WorldWideScience

Sample records for aids to navigation

  1. 33 CFR 66.05-100 - Designation of navigable waters as State waters for private aids to navigation.

    Science.gov (United States)

    2010-07-01

    ... as State waters for private aids to navigation. 66.05-100 Section 66.05-100 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION State Aids to Navigation § 66.05-100 Designation of navigable waters as State waters for private aids to...

  2. Theoretical Limits of Lunar Vision Aided Navigation with Inertial Navigation System

    Science.gov (United States)

    2015-03-26

    THEORETICAL LIMITS OF LUNAR VISION AIDED NAVIGATION WITH INERTIAL NAVIGATION SYSTEM THESIS David W. Jones, Capt, USAF AFIT-ENG-MS-15-M-020 DEPARTMENT...Government and is not subject to copyright protection in the United States. AFIT-ENG-MS-15-M-020 THEORETICAL LIMITS OF LUNAR VISION AIDED NAVIGATION WITH...DISTRIBUTION UNLIMITED. AFIT-ENG-MS-15-M-020 THEORETICAL LIMITS OF LUNAR VISION AIDED NAVIGATION WITH INERTIAL NAVIGATION SYSTEM THESIS David W. Jones

  3. 33 CFR 401.54 - Interference with navigation aids.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Interference with navigation aids. 401.54 Section 401.54 Navigation and Navigable Waters SAINT LAWRENCE SEAWAY DEVELOPMENT CORPORATION... with navigation aids. (a) Aids to navigation shall not be interfered with or used as moorings. (b) No...

  4. 33 CFR 66.05-10 - State waters for private aids to navigation; designations; revisions, and revocations.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false State waters for private aids to... Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION PRIVATE AIDS TO NAVIGATION State Aids to Navigation § 66.05-10 State waters for private aids to navigation; designations; revisions, and...

  5. 33 CFR 150.705 - What are the requirements for maintaining and inspecting aids to navigation?

    Science.gov (United States)

    2010-07-01

    ... maintaining and inspecting aids to navigation? 150.705 Section 150.705 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DEEPWATER PORTS DEEPWATER PORTS: OPERATIONS Aids to Navigation § 150.705 What are the requirements for maintaining and inspecting aids to navigation? (a) All...

  6. Real-time Risk Assessment for Aids to Navigation Using Fuzzy-FSA on Three-Dimensional Simulation System

    Directory of Open Access Journals (Sweden)

    Jinbiao Chen

    2014-06-01

    Full Text Available The risk level of the Aids to Navigation (AtoNs can reflect the ship navigation safety level in the channel to some extent. In order to appreciate the risk level of the aids to navigation (AtoNs in a navigation channel and to provide some decision-making suggestions for the AtoNs Maintenance and Management Department, the risk assessment index system of the AtoNs was built considering the advanced experience of IALA. Under the Formal Safety Assessment frame, taking the advantages of the fuzzy comprehensive evaluation method, the fuzzy-FSA model of risk assessment for aids to navigation was established. The model was implemented for the assessment of aids to navigation in Shanghai area based on the aids to navigation three-dimensional simulation system. The real-time data were extracted from the existing information system of aids to navigation, and the real-time risk assessment for aids to navigation of the chosen channel was performed on platform of the three-dimensional simulation system, with the risk assessment software. Specifically, the deep-water channel of the Yangtze River estuary was taken as an example to illustrate the general assessment procedure. The method proposed presents practical significance and application prospect on the maintenance and management of the aids to navigation.

  7. An Effective Terrain Aided Navigation for Low-Cost Autonomous Underwater Vehicles.

    Science.gov (United States)

    Zhou, Ling; Cheng, Xianghong; Zhu, Yixian; Dai, Chenxi; Fu, Jinbo

    2017-03-25

    Terrain-aided navigation is a potentially powerful solution for obtaining submerged position fixes for autonomous underwater vehicles. The application of terrain-aided navigation with high-accuracy inertial navigation systems has demonstrated meter-level navigation accuracy in sea trials. However, available sensors may be limited depending on the type of the mission. Such limitations, especially for low-grade navigation sensors, not only degrade the accuracy of traditional navigation systems, but further impact the ability to successfully employ terrain-aided navigation. To address this problem, a tightly-coupled navigation is presented to successfully estimate the critical sensor errors by incorporating raw sensor data directly into an augmented navigation system. Furthermore, three-dimensional distance errors are calculated, providing measurement updates through the particle filter for absolute and bounded position error. The development of the terrain aided navigation system is elaborated for a vehicle equipped with a non-inertial-grade strapdown inertial navigation system, a 4-beam Doppler Velocity Log range sensor and a sonar altimeter. Using experimental data for navigation performance evaluation in areas with different terrain characteristics, the experiment results further show that the proposed method can be successfully applied to the low-cost AUVs and significantly improves navigation performance.

  8. Airports and Navigation Aids Database System -

    Data.gov (United States)

    Department of Transportation — Airport and Navigation Aids Database System is the repository of aeronautical data related to airports, runways, lighting, NAVAID and their components, obstacles, no...

  9. Florida coastal Aids to Navigation GIS data in 2001 (NCEI Accession 0000599)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The term Aids to Navigation (ATONS or AIDS) refers to a device outside of a vessel used to assist mariners in determining their position or safe course, or to warn...

  10. Navigation and Alignment Aids Concept of Operations and Supplemental Design Information. Revision A

    Science.gov (United States)

    Kelly, Sean M.; Cryan, Scott P.

    2016-01-01

    The IDSS Navigation and Alignment Aids Concept of Operations and Supplemental Design Information document provides supplemental information to the IDSS IDD. The guide provides insight into the navigation and alignment aids design, and how those aids can be utilized by incoming vehicles for proximity operations and docking. The navigation aids are paramount to successful docking.

  11. Real-time Risk Assessment for Aids to Navigation Using Fuzzy-FSA on Three-Dimensional Simulation System

    OpenAIRE

    Jinbiao Chen; Chaojian Shi; Dongxing Jia

    2014-01-01

    The risk level of the Aids to Navigation (AtoNs) can reflect the ship navigation safety level in the channel to some extent. In order to appreciate the risk level of the aids to navigation (AtoNs) in a navigation channel and to provide some decision-making suggestions for the AtoNs Maintenance and Management Department, the risk assessment index system of the AtoNs was built considering the advanced experience of IALA. Under the Formal Safety Assessment frame, taking the advantages of the fuz...

  12. Computer Navigation-aided Resection of Sacral Chordomas

    Directory of Open Access Journals (Sweden)

    Yong-Kun Yang

    2016-01-01

    Full Text Available Background: Resection of sacral chordomas is challenging. The anatomy is complex, and there are often no bony landmarks to guide the resection. Achieving adequate surgical margins is, therefore, difficult, and the recurrence rate is high. Use of computer navigation may allow optimal preoperative planning and improve precision in tumor resection. The purpose of this study was to evaluate the safety and feasibility of computer navigation-aided resection of sacral chordomas. Methods: Between 2007 and 2013, a total of 26 patients with sacral chordoma underwent computer navigation-aided surgery were included and followed for a minimum of 18 months. There were 21 primary cases and 5 recurrent cases, with a mean age of 55.8 years old (range: 35-84 years old. Tumors were located above the level of the S3 neural foramen in 23 patients and below the level of the S3 neural foramen in 3 patients. Three-dimensional images were reconstructed with a computed tomography-based navigation system combined with the magnetic resonance images using the navigation software. Tumors were resected via a posterior approach assisted by the computer navigation. Mean follow-up was 38.6 months (range: 18-84 months. Results: Mean operative time was 307 min. Mean intraoperative blood loss was 3065 ml. For computer navigation, the mean registration deviation during surgery was 1.7 mm. There were 18 wide resections, 4 marginal resections, and 4 intralesional resections. All patients were alive at the final follow-up, with 2 (7.7% exhibiting tumor recurrence. The other 24 patients were tumor-free. The mean Musculoskeletal Tumor Society Score was 27.3 (range: 19-30. Conclusions: Computer-assisted navigation can be safely applied to the resection of the sacral chordomas, allowing execution of preoperative plans, and achieving good oncological outcomes. Nevertheless, this needs to be accomplished by surgeons with adequate experience and skill.

  13. The contribution of virtual reality to the diagnosis of spatial navigation disorders and to the study of the role of navigational aids: A systematic literature review.

    Science.gov (United States)

    Cogné, M; Taillade, M; N'Kaoua, B; Tarruella, A; Klinger, E; Larrue, F; Sauzéon, H; Joseph, P-A; Sorita, E

    2017-06-01

    Spatial navigation, which involves higher cognitive functions, is frequently implemented in daily activities, and is critical to the participation of human beings in mainstream environments. Virtual reality is an expanding tool, which enables on one hand the assessment of the cognitive functions involved in spatial navigation, and on the other the rehabilitation of patients with spatial navigation difficulties. Topographical disorientation is a frequent deficit among patients suffering from neurological diseases. The use of virtual environments enables the information incorporated into the virtual environment to be manipulated empirically. But the impact of manipulations seems differ according to their nature (quantity, occurrence, and characteristics of the stimuli) and the target population. We performed a systematic review of research on virtual spatial navigation covering the period from 2005 to 2015. We focused first on the contribution of virtual spatial navigation for patients with brain injury or schizophrenia, or in the context of ageing and dementia, and then on the impact of visual or auditory stimuli on virtual spatial navigation. On the basis of 6521 abstracts identified in 2 databases (Pubmed and Scopus) with the keywords « navigation » and « virtual », 1103 abstracts were selected by adding the keywords "ageing", "dementia", "brain injury", "stroke", "schizophrenia", "aid", "help", "stimulus" and "cue"; Among these, 63 articles were included in the present qualitative analysis. Unlike pencil-and-paper tests, virtual reality is useful to assess large-scale navigation strategies in patients with brain injury or schizophrenia, or in the context of ageing and dementia. Better knowledge about both the impact of the different aids and the cognitive processes involved is essential for the use of aids in neurorehabilitation. Copyright © 2016. Published by Elsevier Masson SAS.

  14. Development of performance measures based on visibility for effective placement of aids to navigation

    Science.gov (United States)

    Fang, Tae Hyun; Kim, Yeon-Gyu; Gong, In-Young; Park, Sekil; Kim, Ah-Young

    2015-09-01

    In order to develop the challenging process of placing Aids to Navigation (AtoN), we propose performance measures which quantifies the effect of such placement. The best placement of AtoNs is that from which the navigator can best recognize the information provided by an AtoN. The visibility of AtoNs depends mostly on light sources, the weather condition and the position of the navigator. Visual recognition is enabled by achieving adequate contrast between the AtoN light source and background light. Therefore, the performance measures can be formulated through the amount of differences between these two lights. For simplification, this approach is based on the values of the human factor suggested by International Association of Marine Aids to Navigation and Lighthouse Authorities (IALA). Performance measures for AtoN placement can be evaluated through AtoN Simulator, which has been being developed by KIOST/KRISO in Korea and has been launched by Korea National Research Program. Simulations for evaluation are carried out at waterway in Busan port in Korea.

  15. Development of performance measures based on visibility for effective placement of aids to navigation

    Directory of Open Access Journals (Sweden)

    Tae Hyun Fang

    2015-05-01

    Full Text Available In order to develop the challenging process of placing Aids to Navigation (AtoN, we propose performance measures which quantifies the effect of such placement. The best placement of AtoNs is that from which the navigator can best recognize the information provided by an AtoN. The visibility of AtoNs depends mostly on light sources, the weather condition and the position of the navigator. Visual recognition is enabled by achieving adequate contrast between the AtoN light source and background light. Therefore, the performance measures can be formulated through the amount of differences between these two lights. For simplification, this approach is based on the values of the human factor suggested by International Association of Marine Aids to Navigation and Lighthouse Authorities (IALA. Performance measures for AtoN placement can be evaluated through AtoN Simulator, which has been being developed by KIOST/KRISO in Korea and has been launched by Korea National Research Program. Simulations for evaluation are carried out at waterway in Busan port in Korea.

  16. Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation.

    Science.gov (United States)

    Nitti, Davide O; Bovenga, Fabio; Chiaradia, Maria T; Greco, Mario; Pinelli, Gianpaolo

    2015-07-28

    This study explores the potential of Synthetic Aperture Radar (SAR) to aid Unmanned Aerial Vehicle (UAV) navigation when Inertial Navigation System (INS) measurements are not accurate enough to eliminate drifts from a planned trajectory. This problem can affect medium-altitude long-endurance (MALE) UAV class, which permits heavy and wide payloads (as required by SAR) and flights for thousands of kilometres accumulating large drifts. The basic idea is to infer position and attitude of an aerial platform by inspecting both amplitude and phase of SAR images acquired onboard. For the amplitude-based approach, the system navigation corrections are obtained by matching the actual coordinates of ground landmarks with those automatically extracted from the SAR image. When the use of SAR amplitude is unfeasible, the phase content can be exploited through SAR interferometry by using a reference Digital Terrain Model (DTM). A feasibility analysis was carried out to derive system requirements by exploring both radiometric and geometric parameters of the acquisition setting. We showed that MALE UAV, specific commercial navigation sensors and SAR systems, typical landmark position accuracy and classes, and available DTMs lead to estimated UAV coordinates with errors bounded within ±12 m, thus making feasible the proposed SAR-based backup system.

  17. Feasibility of Using Synthetic Aperture Radar to Aid UAV Navigation

    Directory of Open Access Journals (Sweden)

    Davide O. Nitti

    2015-07-01

    Full Text Available This study explores the potential of Synthetic Aperture Radar (SAR to aid Unmanned Aerial Vehicle (UAV navigation when Inertial Navigation System (INS measurements are not accurate enough to eliminate drifts from a planned trajectory. This problem can affect medium-altitude long-endurance (MALE UAV class, which permits heavy and wide payloads (as required by SAR and flights for thousands of kilometres accumulating large drifts. The basic idea is to infer position and attitude of an aerial platform by inspecting both amplitude and phase of SAR images acquired onboard. For the amplitude-based approach, the system navigation corrections are obtained by matching the actual coordinates of ground landmarks with those automatically extracted from the SAR image. When the use of SAR amplitude is unfeasible, the phase content can be exploited through SAR interferometry by using a reference Digital Terrain Model (DTM. A feasibility analysis was carried out to derive system requirements by exploring both radiometric and geometric parameters of the acquisition setting. We showed that MALE UAV, specific commercial navigation sensors and SAR systems, typical landmark position accuracy and classes, and available DTMs lead to estimated UAV coordinates with errors bounded within ±12 m, thus making feasible the proposed SAR-based backup system.

  18. Computer-aided navigation in dental implantology: 7 years of clinical experience.

    Science.gov (United States)

    Ewers, Rolf; Schicho, Kurt; Truppe, Michael; Seemann, Rudolf; Reichwein, Astrid; Figl, Michael; Wagner, Arne

    2004-03-01

    This long-term study gives a review over 7 years of research, development, and routine clinical application of computer-aided navigation technology in dental implantology. Benefits and disadvantages of up-to-date technologies are discussed. In the course of the current advancement, various hardware and software configurations are used. In the initial phase, universally applicable navigation software is adapted for implantology. Since 2001, a special software module for dental implantology is available. Preoperative planning is performed on the basis of prosthetic aspects and requirements. In clinical routine use, patient and drill positions are intraoperatively registered by means of optoelectronic tracking systems; during preclinical tests, electromagnetic trackers are also used. In 7 years (1995 to 2002), 55 patients with 327 dental implants were successfully positioned with computer-aided navigation technology. The mean number of implants per patient was 6 (minimum, 1; maximum, 11). No complications were observed; the preoperative planning could be exactly realized. The average expenditure of time for the preparation of a surgical intervention with navigation decreased from 2 to 3 days in the initial phase to one-half day in clinical routine use with software that is optimized for dental implantology. The use of computer-aided navigation technology can contribute to considerable quality improvement. Preoperative planning is exactly realized and intraoperative safety is increased, because damage to nerves or neighboring teeth can be avoided.

  19. External Aiding Methods for IMU-Based Navigation

    Science.gov (United States)

    2016-11-26

    Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.2.1 Startup Bias...Figure Page 1 Three Distributions Implemented for Error Parameters in SAIMUN . . . . . . . . . . . . 5 2 Accelerometer Output Corrupted by Startup ...external aiding, simulate the error sources encountered in the acquisition of measurement data, emulate the navigation software, and perform a range of

  20. THE ROLE OF NAVIGATIONAL AIDS IN FLIGHT SAFETY MANAGEMENT WITHIN ICAO GLOBAL AIR NAVIGATION PLAN

    Directory of Open Access Journals (Sweden)

    Vadim V. Vurobyov

    2017-01-01

    Full Text Available The development of the global civil aviation is provided on the basis of the ICAO Communication and Surveillance/Air Traffic Management Concept, which has determined the basic strategy for further commercial flight management effectiveness improvement. On the basis of this concept a Global Air Navigation Plan has been developed by ICAO recently. The core strategies of CNS/ATM concept were specified and combined into so-called blocks. Thus the term Global Aviation System block upgrade has been introduced. At the same time, GANP states that the introduction of new procedures and flight management systems will inevitably affect flight safety. Accordingly, there is a task of flight safety management level maintaining, or even increasing within the Global Air Navigation Plan implementation. Various air navigational aids play a significant role in the process as they are directly associated with the new systems and structures introduction.This breeds the new global challenge of flight safety management level change assessment during the introduction of new procedures and systems connected with the use of both navigational aids and instruments. Some aspects of this problem solution are covered in the article.

  1. Study Navigator: An Algorithmically Generated Aid for Learning from Electronic Textbooks

    Science.gov (United States)

    Agrawal, Rakesh; Gollapudi, Sreenivas; Kannan, Anitha; Kenthapadi, Krishnaram

    2014-01-01

    We present "study navigator," an algorithmically-generated aid for enhancing the experience of studying from electronic textbooks. The study navigator for a section of the book consists of helpful "concept references" for understanding this section. Each concept reference is a pair consisting of a concept phrase explained…

  2. An Imaging Sensor-Aided Vision Navigation Approach that Uses a Geo-Referenced Image Database.

    Science.gov (United States)

    Li, Yan; Hu, Qingwu; Wu, Meng; Gao, Yang

    2016-01-28

    In determining position and attitude, vision navigation via real-time image processing of data collected from imaging sensors is advanced without a high-performance global positioning system (GPS) and an inertial measurement unit (IMU). Vision navigation is widely used in indoor navigation, far space navigation, and multiple sensor-integrated mobile mapping. This paper proposes a novel vision navigation approach aided by imaging sensors and that uses a high-accuracy geo-referenced image database (GRID) for high-precision navigation of multiple sensor platforms in environments with poor GPS. First, the framework of GRID-aided vision navigation is developed with sequence images from land-based mobile mapping systems that integrate multiple sensors. Second, a highly efficient GRID storage management model is established based on the linear index of a road segment for fast image searches and retrieval. Third, a robust image matching algorithm is presented to search and match a real-time image with the GRID. Subsequently, the image matched with the real-time scene is considered to calculate the 3D navigation parameter of multiple sensor platforms. Experimental results show that the proposed approach retrieves images efficiently and has navigation accuracies of 1.2 m in a plane and 1.8 m in height under GPS loss in 5 min and within 1500 m.

  3. An IMM-Aided ZUPT Methodology for an INS/DVL Integrated Navigation System.

    Science.gov (United States)

    Yao, Yiqing; Xu, Xiaosu; Xu, Xiang

    2017-09-05

    Inertial navigation system (INS)/Doppler velocity log (DVL) integration is the most common navigation solution for underwater vehicles. Due to the complex underwater environment, the velocity information provided by DVL always contains some errors. To improve navigation accuracy, zero velocity update (ZUPT) technology is considered, which is an effective algorithm for land vehicles to mitigate the navigation error during the pure INS mode. However, in contrast to ground vehicles, the ZUPT solution cannot be used directly for underwater vehicles because of the existence of the water current. In order to leverage the strengths of the ZUPT method and the INS/DVL solution, an interactive multiple model (IMM)-aided ZUPT methodology for the INS/DVL-integrated underwater navigation system is proposed. Both the INS/DVL and INS/ZUPT models are constructed and operated in parallel, with weights calculated according to their innovations and innovation covariance matrices. Simulations are conducted to evaluate the proposed algorithm. The results indicate that the IMM-aided ZUPT solution outperforms both the INS/DVL solution and the INS/ZUPT solution in the underwater environment, which can properly distinguish between the ZUPT and non-ZUPT conditions. In addition, during DVL outage, the effectiveness of the proposed algorithm is also verified.

  4. Automatic Barometric Updates from Ground-Based Navigational Aids

    Science.gov (United States)

    1990-03-12

    ro fAutomatic Barometric Updates US Department from of Transportation Ground-Based Federal Aviation Administration Navigational Aids Office of Safety...tighter vertical spacing controls , particularly for operations near Terminal Control Areas (TCAs), Airport Radar Service Areas (ARSAs), military climb and...E.F., Ruth, J.C., and Williges, B.H. (1987). Speech Controls and Displays. In Salvendy, G., E. Handbook of Human Factors/Ergonomics, New York, John

  5. LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments

    OpenAIRE

    Tang, Jian; Chen, Yuwei; Niu, Xiaoji; Wang, Li; Chen, Liang; Liu, Jingbin; Shi, Chuang; Hyyppä, Juha

    2015-01-01

    A new scan that matches an aided Inertial Navigation System (INS) with a low-cost LiDAR is proposed as an alternative to GNSS-based navigation systems in GNSS-degraded or -denied environments such as indoor areas, dense forests, or urban canyons. In these areas, INS-based Dead Reckoning (DR) and Simultaneous Localization and Mapping (SLAM) technologies are normally used to estimate positions as separate tools. However, there are critical implementation problems with each standalone system. Th...

