverage the processing power of multiple processing units. The MapReduce programming model is adopted for massive parallel processing in this study. Based on the online algorithm and Hadoop framework, an online forecasting system is designed to predict the air pollution of Tehran for the next 24 hours. The results have been assessed on the basis of Processing Time and Efficiency. Quite accurate predictions of air pollutant indicator levels within an acceptable processing time prove that the presented approach is very suitable to tackle large scale air pollution prediction problems.

  8. Geothermally Coupled Well-Based Compressed Air Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Casie L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bearden, Mark D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Horner, Jacob A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cabe, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Appriou, Delphine [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B. Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-20

    . This project assessed the technical and economic feasibility of implementing geothermally coupled well-based CAES for grid-scale energy storage. Based on an evaluation of design specifications for a range of casing grades common in U.S. oil and gas fields, a 5-MW CAES project could be supported by twenty to twenty-five 5,000-foot, 7-inch wells using lower-grade casing, and as few as eight such wells for higher-end casing grades. Using this information, along with data on geothermal resources, well density, and potential future markets for energy storage systems, The Geysers geothermal field was selected to parameterize a case study to evaluate the potential match between the proven geothermal resource present at The Geysers and the field’s existing well infrastructure. Based on calculated wellbore compressed air mass, the study shows that a single average geothermal production well could provide enough geothermal energy to support a 15.4-MW (gross) power generation facility using 34 to 35 geothermal wells repurposed for compressed air storage, resulting in a simplified levelized cost of electricity (sLCOE) estimated at 11.2 ¢/kWh (Table S.1). Accounting for the power loss to the geothermal power project associated with diverting geothermal resources for air heating results in a net 2-MW decrease in generation capacity, increasing the CAES project’s sLCOE by 1.8 ¢/kWh.

  9. Geothermally Coupled Well-Based Compressed Air Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, C L [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bearden, Mark D [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Horner, Jacob A [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Appriou, Delphine [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    . This project assessed the technical and economic feasibility of implementing geothermally coupled well-based CAES for grid-scale energy storage. Based on an evaluation of design specifications for a range of casing grades common in U.S. oil and gas fields, a 5-MW CAES project could be supported by twenty to twenty-five 5,000-foot, 7-inch wells using lower-grade casing, and as few as eight such wells for higher-end casing grades. Using this information, along with data on geothermal resources, well density, and potential future markets for energy storage systems, The Geysers geothermal field was selected to parameterize a case study to evaluate the potential match between the proven geothermal resource present at The Geysers and the field’s existing well infrastructure. Based on calculated wellbore compressed air mass, the study shows that a single average geothermal production well could provide enough geothermal energy to support a 15.4-MW (gross) power generation facility using 34 to 35 geothermal wells repurposed for compressed air storage, resulting in a simplified levelized cost of electricity (sLCOE) estimated at 11.2 ¢/kWh (Table S.1). Accounting for the power loss to the geothermal power project associated with diverting geothermal resources for air heating results in a net 2-MW decrease in generation capacity, increasing the CAES project’s sLCOE by 1.8 ¢/kWh.

  10. Air pollution and stroke - an overview of the evidence base.

    Science.gov (United States)

    Maheswaran, Ravi

    2016-08-01

    Air pollution is being increasingly recognized as a significant risk factor for stroke. There are numerous sources of air pollution including industry, road transport and domestic use of biomass and solid fuels. Early reports of the association between air pollution and stroke come from studies investigating health effects of severe pollution episodes. Several daily time series and case-crossover studies have reported associations with stroke. There is also evidence linking chronic air pollution exposure with stroke and with reduced survival after stroke. A conceptual framework linking air pollution exposure and stroke is proposed. It links acute and chronic exposure to air pollution with pathways to acute and chronic effects on stroke risk. Current evidence regarding potential mechanisms mainly relate to particulate air pollution. Whilst further evidence would be useful, there is already sufficient evidence to support consideration of reduction in air pollution as a preventative measure to reduce the stroke burden globally.

  11. A new circulation type classification based upon Lagrangian air trajectories

    Directory of Open Access Journals (Sweden)

    Alexandre M. Ramos

    2014-10-01

    Full Text Available A new classification method of the large-scale circulation characteristic for a specific target area (NW Iberian Peninsula is presented, based on the analysis of 90-h backward trajectories arriving in this area calculated with the 3-D Lagrangian particle dispersion model FLEXPART. A cluster analysis is applied to separate the backward trajectories in up to five representative air streams for each day. Specific measures are then used to characterise the distinct air streams (e.g., curvature of the trajectories, cyclonic or anticyclonic flow, moisture evolution, origin and length of the trajectories. The robustness of the presented method is demonstrated in comparison with the Eulerian Lamb weather type classification.A case study of the 2003 heatwave is discussed in terms of the new Lagrangian circulation and the Lamb weather type classifications. It is shown that the new classification method adds valuable information about the pertinent meteorological conditions, which are missing in an Eulerian approach. The new method is climatologically evaluated for the five-year time period from December 1999 to November 2004. The ability of the method to capture the inter-seasonal circulation variability in the target region is shown. Furthermore, the multi-dimensional character of the classification is shortly discussed, in particular with respect to inter-seasonal differences. Finally, the relationship between the new Lagrangian classification and the precipitation in the target area is studied.

  12. Radiation contamination air monitoring basing on NATO normalization documents

    International Nuclear Information System (INIS)

    The conditions and actions connected with conducting of the air radiation monitoring have been described in the article. The staff and tasks of special military troops for air sampling as well as commonly used methods for air sampling have been presented and discussed

  13. Ecoflex: Improving air quality with green dynamic traffic management based on real time air quality measurements

    NARCIS (Netherlands)

    Baalen, J. van; Koning, A. de; Voogt, M.; Stelwagen, U.; Turksma, S.

    2011-01-01

    Across the world, air quality regulations are breached due to localized high pollution episodes in specific locations, or "hotspots". Advances in air pollution monitoring techniques enable hotspots to be identified more effectively; however challenges remain as to how best to reduce the incidence an

  14. Identification of Chlorinated Solvent Sources in the Indoor Air of Private Residences around Hill Air Force Base, Utah

    OpenAIRE

    Hall, Andrew Jensen

    2008-01-01

    Volatile chlorinated solvents such as trichloroethylene (TCE), 1,2 dichloroethane (1,2 DCA), and perchloroethylene (PCE) have been identified in the indoor air of residences located near Hill Air Force Base (AFB), Utah. These vapors can originate from either volatilization of contaminates from shallow contaminated groundwater and transport into residences or from sources within the residence. The focus of the thesis was the development of a testing strategy for determining sources of TCE, 1,2...

  15. Dehumidifying Air for Cooling & Refrigeration: Nanotechnology Membrane-based Dehumidifier

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-10-01

    Broad Funding Opportunity Announcement Project: Dais is developing a product called NanoAir which dehumidifies the air entering a building to make air conditioning more energy efficient. The system uses a polymer membrane that allows moisture but not air to pass through it. A vacuum behind the membrane pulls water vapor from the air, and a second set of membranes releases the water vapor outside. The membrane’s high selectivity translates into reduced energy consumption for dehumidification. Dais’ design goals for NanoAir are the use of proprietary materials and processes and industry-standard installation techniques. NanoAir is also complementary to many other energy saving strategies, including energy recovery.

  16. Sitewide feasibility study Eielson Air Force Base, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Last, G.V.; Lanigan, D.C.; Josephson, G.B.; Bagaasen, L.M.

    1995-09-01

    The Sitewide Feasibility Study (FS) is required under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), the National Contingency Plan (NCP), and the Federal Facility Agreement (FFA) for Eielson Air Force Base (AFB). It is based on findings presented in the Sitewide Remedial Investigation (RI) Report (USAF 1995a), and the Sitewide Baseline Risk Assessment (BLRA) Report (USAF 1995b). Under the FFA, 64 potential source areas were placed in one of six operable units, based on similar contaminant and environmental characteristics, or were included for evaluation under a Source Evaluation Report (SER). The sitewide RI was directed at contamination that was not confined to an operable unit (OU) or SER source area. The objectives of the sitewide RI were to: Provide information about site characteristics to support individual OU RI/FS efforts and the sitewide RI/FS, including site hydrogeology and determination of background soil and groundwater characteristics; identify and characterize contamination that is not confined or attributable to a specific source area through sitewide monitoring of groundwater and surface water; evaluate cumulative risks to human health and the environment from contamination on a sitewide basis; and provide a mechanism for continued cohesive sitewide monitoring.

  17. Hazardous waste: Siting of storage facility at Kelly Air Force Base, Texas

    Energy Technology Data Exchange (ETDEWEB)

    1987-01-01

    This report provides information on whether the hazardous waste storage facility at Kelly Air Force Base meets Resource Conservation and Recovery Act, state, and Air Force siting requirements; on whether the Air Force or the Defense Reutilization and Marketing Office selected the best site available to protect the public and to preserve good public relations with the community; on whether the Air Force, Kelly Air Force Base, or the Defense Logistics Agency adjusted siting standards as a result of the adverse publicity the hazardous waste facility has generated; and on whether Kelly Air Force Base is revising its hazardous waste management organization so that it is similar to the organizations at Tinker and McClellan Air Force Bases.

  18. FUZZY MODELLING OF LIQUID DESICCANT BASED AIR DEHUMIDIFICATION SYSTEM

    OpenAIRE

    Harpreet Singh; Jagdev Singh; Simranpreet Singh Gill

    2011-01-01

    This paper describes the Mamdani fuzzy models of heat exchanger and dehumidifier (absorber) of an air dehumidification process occurring in a packed bed using liquid desiccant. Temperature of water used ascooling medium at the inlet of heat exchanger, temperature of desiccant solution(from the regenerator) ,inlet air humidity ratio of humid air, flow rate per unit cross-sectional area, temperature of desiccant solution(from the heat exchanger) have been taken as different variables for packed...

  19. The system of thermoelectric air conditioning based on permeable thermoelements

    OpenAIRE

    Cherkez R. G.

    2009-01-01

    There is thermoelectric air conditioner unit on the basis of permeable cooling thermoelements presented. In thermoelectric air conditioner unit the thermoelectric effects and the Joule–Thomson effect have been used for the air stream cooling. There have been described the method of temperature distribution analysis, the determinations of energy conversion power characteristics and design style of permeable thermoelement with maximum coefficient of performance described. The results of compute...

  20. Model Based Diagnosis of an Air Source Heat Pump

    OpenAIRE

    Alfredsson, Sandra

    2011-01-01

    The purpose of a heat pump is to control the temperature of an enclosed space. This is done by using heat exchange with a heat source, for example water, air, or ground. In the air source heat pump that has been studied during this master thesis, a refrigerant exchanges heat with the outdoor air and with a water distribution system. The heat pump is controlled through the circuit containing the refrigerant and it is therefore crucial that this circuit is functional. To ensure this, a diagnosi...

  1. System and method for air temperature control in an oxygen transport membrane based reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  2. FUZZY MODELLING OF LIQUID DESICCANT BASED AIR DEHUMIDIFICATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Harpreet Singh,

    2011-04-01

    Full Text Available This paper describes the Mamdani fuzzy models of heat exchanger and dehumidifier (absorber of an air dehumidification process occurring in a packed bed using liquid desiccant. Temperature of water used ascooling medium at the inlet of heat exchanger, temperature of desiccant solution(from the regenerator ,inlet air humidity ratio of humid air, flow rate per unit cross-sectional area, temperature of desiccant solution(from the heat exchanger have been taken as different variables for packed bed using liquid desiccant .Mamdani Fuzzy model is developed using the above mentioned variables to predict the water condensation rate from the air to the desiccant solution in terms of known operating parameters. The model predictions were compared against a reliable set of experimental data available in the literature and respective mathematical models for their validation. Integrated fuzzy model was also developed forliquid desiccant system

  3. Design of Stiffness for Air Spring Based on ABAQUS

    Directory of Open Access Journals (Sweden)

    Hongguang Li

    2013-01-01

    Full Text Available In this paper, an axisymmetric finite element (FE model of an air spring was carried out with the software ABAQUS to design its target vertical stiffness. The bellows was simulated by the reinforced surface element. The compressed gas in the cavity of the air spring was represented by the hydrostatic fluid element. The target stiffness is obtained by modifying the valid area of the cross section. At last, the results of experiment coincided well with the simulation data. The study shows that the static stiffness of air spring is sensitive to the effective area of the cross section. The conclusion has certain practical significance for the design and the optimization of the same kind of air spring.

  4. Tolerance Levels of Roadside Trees to Air Pollutants Based on Relative Growth Rate and Air Pollution Tolerance Index

    Directory of Open Access Journals (Sweden)

    SULISTIJORINI

    2008-09-01

    Full Text Available Motor vehicles release carbon monoxide, nitrogen dioxide, sulphur dioxide, and particulate matters to the air as pollutants. Vegetation can absorb these pollutants through gas exchange processes. The objective of this study was to examine the combination of the relative growth rate (RGR and physiological responses in determining tolerance levels of plant species to air pollutants. Physiological responses were calculated as air pollution tolerance index (APTI. Eight roadside tree species were placed at polluted (Jagorawi highway and unpolluted (Sindangbarang field area. Growth and physiological parameters of the trees were recorded, including plant height, leaf area, total ascorbate, total chlorophyll, leaf-extract pH, and relative water content. Scoring criteria for the combination of RGR and APTI method was given based on means of the two areas based on two-sample t test. Based on the total score of RGR and APTI, Lagerstroemia speciosa was categorized as a tolerant species; and Pterocarpus indicus, Delonix regia, Swietenia macrophylla were categorized as moderately tolerant species. Gmelina arborea, Cinnamomum burmanii, and Mimusops elengi were categorized as intermediate tolerant species. Lagerstroemia speciosa could be potentially used as roadside tree. The combination of RGR and APTI value was better to determinate tolerance level of plant to air pollutant than merely APTI method.

  5. Avian survey and field guide for Osan Air Base, Korea.

    Energy Technology Data Exchange (ETDEWEB)

    Levenson, J.

    2006-12-05

    This report summarizes the results of the avian surveys conducted at Osan Air Base (AB). This ongoing survey is conducted to comply with requirements of the Environmental Governing Standards (EGS) for the Republic of Korea, the Integrated Natural Resources Management Plan (INRMP) for Osan AB, and the 51st Fighter Wing's Bird Aircraft Strike Hazard (BASH) Plan. One hundred ten bird species representing 35 families were identified and recorded. Seven species are designated as Natural Monuments, and their protection is accorded by the Korean Ministry of Culture and Tourism. Three species appear on the Korean Association for Conservation of Nature's (KACN's) list of Reserved Wild Species and are protected by the Korean Ministry of Environment. Combined, ten different species are Republic of Korea (ROK)-protected. The primary objective of the avian survey at Osan AB was to determine what species of birds are present on the airfield and their respective habitat requirements during the critical seasons of the year. This requirement is specified in Annex J.14.c of the 51st Fighter BASH Plan 91-212 (51 FW OPLAN 91-212). The second objective was to initiate surveys to determine what bird species are present on Osan AB throughout the year and from the survey results, determine if threatened, endangered, or other Korean-listed bird species are present on Osan AB. This overall census satisfies Criterion 13-3.e of the EGS for Korea. The final objective was to formulate management strategies within Osan AB's operational requirements to protect and enhance habitats of known threatened, endangered, and ROK-protected species in accordance with EGS Criterion 13-3.a that are also favorable for the reproduction of indigenous species in accordance with the EGS Criterion 13-3.h.

  6. Avian Field guide and checklist for Kunsan Air Base, Korea.

    Energy Technology Data Exchange (ETDEWEB)

    Levenson, J. B.; Environmental Assessment

    2005-11-15

    This report summarizes the results of the avian surveys conducted at Kunsan Air Base (AB). This on-going survey is conducted to comply with requirements of the Environmental Governing Standards (EGS) for the Republic of Korea, the Integrated Natural Resources Management Plan (INRMP) for Kunsan AB, and the 8th Fighter Wing's Bird Aircraft Strike Hazard (BASH) Plan. One hundred sixteen bird species representing 34 families were identified and recorded. Seven species are designated as Cultural Property Monuments, and their protection is accorded by the Korean Ministry of Culture and Tourism. Six species appear on the Korean Association for Conservation of Nature's(KACN's) list of Reserved Wild Species and are protected by the Korean Ministry of Environment. Combined, only ten different species are Republic of Korea (ROK)-protected because the Eurasian Spoonbill, Peregrine Falcon, and Eurasian Oystercatcher are listed by both agencies. The primary objective of the avian survey at Kunsan AB was to determine what species of birds are present on the airfield and their respective habitat requirements during the critical seasons of the year. This requirement is specified in Annex C.4.a.(1-4) of the 8th Fighter Wing BASH Plan(8FWOPLAN 91-202). The second objective was to initiate surveys to determine what bird species are present on Kunsan AB throughout the year, and from the survey results determine if threatened, endangered, or other Korean-listed bird species are present on Kunsan AB. This overall census satisfies Criterion 13-3.e of the EGS for Korea. The final objective was to formulate management strategies within Kunsan AB's operational requirements to protect and enhance habitats of known threatened, endangered, and ROK-protected species in accordance with EGS Criterion 13-3.a and also that are favorable for the reproduction of indigenous species in accordance with the EGS Criterion 13-3.h.

  7. Mortality and hospitalization incidence among employees of the Thule air-base 1963-1971

    International Nuclear Information System (INIS)

    January 21th 1968 an American B52 bomber with nuclear weapons aboard crashed close to the Thule air-base on Greenland. This report considers mortality and hospitalization incidence among the 4322 persons employed at the air-base. (EG)

  8. Development of carbon-based cathodes for Li-air batteries: Present and future

    Science.gov (United States)

    Woo, Hyungsub; Kang, Joonhyeon; Kim, Jaewook; Kim, Chunjoong; Nam, Seunghoon; Park, Byungwoo

    2016-09-01

    Rechargeable lithium-air (Li-air) batteries are regarded as one of the most fascinating energy storage devices for use in the future electric vehicles, since Li-air batteries provide ten-times-higher theoretical capacities than those from current Li-ion batteries. Nonetheless, Li-air batteries have not yet been implemented to the market because of several major drawbacks such as low capacity, poor cycle life, and low round-trip efficiency. These battery performances are highly dependent on the design of air cathodes, thus much effort has been devoted to the development of high performance cathode. Among various materials, carbonaceous materials have been widely studied as the basis of air cathodes especially for non-aqueous Li-O2 cells due to their high electric conductivity, low cost, and ease of fabrication. This review summarizes the history, scientific background, and perspectives of Liair batteries, particularly from the viewpoint of carbon-based air cathodes.

  9. The system of thermoelectric air conditioning based on permeable thermoelements

    Directory of Open Access Journals (Sweden)

    Cherkez R. G.

    2009-04-01

    Full Text Available There is thermoelectric air conditioner unit on the basis of permeable cooling thermoelements presented. In thermoelectric air conditioner unit the thermoelectric effects and the Joule–Thomson effect have been used for the air stream cooling. There have been described the method of temperature distribution analysis, the determinations of energy conversion power characteristics and design style of permeable thermoelement with maximum coefficient of performance described. The results of computer analysis concerning the application of the thermoelement legs material on the basis of Bi2Te3 have shown the possibility of coefficient of performance increase by a factor of 1,6—1,7 as compared with conventional thermoelectric systems.

  10. Independent air dehumidification with membrane-based total heat recovery: Modeling and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Liang, C.H.; Zhang, L.Z.; Pei, L.X. [Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Education Ministry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China)

    2010-03-15

    Fresh air ventilation is helpful for the control of epidemic respiratory disease like Swine flu (H1N1). Fresh air dehumidification systems with energy recovery measures are the key equipments to realize this goal. As a solution, an independent air dehumidification system with membrane-based total heat recovery is proposed. A prototype is built in laboratory. A detailed model is proposed and a cell-by-cell simulation technique is used in simulation to evaluate performances. The results indicate that the model can predict the system accurately. The effects of varying operating conditions like air-flow rates, temperature, and air relative humidity on the air dehumidification rates, cooling powers, electric power consumption, and thermal coefficient of performance are evaluated. The prototype has a COP of 6.8 under nominal operating conditions with total heat recovery. The performance is rather robust to outside weather conditions with a membrane-based total heat exchanger. (author)

  11. Vandenberg Air Force Base Upper Level Wind Launch Weather Constraints

    Science.gov (United States)

    Shafer, Jaclyn A.; Wheeler, Mark M.

    2012-01-01

    The 30th Operational Support Squadron Weather Flight (30 OSSWF) provides comprehensive weather services to the space program at Vandenberg Air Force Base (VAFB) in California. One of their responsibilities is to monitor upper-level winds to ensure safe launch operations of the Minuteman III ballistic missile. The 30 OSSWF tasked the Applied Meteorology Unit (AMU) to analyze VAFB sounding data with the goal of determining the probability of violating (PoV) their upper-level thresholds for wind speed and shear constraints specific to this launch vehicle, and to develop a tool that will calculate the PoV of each constraint on the day of launch. In order to calculate the probability of exceeding each constraint, the AMU collected and analyzed historical data from VAFB. The historical sounding data were retrieved from the National Oceanic and Atmospheric Administration Earth System Research Laboratory archive for the years 1994-2011 and then stratified into four sub-seasons: January-March, April-June, July-September, and October-December. The maximum wind speed and 1000-ft shear values for each sounding in each subseason were determined. To accurately calculate the PoV, the AMU determined the theoretical distributions that best fit the maximum wind speed and maximum shear datasets. Ultimately it was discovered that the maximum wind speeds follow a Gaussian distribution while the maximum shear values follow a lognormal distribution. These results were applied when calculating the averages and standard deviations needed for the historical and real-time PoV calculations. In addition to the requirements outlined in the original task plan, the AMU also included forecast sounding data from the Rapid Refresh model. This information provides further insight for the launch weather officers (LWOs) when determining if a wind constraint violation will occur over the next few hours on day of launch. The interactive graphical user interface (GUI) for this project was developed in

  12. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air Part 1: Sorbent-based air monitoring options.

    Science.gov (United States)

    Woolfenden, Elizabeth

    2010-04-16

    Sorbent tubes/traps are widely used in combination with gas chromatographic (GC) analytical methods to monitor the vapour-phase fraction of organic compounds in air. Target compounds range in volatility from acetylene and freons to phthalates and PCBs and include apolar, polar and reactive species. Airborne vapour concentrations will vary depending on the nature of the location, nearby pollution sources, weather conditions, etc. Levels can range from low percent concentrations in stack and vent emissions to low part per trillion (ppt) levels in ultra-clean outdoor locations. Hundreds, even thousands of different compounds may be present in any given atmosphere. GC is commonly used in combination with mass spectrometry (MS) detection especially for environmental monitoring or for screening uncharacterised workplace atmospheres. Given the complexity and variability of organic vapours in air, no one sampling approach suits every monitoring scenario. A variety of different sampling strategies and sorbent media have been developed to address specific applications. Key sorbent-based examples include: active (pumped) sampling onto tubes packed with one or more sorbents held at ambient temperature; diffusive (passive) sampling onto sorbent tubes/cartridges; on-line sampling of air/gas streams into cooled sorbent traps; and transfer of air samples from containers (canisters, Tedlar) bags, etc.) into cooled sorbent focusing traps. Whichever sampling approach is selected, subsequent analysis almost always involves either solvent extraction or thermal desorption (TD) prior to GC(/MS) analysis. The overall performance of the air monitoring method will depend heavily on appropriate selection of key sampling and analytical parameters. This comprehensive review of air monitoring using sorbent tubes/traps is divided into 2 parts. (1) Sorbent-based air sampling option. (2) Sorbent selection and other aspects of optimizing sorbent-based air monitoring methods. The paper presents

  13. Air Conditioning, Heating, and Refrigeration. Competency-Based Curriculum Manual.

    Science.gov (United States)

    Gourley, Frank A., Jr.

    This manual was developed to serve as an aid to administrators and instructors involved with postsecondary air conditioning, heating, and refrigeration programs. The first of six chapters contains general information on program implementation, the curriculum design, facilities and equipment requirements, and textbooks and references. Chapter 2…

  14. CAN SORBENT-BASED GAS PHASE AIR CLEANING FOR VOCS SUBSTITUTE FOR VENTILATION IN COMMERCIAL BUILDINGS?

    OpenAIRE

    Fisk, William J.

    2008-01-01

    This paper reviews current knowledge about the suitability of sorbent-based air cleaning for removing volatile organic compounds (VOCs) from the air in commercial buildings, as needed to enable reductions in ventilation rates and associated energy savings. The principles of sorbent air cleaning are introduced, criteria are suggested for sorbent systems that can counteract indoor VOC concentration increases from reduced ventilation, major findings from research on sorbent performance for this...

  15. Design and Fabrication of Air-Based 1-3 Piezoelectric Composite Transducer for Air-Coupled Ultrasonic Applications

    Directory of Open Access Journals (Sweden)

    Cunfu He

    2016-01-01

    Full Text Available The air-based 1-3 piezoelectric composite transducers are designed and fabricated in order to solve the acoustic impedance matching problem. Firstly, a finite element model using honeycomb structure as the piezoelectric composite matrix is built to reduce the acoustic impedance of the sensitive element. Three important factors, volume fraction of piezoelectric materials φ, the thickness h, and the size s of the square cross section of piezoelectric column, are examined and verified in simulation. Then, according to the result of simulation, the piezoelectric composites and the air-coupled transducers are fabricated. The honeycomb structures of resin are produced by the method of 3D printing technology, with the volume fraction of air being 30%. The impedance characteristics and the excitation/reception performance of the air-coupled transducers are measured and optimized. Meanwhile, a scanning experiment is carried out to demonstrate the crack detection process in monocrystalline silicon. A0 mode of Lamb waves is excited and collected. The location and size of the defect will be determined by calculating the correlation coefficients of the received signals and reference signals. Finally, a 15 mm × 0.5 mm × 0.5 mm scratch is clearly distinguished.

  16. Macroscopic treatment of radio emission from cosmic ray air showers based on shower simulations

    NARCIS (Netherlands)

    Werner, Klaus; Scholten, Olaf

    2008-01-01

    We present a macroscopic calculation of coherent electro-magnetic radiation from air showers initiated by ultra-high energy cosmic rays, based on currents obtained from Monte Carlo simulations of air showers in a realistic geo-magnetic field. We can clearly relate the time signal to the time depende

  17. A Physically Based Spatial Expansion Algorithm for Surface Air Temperature and Humidity

    Directory of Open Access Journals (Sweden)

    Hongbo Su

    2013-01-01

    Full Text Available An algorithm was developed to expand the surface air temperature and air humidity to a larger spatial domain, based on the fact that the variation of surface air temperature and air humidity is controlled jointly by the local turbulence and the horizontal advection. This study proposed an algorithm which considers the advective driving force outside the thermal balance system and the turbulent driving force and radiant driving force inside the thermal balance system. The surface air temperature is determined by a combination of the surface observations and the regional land surface temperature observed from a satellite. The average absolute difference of the algorithm is 0.65 degree and 0.31 mb, respectively, for surface air temperature and humidity expansion, which provides a promising approach to downscale the two surface meteorological variables.

  18. Performance and cycle life of carbon- and conductive-based air electrodes for rechargeable Zn-air battery applications

    Science.gov (United States)

    Chellapandi Velraj, Samgopiraj

    The development of high-performance, cyclically stable bifunctional air electrodes are critical to the commercial deployment of rechargeable Zn-air batteries. The carbon material predominantly used as support material in the air electrodes due to its higher surface area and good electrical conductivity suffers from corrosion at high oxygen evolution overpotentials. This study addresses the carbon corrosion issues and suggests alternate materials to replace the carbon as support in the air electrode. In this study, Sm0.5Sr0.5CoO3-delta with good electrochemical performance and cyclic lifetime was identified as an alternative catalyst material to the commonly used La0.4Ca 0.6CoO3 catalyst for the carbon-based bifunctional electrodes. Also, a comprehensive study on the effects of catalyst morphology, testing conditions on the cycle life as well as the relevant degradation mechanism for the carbon-based electrode was conducted in this dissertation. The cyclic life of the carbon-based electrodes was strongly dependent on the carbon support material, while the degradation mechanisms were entirely controlled by the catalyst particle size/morphology. Some testing conditions like resting time and electrolyte concentration did not change the cyclic life or degradation mechanism of the carbon-based electrode. The current density used for cyclic testing was found to dictate the degradation mechanism leading to the electrode failure. An alternate way to circumvent the carbon corrosion is to replace the carbon support with a suitable electrically-conductive ceramic material. In this dissertation, LaNi0.9Mn0.1O3, LaNi 0.8Co0.2O3, and NiCo2O4 were synthesized and evaluated as prospective support materials due to their good electrical conductivity and their ability to act as the catalyst needed for the bifunctional electrode. The carbon-free electrodes had remarkably higher catalytic activity for oxygen evolution reaction (OER) when compared to the carbon-based electrode. However

  19. Recent development of VUV-based processes for air pollutants degradation

    Directory of Open Access Journals (Sweden)

    Haibao eHuang

    2016-03-01

    Full Text Available As air pollution become more and more serious nowadays, it is essential to find out a way to efficiently degrade the air pollutants. Vacuum ultraviolet (VUV-based processes are an emerging and promising technologies for environmental remediation such as air cleaning, wastewater treatment and air/water disinfection. With VUV irradiation, photolysis, photocatalyst is and ozone-assisted oxidation are involved at the same time, resulting in the fast degradation of air pollutants because of their strong oxidizing capacity. The mechanisms of how the oxidants are produced and reacted are discussed in this review. This paper mainly focuses on the three VUV-based oxidation processes including VUV photolysis, VUV combined with ozone-assisted oxidation and VUV-PCO with emphasis on their mechanisms and applications. Also, the outlooks of these processes are outlined in this paper.

  20. 2008 Northwest Florida Water Management District (NWFWMD) Lidar: Eglin Air Force Base, Walton County, FL

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In the summer of 2008, the Northwest Florida Water Management District collected lidar data over a portion of Walton County, FL (Eglin Air force Base) to support...

  1. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This report presents information concerning field procedures employed during the monitoring, well construction, well purging, sampling, and well logging at the Wright-Patterson Air Force Base. Activities were conducted in an effort to evaluate ground water contamination.

  2. Thermistor based, low velocity isothermal, air flow sensor

    International Nuclear Information System (INIS)

    The semiconductor thermistor technology is applied as a flow sensor to measure low isothermal air velocities (<2 ms−1). The sensor is subjected to heating and cooling cycles controlled by a multifunctional timer. In the heating stage, the alternating current of a main AC power supply source guarantees a uniform thermistor temperature distribution. The conditioning circuit assures an adequate increase of the sensors temperature and avoids the thermal disturbance of the flow. The power supply interruption reduces the consumption from the source and extends the sensors life time. In the cooling stage, the resistance variation of the flow sensor is recorded by the measuring chain. The resistive sensor parameters proposed vary significantly and feature a high sensitivity to the flow velocity. With the aid of a computer, the data transfer, storage and analysis provides a great advantage over the traditional local anemometer readings. The data acquisition chain has a good repeatability and low standard uncertainties. The proposed method measures isothermal air mean velocities from 0.1 ms−1 to 2 ms−1 with a standard uncertainty error less than 4%. (paper)

  3. Characterization of Air-Based Photovoltaic Thermal Panels with Bifacial Solar Cells

    OpenAIRE

    Ooshaksaraei, P.; K. Sopian; Zulkifli, R.; Saleem H. Zaidi

    2013-01-01

    Photovoltaic (PV) panels account for a majority of the cost of photovoltaic thermal (PVT) panels. Bifacial silicon solar panels are attractive for PVT panels because of their potential to enhance electrical power generation from the same silicon wafer compared with conventional monofacial solar panels. This paper examines the performance of air-based bifacial PVT panels with regard to the first and second laws of thermodynamics. Four air-based bifacial PVT panels were designed. The maximum ef...

  4. Measurement of air refractive index fluctuation based on a laser synthetic wavelength interferometer

    International Nuclear Information System (INIS)

    A novel method for measuring air refractive index fluctuation based on a laser synthetic wavelength interferometer is proposed. The change of air refractive index is regarded as an equivalent measured displacement in the measurement arm, which can be realized by tracking a large compensative displacement of the reference mirror in the reference arm of the laser synthetic wavelength interferometer. The merit of the proposed method is that the slight air refractive index fluctuation is magnified to a large displacement on the order of millimeters or micrometers. To verify the feasibility of the proposed method, the correlation experiment between the displacement of the reference mirror and the air refractive index fluctuation and the comparison experiments with Edlén equations both in short time and long time were performed. Experimental results show that the measurement accuracy of the air refractive index fluctuation is better than 3.7 × 10–8. (paper)

  5. Web-based GIS: the vector-borne disease airline importation risk (VBD-AIR tool

    Directory of Open Access Journals (Sweden)

    Huang Zhuojie

    2012-08-01

    Full Text Available Abstract Background Over the past century, the size and complexity of the air travel network has increased dramatically. Nowadays, there are 29.6 million scheduled flights per year and around 2.7 billion passengers are transported annually. The rapid expansion of the network increasingly connects regions of endemic vector-borne disease with the rest of the world, resulting in challenges to health systems worldwide in terms of vector-borne pathogen importation and disease vector invasion events. Here we describe the development of a user-friendly Web-based GIS tool: the Vector-Borne Disease Airline Importation Risk Tool (VBD-AIR, to help better define the roles of airports and airlines in the transmission and spread of vector-borne diseases. Methods Spatial datasets on modeled global disease and vector distributions, as well as climatic and air network traffic data were assembled. These were combined to derive relative risk metrics via air travel for imported infections, imported vectors and onward transmission, and incorporated into a three-tier server architecture in a Model-View-Controller framework with distributed GIS components. A user-friendly web-portal was built that enables dynamic querying of the spatial databases to provide relevant information. Results The VBD-AIR tool constructed enables the user to explore the interrelationships among modeled global distributions of vector-borne infectious diseases (malaria. dengue, yellow fever and chikungunya and international air service routes to quantify seasonally changing risks of vector and vector-borne disease importation and spread by air travel, forming an evidence base to help plan mitigation strategies. The VBD-AIR tool is available at http://www.vbd-air.com. Conclusions VBD-AIR supports a data flow that generates analytical results from disparate but complementary datasets into an organized cartographical presentation on a web map for the assessment of vector-borne disease movements

  6. Feasibility study of a green energy powered thermoelectric chip based air conditioner for electric vehicles

    International Nuclear Information System (INIS)

    Traditional compressed-refrigerant air conditioning systems consume substantial energy that may reduce the driving performance and cruising mileage of electric vehicles considerably. It is crucial to design a new climate control system, using a direct energy conversion principle, to further aid in the commercialization of modern electric vehicles. A solid state air conditioner model consisting on TECs (thermoelectric chips) as the load, DSSCs (dye sensitized solar cells) as the renewable energy source and high power LiBs (lithium-ion batteries) as an energy storage device are considered for a personal mobility vehicle. The power management between the main power net and the solid state air conditioner interface is designed with an outer proportional-integral controller and an inner passivity based current controller with a loss included model for perfect tracking. This model is intended to comprise thermal and electrical elements which can be tunable for performance benchmarking and optimization of a solid state air conditioning system. Dynamic performance simulations of the solid-state air conditioner are performed, alongside guidelines for feasibility. - Highlights: • Alternative model extraction for dye sensitized solar cells. • Improved and computationally fast model for the cabin air temperature dynamics. • Euler–Lagrange loss included modeling of a buck converter. • Loss-included passivity based inner loop current control. • The thermoelectric chip air conditioner is tested in simulated cooling/heating scenarios

  7. Study of measurements of air velocity transducer deriving average air velocity of roadway based on one-dimensional linear regression

    Institute of Scientific and Technical Information of China (English)

    ZHAO Dan; LIU Jian; PAN Jing-tao; LI Zong-xiang

    2012-01-01

    One-dimensional linear regression equation between measured value of air velocity transducer and the average air velocity was established by experimental data.The effect is to be evaluated.Through judging the parameters,one-dimensional linear equation established is valid.Regression equation can approximately put the measurements of air velocity transducer into the value of average air velocity.The distribution of air velocity field is simulated using Comsol in the conditions of the same length of roadway,the same air velocity and different sections.

  8. MICA-AIR: A PARTICIPANT-BASED APPROACH TO EXPOSURE ASSESSMENT IN EPIDEMIOLOGIC AND COMMUNITY HEALTH STUDIES

    Science.gov (United States)

    Objective. Epidemiologic and community health studies of traffic-related air pollution and childhood asthma have been limited by resource intensive exposure assessment techniques. The current study utilized a novel participant-based approach to collect air monitoring data f...

  9. Reducing the cost of Ca-based direct air capture of CO2.

    Science.gov (United States)

    Zeman, Frank

    2014-10-01

    Direct air capture, the chemical removal of CO2 directly from the atmosphere, may play a role in mitigating future climate risk or form the basis of a sustainable transportation infrastructure. The current discussion is centered on the estimated cost of the technology and its link to "overshoot" trajectories, where atmospheric CO2 levels are actively reduced later in the century. The American Physical Society (APS) published a report, later updated, estimating the cost of a one million tonne CO2 per year air capture facility constructed today that highlights several fundamental concepts of chemical air capture. These fundamentals are viewed through the lens of a chemical process that cycles between removing CO2 from the air and releasing the absorbed CO2 in concentrated form. This work builds on the APS report to investigate the effect of modifications to the air capture system based on suggestions in the report and subsequent publications. The work shows that reduced carbon electricity and plastic packing materials (for the contactor) may have significant effects on the overall price, reducing the APS estimate from $610 to $309/tCO2 avoided. Such a reduction does not challenge postcombustion capture from point sources, estimated at $80/tCO2, but does make air capture a feasible alternative for the transportation sector and a potential negative emissions technology. Furthermore, air capture represents atmospheric reductions rather than simply avoided emissions.

  10. Design, simulation, and fabrication of a MEMS-based air amplifier for electrospray ionization

    Science.gov (United States)

    Jurčíček, Petr; Zou, Helin; Gao, Shuai

    2013-04-01

    Recent developments in electrospray ionization mass spectrometry (ESI-MS) show that air amplifiers can be utilized to significantly enhance droplet desolvation and to focus gas-phase ions when provided between an electrospray (ES) source and the mass spectrometer (MS). However, these devices are bulky and expensive, which may be a factor prohibiting their broader utilization. We have developed a simple but effective method based on Bernoulli's principle, the Coanda effect and MEMS processing to focus electrosprayed droplets and liberated gas-phase ions. We demonstrate a computer simulation and fabrication process for a micromachined air amplifier. The simulation results are used to optimize the geometry and to meet performance requirements. The optimized results then provide a design guideline for the device's fabrication. The air amplifier is formed from two bonded polydimethylsiloxane (PDMS) casts. Each PDMS cast is fabricated through a molding process using a micromachined two-layer SU-8 mold. Experimental results show a 30-fold improvement in the ES current for certain operation conditions while the air amplifier is incorporated in the nano-electrospray ionization (nano-ESI) process. Compared with traditional air amplifiers, the micro-electro-mechanical systems (MEMS) based air amplifier provides good performance while keeping the fabrication process simple and cost effective.

  11. Preliminary verification of instantaneous air temperature estimation for clear sky conditions based on SEBAL

    Science.gov (United States)

    Zhu, Shanyou; Zhou, Chuxuan; Zhang, Guixin; Zhang, Hailong; Hua, Junwei

    2016-03-01

    Spatially distributed near surface air temperature at the height of 2 m is an important input parameter for the land surface models. It is of great significance in both theoretical research and practical applications to retrieve instantaneous air temperature data from remote sensing observations. An approach based on Surface Energy Balance Algorithm for Land (SEBAL) to retrieve air temperature under clear sky conditions is presented. Taking the meteorological measurement data at one station as the reference and remotely sensed data as the model input, the research estimates the air temperature by using an iterative computation. The method was applied to the area of Jiangsu province for nine scenes by using MODIS data products, as well as part of Fujian province, China based on four scenes of Landsat 8 imagery. Comparing the air temperature estimated from the proposed method with that of the meteorological station measurement, results show that the root mean square error is 1.7 and 2.6 °C at 1000 and 30 m spatial resolution respectively. Sensitivity analysis of influencing factors reveals that land surface temperature is the most sensitive to the estimation precision. Research results indicate that the method has great potentiality to be used to estimate instantaneous air temperature distribution under clear sky conditions.

  12. Air filtration in the free molecular flow regime: a review of high-efficiency particulate air filters based on carbon nanotubes.

    Science.gov (United States)

    Li, Peng; Wang, Chunya; Zhang, Yingying; Wei, Fei

    2014-11-01

    Air filtration in the free molecular flow (FMF) regime is important and challenging because a higher filtration efficiency and lower pressure drop are obtained when the fiber diameter is smaller than the gas mean free path in the FMF regime. In previous studies, FMF conditions have been obtained by increasing the gas mean free path through reducing the pressure and increasing the temperature. In the case of carbon nanotubes (CNTs) with nanoscale diameters, it is possible to filtrate in the FMF regime under normal conditions. This paper reviews recent progress in theoretical and experimental studies of air filtration in the FMF regime. Typical structure models of high-efficiency particulate (HEPA) air filters based on CNTs are introduced. The pressure drop in air filters operated in the FMF regime is less than that predicted by the conventional air filtration theory. The thinnest HEPA filters fabricated from single-walled CNT films have an extremely low pressure drop. CNT air filters with a gradient nanostructure are shown to give a much better filtration performance in dynamic filtration. CNT air filters with a hierarchical structure and an agglomerated CNT fluidized bed air filter are also introduced. Finally, the challenges and opportunities for the application of CNTs in air filtration are discussed.

  13. A method based on potential theory for calculating air cavity formation of an air cavity resistance reduction ship

    Institute of Scientific and Technical Information of China (English)

    LI Yun-bo; WU Xiao-yu; MA Yong; WANG Jin-guang

    2008-01-01

    This research is intended to provide academic reference and design guidance for further studies to determine the most effective means to reduce a ship's resistance through an air-cavity.On the basis of potential theory and on the assumption of an ideal and irrotational fluid,this paper drives a method for calculating air cavity formation using slender ship theory then points out the parameters directly related to the formation of air cavities and their interrelationships.Simulations showed that the formation of an air cavity is affected by cavitation number,velocity,groove geometry and groove size.When the ship's velocity and groove structure are given,the cavitation number must be within range to form a steady air cavity.The interface between air and water forms a wave shape and could be adjustedby an air injection system.

  14. Chitosan-based Matrix, Used to Determine the Bacterial Lipopolysaccharide in Air

    Directory of Open Access Journals (Sweden)

    Dmitry M. Frolov

    2013-12-01

    Full Text Available The article describes the technology of chitosan-based matrix creation, and results of the study of its affine properties to bacterial lipopolysaccharide in aerosol dispersion. High degree of deacylation of polymer (over 97%, three-dimensional-porous structure, and multilayer packaging in analytical cartridge were the features of this matrix. Specified air volume, containing aerosol concentration of bacterial lipopolysaccharide, was passed through the glass cylinder with analytical container. The share of captured molecules ranged from 1.0% to 1.5%, demonstrating the efficiency of chitosan matrix. It is suitable for the creation of the devices for bacterial lipopolysaccharide detection in the air, based on the obtained matrix.

  15. (Environmental investigation of ground water contamination at Wright- Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This Health and Safety Plan (HSP) was developed for the Environmental Investigation of Ground-water Contamination Investigation at Wright-Patterson Air Force Base near Dayton, Ohio, based on the projected scope of work for the Phase 1, Task 4 Field Investigation. The HSP describes hazards that may be encountered during the investigation, assesses the hazards, and indicates what type of personal protective equipment is to be used for each task performed. The HSP also addresses the medical monitoring program, decontamination procedures, air monitoring, training, site control, accident prevention, and emergency response.

  16. A dynamic model for air-based photovoltaic thermal systems working under real operating conditions

    International Nuclear Information System (INIS)

    Highlights: • A dynamic model suitable for air-based photovoltaic thermal (PVT) systems is presented. • The model is validated with PVT data from two unique buildings. • The simulated output variables match very well with the experimental data. • The performance of the PVT system under changing working condition is analysed. - Abstract: In this paper a dynamic model suitable for simulating real operating conditions of air-based photovoltaic thermal (PVT) systems is presented. The performance of the model is validated by using the operational data collected from the building integrated photovoltaic (PVT) systems installed in two unique buildings. The modelled air outlet temperature and electrical power match very well with the experimental data. In Solar Decathlon house PVT, the average (RMS) error in air outlet temperatures was 4.2%. The average (RMS) error in electrical power was also 4.2%. In the Sustainable Buildings Research Centre PVT, the average errors (RMS) of PV and air temperatures were 3.8% and 2.2%, respectively. The performance of the PVT system under changing working condition is also analysed in this paper. The analysis includes the effect of ambient air temperature, air inlet temperature, air flow rate and solar irradiation on thermal, electrical, first law and second law efficiencies. Both the thermal and the 1st law efficiencies almost linearly increased with the increase of the ambient temperature. However, the PVT electrical efficiency and the second law efficiency decreased with the increase of the ambient temperature. All efficiencies expect the second law efficiency decreased with increase of the PVT air inlet temperature. The second law efficiency first increased and then reduced. With increasing the air flow rate all the efficiencies increased. The electrical and second law efficiencies become less sensitive when the air flow rate exceeded 300 l/s. Both the thermal and the 1st law efficiencies decreased while the electrical

  17. Study on an air quality evaluation model for Beijing City under haze-fog pollution based on new ambient air quality standards.

    Science.gov (United States)

    Li, Li; Liu, Dong-Jun

    2014-08-28

    Since 2012, China has been facing haze-fog weather conditions, and haze-fog pollution and PM2.5 have become hot topics. It is very necessary to evaluate and analyze the ecological status of the air environment of China, which is of great significance for environmental protection measures. In this study the current situation of haze-fog pollution in China was analyzed first, and the new Ambient Air Quality Standards were introduced. For the issue of air quality evaluation, a comprehensive evaluation model based on an entropy weighting method and nearest neighbor method was developed. The entropy weighting method was used to determine the weights of indicators, and the nearest neighbor method was utilized to evaluate the air quality levels. Then the comprehensive evaluation model was applied into the practical evaluation problems of air quality in Beijing to analyze the haze-fog pollution. Two simulation experiments were implemented in this study. One experiment included the indicator of PM2.5 and was carried out based on the new Ambient Air Quality Standards (GB 3095-2012); the other experiment excluded PM2.5 and was carried out based on the old Ambient Air Quality Standards (GB 3095-1996). Their results were compared, and the simulation results showed that PM2.5 was an important indicator for air quality and the evaluation results of the new Air Quality Standards were more scientific than the old ones. The haze-fog pollution situation in Beijing City was also analyzed based on these results, and the corresponding management measures were suggested.

  18. Fluctuation analysis-based risk assessment for respiratory virus activity and air pollution associated asthma incidence.

    Science.gov (United States)

    Liao, Chung-Min; Hsieh, Nan-Hung; Chio, Chia-Pin

    2011-08-15

    Asthma is a growing epidemic worldwide. Exacerbations of asthma have been associated with bacterial and viral respiratory tract infections and air pollution. We correlated the asthma admission rates with fluctuations in respiratory virus activity and traffic-related air pollution, namely particulate matter with an aerodynamic diameter ≤ 10 μm (PM₁₀), nitrogen dioxide (NO₂), carbon monoxide (CO), sulfur dioxide (SO₂), and ozone (O₃). A probabilistic risk assessment framework was developed based on a detrended fluctuation analysis to predict future respiratory virus and air pollutant associated asthma incidence. Results indicated a strong association between asthma admission rate and influenza (r=0.80, pinfluenza to below 0.9. We concluded that fluctuation analysis based risk assessment provides a novel predictor of asthma incidence. PMID:21663946

  19. An Air Temperature Cloud Height Precipitation Phase Determination Scheme for Surface Based Modeling

    Science.gov (United States)

    Feiccabrino, J. M.

    2015-12-01

    Many hydrological and ecological models use simple surface temperature threshold equations rather than coupling with a complex meteorological model to determine if precipitation is rain or snow. Some comparative studies have found, the most common rain/snow threshold variable, air temperature to have more precipitation phase error than dew-point or wet-bulb temperature, which account for the important secondary role of humidity in the melting and sublimation processes. However, just like surface air temperature, surface humidity is often effected by soil conditions and vegetation and is therefore not always representative of the atmospheric humidity precipitation falls through. A viable alternative to using surface humidity as a proxy for atmospheric moisture would be to adjust the rain snow threshold for changes in cloud height. The height of a cloud base above the ground gives the depth of an unsaturated layer. An unsaturated atmospheric layer should have much different melting and sublimation rates than a saturated cloud layer. Therefore, rain and snow percentages at a given surface air temperature should change with the height of the lowest cloud base. This study uses hourly observations from 12 U.S. manually augmented meteorological stations located in the Great Plains and Midwest upwind or away from major water bodies in relatively flat areas in an attempt to limit geographical influences. The surface air temperature threshold for the ground to 200 feet (under 100m) was 0.0°C, 0.6°C for 300-600 feet (100-200m), 1.1°C for 700-1200 feet (300-400m), 1.7°C for 1300-2000 feet (500-600m), and 2.2°C for 2100-3300 feet (700-1000m). Total precipitation error for these cloud height air temperature thresholds reduced the error from the single air temperature threshold 1.1°C by 15% from 14% to 12% total error between -2.2°C and 3.9°C. These air temperature cloud height thresholds resulted in 1.5% less total error than the dew-point temperature threshold 0.0

  20. 33 CFR 334.560 - Banana River at Patrick Air Force Base, Fla.; restricted area.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Banana River at Patrick Air Force Base, Fla.; restricted area. 334.560 Section 334.560 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE DANGER ZONE AND RESTRICTED AREA REGULATIONS § 334.560...

  1. Assessment and mitigation of the environmental burdens to air from land applied food-based digestate

    International Nuclear Information System (INIS)

    Anaerobic digestion (AD) of putrescible urban waste for energy recovery has seen rapid growth over recent years. In order to ascertain its systems scale sustainability, however, determination of the environmental fate of the large volume of digestate generated during the process is indispensable. This paper evaluates the environmental burdens to air associated with land applied food-based digestate in terms of primary pollutants (ammonia, nitrogen dioxide) and greenhouse gases (methane and nitrous oxide). The assessments have been made in two stages – first, the emissions from surface application of food-based digestate are quantified for the business as usual (BAU). In the next step, environmental burden minimisation potentials for the following three mitigation measures are estimated – mixed waste digestate (MWD), soil-incorporated digestate (SID), and post-methanated digestate (PMD). Overall, the mitigation scenarios demonstrated considerable NH3, CH4 and N2O burden minimisation potentials, with positive implications for both climate change and urban pollution. - Highlights: • In situ air pollution assessment of land applied digestate is performed. • Environmental burden minimisation scenarios for digestate bio fertiliser presented. • Food-based digestate show high ammonia volatilisation potential. • Soil incorporated digestate effectively reduces NH3 but elevates N2O emissions. • Managing digestate emissions mitigate both climate change and air pollution. - In situ monitoring and analyses demonstrate the role of post-processing in greenhouse gases and air pollution mitigation from food-based digestate use as bio fertiliser

  2. FEASIBILITY OF PRODUCING COMMODITIES AND ELECTRICITY FOR SPACE SHUTTLE OPERATIONS AT VANDENBERG AIR FORCE BASE

    Science.gov (United States)

    The report gives results of a preliminary screening study of the technical and economic feasibility of the on-site production of commodities (liquid propellant and gases) and electricity to support space shuttle launch activities at Vandenberg Air Force Base (VAFB). Both commerci...

  3. STEAM ENHANCED REMEDIATION RESEARCH FOR DNAPL IN FRACTURED ROCK, LORING AIR FORCE BASE, LIMESTONE, MAINE

    Science.gov (United States)

    This report details a research project on Steam Enhanced Remediation (SER) for the recovery of volatile organic compounds from fractured limestone that was carried out at the Quarry at the former Loring Air Force Base in Limestone, Maine. This project was carried out by USEPA, Ma...

  4. Experimental investigation of the influence of the air jet trajectory on convective heat transfer in buildings equipped with air-based and radiant cooling systems

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    2015-01-01

    -state and dynamic conditions. With the air-based cooling system, a dependency of the convective heat transfer on the air jet trajectory has been observed. New correlations have been developed, introducing a modified Archimedes number to account for the air flow pattern. The accuracy of the new correlations has been......The complexity and diversity of airflow in buildings make the accurate definition of convective heat transfer coefficients (CHTCs) difficult. In a full-scale test facility, the convective heat transfer of two cooling systems (active chilled beam and radiant wall) has been investigated under steady...... evaluated to±15%. Besides the study with an air-based cooling system, the convective heat transfer with a radiant cooling system has also been investigated. The convective flow at the activated surface is mainly driven by natural convection. For other surfaces, the complexity of the flow and the large...

  5. Early ship-based upper-air data and comparison with the Twentieth Century Reanalysis

    OpenAIRE

    Brönnimann, S.; Compo, G. P.; R. Spadin; R. Allan; Adam, W.

    2010-01-01

    Extension of 3-D atmospheric data products back into the past is desirable for a wide range of applications. Historical upper-air data are important in this endeavour, particularly in the maritime regions of the tropics and the southern hemisphere, where observations are extremely sparse. Here we present newly digitized and re-evaluated early ship-based upper-air data from two cruises: (1) kite and registering balloon profiles from onboard the ship SMS Planet on a cruise fr...

  6. Early ship-based upper-air data and comparison with the Twentieth Century Reanalysis

    OpenAIRE

    Brönnimann, S.; Compo, G. P.; R. Spadin; R. Allan; Adam, W.

    2011-01-01

    Extension of 3-D atmospheric data products back into the past is desirable for a wide range of applications. Historical upper-air data are important in this endeavour, particularly in the maritime regions of the tropics and the southern hemisphere, where observations are extremely sparse. Here we present newly digitized and re-evaluated early ship-based upper-air data from two cruises: (1) kite and registering balloon profiles from onboard the ship SMS Planet on a cruise fr...

  7. Early ship-based upper-air data and comparison with the Twentieth Century

    OpenAIRE

    Brönnimann, Stefan; Compo, Gilbert P.; Spadin, Reto; Allan, Rob; Adam, Wolfgang

    2011-01-01

    Extension of 3-D atmospheric data products back into the past is desirable for a wide range of applications. Historical upper-air data are important in this endeavour, particularly in the maritime regions of the tropics and the southern hemisphere, where observations are extremely sparse. Here we present newly digitized and re-evaluated early ship-based upper-air data from two cruises: (1) kite and registering balloon profiles from onboard the ship SMS Planet on a cruise from Europe around So...

  8. An All Fiber Intrinsic Fabry-Perot Interferometer Based on an Air-Microcavity

    Directory of Open Access Journals (Sweden)

    Ruth I. Mata-Chávez

    2013-05-01

    Full Text Available In this work an Intrinsic Fabry-Perot Interferometer (IFPI based on an air-microcavity is presented. Here the air microcavity, with silica walls, is formed at a segment of a hollow core photonic crystal fiber (HCPCF, which is fusion spliced with a single mode fiber (SMF. Moreover, the spectral response of the IFPI is experimentally characterized and some results are provided. Finally, the viability to use the IFPI to implement a simple, compact size, and low cost refractive index sensor is briefly analyzed.

  9. A MEMS-based Air Flow Sensor with a Free-standing Micro-cantilever Structure

    OpenAIRE

    Che-Ming Chiang; Chia-Yen Lee; Yu-Hsiang Wang

    2007-01-01

    This paper presents a micro-scale air flow sensor based on a free-standing cantilever structure. In the fabrication process, MEMS techniques are used to deposit a silicon nitride layer on a silicon wafer. A platinum layer is deposited on the silicon nitride layer to form a piezoresistor, and the resulting structure is then etched to create a freestanding micro-cantilever. When an air flow passes over the surface of the cantilever beam, the beam deflects in the downward direction, resulting in...

  10. Corrosion of copper-based materials in irradiated moist air systems

    International Nuclear Information System (INIS)

    The atmospheric corrosion of oxygen-free copper (CDA-102), 70/30 copper-nickel (CDA-715), and 7% aluminum bronze (CDA-613) in an irradiated moist air environment was investigated. Experiments were performed in both dry and 40% RH (at sign 90 degree C) air at temperatures of 90 and 150 degree C. Initial corrosion rates were determined based on a combination of weight gain and weight loss measurements. Corrosion products observed were identified. These experiments support efforts by the Yucca Mountain Project (YMP) to evaluate possible metallic barrier materials for nuclear waste containers. 8 refs., 1 fig., 2 tabs

  11. Mountain Home Air Force Base, Idaho Geothermal Resource Assessment and Future Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Joseph C. Armstrong; Robert P. Breckenridge; Dennis L. Nielson; John W. Shervais; Thomas R. Wood

    2013-03-01

    The U.S. Air Force is facing a number of challenges as it moves into the future, one of the biggest being how to provide safe and secure energy to support base operations. A team of scientists and engineers met at Mountain Home Air Force Base in early 2011 near Boise, Idaho, to discuss the possibility of exploring for geothermal resources under the base. The team identified that there was a reasonable potential for geothermal resources based on data from an existing well. In addition, a regional gravity map helped identify several possible locations for drilling a new well. The team identified several possible sources of funding for this well—the most logical being to use U.S. Department of Energy funds to drill the upper half of the well and U.S. Air Force funds to drill the bottom half of the well. The well was designed as a slimhole well in accordance with State of Idaho Department of Water Resources rules and regulations. Drilling operations commenced at the Mountain Home site in July of 2011 and were completed in January of 2012. Temperatures increased gradually, especially below a depth of 2000 ft. Temperatures increased more rapidly below a depth of 5500 ft. The bottom of the well is at 5976 ft, where a temperature of about 140°C was recorded. The well flowed artesian from a depth below 5600 ft, until it was plugged off with drilling mud. Core samples were collected from the well and are being analyzed to help understand permeability at depth. Additional tests using a televiewer system will be run to evaluate orientation and directions at fractures, especially in the production zone. A final report on the well exploitation will be forthcoming later this year. The Air Force will use it to evaluate the geothermal resource potential for future private development options at Mountain Home Air Force Base. In conclusion, Recommendation for follow-up efforts include the following:

  12. Simplified Atmospheric Dispersion Model andModel Based Real Field Estimation System ofAir Pollution

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The atmospheric dispersion model has been well developed and applied in pollution emergency and prediction. Based on thesophisticated air diffusion model, this paper proposes a simplified model and some optimization about meteorological andgeological conditions. The model is suitable for what is proposed as Real Field Monitor and Estimation system. The principle ofsimplified diffusion model and its optimization is studied. The design of Real Field Monitor system based on this model and itsfundamental implementations are introduced.

  13. Characterization of a silicon nanowire-based cantilever air-flow sensor

    International Nuclear Information System (INIS)

    Silicon nanowire (SiNW)-based cantilever flow sensors with three different cantilever sizes (10 × 50, 20 × 90 and 40 × 100 µm2) and various SiNW lengths (2, 5 and 10 µm) have been designed for air velocity sensing. The total device thickness is around 3 µm, which consists of the bottom SiO2 layer (0.5 µm) and the top SiNx layer (2.5 µm). In addition, the SiNx layer is used to compensate the initial stress and also enhance the device immunity to air-flow-induced vibrations significantly. To experience the maximum strain induced by the air flow, SiNWs are embedded at the clamp point where the cantilever is anchored to the substrate. Taking advantage of the superior properties of SiNWs, the reported flow sensor shows outstanding air-flow-sensing capability in terms of sensitivity, linearity and hysteresis. With only a supply voltage of 0.1 V and the high initial resistance of the piezoresistive SiNWs, significant energy saving is reached in contrast to the thermal-based flow sensors as well as other recently reported piezoresistive designs. Last but not least, the significant size reduction of our device demonstrates the great scalability of SiNW-based flow sensors. (paper)

  14. Adaptive fuzzy multivariable controller design based on genetic algorithm for an air handling unit

    International Nuclear Information System (INIS)

    In HVAC (Heating, Ventilation and Air Conditioning systems, effective thermal management is required because energy and operation costs of buildings are directly influenced by how well an air-conditioning system performs. HVAC systems are typically nonlinear time varying with disturbances, where conventional PID controllers may trade-off between stability and rise time. To overcome this limitation, a Genetic Algorithm based AFLC (Adaptive Fuzzy Logic Controller design has been proposed for the multivariable control of temperature and humidity of a typical AHU (air handling unit by manipulating valve positions to adjust the water and steam flow rates. Modulating equal percentage Globe valves for chilled water and steam have been modeled according to exact flow rates of water and steam. A novel method for the adaptation of FLC (Fuzzy Logic Controller by modifying FRM (Fuzzy Rule Matrix based on GA (genetic algorithm) has been proposed. This requires re-designing the complete FLC in MATLAB/Simulink whose procedure has also been proposed. The proposed adaptive controller outperforms the existing fuzzy controller in terms of steady state error, rise time and settling time. - Highlights: • GA based Adaptive Fuzzy Logic Controller to improve performance of HVAC system. • Multivariable control of an air handling unit to adjust the water and steam flow rates. • Significant improvement in steady state error, rise time and settling time of the control system

  15. Automatic Kappa Angle Estimation for Air Photos Based on Phase Only Correlation

    Science.gov (United States)

    Xiong, Z.; Stanley, D.; Xin, Y.

    2016-06-01

    The approximate value of exterior orientation parameters is needed for air photo bundle adjustment. Usually the air borne GPS/IMU can provide the initial value for the camera position and attitude angle. However, in some cases, the camera's attitude angle is not available due to lack of IMU or other reasons. In this case, the kappa angle needs to be estimated for each photo before bundle adjustment. The kappa angle can be obtained from the Ground Control Points (GCPs) in the photo. Unfortunately it is not the case that enough GCPs are always available. In order to overcome this problem, an algorithm is developed to automatically estimate the kappa angle for air photos based on phase only correlation technique. This function has been embedded in PCI software. Extensive experiments show that this algorithm is fast, reliable, and stable.

  16. Client Server Model Based DAQ System for Real-Time Air Pollution Monitoring

    Directory of Open Access Journals (Sweden)

    Vetrivel. P

    2014-01-01

    Full Text Available The proposed system consists of client server model based Data-Acquisition Unit. The Embedded Web Server integrates Pollution Server and DAQ that collects air Pollutants levels (CO, NO2, and SO2. The Pollution Server is designed by considering modern resource constrained embedded systems. In contrast, an application server is designed to the efficient execution of programs and scripts for supporting the construction of various applications. While a pollution server mainly deals with sending HTML for display in a web browser on the client terminal, an application server provides access to server side logic for pollutants levels to be use by client application programs. The Embedded Web Server is an arm mcb2300 board with internet connectivity and acts as air pollution server as this standalone device gathers air pollutants levels and as a Server. Embedded Web server is accessed by various clients.

  17. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems.

    Science.gov (United States)

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-12-12

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems.

  18. Verification of Spin Magnetic Attitude Control System using air-bearing-based attitude control simulator

    Science.gov (United States)

    Ousaloo, H. S.; Nodeh, M. T.; Mehrabian, R.

    2016-09-01

    This paper accomplishes one goal and it was to verify and to validate a Spin Magnetic Attitude Control System (SMACS) program and to perform Hardware-In-the-Loop (HIL) air-bearing experiments. A study of a closed-loop magnetic spin controller is presented using only magnetic rods as actuators. The magnetic spin rate control approach is able to perform spin rate control and it is verified with an Attitude Control System (ACS) air-bearing MATLAB® SIMULINK® model and a hardware-embedded LABVIEW® algorithm that controls the spin rate of the test platform on a spherical air bearing table. The SIMULINK® model includes dynamic model of air-bearing, its disturbances, actuator emulation and the time delays caused by on-board calculations. The air-bearing simulator is employed to develop, improve, and carry out objective tests of magnetic torque rods and spin rate control algorithm in the experimental framework and to provide a more realistic demonstration of expected performance of attitude control as compared with software-based architectures. Six sets of two torque rods are used as actuators for the SMACS. It is implemented and simulated to fulfill mission requirement including spin the satellite up to 12 degs-1 around the z-axis. These techniques are documented for the full nonlinear equations of motion of the system and the performances of these techniques are compared in several simulations.