  6. A Visual-Aided Inertial Navigation and Mapping System

    Directory of Open Access Journals (Sweden)

    Rodrigo Munguía

    2016-05-01

    Full Text Available State estimation is a fundamental necessity for any application involving autonomous robots. This paper describes a visual-aided inertial navigation and mapping system for application to autonomous robots. The system, which relies on Kalman filtering, is designed to fuse the measurements obtained from a monocular camera, an inertial measurement unit (IMU and a position sensor (GPS. The estimated state consists of the full state of the vehicle: the position, orientation, their first derivatives and the parameter errors of the inertial sensors (i.e., the bias of gyroscopes and accelerometers. The system also provides the spatial locations of the visual features observed by the camera. The proposed scheme was designed by considering the limited resources commonly available in small mobile robots, while it is intended to be applied to cluttered environments in order to perform fully vision-based navigation in periods where the position sensor is not available. Moreover, the estimated map of visual features would be suitable for multiple tasks: i terrain analysis; ii three-dimensional (3D scene reconstruction; iii localization, detection or perception of obstacles and generating trajectories to navigate around these obstacles; and iv autonomous exploration. In this work, simulations and experiments with real data are presented in order to validate and demonstrate the performance of the proposal.

  7. Context-Aided Sensor Fusion for Enhanced Urban Navigation

    Science.gov (United States)

    Martí, Enrique David; Martín, David; García, Jesús; de la Escalera, Arturo; Molina, José Manuel; Armingol, José María

    2012-01-01

    The deployment of Intelligent Vehicles in urban environments requires reliable estimation of positioning for urban navigation. The inherent complexity of this kind of environments fosters the development of novel systems which should provide reliable and precise solutions to the vehicle. This article details an advanced GNSS/IMU fusion system based on a context-aided Unscented Kalman filter for navigation in urban conditions. The constrained non-linear filter is here conditioned by a contextual knowledge module which reasons about sensor quality and driving context in order to adapt it to the situation, while at the same time it carries out a continuous estimation and correction of INS drift errors. An exhaustive analysis has been carried out with available data in order to characterize the behavior of available sensors and take it into account in the developed solution. The performance is then analyzed with an extensive dataset containing representative situations. The proposed solution suits the use of fusion algorithms for deploying Intelligent Transport Systems in urban environments. PMID:23223080

  8. Context-Aided Sensor Fusion for Enhanced Urban Navigation

    Directory of Open Access Journals (Sweden)

    Enrique David Martí

    2012-12-01

    Full Text Available  The deployment of Intelligent Vehicles in urban environments requires reliable estimation of positioning for urban navigation. The inherent complexity of this kind of environments fosters the development of novel systems which should provide reliable and precise solutions to the vehicle. This article details an advanced GNSS/IMU fusion system based on a context-aided Unscented Kalman filter for navigation in urban conditions. The constrained non-linear filter is here conditioned by a contextual knowledge module which reasons about sensor quality and driving context in order to adapt it to the situation, while at the same time it carries out a continuous estimation and correction of INS drift errors. An exhaustive analysis has been carried out with available data in order to characterize the behavior of available sensors and take it into account in the developed solution. The performance is then analyzed with an extensive dataset containing representative situations. The proposed solution suits the use of fusion algorithms for deploying Intelligent Transport Systems in urban environments.

  9. Vision-aided inertial navigation system for robotic mobile mapping

    Science.gov (United States)

    Bayoud, Fadi; Skaloud, Jan

    2008-04-01

    A mapping system by vision-aided inertial navigation was developed for areas where GNSS signals are unreachable. In this framework, a methodology on the integration of vision and inertial sensors is presented, analysed and tested. The system employs the method of “SLAM: Simultaneous Localisation And Mapping” where the only external input available to the system at the beginning of the mapping mission is a number of features with known coordinates. SLAM is a term used in the robotics community to describe the problem of mapping the environment and at the same time using this map to determine the location of the mapping device. Differing from the robotics approach, the presented development stems from the frameworks of photogrammetry and kinematic geodesy that are merged in two filters that run in parallel: the Least-Squares Adjustment (LSA) for features coordinates determination and the Kalman filter (KF) for navigation correction. To test this approach, a mapping system-prototype comprising two CCD cameras and one Inertial Measurement Unit (IMU) is introduced. Conceptually, the outputs of the LSA photogrammetric resection are used as the external measurements for the KF that corrects the inertial navigation. The filtered position and orientation are subsequently employed in the photogrammetric intersection to map the surrounding features that are used as control points for the resection in the next epoch. We confirm empirically the dependency of navigation performance on the quality of the images and the number of tracked features, as well as on the geometry of the stereo-pair. Due to its autonomous nature, the SLAM's performance is further affected by the quality of IMU initialisation and the a-priory assumptions on error distribution. Using the example of the presented system we show that centimetre accuracy can be achieved in both navigation and mapping when the image geometry is optimal.

  10. Nautical Navigation Aids (NAVAID) Locations

    Data.gov (United States)

    Department of Homeland Security — Structures intended to assist a navigator to determine position or safe course, or to warn of dangers or obstructions to navigation. This dataset includes lights,...

  11. LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments.

    Science.gov (United States)

    Tang, Jian; Chen, Yuwei; Niu, Xiaoji; Wang, Li; Chen, Liang; Liu, Jingbin; Shi, Chuang; Hyyppä, Juha

    2015-07-10

    A new scan that matches an aided Inertial Navigation System (INS) with a low-cost LiDAR is proposed as an alternative to GNSS-based navigation systems in GNSS-degraded or -denied environments such as indoor areas, dense forests, or urban canyons. In these areas, INS-based Dead Reckoning (DR) and Simultaneous Localization and Mapping (SLAM) technologies are normally used to estimate positions as separate tools. However, there are critical implementation problems with each standalone system. The drift errors of velocity, position, and heading angles in an INS will accumulate over time, and on-line calibration is a must for sustaining positioning accuracy. SLAM performance is poor in featureless environments where the matching errors can significantly increase. Each standalone positioning method cannot offer a sustainable navigation solution with acceptable accuracy. This paper integrates two complementary technologies-INS and LiDAR SLAM-into one navigation frame with a loosely coupled Extended Kalman Filter (EKF) to use the advantages and overcome the drawbacks of each system to establish a stable long-term navigation process. Static and dynamic field tests were carried out with a self-developed Unmanned Ground Vehicle (UGV) platform-NAVIS. The results prove that the proposed approach can provide positioning accuracy at the centimetre level for long-term operations, even in a featureless indoor environment.

  12. A review of computer-aided oral and maxillofacial surgery: planning, simulation and navigation.

    Science.gov (United States)

    Chen, Xiaojun; Xu, Lu; Sun, Yi; Politis, Constantinus

    2016-11-01

    Currently, oral and maxillofacial surgery (OMFS) still poses a significant challenge for surgeons due to the anatomic complexity and limited field of view of the oral cavity. With the great development of computer technologies, he computer-aided surgery has been widely used for minimizing the risks and improving the precision of surgery. Areas covered: The major goal of this paper is to provide a comprehensive reference source of current and future development of computer-aided OMFS including surgical planning, simulation and navigation for relevant researchers. Expert commentary: Compared with the traditional OMFS, computer-aided OMFS overcomes the disadvantage that the treatment on the region of anatomically complex maxillofacial depends almost exclusively on the experience of the surgeon.

  13. LiDAR Scan Matching Aided Inertial Navigation System in GNSS-Denied Environments

    Directory of Open Access Journals (Sweden)

    Jian Tang

    2015-07-01

    Full Text Available A new scan that matches an aided Inertial Navigation System (INS with a low-cost LiDAR is proposed as an alternative to GNSS-based navigation systems in GNSS-degraded or -denied environments such as indoor areas, dense forests, or urban canyons. In these areas, INS-based Dead Reckoning (DR and Simultaneous Localization and Mapping (SLAM technologies are normally used to estimate positions as separate tools. However, there are critical implementation problems with each standalone system. The drift errors of velocity, position, and heading angles in an INS will accumulate over time, and on-line calibration is a must for sustaining positioning accuracy. SLAM performance is poor in featureless environments where the matching errors can significantly increase. Each standalone positioning method cannot offer a sustainable navigation solution with acceptable accuracy. This paper integrates two complementary technologies—INS and LiDAR SLAM—into one navigation frame with a loosely coupled Extended Kalman Filter (EKF to use the advantages and overcome the drawbacks of each system to establish a stable long-term navigation process. Static and dynamic field tests were carried out with a self-developed Unmanned Ground Vehicle (UGV platform—NAVIS. The results prove that the proposed approach can provide positioning accuracy at the centimetre level for long-term operations, even in a featureless indoor environment.

  14. DVL Velocity Aiding in the HUGIN 1000 Integrated Inertial Navigation System

    Directory of Open Access Journals (Sweden)

    Bjørn Jalving

    2004-10-01

    Full Text Available The RDI WHN-600 Doppler Velocity Log (DVL is a key navigation sensor for the HUG1N 1000 Autonomous Underwater Vehicle (AUV. HUGIN 1000 is designed for autonomous submerged operation for long periods of time. This is facilitated by a low drift velocity aided Inertial Navigation System (INS. Major factors determining the position error growth are the IMU and DVL error characteristics and the mission plan pattern_ For instance, low frequency DVL errors cause an approximately linear drift in a straight-line trajectory, while these errors tend to be cancelled out by a lawn mower pattern_ The paper focuses on the accuracy offered by the DVL. HUGIN 1000 is a permanent organic mine countermeasure (MCM capacity on the Royal Norwegian Navy MCM vessel KNM Karmoy. HUGIN 1000 will be part of the NATO force MCMFORNORTH in fall 2004.

  15. Survey of symbology for aeronautical charts and electronic displays : navigation aids, airports, lines, and linear patterns

    Science.gov (United States)

    2008-09-01

    This industry survey documents the symbols for navigation aids, airports, lines, and linear patterns currently in use by avionics manufactureres and chart providers for depicting aeronautical charting information. Nine avionics display manufacturers ...

  16. Vision/INS Integrated Navigation System for Poor Vision Navigation Environments

    Directory of Open Access Journals (Sweden)

    Youngsun Kim

    2016-10-01

    Full Text Available In order to improve the performance of an inertial navigation system, many aiding sensors can be used. Among these aiding sensors, a vision sensor is of particular note due to its benefits in terms of weight, cost, and power consumption. This paper proposes an inertial and vision integrated navigation method for poor vision navigation environments. The proposed method uses focal plane measurements of landmarks in order to provide position, velocity and attitude outputs even when the number of landmarks on the focal plane is not enough for navigation. In order to verify the proposed method, computer simulations and van tests are carried out. The results show that the proposed method gives accurate and reliable position, velocity and attitude outputs when the number of landmarks is insufficient.

  17. A Depth-Based Head-Mounted Visual Display to Aid Navigation in Partially Sighted Individuals

    Science.gov (United States)

    Hicks, Stephen L.; Wilson, Iain; Muhammed, Louwai; Worsfold, John; Downes, Susan M.; Kennard, Christopher

    2013-01-01

    Independent navigation for blind individuals can be extremely difficult due to the inability to recognise and avoid obstacles. Assistive techniques such as white canes, guide dogs, and sensory substitution provide a degree of situational awareness by relying on touch or hearing but as yet there are no techniques that attempt to make use of any residual vision that the individual is likely to retain. Residual vision can restricted to the awareness of the orientation of a light source, and hence any information presented on a wearable display would have to limited and unambiguous. For improved situational awareness, i.e. for the detection of obstacles, displaying the size and position of nearby objects, rather than including finer surface details may be sufficient. To test whether a depth-based display could be used to navigate a small obstacle course, we built a real-time head-mounted display with a depth camera and software to detect the distance to nearby objects. Distance was represented as brightness on a low-resolution display positioned close to the eyes without the benefit focussing optics. A set of sighted participants were monitored as they learned to use this display to navigate the course. All were able to do so, and time and velocity rapidly improved with practise with no increase in the number of collisions. In a second experiment a cohort of severely sight-impaired individuals of varying aetiologies performed a search task using a similar low-resolution head-mounted display. The majority of participants were able to use the display to respond to objects in their central and peripheral fields at a similar rate to sighted controls. We conclude that the skill to use a depth-based display for obstacle avoidance can be rapidly acquired and the simplified nature of the display may appropriate for the development of an aid for sight-impaired individuals. PMID:23844067

  18. Triangulating laser profilometer as a navigational aid for the blind: optical aspects

    Science.gov (United States)

    Farcy, R.; Denise, B.; Damaschini, R.

    1996-03-01

    We propose a navigational aid approach for the blind that relies on active optical profilometry with real-time electrotactile interfacing on the skin. Here we are concerned with the optical parts of this system. We point out the particular requirements the profilometer must meet to meet the needs of blind people. We show experimentally that an adequate compromise is possible that consists of a compact class I IR laser-diode triangulation profilometer with the following angular resolution, 20-ms acquisition time per measure of distance, 60 degrees angular scanning field.

  19. Aids to Navigation for US waters, including territories, as of April 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Structures intended to assist a navigator to determine position or safe course, or to warn of dangers or obstructions to navigation. This dataset includes lights,...

  20. Gravity Matching Aided Inertial Navigation Technique Based on Marginal Robust Unscented Kalman Filter

    Directory of Open Access Journals (Sweden)

    Ming Liu

    2015-01-01

    Full Text Available This paper is concerned with the topic of gravity matching aided inertial navigation technology using Kalman filter. The dynamic state space model for Kalman filter is constructed as follows: the error equation of the inertial navigation system is employed as the process equation while the local gravity model based on 9-point surface interpolation is employed as the observation equation. The unscented Kalman filter is employed to address the nonlinearity of the observation equation. The filter is refined in two ways as follows. The marginalization technique is employed to explore the conditionally linear substructure to reduce the computational load; specifically, the number of the needed sigma points is reduced from 15 to 5 after this technique is used. A robust technique based on Chi-square test is employed to make the filter insensitive to the uncertainties in the above constructed observation model. Numerical simulation is carried out, and the efficacy of the proposed method is validated by the simulation results.

  1. 33 CFR 74.01-15 - Charges for placement of temporary aids.

    Science.gov (United States)

    2010-07-01

    ... temporary aids. 74.01-15 Section 74.01-15 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO NAVIGATION CHARGES FOR COAST GUARD AIDS TO NAVIGATION WORK Charges to the Public § 74.01-15 Charges for placement of temporary aids. Charges for placement of temporary aids will be...

  2. Radar and electronic navigation

    CERN Document Server

    Sonnenberg, G J

    2013-01-01

    Radar and Electronic Navigation, Sixth Edition discusses radar in marine navigation, underwater navigational aids, direction finding, the Decca navigator system, and the Omega system. The book also describes the Loran system for position fixing, the navy navigation satellite system, and the global positioning system (GPS). It reviews the principles, operation, presentations, specifications, and uses of radar. It also describes GPS, a real time position-fixing system in three dimensions (longitude, latitude, altitude), plus velocity information with Universal Time Coordinated (UTC). It is accur

  3. Ultrasound-Aided Pedestrian Dead Reckoning for Indoor Navigation

    NARCIS (Netherlands)

    Fischer, C.; Kavitha Muthukrishnan, K.; Hazas, M.; Gellersen, H.

    2008-01-01

    Ad hoc solutions for tracking and providing navigation support to emergency response teams is an important and safety-critical challenge. We propose a navigation system based on a combination of foot-mounted inertial sensors and ultrasound beacons. We evaluate experimentally the performance of our

  4. Advanced Navigation Aids System based on Augmented Reality

    Directory of Open Access Journals (Sweden)

    Jaeyong OH

    2016-12-01

    Full Text Available Many maritime accidents have been caused by human-error including such things as inadequate watch keeping and/or mistakes in ship handling. Also, new navigational equipment has been developed using Information Technology (IT technology to provide various kinds of information for safe navigation. Despite these efforts, the reduction of maritime accidents has not occurred to the degree expected because, navigational equipment provides too much information, and this information is not well organized, such that users feel it to be complicated rather than helpful. In this point of view, the method of representation of navigational information is more important than the quantity of that information and research is required on the representation of information to make that information more easily understood and to allow decisions to be made correctly and promptly. In this paper, we adopt Augmented Reality (AR technologies for the representation of information. AR is a 3D computer graphics technology that blends virtual reality and the real world. Recently, this technology has been widely applied in our daily lives because it can provide information more effectively to users. Therefore, we propose a new concept, a navigational system based on AR technology; we review experimental results from a ship-handling simulator and from an open sea test to verify the efficiency of the proposed system.

  5. WiFi-Aided Magnetic Matching for Indoor Navigation with Consumer Portable Devices

    Directory of Open Access Journals (Sweden)

    You Li

    2015-06-01

    Full Text Available This paper presents a WiFi-aided magnetic matching (MM algorithm for indoor pedestrian navigation with consumer portable devices. This algorithm reduces both the mismatching rate (i.e., the rate of matching to an incorrect point that is more than 20 m away from the true value and computational load of MM by using WiFi positioning solutions to limit the MM search space. Walking tests with Samsung Galaxy S3 and S4 smartphones in two different indoor environments (i.e., Environment #1 with abundant WiFi APs and significant magnetic features, and Environment #2 with less WiFi and magnetic information were conducted to evaluate the proposed algorithm. It was found that WiFi fingerprinting accuracy is related to the signal distributions. MM provided results with small fluctuations but had a significant mismatch rate; when aided by WiFi, MM’s robustness was significantly improved. The outcome of this research indicates that WiFi and MM have complementary characteristics as the former is a point-by-point matching approach and the latter is based on profile-matching. Furthermore, performance improvement through integrating WiFi and MM depends on the environment (e.g., the signal distributions of magnetic intensity and WiFi RSS: In Environment #1 tests, WiFi-aided MM and WiFi provided similar results; in Environment #2 tests, the former was approximately 41.6% better. Our results supported that the WiFi-aided MM algorithm provided more reliable solutions than both WiFi and MM in the areas that have poor WiFi signal distribution or indistinctive magnetic-gradient features.

  6. Soft tissue navigation for laparoscopic prostatectomy: evaluation of camera pose estimation for enhanced visualization

    Science.gov (United States)

    Baumhauer, M.; Simpfendörfer, T.; Schwarz, R.; Seitel, M.; Müller-Stich, B. P.; Gutt, C. N.; Rassweiler, J.; Meinzer, H.-P.; Wolf, I.

    2007-03-01

    We introduce a novel navigation system to support minimally invasive prostate surgery. The system utilizes transrectal ultrasonography (TRUS) and needle-shaped navigation aids to visualize hidden structures via Augmented Reality. During the intervention, the navigation aids are segmented once from a 3D TRUS dataset and subsequently tracked by the endoscope camera. Camera Pose Estimation methods directly determine position and orientation of the camera in relation to the navigation aids. Accordingly, our system does not require any external tracking device for registration of endoscope camera and ultrasonography probe. In addition to a preoperative planning step in which the navigation targets are defined, the procedure consists of two main steps which are carried out during the intervention: First, the preoperatively prepared planning data is registered with an intraoperatively acquired 3D TRUS dataset and the segmented navigation aids. Second, the navigation aids are continuously tracked by the endoscope camera. The camera's pose can thereby be derived and relevant medical structures can be superimposed on the video image. This paper focuses on the latter step. We have implemented several promising real-time algorithms and incorporated them into the Open Source Toolkit MITK (www.mitk.org). Furthermore, we have evaluated them for minimally invasive surgery (MIS) navigation scenarios. For this purpose, a virtual evaluation environment has been developed, which allows for the simulation of navigation targets and navigation aids, including their measurement errors. Besides evaluating the accuracy of the computed pose, we have analyzed the impact of an inaccurate pose and the resulting displacement of navigation targets in Augmented Reality.

  7. VISION-AIDED CONTEXT-AWARE FRAMEWORK FOR PERSONAL NAVIGATION SERVICES

    Directory of Open Access Journals (Sweden)

    S. Saeedi

    2012-07-01

    Full Text Available The ubiquity of mobile devices (such as smartphones and tablet-PCs has encouraged the use of location-based services (LBS that are relevant to the current location and context of a mobile user. The main challenge of LBS is to find a pervasive and accurate personal navigation system (PNS in different situations of a mobile user. In this paper, we propose a method of personal navigation for pedestrians that allows a user to freely move in outdoor environments. This system aims at detection of the context information which is useful for improving personal navigation. The context information for a PNS consists of user activity modes (e.g. walking, stationary, driving, and etc. and the mobile device orientation and placement with respect to the user. After detecting the context information, a low-cost integrated positioning algorithm has been employed to estimate pedestrian navigation parameters. The method is based on the integration of the relative user’s motion (changes of velocity and heading angle estimation based on the video image matching and absolute position information provided by GPS. A Kalman filter (KF has been used to improve the navigation solution when the user is walking and the phone is in his/her hand. The Experimental results demonstrate the capabilities of this method for outdoor personal navigation systems.

  8. 46 CFR 35.20-1 - Notice to mariners; aids to navigation-T/OCLB.

    Science.gov (United States)

    2010-10-01

    ... Notices to Mariners (Great Lakes Edition), published by the Commander, 9th Coast Guard District, contain... of navigation on the Great Lakes. These notices may be obtained free of charge, by making application to Commander, 9th Coast Guard District. (c) Weekly Notices to Mariners (worldwide coverage) are...

  9. 33 CFR 144.01-30 - First-aid kit.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false First-aid kit. 144.01-30 Section...) OUTER CONTINENTAL SHELF ACTIVITIES LIFESAVING APPLIANCES Manned Platforms § 144.01-30 First-aid kit. On each manned platform a first-aid kit approved by the Commandant or the U.S. Bureau of Mines shall be...

  10. HIV, AIDS, and the Future

    Science.gov (United States)

    Skip Navigation Bar Home Current Issue Past Issues HIV / AIDS HIV, AIDS, and the Future Past Issues / Summer 2009 ... turn Javascript on. Photo: The NAMES Project Foundation HIV and AIDS are a global catastrophe. While advances ...

  11. 75 FR 51473 - Houston/Galveston Navigation Safety Advisory Committee

    Science.gov (United States)

    2010-08-20

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2010-0656] Houston/Galveston... Houston/Galveston Navigation Safety Advisory Committee (HOGANSAC) and its working groups will meet in Houston, Texas, to discuss waterway improvements, aids to navigation, area projects impacting safety on...

  12. 75 FR 23793 - Houston/Galveston Navigation Safety Advisory Committee

    Science.gov (United States)

    2010-05-04

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [Docket No. USCG-2010-0032] Houston/Galveston... Houston/Galveston Navigation Safety Advisory Committee (``HOGANSAC'' or ``the Committee'') and its working groups will meet in Houston, Texas to discuss waterway improvements, aids to navigation, area projects...

  13. Neural-network-based depth computation for blind navigation

    Science.gov (United States)

    Wong, Farrah; Nagarajan, Ramachandran R.; Yaacob, Sazali

    2004-12-01

    A research undertaken to help blind people to navigate autonomously or with minimum assistance is termed as "Blind Navigation". In this research, an aid that could help blind people in their navigation is proposed. Distance serves as an important clue during our navigation. A stereovision navigation aid implemented with two digital video cameras that are spaced apart and fixed on a headgear to obtain the distance information is presented. In this paper, a neural network methodology is used to obtain the required parameters of the camera which is known as camera calibration. These parameters are not known but obtained by adjusting the weights in the network. The inputs to the network consist of the matching features in the stereo pair images. A back propagation network with 16-input neurons, 3 hidden neurons and 1 output neuron, which gives depth, is created. The distance information is incorporated into the final processed image as four gray levels such as white, light gray, dark gray and black. Preliminary results have shown that the percentage errors fall below 10%. It is envisaged that the distance provided by neural network shall enable blind individuals to go near and pick up an object of interest.

  14. National Institutes of Health, Office of AIDS Research

    Science.gov (United States)

    ... Search Term(s): Main Navigation for the Office of AIDS Research Homepage ABOUT OAR SCIENTIFIC AREAS STRATEGIC PLAN ... HIV/AIDS INFORMATION Welcome to the Office of AIDS Research. Welcome to the Office of AIDS Research ...

  15. Monitoring and evaluation of Blyth Offshore Wind Farm. NAVAID (Navigational Aid) requirements for UK offshore wind farms

    Energy Technology Data Exchange (ETDEWEB)

    Pepper, L.

    2001-07-01

    The principle aim of this report is to review and evaluate the Navigational Aid (NAVAID) requirements for the Blyth Offshore Wind Farms as specified by Trinity House. The effectiveness of the NAVAIDs was monitored and reviewed by the project team with the assistance of the harbour master and the local vessel operators regularly using Blyth Harbour. This report particularly looks at the reasons for the NAVAID specification and the practicalities of using a similar system on larger offshore wind farms. The document not only describes the specification, but also reviews its effectiveness including any difficulties that were encountered during the installation. (author)

  16. Issues in symbol design for electronic displays of navigation information

    Science.gov (United States)

    2004-10-24

    An increasing number of electronic displays, ranging from small hand-held displays for general aviation to installed displays for air transport, are showing navigation information, such as symbols representing navigational aids. The wide range of dis...

  17. Improved artificial bee colony algorithm based gravity matching navigation method.

    Science.gov (United States)

    Gao, Wei; Zhao, Bo; Zhou, Guang Tao; Wang, Qiu Ying; Yu, Chun Yang

    2014-07-18

    Gravity matching navigation algorithm is one of the key technologies for gravity aided inertial navigation systems. With the development of intelligent algorithms, the powerful search ability of the Artificial Bee Colony (ABC) algorithm makes it possible to be applied to the gravity matching navigation field. However, existing search mechanisms of basic ABC algorithms cannot meet the need for high accuracy in gravity aided navigation. Firstly, proper modifications are proposed to improve the performance of the basic ABC algorithm. Secondly, a new search mechanism is presented in this paper which is based on an improved ABC algorithm using external speed information. At last, modified Hausdorff distance is introduced to screen the possible matching results. Both simulations and ocean experiments verify the feasibility of the method, and results show that the matching rate of the method is high enough to obtain a precise matching position.

  18. Navigation errors encountered using weather-mapping radar for helicopter IFR guidance to oil rigs

    Science.gov (United States)

    Phillips, J. D.; Bull, J. S.; Hegarty, D. M.; Dugan, D. C.

    1980-01-01

    In 1978 a joint NASA-FAA helicopter flight test was conducted to examine the use of weather-mapping radar for IFR guidance during landing approaches to oil rig helipads. The following navigation errors were measured: total system error, radar-range error, radar-bearing error, and flight technical error. Three problem areas were identified: (1) operational problems leading to pilot blunders, (2) poor navigation to the downwind final approach point, and (3) pure homing on final approach. Analysis of these problem areas suggests improvement in the radar equipment, approach procedure, and pilot training, and gives valuable insight into the development of future navigation aids to serve the off-shore oil industry.

  19. 14 CFR Appendix A to Part 63 - Test Requirements for Flight Navigator Certificate

    Science.gov (United States)

    2010-01-01

    ... all planets available for navigation at the time of the examination and explain the method of... nearest fire extinguisher, life preserver, life rafts, exits, axe, first aid kits, etc. (9) Recite the...

  20. HIV / AIDS: An Unequal Burden

    Science.gov (United States)

    Skip Navigation Bar Home Current Issue Past Issues HIV / AIDS HIV / AIDS: An Unequal Burden Past Issues / Summer 2009 ... high-risk category, emphasizes Dr. Cargill. Photo: iStock HIV and Pregnancy Are there ways to help HIV- ...

  1. 76 FR 2916 - Houston/Galveston Navigation Safety Advisory Committee; Meetings

    Science.gov (United States)

    2011-01-18

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [USCG-2010-1116] Houston/Galveston Navigation Safety Advisory Committee; Meetings AGENCY: Coast Guard, DHS. ACTION: Notice of Meetings. SUMMARY: The Houston... will meet in Texas City, Texas and Houston, Texas to discuss waterway improvements, aids to navigation...

  2. Terrain aided navigation for autonomous underwater vehicles with coarse maps

    International Nuclear Information System (INIS)

    Zhou, Ling; Cheng, Xianghong; Zhu, Yixian

    2016-01-01

    Terrain aided navigation (TAN) is a form of geophysical localization technique for autonomous underwater vehicles (AUVs) operating in GPS-denied environments. TAN performance on sensor-rich AUVs has been evaluated in sea trials. However, many challenges remain before TAN can be successfully implemented on sensor-limited AUVs, especially with coarse maps. To improve TAN performance over coarse maps, a Gaussian process (GP) is proposed for the modeling of bathymetric terrain and integrated into the particle filter (GP-PF). GP is applied to provide not only the bathymetric value prediction through learning a set of bathymetric data from coarse maps but also the variance of the prediction. As a measurement update, calculated on bathymetric deviation is performed through the PF to obtain absolute and bounded positioning accuracy. Through the analysis of TAN performance on experimental data for two different terrains with map resolutions of 10–50 m, both the ability of the proposed model to represent the actual bathymetric terrain with accuracy and the effect of the GP-PF for TAN on sensor-limited systems in suited terrain are demonstrated. The experiment results further verify that there is an inverse relationship between the coarseness of the map and the overall TAN accuracy in rough terrains, but there is hardly any relationship between them in relatively flat terrains. (paper)

  3. Augmented Reality as a Navigation Tool to Employment Opportunities for Postsecondary Education Students with Intellectual Disabilities and Autism

    Science.gov (United States)

    McMahon, Don; Cihak, David F.; Wright, Rachel

    2015-01-01

    The purpose of this study was to examine the effects of location-based augmented reality navigation compared to Google Maps and paper maps as navigation aids for students with disabilities. The participants in this single subject study were three college students with intellectual disability and one college student with autism spectrum disorder.…

  4. Mars rover local navigation and hazard avoidance

    Science.gov (United States)

    Wilcox, B. H.; Gennery, D. B.; Mishkin, A. H.

    1989-01-01

    A Mars rover sample return mission has been proposed for the late 1990's. Due to the long speed-of-light delays between earth and Mars, some autonomy on the rover is highly desirable. JPL has been conducting research in two possible modes of rover operation, Computer-Aided Remote Driving and Semiautonomous Navigation. A recently-completed research program used a half-scale testbed vehicle to explore several of the concepts in semiautonomous navigation. A new, full-scale vehicle with all computational and power resources on-board will be used in the coming year to demonstrate relatively fast semiautonomous navigation. The computational and power requirements for Mars rover local navigation and hazard avoidance are discussed.

  5. Model Basis for the Navigation Aid Analysis Tool

    National Research Council Canada - National Science Library

    Morris, Peter

    1999-01-01

    ...), a self-contained software product that computes the probability of being in a given system state, most commonly, the incident state, for a user-constructed scenario of surface marine navigation...

  6. 6-DOF Pose Estimation of a Robotic Navigation Aid by Tracking Visual and Geometric Features.

    Science.gov (United States)

    Ye, Cang; Hong, Soonhac; Tamjidi, Amirhossein

    2015-10-01

    This paper presents a 6-DOF Pose Estimation (PE) method for a Robotic Navigation Aid (RNA) for the visually impaired. The RNA uses a single 3D camera for PE and object detection. The proposed method processes the camera's intensity and range data to estimates the camera's egomotion that is then used by an Extended Kalman Filter (EKF) as the motion model to track a set of visual features for PE. A RANSAC process is employed in the EKF to identify inliers from the visual feature correspondences between two image frames. Only the inliers are used to update the EKF's state. The EKF integrates the egomotion into the camera's pose in the world coordinate system. To retain the EKF's consistency, the distance between the camera and the floor plane (extracted from the range data) is used by the EKF as the observation of the camera's z coordinate. Experimental results demonstrate that the proposed method results in accurate pose estimates for positioning the RNA in indoor environments. Based on the PE method, a wayfinding system is developed for localization of the RNA in a home environment. The system uses the estimated pose and the floorplan to locate the RNA user in the home environment and announces the points of interest and navigational commands to the user through a speech interface. This work was motivated by the limitations of the existing navigation technology for the visually impaired. Most of the existing methods use a point/line measurement sensor for indoor object detection. Therefore, they lack capability in detecting 3D objects and positioning a blind traveler. Stereovision has been used in recent research. However, it cannot provide reliable depth data for object detection. Also, it tends to produce a lower localization accuracy because its depth measurement error quadratically increases with the true distance. This paper suggests a new approach for navigating a blind traveler. The method uses a single 3D time-of-flight camera for both 6-DOF PE and 3D object

  7. 33 CFR 149.323 - What are the requirements for first aid kits?

    Science.gov (United States)

    2010-07-01

    ... first aid kits? 149.323 Section 149.323 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Lifesaving Equipment Manned Deepwater Port Requirements § 149.323 What are the requirements for first aid kits? (a) Each manned deepwater port must have an industrial first aid kit, approved by an appropriate...

  8. Basic research and 12 years of clinical experience in computer-assisted navigation technology: a review.

    Science.gov (United States)

    Ewers, R; Schicho, K; Undt, G; Wanschitz, F; Truppe, M; Seemann, R; Wagner, A

    2005-01-01

    Computer-aided surgical navigation technology is commonly used in craniomaxillofacial surgery. It offers substantial improvement regarding esthetic and functional aspects in a range of surgical procedures. Based on augmented reality principles, where the real operative site is merged with computer generated graphic information, computer-aided navigation systems were employed, among other procedures, in dental implantology, arthroscopy of the temporomandibular joint, osteotomies, distraction osteogenesis, image guided biopsies and removals of foreign bodies. The decision to perform a procedure with or without computer-aided intraoperative navigation depends on the expected benefit to the procedure as well as on the technical expenditure necessary to achieve that goal. This paper comprises the experience gained in 12 years of research, development and routine clinical application. One hundred and fifty-eight operations with successful application of surgical navigation technology--divided into five groups--are evaluated regarding the criteria "medical benefit" and "technical expenditure" necessary to perform these procedures. Our results indicate that the medical benefit is likely to outweight the expenditure of technology with few exceptions (calvaria transplant, resection of the temporal bone, reconstruction of the orbital floor). Especially in dental implantology, specialized software reduces time and additional costs necessary to plan and perform procedures with computer-aided surgical navigation.

  9. NAVIGATION AIDS AS TOOLS TO SUPPORT THE DEVELOPMENT OF COMPETENCES IN THE CONDITIONS OF REALIZATION OF INDIVIDUAL EDUCATIONAL TRAJECTORY

    Directory of Open Access Journals (Sweden)

    E. F. Zeer

    2017-01-01

    Full Text Available Introduction. Continuing education or «education through all life» is required of the person by modern realities of the information, quickly changing society; thus, continuing education is carried out on a development trajectory, individual for each person. Maintenance of such educational process needs effective tools. The relevance of its development caused the research presented in the publication.The aim is to show the possibilities of navigation aids during realization of individual routes of the training conforming to federal state educational standards and considering the purposes and interests of each separately taken personality.Methodology and research methods. The leading methodological basis is personality-oriented approach in the implementation of individual educational trajectory. Logical-pedagogical analysis of students’ individual educational trajectory progress is used.Results and scientific novelty. The interrelation of the concepts «individual educational trajectory» and «individual educational route» is revealed. The conceptual model of maintenance of an individual educational trajectory as a set of reference points of mastering of competences necessary for the expert is offered. Navigators of educational process and cases of individual educational achievements assessment act as didactic means in model. It is shown whence application of components of models allows to: organize the professional orientation actions more effectively; exercise entrance control of knowledge prior to training; control actions during vocational training; correlate an individual trajectory of training to the standard; have a guide when studying disciplines of various cycles, when passing educational and production training, protection of final qualification work; finally, it is possible for a pupil to carry out self-estimation of the acquired competences.Practical significance. The materials of the present publication will be useful to

  10. Evaluation of navigation interfaces in virtual environments

    Science.gov (United States)

    Mestre, Daniel R.

    2014-02-01

    When users are immersed in cave-like virtual reality systems, navigational interfaces have to be used when the size of the virtual environment becomes larger than the physical extent of the cave floor. However, using navigation interfaces, physically static users experience self-motion (visually-induced vection). As a consequence, sensorial incoherence between vision (indicating self-motion) and other proprioceptive inputs (indicating immobility) can make them feel dizzy and disoriented. We tested, in two experimental studies, different locomotion interfaces. The objective was twofold: testing spatial learning and cybersickness. In a first experiment, using first-person navigation with a flystick ®, we tested the effect of sensorial aids, a spatialized sound or guiding arrows on the ground, attracting the user toward the goal of the navigation task. Results revealed that sensorial aids tended to impact negatively spatial learning. Moreover, subjects reported significant levels of cybersickness. In a second experiment, we tested whether such negative effects could be due to poorly controlled rotational motion during simulated self-motion. Subjects used a gamepad, in which rotational and translational displacements were independently controlled by two joysticks. Furthermore, we tested first- versus third-person navigation. No significant difference was observed between these two conditions. Overall, cybersickness tended to be lower, as compared to experiment 1, but the difference was not significant. Future research should evaluate further the hypothesis of the role of passively perceived optical flow in cybersickness, but manipulating the virtual environment'sperrot structure. It also seems that video-gaming experience might be involved in the user's sensitivity to cybersickness.

  11. 75 FR 6215 - Houston/Galveston Navigation Safety Advisory Committee

    Science.gov (United States)

    2010-02-08

    ... groups will meet in Houston, Texas to discuss waterway improvements, aids to navigation, area projects...; (b) Dredging subcommittee report; (c) Technology subcommittee report; (d) Waterways Optimization...

  12. Quantifying the impact on navigation performance in visually impaired: Auditory information loss versus information gain enabled through electronic travel aids.

    Directory of Open Access Journals (Sweden)

    Alex Kreilinger

    Full Text Available This study's purpose was to analyze and quantify the impact of auditory information loss versus information gain provided by electronic travel aids (ETAs on navigation performance in people with low vision. Navigation performance of ten subjects (age: 54.9±11.2 years with visual acuities >1.0 LogMAR was assessed via the Graz Mobility Test (GMT. Subjects passed through a maze in three different modalities: 'Normal' with visual and auditory information available, 'Auditory Information Loss' with artificially reduced hearing (leaving only visual information, and 'ETA' with a vibrating ETA based on ultrasonic waves, thereby facilitating visual, auditory, and tactile information. Main performance measures comprised passage time and number of contacts. Additionally, head tracking was used to relate head movements to motion direction. When comparing 'Auditory Information Loss' to 'Normal', subjects needed significantly more time (p<0.001, made more contacts (p<0.001, had higher relative viewing angles (p = 0.002, and a higher percentage of orientation losses (p = 0.011. The only significant difference when comparing 'ETA' to 'Normal' was a reduced number of contacts (p<0.001. Our study provides objective, quantifiable measures of the impact of reduced hearing on the navigation performance in low vision subjects. Significant effects of 'Auditory Information Loss' were found for all measures; for example, passage time increased by 17.4%. These findings show that low vision subjects rely on auditory information for navigation. In contrast, the impact of the ETA was not significant but further analysis of head movements revealed two different coping strategies: half of the subjects used the ETA to increase speed, whereas the other half aimed at avoiding contacts.

  13. 78 FR 19277 - Navigation Safety Advisory Council; Meeting

    Science.gov (United States)

    2013-03-29

    ... regarding multiple risk assessments for U.S. ports and waterways. If you have been adversely affected by the... measures; marine information; diving safety; and aids to navigation systems. This notice corrects the...

  14. A Discussion on e-Navigation and Implementation in Turkey

    Directory of Open Access Journals (Sweden)

    Y.V. Aydogdu

    2014-03-01

    Full Text Available Electronic navigation, which has great important for ship management, has taken a step with technological improvements. In the result of these enhancements, new systems appeared as well as existing systems and these systems began to be integrated each other or used data of obtaining from the others like that AIS, Radar, ECDIS etc. All these and likely future systems have been put together under the roof of enhanced navigation (e-navigation is defined by organizations such as International Maritime Organization (IMO, International Association of Marine Aids to Navigation and Lighthouse Authorities (IALA, General Lighthouse Authority (GLA etc. Especially IALA guidelines serve as model future applications in Turkish waterways. In this study aim to redefine e-navigation concept based on maritime safety awareness, maritime service portfolio (MSC 85/26 and discuss possible applications.

  15. Navigation Tools and Equipment and How They Have Improved Aviation Safety

    OpenAIRE

    Sulaiman D. S Alsahli FadalahassanALfadala

    2017-01-01

    This paper highlights the impact of navigation tools and equipment, such as the GPS, navigation radar, and other communications tools, which aid in ensuring aviation safety. It emphasizes the need for aviation safety and how these navigation methods are of great help to reduce the hazards and clearly indicate the problems related to the aircraft, aircraft traffic management, weather disturbances, among others. It also recommends how these tools and equipment must be further developed to promo...

  16. HIV / AIDS: Symptoms, Diagnosis, Prevention and Treatment

    Science.gov (United States)

    Skip Navigation Bar Home Current Issue Past Issues HIV / AIDS HIV / AIDS: Symptoms , Diagnosis, Prevention and Treatment Past Issues / ... Most people who have become recently infected with HIV will not have any symptoms. They may, however, ...

  17. Celestial Navigation in the USA, Fiji, and Tunisia

    Science.gov (United States)

    Holbrook, Jarita C.

    2015-05-01

    Today there are many coastal communities that are home to navigators who use stars for position finding at night; I was, however, unaware of this fact when I began researching celestial navigation practices in 1997. My project focused on three communities: the Moce Islanders of Fiji, the Kerkennah Islanders in Tunisia, and the U.S. Navy officers and students at the United States Naval Academy, Annapolis, Maryland. My goal was to answer the question of why people continue to navigate by the stars, but also to understand the role of technology in their navigation practices. Using anthropology techniques of ethnography including participant observation, formal and informal interviews, audio and videotaping, I gathered data over five years at the three communities. I began by learning the details of how they use the stars for navigation. Next, I learned about who did the navigation and where they learned to navigate. I gathered opinions on various navigation aids and instruments, and opinions about the future of using the stars for navigation. I listened to the stories that they told about navigating. In the United States I worked in English, in Fiji, in Fijian and English, and in Tunisia, French and English. For the formal interviews I worked with translators. The navigators use stars for navigating today but the future of their techniques is not certain. Though practiced today, these celestial navigation traditions have undergone and continue to undergo changes. New navigational technologies are part of the stimulation for change, thus 'a meeting of different worlds' is symbolized by peoples encounters with these technologies.

  18. Evolving earth-based and in-situ satellite network architectures for Mars communications and navigation support

    Science.gov (United States)

    Hastrup, Rolf; Weinberg, Aaron; McOmber, Robert

    1991-09-01

    Results of on-going studies to develop navigation/telecommunications network concepts to support future robotic and human missions to Mars are presented. The performance and connectivity improvements provided by the relay network will permit use of simpler, lower performance, and less costly telecom subsystems for the in-situ mission exploration elements. Orbiting relay satellites can serve as effective navigation aids by supporting earth-based tracking as well as providing Mars-centered radiometric data for mission elements approaching, in orbit, or on the surface of Mars. The relay satellite orbits may be selected to optimize navigation aid support and communication coverage for specific mission sets.

  19. Enhanced Subsea Acoustically Aided Inertial Navigation

    DEFF Research Database (Denmark)

    Jørgensen, Martin Juhl

    time is expensive so lots of effort is put into cutting down on time spent on all tasks. Accuracy demanding tasks such as subsea construction and surveying are subject to strict quality control requirements taking up a lot of time. Offshore equipment is rugged and sturdy as the environmental conditions...... are harsh, likewise should the use of it be simple and robust to ensure that it actually works. The contributions of this thesis are all focused on enhancing accuracy and time efficiency while bearing operational reliability and complexity strongly in mind. The basis of inertial navigation, the inertial...... at desired survey points; the other uses a mapping sensor such as subsea lidar to simply map the area in question. Both approaches are shown to work in practice. Generating high resolution maps, as the latter approach, is how the author anticipates all subsea surveys will be conducted in the near future....