  19. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems.

    Science.gov (United States)

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-01-01

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems. PMID:26703598

  20. CAN SORBENT-BASED GAS PHASE AIR CLEANING FOR VOCS SUBSTITUTE FOR VENTILATION IN COMMERCIAL BUILDINGS?

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William; Fisk, William J.

    2007-08-01

    This paper reviews current knowledge about the suitability of sorbent-based air cleaning for removing volatile organic compounds (VOCs) from the air in commercial buildings, as needed to enable reductions in ventilation rates and associated energy savings. The principles of sorbent air cleaning are introduced, criteria are suggested for sorbent systems that can counteract indoor VOC concentration increases from reduced ventilation, major findings from research on sorbent performance for this application are summarized, and related priority research needs are identified. Major conclusions include: sorbent systems can remove a broad range of VOCs with moderate to high efficiency, sorbent technologies perform effectively when challenged with VOCs at the low concentrations present indoors, and there is a large uncertainty about the lifetime and associated costs of sorbent air cleaning systems when used in commercial buildings for indoor VOC control. Suggested priority research includes: experiments to determine sorbent system VOC removal efficiencies and lifetimes considering the broad range and low concentration of VOCs indoors; evaluations of in-situ regeneration of sorbents; and an updated analysis of the cost of sorbent air cleaning relative to the cost of ventilation.

  1. AirLab: a cloud-based platform to manage and share antibody-based single-cell research.

    Science.gov (United States)

    Catena, Raúl; Özcan, Alaz; Jacobs, Andrea; Chevrier, Stephane; Bodenmiller, Bernd

    2016-01-01

    Single-cell analysis technologies are essential tools in research and clinical diagnostics. These methods include flow cytometry, mass cytometry, and other microfluidics-based technologies. Most laboratories that employ these methods maintain large repositories of antibodies. These ever-growing collections of antibodies, their multiple conjugates, and the large amounts of data generated in assays using specific antibodies and conditions makes a dedicated software solution necessary. We have developed AirLab, a cloud-based tool with web and mobile interfaces, for the organization of these data. AirLab streamlines the processes of antibody purchase, organization, and storage, antibody panel creation, results logging, and antibody validation data sharing and distribution. Furthermore, AirLab enables inventory of other laboratory stocks, such as primers or clinical samples, through user-controlled customization. Thus, AirLab is a mobile-powered and flexible tool that harnesses the capabilities of mobile tools and cloud-based technology to facilitate inventory and sharing of antibody and sample collections and associated validation data. PMID:27356760

  2. The Calculation of Collision Risk on Air-Routes Based on Variable Nominal Separation

    Institute of Scientific and Technical Information of China (English)

    QU Yu-ling; HAN Song-chen

    2010-01-01

    In this paper, a new method to calculate collision risk of air-routes, based on variable nominal separation, is proposed. The collision risk model of air-routes, based on the time variable and initial time interval variable, is given. Because the distance and the collision probability vary with time when the nominal relative speed between aircraft is not zero for a fixed initial time interval, the distance, the variable nominal separation, and the collision probability at any time can be expressed as functions of time and initial time interval. By the probabilistic theory, a model for calculating collision risk is acquired based on initial time interval distribution, flow rates, and the proportion of aircraft type. From the results of calculations, the collision risk can be characterized by the model when the nominal separation changes with time. As well the roles of parameters can be shown more readily.

  3. A safety assessment methodology applied to CNS/ATM-based air traffic control system

    International Nuclear Information System (INIS)

    In the last decades, the air traffic system has been changing to adapt itself to new social demands, mainly the safe growth of worldwide traffic capacity. Those changes are ruled by the Communication, Navigation, Surveillance/Air Traffic Management (CNS/ATM) paradigm , based on digital communication technologies (mainly satellites) as a way of improving communication, surveillance, navigation and air traffic management services. However, CNS/ATM poses new challenges and needs, mainly related to the safety assessment process. In face of these new challenges, and considering the main characteristics of the CNS/ATM, a methodology is proposed at this work by combining 'absolute' and 'relative' safety assessment methods adopted by the International Civil Aviation Organization (ICAO) in ICAO Doc.9689 , using Fluid Stochastic Petri Nets (FSPN) as the modeling formalism, and compares the safety metrics estimated from the simulation of both the proposed (in analysis) and the legacy system models. To demonstrate its usefulness, the proposed methodology was applied to the 'Automatic Dependent Surveillance-Broadcasting' (ADS-B) based air traffic control system. As conclusions, the proposed methodology assured to assess CNS/ATM system safety properties, in which FSPN formalism provides important modeling capabilities, and discrete event simulation allowing the estimation of the desired safety metric.

  4. Comparison of Gravity Wave Temperature Variances from Ray-Based Spectral Parameterization of Convective Gravity Wave Drag with AIRS Observations

    Science.gov (United States)

    Choi, Hyun-Joo; Chun, Hye-Yeong; Gong, Jie; Wu, Dong L.

    2012-01-01

    The realism of ray-based spectral parameterization of convective gravity wave drag, which considers the updated moving speed of the convective source and multiple wave propagation directions, is tested against the Atmospheric Infrared Sounder (AIRS) onboard the Aqua satellite. Offline parameterization calculations are performed using the global reanalysis data for January and July 2005, and gravity wave temperature variances (GWTVs) are calculated at z = 2.5 hPa (unfiltered GWTV). AIRS-filtered GWTV, which is directly compared with AIRS, is calculated by applying the AIRS visibility function to the unfiltered GWTV. A comparison between the parameterization calculations and AIRS observations shows that the spatial distribution of the AIRS-filtered GWTV agrees well with that of the AIRS GWTV. However, the magnitude of the AIRS-filtered GWTV is smaller than that of the AIRS GWTV. When an additional cloud top gravity wave momentum flux spectrum with longer horizontal wavelength components that were obtained from the mesoscale simulations is included in the parameterization, both the magnitude and spatial distribution of the AIRS-filtered GWTVs from the parameterization are in good agreement with those of the AIRS GWTVs. The AIRS GWTV can be reproduced reasonably well by the parameterization not only with multiple wave propagation directions but also with two wave propagation directions of 45 degrees (northeast-southwest) and 135 degrees (northwest-southeast), which are optimally chosen for computational efficiency.

  5. Fisk-based criteria to support validation of detection methods for drinking water and air.

    Energy Technology Data Exchange (ETDEWEB)

    MacDonell, M.; Bhattacharyya, M.; Finster, M.; Williams, M.; Picel, K.; Chang, Y.-S.; Peterson, J.; Adeshina, F.; Sonich-Mullin, C.; Environmental Science Division; EPA

    2009-02-18

    This report was prepared to support the validation of analytical methods for threat contaminants under the U.S. Environmental Protection Agency (EPA) National Homeland Security Research Center (NHSRC) program. It is designed to serve as a resource for certain applications of benchmark and fate information for homeland security threat contaminants. The report identifies risk-based criteria from existing health benchmarks for drinking water and air for potential use as validation targets. The focus is on benchmarks for chronic public exposures. The priority sources are standard EPA concentration limits for drinking water and air, along with oral and inhalation toxicity values. Many contaminants identified as homeland security threats to drinking water or air would convert to other chemicals within minutes to hours of being released. For this reason, a fate analysis has been performed to identify potential transformation products and removal half-lives in air and water so appropriate forms can be targeted for detection over time. The risk-based criteria presented in this report to frame method validation are expected to be lower than actual operational targets based on realistic exposures following a release. Note that many target criteria provided in this report are taken from available benchmarks without assessing the underlying toxicological details. That is, although the relevance of the chemical form and analogues are evaluated, the toxicological interpretations and extrapolations conducted by the authoring organizations are not. It is also important to emphasize that such targets in the current analysis are not health-based advisory levels to guide homeland security responses. This integrated evaluation of chronic public benchmarks and contaminant fate has identified more than 200 risk-based criteria as method validation targets across numerous contaminants and fate products in drinking water and air combined. The gap in directly applicable values is

  6. Data mining based sensor fault diagnosis and validation for building air conditioning system

    International Nuclear Information System (INIS)

    A strategy based on the data mining (DM) method is developed to detect and diagnose sensor faults based on the past running performance data in heating, ventilating and air conditioning (HVAC) systems, combining a rough set approach and an artificial neural network (ANN). The reduced information is used to develop classification rules and train the neural network to infer appropriate parameters. The differences between measured thermodynamic states and predicted states obtained from models for normal performance (residuals) are used as performance indices for sensor fault detection and diagnosis. Real test results from a real HVAC system show that only the temperature and humidity measurements of many air handling units (AHU) can work very well as the measurements to distinguish simultaneous temperature sensor faults of the supply chilled water (SCW) and return chilled water (RCW)

  7. Chitosan-based Matrix, Used to Determine the Bacterial Lipopolysaccharide in Air

    OpenAIRE

    Dmitry M. Frolov; Valery G. Zaitsev

    2013-01-01

    The article describes the technology of chitosan-based matrix creation, and results of the study of its affine properties to bacterial lipopolysaccharide in aerosol dispersion. High degree of deacylation of polymer (over 97%), three-dimensional-porous structure, and multilayer packaging in analytical cartridge were the features of this matrix. Specified air volume, containing aerosol concentration of bacterial lipopolysaccharide, was passed through the glass cylinder with analytical container...

  8. Measuring the Removal of Trichloroethylene from Phytoremediation Sites at Travis and Fairchild Air Force Bases

    OpenAIRE

    Klein, Heather A

    2011-01-01

    Past use of trichloroethylene (TCE) as a degreasing solvent for aircraft maintenance has resulted in widespread groundwater contamination at Air Force Bases around the world. Travis AFB in California and Fairchild AFB in Washington are evaluating phytoremediation as a treatment option, since trees have been reported to take up dissolved TCE from shallow groundwater and volatilize it to the atmosphere while enhancing the volatilization of TCE from surrounding soil. Previous studies generally...

  9. Geothermal exploration program, Hill Air Force Base, Davis and Weber Counties, Utah

    Energy Technology Data Exchange (ETDEWEB)

    Glenn, W.E.; Chapman, D.S.; Foley, D.; Capuano, R.M.; Cole, D.; Sibbett, B.; Ward, S.H.

    1980-03-01

    Results obtained from a program designed to locate a low- or moderate-temperature geothermal resource that might exist beneath Hill Air Force Base (AFB), Ogden, Utah are discussed. A phased exploration program was conducted at Hill AFB. Published geological, geochemical, and geophysical reports on the area were examined, regional exploration was conducted, and two thermal gradient holes were drilled. This program demonstrated that thermal waters are not present in the shallow subsurface at this site. (MHR)

  10. A NEW AIR CONDITIONING SYSTEM FAN MODEL BASED ON NUMERICAL ANALYSIS

    OpenAIRE

    Nabil Nassif; Raymond Tesiero; Nihal AlRaees

    2014-01-01

    A large portion of energy use in buildings is attributed to air movement devices. Accurate estimation of fan performance is a key element in maximizing fan efficiency. This study proposes a new fan model that can be used in several applications such as optimization and fault detection and can also be incorporated into any commercial building models. The model uses a numerical analysis based on an interpolation technique for the data generated by basic fan laws. It can use any two variables am...

  11. Exploration and Resource Assessment at Mountain Home Air Force Base, Idaho Using an Integrated Team Approach

    Energy Technology Data Exchange (ETDEWEB)

    Joseph C. Armstrong; Robert P. Breckenridge; Dennis L. Nielson; John W. Shervais; Thomas R. Wood

    2012-10-01

    The U.S. Air Force is facing a number of challenges as it moves into the future, one of the biggest being how to provide safe and secure energy to support base operations. A team of scientists and engineers met at Mountain Home Air Force Base near Boise, Idaho, to discuss the possibility of exploring for geothermal resources under the base. The team identified that there was a reasonable potential for geothermal resources based on data from an existing well. In addition, a regional gravity map helped identify several possible locations for drilling a new well. The team identified several possible sources of funding for this well—the most logical being to use U.S. Department of Energy funds to drill the upper half of the well and U.S. Air Force funds to drill the bottom half of the well. The well was designed as a slimhole well in accordance with State of Idaho Department of Water Resources rules and regulations. Drilling operations commenced at the Mountain Home site in July of 2011 and were completed in January of 2012. Temperatures increased gradually, especially below a depth of 2000 ft. Temperatures increased more rapidly below a depth of 5500 ft. The bottom of the well is at 5976 ft, where a temperature of about 140°C was recorded. The well flowed artesian from a depth below 5600 ft, until it was plugged off with drilling mud. Core samples were collected from the well and are being analyzed to help understand permeability at depth. Additional tests using a televiewer system will be run to evaluate orientation and directions at fractures, especially in the production zone. A final report on the well exploitation will be forthcoming later this year. The Air Force will use it to evaluate the geothermal resource potential for future private development options at Mountain Home AFB.

  12. Nonlinear Adaptive Equivalent Control Based on Interconnection Subsystems for Air-Breathing Hypersonic Vehicles

    OpenAIRE

    Chaofang Hu; Yanwen Liu

    2013-01-01

    For the nonminimum phase behavior of the air-breathing hypersonic vehicle model caused by elevator-to-lift coupling, a nonlinear adaptive equivalent control method based on interconnection subsystems is proposed. In the altitude loop, the backstepping strategy is applied, where the virtual control inputs about flight-path angle and attack angle are designed step by step. In order to avoid the inaccurately direct cancelation of elevator-to-lift coupling when aerodynamic parameters are uncertai...

  13. Air temperature measurements based on the speed of sound to compensate long distance interferometric measurements

    Directory of Open Access Journals (Sweden)

    Astrua Milena

    2014-01-01

    Full Text Available A method to measure the real time temperature distribution along an interferometer path based on the propagation of acoustic waves is presented. It exploits the high sensitivity of the speed of sound in air to the air temperature. In particular, it takes advantage of a special set-up where the generation of the acoustic waves is synchronous with the amplitude modulation of a laser source. A photodetector converts the laser light to an electronic signal considered as reference, while the incoming acoustic waves are focused on a microphone and generate a second signal. In this condition, the phase difference between the two signals substantially depends on the temperature of the air volume interposed between the sources and the receivers. The comparison with the traditional temperature sensors highlighted the limit of the latter in case of fast temperature variations and the advantage of a measurement integrated along the optical path instead of a sampling measurement. The capability of the acoustic method to compensate the interferometric distance measurements due to air temperature variations has been demonstrated for distances up to 27 m.

  14. [Estimation of average traffic emission factor based on synchronized incremental traffic flow and air pollutant concentration].

    Science.gov (United States)

    Li, Run-Kui; Zhao, Tong; Li, Zhi-Peng; Ding, Wen-Jun; Cui, Xiao-Yong; Xu, Qun; Song, Xian-Feng

    2014-04-01

    On-road vehicle emissions have become the main source of urban air pollution and attracted broad attentions. Vehicle emission factor is a basic parameter to reflect the status of vehicle emissions, but the measured emission factor is difficult to obtain, and the simulated emission factor is not localized in China. Based on the synchronized increments of traffic flow and concentration of air pollutants in the morning rush hour period, while meteorological condition and background air pollution concentration retain relatively stable, the relationship between the increase of traffic and the increase of air pollution concentration close to a road is established. Infinite line source Gaussian dispersion model was transformed for the inversion of average vehicle emission factors. A case study was conducted on a main road in Beijing. Traffic flow, meteorological data and carbon monoxide (CO) concentration were collected to estimate average vehicle emission factors of CO. The results were compared with simulated emission factors of COPERT4 model. Results showed that the average emission factors estimated by the proposed approach and COPERT4 in August were 2.0 g x km(-1) and 1.2 g x km(-1), respectively, and in December were 5.5 g x km(-1) and 5.2 g x km(-1), respectively. The emission factors from the proposed approach and COPERT4 showed close values and similar seasonal trends. The proposed method for average emission factor estimation eliminates the disturbance of background concentrations and potentially provides real-time access to vehicle fleet emission factors.

  15. An emission source inversion model based on satellite data and its application in air quality forecasts

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper aims at constructing an emission source inversion model using a variational processing method and adaptive nudging scheme for the Community Multiscale Air Quality Model (CMAQ) based on satellite data to investigate the applicability of high resolution OMI (Ozone Monitoring Instrument) column concentration data for air quality forecasts over the North China. The results show a reasonable consistency and good correlation between the spatial distributions of NO2 from surface and OMI satellite measurements in both winter and summer. Such OMI products may be used to implement integrated variational analysis based on observation data on the ground. With linear and variational corrections made, the spatial distribution of OMI NO2 clearly revealed more localized distributing characteristics of NO2 concentration. With such information, emission sources in the southwest and southeast of North China are found to have greater impacts on air quality in Beijing. When the retrieved emission source inventory based on high-resolution OMI NO2 data was used, the coupled Weather Research Forecasting CMAQ model (WRF-CMAQ) performed significantly better in forecasting NO2 concentration level and its tendency as reflected by the more consistencies between the NO2 concentrations from surface observation and model result. In conclusion, satellite data are particularly important for simulating NO2 concentrations on urban and street-block scale. High-resolution OMI NO2 data are applicable for inversing NOx emission source inventory, assessing the regional pollution status and pollution control strategy, and improving the model forecasting results on urban scale.

  16. Energy Performance of Water-based and Air-based Cooling Systems in Plus-energy Housing

    DEFF Research Database (Denmark)

    Andersen, Mads E.; Schøtt, Jacob; Kazanci, Ongun Berk;

    2016-01-01

    -space, and air-to-water heat pump vs. ground heat exchanger as cooling source) on the system energy performance were investigated while achieving the same thermal indoor conditions. The results show that the water-based floor cooling system performed better than the air-based cooling system in terms of energy......Energy use in buildings accounts for a large part of the energy use globally and as a result of this, international building energy performance directives are becoming stricter. This trend has led to the development of zero-energy and plus-energy buildings. Some of these developments have led...... to certain issues regarding thermal indoor environments, such as overheating. Thermal comfort of occupants should not be sacrificed for energy efficiency but rather, these should be achieved simultaneously. Although the priority should be to minimize the cooling demand during the design, this is not always...

  17. AIR POLLUTION FEATURES OF THE VALLEY-BASED TOWNS IN HUNGARY

    Directory of Open Access Journals (Sweden)

    Z. UTASI

    2016-03-01

    Full Text Available There are 30 valley-based towns with >10,000 inhabitants in Hungary, filled by 1.023 million people i.e. 10 % of the population. Two criteria are used to define the valley-based town. They are: (i Vertical difference between the lowest point in the town and the highest one around it should be >100 m. At the same time, (ii the same difference on the opposite side should be >50 m. Air pollution data by the National Air Pollution Observation Network are used. Five contaminants were selected and analysed for 2007, 2010 and 2013. Due to a sharp reduction in the network, we could find data for a small part of the valley-based towns. Control towns with equal air-quality observations and similar cumulative number of inhabitants were also selected. The contaminants and the number of the settlements are: NO2 manual (14 valley-based vs. 2x14 control, NO2 automatic (8 vs. 8, SO2 automatic (7 vs. 2x6, PM10 automatic (8 vs. 2x7 and PM10 deposition manual (6 vs. 8. Average values, as well as high concentration episodes (>98%thresholds are equally analysed and evaluated. The main conclusion is that there are so big differences between the years both in absolute values and relative sequence of valley-based and control groups that the analysed there years is not enough to make any final conclusion. For step-over frequencies, however valley-based towns have some advantage, possibly due to the valley-hill wind system.

  18. Evaluation of ozone generation and indoor organic compounds removal by air cleaners based on chamber tests

    Science.gov (United States)

    Yu, Kuo-Pin; Lee, Grace Whei-May; Hsieh, Ching-Pei; Lin, Chi-Chi

    2011-01-01

    Ozone can cause many health problems, including exacerbation of asthma, throat irritation, cough, chest ache, shortness of breath, and respiratory infections. Air cleaners are one of the sources of indoor ozone, and thus the evaluation of ozone generated by air cleaners is desired significant issue. Most evaluation methods proposed are based on chamber tests. However, the adsorption and desorption of ozone on the wall of test chamber and the deposition of ozone resulted from the surface reaction can influence the evaluation results. In this study, we developed a mass balance model that took the adsorption, desorption and deposition of ozone into consideration to evaluate the effective ozone emission rates of six selected air cleaners. The experiments were conducted in a stainless steel chamber with a volume of 11.3 m 3 at 25 °C and 60% relative humidity. The adsorption, desorption and deposition rate constants of ozone obtained by fitting the model to the experimental data were k a = 0.149 ± 0.052 m h -1, k d = 0.013 ± 0.007 h -1, and k r = 0.050 ± 0.020 h -1, respectively. The effective ozone emission rates of Air Cleaners No. 1, 2, and 3 ranged between 13,400-24,500 μg h -1, 7190-10,400 μg h -1, and 4880-6560 μg h -1, respectively, which were more stable than those of No.4, 5, and 6. The effective ozone emission rates of Air Cleaners No. 4, 5, and 6 increased with the time of operation which might be relevant to the decrease of ozone removal by the "aging" filter installed in these cleaners. The removal of toluene and formaldehyde by these six air cleaners were also evaluated and the clean air delivery rates (CADRs) of these two pollutants ranged from non-detectable to 0.42 ± 0.08 m 3 h -1, and from non-detectable to 0.75 ± 0.07 m 3 h -1, respectively. The CADRs showed an insignificant relationship with the effective ozone emission rates. Thus, the removal of toluene and formaldehyde might be resulted from the adsorption on the filters and the

  19. Localization of an air target by means of GNSS-based multistatic radar

    Science.gov (United States)

    Akhmedov, Daulet Sh.; Raskaliyev, Almat S.

    2016-08-01

    The possibility of utilizing transmitters of opportunity for target detection, tracking and positioning is of great interest to the radar community. In particular the optional use of Global Navigation Satellite System (GNSS) has lately triggered scientific research that has purpose to take advantage of this source of signal generation for passive radar. Number of studies have been conducted previously on development of GNSS-based bistatic and multistatic radars for detection and range estimation to the object located in the close atmosphere. To further enrich research in this area, we present a novel method for coordinate determination of the air target by means of the GNSS-based multistatic radar.

  20. A robust model-based approach to diagnosing faults in air-handling units

    Energy Technology Data Exchange (ETDEWEB)

    Ngo, D.; Dexter, A.L.

    1999-07-01

    This paper describes the development of a robust model-based approach to diagnosing faults in air-handling units that avoids false alarms caused by sensor bias but does not require application-dependent thresholds to be selected. The diagnosis is based on a semi-qualitative analysis of the measured data using generic fuzzy reference models to describe the behavior of the equipment, with and without faults. The scheme is applied to the cooling-coil subsystem of an air-handling unit, and the sensitivity of the diagnosis to sensor bias and fault size is examined. The results of the diagnosis are compared to those obtained using reference models that describe the behavior of a specific design. The scheme is also used to commission the cooling-coil subsystem of an air-handling unit in an office building. Results are presented that demonstrate the proposed scheme does not generate false alarms in practice. It is concluded that the accuracy of sensors currently used means it is likely that only large faults can be detected in practice and that more accurate measurements are required if a higher level of fault sensitivity is needed.

  1. 77 FR 73924 - Approval and Promulgation of Air Quality Implementation Plans; West Virginia; The 2002 Base Year...

    Science.gov (United States)

    2012-12-12

    ... Fine Particulate Matter National Ambient Air Quality Standard AGENCY: Environmental Protection Agency... 2.5 National Ambient Air Quality Standard (NAAQS). EPA is approving the 2002 base year PM 2.5..., Carbon monoxide, Incorporation by reference, Nitrogen dioxide, Particulate matter, Reporting...

  2. The Second Order Guided Modes Based on Photonic Bandgap Effects in Air/Glass Photonic Crystal Fibers

    Institute of Scientific and Technical Information of China (English)

    YAO Lei; LOU Shu-Qin; JIAN Shui-Sheng

    2009-01-01

    We introduce a defect site in the periodic structure of a photonic bandgap fiber,to confine and guide the second order mode by photonic bandgap effects.Based on a high air-filling fraction photonic crystal cladding structure,a simplified model with an equivalent air cladding was proposed to explore and analyze the properties of this second order guided mode.

  3. Quantum cascade laser-based spectrometer for high sensitive measurements of trace gases in air

    Institute of Scientific and Technical Information of China (English)

    Yuanyuan Tang; Wenqing Liu; Ruifeng Kan; Yujun Zhang; Dong Chen; Shuai Zhang; Jun Ruan

    2012-01-01

    A quantum cascade (QC) laser-based spectrometer is developed to measure trace gases in air.The proposed spectrometer is tested for N2O,and the results presented in this letter.This system takes advantage of recent technology in QC lasers by utilizing intra-pulse scan spectroscopy,which allows high sensitive measurement.Without calibration gases,the gas concentration can be calculated with scan integration and the corresponding values from the HITRAN04 database.By analyzing the Allan variance,a detection limit of 2 ppb is obtained.Continuous measurement of N2O sampled from ambient air shows the applicability of the proposed system for the field measurements of gases of environmental concern.

  4. Radar Scan Strategies for the Patrick Air Force Base Weather Surveillance Radar, Model-74C, Replacement

    Science.gov (United States)

    Short, David

    2008-01-01

    The 45th Weather Squadron (45 WS) is replacing the Weather Surveillance Radar, Model 74C (WSR-74C) at Patrick Air Force Base (PAFB), with a Doppler, dual polarization radar, the Radtec 43/250. A new scan strategy is needed for the Radtec 43/250, to provide high vertical resolution data over the Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS) launch pads, while taking advantage of the new radar's advanced capabilities for detecting severe weather phenomena associated with convection within the 45 WS area of responsibility. The Applied Meteorology Unit (AMU) developed several scan strategies customized for the operational needs of the 45 WS. The AMU also developed a plan for evaluating the scan strategies in the period prior to operational acceptance, currently scheduled for November 2008.

  5. Energy and Exergy Performances of Air-Based vs. Water-Based Heating and Cooling Systems: A Case Study of a Single-Family House

    DEFF Research Database (Denmark)

    Kazanci, Ongun Berk; Shukuya, Masanori; Olesen, Bjarne W.

    2016-01-01

    energy and exergy inputs to the system, energy and exergy inputs to the auxiliary components were also studied. Both heating and cooling cases were considered and three climatic zones were studied; Copenhagen (Denmark), Yokohama (Japan), and Ankara (Turkey). The analysis showed that the water......-based radiant heating and cooling system performed better than the air-based system both in terms of energy and exergy input to the heating/cooling plant. The relative benefits of the water-based system over the air-based system vary depending on the climatic zone. The air-based system also requires higher...

  6. Potentiometric surfaces of the Arnold Engineering Development Complex Area, Arnold Air Force Base, Tennessee, May and September 2011

    Science.gov (United States)

    Haugh, Connor J.; Robinson, John A.

    2016-01-29

    Arnold Air Force Base occupies about 40,000 acres in Coffee and Franklin Counties, Tennessee. The primary mission of Arnold Air Force Base is to provide risk-reduction information in the development of aerospace products through test and evaluation. This mission is achieved in part through test facilities at Arnold Engineering Development Complex (AEDC), which occupies about 4,000 acres in the center of Arnold Air Force Base. Arnold Air Force Base is underlain by gravel and limestone aquifers, the most productive of which is the Manchester aquifer. Several volatile organic compounds, primarily chlorinated solvents, have been identified in the groundwater at Arnold Air Force Base. In 2011, the U.S. Geological Survey, in cooperation with the U.S. Air Force, Arnold Air Force Base, completed a study of groundwater flow focused on the Arnold Engineering Development Complex area. The Arnold Engineering Development Complex area is of particular concern because within this area (1) chlorinated solvents have been identified in the groundwater, (2) the aquifers are dewatered around below-grade test facilities, and (3) there is a regional groundwater divide.

  7. The Research on Programmable Control System of Lithium-Bromide Absorption Refrigerating Air Conditioner Based on the Network

    Directory of Open Access Journals (Sweden)

    Sun Lunan

    2016-01-01

    Full Text Available This article regard the solar lithium-bromide absorption refrigerating air conditioning system as the research object, and it was conducting adequate research of the working principle of lithium bromide absorption refrigerating machine, also it was analyzing the requirements of control system about solar energy air conditioning. Then the solar energy air conditioning control system was designed based on PLC, this system was given priority to field bus control system, and the remote monitoring is complementary, which was combining the network remote monitoring technology. So that it realized the automatic control and intelligent control of new lithium bromide absorption refrigerating air conditioning system with solar energy, also, it ensured the control system can automatically detect and adjust when the external conditions was random changing, to make air conditioning work effectively and steadily, ultimately ,it has great research significance to research the air conditioning control system with solar energy.

  8. Evaluating network analysis and agent based modeling for investigating the stability of commercial air carrier schedules

    Science.gov (United States)

    Conway, Sheila Ruth

    For a number of years, the United States Federal Government has been formulating the Next Generation Air Transportation System plans for National Airspace System improvement. These improvements attempt to address air transportation holistically, but often address individual improvements in one arena such as ground or in-flight equipment. In fact, air transportation system designers have had only limited success using traditional Operations Research and parametric modeling approaches in their analyses of innovative operations. They need a systemic methodology for modeling of safety-critical infrastructure that is comprehensive, objective, and sufficiently concrete, yet simple enough to be deployed with reasonable investment. The methodology must also be amenable to quantitative analysis so issues of system safety and stability can be rigorously addressed. The literature suggests that both agent-based models and network analysis techniques may be useful for complex system development and analysis. The purpose of this research is to evaluate these two techniques as applied to analysis of commercial air carrier schedule (route) stability in daily operations, an important component of air transportation. Airline-like routing strategies are used to educe essential elements of applying the method. Two main models are developed, one investigating the network properties of the route structure, the other an Agent-based approach. The two methods are used to predict system properties at a macro-level. These findings are compared to observed route network performance measured by adherence to a schedule to provide validation of the results. Those interested in complex system modeling are provided some indication as to when either or both of the techniques would be applicable. For aviation policy makers, the results point to a toolset capable of providing insight into the system behavior during the formative phases of development and transformation with relatively low investment

  9. A framework for air quality monitoring based on free public data and open source tools

    Science.gov (United States)

    Nikolov, Hristo; Borisova, Denitsa

    2014-10-01

    In the recent years more and more widely accepted by the Space agencies (e.g. NASA, ESA) is the policy toward provision of Earth observation (EO) data and end products concerning air quality especially in large urban areas without cost to researchers and SMEs. Those EO data are complemented by increasing amount of in-situ data also provided at no cost either from national authorities or having crowdsourced origin. This accessibility together with the increased processing capabilities of the free and open source software is a prerequisite for creation of solid framework for air modeling in support of decision making at medium and large scale. Essential part of this framework is web-based GIS mapping tool responsible for dissemination of the output generated. In this research an attempt is made to establish a running framework based solely on openly accessible data on air quality and on set of freely available software tools for processing and modeling taking into account the present status quo in Bulgaria. Among the primary sources of data, especially for bigger urban areas, for different types of gases and dust particles, noted should be the National Institute of Meteorology and Hydrology of Bulgaria (NIMH) and National System for Environmental Monitoring managed by Bulgarian Executive Environmental Agency (ExEA). Both authorities provide data for concentration of several gases just to mention CO, CO2, NO2, SO2, and fine suspended dust (PM10, PM2.5) on monthly (for some data on daily) basis. In the framework proposed these data will complement the data from satellite-based sensors such as OMI instrument aboard EOS-Aura satellite and from TROPOMI instrument payload for future ESA Sentinel-5P mission. Integral part of the framework is the modern map for the land use/land cover which is provided from EEA by initiative GIO Land CORINE. This map is also a product from EO data distributed at European level. First and above all, our effort is focused on provision to the

  10. Fall 1994 wildlife and vegetation survey, Norton Air Force Base, California

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-15

    The fall 1994 wildlife and vegetation surveys were completed October 3-7, 1994, at Norton Air Force Base (AFB), California. Two biologists from CDM Federal Programs, the U.S. Environmental Protection Agency (EPA) regional biologist and the Oak Ridge National Laboratory (ORNL) lead biologist conducted the surveys. A habitat assessment of three Installation Restoration Project (IRP) sites at Norton Air Force Base was also completed during the fall survey period. The IRP sites include: Landfill No. 2 (Site 2); the Industrial Wastewater Treatment Plant (IWTP) area; and Former Fire Training Area No. 1 (Site 5). The assessments were designed to qualitatively characterize the sites of concern, identify potential ecological receptors, and provide information for Remedial Design/Remedial Action activities. A Reference Area (Santa Ana River Wash) and the base urban areas were also characterized. The reference area assessment was performed to provide a baseline for comparison with the IRP site habitats. The fall 1994 survey is the second of up to four surveys that may be completed. In order to develop a complete understanding of all plant and animal species using the base, these surveys were planned to be conducted over four seasons. Species composition can vary widely during the course of a year in Southern California, and therefore, seasonal surveys will provide the most complete and reliable data to address changes in habitat structure and wildlife use of the site. Subsequent surveys will focus on seasonal wildlife observations and a spring vegetation survey.

  11. Groundwater level and nitrate concentration trends on Mountain Home Air Force Base, southwestern Idaho

    Science.gov (United States)

    Williams, Marshall L.

    2014-01-01

    Mountain Home Air Force Base in southwestern Idaho draws most of its drinking water from the regional aquifer. The base is located within the State of Idaho's Mountain Home Groundwater Management Area and is adjacent to the State's Cinder Cone Butte Critical Groundwater Area. Both areas were established by the Idaho Department of Water Resources in the early 1980s because of declining water levels in the regional aquifer. The base also is listed by the Idaho Department of Environmental Quality as a nitrate priority area. The U.S. Geological Survey, in cooperation with the U.S. Air Force, began monitoring wells on the base in 1985, and currently monitors 25 wells for water levels and 17 wells for water quality, primarily nutrients. This report provides a summary of water-level and nitrate concentration data collected primarily between 2001 and 2013 and examines trends in those data. A Regional Kendall Test was run to combine results from all wells to determine an overall regional trend in water level. Groundwater levels declined at an average rate of about 1.08 feet per year. Nitrate concentration trends show that 3 wells (18 percent) are increasing in nitrate concentration trend, 3 wells (18 percent) show a decreasing nitrate concentration trend, and 11 wells (64 percent) show no nitrate concentration trend. Six wells (35 percent) currently exceed the U.S. Environmental Protection Agency's maximum contaminant limit of 10 milligrams per liter for nitrate (nitrite plus nitrate, measured as nitrogen).

  12. Air Pollution and the Risk of Cardiac Defects: A Population-Based Case-Control Study.

    Science.gov (United States)

    Hwang, Bing-Fang; Lee, Yungling Leo; Jaakkola, Jouni J K

    2015-11-01

    Previous epidemiologic studies have assessed the role of the exposure to ambient air pollution in the development of cardiac birth defects, but they have provided somewhat inconsistent results. To assess the associations between exposure to ambient air pollutants and the risk of cardiac defects, a population-based case-control study was conducted using 1087 cases of cardiac defects and a random sample of 10,870 controls from 1,533,748 Taiwanese newborns in 2001 to 2007.Logistic regression was performed to calculate odds ratios for 10 ppb increases in O3 and 10 μg/m increases in PM10. In addition, we compared the risk of cardiac defects in 4 categories-high exposure (>75th percentile); medium exposure (75th to 50th percentile); low exposure (patent ductus arteriosus (PDA) were associated with 10 ppb increases in O3 exposure during the first 3 gestational months among term and preterm babies. In comparison between high PM10 exposure and reference category, there were statistically significant elevations in the effect estimates of ASD for all and terms births. In addition, there was a negative or weak association between SO2, NO2, CO, and cardiac defects.The study proved that exposure to outdoor air O3 and PM10 during the first trimester of gestation may increase the risk of VSD, ASD, and PDA. PMID:26554783

  13. Triple-bore hollow fiber membrane contactor for liquid desiccant based air dehumidification

    KAUST Repository

    Bettahalli, N.M. Srivatsa

    2016-04-26

    Dehumidification is responsible for a large part of the energy consumption in cooling systems in high humidity environments worldwide. Improving efficiency is therefore essential. Liquid desiccants offer a promising solution for dehumidification, as desired levels of humidity removal could be easily regulated. The use of membrane contactors in combination with liquid desiccant is attractive for dehumidification because they prevent direct contact between the humid air and the desiccant, removing both the potential for desiccant carryover to the air and the potential for contamination of the liquid desiccant by dust and other airborne materials, as well as minimizing corrosion. However, the expected additional mass transport barrier of the membrane surface can lower the expected desiccation rate per unit of desiccant surface area. In this context, hollow fiber membranes present an attractive option for membrane liquid desiccant contactors because of their high surface area per unit volume. We demonstrate in this work the performance of polyvinylidene fluoride (PVDF) based triple-bore hollow fiber membranes as liquid desiccant contactors, which are permeable to water vapor but impermeable to liquid water, for dehumidification of hot and humid air.

  14. Local and Regional Interactions Between Air Quality and Climate in New Delhi -- a Sector Based Analysis

    Science.gov (United States)

    Marrapu, P.; Cheng, Y.; Carmichael, G. R.; Beig, G.; Spak, S.; Lin, M.; Decker, M.; Schultz, M. G.; Winiwarter, W.

    2011-12-01

    Out of the 26 mega-cities in the world, 13 of them are affected by atmospheric brown clouds with high aerosol loadings and 5 of them are in South Asia. New Delhi (India) is one of the world's most polluted megacities. In this study we evaluate the air pollution levels in Delhi and their impacts on weather and climate. The two way interactions between pollution and meteorology are evaluated using the WRF-Chem model. The analysis period is focused on October 2010, the time period of the Commonwealth Games. The model is compared to BC and PM2.5 measurements at 11 sites. A sector based analysis is performed to assess the contributions to pollution and direct radiative forcing from transport, residential, power and industrial emissions. The contributions from emissions outside of Delhi are also evaluated to see the extent that regional emissions need to be controlled to meet air quality targets in Delhi. Results of simulations for emission scenarios generated by the GAINS model that address air quality and climate strategies are also discussed

  15. Experimental performance study of a proposed desiccant based air conditioning system.

    Science.gov (United States)

    Bassuoni, M M

    2014-01-01

    An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system.

  16. A basic condition-based maintenance strategy for air-cooled turbine generators

    Energy Technology Data Exchange (ETDEWEB)

    Laird, T; Griffith, G [Mechanical Dynamics and Analysis LLC, Generator Repair Services, Sunset Hills, MO (United States); Hoof, M. [Univ. of Applied Sciences, High Voltage and Power Systems Lab, Kaiserslautern (Germany)

    2005-07-01

    Generator components require regular maintenance to prevent failures. It is important to detect degradation of critical generator components such as stator windings, stator core, rotor windings, rotor retaining rings, generator bearings and high voltage bushings which are all exposed to high stresses. The methods of using condition-based maintenance (CBM) for turbine generators was discussed with particular focus on the maintenance strategy for air-cooled generators. Higher unit rated air-cooled machines typically designed as hydrogen-cooled machines are being used more frequently by the power industry to reduce costs. Since more compact machines are being built to reduce material costs, thermal and electrical design stresses have increased, resulting in higher utilization of the machines and reduced long-term reliability in service. It was noted that CBM will not completely eliminate all forced outage situations, but will greatly reduce their occurrence and will help avoid catastrophic machine situations. This paper outlined basic maintenance strategies for nuclear power plants, major utilities including fossil-fuel power plants, and minor utilities including industrial power plant producers. The economic strategy for air-cooled turbine generators was outlined with reference to unit condition assessment, trending assessed condition of major generator components, and unknown component weaknesses. The CBM maintenance can be applied to all types of power producers that can benefit from an improved, low cost maintenance strategy. Detailed knowledge of the unit design, operational weakness, cost of maintenance and operational capabilities is needed in order to conduct a reliable assessment. 19 refs., 2 figs.

  17. Development of a health effects based priority ranking system for air emissions reductions from oil refineries in Canada

    International Nuclear Information System (INIS)

    This paper presents the concept and methodologies behind the development of a health effects priority ranking tool for the reduction of air emissions from oil refineries. The Health Effects Indicators Decision Index- Versions 2 (Heidi II) was designed to assist policy makers in prioritizing air emissions reductions on the basis of estimated risk to human health. Inputs include facility level rankings of potential health impacts associated with carcinogenic air toxics, non-carcinogenic air toxics and criteria air contaminants for each of the 20 refineries in Canada. Rankings of estimated health impacts are presented on predicted incidence of health effects. Heidi II considers site-specific annual pollutant emission data, ambient air concentrations associated with releases and concentration response functions for various types of health effects. Additional data includes location specific background air concentrations, site-specific population densities, and the baseline incidence of different health effects endpoints, such as cancer, non-cancer illnesses and cardiorespiratory illnesses and death. Air pollutants include the 29 air toxics reported annually in Environment Canada's National Pollutant Release Inventory. Three health impact ranking outputs are provided for each facility: ranking of pollutants based on predicted number of annual cases of health effects; ranking of pollutants based on simplified Disability Adjusted Life Years (DALYs); and ranking of pollutants based on more complex DALYs that consider types of cancer, systemic disease or types of cardiopulmonary health effects. Rankings rely on rough statistical estimates of predicted incidence rates for health endpoints. The models used to calculate rankings can provide useful guidance by comparing estimated health impacts. Heidi II has demonstrated that it is possible to develop a consistent and objective approach for ranking priority reductions of air emissions. Heidi II requires numerous types and

  18. Air pollution and newly diagnostic autism spectrum disorders: a population-based cohort study in Taiwan.

    Directory of Open Access Journals (Sweden)

    Chau-Ren Jung

    Full Text Available There is limited evidence that long-term exposure to ambient air pollution increases the risk of childhood autism spectrum disorder (ASD. The objective of the study was to investigate the associations between long-term exposure to air pollution and newly diagnostic ASD in Taiwan. We conducted a population-based cohort of 49,073 children age less than 3 years in 2000 that were retrieved from Taiwan National Insurance Research Database and followed up from 2000 through 2010. Inverse distance weighting method was used to form exposure parameter for ozone (O3, carbon monoxide (CO, nitrogen dioxide (NO2, sulfur dioxide (SO2, and particles with aerodynamic diameter less than 10 µm (PM10. Time-dependent Cox proportional hazards (PH model was performed to evaluate the relationship between yearly average exposure air pollutants of preceding years and newly diagnostic ASD. The risk of newly diagnostic ASD increased according to increasing O3, CO, NO2, and SO2 levels. The effect estimate indicating an approximately 59% risk increase per 10 ppb increase in O3 level (95% CI 1.42-1.79, 37% risk increase per 10 ppb in CO (95% CI 1.31-1.44, 340% risk increase per 10 ppb increase in NO2 level (95% CI 3.31-5.85, and 17% risk increase per 1 ppb in SO2 level (95% CI 1.09-1.27 was stable with different combinations of air pollutants in the multi-pollutant models. Our results provide evident that children exposure to O3, CO, NO2, and SO2 in the preceding 1 year to 4 years may increase the risk of ASD diagnosis.

  19. Arduino-based control system for measuring ammonia in air using conditionally-deployed diffusive samplers

    Science.gov (United States)

    Ham, J. M.; Williams, C.; Shonkwiler, K. B.

    2012-12-01

    Arduino microcontrollers, wireless modules, and other low-cost hardware were used to develop a new type of air sampler for monitoring ammonia at strong areal sources like dairies, cattle feedlots, and waste treatment facilities. Ammonia was sampled at multiple locations on the periphery of an operation using Radiello diffusive passive samplers (Cod. RAD168- and RAD1201-Sigma-Aldrich). However, the samplers were not continuously exposed to the air. Instead, each sampling station included two diffusive samplers housed in specialized tubes that sealed the cartridges from the atmosphere. If a user-defined set of wind and weather conditions were met, the Radiellos were deployed into the air using a micro linear actuator. Each station was solar-powered and controlled by Arduinos that were linked to a central weather station using Xbee wireless modules (Digi International Inc.). The Arduinos also measured the total time of exposure using hall-effect sensors to verify the position of the cartridge (i.e., deployed or retracted). The decision to expose or retract the samplers was made every five minutes based on wind direction, wind speed, and time of day. Typically, the diffusive samplers were replaced with fresh cartridges every two weeks and the used samplers were analyzed in the laboratory using ion chromatography. Initial studies were conducted at a commercial dairy in northern Colorado. Ammonia emissions along the Front Range of Colorado can be transported into the mountains where atmospheric deposition of nitrogen can impact alpine ecosystems. Therefore, low-cost air quality monitoring equipment is needed that can be widely deployed in the region. Initial work at the dairy showed that ammonia concentrations ranged between 600 to 1200 ppb during the summer; the highest concentrations were downwind of a large anaerobic lagoon. Time-averaged ammonia concentrations were also used to approximate emissions using inverse dispersion models. This methodology provides a

  20. American Recovery and Reinvestment Act (ARRA) Federal Energy Management Program Technical Assistance Project 224 Altus Air Force Base Solar Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Russo, Bryan J.

    2010-09-30

    The principal goal of this project was to evaluate altus Air Force Base for building integrated silicon or thin film module photovoltaic opportunities. This report documents PNNL's efforts and documents study conclusions.

  1. Agent Based Modeling of Air Carrier Behavior for Evaluation of Technology Equipage and Adoption

    Science.gov (United States)

    Horio, Brant M.; DeCicco, Anthony H.; Stouffer, Virginia L.; Hasan, Shahab; Rosenbaum, Rebecca L.; Smith, Jeremy C.

    2014-01-01

    As part of ongoing research, the National Aeronautics and Space Administration (NASA) and LMI developed a research framework to assist policymakers in identifying impacts on the U.S. air transportation system (ATS) of potential policies and technology related to the implementation of the Next Generation Air Transportation System (NextGen). This framework, called the Air Transportation System Evolutionary Simulation (ATS-EVOS), integrates multiple models into a single process flow to best simulate responses by U.S. commercial airlines and other ATS stakeholders to NextGen-related policies, and in turn, how those responses impact the ATS. Development of this framework required NASA and LMI to create an agent-based model of airline and passenger behavior. This Airline Evolutionary Simulation (AIRLINE-EVOS) models airline decisions about tactical airfare and schedule adjustments, and strategic decisions related to fleet assignments, market prices, and equipage. AIRLINE-EVOS models its own heterogeneous population of passenger agents that interact with airlines; this interaction allows the model to simulate the cycle of action-reaction as airlines compete with each other and engage passengers. We validated a baseline configuration of AIRLINE-EVOS against Airline Origin and Destination Survey (DB1B) data and subject matter expert opinion, and we verified the ATS-EVOS framework and agent behavior logic through scenario-based experiments. These experiments demonstrated AIRLINE-EVOS's capabilities in responding to an input price shock in fuel prices, and to equipage challenges in a series of analyses based on potential incentive policies for best equipped best served, optimal-wind routing, and traffic management initiative exemption concepts..

  2. Cubic PdNP-based air-breathing cathodes integrated in glucose hybrid biofuel cells

    Science.gov (United States)

    Faggion Junior, D.; Haddad, R.; Giroud, F.; Holzinger, M.; Maduro de Campos, C. E.; Acuña, J. J. S.; Domingos, J. B.; Cosnier, S.

    2016-05-01

    Cubic Pd nanoparticles (PdNPs) were synthesized using ascorbic acid as a reducing agent and were evaluated for the catalytic oxygen reduction reaction. PdNPs were confined with multiwalled carbon nanotube (MWCNT) dispersions to form black suspensions and these inks were dropcast onto glassy carbon electrodes. Different nanoparticle sizes were synthesized and investigated upon oxygen reduction capacities (onset potential and electrocatalytic current densities) under O2 saturated conditions at varying pH values. Strong evidence of O2 diffusion limitation was demonstrated. In order to overcome oxygen concentration and diffusion limitations in solution, we used a gas diffusion layer to create a PdNP-based air-breathing cathode, which delivered -1.5 mA cm-2 at 0.0 V with an onset potential of 0.4 V. This air-breathing cathode was combined with a specially designed phenanthrolinequinone/glucose dehydrogenase-based anode to form a complete glucose/O2 hybrid bio-fuel cell providing an open circuit voltage of 0.554 V and delivering a maximal power output of 184 +/- 21 μW cm-2 at 0.19 V and pH 7.0.Cubic Pd nanoparticles (PdNPs) were synthesized using ascorbic acid as a reducing agent and were evaluated for the catalytic oxygen reduction reaction. PdNPs were confined with multiwalled carbon nanotube (MWCNT) dispersions to form black suspensions and these inks were dropcast onto glassy carbon electrodes. Different nanoparticle sizes were synthesized and investigated upon oxygen reduction capacities (onset potential and electrocatalytic current densities) under O2 saturated conditions at varying pH values. Strong evidence of O2 diffusion limitation was demonstrated. In order to overcome oxygen concentration and diffusion limitations in solution, we used a gas diffusion layer to create a PdNP-based air-breathing cathode, which delivered -1.5 mA cm-2 at 0.0 V with an onset potential of 0.4 V. This air-breathing cathode was combined with a specially designed phenanthrolinequinone

  3. Human factors in the Naval Air Systems Command: Computer based training

    Energy Technology Data Exchange (ETDEWEB)

    Seamster, T.L.; Snyder, C.E.; Terranova, M.; Walker W.J.; Jones, D.T.

    1988-01-01

    Military standards applied to the private sector contracts have a substantial effect on the quality of Computer Based Training (CBT) systems procured for the Naval Air Systems Command. This study evaluated standards regulating the following areas in CBT development and procurement: interactive training systems, cognitive task analysis, and CBT hardware. The objective was to develop some high-level recommendations for evolving standards that will govern the next generation of CBT systems. One of the key recommendations is that there be an integration of the instructional systems development, the human factors engineering, and the software development standards. Recommendations were also made for task analysis and CBT hardware standards. (9 refs., 3 figs.)

  4. Sequential maneuvering decisions based on multi-stage influence diagram in air combat

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A multi-stage influence diagram is used to model the pilot's sequential decision making in one on one air combat.The model based on the multi-stage influence diagram graphically describes the elements of decision process,and contains a point-mass model for the dynamics of an aircraft and takes into account the decision maker's Dreferences under uncertain conditions.Considering an active opponent,the opponent's maneuvers can be modeled stochastically.The solution of multistage influence diagram Can be obtained by converting the multistage influence diagram into a two-level optimization problem.The simulation results show the model is effective.

  5. Review of the Lightning Shielding Against Direct Lightning Strokes Based on Laboratory Long Air Gap Discharges

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    It is one of the most effective ways to use laboratory long air gap discharges tbr investigating the fundamental process involved in the lightning strike. During the 1960s and the 1970s, the electro-geometrical method (EGM) and the rolling sphere method were developed base on the breakdown characteristics of negative long spark discharges, which have been widely used to design the lightning shielding system of transmission lines and structures. In recent years, the scale of the power facilities is increased dramatically with the rising of power grid's voltage level.

  6. Flexible Wing Base Micro Aerial Vehicles: Micro Air Vehicles (MAVs) for Surveillance and Remote Sensor Delivery

    Science.gov (United States)

    Ifju, Peter

    2002-01-01

    Micro Air Vehicles (MAVs) will be developed for tracking individuals, locating terrorist threats, and delivering remote sensors, for surveillance and chemical/biological agent detection. The tasks are: (1) Develop robust MAV platform capable of carrying sensor payload. (2) Develop fully autonomous capabilities for delivery of sensors to remote and distant locations. The current capabilities and accomplishments are: (1) Operational electric (inaudible) 6-inch MAVs with novel flexible wing, providing superior aerodynamic efficiency and control. (2) Vision-based flight stability and control (from on-board cameras).

  7. A Study of Maneuvering Control for an Air Cushion Vehicle Based on Back Propagation Neural Network

    Institute of Scientific and Technical Information of China (English)

    LU Jun; HUANG Guo-liang; LI Shu-zhi

    2009-01-01

    A back propagation (BP) neural network mathematical model was established to investigate the maneuvering control of an air cushion vehicle (ACV). The calculation was based on four-freedom-degree model experiments of hydrodynamics and aerodynamics. It is necessary for the ACV to control the velocity and the yaw rate as well as the velocity angle at the same time. The yaw rate and the velocity angle must be controlled correspondingly because of the whipping, which is a special characteristic for the ACV. The calculation results show that it is an efficient way for the ACV's maneuvering control by using a BP neural network to adjust PID parameters online.

  8. Characterization of Air-Based Photovoltaic Thermal Panels with Bifacial Solar Cells

    Directory of Open Access Journals (Sweden)

    P. Ooshaksaraei

    2013-01-01

    Full Text Available Photovoltaic (PV panels account for a majority of the cost of photovoltaic thermal (PVT panels. Bifacial silicon solar panels are attractive for PVT panels because of their potential to enhance electrical power generation from the same silicon wafer compared with conventional monofacial solar panels. This paper examines the performance of air-based bifacial PVT panels with regard to the first and second laws of thermodynamics. Four air-based bifacial PVT panels were designed. The maximum efficiencies of 45% to 63% were observed for the double-path-parallel bifacial PVT panel based on the first law of thermodynamics. Single-path bifacial PVT panel represents the highest exergy efficiency (10%. Double-path-parallel bifacial PVT panel is the second preferred design as it generates up to 20% additional total energy compared with the single-path panel. However, the daily average exergy efficiency of a double-path-parallel panel is 0.35% lower than that of a single-path panel.

  9. Operable Unit 1 remedial investigation report, Eielson Air Force Base, Alaska

    International Nuclear Information System (INIS)

    This remedial investigation report for operable Unit 1 (OU-1) at Eielson Air Force Base presents data, calculations, and conclusions as to the nature and extent of surface and subsurface contamination at the eight source areas that make up OU-1. The information is based on the 1993 field investigation result and previous investigations. This report is the first in a set of three for OU-1. The other reports are the baseline risk assessment and feasibility study. The information in these reports will lead to a Record of Decision that will guide and conclude the environmental restoration effort for OU-1 at Eielson Air Force Base. The primary contaminants of concern include fuels and fuel-related contaminants (diesel; benzene, toluene, ethylbenzene, and xylene; total petroleum hydrocarbon; polycyclic aromatic hydrocarbons), maintenance-related solvents and cleaners (volatile chlorinated hydrocarbons such as trichloroothylene), polychlorinated biphenyls, and dichlorodiphenyltrichloroethane (DDT). The origins of contaminants of concern include leaks from storage tanks, drums and piping, and spills. Ongoing operations and past sitewide practices also contribute to contaminants of concern at OU-1 source areas. These include spraying mixed oil and solvent wastes on unpaved roads and aerial spraying of DDT

  10. Operable Unit 1 remedial investigation report, Eielson Air Force Base, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Gilmore, T.J.; Fruland, R.M.; Liikala, T.L. [and others

    1994-06-01

    This remedial investigation report for operable Unit 1 (OU-1) at Eielson Air Force Base presents data, calculations, and conclusions as to the nature and extent of surface and subsurface contamination at the eight source areas that make up OU-1. The information is based on the 1993 field investigation result and previous investigations. This report is the first in a set of three for OU-1. The other reports are the baseline risk assessment and feasibility study. The information in these reports will lead to a Record of Decision that will guide and conclude the environmental restoration effort for OU-1 at Eielson Air Force Base. The primary contaminants of concern include fuels and fuel-related contaminants (diesel; benzene, toluene, ethylbenzene, and xylene; total petroleum hydrocarbon; polycyclic aromatic hydrocarbons), maintenance-related solvents and cleaners (volatile chlorinated hydrocarbons such as trichloroothylene), polychlorinated biphenyls, and dichlorodiphenyltrichloroethane (DDT). The origins of contaminants of concern include leaks from storage tanks, drums and piping, and spills. Ongoing operations and past sitewide practices also contribute to contaminants of concern at OU-1 source areas. These include spraying mixed oil and solvent wastes on unpaved roads and aerial spraying of DDT.

  11. Tribological Performance of MoS2-based Coatings after Deposition and Storage in Humid Air

    Institute of Scientific and Technical Information of China (English)

    JINGYang; LUOJian-bin; PANGSi-qin

    2004-01-01

    MoS2-based composite coatings were deposited with the nano-compound unbalanced plasma plating technique the effects of processing parameters and working enwironments on the tribological properties of the coatings were examined by the drilling experiuments and XPS.the distances between substrate and Ti larget, Ti content and deposition pressure were varied in order to determine the optimun conditions for producing lubricious,long-lasting MoS2-based coatings,IT is found that the tribological performance of Tin-MoS2 roating decreases rqapidly in humid air but the humid resistant property of Tin-MoS2/Ti coating improves evidently it is indicated that the humid-resistantance property and the abrasion durability of MoS2-based coatings can be enhanced markedly by adding Ti with a certain contents.

  12. The fabrication of polyfluorene and polycarbazole-based photovoltaic devices using an air-stable process route

    Energy Technology Data Exchange (ETDEWEB)

    Bovill, E.; Lidzey, D. G., E-mail: d.g.lidzey@sheffield.ac.uk [Department of Physics and Astronomy, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Yi, H.; Iraqi, A. [Department of Chemistry, The University of Sheffield, The Dainton Building, Sheffield S3 7HF (United Kingdom)

    2014-12-01

    We report a comparative study based on the fabrication of polymer:fullerene photovoltaic (PV) devices incorporating carbazole, fluorene, and a PTB based co-polymer. We have explored the efficiency and performance of such devices when the active polymer:fullerene layer is deposited by spin-casting either under nitrogen or ambient conditions. We show that PV devices based on carbazole and fluorene based materials have very similar power conversion efficiencies when processed under both air and nitrogen, with other photobleaching measurements suggesting that such materials have comparatively enhanced photostability. Devices based on the PTB co-polymer, however, have reduced efficiency when processed in air.

  13. Development and case study of a science-based software platform to support policy making on air quality

    Institute of Scientific and Technical Information of China (English)

    Yun Zhu; Yahweh Lao; Carey Jang; Chen-Jen Lin; Jia Xing; Shuxiao Wang; Joshua S.Fu

    2015-01-01

    This article describes the development and implementations of a novel software platform that supports real-time,science-based policy making on air quality through a user-friendly interface.The software,RSM-VAT,uses a response surface modeling (RSM) methodology and serves as a visualization and analysis tool (VAT) for three-dimensional air quality data obtained by atmospheric models.The software features a number of powerful and intuitive data visualization functions for illustrating the complex nonlinear relationship between emission reductions and air quality benefits.The case study of contiguous U.S.demonstrates that the enhanced RSM-VAT is capable of reproducing the air quality model results with Normalized Mean Bias <2% and assisting in air quality policy making in near real time.

  14. Effects of shift work in air traffic controllers: a systematic review based on the Prisma method

    Directory of Open Access Journals (Sweden)

    Alisson Vieira Marcolino

    2015-07-01

    Full Text Available Air Traffic Controllers (ATC perform very complex functions of great responsibility. Due to the necessities of the job, they are submitted to a work shift system which makes their schedule irregular. The alternation of work shifts can result in effects that cause damages to their work performance and quality of life. Objective: To explore the effects of shift work in ATCs through a systematic review based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis model (PRISMA. Methodological procedures: The systematic review was conducted based on three databases: PubMed, Science Direct and Web of Science. Results: A total of 748 articles were found, 487 from PubMed, 240 from Science Direct and 21 from Web of Science; seven articles were included in the review after the application of eligibility criteria. Conclusions: The researches showed effects that affect mainly the night shifts, caused by alteration in sleep quality, somnolence and fatigue, resulting in decreased performance and increasing the risk of air accidents.

  15. A WebGIS-based system for analyzing and visualizing air quality data for Shanghai Municipality

    Science.gov (United States)

    Wang, Manyi; Liu, Chaoshun; Gao, Wei

    2014-10-01

    An online visual analytical system based on Java Web and WebGIS for air quality data for Shanghai Municipality was designed and implemented to quantitatively analyze and qualitatively visualize air quality data. By analyzing the architecture of WebGIS and Java Web, we firstly designed the overall scheme for system architecture, then put forward the software and hardware environment and also determined the main function modules for the system. The visual system was ultimately established with the DIV + CSS layout method combined with JSP, JavaScript, and some other computer programming languages based on the Java programming environment. Moreover, Struts, Spring, and Hibernate frameworks (SSH) were integrated in the system for the purpose of easy maintenance and expansion. To provide mapping service and spatial analysis functions, we selected ArcGIS for Server as the GIS server. We also used Oracle database and ESRI file geodatabase to store spatial data and non-spatial data in order to ensure the data security. In addition, the response data from the Web server are resampled to implement rapid visualization through the browser. The experimental successes indicate that this system can quickly respond to user's requests, and efficiently return the accurate processing results.

  16. Multitemporal Monitoring of the Air Quality in Bulgaria by Satellite Based Instruments

    Science.gov (United States)

    Nikolov, Hristo; Borisova, Denitsa

    2015-04-01

    Nowadays the effect on climate changes on the population and environment caused by air pollutants at local and regional scale by pollution concentrations higher than allowed is undisputable. Main sources of gas releases are due to anthropogenic emissions caused by the economic and domestic activities of the inhabitants, and to less extent having natural origin. Complementary to pollutants emissions the local weather parameters such as temperature, precipitation, wind speed, clouds, atmospheric water vapor, and wind direction control the chemical reactions in the atmosphere. It should be noted that intrinsic property of the air pollution is its "transboundary-ness" and this is why the air quality (AQ) is not affecting the population of one single country only. This why the exchange of information concerning AQ at EU level is subject to well established legislation and one of EU flagship initiatives for standardization in data exchange, namely INSPIRE, has to cope with. It should be noted that although good reporting mechanism with regard to AQ is already established between EU member states national networks suffer from a serious disadvantage - they don't form a regular grid which is a prerequisite for verification of pollutants transport modeling. Alternative sources of information for AQ are the satellite observations (i.e. OMI, TOMS instruments) providing daily data for ones of the major contributors to air pollution such as O3, NOX and SO2. Those data form regular grids and are processed the same day of the acquisition so they could be used in verification of the outputs generated by numerical modeling of the AQ and pollution transfer. In this research we present results on multitemporal monitoring of several regional "hot spots" responsible for greenhouse gases emissions in Bulgaria with emphasis on satellite-based instruments. Other output from this study is a method for validation of the AQ forecasts and also providing feedback to the service that prepares

  17. Eielson Air Force Base operable unit 2 and other areas record of decision

    International Nuclear Information System (INIS)

    This decision document presents the selected remedial actions and no action decisions for Operable Unit 2 (OU2) at Eielson Air Force Base (AFB), Alaska, chosen in accordance with state and federal regulations. This document also presents the decision that no further action is required for 21 other source areas at Eielson AFB. This decision is based on the administrative record file for this site. OU2 addresses sites contaminated by leaks and spills of fuels. Soils contaminated with petroleum products occur at or near the source of contamination. Contaminated subsurface soil and groundwater occur in plumes on the top of a shallow groundwater table that fluctuates seasonally. These sites pose a risk to human health and the environment because of ingestion, inhalation, and dermal contact with contaminated groundwater. The purpose of this response is to prevent current or future exposure to the contaminated groundwater, to reduce further contaminant migration into the groundwater, and to remediate groundwater

  18. Chemiluminescence-based multivariate sensing of local equivalence ratios in premixed atmospheric methane-air flames

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, Markandey M.; Krishnan, Sundar R.; Srinivasan, Kalyan K.; Yueh, Fang-Yu; Singh, Jagdish P.