  20. Correlated-Data Fusion and Cooperative Aiding in GNSS-Stressed or Denied Environments

    Science.gov (United States)

    Mokhtarzadeh, Hamid

    A growing number of applications require continuous and reliable estimates of position, velocity, and orientation. Price requirements alone disqualify most traditional navigation or tactical-grade sensors and thus navigation systems based on automotive or consumer-grade sensors aided by Global Navigation Satellite Systems (GNSS), like the Global Positioning System (GPS), have gained popularity. The heavy reliance on GPS in these navigation systems is a point of concern and has created interest in alternative or back-up navigation systems to enable robust navigation through GPS-denied or stressed environments. This work takes advantage of current trends for increased sensing capabilities coupled with multilayer connectivity to propose a cooperative navigation-based aiding system as a means to limit dead reckoning error growth in the absence of absolute measurements like GPS. Each vehicle carries a dead reckoning navigation system which is aided by relative measurements, like range, to neighboring vehicles together with information sharing. Detailed architectures and concepts of operation are described for three specific applications: commercial aviation, Unmanned Aerial Vehicles (UAVs), and automotive applications. Both centralized and decentralized implementations of cooperative navigation-based aiding systems are described. The centralized system is based on a single Extended Kalman Filter (EKF). A decentralized implementation suited for applications with very limited communication bandwidth is discussed in detail. The presence of unknown correlation between the a priori state and measurement errors makes the standard Kalman filter unsuitable. Two existing estimators for handling this unknown correlation are Covariance Intersection (CI) and Bounded Covariance Inflation (BCInf) filters. A CI-based decentralized estimator suitable for decentralized cooperative navigation implementation is proposed. A unified derivation is presented for the Kalman filter, CI filter

  1. Navigation Aiding by a Hybrid Laser-Camera Motion Estimator for Micro Aerial Vehicles

    Directory of Open Access Journals (Sweden)

    Jamal Atman

    2016-09-01

    Full Text Available Micro Air Vehicles (MAVs equipped with various sensors are able to carry out autonomous flights. However, the self-localization of autonomous agents is mostly dependent on Global Navigation Satellite Systems (GNSS. In order to provide an accurate navigation solution in absence of GNSS signals, this article presents a hybrid sensor. The hybrid sensor is a deep integration of a monocular camera and a 2D laser rangefinder so that the motion of the MAV is estimated. This realization is expected to be more flexible in terms of environments compared to laser-scan-matching approaches. The estimated ego-motion is then integrated in the MAV’s navigation system. However, first, the knowledge about the pose between both sensors is obtained by proposing an improved calibration method. For both calibration and ego-motion estimation, 3D-to-2D correspondences are used and the Perspective-3-Point (P3P problem is solved. Moreover, the covariance estimation of the relative motion is presented. The experiments show very accurate calibration and navigation results.

  2. Navigation Aiding by a Hybrid Laser-Camera Motion Estimator for Micro Aerial Vehicles.

    Science.gov (United States)

    Atman, Jamal; Popp, Manuel; Ruppelt, Jan; Trommer, Gert F

    2016-09-16

    Micro Air Vehicles (MAVs) equipped with various sensors are able to carry out autonomous flights. However, the self-localization of autonomous agents is mostly dependent on Global Navigation Satellite Systems (GNSS). In order to provide an accurate navigation solution in absence of GNSS signals, this article presents a hybrid sensor. The hybrid sensor is a deep integration of a monocular camera and a 2D laser rangefinder so that the motion of the MAV is estimated. This realization is expected to be more flexible in terms of environments compared to laser-scan-matching approaches. The estimated ego-motion is then integrated in the MAV's navigation system. However, first, the knowledge about the pose between both sensors is obtained by proposing an improved calibration method. For both calibration and ego-motion estimation, 3D-to-2D correspondences are used and the Perspective-3-Point (P3P) problem is solved. Moreover, the covariance estimation of the relative motion is presented. The experiments show very accurate calibration and navigation results.

  3. Kinematic Navigation in Total Knee Replacement — Experience from the First 50 Cases

    Directory of Open Access Journals (Sweden)

    Chih-Wei Chang

    2006-01-01

    Conclusion: Use of a kinematic navigation system in TKR provides better accuracy than conventional manual methods. The technique is easy to use, has a short learning curve, and requires an additional operation time of less than 10 minutes. Precise alignment can be achieved with the aid of navigation in most cases.

  4. Navigation Problems in Blind-to-Blind Pedestrians Tele-assistance Navigation

    OpenAIRE

    Balata , Jan; Mikovec , Zdenek; Maly , Ivo

    2015-01-01

    International audience; We raise a question whether it is possible to build a large-scale navigation system for blind pedestrians where a blind person navigates another blind person remotely by mobile phone. We have conducted an experiment, in which we observed blind people navigating each other in a city center in 19 sessions. We focused on problems in the navigator’s attempts to direct the traveler to the destination. We observed 96 problems in total, classified them on the basis of the typ...

  5. Integrated INS/GPS Navigation from a Popular Perspective

    Science.gov (United States)

    Omerbashich, Mensur

    2002-01-01

    Inertial navigation, blended with other navigation aids, Global Positioning System (GPS) in particular, has gained significance due to enhanced navigation and inertial reference performance and dissimilarity for fault tolerance and anti-jamming. Relatively new concepts based upon using Differential GPS (DGPS) blended with Inertial (and visual) Navigation Sensors (INS) offer the possibility of low cost, autonomous aircraft landing. The FAA has decided to implement the system in a sophisticated form as a new standard navigation tool during this decade. There have been a number of new inertial sensor concepts in the recent past that emphasize increased accuracy of INS/GPS versus INS and reliability of navigation, as well as lower size and weight, and higher power, fault tolerance, and long life. The principles of GPS are not discussed; rather the attention is directed towards general concepts and comparative advantages. A short introduction to the problems faced in kinematics is presented. The intention is to relate the basic principles of kinematics to probably the most used navigation method in the future-INS/GPS. An example of the airborne INS is presented, with emphasis on how it works. The discussion of the error types and sources in navigation, and of the role of filters in optimal estimation of the errors then follows. The main question this paper is trying to answer is 'What are the benefits of the integration of INS and GPS and how is this, navigation concept of the future achieved in reality?' The main goal is to communicate the idea about what stands behind a modern navigation method.

  6. Enabling obstacle avoidance for Google maps' navigation service

    NARCIS (Netherlands)

    Nedkov, S.; Zlatanova, S.

    2011-01-01

    City infrastructures are sensitive to disasters. To aid rescue workers and citizens, a system is needed which determines the shortest route to a certain location, taking the damages of the infrastructure into account. The biggest disadvantage of current navigation systems is that they are “closed”

  7. Model-base visual navigation of a mobile robot

    International Nuclear Information System (INIS)

    Roening, J.

    1992-08-01

    The thesis considers the problems of visual guidance of a mobile robot. A visual navigation system is formalized consisting of four basic components: world modelling, navigation sensing, navigation and action. According to this formalization an experimental system is designed and realized enabling real-world navigation experiments. A priori knowledge of the world is used for global path finding, aiding scene analysis and providing feedback information to the close the control loop between planned and actual movements. Two world models were developed. The first approach was a map-based model especially designed for low-level description of indoor environments. The other was a higher level and more symbolic representation of the surroundings utilizing the spatial graph concept. Two passive vision approaches were developed to extract navigation information. With passive three- camera stereovision a sparse depth map of the scene was produced. Another approach employed a fish-eye lens to map the entire scene of the surroundings without camera scanning. The local path planning of the system is supported by three-dimensional scene interpreter providing a partial understanding of scene contents. The interpreter consists of data-driven low-level stages and a model-driven high-level stage. Experiments were carried out in a simulator and test vehicle constructed in the laboratory. The test vehicle successfully navigated indoors

  8. Star pattern recognition algorithm aided by inertial information

    Science.gov (United States)

    Liu, Bao; Wang, Ke-dong; Zhang, Chao

    2011-08-01

    Star pattern recognition is one of the key problems of the celestial navigation. The traditional star pattern recognition approaches, such as the triangle algorithm and the star angular distance algorithm, are a kind of all-sky matching method whose recognition speed is slow and recognition success rate is not high. Therefore, the real time and reliability of CNS (Celestial Navigation System) is reduced to some extent, especially for the maneuvering spacecraft. However, if the direction of the camera optical axis can be estimated by other navigation systems such as INS (Inertial Navigation System), the star pattern recognition can be fulfilled in the vicinity of the estimated direction of the optical axis. The benefits of the INS-aided star pattern recognition algorithm include at least the improved matching speed and the improved success rate. In this paper, the direction of the camera optical axis, the local matching sky, and the projection of stars on the image plane are estimated by the aiding of INS firstly. Then, the local star catalog for the star pattern recognition is established in real time dynamically. The star images extracted in the camera plane are matched in the local sky. Compared to the traditional all-sky star pattern recognition algorithms, the memory of storing the star catalog is reduced significantly. Finally, the INS-aided star pattern recognition algorithm is validated by simulations. The results of simulations show that the algorithm's computation time is reduced sharply and its matching success rate is improved greatly.

  9. The Nation's Top HIV/AIDS Researcher Discusses This Continuing Health Threat

    Science.gov (United States)

    Skip Navigation Bar Home Current Issue Past Issues HIV / AIDS The Nation's Top HIV/AIDS Researcher Discusses This Continuing Health Threat Past Issues / ... on. For more than 30 years, the NIH's HIV/AIDS research program has been led by Dr. Anthony S. ...

  10. Intelligent Behavioral Action Aiding for Improved Autonomous Image Navigation

    Science.gov (United States)

    2012-09-13

    odometry, SICK laser scanning unit ( Lidar ), Inertial Measurement Unit (IMU) and ultrasonic distance measurement system (Figure 32). The Lidar , IMU...2010, July) GPS world. [Online]. http://www.gpsworld.com/tech-talk- blog/gnss-independent-navigation-solution-using-integrated- lidar -data-11378 [4...Milford, David McKinnon, Michael Warren, Gordon Wyeth, and Ben Upcroft, "Feature-based Visual Odometry and Featureless Place Recognition for SLAM in

  11. PERFORMANCE CHARACTERISTIC MEMS-BASED IMUs FOR UAVs NAVIGATION

    Directory of Open Access Journals (Sweden)

    H. A. Mohamed

    2015-08-01

    Full Text Available Accurate 3D reconstruction has become essential for non-traditional mapping applications such as urban planning, mining industry, environmental monitoring, navigation, surveillance, pipeline inspection, infrastructure monitoring, landslide hazard analysis, indoor localization, and military simulation. The needs of these applications cannot be satisfied by traditional mapping, which is based on dedicated data acquisition systems designed for mapping purposes. Recent advances in hardware and software development have made it possible to conduct accurate 3D mapping without using costly and high-end data acquisition systems. Low-cost digital cameras, laser scanners, and navigation systems can provide accurate mapping if they are properly integrated at the hardware and software levels. Unmanned Aerial Vehicles (UAVs are emerging as a mobile mapping platform that can provide additional economical and practical advantages. However, such economical and practical requirements need navigation systems that can provide uninterrupted navigation solution. Hence, testing the performance characteristics of Micro-Electro-Mechanical Systems (MEMS or low cost navigation sensors for various UAV applications is important research. This work focuses on studying the performance characteristics under different manoeuvres using inertial measurements integrated with single point positioning, Real-Time-Kinematic (RTK, and additional navigational aiding sensors. Furthermore, the performance of the inertial sensors is tested during Global Positioning System (GPS signal outage.

  12. Performance Characteristic Mems-Based IMUs for UAVs Navigation

    Science.gov (United States)

    Mohamed, H. A.; Hansen, J. M.; Elhabiby, M. M.; El-Sheimy, N.; Sesay, A. B.

    2015-08-01

    Accurate 3D reconstruction has become essential for non-traditional mapping applications such as urban planning, mining industry, environmental monitoring, navigation, surveillance, pipeline inspection, infrastructure monitoring, landslide hazard analysis, indoor localization, and military simulation. The needs of these applications cannot be satisfied by traditional mapping, which is based on dedicated data acquisition systems designed for mapping purposes. Recent advances in hardware and software development have made it possible to conduct accurate 3D mapping without using costly and high-end data acquisition systems. Low-cost digital cameras, laser scanners, and navigation systems can provide accurate mapping if they are properly integrated at the hardware and software levels. Unmanned Aerial Vehicles (UAVs) are emerging as a mobile mapping platform that can provide additional economical and practical advantages. However, such economical and practical requirements need navigation systems that can provide uninterrupted navigation solution. Hence, testing the performance characteristics of Micro-Electro-Mechanical Systems (MEMS) or low cost navigation sensors for various UAV applications is important research. This work focuses on studying the performance characteristics under different manoeuvres using inertial measurements integrated with single point positioning, Real-Time-Kinematic (RTK), and additional navigational aiding sensors. Furthermore, the performance of the inertial sensors is tested during Global Positioning System (GPS) signal outage.

  13. 'Outsmarting Traffic, Together': Driving as Social Navigation

    Directory of Open Access Journals (Sweden)

    Sam Hind

    2014-04-01

    Full Text Available The automotive world is evolving. Ten years ago Nigel Thrift (2004: 41 made the claim that the experience of driving was slipping into our 'technological unconscious'. Only recently the New York Times suggested that with the rise of automated driving, standalone navigation tools as we know them would cease to exist, instead being 'fully absorbed into the machine' (Fisher, 2013. But in order to bridge the gap between past and future driving worlds, another technological evolution is emerging. This short, critical piece charts the rise of what has been called 'social navigation' in the industry; the development of digital mapping platforms designed to foster automotive sociality. It makes two provisional points. Firstly, that 'ludic' conceptualisations can shed light on the ongoing reconfiguration of drivers, vehicles, roads and technological aids such as touch-screen satellite navigation platforms. And secondly, that as a result of this, there is a coming-into-being of a new kind of driving politics; a 'casual politicking' centred on an engagement with digital interfaces. We explicate both by turning our attention towards Waze; a social navigation application that encourages users to interact with various driving dynamics.

  14. Information Potential Fields Navigation in Wireless Ad-Hoc Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yong Qi

    2011-05-01

    Full Text Available As wireless sensor networks (WSNs are increasingly being deployed in some important applications, it becomes imperative that we consider application requirements in in-network processes. We intend to use a WSN to aid information querying and navigation within a dynamic and real-time environment. We propose a novel method that relies on the heat diffusion equation to finish the navigation process conveniently and easily. From the perspective of theoretical analysis, our proposed work holds the lower constraint condition. We use multiple scales to reach the goal of accurate navigation. We present a multi-scale gradient descent method to satisfy users’ requirements in WSNs. Formula derivations and simulations show that the method is accurately and efficiently able to solve typical sensor network configuration information navigation problems. Simultaneously, the structure of heat diffusion equation allows more flexibility and adaptability in searching algorithm designs.

  15. Traditional boat-building and navigational techniques of southern Orissa

    Digital Repository Service at National Institute of Oceanography (India)

    Tripati, S.

    of the region. No written records on ancient boatbuilding and navigational aids of the region are available for the reconstruction of the technique of boat-building. Boats of this area have been classified into two categories, namely planked and log boats...

  16. Visual Navigation of Complex Information Spaces

    Directory of Open Access Journals (Sweden)

    Sarah North

    1995-11-01

    Full Text Available The authors lay the foundation for the introduction of visual navigation aid to assist computer users in direct manipulation of the complex information spaces. By exploring present research on scientific data visualisation and creating a case for improved information visualisation tools, they introduce the design of an improved information visualisation interface utilizing dynamic slider, called Visual-X, incorporating icons with bindable attributes (glyphs. Exploring the improvement that these data visualisations, make to a computing environment, the authors conduct an experiment to compare the performance of subjects who use traditional interfaces and Visual-X. Methodology is presented and conclusions reveal that the use of Visual-X appears to be a promising approach in providing users with a navigation tool that does not overload their cognitive processes.

  17. Gravity Gradiometry and Map Matching: An Aid to Aircraft Inertial Navigation Systems

    Science.gov (United States)

    2010-03-01

    wife, who listened to my techno-babble and fully supported long hours of study . I think it’s time we take a vacation… together this time...Air Force Institute of Technology BEP Break Even Point CEP Circular Error Probable (50th percentile) CSAF Chief of Staff of the Air Force DTED...matching to aid an aircraft INS. Comprehensive, in this case , refers to an assessment that shows the potential for this concept to provide certain

  18. To the North Coast of Devon: Collaborative Navigation While Exploring Unfamiliar Terrain

    Science.gov (United States)

    Clancey, William J.; Lee, Pascal; Cockell, Charles S.; Braham, Stephen; Shafto, Mike

    2006-01-01

    Navigation-knowing where one is and finding a safe route-is a fundamental aspect of all exploration. In unfamiliar terrain, one may use maps and instruments such as a compass or binoculars to assist, and people often collaborate in finding their way. This paper analyzes a group of people driving a humvee from a base camp to the north coast of Devon Island in the High Canadian Arctic. A complete audio recording and video during most stops allows a quantitative and semantic analysis of the conversations when the team stopped to take bearings and replan a route. Over a period of 2 hours, the humvee stopped 20 times, with an average duration of 3.15 min/pause and 3.85 min moving forward. The team failed to reach its goal due to difficult terrain causing mechanical problems. The analysis attempts to explain these facts by considering a variety of complicating factors, especially the navigation problem of relating maps and the world to locate the humvee and to plan a route. The analysis reveals patterns in topic structure and turn-taking, supporting the view that the collaboration was efficient, but the tools and information were inadequate for the task. This work is relevant for planning and training for planetary surface missions, as well as developing computer systems that could aid navigation.

  19. Parsimonious Ways to Use Vision for Navigation

    Directory of Open Access Journals (Sweden)

    Paul Graham

    2012-05-01

    Full Text Available The use of visual information for navigation appears to be a universal strategy for sighted animals, amongst which, one particular group of expert navigators are the ants. The broad interest in studies of ant navigation is in part due to their small brains, thus biomimetic engineers expect to be impressed by elegant control solutions, and psychologists might hope for a description of the minimal cognitive requirements for complex spatial behaviours. In this spirit, we have been taking an interdisciplinary approach to the visual guided navigation of ants in their natural habitat. Behavioural experiments and natural image statistics show that visual navigation need not depend on the remembering or recognition of objects. Further modelling work suggests how simple behavioural routines might enable navigation using familiarity detection rather than explicit recall, and we present a proof of concept that visual navigation using familiarity can be achieved without specifying when or what to learn, nor separating routes into sequences of waypoints. We suggest that our current model represents the only detailed and complete model of insect route guidance to date. What's more, we believe the suggested mechanisms represent useful parsimonious hypotheses for the visually guided navigation in larger-brain animals.

  20. UCare navigator: A dynamic guide to the hybrid electronic and paper medical record in transition.

    Science.gov (United States)

    Bokser, Seth J; Cucina, Russell J; Love, Jeffrey S; Blum, Michael S

    2007-10-11

    During the phased transition from a paper-based record to an electronic health record (EHR), we found that clinicians had difficulty remembering where to find important clinical documents. We describe our experience with the design and use of a web-based map of the hybrid medical record. With between 50 to 75 unique visits per day, the UCare Navigator has served as an important aid to clinicians practicing in the transitional environment of a large EHR implementation.

  1. Cooperative Navigation for Low-bandwidth Mobile Acoustic Networks

    Science.gov (United States)

    2015-01-01

    travel-time TXCO temperature compensated crystal oscillator UKF unscented Kalman filter UMBS University of Michigan Biological Station USBL ultra...access CEKF centralized extended Kalman filter CEIF centralized extended information filter CI covariance intersection CNA cooperative navigation aid DCCL...programming DEIF decentralized extended information filter DVL Doppler velocity log EIF extended information filter EKF extended Kalman filter FDMA

  2. Transport Canada : navigable water protection technical paper on boating safety at dams

    Energy Technology Data Exchange (ETDEWEB)

    Putt, B [Transport Canada, Sarnia, ON (Canada); Di Censo, V M [Transport Canada, Ottawa, ON (Canada)

    2009-07-01

    The Navigable Waters Protection Act (NWPA) was designed to ensure a balance between public rights of navigation and the need to build bridges, dams, and other structures. This paper discussed an owner's guide to navigation safety around water control structures. Developed by Transport Canada, the guide was intended to help owners of water control structures address boating safety matters and assist owners in making applications under the NWPA. The guide was prepared to address amendments made to the NWPA in 2009 as well as to assist owners in identifying potential hazards and interactions by the boating public at water control structures. The guide included information related to signage; navigation aids; barriers and booms; warning alerts and alarms; portage and access around structures; and application requirements. It was concluded that the guide will also provide a summary of legislation that may affect owners of water control structures.

  3. Multi-Flight-Phase GPS Navigation Filter Applications to Terrestrial Vehicle Navigation and Positioning

    Science.gov (United States)

    Park, Young W.; Montez, Moises N.

    1994-01-01

    A candidate onboard space navigation filter demonstrated excellent performance (less than 8 meter level RMS semi-major axis accuracy) in performing orbit determination of a low-Earth orbit Explorer satellite using single-frequency real GPS data. This performance is significantly better than predicted by other simulation studies using dual-frequency GPS data. The study results revealed the significance of two new modeling approaches evaluated in the work. One approach introduces a single-frequency ionospheric correction through pseudo-range and phase range averaging implementation. The other approach demonstrates a precise axis-dependent characterization of dynamic sample space uncertainty to compute a more accurate Kalman filter gain. Additionally, this navigation filter demonstrates a flexibility to accommodate both perturbational dynamic and observational biases required for multi-flight phase and inhomogeneous application environments. This paper reviews the potential application of these methods and the filter structure to terrestrial vehicle and positioning applications. Both the single-frequency ionospheric correction method and the axis-dependent state noise modeling approach offer valuable contributions in cost and accuracy improvements for terrestrial GPS receivers. With a modular design approach to either 'plug-in' or 'unplug' various force models, this multi-flight phase navigation filter design structure also provides a versatile GPS navigation software engine for both atmospheric and exo-atmospheric navigation or positioning use, thereby streamlining the flight phase or application-dependent software requirements. Thus, a standardized GPS navigation software engine that can reduce the development and maintenance cost of commercial GPS receivers is now possible.

  4. The Use of the Lead and Line by Early Navigators in the North Sea?

    Directory of Open Access Journals (Sweden)

    John Kemp

    2014-12-01

    Full Text Available This paper draws attention to the lack of information as to how early North Sea sailors navigated, particularly during the one thousand year period that followed Roman times. The lead and line was the only navigational aid available for most of this period, but there is little recorded as to whether it was used simply for ensuring a ship or boat had enough water to proceed or whether, together with the knowledge it provided of the nature of the sea bed, it was used as a more positive position fixing device. The author would appreciate any information relating to navigation techniques used during this period.

  5. An Integrated Approach to Electronic Navigation

    National Research Council Canada - National Science Library

    Shaw, Peter; Pettus, Bill

    2001-01-01

    While the Global Positioning System (GPS) is and will continue to be an excellent navigation system, it is neither flawless nor is it the only system employed in the navigation of today's seagoing warfighters...