    2011-09-07

    Chemiluminescence emissions from OH*, CH*, C2, and CO2 formed within the reaction zone of premixed flames depend upon the fuel-air equivalence ratio in the burning mixture. In the present paper, a new partial least square regression (PLS-R) based multivariate sensing methodology is investigated and compared with an OH*/CH* intensity ratio-based calibration model for sensing equivalence ratio in atmospheric methane-air premixed flames. Five replications of spectral data at nine different equivalence ratios ranging from 0.73 to 1.48 were used in the calibration of both models. During model development, the PLS-R model was initially validated with the calibration data set using the leave-one-out cross validation technique. Since the PLS-R model used the entire raw spectral intensities, it did not need the nonlinear background subtraction of CO2 emission that is required for typical OH*/CH* intensity ratio calibrations. An unbiased spectral data set (not used in the PLS-R model development), for 28 different equivalence ratio conditions ranging from 0.71 to 1.67, was used to predict equivalence ratios using the PLS-R and the intensity ratio calibration models. It was found that the equivalence ratios predicted with the PLS-R based multivariate calibration model matched the experimentally measured equivalence ratios within 7%; whereas, the OH*/CH* intensity ratio calibration grossly underpredicted equivalence ratios in comparison to measured equivalence ratios, especially under rich conditions ( > 1.2). The practical implications of the chemiluminescence-based multivariate equivalence ratio sensing methodology are also discussed.

  19. Demonstration of Security Benefits of Renewable Generation at FE Warren Air Force Base

    International Nuclear Information System (INIS)

    Report detailing field demonstration of security benefits of renewable generation at FE Warren Air Force Base. The 2006 National Defense Appropriations Act directed the Department of Defense (DOD) to coordinate the testing of a wind turbine (new to the U.S. market) at an Air Force installation as a follow on to analyses conducted by the Pacific Northwest National Laborabory (PNNL) as part of the 2005 DOD Renewable Assessment. The earlier study simulated the performance of renewable power produced from wind turbines, solar photovoltaics and geothermal energy as part of a Base-wide energy security solution. The simulation concluded that integration of renewable generating resources with emergency generators, typically diesel-fired, could significantly enhance energy security and extend power supplies during prolonged commercial grid power outages. A simulation is insufficient to convince skeptics of the reliability of renewable resources, especially those that produce power only intermittently, like wind and solar. Therefore, Congress requested a field demonstration be performed using a wind turbine because wind power is the most erratic of all renewable resources. Following this direction, the Air Force identified a site for the wind turbine demonstration and contracted with the Idaho National Laboratory (INL) and PNNL to conduct the demonstration and implement other provisions in the appropriation bill. INL identified a wind turbine that met the legislative requirements (the Gamesa G-80), and with the support of PNNL and the Air Force, selected FE Warren Air Force Base for the demonstration. FE Warren has an excellent wind resource and was already a host to two wind turbines and could accommodate a third. The G-80 is rated at 2 MWs versus the two existing 660 kW turbines, consequently wind production would more than double. Procurement, siting, and acceptance testing of the new turbine was completed in early 2010. The field test was conducted in late April 2010

  20. Using Neutron Radiography to Quantify Water Transport and the Degree of Saturation in Entrained Air Cement Based Mortar

    Science.gov (United States)

    Lucero, Catherine L.; Bentz, Dale P.; Hussey, Daniel S.; Jacobson, David L.; Weiss, W. Jason

    Air entrainment is commonly added to concrete to help in reducing the potential for freeze thaw damage. It is hypothesized that the entrained air voids remain unsaturated or partially saturated long after the smaller pores fill with water. Small gel and capillary pores in the cement matrix fill quickly on exposure to water, but larger pores (entrapped and entrained air voids) require longer times or other methods to achieve saturation. As such, it is important to quantitatively determine the water content and degree of saturation in air entrained cementitious materials. In order to further investigate properties of cement-based mortar, a model based on Beer's Law has been developed to interpret neutron radiographs. This model is a powerful tool for analyzing images acquired from neutron radiography. A mortar with a known volume of aggregate, water to cement ratio and degree of hydration can be imaged and the degree of saturation can be estimated.

  1. Towards an agent based traffic regulation and recommendation system for the on-road air quality control

    OpenAIRE

    Sadiq, Abderrahmane; El Fazziki, Abdelaziz; Ouarzazi, Jamal; Sadgal, Mohamed

    2016-01-01

    This paper presents an integrated and adaptive problem-solving approach to control the on-road air quality by modeling the road infrastructure, managing traffic based on pollution level and generating recommendations for road users. The aim is to reduce vehicle emissions in the most polluted road segments and optimizing the pollution levels. For this we propose the use of historical and real time pollution records and contextual data to calculate the air quality index on road networks and gen...

  2. Robins Air Force Base integrated resource assessment. Volume 3, Resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, G.P.; Keller, J.M.; Stucky, D.J.; Wahlstrom, R.R.; Larson, L.L.

    1993-10-01

    The US Air Force Materiel Command (AFMC) has tasked the US Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory (PNL), to identify, evaluate, and assist in acquiring all cost-effective energy projects at Robins Air Force Base (AFB). This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the AFMC Robins AFB facility located approximately 15 miles south of Macon, Georgia. It is a companion report to Volume 1, Executive Summary, and Volume 2, Baseline Detail. The results of the analyses of EROs are presented in 13 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative-description of each ERO is provided, including information on the installed cost, energy and dollar savings; impacts on operation and maintenance (O&M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO and present the results of the life-cycle cost (LCC) analysis indicating the net present value (NPV) and savings to investment ratio (SIR) of each ERO.

  3. Patrick Air Force Base integrated resource assessment. Volume 3, Resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sandusky, W.F.; Parker, S.A.; King, D.A.; Wahlstrom, R.R.; Elliott, D.B.; Shankle, S.A.

    1993-12-01

    The US Air Force has tasked the Pacific Northwest Laboratory (PNL) in support of the US Department of Energy Federal Energy Management Program to identify, evaluate, and assist in acquiring all cost effective energy projects at Patrick Air Force Base (AFB). This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at Patrick AFB which is located south of Cocoa Beach, Florida. It is a companion report to Volume 1, Executive Summary, and Volume.2, Baseline Detail. The results of the analyses of EROs are presented in 11 common energy end-use categories. A narrative description of each ERO is provided, including information on the installed cost, energy and dollar savings, impacts on operations and maintenance, and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO and present the results of the life-cycle cost analysis indicating the net present value and value index of each ERO.

  4. AN AIR POLLUTION PREDICTION TECHNIQUE FOR URBAN DISTRICTS BASED ON MESO-SCALE NUMERICAL MODEL

    Institute of Scientific and Technical Information of China (English)

    YAN Jing-hua; XU Jian-ping

    2005-01-01

    Taking Shenzhen city as an example, the statistical and physical relationship between the density of pollutants and various atmospheric parameters are analyzed in detail, and a space-partitioned city air pollution potential prediction scheme is established based on it. The scheme considers quantitatively more than ten factors at the surface and planetary boundary layer (PBL), especially the effects of anisotropy of geographical environment, and treats wind direction as an independent impact factor. While the scheme treats the prediction equation respectively for different pollutants according to their differences in dilute properties, it considers as well the possible differences in dilute properties at different districts of the city under the same atmospheric condition, treating predictions respectively for different districts. Finally, the temporally and spatially high resolution predictions for the atmospheric factors are made with a high resolution numerical model, and further the space-partitioned and time-variational city pollution potential predictions are made. The scheme is objective and quantitative, and with clear physical meaning, so it is suitable to use in making high resolution air pollution predictions.

  5. Performance assessment and optimization of a combined heat and power system based on compressed air energy storage system and humid air turbine cycle

    International Nuclear Information System (INIS)

    Highlights: • A combined heat and power system based on CAES and HAT is proposed. • The design and modeling of the CAES–HAT based CHP system are laid out. • The performance assessment of the proposed system is carried out. • The system optimization is conducted to decide the maximum conditions. - Abstract: Renewable energy based power sources have grown rapidly in the past few years owing to the dual constraint of climate change and pollution control. Compressed air energy storage (CAES), as a large-scale energy storage system (ESS) technology, has huge potential to manage the intermittent renewable energy based power sources effectively. However, the compression heat generated during charge and waste heat carried in turbine exhaust during discharge are not fully recuperated in current stage. A combined heat and power (CHP) system consisting of a CAES system and a humid air turbine (HAT) system is proposed to utilize the both types of heat energy. The proposed system can boost the power output, enhance performance and improve efficiency through a simultaneous supply of power and heat. The thermodynamic analysis shows that the expansion train power can be improved about 26% compared with the conventional CAES system. The parametric analysis reveals that the exergy efficiency increases with the turbine inlet temperature (TIT) of high pressure turbine (HPT) and inlet pressure of low pressure turbine (LPT), but decreases with the TIT of LPT, L/G ratio and dry air inlet temperature of saturator. Meanwhile, the system optimization is carried out via particle swarm optimization (PSO) to determine the maximum power and exergy efficiency conditions

  6. 1995 Area 1 bird survey/Zone 1, Operable Unit 2, Robins Air Force Base, Georgia

    Energy Technology Data Exchange (ETDEWEB)

    Wade, M.C.

    1995-08-01

    Robins Air Force Base is located in Warner Robins, Georgia, approximately 90 miles southeast of Atlanta, Georgia. As part of the Baseline Investigation (CDM Federal 1994) a two day bird survey was conducted by M. C. Wade (Oak Ridge National Laboratory) and B.A. Beatty (CDM Federal Programs) in May 1995. The subject area of investigation includes the sludge lagoon, Landfill No. 4, and the wetland area east of the landfill and west of Hannah Road (including two ponds). This is known as Area 1. The Area 1 wetlands include bottomland hardwood forest, stream, and pond habitats. The objectives of this survey were to document bird species using the Area I wetlands and to see if the change in hydrology (due to the installation of the Sewage Treatment Plant effluent diversion and stormwater runon control systems) has resulted in changes at Area 1 since the previous survey of May 1992 (CDM Federal 1994).

  7. An Explosive Range Model Based on the Gas Composition, Temperature, and Pressure during Air Drilling

    Directory of Open Access Journals (Sweden)

    Xiangyu Fan

    2016-01-01

    Full Text Available Air drilling is low cost and effectively improves the penetration rate and causes minimal damage to liquid-sensitive pay zones. However, there is a potential downhole explosion when combustible gas mixed with drilling fluid reaches the combustible condition. In this paper, based on the underground combustion mechanism, an explosive range calculation model is established. This model couples the state equation and the empirical formula method, which considers the inert gas content, pressure, mixed gas component, and temperature. The result shows that increase of the inert gas content narrows the explosive range, while increase of the gas temperature and pressure improves the explosive range. A case in Chongqing, China, is used to validate the explosive range calculation model.

  8. A Terminal Guidance Law Based on Motion Camouflage Strategy of Air-to-Ground Missiles

    Directory of Open Access Journals (Sweden)

    Chang-sheng Gao

    2016-01-01

    Full Text Available A guidance law for attacking ground target based on motion camouflage strategy is proposed in this paper. According to the relative position between missile and target, the dual second-order dynamics model is derived. The missile guidance condition is given by analyzing the characteristic of motion camouflage strategy. Then, the terminal guidance law is derived by using the relative motion of missile and target and the guidance condition. In the process of derivation, the three-dimensional guidance law could be designed in a two-dimensional plane and the difficulty of guidance law design is reduced. A two-dimensional guidance law for three-dimensional space is derived by bringing the estimation for target maneuver. Finally, simulation for the proposed guidance law is taken and compared with pure proportional navigation. The simulation results demonstrate that the proposed guidance law can be applied to air-to-ground missiles.

  9. Study on application of capillary plane radiation air conditioning system based on the slope roof

    Science.gov (United States)

    Li, Y. G.; Wang, T. T.; Liu, X. L.; Dong, X. Z.

    2016-08-01

    In this paper, based on the principle of the capillary plane radiation air conditioning system, taking the slope roof as an example, the application of the capillary plane radiation airconditioning system is studied and analysed. Then the numerical solution of differential equations is obtained by the technology of CFD. Finally, we analyze the distribution of indoor temperature of the slope roof and the predicted mean votes (PMV) using Airpak simulation software by establishing a physical model. The results show that the PMV of different sections ranges from 0 to 2.5, which meets the requirement of the comfort. These provide a theoretical basis for application and promotion of capillary plane in the slope roof.

  10. A one-compartment fructose/air biological fuel cell based on direct electron transfer.

    Science.gov (United States)

    Wu, Xuee; Zhao, Feng; Varcoe, John R; Thumser, Alfred E; Avignone-Rossa, Claudio; Slade, Robert C T

    2009-10-15

    The construction and characterization of a one-compartment fructose/air biological fuel cell (BFC) based on direct electron transfer is reported. The BFC employs bilirubin oxidase and d-fructose dehydrogenase adsorbed on a cellulose-multiwall carbon nanotube (MWCNT) matrix, reconstituted with an ionic liquid, as the biocathode and the bioanode for oxygen reduction and fructose oxidation reactions, respectively. The performance of the bioelectrode was investigated by chronoamperometric and cyclic voltammetric techniques in a standard three-electrode cell, and the polarization and long-term stability of the BFC was tested by potentiostatic discharge. An open circuit voltage of 663 mV and a maximum power density of 126 microWcm(-2) were obtained in buffer at pH 5.0. Using this regenerated cellulose-MWCNT matrix as the immobilization platform, this BFC has shown a relatively high performance and long-term stability compared with previous studies.

  11. Corrosion of copper-based materials in gamma-irradiated air/water vapor systems

    International Nuclear Information System (INIS)

    Experiments were performed to investigate the atmospheric corrosion of copper-based materials in an irradiated air/water vapor system. The three materials investigated were oxygen-free copper (CDA-102), 7% aluminum-bronze (CDA-613), and 70-30 cupronickel (CDA-715). To support the corrosion studies, a number of irradiation studies were performed to characterize the gas phase radiation chemistry of the system. Both copper oxide and nitrate phases were identified as corrosion products depending on the dose rate, humidity and temperature. Uniform corrosion rates increased with temperature, humidity, and dose rate. A clear tie between the radiolytic products generated in the gas phase and the corrosion observed was established

  12. Assessment of China's virtual air pollution transport embodied in trade by using a consumption-based emission inventory

    Science.gov (United States)

    Zhao, H. Y.; Zhang, Q.; Guan, D. B.; Davis, S. J.; Liu, Z.; Huo, H.; Lin, J. T.; Liu, W. D.; He, K. B.

    2015-05-01

    Substantial anthropogenic emissions from China have resulted in serious air pollution, and this has generated considerable academic and public concern. The physical transport of air pollutants in the atmosphere has been extensively investigated; however, understanding the mechanisms how the pollutant was transferred through economic and trade activities remains a challenge. For the first time, we quantified and tracked China's air pollutant emission flows embodied in interprovincial trade, using a multiregional input-output model framework. Trade relative emissions for four key air pollutants (primary fine particle matter, sulfur dioxide, nitrogen oxides and non-methane volatile organic compounds) were assessed for 2007 in each Chinese province. We found that emissions were significantly redistributed among provinces owing to interprovincial trade. Large amounts of emissions were embodied in the imports of eastern regions from northern and central regions, and these were determined by differences in regional economic status and environmental policy. It is suggested that measures should be introduced to reduce air pollution by integrating cross-regional consumers and producers within national agreements to encourage efficiency improvement in the supply chain and optimize consumption structure internationally. The consumption-based air pollutant emission inventory developed in this work can be further used to attribute pollution to various economic activities and final demand types with the aid of air quality models.

  13. Investigating Indoor Air Quality Using a Community-based Participatory Research Model

    Science.gov (United States)

    Collier, A. M.; Ware, G. E.; Iwasaki, P. G.; Main, D.; Billingsley, L. R.; Pandya, R.; Hannigan, M.

    2015-12-01

    Our project seeks to expand scientific knowledge of air pollutant screening methods while also gathering data a community group can use to improve local health outcomes. Working with Taking Neighborhood Health to Heart (TNH2H), a Denver-based neighborhood group with significant experience doing community-based participatory research (CBPR) related to improving individual and community health, we designed a project to help residents test their homes for two contaminants of interest: radon and perchloroethylene. Radon is naturally occurring and commonly found across Colorado. Perchloroethylene contamination has been discovered in other parts of Denver and residents of Northeast Denver would like to learn more about its possible presence in their neighborhood. Additionally while radon is simple to test for, the same cannot be said for perchloroethylene. This project provides an opportunity to pilot a low-cost sampling method for perchloroethylene, apply TNH2H's CBPR model to an environmental health issue, adapt it for the geosciences, and engage the community in education around air quality issues. Data collected during the project will be shared with participating homes and the larger community. Community members will also participate in understanding and interpreting the data, and together community members and scientists will plan possible next steps, which may involve conducting further research, taking community action, or recommending changes in policy and practice. Beyond the local impacts, we are testing an air quality sampling method that could make sampling more accessible to a broader range of communities. We are also learning more about how communities and scientists can best work together and what additional resources can help facilitate and ensure successful implementation of these types of projects. Our partner, the Thriving Earth Exchange, will use what we learn to facilitate scientist-community partnerships like this in other communities around the

  14. Satellite-based Estimates of Ambient Air Pollution and Global Variations in Childhood Asthma Prevalence

    Science.gov (United States)

    Anderson, H. Ross; Butland, Barbara K.; Donkelaar, Aaron Matthew Van; Brauer, Michael; Strachan, David P.; Clayton, Tadd; van Dingenen, Rita; Amann, Marcus; Brunekreef, Bert; Cohen, Aaron; Dentener, Frank; Lai, Christopher; Lamsal, Lok N.; Martin, Randall V.

    2012-01-01

    Background: The effect of ambient air pollution on global variations and trends in asthma prevalence is unclear. Objectives: Our goal was to investigate community-level associations between asthma prevalence data from the International Study of Asthma and Allergies in Childhood (ISAAC) and satellite-based estimates of particulate matter with aerodynamic diameter < 2.5 microm (PM2.5) and nitrogen dioxide (NO2), and modelled estimates of ozone. Methods: We assigned satellite-based estimates of PM2.5 and NO2 at a spatial resolution of 0.1deg × 0.1deg and modeled estimates of ozone at a resolution of 1deg × 1deg to 183 ISAAC centers. We used center-level prevalence of severe asthma as the outcome and multilevel models to adjust for gross national income (GNI) and center- and country-level sex, climate, and population density. We examined associations (adjusting for GNI) between air pollution and asthma prevalence over time in centers with data from ISAAC Phase One (mid-1900s) and Phase Three (2001-2003). Results: For the 13- to 14-year age group (128 centers in 28 countries), the estimated average within-country change in center-level asthma prevalence per 100 children per 10% increase in center-level PM2.5 and NO2 was -0.043 [95% confidence interval (CI): -0.139, 0.053] and 0.017 (95% CI: -0.030, 0.064) respectively. For ozone the estimated change in prevalence per parts per billion by volume was -0.116 (95% CI: -0.234, 0.001). Equivalent results for the 6- to 7-year age group (83 centers in 20 countries), though slightly different, were not significantly positive. For the 13- to 14-year age group, change in center-level asthma prevalence over time per 100 children per 10% increase in PM2.5 from Phase One to Phase Three was -0.139 (95% CI: -0.347, 0.068). The corresponding association with ozone (per ppbV) was -0.171 (95% CI: -0.275, -0.067). Conclusion: In contrast to reports from within-community studies of individuals exposed to traffic pollution, we did not find

  15. Capillary based Li-air batteries for in situ synchrotron X-ray powder diffraction studies

    DEFF Research Database (Denmark)

    Storm, Mie Møller; Johnsen, Rune E.; Younesi, Reza;

    2015-01-01

    For Li-air batteries to reach their full potential as energy storage system, a complete understanding of the conditions and reactions in the battery during operation is needed. To follow the reactions in situ a capillary-based Li-O2 battery has been developed for synchrotron-based in situ X...

  16. A review on the recent development of solar absorption and vapour compression based hybrid air conditioning with low temperature storage

    Directory of Open Access Journals (Sweden)

    Noor D. N.

    2016-01-01

    Full Text Available Conventional air conditioners or vapour compression systems are main contributors to energy consumption in modern buildings. There are common environmental issues emanating from vapour compression system such as greenhouse gas emission and heat wastage. These problems can be reduced by adaptation of solar energy components to vapour compression system. However, intermittence input of daily solar radiation was the main issue of solar energy system. This paper presents the recent studies on hybrid air conditioning system. In addition, the basic vapour compression system and components involved in the solar air conditioning system are discussed. Introduction of low temperature storage can be an interactive solution and improved economically which portray different modes of operating strategies. Yet, very few studies have examined on optimal operating strategies of the hybrid system. Finally, the findings of this review will help suggest optimization of solar absorption and vapour compression based hybrid air conditioning system for future work while considering both economic and environmental factors.

  17. A Proposed Method for Measurement of Absolute Air Fluorescence Yield based on High Resolution Optical Emission Spectroscopy

    CERN Document Server

    Gika, V; Maltezos, S

    2016-01-01

    In this work, we present a method for absolute measurement of air fluorescence yield based on high resolution optical emission spectroscopy. The absolute measurement of the air fluorescence yield is feasible using the Cherenkov light, emitted by an electron beam simultaneously with the fluorescence light, as a "standard candle". The separation of these two radiations can be accomplished exploiting the "dark" spectral regions of the emission band systems of the molecular spectrum of nitrogen. In these "dark" regions the net Cherenkov light can be recorded experimentally and be compared with the calculated one. The instrumentation for obtaining the nitrogen molecular spectra in high resolution and the noninvasive method for monitoring the rotational temperature of the emission process are also described. For the experimental evaluation of the molecular spectra analysis we used DC normal glow discharges in air performed in an appropriate spectral lamp considered as an air-fluorescence light emulator. The propose...

  18. Analysis of radionuclide concentration in air released through the stack of a radiopharmaceutical production facility based on a medical cyclotron

    Science.gov (United States)

    Giardina, M.; Tomarchio, E.; Greco, D.

    2015-11-01

    Positron emitting radionuclides are increasingly used in medical diagnostics and the number of radiopharmaceutical production facilities have been estimated to be growing worldwide. During the process of production and/or patient administration of radiopharmaceuticals, an amount of these radionuclides might become airborne and escape into the environment. Therefore, the analysis of radionuclide concentration in the air released to the stack is a very important issue to evaluate the dose to the population living around the plant. To this end, sampling and measurement of radionuclide concentration in air released through the stack of a Nuclear Medicine Center (NMC), provided with a cyclotron for radiopharmaceuticals production, must be routinely carried out with an automatic measurement system. In this work is presented the air monitoring system realized at "San Gaetano" NMC at Bagheria (Italy) besides the analysis of the recorded stack relesead air concentration data. Sampling of air was carried out continuously and gamma-ray spectrometric measurement are made on-line and for a short time by using a shielded Marinelli beaker filled with sampled air and a gamma detector. The use of this system allows to have 1440 values of air concentration per day from 2002, year of the start of operation with the cyclotron. Therefore, the concentration values are very many and an analysis software is needed to determine the dose to the population. A comparison with the results of a simulation code based on a Gaussian Plume air dispersion modelling allow us to confirm the no-radiological significance of the stack effluent releases in terms of dose to population and to evaluate possible improvements in the plant devices to reduce the air concentration at stack.

  19. Hybrid Modeling of Flotation Height in Air Flotation Oven Based on Selective Bagging Ensemble Method

    Directory of Open Access Journals (Sweden)

    Shuai Hou

    2013-01-01

    Full Text Available The accurate prediction of the flotation height is very necessary for the precise control of the air flotation oven process, therefore, avoiding the scratch and improving production quality. In this paper, a hybrid flotation height prediction model is developed. Firstly, a simplified mechanism model is introduced for capturing the main dynamic behavior of the process. Thereafter, for compensation of the modeling errors existing between actual system and mechanism model, an error compensation model which is established based on the proposed selective bagging ensemble method is proposed for boosting prediction accuracy. In the framework of the selective bagging ensemble method, negative correlation learning and genetic algorithm are imposed on bagging ensemble method for promoting cooperation property between based learners. As a result, a subset of base learners can be selected from the original bagging ensemble for composing a selective bagging ensemble which can outperform the original one in prediction accuracy with a compact ensemble size. Simulation results indicate that the proposed hybrid model has a better prediction performance in flotation height than other algorithms’ performance.

  20. Soil erosion and causative factors at Vandenberg Air Force Base, California

    Science.gov (United States)

    Butterworth, Joel B.

    1988-01-01

    Areas of significant soil erosion and unvegetated road cuts were identified and mapped for Vandenberg Air Force Base. One hundred forty-two eroded areas (most greater than 1.2 ha) and 51 road cuts were identified from recent color infrared aerial photography and ground truthed to determine the severity and causes of erosion. Comparison of the present eroded condition of soils (as shown in the 1986 photography) with that in historical aerial photography indicates that most erosion on the base took place prior to 1928. However, at several sites accelerated rates of erosion and sedimentation may be occurring as soils and parent materials are eroded vertically. The most conspicuous erosion is in the northern part of the base, where severe gully, sheet, and mass movement erosion have occurred in soils and in various sedimentary rocks. Past cultivation practices, compounded by highly erodible soils prone to subsurface piping, are probably the main causes. Improper range management practices following cultivation may have also increased runoff and erosion. Aerial photography from 1986 shows that no appreciable headward erosion or gully sidewall collapse have occurred in this area since 1928.

  1. Agent-based organizational modelling for analysis of safety culture at an air navigation service provider

    International Nuclear Information System (INIS)

    Assessment of safety culture is done predominantly by questionnaire-based studies, which tend to reveal attitudes on immaterial characteristics (values, beliefs, norms). There is a need for a better understanding of the implications of the material aspects of an organization (structures, processes, etc.) for safety culture and their interactions with the immaterial characteristics. This paper presents a new agent-based organizational modelling approach for integrated and systematic evaluation of material and immaterial characteristics of socio-technical organizations in safety culture analysis. It uniquely considers both the formal organization and the value- and belief-driven behaviour of individuals in the organization. Results are presented of a model for safety occurrence reporting at an air navigation service provider. Model predictions consistent with questionnaire-based results are achieved. A sensitivity analysis provides insight in organizational factors that strongly influence safety culture indicators. The modelling approach can be used in combination with attitude-focused safety culture research, towards an integrated evaluation of material and immaterial characteristics of socio-technical organizations. By using this approach an organization is able to gain a deeper understanding of causes of diverse problems and inefficiencies both in the formal organization and in the behaviour of organizational agents, and to systematically identify and evaluate improvement options.

  2. Catalytic wet air oxidation of 2-chlorophenol over sewage sludge-derived carbon-based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Tu, Yuting [Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON), CNRS – Université Claude Bernard Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France); School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Xiong, Ya; Tian, Shuanghong [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275 (China); Kong, Lingjun [School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China); Descorme, Claude, E-mail: claude.descorme@ircelyon.univ-lyon1.fr [Institut de recherches sur la catalyse et l’environnement de Lyon (IRCELYON), CNRS – Université Claude Bernard Lyon 1, 2 Avenue Albert Einstein, 69626 Villeurbanne Cedex (France)

    2014-07-15

    Highlights: • A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared. • FeSC exhibited high catalytic activity in the wet air oxidation of 2-chlorophenol. • A strong correlation was observed between the 2-CP conversion, the iron leaching and the pH. • Using an acetate buffer, the iron leaching was suppressed while keeping some catalytic activity. • A simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst. - Abstract: A sewage sludge derived carbon-supported iron oxide catalyst (FeSC) was prepared and used in the Catalytic Wet Air Oxidation (CWAO) of 2-chlorophenol (2-CP). The catalysts were characterized in terms of elemental composition, surface area, pH{sub PZC}, XRD and SEM. The performances of the FeSC catalyst in the CWAO of 2-CP was assessed in a batch reactor operated at 120 °C under 0.9 MPa oxygen partial pressure. Complete decomposition of 2-CP was achieved within 5 h and 90% Total Organic Carbon (TOC) was removed after 24 h of reaction. Quite a straight correlation was observed between the 2-CP conversion, the amount of iron leached in solution and the pH of the reaction mixture at a given reaction time, indicating a strong predominance of the homogeneous catalysis contribution. The iron leaching could be efficiently prevented when the pH of the solution was maintained at values higher than 4.5, while the catalytic activity was only slightly reduced. Upon four successive batch CWAO experiments, using the same FeSC catalyst recovered by filtration after pH adjustment, only a very minor catalyst deactivation was observed. Finally, based on all the identified intermediates, a simplified reaction pathway was proposed for the CWAO of 2-CP over the FeSC catalyst.

  3. Simple Models for Airport Delays During Transition to a Trajectory-Based Air Traffic System

    Science.gov (United States)

    Brooker, Peter

    It is now widely recognised that a paradigm shift in air traffic control concepts is needed. This requires state-of-the-art innovative technologies, making much better use of the information in the air traffic management (ATM) system. These paradigm shifts go under the names of NextGen in the USA and SESAR in Europe, which inter alia will make dramatic changes to the nature of airport operations. A vital part of moving from an existing system to a new paradigm is the operational implications of the transition process. There would be business incentives for early aircraft fitment, it is generally safer to introduce new technologies gradually, and researchers are already proposing potential transition steps to the new system. Simple queuing theory models are used to establish rough quantitative estimates of the impact of the transition to a more efficient time-based navigational and ATM system. Such models are approximate, but they do offer insight into the broad implications of system change and its significant features. 4D-equipped aircraft in essence have a contract with the airport runway and, in return, they would get priority over any other aircraft waiting for use of the runway. The main operational feature examined here is the queuing delays affecting non-4D-equipped arrivals. These get a reasonable service if the proportion of 4D-equipped aircraft is low, but this can deteriorate markedly for high proportions, and be economically unviable. Preventative measures would be to limit the additional growth of 4D-equipped flights and/or to modify their contracts to provide sufficient space for the non-4D-equipped flights to operate without excessive delays. There is a potential for non-Poisson models, for which there is little in the literature, and for more complex models, e.g. grouping a succession of 4D-equipped aircraft as a batch.

  4. Air traffic management system design using satellite based geo-positioning and communications assets

    Science.gov (United States)

    Horkin, Phil

    1995-01-01

    The current FAA and ICAO FANS vision of Air Traffic Management will transition the functions of Communications, Navigation, and Surveillance to satellite based assets in the 21st century. Fundamental to widespread acceptance of this vision is a geo-positioning system that can provide worldwide access with best case differential GPS performance, but without the associated problems. A robust communications capability linking-up aircraft and towers to meet the voice and data requirements is also essential. The current GPS constellation does not provide continuous global coverage with a sufficient number of satellites to meet the precision landing requirements as set by the world community. Periodic loss of the minimum number of satellites in view creates an integrity problem, which prevents GPS from becoming the primary system for navigation. Furthermore, there is reluctance on the part of many countries to depend on assets like GPS and GLONASS which are controlled by military communities. This paper addresses these concerns and provides a system solving the key issues associated with navigation, automatic dependent surveillance, and flexible communications. It contains an independent GPS-like navigation system with 27 satellites providing global coverage with a minimum of six in view at all times. Robust communications is provided by a network of TDMA/FDMA communications payloads contained on these satellites. This network can support simultaneous communications for up to 30,000 links, nearly enough to simultaneously support three times the current global fleet of jumbo air passenger aircraft. All of the required hardware is directly traceable to existing designs.

  5. Microlith-Based Catalytic Reactor for Air Quality and Trace Contaminant Control Applications

    Science.gov (United States)

    Vilekar, Saurabh; Hawley, Kyle; Junaedi, Christian; Crowder, Bruce; Prada, Julian; Mastanduno, Richard; Perry, Jay L.; Kayatin, Matthew J.

    2015-01-01

    Traditionally, gaseous compounds such as methane, carbon monoxide, and trace contaminants have posed challenges for maintaining clean air in enclosed spaces such as crewed spacecraft cabins as they are hazardous to humans and are often difficult to remove by conventional adsorption technology. Catalytic oxidizers have provided a reliable and robust means of disposing of even trace levels of these compounds by converting them into carbon dioxide and water. Precision Combustion, Inc. (PCI) and NASA - Marshall (MSFC) have been developing, characterizing, and optimizing high temperature catalytic oxidizers (HTCO) based on PCI's patented Microlith® technology to meet the requirements of future extended human spaceflight explorations. Current efforts have focused on integrating the HTCO unit with a compact, simple recuperative heat exchanger to reduce the overall system size and weight while also reducing its energy requirements. Previous efforts relied on external heat exchangers to recover the waste heat and recycle it to the oxidizer to minimize the system's power requirements; however, these units contribute weight and volume burdens to the overall system. They also result in excess heat loss due to the separation of the HTCO and the heat recuperator, resulting in lower overall efficiency. Improvements in the recuperative efficiency and close coupling of HTCO and heat recuperator lead to reductions in system energy requirements and startup time. Results from testing HTCO units integrated with heat recuperators at a variety of scales for cabin air quality control and heat melt compactor applications are reported and their benefits over previous iterations of the HTCO and heat recuperator assembly are quantified in this paper.

  6. Vandenberg Air Force Base integrated resource assessment. Volume 2, Baseline detail

    Energy Technology Data Exchange (ETDEWEB)

    Halverson, M.A.; Richman, E.E.; Dagle, J.E.; Hickman, B.J.; Daellenbach, K.K.; Sullivan, G.P.

    1993-06-01

    The US Air Force Space Command has tasked the Pacific Northwest Laboratory, as the lead laboratory supporting the US Department of Energy Federal Energy Management Program, to identify, evaluate, and assist in acquiring all cost-effective energy projects at Vandenberg Air Force Base (VAFB). This is a model program PNL is designing for federal customers served by the Pacific Gas and Electric Company (PG and E). The primary goal of the VAFB project is to identify all electric energy efficiency opportunities, and to negotiate with PG and E to acquire those resources through a customized demand-side management program for its federal clients. That customized program should have three major characteristics: (1) 100% up-front financing; (2) substantial utility cost-sharing; and (3) utility implementation through energy service companies under contract to the utility. A similar arrangement will be pursued with Southern California Gas for non-electric resource opportunities if that is deemed desirable by the site and if the gas utility seems open to such an approach. This report documents the assessment of baseline energy use at VAFB located near Lompoc, California. It is a companion report to Volume 1, Executive Summary, and Volume 3, Resource Assessment. This analysis examines the characteristics of electric, natural gas, fuel oil, and propane use for fiscal year 1991. It records energy-use intensities for the facilities at VAFB by building type and energy end use. It also breaks down building energy consumption by fuel type, energy end use, and building type. A more complete energy consumption reconciliation is presented that includes the accounting of all energy use among buildings, utilities, and applicable losses.

  7. Identification of aerosol types over an urban site based on air-mass trajectory classification

    Science.gov (United States)

    Pawar, G. V.; Devara, P. C. S.; Aher, G. R.

    2015-10-01

    Columnar aerosol properties retrieved from MICROTOPS II Sun Photometer measurements during 2010-2013 over Pune (18°32‧N; 73°49‧E, 559 m amsl), a tropical urban station in India, are analyzed to identify aerosol types in the atmospheric column. Identification/classification is carried out on the basis of dominant airflow patterns, and the method of discrimination of aerosol types on the basis of relation between aerosol optical depth (AOD500 nm) and Ångström exponent (AE, α). Five potential advection pathways viz., NW/N, SW/S, N, SE/E and L have been identified over the observing site by employing the NOAA-HYSPLIT air mass back trajectory analysis. Based on AE against AOD500 nm scatter plot and advection pathways followed five major aerosol types viz., continental average (CA), marine continental average (MCA), urban/industrial and biomass burning (UB), desert dust (DD) and indeterminate or mixed type (MT) have been identified. In winter, sector SE/E, a representative of air masses traversed over Bay of Bengal and Eastern continental Indian region has relatively small AOD (τpλ = 0.43 ± 0.13) and high AE (α = 1.19 ± 0.15). These values imply the presence of accumulation/sub-micron size anthropogenic aerosols. During pre-monsoon, aerosols from the NW/N sector have high AOD (τpλ = 0.61 ± 0.21), and low AE (α = 0.54 ± 0.14) indicating an increase in the loading of coarse-mode particles over Pune. Dominance of UB type in winter season for all the years (i.e. 2010-2013) may be attributed to both local/transported aerosols. During pre-monsoon seasons, MT is the dominant aerosol type followed by UB and DD, while the background aerosols are insignificant.

  8. Early ship-based upper-air data and comparison with the Twentieth Century Reanalysis

    Directory of Open Access Journals (Sweden)

    S. Brönnimann

    2011-03-01

    Full Text Available Extension of 3-D atmospheric data products back into the past is desirable for a wide range of applications. Historical upper-air data are important in this endeavour, particularly in the maritime regions of the tropics and the southern hemisphere, where observations are extremely sparse. Here we present newly digitized and re-evaluated early ship-based upper-air data from two cruises: (1 kite and registering balloon profiles from onboard the ship SMS Planet on a cruise from Europe around South Africa and across the Indian Ocean to the western Pacific in 1906/1907, and (2 ship-based radiosonde data from onboard the MS Schwabenland on a cruise from Europe across the Atlantic to Antarctica and back in 1938/1939. We describe the data and provide estimations of the errors. We compare the data with a recent reanalysis (the Twentieth Century Reanalysis Project, 20CR, Compo et al., 2011 that provides global 3-D data back to the 19th century based on an assimilation of surface pressure data only (plus monthly mean sea-surface temperatures. In cruise (1, the agreement is generally good, but large temperature differences appear during a period with a strong inversion. In cruise (2, after a subset of the data are corrected, close agreement between observations and 20CR is found for geopotential height (GPH and temperature notwithstanding a likely cold bias of 20CR at the tropopause level. Results are considerably worse for relative humidity, which was reportedly inaccurately measured. Note that comparing 20CR, which has limited skill in the tropical regions, with measurements from ships in remote regions made under sometimes difficult conditions can be considered a worst case assessment. In view of that fact, the anomaly correlations for temperature of 0.3–0.6 in the lower troposphere in cruise (1 and of 0.5–0.7 for tropospheric temperature and GPH in cruise (2 are considered as promising results. Moreover, they are consistent with the

  9. Early ship-based upper-air data and comparison with the Twentieth Century Reanalysis

    Directory of Open Access Journals (Sweden)

    S. Brönnimann

    2010-11-01

    Full Text Available Extension of 3-D atmospheric data products back into the past is desirable for a wide range of applications. Historical upper-air data are important in this endeavour, particularly in the maritime regions of the tropics and the southern hemisphere, where observations are extremely sparse. Here we present newly digitized and re-evaluated early ship-based upper-air data from two cruises: (1 kite and registering balloon profiles from onboard the ship SMS Planet on a cruise from Europe around South Africa and across the Indian Ocean to the western Pacific in 1906/1907, and (2 ship-based radiosonde data from onboard the MS Schwabenland on a cruise from Europe across the Atlantic to Antarctica and back in 1938/1939. We describe the data and provide estimations of the errors. We compare the data with a recent reanalysis (the Twentieth Century Reanalysis Project, 20CR, Compo et al., 2010 that provides global 3-D data back to the 19th century based on an assimilation of surface pressure data only (plus monthly mean sea-surface temperatures. In cruise (1, the agreement is generally good, but large temperature differences appear during a period with a strong inversion. In cruise (2, after a correction to a subset of data, a good agreement between observations and 20CR is found for geopotential height (GPH and temperature except for a likely cold bias of 20CR at the tropopause level. Results are considerably worse for relative humidity, which was reportedly inaccurately measured. Note that comparing 20CR, which has limited skill in the tropical regions, with measurements form ships in remote regions made under sometimes difficult conditions can be considered a worst case assessment. In view of that fact, the anomaly correlations for temperature of 0.3–0.6 in the lower troposphere in cruise (1 and of 0.5–0.7 for tropospheric temperature and GPH in cruise (2 are considered as promising results. Moreover, they are consistent with the error

  10. Mortality weighting-based method for aggregate urban air risk assessment

    Institute of Scientific and Technical Information of China (English)

    Qing-yu ZHANG; Guo-jin SUN; Wei-li TIAN; Yu-mei WEI; Si-mai FANG; Jin-feng RUAN; Guo-rong SHAN; Yao SHI

    2011-01-01

    This paper deals with a mortality-weighted synthetic evaluation (MWSE) method for evaluating urban air risk.Sulphur dioxide (SO2),nitrogen oxide (NOx),and particulate matter (PM10) were used as pollution indices.The urban area of Hangzhou,China is divided into 756 grid cells,with a resolution of 1 km× 1 km,and is evaluated using the MWSE and the air quality index (AQI),a widely-used method to evaluate ambient air quality and air risk.In an evaluation of one day in April 2004,the surface areas categorized as levels Ⅰ and Ⅲ,as defined by the integrated air risk evaluation,were 27.3% and 3.3% lower,respectively,than grades Ⅰ and Ⅲ defined by the AQI evaluation.Meanwhile,the areas classified as level Ⅱ or above level Ⅲ by the integrated air risk evaluation were 55.1% and 101.1% higher,respectively,than grade Ⅱ or above grade Ⅲ when using the AQI evaluation.From this comparison,we find that the MWSE method is more sensitive than the AQI method.The AQI method uses a single index to assess integrated air quality and is therefore unable to evaluate integrated air risks due to multiple pollutants.The MWSE method overcomes this problem,providing improved accuracy in air risk assessment.

  11. Imaging based optofluidic air flow meter with polymer interferometers defined by soft lithography.

    Science.gov (United States)

    Song, Wuzhou; Psaltis, Demetri

    2010-08-01

    We present an optofluidic chip with integrated polymer interferometers for measuring both the microfluidic air pressure and flow rate. The chip contains a microfluidic circuit and optical cavities on a polymer which was defined by soft lithography. The pressure can be read out by imaging the interference patterns of the cavities. The air flow rate was then calculated from the differential pressure across a microfluidic Venturi circuit. Air flow rate measurement in the range of 0-2mg/second was demonstrated. This device provides a simple and versatile way for in situ measuring the microscale air pressure and flow on chip.

  12. Remediation of the low-level radioactive waste burial site at Williams Air Force Base

    International Nuclear Information System (INIS)

    The Air Force initiated a contract to develop and prepare detailed work plans for the removal of five concrete cylinders and associated field activities at site RW-11 at Williams AFB. Cylinders were believed to contain low-level radioactive waste including radium-luminous painted dials and radium-bearing parts. Although the general location of the cylinders was known, the exact configuration and contents of the cylinders was unknown. Plans included site preparation, excavation, monitoring, packaging, disposal, closure, and health and safety. The Health and Safety Plan was developed based on the premise that Radium 226 was the primary isotope of concern. The primary health hazard for workers and the public associated with site excavation was inhalation of airborne radioactive dust. Contingency plans were prepared in the event any radiation activity was detected above background levels or other radioactive isotopes were detected at the site. Criteria used to determine whether the site posed a threat to human health or the environment was based on an action level of 10 millirem Total Effective Dose Equivalent. Williams AFB is a closed installation that was placed on the Superfund National Priorities List. This paper discusses the plans what were developed to remove the buried waste, the execution of the plans, and closure of the site RW-11

  13. Statistical Short-Range Guidance for Peak Wind Speed Forecasts at Edwards Air Force Base, CA

    Science.gov (United States)

    Dreher, Joseph G.; Crawford, Winifred; Lafosse, Richard; Hoeth, Brian; Burns, Kerry

    2009-01-01

    The peak winds near the surface are an important forecast element for space shuttle landings. As defined in the Flight Rules (FR), there are peak wind thresholds that cannot be exceeded in order to ensure the safety of the shuttle during landing operations. The National Weather Service Spaceflight Meteorology Group (SMG) is responsible for weather forecasts for all shuttle landings, and is required to issue surface average and 10-minute peak wind speed forecasts. They indicate peak winds are a challenging parameter to forecast. To alleviate the difficulty in making such wind forecasts, the Applied Meteorology Unit (AMU) developed a PC-based graphical user interface (GUI) for displaying peak wind climatology and probabilities of exceeding peak wind thresholds for the Shuttle Landing Facility (SLF) at Kennedy Space Center (KSC; Lambert 2003). However, the shuttle occasionally may land at Edwards Air Force Base (EAFB) in southern California when weather conditions at KSC in Florida are not acceptable, so SMG forecasters requested a similar tool be developed for EAFB.

  14. A knowledge-based control system for air-scour optimisation in membrane bioreactors.

    Science.gov (United States)

    Ferrero, G; Monclús, H; Sancho, L; Garrido, J M; Comas, J; Rodríguez-Roda, I

    2011-01-01

    Although membrane bioreactors (MBRs) technology is still a growing sector, its progressive implementation all over the world, together with great technical achievements, has allowed it to reach a mature degree, just comparable to other more conventional wastewater treatment technologies. With current energy requirements around 0.6-1.1 kWh/m3 of treated wastewater and investment costs similar to conventional treatment plants, main market niche for MBRs can be areas with very high restrictive discharge limits, where treatment plants have to be compact or where water reuse is necessary. Operational costs are higher than for conventional treatments; consequently there is still a need and possibilities for energy saving and optimisation. This paper presents the development of a knowledge-based decision support system (DSS) for the integrated operation and remote control of the biological and physical (filtration and backwashing or relaxation) processes in MBRs. The core of the DSS is a knowledge-based control module for air-scour consumption automation and energy consumption minimisation.

  15. Exergy analysis of a novel configuration of desiccant based evaporative air conditioning system

    International Nuclear Information System (INIS)

    Highlights: • A procedure is developed for exergy analyses of the system. • The exergy transports between the components are determined. • The exergy efficiency of the whole system is 40.7% at 15 °C reference temperature. - Abstract: In this work, a process is developed for exergy analyses of a novel configuration of desiccant based an evaporative air conditioning system. The exergy transfer and destruction between the components of the system are defined for the average measured variables obtained from the experimental results. The exergy formulations are carried out to the experimental system using the data collected during a typical operation of the system. The exergy output, specific flow exergy, exergy destruction, exergy input and exergy efficiency are determined. Furthermore, the sustainability assessment and relative irreversibility of components are obtained. It is found that the exergy efficiency of the entire experimental unit is 40.7% at a reference temperature of 15 °C. It is also observed that the exergy efficiencies of the entire system varies between 56% and 25% for reference temperature of 0–30 °C, respectively. The effects of reference temperature on the performance of the studied system are investigated. Based on the investigation, it is seen that an exergy analysis can provide beneficial knowledge with respect to the theoretical upper limit of the system performance

  16. Assessment of China's virtual air pollution transport embodied in trade by a consumption-based emission inventory

    Science.gov (United States)

    Zhao, H. Y.; Zhang, Q.; Davis, S. J.; Guan, D.; Liu, Z.; Huo, H.; Lin, J. T.; Liu, W. D.; He, K. B.

    2014-10-01

    High anthropogenic emissions from China have resulted in serious air pollution, and it has attracted considerable academic and public concern. The physical transport of air pollutants in the atmosphere has been extensively investigated, however, understanding the mechanisms how the pollutants were transferred through economic and trade activities remains challenge. In this work, we assessed China's virtual air pollutant transport embodied in trade, by using consumption-based accounting approach. We first constructed a consumption-based emission inventory for China's four key air pollutants (primary PM2.5, sulfur dioxide (SO2), nitrogen oxides (NOx) and non-methane volatile organic compounds (NMVOC)) in 2007, based on the bottom-up sectoral emission inventory concerning their production activities - a production-based inventory. We used a multiregional input-output (MRIO) model to integrate the sectoral production-based emissions and the associated economic and trade activities, and finally obtained consumption-based inventory. Unlike the production-based inventory, the consumption-based inventory tracked emissions throughout the supply chain related to the consumption of goods and services and hereby identified the emission flows followed the supply chains. From consumption-based perspective, emissions were significantly redistributed among provinces due to interprovincial trade. Large amount of emissions were embodied in the net imports of east regions from northern and central regions; these were determined by differences in the regional economic status and environmental policies. We also calculated the emissions embodied in exported and imported goods and services. It is found that 15-23% of China's pollutant emissions were related to exports for foreign consumption; that proportion was much higher for central and export-oriented coastal regions. It is suggested that measures should be introduced to reduce air pollution by integrating cross-regional consumers

  17. Variability and Risk Analysis of Hong Kong Air Quality Based on Monsoon and El Ni(n)o Conditions

    Institute of Scientific and Technical Information of China (English)

    Jong-Suk KIM; ZHOU Wen; Ho Nam CHEUNG; Chak Hang CHOW

    2013-01-01

    This study presents an exploratory analysis aimed at improving understanding of the variability of Hong Kong air quality associated with different climate conditions.Significantly negative correlations were found when Nifio 3 led particulate matter ≤10 μm PM10) and NO2 by 2-3 months over the Hong Kong territory,while the other pollutants (e.g.,O3,SO2) showed modest correlations.A significant decreasing trend in visibility was observed during the autumn and winter,which has potential implications for the air-quality degradation and the endangerment of human health in Hong Kong.In an El Ni(n)o summer,the visibility was relatively better,while visibility in other seasons was diminished.On the other hand,in La Ni(n)a events,significant changes occurred in visibility in winter and autumn.Air pollution indices were less sensitive to the South China Summer Monsoon (SCSM),but a relatively high correlation existed between the East Asian Winter Monsoon (EAWM) and air pollutants.Rainfall was lower during most of the strong EAWM years compared to the weak years.This result suggests that the pollutants that accumulate in Hong Kong are not easy to wash out,so concentrations remain at a higher level.Finally,based on the conditional Air Pollution Index (API) risk assessment,site-specific vulnerabilities were analyzed to facilitate the development of the air-quality warning systems in Hong Kong.

  18. A passive decay heat removal system for LWRs based on air cooling

    Energy Technology Data Exchange (ETDEWEB)

    Mochizuki, Hiroyasu, E-mail: mochizki@u-fukui.ac.jp [Research Institute of Nuclear Engineering, University of Fukui, 1-2-4 Kanawa-cho, Tsuruga, Fukui 914-0055 (Japan); Yano, Takahiro [Graduate School of Engineering, University of Fukui, 1-2-4 Kanawa-cho, Tsuruga, Fukui 914-0055 (Japan)

    2015-05-15

    Highlights: • A passive decay heat removal system for LWRs is discussed. • An air cooler model which condenses steam is developed. • The decay heat can be removed by air coolers with forced convection. • The dimensions of the air cooler are proposed. - Abstract: The present paper describes the capability of an air cooling system (ACS) to remove decay heat from a core of LWR such as an advanced boiling water reactor (ABWR) and a pressurized water reactor (PWR). The motivation of the present research is the Fukushima severe accident (SA) on 11 March 2011. Since emergency cooling systems using electricity were not available due to station blackout (SBO) and malfunctions, many engineers might understand that water cooling was not completely reliable. Therefore, a passive decay heat removal (DHR) system would be proposed in order to prevent such an SA under the conditions of an SBO event. The plant behaviors during the SBO are calculated using the system code NETFLOW++ for the ABWR and PWR with the ACS. Two types of air coolers (ACs) are applied for the ABWR, i.e., a steam condensing air cooler (SCAC) of which intake for heat transfer tubes is provided in the steam region, and single-phase type of which intake is provided in the water region. The DHR characteristics are calculated under the conditions of the forced air circulation and also the natural air convection. As a result of the calculations, the decay heat can be removed safely by the reasonably sized ACS when heat transfer tubes are cooled with the forced air circulation. The heat removal rate per one finned heat transfer tube is evaluated as a function of air flow rate. The heat removal rate increases as a function of the air flow rate.

  19. Source evaluation report phase 2 investigation: Limited field investigation. Final report: United States Air Force Environmental Restoration Program, Eielson Air Force Base, Alaska

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    This report describes the limited field investigation work done to address issues and answer unresolved questions regarding a collection of potential contaminant sources at Eielson Air Force Base (AFB), near Fairbanks, Alaska. These sources were listed in the Eielson AFB Federal Facility Agreement supporting the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup of the base. The limited field investigation began in 1993 to resolve all remaining technical issues and provide the data and analysis required to evaluate the environmental hazard associated with these sites. The objective of the limited field investigation was to allow the remedial project managers to sort each site into one of three categories: requiring remedial investigation/feasibility study, requiring interim removal action, or requiring no further remedial action.

  20. Analysis of mine's air leakage based on pressure gradient matrix between nodes

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-rang; WANG Hong-gang; WU Feng-liang; CHANG Xin-tan

    2008-01-01

    Air leakage may significantly affect the effectiveness of mine ventilation by in-creasing the cost of ventilation and arousing problems for ventilation management. Fur-thermore, air leakage may accelerate the process of coal spontaneous combustion andcause gas explosion, thus greatly threatens the safety of coat production. The estimationof air leakage, therefore, have great practical significance. For any ventilation system ofcoal mines, there is a defined pattern of pressure gradient which drived the mine air toflow in the network, drives possible air leakage to go shortcut as well. Air leakage mayoccur through ventilation structures such as ventilation doors and fractures of the surroun-dig coal and rock of airways. A concept and the relevent calculation method of the pres-sure gradient matrix was put forward to assist the analysis of potential air leakage routes.A simplified example was used to introduce the application principle of'pressure gradientmatrix in identifying all the potential air leaking routes, which offers a deeper understand-ing over the ventilation system and the prevention of coal spontaneous combustion.

  1. Indoor particles affect vascular function in the aged - An air filtration-based intervention study

    DEFF Research Database (Denmark)

    Brauner, E.V.; Forchhammer, L.; Moller, P.;

    2008-01-01

    Rationale: Exposure to particulate matter is associated with risk of cardiovascular events, possibly through endothelial dysfunction, and indoor air may be most important. Objectives: We investigated effects of controlled exposure to indoor air particles on microvascular function (MVF) as the pri...

  2. VALIDATION OF AIRGIS - A GIS-BASED AIR POLLUTION AND HUMAN EXPOSURE MODELLING SYSTEM

    OpenAIRE

    Ketzel, Matthias; Berkowicz, Ruwim; Hvidberg, Martin; Jensen, Steen Solvang; Raaschou-Nielsen, Ole

    2008-01-01

    Abstract: This study describes in brief the latest extensions of the AirGIS system used in Denmark for exposure modelling and gives results of a validation with measured air pollution data. The system shows a good performance for both long term averages (annual and monthly averages) as well as short term averages (hourly and daily).

  3. Pollution resistance assessment of existing landscape plants on Beijing streets based on air pollution tolerance index method.

    Science.gov (United States)

    Zhang, Peng-Qian; Liu, Yan-Ju; Chen, Xing; Yang, Zheng; Zhu, Ming-Hao; Li, Yi-Ping

    2016-10-01

    Various plant species of green belt in urban traffic area help to reduce air pollution and beautify the city environment. Those plant species growing healthily under long-term atmospheric pollution environment are considered to be resilient. This study aims to identify plant species that are more tolerant to air pollution from traffic and to give recommendations for future green belt development in urban areas. Leaf samples of 47 plant species were collected from two heavy traffic roadside sites and one suburban site in Beijing during summer 2014. Four parameters in leaves were separately measured including relative water content (RWC), total chlorophyll content (TCH), leaf-extract pH (pH), and ascorbic acid (AA). The air pollution tolerance index (APTI) method was adopted to assess plants' resistance ability based on the above four parameters. The tolerant levels of plant species were classified using two methods, one by comparing the APTI value of individual plant to the average of all species and another by using fixed APTI values as standards. Tolerant species were then selected based on combination results from both methods. The results showed that different tolerance orders of species has been found at the three sampling sites due to varied air pollution and other environmental conditions. In general, plant species Magnolia denudata, Diospyros kaki, Ailanthus altissima, Fraxinus chinensis and Rosa chinensis were identified as tolerant species to air pollution environment and recommend to be planted at various location of the city, especially at heavy traffic roadside.

  4. Pollution resistance assessment of existing landscape plants on Beijing streets based on air pollution tolerance index method.

    Science.gov (United States)

    Zhang, Peng-Qian; Liu, Yan-Ju; Chen, Xing; Yang, Zheng; Zhu, Ming-Hao; Li, Yi-Ping

    2016-10-01

    Various plant species of green belt in urban traffic area help to reduce air pollution and beautify the city environment. Those plant species growing healthily under long-term atmospheric pollution environment are considered to be resilient. This study aims to identify plant species that are more tolerant to air pollution from traffic and to give recommendations for future green belt development in urban areas. Leaf samples of 47 plant species were collected from two heavy traffic roadside sites and one suburban site in Beijing during summer 2014. Four parameters in leaves were separately measured including relative water content (RWC), total chlorophyll content (TCH), leaf-extract pH (pH), and ascorbic acid (AA). The air pollution tolerance index (APTI) method was adopted to assess plants' resistance ability based on the above four parameters. The tolerant levels of plant species were classified using two methods, one by comparing the APTI value of individual plant to the average of all species and another by using fixed APTI values as standards. Tolerant species were then selected based on combination results from both methods. The results showed that different tolerance orders of species has been found at the three sampling sites due to varied air pollution and other environmental conditions. In general, plant species Magnolia denudata, Diospyros kaki, Ailanthus altissima, Fraxinus chinensis and Rosa chinensis were identified as tolerant species to air pollution environment and recommend to be planted at various location of the city, especially at heavy traffic roadside. PMID:27326901

  5. Autonomous Landing and Ingress of Micro-Air-Vehicles in Urban Environments Based on Monocular Vision

    Science.gov (United States)

    Brockers, Roland; Bouffard, Patrick; Ma, Jeremy; Matthies, Larry; Tomlin, Claire

    2011-01-01

    Unmanned micro air vehicles (MAVs) will play an important role in future reconnaissance and search and rescue applications. In order to conduct persistent surveillance and to conserve energy, MAVs need the ability to land, and they need the ability to enter (ingress) buildings and other structures to conduct reconnaissance. To be safe and practical under a wide range of environmental conditions, landing and ingress maneuvers must be autonomous, using real-time, onboard sensor feedback. To address these key behaviors, we present a novel method for vision-based autonomous MAV landing and ingress using a single camera for two urban scenarios: landing on an elevated surface, representative of a rooftop, and ingress through a rectangular opening, representative of a door or window. Real-world scenarios will not include special navigation markers, so we rely on tracking arbitrary scene features; however, we do currently exploit planarity of the scene. Our vision system uses a planar homography decomposition to detect navigation targets and to produce approach waypoints as inputs to the vehicle control algorithm. Scene perception, planning, and control run onboard in real-time; at present we obtain aircraft position knowledge from an external motion capture system, but we expect to replace this in the near future with a fully self-contained, onboard, vision-aided state estimation algorithm. We demonstrate autonomous vision-based landing and ingress target detection with two different quadrotor MAV platforms. To our knowledge, this is the first demonstration of onboard, vision-based autonomous landing and ingress algorithms that do not use special purpose scene markers to identify the destination.

  6. Oxidation characteristics of nickel-base superalloys at high temperature in air and helium atmospheres

    International Nuclear Information System (INIS)

    Nickel-base superalloys are considered as materials for piping and structural materials in a very high temperature gas cooled reactor (VHTR). They are subjected to the environmental degradation caused by a continuous process for oxidation due to small amount of impurities in He coolant during long term operation. In the present study, the oxidation behaviors of several nickel-base superalloys such as Alloy-617, Haynes-214 and Haynes-230 in particular, were studied at the temperature of 900 and 1100 C degrees in air, and in the high purity He environment. Oxide layers were analyzed by SEM (Scanning Electron Microscope) and EDX (Energy Dispersive X-ray analysis). The differences in oxidation behaviors of these alloys were mainly caused by different protective oxide layers on surface. In the case of Alloy-617 and Haynes-230, Cr2O3 layer formed on the surface which is not stable at 1100 C degrees. Therefore, the weight increased significantly due to oxidation at the initial stage, which followed by a decrease due to the scaling and volatilization of Cr2O3 layer. On the other hand, since Haynes-214 has mainly Al2O3 oxide layer on surface which is more stable and has more dense structure at higher temperature, the weight gain eventually reaches to parabolic. Microstructural characteristics of internal carbides and carbide depletion zone were analyzed. With oxidation time, continuous grain boundary carbides of M23C6 type were getting thin or it disappeared partially. Especially, carbides on grain boundary disappeared entirely below oxide layer (carbide depletion zone). It was getting wide with oxidation time. For Haynes-214, the size of carbide depletion zone was smaller than other alloys because Al2O3 layer acted as a diffusion layer prevented effectively the penetration of oxygen into base metal. (authors)

  7. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    International Nuclear Information System (INIS)

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10−4 m3/s (18.0 l/min) for the mono-directional sensor and a measurement range of ±3.00 × 10−4 m3/s (±18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the

  8. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    Science.gov (United States)

    Battista, L.; Sciuto, S. A.; Scorza, A.

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10-4 m3/s (18.0 l/min) for the mono-directional sensor and a measurement range of ±3.00 × 10-4 m3/s (±18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono-directional configuration, the

  9. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique

    Energy Technology Data Exchange (ETDEWEB)

    Battista, L.; Sciuto, S. A.; Scorza, A. [Department of Engineering, ROMA TRE University, via della Vasca Navale 79/81, Rome (Italy)

    2013-03-15

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s (18.0 l/min) for the mono-directional sensor and a measurement range of {+-}3.00 Multiplication-Sign 10{sup -4} m{sup 3}/s ({+-}18.0 l/min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed

  10. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique.

    Science.gov (United States)

    Battista, L; Sciuto, S A; Scorza, A

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10(-4) m(3)∕s (18.0 l∕min) for the mono-directional sensor and a measurement range of ±3.00 × 10(-4) m(3)∕s (±18.0 l∕min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono

  11. An air flow sensor for neonatal mechanical ventilation applications based on a novel fiber-optic sensing technique.

    Science.gov (United States)

    Battista, L; Sciuto, S A; Scorza, A

    2013-03-01

    In this work, a simple and low-cost air flow sensor, based on a novel fiber-optic sensing technique has been developed for monitoring air flows rates supplied by a neonatal ventilator to support infants in intensive care units. The device is based on a fiber optic sensing technique allowing (a) the immunity to light intensity variations independent by measurand and (b) the reduction of typical shortcomings affecting all biomedical fields (electromagnetic interference and patient electrical safety). The sensing principle is based on the measurement of transversal displacement of an emitting fiber-optic cantilever due to action of air flow acting on it; the fiber tip displacement is measured by means of a photodiode linear array, placed in front of the entrance face of the emitting optical fiber in order to detect its light intensity profile. As the measurement system is based on a detection of the illumination pattern, and not on an intensity modulation technique, it results less sensitive to light intensity fluctuation independent by measurand than intensity-based sensors. The considered technique is here adopted in order to develop two different configurations for an air flow sensor suitable for the measurement of air flow rates typically occurring during mechanical ventilation of newborns: a mono-directional and a bi-directional transducer have been proposed. A mathematical model for the air flow sensor is here proposed and a static calibration of two different arrangements has been performed: a measurement range up to 3.00 × 10(-4) m(3)∕s (18.0 l∕min) for the mono-directional sensor and a measurement range of ±3.00 × 10(-4) m(3)∕s (±18.0 l∕min) for the bi-directional sensor are experimentally evaluated, according to the air flow rates normally encountered during tidal breathing of infants with a mass lower than 10 kg. Experimental data of static calibration result in accordance with the proposed theoretical model: for the mono

  12. AN INTEROPERABLE ARCHITECTURE FOR AIR POLLUTION EARLY WARNING SYSTEM BASED ON SENSOR WEB

    Directory of Open Access Journals (Sweden)

    F. Samadzadegan

    2013-09-01

    Full Text Available Environmental monitoring systems deal with time-sensitive issues which require quick responses in emergency situations. Handling the sensor observations in near real-time and obtaining valuable information is challenging issues in these systems from a technical and scientific point of view. The ever-increasing population growth in urban areas has caused certain problems in developing countries, which has direct or indirect impact on human life. One of applicable solution for controlling and managing air quality by considering real time and update air quality information gathered by spatially distributed sensors in mega cities, using sensor web technology for developing monitoring and early warning systems. Urban air quality monitoring systems using functionalities of geospatial information system as a platform for analysing, processing, and visualization of data in combination with Sensor Web for supporting decision support systems in disaster management and emergency situations. This system uses Sensor Web Enablement (SWE framework of the Open Geospatial Consortium (OGC, which offers a standard framework that allows the integration of sensors and sensor data into spatial data infrastructures. SWE framework introduces standards for services to access sensor data and discover events from sensor data streams as well as definition set of standards for the description of sensors and the encoding of measurements. The presented system provides capabilities to collect, transfer, share, process air quality sensor data and disseminate air quality status in real-time. It is possible to overcome interoperability challenges by using standard framework. In a routine scenario, air quality data measured by in-situ sensors are communicated to central station where data is analysed and processed. The extracted air quality status is processed for discovering emergency situations, and if necessary air quality reports are sent to the authorities. This research

  13. An Interoperable Architecture for Air Pollution Early Warning System Based on Sensor Web

    Science.gov (United States)

    Samadzadegan, F.; Zahmatkesh, H.; Saber, M.; Ghazi khanlou, H. J.

    2013-09-01

    Environmental monitoring systems deal with time-sensitive issues which require quick responses in emergency situations. Handling the sensor observations in near real-time and obtaining valuable information is challenging issues in these systems from a technical and scientific point of view. The ever-increasing population growth in urban areas has caused certain problems in developing countries, which has direct or indirect impact on human life. One of applicable solution for controlling and managing air quality by considering real time and update air quality information gathered by spatially distributed sensors in mega cities, using sensor web technology for developing monitoring and early warning systems. Urban air quality monitoring systems using functionalities of geospatial information system as a platform for analysing, processing, and visualization of data in combination with Sensor Web for supporting decision support systems in disaster management and emergency situations. This system uses Sensor Web Enablement (SWE) framework of the Open Geospatial Consortium (OGC), which offers a standard framework that allows the integration of sensors and sensor data into spatial data infrastructures. SWE framework introduces standards for services to access sensor data and discover events from sensor data streams as well as definition set of standards for the description of sensors and the encoding of measurements. The presented system provides capabilities to collect, transfer, share, process air quality sensor data and disseminate air quality status in real-time. It is possible to overcome interoperability challenges by using standard framework. In a routine scenario, air quality data measured by in-situ sensors are communicated to central station where data is analysed and processed. The extracted air quality status is processed for discovering emergency situations, and if necessary air quality reports are sent to the authorities. This research proposed an

  14. Geophysical characterization of fractured bedrock at Site 8, former Pease Air Force Base, Newington, New Hampshire

    Science.gov (United States)

    Mack, Thomas J.; Degnan, James R.

    2003-01-01

    Borehole-geophysical logs collected from eight wells and direct-current resistivity data from three survey lines were analyzed to characterize the fractured bedrock and identify transmissive fractures beneath the former Pease Air Force Base, Newington, N.H. The following logs were used: caliper, fluid temperature and conductivity, natural gamma radiation, electromagnetic conductivity, optical and acoustic televiewer, and heat-pulse flowmeter. The logs indicate several foliation and fracture trends in the bedrock. Two fracture-correlated lineaments trending 28? and 29?, identified with low-altitude aerial photography, are coincident with the dominant structural trend. The eight boreholes logged at Site 8 generally have few fractures and have yields ranging from 0 to 40 gallons per minute. The fractures that probably resulted in high well yields (20?40 gallons per minute) strike northeast-southwest or by the right hand rule, have an orientation of 215?, 47?, and 51?. Two-dimensional direct-current resistivity methods were used to collect detailed subsurface information about the overburden, bedrock-fracture zone depths, and apparent-dip directions. Analysis of data inversions from data collected with dipole-dipole and Schlumberger arrays indicated electrically conductive zones in the bedrock that are probably caused by fractured rock. These zones are coincident with extensions of fracture-correlated lineaments. The fracture-correlated lineaments and geophysical-survey results indicate a possible northeast-southwest anisotropy to the fractured rock.

  15. A Neural Network Based Intelligent Predictive Sensor for Cloudiness, Solar Radiation and Air Temperature

    Directory of Open Access Journals (Sweden)

    Pedro M. Ferreira

    2012-11-01

    Full Text Available Accurate measurements of global solar radiation and atmospheric temperature,as well as the availability of the predictions of their evolution over time, are importantfor different areas of applications, such as agriculture, renewable energy and energymanagement, or thermal comfort in buildings. For this reason, an intelligent, light-weightand portable sensor was developed, using artificial neural network models as the time-seriespredictor mechanisms. These have been identified with the aid of a procedure based on themulti-objective genetic algorithm. As cloudiness is the most significant factor affecting thesolar radiation reaching a particular location on the Earth surface, it has great impact on theperformance of predictive solar radiation models for that location. This work also representsone step towards the improvement of such models by using ground-to-sky hemisphericalcolour digital images as a means to estimate cloudiness by the fraction of visible skycorresponding to clouds and to clear sky. The implementation of predictive models inthe prototype has been validated and the system is able to function reliably, providingmeasurements and four-hour forecasts of cloudiness, solar radiation and air temperature.

  16. Real-time threat evaluation in a ground based air defence environment

    Directory of Open Access Journals (Sweden)

    JN Roux

    2008-06-01

    Full Text Available In a military environment a ground based air defence operator is required to evaluate the tactical situation in real-time and protect Defended Assets (DAs on the ground against aerial threats by assigning available Weapon Systems (WSs to engage enemy aircraft. Since this aerial environment requires rapid operational planning and decision making in stress situations, the associated responsibilities are typically divided between a number of operators and computerized systems that aid these operators during the decision making processes. One such a Decision Support System (DSS, a threat evaluation and weapon assignment system, assigns threat values to aircraft (with respect to DAs in real-time and uses these values to propose possible engagements of observed enemy aircraft by anti-aircraft WSs. In this paper a design of the threat evaluation part of such a DSS is put forward. The design follows the structured approach suggested in [Roux JN & van Vuuren JH, 2007, Threat evaluation and weapon assignment decision support: A review of the state of the art, ORiON, 23(2, pp. 151-187], phasing in a suite of increasingly complex qualitative and quantitative model components as more (reliable data become available.

  17. Liquid-air based Fabry-Pérot cavity on fiber tip sensor.

    Science.gov (United States)

    Llera, Miguel; Aellen, Thierry; Hervas, Javier; Salvadé, Yves; Senn, Pascal; Le Floch, Sébastien; Keppner, Herbert

    2016-04-18

    This paper presents a Fabry-Perot fiber tip sensor based on an air-liquid filled cavity. The cavity is sealed off by a thin gold coated membrane of parylene C, between 300 and 350 nm, creating a particularly flexible diaphragm. In order to retrieve and track the cavity of interest from other cavities formed within the sensor tip, a signal processing of the feedback signal is performed by inverse fast Fourier transform. The experimental sensor has been manufactured and tested for temperature, giving cavity length sensitivities of 6.1 nm/°C and 9.6 nm/°C for temperature increase and decrease respectively. The external gas pressure response gives a sensitivity of 15 nm/kPa. The fiber sensor has also been adapted for force sensing after silicone embedment and has shown a sensitivity of about 8.7 nm/mN. Finally, the sensor has been tested on insertion into a human temporal bone, proving that it could be an interesting candidate for insertion force monitoring for robotic cochlear implantation. PMID:27137244

  18. [Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio

    International Nuclear Information System (INIS)

    This Removal Action System Design has been prepared as a Phase I Volume for the implementation of the Phase II removal action at Wright-Patterson Air Force Base (WPAFB) near Dayton, Ohio. The objective of the removal action is to prevent, to the extent practicable, the migration of ground water contaminated with chlorinated volatile organic compounds (VOCS) across the southwest boundary of Area C. The Phase 1, Volume 9 Removal Action System Design compiles the design documents prepared for the Phase II Removal Action. These documents, which are presented in Appendices to Volume 9, include: Process Design, which presents the 30 percent design for the ground water treatment system (GWTS); Design Packages 1 and 2 for Earthwork and Road Construction, and the Discharge Pipeline, respectively; no drawings are included in the appendix; Design Package 3 for installation of the Ground Water Extraction Well(s); Design Package 4 for installation of the Monitoring Well Instrumentation; and Design Package 5 for installation of the Ground Water Treatment System; this Design Package is incorporated by reference because of its size

  19. Possible configurations for an air independent propulsion (AIP) system for submarines based on fuel cells

    International Nuclear Information System (INIS)

    'Full text:' Conventional submarines employ an electric propulsion system, based on energy storage in batteries which are recharged using diesel motors connected to generator alternators. This limits their autonomy underwater given that it will be depend on the amount of energy that can be stored in the batteries; currently, a normal value is to have energy to navigate for three days at low speed. As of from the WWII, several shipyards began to carry out research on propulsion systems for submarines that would be capable of operating under anaerobic conditions, independent of the air (AIP Systems). Since then, several proposals have been considered, but there is one option that several navies are currently putting their trust in: fuel cells. The objective of this Project is to stress the different configurations that can be considered to this end, as regards the transportation of hydrogen and oxygen. From the hydrogen point of view, the possibilities of transporting it in metal hydrides or its on-board production through the reforming of different fuels (gas-oil, ethanol, methanol), are analyzed. This study also compares auxiliary systems (including CO2 removers), and proposes solutions, some of which are under development, indicating which are currently being considered to a greater extent. (author)

  20. Space-based detection of missing sulfur dioxide sources of global air pollution

    Science.gov (United States)

    McLinden, Chris A.; Fioletov, Vitali; Shephard, Mark W.; Krotkov, Nick; Li, Can; Martin, Randall V.; Moran, Michael D.; Joiner, Joanna

    2016-07-01

    Sulfur dioxide is designated a criteria air contaminant (or equivalent) by virtually all developed nations. When released into the atmosphere, sulfur dioxide forms sulfuric acid and fine particulate matter, secondary pollutants that have significant adverse effects on human health, the environment and the economy. The conventional, bottom-up emissions inventories used to assess impacts, however, are often incomplete or outdated, particularly for developing nations that lack comprehensive emission reporting requirements and infrastructure. Here we present a satellite-based, global emission inventory for SO2 that is derived through a simultaneous detection, mapping and emission-quantifying procedure, and thereby independent of conventional information sources. We find that of the 500 or so large sources in our inventory, nearly 40 are not captured in leading conventional inventories. These missing sources are scattered throughout the developing world--over a third are clustered around the Persian Gulf--and add up to 7 to 14 Tg of SO2 yr-1, or roughly 6-12% of the global anthropogenic source. Our estimates of national total emissions are generally in line with conventional numbers, but for some regions, and for SO2 emissions from volcanoes, discrepancies can be as large as a factor of three or more. We anticipate that our inventory will help eliminate gaps in bottom-up inventories, independent of geopolitical borders and source types.

  1. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This Removal Action System Design has been prepared as a Phase I Volume for the implementation of the Phase II removal action at Wright-Patterson Air Force Base (WPAFB) near Dayton, Ohio. The objective of the removal action is to prevent, to the extent practicable, the migration of ground water contaminated with chlorinated volatile organic compounds (VOCS) across the southwest boundary of Area C. The Phase 1, Volume 9 Removal Action System Design compiles the design documents prepared for the Phase II Removal Action. These documents, which are presented in Appendices to Volume 9, include: Process Design, which presents the 30 percent design for the ground water treatment system (GWTS); Design Packages 1 and 2 for Earthwork and Road Construction, and the Discharge Pipeline, respectively; no drawings are included in the appendix; Design Package 3 for installation of the Ground Water Extraction Well(s); Design Package 4 for installation of the Monitoring Well Instrumentation; and Design Package 5 for installation of the Ground Water Treatment System; this Design Package is incorporated by reference because of its size.

  2. Bilirubin oxidase based enzymatic air-breathing cathode: Operation under pristine and contaminated conditions.

    Science.gov (United States)

    Santoro, Carlo; Babanova, Sofia; Erable, Benjamin; Schuler, Andrew; Atanassov, Plamen

    2016-04-01

    The performance of bilirubin oxidase (BOx) based air breathing cathode was constantly monitored over 45 days. The effect of electrolyte composition on the cathode oxygen reduction reaction (ORR) output was investigated. Particularly, deactivation of the electrocatalytic activity of the enzyme in phosphate buffer saline (PBS) solution and in activated sludge (AS) was evaluated. The greatest drop in current density was observed during the first 3 days of constant operation with a decrease of ~60 μA cm(-2) day(-1). The rate of decrease slowed to ~10 μA cm(-2) day(-1) (day 3 to 9) and then to ~1.5 μA cm(-2)day(-1) thereafter (day 9 to 45). Despite the constant decrease in output, the BOx cathode generated residual current after 45 days operations with an open circuit potential (OCP) of 475 mV vs. Ag/AgCl. Enzyme deactivation was also studied in AS to simulate an environment close to the real waste operation with pollutants, solid particles and bacteria. The presence of low-molecular weight soluble contaminants was identified as the main reason for an immediate enzymatic deactivation within few hours of cathode operation. The presence of solid particles and bacteria does not affect the natural degradation of the enzyme.

  3. Space-Based Detection of Missing Sulfur Dioxide Sources of Global Air Pollution

    Science.gov (United States)

    McLinden, Chris A.; Fioletov, Vitali; Shephard, Mark W.; Krotkov, Nick; Li, Can; Martin, Randall V.; Moran, Michael D.; Joiner, Joanna

    2016-01-01

    Sulfur dioxide is designated a criteria air contaminant (or equivalent) by virtually all developed nations. When released into the atmosphere, sulfur dioxide forms sulfuric acid and fine particulate matter, secondary pollutants that have significant adverse effects on human health, the environment and the economy. The conventional, bottom-up emissions inventories used to assess impacts, however, are often incomplete or outdated, particularly for developing nations that lack comprehensive emission reporting requirements and infrastructure. Here we present a satellite-based, global emission inventory for SO2 that is derived through a simultaneous detection, mapping and emission-quantifying procedure, and thereby independent of conventional information sources. We find that of the 500 or so large sources in our inventory, nearly 40 are not captured in leading conventional inventories. These missing sources are scattered throughout the developing world-over a third are clustered around the Persian Gulf-and add up to 7 to 14 Tg of SO2 yr(exp -1), or roughly 6-12% of the global anthropogenic source. Our estimates of national total emissions are generally in line with conventional numbers, but for some regions, and for SO2 emissions from volcanoes, discrepancies can be as large as a factor of three or more. We anticipate that our inventory will help eliminate gaps in bottom-up inventories, independent of geopolitical borders and source types.

  4. A NEW AIR CONDITIONING SYSTEM FAN MODEL BASED ON NUMERICAL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Nabil Nassif

    2014-01-01

    Full Text Available A large portion of energy use in buildings is attributed to air movement devices. Accurate estimation of fan performance is a key element in maximizing fan efficiency. This study proposes a new fan model that can be used in several applications such as optimization and fault detection and can also be incorporated into any commercial building models. The model uses a numerical analysis based on an interpolation technique for the data generated by basic fan laws. It can use any two variables among all four variables of airflow rate, total fan pressure, speed and power as inputs or outputs. Another advantage of this model is the flexibility of using any size of data for calibration, obtained either from manufacturers or field measured data. The model was tested for accuracy using two different manufacturers’ data of roof top unit packages with capacity ranging from 2 to 20 tons. Furthermore, the model was evaluated and tested on an actual VAV system using three months’ worth of measured data. The results show that the model can provide accurate estimation with the Coefficient of Variance (CV less than 2% and it can be used for several applications.

  5. (Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio)

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Bill

    1991-10-01

    In April 1990, Wright-Patterson Air Force Base (WPAFB), initiated an investigation to evaluate a potential Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action to prevent, to the extent practicable, the offsite migration of contaminated ground water from WPAFB. WPAFB retained the services of the Environmental Management Operations (EMO) and its principle subcontractor, International Technology Corporation (IT) to complete Phase 1 of the environmental investigation of ground-water contamination at WPAFB. Phase 1 of the investigation involves the short-term evaluation and potential design for a program to remove ground-water contamination that appears to be migrating across the western boundary of Area C, and across the northern boundary of Area B along Springfield Pike. Primarily, Task 4 of Phase 1 focuses on collection of information at the Area C and Springfield Pike boundaries of WPAFB. This Sampling and Analysis Plan (SAP) has been prepared to assist in completion of the Task 4 field investigation and is comprised of the Quality Assurance Project Plan (QAPP) and the Field Sampling Plan (FSP).

  6. CFD based performance analysis of a solar air heater duct provided with artificial roughness

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sharad; Saini, R.P. [Alternate Hydro Energy Centre, Indian Institute of Technology Roorkee, AHEC, Roorkee, Uttarakhand 247667 (India)

    2009-05-15

    In the present work the performance of a solar air heater duct provided with artificial roughness in the form of thin circular wire in arc shaped geometry has been analysed using Computational Fluid Dynamics (CFD). The effect of arc shaped geometry on heat transfer coefficient, friction factor and performance enhancement was investigated covering the range of roughness parameter (relative roughness height (e/D) from 0.0299 to 0.0426 and relative roughness angle ({alpha}/90) from 0.333 to 0.666) and working parameter (Reynolds number, Re from 6000 to 18,000 and solar radiation of 1000 W/m2). Different turbulent models have been used for the analysis and their results are compared. Renormalization-group (RNG) k-{epsilon} model based results have been found in good agreement and accordingly this model is used to predict heat transfer and friction factor in the duct. The overall enhancement ratio has been calculated in order to discuss the overall effect of the roughness and working parameters. A maximum value of overall enhancement ratio has been found to be as 1.7 for the range of parameters investigated. (author)

  7. Monitoring and analysis of air emissions based on condition models derived from process history

    Directory of Open Access Journals (Sweden)

    M. Liukkonen

    2016-12-01

    Full Text Available Evaluation of online information on operating conditions is necessary when reducing air emissions in energy plants. In this respect, automated monitoring and control are of primary concern, particularly in biomass combustion. As monitoring of emissions in power plants is ever more challenging because of low-grade fuels and fuel mixtures, new monitoring applications are needed to extract essential information from the large amount of measurement data. The management of emissions in energy boilers lacks economically efficient, fast, and competent computational systems that could support decision-making regarding the improvement of emission efficiency. In this paper, a novel emission monitoring platform based on the self-organizing map method is presented. The system is capable, not only of visualizing the prevailing status of the process and detecting problem situations (i.e. increased emission release rates, but also of analyzing these situations automatically and presenting factors potentially affecting them. The system is demonstrated using measurement data from an industrial circulating fluidized bed boiler fired by forest residue as the primary fuel and coal as the supporting fuel.

  8. Indoor Air Quality Assessment Based on Human Physiology - Part 1. New Criteria Proposal

    Directory of Open Access Journals (Sweden)

    M. V. Jokl

    2003-01-01

    Full Text Available Human physiology research makes evident that the Weber-Fechner law applies not only to noise perception but also to the perception of other environmental components. Based on this fact, new decibel units for dor component representing indoor air quality in majority locations have been proposed: decicarbdiox dCd (for carbon dioxide CO2 and decitvoc dTv (for total volatile organic compound TVOC. Equations of these new units have been proved by application of a experimental relationships between odor intensity (representing odor perception by the human body and odor concentrations of CO2 and TVOC, b individually  measured CO2 and TVOC levels (concentrations – from these new decibel units can be calculated and their values compared with decibel units of noise measured in the same locations. The undoubted benefit of using the decibel scale is that it gives much better approximation to human perception of odor intensity compared to the CO2 and TVOC concentration scales.

  9. Prediction of blast-induced air overpressure: a hybrid AI-based predictive model.

    Science.gov (United States)

    Jahed Armaghani, Danial; Hajihassani, Mohsen; Marto, Aminaton; Shirani Faradonbeh, Roohollah; Mohamad, Edy Tonnizam

    2015-11-01

    Blast operations in the vicinity of residential areas usually produce significant environmental problems which may cause severe damage to the nearby areas. Blast-induced air overpressure (AOp) is one of the most important environmental impacts of blast operations which needs to be predicted to minimize the potential risk of damage. This paper presents an artificial neural network (ANN) optimized by the imperialist competitive algorithm (ICA) for the prediction of AOp induced by quarry blasting. For this purpose, 95 blasting operations were precisely monitored in a granite quarry site in Malaysia and AOp values were recorded in each operation. Furthermore, the most influential parameters on AOp, including the maximum charge per delay and the distance between the blast-face and monitoring point, were measured and used to train the ICA-ANN model. Based on the generalized predictor equation and considering the measured data from the granite quarry site, a new empirical equation was developed to predict AOp. For comparison purposes, conventional ANN models were developed and compared with the ICA-ANN results. The results demonstrated that the proposed ICA-ANN model is able to predict blast-induced AOp more accurately than other presented techniques. PMID:26433903

  10. Nonlinear Adaptive Equivalent Control Based on Interconnection Subsystems for Air-Breathing Hypersonic Vehicles

    Directory of Open Access Journals (Sweden)

    Chaofang Hu

    2013-01-01

    Full Text Available For the nonminimum phase behavior of the air-breathing hypersonic vehicle model caused by elevator-to-lift coupling, a nonlinear adaptive equivalent control method based on interconnection subsystems is proposed. In the altitude loop, the backstepping strategy is applied, where the virtual control inputs about flight-path angle and attack angle are designed step by step. In order to avoid the inaccurately direct cancelation of elevator-to-lift coupling when aerodynamic parameters are uncertain, the real control inputs, that is, elevator deflection and canard deflection, are linearly converted into the equivalent control inputs which are designed independently. The reformulation of the altitude-flight-path angle dynamics and the attack angle-pitch rate dynamics is constructed into interconnection subsystems with input-to-state stability via small-gain theorem. For the velocity loop, the dynamic inversion controller is designed. The adaptive approach is used to identify the uncertain aerodynamic parameters. Simulation of the flexible hypersonic vehicle demonstrates effectiveness of the proposed method.

  11. Stereo vision-based obstacle avoidance for micro air vehicles using an egocylindrical image space representation

    Science.gov (United States)

    Brockers, R.; Fragoso, A.; Matthies, L.

    2016-05-01

    Micro air vehicles which operate autonomously at low altitude in cluttered environments require a method for onboard obstacle avoidance for safe operation. Previous methods deploy either purely reactive approaches, mapping low-level visual features directly to actuator inputs to maneuver the vehicle around the obstacle, or deliberative methods that use on-board 3-D sensors to create a 3-D, voxel-based world model, which is then used to generate collision free 3-D trajectories. In this paper, we use forward-looking stereo vision with a large horizontal and vertical field of view and project range from stereo into a novel robot-centered, cylindrical, inverse range map we call an egocylinder. With this implementation we reduce the complexity of our world representation from a 3D map to a 2.5D image-space representation, which supports very efficient motion planning and collision checking, and allows to implement configuration space expansion as an image processing function directly on the egocylinder. Deploying a fast reactive motion planner directly on the configuration space expanded egocylinder image, we demonstrate the effectiveness of this new approach experimentally in an indoor environment.

  12. Research on precise modeling of buildings based on multi-source data fusion of air to ground

    Science.gov (United States)

    Li, Yongqiang; Niu, Lubiao; Yang, Shasha; Li, Lixue; Zhang, Xitong

    2016-03-01

    Aims at the accuracy problem of precise modeling of buildings, a test research was conducted based on multi-source data for buildings of the same test area , including top data of air-borne LiDAR, aerial orthophotos, and façade data of vehicle-borne LiDAR. After accurately extracted the top and bottom outlines of building clusters, a series of qualitative and quantitative analysis was carried out for the 2D interval between outlines. Research results provide a reliable accuracy support for precise modeling of buildings of air ground multi-source data fusion, on the same time, discussed some solution for key technical problems.

  13. Plume-based analysis of vehicle fleet air pollutant emissions and the contribution from high emitters

    Directory of Open Access Journals (Sweden)

    J. M. Wang

    2015-03-01

    Full Text Available An automated identification and integration method has been developed to investigate in-use vehicle emissions under real-world conditions. This technique was applied to high time resolution air pollutant measurements of in-use vehicle emissions performed under real-world conditions at a near-road monitoring station in Toronto, Canada during four seasons, through month-long campaigns in 2013–2014. Based on carbon dioxide measurements, over 100 000 vehicle-related plumes were automatically identified and fuel-based emission factors for nitrogen oxides; carbon monoxide; particle number, black carbon; benzene, toluene, ethylbenzene, and xylenes (BTEX; and methanol were determined for each plume. Thus the automated identification enabled the measurement of an unprecedented number of plumes and pollutants over an extended duration. Emission factors for volatile organic compounds were also measured roadside for the first time using a proton transfer reaction time-of-flight mass spectrometer; this instrument provided the time resolution required for the plume capture technique. Mean emission factors were characteristic of the light-duty gasoline dominated vehicle fleet present at the measurement site, with mean black carbon and particle number emission factors of 35 mg kg−1 and 7.7 × 1014 kg−1, respectively. The use of the plume-by-plume analysis enabled isolation of vehicle emissions, and the elucidation of co-emitted pollutants from similar vehicle types, variability of emissions across the fleet, and the relative contribution from heavy emitters. It was found that a small proportion of the fleet (< 25% contributed significantly to total fleet emissions; 95, 93, 76, and 75% for black carbon, carbon monoxide, BTEX, and particle number, respectively. Emission factors of a single pollutant may help classify a vehicle as a high emitter. However, regulatory strategies to more efficiently target multi-pollutants mixtures may be better developed by

  14. Carbon-Based Air-Breathing Cathodes for Microbial Fuel Cells

    Directory of Open Access Journals (Sweden)

    Irene Merino-Jimenez

    2016-08-01

    Full Text Available A comparison between different carbon-based gas-diffusion air-breathing cathodes for microbial fuel cells (MFCs is presented in this work. A micro-porous layer (MPL based on carbon black (CB and an activated carbon (AC layer were used as catalysts and applied on different supporting materials, including carbon cloth (CC, carbon felt (CF, and stainless steel (SS forming cathode electrodes for MFCs treating urine. Rotating ring disk electrode (RRDE analyses were done on CB and AC to: (i understand the kinetics of the carbonaceous catalysts; (ii evaluate the hydrogen peroxide production; and (iii estimate the electron transfer. CB and AC were then used to fabricate electrodes. Half-cell electrochemical analysis, as well as MFCs continuous power performance, have been monitored. Generally, the current generated was higher from the MFCs with AC electrodes compared to the MPL electrodes, showing an increase between 34% and 61% in power with the AC layer comparing to the MPL. When the MPL was used, the supporting material showed a slight effect in the power performance, being that the CF is more powerful than the CC and the SS. These differences also agree with the electrochemical analysis performed. However, the different supporting materials showed a bigger effect in the power density when the AC layer was used, being the SS the most efficient, with a power generation of 65.6 mW·m−2, followed by the CC (54 mW·m−2 and the CF (44 mW·m−2.

  15. Assessing Expected Fractional Damage of Above-ground Buildings from Air-to-surface Weapons based on Indirect Fire Concept

    Directory of Open Access Journals (Sweden)

    Jong Yil Park

    2010-08-01

    Full Text Available For the expected fractional damage of building targets from air-to-surface weapons, the US has used the JMEM/AS method, which is based on the direct-fire concept. However, the damage redistribution assumption in the direct-fire concept could induce serious errors in damage estimation of building targets. In this paper, a method for the expected fractional damage of building targets is proposed based on the indirect-fire concept. From the proposed model, it is shown that the joint munitions effectiveness manuals/air-to-surface (JMEM/AS method is not appropriate for building targets, especially for attacks with multiple aiming points. It is recommended that the indirect-fire concept should be adopted for weaponeering even for air-to-surface weapons. fire concept could induce serious errors in damage estimation of building targets. In this paper, a method for the expected fractional damage of building targets is proposed based on the indirect-fire concept. From the proposed model, it is shown that the JMEM/AS method is not appropriate for building targets, especially for attacks with multiple aiming points. It is recommended that the indirect-fire concept should be adopted for weaponeering even for air-to-surface weapons.Defence Science Journal, 2010, 60(5, pp.491-496, DOI:http://dx.doi.org/10.14429/dsj.60.571

  16. Conducting polymer actuator based on chemically deposited polypyrrole and polyurethane-based solid polymer electrolyte working in air

    International Nuclear Information System (INIS)

    Conducting polymers (CPs), such as polypyrrole, polythiophene, and polyaniline, are unique in that they have switchable properties due to their two or more mechanically stable oxidation states. Thus, their films or coatings can be easily switched by the application of a small voltage and current to change their volume during electrochemical redox processes. In particular, polypyrrole (PPy) has been studied most extensively because of its high electrical conductivity and good environmental stability under ambient conditions. In this work, we have studied a new CP actuator, fully polymeric, assembled with two PPy film electrodes and a solid polymer electrolyte (SPE), polyurethane/Mg(ClO4)2. Polyurethanes (PUs) were synthesized from 4,4'-diphenylmethane diisocyanate (MDI), 1,4-butanediol (1,4-BD) and three types of polyol: poly(ethylene glycol) (PEG), poly(propylene glycol) (PPG), and PPG-block-PEG-block-PPG (PPG-co-PEG). The chemical polymerization of PPy by immersion in Py monomer aqueous solution and oxidant aqueous solution is an adequate method to prepare PU/PPy composite film as an actuator. To find the proper thickness of the PPy coating layer for actuation, we measured the displacements of the actuators according to the thickness of the PPy coating layer. The displacement of all actuators is discussed in connection with the properties of the SPE and PPy. All the results obtained in this work show the feasibility of electrochemomechanical devices based on PPy and SPE film being able to work in air

  17. Energy flow and thermal comfort in buildings: Comparison of radiant and air-based heating & cooling systems

    DEFF Research Database (Denmark)

    Le Dréau, Jérôme

    and standing positions. Besides this comparative study of different terminals, the relation between cooling system and internal convective flow has also been investigated experimentally. The comparison with existing models pointed out the specificity of existing correlations and the limitation of their range...... of application. Because of differences in the air jet trajectory, existing correlations tend to overestimate the convective flow, especially at the ceiling. Two approaches have thus been tested to better account for the air flow pattern in the definition of convective heat transfer coefficients (CHTC......Heating and cooling terminals can be classified in two main categories: convective terminals (e.g air conditioning, active chilled beam, fan coil) and radiant terminals. The two terminals have different modes of heat transfer: the first one is mainly based on convection, whereas the second one...

  18. A method for calculation of forces acting on air cooled gas turbine blades based on the aerodynamic theory

    Directory of Open Access Journals (Sweden)

    Grković Vojin R.

    2013-01-01

    Full Text Available The paper presents the mathematical model and the procedure for calculation of the resultant force acting on the air cooled gas turbine blade(s based on the aerodynamic theory and computation of the circulation around the blade profile. In the conducted analysis was examined the influence of the cooling air mass flow expressed through the cooling air flow parameter λc, as well as, the values of the inlet and outlet angles β1 and β2, on the magnitude of the tangential and axial forces. The procedure and analysis were exemplified by the calculation of the tangential and axial forces magnitudes. [Projekat Ministarstva nauke Republike Srbije: Development and building the demonstrative facility for combined heat and power with gasification

  19. Observations of surface radiation and stratospheric processes at Thule Air Base, Greenland, during the IPY

    Directory of Open Access Journals (Sweden)

    Giovanni Muscari

    2014-06-01

    Full Text Available Ground-based measurements of atmospheric parameters have been carried out for more than 20 years at the Network for the Detection of Atmospheric Composition Change (NDACC station at Thule Air Base (76.5°N, 68.8°W, on the north-western coast of Greenland. Various instruments dedicated to the study of the lower and middle polar atmosphere are installed at Thule in the framework of a long standing collaboration among Danish, Italian, and US research institutes and universities. This effort aims at monitoring the composition, structure and dynamics of the polar stratosphere, and at studying the Arctic energy budget and the role played by different factors, such as aerosols, water vapour, and surface albedo. During the International Polar Year (IPY, in winter 2008-2009, an intensive measurement campaign was conducted at Thule within the framework of the IPY project “Ozone layer and UV radiation in a changing climate evaluated during IPY” (ORACLE-O3 which sought to improve our understanding of the complex mechanisms that lead to the Arctic stratospheric O3 depletion. The campaign involved a lidar system, measuring aerosol backscatter and depolarization ratios up to 35 km and atmospheric temperature profiles from 25 to 70 km altitude, a ground-based millimeter-wave spectrometer (GBMS used to derive stratospheric mixing ratio profiles of different chemical species involved in the stratospheric ozone depletion cycle, and then ground-based radiometers and a Cimel sunphotometer to study the Arctic radiative budget at the surface. The observations show that the surface radiation budget is mainly regulated by the longwave component throughout most of the year. Clouds have a significant impact contributing to enhance the role of longwave radiation. Besides clouds, water vapour seasonal changes produce the largest modification in the shortwave component at the surface, followed by changes in surface albedo and in aerosol amounts. For what concerns the

  20. 3D Model-Based Simulation Analysis of Energy Consumption in Hot Air Drying of Corn Kernels

    Directory of Open Access Journals (Sweden)

    Shiwei Zhang

    2013-01-01

    Full Text Available To determine the mechanism of energy consumption in hot air drying, we simulate the interior heat and mass transfer processes that occur during the hot air drying for a single corn grain. The simulations are based on a 3D solid model. The 3D real body model is obtained by scanning the corn kernels with a high-precision medical CT machine. The CT images are then edited by MIMICS and ANSYS software to reconstruct the three-dimensional real body model of a corn kernel. The Fourier heat conduction equation, the Fick diffusion equation, the heat transfer coefficient, and the mass diffusion coefficient are chosen as the governing equations of the theoretical dry model. The calculation software, COMSOL Multiphysics, is used to complete the simulation calculation. The influence of air temperature and velocity on the heat and mass transfer processes is discussed. Results show that mass transfer dominates during the hot air drying of corn grains. Air temperature and velocity are chosen primarily in consideration of mass transfer effects. A low velocity leads to less energy consumption.

  1. Kids Making Sense of Air Quality Around Them Through a Hands-On, STEM-Based Program

    Science.gov (United States)

    Dye, T.

    2015-12-01

    Air pollution in many parts of the world is harming millions of people, shortening lives, and taking a toll on our ecosystem. Cities in India, China, and even the United States frequently exceed air quality standards. The use of localized data is a powerful enhancement to regulatory monitoring site data. Learning about air quality at a local level is a powerful driver for change. The Kids Making Sense program unites Science, Technology, Engineering, and Mathematics (STEM) education with a complete measurement and environmental education system that teaches youth about air pollution and empowers them to drive positive change in their communities. With this program, youth learn about particle pollution, its sources, and health effects. A half-day lecture is followed by hands-on activity using handheld air sensors paired with an app on smartphones. Students make measurements around schools to discover pollution sources and cleaner areas. Next, the data they collect are crowdsourced on a website for guided discussion and data interpretation. This program meets Next Generation Science Standards, encourages project-based learning and deep understanding of applied science, and allows students to practice science like real scientists. The program has been successfully implemented in several schools in the United States and Asia, including New York City, San Francisco, Los Angeles, and Sacramento in the United States, and Taipei and Taichung in Taiwan. During this talk, we'll provide an overview of the program, discuss some of the challenges, and lay out the next steps for Kids Making Sense.

  2. Air-void embedded GaN-based light-emitting diodes grown on laser drilling patterned sapphire substrates

    Science.gov (United States)

    Liu, Hao; Li, Yufeng; Wang, Shuai; Feng, Lungang; Xiong, Han; Su, Xilin; Yun, Feng

    2016-07-01

    Air-void structure was introduced in GaN-based blue light-emitting diodes (LED) with one-step growth on periodic laser drilling patterned sapphire substrate, which free of any photolithography or wet/dry etching process. The influence of filling factors (FF) of air-void on crystal quality and optical performance were investigate. Transmission electron microscopy images and micro-Raman spectroscopy indicated that the dislocation was bended and the partially compressed strain was released. When FF was 55.43%, compared with the LED structure grown on flat sapphire substrate, the incorporation of air-void was observed to reduce the compressed stress of ˜20% and the luminance intensity has improved by 128%. Together with the simulated reflection intensity enhancement by finite difference time-domain (FDTD) method, we attribute the enhanced optical performance to the combined contribution of strong back-side light reflection of air-void and better GaN epitaxial quality. This approach provides a simple replacement to the conventional air-void embedded LED process.

  3. Performance analysis of a direct expansion air dehumidification system combined with membrane-based total heat recovery

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Cai-Hang; Zhang, Li-Zhi; Pei, Li-Xia [Key Laboratory of Enhanced Heat Transfer and Energy Conservation of Education Ministry, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640 (China)

    2010-09-15

    A direct expansion (DX) air dehumidification system is an efficient way to supply fresh and dry air to a built environment. It plays a key role in preventing the spread of respiratory disease like Swine flu (H1N1). To improve the efficiency of a conventional DX system in hot and humid regions, a new system of DX in combination with a membrane-based total heat exchanger is proposed. Air is supplied with dew points. A detailed mathematical modeling is performed. A cell-by-cell simulation technique is used to simulate its performances. A real prototype is built in our laboratory in South China University of Technology to validate the model. The effects of inlet air humidity and temperature, evaporator and condenser sizes on the system performance are investigated. The results indicate that the model can predict the system accurately. Compared to a conventional DX system, the air dehumidification rate (ADR) of the novel system is 0.5 times higher, and the coefficient of performance (COP) is 1 times higher. Furthermore, the system performs well even under harsh hot and humid weather conditions. (author)

  4. Hydrologic transport of depleted uranium associated with open air dynamic range testing at Los Alamos National Laboratory, New Mexico, and Eglin Air Force Base, Florida

    Energy Technology Data Exchange (ETDEWEB)

    Becker, N.M. [Los Alamos National Lab., NM (United States); Vanta, E.B. [Wright Laboratory Armament Directorate, Eglin Air Force Base, FL (United States)

    1995-05-01

    Hydrologic investigations on depleted uranium fate and transport associated with dynamic testing activities were instituted in the 1980`s at Los Alamos National Laboratory and Eglin Air Force Base. At Los Alamos, extensive field watershed investigations of soil, sediment, and especially runoff water were conducted. Eglin conducted field investigations and runoff studies similar to those at Los Alamos at former and active test ranges. Laboratory experiments complemented the field investigations at both installations. Mass balance calculations were performed to quantify the mass of expended uranium which had transported away from firing sites. At Los Alamos, it is estimated that more than 90 percent of the uranium still remains in close proximity to firing sites, which has been corroborated by independent calculations. At Eglin, we estimate that 90 to 95 percent of the uranium remains at test ranges. These data demonstrate that uranium moves slowly via surface water, in both semi-arid (Los Alamos) and humid (Eglin) environments.

  5. Hydrologic transport of depleted uranium associated with open air dynamic range testing at Los Alamos National Laboratory, New Mexico, and Eglin Air Force Base, Florida

    International Nuclear Information System (INIS)

    Hydrologic investigations on depleted uranium fate and transport associated with dynamic testing activities were instituted in the 1980's at Los Alamos National Laboratory and Eglin Air Force Base. At Los Alamos, extensive field watershed investigations of soil, sediment, and especially runoff water were conducted. Eglin conducted field investigations and runoff studies similar to those at Los Alamos at former and active test ranges. Laboratory experiments complemented the field investigations at both installations. Mass balance calculations were performed to quantify the mass of expended uranium which had transported away from firing sites. At Los Alamos, it is estimated that more than 90 percent of the uranium still remains in close proximity to firing sites, which has been corroborated by independent calculations. At Eglin, we estimate that 90 to 95 percent of the uranium remains at test ranges. These data demonstrate that uranium moves slowly via surface water, in both semi-arid (Los Alamos) and humid (Eglin) environments

  6. Air filtration in HVAC systems

    CERN Document Server

    Ginestet, Alain; Tronville, Paolo; Hyttinen, Marko

    2010-01-01

    Air filtration Guidebook will help the designer and user to understand the background and criteria for air filtration, how to select air filters and avoid problems associated with hygienic and other conditions at operation of air filters. The selection of air filters is based on external conditions such as levels of existing pollutants, indoor air quality and energy efficiency requirements.

  7. Gunship Diplomacy : carrier based close air support for joint expeditionary forces

    OpenAIRE

    Emanuel, Taylor C.

    1994-01-01

    This study examines whether current and future strategy, doctrine, and programmed systems are suitable to perform fire support and specifically, close air support (CAS)and close air support/troops-in-contact (CAS/TIC) missions for joint expeditionary warfare. Naval forces will provide the "enabling" power for this new come-as-you-are environment. To offset reductions in organic fire support, more frequent and sustained application of CAS and CAS/TIC will be required by joint expeditionary f...

  8. The study of leachate treatment by using three advanced oxidation process based wet air oxidation

    OpenAIRE

    Mokhtari Mehdi; Ebrahimi Asghar; Ehrampoush Mohammad Hassan; Karimi Behroz

    2013-01-01

    Abstract Wet air oxidation is regarded as appropriate options for wastewater treatment with average organic compounds. The general purpose of this research is to determine the efficiency of three wet air oxidation methods, wet oxidation with hydrogen peroxide and absorption with activated carbon in removing organic matter and nitrogenous compounds from Isfahan's urban leachate. A leachate sample with the volume of 1.5 liters entered into a steel reactor with the volume of three liters and was...

  9. The Study of LeachateTreatment by Using Three Advanced Oxidation Process Based Wet air Oxidation

    OpenAIRE

    Behroz Karimi; Mohammad Hassan Ehrampoush; Asghar Ebrahimi; Mehdi Mokhtari

    2013-01-01

    Wet air oxidation is regarded as appropriate options for wastewater treatment with average organic compounds. The general purpose of this research is to determine the efficiency of three wet air oxidation methods, wet oxidation with hydrogen peroxide and absorption with activated carbon in removing organic matter and nitrogenous compounds from Isfahan's urban leachate. A leachate sample with the volume of 1.5 liters entered into a steel reactor with the volume of three liters and was put unde...

  10. A Predictive Model for Vehicle Air Exchange Rates based on a Large, Representative Sample

    OpenAIRE

    Fruin, Scott A.; Hudda, Neelakshi; Sioutas, Constantinos; Delfino, Ralph J.

    2011-01-01

    The in-vehicle microenvironment is an important route of exposure to traffic-related pollutants, particularly ultrafine particles. However, significant particle losses can occur under conditions of low air exchange rate (AER) when windows are closed and air is recirculating. AERs are lower for newer vehicles and at lower speeds. Despite the importance of AER in affecting in-vehicle particle exposures, few studies have characterized AER and all have tested only a small number of cars. One reas...

  11. Culturing Life from Air: Using a Surface Air System to Introduce Discovery-Based Research in Aerobiology into the Undergraduate Biology Curriculum

    Directory of Open Access Journals (Sweden)

    Carolyn F. Weber

    2015-02-01

    Full Text Available Although the field of aerobiology predates Louis Pasteur’s classic experiments in the late 19th century, the atmosphere has recently emerged as one of the last great frontiers in the field of microbiology. Recent research has demonstrated that airborne microbes are more diverse than previously thought and are metabolically active in some cases, influencing atmospheric chemistry and meteorological patterns.  Furthermore, concern continues to grow regarding airborne travel of biothreat agents and emerging infectious diseases in an increasingly global society.  Despite the increased recognition of the atmosphere as a frontier for microbiological exploration in both basic and applied sciences, students are generally not exposed to this field of research in the undergraduate biology curriculum.  We describe the use of the Surface Air System (SAS SUPER 180 (Bioscience International, Rockville, MD, an extremely rugged, easy-to-use, portable and nearly maintenance-free instrument that impacts defined volumes of air directly onto petri dishes to facilitate the study of culturable airborne microorganisms.  We successfully employed this instrument in a Biology I course in which freshmen, with no prior research experiences, conducted discovery-based research that produced data that was presented at a national meeting and made a genuine contribution to the field of aerobiology.  We also describe how such discovery-based research experiences in aerobiology can be used as a platform for teaching core biological concepts and basic laboratory skills. Editor's Note:The ASM advocates that students must successfully demonstrate the ability to explain and practice safe laboratory techniques. For more information, read the laboratory safety section of the ASM Curriculum Recommendations: Introductory Course in Microbiology and the Guidelines for Biosafety in Teaching Laboratories, available at www.asm.org. The Editors of JMBE recommend that adopters of the

  12. 冬季基于地道风空气源热泵系统实验测试%EXPERIMENTAL RESEARCH OF AIR SOURCE HEAT PUMP BASED ON THE UNDERGROUND TUNNEL AIR IN WINTER

    Institute of Scientific and Technical Information of China (English)

    高亚南; 林清丽

    2013-01-01

    The cold and heat source of air source heat pump based on the underground tunnel air is heat exchanging air through tunnel. The coefficient of performance of this system is always high because the temperature of underground tunnel air is higher than atmosphere air. The heating capacity and coefficient of performance are tested. Compared the air source heat pump system, the experimental data show that air source heat pump based on the underground tunnel air is efficient manner of building energy saving. The advantage is more obvious when this system applies lower temperatures area in cold winter.%基于地道风的空气源热泵系统是以经地道换热后的空气作为冷热源的热泵系统,这种系统由于室外机环境的改善,其制热效率大大提高.本文对该系统冬季运行时的制热量、输入功率及性能系数进行了实验测试及结果分析.实验数据结果证明基于地道风的空气源热泵系统是一种较高效的建筑节能方式,在温度极低的寒冷地区应用优势愈加明显.

  13. Effects of contaminants on reproductive success of aquatic birds nesting at Edwards Air Force Base, California

    Science.gov (United States)

    Hothem, R.L.; Crayon, J.J.; Law, M.A.

    2006-01-01

    Contamination by organochlorine pesticides (OCs), polychlorinated biphenyls, metals, and trace elements at Edwards Air Force Base (EAFB), located in the Mojave Desert, could adversely affect nesting aquatic birds, especially at the sewage lagoons that comprise Piute Ponds. Estimates of avian reproduction, in conjunction with analyses of eggs and avian foods for contaminant residues, may indicate the potential for negative effects on avian populations. From 1996 to 1999, we conducted studies at the Piute Ponds area of EAFB to evaluate the impacts of contaminants on nesting birds. Avian reproduction was evaluated in 1999. Eggs were collected for chemical analyses in 1996 and 1999, and African clawed frogs (Xenopus laevis), a likely food source, were collected for chemical analyses in 1998. Avian species occupying the higher trophic levels-black-crowned night-heron (Nycticorax nycticorax), white-faced ibis (Plegadis chihi), and American avocet (Recurvirostra americana)-generally bioaccumulated higher concentrations of contaminants in their eggs. Reproductive success and egg hatchability of night-herons and white-faced ibises in the Piute Ponds were similar to results observed at other western colonies. Deformities were observed in only one embryo in this study, but concentrations of contaminants evaluated in this ibis embryo were considered insufficient to have caused the deformities. Because clawed frogs, a primary prey item for night-herons at Piute Ponds, had no detectable levels of any OCs, it is likely that OCs found in night-heron eggs were acquired from the wintering grounds rather than from EAFB. The presence of isomers of dichlorodiphenyltrichloroethane (DDT) in ibis eggs indicated recent exposure, but invertebrates used for food by ibises were not sampled at Piute Ponds, and conclusions about the source of OCs in ibis eggs could not be made. Concentrations of contaminants in random and failed eggs of individual species were not different, and we concluded

  14. Tentative detection of clear-air turbulence using a ground-based Rayleigh lidar.

    Science.gov (United States)

    Hauchecorne, Alain; Cot, Charles; Dalaudier, Francis; Porteneuve, Jacques; Gaudo, Thierry; Wilson, Richard; Cénac, Claire; Laqui, Christian; Keckhut, Philippe; Perrin, Jean-Marie; Dolfi, Agnès; Cézard, Nicolas; Lombard, Laurent; Besson, Claudine

    2016-05-01

    Atmospheric gravity waves and turbulence generate small-scale fluctuations of wind, pressure, density, and temperature in the atmosphere. These fluctuations represent a real hazard for commercial aircraft and are known by the generic name of clear-air turbulence (CAT). Numerical weather prediction models do not resolve CAT and therefore provide only a probability of occurrence. A ground-based Rayleigh lidar was designed and implemented to remotely detect and characterize the atmospheric variability induced by turbulence in vertical scales between 40 m and a few hundred meters. Field measurements were performed at Observatoire de Haute-Provence (OHP, France) on 8 December 2008 and 23 June 2009. The estimate of the mean squared amplitude of bidimensional fluctuations of lidar signal showed excess compared to the estimated contribution of the instrumental noise. This excess can be attributed to atmospheric turbulence with a 95% confidence level. During the first night, data from collocated stratosphere-troposphere (ST) radar were available. Altitudes of the turbulent layers detected by the lidar were roughly consistent with those of layers with enhanced radar echo. The derived values of turbulence parameters Cn2 or CT2 were in the range of those published in the literature using ST radar data. However, the detection was at the limit of the instrumental noise and additional measurement campaigns are highly desirable to confirm these initial results. This is to our knowledge the first successful attempt to detect CAT in the free troposphere using an incoherent Rayleigh lidar system. The built lidar device may serve as a test bed for the definition of embarked CAT detection lidar systems aboard airliners. PMID:27140350

  15. Geologic investigation :an update of subsurface geology on Kirtland Air Force Base, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Van Hart, Dirk (GRAM, Inc.)

    2003-06-01

    The objective of this investigation was to generate a revised geologic model of Kirtland Air Force Base (KAFB) incorporating the geological and geophysical data produced since the Site-Wide Hydrogeologic Characterization Project (SWHC) of 1994 and 1995. Although this report has certain stand-alone characteristics, it is intended to complement the previous work and to serve as a status report as of late 2002. In the eastern portion of KAFB (Lurance Canyon and the Hubbell bench), of primary interest is the elevation to which bedrock is buried under a thin cap of alluvium. Elevation maps of the bedrock top reveal the paleodrainage that allows for the interpretation of the area's erosional history. The western portion of KAFB consists of the eastern part of the Albuquerque basin where bedrock is deeply buried under Santa Fe Group alluvium. In this area, the configuration of the down-to-the-west, basin-bounding Sandia and West Sandia faults is of primary interest. New geological and geophysical data and the reinterpretation of old data help to redefine the location and magnitude of these elements. Additional interests in this area are the internal stratigraphy and structure of the Santa Fe Group. Recent data collected from new monitoring wells in the area have led to a geologic characterization of the perched Tijeras Arroyo Groundwater system and have refined the known limits of the Ancestral Rio Grande fluvial sediments within the Santa Fe Group. Both the reinterpretation of the existing data and a review of the regional geology have shown that a segment of the boundary between the eastern and western portions of KAFB is a complicated early Tertiary (Laramide) wrench-fault system, the Tijeras/Explosive Ordnance Disposal Area/Hubbell Spring system. A portion of this fault zone is occupied by a coeval ''pull-apart'' basin filled with early Tertiary conglomerates, whose exposures form the ''Travertine Hills''.

  16. Towards an agent based traffic regulation and recommendation system for the on-road air quality control.

    Science.gov (United States)

    Sadiq, Abderrahmane; El Fazziki, Abdelaziz; Ouarzazi, Jamal; Sadgal, Mohamed

    2016-01-01

    This paper presents an integrated and adaptive problem-solving approach to control the on-road air quality by modeling the road infrastructure, managing traffic based on pollution level and generating recommendations for road users. The aim is to reduce vehicle emissions in the most polluted road segments and optimizing the pollution levels. For this we propose the use of historical and real time pollution records and contextual data to calculate the air quality index on road networks and generate recommendations for reassigning traffic flow in order to improve the on-road air quality. The resulting air quality indexes are used in the system's traffic network generation, which the cartography is represented by a weighted graph. The weights evolve according to the pollution indexes and path properties and the graph is therefore dynamic. Furthermore, the systems use the available pollution data and meteorological records in order to predict the on-road pollutant levels by using an artificial neural network based prediction model. The proposed approach combines the benefits of multi-agent systems, Big data technology, machine learning tools and the available data sources. For the shortest path searching in the road network, we use the Dijkstra algorithm over Hadoop MapReduce framework. The use Hadoop framework in the data retrieve and analysis process has significantly improved the performance of the proposed system. Also, the agent technology allowed proposing a suitable solution in terms of robustness and agility. PMID:27652177

  17. Air segmented amplitude modulated multiplexed flow analysis with software-based phase recognition: determination of phosphate ion.

    Science.gov (United States)

    Ogusu, Takeshi; Uchimoto, Katsuya; Takeuchi, Masaki; Tanaka, Hideji

    2014-01-01

    Amplitude modulated multiplexed flow analysis (AMMFA) has been improved by introducing air segmentation and software-based phase recognition. Sample solutions, the flow rates of which are respectively varied at different frequencies, are merged. Air is introduced to the merged liquid stream in order to limit the dispersion of analytes within each liquid segment separated by air bubbles. The stream is led to a detector with no physical deaeration. Air signals are distinguished from liquid signals through the analysis of detector output signals, and are suppressed down to the level of liquid signals. Resulting signals are smoothed based on moving average computation. Thus processed signals are analyzed by fast Fourier transform. The analytes in the samples are respectively determined from the amplitudes of the corresponding wave components obtained. The developed system has been applied to the simultaneous determinations of phosphate ions in water samples by a Malachite Green method. The linearity of the analytical curve (0.0-31.0 μmol dm(-3)) is good (r(2)>0.999) and the detection limit (3.3 σ) at the modulation period of 30s is 0.52 μmol dm(-3). Good recoveries around 100% have been obtained for phosphate ions spiked into real water samples.

  18. Towards an agent based traffic regulation and recommendation system for the on-road air quality control.

    Science.gov (United States)

    Sadiq, Abderrahmane; El Fazziki, Abdelaziz; Ouarzazi, Jamal; Sadgal, Mohamed

    2016-01-01

    This paper presents an integrated and adaptive problem-solving approach to control the on-road air quality by modeling the road infrastructure, managing traffic based on pollution level and generating recommendations for road users. The aim is to reduce vehicle emissions in the most polluted road segments and optimizing the pollution levels. For this we propose the use of historical and real time pollution records and contextual data to calculate the air quality index on road networks and generate recommendations for reassigning traffic flow in order to improve the on-road air quality. The resulting air quality indexes are used in the system's traffic network generation, which the cartography is represented by a weighted graph. The weights evolve according to the pollution indexes and path properties and the graph is therefore dynamic. Furthermore, the systems use the available pollution data and meteorological records in order to predict the on-road pollutant levels by using an artificial neural network based prediction model. The proposed approach combines the benefits of multi-agent systems, Big data technology, machine learning tools and the available data sources. For the shortest path searching in the road network, we use the Dijkstra algorithm over Hadoop MapReduce framework. The use Hadoop framework in the data retrieve and analysis process has significantly improved the performance of the proposed system. Also, the agent technology allowed proposing a suitable solution in terms of robustness and agility.

  19. A simplified physically-based model to calculate surface water temperature of lakes from air temperature in climate change scenarios

    Science.gov (United States)

    Piccolroaz, S.; Toffolon, M.

    2012-12-01

    Modifications of water temperature are crucial for the ecology of lakes, but long-term analyses are not usually able to provide reliable estimations. This is particularly true for climate change studies based on Global Circulation Models, whose mesh size is normally too coarse for explicitly including even some of the biggest lakes on Earth. On the other hand, modeled predictions of air temperature changes are more reliable, and long-term, high-resolution air temperature observational datasets are more available than water temperature measurements. For these reasons, air temperature series are often used to obtain some information about the surface temperature of water bodies. In order to do that, it is common to exploit regression models, but they are questionable especially when it is necessary to extrapolate current trends beyond maximum (or minimum) measured temperatures. Moreover, water temperature is influenced by a variety of processes of heat exchange across the lake surface and by the thermal inertia of the water mass, which also causes an annual hysteresis cycle between air and water temperatures that is hard to consider in regressions. In this work we propose a simplified, physically-based model for the estimation of the epilimnetic temperature in lakes. Starting from the zero-dimensional heat budget, we derive a simplified first-order differential equation for water temperature, primarily forced by a seasonally varying external term (mainly related to solar radiation) and an exchange term explicitly depending on the difference between air and water temperatures. Assuming annual sinusoidal cycles of the main heat flux components at the atmosphere-lake interface, eight parameters (some of them can be disregarded, though) are identified, which can be calibrated if two temporal series of air and water temperature are available. We note that such a calibration is supported by the physical interpretation of the parameters, which provide good initial

  20. Air Pollution Monitoring and Use of Nanotechnology Based Solid State Gas Sensors in Greater Cairo Area, Egypt

    Science.gov (United States)

    Ramadan, A. B. A.

    Air pollution is a serious problem in thickly populated and industrialized areas in Egypt, especially in greater Cairo area. Economic growth and industrialization are proceeding at a rapid pace, accompanied by increasing emissions of air polluting sources. Furthermore, though the variety and quantities of polluting sources have increased dramatically, the development of a suitable method for monitoring the pollution causing sources has not followed at the same pace. Environmental impacts of air pollutants have impact on public health, vegetation, material deterioration etc. To prevent or minimize the damage caused by atmospheric pollution, suitable monitoring systems are urgently needed that can rapidly and reliably detect and quantify polluting sources for monitoring by regulating authorities in order to prevent further deterioration of the current pollution levels. Consequently, it is important that the current real-time air quality monitoring system, controlled by the Egyptian Environmental Affairs Agency (EEAA), should be adapted or extended to aid in alleviating this problem. Nanotechnology has been applied to several industrial and domestic fields, for example, applications for gas monitoring systems, gas leak detectors in factories, fire and toxic gas detectors, ventilation control, breath alcohol detectors, and the like. Here we report an application example of studying air quality monitoring based on nanotechnology `solid state gas sensors'. So as to carry out air pollution monitoring over an extensive area, a combination of ground measurements through inexpensive sensors and wireless GIS will be used for this purpose. This portable device, comprising solid state gas sensors integrated to a Personal Digital Assistant (PDA) linked through Bluetooth communication tools and Global Positioning System (GPS), will allow rapid dissemination of information on pollution levels at multiple sites simultaneously.

  1. Easily regenerable solid adsorbents based on polyamines for carbon dioxide capture from the air.

    Science.gov (United States)

    Goeppert, Alain; Zhang, Hang; Czaun, Miklos; May, Robert B; Prakash, G K Surya; Olah, George A; Narayanan, S R

    2014-05-01

    Adsorbents prepared easily by impregnation of fumed silica with polyethylenimine (PEI) are promising candidates for the capture of CO2 directly from the air. These inexpensive adsorbents have high CO2 adsorption capacity at ambient temperature and can be regenerated in repeated cycles under mild conditions. Despite the very low CO2 concentration, they are able to scrub efficiently all CO2 out of the air in the initial hours of the experiments. The influence of parameters such as PEI loading, adsorption and desorption temperature, particle size, and PEI molecular weight on the adsorption behavior were investigated. The mild regeneration temperatures required could allow the use of waste heat available in many industrial processes as well as solar heat. CO2 adsorption from the air has a number of applications. Removal of CO2 from a closed environment, such as a submarine or space vehicles, is essential for life support. The supply of CO2-free air is also critical for alkaline fuel cells and batteries. Direct air capture of CO2 could also help mitigate the rising concerns about atmospheric CO2 concentration and associated climatic changes, while, at the same time, provide the first step for an anthropogenic carbon cycle.

  2. Easily regenerable solid adsorbents based on polyamines for carbon dioxide capture from the air.

    Science.gov (United States)

    Goeppert, Alain; Zhang, Hang; Czaun, Miklos; May, Robert B; Prakash, G K Surya; Olah, George A; Narayanan, S R

    2014-05-01

    Adsorbents prepared easily by impregnation of fumed silica with polyethylenimine (PEI) are promising candidates for the capture of CO2 directly from the air. These inexpensive adsorbents have high CO2 adsorption capacity at ambient temperature and can be regenerated in repeated cycles under mild conditions. Despite the very low CO2 concentration, they are able to scrub efficiently all CO2 out of the air in the initial hours of the experiments. The influence of parameters such as PEI loading, adsorption and desorption temperature, particle size, and PEI molecular weight on the adsorption behavior were investigated. The mild regeneration temperatures required could allow the use of waste heat available in many industrial processes as well as solar heat. CO2 adsorption from the air has a number of applications. Removal of CO2 from a closed environment, such as a submarine or space vehicles, is essential for life support. The supply of CO2-free air is also critical for alkaline fuel cells and batteries. Direct air capture of CO2 could also help mitigate the rising concerns about atmospheric CO2 concentration and associated climatic changes, while, at the same time, provide the first step for an anthropogenic carbon cycle. PMID:24644023

  3. Prediction of air leakage and aerosol transport through concrete cracks with a fractal based crack morphology model

    Energy Technology Data Exchange (ETDEWEB)

    Bishnoi, L.R., E-mail: lrbishnoi@aerb.gov.in [Siting and Structural Engineering Division, Atomic Energy Regulatory Board, Mumbai 400 094 (India); Vedula, R.P., E-mail: rpv@iitb.ac.in [Mechanical Engineering Department, Indian Institute of Technology, Mumbai 400 076 (India)

    2013-12-15

    Highlights: • A fractal based numerical concrete crack morphology model is presented. • Computational studies conducted for airflow and aerosol transport through cracks. • Results are compared with experimental data and other empirical relations. • Comparative studies demonstrate model effectiveness and versatility of application. - Abstract: Cracks may appear in pressurized concrete containment of a nuclear power plant during a severe accident and provide leak paths for release of radioactive aerosols dispersed in the contained air. In this paper, a fractal based crack morphology model is presented for prediction of air leakage and aerosol transport through cracks in concrete. Airflow field generated in air leakage studies is used for aerosol transport studies with the Lagrangian discrete phase model using CFD code FLUENT. Computational studies conducted with the fractal based model are compared with the experimental data as well as the predictions from empirical relations available in open literature. The comparative studies demonstrate effectiveness of the proposed fractal based model and its versatility for practical applications.

  4. Improving environmental noise suppression for micronewton force sensing based on electrostatic by injecting air damping.

    Science.gov (United States)

    Zheng, Yelong; Song, Le; Hu, Gang; Zhao, Meirong; Tian, Yanling; Zhang, Zihui; Fang, Fengzhou

    2014-05-01

    A micro/nano force can be traced to the International System of Units by means of an electrostatic force balance weight system. However, the micro/nano force measurement system is susceptible to environmental disturbances. Various methods have been proposed to reduce the effect of environmental disturbances and obtain high resolution and fast response. In this paper, we introduce a combination of air damping and inherent damping from the internal molecular friction of spring suspension. This will optimize system stability and improve environmental noise suppression. Results from the air damping model show that the damping ratio increases from 0.0005 to 0.1, which improves the vibration resistance. We found that the system with air damping has the advantages of fast response and low scatter. PMID:24880403

  5. A genetic algorithm based stochastic programming model for air quality management

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    This paper presents a model that can aid planners in defining the total allowable pollutant discharge in the planning region,accounting for the dynamic and stochastic character of meteorological conditions.This is accomplished by integrating Monte Carlo simulation and using genetic algorithm to solve the model.The model is demonstrated by using a realistic air urban-scale SO2 control problem in the Yuxi City of China.To evaluate effectiveness of the model,results of the approach are shown to compare with those of the linear deterministic procedures.This paper also provides a valuable insight into how air quality targets should be made when the air pollutant will not threat the residents'health.Finally,a discussion of the areas for further research are briefly delineated.

  6. Local and regional interactions between air quality and climate in New Delhi- A sector based analysis

    Science.gov (United States)

    Marrapu, Pallavi

    Deteriorating air quality is one of the major problems faced worldwide and in particular in Asia. The world's most polluted megacities are located in Asia highlighting the urgent need for efforts to improve the air quality. New Delhi (India), one of the world's most polluted cities, was the host of the Common Wealth Games during the period of 4-14 October 2010. This high profile event provided a good opportunity to accelerate efforts to improve air quality. Computational advances now allow air quality forecast models to fully couple the meteorology with chemical constituents within a unified modeling system that allows two-way interactions. The WRF-Chem model is used to simulate air quality in New Delhi. The thesis focuses on evaluating air quality and meteorology feedbacks. Four nested domains ranging from South Asia, Northern India, NCR Delhi and Delhi city at 45km, 15km, 5km and 1.67km resolution for a period of 20 day (26th Sep--15th Oct, 2010) are used in the study. The predicted mean surface concentrations of various pollutants show similar spatial distributions with peak values in the middle of the domain reflecting the traffic and population patterns in the city. Along with these activities, construction dust and industrial emissions contribute to high levels of criteria pollutants. The study evaluates the WRF-Chem capabilities using a new emission inventory developed over Delhi at a fine resolution of 1.67km and evaluating the results with observational data from 11 monitoring sties placed at various Game venues. The contribution of emission sectors including transportation, power, industry, and domestic to pollutant concentrations at targeted regions are studied and the results show that transportation and domestic sector are the major contributors to the pollution levels in Delhi, followed by industry. Apart from these sectors, emissions outside of Delhi contribute 20-50% to surface concentrations depending on the species. This indicates that pollution

  7. Spatiotemporal variability of tetrachloroethylene in residential indoor air due to vapor intrusion: a longitudinal, community-based study.