  6. Demonstration of a Moving-Map System for Improved Lane Navigation of Amphibious Vehicles

    National Research Council Canada - National Science Library

    Clohrenz, Maura

    2003-01-01

    The Naval Research Laboratory (NRL) is testing and demonstrating a prototype moving-map system on amphibious vehicles and landing craft to aid the location neutralization and navigation around mines and obstacles in the surf and beach zone...

  7. Environmental gamma dose rate monitoring along Mumbai-Pune route using environmental radiation monitor with navigational aid

    International Nuclear Information System (INIS)

    Padmanabhan, N.; Kale, M.S.; Raman, N.; Krishnamachari, G.; Harikumar, M.; Sharma, D.N.; Mehta, S.K.

    1997-01-01

    A continuous environmental radiation monitor with navigational aid (ERMNA) for mapping natural gamma radiation background on country wide scale by deployment in railway coaches, has been designed. The system makes use of Indian railway network which is one of the widest network of railways in the world covering nearly complete length and breadth of the country. The system uses an energy compensated (within ± 30%) GN detectors for measurement of environmental dose rate due to natural background, a global positioning system (GPS) for on-line acquisition of positional co-ordinates (longitude and latitude) and an 8085 based data acquisition and processing unit. This system is deployed in guard's cabin of a train. The dose rate data tagged with positional co-ordinates and collected by the system during train journey is down loaded into a Lap Top PC for storage, analysis and graphical representation. The system has been used for background monitoring between Mumbai and Pune. The dose rates recorded over a period of three months ranging from November 1996 to February 1997 along the route show no change in the values which vary from 4 μr/h to 6 μR/h along the route. It drops down to <3 μR/h within tunnels en route. (author)

  8. Intelligent navigation to improve obstetrical sonography.

    Science.gov (United States)

    Yeo, Lami; Romero, Roberto

    2016-04-01

    'Manual navigation' by the operator is the standard method used to obtain information from two-dimensional and volumetric sonography. Two-dimensional sonography is highly operator dependent and requires extensive training and expertise to assess fetal anatomy properly. Most of the sonographic examination time is devoted to acquisition of images, while 'retrieval' and display of diagnostic planes occurs rapidly (essentially instantaneously). In contrast, volumetric sonography has a rapid acquisition phase, but the retrieval and display of relevant diagnostic planes is often time-consuming, tedious and challenging. We propose the term 'intelligent navigation' to refer to a new method of interrogation of a volume dataset whereby identification and selection of key anatomical landmarks allow the system to: 1) generate a geometrical reconstruction of the organ of interest; and 2) automatically navigate, find, extract and display specific diagnostic planes. This is accomplished using operator-independent algorithms that are both predictable and adaptive. Virtual Intelligent Sonographer Assistance (VIS-Assistance®) is a tool that allows operator-independent sonographic navigation and exploration of the surrounding structures in previously identified diagnostic planes. The advantage of intelligent (over manual) navigation in volumetric sonography is the short time required for both acquisition and retrieval and display of diagnostic planes. Intelligent navigation technology automatically realigns the volume, and reorients and standardizes the anatomical position, so that the fetus and the diagnostic planes are consistently displayed in the same manner each time, regardless of the fetal position or the initial orientation. Automatic labeling of anatomical structures, subject orientation and each of the diagnostic planes is also possible. Intelligent navigation technology can operate on conventional computers, and is not dependent on specific ultrasound platforms or on the

  9. GPS/MEMS IMU/Microprocessor Board for Navigation

    Science.gov (United States)

    Gender, Thomas K.; Chow, James; Ott, William E.

    2009-01-01

    A miniaturized instrumentation package comprising a (1) Global Positioning System (GPS) receiver, (2) an inertial measurement unit (IMU) consisting largely of surface-micromachined sensors of the microelectromechanical systems (MEMS) type, and (3) a microprocessor, all residing on a single circuit board, is part of the navigation system of a compact robotic spacecraft intended to be released from a larger spacecraft [e.g., the International Space Station (ISS)] for exterior visual inspection of the larger spacecraft. Variants of the package may also be useful in terrestrial collision-detection and -avoidance applications. The navigation solution obtained by integrating the IMU outputs is fed back to a correlator in the GPS receiver to aid in tracking GPS signals. The raw GPS and IMU data are blended in a Kalman filter to obtain an optimal navigation solution, which can be supplemented by range and velocity data obtained by use of (l) a stereoscopic pair of electronic cameras aboard the robotic spacecraft and/or (2) a laser dynamic range imager aboard the ISS. The novelty of the package lies mostly in those aspects of the design of the MEMS IMU that pertain to controlling mechanical resonances and stabilizing scale factors and biases.

  10. Comparison of two navigation systems for CT-guided interventions under special consideration of the ergonomic properties of the used systems

    International Nuclear Information System (INIS)

    Schulz, T.; Roettger, S.; Bahner-Heyne, E.J.; Kluge, G.

    2009-01-01

    Purpose: investigation of the influence of CT-based navigation systems on the success of an intervention, assessment of the advantages and disadvantages of the utilized systems, and evaluation of the ergonomic system properties. Materials and method: a simple guiding system PatPos Invent trademark and the computer-based navigation system PinPoint trademark were employed on two CT systems. In order to investigate the influence of the navigation aids on the success of the interventions, 96 prospective, randomized, and standardized punctures were performed on a specifically developed, rigid phantom. 16 examiners punctured 6 targets with 3 degrees of difficulty with the navigation aids. Results: irrespective of the experience of the examiner, both navigation systems guided the target with an equal degree of certainty. PinPoint significantly reduced the length of the examination time (12 - 25 min) as compared to PatPos Invent (20 - 40 min). The expectation conformity and comprehensibility of PatPos Invent were assessed significantly more positively than PinPoint with regard to the general handling of the system. In contrast, the assessment of the usability during preoperative setup favored PinPoint. The type of navigation system has no influence on the precision of the implementation of a puncture procedure. (orig.)

  11. Towards Safe Navigation by Formalizing Navigation Rules

    Directory of Open Access Journals (Sweden)

    Arne Kreutzmann

    2013-06-01

    Full Text Available One crucial aspect of safe navigation is to obey all navigation regulations applicable, in particular the collision regulations issued by the International Maritime Organization (IMO Colregs. Therefore, decision support systems for navigation need to respect Colregs and this feature should be verifiably correct. We tackle compliancy of navigation regulations from a perspective of software verification. One common approach is to use formal logic, but it requires to bridge a wide gap between navigation concepts and simple logic. We introduce a novel domain specification language based on a spatio-temporal logic that allows us to overcome this gap. We are able to capture complex navigation concepts in an easily comprehensible representation that can direcly be utilized by various bridge systems and that allows for software verification.

  12. Feature and Pose Constrained Visual Aided Inertial Navigation for Computationally Constrained Aerial Vehicles

    Science.gov (United States)

    Williams, Brian; Hudson, Nicolas; Tweddle, Brent; Brockers, Roland; Matthies, Larry

    2011-01-01

    A Feature and Pose Constrained Extended Kalman Filter (FPC-EKF) is developed for highly dynamic computationally constrained micro aerial vehicles. Vehicle localization is achieved using only a low performance inertial measurement unit and a single camera. The FPC-EKF framework augments the vehicle's state with both previous vehicle poses and critical environmental features, including vertical edges. This filter framework efficiently incorporates measurements from hundreds of opportunistic visual features to constrain the motion estimate, while allowing navigating and sustained tracking with respect to a few persistent features. In addition, vertical features in the environment are opportunistically used to provide global attitude references. Accurate pose estimation is demonstrated on a sequence including fast traversing, where visual features enter and exit the field-of-view quickly, as well as hover and ingress maneuvers where drift free navigation is achieved with respect to the environment.

  13. Towards a Sign-Based Indoor Navigation System for People with Visual Impairments.

    Science.gov (United States)

    Rituerto, Alejandro; Fusco, Giovanni; Coughlan, James M

    2016-10-01

    Navigation is a challenging task for many travelers with visual impairments. While a variety of GPS-enabled tools can provide wayfinding assistance in outdoor settings, GPS provides no useful localization information indoors. A variety of indoor navigation tools are being developed, but most of them require potentially costly physical infrastructure to be installed and maintained, or else the creation of detailed visual models of the environment. We report development of a new smartphone-based navigation aid, which combines inertial sensing, computer vision and floor plan information to estimate the user's location with no additional physical infrastructure and requiring only the locations of signs relative to the floor plan. A formative study was conducted with three blind volunteer participants demonstrating the feasibility of the approach and highlighting the areas needing improvement.

  14. SU-F-P-42: “To Navigate, Or Not to Navigate: HDR BT in Recurrent Spine Lesions”

    Energy Technology Data Exchange (ETDEWEB)

    Voros, L; Cohen, G; Zaider, M; Yamada, Y [Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2016-06-15

    Purpose: We compare the accuracy of HDR catheter placement for paraspinal lesions using O-arm CBCT imaging combined with StealthStation navigation and traditional fluoroscopically guided catheter placement. Methods: CT and MRI scans were acquired pre-treatment to outline the lesions and design treatment plans (pre-plans) to meet dosimetric constrains. The pre-planned catheter trajectories were transferred into the StealthStation Navigation system prior to the surgery. The StealthStation is an infra red (IR) optical navigation system used for guidance of surgical instruments. An intraoperative CBCT scan (O-arm) was acquired with reference IR optical fiducials anchored onto the patient and registered with the preplan image study to guide surgical instruments in relation to the patients’ anatomy and to place the brachytherapy catheters along the pre-planned trajectories. The final treatment plan was generated based on a 2nd intraoperative CBCT scan reflecting achieved implant geometry. The 2nd CBCT was later registered with the initial CT scan to compare the preplanned dwell positions with actual dwell positions (catheter placements). Similar workflow was used in placement of 8 catheters (1 patient) without navigation, but under fluoroscopy guidance in an interventional radiology suite. Results: A total of 18 catheters (3 patients) were placed using navigation assisted surgery. Average displacement of 0.66 cm (STD=0.37cm) was observed between the pre-plan source positions and actual source positions in the 3 dimensional space. This translates into an average 0.38 cm positioning error in one direction including registration errors, digitization errors, and the surgeons ability to follow the planned trajectory. In comparison, average displacement of non-navigated catheters was 0.50 cm (STD=0.22cm). Conclusion: Spinal lesion HDR brachytherapy planning is a difficult task. Catheter placement has a direct impact on target coverage and dose to critical structures. While

  15. Space Launch Systems Block 1B Preliminary Navigation System Design

    Science.gov (United States)

    Oliver, T. Emerson; Park, Thomas; Anzalone, Evan; Smith, Austin; Strickland, Dennis; Patrick, Sean

    2018-01-01

    NASA is currently building the Space Launch Systems (SLS) Block 1 launch vehicle for the Exploration Mission 1 (EM-1) test flight. In parallel, NASA is also designing the Block 1B launch vehicle. The Block 1B vehicle is an evolution of the Block 1 vehicle and extends the capability of the NASA launch vehicle. This evolution replaces the Interim Cryogenic Propulsive Stage (ICPS) with the Exploration Upper Stage (EUS). As the vehicle evolves to provide greater lift capability, increased robustness for manned missions, and the capability to execute more demanding missions so must the SLS Integrated Navigation System evolved to support those missions. This paper describes the preliminary navigation systems design for the SLS Block 1B vehicle. The evolution of the navigation hard-ware and algorithms from an inertial-only navigation system for Block 1 ascent flight to a tightly coupled GPS-aided inertial navigation system for Block 1B is described. The Block 1 GN&C system has been designed to meet a LEO insertion target with a specified accuracy. The Block 1B vehicle navigation system is de-signed to support the Block 1 LEO target accuracy as well as trans-lunar or trans-planetary injection accuracy. Additionally, the Block 1B vehicle is designed to support human exploration and thus is designed to minimize the probability of Loss of Crew (LOC) through high-quality inertial instruments and robust algorithm design, including Fault Detection, Isolation, and Recovery (FDIR) logic.

  16. HIV/AIDS: A Nontraditional Security Threat for AFRICOM

    National Research Council Canada - National Science Library

    Letcher, Kenneth W

    2008-01-01

    .... Africa Command must navigate. The study will draw on research of the HIV/AIDS epidemic and its effect on the effectiveness of the militaries of southern Africa, leaning heavily on the research of Stefan Elbe and a small cadre...

  17. Navigation in diagnosis and therapy

    International Nuclear Information System (INIS)

    Vannier, Michael W.; Haller, John W.

    1999-01-01

    Image-guided navigation for surgery and other therapeutic interventions has grown in importance in recent years. During image-guided navigation a target is detected, localized and characterized for diagnosis and therapy. Thus, images are used to select, plan, guide and evaluate therapy, thereby reducing invasiveness and improving outcomes. A shift from traditional open surgery to less-invasive image-guided surgery will continue to impact the surgical marketplace. Increases in the speed and capacity of computers and computer networks have enabled image-guided interventions. Key elements in image navigation systems are pre-operative 3D imaging (or real-time image acquisition), a graphical display and interactive input devices, such as surgical instruments with light emitting diodes (LEDs). CT and MRI, 3D imaging devices, are commonplace today and 3D images are useful in complex interventions such as radiation oncology and surgery. For example, integrated surgical imaging workstations can be used for frameless stereotaxy during neurosurgical interventions. In addition, imaging systems are being expanded to include decision aids in diagnosis and treatment. Electronic atlases, such as Voxel Man or others derived from the Visible Human Project, combine a set of image data with non-image knowledge such as anatomic labels. Robot assistants and magnetic guidance technology are being developed for minimally invasive surgery and other therapeutic interventions. Major progress is expected at the interface between the disciplines of radiology and surgery where imaging, intervention and informatics converge

  18. Inertial Navigation System/Doppler Velocity Log (INS/DVL Fusion with Partial DVL Measurements

    Directory of Open Access Journals (Sweden)

    Asaf Tal

    2017-02-01

    Full Text Available The Technion autonomous underwater vehicle (TAUV is an ongoing project aiming to develop and produce a small AUV to carry on research missions, including payload dropping, and to demonstrate acoustic communication. Its navigation system is based on an inertial navigation system (INS aided by a Doppler velocity log (DVL, magnetometer, and pressure sensor (PS. In many INSs, such as the one used in TAUV, only the velocity vector (provided by the DVL can be used for aiding the INS, i.e., enabling only a loosely coupled integration approach. In cases of partial DVL measurements, such as failure to maintain bottom lock, the DVL cannot estimate the vehicle velocity. Thus, in partial DVL situations no velocity data can be integrated into the TAUV INS, and as a result its navigation solution will drift in time. To circumvent that problem, we propose a DVL-based vehicle velocity solution using the measured partial raw data of the DVL and additional information, thereby deriving an extended loosely coupled (ELC approach. The implementation of the ELC approach requires only software modification. In addition, we present the TAUV six degrees of freedom (6DOF simulation that includes all functional subsystems. Using this simulation, the proposed approach is evaluated and the benefit of using it is shown.

  19. An Online Solution of LiDAR Scan Matching Aided Inertial Navigation System for Indoor Mobile Mapping

    Directory of Open Access Journals (Sweden)

    Xiaoji Niu

    2017-01-01

    Full Text Available Multisensors (LiDAR/IMU/CAMERA integrated Simultaneous Location and Mapping (SLAM technology for navigation and mobile mapping in a GNSS-denied environment, such as indoor areas, dense forests, or urban canyons, becomes a promising solution. An online (real-time version of such system can extremely extend its applications, especially for indoor mobile mapping. However, the real-time response issue of multisensors is a big challenge for an online SLAM system, due to the different sampling frequencies and processing time of different algorithms. In this paper, an online Extended Kalman Filter (EKF integrated algorithm of LiDAR scan matching and IMU mechanization for Unmanned Ground Vehicle (UGV indoor navigation system is introduced. Since LiDAR scan matching is considerably more time consuming than the IMU mechanism, the real-time synchronous issue is solved via a one-step-error-state-transition method in EKF. Stationary and dynamic field tests had been performed using a UGV platform along typical corridor of office building. Compared to the traditional sequential postprocessed EKF algorithm, the proposed method can significantly mitigate the time delay of navigation outputs under the premise of guaranteeing the positioning accuracy, which can be used as an online navigation solution for indoor mobile mapping.

  20. MOBIC: Designing a Travel Aid for Blind and Elderly People

    Science.gov (United States)

    Petrie, Helen; Johnson, Valerie; Strothotte, Thomas; Raab, Andreas; Fritz, Steffi; Michel, Rainer

    This paper presents the research for the development of a new travel aid to increase the independent mobility of blind and elderly travellers. This aid will build on the technologies of geographical information systems (GIS) and the Global Positioning System (GPS). The MOBIC Travel Aid (MOTA) consists of two interrelated components: the MOBIC Pre-journey System (MOPS) to assist users in planning journeys and the MOBIC Outdoor System (MOODS) to execute these plans by providing users with orientation and navigation assistance during journeys. The MOBIC travel aid is complementary to primary mobility aids such as the long cane or guide dog. Results of a study of user requirements are presented and their implications for the initial design of the system are discussed.

  1. A Qualitative Approach to Mobile Robot Navigation Using RFID

    International Nuclear Information System (INIS)

    Hossain, M; Rashid, M M; Bhuiyan, M M I; Ahmed, S; Akhtaruzzaman, M

    2013-01-01

    Radio Frequency Identification (RFID) system allows automatic identification of items with RFID tags using radio-waves. As the RFID tag has its unique identification number, it is also possible to detect a specific region where the RFID tag lies in. Recently it is widely been used in mobile robot navigation, localization, and mapping both in indoor and outdoor environment. This paper represents a navigation strategy for autonomous mobile robot using passive RFID system. Conventional approaches, such as landmark or dead-reckoning with excessive number of sensors, have complexities in establishing the navigation and localization process. The proposed method satisfies less complexity in navigation strategy as well as estimation of not only the position but also the orientation of the autonomous robot. In this research, polar coordinate system is adopted on the navigation surface where RFID tags are places in a grid with constant displacements. This paper also presents the performance comparisons among various grid architectures through simulation to establish a better solution of the navigation system. In addition, some stationary obstacles are introduced in the navigation environment to satisfy the viability of the navigation process of the autonomous mobile robot

  2. The use of virtual surgical planning and navigation in the treatment of orbital trauma

    Directory of Open Access Journals (Sweden)

    Alan Scott Herford

    2017-02-01

    Full Text Available Virtual surgical planning (VSP has recently been introduced in craniomaxillofacial surgery with the goal of improving efficiency and precision for complex surgical operations. Among many indications, VSP can also be applied for the treatment of congenital and acquired craniofacial defects, including orbital fractures. VSP permits the surgeon to visualize the complex anatomy of craniofacial region, showing the relationship between bone and neurovascular structures. It can be used to design and print using three-dimensional (3D printing technology and customized surgical models. Additionally, intraoperative navigation may be useful as an aid in performing the surgery. Navigation is useful for both the surgical dissection as well as to confirm the placement of the implant. Navigation has been found to be especially useful for orbit and sinus surgery. The present paper reports a case describing the use of VSP and computerized navigation for the reconstruction of a large orbital floor defect with a custom implant.

  3. The Programmer's Guide to iSeries Navigator

    CERN Document Server

    Touhy, Paul

    2012-01-01

    iSeries Navigator is a favorite tool of operators and administrators-who use it with great success-but many programmers have missed the great programming tools that is provides! This book introduces you to iSeries Navigator along with all the powerful tools and interfaces that will expand your programming horizons. As iSeries applications continue to move toward a graphical user interface (GUI), so does the development environment. Programs such as CODE and WDSC may fill the need for the programming environment, but iSeries Navigator fills the programmer's need for general system access as wel

  4. Low Cost Multisensor Kinematic Positioning and Navigation System with Linux/RTAI

    Directory of Open Access Journals (Sweden)

    Baoxin Hu

    2012-09-01

    Full Text Available Despite its popularity, the development of an embedded real-time multisensor kinematic positioning and navigation system discourages many researchers and developers due to its complicated hardware environment setup and time consuming device driver development. To address these issues, this paper proposed a multisensor kinematic positioning and navigation system built on Linux with Real Time Application Interface (RTAI, which can be constructed in a fast and economical manner upon popular hardware platforms. The authors designed, developed, evaluated and validated the application of Linux/RTAI in the proposed system for the integration of the low cost MEMS IMU and OEM GPS sensors. The developed system with Linux/RTAI as the core of a direct geo-referencing system provides not only an excellent hard real-time performance but also the conveniences for sensor hardware integration and real-time software development. A software framework is proposed in this paper for a universal kinematic positioning and navigation system with loosely-coupled integration architecture. In addition, general strategies of sensor time synchronization in a multisensor system are also discussed. The success of the loosely-coupled GPS-aided inertial navigation Kalman filter is represented via post-processed solutions from road tests.

  5. Improving Canada's Marine Navigation System through e-Navigation

    Directory of Open Access Journals (Sweden)

    Daniel Breton

    2016-06-01

    The conclusion proposed is that on-going work with key partners and stakeholders can be used as the primary mechanism to identify e-Navigation related innovation and needs, and to prioritize next steps. Moving forward in Canada, implementation of new e-navigation services will continue to be stakeholder driven, and used to drive improvements to Canada's marine navigation system.

  6. Navigation-aided visualization of lumbosacral nerves for anterior sacroiliac plate fixation: a case report.

    Science.gov (United States)

    Takao, Masaki; Nishii, Takashi; Sakai, Takashi; Sugano, Nobuhiko

    2014-06-01

    Anterior sacroiliac joint plate fixation for unstable pelvic ring fractures avoids soft tissue problems in the buttocks; however, the lumbosacral nerves lie in close proximity to the sacroiliac joint and may be injured during the procedure. A 49 year-old woman with a type C pelvic ring fracture was treated with an anterior sacroiliac plate using a computed tomography (CT)-three-dimensional (3D)-fluoroscopy matching navigation system, which visualized the lumbosacral nerves as well as the iliac and sacral bones. We used a flat panel detector 3D C-arm, which made it possible to superimpose our preoperative CT-based plan on the intra-operative 3D-fluoroscopic images. No postoperative complications were noted. Intra-operative lumbosacral nerve visualization using computer navigation was useful to recognize the 'at-risk' area for nerve injury during anterior sacroiliac plate fixation. Copyright © 2013 John Wiley & Sons, Ltd.