    Science.gov (United States)

    Johnston, Jill E; Gibson, Jacqueline MacDonald

    2014-11-01

    The migration of volatile contaminants from groundwater and soil into indoor air is a potential health threat at thousands of contaminated sites across the country. This phenomenon, known as vapor intrusion, is characterized by spatial and temporal heterogeneity. This study examined short-term fluctuations in concentrations of tetrachloroethylene (PCE) in the indoor air of residential homes due to vapor intrusion in a community in San Antonio, Texas, that sits atop an extensive, shallow plume of contaminated groundwater. Using a community-based design, we removed potential indoor sources of PCE and then collected twelve 3-day passive indoor air samples in each of the 20 homes. Results demonstrated a one-order-of-magnitude variability in concentration across both space and time among the study homes, although all measured concentrations were below risk-based screening levels. We found that within any given home, indoor concentrations increase with the magnitude of the barometric pressure drop (P=0.048) and humidity (P<0.001), while concentrations decrease as wind speed increases (P<0.001) and also during winter (P=0.001). In a second analysis to examine sources of spatial variability, we found that indoor air PCE concentrations between homes increase with groundwater concentration (P=0.030) and a slab-on-grade (as compared with a crawl space) foundation (P=0.028), whereas concentrations decrease in homes without air conditioners (P=0.015). This study offers insights into the drivers of temporal and spatial variability in vapor intrusion that can inform decisions regarding monitoring and exposure assessment at affected sites.

  8. AQA-PM: Extension of the Air-Quality Model For Austria with Satellite based Particulate Matter Estimates

    Science.gov (United States)

    Hirtl, Marcus; Mantovani, Simone; Krüger, Bernd C.; Triebnig, Gerhard; Flandorfer, Claudia

    2013-04-01

    Air quality is a key element for the well-being and quality of life of European citizens. Air pollution measurements and modeling tools are essential for assessment of air quality according to EU legislation. The responsibilities of ZAMG as the national weather service of Austria include the support of the federal states and the public in questions connected to the protection of the environment in the frame of advisory and counseling services as well as expert opinions. The Air Quality model for Austria (AQA) is operated at ZAMG in cooperation with the University of Natural Resources and Life Sciences in Vienna (BOKU) by order of the regional governments since 2005. AQA conducts daily forecasts of gaseous and particulate (PM10) air pollutants over Austria. In the frame of the project AQA-PM (funded by FFG), satellite measurements of the Aerosol Optical Thickness (AOT) and ground-based PM10-measurements are combined to highly-resolved initial fields using regression- and assimilation techniques. For the model simulations WRF/Chem is used with a resolution of 3 km over the alpine region. Interfaces have been developed to account for the different measurements as input data. The available local emission inventories provided by the different Austrian regional governments were harmonized and used for the model simulations. An episode in February 2010 is chosen for the model evaluation. During that month exceedances of PM10-thresholds occurred at many measurement stations of the Austrian network. Different model runs (only model/only ground stations assimilated/satellite and ground stations assimilated) are compared to the respective measurements. The goal of this project is to improve the PM10-forecasts for Austria with the integration of satellite based measurements and to provide a comprehensive product-platform.

  9. A SnO2-Based Cathode Catalyst for Lithium-Air Batteries.

    Science.gov (United States)

    Mei, Delong; Yuan, Xianxia; Ma, Zhong; Wei, Ping; Yu, Xuebin; Yang, Jun; Ma, Zi-Feng

    2016-05-25

    SnO2 and SnO2@C have been successfully synthesized with a simple hydrothermal procedure combined with heat treatment, and their performance as cathode catalysts of Li-air batteries has been comparatively evaluated and discussed. The results show that both SnO2 and SnO2@C are capable of catalyzing oxygen reduction reactions (ORR) and oxygen evolution reactions (OER) at the cathode of Li-air batteries, but the battery with SnO2@C displays better performance due to its unique higher conductivity, larger surface area, complex pore distribution, and huge internal space. PMID:27152996

  10. Calculation software for efficiency and penetration of a fibrous filter medium based on the mathematical models of air filtration

    OpenAIRE

    Kouropoulos, Giorgos

    2014-01-01

    At this article will be created a software written in visual basic for efficiency and penetration calculation in a fibrous filter medium for given values of particles diameter that are retained in the filter. Initially, will become report of mathematical models of air filtration in fibrous filters media and then will develop the code and the graphical interface of application, that are the base for software creation in the visual basic platform.

  11. Incidence and prevalence of lupus in Buenos Aires, Argentina: a 11-year health management organisation-based study

    OpenAIRE

    Scolnik, M; Marin, J.; Valeiras, S M; Marchese, M F; Talani, A S; Avellaneda, N L; Etchepare, A; Etchepare, P; Plou, M S; Soriano, E. R.

    2014-01-01

    Objectives Studies regarding the epidemiology of systemic lupus erythematosus (SLE) are lacking in Argentina. Our purpose was to estimate the incidence and prevalence of SLE in a university hospital-based health management organisation in Buenos Aires (HIMCP). Methods For incidence calculation, the population at risk included all adult members of the HIMCP, with continuous affiliation for at least 1 year from January 1998 to January 2009. Each person was followed until he/she voluntarily left...

  12. OAFlux Satellite-Based High-Resolution Analysis of Air-Sea Turbulent Heat, Moisture, and Momentum Fluxes

    Science.gov (United States)

    Yu, Lisan

    2016-04-01

    The Objectively Analyzed air-sea Fluxes (OAFlux) project at the Woods Hole Oceanographic Institution has recently developed a new suite of products: the satellite-based high-resolution (HR) air-sea turbulent heat, moisture, and momentum fluxes over the global ocean from 1987 to the present. The OAFlux-HR fluxes are computed from the COARE bulk algorithm using air-sea variables (vector wind, near-surface humidity and temperature, and ocean surface temperature) derived from multiple satellite sensors and multiple missions. The vector wind time series are merged from 14 satellite sensors, including 4 scatterometers and 10 passive microwave radiometers. The near-surface humidity and temperature time series are retrieved from 11 satellite sensors, including 7 microwave imagers and 4 microwave sounders. The endeavor has greatly improved the depiction of the air-sea turbulent exchange on the frontal and meso-scales. The OAFlux-HR turbulent flux products are valuable datasets for a broad range of studies, including the study of the long-term change and variability in the oean-surface forcing functions, quantification of the large-scale budgets of mass, heat, and freshwater, and assessing the role of the ocean in the change and variability of the Earth's climate.

  13. Outbreak of acute gastroenteritis in an air force base in Western Greece

    Directory of Open Access Journals (Sweden)

    Kolokotronis Theodoros

    2006-10-01

    Full Text Available Abstract Background On the 20th September 2005, soldiers and staff at the Air Force base in Western Greece experienced an outbreak of acute gastroenteritis. The purpose of this study was to identify the agent and the source of the outbreak in order to develop control measures and to avoid similar outbreaks in the future. Methods A case-control analytical approach was employed with 100 randomly selected cases and 66 controls. Patients completed standardized questionnaires, odds ratios were calculated and statistical significance was determined using χ2 test. In addition, to identify the source of the infection, we performed bacteriological examination of food samples (included raw beef, cooked minced meat, grated cheese and grated cheese in sealed package collected from the cuisine of the military unit. Results More than 600 out of the 1,050 individuals who ate lunch that day, became ill. The overall attack rate, as the military doctor of the unit estimated it, was at least 60%. The overall odds ratio of gastroenteritis among those who had lunch was 370 (95% CI: 48–7700 as compared to those who didn't eat lunch. Among the symptoms the most prominent were watery diarrhoea (96% and abdominal pain (73%. The mean incubation period was 9 h and the median duration of the symptoms was 21 h. In the bacteriological examination, Staphylococcus aureus was detected in a sample of raw beef (2,000 cfu per g and in two samples of grated cheese; leftover cheese from lunch (7,800 cfu per g and an unopened package purchased from the market (3,000 cfu per g. Conclusion The findings of this study suggest that the aetiological agent of this outbreak was S. aureus. The food vehicle was the grated cheese, which was mixed with the beef and served for lunch in the military unit. This outbreak highlights the capacity of enterotoxin-producing bacteria to cause short term, moderately-severe illness in a young and healthy population. It underscores the need for proper

  14. 76 FR 75453 - Restricted Areas and Danger Zones at Eglin Air Force Base, FL

    Science.gov (United States)

    2011-12-02

    .... The proposed regulations were published in the December 28, 2009, issue of the Federal Register (74 FR... Department of the Army, Corps of Engineers 33 CFR Part 334 Restricted Areas and Danger Zones at Eglin Air...: The U.S. Army Corps of Engineers (Corps) is amending its restricted area/danger zone regulations...

  15. Enhanced, multi criteria based site selection to measure mobile source toxic air pollutants

    Science.gov (United States)

    Research studies being conducted by the U.S. Environmental Protection Agency in collaboration with the U.S. Federal Highway Administration are designed to establish relationships between concentrations of highway vehicle air pollutants and variations in these concentrations as a ...

  16. 75 FR 958 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; 2002 Base Year Emission...

    Science.gov (United States)

    2010-01-07

    ...-road small gasoline engines, non-road diesel engines (Tier I and Tier II), marine engine standards... information on contingency measures, see the April 16, 1992 General Preamble (57 FR 13512) and the November 29... national ambient air quality standard (NAAQS) and demonstrates further progress in reducing...

  17. Agent-based modeling and simulation of emergent behavior in air transportation

    NARCIS (Netherlands)

    Bouarfa, S.; Blom, H.A.P.; Curran, R.; Everdij, M.H.C.

    2013-01-01

    Purpose Commercial aviation is feasible thanks to the complex socio-technical air transportation system, which involves interactions between human operators, technical systems, and procedures. In view of the expected growth in commercial aviation, significant changes in this socio-technical system a

  18. Modelling of human exposure to air pollution in the urban environment: a GPS-based approach.

    Science.gov (United States)

    Dias, Daniela; Tchepel, Oxana

    2014-03-01

    The main objective of this work was the development of a new modelling tool for quantification of human exposure to traffic-related air pollution within distinct microenvironments by using a novel approach for trajectory analysis of the individuals. For this purpose, mobile phones with Global Positioning System technology have been used to collect daily trajectories of the individuals with higher temporal resolution and a trajectory data mining, and geo-spatial analysis algorithm was developed and implemented within a Geographical Information System to obtain time-activity patterns. These data were combined with air pollutant concentrations estimated for several microenvironments. In addition to outdoor, pollutant concentrations in distinct indoor microenvironments are characterised using a probabilistic approach. An example of the application for PM2.5 is presented and discussed. The results obtained for daily average individual exposure correspond to a mean value of 10.6 and 6.0-16.4 μg m(-3) in terms of 5th-95th percentiles. Analysis of the results shows that the use of point air quality measurements for exposure assessment will not explain the intra- and inter-variability of individuals' exposure levels. The methodology developed and implemented in this work provides time-sequence of the exposure events thus making possible association of the exposure with the individual activities and delivers main statistics on individual's air pollution exposure with high spatio-temporal resolution.

  19. Simulation of Population-Based Commuter Exposure to NO2 Using Different Air Pollution Models

    Directory of Open Access Journals (Sweden)

    Martina S. Ragettli

    2014-05-01

    Full Text Available We simulated commuter routes and long-term exposure to traffic-related air pollution during commute in a representative population sample in Basel (Switzerland, and evaluated three air pollution models with different spatial resolution for estimating commute exposures to nitrogen dioxide (NO2 as a marker of long-term exposure to traffic-related air pollution. Our approach includes spatially and temporally resolved data on actual commuter routes, travel modes and three air pollution models. Annual mean NO2 commuter exposures were similar between models. However, we found more within-city and within-subject variability in annual mean (±SD NO2 commuter exposure with a high resolution dispersion model (40 ± 7 µg m−3, range: 21–61 than with a dispersion model with a lower resolution (39 ± 5 µg m−3; range: 24–51, and a land use regression model (41 ± 5 µg m−3; range: 24–54. Highest median cumulative exposures were calculated along motorized transport and bicycle routes, and the lowest for walking. For estimating commuter exposure within a city and being interested also in small-scale variability between roads, a model with a high resolution is recommended. For larger scale epidemiological health assessment studies, models with a coarser spatial resolution are likely sufficient, especially when study areas include suburban and rural areas.

  20. Exposure-response functions for health effects of air pollutants based on epidemiological findings

    Energy Technology Data Exchange (ETDEWEB)

    Aunan, K.

    1995-10-01

    The objective of this report is to provide exposure-response functions for health effects and air pollution, which can be used in cost-effectiveness analyses of abatement measures. When cost-effective abatement strategies for air pollution are analyzed, and when air quality standards are set, it is important to have quantitative knowledge about health damage. In spite of their shortcomings, epidemiological studies provide a sound basis for exposure-response functions because they involve a random cross section of the population. In this report the exposure-response functions apply to the relation between air pollutant concentrations and relative effect frequencies, and involve the following health effect end-points: acute and chronic respiratory symptoms in children and adults, asthma episodes in children and adults, eye irritations, headache, lung damage in children, excess mortality, lung cancer incidence. The effects are attributed to one indicator component, which in many cases is particles, but for some effects NO{sub 2}, SO{sub 2}, O{sub 3}, or CO. A calculation procedure is suggested which makes it possible to estimate excess annual symptom-days for short-term effects using the annual average concentration. 103 refs., 1 table

  1. Agent-Based Modelling and Simulation of Safety and Resilience in Air Transportation

    NARCIS (Netherlands)

    Bouarfa, S.

    2015-01-01

    Purpose: In order to improve the safety, capacity, economy, and sustainability of air transportation, revolutionary changes are required. These changes might range from the introduction of new technology and operational procedures to unprecedented roles of human operators and the way they interact.

  2. Acid-base regulation in intensively farmed air-breathing fish

    DEFF Research Database (Denmark)

    Bayley, Mark; Damsgaard, Christian; Thomsen, Mikkel;

    Hypercapnia in slow moving organically loaded tropical waters is a natural occurrence with several records of pCO2 at 60 mm Hg. Despite this, studies on South American air-breathing fish have revealed a low capacity for extracellular pH (pHe) regulation. The two underlying reasons proposed are; 1...

  3. Wastewater characterization survey, Charlotte Air National Guard Base, North Carolina. Final report, 1-9 March 1994

    Energy Technology Data Exchange (ETDEWEB)

    Williston, C.A.; Hemenway, D.A.

    1995-06-01

    Personnel from the Armstrong Laboratory Water Quality Branch conducted a wastewater characterization survey for the 145th TAC Clinic, Charlotte Air National Guard Base, North Carolina, from 1-9 March 1994. The scope of the survey was to sample waste water throughout the base to determine if significant pollutant concentrations exist in the wastwater discharge, and how much is coming onto the base from the commercial operations located adjacent to the base. The base currently has very stringent permit levels and the three effluent sampling locations indicated that the sanitary discharge does exceed these levels. The parameters that exceed these limits are: metals, BOD, and Total Suspended Solids. These constituents are at levels typical of sanitary sewage, and the permit levels should be renegotiated. The base also ask that we evaluate the Geographically Separated Unit (GSU) located at Badin NC. The sanitary did not appear unusual for the operations conducted there, however the potable water did contain some chlorinated solvents. (AN).

  4. Countervailing effects of income, air pollution, smoking, and obesity on aging and life expectancy: population-based study of U.S. Counties

    OpenAIRE

    Allen, Ryan T.; Hales, Nicholas M.; Baccarelli, Andrea; Jerrett, Michael; Ezzati, Majid; Dockery, Douglas W.; Pope, C. Arden

    2016-01-01

    Background Income, air pollution, obesity, and smoking are primary factors associated with human health and longevity in population-based studies. These four factors may have countervailing impacts on longevity. This analysis investigates longevity trade-offs between air pollution and income, and explores how relative effects of income and air pollution on human longevity are potentially influenced by accounting for smoking and obesity. Methods County-level data from 2,996 U.S. counties were ...

  5. Evaluating the effect of human activity patterns on air pollution exposure using an integrated field-based and agent-based modelling framework

    Science.gov (United States)

    Schmitz, Oliver; Beelen, Rob M. J.; de Bakker, Merijn P.; Karssenberg, Derek

    2015-04-01

    Constructing spatio-temporal numerical models to support risk assessment, such as assessing the exposure of humans to air pollution, often requires the integration of field-based and agent-based modelling approaches. Continuous environmental variables such as air pollution are best represented using the field-based approach which considers phenomena as continuous fields having attribute values at all locations. When calculating human exposure to such pollutants it is, however, preferable to consider the population as a set of individuals each with a particular activity pattern. This would allow to account for the spatio-temporal variation in a pollutant along the space-time paths travelled by individuals, determined, for example, by home and work locations, road network, and travel times. Modelling this activity pattern requires an agent-based or individual based modelling approach. In general, field- and agent-based models are constructed with the help of separate software tools, while both approaches should play together in an interacting way and preferably should be combined into one modelling framework, which would allow for efficient and effective implementation of models by domain specialists. To overcome this lack in integrated modelling frameworks, we aim at the development of concepts and software for an integrated field-based and agent-based modelling framework. Concepts merging field- and agent-based modelling were implemented by extending PCRaster (http://www.pcraster.eu), a field-based modelling library implemented in C++, with components for 1) representation of discrete, mobile, agents, 2) spatial networks and algorithms by integrating the NetworkX library (http://networkx.github.io), allowing therefore to calculate e.g. shortest routes or total transport costs between locations, and 3) functions for field-network interactions, allowing to assign field-based attribute values to networks (i.e. as edge weights), such as aggregated or averaged

  6. In-car particles and cardiovascular health: an air conditioning-based intervention study.

    Science.gov (United States)

    Chuang, Hsiao-Chi; Lin, Lian-Yu; Hsu, Ya-Wen; Ma, Chih-Ming; Chuang, Kai-Jen

    2013-05-01

    Exposure to traffic-related particulate matter (PM) is considered a potential risk for cardiovascular events. Little is known about whether improving air quality in car can modify cardiovascular effects among human subjects during commuting. We recruited a panel of 60 healthy subjects to commute for 2 h by a car equipped with an air conditioning (AC) system during the morning rush hour in Taipei. Operation modes of AC system using outside air (OA-mode), circulating inside air (IA-mode) and turning off (Off-mode) were examined. Repeated measurements of heart rate variability (HRV) indices, PM≤2.5 μm in aerodynamic diameter (PM2.5) and noise level were conducted for each participant in different modes during the commute. We used linear mixed-effects models to associate HRV indices with in-car PM2.5. We found that decreases in HRV indices were associated with increased levels of in-car PM2.5. For Off-mode, an interquartile range (IQR) increase in in-car PM2.5 with 15-min moving average was associated with 2.7% and 4.1% decreases in standard deviation of NN intervals (SDNN) and the square root of the mean of the sum of the squares of differences between adjacent NN intervals (r-MSSD), respectively. During OA and IA modes, participants showed slight decreases in SDNN (OA mode: 0.1%; IA mode: 1.3%) and r-MSSD (OA mode: 1.1%; IA mode: 1.8%) by an IQR increase in in-car PM2.5 with 15-min moving average. We concluded that in-car PM2.5 is associated with autonomic alteration. Utilization of the car's AC system can improve air quality and modify the effects of in-car PM2.5 on HRV indices among human subjects during the commute.

  7. Assessing Expected Fractional Damage of Above-ground Buildings from Air-to-surface Weapons based on Indirect Fire Concept

    OpenAIRE

    Jong Yil Park

    2010-01-01

    For the expected fractional damage of building targets from air-to-surface weapons, the US has used the JMEM/AS method, which is based on the direct-fire concept. However, the damage redistribution assumption in the direct-fire concept could induce serious errors in damage estimation of building targets. In this paper, a method for the expected fractional damage of building targets is proposed based on the indirect-fire concept. From the proposed model, it is shown that the joint munitions ef...

  8. An empirically grounded agent based model for modeling directs, conflict detection and resolution operations in Air Traffic Management

    CERN Document Server

    Bongiorno, C; Mantegna, Rosario N

    2016-01-01

    We present an agent based model of the Air Traffic Management socio-technical complex system that aims at modeling the interactions between aircrafts and air traffic controllers at a tactical level. The core of the model is given by the conflict detection and resolution module and by the directs module. Directs are flight shortcuts that are given by air controllers to speed up the passage of an aircraft within a certain airspace and therefore to facilitate airline operations. Conflicts resolution between flight trajectories can arise during the en-route phase of each flight due to both not detailed flight trajectory planning or unforeseen events that perturb the planned flight plan. Our model performs a local conflict detection and resolution procedure. Once a flight trajectory has been made conflict-free, the model searches for possible improvements of the system efficiency by issuing directs. We give an example of model calibration based on real data. We then provide an illustration of the capability of our...

  9. Energy-efficient wastewater treatment via the air-based, hybrid membrane biofilm reactor (hybrid MfBR).

    Science.gov (United States)

    Aybar, M; Pizarro, G; Boltz, J P; Downing, L; Nerenberg, R

    2014-01-01

    We used modeling to predict the energy and cost savings associated with the air-based, hybrid membrane-biofilm reactor (hybrid MfBR). This process is obtained by replacing fine-bubble diffusers in conventional activated sludge with air-supplying, hollow-fiber membrane modules. Evaluated processes included removal of chemical oxygen demand (COD), combined COD and total nitrogen (TN) removal, and hybrid growth (biofilm and suspended). Target concentrations of COD and TN were based on high-stringency water reuse scenarios. Results showed reductions in power requirements as high as 86%. The decrease mainly resulted from the dramatically lower air flows for the MBfR, resulting from its higher oxygen-transfer efficiencies. When the MBfR was used for COD and TN removal, savings up to US$200/1,000 m(3) of treated water were predicted. Cost savings were highly sensitive to the costs of the membrane modules and electrical power. The costs were also very sensitive to membrane oxidation flux for ammonia, and the membrane life. These results suggest the hybrid MBfR may provide significant savings in energy and costs. Further research on the identified key parameters can help confirm these modeling predictions and facilitate scale-up. PMID:24759536

  10. Adaptive neuro-fuzzy based inferential sensor model for estimating the average air temperature in space heating systems

    Energy Technology Data Exchange (ETDEWEB)

    Jassar, S.; Zhao, L. [Department of Electrical and Computer Engineering, Ryerson University, 350 Victoria Street, Toronto, ON (Canada); Liao, Z. [Department of Architectural Science, Ryerson University (Canada)

    2009-08-15

    The heating systems are conventionally controlled by open-loop control systems because of the absence of practical methods for estimating average air temperature in the built environment. An inferential sensor model, based on adaptive neuro-fuzzy inference system modeling, for estimating the average air temperature in multi-zone space heating systems is developed. This modeling technique has the advantage of expert knowledge of fuzzy inference systems (FISs) and learning capability of artificial neural networks (ANNs). A hybrid learning algorithm, which combines the least-square method and the back-propagation algorithm, is used to identify the parameters of the network. This paper describes an adaptive network based inferential sensor that can be used to design closed-loop control for space heating systems. The research aims to improve the overall performance of heating systems, in terms of energy efficiency and thermal comfort. The average air temperature results estimated by using the developed model are strongly in agreement with the experimental results. (author)

  11. Threatened and Endangered Species Survey for Patrick Air Force Base, Florida

    Science.gov (United States)

    Oddy, Donna M.; Stolen, Eric D.; Schmalzer, Paul A.; Larson, Vickie L.; Hall, Patrice; Hensley, Melissa A.

    1997-01-01

    A review of previous environmental work conducted at Patrick Air Force Base (PAFB) indicated that several threatened, endangered, or species of special concern occurred or had the potential to occur there. This study was implemented to collect more information on protected species at PAFB. A map of landcover types was prepared for PAFB using aerial photography, groundtruthing, and a geographic information system (GIS). Herbaceous vegetation was the most common vegetation type. The second most abundant vegetation type was disturbed shrubs/exotics. The beach and associated dune vegetation comprised 3.2% of the land area, but was the most extensive natural community within PAFB. A few isolated mangrove communities exist along the Banana River. Seventy-seven species of vascular plants occurred on the dunes, including four species listed by state agencies: spider lily (Hymenocallis latifolia), prickly pear cactus (Opuntia stricta), beach star (Remirea maritima), and inkberry (Scaevola plumien). Surveys of other habitats revealed eighty-four species of vascular plants including two state-listed species: spider lily and prickly pear cactus. Many of these areas are dominated by invasive, exotic species, particularly Brazilian pepper (Schinus terebinthifolius) and Australian pine (Casuarina equisetifolia), and native species of open or disturbed sites such as camphorweed (Heterotheca subaxillaris) and beardgrass (Andropogon spp.). Due to the isolation of PAFB from other natural areas, most exotic plant populations on the base are not an immediate threat to intact native plant communities. Dune habitat was surveyed for the southeastem beach mouse (Peromyscus polionotus niveiventris) by quarterly trapping along eight 100 m transects. No beach mice were found. The limited extent of dune habitat, its fragmented condition, and the isolation of PAFB from extant populations of the beach mouse probably accounts for its absence. Surveys of birds on PAFB found an avifauna

  12. GIS-based Analysis of Main Air Pollutants of Changchun City in Summer

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    To gain a better understanding of the characteristics of air pollution of Changchun city, P. R. China, in summer, the analytical methods of geographical information system(GIS) and statistical analysis software SPSS were applied to the analysis of the monitored concentrations of SO2, NO2, and O3 in July of 2002 to 2004 in Changchun city. The results obtained show that the average hourly O3 concentrations in July 2002 and 2004 were higher than the first-level hourly standard of China. At the same time, the dynamic distribution of the O3 concentration and the relationship between the concentration of O3 and that of NOx were studied. The air quality evaluation result of Changchun city indicates that the southwest of this city was heavily polluted during the monitored period.

  13. Participant-Based Monitoring of Indoor and Outdoor Nitrogen Dioxide, Volatile Organic Compounds, and Polycyclic Aromatic Hydrocarbons among MICA-Air Households

    Science.gov (United States)

    The Mechanistic Indicators of Childhood Asthma (MICA) study in Detroit, Michigan introduced a participant-based approach to reduce the resource burden associated with collection of indoor and outdoor residential air sampling data. A subset of participants designated as MICA-Air c...

  14. Results from prototypes of environmental and health alarm devices based on gaseous detectors operating in air in counting mode

    CERN Document Server

    Martinengo, P; Peskov, V; Benaben, P; Charpak, G; Breuil, P

    2011-01-01

    We have developed and successfully tested two prototypes of detectors of dangerous gases based on wire-type counters operating in air in avalanche mode: one is for radon (Rn) detection whereas the other one is for the detection of gases with an ionization potential less than the air components. Due to the operation in pulse counting mode these prototypes have sensitivities comparable to (in the case of the Rn detector) or much higher than (in the case of the detector for low ionization gases) the best commercial devices currently available on the market. We believe that due to their high sensitivity, simplicity and low cost such new detectors will find massive applications. One of them, discussed in this paper, could be the on-line monitoring of Rn for the prediction of earthquakes. (C) 2010 Elsevier B.V. All rights reserved.

  15. Modeling natural emissions in the Community Multiscale Air Quality (CMAQ Model–I: building an emissions data base

    Directory of Open Access Journals (Sweden)

    S. F. Mueller

    2010-05-01

    Full Text Available A natural emissions inventory for the continental United States and surrounding territories is needed in order to use the US Environmental Protection Agency Community Multiscale Air Quality (CMAQ Model for simulating natural air quality. The CMAQ air modeling system (including the Sparse Matrix Operator Kernel Emissions (SMOKE emissions processing system currently estimates non-methane volatile organic compound (NMVOC emissions from biogenic sources, nitrogen oxide (NOx emissions from soils, ammonia from animals, several types of particulate and reactive gas emissions from fires, as well as sea salt emissions. However, there are several emission categories that are not commonly treated by the standard CMAQ Model system. Most notable among these are nitrogen oxide emissions from lightning, reduced sulfur emissions from oceans, geothermal features and other continental sources, windblown dust particulate, and reactive chlorine gas emissions linked with sea salt chloride. A review of past emissions modeling work and existing global emissions data bases provides information and data necessary for preparing a more complete natural emissions data base for CMAQ applications. A model-ready natural emissions data base is developed to complement the anthropogenic emissions inventory used by the VISTAS Regional Planning Organization in its work analyzing regional haze based on the year 2002. This new data base covers a modeling domain that includes the continental United States plus large portions of Canada, Mexico and surrounding oceans. Comparing July 2002 source data reveals that natural emissions account for 16% of total gaseous sulfur (sulfur dioxide, dimethylsulfide and hydrogen sulfide, 44% of total NOx, 80% of reactive carbonaceous gases (NMVOCs and carbon monoxide, 28% of ammonia, 96% of total chlorine (hydrochloric acid, nitryl chloride and sea salt chloride, and 84% of fine particles (i.e., those smaller than 2.5 μm in size released into the

  16. Modeling natural emissions in the Community Multiscale Air Quality (CMAQ model – Part 1: Building an emissions data base

    Directory of Open Access Journals (Sweden)

    S. N. Smith

    2010-01-01

    Full Text Available A natural emissions inventory for the continental United States and surrounding territories is needed in order to use the US Environmental Protection Agency Community Multiscale Air Quality (CMAQ Model for simulating natural air quality. The CMAQ air modeling system (including the Sparse Matrix Operator Kernel Emissions (SMOKE emissions processing system currently estimates volatile organic compound (VOC emissions from biogenic sources, nitrogen oxide (NOx emissions from soils, ammonia from animals, several types of particulate and reactive gas emissions from fires, as well as windblown dust and sea salt emissions. However, there are several emission categories that are not commonly treated by the standard CMAQ Model system. Most notable among these are nitrogen oxide emissions from lightning, reduced sulfur emissions from oceans, geothermal features and other continental sources, and reactive chlorine gas emissions linked with sea salt chloride. A review of past emissions modeling work and existing global emissions data bases provides information and data necessary for preparing a more complete natural emissions data base for CMAQ applications. A model-ready natural emissions data base is developed to complement the anthropogenic emissions inventory used by the VISTAS Regional Planning Organization in its work analyzing regional haze based on the year 2002. This new data base covers a modeling domain that includes the continental United States plus large portions of Canada, Mexico and surrounding oceans. Comparing July 2002 source data reveals that natural emissions account for 16% of total gaseous sulfur (sulfur dioxide, dimethylsulfide and hydrogen sulfide, 44% of total NOx, 80% of reactive carbonaceous gases (VOCs and carbon monoxide, 28% of ammonia, 96% of total chlorine (hydrochloric acid, nitryl chloride and sea salt chloride, and 84% of fine particles (i.e., those smaller than 2.5 μm in size released into the

  17. Modeling natural emissions in the Community Multiscale Air Quality (CMAQ) Model-I: building an emissions data base

    Science.gov (United States)

    Smith, S. N.; Mueller, S. F.

    2010-05-01

    A natural emissions inventory for the continental United States and surrounding territories is needed in order to use the US Environmental Protection Agency Community Multiscale Air Quality (CMAQ) Model for simulating natural air quality. The CMAQ air modeling system (including the Sparse Matrix Operator Kernel Emissions (SMOKE) emissions processing system) currently estimates non-methane volatile organic compound (NMVOC) emissions from biogenic sources, nitrogen oxide (NOx) emissions from soils, ammonia from animals, several types of particulate and reactive gas emissions from fires, as well as sea salt emissions. However, there are several emission categories that are not commonly treated by the standard CMAQ Model system. Most notable among these are nitrogen oxide emissions from lightning, reduced sulfur emissions from oceans, geothermal features and other continental sources, windblown dust particulate, and reactive chlorine gas emissions linked with sea salt chloride. A review of past emissions modeling work and existing global emissions data bases provides information and data necessary for preparing a more complete natural emissions data base for CMAQ applications. A model-ready natural emissions data base is developed to complement the anthropogenic emissions inventory used by the VISTAS Regional Planning Organization in its work analyzing regional haze based on the year 2002. This new data base covers a modeling domain that includes the continental United States plus large portions of Canada, Mexico and surrounding oceans. Comparing July 2002 source data reveals that natural emissions account for 16% of total gaseous sulfur (sulfur dioxide, dimethylsulfide and hydrogen sulfide), 44% of total NOx, 80% of reactive carbonaceous gases (NMVOCs and carbon monoxide), 28% of ammonia, 96% of total chlorine (hydrochloric acid, nitryl chloride and sea salt chloride), and 84% of fine particles (i.e., those smaller than 2.5 μm in size) released into the atmosphere

  18. Modeling natural emissions in the Community Multiscale Air Quality (CMAQ) model - Part 1: Building an emissions data base

    Science.gov (United States)

    Smith, S. N.; Mueller, S. F.

    2010-01-01

    A natural emissions inventory for the continental United States and surrounding territories is needed in order to use the US Environmental Protection Agency Community Multiscale Air Quality (CMAQ) Model for simulating natural air quality. The CMAQ air modeling system (including the Sparse Matrix Operator Kernel Emissions (SMOKE) emissions processing system) currently estimates volatile organic compound (VOC) emissions from biogenic sources, nitrogen oxide (NOx) emissions from soils, ammonia from animals, several types of particulate and reactive gas emissions from fires, as well as windblown dust and sea salt emissions. However, there are several emission categories that are not commonly treated by the standard CMAQ Model system. Most notable among these are nitrogen oxide emissions from lightning, reduced sulfur emissions from oceans, geothermal features and other continental sources, and reactive chlorine gas emissions linked with sea salt chloride. A review of past emissions modeling work and existing global emissions data bases provides information and data necessary for preparing a more complete natural emissions data base for CMAQ applications. A model-ready natural emissions data base is developed to complement the anthropogenic emissions inventory used by the VISTAS Regional Planning Organization in its work analyzing regional haze based on the year 2002. This new data base covers a modeling domain that includes the continental United States plus large portions of Canada, Mexico and surrounding oceans. Comparing July 2002 source data reveals that natural emissions account for 16% of total gaseous sulfur (sulfur dioxide, dimethylsulfide and hydrogen sulfide), 44% of total NOx, 80% of reactive carbonaceous gases (VOCs and carbon monoxide), 28% of ammonia, 96% of total chlorine (hydrochloric acid, nitryl chloride and sea salt chloride), and 84% of fine particles (i.e., those smaller than 2.5 μm in size) released into the atmosphere. The seasonality and

  19. Simulation of air shower image in fluorescence light based on energy deposits derived from CORSIKA

    OpenAIRE

    Gora, D.; Heck, D.; Homola, P.; Klages, H.; Pekala, J.; Risse, M.; Wilczynska, B.; Wilczynski, H.

    2004-01-01

    Spatial distributions of energy deposited by an extensive air shower in the atmosphere through ionization, as obtained from the CORSIKA simulation program, are used to find the fluorescence light distribution in the optical image of the shower. The shower image derived in this way is somewhat smaller than that obtained from the NKG lateral distribution of particles in the shower. The size of the image shows a small dependence on the primary particle type.

  20. Automobile air pollution: public health (citations from the NTIS data base). Report for 1964-Mar 80

    Energy Technology Data Exchange (ETDEWEB)

    Cavagnaro, D.M.

    1980-03-01

    The annotated bibliography deals with information on the human effects of the major components of automobile exhaust gases. These include carbon monoxide, nitrogen oxides, aldehydes, hydrocarbons, and lead. Also included are data on platinum, palladium, and manganese salts, which are exhausts from air pollution control devices, specifically catalytic converters. Studies which do not identify the automobile as the source of these gases have been excluded. (This updated bibliography contains 75 abstracts, 5 of which are new entries to the previous edition.)

  1. Fault Detection And Diagnosis For Air Conditioners And Heat Pumps Based On Virtual Sensors

    OpenAIRE

    Kim, Woohyun

    2013-01-01

    The primary goal of this research is to develop and demonstrate an integrated, on-line performance monitoring and diagnostic system with low cost sensors for air conditioning and heat pump equipment. Automated fault detection and diagnostics (FDD) has the potential for improving energy efficiency along with reducing service costs and comfort complaints. To achieve this goal, virtual sensors with low cost measurements and simple models were developed to estimate quantities that would be expens...

  2. Pattern recognition methods and air pollution source identification. [based on wind direction

    Science.gov (United States)

    Leibecki, H. F.; King, R. B.

    1978-01-01

    Directional air samplers, used for resolving suspended particulate matter on the basis of time and wind direction were used to assess the feasibility of characterizing and identifying emission source types in urban multisource environments. Filters were evaluated for 16 elements and X-ray fluorescence methods yielded elemental concentrations for direction, day, and the interaction of direction and day. Large numbers of samples are necessary to compensate for large day-to-day variations caused by wind perturbations and/or source changes.

  3. Agent-based modeling and simulation of emergent behavior in air transportation

    OpenAIRE

    Bouarfa, S.; Blom, H.A.P.; Curran, R.; Everdij, M.H.C.

    2013-01-01

    Purpose Commercial aviation is feasible thanks to the complex socio-technical air transportation system, which involves interactions between human operators, technical systems, and procedures. In view of the expected growth in commercial aviation, significant changes in this socio-technical system are in development both in the USA and Europe. Such a complex socio-technical system may generate various types of emergent behavior, which may range from simple emergence, through weak emergence, u...

  4. Simulation based energy consumption calculation of an office building using solar-assisted air conditioning

    OpenAIRE

    Thomas, Sébastien; Andre, Philippe

    2008-01-01

    To minimize environmental impact and CO2 production associated with air-conditioning system operation, it is reasonable to evaluate the prospects of a clean energy source. The targets of the study are to evaluate cooling energy consumption to maintain thermal comfort in an office building and to point out solar energy to satisfy these cooling needs. Simulations were carried out with three different cooling systems in the same operating conditions to determine as accurately as possible the pot...

  5. An overview of the Noncyanide Metal Stripper program conducted at Kelly Air Force Base

    Energy Technology Data Exchange (ETDEWEB)

    Argyle, M.D.; Cowan, R.L.

    1995-01-01

    The Noncyanide Metal Stripper Program was a waste minimization effort aimed at identifying and testing suitable noncyanide stripping solutions that could replace the cyanide stripping solutions found in the United States Air Force (USAF) Air Logistics Centers (ALC). The program started with laboratory testing of commercial stripping solutions. The performance of these solutions was compared with the cyanide process solutions C-101 and C-106 targeted for replacement. Plate metal stripping rate, basis metal corrosion, and compatibility with masking materials and biodegradability were all used to determine the performance of each product. Those products that passed the acceptance criteria were field tested using 25 to 50-gallon solutions to determine optimum operating conditions, stripper maintenance requirements, and maximum solution loading and longevity. The program included investigating any adverse effects these new products might have on existing chemical and biological waste treatment processes. All cyanide stripping solutions at the San Antonio Air Logistics Command Center have been successfully replaced with commercial noncyanide products. Generally, these replacements were less toxic and generated less waste and had longer lifetimes than their cyanide counterparts.

  6. Loyalty programmes as a direct sales platform: a cardholder segmentation based on air flight redemptions

    Directory of Open Access Journals (Sweden)

    José Manuel Ponzoa Casado

    2010-12-01

    Full Text Available There are increasingly more loyalty programmes that offer cardholders the opportunity of buying additional programme points or obtaining rewards, such as package holidays or air flights, by paying some of the cost in cash. This feature of the programmes, together with their very nature and structure and the current situation in which the tourism sector finds itself, has allowed for their development as sales platforms offering services directly to their members.This work discusses the potential of such programmes as a tool for a better knowledge and segmentation of customers by differentiating between them on the basis of those who redeem their rewards on a points-only basis and those that do so using points-plus-cash.Using information from a leading, Spanish, multi-sponsor, loyalty programme, this article analyses the importance of redeeming air tickets only, as against other rewards, and cash contributions as a means of completing the redemption transaction. By means of decision trees, as a segmentation method, it can be seen how variables related with buying behaviour, within the programme member companies, have an influence on the redemption of air tickets by the programme’s cardholders.

  7. Distributed pheromone-based swarming control of unmanned air and ground vehicles for RSTA

    Science.gov (United States)

    Sauter, John A.; Mathews, Robert S.; Yinger, Andrew; Robinson, Joshua S.; Moody, John; Riddle, Stephanie

    2008-04-01

    The use of unmanned vehicles in Reconnaissance, Surveillance, and Target Acquisition (RSTA) applications has received considerable attention recently. Cooperating land and air vehicles can support multiple sensor modalities providing pervasive and ubiquitous broad area sensor coverage. However coordination of multiple air and land vehicles serving different mission objectives in a dynamic and complex environment is a challenging problem. Swarm intelligence algorithms, inspired by the mechanisms used in natural systems to coordinate the activities of many entities provide a promising alternative to traditional command and control approaches. This paper describes recent advances in a fully distributed digital pheromone algorithm that has demonstrated its effectiveness in managing the complexity of swarming unmanned systems. The results of a recent demonstration at NASA's Wallops Island of multiple Aerosonde Unmanned Air Vehicles (UAVs) and Pioneer Unmanned Ground Vehicles (UGVs) cooperating in a coordinated RSTA application are discussed. The vehicles were autonomously controlled by the onboard digital pheromone responding to the needs of the automatic target recognition algorithms. UAVs and UGVs controlled by the same pheromone algorithm self-organized to perform total area surveillance, automatic target detection, sensor cueing, and automatic target recognition with no central processing or control and minimal operator input. Complete autonomy adds several safety and fault tolerance requirements which were integrated into the basic pheromone framework. The adaptive algorithms demonstrated the ability to handle some unplanned hardware failures during the demonstration without any human intervention. The paper describes lessons learned and the next steps for this promising technology.

  8. Thermal properties in phase change wallboard room based on air conditioning cold storage

    Institute of Scientific and Technical Information of China (English)

    陈其针; 刘鑫; 牛润萍; 王琳

    2009-01-01

    By comparing the thermal performance parameters of an ordinary wall room with a phase change wall (PCW) room,the effect of phase change wallboard on the fluctuation of temperature in air-conditioning room in summer was studied. And PCW room and an ordinary wall room,which are cooled by air-conditioner,were built up. Differential scanning calorimetry (DSC) was used to test the temperature field and heat flow fluctuation in these rooms. Through analyzing the data tested,it is found that the mean temperature of PCW is lower than that of ordinary wall room by 1-2 ℃,and PCW can lower the heat flow by 4.6 W/m2. Combining phase change material to building envelope can lower the indoor temperature,make the room thermal comfortable,and cut down the turn-on-and-off frequency of air-conditioner,the primary investment and operating costs. It alleviates urgent need of the electric power. Building envelope which contains phase change wallboard can improve the indoor thermal environment,and decrease energy consumption in buildings. Phase change wallboard can make impressive effect on energy efficiency of buildings.

  9. Numerical simulation of the pulsing air separation field based on CFD

    Institute of Scientific and Technical Information of China (English)

    He Jingfeng; He Yaqun; Zhao Yuemin; Duan Chenlong; Ye Cuiling

    2012-01-01

    The flow field of pulsing air separation is normally in an unsteady turbulence state.With the application of the basic principles of multiphase turbulent flows,we established the dynamical computational model,which shows a remarkable variation of the unstable pulsing air flow field.CFD (computational fluid dynamics) was used to conduct the numerical simulation of the actual geometric model of the classifier.The inside velocity of the flowing fields was analyzed later.The simulation results indicate that the designed structure of the active pulsing air classifier provided a favorable environment for the separation of the particles with different physical characters by density.We shot the movement behaviors of the typical tracer grains in the active pulsing flow field using a high speed dynamic camera.The displacement and velocity curves of the particles in the continuous impulse periods were then analyzed.The experimental results indicate that the effective separation by density of the particles with the same settling velocity and different ranges of the density and particle size can be achieved in the active pulsing airflow field.The experimental results provide an agreement with the simulation results.

  10. [Synergistic emission reduction of chief air pollutants and greenhouse gases-based on scenario simulations of energy consumptions in Beijing].

    Science.gov (United States)

    Xie, Yuan-bo; Li, Wei

    2013-05-01

    It is one of the common targets and important tasks for energy management and environmental control of Beijing to improve urban air quality while reducing the emissions of greenhouse gases (GHG). Here, based on the interim and long term developmental planning and energy structure of the city, three energy consumption scenarios in low, moderate and high restrictions were designed by taking the potential energy saving policies and environmental targets into account. The long-range energy alternatives planning (LEAP) model was employed to predict and evaluate reduction effects of the chief air pollutants and GHG during 2010 to 2020 under the three given scenarios. The results showed that if urban energy consumption system was optimized or adjusted by exercising energy saving and emission reduction and pollution control measures, the predicted energy uses will be reduced by 10 to 30 million tons of coal equivalents by 2020. Under the two energy scenarios with moderate and high restrictions, the anticipated emissions of SO2, NOx, PM10, PM2.5, VOC and GHG will be respectively reduced to 71 to 100.2, 159.2 to 218.7, 89.8 to 133.8, 51.4 to 96.0, 56.4 to 74.8 and 148 200 to 164 700 thousand tons. Correspondingly, when compared with the low-restriction scenario, the reducing rate will be 53% to 67% , 50% to 64% , 33% to 55% , 25% to 60% , 41% to 55% and 26% to 34% respectively. Furthermore, based on a study of synergistic emission reduction of the air pollutants and GHG, it was proposed that the adjustment and control of energy consumptions shall be intensively developed in the three sectors of industry, transportation and services. In this way the synergistic reduction of the emissions of chief air pollutants and GHG will be achieved; meanwhile the pressures of energy demands may be deliberately relieved.

  11. Air Pollution

    Science.gov (United States)

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, dust, pollen and ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, ...

  12. A new heating system based on coupled air source absorption heat pump for cold regions: Energy saving analysis

    International Nuclear Information System (INIS)

    Highlights: • A double-stage coupled air source absorption heat pump (ASAHP) is proposed. • The coupled ASAHP exhibits stable and high performance in very cold regions. • Energy-saving rate of the coupled ASAHP in all the typical cities is above 20%. - Abstract: Energy consumption for heating and domestic hot water is very high. The heating system based on an air source absorption heat pump (ASAHP) had been assessed to have great energy saving potential. However, the single-stage ASAHP exhibits poor performance when the outdoor air temperature is very low. A double-stage coupled ASAHP is proposed to improve the energy-saving potential of single-stage ASAHP in cold regions. The heating capacity and primary energy efficiency (PEE) of the proposed system operated in both coupled mode and single-stage mode are simulated under various working conditions. The building load and primary energy consumption of different heating systems applied in cold regions are analyzed comparatively to investigate the energy-saving potential of the coupled ASAHP. Results show that the coupled ASAHP exhibits stable PEE and provides high heating capacity in very cold conditions. The energy-saving rate of the coupled ASAHP in all the typical cities is above 20%. In addition, the energy-saving potential of the single-stage ASAHP in severely cold areas can be improved obviously by coupled ASAHP, with an improvement of 7.73% in Harbin

  13. Nonlinear Least-Squares Based Method for Identifying and Quantifying Single and Mixed Contaminants in Air with an Electronic Nose

    Directory of Open Access Journals (Sweden)

    Margaret A. Ryan

    2005-12-01

    Full Text Available The Jet Propulsion Laboratory has recently developed and built an electronic nose(ENose using a polymer-carbon composite sensing array. This ENose is designed to be usedfor air quality monitoring in an enclosed space, and is designed to detect, identify andquantify common contaminants at concentrations in the parts-per-million range. Itscapabilities were demonstrated in an experiment aboard the National Aeronautics and SpaceAdministration’s Space Shuttle Flight STS-95. This paper describes a modified nonlinearleast-squares based algorithm developed to analyze data taken by the ENose, and itsperformance for the identification and quantification of single gases and binary mixtures oftwelve target analytes in clean air. Results from laboratory-controlled events demonstrate theeffectiveness of the algorithm to identify and quantify a gas event if concentration exceedsthe ENose detection threshold. Results from the flight test demonstrate that the algorithmcorrectly identifies and quantifies all registered events (planned or unplanned, as singles ormixtures with no false positives and no inconsistencies with the logged events and theindependent analysis of air samples.

  14. Performance study on three-stage power system of compressed air vehicle based on single-screw expander

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A new compressed-air engine system based on three-stage single screw expander was proposed to improve the performance of power system.Three different structure styles were presented,and the studies on the power performance and the distribution of expansion ratios between stages were carried out by programming and mathematical modeling of each style.Research results indicated that the best matches of expansion ratios with equal heat temperature for the air tank of pressure 30 MPa were seven-five-three for"first-stage heating"style,eight-five-three for"two-stage heating"style and five-five-four for"three-stage heating"style,respectively.Results also showed that heating up inlet air or increasing the expander efficiency might improve the power performance.The output power of the"two-stage heating"style is far higher than that of"first-stage heating"style and is a little lower than that of"three-stage heating"style.The new system showed good structure and power performances.

  15. Distribution and sources of air pollutants in the North China Plain based on on-road mobile measurements

    Science.gov (United States)

    Zhu, Yi; Zhang, Jiping; Wang, Junxia; Chen, Wenyuan; Han, Yiqun; Ye, Chunxiang; Li, Yingruo; Liu, Jun; Zeng, Limin; Wu, Yusheng; Wang, Xinfeng; Wang, Wenxing; Chen, Jianmin; Zhu, Tong

    2016-10-01

    The North China Plain (NCP) has been experiencing severe air pollution problems with rapid economic growth and urbanisation. Many field and model studies have examined the distribution of air pollutants in the NCP, but convincing results have not been achieved, mainly due to a lack of direct measurements of pollutants over large areas. Here, we employed a mobile laboratory to observe the main air pollutants in a large part of the NCP from 11 June to 15 July 2013. High median concentrations of sulfur dioxide (SO2) (12 ppb), nitrogen oxides (NOx) (NO + NO2; 452 ppb), carbon monoxide (CO) (956 ppb), black carbon (BC; 5.5 µg m-3) and ultrafine particles (28 350 cm-3) were measured. Most of the high values, i.e. 95 percentile concentrations, were distributed near large cities, suggesting the influence of local emissions. In addition, we analysed the regional transport of SO2 and CO, relatively long-lived pollutants, based on our mobile observations together with wind field and satellite data analyses. Our results suggested that, for border areas of the NCP, wind from outside this area would have a diluting effect on pollutants, while south winds would bring in pollutants that have accumulated during transport through other parts of the NCP. For the central NCP, the concentrations of pollutants were likely to remain at high levels, partly due to the influence of regional transport by prevalent south-north winds over the NCP and partly by local emissions.

  16. Friction and wear properties of Cu-based self-lubricating composites in air and vacuum conditions

    Institute of Scientific and Technical Information of China (English)

    Shiyin HUANG; Yi FENG; Kewang DING; Gang QIAN; Hongjuan LIU; Yang WANG

    2012-01-01

    Cu-based self-lubricating materials containing two different solid lubricants (graphite and MoS2) were fabricated by P/M hot pressing techniques.Physical and mechanical properties of the samples were examined.The effects of graphite and MoS2contents on friction coefficient and wear rate were investigated by a ring-on-disc wear machine in air and vacuum conditions,respectively.Tribo-films formed on the worn surfaces were characterized by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS).The results indicated that density,hardness and bending strength all increased with the increasing content of MoS2,while the relative density was opposite.Sample B containing 15 vol.pct graphite and 15 vol.pct MoS2 possessed superior tribological properties both in air and vacuum conditions.However,the tribo-films formed on the worn surfaces of the sample B were greatly discrepant in composition at different testing conditions.In air,the volume ratio of MoS2 and graphite in the tribo-films is 0.31∶1 whereas the ratio in vacuum is 1.07∶1.

  17. Improving air pollution control policy in China--A perspective based on cost-benefit analysis.

    Science.gov (United States)

    Gao, Jinglei; Yuan, Zengwei; Liu, Xuewei; Xia, Xiaoming; Huang, Xianjin; Dong, Zhanfeng

    2016-02-01

    To mitigate serious air pollution, the State Council of China promulgated the Air Pollution Prevention and Control Action Plan in 2013. To verify the feasibility and validity of industrial energy-saving and emission-reduction policies in the action plan, we conducted a cost-benefit analysis of implementing these policies in 31 provinces for the period of 2013 to 2017. We also completed a scenario analysis in this study to assess the cost-effectiveness of different measures within the energy-saving and the emission-reduction policies individually. The data were derived from field surveys, statistical yearbooks, government documents, and published literatures. The results show that total cost and total benefit are 118.39 and 748.15 billion Yuan, respectively, and the estimated benefit-cost ratio is 6.32 in the S3 scenario. For all the scenarios, these policies are cost-effective and the eastern region has higher satisfactory values. Furthermore, the end-of-pipe scenario has greater emission reduction potential than energy-saving scenario. We also found that gross domestic product and population are significantly correlated with the benefit-cost ratio value through the regression analysis of selected possible influencing factors. The sensitivity analysis demonstrates that benefit-cost ratio value is more sensitive to unit emission-reduction cost, unit subsidy, growth rate of gross domestic product, and discount rate among all the parameters. Compared with other provinces, the benefit-cost ratios of Beijing and Tianjin are more sensitive to changes of unit subsidy than unit emission-reduction cost. These findings may have significant implications for improving China's air pollution prevention policy.

  18. MODIS-based air temperature estimation in the southeastern Tibetan Plateau and neighboring areas

    Institute of Scientific and Technical Information of China (English)

    YAO Yonghui; ZHANG Baiping

    2012-01-01

    Climatic conditions are difficult to obtain in high mountain regions due to few meteorological stations and,if any,their poorly representative location designed for convenient operation.Fortunately,it has been shown that remote sensing data could be used to estimate near-surface air temperature (Ta) and other climatic conditions.This paper makes use of recorded meteorological data and MODIS data on land surface temperature (Ts) to estimate monthly mean air temperatures in the southeastern Tibetan Plateau and its neighboring areas.A total of 72 weather stations and 84 MODIS images for seven years (2001 to 2007) are used for analysis.Regression analysis and spatio-temporal analysis of monthly mean Ts vs.monthly mean Ta are carried out,showing that recorded Ta is closely related to MODIS Ts in the study region.The regression analysis of monthly mean Ts vs.Ta for every month of all stations shows that monthly mean Ts can be rather accurately used to estimate monthly mean Ta (R2 ranging from 0.62 to 0.90 and standard error between 2.25 ℃ and 3.23℃).Thirdly,the retrieved monthly mean Ta for the whole study area varies between 1.62℃ (in January,the coldest month) and 17.29 ℃ (in July,the warmest month),and for the warm season (May-September),it is from 13.1 ℃ to 17.29℃.Finally,the elevation of isotherms is higher in the central mountain ranges than in the outer margins; the 0℃ isotherm occurs at elevation of about 4500±500 m in October,dropping to 3500±500 m in January,and ascending back to 4500±500 m in May next year.This clearly shows that MODIS Ts data combining with observed data could be used to rather accurately estimate air temperature in mountain regions.

  19. GIS based assessment of the spatial representativeness of air quality monitoring stations using pollutant emissions data

    Science.gov (United States)

    Righini, G.; Cappelletti, A.; Ciucci, A.; Cremona, G.; Piersanti, A.; Vitali, L.; Ciancarella, L.

    2014-11-01

    Spatial representativeness of air quality monitoring stations is a critical parameter when choosing location of sites and assessing effects on population to long term exposure to air pollution. According to literature, the spatial representativeness of a monitoring site is related to the variability of pollutants concentrations around the site. As the spatial distribution of primary pollutants concentration is strongly correlated to the allocation of corresponding emissions, in this work a methodology is presented to preliminarily assess spatial representativeness of a monitoring site by analysing the spatial variation of emissions around it. An analysis of horizontal variability of several pollutants emissions was carried out by means of Geographic Information System using a neighbourhood statistic function; the rationale is that if the variability of emissions around a site is low, the spatial representativeness of this site is high consequently. The methodology was applied to detect spatial representativeness of selected Italian monitoring stations, located in Northern and Central Italy and classified as urban background or rural background. Spatialized emission data produced by the national air quality model MINNI, covering entire Italian territory at spatial resolution of 4 × 4 km2, were processed and analysed. The methodology has shown significant capability for quick detection of areas with highest emission variability. This approach could be useful to plan new monitoring networks and to approximately estimate horizontal spatial representativeness of existing monitoring sites. Major constraints arise from the limited spatial resolution of the analysis, controlled by the resolution of the emission input data, cell size of 4 × 4 km2, and from the applicability to primary pollutants only.

  20. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants.

    Science.gov (United States)

    Meng, Qing-chun; Rong, Xiao-xia; Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi

    2016-01-01

    CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996-2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated.

  1. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants.

    Science.gov (United States)

    Meng, Qing-chun; Rong, Xiao-xia; Zhang, Yi-min; Wan, Xiao-le; Liu, Yuan-yuan; Wang, Yu-zhi

    2016-01-01

    CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996-2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated. PMID:27010658

  2. Collaborative Emission Reduction Model Based on Multi-Objective Optimization for Greenhouse Gases and Air Pollutants.

    Directory of Open Access Journals (Sweden)

    Qing-chun Meng

    Full Text Available CO2 emission influences not only global climate change but also international economic and political situations. Thus, reducing the emission of CO2, a major greenhouse gas, has become a major issue in China and around the world as regards preserving the environmental ecology. Energy consumption from coal, oil, and natural gas is primarily responsible for the production of greenhouse gases and air pollutants such as SO2 and NOX, which are the main air pollutants in China. In this study, a mathematical multi-objective optimization method was adopted to analyze the collaborative emission reduction of three kinds of gases on the basis of their common restraints in different ways of energy consumption to develop an economic, clean, and efficient scheme for energy distribution. The first part introduces the background research, the collaborative emission reduction for three kinds of gases, the multi-objective optimization, the main mathematical modeling, and the optimization method. The second part discusses the four mathematical tools utilized in this study, which include the Granger causality test to analyze the causality between air quality and pollutant emission, a function analysis to determine the quantitative relation between energy consumption and pollutant emission, a multi-objective optimization to set up the collaborative optimization model that considers energy consumption, and an optimality condition analysis for the multi-objective optimization model to design the optimal-pole algorithm and obtain an efficient collaborative reduction scheme. In the empirical analysis, the data of pollutant emission and final consumption of energies of Tianjin in 1996-2012 was employed to verify the effectiveness of the model and analyze the efficient solution and the corresponding dominant set. In the last part, several suggestions for collaborative reduction are recommended and the drawn conclusions are stated.

  3. Enhanced filament ablation of metals based on plasma grating in air

    Directory of Open Access Journals (Sweden)

    Di Wang

    2015-09-01

    Full Text Available We demonstrate efficient ablation of metals with filamentary plasma grating generated by two intense blue femtosecond filaments and a third focused infrared pulse. This scheme leads to significant promotion of ablation efficiency on metal targets in air in comparison with single infrared or blue filament with equal pulse energy. The reason is that the blue plasma grating firstly provides stronger intensity and a higher density of background electrons, then the delayed infrared pulse accelerates local electrons inside the plasma grating. These two processes finally results in robustly increased electron density and highly ionized metallic atoms.

  4. An analysis of flame instabilities for hydrogen-air mixtures based on Sivashinsky equation

    Science.gov (United States)

    Yanez, J.; Kuznetsov, M.

    2016-07-01

    In this paper flame instabilities are analyzed utilizing the Sivashinsky equation in order to derive the flame wrinkling factor. This is a synthetic variable representing the excess of flame surface which is obtained for a wide range of hydrogen concentrations, considering the Darrieus-Landau and the Thermo-Diffusive instabilities, and also taking into account the effect of acceleration. Additionally, the time for the development of the cellularity is also analyzed. The study is carried out for a wide range of hydrogen-air mixtures as well as for a large domain of accelerations. Models representing both the wrinkling factor and the time of development of the instabilities are obtained.

  5. A novel Fast Gas Chromatography based technique for higher time resolution measurements of speciated monoterpenes in air

    Science.gov (United States)

    Jones, C. E.; Kato, S.; Nakashima, Y.; Kajii, Y.

    2013-12-01

    Biogenic emissions supply the largest fraction of non-methane volatile organic compounds (VOC) from the biosphere to the atmospheric boundary layer, and typically comprise a complex mixture of reactive terpenes. Due to this chemical complexity, achieving comprehensive measurements of biogenic VOC (BVOC) in air within a satisfactory time resolution is analytically challenging. To address this, we have developed a novel, fully automated Fast Gas Chromatography (Fast-GC) based technique to provide higher time resolution monitoring of monoterpenes (and selected other C9-C15 terpenes) during plant emission studies and in ambient air. To our knowledge, this is the first study to apply a Fast-GC based separation technique to achieve quantification of terpenes in air. Three chromatography methods have been developed for atmospheric terpene analysis under different sampling scenarios. Each method facilitates chromatographic separation of selected BVOC within a significantly reduced analysis time compared to conventional GC methods, whilst maintaining the ability to quantify individual monoterpene structural isomers. Using this approach, the C10-C15 BVOC composition of single plant emissions may be characterised within a ~ 14 min analysis time. Moreover, in situ quantification of 12 monoterpenes in unpolluted ambient air may be achieved within an ~ 11 min chromatographic separation time (increasing to ~ 19 min when simultaneous quantification of multiple oxygenated C9-C10 terpenoids is required, and/or when concentrations of anthropogenic VOC are significant). This corresponds to a two- to fivefold increase in measurement frequency compared to conventional GC methods. Here we outline the technical details and analytical capability of this chromatographic approach, and present the first in situ Fast-GC observations of 6 monoterpenes and the oxygenated BVOC linalool in ambient air. During this field deployment within a suburban forest ~ 30 km west of central Tokyo, Japan, the

  6. Cellular attachment and differentiation on titania nanotubes exposed to air- or nitrogen-based non-thermal atmospheric pressure plasma.

    Directory of Open Access Journals (Sweden)

    Hye Yeon Seo

    Full Text Available The surface topography and chemistry of titanium implants are important factors for successful osseointegration. However, chemical modification of an implant surface using currently available methods often results in the disruption of topographical features and the loss of beneficial effects during the shelf life of the implant. Therefore, the aim of this study was to apply the recently highlighted portable non-thermal atmospheric pressure plasma jet (NTAPPJ, elicited from one of two different gas sources (nitrogen and air, to TiO2 nanotube surfaces to further improve their osteogenic properties while preserving the topographical morphology. The surface treatment was performed before implantation to avoid age-related decay. The surface chemistry and morphology of the TiO2 nanotube surfaces before and after the NTAPPJ treatment were determined using a field-emission scanning electron microscope, a surface profiler, a contact angle goniometer, and an X-ray photoelectron spectroscope. The MC3T3-E1 cell viability, attachment and morphology were confirmed using calcein AM and ethidium homodimer-1 staining, and analysis of gene expression using rat mesenchymal stem cells was performed using a real-time reverse-transcription polymerase chain reaction. The results indicated that both portable nitrogen- and air-based NTAPPJ could be used on TiO2 nanotube surfaces easily and without topographical disruption. NTAPPJ resulted in a significant increase in the hydrophilicity of the surfaces as well as changes in the surface chemistry, which consequently increased the cell viability, attachment and differentiation compared with the control samples. The nitrogen-based NTAPPJ treatment group exhibited a higher osteogenic gene expression level than the air-based NTAPPJ treatment group due to the lower atomic percentage of carbon on the surface that resulted from treatment. It was concluded that NTAPPJ treatment of TiO2 nanotube surfaces results in an increase in

  7. Frequency Comb-Based Remote Sensing of Greenhouse Gases over Kilometer Air Paths

    CERN Document Server

    Rieker, Gregory B; Swann, William C; Kofler, Jon; Zolot, Alex M; Sinclair, Laura C; Baumann, Esther; Cromer, Christopher; Petron, Gabrielle; Sweeney, Colm; Tans, Pieter P; Coddington, Ian; Newbury, Nathan R

    2014-01-01

    We demonstrate coherent dual frequency-comb spectroscopy for detecting variations in greenhouse gases. High signal-to-noise spectra are acquired spanning 5990 to 6260 cm^-1 (1600 to 1670 nm) covering ~700 absorption features from CO2, CH4, H2O, HDO, and 13CO2, across a 2-km open-air path. The transmission of each frequency comb tooth is resolved, leading to spectra with <1 kHz frequency accuracy, no instrument lineshape, and a 0.0033-cm^-1 point spacing. The fitted path-averaged concentrations and temperature yield dry-air mole fractions. These are compared with a point sensor under well-mixed conditions to evaluate current absorption models for real atmospheres. In heterogeneous conditions, time-resolved data demonstrate tracking of strong variations in mole fractions. A precision of <1 ppm for CO2 and <3 ppb for CH4 is achieved in 5 minutes in this initial demonstration. Future portable systems could support regional emissions monitoring and validation of the spectral databases critical to global s...

  8. Technical and economic assessment for asbestos abatement within Facility 20470, Wright-Patterson Air Force Base, Ohio

    International Nuclear Information System (INIS)

    This report presents the results of a technical and economic assessment of available alternatives for asbestos abatement within Facility 20470 at the Wright-Patterson Air Force Base in Dayton, Ohio. Each alternative was screened on the basis of technical feasibility, environmental impact, economics, and fulfillment of the IRP goals. Four alternatives for study are: establishing a special operations and maintenance program; enclosure; encapsulation with sealants; and removal, disposal, and replacement. Each of these alternatives was assessed for capability to control the release of asbestos fibers within Facility 20470. Alternatives 1 and 4 were determined to be acceptable, while Alternatives 2 and 3 were found to be unacceptable. 2 refs., 6 figs

  9. Combined Ground and Space-Based Measurements of Air Quality during the London Olympic Games 2012

    Science.gov (United States)

    Graves, R. R.; Leigh, R. J.; Singh Anand, J.; McNally, M.; Lawrence, J.; Remedios, J.; Monks, P. S.

    2012-12-01

    During July and August 2012 the Summer Olympic Games were held in London. During this period, unusually high levels of traffic and visitors to the city were expected, it is important to understand the effect this had on the air quality in London during this period. To this end three novel CityScan instruments were installed in London from the 20th July though to the end of September; affording the unique opportunity to monitor the spatial and vertical structure of nitrogen dioxide within the boundary layer in unprecedented detail. The deployment was included as part of the large NERC funded ClearfLo project (Clean Air for London) involving many other institutions and complementary measurement techniques. CityScan is a Hemispherical Scanning Imaging Differential Optical Absorption Spectrometer (HSI-DOAS) which is has been optimised to measure concentrations of nitrogen dioxide. CityScan has a 95° field of view (FOV) between the zenith and 5° below the horizon. Across this FOV there are 128 resolved elements which are measured concurrently, the spectrometer is rotated azimuthally 1° per second providing full hemispherical coverage every 6 minutes. CityScan measures concentrations of nitrogen dioxide over specific lines of sight and due to the extensive field of view of the instrument this produces measurements which are representative over city-wide scales. Nitrogen dioxide is an important air pollutant which is produced in all combustion processes and can reduce lung function; especially in sensitised individuals. These instruments aim to bridge the gap in spatial scales between point source measurements of air quality and satellite measurements of air quality offering additional information on emissions, transport and the chemistry of nitrogen dioxide. More information regarding the CityScan technique can be found at http://www.leos.le.ac.uk/aq/index.html. The first of the three CityScan instruments was located in North Kensington, the second in Soho and third

  10. Performance analysis of a bio-gasification based combined cycle power plant employing indirectly heated humid air turbine

    Science.gov (United States)

    Mukherjee, S.; Mondal, P.; Ghosh, S.

    2016-07-01

    Rapid depletion of fossil fuel has forced mankind to look into alternative fuel resources. In this context, biomass based power generation employing gas turbine appears to be a popular choice. Bio-gasification based combined cycle provides a feasible solution as far as grid-independent power generation is concerned for rural electrification projects. Indirectly heated gas turbine cycles are promising alternatives as they avoid downstream gas cleaning systems. Advanced thermodynamic cycles have become an interesting area of study to improve plant efficiency. Water injected system is one of the most attractive options in this field of applications. This paper presents a theoretical model of a biomass gasification based combined cycle that employs an indirectly heated humid air turbine (HAT) in the topping cycle. Maximum overall electrical efficiency is found to be around 41%. Gas turbine specific air consumption by mass is minimum when pressure ratio is 6. The study reveals that, incorporation of the humidification process helps to improve the overall performance of the plant.

  11. Quantifying the Removal of Trichloroethylene via Phytoremediation a Hill Air Force Base, Utah Operational Unit 2 Using Recent and Historical Data

    OpenAIRE

    Diamond, J. Oliver

    2016-01-01

    Trichloroethylene (TCE) is a carcinogenic, chlorinated volatile organic compound that was commonly used as a degreasing solvent for aircraft maintenance at many US Air Force bases. Past improper disposal of TCE has resulted in contaminated groundwater at many of these facilities. Phytoremediation, defined as the use of plants and their associated microorganisms to stabilize or remove contamination, has been implemented as part of a TCE groundwater cleanup at Travis Air Force base near Sacrame...

  12. A complexity measure based method for studying the dependence of 222Rn concentration time series on indoor air temperature and humidity

    CERN Document Server

    Mihailovic, Dragutin T; Krmar, Miodrag; Arsenić, Ilija

    2013-01-01

    We have suggested a complexity measure based method for studying the dependence of measured 222Rn concentration time series on indoor air temperature and humidity. This method is based on the Kolmogorov complexity (KL). We have introduced (i) the sequence of the KL, (ii) the Kolmogorov complexity highest value in the sequence (KLM) and (iii) the KL of the product of time series. The noticed loss of the KLM complexity of 222Rn concentration time series can be attributed to the indoor air humidity that keeps the radon daughters in air.

  13. Analysis of Aerosol Properties in Beijing Based on Ground-Based Sun Photometer and Air Quality Monitoring Observations from 2005 to 2014

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2016-02-01

    Full Text Available Aerosol particles are the major contributor to the deterioration of air quality in China’s capital, Beijing. Using ground-based sun photometer observations from 2005 to 2014, the long-term variations in optical properties and microphysical properties of aerosol in and around Beijing were investigated in this study. The results indicated little inter-annual variations in aerosol optic depth (AOD but an increase in the fine mode AODs both in and outside Beijing. Furthermore, the single scattering albedo in urban Beijing is larger, while observations at the site that is southeast of Beijing suggested that the aerosol there has become more absorbing. The intra-annual aspects were as follow: The largest AOD and high amount of fine mode aerosols are observed in the summer. However, the result of air pollution index (API that mainly affected by the dry density of near-surface aerosol indicated that the air quality has been improving since 2006. Winter and spring were the most polluted seasons considering only the API values. The inconsistency between AOD and API suggested that fine aerosol particles may have a more important role in the deterioration of air quality and that neglecting particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5 in the calculation of API might not be appropriate in air quality evaluation. Through analysis of the aerosol properties in high API days, the results suggested that the fine mode aerosol, especially PM2.5 has become a major contributor to the aerosol pollution in Beijing.

  14. Novel adaptive neural control of flexible air-breathing hypersonic vehicles based on sliding mode differentiator

    Directory of Open Access Journals (Sweden)

    Bu Xiangwei

    2015-08-01

    Full Text Available A novel adaptive neural control strategy is exploited for the longitudinal dynamics of a generic flexible air-breathing hypersonic vehicle (FAHV. By utilizing functional decomposition method, the dynamics of FAHV is decomposed into the velocity subsystem and the altitude subsystem. For each subsystem, only one neural network is employed for the unknown function approximation. To further reduce the computational burden, minimal-learning parameter (MLP technology is used to estimate the norm of ideal weight vectors rather than their elements. By introducing sliding mode differentiator (SMD to estimate the newly defined variables, there is no need for the strict-feedback form and virtual controller. Hence the developed control law is considerably simpler than the ones derived from back-stepping scheme. Finally, simulation studies are made to illustrate the effectiveness of the proposed control approach in spite of the flexible effects, system uncertainties and varying disturbances.

  15. Research on segregation evaluation methods of asphalt pavement based on air voids distribution

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Eye observation was used to evaluate the segregation degree of asphalt pavement, which was not much creditable. To the asphalt pavement, road surface texture measuring method which has appeared recently can identify gradational segregation; but it can't reflect the influence of the temperature segregation. However,using infrared temperature detector to evaluate the segregation must be taken during paving, which brings much inconvenience. In this paper, measuring the air voids distribution using non-nuclear density gauge to evaluate asphalt pavement segregation was introduced. Result shows that this method can directly reflect the comprehensive results of the two types of segregation in a high efficient and accurate way. Moreover, using the sketch map of segregation area can help to analyze the segregation reason visually.

  16. Comparisons of Ship-based Observations of Air-Sea Energy Budgets with Gridded Flux Products

    Science.gov (United States)

    Fairall, C. W.; Blomquist, B.

    2015-12-01

    Air-surface interactions are characterized directly by the fluxes of momentum, heat, moisture, trace gases, and particles near the interface. In the last 20 years advances in observation technologies have greatly expanded the database of high-quality direct (covariance) turbulent flux and irradiance observations from research vessels. In this paper, we will summarize observations from the NOAA sea-going flux system from participation in various field programs executed since 1999 and discuss comparisons with several gridded flux products. We will focus on comparisons of turbulent heat fluxes and solar and IR radiative fluxes. The comparisons are done for observing programs in the equatorial Pacific and Indian Oceans and SE subtropical Pacific.

  17. An Empirically grounded Agent Based simulator for the Air Traffic Management in the SESAR scenario

    CERN Document Server

    Gurtner, Gérald; Ducci, Marco; Miccichè, Salvatore

    2016-01-01

    In this paper we present a simulator allowing to perform policy experiments relative to the air traffic management. Different SESAR solutions can be implemented in the model to see the reaction of the different stakeholders as well as other relevant metrics (delays, safety, etc). The model describes both the strategic phase associated to the planning of the flight trajectories and the tactical modifications occurring in the en-route phase. An implementation of the model is available as open-source and freely accessible by any user. More specifically, different procedures related to business trajectories and free-routing are tested and we illustrate the capabilities of the model on airspace implementing these concepts. After performing numerical simulations with the model, we show that in a free-routing scenario the controllers perform less operations although they are dispersed over a larger portion of the airspace. This can potentially increase the complexity of conflict detection and resolution for controll...

  18. Air Oxidation Behavior of Two Ti-Base Alloys Synthesized by HIP

    Science.gov (United States)

    Liu, S.; Guo, Q. Q.; Liu, L. L.; Xu, L.; Liu, Y. Y.

    2016-04-01

    The oxidation behavior of Ti-5Al-2.5Sn and Ti-6Al-4V produced by hot isostatic pressing (HIP) has been studied at 650-850°C in air for 24 h. The oxidation kinetics of both alloys followed the parabolic law with good approximation, except for Ti-5Al-2.5Sn oxidized at 850°C. Multi-layered scales formed on both alloys at 750°C and 850°C. Ternary additions of Sn and V accounted for the different morphology of the scales formed on these two alloys. In addition, the oxidation behavior of HIP alloys is compared with that of the corresponding cast alloys and the scaling mechanism is discussed.

  19. Temporal Variation in Air Pollution Concentrations and Preterm Birth—A Population Based Epidemiological Study

    Directory of Open Access Journals (Sweden)

    Bertil Forsberg

    2012-01-01

    Full Text Available There is growing evidence of adverse birth outcomes due to exposure to air pollution during gestation. However, recent negative studies are also reported. The aim of this study was to assess the effect of ozone and vehicle exhaust exposure (NO2 on the length of the gestational period and risk of preterm delivery. We used data from the Swedish Medical Birth Registry on all vaginally delivered singleton births in the Greater Stockholm area who were conceived during 1987–1995 (n = 115,588. Daily average levels of NO2 (from three measuring stations and ozone (two stations were used to estimate trimester and last week of gestation average exposures. Linear regression models were used to assess the association between the two air pollutants and three exposure windows, while logistic regression models were used when analyzing associations with preterm delivery ( < 37 weeks gestation. Five percent were born preterm. The median gestational period was 40 weeks. Higher levels of ozone during the first trimester were associated with shorter gestation as well as with an elevated risk of preterm delivery, the odds ratio from the most complex model was 1.06 (95% CI: 1.00–1.13 per 10 μg/m3 increase in the mean daily 8-h maximum concentration. Higher levels of ozone during the second trimester were associated with shorter gestation but the elevated risk of preterm delivery was not statistically significant. Higher levels of ozone and NO2 during the last week of gestation were associated with a shorter duration of gestation and NO2 also with preterm delivery. There were no significant associations between first and second trimester NO2 exposure estimates and studied outcomes. The effect of first trimester ozone exposure, known to cause oxidative stress, was smallest among women who conceived during autumn when vitamin D status, important for fetal health, in Scandinavian women is the highest.

  20. MODIS-based estimation of air temperature of the Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    YAO Yonghui; ZHANG Baiping

    2013-01-01

    The immense and towering Tibetan Plateau acts as a heating source and,thus,deeply shapes the climate of the Eurasian continent and even the whole world.However,due to the scarcity of meteorological observation stations and very limited climatic data,little is quantitatively known about the heating effect and temperature pattern of the Tibetan Plateau.This paper collected time series of MODIS land surface temperature (LST) data,together with meteorological data of 137 stations and ASTER GDEM data for 2001-2007,to estimate and map the spatial distribution of monthly mean air temperatures in the Tibetan Plateau and its neighboring areas.Time series analysis and both ordinary linear regression (OLS) and geographical weighted regression (GWR) of monthly mean air temperature (Ta) with monthly mean land surface temperature (Ts) were conducted.Regression analysis shows that recorded Ta is rather closely related to Ts,and that the GWR estimation with MODIS Ts and altitude as independent variables,has a much better result with adjusted R2 > 0.91 and RMSE =1.13-1.53℃ than OLS estimation.For more than 80% of the stations,the Ta thus retrieved from Ts has residuals lower than 2℃.Analysis of the spatio-temporal pattern of retrieved Ta data showed that the mean temperature in July (the warmest month) at altitudes of 4500 m can reach 10℃.This may help explain why the highest timberline in the Northern Hemisphere is on the Tibetan Plateau.

  1. The Study of LeachateTreatment by Using Three Advanced Oxidation Process Based Wet air Oxidation

    Directory of Open Access Journals (Sweden)

    Behroz Karimi

    2013-01-01

    Full Text Available Wet air oxidation is regarded as appropriate options for wastewater treatment with average organic compounds. The general purpose of this research is to determine the efficiency of three wet air oxidation methods, wet oxidation with hydrogen peroxide and absorption with activated carbon in removing organic matter and nitrogenous compounds from Isfahan's urban leachate. A leachate sample with the volume of 1.5 liters entered into a steel reactor with the volume of three liters and was put under a 10-bar pressure, at temperatures of 100, 200, and 300[degree sign] as well as three retention times of 30, 60, and 90 minutes. The sample was placed at 18 stages of leachate storage ponds in Isfahan Compost Plant with the volume of 20 liters, using three WPO, WAO methods and a combination of WAO/GAC for leachate pre-treatment. Thirty percent of pure oxygen and hydrogen peroxide were applied as oxidation agents. The COD removal efficiency in WAO method is 7.8-33.3%, in BOD is 14.7-50.6%, the maximum removal percentage (efficiency for NH4-N is 53.3% and for NO3-N is 56.4-73.9%. The removal efficiency of COD and BOD5 is 4.6%-34 and 24%-50 respectively in WPO method. Adding GAC to the reactor, the removal efficiency of all parameters was improved. The maximum removal efficiency was increased 48% for COD, 31%-43.6 for BOD5 by a combinational method, and the ratio of BOD5/COD was also increased to 90%. In this paper, WAO and WPO process was used for Leachate pre-treatment and WAO/GAC combinational process was applied for improving the organic matter removal and leachate treatment; it was also determined that the recent process is much more efficient in removing resistant organic matter.

  2. Genetic diversity among air yam (Dioscorea bulbifera) varieties based on single sequence repeat markers.

    Science.gov (United States)

    Silva, D M; Siqueira, M V B M; Carrasco, N F; Mantello, C C; Nascimento, W F; Veasey, E A

    2016-01-01

    Dioscorea is the largest genus in the Dioscoreaceae family, and includes a number of economically important species including the air yam, D. bulbifera L. This study aimed to develop new single sequence repeat primers and characterize the genetic diversity of local varieties that originated in several municipalities of Brazil. We developed an enriched genomic library for D. bulbifera resulting in seven primers, six of which were polymorphic, and added four polymorphic loci developed for other Dioscorea species. This resulted in 10 polymorphic primers to evaluate 42 air yam accessions. Thirty-three alleles (bands) were found, with an average of 3.3 alleles per locus. The discrimination power ranged from 0.113 to 0.834, with an average of 0.595. Both principal coordinate and cluster analyses (using the Jaccard Index) failed to clearly separate the accessions according to their origins. However, the 13 accessions from Conceição dos Ouros, Minas Gerais State were clustered above zero on the principal coordinate 2 axis, and were also clustered into one subgroup in the cluster analysis. Accessions from Ubatuba, São Paulo State were clustered below zero on the same principal coordinate 2 axis, except for one accession, although they were scattered in several subgroups in the cluster analysis. Therefore, we found little spatial structure in the accessions, although those from Conceição dos Ouros and Ubatuba exhibited some spatial structure, and that there is a considerable level of genetic diversity in D. bulbifera maintained by traditional farmers in Brazil. PMID:27323077

  3. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    Science.gov (United States)

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  4. Spatiotemporal air pollution exposure assessment for a Canadian population-based lung cancer case-control study

    Directory of Open Access Journals (Sweden)

    Hystad Perry

    2012-04-01

    Full Text Available Abstract Background Few epidemiological studies of air pollution have used residential histories to develop long-term retrospective exposure estimates for multiple ambient air pollutants and vehicle and industrial emissions. We present such an exposure assessment for a Canadian population-based lung cancer case-control study of 8353 individuals using self-reported residential histories from 1975 to 1994. We also examine the implications of disregarding and/or improperly accounting for residential mobility in long-term exposure assessments. Methods National spatial surfaces of ambient air pollution were compiled from recent satellite-based estimates (for PM2.5 and NO2 and a chemical transport model (for O3. The surfaces were adjusted with historical annual air pollution monitoring data, using either spatiotemporal interpolation or linear regression. Model evaluation was conducted using an independent ten percent subset of monitoring data per year. Proximity to major roads, incorporating a temporal weighting factor based on Canadian mobile-source emission estimates, was used to estimate exposure to vehicle emissions. A comprehensive inventory of geocoded industries was used to estimate proximity to major and minor industrial emissions. Results Calibration of the national PM2.5 surface using annual spatiotemporal interpolation predicted historical PM2.5 measurement data best (R2 = 0.51, while linear regression incorporating the national surfaces, a time-trend and population density best predicted historical concentrations of NO2 (R2 = 0.38 and O3 (R2 = 0.56. Applying the models to study participants residential histories between 1975 and 1994 resulted in mean PM2.5, NO2 and O3 exposures of 11.3 μg/m3 (SD = 2.6, 17.7 ppb (4.1, and 26.4 ppb (3.4 respectively. On average, individuals lived within 300 m of a highway for 2.9 years (15% of exposure-years and within 3 km of a major industrial emitter for 6.4 years (32% of exposure-years. Approximately 50

  5. Real-Time Cell-Electronic Sensing of Coal Fly Ash Particulate Matter for Toxicity-Based Air Quality Monitoring.

    Science.gov (United States)

    Moe, Birget; Yuan, Chungang; Li, Jinhua; Du, Haiying; Gabos, Stephan; Le, X Chris; Li, Xing-Fang

    2016-06-20

    The development of a unique bioassay for cytotoxicity analysis of coal fly ash (CFA) particulate matter (PM) and its potential application for air quality monitoring is described. Using human cell lines, A549 and SK-MES-1, as live probes on microelectrode-embedded 96-well sensors, impedance changes over time are measured as cells are treated with varying concentrations (1 μg/mL-20 mg/mL) of CFA samples. A dose-dependent impedance change is determined for each CFA sample, from which an IC50 histogram is obtained. The assay was successfully applied to examine CFA samples collected from three coal-fired power plants (CFPs) in China. The samples were separated into three size fractions: PM2.5 (10 μm). Dynamic cell-response profiles and temporal IC50 histograms of all samples show that CFA cytotoxicity depends on concentration, exposure time (0-60 h), and cell-type (SK-MES-1 > A549). The IC50 values differentiate the cytotoxicity of CFA samples based on size fraction (PM2.5 ≈ PM10-2.5 ≫ PM10) and the sampling location (CFP2 > CFP1 ≈ CFP3). Differential cytotoxicity measurements of particulates in human cell lines using cell-electronic sensing provide a useful tool for toxicity-based air quality monitoring and risk assessment. PMID:27124590

  6. A heat pump driven and hollow fiber membrane-based liquid desiccant air dehumidification system: Modeling and experimental validation

    International Nuclear Information System (INIS)

    A compression heat pump driven and membrane-based liquid desiccant air dehumidification system is presented. The dehumidifier and the regenerator are made of two hollow fiber membrane bundles packed in two shells. Water vapor can permeate through these membranes effectively, while the liquid desiccant droplets are prevented from cross-over. Simultaneous heating and cooling of the salt solution are realized with a heat pump system to improve energy efficiency. In this research, the system is built up and a complete modeling is performed for the system. Heat and mass transfer processes in the membrane modules, as well as in the evaporator, the condenser, and other key components are modeled in detail. The whole model is validated by experiment. The performances of SDP (specific dehumidification power), dehumidification efficiency, EER (energy efficiency ratio) of heat pump, and the COP (coefficient of performance) of the system are investigated numerically and experimentally. The results show that the model can predict the system accurately. The dehumidification capabilities and the energy efficiencies of the system are high. Further, it performs well even under the harsh hot and humid South China weather conditions. - Highlights: • A membrane-based and heat pump driven air dehumidification system is proposed. • A real experimental set up is built and used to validate the model for the whole system. • Performance under design and varying operation conditions is investigated. • The system performs well even under harsh hot and humid conditions

  7. Extricating sex and gender in air pollution research: a community-based study on cardinal symptoms of exposure.

    Science.gov (United States)

    Oiamo, Tor H; Luginaah, Isaac N

    2013-09-01

    This study investigated sex and gender differences in cardinal symptoms of exposure to a mixture of ambient pollutants. A cross sectional population-based study design was utilized in Sarnia, ON, Canada. Stratified random sampling in census tracts of residents aged 18 and over recruited 804 respondents. Respondents completed a community health survey of chronic disease, general health, and socioeconomic indicators. Residential concentrations of NO₂, SO₂, benzene, toluene, ethylbenzene and o/m/p-xylene were estimated by land use regression on data collected through environmental monitoring. Classification and Regression Tree (CART) analysis was used to identify variables that interacted with sex and cardinal symptoms of exposure, and a series of logistic regression models were built to predict the reporting of five or more cardinal symptoms (5+ CS). Without controlling for confounders, higher pollution ranks increased the odds ratio (OR) of reporting 5+ CS by 28% (p air pollution, but additionally indicated that stronger effects on females is partly due to autoimmune disorders. Furthermore, gender differences in occupational exposure confound the effect size of exposure in studies based on residential levels of air pollution.

  8. Optimization of thermal performance of a smooth flat-plate solar air heater using teaching–learning-based optimization algorithm

    Directory of Open Access Journals (Sweden)

    R. Venkata Rao

    2015-12-01

    Full Text Available This paper presents the performance of teaching–learning-based optimization (TLBO algorithm to obtain the optimum set of design and operating parameters for a smooth flat plate solar air heater (SFPSAH. The TLBO algorithm is a recently proposed population-based algorithm, which simulates the teaching–learning process of the classroom. Maximization of thermal efficiency is considered as an objective function for the thermal performance of SFPSAH. The number of glass plates, irradiance, and the Reynolds number are considered as the design parameters and wind velocity, tilt angle, ambient temperature, and emissivity of the plate are considered as the operating parameters to obtain the thermal performance of the SFPSAH using the TLBO algorithm. The computational results have shown that the TLBO algorithm is better or competitive to other optimization algorithms recently reported in the literature for the considered problem.

  9. Air-coupled detection of the S1-ZGV lamb mode in a concrete plate based on backward wave propagation

    Science.gov (United States)

    Bjurström, H.; Ryden, N.

    2013-01-01

    Impact Echo is commonly used to determine thickness of concrete plate like structures. The method is based on the generation and detection of the plate thickness resonance frequency, where the group velocity of the first higher symmetric Lamb mode goes to zero (S1-ZGV). When using air-coupled microphones as receivers it is hard to determine the correct resonance frequency due to low signal to noise ratio. In this study multichannel signal processing is used to identify the S1-ZGV frequency, based on backward wave propagation instead of the conventional amplitude spectrum approach. The original PDF file of this article, as supplied to AIP Publishing, contained some minor font problems within Figures 1, 4, 7, 8, and 9. An updated PDF file using the correct font within those figures was issued on June 3, 2013. There are no other changes to the scientific content.

  10. 基于复合热源的热泵型空调器%Heat pump air conditioner based on multiple heat sources

    Institute of Scientific and Technical Information of China (English)

    吴国珊; 凌勋

    2012-01-01

    It is proposed that the air-water multiple heat sources could be the heat source of heat pump air conditioner. Based on the current study condition, the heat pump air conditioner which has a air/family waste water multiple heat source is preliminary designed. The working cycle and characteristics of the air conditioner are analyzed by using the thermodynamic principle. The results show that the refrigeration performance of the heat pump air conditioner is better than that of air source heat pump air conditioner, the heating performance and the situation which the outdoor heat exchanger frosts are improved.%提出将空气-水作为热泵型空调器的复合热源.根据当前的研究状况,初步设计空气-水复合热源热泵型空调器,利用热力学原理分析该空调器的工作循环和特点,结果表明该空调器的制冷性能高于空气源热泵空调器,制热和室外换热器结霜状况得到一定改善.

  11. Evolutionary Agent-Based Simulation of the Introduction of New Technologies in Air Traffic Management

    Science.gov (United States)

    Yliniemi, Logan; Agogino, Adrian K.; Tumer, Kagan

    2014-01-01

    Accurate simulation of the effects of integrating new technologies into a complex system is critical to the modernization of our antiquated air traffic system, where there exist many layers of interacting procedures, controls, and automation all designed to cooperate with human operators. Additions of even simple new technologies may result in unexpected emergent behavior due to complex human/ machine interactions. One approach is to create high-fidelity human models coming from the field of human factors that can simulate a rich set of behaviors. However, such models are difficult to produce, especially to show unexpected emergent behavior coming from many human operators interacting simultaneously within a complex system. Instead of engineering complex human models, we directly model the emergent behavior by evolving goal directed agents, representing human users. Using evolution we can predict how the agent representing the human user reacts given his/her goals. In this paradigm, each autonomous agent in a system pursues individual goals, and the behavior of the system emerges from the interactions, foreseen or unforeseen, between the agents/actors. We show that this method reflects the integration of new technologies in a historical case, and apply the same methodology for a possible future technology.

  12. AirCache: A Crowd-Based Solution for Geoanchored Floating Data

    Directory of Open Access Journals (Sweden)

    Armir Bujari

    2016-01-01

    Full Text Available The Internet edge has evolved from a simple consumer of information and data to eager producer feeding sensed data at a societal scale. The crowdsensing paradigm is a representative example which has the potential to revolutionize the way we acquire and consume data. Indeed, especially in the era of smartphones, the geographical and temporal scopus of data is often local. For instance, users’ queries are more and more frequently about a nearby object, event, person, location, and so forth. These queries could certainly be processed and answered locally, without the need for contacting a remote server through the Internet. In this scenario, the data is alimented (sensed by the users and, as a consequence, data lifetime is limited by human organizational factors (e.g., mobility. From this basis, data survivability in the Area of Interest (AoI is crucial and, if not guaranteed, could undermine system deployment. Addressing this scenario, we discuss and contribute with a novel protocol named AirCache, whose aim is to guarantee data availability in the AoI while at the same time reducing the data access costs at the network edges. We assess our proposal through a simulation analysis showing that our approach effectively fulfills its design objectives.

  13. A Portable, Air-Jet-Actuator-Based Device for System Identification

    Science.gov (United States)

    Staats, Wayne; Belden, Jesse; Mazumdar, Anirban; Hunter, Ian

    2010-11-01

    System identification (ID) of human and robotic limbs could help in diagnosis of ailments and aid in optimization of control parameters and future redesigns. We present a self-contained actuator, which uses the Coanda effect to rapidly switch the direction of a high speed air jet to create a binary stochastic force input to a limb for system ID. The design of the actuator is approached with the goal of creating a portable device, which could deployed on robot or human limbs for in situ identification. The viability of the device is demonstrated by performing stochastic system ID on an underdamped elastic beam system with fixed inertia and stiffness, and variable damping. The non-parametric impulse response yielded from the stochastic system ID is modeled as a second order system, and the resultant parameters are found to be in excellent agreement with those found using more traditional system ID techniques. The current design could be further miniaturized and developed as a portable, wireless, on-site multi-axis system identification system for less intrusive and more widespread use.

  14. Air Temperature Error Correction Based on Solar Radiation in an Economical Meteorological Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Xingming Sun

    2015-07-01

    Full Text Available Air temperature (AT is an extremely vital factor in meteorology, agriculture, military, etc., being used for the prediction of weather disasters, such as drought, flood, frost, etc. Many efforts have been made to monitor the temperature of the atmosphere, like automatic weather stations (AWS. Nevertheless, due to the high cost of specialized AT sensors, they cannot be deployed within a large spatial density. A novel method named the meteorology wireless sensor network relying on a sensing node has been proposed for the purpose of reducing the cost of AT monitoring. However, the temperature sensor on the sensing node can be easily influenced by environmental factors. Previous research has confirmed that there is a close relation between AT and solar radiation (SR. Therefore, this paper presents a method to decrease the error of sensed AT, taking SR into consideration. In this work, we analyzed all of the collected data of AT and SR in May 2014 and found the numerical correspondence between AT error (ATE and SR. This corresponding relation was used to calculate real-time ATE according to real-time SR and to correct the error of AT in other months.

  15. Nobel Method for Toluene Removal from Air Based on Ionic Liquid Modified Nano-Graphen

    Directory of Open Access Journals (Sweden)

    HAMID SHIRKHANLOO

    2015-10-01

    Full Text Available  The aim of this study was to investigate the removal of toluene from air through Nano-graphene modified by ionic liquid (NG-IL. The batch adsorption experiments in glass bottle of gas chromatography equipped with flame ionization detector (GC-FID were used. Graphene ultrahigh-quality synthesized by substrate-free gas-phase method in a single step and graphene sheets were deposited with ionic- liquid by thermal adsorption in acetone blank solution. Various conditions including contact time, amount of adsorbent, adsorbate concentration, humidity, and temperature were studied and optimized. NG-IL adsorbent was used for the adsorption of toluene vapor from gaseous media and the effect of different conditions such as; toluene concentration, humidity, and temperature on the adsorption were investigated. The Langmuir adsorption isotherms were employed for toluene by NG-IL adsorbent. The adsorption capacity was decreased by raising the sorbent humidity above 50 percent. The toluene capture capacity for NG-IL was 126 mg/g. The results of SEM, XRD, and TEM showed that, the NG-IL have beneficial surfaces for toluene removal. NG-IL as a novel adsorbent has not previously been used for the adsorption of pollutants.

  16. Ultra-Low Breakdown Voltage of Field Ionization in Atmospheric Air Based on Silicon Nanowires

    International Nuclear Information System (INIS)

    Classic field ionization requires extremely high positive electric fields, of the order of a few million volts per centimeter. Here we show that field ionization can occur at dramatically lower fields on the electrode of silicon nanowires (SiNWs) with dense surface states and large field enhancement factor. A field ionization structure using SiNWs as the anode has been investigated, in which the SiNWs were fabricated by improved chemical etching process. At room temperature and atmospheric pressure, breakdown of the air is reproducible with a fixed anode-to-cathode distance of 0.5 μm. The breakdown voltage is ∼38 V, low enough to be achieved by a battery-powered unit. Two reasons can be given for the low breakdown voltage. First, the gas discharge departs from the Paschen's law and the breakdown voltage decreases sharply as the gap distance falls in μm range. The other reason is the large electric field enhancement factor (β) and the high density of surface defects, which cause a highly non-uniform electric field for field emission to occur

  17. Towards Organized Hybrid Nanomaterials at the Air/Water Interface Based on Liquid-Crystal/ZnO Nanocrystals.

    Science.gov (United States)

    Paczesny, Jan; Wolska-Pietkiewicz, Małgorzata; Binkiewicz, Ilona; Wróbel, Zbigniew; Wadowska, Monika; Matuła, Kinga; Dzięcielewski, Igor; Pociecha, Damian; Smalc-Koziorowska, Julita; Lewiński, Janusz; Hołyst, Robert

    2015-11-16

    The ability to self-assemble nanosized ligand-stabilized metal oxide or semiconductor materials offers an intriguing route to engineer nanomaterials with new tailored properties from the disparate components. We describe a novel one-pot two-step organometallic approach to prepare ZnO nanocrystals (NCs) coated with deprotonated 4-(dodecyloxy)benzoic acid (i.e., an X-type liquid-crystalline ligand) as a model LC system (termed ZnO-LC1 NCs). Langmuir and Langmuir-Blodgett films of the resulting hybrids are investigated. The observed behavior of the ZnO NCs at the air/water interface is rationalized by invoking a ZnO-interdigitation process mediated by the anchored liquid-crystalline shell. The ordered superstructures form according to mechanism based on a ZnO-interdigitation process mediated by liquid crystals (termed ZIP-LC). The external and directed force applied upon compression at the air/water interface and the packing of the ligands that stabilize the ZnO cores drives the formation of nanorods of ordered internal structure. To study the process in detail, we follow a nontraditional protocol of thin-film investigation. We collect the films from the air/water interface in powder form (ZnO-LC1 LB), resuspend the powder in organic solvents and utilize otherwise unavailable experimental techniques. The structural and physical properties of the resulting superlattices were studied by using electron microscopy, atomic force microscopy, X-ray studies, dynamic light scattering, thermogravimetric analysis, UV/Vis absorption, and photoluminescence spectroscopy. PMID:26427916

  18. Impact of future time-based operations on situation awareness of air traffic controllers

    NARCIS (Netherlands)

    Oprins, E.A.P.B.; Zwaaf, D.; Eriksson, F.; Merwe, K. van de; Roe, R.

    2009-01-01

    A time-based operation, as planned in the ATM future, is assumed to affect the controllers’ Situation Awareness (SA) due to a higher priority of meeting a time objective and increasing automation. This paper provides SA requirements on the design of controller support tools in time-based operations,

  19. Air Abrasion

    Science.gov (United States)

    ... delivered directly to your desktop! more... What Is Air Abrasion? Article Chapters What Is Air Abrasion? What Happens? The Pros and Cons Will I Feel Anything? Is Air Abrasion for Everyone? print full article print this ...

  20. A PD Law Based Fuzzy Logic Control Strategy For Simultaneous Control Of Indoor Temperature And Humidity Using A Variable Speed Direct Expansion Air Conditioner

    OpenAIRE

    Li, Zhao; Xu, Xiang Guo; Deng, Shi Ming; Pan, Dong Mei

    2014-01-01

    In small to medium scale buildings located in the subtropics, such as Hong Kong, direct expansion air conditioning (DX A/C) systems are widely applied. This is because, as compared to chilled water based central air conditioning systems, DX A/C systems are compact, flexible for multi-room services, energy efficient and cost less to maintain and operate. However, traditionally, a DX A/C system is equipped with a single-speed compressor and supply air fan, and employs ON / OFF control strategy ...

  1. Data fusion control and guidance of surface-to-air missile under the complex circumstance based on neural-net technology

    Institute of Scientific and Technical Information of China (English)

    Zhou Deyun; Zhou Feng

    2008-01-01

    Under the complicated electromagnetism circumstance,the model of data fusion control and guidance of surface-to-air missile weapon systems is established.Such ways and theories as Elman-NN,radar tracking and niter's data fusion net based on the group method for data-processing (GMRDF) are applied to constructing the model of data fusion.The highly reliable state estimation of the tracking targets and the improvement in accuracy of control and guidance are obtained.The purpose is optimization design of data fusion control and guidance of surface-to-air missile weapon systems and improving the fighting effectiveness of surface-to-air missile weapon systems.

  2. Connectable solar air collectors

    Energy Technology Data Exchange (ETDEWEB)

    Oestergaard Jensen, S.; Bosanac, M.

    2002-02-01

    The project has proved that it is possible to manufacture solar air collector panels, which in an easy way can be connected into large collector arrays with integrated ducting without loss of efficiency. The developed connectable solar air collectors are based on the use of matrix absorbers in the form of perforated metal sheets. Three interconnected solar air collectors of the above type - each with an transparent area of approx. 3 m{sup 2} - was tested and compared with parallel tests on two single solar air collectors also with a transparent area of approx. 3 m{sup 2} One of the single solar air collectors has an identical absorber as the connectable solar air collectors while the absorber of the other single solar air collector was a fibre cloth. The efficiency of the three solar air collectors proved to be almost identical in the investigated range of mass flow rates and temperature differences. The solar air collectors further proved to be very efficient - as efficient as the second most efficient solar air collectors tested in the IEA task 19 project Solar Air Systems. Some problems remain although to be solved: the pressure drop across especially the connectable solar air collectors is too high - mainly across the inlets of the solar air collectors. It should, however, be possible to considerably reduce the pressure losses with a more aerodynamic design of the inlet and outlet of the solar air collectors; The connectable solar air collectors are easy connectable but the air tightness of the connections in the present form is not good enough. As leakage leads to lower efficiencies focus should be put on making the connections more air tight without loosing the easiness in connecting the solar air collectors. As a spin off of the project a simple and easy way to determine the efficiency of solar, air collectors for pre-heating of fresh air has been validated. The simple method of determining the efficiency has with success been compared with an advance method

  3. Isothermal oxidation behavior of Ti3Al-based alloy at 700-1 000 ℃ in air

    Institute of Scientific and Technical Information of China (English)

    QIAN Yu-hai; LI Mei-shuan; LU Bin

    2009-01-01

    The isothermal oxidation behavior of a Ti3Al-based alloy (Ti-24Al-14Nb-3V-0.5Mo-0.3Si, molar fraction, %) at 700- 1 000 ℃ in air was investigated. The oxidation kinetics of tested alloy approximately obeys the parabolic law, which shows that the oxidation process is dominated by the diffusion of ions. The oxidation diffusion activity energy is 241.32 kJ/mol. The tested alloy exhibits good oxidation resistance at 700 ℃. However, when the temperature is higher than 900 ℃, the oxidation resistance becomes poor. The XRD results reveal that the oxide product consists of a mixture of TiO2 and Al2O3. Serious crack and spallation of oxide scale occur during cooling procedure after being exposed at 1 000 ℃ in air for 16 h. According to the analysis of SEM/EDS and XRD, it is concluded that the Al2O3 oxide forms at the initially transient oxidation stage and most of it keeps in the outer oxide layer during the subsequent oxidation procedure.

  4. Improved spatial monitoring of air temperature in forested complex terrain: an energy-balance based calibration method

    Science.gov (United States)

    Kennedy, A. M.; Thomas, C. K.; Pypker, T. G.; Bond, B. J.; Selker, J. S.; Unsworth, M. H.

    2009-12-01

    Fiber-optic distributed temperature sensing (DTS) has great potential for spatial monitoring in hydrology and atmospheric science. DTS systems have an advantage over conventional individual temperature sensors in that thousands of quasi-concurrent temperature measurements may be made along the entire length of a fiber at 1 meter increments by a single instrument, thus increasing measurement precision. However, like any other temperature sensors, the fiber temperature is influenced by energy exchange with its environment, particularly by radiant energy (solar and long-wave) and by wind speed. The objective of this research is to perform an energy-balance based calibration of a DTS fiber system that will reduce the uncertainty of air temperature measurements in open and forested environments. To better understand the physics controlling the fiber temperature reported by the DTS, alternating black and white fiber optic cables were installed on vertical wooden jigs inside a recirculating wind tunnel. A constant irradiance from six 600W halogen lamps was directed on a two meter section of fiber to permit controlled observations of the resulting temperature difference between the black and white fibers as wind speed was varied. The net short and longwave radiation balance of each fiber was measured with an Eppley pyranometer and Kipp and Zonen pyrgeometer. Additionally, accurate air temperature was recorded from a screened platinum resistance thermometer, and sonic anemometers were positioned to record wind speed and turbulence. Relationships between the temperature excess of each fiber, net radiation, and wind speed were developed and will be used to derive correction terms in future field work. Preliminary results indicate that differential heating of fibers (black-white) is driven largely by net radiation with wind having a smaller but consistent effect. Subsequent work will require field verification to confirm that the observed wind tunnel correction algorithms are

  5. An air-based corrugated cavity-receiver for solar parabolic trough concentrators

    International Nuclear Information System (INIS)

    Highlights: • We analyze a novel tubular cavity-receiver for solar parabolic trough collectors. • Four-fold solar concentration ratio is reached compared to conventional receivers. • Efficient operation at up to 500 °C is possible. • The pumping power requirement is found to be acceptably low. - Abstract: A tubular cavity-receiver that uses air as the heat transfer fluid is evaluated numerically using a validated heat transfer model. The receiver is designed for use on a large-span (9 m net concentrator aperture width) solar parabolic trough concentrator. Through the combination of a parabolic primary concentrator with a nonimaging secondary concentrator, the collector reaches a solar concentration ratio of 97.5. Four different receiver configurations are considered, with smooth or V-corrugated absorber tube and single- or double-glazed aperture window. The collector’s performance is characterized by its optical efficiency and heat loss. The optical efficiency is determined with the Monte Carlo ray-tracing method. Radiative heat exchange inside the receiver is calculated with the net radiation method. The 2D steady-state energy equation, which couples conductive, convective, and radiative heat transfer, is solved for the solid domains of the receiver cross-section, using finite-volume techniques. Simulations for Sevilla/Spain at the summer solstice at solar noon (direct normal solar irradiance: 847 W m−2, solar incidence angle: 13.9°) yield collector efficiencies between 60% and 65% at a heat transfer fluid temperature of 125 °C and between 37% and 42% at 500 °C, depending on the receiver configuration. The optical losses amount to more than 30% of the incident solar radiation and constitute the largest source of energy loss. For a 200 m long collector module operated between 300 and 500 °C, the isentropic pumping power required to pump the HTF through the receiver is between 11 and 17 kW

  6. Nickel based alloys as electrocatalysts for oxygen evolution from alkaline solutions. [Metal--air batteries

    Energy Technology Data Exchange (ETDEWEB)

    Lu, P.W.T.; Srinivasan, S.

    1977-01-01

    The slowness of the oxygen evolution reaction is one of the main reasons for significant energy losses in water electrolysis cells and secondary air--metal batteries. To date, data on the kinetics of this reaction on alloys and intermetallic compounds are sparse. In this work, mechanically polished alloys of nickel with Ir, Ru or W and Ni--Ti intermetallic compounds were studied as oxygen electrodes. Since the oxygen evolution reaction always takes place on oxide-film covered surfaces, the nature of oxide films formed on these alloys were investigated using cyclic voltametric techniques. Steady-state potentiostatic and slow potentiodynamic (at 0.1 mV/s) methods were employed to obtain the electrode kinetic parameters for the oxygen evolution reaction in 30 wt. percent KOH at 80/sup 0/C, the conditions normally used in water electrolysis cells. The peaks for the formation or reduction of oxygen-containing layers appearing on the pure metals are not always found on the alloys. The maximum decreases in oxygen overpotential at an apparent current density of 20 mA cm/sup -2/ (as compared with that on Ni) were found for the alloys of 50Ni--50Ir and 75Ni--25Ru and the intermetallic compound Ni/sub 3/Ti, these decreases being about 40, 30, and 20 mV, respectively. On the long-term polarization in the potential region of oxygen evolution, the oxygen-containing layers on Ni--Ir or Ni--Ru alloys are essentially composed of nickel oxides instead of true mixed oxide films of two components. The present work confirms that, possibly because of coverage by oxide films, there is no direct dependence of the electrocatalytic activities of the alloys on their electronic properties. 11 figures, 1 table.

  7. Simulation Based Low-Cost Composite Process Development at the US Air Force Research Laboratory

    Science.gov (United States)

    Rice, Brian P.; Lee, C. William; Curliss, David B.

    2003-01-01

    Low-cost composite research in the US Air Force Research Laboratory, Materials and Manufacturing Directorate, Organic Matrix Composites Branch has focused on the theme of affordable performance. Practically, this means that we use a very broad view when considering the affordability of composites. Factors such as material costs, labor costs, recurring and nonrecurring manufacturing costs are balanced against performance to arrive at the relative affordability vs. performance measure of merit. The research efforts discussed here are two projects focused on affordable processing of composites. The first topic is the use of a neural network scheme to model cure reaction kinetics, then utilize the kinetics coupled with simple heat transport models to predict, in real-time, future exotherms and control them. The neural network scheme is demonstrated to be very robust and a much more efficient method that mechanistic cure modeling approach. This enables very practical low-cost processing of thick composite parts. The second project is liquid composite molding (LCM) process simulation. LCM processing of large 3D integrated composite parts has been demonstrated to be a very cost effective way to produce large integrated aerospace components specific examples of LCM processes are resin transfer molding (RTM), vacuum assisted resin transfer molding (VARTM), and other similar approaches. LCM process simulation is a critical part of developing an LCM process approach. Flow simulation enables the development of the most robust approach to introducing resin into complex preforms. Furthermore, LCM simulation can be used in conjunction with flow front sensors to control the LCM process in real-time to account for preform or resin variability.

  8. 77 FR 73544 - Approval and Promulgation of Air Quality Implementation Plans; West Virginia; The 2002 Base Year...

    Science.gov (United States)

    2012-12-11

    ...).) List of Subjects in 40 CFR Part 52 Environmental protection, Air pollution control, Carbon monoxide... Fine Particulate Matter National Ambient Air Quality Standard AGENCY: Environmental Protection Agency..., WV-KY-OH nonattainment area for the 1997 PM 2.5 National Ambient Air Quality Standard (NAAQS). EPA...

  9. Portable air quality sensor unit for participatory monitoring: an end-to-end VESNA-AQ based prototype

    Science.gov (United States)

    Vucnik, Matevz; Robinson, Johanna; Smolnikar, Miha; Kocman, David; Horvat, Milena; Mohorcic, Mihael

    2015-04-01

    Key words: portable air quality sensor, CITI-SENSE, participatory monitoring, VESNA-AQ The emergence of low-cost easy to use portable air quality sensors units is opening new possibilities for individuals to assess their exposure to air pollutants at specific place and time, and share this information through the Internet connection. Such portable sensors units are being used in an ongoing citizen science project called CITI-SENSE, which enables citizens to measure and share the data. The project aims through creating citizens observatories' to empower citizens to contribute to and participate in environmental governance, enabling them to support and influence community and societal priorities as well as associated decision making. An air quality measurement system based on VESNA sensor platform was primarily designed within the project for the use as portable sensor unit in selected pilot cities (Belgrade, Ljubljana and Vienna) for monitoring outdoor exposure to pollutants. However, functionally the same unit with different set of sensors could be used for example as an indoor platform. The version designed for the pilot studies was equipped with the following sensors: NO2, O3, CO, temperature, relative humidity, pressure and accelerometer. The personal sensor unit is battery powered and housed in a plastic box. The VESNA-based air quality (AQ) monitoring system comprises the VESNA-AQ portable sensor unit, a smartphone app and the remote server. Personal sensor unit supports wireless connection to an Android smartphone via built-in Wi-Fi. The smartphone in turn serves also as the communication gateway towards the remote server using any of available data connections. Besides the gateway functionality the role of smartphone is to enrich data coming from the personal sensor unit with the GPS location, timestamps and user defined context. This, together with an accelerometer, enables the user to better estimate ones exposure in relation to physical activities, time

  10. Simulation evaluation of TIMER, a time-based, terminal air traffic, flow-management concept

    Science.gov (United States)

    Credeur, Leonard; Capron, William R.

    1989-01-01

    A description of a time-based, extended terminal area ATC concept called Traffic Intelligence for the Management of Efficient Runway scheduling (TIMER) and the results of a fast-time evaluation are presented. The TIMER concept is intended to bridge the gap between today's ATC system and a future automated time-based ATC system. The TIMER concept integrates en route metering, fuel-efficient cruise and profile descents, terminal time-based sequencing and spacing together with computer-generated controller aids, to improve delivery precision for fuller use of runway capacity. Simulation results identify and show the effects and interactions of such key variables as horizon of control location, delivery time error at both the metering fix and runway threshold, aircraft separation requirements, delay discounting, wind, aircraft heading and speed errors, and knowledge of final approach speed.

  11. Visual Servoing of Quadrotor Micro-Air Vehicle Using Color-Based Tracking Algorithm

    Science.gov (United States)

    Azrad, Syaril; Kendoul, Farid; Nonami, Kenzo

    This paper describes a vision-based tracking system using an autonomous Quadrotor Unmanned Micro-Aerial Vehicle (MAV). The vision-based control system relies on color target detection and tracking algorithm using integral image, Kalman filters for relative pose estimation, and a nonlinear controller for the MAV stabilization and guidance. The vision algorithm relies on information from a single onboard camera. An arbitrary target can be selected in real-time from the ground control station, thereby outperforming template and learning-based approaches. Experimental results obtained from outdoor flight tests, showed that the vision-control system enabled the MAV to track and hover above the target as long as the battery is available. The target does not need to be pre-learned, or a template for detection. The results from image processing are sent to navigate a non-linear controller designed for the MAV by the researchers in our group.

  12. Numerical analysis of the in-well vapor-stripping system demonstration at Edwards Air Force Base

    Energy Technology Data Exchange (ETDEWEB)

    White, M.D.; Gilmore, T.J.

    1996-10-01

    Numerical simulations, with the Subsurface Transport Over Multiple Phases (STOMP) simulator, were applied to the field demonstration of an in-well vapor-stripping system at Edwards Air Force Base (AFB), near Mojave, California. The demonstration field site on the Edwards AFB was previously contaminated from traversing groundwater that was contained a varied composition of volatile organic compounds (VOCs), which primarily includes trichloroethylene (TCE). Contaminant TCE originated from surface basin that had been used to collect runoff during the cleaning of experimental rocket powered planes in the 1960s and 1970s. This report documents those simulations and associated numerical analyses. A companion report documents the in- well vapor-stripping demonstration from a field perspective.

  13. Suitability of Semiconductor Heterostructure over SiO2-Air Composition for One-Dimensional Photonic Crystal based Bandpass Filter

    Directory of Open Access Journals (Sweden)

    Arka Karmakar

    2013-05-01

    Full Text Available Bandpass filter characteristics is numerically computed for semiconductor heterostructure based onedimensional photonic crystal at different optical wavelengths by varying the structural parameters taking GaAs/AlxGa1-xAs as a suitable composition subject to normal incidence of electromagnetic wave. Transfer matrix technique is used for numerical analysis. Results are compared with conventionally used SiO2-air material system and significance improvements are observed at few desired spectra. Heterostructure provides larger passbandwidth with almost negligible ripple than conventional material system at 1330 nm or 1550 nm, which is required for present day optical communication network. Efficient tuning can be achieved by varying different layer dimensions for the preferred material composition which effectively changes the filter bandwidth in either side of the central wavelength, but it cost generation of ripples for the conventional system.

  14. Cosmic ray measurements in the knee region: new perspectives for simultaneous air-borne and ground-based observations

    International Nuclear Information System (INIS)

    Direct measurements of cosmic ray composition and energy spectra in the knee region (1015 to 1016 eV) represent a real challenge for balloon and space borne experiments due to their limited exposure. On the other hand, ground-based extensive air shower arrays (EAS) can provide a measurement of the primary particle energy but fail to identify unambiguously its nature. The possibility to couple a large area instrument in flight, dedicated to the charge identification of the primary nucleus, with a ground array is explored. This task is within the reach of today detector technologies but requires a formidable step in the current development of stratospheric airship platforms capable of maintaining a long-duration stationary position above the EAS array

  15. Cosmic ray measurements in the knee region: new perspectives for simultaneous air-borne and ground-based observations

    Energy Technology Data Exchange (ETDEWEB)

    Marrocchesi, P.S. [Physics Dept., Univ. of Siena and INFN, 56 via Roma, 53100 Siena (Italy)]. E-mail: marrocchesi@pi.infn.it

    2006-01-15

    Direct measurements of cosmic ray composition and energy spectra in the knee region (10{sup 15} to 10{sup 16} eV) represent a real challenge for balloon and space borne experiments due to their limited exposure. On the other hand, ground-based extensive air shower arrays (EAS) can provide a measurement of the primary particle energy but fail to identify unambiguously its nature. The possibility to couple a large area instrument in flight, dedicated to the charge identification of the primary nucleus, with a ground array is explored. This task is within the reach of today detector technologies but requires a formidable step in the current development of stratospheric airship platforms capable of maintaining a long-duration stationary position above the EAS array.

  16. A global airport-based risk model for the spread of dengue infection via the air transport network.

    Directory of Open Access Journals (Sweden)

    Lauren Gardner

    Full Text Available The number of travel-acquired dengue infections has seen a consistent global rise over the past decade. An increased volume of international passenger air traffic originating from regions with endemic dengue has contributed to a rise in the number of dengue cases in both areas of endemicity and elsewhere. This paper reports results from a network-based risk assessment model which uses international passenger travel volumes, travel routes, travel distances, regional populations, and predictive species distribution models (for the two vector species, Aedes aegypti and Aedes albopictus to quantify the relative risk posed by each airport in importing passengers with travel-acquired dengue infections. Two risk attributes are evaluated: (i the risk posed by through traffic at each stopover airport and (ii the risk posed by incoming travelers to each destination airport. The model results prioritize optimal locations (i.e., airports for targeted dengue surveillance. The model is easily extendible to other vector-borne diseases.

  17. Novel approach for evaluation of air change rate in naturally ventilated occupied spaces based on metabolic CO2 time variation

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Markov, Detelin G.

    2014-01-01

    , air-tight space, constant indoor pressure and temperature. The proposed approach for ACR evaluation can be applied to time intervals with any length, even with varying parameters of both indoor and outdoor air, in which metabolic CO2 generation rate is known and constant. This approach makes possible......IAQ in many residential buildings relies on non-organized natural ventilation. Accurate evaluation of air change rate (ACR) in this situation is difficult due to the nature of the phenomenon - intermittent infiltration-exfiltration periods of mass exchange between the room air and the outdoor air...

  18. 基于VR-Force的协同空战效能评估研究%Evaluation effectiveness of cooperate air combat based on VR-Force

    Institute of Scientific and Technical Information of China (English)

    左家亮; 杨任农; 寇雅楠; 张滢

    2011-01-01

    In the air combat, through integrating the main factor of the entity in the combat, and evaluating the hit probability of the entity in theory. On the assign task of the air combat based on the VR-Force develop environment is researched. According to the plan of the task, after edit campaign plan for every entity in the air combat, simulation experiment is done according the air combat plan in VR-Force, evaluate the efficiency of the air combat plan. At last, through comparing the result of the simulation, the value and meaning of the scientific and reasonable task assign plan in the air to air combat is illuminated.%在空战对抗中,通过综合参战实体各项战技指标,从理论上拟合单个实体对对方的杀伤概率.基于VR-Force开发环境,进行协同空战任务分配研究.根据任务分配方案,对每个参战实体制定对应的作战计划,按此方案制作作战想定,进行战场推演,实现效能评估.实验仿真结果与理论推导说明了科学合理的任务分配方案在协同空战中的作用和意义.

  19. Community air monitoring for pesticides. Part 3: using health-based screening levels to evaluate results collected for a year.

    Science.gov (United States)

    Wofford, Pamela; Segawa, Randy; Schreider, Jay; Federighi, Veda; Neal, Rosemary; Brattesani, Madeline

    2014-03-01

    The CA Department of Pesticide Regulation (CDPR) and the CA Air Resources Board monitored 40 pesticides, including five degradation products, in Parlier, CA, to determine if its residents were exposed to any of these pesticides and, if so, in what amounts. They included 1,3-dichloropropene, acrolein, arsenic, azinphos-methyl, carbon disulfide, chlorpyrifos and its degradation product, chlorthalonil, copper, cypermethrin, diazinon and its degradation product, dichlorvos, dicofol, dimethoate and its degradation product, diuron, endosulfan and its degradation product, S-ethyl dipropylcarbamothioate (EPTC), formaldehyde, malathion and its degradation product, methyl isothiocyanate (MITC), methyl bromide, metolachlor, molinate, norflurazon, oryzalin, oxyfluorfen, permethrin, phosmet, propanil, propargite, simazine, SSS-tributylphosphorotrithioate, sulfur, thiobencarb, trifluralin, and xylene. Monitoring was conducted 3 days per week for a year. Twenty-three pesticides and degradation products were detected. Acrolein, arsenic, carbon disulfide, chlorpyrifos, copper, formaldehyde, methyl bromide, MITC, and sulfur were detected in more than half the samples. Since no regulatory ambient air standards exist for these pesticides, CDPR developed advisory, health-based non-cancer screening levels (SLs) to assess acute, subchronic, and chronic exposures. For carcinogenic pesticides, CDPR assessed risk using cancer potency values. Amongst non-carcinogenic agricultural use pesticides, only diazinon exceeded its SL. For carcinogens, 1,3-dichloropropene concentrations exceeded its cancer potency value. Based on these findings, CDPR has undertaken a more comprehensive evaluation of 1,3-dichloropropene, diazinon, and the closely related chlorpyrifos that was frequently detected. Four chemicals-acrolein, arsenic, carbon disulfide, and formaldehyde-sometimes used as pesticides were detected, although no pesticidal use was reported in the area during this study. Their presence was most

  20. 基于Gauss伪谱法的空空导弹最优中制导律设计%Midcourse guidance law optimal design for air-to-air missiles based on gauss pseudospectral method

    Institute of Scientific and Technical Information of China (English)

    杨希祥; 张为华

    2013-01-01

    The optimum design of midcourse guidance law for air-to-air missiles was researched based on Gauss Pseudospectral Method ( GPM) . The optimal control model for midcourse guidance law of air-to-air missiles was established, the idea to design optimal midcourse guidance law with GPM was proposed, the solving process was described in detail, and effectivity of the proposed method was verified with simulation cases. Simulation results show that GPM is dominant in performance index, computation accuracy and computation efficiency, compared with the traditional methods, such as proportional navigation and shooting method, and the computation accuracy and computation efficiency of GPM are determined by the number of collocation nodes. The above all can provide theoretical reference for research of midcourse guidance law for air-to-air missiles.%研究Gauss伪谱法在空空导弹最优中制导律设计中的应用.建立空空导弹中制导律设计问题最优控制模型,首次提出采用Gauss伪谱法求解最优中制导律设计问题的思路,详细阐述了求解流程,通过仿真算例验证了求解方法的有效性,并同比例导引、打靶法等传统方法进行了对比.仿真结果表明,综合考虑性能指标、计算精度、计算效率等因素,Gauss伪谱法具有明显优势,Gauss伪谱法求解结果和求解效率与配点个数密切相关.研究结果为空空导弹中制导律设计提供理论参考.

  1. 变风量空调分户计费方法探讨%Discussion about Methods of Household-based Charging of Variable Air Volume Air-conditioning

    Institute of Scientific and Technical Information of China (English)

    雷晓凤; 任庆昌

    2011-01-01

    "Low carbon action, first building doing", the major energy consumers as building - the central air-conditioning system has become a hot spot in the field of energy saving. Moreover, household-based charging, namely charge according to users with hot (cold) how many, is an important segment of bringing the user consciously energy-saving, improving the positivity of the energy conservation, and realizing the rational utilization of the energy. Based on Variable Air Volume air-conditioning system of intelligent building and building automation laboratory in Xi'AN University of Architecture &Technology as the research object, in view of the air-conditioning measurement issues of the current building, and combined with electric meter measuring and heat meter measuring of advantage, this paper puts forward a kind of the solution of Household-based charging of Variable Air Volume air-conditioning, in order to provide reference for building the central air-conditioning system.%“低碳行动,建筑先行”,建筑能耗大户——中央空调系统已成为节能领域的关注热点,而分户计费,即按用户用热(冷)量多少收费,是促使用户自觉节能,进而提高节能积极性,实现能源合理利用的重要环节。本文以西安建筑科技大学智能建筑与楼宇自动化实验室变风量空调系统为研究对象,针对当前建筑空调计量问题,结合电表计量和热量计量方式的优势,提出了一种变风量空调分户计费解决方案,以期对楼宇中央空调系统提供借鉴。

  2. Generalization of heterogeneous alpine vegetation in air photo-based image classification, Latnjajaure catchment, northern Sweden

    Directory of Open Access Journals (Sweden)

    Lindblad, K. E. M.

    2006-12-01

    Full Text Available

    Mapping alpine vegetation at a meso-scale (catchment level using remote sensing presents difficulties due to a patchy distribution and heterogeneous spectral appearance of the plant cover. We discuss issues of generalization and accuracy assessment in this case study when using a digital CIR air photo for an automatic classification of the dominant plant communities. Spectral information from an aerial photograph was supplemented by classified plant communities in field and by topographical information derived from a DEM. 150 control points were tracked in the field using a GPS. The outcome from three alternative classifications was analysed by Kappa statistics, user’s and producer’s accuracy. Overall accuracy did not differ between the classifications although producer’s and user’s accuracy for separate classes differed together with total surface (ha and distribution. Manual accuracy assessment when recording the occurrence of the correct class within a radius of 5 meters from the control points generated an improvement of 16 % of the total accuracy. About 10 plant communities could be classified with acceptable accuracy where the chosen classification scheme determined the final outcome. If a high resolution pixel mosaic is generalized to units that match the positional accuracy of simple GPS this generalization may also influence the information content of the image.



    Hemos llevado a cabo la cartografía de la vegetación alpina a escala media (nivel de cuenca experimental mediante interpretación remota. Esta metodología plantea dificultades debido a la distribución en mosaico de la vegetación y a la heterogeneidad del espetro obtenido. Se discuten las posibilidades de generalización de los resultados y el grado de precisión alcanzado en este caso experimental mediante fotografía aérea digital CIR aplicada a una clasificación automática de

  3. Comparison of Highly Resolved Model-Based Exposure Metrics for Traffic-Related Air Pollutants to Support Environmental Health Studies

    Directory of Open Access Journals (Sweden)

    Shih Ying Chang

    2015-12-01

    Full Text Available Human exposure to air pollution in many studies is represented by ambient concentrations from space-time kriging of observed values. Space-time kriging techniques based on a limited number of ambient monitors may fail to capture the concentration from local sources. Further, because people spend more time indoors, using ambient concentration to represent exposure may cause error. To quantify the associated exposure error, we computed a series of six different hourly-based exposure metrics at 16,095 Census blocks of three Counties in North Carolina for CO, NOx, PM2.5, and elemental carbon (EC during 2012. These metrics include ambient background concentration from space-time ordinary kriging (STOK, ambient on-road concentration from the Research LINE source dispersion model (R-LINE, a hybrid concentration combining STOK and R-LINE, and their associated indoor concentrations from an indoor infiltration mass balance model. Using a hybrid-based indoor concentration as the standard, the comparison showed that outdoor STOK metrics yielded large error at both population (67% to 93% and individual level (average bias between −10% to 95%. For pollutants with significant contribution from on-road emission (EC and NOx, the on-road based indoor metric performs the best at the population level (error less than 52%. At the individual level, however, the STOK-based indoor concentration performs the best (average bias below 30%. For PM2.5, due to the relatively low contribution from on-road emission (7%, STOK-based indoor metric performs the best at both population (error below 40% and individual level (error below 25%. The results of the study will help future epidemiology studies to select appropriate exposure metric and reduce potential bias in exposure characterization.