  7. Hänsel, Gretel and the slime mould—how an external spatial memory aids navigation in complex environments

    International Nuclear Information System (INIS)

    Smith-Ferguson, Jules; Latty, Tanya; Beekman, Madeleine; Reid, Chris R

    2017-01-01

    The ability to navigate through an environment is critical to most organisms’ ability to survive and reproduce. The presence of a memory system greatly enhances navigational success. Therefore, natural selection is likely to drive the creation of memory systems, even in non-neuronal organisms, if having such a system is adaptive. Here we examine if the external spatial memory system present in the acellular slime mould, Physarum polycephalum , provides an adaptive advantage for resource acquisition. P. polycephalum lays tracks of extracellular slime as it moves through its environment. Previous work has shown that the presence of extracellular slime allows the organism to escape from a trap in laboratory experiments simply by avoiding areas previously explored. Here we further investigate the benefits of using extracellular slime as an external spatial memory by testing the organism’s ability to navigate through environments of differing complexity with and without the ability to use its external memory. Our results suggest that the external memory has an adaptive advantage in ‘open’ and simple bounded environments. However, in a complex bounded environment, the extracellular slime provides no advantage, and may even negatively affect the organism’s navigational abilities. Our results indicate that the exact experimental set up matters if one wants to fully understand how the presence of extracellular slime affects the slime mould’s search behaviour. (paper)

  8. Hänsel, Gretel and the slime mould—how an external spatial memory aids navigation in complex environments

    Science.gov (United States)

    Smith-Ferguson, Jules; Reid, Chris R.; Latty, Tanya; Beekman, Madeleine

    2017-10-01

    The ability to navigate through an environment is critical to most organisms’ ability to survive and reproduce. The presence of a memory system greatly enhances navigational success. Therefore, natural selection is likely to drive the creation of memory systems, even in non-neuronal organisms, if having such a system is adaptive. Here we examine if the external spatial memory system present in the acellular slime mould, Physarum polycephalum, provides an adaptive advantage for resource acquisition. P. polycephalum lays tracks of extracellular slime as it moves through its environment. Previous work has shown that the presence of extracellular slime allows the organism to escape from a trap in laboratory experiments simply by avoiding areas previously explored. Here we further investigate the benefits of using extracellular slime as an external spatial memory by testing the organism’s ability to navigate through environments of differing complexity with and without the ability to use its external memory. Our results suggest that the external memory has an adaptive advantage in ‘open’ and simple bounded environments. However, in a complex bounded environment, the extracellular slime provides no advantage, and may even negatively affect the organism’s navigational abilities. Our results indicate that the exact experimental set up matters if one wants to fully understand how the presence of extracellular slime affects the slime mould’s search behaviour.

  9. Improving Real World Performance of Vision Aided Navigation in a Flight Environment

    Science.gov (United States)

    2016-09-15

    alternatives for military systems by leveraging information from non-navigation sen- sors that are already deployed on fielded platforms. The motivation of...plane x and y residuals are provided in the title. Each color represents residuals from a specific image. . . . . . . . . . . . . 97 xi Figure Page 29...are provided in the title. Each color represents residuals from a specific image. . . . . . . . . . . . . 98 30. Illustration of landmark database

  10. Living Day by Day: The Meaning of Living With HIV/AIDS Among Women in Lebanon.

    Science.gov (United States)

    Kaplan, Rachel L; Khoury, Cynthia El; Field, Emily R S; Mokhbat, Jacques

    2016-01-01

    We examined the meaning of living with HIV/AIDS among women in Lebanon. Ten women living with HIV/AIDS (WLWHA) described their experiences via semistructured in-depth interviews. They navigated a process of HIV diagnosis acceptance that incorporated six overlapping elements: receiving the news, accessing care, starting treatment, navigating disclosure decisions, negotiating stigma, and maintaining stability. Through these elements, we provide a framework for understanding three major themes that were constructed during data analysis: Stand by my side: Decisions of disclosure; Being "sick" and feeling "normal": Interacting with self, others, and society; and Living day by day: focusing on the present. We contribute to the existing literature by providing a theoretical framework for understanding the process of diagnosis and sero-status acceptance among WLWHA. This was the first study of its kind to examine the meaning of living with HIV/AIDS among women in a Middle Eastern country.

  11. Is traditional financial aid too little, too late to help youth succeed in college? An introduction to The Degree Project promise scholarship experiment.

    Science.gov (United States)

    Harris, Douglas N

    2013-01-01

    One of the key barriers in accessing postsecondary opportunities for many students is financial aid. This chapter begins by providing a review of prior evidence on the relationship between financial aid and postsecondary outcomes. One type of financial aid intervention that challenges traditional aid and scholarship options are "promise programs." These programs make commitments to low-income students when they are much younger than when students typically apply for aid and have the potential to encourage students to better prepare during high school, develop the social capital they need to navigate the path to college, and pay for growing college costs. In this chapter, the author describes the design and rationale for The Degree Project (TDP), which is the first randomized trial of a promise scholarship in the United States. In addition to the important new evidence the demonstration program will generate, TDP also shows how educators and researchers can work together to provide the insight and answers policy makers need to address very real education gaps. © WILEY PERIODICALS, INC.

  12. Multitarget Approaches to Robust Navigation

    Data.gov (United States)

    National Aeronautics and Space Administration — The performance, stability, and statistical consistency of a vehicle's navigation algorithm are vitally important to the success and safety of its mission....

  13. Crew aiding and automation: A system concept for terminal area operations, and guidelines for automation design

    Science.gov (United States)

    Dwyer, John P.

    1994-01-01

    This research and development program comprised two efforts: the development of guidelines for the design of automated systems, with particular emphasis on automation design that takes advantage of contextual information, and the concept-level design of a crew aiding system, the Terminal Area Navigation Decision Aiding Mediator (TANDAM). This concept outlines a system capable of organizing navigation and communication information and assisting the crew in executing the operations required in descent and approach. In service of this endeavor, problem definition activities were conducted that identified terminal area navigation and operational familiarization exercises addressing the terminal area navigation problem. Both airborne and ground-based (ATC) elements of aircraft control were extensively researched. The TANDAM system concept was then specified, and the crew interface and associated systems described. Additionally, three descent and approach scenarios were devised in order to illustrate the principal functions of the TANDAM system concept in relation to the crew, the aircraft, and ATC. A plan for the evaluation of the TANDAM system was established. The guidelines were developed based on reviews of relevant literature, and on experience gained in the design effort.

  14. Letting in-vehicle navigation lead the way: Older drivers' perceptions of and ability to follow a GPS navigation system.

    Science.gov (United States)

    Stinchcombe, Arne; Gagnon, Sylvain; Kateb, Matthew; Curtis, Meredith; Porter, Michelle M; Polgar, Jan; Bédard, Michel

    2017-09-01

    In-vehicle navigation systems have the potential to simplify the driving task by reducing the drivers' need to engage in wayfinding, especially in unfamiliar environments. This study sought to characterize older drivers' overall assessment of using in-vehicle GPS technology as part of a research study and to explore whether the use of this technology has an impact on participants' driving behaviour. Forty-seven older drivers completed an on-road evaluation where directions were provided by an in-vehicle GPS navigation system and their behaviour was recorded using video technology. They later completed a questionnaire to assess their perception of the navigation system. After the study, participants were grouped based on whether they were able to accurately follow the instructions provided by the navigation system. The results indicated that most drivers were satisfied with the navigation technology and found the directions it provided to be clear. There were no statistically significant differences in the number of on-road errors committed by drivers who did not follow the directions from the navigation system in comparison to drivers who did follow the directions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. GPS surveying method applied to terminal area navigation flight experiments

    Energy Technology Data Exchange (ETDEWEB)

    Murata, M; Shingu, H; Satsushima, K; Tsuji, T; Ishikawa, K; Miyazawa, Y; Uchida, T [National Aerospace Laboratory, Tokyo (Japan)

    1993-03-01

    With an objective of evaluating accuracy of new landing and navigation systems such as microwave landing guidance system and global positioning satellite (GPS) system, flight experiments are being carried out using experimental aircraft. This aircraft mounts a GPS and evaluates its accuracy by comparing the standard orbits spotted by a Kalman filter from the laser tracing data on the aircraft with the navigation results. The GPS outputs position and speed information from an earth-centered-earth-fixed system called the World Geodetic System, 1984 (WGS84). However, in order to compare the navigation results with output from a reference orbit sensor or other navigation sensor, it is necessary to structure a high-precision reference coordinates system based on the WGS84. A method that applies the GPS phase interference measurement for this problem was proposed, and used actually in analyzing a flight experiment data. As referred to a case of the method having been applied to evaluating an independent navigation accuracy, the method was verified sufficiently effective and reliable not only in navigation method analysis, but also in the aspect of navigational operations. 12 refs., 10 figs., 5 tabs.

  16. SLS Block 1-B and Exploration Upper Stage Navigation System Design

    Science.gov (United States)

    Oliver, T. Emerson; Park, Thomas B.; Smith, Austin; Anzalone, Evan; Bernard, Bill; Strickland, Dennis; Geohagan, Kevin; Green, Melissa; Leggett, Jarred

    2018-01-01

    The SLS Block 1B vehicle is planned to extend NASA's heavy lift capability beyond the initial SLS Block 1 vehicle. The most noticeable change for this vehicle from SLS Block 1 is the swapping of the upper stage from the Interim Cryogenic Propulsion stage (ICPS), a modified Delta IV upper stage, to the more capable Exploration Upper Stage (EUS). As the vehicle evolves to provide greater lift capability and execute more demanding missions so must the SLS Integrated Navigation System to support those missions. The SLS Block 1 vehicle carries two independent navigation systems. The responsibility of the two systems is delineated between ascent and upper stage flight. The Block 1 navigation system is responsible for the phase of flight between the launch pad and insertion into Low-Earth Orbit (LEO). The upper stage system assumes the mission from LEO to payload separation. For the Block 1B vehicle, the two functions are combined into a single system intended to navigate from ground to payload insertion. Both are responsible for self-disposal once payload delivery is achieved. The evolution of the navigation hardware and algorithms from an inertial-only navigation system for Block 1 ascent flight to a tightly coupled GPS-aided inertial navigation system for Block 1-B is described. The Block 1 GN&C system has been designed to meet a LEO insertion target with a specified accuracy. The Block 1-B vehicle navigation system is designed to support the Block 1 LEO target accuracy as well as trans-lunar or trans-planetary injection accuracy. This is measured in terms of payload impact and stage disposal requirements. Additionally, the Block 1-B vehicle is designed to support human exploration and thus is designed to minimize the probability of Loss of Crew (LOC) through high-quality inertial instruments and Fault Detection, Isolation, and Recovery (FDIR) logic. The preliminary Block 1B integrated navigation system design is presented along with the challenges associated with

  17. Aging specifically impairs switching to an allocentric navigational strategy.

    Science.gov (United States)

    Harris, Mathew A; Wiener, Jan M; Wolbers, Thomas

    2012-01-01

    Navigation abilities decline with age, partly due to deficits in numerous component processes. Impaired switching between these various processes (i.e., switching navigational strategies) is also likely to contribute to age-related navigational impairments. We tested young and old participants on a virtual plus maze task (VPM), expecting older participants to exhibit a specific strategy switching deficit, despite unimpaired learning of allocentric (place) and egocentric (response) strategies following reversals within each strategy. Our initial results suggested that older participants performed worse during place trial blocks but not response trial blocks, as well as in trial blocks following a strategy switch but not those following a reversal. However, we then separated trial blocks by both strategy and change type, revealing that these initial results were due to a more specific deficit in switching to the place strategy. Place reversals and switches to response, as well as response reversals, were unaffected. We argue that this specific "switch-to-place" deficit could account for apparent impairments in both navigational strategy switching and allocentric processing and contributes more generally to age-related decline in navigation.

  18. The Utilisation of Pisang Island as a Platform to Support the Current Safety and Security Needs of Marine Navigation in the Straits of Malacca

    Directory of Open Access Journals (Sweden)

    Ahmad Faizal Ahmad Fuad

    2017-06-01

    Full Text Available Current marine navigational practice relies less on long-range visual marine signals such as lighthouses for reference purposes. This is due to the availability of Global Navigation Satellite Systems (GNSS, which are integrated with other navigational aids on ships. Therefore, the objective of this study is to review the function of Pisang Island lighthouse and to propose the most relevant use of Pisang Island for current navigational needs. The function of the lighthouse was reviewed according to the IALA Navigational Guide and the AIS data image. The result showed that the most suitable navigational use of the lighthouse is to act as a reference for Line of Position (LOP. The AIS data image indicated that mariners are not using Pisang Island lighthouse for LOP. The trend in the Straits of Malacca (SoM was compared with the trend in the Straits of Dover, UK. The selected experts verified that LOP was not practised there. As a specific example, a tanker ship route in the South China Sea was used to further support that LOP was not practised. This evidence supported the view that Pisang Island lighthouse is less relevant for current navigational practice and does not directly support the coastal state VTS operation and the establishment of the marine electronic highway. Furthermore, the existing shore-based VTS radar has limitations on range and the detection of targets near Pisang Island. Therefore, this study proposes the establishment of a new radar station on Pisang Island at the existing site of the lighthouse. The proposed new radar station on Pisang Island will add to the existing coverage of the VTS radar, bridging the coverage gaps to overcome the weakness of the existing shore-based radar and improve the safety and security of marine navigation in the SoM.

  19. Meta-image navigation augmenters for unmanned aircraft systems (MINA for UAS)

    Science.gov (United States)

    Òªelik, Koray; Somani, Arun K.; Schnaufer, Bernard; Hwang, Patrick Y.; McGraw, Gary A.; Nadke, Jeremy

    2013-05-01

    GPS is a critical sensor for Unmanned Aircraft Systems (UASs) due to its accuracy, global coverage and small hardware footprint, but is subject to denial due to signal blockage or RF interference. When GPS is unavailable, position, velocity and attitude (PVA) performance from other inertial and air data sensors is not sufficient, especially for small UASs. Recently, image-based navigation algorithms have been developed to address GPS outages for UASs, since most of these platforms already include a camera as standard equipage. Performing absolute navigation with real-time aerial images requires georeferenced data, either images or landmarks, as a reference. Georeferenced imagery is readily available today, but requires a large amount of storage, whereas collections of discrete landmarks are compact but must be generated by pre-processing. An alternative, compact source of georeferenced data having large coverage area is open source vector maps from which meta-objects can be extracted for matching against real-time acquired imagery. We have developed a novel, automated approach called MINA (Meta Image Navigation Augmenters), which is a synergy of machine-vision and machine-learning algorithms for map aided navigation. As opposed to existing image map matching algorithms, MINA utilizes publicly available open-source geo-referenced vector map data, such as OpenStreetMap, in conjunction with real-time optical imagery from an on-board, monocular camera to augment the UAS navigation computer when GPS is not available. The MINA approach has been experimentally validated with both actual flight data and flight simulation data and results are presented in the paper.

  20. Olfaction Contributes to Pelagic Navigation in a Coastal Shark.

    Science.gov (United States)

    Nosal, Andrew P; Chao, Yi; Farrara, John D; Chai, Fei; Hastings, Philip A

    2016-01-01

    How animals navigate the constantly moving and visually uniform pelagic realm, often along straight paths between distant sites, is an enduring mystery. The mechanisms enabling pelagic navigation in cartilaginous fishes are particularly understudied. We used shoreward navigation by leopard sharks (Triakis semifasciata) as a model system to test whether olfaction contributes to pelagic navigation. Leopard sharks were captured alongshore, transported 9 km offshore, released, and acoustically tracked for approximately 4 h each until the transmitter released. Eleven sharks were rendered anosmic (nares occluded with cotton wool soaked in petroleum jelly); fifteen were sham controls. Mean swimming depth was 28.7 m. On average, tracks of control sharks ended 62.6% closer to shore, following relatively straight paths that were significantly directed over spatial scales exceeding 1600 m. In contrast, tracks of anosmic sharks ended 37.2% closer to shore, following significantly more tortuous paths that approximated correlated random walks. These results held after swimming paths were adjusted for current drift. This is the first study to demonstrate experimentally that olfaction contributes to pelagic navigation in sharks, likely mediated by chemical gradients as has been hypothesized for birds. Given the similarities between the fluid three-dimensional chemical atmosphere and ocean, further research comparing swimming and flying animals may lead to a unifying paradigm explaining their extraordinary navigational abilities.

  1. Navigating on handheld displays: Dynamic versus Static Keyhole Navigation

    NARCIS (Netherlands)

    Mehra, S.; Werkhoven, P.; Worring, M.

    2006-01-01

    Handheld displays leave little space for the visualization and navigation of spatial layouts representing rich information spaces. The most common navigation method for handheld displays is static peephole navigation: The peephole is static and we move the spatial layout behind it (scrolling). A

  2. Message formulation, organization, and navigation schemes for icon-based communication aids.

    Science.gov (United States)

    Patel, Rupal

    2011-01-01

    Individuals with severe speech and motor impairments rely on assistive communication devices to convey their needs and desires in social, educational, and vocational situations. Users with limited motor control or literacy often choose to use icon-based devices that afford increased speed of message formulation at the cost of fully generative language formulation on letter-based devices. A major challenge with large vocabulary icon-based systems is rate of communication. Message formulation, vocabulary organization, and navigation schemes can be used to mitigate the trade-off between vocabulary size and communication rate. This paper summarizes our research efforts to leverage semantic frame theory, situational context, and rapid serial visual presentation to improve message formulation speed and completeness in our iconCHAT and RSVP iconCHAT systems. Usability data and persisting challenges are discussed.

  3. Learners' strategies for reconstructing cognitive frameworks and navigating conceptual change from prior conception to consensual genetics knowledge

    Science.gov (United States)

    Parrott, Annette M.

    Problem. Science teachers are charged with preparing students to become scientifically literate individuals. Teachers are given curriculum that specifies the knowledge that students should come away with; however, they are not necessarily aware of the knowledge with which the student arrives or how best to help them navigate between the two knowledge states. Educators must be aware, not only of where their students are conceptually, but how their students move from their prior knowledge and naive theories, to scientifically acceptable theories. The understanding of how students navigate this course has the potential to revolutionize educational practices. Methods. This study explored how five 9th grade biology students reconstructed their cognitive frameworks and navigated conceptual change from prior conception to consensual genetics knowledge. The research questions investigated were: (1) how do students in the process of changing their naive science theories to accepted science theories describe their journey from prior knowledge to current conception, and (2) what are the methods that students utilize to bridge the gap between alternate and consensual science conceptions to effect conceptual change. Qualitative and quantitative methods were employed to gather and analyze the data. In depth, semi-structured interviews formed the primary data for probing the context and details of students' conceptual change experience. Primary interview data was coded by thematic analysis. Results and discussion. This study revealed information about students' perceived roles in learning, the role of articulation in the conceptual change process, and ways in which a community of learners aids conceptual change. It was ascertained that students see their role in learning primarily as repeating information until they could add that information to their knowledge. Students are more likely to consider challenges to their conceptual frameworks and be more motivated to become active

  4. Dynamic Mobile RobotNavigation Using Potential Field Based Immune Network

    Directory of Open Access Journals (Sweden)

    Guan-Chun Luh

    2007-04-01

    Full Text Available This paper proposes a potential filed immune network (PFIN for dynamic navigation of mobile robots in an unknown environment with moving obstacles and fixed/moving targets. The Velocity Obstacle method is utilized to determine imminent obstacle collision of a robot moving in the time-varying environment. The response of the overall immune network is derived by the aid of fuzzy system. Simulation results are presented to verify the effectiveness of the proposed methodology in unknown environments with single and multiple moving obstacles

  5. WAYS OF NAVIGATION SYSTEMS DEVELOPMENT WITHIN THE IMPLEMENTATION OF THE CNS/ATM CONCEPT

    Directory of Open Access Journals (Sweden)

    Igor A. Chekhov

    2017-01-01

    Full Text Available The general development principles of the civil aviation air navigation systems for the next years according to the concept of International Civil Aviation Organization (IСAO CNS/ATM are stated in the article. It was reflected in the Global air navigation plan of IСAO accepted in 2013. The author considered the structure of block modernization of aviation system directed to optimization according to four main characteristics, such as: operations at the airports; systems and data interoperable on a global scale; optimum capacity and flexible flight routes, and also effective trajectories of flight. At the same time the main attention in the plan is paid to questions of the performance based navigation (PBN, the basic theses of which lean on four main units that make the concept of PBN. The possible ways of the specified blocks implementation taking into account features of the Russian Federation airspace use are considered in this paper. On the basis of the carried-out analysis conclusions are drawn on gradual transition from the RNAV navigation specifications to the RNP specifications, on increase in accuracy of navigation by modernization of ground radio navigational aids, both on a flight route and airspace of airfield area, on need of continuing the development of inexact calling schemes, using GNSS, with the subsequent transition to schemes of exact landing approaches by means of functional additions to GLONASS – GBAS and SBAS, also on the need of opportunities research in the domestic system SBAS (SDKM for the increase in accuracy of navigation at various stages of flight. At the same time, standard instrument routes of arrival and departure (SID/STAR have to be carried out in the mode of constant climb or continuous descent.

  6. Cost of Lightning Strike Related Outages of Visual Navigational Aids at Airports in the United States

    Science.gov (United States)

    Rakas, J.; Nikolic, M.; Bauranov, A.

    2017-12-01

    Lightning storms are a serious hazard that can cause damage to vital human infrastructure. In aviation, lightning strikes cause outages to air traffic control equipment and facilities that result in major disruptions in the network, causing delays and financial costs measured in the millions of dollars. Failure of critical systems, such as Visual Navigational Aids (Visual NAVAIDS), are particularly dangerous since NAVAIDS are an essential part of landing procedures. Precision instrument approach, an operation utilized during the poor visibility conditions, utilizes several of these systems, and their failure leads to holding patterns and ultimately diversions to other airports. These disruptions lead to both ground and airborne delay. Accurate prediction of these outages and their costs is a key prerequisite for successful investment planning. The air traffic management and control sector need accurate information to successfully plan maintenance and develop a more robust system under the threat of increasing lightning rates. To analyze the issue, we couple the Remote Monitoring and Logging System (RMLS) database and the Aviation System Performance Metrics (ASPM) databases to identify lightning-induced outages, and connect them with weather conditions, demand and landing runway to calculate the total delays induced by the outages, as well as the number of cancellations and diversions. The costs are then determined by calculating direct costs to aircraft operators and costs of passengers' time for delays, cancellations and diversions. The results indicate that 1) not all NAVAIDS are created equal, and 2) outside conditions matter. The cost of an outage depends on the importance of the failed system and the conditions that prevailed before, during and after the failure. The outage that occurs during high demand and poor weather conditions is more likely to result in more delays and higher costs.

  7. Patterns of task and network actions performed by navigators to facilitate cancer care.

    Science.gov (United States)

    Clark, Jack A; Parker, Victoria A; Battaglia, Tracy A; Freund, Karen M

    2014-01-01

    Patient navigation is a widely implemented intervention to facilitate access to care and reduce disparities in cancer care, but the activities of navigators are not well characterized. The aim of this study is to describe what patient navigators actually do and explore patterns of activity that clarify the roles they perform in facilitating cancer care. We conducted field observations of nine patient navigation programs operating in diverse health settings of the national patient navigation research program, including 34 patient navigators, each observed an average of four times. Trained observers used a structured observation protocol to code as they recorded navigator actions and write qualitative field notes capturing all activities in 15-minute intervals during observations ranging from 2 to 7 hours; yielding a total of 133 observations. Rates of coded activity were analyzed using numerical cluster analysis of identified patterns, informed by qualitative analysis of field notes. Six distinct patterns of navigator activity were identified, which differed most relative to how much time navigators spent directly interacting with patients and how much time they spent dealing with medical records and documentation tasks. Navigator actions reveal a complex set of roles in which navigators both provide the direct help to patients denoted by their title and also carry out a variety of actions that function to keep the health system operating smoothly. Working to navigate patients through complex health services entails working to repair the persistent challenges of health services that can render them inhospitable to patients. The organizations that deploy navigators might learn from navigators' efforts and explore alternative approaches, structures, or systems of care in addressing both the barriers patients face and the complex solutions navigators create in helping patients.

  8. Observability Analysis of DVL/PS Aided INS for a Maneuvering AUV

    Directory of Open Access Journals (Sweden)

    Itzik Klein

    2015-10-01

    Full Text Available Recently, ocean exploration has increased considerably through the use of autonomous underwater vehicles (AUV. A key enabling technology is the precision of the AUV navigation capability. In this paper, we focus on understanding the limitation of the AUV navigation system. That is, what are the observable error-states for different maneuvering types of the AUV? Since analyzing the performance of an underwater navigation system is highly complex, to answer the above question, current approaches use simulations. This, of course, limits the conclusions to the emulated type of vehicle used and to the simulation setup. For this reason, we take a different approach and analyze the system observability for different types of vehicle dynamics by finding the set of observable and unobservable states. To that end, we apply the observability Gramian approach, previously used only for terrestrial applications. We demonstrate our analysis for an underwater inertial navigation system aided by a Doppler velocity logger or by a pressure sensor. The result is a first prediction of the performance of an AUV standing, rotating at a position and turning at a constant speed. Our conclusions of the observable and unobservable navigation error states for different dynamics are supported by extensive numerical simulation.

  9. Analysis and Compensation of Modulation Angular Rate Error Based on Missile-Borne Rotation Semi-Strapdown Inertial Navigation System

    Directory of Open Access Journals (Sweden)

    Jiayu Zhang

    2018-05-01

    Full Text Available The Semi-Strapdown Inertial Navigation System (SSINS provides a new solution to attitude measurement of a high-speed rotating missile. However, micro-electro-mechanical-systems (MEMS inertial measurement unit (MIMU outputs are corrupted by significant sensor errors. In order to improve the navigation precision, a rotation modulation technology method called Rotation Semi-Strapdown Inertial Navigation System (RSSINS is introduced into SINS. In fact, the stability of the modulation angular rate is difficult to achieve in a high-speed rotation environment. The changing rotary angular rate has an impact on the inertial sensor error self-compensation. In this paper, the influence of modulation angular rate error, including acceleration-deceleration process, and instability of the angular rate on the navigation accuracy of RSSINS is deduced and the error characteristics of the reciprocating rotation scheme are analyzed. A new compensation method is proposed to remove or reduce sensor errors so as to make it possible to maintain high precision autonomous navigation performance by MIMU when there is no external aid. Experiments have been carried out to validate the performance of the method. In addition, the proposed method is applicable for modulation angular rate error compensation under various dynamic conditions.

  10. 33 CFR 2.36 - Navigable waters of the United States, navigable waters, and territorial waters.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Navigable waters of the United States, navigable waters, and territorial waters. 2.36 Section 2.36 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY GENERAL JURISDICTION Jurisdictional Terms § 2.36 Navigable waters...

  11. Information Fields Navigation with Piece-Wise Polynomial Approximation for High-Performance OFDM in WSNs

    Directory of Open Access Journals (Sweden)

    Wei Wei

    2013-01-01

    Full Text Available Since Wireless sensor networks (WSNs are dramatically being arranged in mission-critical applications,it changes into necessary that we consider application requirements in Internet of Things. We try to use WSNs to assist information query and navigation within a practical parking spaces environment. Integrated with high-performance OFDM by piece-wise polynomial approximation, we present a new method that is based on a diffusion equation and a position equation to accomplish the navigation process conveniently and efficiently. From the point of view of theoretical analysis, our jobs hold the lower constraint condition and several inappropriate navigation can be amended. Information diffusion and potential field are introduced to reach the goal of accurate navigation and gradient descent method is applied in the algorithm. Formula derivations and simulations manifest that the method facilitates the solution of typical sensor network configuration information navigation. Concurrently, we also treat channel estimation and ICI mitigation for very high mobility OFDM systems, and the communication is between a BS and mobile target at a terrible scenario. The scheme proposed here combines the piece-wise polynomial expansion to approximate timevariations of multipath channels. Two near symbols are applied to estimate the first-and second-order parameters. So as to improve the estimation accuracy and mitigate the ICI caused by pilot-aided estimation, the multipath channel parameters were reestimated in timedomain employing the decided OFDM symbol. Simulation results show that this method would improve system performance in a complex environment.

  12. Babies' Portal Website Hearing Aid Section: Assessment by Audiologists

    Directory of Open Access Journals (Sweden)

    Bastos, Bárbara Guimarães

    2014-02-01

    Full Text Available Introduction The family has ultimate responsibility for decisions about the use and care during the daily routine and problem solving in the manipulation of hearing aids (HA in infants and children. Objective The purpose of the study was to assess technical and content quality of Babies' Portal website Hearing Aid section by audiologists. Methods Letters and e-mails were sent inviting professionals to surf the website and anonymously fill out an online form with 58 questions covering demographic data as well as the website's technical (Emory questionnaire with the subscales of accuracy, authorship, updates, public, navigation, links, and structure and content quality. Results A total of 109 professionals (tree men and 106 women with mean age of 31.6 years participated in the study. Emory percentage scores ranged from 90.1 to 96.7%. The Hearing Aid section contents were considered good or very good. Conclusion The website was deemed to have good technical and content quality, being suitable to supplement informational counseling to parents of hearing-impaired children fitted with hearing aids.

  13. A computer-aided software-tool for sustainable process synthesis-intensification

    DEFF Research Database (Denmark)

    Kumar Tula, Anjan; Babi, Deenesh K.; Bottlaender, Jack

    2017-01-01

    and determine within the design space, the more sustainable processes. In this paper, an integrated computer-aided software-tool that searches the design space for hybrid/intensified more sustainable process options is presented. Embedded within the software architecture are process synthesis...... operations as well as reported hybrid/intensified unit operations is large and can be difficult to manually navigate in order to determine the best process flowsheet for the production of a desired chemical product. Therefore, it is beneficial to utilize computer-aided methods and tools to enumerate, analyze...... constraints while also matching the design targets, they are therefore more sustainable than the base case. The application of the software-tool to the production of biodiesel is presented, highlighting the main features of the computer-aided, multi-stage, multi-scale methods that are able to determine more...

  14. The Performance Analysis of the Map-Aided Fuzzy Decision Tree Based on the Pedestrian Dead Reckoning Algorithm in an Indoor Environment

    Directory of Open Access Journals (Sweden)

    Kai-Wei Chiang

    2015-12-01

    Full Text Available Hardware sensors embedded in a smartphone allow the device to become an excellent mobile navigator. A smartphone is ideal for this task because its great international popularity has led to increased phone power and since most of the necessary infrastructure is already in place. However, using a smartphone for indoor pedestrian navigation can be problematic due to the low accuracy of sensors, imprecise predictability of pedestrian motion, and inaccessibility of the Global Navigation Satellite System (GNSS in some indoor environments. Pedestrian Dead Reckoning (PDR is one of the most common technologies used for pedestrian navigation, but in its present form, various errors tend to accumulate. This study introduces a fuzzy decision tree (FDT aided by map information to improve the accuracy and stability of PDR with less dependency on infrastructure. First, the map is quickly surveyed by the Indoor Mobile Mapping System (IMMS. Next, Bluetooth beacons are implemented to enable the initializing of any position. Finally, map-aided FDT can estimate navigation solutions in real time. The experiments were conducted in different fields using a variety of smartphones and users in order to verify stability. The contrast PDR system demonstrates low stability for each case without pre-calibration and post-processing, but the proposed low-complexity FDT algorithm shows good stability and accuracy under the same conditions.

  15. Emergency operation procedure navigation to avoid commission errors

    International Nuclear Information System (INIS)

    Gofuku, Akio; Ito, Koji

    2004-01-01

    New types of operation control system equipped with a large screen and CRT-based operation panels have been installed in newly constructed nuclear power plants. The operators can share important information of plant conditions by the large screen. The operation control system can know the operations by operators through the computers connected to the operation panels. The software switches placed in the CRT-based operation panels have a problem such that operators may make an error to manipulate an irrelevant software switch with their current operation. This study develops an operation procedure navigation technique to avoid this kind of commission errors. The system lies between CRT-based operation panels and plant control systems and checks an operation by operators if it follows the operation procedure of operation manuals. When the operation is a right one, the operation is executed as if the operation command is directly transmitted to control systems. If the operation does not follow the operation procedure, the system warns the commission error to operators. This paper describes the operation navigation technique, format of base operation model, and a proto-type operation navigation system for a three loop pressurized water reactor plant. The validity of the proto-type system is demonstrated by the operation procedure navigation for a steam generator tube rupture accident. (author)

  16. Navigating the Path to a Biomedical Science Career

    Science.gov (United States)

    Zimmerman, Andrea McNeely

    The number of biomedical PhD scientists being trained and graduated far exceeds the number of academic faculty positions and academic research jobs. If this trend is compelling biomedical PhD scientists to increasingly seek career paths outside of academia, then more should be known about their intentions, desires, training experiences, and career path navigation. Therefore, the purpose of this study was to understand the process through which biomedical PhD scientists are trained and supported for navigating future career paths. In addition, the study sought to determine whether career development support efforts and opportunities should be redesigned to account for the proportion of PhD scientists following non-academic career pathways. Guided by the social cognitive career theory (SCCT) framework this study sought to answer the following central research question: How does a southeastern tier 1 research university train and support its biomedical PhD scientists for navigating their career paths? Key findings are: Many factors influence PhD scientists' career sector preference and job search process, but the most influential were relationships with faculty, particularly the mentor advisor; Planned activities are a significant aspect of the training process and provide skills for career success; and Planned activities provided skills necessary for a career, but influential factors directed the career path navigated. Implications for practice and future research are discussed.

  17. 77 FR 42637 - Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments; Corrections

    Science.gov (United States)

    2012-07-20

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Parts 84 and 115 [Docket No. USCG-2012-0306] RIN 1625-AB86 Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments...), the Coast Guard published a final rule entitled ``Navigation and Navigable Waters; Technical...

  18. Aerobasics–An Introduction to Aeronautics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 4. Aerobasics-An Introduction to Aeronautics - Air Navigation ... Keywords. Dead reckoning; celestial navigation; radio aids to navigation; instrument landing system (ILS); inertial navigation system (INS); global positioning system (GPS).

  19. Easy rider: monkeys learn to drive a wheelchair to navigate through a complex maze.

    Science.gov (United States)

    Etienne, Stephanie; Guthrie, Martin; Goillandeau, Michel; Nguyen, Tho Hai; Orignac, Hugues; Gross, Christian; Boraud, Thomas

    2014-01-01

    The neurological bases of spatial navigation are mainly investigated in rodents and seldom in primates. The few studies led on spatial navigation in both human and non-human primates are performed in virtual, not in real environments. This is mostly because of methodological difficulties inherent in conducting research on freely-moving monkeys in real world environments. There is some incertitude, however, regarding the extrapolation of rodent spatial navigation strategies to primates. Here we present an entirely new platform for investigating real spatial navigation in rhesus monkeys. We showed that monkeys can learn a pathway by using different strategies. In these experiments three monkeys learned to drive the wheelchair and to follow a specified route through a real maze. After learning the route, probe tests revealed that animals successively use three distinct navigation strategies based on i) the place of the reward, ii) the direction taken to obtain reward or iii) a cue indicating reward location. The strategy used depended of the options proposed and the duration of learning. This study reveals that monkeys, like rodents and humans, switch between different spatial navigation strategies with extended practice, implying well-conserved brain learning systems across different species. This new task with freely driving monkeys provides a good support for the electrophysiological and pharmacological investigation of spatial navigation in the real world by making possible electrophysiological and pharmacological investigations.

  20. A Robust Method to Detect Zero Velocity for Improved 3D Personal Navigation Using Inertial Sensors

    Science.gov (United States)

    Xu, Zhengyi; Wei, Jianming; Zhang, Bo; Yang, Weijun

    2015-01-01

    This paper proposes a robust zero velocity (ZV) detector algorithm to accurately calculate stationary periods in a gait cycle. The proposed algorithm adopts an effective gait cycle segmentation method and introduces a Bayesian network (BN) model based on the measurements of inertial sensors and kinesiology knowledge to infer the ZV period. During the detected ZV period, an Extended Kalman Filter (EKF) is used to estimate the error states and calibrate the position error. The experiments reveal that the removal rate of ZV false detections by the proposed method increases 80% compared with traditional method at high walking speed. Furthermore, based on the detected ZV, the Personal Inertial Navigation System (PINS) algorithm aided by EKF performs better, especially in the altitude aspect. PMID:25831086

  1. Indoor wayfinding and navigation

    CERN Document Server

    2015-01-01

    Due to the widespread use of navigation systems for wayfinding and navigation in the outdoors, researchers have devoted their efforts in recent years to designing navigation systems that can be used indoors. This book is a comprehensive guide to designing and building indoor wayfinding and navigation systems. It covers all types of feasible sensors (for example, Wi-Fi, A-GPS), discussing the level of accuracy, the types of map data needed, the data sources, and the techniques for providing routes and directions within structures.

  2. Deviation from Trajectory Detection in Vision based Robotic Navigation using SURF and Subsequent Restoration by Dynamic Auto Correction Algorithm

    Directory of Open Access Journals (Sweden)

    Ray Debraj

    2015-01-01

    Full Text Available Speeded Up Robust Feature (SURF is used to position a robot with respect to an environment and aid in vision-based robotic navigation. During the course of navigation irregularities in the terrain, especially in an outdoor environment may deviate a robot from the track. Another reason for deviation can be unequal speed of the left and right robot wheels. Hence it is essential to detect such deviations and perform corrective operations to bring the robot back to the track. In this paper we propose a novel algorithm that uses image matching using SURF to detect deviation of a robot from the trajectory and subsequent restoration by corrective operations. This algorithm is executed in parallel to positioning and navigation algorithms by distributing tasks among different CPU cores using Open Multi-Processing (OpenMP API.

  3. Barriers and Facilitators to Patient-Provider Communication When Discussing Breast Cancer Risk to Aid in the Development of Decision Support Tools.

    Science.gov (United States)

    Yi, Haeseung; Xiao, Tong; Thomas, Parijatham S; Aguirre, Alejandra N; Smalletz, Cindy; Dimond, Jill; Finkelstein, Joseph; Infante, Katherine; Trivedi, Meghna; David, Raven; Vargas, Jennifer; Crew, Katherine D; Kukafka, Rita

    2015-01-01

    The purpose of this study was to identify barriers and facilitators to patient-provider communication when discussing breast cancer risk to aid in the development of decision support tools. Four patient focus groups (N=34) and eight provider focus groups (N=10) took place in Northern Manhattan. A qualitative analysis was conducted using Atlas.ti software. The coding yielded 62.3%-94.5% agreement. The results showed that 1) barriers are time constraints, lack of knowledge, low health literacy, and language barriers, and 2) facilitators are information needs, desire for personalization, and autonomy when communicating risk in patient-provider encounters. These results will inform the development of a patient-centered decision aid (RealRisks) and a provider-facing breast cancer risk navigation (BNAV) tool, which are designed to facilitate patient-provider risk communication and shared decision-making about breast cancer prevention strategies, such as chemoprevention.

  4. Cracking the Student Aid Code: Parent and Student Perspectives on Paying for College

    Science.gov (United States)

    College Board Advocacy & Policy Center, 2010

    2010-01-01

    Paying for college is a challenge for many Americans and navigating the financial aid process can be very difficult, especially for low-income and first-generation college students. The College Board commissioned research to learn more about students' and parents' knowledge, beliefs and attitudes about the importance of a college education and how…

  5. Building the Traffic, Navigation, and Situation Awareness System (T-NASA) for Surface Operations

    Science.gov (United States)

    McCann, Robert S.

    1996-01-01

    We report the results of a part-task simulation evaluating the separate and combined effects of an electronic moving map display and newly developed HUD symbology on ground taxi performance, under moderate- and low-visibility conditions. Twenty-four commercial airline pilots carried out a series of 28 gate-to-runway taxi trials at Chicago O'Hare. Half of the trials were conducted under moderate visibility (RVR 1400 ft), and half under low visibility (RVR 700 ft). In the baseline condition, where navigation support was limited to surface features and a Jeppesen paper map, navigation errors were committed on almost half of the trials. These errors were virtually abolished when the electronic moving map or the HUD symbology was available; in addition, compare, the baseline condition, both forms of navigation aid yielded an increase in forward taxi speed. The speed increase was greater for HUD than the electronic moving map, and greater under low visibility than under moderate visibility. These results suggest that combination of electronic moving map and HUD symbology has the potential to greatly increase the efficiency of ground operations, particularly under low-visibility conditions.

  6. A Leapfrog Navigation System

    Science.gov (United States)

    Opshaug, Guttorm Ringstad

    There are times and places where conventional navigation systems, such as the Global Positioning System (GPS), are unavailable due to anything from temporary signal occultations to lack of navigation system infrastructure altogether. The goal of the Leapfrog Navigation System (LNS) is to provide localized positioning services for such cases. The concept behind leapfrog navigation is to advance a group of navigation units teamwise into an area of interest. In a practical 2-D case, leapfrogging assumes known initial positions of at least two currently stationary navigation units. Two or more mobile units can then start to advance into the area of interest. The positions of the mobiles are constantly being calculated based on cross-range distance measurements to the stationary units, as well as cross-ranges among the mobiles themselves. At some point the mobile units stop, and the stationary units are released to move. This second team of units (now mobile) can then overtake the first team (now stationary) and travel even further towards the common goal of the group. Since there always is one stationary team, the position of any unit can be referenced back to the initial positions. Thus, LNS provides absolute positioning. I developed navigation algorithms needed to solve leapfrog positions based on cross-range measurements. I used statistical tools to predict how position errors would grow as a function of navigation unit geometry, cross-range measurement accuracy and previous position errors. Using this knowledge I predicted that a 4-unit Leapfrog Navigation System using 100 m baselines and 200 m leap distances could travel almost 15 km before accumulating absolute position errors of 10 m (1sigma). Finally, I built a prototype leapfrog navigation system using 4 GPS transceiver ranging units. I placed the 4 units in the vertices a 10m x 10m square, and leapfrogged the group 20 meters forwards, and then back again (40 m total travel). Average horizontal RMS position

  7. Data from an instrumented navigational light tower off the Savanah River estuary

    International Nuclear Information System (INIS)

    Hayes, D.W.; Dicks, A.S.; Blanton, J.O.

    1978-01-01

    An oceanographic and meteorological instrumentation system operating on the Savannah Navigational Light Tower is providing synoptic information on ocean temperatures, currents, tides, and meteorological conditions. The Savannah Navigational Light Tower, an unmanned U.S. Coast Guard tower, is located about nine miles off Savannah Beach, Georgia, in about 16 m of water. The tower is currently instrumented to measure and record water temperatures from six depths, water velocities at two depts, tides, air temperature, barometric pressure, and wind speed and velocity at two heights. The outputs are currently being recorded every 10 minutes. These data aid in the interpretation of the processes governing pollutant transport in the Savannah River marine region and support other DOE funded programs in the southeastern United States. This past year, computer programs were written and are being tested for processing the raw data from the tower and for performing correlative analysis of the data

  8. Comparison of two navigation systems for CT-guided interventions under special consideration of the ergonomic properties of the used systems; Vergleich zweier Navigationshilfen fuer CT-gesteuerte Interventionen unter besonderer Beruecksichtigung der Nutzungseigenschaften der verwendeten Systeme

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, T. [Inst. fuer Diagnostische und Interventionelle Radiologie, Universitaetsklinikum Jena (Germany); Roettger, S. [Klinik fuer Nuklearmedizin, Medizinische Hochschule Hannover (Germany); Bahner-Heyne, E.J.; Kluge, G. [Inst. fuer Psychologie und Arbeitswissenschaft, FG Arbeits-, Ingenieur- und Organisationspsychologie, TU Berlin (Germany)

    2009-06-15

    Purpose: investigation of the influence of CT-based navigation systems on the success of an intervention, assessment of the advantages and disadvantages of the utilized systems, and evaluation of the ergonomic system properties. Materials and method: a simple guiding system PatPos Invent trademark and the computer-based navigation system PinPoint trademark were employed on two CT systems. In order to investigate the influence of the navigation aids on the success of the interventions, 96 prospective, randomized, and standardized punctures were performed on a specifically developed, rigid phantom. 16 examiners punctured 6 targets with 3 degrees of difficulty with the navigation aids. Results: irrespective of the experience of the examiner, both navigation systems guided the target with an equal degree of certainty. PinPoint significantly reduced the length of the examination time (12 - 25 min) as compared to PatPos Invent (20 - 40 min). The expectation conformity and comprehensibility of PatPos Invent were assessed significantly more positively than PinPoint with regard to the general handling of the system. In contrast, the assessment of the usability during preoperative setup favored PinPoint. The type of navigation system has no influence on the precision of the implementation of a puncture procedure. (orig.)