  4. Fused analytical and iterative reconstruction (AIR) via modified proximal forward-backward splitting: a FDK-based iterative image reconstruction example for CBCT

    Science.gov (United States)

    Gao, Hao

    2016-10-01

    This work is to develop a general framework, namely analytical iterative reconstruction (AIR) method, to incorporate analytical reconstruction (AR) method into iterative reconstruction (IR) method, for enhanced CT image quality and reconstruction efficiency. Specifically, AIR is established based on the modified proximal forward-backward splitting (PFBS) algorithm, and its connection to the filtered data fidelity with sparsity regularization is discussed. As a result, AIR decouples data fidelity and image regularization with a two-step iterative scheme, during which an AR-projection step updates the filtered data fidelity term, while a denoising solver updates the sparsity regularization term. During the AR-projection step, the image is projected to the data domain to form the data residual, and then reconstructed by certain AR to a residual image which is then weighted together with previous image iterate to form next image iterate. Intuitively since the eigenvalues of AR-projection operator are close to the unity, PFBS based AIR has a fast convergence. Such an advantage is rigorously established through convergence analysis and numerical computation of convergence rate. The proposed AIR method is validated in the setting of circular cone-beam CT with AR being FDK and total-variation sparsity regularization, and has improved image quality from both AR and IR. For example, AIR has improved visual assessment and quantitative measurement in terms of both contrast and resolution, and reduced axial and half-fan artifacts.

  5. Polydimethylsiloxane-air partition ratios for semi-volatile organic compounds by GC-based measurement and COSMO-RS estimation: Rapid measurements and accurate modelling.

    Science.gov (United States)

    Okeme, Joseph O; Parnis, J Mark; Poole, Justen; Diamond, Miriam L; Jantunen, Liisa M

    2016-08-01

    Polydimethylsiloxane (PDMS) shows promise for use as a passive air sampler (PAS) for semi-volatile organic compounds (SVOCs). To use PDMS as a PAS, knowledge of its chemical-specific partitioning behaviour and time to equilibrium is needed. Here we report on the effectiveness of two approaches for estimating the partitioning properties of polydimethylsiloxane (PDMS), values of PDMS-to-air partition ratios or coefficients (KPDMS-Air), and time to equilibrium of a range of SVOCs. Measured values of KPDMS-Air, Exp' at 25 °C obtained using the gas chromatography retention method (GC-RT) were compared with estimates from a poly-parameter free energy relationship (pp-FLER) and a COSMO-RS oligomer-based model. Target SVOCs included novel flame retardants (NFRs), polybrominated diphenyl ethers (PBDEs), polycyclic aromatic hydrocarbons (PAHs), organophosphate flame retardants (OPFRs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). Significant positive relationships were found between log KPDMS-Air, Exp' and estimates made using the pp-FLER model (log KPDMS-Air, pp-LFER) and the COSMOtherm program (log KPDMS-Air, COSMOtherm). The discrepancy and bias between measured and predicted values were much higher for COSMO-RS than the pp-LFER model, indicating the anticipated better performance of the pp-LFER model than COSMO-RS. Calculations made using measured KPDMS-Air, Exp' values show that a PDMS PAS of 0.1 cm thickness will reach 25% of its equilibrium capacity in ∼1 day for alpha-hexachlorocyclohexane (α-HCH) to ∼ 500 years for tris (4-tert-butylphenyl) phosphate (TTBPP), which brackets the volatility range of all compounds tested. The results presented show the utility of GC-RT method for rapid and precise measurements of KPDMS-Air. PMID:27179237

  6. Air Conditioner/Dehumidifier

    Science.gov (United States)

    1986-01-01

    An ordinary air conditioner in a very humid environment must overcool the room air, then reheat it. Mr. Dinh, a former STAC associate, devised a heat pipe based humidifier under a NASA Contract. The system used heat pipes to precool the air; the air conditioner's cooling coil removes heat and humidity, then the heat pipes restore the overcooled air to a comfortable temperature. The heat pipes use no energy, and typical savings are from 15-20%. The Dinh Company also manufactures a "Z" coil, a retrofit cooling coil which may be installed on an existing heater/air conditioner. It will also provide free hot water. The company has also developed a photovoltaic air conditioner and solar powered water pump.

  7. Integrated Evaluation of Air Traffic Controller Workload Based on Matter-Element Analysis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming; HAN Song-chen

    2008-01-01

    A model for evaluating the controller workload was presented based on matter-element analysis, particularly from a man-machine-environment system engineering perspective. On the basis of a questionnaire survey, 18 kinds of indexes which influence the controller workload were determined. By establishing the classical field and node field of the controller workload, the correlation function of the controller workload grade was obtained; then the correlation degree and estimated grade of controller workload were given. A case study verifies the feasibility of the proposed evaluation method.

  8. Local - Air Project: Tropospheric Aerosol Monitoring by CALIPSO Lidar Satellite and Ground-Based Observations

    Science.gov (United States)

    Sarli, V.; Trippetta, S.; Bitonto, P.; Papagiannopoulos, N.; Caggiano, R.; Donvito, A.; Mona, L.

    2016-06-01

    A new method for the detection of the Planetary Boundary Layer (PBL) height from CALIPSO space-borne lidar data was developed and the possibility to infer the sub-micrometric aerosol particle (i.e., PM1) concentrations at ground level from CALIPSO observations was also explored. The comparison with ground-based lidar measurements from an EARLINET (European Aerosol Research LIdar Network) station showed the reliability of the developed method for the PBL. Moreover, empirical relationships between integrated backscatter values from CALIPSO and PM1 concentrations were found thanks to the combined use of the retrieved PBL heights, CALIPSO aerosol profiles and typing and PM1 insitu measurements.

  9. Hydrogeology of the area near the J4 test cell, Arnold Air Force Base, Tennessee

    Science.gov (United States)

    Haugh, C.J.

    1996-01-01

    The U.S. Air Force operates a major aerospace systems testing facility at Arnold Engineering Development Center (AEDC) in Coffee County, Tennessee. Dewatering operations at one of the test facilities, the J4 test cell, has affected the local ground-water hydrology. The J4 test cell is approximately 100 feet in diameter, extends approximately 250 feet below land surface, and penetrates several aquifers. Ground water is pumped continuously from around the test cell to keep the cell structurally intact. Because of the test cell's depth, dewatering has depressed water levels in the aquifers surrounding the site. The depressions that have developed exhibit anisotropy that is controlled by zones of high permeability in the aquifers. Additionally, contaminants - predominately volatile organic compounds - are present in the ground-water discharge from the test cell and in ground water at several other Installation Restoration Program (IRP) sites within the AEDC facility. The dewatering activities at J4 are drawing these contaminants from the nearby sites. The effects of dewatering at the J4 test cell were investigated by studying the lithologic and hydraulic characteristics of the aquifers, investigating the anisotropy and zones of secondary permeability using geophysical techniques, mapping the potentiometric surfaces of the underlying aquifers, and developing a conceptual model of the ground-water-flow system local to the test cell. Contour maps of the potentiometric surfaces in the shallow, Manchester, and Fort Payne aquifers (collectively, part of the Highland Rim aquifer system) show anisotropic water-level depressions centered on the J4 test cell. This anisotropy is the result of features of high permeability such as chert-gravel zones in the regolith and fractures, joints, and bedding planes in the bedrock. The presence of these features of high permeability in the Manchester aquifer results in complex flow patterns in the Highland Rim aquifers near the J4 test cell

  10. Limitations on Space-based Air Fluorescence Detector Apertures obtained from IR Cloud Measurements

    CERN Document Server

    Krizmanic, J F; Streitmatter, R E; Krizmanic, John; Sokolsky, Pierre; Streitmatter, Robert

    2003-01-01

    The presence of clouds between an airshower and a space-based detector can dramatically alter the measured signal characteristics due to absorption and scattering of the photonic signals. Furthermore, knowledge of the cloud cover in the observed atmosphere is needed to determine the instantaneous aperture of such a detector. Before exploring the complex nature of cloud-airshower interactions, we examine a simpler issue. We investigate the fraction of ultra-high energy cosmic ray events that may be expected to occur in volumes of the viewed atmosphere non-obscured by clouds. To this end, we use space-based IR data in concert with Monte Carlo simulated $10^{20}$ eV airshowers to determine the acceptable event fractions. Earth-observing instruments, such as MODIS, measure detailed cloud configurations via a CO$_2$-slicing technique that can be used to determine cloud-top altitudes over large areas. Thus, events can be accepted if their observed 3-dimensional endpoints occur above low clouds as well as from areas...

  11. Thermodynamic analysis of an integrated energy system based on compressed air energy storage (CAES) system and Kalina cycle

    International Nuclear Information System (INIS)

    Highlights: • An integrated energy system based on CAES and Kalina cycle is proposed. • The design and modeling of the CAES–KCS6 system are laid out. • The energy analysis and exergy analysis of the proposed system are carried out. • A parametric analysis is conducted to examine their effect on system performance. - Abstract: High penetration of renewable power sources into power system leads to significant challenge in balancing of power generation and consumption due to the highly erratic nature of renewable energies. Integrating the energy storage system (ESS) with power system can weaken these negative effects effectively. Compressed air energy storage (CAES) system as one of the grid-scale ESS technologies has grown rapidly in the past few years. However, the temperature of exhaust from low pressure turbine during discharge process is still high enough to utilize. An integrated energy system consisting of a CAES system and a Kalina cycle system 6 (KCS6) is proposed to recover this waste heat. The thermodynamic analyses including energy analysis and exergy analysis are evaluated by using steady-state mathematical model and thermodynamic laws. The second law efficiency of the proposed CAES–KCS6 system can be improved nearly 4% compared to that of the single conventional CAES system. Meanwhile, the parametric analysis is also carried out to evaluate the effects of some key parameters on system performance, such as the turbine inlet temperature (TIT), inlet pressure of low pressure turbine and the air storage cavern temperature. Results show that all of these parameters have positive effect on system exergy efficiency

  12. [Environmental investigation of ground water contamination at Wright- Patterson Air Force Base, Ohio]. Volume 4, Health and Safety Plan (HSP); Phase 1, Task 4 Field Investigation report: Draft

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    This Health and Safety Plan (HSP) was developed for the Environmental Investigation of Ground-water Contamination Investigation at Wright-Patterson Air Force Base near Dayton, Ohio, based on the projected scope of work for the Phase 1, Task 4 Field Investigation. The HSP describes hazards that may be encountered during the investigation, assesses the hazards, and indicates what type of personal protective equipment is to be used for each task performed. The HSP also addresses the medical monitoring program, decontamination procedures, air monitoring, training, site control, accident prevention, and emergency response.

  13. Recent Findings Based on Airborne Measurements at the Interface of Coastal California Clouds and Clear Air

    Science.gov (United States)

    Sorooshian, A.; Crosbie, E.; Wang, Z.; Chuang, P. Y.; Craven, J. S.; Coggon, M. M.; Brunke, M.; Zeng, X.; Jonsson, H.; Woods, R. K.; Flagan, R. C.; Seinfeld, J.

    2015-12-01

    Recent aircraft field experiments with the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter have targeted interfaces between clear and cloudy areas along the California coast. These campaigns, based out of Marina, California in the July-August time frame, include the Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE, 2011), Nucleation in California Experiment (NiCE, 2013), and the Biological Ocean Atmospheric Study (BOAS, 2015). Results will be presented related to (i) aqueous processing of natural and anthropogenic emissions, (ii) vertical re-distribution of ocean micronutrients, and (iii) stratocumulus cloud clearings and notable thermodynamic and aerosol contrasts across the clear-cloudy interface. The results have implications for modeling and observational studies of marine boundary layer clouds, especially in relation to aerosol-cloud interactions.

  14. V-shape liquid crystal-based retromodulator air to ground optical communications

    CERN Document Server

    Geday, Morten A; Carrasco-Casado, Alberto; Bennis, Noureddine; Quintana, Xabier; Hernandez, Francisco Lopez; Sanchez, Jose Manuel Oton

    2015-01-01

    This paper describes the use of a 2D liquid crystal retro-modulator as a free space, wireless, optical link. The retro-modulator is made up of a retro-reflecting cornercube onto which 2 cascaded V-shape smectics liquid crystal modulators are mounted. The communication link differs with respect to more conventional optical links in not using amplitude (nor frequency) modulation, but instead state-of-polarisation (SOP) modulation known as Polarisation Shift Keying (PolSK). PolSK has the advantage over amplitude modulation, that it is less sensitive to changes in the visibility of the atmosphere, and increases inherently the bandwidth of the link. The implementation of PolSK both in liquid crystal based and in retro-modulated communication are novelties.

  15. Radiation Control Coatings Installed on Federal Buildings at Tyndall Air Force Base

    Energy Technology Data Exchange (ETDEWEB)

    Kaba, R.L.; Petrie, T.W.

    1999-03-16

    The technical objectives of this CRADA comprise technology deployment and energy conservation efforts with the radiation control coatings industry and the utility sector. The results of this collaboration include a high-level data reporting, analysis and management system to support the deployment efforts. The technical objectives include successfully install, commission, operate, maintain and document the performance of radiation control coatings on roofs at Tyndall AFB and the Buildings Technology Center at the Oak Ridge National Laboratory; determine the life cycle savings that can be achieved by using radiation control coatings on entire roofs at Tyndall AFB, based on documented installed cost and operating maintenance costs with and without the coatings; determine if any specific improvements are required in the coatings before they can be successfully deployed in the federal sector; determine the most effective way to facilitate the widespread and rapid deployment of radiation control coatings in the federal sector; and clearly define any barriers to deployment.

  16. Enhancement of Non-Air Conducted Speech Based on Wavelet-Packet Adaptive Threshold

    Directory of Open Access Journals (Sweden)

    Xijing Jing

    2013-01-01

    Full Text Available This study developed a new kind of speech detecting method by using millimeter wave. Because of the advantage of the millimeter wave, this speech detecting method has great potential application and may provide some exciting possibility for wide applications. However, the MMW conduct speech is in less intelligible and poor audibility since it is corrupted by additive combined noise. This paper, therefore, also developed an algorithm of wavelet packet threshold by using hard threshold and soft threshold for removing noise based on the good capability of wavelet packet for analyzing time-frequency signal. Comparing to traditional speech enhancement algorithm, the results from both simulation and listening evaluation suggest that the proposed algorithm takes on a better performance on noise removing while the distortion of MMW radar speech remains acceptable, the enhanced speech also sounds more pleasant to human listeners, resulting in improved results over classical speech enhancement algorithms.

  17. Study of a cave's air exchange pattern based on radon concentration and the time dependence of radon concentration in Pál-völgy Cave (Budapest, Hungary)

    Science.gov (United States)

    Nagy, H. E.; Horvath, A.; Jordan, Gy.; Szabo, Cs.; Kiss, A.

    2012-04-01

    A long-term (one year and a half), high resolution, with an integration time of one hour, radon concentration monitoring was carried out in Pál-völgy Cave (Budapest, Hungary). Our major goal was to determine the time dependence of radon concentration in the cave and to understand the exchange pattern of the cave air with the outdoor air based on radon concentrations, and to determine the factors that affect the radon concentration in the cave air. Pál-völgy Cave is situated in the Buda Hills, which is the NE part of the Transdanubian Central Range. The wall rock of the cave is dominantly Eocene Szépvölgy Limestone Formation. Above the limestone Eocene Buda Marl and Oligocene Tard Clay are deposited. A huge multiphase hydrothermal cave system developed in the Szépvölgy Limestone and partially in the Buda Marl resulted in a long-term complex paleokarstic evolution from the Late Eocene to the Quaternary. The radon concentration in the cave air was measured continuously by an AlphaGuard radon monitor, and meteorological parameters outside the cave were also collected simultaneously. The arithmetic mean of the annual radon concentration was 1.9 kBq/m3 and the radon concentration varied between 104-7,776 Bq/m3. In addition, the results indicate a clear seasonal variability of radon concentration in the cave air: in winter the radon concentration fluctuates around a low mean value of 253 Bq/m3, in summer it oscillates around a high mean value of 5,504 Bq/m3, whereas in spring and autumn the radon level varies between the winter and summer values. The summer to winter radon concentration ratio (radon concentration in summer/radon concentration in winter) was high, 21.8. The outside air temperature showed the strongest correlation with the radon concentration in the cave, Pierson's linear correlation coefficient is 0.76. If the outdoor air temperature is lower than the cave air temperature (12 °C), especially in autumn and winter the air flows from outside into the

  18. Individual traffic-related air pollution and new onset adult asthma:A GIS-based pilot study

    DEFF Research Database (Denmark)

    Lysbeck Hansen, Carl; Jensen, Steen Solvang; Baelum, Jesper;

    The background for the project is that traffic-related air pollution may provoke the onset of asthma. The objective of this pilot study is to investigate the relation between asthma and wheeze debut and individually estimated exposure to traffic-related air pollutants with a validated exposure...... successfully identified for all study participants (N=33). Using AirGIS traffic-related air pollutant levels from both urban background and street level were estimated for the 10 year study period on an hourly basis. Individual levels of air pollutants in the years preceding debut of asthma or wheeze were...... demonstrated. A tendency towards higher levels of nitrogen oxides exposure during the year prior to debut was seen in wheeze cases. Substantial problems in determining time of onset were encountered. This pilot study successfully demonstrated the feasibility of using AirGIS to study correlations between...

  19. Modeling natural emissions in the Community Multiscale Air Quality (CMAQ) model – Part 1: Building an emissions data base

    OpenAIRE

    Smith, S. N.; S. F. Mueller

    2010-01-01

    A natural emissions inventory for the continental United States and surrounding territories is needed in order to use the US Environmental Protection Agency Community Multiscale Air Quality (CMAQ) Model for simulating natural air quality. The CMAQ air modeling system (including the Sparse Matrix Operator Kernel Emissions (SMOKE) emissions processing system) currently estimates volatile organic compound (VOC) emissions from biogenic sources, nitrogen oxide (NOx) emission...

  20. Modeling natural emissions in the Community Multiscale Air Quality (CMAQ) Model–I: building an emissions data base

    OpenAIRE

    Smith, S. N.; S. F. Mueller

    2010-01-01

    A natural emissions inventory for the continental United States and surrounding territories is needed in order to use the US Environmental Protection Agency Community Multiscale Air Quality (CMAQ) Model for simulating natural air quality. The CMAQ air modeling system (including the Sparse Matrix Operator Kernel Emissions (SMOKE) emissions processing system) currently estimates non-methane volatile organic compound (NMVOC) emissions from biogenic sources, nitrogen oxide (NOx) emissions from so...

  1. Paper-Based Analytical Devices Relying on Visible-Light-Enhanced Glucose/Air Biofuel Cells.

    Science.gov (United States)

    Wu, Kaiqing; Zhang, Yan; Wang, Yanhu; Ge, Shenguang; Yan, Mei; Yu, Jinghua; Song, Xianrang

    2015-11-01

    A strategy that combines visible-light-enhanced biofuel cells (BFCs) and electrochemical immunosensor into paper-based analytical devices was proposed for sensitive detection of the carbohydrate antigen 15-3 (CA15-3). The gold nanoparticle modified paper electrode with large surface area and good conductibility was applied as an effective matrix for primary antibodies. The glucose dehydrogenase (GDH) modified gold-silver bimetallic nanoparticles were used as bioanodic biocatalyst and signal magnification label. Poly(terthiophene) (pTTh), a photoresponsive conducting polymer, served as catalyst in cathode for the reduction of oxygen upon illumination by visible light. In the bioanode, electrons were generated through the oxidation of glucose catalyzed by GDH. The amount of electrons is determined by the amount of GDH, which finally depended on the amount of CA15-3. In the cathode, electrons from the bioanode could combine with the generated holes in the HOMO energy level of cathode catalysts pTTh. Meanwhile, the high energy level photoexcited electrons were generated in the LUMO energy level and involved in the oxygen reduction reaction, finally resulting in an increasing current and a decreasing overpotential. According to the current signal, simple and efficient detection of CA15-3 was achieved.

  2. Conductivity Studies and Performance of Chitosan Based Polymer Electrolyteyte in H_2/Air Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    S.R.Majid; A.K.Arof

    2007-01-01

    1 Resalts Four chitosan-based electrolyte systems chitosan-H3PO4, chitosan-H3PO4-NH4NO3, chitosan-H3PO4-NH4NO3-Al2SiO5 and chitosan-H3PO4-Al2SiO5 were studied. The samples (0.62 chitosan-0.38 H3PO4), (0.56 chitosan-0.34 H3PO4-0.10 NH4NO3), (0.557 2 chitosan-0.338 3 H3PO4-0.099 5 NH4NO3-0.005 Al2SiO5) and (0.615 chitosan-0.377 H3PO4-0.008 Al2SiO5), composition in weight fraction, exhibit the highest room temperature electrical conductivity of (5.36±1.32) × 10-5, (1.16±0.35) × 10-4, (1.82±0.10) × 10-4 an...

  3. Risk-based objectives for the allocation of chemical, biological, and radiological air emissions sensors.

    Science.gov (United States)

    Lambert, James H; Farrington, Mark W

    2006-12-01

    This article addresses the problem of allocating devices for localized hazard protection across a region. Each identical device provides only local protection, and the devices serve localities that are exposed to nonidentical intensities of hazard. A method for seeking the optimal allocation Policy Decisions is described, highlighting the potentially competing objectives of maximizing local risk reductions and coverage risk reductions. The metric for local risk reductions is the sum of the local economic risks avoided. The metric for coverage risk reductions is adapted from the p-median problem and equal to the sum of squares of the distances from all unserved localities to their closest associated served locality. Three graphical techniques for interpreting the Policy Decisions are presented. The three linked graphical techniques are applied serially. The first technique identifies Policy Decisions that are nearly Pareto optimal. The second identifies locations where sensor placements are most justified, based on a risk-cost-benefit analysis under uncertainty. The third displays the decision space for any particular policy decision. The method is illustrated in an application to chemical, biological, and/or radiological weapon sensor placement, but has implications for disaster preparedness, transportation safety, and other arenas of public safety. PMID:17184404

  4. Multi-media authoring - Instruction and training of air traffic controllers based on ASRS incident reports

    Science.gov (United States)

    Armstrong, Herbert B.; Roske-Hofstrand, Renate J.

    1989-01-01

    This paper discusses the use of computer-assisted instructions and flight simulations to enhance procedural and perceptual motor task training. Attention is called to the fact that incorporating the accident and incident data contained in reports filed with the Aviation Safety Reporting System (ASRS) would be a valuable training tool which the learner could apply for other situations. The need to segment the events is emphasized; this would make it possible to modify events in order to suit the needs of the training environment. Methods were developed for designing meaningful scenario development on runway incursions on the basis of analysis of ASRS reports. It is noted that, while the development of interactive training tools using the ASRS and other data bases holds much promise, the design and production of interactive video programs and laser disks are very expensive. It is suggested that this problem may be overcome by sharing the costs of production to develop a library of materials available to a broad range of users.

  5. Oxidation behaviour of experimental Co-Re-base alloys in laboratory air at 1000 C

    Energy Technology Data Exchange (ETDEWEB)

    Klauke, Michael; Mukherji, Debashis; Roesler, Joachim [Technische Universitaet Braunschweig, Institut fuer Werkstoffe (Germany); Gorr, Bronislava; Christ, Hans-Juergen [Universitaet Siegen, Institut fuer Werkstofftechnik (Germany); Braz da Trindade Filho, Vicente [Vallourec und Mannesmann Tubes, Duesseldorf (Germany)

    2009-01-15

    The oxidation behaviour of experimental Co-Re-based alloy at 1000 C was studied. A set of binary, ternary and quaternary alloys from the Co-Re-Cr-C system was used as model alloys to understand the role each alloying element plays on oxidation. The morphology and composition of the oxide scale that formed was analysed by X-ray diffraction, energy dispersive spectroscopy and scanning electron microscopy. It was found that the present Co-Re alloys with 23 at.% and 30 at.% Cr additions behaved very similarly to Co-Cr binary alloys with equivalent Cr content. The oxide scale was multilayered, consisting of a dense CoO outer layer, a porous mixed oxide layer containing Co-oxide and Co-Cr spinel, and a discontinuous and non-protective Cr{sub 3}O{sub 2} layer. The binary Co-Re alloy behaved differently in oxidation, and it formed only a monolithic CoO scale. However, Re in combination with Cr promotes Cr-Re-rich {sigma} phase formation, which oxidises preferentially compared to the Co matrix. Carbon ties up part of the Cr to form Cr{sub 23}C{sub 6} type carbides. However, these carbides are not stable at 1000 C and dissolved with time, therefore C had only a minor role in the oxidation behaviour. In general, increasing Cr content in the alloy improved oxidation resistance. (orig.)

  6. Voidage Measurement of Air-Water Two-phase Flow Based on ERT Sensor and Data Mining Technology

    Institute of Scientific and Technical Information of China (English)

    王保良; 孟振振; 黄志尧; 冀海峰; 李海青

    2012-01-01

    Based on an electrical resistance tomography(ERT) sensor and the data mining technology,a new voidage measurement method is proposed for air-water two-phase flow.The data mining technology used in this work is a least squares support vector machine(LS-SVM) algorithm together with the feature extraction method,and three feature extraction methods are tested:principal component analysis(PCA),partial least squares(PLS) and independent component analysis(ICA).In the practical voidage measurement process,the flow pattern is firstly identified directly from the conductance values obtained by the ERT sensor.Then,the appropriate voidage measurement model is selected according to the flow pattern identification result.Finally,the voidage is calculated.Experimental results show that the proposed method can measure the voidage effectively,and the measurement accuracy and speed are satisfactory.Compared with the conventional voidage measurement methods based on ERT,the proposed method doesn't need any image reconstruction process,so it has the advantage of good real-time performance.Due to the introduction of flow pattern identification,the influence of flow pattern on the voidage measurement is overcome.Besides,it is demonstrated that the LS-SVM method with PLS feature extraction presents the best measurement performance among the tested methods.

  7. Hydrogen peroxide detection in wet air with a Prussian Blue based solid salt bridged three electrode system.

    Science.gov (United States)

    Komkova, Maria A; Karyakina, Elena E; Marken, Frank; Karyakin, Arkady A

    2013-03-01

    We report on a novel electroanalytical system for hydrogen peroxide (H2O2) detection in humidity or droplets of aerosol, formed by air bubbling through a washing chamber; the resulting flow mimics the exhaled human breath. The system is based on a planar three-electrode structure (with a Prussian Blue based H2O2 transducer modified working electrode) bridged by a solid salt-saturated filament material (filter paper, cotton textile). Respective to the hydrogen peroxide content in the washing valve, the response of the aerosol-sensing system is linear in the concentration range of 0.1-10 μM, which overlaps the generally accepted H2O2 content in exhaled breath condensate (EBC), with the sensitivity of 8 A M(-1) cm(-2). The response to the upper limit of the calibration range is stable for more than 50 injection cycles recorded within 3 days. Both the stability and the suitable calibration range allow one to consider the reported aerosol-sensing system as a prototype for a simple (avoiding intermediate EBC collection) noninvasive diagnostic tool for pulmonary patients. PMID:23374034

  8. Rising critical emission of air pollutants from renewable biomass based cogeneration from the sugar industry in India

    Science.gov (United States)

    Sahu, S. K.; Ohara, T.; Beig, G.; Kurokawa, J.; Nagashima, T.

    2015-09-01

    In the recent past, the emerging India economy is highly dependent on conventional as well as renewable energy to deal with energy security. Keeping the potential of biomass and its plentiful availability, the Indian government has been encouraging various industrial sectors to generate their own energy from it. The Indian sugar industry has adopted and made impressive growth in bagasse (a renewable biomass, i.e. left after sugercane is crushed) based cogeneration power to fulfil their energy need, as well as to export a big chunk of energy to grid power. Like fossil fuel, bagasse combustion also generates various critical pollutants. This article provides the first ever estimation, current status and overview of magnitude of air pollutant emissions from rapidly growing bagasse based cogeneration technology in Indian sugar mills. The estimated emission from the world’s second largest sugar industry in India for particulate matter, NOX, SO2, CO and CO2 is estimated to be 444 ± 225 Gg yr-1, 188 ± 95 Gg yr-1, 43 ± 22 Gg yr-1, 463 ± 240 Gg yr-1 and 47.4 ± 9 Tg yr-1, respectively in 2014. The studies also analyze and identify potential hot spot regions across the country and explore the possible further potential growth for this sector. This first ever estimation not only improves the existing national emission inventory, but is also useful in chemical transport modeling studies, as well as for policy makers.

  9. Air-sea fluxes and satellite-based estimation of water masses formation

    Science.gov (United States)

    Sabia, Roberto; Klockmann, Marlene; Fernandez-Prieto, Diego; Donlon, Craig

    2015-04-01

    Recent work linking satellite-based measurements of sea surface salinity (SSS) and sea surface temperature (SST) with traditional physical oceanography has demonstrated the capability of generating routinely satellite-derived surface T-S diagrams [1] and analyze the distribution/dynamics of SSS and its relative surface density with respect to in-situ measurements. Even more recently [2,3], this framework has been extended by exploiting these T-S diagrams as a diagnostic tool to derive water masses formation rates and areas. A water mass describes a water body with physical properties distinct from the surrounding water, formed at the ocean surface under specific conditions which determine its temperature and salinity. The SST and SSS (and thus also density) at the ocean surface are largely determined by fluxes of heat and freshwater. The surface density flux is a function of the latter two and describes the change of the density of seawater at the surface. To obtain observations of water mass formation is of great interest, since they serve as indirect observations of the thermo-haline circulation. The SSS data which has become available through the SMOS [4] and Aquarius [5] satellite missions will provide the possibility of studying also the effect of temporally-varying SSS fields on water mass formation. In the present study, the formation of water masses as a function of SST and SSS is derived from the surface density flux by integrating the latter over a specific area and time period in bins of SST and SSS and then taking the derivative of the total density flux with respect to density. This study presents a test case using SMOS SSS, OSTIA SST, as well as Argo ISAS SST and SSS for comparison, heat fluxes from the NOCS Surface Flux Data Set v2.0, OAFlux evaporation and CMORPH precipitation. The study area, initially referred to the North Atlantic, is extended over two additional ocean basins and the study period covers the 2011-2012 timeframe. Yearly, seasonal

  10. Completion of the Edward Air Force Base Statistical Guidance Wind Tool

    Science.gov (United States)

    Dreher, Joseph G.

    2008-01-01

    The goal of this task was to develop a GUI using EAFB wind tower data similar to the KSC SLF peak wind tool that is already in operations at SMG. In 2004, MSFC personnel began work to replicate the KSC SLF tool using several wind towers at EAFB. They completed the analysis and QC of the data, but due to higher priority work did not start development of the GUI. MSFC personnel calculated wind climatologies and probabilities of 10-minute peak wind occurrence based on the 2-minute average wind speed for several EAFB wind towers. Once the data were QC'ed and analyzed the climatologies were calculated following the methodology outlined in Lambert (2003). The climatologies were calculated for each tower and month, and then were stratified by hour, direction (10" sectors), and direction (45" sectors)/hour. For all climatologies, MSFC calculated the mean, standard deviation and observation counts of the Zminute average and 10-minute peak wind speeds. MSFC personnel also calculated empirical and modeled probabilities of meeting or exceeding specific 10- minute peak wind speeds using PDFs. The empirical PDFs were asymmetrical and bounded on the left by the 2- minute average wind speed. They calculated the parametric PDFs by fitting the GEV distribution to the empirical distributions. Parametric PDFs were calculated in order to smooth and interpolate over variations in the observed values due to possible under-sampling of certain peak winds and to estimate probabilities associated with average winds outside the observed range. MSFC calculated the individual probabilities of meeting or exceeding specific 10- minute peak wind speeds by integrating the area under each curve. The probabilities assist SMG forecasters in assessing the shuttle FR for various Zminute average wind speeds. The A M ' obtained the processed EAFB data from Dr. Lee Bums of MSFC and reformatted them for input to Excel PivotTables, which allow users to display different values with point

  11. Development of a novel hydroxyl ammonium nitrate based liquid propellant for air-independent propulsion

    Science.gov (United States)

    Fontaine, Joseph Henry

    The focus of this dissertation is the development of an Unmanned Undersea Vehicle (UUV) liquid propellant employing Hydroxyl Ammonium Nitrate (HAN) as the oxidizer. Hydroxyl Ammonium Nitrate is a highly acidic aqueous based liquid oxidizer. Therefore, in order to achieve efficient combustion of a propellant using this oxidizer, the fuel must be highly water soluble and compatible with the oxidizer to prevent a premature ignition prior to being heated within the combustion chamber. An extensive search of the fuel to be used with this oxidizer was conducted. Propylene glycol was chosen as the fuel for this propellant, and the propellant given the name RF-402. The propellant development process will first evaluate the propellants thermal stability and kinetic parameters using a Differential Scanning Calorimeter (DSC). The purpose of the thermal stability analysis is to determine the temperature at which the propellant decomposition begins for the future safe handling of the propellant and the optimization of the combustion chamber. Additionally, the thermogram results will provide information regarding any undesirable endotherms prior to the decomposition and whether or not the decomposition process is a multi-step process. The Arrhenius type kinetic parameters will be determined using the ASTM method for thermally unstable materials. The activation energy and pre-exponential factor of the propellant will be determined by evaluating the decomposition peak temperature over a temperature scan rate ranging from 1°C per minute to 10°C per minute. The kinetic parameters of the propellant will be compared to those of 81 wt% HAN to determine if the HAN decomposition is controlling the overall decomposition of the propellant RF-402. The lifetime of individual droplets will be analyzed using both experimental and theoretical techniques. The theoretical technique will involve modeling the lifetime of an individual droplet in a combustion chamber like operating environment

  12. Research on Low Cost Air-combat Training System Based on PC%基于PC的低成本空战训练系统研究

    Institute of Scientific and Technical Information of China (English)

    马潇潇; 戴革林; 李青; 刘志坚

    2014-01-01

    The training system based on PC is a kind of low cost training means,it can be used as the ef-fective additional complement to the traditional ground simulator and embedded training system.A type of training method was presented to build low-cost air combat training system based on SIMBox simulation platform.The basic framework of the system was designed,and the key technologies such as radar fire control system model,air-to-air missile traj ectory simulation and target damage model were researched in detail.The simulation results showed that the ballistic traj ectories can reflect the characteristics of air-to-air missile,and the system can provide a realistic virtual environment for air-combat training.The system can be used as an accessorial means for air-combat training.%基于PC的训练系统是一种低成本训练手段,可作为传统地面模拟器与嵌入式训练系统的有效补充。提出了一种基于 SIMBox仿真平台建立低成本空战训练系统的方法,设计了系统的基本架构,并对其中雷达火控系统建模、空空导弹弹道仿真和目标毁伤建模等关键技术进行了研究。仿真表明弹道轨迹反映了空空导弹特性,系统能够为空战训练提供较逼真的虚拟作战环境,可作为一种辅助性的空战训练手段。

  13. Assessment of human health impact from exposure to multiple air pollutants in China based on satellite observations

    Science.gov (United States)

    Yu, Tao; Wang, Wen; Ciren, Pubu; Zhu, Yan

    2016-10-01

    Assessment of human health impact caused by air pollution is crucial for evaluating environmental hazards. In this paper, concentrations of six air pollutants (PM10, PM2.5, NO2, SO2, O3, and CO) were first derived from satellite observations, and then the overall human health risks in China caused by multiple air pollutants were assessed using an aggregated health risks index. Unlike traditional approach for human health risks assessment, which relied on the in-situ air pollution measurements, the spatial distribution of aggregated human health risks in China were obtained using satellite observations in this research. It was indicated that the remote sensing data have advantages over in-situ data in accessing human health impact caused by air pollution.

  14. Fundamentals and applications of on-chip interferometers based on deep-etched silicon-air multilayer reflectors

    Science.gov (United States)

    St-Gelais, Raphael

    Deep reactive ion etching (DRIE) of silicon can be used to fabricate vertical (i.e. in-plane) silicon-air multilayer mirrors. In comparison with out-of-plane reflectors fabricated by thin film deposition, in-plane multilayer assemblies can be monolithically integrated with a variety of useful structures such as passive optical fiber alignment grooves, microfluidic systems, waveguides, and microelectromechanical (MEMS) actuators. However, all previously reported devices suffered from high insertion losses (> 10 dB) which translated, in most cases, in weak light confinement abilities (e.g. low finesses in the case of Fabry-Perot cavities). The first objective of this work is therefore to investigate the sources of loss and the technological limitations that affect interferometers based on deep-etched multilayer reflectors. Theoretical models for the prediction of losses---due to Gaussian beam divergence, surface roughness at silicon-air material interfaces, imperfect verticality of the etch profiles, and misalignment between input and output coupling optical fibers---are provided. Of these four loss mechanisms, the first three are demonstrated to be generally significant. For the devices presented in the current thesis, however, verticality deviation of the etch profiles (etch angle error ~ 0.04°) is found to be negligible compared with the measured contributions of surface roughness (30 nm RMS) and Gaussian beam divergence. The fourth loss mechanism (fiber misalignment) is found to be essentially negligible in all cases. These theoretical models are demonstrated to correspond remarkably well with our experimental results, such that we are able to state clear boundaries on the possibilities and limitations of interferometers based on deep-etched silicon-air multilayer reflectors. Within these boundaries, three new devices---with potential applications in biomedical sensing, chemical sensing, and optical fiber telecommunications---are investigated. Firstly, a deep

  15. Water-surface elevations of wetlands and nearby wells at Arnold Air Force Base, near Manchester, Tennessee

    Science.gov (United States)

    Wolfe, W.J.; League, D.E.

    1996-01-01

    Surface-water stage, ground-water elevations, rainfall, and streamflow were monitored at or near four wetland sites at Arnold Air Force Base, Tennessee. Two of the wetland sites (Sinking Pond and Westall Swamp) included sinkholes with internal relief greater than 7 feet. The other two wetlands (Tupelo Swamp and Goose Pond) were shallow depressions with less than 5 feet internal relief. Stage rose and fell abruptly in the two sinkhole wetlands. Water depths ranged from 0 to 11.4 feet in Sinking Pond and from 0 to 8.5 feet in Westall Swamp. Water levels in wells adjacent to the sinkhole wetlands also rose and fell abruptly. The two shallow depressions filled and drained more gradually and remained flooded longer than the sinkhole wetlands. The maximum recorded water depths were 3.5 feet in Tupelo Swamp and 2.3 feet in Goose Pond. Water levels in nearby wells remained lower than surface-water elevations in the shallow depressions throughout the study period.

  16. State-based modeling of continuous human-integrated systems: An application to air traffic separation assurance

    International Nuclear Information System (INIS)

    A method for modeling the safety of human-integrated systems that have continuous dynamics is introduced. The method is intended to supplement more detailed reliability-based methods. Assumptions for the model are defined such that the model is demonstrably complete, enabling it to yield a set of key agent characteristics. These key characteristics identify a sufficient set of characteristics that can be used to establish the safety of particular system configurations. The method is applied for the analysis of the safety of strategic and tactical separation assurance algorithms for the next generation air transportation system. It is shown that the key characteristics for this problem include the ability of agents (human or automated) to identify configurations that can enable intense transitions from a safe to unsafe state. However, the most technologically advanced algorithm for separation assurance does not currently attempt to identify such configurations. It is also discussed how, although the model is in a form that lends itself to quantitative evaluations, such evaluations are complicated by the difficulty of accurately quantifying human error probabilities.

  17. Stability optimisation of molecular electronic devices based on  nanoelectrode–nanoparticle bridge platform in air and different storage liquids

    Energy Technology Data Exchange (ETDEWEB)

    Jafri, S. H. M. [Mirpur University of Science and Technology, Department of Electrical Engineering (Pakistan); Blom, T. [Uppsala University, The Ångström Laboratory, Department of Engineering Sciences (Sweden); Wallner, A.; Ottosson, H., E-mail: Henrik.Ottosson@kemi.uu.se [Uppsala University, The Biomedical Centre, Department of Chemistry (Sweden); Leifer, K., E-mail: Klaus.Leifer@angstrom.uu.se [Uppsala University, The Ångström Laboratory, Department of Engineering Sciences (Sweden)

    2014-12-15

    The long-term stability of metal nanoparticle–molecule junctions in molecular electronic devices based on nanoelectrodes (NEL) is a major challenge in the effort to bring related molecular electronic devices to application. To optimize the reproducibility of molecular electronic nanodevices, the time-dependent modification of such junctions as exposed to different media needs to be known. Here, we have studied (1) the stability of Au-NEL and (2) the electrical stability of molecule–Au nanoparticle (AuNP) junctions themselves with the molecule being  1,8-octanedithiol (ODT). Both the NELs only and the junctions were exposed to air and liquids such as deionized water, tetrahydrofuran, toluene and tetramethylethylenediamine (TMEDA) over a period of 1 month. The nanogaps remained stable in width when stored in either deionized water or toluene, whereas the current through 1,8-octanedithiol–NP junctions remained most stable when stored in TMEDA as compared to other solvents. Although it is difficult to follow the chemical processes in such devices in the 10-nm range with analytical methods, the behavior can be interpreted from known interactions of solvent molecules with electrodes and ODT.

  18. An accurate air temperature measurement system based on an envelope pulsed ultrasonic time-of-flight technique.

    Science.gov (United States)

    Huang, Y S; Huang, Y P; Huang, K N; Young, M S

    2007-11-01

    A new microcomputer based air temperature measurement system is presented. An accurate temperature measurement is derived from the measurement of sound velocity by using an ultrasonic time-of-flight (TOF) technique. The study proposes a novel algorithm that combines both amplitude modulation (AM) and phase modulation (PM) to get the TOF measurement. The proposed system uses the AM and PM envelope square waveform (APESW) to reduce the error caused by inertia delay. The APESW ultrasonic driving waveform causes an envelope zero and phase inversion phenomenon in the relative waveform of the receiver. To accurately achieve a TOF measurement, the phase inversion phenomenon was used to sufficiently identify the measurement pulse in the received waveform. Additionally, a counter clock technique was combined to compute the phase shifts of the last incomplete cycle for TOF. The presented system can obtain 0.1% TOF resolution for the period corresponding to the 40 kHz frequency ultrasonic wave. Consequently, with the integration of a humidity compensation algorithm, a highly accurate and high resolution temperature measurement can be achieved using the accurate TOF measurement. Experimental results indicate that the combined standard uncertainty of the temperature measurement is approximately 0.39 degrees C. The main advantages of this system are high resolution measurements, narrow bandwidth requirements, and ease of implementation.

  19. [Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 9, Removal action system design

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This Removal Action System Design has been prepared as a Phase I Volume for the implementation of the Phase II removal action at Wright-Patterson Air Force Base (WPAFB) near Dayton, Ohio. The objective of the removal action is to prevent, to the extent practicable, the migration of ground water contaminated with chlorinated volatile organic compounds (VOCS) across the southwest boundary of Area C. The Phase 1, Volume 9 Removal Action System Design compiles the design documents prepared for the Phase II Removal Action. These documents, which are presented in Appendices to Volume 9, include: Process Design, which presents the 30 percent design for the ground water treatment system (GWTS); Design Packages 1 and 2 for Earthwork and Road Construction, and the Discharge Pipeline, respectively; no drawings are included in the appendix; Design Package 3 for installation of the Ground Water Extraction Well(s); Design Package 4 for installation of the Monitoring Well Instrumentation; and Design Package 5 for installation of the Ground Water Treatment System; this Design Package is incorporated by reference because of its size.

  20. Biologic surveys for the Sandia National Laboratories, Coyote Canyon Test Complex, Kirtland Air Force Base, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, R.M. [4115 Allen Dr., Kingsville, TX (United States); Knight, P.J. [Marron and Associates, Inc., Corrales, NM (United States)

    1994-05-25

    This report provides results of a comprehensive biologic survey performed in Coyote Canyon Test Complex (CCTC), Sandia National Laboratories (SNL), Bernalillo County, New Mexico, which was conducted during the spring and summer of 1992 and 1993. CCTC is sited on land owned by the Department of Energy (DOE) and Kirtland Air Force Base and managed by SNL. The survey covered 3,760 acres of land, most of which is rarely disturbed by CCTC operations. Absence of grazing by livestock and possibly native ungulates, and relative to the general condition of private range lands throughout New Mexico, and relative to other grazing lands in central New Mexico. Widely dispersed, low intensity use by SNL as well as prohibition of grazing has probably contributed to abundance of special status species such as grama grass cactus within the CCTC area. This report evaluates threatened and endangered species found in the area, as well as comprehensive assessment of biologic habitats. Included are analyses of potential impacts and mitigative measures designed to reduce or eliminate potential impacts. Included is a summary of CCTC program and testing activities.

  1. Hot methanol extraction for the analysis of volatile organic chemicals in subsurface core samples from Dover Air Force Base, Delaware

    Energy Technology Data Exchange (ETDEWEB)

    Ball, W.P.; Xia, G.; Durfee, D.P.; Wilson, R.D.; Brown, M.J.; Mackay, D.M.

    1997-06-01

    The evaluation of contaminant concentrations in ground water and soil is an essential aspect of most hazardous waste remedial investigations. This paper describes methods applied toward obtaining, preserving, and analyzing subsurface samples for the determination of VOC concentration in the saturated region of an unconfined coastal plain aquifer at Dover Air Force Base (DAFB), Delaware. The described protocol involved headspace-free subsampling of cores, field preservation of subsamples in methanol, and overnight extraction of the VOCs at elevated temperature (70 C). Methanol-extracted compounds were subsequently transferred to hexane and analyzed by gas chromatography. The method was found to achieve quantitative extraction from the aquifer sands in a single step, although extraction from fine-grained and more strongly sorbing aquitard samples required multiple methanol extractions to achieve comparable recovery. An extensive set of DAFB results is presented as an indication of how these methods can be applied toward characterizing field-scale contamination with a high degree of resolution and accuracy.

  2. An electrical conductivity based method of determining the particle deposition rate in air-liquid interface devices.

    Science.gov (United States)

    Wiegand, Harald; Meyer, Jörg; Kasper, Gerhard

    2015-08-01

    A new in-situ method of determining the particle deposition rate onto cell cultures inside air-liquid interface devices is described. It is based on depositing a surrogate aerosol of salt particles onto the water filled wells of a culture plate while measuring the resulting change in electrical conductivity of the solution in situ, in order to derive the accumulated particle mass. For evaluation purposes, the wells of a six-well cell culture plate were equipped with custom designed electrodes and calibrated with a series of commercially available standard solutions. After the necessary corrections prescribed by theory, the calibration resulted in an accuracy and comparability between cells of ±3% in terms of measured conductivity. The method was then applied to a specific ALI device consisting essentially of the calibrated six-well culture plate inside an electrostatic cross-flow precipitator, and tested with submicron NaCl aerosol of defined size distribution produced by nebulization of a salt solution. 2h of particle accumulation were sufficient to accumulate between 30 and 10 μg of salt per well, depending on the location in the precipitator. Resulting deposition rates varied narrowly between the wells by about 2 ng min(-1) cm(-2). Factors affecting the overall accuracy and reproducibility are discussed.

  3. Highly efficient indoor air purification using adsorption-enhanced-photocatalysis-based microporous TiO2 at short residence time.

    Science.gov (United States)

    Lv, Jinze; Zhu, Lizhong

    2013-01-01

    A short residence time is a key design parameter for the removal of organic pollutants in catalyst-based indoor air purification systems. In this study, we synthesized a series of TiO2 with different micropore volumes and studied their removal efficiency of indoor carbonyl pollutants at a short residence time. Our results indicated that the superior adsorption capability of TiO2 with micropores improved its performance in the photocatalytic degradation of cyclohexanone, while the photocatalytic removal of the pollutant successfully kept porous TiO2 from becoming saturated. When treated with 1 mg m(-3) cyclohexanone at a relatively humidity of 18%, the adsorption amount on microporous TiO2 was 5.4-7.9 times higher than that on P25. Removal efficiency via photocatalysis followed'the same order as the adsorption amount: TiO2-5 > TiO2-20 > TiO2-60 > TiO2-180 > P25. The advantage of microporous TiO2 over P25 became more pronounced when the residence time declined from 0.072 to 0.036 s. Moreover, as the concentration of cyclohexanone deceased from 1000 ppb to 500 ppb, removal efficiency by microporous TiO2 increased more rapidly than P25.

  4. Assessing the Environmental Performance of a New Biotechnological Sensor for Air Quality Based on Devitalised Moss Clone

    Directory of Open Access Journals (Sweden)

    Carolina Alfonsín

    2015-05-01

    Full Text Available In recent years, mosses have been suggested as feasible biomonitors for the control of air quality. The most suitable type of biosensor consists of moss transplants that can be either harvested from unpolluted natural habitats or cultivated in photobioreactors. The production and devitalisation of moss was assessed with the aim of identifying the stages of the process with potential environmental impacts. The use of energy, especially associated with refrigeration in the cultivation stage, was the main factor contributing to the environmental impacts considered, ranging from 85% of the impact in marine eutrophication up to 95% for the rest of categories. Results were compared with previous studies dealing with algae production in photobioreactors, in which the electricity use for lighting also constituted a major hotspot. Scenarios based on reduced energy demand, and implementing alternative sources were proposed and showed better environmental profiles than the baseline scenario. Particularly, the use of photovoltaic energy could reduce the impacts by 50% in the analysed categories, except for terrestrial ecotoxicity, with significantly lower improvement ratios if photovoltaic energy was partially combined with conventional energy. The option of optimising the refrigeration system also provided significant reductions, ranking as the best alternative when terrestrial ecotoxicity was assessed.DOI: http://dx.doi.org/10.5755/j01.erem.71.1.10820

  5. Reporting of the air pollution situation in Norway according to EU's new air quality directives. Proposal of a GIS-based tool for reporting on visualisation of the air pollution situation in Norway; Rapportering av forurensningstilstanden i Norge etter EUs nye luftkvalitetsdirektiver. Forslag til verktoey for rapportering og visualisering av forurensningstilstanden i Norge

    Energy Technology Data Exchange (ETDEWEB)

    Larssen, Steinar; Thanh, The Nguyen; Hagen, Leif Otto; Endregard, Geir

    1999-12-01

    Norway shall, after 2001, annually report to the EU on the air quality situation in all zones. This report presents a proposal on a data (GIS)-based tool that will make this reporting more efficient. the concept is to visualise the AQ situation in the zones by means of values and isolines on maps, with zooming possibilities. (author)

  6. Long-term exposure to air pollution and hospital admissions for ischemic stroke. A register-based case-control study using modelled NOx as exposure proxy

    OpenAIRE

    Oudin, Anna; Stroh, Emilie; Strömberg, Ulf; Jakobsson, Kristina; Björk, Jonas

    2009-01-01

    Background Long-term exposure to air pollution is a hypothesized risk factor for ischemic stroke. In a large case-control study with a complete study base, we investigated whether hospital admissions for ischemic stroke were associated with residential concentrations of outdoor NOx, as a proxy for exposure to air pollution, in the region of Scania, Southern Sweden. Methods We used a two-phase case-control study design, including as first-phase controls all individuals born between 1923 and 19...

  7. Experimental and numerical investigation of a cross flow air-to-water heat pipe-based heat exchanger used in waste heat recovery

    OpenAIRE

    J. Ramos; Chong, A.; Jouhara, H

    2016-01-01

    This paper applies CFD modelling and numerical calculations to predict the thermal performance of a cross flow heat pipe based heat exchanger. The heat exchanger under study transfers heat from air to water and it is equipped with six water-charged wickless heat pipes, with a single-pass flow pattern on the air side (evaporator) and two flow passes on the water side (condenser). For the purpose of CFD modelling, the heat pipes were considered as solid devices of a known thermal conductivity w...

  8. School-based exposure to hazardous air pollutants and grade point average: A multi-level study.

    Science.gov (United States)

    Grineski, Sara E; Clark-Reyna, Stephanie E; Collins, Timothy W

    2016-05-01

    The problem of environmental health hazards around schools is serious but it has been neglected by researchers and analysts. This is concerning because children are highly susceptible to the effects of chemical hazards. Some ecological studies have demonstrated that higher school-level pollution is associated with lower aggregate school-level standardized test scores likely, related to increased respiratory illnesses and/or impaired cognitive development. However, an important question remains unexamined: How do school-level exposures impact individual children's academic performance? To address this, we obtained socio-demographic and grades data from the parents of 1888 fourth and fifth grade children in the El Paso (Texas, USA) Independent School District in 2012. El Paso is located on the US-side of the Mexican border and has a majority Mexican-origin population. School-based hazardous air pollution (HAP) exposure was calculated using census block-level US Environmental Protection Agency National Air Toxics Assessment risk estimates for respiratory and diesel particulate matter (PM). School-level demographics were obtained from the school district. Multi-level models adjusting for individual-level covariates (e.g., age, sex, race/ethnicity, English proficiency, and economic deprivation) and school-level covariates (e.g., percent of students economically disadvantaged and student-teacher ratio) showed that higher school-level HAPs were associated with lower individual-level grade point averages. An interquartile range increase in school-level HAP exposure was associated with an adjusted 0.11-0.40 point decrease in individual students' grade point averages (GPAs), depending on HAP type and emission source. Respiratory risk from HAPs had a larger effect on GPA than did diesel PM risk. Non-road mobile and total respiratory risk had the largest effects on children's GPA of all HAP variables studied and only mother's level of education had a larger effect than those

  9. School-based exposure to hazardous air pollutants and grade point average: A multi-level study.

    Science.gov (United States)

    Grineski, Sara E; Clark-Reyna, Stephanie E; Collins, Timothy W

    2016-05-01

    The problem of environmental health hazards around schools is serious but it has been neglected by researchers and analysts. This is concerning because children are highly susceptible to the effects of chemical hazards. Some ecological studies have demonstrated that higher school-level pollution is associated with lower aggregate school-level standardized test scores likely, related to increased respiratory illnesses and/or impaired cognitive development. However, an important question remains unexamined: How do school-level exposures impact individual children's academic performance? To address this, we obtained socio-demographic and grades data from the parents of 1888 fourth and fifth grade children in the El Paso (Texas, USA) Independent School District in 2012. El Paso is located on the US-side of the Mexican border and has a majority Mexican-origin population. School-based hazardous air pollution (HAP) exposure was calculated using census block-level US Environmental Protection Agency National Air Toxics Assessment risk estimates for respiratory and diesel particulate matter (PM). School-level demographics were obtained from the school district. Multi-level models adjusting for individual-level covariates (e.g., age, sex, race/ethnicity, English proficiency, and economic deprivation) and school-level covariates (e.g., percent of students economically disadvantaged and student-teacher ratio) showed that higher school-level HAPs were associated with lower individual-level grade point averages. An interquartile range increase in school-level HAP exposure was associated with an adjusted 0.11-0.40 point decrease in individual students' grade point averages (GPAs), depending on HAP type and emission source. Respiratory risk from HAPs had a larger effect on GPA than did diesel PM risk. Non-road mobile and total respiratory risk had the largest effects on children's GPA of all HAP variables studied and only mother's level of education had a larger effect than those

  10. Rising critical emission of air pollutants from renewable biomass based cogeneration from the sugar industry in India

    International Nuclear Information System (INIS)

    In the recent past, the emerging India economy is highly dependent on conventional as well as renewable energy to deal with energy security. Keeping the potential of biomass and its plentiful availability, the Indian government has been encouraging various industrial sectors to generate their own energy from it. The Indian sugar industry has adopted and made impressive growth in bagasse (a renewable biomass, i.e. left after sugercane is crushed) based cogeneration power to fulfil their energy need, as well as to export a big chunk of energy to grid power. Like fossil fuel, bagasse combustion also generates various critical pollutants. This article provides the first ever estimation, current status and overview of magnitude of air pollutant emissions from rapidly growing bagasse based cogeneration technology in Indian sugar mills. The estimated emission from the world’s second largest sugar industry in India for particulate matter, NOX, SO2, CO and CO2 is estimated to be 444 ± 225 Gg yr−1, 188 ± 95 Gg yr−1, 43 ± 22 Gg yr−1, 463 ± 240 Gg yr−1 and 47.4 ± 9 Tg yr−1, respectively in 2014. The studies also analyze and identify potential hot spot regions across the country and explore the possible further potential growth for this sector. This first ever estimation not only improves the existing national emission inventory, but is also useful in chemical transport modeling studies, as well as for policy makers. (letter)

  11. Air-stable n-channel organic field-effect transistors based on N,N‧-bis(4-trifluoromethylbenzyl)perylene-3,4,9,10-tetracarboxylic diimide

    Science.gov (United States)

    Hosoi, Yoshinobu; Tsunami, Daisuke; Ishii, Hisao; Furukawa, Yukio

    2007-02-01

    Air-stable n-channel field-effect transistors based on thin films of the compound, N, N'-bis(4-trifluoromethylbenzyl)perylene-3,4,9,10-tetracarboxylic diimide (PTCDI-TFB), were fabricated, and the effects of surface treatment and substrate temperature at the film deposition on the electron mobility of the transistors were studied. The maximum mobility, 4.1 × 10 -2 cm 2 V -1 s -1 in the saturation region (1.7 × 10 -2 cm 2 V -1 s -1 in the linear region), was obtained in air for the film deposited at 95 °C on the SiO 2 surface modified with hexamethyldisilazane. The high electron affinity of PTCDI-TFB estimated at 4.8 eV by photoelectron yield spectroscopy and UV-Vis absorption spectroscopy, which is ascribable to the trifluoromethylbenzyl groups, is likely to result in the observed stable transistor operation in air.

  12. Nitrogen oxide air pollution: atmospheric chemistry. 1964-1978 (citations from the NTIS data base). Report for 1964-78

    Energy Technology Data Exchange (ETDEWEB)

    Cavagnaro, D.M.

    1980-10-01

    Research reports on photochemical air pollution models, smog chemistry and reactivity, and SSt exhaust effects are cited in the bibliography. Auroral and upper atmospheric in chemistry, and photochemistry of naturally occurring nitrogen oxides are excluded. (Contains 247 citations)

  13. CFD-Based Correlation Development For Air Side Performance Of Finned And Finless Tube Heat Exchangers With Small Diameter Tubes

    OpenAIRE

    Bacellar, Daniel; Aute, Vikrant; Radermacher, Reinhard

    2014-01-01

    Air-to-refrigerant heat exchangers are a key component in air-conditioning and heat pump systems. A great deal of effort is spent on the design and optimization of these heat exchangers. One path towards improving their performance is the transition to smaller hydraulic diameter flow channels. This is evident by the recent introduction of microchannel heat exchangers in the stationary HVAC market. Systematic analyses demonstrates a great potential for improvement in terms of size, weight, ref...

  14. Simulation of Air flow, Smoke Dispersion and Evacuation of the Monument Metro Station based on Subway Climatology

    OpenAIRE

    Qian, Zi; Agnew, Brian; Thompson, Emine Mine

    2014-01-01

    This research is creating a working laboratory in Newcastle Monument metro station to understand the details of how the over ground climate influences the internal airflow and the impact this has on evacuation strategies. It is intended to link weather data with the background air flow in the station and identify the main driving forces for the dispersion of smoke or toxic agents throughout the station. The subway air flow will be evaluated and then interfaced with a VR simulation of the stat...

  15. Experimental and simulative analysis of a microtrigeneration system based on an air handling unit with desiccant wheel

    OpenAIRE

    Angrisani, Giovanni

    2011-01-01

    During last years, air conditioning demand is spreading, both in the commercial (shops, warehouses, offices, schools…) and in the residential sector. This caused a sensible increase in primary energy consumption in these sectors, especially in industrialized countries, where people spend the major part of the day in confined environments, therefore it is very important to guarantee a high Indoor Air Quality and thermal comfort. Therefore, it is very important to investigate the possibility...

  16. Criteria Air Emissions Trends

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Air Emissions Trends site provides national trends of criteria pollutant and precursor emissions data based on the the National Emissions Inventory (NEI) from...

  17. Results of the basewide monitoring program at Wright-Patterson Air Force Base, Ohio, 1993-1994

    Science.gov (United States)

    Schalk, C.W.; Cunningham, W.L.

    1996-01-01

    Geologic and hydrologic data were collected at Wright-Patterson Air Force Base (WPAFB), Ohio, as part of Basewide Monitoring Program (BMP) that began in 1992. The BMP was designed as a long-term project to character ground-water and surface-water quality (including streambed sediments), describe water-quality changes as water enters, flows across, and exits the Base, and investigate the effects of activities at WPAFB on regional water quality. Ground water, surface ware, and streambed sediment were sampled in four rounds between August 1993 and September 1994 to provide the analytical data needed to address the objectives of the BMP. Surface-water-sampling rounds were designed to include most of the seasonal hydrologic conditions encountered in southwestern Ohio, including baseflow conditions and spring runoff. Ground-water-sampling rounds were scheduled for times of recession and recharfe. Ground-water data were used to construct water-table, potentiometric, and vertical gradient maps of the WPAFB area. Water levels have not changed significantly since 1987, but the effects of pumping on and near the Base can have a marked effect on water levels in localized areas. Ground-ware gradients generally were downward throughout Area B (the southwestern third of the Base) and in the eastern third of Areas A and C (the northeastern two-thirds of the Base), and were upward in the vicinity of Mad River. Stream-discharge measurements verified these gradients. Many of the U.S. Environmental Protection Agency maximum contaminant level (MCL) exceedances of inorganic constituents in ground water were associated with water from the bedrock. Exceedances of concentrations of chromium and nickel were found consistently in five wells completed in the glacial aquifer beneath the Base. Five organic compounds [trichloroethylene (TCE), tetrachloroethylene (PCE), vinyl chloride, benzene, and bis(2-ethylhexyl) phthalate] were detected at concentrations that exceeded MCLs; all of the TCE

  18. A Centrifuge-Based Technique for Dry Extraction of Air for Ice Core Studies of Carbon Dioxide.

    Science.gov (United States)

    Grachev, A. M.; Brook, E. J.

    2008-12-01

    High resolution CO2 data from the Law Dome ice core document an abrupt ~10 ppm drop in CO2 at about 1600 AD (MacFarling Meure et al., Geophys. Res Lett., v. 33, L14810), which has been attributed to changes in human activities. CO2 measurements in ice cores are difficult, however, making verification of this feature an important task. We are undertaking a high-resolution study of CO2 between 1400 and 1800 AD in the WAIS Divide (Antarctica) ice core with a new dry extraction technique. The need for a dry extraction technique as opposed to a melt-refreeze technique in studies of CO2 from ice cores arises because of the well-documented artifacts in CO2 imposed by the presence of liquid water. Three dry-extraction methods have been employed by previous workers to measure CO2: needle-crushing method, ball-bearings method, and cheese-grater method (B. Stauffer, in: Encyclopedia of Quaternary Science, p. 1181, Elsevier 2007). Each has limitations, and we propose a simpler dry extraction technique, based on a large-capacity refrigerated centrifuge (the "centrifuge technique"), which eliminates the need to employ cryogenic temperatures to collect extracted gas and is more compatible with high sample throughput. The technique is now being tested on ~25-gram WAIS Divide samples in conjunction with CO2 measurements with a gas chromatograph. The technique employs a Beckman J- 6B centrifuge, in which evacuated stainless steel flask is placed: the flask has a weight inside positioned directly over a tall-standing piece of ice whose cross-section is small compared to that of the flask. Upon acceleration to 3000 rpm the weight moves down and presses the ice sample into a thin tablet covering flask's bottom, yielding the air extraction efficiency of ~80%. Preliminary tests suggest that precision and accuracy can be achieved at the level of ~1 ppm once the system is fine-tuned.

  19. Simulation of the Impact of New Air-Based Ocean Surface Wind Measurements on H*Wind Analyses

    Science.gov (United States)

    Miller, Timothy; Atlas, Robert; Black, Peter; Case, Jonathan; Chen, Shuyi; Hood, Robbie; Jones, Linwood; Ruff, Chris; Uhlhorn, Eric

    2008-01-01

    The H'Wind analysis, a product of the Hurricane Research Division of NOAA's Atlantic Oceanographic and Meteorological Laboratory, brings together wind measurements from a variety of observation platforms into an objective analysis of the distribution of wind speeds in a tropical cyclone. This product is designed to improve understanding of the extent and strength of the wind field, and to improve the assessment of hurricane intensity. See http://www.aoml.noaa.gov/hrd/data sub/wind.html. The Hurricane Imaging Radiometer (HIRad) is a new airborne microwave remote sensor for hurricane observations that is currently under development by NASA Marshall Space Flight Center, NOAA Hurricane Research Division, the University of Central Florida and the University of Michigan. HIRad is being designed to enhance the real-time airborne ocean surface winds observation capabilities of NOAA and USAF Weather Squadron hurricane hunter aircraft using the operational airborne Stepped Frequency Microwave Radiometer (SFMR). Unlike SFMR, which measures wind speed and rain rate along the ground track directly beneath the aircraft, HIRad will provide images of the surface wind and rain field over a wide swath (approx. 3 x the aircraft altitude). The instrument is described in a paper presented to the Hurricanes and Tropical Meteorology Symposium. The present paper describes a set of Observing System Simulation Experiments (OSSEs) in which measurements from the new instrument as well as those from existing instruments (air, surface, and space-based) are simulated from the output of a numerical model from the University of Miami and those results are used to construct H*Wind analyses. Evaluations will be presented on the impact of the HIRad instrument on H'Wind analyses, both in terms of adding it to the full suite of current measurements, as well as using it to replace instrument(s) that may not be functioning at the future tame the HIRad instrument is implemented.

  20. Increasing incidence of multiple sclerosis among women in Buenos Aires: a 22 year health maintenance organization based study.

    Science.gov (United States)

    Cristiano, E; Patrucco, L; Miguez, J; Giunta, D; Peroni, J; Rojas, J I

    2016-10-01

    Studies in multiple sclerosis (MS) suggest a trend of increasing disease prevalence and incidence, and especially, a disproportional increase in the incidence of multiple sclerosis in women. The objective of this study was to evaluate the incidence of MS over 22 years and to determine the ratio in incidence of men to women in a health maintenance organization from Buenos Aires, Argentina. The population was made up of all members of a hospital-based HMO affiliated between January 1992 and December 2013. Each person was followed contributing time at risk. Cases with definite diagnosis of MS were included. Incidence density was calculated with 95 % confidence intervals and compared between women and men. 165,456 subjects were followed for a total of 1,488,575 person-years, of whom 42 developed MS. Incidence density was 3/100,000 person-years (95 % CI 2.1-3.5/100,000 person-years). During this period (1992-2013), the incidence rate in women increased from 1/100,000 (95 % CI 0.8-1.6) to 4.9/100,000 (95 % CI 4.1-5.4) (p incidence ranged from 1.4/100,000 (95 % CI 1-1.7) to 1.8 (1.3-2.1) (p = 0.16). Incidence density during the study period increased significantly in women but not in men. This is the first report of this phenomenon in Latin America region.

  1. Assessing Resistance to Change During Shifting from Legacy to Open Web-Based Systems in the Air Transport Industry

    Science.gov (United States)

    Brewer, Denise

    The air transport industry (ATI) is a dynamic, communal, international, and intercultural environment in which the daily operations of airlines, airports, and service providers are dependent on information technology (IT). Many of the IT legacy systems are more than 30 years old, and current regulations and the globally distributed workplace have brought profound changes to the way the ATI community interacts. The purpose of the study was to identify the areas of resistance to change in the ATI community and the corresponding factors in change management requirements that minimize product development delays and lead to a successful and timely shift from legacy to open web-based systems in upgrading ATI operations. The research questions centered on product development team processes as well as the members' perceived need for acceptance of change. A qualitative case study approach rooted in complexity theory was employed using a single case of an intercultural product development team dispersed globally. Qualitative data gathered from questionnaires were organized using Nvivo software, which coded the words and themes. Once coded, themes emerged identifying the areas of resistance within the product development team. Results of follow-up interviews with team members suggests that intercultural relationship building prior to and during project execution; focus on common team goals; and, development of relationships to enhance interpersonal respect, understanding and overall communication help overcome resistance to change. Positive social change in the form of intercultural group effectiveness evidenced in increased team functioning during major project transitions is likely to result when global managers devote time to cultural understanding.

  2. Air pollution assessment based on elemental concentration of leaves tissue and foliage dust along an urbanization gradient in Vienna

    International Nuclear Information System (INIS)

    Foliage dust contains heavy metal that may have harmful effects on human health. The elemental contents of tree leaves and foliage dust are especially useful to assess air environmental pollution. We studied the elemental concentrations in foliage dust and leaves of Acer pseudoplatanus along an urbanization gradient in Vienna, Austria. Samples were collected from urban, suburban and rural areas. We analysed 19 elements in both kind of samples: aluminium, barium, calcium, copper, iron, potassium, magnesium, sodium, phosphor, sulphur, strontium and zinc. We found that the elemental concentrations of foliage dust were significantly higher in the urban area than in the rural area for aluminium, barium, iron, lead, phosphor and selenium. Elemental concentrations of leaves were significantly higher in urban than in rural area for manganese and strontium. Urbanization changed significantly the elemental concentrations of foliage dust and leaves and the applied method can be useful for monitoring the environmental load. - Highlights: → We studied the elements in dust and leaves along an urbanization gradient, Austria. → We analysed 19 elements: Al, Ba, Ca, Cd, Cu, Fe, K, Mg, Na, P, Pb, S, Sr and Zn. → Elemental concentrations were higher in urban area than in the rural area. → Studied areas were separated by CDA based on the elemental concentrations. → Dust and leaves can be useful for monitoring the environmental load. - Studying the elements (Al, Ba, Ca, Cu, Fe, K, Mg, Na, P, S, Sr, Zn) in dust and leaves along an urbanization gradient in Wien, Austria we found that the elemental concentrations of foliage dust were significantly higher in the urban area than in the rural area for Al, Ba, Fe, Pb, P and Se, and concentrations of leaves were significantly higher in urban than in rural area for Mn and Sr.

  3. Results of the fire training facility siting investigation at Davis-Monthan Air Force Base, Tucson, Arizona

    Energy Technology Data Exchange (ETDEWEB)

    Witt, D.A.; Smuin, D.R.; Williams, J.K.

    1988-05-01

    An investigative drilling and sampling survey at the site of a proposed Fire Training Facility (FTF) at Davis--Monthan Air Force Base, Tuscon, Arizona, was conducted. The objectives of this survey were to provide environmental/chemical information and geotechnical characteristics of the site from soil samples collected at the proposed site, to determine the concentrations of volatile organic compounds (VOCs) and petroleum hydrocarbon contaminants in these samples, and to make an assessment of survey data to determine if the proposed FTF site is environmentally and geotechnically suitable. Results of the chemical analyses indicate the presence of subsurface petroleum hydrocarbons directly related to the former fire training burn pits. Although one of the samples was found to have a relatively high concentration of petroleum hydrocarbons (9300 ..mu..g/g), the contamination was limited in vertical extent, and the location of the bore hole was approximately 61 m (200 ft) downgradient from any construction planned for the proposed FTF site. All chemical analyses performed on bore hole samples for VOCs were found to be at or below detection limits. This indicates that no significant subsurface concentrations of hazardous wastes are present at the site of the planned FTF. The geotechnical investigation performed by The Earth Technology Corporation provided several recommendations for construction of the FTF, but presents no data to indicate that the site planned for the proposed FTF is geotechnically unsuitable. The results of this siting investigation support the location of the new FTF in close proximity to the present fire training area as planned. 10 refs., 6 figs.

  4. SOA-based fiber ring laser with seed of DFB wavelength scanning for relative humidity measurement using an air-guided photonic crystal fiber

    International Nuclear Information System (INIS)

    We propose a novel ring laser for non-hygroscopic coating relative humidity (RH) fiber sensor by means of infrared absorption spectroscopy. A semiconductor optical amplifier (SOA)-based fiber ring laser is used in this scheme. No tunable optical filter is required for the ring laser scheme as wavelength scanning is introduced in the ring using a distributed feedback (DFB) laser. An air-guided photonic crystal fiber (AGPCF) is included in the ring cavity that acts as a sensing head. The detection of gas humidity inside the air holes of AGPCF is determined by DFB wavelength scanning around 1368.59 nm water vapor absorption peak with SOA as a gain medium in the ring. We have experimentally implemented the wavelength scanning of SOA-based fiber ring laser scheme with an AGPCF sensing head of 5 cm and a small gap between single mode fiber and AGPCF to allow air diffusion in and out of the air holes inside the AGPCF. The sensitivity of the sensor is increased from 2.47 to 10.93 mV/1% RH over the range from 0 to 90% RH when the non-lasing mode (single-pass absorption spectroscopy) of the sensor is changed into the lasing mode (multi-pass absorption spectroscopy). (paper)

  5. Air movement - good or bad?

    DEFF Research Database (Denmark)

    Toftum, Jørn

    2004-01-01

    Air movement - good or bad? The question can only be answered by those who are exposed when they are exposed. Human perception of air movement depends on environmental factors including air velocity, air velocity fluctuations, air temperature, and personal factors such as overall thermal sensation...... and activity level. Even for the same individual, sensitivity to air movement may change from day to day as a result of e.g. different levels of fatigue. Based on existing literature, the current paper summarizes factors influencing the human perception of air movement and attempts to specify in general terms...... influences the subjective perception of air movement. With occupants feeling warmer than neutral, at temperatures above 23oC or at raised activity levels, humans generally do not feel draught at air velocities typical for indoor environments (up to around 0.4 m/s). In the higher temperature range, very high...

  6. Acute effects of air pollution on influenza-like illness in Nanjing, China: A population-based study.

    Science.gov (United States)

    Huang, Lei; Zhou, Lian; Chen, Jin; Chen, Kai; Liu, Yang; Chen, Xiaodong; Tang, Fenyang

    2016-03-01

    Influenza-like illness causes substantial morbidity and mortality. Air pollution has already been linked to many health issues, and increasing evidence in recent years supports an association between air pollution and respiratory infections. It is a pioneer study in China to quantify the effects of air pollution on influenza-like illness. This study used wavelet coherence analysis and generalized additive models to explore the potential association between air pollution (including particulate matter with aerodynamic diameter ≦2.5 μm (PM2.5), particulate matter with aerodynamic diameter ≦10 μm (PM10) and nitrogen dioxide (NO2)) and influenza-like illness (a total of 59860 cases) in Nanjing, China from January 1, 2013 to December 31, 2013. The average concentrations of PM2.5, PM10 and NO2 were 77.37 μg/m(3), 135.20 μg/m(3) and 55.80 μg/m(3). An interquartile range increase in PM2.5 concentration was associated with a 2.99% (95% confidence interval (CI): 1.64%, 4.36%) increase in daily influenza-like cases on the same day, while the corresponding increase in NO2 was associated with a 3.77% (95% CI: 2.01%, 5.56%) increase in daily cases. People aged 0-4 were proved to be significantly susceptible to PM10 and NO2; 5-14 ages were significantly susceptible to PM2.5 and PM10; and 15-24 ages were significantly susceptible to all the analyzed air pollutants. Air pollution effects tended to be null or negative for patients aged over 25, which might be due to the small number of influenza-like cases in this age group. This study can be useful for understanding the adverse health effects of air pollution and the cause of influenza-like illness.

  7. Development of a vehicle emission inventory with high temporal-spatial resolution based on NRT traffic data and its impact on air pollution in Beijing - Part 2: Impact of vehicle emission on urban air quality

    Science.gov (United States)

    He, Jianjun; Wu, Lin; Mao, Hongjun; Liu, Hongli; Jing, Boyu; Yu, Ye; Ren, Peipei; Feng, Cheng; Liu, Xuehao

    2016-03-01

    A companion paper developed a vehicle emission inventory with high temporal-spatial resolution (HTSVE) with a bottom-up methodology based on local emission factors, complemented with the widely used emission factors of COPERT model and near-real-time (NRT) traffic data on a specific road segment for 2013 in urban Beijing (Jing et al., 2016), which is used to investigate the impact of vehicle pollution on air pollution in this study. Based on the sensitivity analysis method of switching on/off pollutant emissions in the Chinese air quality forecasting model CUACE, a modelling study was carried out to evaluate the contributions of vehicle emission to the air pollution in Beijing's main urban areas in the periods of summer (July) and winter (December) 2013. Generally, the CUACE model had good performance of the concentration simulation of pollutants. The model simulation has been improved by using HTSVE. The vehicle emission contribution (VEC) to ambient pollutant concentrations not only changes with seasons but also changes with time. The mean VEC, affected by regional pollutant transports significantly, is 55.4 and 48.5 % for NO2 and 5.4 and 10.5 % for PM2.5 in July and December 2013 respectively. Regardless of regional transports, relative vehicle emission contribution (RVEC) to NO2 is 59.2 and 57.8 % in July and December 2013, while it is 8.7 and 13.9 % for PM2.5. The RVEC to PM2.5 is lower than the PM2.5 contribution rate for vehicle emission in total emission, which may be due to dry deposition of PM2.5 from vehicle emission in the near-surface layer occuring more easily than from elevated source emission.

  8. Carbon-based material for a lithium-air battery%锂空气电池中的碳基材料:优势与挑战

    Institute of Scientific and Technical Information of China (English)

    魏伟; 王大伟; 杨全红

    2014-01-01

    碳基材料具有丰富多元的形态和优异的性能,是目前储能材料的重要组成部分。简要评述碳基材料作为锂空气电池阴极时结构与性能的关系,讨论碳基材料的结构设计与功能调控的重要性,指明碳基材料在锂空气电池中的研究重点,并对其在锂空气电池中的应用进行了展望。%Carbon-based materials are important in energy storage and conversion materials, because of their different possible morphologies and superior performance. We discuss relationships between the structure and properties of carbon-based materials as the cathode of the lithium-air battery, discuss the importance of structure design and performance control, specify the research priori-ties for carbon-based materials for lithium-air batteries, and explore the potential applications of carbon-based materials in lithium-air batteries.

  9. Oxidation Resistance of Materials Based on Ti3AlC2 Nanolaminate at 600 °C in Air.

    Science.gov (United States)

    Ivasyshyn, Andrij; Ostash, Orest; Prikhna, Tatiana; Podhurska, Viktoriya; Basyuk, Tatiana

    2016-12-01

    The oxidation behavior of Ti3AlC2-based materials had been investigated at 600 °C in static air for 1000 h. It was shown that the intense increase of weight gain per unit surface area for sintered material with porosity of 22 % attributed to oxidation of the outer surface of the specimen and surfaces of pores in the bulk material. The oxidation kinetics of the hot-pressed Ti3AlC2-based material with 1 % porosity remarkably increased for the first 15 h and then slowly decreased. The weight gain per unit surface area for this material was 1.0 mg/cm(2) after exposition for 1000 h. The intense initial oxidation of Ti3AlC2-based materials can be eliminated by pre-oxidation treatment at 1200 °C in air for 2 h. As a result, the weight gain per unit surface area for the pre-oxidized material did not exceed 0.11 mg/cm(2) after 1000 h of exposition at 600 °C in air. It was demonstrated that the oxidation resistance of Ti3AlC2-based materials can be significantly improved by niobium addition. PMID:27506531

  10. Retrieving Microphysical Properties and Air Motion of Cirrus Clouds Based on the Doppler Moments Method Using Cloud Radar

    Institute of Scientific and Technical Information of China (English)

    ZHONG Lingzhi; LIU Liping; DENG Min; ZHOU Xiuji

    2012-01-01

    Radar parameters including radar reflectivity,Doppler velocity,and Doppler spectrum width were obtained from Doppler spectrum moments.The Doppler spectrum moment is the convolution of both the particle spectrum and the mean air vertical motion.Unlike strong precipitation,the motion of particles in cirrus clouds is quite close to the air motion around them.In this study,a method of Doppler moments was developed and used to retrieve cirrus cloud microphysical properties such as the mean air vertical velocity,mass-weighted diameter,effective particle size,and ice content. Ice content values were retrieved using both the Doppler spectrum method and classic Z-IWC (radar reflectivity-ice water content) relationships;however,the former is a more reasonable method.

  11. The relationship of air pollution and surrogate markers of endothelial dysfunction in a population-based sample of children

    Directory of Open Access Journals (Sweden)

    Amin Mohammad

    2011-02-01

    Full Text Available Abstract Background This study aimed to assess the relationship of air pollution and plasma surrogate markers of endothelial dysfunction in the pediatric age group. Methods This cross-sectional study was conducted in 2009-2010 among 125 participants aged 10-18 years. They were randomly selected from different areas of Isfahan city, the second large and air-polluted city in Iran. The association of air pollutants' levels with serum thrombomodulin (TM and tissue factor (TF was determined after adjustment for age, gender, anthropometric measures, dietary and physical activity habits. Results Data of 118 participants was complete and was analyzed. The mean age was 12.79 (2.35 years. The mean pollution standards index (PSI value was at moderate level, the mean particular matter measuring up to 10 μm (PM10 was more than twice the normal level. Multiple linear regression analysis showed that TF had significant relationship with all air pollutants except than carbon monoxide, and TM had significant inverse relationship with ozone. The odds ratio of elevated TF was significantly higher in the upper vs. the lowest quartiles of PM10, ozone and PSI. The corresponding figures were in opposite direction for TM. Conclusions The relationship of air pollutants with endothelial dysfunction and pro-coagulant state can be an important factor in the development of atherosclerosis from early life. This finding should be confirmed in future longitudinal studies. Concerns about the harmful effects of air pollution on children's health should be considered a top priority for public health policy; it should be underscored in primordial and primary prevention of chronic diseases.

  12. User guide for the Air Force Base Automotive Transportation Simulation Model - BATS. Volume 2. Documentation. Final report Jun 78-Sep 79

    Energy Technology Data Exchange (ETDEWEB)

    Sandys, R.

    1979-09-01

    The Base Automotive Transportation Simulation (BATS) Model is a transportation planning and traffic flow model designed to simulate traffic volumes and flows on an air base. The principal model inputs are a road network, land use zones, demographic varibles, and gate counts. The land use zones and demographic variables are used to assign volumes to the road network, and these volumes are calibrated using the gate counts. The flow characteristics on each road in the network are simulated using the volumes assigned. Average speed and volumes are the results of the model and these may be directly input to the Air Quality Assessment Model (AQAM) to estimate pollutant emissions and dispersion from traffic sources. A volume flow plot of the network is an optional output of the model.

  13. Cancer incidence among workers of the Danish Construction Corporation (DDC) employed at the Thule air-base Greenland 1963-1971

    International Nuclear Information System (INIS)

    Cancer risk for persons employed at the Thule air-base during the cleaning period 21.01-19.09 1968 after the crash of a B52 bomber wit hydrogen bombs on board, is compared to risk in the Danish male population and in the group employed at Thule air-base in other periods. Pulmonary cancer, testide cancer and melanoma were assessed to occur more often than in control group, but were not significantt related to radioactivity effects. Generally the investigation of DCC employees indicates that cancer risk is not augmented in relation to radioactive material exposure. Further evaluation of reasons for the occurrence of some cancer forms has to include the socio-economic background and life conditions of people employed at Thule 1963-71. (EG)

  14. Air Pollution and Subtypes, Severity and Vulnerability to Ischemic Stroke—A Population Based Case-Crossover Study

    OpenAIRE

    Maheswaran, Ravi; Pearson, T.(The Ohio State University, Columbus, USA); Beevers, Sean David; Campbell, Michael; Wolfe, Charles David Alexander

    2016-01-01

    BACKGROUND AND PURPOSE:Few studies have examined the association between air pollutants and ischemic stroke subtypes. We examined acute effects of outdoor air pollutants (PM10, NO2, O3, CO, SO2) on subtypes and severity of incident ischemic stroke and investigated if pre-existing risk factors increased susceptibility.METHODS:We used a time stratified case-crossover study and stroke cases from the South London Stroke Register set up to capture all incident cases of first ever stroke occurring ...

  15. The GIS-based SafeAirView software for the concentration assessment of radioactive pollutants after an accidental release

    Energy Technology Data Exchange (ETDEWEB)

    Canepa, Elisa [CNR-INFM-CNISM- Department of Physics, University of Genova, Via Dodecaneso 33, I-16146 Genova (Italy); D' Alberti, Francesco; D' Amati, Francesco [Nuclear Decommissioning and Facilities Management Unit, Joint Research Centre of the European Commission, TP 510, I-21020 Ispra (Italy); Triacchini, Giuseppe [Catholic University of Brescia, CRASL or Center for Research on the Environment and Sustainable Development of the Lombardia region, Via Musei n. 41, I-25121 Brescia (Italy)

    2007-02-01

    The European Commission Joint Research Centre (JRC) in Ispra (Italy) has long been running nuclear installations for research purposes. The Nuclear Decommissioning and Facilities Management Unit (NDFM) is responsible for the surveillance of radioactivity levels in nuclear emergency conditions. The NDFM Unit has commissioned the implementation of a specifically developed decision support system, which can be used for quick emergency evaluation in the case of hypothetical accident and for emergency exercises. The requisites were to be a user-friendly software, able to quickly calculate and display values of air and ground radioactive contamination in the complex area around JRC, following an accidental release of radioactive substances from a JRC nuclear research installation. The developed software, named 'SafeAirView', is an advanced implementation of GIS technology applied to an existing MS-DOS mode dispersion model, SAFE{sub A}IR (Simulation of Air pollution From Emissions{sub A}bove Inhomogeneous Regions). SAFE{sub A}IR is a numerical model which simulates transport, diffusion, and deposition of airborne pollutants emitted in the low atmosphere above complex orography at both local and regional scale, under non-stationary and inhomogeneous emission and meteorological conditions. SafeAirView makes use of user-friendly MS-Windows type interface which drives the dispersion model by a sequential and continuous input-output process, allowing a real time simulation. The GIS environment allows a direct interaction with the territory elements in which the simulation takes place, using data for the JRC Ispra region represented in geo-referenced cartography. Furthermore it offers the possibility to relate concentrations with population distribution and other geo-referenced maps, in a geographic view. Output concentration and deposition patterns can be plotted and/or exported. In spite of the selected specific databases, the SafeAirView software architecture is a

  16. Improving design factors of air diffuser systems based on field conditions of dam reservoirs: CFD simulation approach.

    Science.gov (United States)

    Shin, Sangmin; Lee, Seungjae; Lee, Sangeun; Yum, Kyungtaek; Park, Heekyung

    2012-01-01

    This study aims to improve the design factors of air diffuser systems that have been analyzed in laboratory experiments, with consideration of the field conditions of dam reservoirs. In this study, the destratification number (D(N)), destratification radius, and efficiency are considered as design factors. The computational fluid dynamics (CFD) simulation experiment is performed in diverse field conditions in order to analyze these factors. The results illustrate the wider range of D(N) values in field conditions and the relationship of the destratification radius and efficiency to D(N). The results can lead to better performance of air diffuser systems and water quality management in dam reservoir sites. PMID:22678200

  17. Species biology and potential for controlling four exotic plants (Ammophila arenaria, Carpobrotus edulis, Cortaderia jubata and Gasoul crystallinum) on Vandenberg Air Force Base, California

    Science.gov (United States)

    Schmalzer, Paul A.; Hinkle, C. Ross

    1987-01-01

    Invasive exotic plants can displace native flora and modify community and ecosystem structure and function. Ammophila arenaria, Corpobrotus edulis, Cortaderia jubata, and Gasoul crystallinum are invasive plants present on Vandenberg Air Force Base, California, designated for study by the Environmental Task Force because of the perceived threat they represent to the native flora. Each plant's native habitat, how they came to be at Vandenberg, their propagation, and how they can be controlled is discussed.

  18. Tracer-based laser-induced fluorescence measurement technique for quantitative fuel/air-ratio measurements in a hydrogen internal combustion engine.

    Science.gov (United States)

    Blotevogel, Thomas; Hartmann, Matthias; Rottengruber, Hermann; Leipertz, Alfred

    2008-12-10

    A measurement technique for the quantitative investigation of mixture formation processes in hydrogen internal combustion engines (ICEs) has been developed using tracer-based laser-induced fluorescence (TLIF). This technique can be employed to fired and motored engine operation. The quantitative TLIF fuel/air-ratio results have been verified by means of linear Raman scattering measurements. Exemplary results of the simultaneous investigation of mixture formation and combustion obtained at an optical accessible hydrogen ICE are shown.

  19. Tracer-based laser-induced fluorescence measurement technique for quantitative fuel/air-ratio measurements in a hydrogen internal combustion engine.

    Science.gov (United States)

    Blotevogel, Thomas; Hartmann, Matthias; Rottengruber, Hermann; Leipertz, Alfred

    2008-12-10

    A measurement technique for the quantitative investigation of mixture formation processes in hydrogen internal combustion engines (ICEs) has been developed using tracer-based laser-induced fluorescence (TLIF). This technique can be employed to fired and motored engine operation. The quantitative TLIF fuel/air-ratio results have been verified by means of linear Raman scattering measurements. Exemplary results of the simultaneous investigation of mixture formation and combustion obtained at an optical accessible hydrogen ICE are shown. PMID:19079454

  20. Energy and air quality

    International Nuclear Information System (INIS)

    This is one of a series of handbooks designed to provide nontechnical readers with a general understanding of the interaction between energy development and environmental media and to provide a rudimentary data base from which estimates of potential future impacts can be made. This handbook describes the air quality impacts of energy development and summarizes the major federal legislation which regulates the potential air quality impacts of energy facilities and can thus influence the locations and timing of energy development. In addition, this report describes and presents the data which can be used as the basis for measurement, and in some cases, prediction of the potential conflicts between energy development and achieving and maintaining clean air. Energy utilization is the largest emission source of man-made air pollutants. Choices in energy resource development and utilization generate varying emissions or discharges into the atmosphere, the emissions are affected by the assimilative character of the atmosphere, and the resultant air pollutant concentrations have biological and aesthetic effects. This handbook describes the interrelationships of energy-related air emissions under various methods of pollution control, the assimilative character of the air medium, and the effects of air pollution. The media book is divided into three major sections: topics of concern relating to the media and energy development, descriptions of how to use available data to quantify and examine energy/environmental impacts, and the data

  1. Immune multi-agent model using vaccine for cooperative air-defense system of systems for surface warship formation based on danger theory

    Institute of Scientific and Technical Information of China (English)

    Jun Wang; Xiaozhe Zhao; Beiping Xu; Wei Wang; Zhiyong Niu

    2013-01-01

    Aiming at the problem on cooperative air-defense of surface warship formation, this paper maps the cooperative air-defense system of systems (SoS) for surface warship formation (CASoSSWF) to the biological immune system (BIS) according to the similarity of the defense mechanism and characteristics be-tween the CASoSSWF and the BIS, and then designs the mo-dels of components and the architecture for a monitoring agent, a regulating agent, a kil er agent, a pre-warning agent and a com-municating agent by making use of the theories and methods of the artificial immune system, the multi-agent system (MAS), the vaccine and the danger theory (DT). Moreover a new immune multi-agent model using vaccine based on DT (IMMUVBDT) for the cooperative air-defense SoS is advanced. The immune response and immune mechanism of the CASoSSWF are analyzed. The model has a capability of memory, evolution, commendable dy-namic environment adaptability and self-learning, and embodies adequately the cooperative air-defense mechanism for the CA-SoSSWF. Therefore it shows a novel idea for the CASoSSWF which can provide conception models for a surface warship forma-tion operation simulation system.

  2. Treatment of Perchlorate-Contaminated Groundwater Using Highly-Selective, Regenerable Anion-Exchange Resins at Edwards Air Force Base

    Energy Technology Data Exchange (ETDEWEB)

    Gu, B.

    2003-05-30

    Selective ion exchange is one of the most effective treatment technologies for removing low levels of perchlorate (ClO{sub 4}{sup -}) from contaminated water because of its high efficiency without adverse impacts on the water quality caused by adding or removing any chemicals or nutrients. This report summarizes both the laboratory and a field pilot-scale studies to determine the ability and efficiency of the bifunctional synthetic resins to remove ClO{sub 4}{sup -} from the contaminated groundwater at the Edwards Air Force Base in California. Regeneration of the resins after groundwater treatment was also evaluated using the FeCl{sub 3}-HCl regeneration technique recently developed at Oak Ridge National Laboratory. On the basis of this study, the bifunctional resin, D-3696 was found to be highly selective toward ClO{sub 4}{sup -} and performed much better than one of the best commercial nitrate-selective resins (Purolite A-520E) and more than an order of magnitude better than the Purolite A-500 resin (with a relatively low selectivity). At an influent concentration of {approx} 450 {micro}g/L ClO{sub 4}{sup -} in groundwater, the bifunctional resin bed treated {approx} 40,000 empty bed volumes of groundwater before a significant breakthrough of ClO{sub 4}{sup -} occurred. The presence of relatively high concentrations of chloride and sulfate in site groundwater did not appear to affect the ability of the bifunctional resin to remove ClO{sub 4}{sup -}. However, the presence of high iron or iron oxyhydroxides and/or biomass in groundwater caused a significant fouling of the resin beds and greatly influenced the effectiveness in regenerating the resins sorbed with ClO{sub 4}{sup -}. Under such circumstances, a prefilter ({approx} 0.5-1 {micro}m) was found to be necessary to remove these particulates and to reduce the risk of fouling of the resin beds. Without significant fouling, the resin bed could be effectively regenerated by the FeCl{sub 3} displacement technique

  3. When Coughing Can Cause Stroke - A Case-Based Update on Cerebral Air Embolism Complicating Biopsy of the Lung

    International Nuclear Information System (INIS)

    Introducing gas to the circulation is a largely iatrogenic problem which can result in serious morbidity and even death. We report a case of CT-guided needle biopsy of a pulmonary lesion complicated by acute stroke. The English literature on cerebral air embolism is reviewed, including an update of current opinions on its pathomechanism, diagnostic findings, therapeutic strategies, and means of prevention.

  4. Assessing Resistance to Change during Shifting from Legacy to Open Web-Based Systems in the Air Transport Industry

    Science.gov (United States)

    Brewer, Denise

    2012-01-01

    The air transport industry (ATI) is a dynamic, communal, international, and intercultural environment in which the daily operations of airlines, airports, and service providers are dependent on information technology (IT). Many of the IT legacy systems are more than 30 years old, and current regulations and the globally distributed workplace have…

  5. Nitrogen oxide air pollution: atmospheric chemistry. 1979-August, 1980 (citations from the NTIS data base). Report for 1979-Aug 80

    Energy Technology Data Exchange (ETDEWEB)

    Cavagnaro, D.M.

    1980-10-01

    Photochemical air pollution models, smog chemistry and reactivity, and SSt exhaust effects are covered in the bibliography. Auroral and upper atmospheric chemistry, and photochemistry of naturally occurring nitrogen oxides are excluded. (This updated bibliography contains 63 citations, 40 of which are new entries to the previous edition.)

  6. Air quality monitoring. 1979-June 1980 (citations from the NTIS data base). Report for 1979-June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Cavagnaro, D.M.

    1980-08-01

    The citations from Federally funded research discuss major studies on air pollution monitoring, including site selection, operation criteria, design criteria, calibration, and performance evaluation of the technique or equipment. Different types of pollutants from various sources are covered. (This updated bibliography contains 125 abstracts, 89 of which are new entries to the previous edition.)

  7. Nitrogen oxide air pollution: control technology. 1978-August, 1980 (citations from the NTIS data base). Report for 1978-August 1980

    Energy Technology Data Exchange (ETDEWEB)

    Cavagnaro, D.M.

    1980-10-01

    Nitrogen oxide air pollution control is considered from both mobile and stationary sources. Fluidized bed combustion, boiler combustion modification, and engine design are discussed, as they relate to emissions reduction. (This updated bibliography contains citations, 76 of which are new entries to the previous edition.)

  8. Nitrogen oxide air pollution: biological effects. 1964-August, 1980 (citations from the NTIS data base). Report for 1964-Aug 80

    Energy Technology Data Exchange (ETDEWEB)

    Cavagnaro, D.M.

    1980-10-01

    The effects of nitrogen oxide air pollution on humans, plants, and animals are covered in the bibliography. Toxicology, epidemiology, pathology, and the synergistic effects of nitrogen oxides and other pollutants are covered. (This updated bibliography contains 210 citations, 28 of which are new entries to the previous edition.)

  9. Automobile air pollution: automotive fuels. 1970-May, 1980 (citations from the NTIS Data Base). Report for 1970-May 80

    Energy Technology Data Exchange (ETDEWEB)

    Cavagnaro, D.M.

    1980-06-01

    The use of fuels and fuel additives to reduce pollution from automobiles is covered in this bibliography. The use of methyl alcohol, natural gas, methane, and hydrogen is reported. Improvements to gasoline and its properties which affect air pollution are discussed, along with studies on lead additives. (This updated bibliography contains 147 abstracts, 10 of which are new entries to the previous edition.)

  10. Nitrogen oxide air pollution: emissions studies. 1978-August, 1980 (citations from the NTIS data base). Report for 1978-August 1980

    Energy Technology Data Exchange (ETDEWEB)

    Cavagnaro, D.M.

    1980-10-01

    The bibliography cites studies on emissions from both stationary and mobile sources, emissions factors, regional emission inventories, and general studies. Air quality data is excluded. Nitrogen oxide detection and analysis, industrial control techniques, atmospheric chemistry, and biological effects are covered in Parts 1 through 4. (This updated bibliography contains 174 citations, 62 of which are new entries to the previous edition.)

  11. Air quality monitoring. 1977-1978 (citations from the NTIS data base). Report for 1977-78

    Energy Technology Data Exchange (ETDEWEB)

    Cavagnaro, D.M.

    1980-07-01

    This bibliography discusses major studies on air pollution monitoring, including site selection, operation criteria, design criteria, calibration, and performance evaluation of the technique or equipment. Different types of pollutants from various sources are covered. (This updated bibliography contains 215 citations, none of which are new entries to the previous edition.)

  12. 78 FR 27126 - East Bay, St. Andrews Bay and the Gulf of Mexico at Tyndall Air Force Base, Florida; Restricted...

    Science.gov (United States)

    2013-05-09

    .... Review Under Executive Order 12866. The proposed rule is issued with respect to a military function of... Gulf of Mexico and Apalachicola Bay south of Apalachicola, Fla., Drone Recovery Area, Tyndall Air Force... heighten security measures is anticipated. (3) Permanent Restricted Areas. (i) Military Point....

  13. Individual traffic-related air pollution and new onset adult asthma: A GIS-based pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Sherson, D.; Lysbeck Hansen, C. (Hospital of Vejle, Dept. of Occupational and Environmental Medicine, (Denmark)); Solvang Jensen, S.; Hertel, O. (Univ. of Aarhus, National Environmental Research Institute (Denmark)); Baelum, J. (Odense Univ. Hospital, Dep. of Occupational and Environmental Medicine (Denmark)); Skadhauge, L. (Haderslev Hospital, Dep. of Occupational and Environmental Medicine (Denmark)); Siersted, H.C. (Odense Univ. Hospital, Dep. of Respiratory Medicine (Denmark)); Omland, OE. (Aalborg Hospital, Dep. of Occupational Medicine (Denmark)); Thomsen, G. (South-West Jutland Hospital Esbjerg, Dep. of Occupational and Environmental Medicine (Denmark)); Sigsgaard, T. (Univ. of Aarhus, Institute of Occupational and Environmental Medicine (Denmark))

    2008-03-15

    The objective of this pilot study is to investigate the relation between asthma and wheeze debut and individually estimated exposure to traffic-related air pollutants with a validated exposure system (AirGIS). A non-smoking cohort with recently acquired asthma or wheeze as well as matched controls was identified from a large cross-sectional study. All residential and working addresses with corresponding time periods for a 10 year period were successfully identified for all study participants (N=33) and exposure estimated for both urban background and street level. Individual levels of air pollutants in the years preceding debut of asthma or wheeze were analyzed using survival analysis. No significant correlations between exposure levels and onset of disease or symptom were demonstrated. A tendency towards higher levels of nitrogen oxides exposure during the year prior to debut was seen in wheeze cases. Substantial problems in determining time of onset were encountered. It is recommended that the analytic methods developed in this pilot study are used in a larger prospective cohort to investigate individual trafficrelated air pollutants as a risk factor for the development of new asthma and wheeze. (au)

  14. SPATIAL ANALYSIS OF VOLATILE ORGANIC COMPOUNDS FROM A COMMUNITY-BASED AIR TOXICS MONITORING NETWORK IN DEER PARK, TEXAS, USA

    Science.gov (United States)

    This RARE Project with EPA Region 6 was a spatial analysis study of select volatile organic compounds (VOC) collected using passive air monitors at outdoor residential locations in the Deer Park, Texas area near the Houston Ship Channel. Correlation analysis of VOC species confi...

  15. Aircraft impact risk assessment data base for assessment of fixed wing air carrier impact risk in the vicinity of airports

    International Nuclear Information System (INIS)

    The FIXED WING AIRCRAFT accidents occurring to US air carriers during the years 1956 through 1977 are listed, with those resulting in impact within five miles of airports in the contiguous US being considered in detail as to location of impact relative to the airport runways

  16. The impact of a future H2-based road transportation sector on the composition and chemistry of the atmosphere – Part 1: Tropospheric composition and air quality

    Directory of Open Access Journals (Sweden)

    A. A. Rockett

    2012-08-01

    Full Text Available Vehicles burning fossil fuel emit a number of substances that change the composition and chemistry of the atmosphere, and contribute to global air and water pollution and climate change. For example, nitrogen oxides and volatile organic compounds (VOCs emitted as byproducts of fossil fuel combustion are key precursors to ground-level ozone and aerosol formation. In addition, on-road vehicles are major CO2 emitters. In order to tackle these problems, molecular hydrogen (H2 has been proposed as an energy carrier to substitute for fossil fuel in the future. However, before implementing any such strategy it is crucial to evaluate its potential impacts on air quality and climate. Here we evaluate the impact of a future (2050 H2-based road transportation sector on tropospheric chemistry and air quality for several possible growth and technology adoption scenarios. The growth scenarios are based on the high and low emissions Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios, A1FI and B1, respectively. The technological adoption scenarios include H2 fuel cell and H2 internal combustion engine options. The impacts are evaluated with the Community Atmospheric Model Chemistry global chemistry transport model (CAM-Chem. Higher resolution simulations focusing on the contiguous United States are also carried out with the Community Multiscale Air Quality Modeling System (CMAQ regional chemistry transport model. For all scenarios future air quality improves with the adoption of a H2-based road transportation sector, however, the magnitude and type of improvement depend on the scenario. Model results show that with the adoption of H2 fuel cells decreases tropospheric burdens of ozone (7%, CO (14%, NOx (16%, soot (17%, sulfate aerosol (4%, and ammonium nitrate aerosol (12% in the A1FI scenario, and decreases those of ozone (5%, CO (4%, NOx (11%, soot (7%, sulfate aerosol (4%, and ammonium nitrate aerosol (9 % in the B1 scenario. The

  17. Impact of a future H2-based road transportation sector on the composition and chemistry of the atmosphere – Part 1: Tropospheric composition and air quality

    Directory of Open Access Journals (Sweden)

    D. Wang

    2013-07-01

    Full Text Available Vehicles burning fossil fuel emit a number of substances that change the composition and chemistry of the atmosphere, and contribute to global air and water pollution and climate change. For example, nitrogen oxides and volatile organic compounds (VOCs emitted as byproducts of fossil fuel combustion are key precursors to ground-level ozone and aerosol formation. In addition, on-road vehicles are major CO2 emitters. In order to tackle these problems, molecular hydrogen (H2 has been proposed as an energy carrier to substitute for fossil fuels in the future. However, before implementing any such strategy it is crucial to evaluate its potential impacts on air quality and climate. Here, we evaluate the impact of a future (2050 H2-based road transportation sector on tropospheric chemistry and air quality for several possible growth and technology adoption scenarios. The growth scenarios are based on the high and low emissions Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios, A1FI and B1, respectively. The technological adoption scenarios include H2 fuel cell and H2 internal combustion engine options. The impacts are evaluated with the Community Atmospheric Model Chemistry global chemistry transport model (CAM-Chem. Higher resolution simulations focusing on the contiguous United States are also carried out with the Community Multiscale Air Quality Modeling System (CMAQ regional chemistry transport model. For all scenarios future air quality improves with the adoption of a H2-based road transportation sector; however, the magnitude and type of improvement depend on the scenario. Model results show that the adoption of H2 fuel cells would decrease tropospheric burdens of ozone (7%, CO (14%, NOx (16%, soot (17%, sulfate aerosol (4%, and ammonium nitrate aerosol (12% in the A1FI scenario, and would decrease those of ozone (5%, CO (4%, NOx (11%, soot (7%, sulfate aerosol (4%, and ammonium nitrate aerosol (9% in the B1 scenario

  18. Correlating MODIS aerosol optical thickness data with ground-based PM 2.5 observations across Texas for use in a real-time air quality prediction system

    Science.gov (United States)

    Hutchison, Keith D.; Smith, Solar; Faruqui, Shazia J.

    Investigations have been conducted at the Center for Space Research (CSR) into approaches to correlate MODIS aerosol optical thickness (AOT) values with ground-based, PM 2.5 observations made at continuous air monitoring station locations operated by the Texas Commission on Environmental Quality (TCEQ). These correlations are needed to more fully utilize real-time MODIS AOT analyses generated at CSR in operational air quality forecasts issued by TCEQ using a trajectory-based forecast model developed by NASA. Initial analyses of two data sets collected during 3 months in 2003 and all of 2004 showed linear correlations in the 0.4-0.5 range in the data collected over Texas. Stronger correlations (exceeding 0.9) were obtained by averaging these same data over longer timescales but this approach is considered unsuitable for use in issuing air quality forecasts. Peculiarities in the MODIS AOT analyses, referred to as hot spots, were recognized while attempting to improve these correlations. It is demonstrated that hot spots are possible when pixels that contain surface water are not detected and removed from the AOT retrieval algorithms. An approach to reduce the frequency of hot spots in AOT analyses over Texas is demonstrated by tuning thresholds used to detect inland water surfaces and remove pixels that contain them from the analysis. Finally, the potential impact of hot spots on MODIS AOT-PM 2.5 correlations is examined through the analysis of a third data set that contained sufficient levels of aerosols to mask inland water surfaces from the AOT algorithms. In this case, significantly stronger correlations, that exceed the 0.9 value considered suitable for use in a real-time air quality prediction system, were observed between the MODIS AOT observations and ground-based PM 2.5 measurements.

  19. Competency-Based Curriculum for Articulated Programs in Air Conditioning/Refrigeration. A Study for the Articulation of Competency-Based Curricula for the Coordination of Vocational-Technical Education Programs in Louisiana. Final Report. Volume II.

    Science.gov (United States)

    Louisiana State Dept. of Education, Baton Rouge. Div. of Vocational Education.

    The curriculum guide for air conditioning/refrigeration is one of five guides written and field tested in a project to develop statewide articulated competency-based curricula in selected vocational education programs. Two separate curricula, one for the vocational-technical level and one for the associate degree level, are presented. The six…

  20. 基于数值模拟的空调末端节能优化%Energy-Saving Optimization of Air Conditioning Terminal Device Based on Numerical Simulation

    Institute of Scientific and Technical Information of China (English)

    闫军威; 刘洋; 周璇; 康英姿

    2012-01-01

    In this paper, first, a physical model of an office was built. Then, based on the indoor zero equation turbulence model, a numerical simulation of the air distribution in the modeled office with air conditioning terminal device was carried out with AIKFAK3.0. Moreover, the effects of air supply temperature and velocity on the thermal comfort were analyzed, and the air supply parameters at the typical moments in one day were optimized, with the results being finally compared with the actual operation data. It is found that the air conditioning terminal device is of great energy-saving potential, and that, after the optimization of operation parameters, the theoretical cooling capacity of the terminal device in one day averagely reduces by 17%.%建立了一间办公室的物理模型,利用AIRPAK3.0数值模拟软件,采用室内零方程湍流模型,对办公室在空调末端供冷条件下的室内气流组织进行了数值模拟,分析了空调末端送风温度和送风速度对于热舒适性的影响,对一天内各典型时刻的送风参数进行了优化,并将优化后的末端工况与实际末端工况进行了对比.结果表明:空调末端的节能潜力较大;相同外界条件下,与运行参数未进行优化时相比,按模拟结果对运行参数进行优化后,全天各时刻空调末端设备的理论制冷量平均减少17%.

  1. Thin air

    OpenAIRE

    Jasanoff, Sheila

    2013-01-01

    Clearing the air How do we grasp the air? Without Michel Callon’s guidance, I might never have asked that question. Years ago, when I first entered environmental law practice, I took it for granted that problems such as air pollution exist “out there” in the real world for science to discover and law to fix. It is a measure of Callon’s influence that I understand the law today as a metaphysical instrument, no less powerful in its capacity to order nature than the tools of the ancient oracular...

  2. Reconstructing Late Pleistocene air temperature variability based on branched GDGTs in the sedimentary record of Llangorse Lake (Wales)

    Science.gov (United States)

    Maas, David; Hoek, Wim; Peterse, Francien; Akkerman, Keechy; Macleod, Alison; Palmer, Adrian; Lowe, John

    2015-04-01

    This study aims to provide a temperature reconstruction of the Lateglacial sediments of Llangorse Lake. A new temperature proxy is used, based on the occurrence of different membrane lipids of soil bacteria (de Jonge et al., 2014). Application of this proxy on lacustrine environments is difficult because of in situ (water column) production and co-elution of isomers. Pollen analysis provides a palynological record that can be used for biostratigraphical correlation to other records. Llangorse Lake lies in a glacial basin just northeast of the Brecon Beacons in Powys, South Wales. The lake is located upstream in the Afon Llynfi valley, at the edge of the watershed of the River Wye. The lake consists of two semi-separated basins with a maximum water depth of 7.5 m, arranged in an L-shape with a surface area of roughly 1.5 km2. Previous studies have focused on the Holocene development of the lake and its surrounding environment (Jones et al., 1985). This study focuses on the deglacial record that appeared to be present in the basal part of the sequence. The lake was cored in the September, 2014 with a manual operated 3 m piston corer from a small coring platform. Overlapping cores were taken to form a continuous 12 m core, spanning the Holocene and the Lateglacial sediments. Six adjacent Lateglacial core segments from the southern basin of Llangorse lake were scanned for their major element composition using XRF scanning at 5 mm resolution to discern changes in sediment origin. Furthermore, loss on ignition (LOI) analysis was used to determine the changes in organic content of the sediments. Subsamples of the Lateglacial sedimentary record were analyzed for the occurrence of different bacterial membrane lipids (brGDGTs: branched glycerol dialkyl glycerol tetraethers) by means of HPLC-MS (high performance liquid chromatography and mass spectrometry) using two silica columns to achieve proper separation of isomers (de Jonge et al., 2013). Air temperatures are

  3. Air Quality Applications Based on Space Observations: The Role of the 11 Years OMI Data Record and the Potentials for TROPOMI

    Science.gov (United States)

    Levelt, P.; Veefkind, J. P.; Kleipool, Q.; Eskes, H.; A, R. V. D.; Mijling, B.; Tamminen, J.; Joiner, J.; Bhartia, P. K.

    2015-12-01

    travelling standard that allows intercomparison of the calibration of the geostationary instruments. An overview of air quality applications, emission inversions and trend analyses will be presented, based on the 11 years of OMI data. An outlook will be presented on the potentials of TROPOMI, including its role in the Air Quality Constellation.

  4. Time-series ground-water-level and aquifer-system compaction data, Edwards Air Force Base, Antelope Valley, California, January 1991 through September 1993

    Science.gov (United States)

    Freeman, L.A.

    1996-01-01

    As part of a study by the U.S. Geological Survey, a monitoring program was implemented to collect time-series ground-water-level and aquifer-system compaction data at Edwards Air Force Base, California. The data presented in this report were collected from 18 piezometers, 3 extensometers, 1 barometer, and 1 rain gage from January 1991 through September 1993. The piezometers and extensometers are at eight sites in the study area. This report discusses the ground-water-level and aquifer-system compaction monitoring networks, and presents the recorded data in graphs. The data reported are available in the data base of the U.S. Geological Survey.

  5. Energy and exergy performance analysis of a marine rotary desiccant air-conditioning system based on orthogonal experiment

    International Nuclear Information System (INIS)

    A novel marine rotary desiccant A/C (air-conditioning) system was developed and studied to improve energy utilization efficiency of ship A/C. The orthogonal experiment was first carried out to investigate the influence of various parameters of the marine rotary desiccant A/C system. During the orthogonal experiment the analysis of variance was used to exclude interference from the secondary influencing factor on system performance. The significant influencing factors of system were studied in great detail using the first and second laws of thermodynamics to find optimal setting parameters for best system performance. It is suggested from the analysis results that as regeneration temperature increases, the COPth (thermal coefficient of performance) and exergy efficiency of system (ηe) decreases by 46.9% and 38.8% respectively. They decrease in proportion to the increase of the temperature. ηe reaches its maximum value of about 23.5% when the inlet humidity ratio of process air is 22 g/kg. Besides, the exergy loss of system concentrates on the regeneration air heater, the desiccant wheel and the regeneration air leaving the desiccant wheel, which account for 68.4%–81% of the total exergy loss. It can be concluded that applying the marine rotary desiccant A/C in high-temperature and high-humidity marine environment is advantageous. - Highlights: • Significant influencing factors of the system are found by the analysis of variance. • The change trends of the COPth and the ηe are nearly proportional with the regeneration temperature. • The ηe reaches its maximum value (about 23.5%) when the inlet humidity ratio of process air is 22 g/kg. • The contribution rate of the dry-bulb temperature of fresh air is up to 73.91% for the COPth. • Applying the marine rotary desiccant A/C in high-temperature and high-humidity marine environment is advantageous

  6. Heat pump control method based on direct measurement of evaporation pressure to improve energy efficiency and indoor air temperature stability at a low cooling load condition

    International Nuclear Information System (INIS)

    Highlights: • New heat pump control method was developed. • Experimental investigation on performance of heat pump with various control method. • New control method appeared to improve the stability of indoor air temperature. • New control method appeared to have a potential to reduce power consumption. - Abstract: The control systems of conventional heat pumps have an input of refrigerant temperature at the evaporator outlet to maintain superheat at proper level. In order to develop a control method that can be used to achieve better indoor thermal comfort and energy efficiency at a low cooling load condition than the current control method, a new method of the evaporation pressure control based on the evaporator outlet pressure reading (EPCP) was developed. The changes in the stability of indoor air temperature and power consumption were measured while changing the compressor frequency in accordance with the new control method. Compared with the evaporation pressure control based on the evaporator outlet temperature reading, the EPCP control method appeared to improve the stability of room air temperature or occupant thermal comfort significantly

  7. Design of Monitoring System for Air Compressors Based on LabVIEW%基于LabVIEW的压风机组监控系统设计

    Institute of Scientific and Technical Information of China (English)

    李高磊; 郑晓亮

    2015-01-01

    Mainly research the monitoring system for mine air compressors ,with the base of the analysis of characteristics of the existing unit air compressors on the basis of the monitoring system, a compressed air unit online monitoring system based on LabVIEW has been set up. The system consists of sensors, signal acquisition card, PLC, inverter and PC monitor screen. Realization of the state unit of the wind pressure parameters real-time online acquisition, real-time control, storage, display and warning, and rely on DataSocket technology enables remote monitoring.%以煤矿压风机组监控系统为研究对象,在分析现有压风机组监控系统特点的基础上,搭建了基于LabVIEW的压风机组在线监控系统。该系统包括传感器、信号采集卡、PLC、变频器和上位机监控界面。实现了对压风机组的状态参数的实时在线采集、实时控制、存储、显示与预警,并依靠DataSocket技术实现了远程监控。

  8. Comparison of air kerma measurements for tungsten anode based mammography x-ray beam qualities (EURAMET.RI(I)-S4.1)

    Science.gov (United States)

    Csete, I.; Büermann, L.; Gomola, I.

    2016-01-01

    A comparison of the air kerma standards for x-radiation qualities used in mammography was performed between the PTB and the IAEA. Two reference-class ionization chamber types Radcal RC6M and Magna A650 of the IAEA and tungsten anode based beam qualities with Mo and Al external filtrations (W+Mo, W+Al) established at both laboratories were selected for the comparison. The calibration coefficients, NK_air, were determined for the transfer chambers at the PTB in May 2015 and before and after this at the IAEA Dosimetry Laboratory. The results show good agreement, to be well within the 0.55 % standard uncertainty of the comparison. Correction factors to determine NK_air for these beam qualities based on calibration in RQR-M mammography beam qualities, established according to the IEC 61267 standard, were also calculated for the Radcal RC6M, 10X5-6M, and Magna A650 types of chambers. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCRI, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  9. Air Pollution

    Science.gov (United States)

    ... to a close in June 2013 when the company, Conscious Clothing, was awarded the My Air grand ... Page Options: Request Translation Services Facebook Twitter LinkedIn Google+ Reddit Email Evernote More Increase Font Size Decrease ...

  10. Cooperative Electronic Attack for Groups of Unmanned Air Vehicles based on Multi-agent Simulation and Evaluation

    Directory of Open Access Journals (Sweden)

    Yee Ming Chen

    2012-03-01

    Full Text Available In this paper, the issue of path planning is addressed for unmanned air vehicles (UAVs cooperative joint-forces electronic attack operating in a hostile environment. Specifically, the objective is to plan path to a target location in a way that minimizes exposure to threats while keeping fuel usage at acceptable levels. We consider a scenario where a group of UAVs flies in a close formation and cooperates in their use of jamming resources to prevent being tracked by Surface-to-Air Missile (SAM tracking radars. The main goal of this research effort is develop cooperating UAVs within multi-agent simulation environment. Simulations were generated to test the path planning and control strategies given UAVs/SAM tracking radar network scenarios, and overall UAVs cooperative electronic attack performance in each simulation was analyzed.

  11. Using Net-Zero Energy Projects to Enable Sustainable Economic Redevelopment at the Former Brunswick Air Naval Base

    Energy Technology Data Exchange (ETDEWEB)

    Huffman, S.

    2011-10-01

    A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites. The Brunswick Naval Air Station is a naval air facility and Environmental Protection Agency (EPA) Super Fund site that is being cleaned up, and closed down. The objective of this report is not only to look at the economics of individual renewable energy technologies, but also to look at the systemic benefits that can be gained when cost-effective renewable energy technologies are integrated with other systems and businesses in a community; thus multiplying the total monetary, employment, and quality-of-life benefits they can provide to a community.

  12. Three-dimensional calculation of air-water two-phase flow in centrifugal pump impeller based on a bubbly flow model, 1

    International Nuclear Information System (INIS)

    To predict the behavior of air-water two-phase flows in a centrifugal pump impeller, a three-dimensional numerical method is proposed based on a bubbly flow model. If it is assumed that the mixtures are homogeneous bubbly flow containing fine bubbles compared with the characteristic length of the impeller channel, then the equations of motion of the mixtures are represented by those of liquid phase and its velocity is expressed as a potential for the quasi-harmonic equation. The equations are solved by use of the finite element method to obtain the velocities and pressures, and the equation of motion of an air bubble is integrated numerically on this flow field to obtain the void fraction. These calculations are repeated until the solutions converge. The results obtained show good agreement with experiments within the range of bubbly flow regime. (author)

  13. Binational school-based monitoring of traffic-related air pollutants in El Paso, Texas (USA) and Ciudad Juárez, Chihuahua (México).

    Science.gov (United States)

    Raysoni, Amit U; Sarnat, Jeremy A; Sarnat, Stefanie Ebelt; Garcia, Jośe Humberto; Holguin, Fernando; Luèvano, Silvia Flores; Li, Wen-Whai

    2011-10-01

    Paired indoor and outdoor concentrations of fine and coarse particulate matter (PM), PM2.5 reflectance [black carbon(BC)], and nitrogen dioxide (NO(2)) were determined for sixteen weeks in 2008 at four elementary schools (two in high and two in low traffic density zones) in a U.S.-Mexico border community to aid a binational health effects study. Strong spatial heterogeneity was observed for all outdoor pollutant concentrations. Concentrations of all pollutants, except coarse PM, were higher in high traffic zones than in the respective low traffic zones. Black carbon and NO(2) appear to be better traffic indicators than fine PM. Indoor air pollution was found to be well associated with outdoor air pollution, although differences existed due to uncontrollable factors involving student activities and building/ventilation configurations. Results of this study indicate substantial spatial variability of pollutants in the region, suggesting that children's exposures to these pollutants vary based on the location of their school.

  14. Autonomous agent-based simulation of an AEGIS Cruiser combat information center performing battle air-defense commander operations

    OpenAIRE

    Calfee, Sharif H.

    2003-01-01

    The AEGIS Cruiser Air-Defense Simulation is a program that models the operations of a Combat Information Center (CIC) team performing the ADC duties in a battle group using Multi-Agent System (MAS) technology implemented in the Java programming language. Set in the Arabian Gulf region, the simulation is a top-view, dynamic, graphics-driven software implementation that provides a picture of the CIC team grappling with a challenging, complex problem. Conceived primarily as a system to assist sh...

  15. Air pollution tracer studies in the lower atmosphere (citations from the NTIS data base). Report for 1964-Jan 80

    Energy Technology Data Exchange (ETDEWEB)

    Cavagnaro, D.M.

    1980-02-01

    The cited reports cover research on the use of tracers to study lower atmospheric air pollution movements. The tracer used include sulfur hexafluoride, krypton 85, carbon 14, and other radioactive isotopes. The studies cite the results and techniques used, tracer movement from nuclear power plants, industrial stacks, urban areas, and the detectors used in their measurement. (This updated bibliography contains 197 abstracts, 31 of which are new entries to the previous edition.)

  16. Occupational Exposure to Mercury: Air Exposure Assessment and Biological Monitoring based on Dispersive Ionic Liquid-Liquid Microextraction.

    Directory of Open Access Journals (Sweden)

    Hamid Shirkhanloo

    2014-06-01

    Full Text Available Exposure to mercury (Hg as a heavy metal can cause health effects. The objective of this study was to assess occupational exposure to Hg in a chlor-alkali petrochemical industry in Iran by determining of Hg concentrations in air, blood and urine samples.The study was performed on 50 exposed subjects and 50 unexposed controls. Air samples were collected in the breathing zone of exposed subjects, using hopcalite sorbents. Analysis was performed using a cold vapor atomic absorption spectrophotometer (CV-AAS according to NIOSH analytical method 6009. For all participants, blood and urine samples were collected and then transferred into sterile glass tubes. After micro-extraction with ionic liquid and back extraction with nitric acid, Hg concentrations in blood and urine samples were determined by CV-AAS.The mean concentration of air Hg was 0.042± 0.003 mg/m(3. The mean concentrations of Hg in blood and urine samples of exposed subjects were significantly higher than unexposed controls (22.41± 12.58 versus 1.19± 0.95 μg/l and 30.61± 10.86 versus 1.99± 1.34 μg/g creatinine, respectively. Correlation of air Hg with blood Hg, urine Hg and blood Hg-urine Hg ratio were significant statistically (P< 0.05.The values of Hg in blood and urine samples of chlor-alkali workers were considerably high. Correlation coefficients showed that blood Hg and blood Hg-urine Hg ratio are better indicators than urine Hg for assessing occupationally exposed workers in terms of current exposure assessment.

  17. 基于贴体同位网格法的空调气流组织数值模拟%Numerical simulation of air-conditioning air-flow distribution based on body-fitted grid method

    Institute of Scientific and Technical Information of China (English)

    张其斌; 杜建芳; 吴轩

    2012-01-01

    针对建筑物复杂外形的结构特点,创建了贴体网格生成方法和基手同位网格的数值模拟算法。在通过与实验进行对比验证的基础上,数值模拟了不规则屋顶建筑物、大型体育馆等复杂外形建筑物内的气流组织分布。研究结果表明:所提出的基于贴体网格的同位布置算法及其计算程序具有较好的通用性,能用于各种不规则几何形状空调建筑内气流组织的数值模拟研究。%In light of complicated features of external building structure, the paper creates body-fitted grid generation method and numerical simu- lation algorithm based on non-staggered grid. Based on comparative test with experiment result, the body-fitted grid numerically simulates the air stream organization and distribution of complicated external buildings including building with irregular roof and large-scale gym. Results show that the body-fitted grid algorithm and its calculation program has better generality, and can be used for numerical simulate research of internal air stream of various irregular external building structure.

  18. Development and deployment of AQUIS: A PC-based emission inventory calculator and air information management system

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.E.; Tschanz, J.; Monarch, M.; Narducci, P.; Bormet, S.

    1995-06-01

    The Air Quality Utility Information System (AQUIS) is a database management system. AQUIS assists users in calculation emissions, both traditional and toxic, and tracking and reporting emissions and source information. With some facilities having over 1200 sources and AQUIS calculating as many as 125 pollutants for a single source, tracking and correlating this information involve considerable effort. Originally designed for use at seven facilities of the Air Force Material Command, the user community has expanded to over 50 facilities since last reported at the 1993 Air and Waste Management Association (AWMA) annual meeting. This expansion in the user community has provided an opportunity to test the system under expanded operating conditions and in applications not anticipated during original system design. User feedback is used to determine needed enhancements and features and to prioritize the content of new releases. In responding to evolving user needs and new emission calculation procedures, it has been necessary to reconfigure AQUIS several times. Reconfigurations have ranged from simple to complex. These changes have necessitated augmenting quality assurance (QA) and validation procedures.

  19. Research into the formation process of hydrogen-air mixture in hydrogen fueled engines based on CFD

    Energy Technology Data Exchange (ETDEWEB)

    Zhenzhong, Yang; Aiguo, Si; Fei, Wang; Nan, Guo [School of Mechanical Engineering, North China Institute of Water Conservancy and Hydroelectric Power, 20 Zhenghua Road, Zhengzhou 450011 (China)

    2010-04-15

    The density of hydrogen is much smaller than that of air, so it is hard for hydrogen and air to form high grade mixture. Furthermore, the diffusing speed of hydrogen is so high that the formation state of mixture changes rapidly. Therefore it will become more difficult to carry through the further research of mixture space-time distributing rule. In order to investigate the formation rule of hydrogen-air mixture and improve the mixture quality, in this paper, computation fluid dynamics (CFD) mode is adopted to carry through three-dimensional numerical simulation research of flow field in hydrogen fueled engine cylinder. The numerical simulation is done in a two-stroke hydrogen fueled engine, and the mixture forming state at different hydrogen-injecting time is contrasted. The evolvement rule of flow field in cylinder and mixture forming state is shown in the result. The simulation results show that, when hydrogen-injecting begins at 260 CA, the forming quality of the mixture is better than other two states, this is the same as the experimental results. It indicates that CFD is one of the effective methods to analyze the formation of mixture in hydrogen fueled engine. (author)

  20. "Exposure Track"-The Impact of Mobile-Device-Based Mobility Patterns on Quantifying Population Exposure to Air Pollution.

    Science.gov (United States)

    Nyhan, Marguerite; Grauwin, Sebastian; Britter, Rex; Misstear, Bruce; McNabola, Aonghus; Laden, Francine; Barrett, Steven R H; Ratti, Carlo

    2016-09-01

    Air pollution is now recognized as the world's single largest environmental and human health threat. Indeed, a large number of environmental epidemiological studies have quantified the health impacts of population exposure to pollution. In previous studies, exposure estimates at the population level have not considered spatially- and temporally varying populations present in study regions. Therefore, in the first study of it is kind, we use measured population activity patterns representing several million people to evaluate population-weighted exposure to air pollution on a city-wide scale. Mobile and wireless devices yield information about where and when people are present, thus collective activity patterns were determined using counts of connections to the cellular network. Population-weighted exposure to PM2.5 in New York City (NYC), herein termed "Active Population Exposure" was evaluated using population activity patterns and spatiotemporal PM2.5 concentration levels, and compared to "Home Population Exposure", which assumed a static population distribution as per Census data. Areas of relatively higher population-weighted exposures were concentrated in different districts within NYC in both scenarios. These were more centralized for the "Active Population Exposure" scenario. Population-weighted exposure computed in each district of NYC for the "Active" scenario were found to be statistically significantly (p pollution using spatiotemporal population mobility patterns warrants consideration in future environmental epidemiological studies linking air quality and human health.