  9. Introducing navigation during melanoma-related sentinel lymph node procedures in the head-and-neck region.

    Science.gov (United States)

    KleinJan, Gijs H; Karakullukçu, Baris; Klop, W Martin C; Engelen, Thijs; van den Berg, Nynke S; van Leeuwen, Fijs W B

    2017-08-17

    Intraoperative sentinel node (SN) identification in patients with head-and-neck malignancies can be challenging due to unexpected drainage patterns and anatomical complexity. Here, intraoperative navigation-based guidance technologies may provide outcome. In this study, gamma camera-based freehandSPECT was evaluated in combination with the hybrid tracer ICG- 99m Tc-nanocolloid. Eight patients with melanoma located in the head-and-neck area were included. Indocyanine green (ICG)- 99m Tc-nanocolloid was injected preoperatively, whereafter lymphoscintigraphy and SPECT/CT imaging were performed in order to define the location of the SN(s). FreehandSPECT scans were generated in the operation room using a portable gamma camera. For lesion localization during surgery, freehandSPECT scans were projected in an augmented reality video-view that was used to spatially position a gamma-ray detection probe. Intraoperative fluorescence imaging was used to confirm the accuracy of the navigation-based approach and identify the exact location of the SNs. Preoperatively, 15 SNs were identified, of which 14 were identified using freehandSPECT. Navigation towards these nodes using the freehandSPECT approach was successful in 13 nodes. Fluorescence imaging provided optical confirmation of the navigation accuracy in all patients. In addition, fluorescence imaging allowed for the identification of (clustered) SNs that could not be identified based on navigation alone. The use of gamma camera-based freehandSPECT aids intraoperative lesion identification and, with that, supports the transition from pre- to intraoperative imaging via augmented reality display and directional guidance.

  10. How do students navigate and learn from nonlinear science texts: Can metanavigation support promote science learning?

    Science.gov (United States)

    Stylianou, Agni

    2003-06-01

    Digital texts which are based on hypertext and hypermedia technologies are now being used to support science learning. Hypertext offers certain opportunities for learning as well as difficulties that challenge readers to become metacognitively aware of their navigation decisions in order to trade both meaning and structure while reading. The goal of this study was to investigate whether supporting sixth grade students to monitor and regulate their navigation behavior while reading from hypertext would lead to better navigation and learning. Metanavigation support in the form of prompts was provided to groups of students who used a hypertext system called CoMPASS to complete a design challenge. The metanavigation prompts aimed at encouraging students to understand the affordances of the navigational aids in CoMPASS and use them to guide their navigation. The study was conducted in a real classroom setting during the implementation of CoMPASS in sixth grade science classes. Multiple sources of group and individual data were collected and analyzed. Measures included student's individual performance in a pre-science knowledge test, the Metacognitive Awareness of Reading Strategies Inventory (MARSI), a reading comprehension test and a concept map test. Process measures included log file information that captured group navigation paths during the use of CoMPASS. The results suggested that providing metanavigation support enabled the groups to make coherent transitions among the text units. Findings also revealed that reading comprehension, presence of metanavigation support and prior domain knowledge significantly predicted students' individual understanding of science. Implications for hypertext design and literacy research fields are discussed.

  11. Optimal motion planning using navigation measure

    Science.gov (United States)

    Vaidya, Umesh

    2018-05-01

    We introduce navigation measure as a new tool to solve the motion planning problem in the presence of static obstacles. Existence of navigation measure guarantees collision-free convergence at the final destination set beginning with almost every initial condition with respect to the Lebesgue measure. Navigation measure can be viewed as a dual to the navigation function. While the navigation function has its minimum at the final destination set and peaks at the obstacle set, navigation measure takes the maximum value at the destination set and is zero at the obstacle set. A linear programming formalism is proposed for the construction of navigation measure. Set-oriented numerical methods are utilised to obtain finite dimensional approximation of this navigation measure. Application of the proposed navigation measure-based theoretical and computational framework is demonstrated for a motion planning problem in a complex fluid flow.

  12. A Damping Grid Strapdown Inertial Navigation System Based on a Kalman Filter for Ships in Polar Regions.

    Science.gov (United States)

    Huang, Weiquan; Fang, Tao; Luo, Li; Zhao, Lin; Che, Fengzhu

    2017-07-03

    The grid strapdown inertial navigation system (SINS) used in polar navigation also includes three kinds of periodic oscillation errors as common SINS are based on a geographic coordinate system. Aiming ships which have the external information to conduct a system reset regularly, suppressing the Schuler periodic oscillation is an effective way to enhance navigation accuracy. The Kalman filter based on the grid SINS error model which applies to the ship is established in this paper. The errors of grid-level attitude angles can be accurately estimated when the external velocity contains constant error, and then correcting the errors of the grid-level attitude angles through feedback correction can effectively dampen the Schuler periodic oscillation. The simulation results show that with the aid of external reference velocity, the proposed external level damping algorithm based on the Kalman filter can suppress the Schuler periodic oscillation effectively. Compared with the traditional external level damping algorithm based on the damping network, the algorithm proposed in this paper can reduce the overshoot errors when the state of grid SINS is switched from the non-damping state to the damping state, and this effectively improves the navigation accuracy of the system.

  13. Integrated navigation method of a marine strapdown inertial navigation system using a star sensor

    International Nuclear Information System (INIS)

    Wang, Qiuying; Diao, Ming; Gao, Wei; Zhu, Minghong; Xiao, Shu

    2015-01-01

    This paper presents an integrated navigation method of the strapdown inertial navigation system (SINS) using a star sensor. According to the principle of SINS, its own navigation information contains an error that increases with time. Hence, the inertial attitude matrix from the star sensor is introduced as the reference information to correct the SINS increases error. For the integrated navigation method, the vehicle’s attitude can be obtained in two ways: one is calculated from SINS; the other, which we have called star sensor attitude, is obtained as the product between the SINS position and the inertial attitude matrix from the star sensor. Therefore, the SINS position error is introduced in the star sensor attitude error. Based on the characteristics of star sensor attitude error and the mathematical derivation, the SINS navigation errors can be obtained by the coupling calculation between the SINS attitude and the star sensor attitude. Unlike several current techniques, the navigation process of this method is non-radiating and invulnerable to jamming. The effectiveness of this approach was demonstrated by simulation and experimental study. The results show that this integrated navigation method can estimate the attitude error and the position error of SINS. Therefore, the SINS navigation accuracy is improved. (paper)

  14. Project Management Using Modern Guidance, Navigation and Control Theory

    Science.gov (United States)

    Hill, Terry

    2010-01-01

    The idea of control theory and its application to project management is not new, however literature on the topic and real-world applications is not as readily available and comprehensive in how all the principals of Guidance, Navigation and Control (GN&C) apply. This paper will address how the fundamental principals of modern GN&C Theory have been applied to NASA's Constellation Space Suit project and the results in the ability to manage the project within cost, schedule and budget. A s with physical systems, projects can be modeled and managed with the same guiding principles of GN&C as if it were a complex vehicle, system or software with time-varying processes, at times non-linear responses, multiple data inputs of varying accuracy and a range of operating points. With such systems the classic approach could be applied to small and well-defined projects; however with larger, multi-year projects involving multiple organizational structures, external influences and a multitude of diverse resources, then modern control theory is required to model and control the project. The fundamental principals of G N&C stated that a system is comprised of these basic core concepts: State, Behavior, Control system, Navigation system, Guidance and Planning Logic, Feedback systems. The state of a system is a definition of the aspects of the dynamics of the system that can change, such as position, velocity, acceleration, coordinate-based attitude, temperature, etc. The behavior of the system is more of what changes are possible rather than what can change, which is captured in the state of the system. The behavior of a system is captured in the system modeling and if properly done, will aid in accurate system performance prediction in the future. The Control system understands the state and behavior of the system and feedback systems to adjust the control inputs into the system. The Navigation system takes the multiple data inputs and based upon a priori knowledge of the input

  15. Investigational Clinical Trial of a Prototype Optoelectronic Computer-Aided Navigation Device for Dental Implant Surgery.

    Science.gov (United States)

    Jokstad, Asbjørn; Winnett, Brenton; Fava, Joseph; Powell, David; Somogyi-Ganss, Eszter

    New digital technologies enable real-time computer-aided (CA) three-dimensional (3D) guidance during dental implant surgery. The aim of this investigational clinical trial was to demonstrate the safety and effectiveness of a prototype optoelectronic CA-navigation device in comparison with the conventional approach for planning and effecting dental implant surgery. Study participants with up to four missing teeth were recruited from the pool of patients referred to the University of Toronto Graduate Prosthodontics clinic. The first 10 participants were allocated to either a conventional or a prototype device study arm in a randomized trial. The next 10 participants received implants using the prototype device. All study participants were restored with fixed dental prostheses after 3 (mandible) or 6 (maxilla) months healing, and monitored over 12 months. The primary outcome was the incidence of any surgical, biologic, or prosthetic adverse events or device-related complications. Secondary outcomes were the incidence of positioning of implants not considered suitable for straightforward prosthetic restoration (yes/no); the perception of the ease of use of the prototype device by the two oral surgeons, recorded by use of a Likert-type questionnaire; and the clinical performance of the implant and superstructure after 1 year in function. Positioning of the implants was appraised on periapical radiographs and clinical photographs by four independent blinded examiners. Peri-implant bone loss was measured on periapical radiographs by a blinded examiner. No adverse events occurred related to placing any implants. Four device-related complications led to a switch from using the prototype device to the conventional method. All implants placed by use of the prototype device were in a position considered suitable for straightforward prosthetic restoration (n = 21). The qualitative evaluation by the surgeons was generally positive, although ergonomic challenges were identified

  16. Lunar Navigation Architecture Design Considerations

    Science.gov (United States)

    D'Souza, Christopher; Getchius, Joel; Holt, Greg; Moreau, Michael

    2009-01-01

    The NASA Constellation Program is aiming to establish a long-term presence on the lunar surface. The Constellation elements (Orion, Altair, Earth Departure Stage, and Ares launch vehicles) will require a lunar navigation architecture for navigation state updates during lunar-class missions. Orion in particular has baselined earth-based ground direct tracking as the primary source for much of its absolute navigation needs. However, due to the uncertainty in the lunar navigation architecture, the Orion program has had to make certain assumptions on the capabilities of such architectures in order to adequately scale the vehicle design trade space. The following paper outlines lunar navigation requirements, the Orion program assumptions, and the impacts of these assumptions to the lunar navigation architecture design. The selection of potential sites was based upon geometric baselines, logistical feasibility, redundancy, and abort support capability. Simulated navigation covariances mapped to entry interface flightpath- angle uncertainties were used to evaluate knowledge errors. A minimum ground station architecture was identified consisting of Goldstone, Madrid, Canberra, Santiago, Hartebeeshoek, Dongora, Hawaii, Guam, and Ascension Island (or the geometric equivalent).

  17. Inertial Navigation System for India's Reusable Launch Vehicle-Technology Demonstrator (RLV-TD HEX) Mission

    Science.gov (United States)

    Umadevi, P.; Navas, A.; Karuturi, Kesavabrahmaji; Shukkoor, A. Abdul; Kumar, J. Krishna; Sreekumar, Sreejith; Basim, A. Mohammed

    2017-12-01

    This work presents the configuration of Inertial Navigation System (INS) used in India's Reusable Launch Vehicle-Technology Demonstrator (RLV-TD) Program. In view of the specific features and requirements of the RLV-TD, specific improvements and modifications were required in the INS. A new system was designed, realised and qualified meeting the mission requirements of RLV-TD, at the same time taking advantage of the flight heritage attained in INS through various Launch vehicle Missions of the country. The new system has additional redundancy in acceleration channel, in-built inclinometer based bias update scheme for acceleration channels and sign conventions as employed in an aircraft. Data acquisition in micro cycle periodicity (10 ms) was incorporated which was required to provide rate and attitude information at higher sampling rate for ascent phase control. Provision was incorporated for acquisition of rate and acceleration data with high resolution for aerodynamic characterisation and parameter estimation. GPS aided navigation scheme was incorporated to meet the stringent accuracy requirements of the mission. Navigation system configuration for RLV-TD, specific features incorporated to meet the mission requirements, various tests carried out and performance during RLV-TD flight are highlighted.

  18. E-navigation Services for Non-SOLAS Ships

    Directory of Open Access Journals (Sweden)

    Kwang An

    2016-06-01

    Full Text Available It is clearly understood that the main benefits of e-navigation are improved safety and better protection of the environment through the promotion of standards of navigational system and a reduction in human error. In order to meet the expectations on the benefit of e-navigation, e-navigation services should be more focused on non-SOLAS ships. The purpose of this paper is to present necessary e-navigation services for non-SOLAS ships in order to prevent marine accidents in Korean coastal waters. To meet the objectives of the study, an examination on the present navigation and communication system for non-SOLAS ships was performed. Based on the IMO's e-navigation Strategy Implementation Plan (SIP and Korea's national SIP for e-navigation, future trends for the development and implementation of e-navigation were discussed. Consequently, Electronic Navigational Chart (ENC download and ENC up-date service, ENC streaming service, route support service and communication support service based on Maritime Cloud were presented as essential e-navigation services for non-SOLAS ships. This study will help for the planning and designing of the Korean e-navigation system. It is expected that the further researches on the navigation support systems based on e-navigation will be carried out in order to implement the essential e-navigation services for non-SOLAS ships.

  19. Hearing the way: requirements and preferences for technology-supported navigation aids.

    Science.gov (United States)

    Lewis, Laura; Sharples, Sarah; Chandler, Ed; Worsfold, John

    2015-05-01

    Many systems have been developed to assist wayfinding for people with sight problems. There is a need for user requirements for such systems to be defined. This paper presents a study which aimed to determine such user requirements. An experiment was also conducted to establish the best way of guiding users between locations. The focus group results indicated that users require systems to provide them with information about their surroundings, to guide them along their route and to provide progress information. They also showed that users with sight conditions interact with systems differently to sighted users, thereby highlighting the importance of designing systems for the needs of these users. Results of the experiment found that the preferred method of guiding users was a notification when they were both on and off track. However, performance was best when only provided with the off track notification, implying that this cue is particularly important. Technology has the potential to support navigation for people with sight problems. Users should have control over cues provided and for these cues should supplement environmental cues rather than replacing them. Copyright © 2015. Published by Elsevier Ltd.

  20. Community to clinic navigation to improve diabetes outcomes

    Directory of Open Access Journals (Sweden)

    Nancy E. Schoenberg

    2017-03-01

    Full Text Available Rural residents experience rates of Type 2 Diabetes Mellitus (T2DM that are considerably higher than their urban or suburban counterparts. Two primary modifiable factors, self-management and formal clinical management, have potential to greatly improve diabetes outcomes. “Community to Clinic Navigation to Improve Diabetes Outcomes,” is the first known randomized clinical trial pilot study to test a hybrid model of diabetes self-management education plus clinical navigation among rural residents with T2DM. Forty-one adults with T2DM were recruited from two federally qualified health centers in rural Appalachia from November 2014–January 2015. Community health workers provided navigation, including helping participants understand and implement a diabetes self-management program through six group sessions and, if needed, providing assistance in obtaining clinic visits (contacting providers' offices for appointments, making reminder calls, and facilitating transportation and dependent care. Pre and post-test data were collected on T2DM self-management, physical measures, demographics, psychosocial factors, and feasibility (cost, retention, and satisfaction. Although lacking statistical significance, some outcomes indicate trends in positive directions, including diet, foot care, glucose monitoring, and physical health, including decreased HbA1c and triglyceride levels. Process evaluations revealed high levels of satisfaction and feasibility. Due to the limited intervention dose, modest program expenditures (~$29,950, and a severely affected population most of whom had never received diabetes education, outcomes were not as robust as anticipated. Given high rates of satisfaction and retention, this culturally appropriate small group intervention holds promise for hard to reach rural populations. Modifications should include expanded recruitment venues, sample size, intervention dosage and longer term assessment.

  1. 33 CFR 162.260 - Channel leading to San Juan Harbor, P.R.; use, administration, and navigation.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Channel leading to San Juan Harbor, P.R.; use, administration, and navigation. 162.260 Section 162.260 Navigation and Navigable... WATERWAYS NAVIGATION REGULATIONS § 162.260 Channel leading to San Juan Harbor, P.R.; use, administration...

  2. Surface navigation on Mars with a Navigation Satellite

    Science.gov (United States)

    Vijayaraghavan, A.; Thurman, Sam W.; Kahn, Robert D.; Hastrup, Rolf C.

    Radiometric navigation data from the Deep Space Network (DSN) stations on the earth to transponders and other surface elements such as rovers and landers on Mars, can determine their positions to only within a kilometer in inertial space. The positional error is mostly in the z-component of the surface element parallel to the Martian spin-axis. However, with Doppler and differenced-Doppler data from a Navigation Satellite in orbit around Mars to two or more of such transponders on the planetary surface, their positions can be determined to within 15 meters (or 20 meters for one-way Doppler beacons on Mars) in inertial space. In this case, the transponders (or other vehicles) on Mars need not even be capable of directly communicating to the earth. When the Navigation Satellite data is complemented by radiometric observations from the DSN stations also, directly to the surface elements on Mars, their positions can be determined to within 3 meters in inertial space. The relative positions of such surface elements on Mars (relative to one another) in Mars-fixed coordinates, however, can be determined to within 5 meters from simply range and Doppler data from the DSN stations to the surface elements. These results are obtained from covariance studies assuming X-band data noise levels and data-arcs not exceeding 10 days. They are significant in the planning and deployment of a Mars-based navigation network necessary to support real-time operations during critical phases of manned exploration of Mars.

  3. Volunteer navigation partnerships: Piloting a compassionate community approach to early palliative care.

    Science.gov (United States)

    Pesut, Barbara; Duggleby, Wendy; Warner, Grace; Fassbender, Konrad; Antifeau, Elisabeth; Hooper, Brenda; Greig, Madeleine; Sullivan, Kelli

    2017-07-03

    A compassionate community approach to palliative care provides important rationale for building community-based hospice volunteer capacity. In this project, we piloted one such capacity-building model in which volunteers and a nurse partnered to provide navigation support beginning in the early palliative phase for adults living in community. The goal was to improve quality of life by developing independence, engagement, and community connections. Volunteers received navigation training through a three-day workshop and then conducted in-home visits with clients living with advanced chronic illness over one year. A nurse navigator provided education and mentorship. Mixed method evaluation data was collected from clients, volunteer navigators, the nurse navigator, and other stakeholders. Seven volunteers were partnered with 18 clients. Over the one-year pilot, the volunteer navigators conducted visits in home or by phone every two to three weeks. Volunteers were skilled and resourceful in building connections and facilitating engagement. Although it took time to learn the navigator role, volunteers felt well-prepared and found the role satisfying and meaningful. Clients and family rated the service as highly important to their care because of how the volunteer helped to make the difficult experiences of aging and advanced chronic illness more livable. Significant benefits cited by clients were making good decisions for both now and in the future; having a surrogate social safety net; supporting engagement with life; and ultimately, transforming the experience of living with illness. Overall the program was perceived to be well-designed by stakeholders and meeting an important need in the community. Sustainability, however, was a concern expressed by both clients and volunteers. Volunteers providing supportive navigation services during the early phase of palliative care is a feasible way to foster a compassionate community approach to care for an aging population

  4. Observability of satellite launcher navigation with INS, GPS, attitude sensors and reference trajectory

    Science.gov (United States)

    Beaudoin, Yanick; Desbiens, André; Gagnon, Eric; Landry, René

    2018-01-01

    The navigation system of a satellite launcher is of paramount importance. In order to correct the trajectory of the launcher, the position, velocity and attitude must be known with the best possible precision. In this paper, the observability of four navigation solutions is investigated. The first one is the INS/GPS couple. Then, attitude reference sensors, such as magnetometers, are added to the INS/GPS solution. The authors have already demonstrated that the reference trajectory could be used to improve the navigation performance. This approach is added to the two previously mentioned navigation systems. For each navigation solution, the observability is analyzed with different sensor error models. First, sensor biases are neglected. Then, sensor biases are modelled as random walks and as first order Markov processes. The observability is tested with the rank and condition number of the observability matrix, the time evolution of the covariance matrix and sensitivity to measurement outlier tests. The covariance matrix is exploited to evaluate the correlation between states in order to detect structural unobservability problems. Finally, when an unobservable subspace is detected, the result is verified with theoretical analysis of the navigation equations. The results show that evaluating only the observability of a model does not guarantee the ability of the aiding sensors to correct the INS estimates within the mission time. The analysis of the covariance matrix time evolution could be a powerful tool to detect this situation, however in some cases, the problem is only revealed with a sensitivity to measurement outlier test. None of the tested solutions provide GPS position bias observability. For the considered mission, the modelling of the sensor biases as random walks or Markov processes gives equivalent results. Relying on the reference trajectory can improve the precision of the roll estimates. But, in the context of a satellite launcher, the roll

  5. Indoor navigation by image recognition

    Science.gov (United States)

    Choi, Io Teng; Leong, Chi Chong; Hong, Ka Wo; Pun, Chi-Man

    2017-07-01

    With the progress of smartphones hardware, it is simple on smartphone using image recognition technique such as face detection. In addition, indoor navigation system development is much slower than outdoor navigation system. Hence, this research proves a usage of image recognition technique for navigation in indoor environment. In this paper, we introduced an indoor navigation application that uses the indoor environment features to locate user's location and a route calculating algorithm to generate an appropriate path for user. The application is implemented on Android smartphone rather than iPhone. Yet, the application design can also be applied on iOS because the design is implemented without using special features only for Android. We found that digital navigation system provides better and clearer location information than paper map. Also, the indoor environment is ideal for Image recognition processing. Hence, the results motivate us to design an indoor navigation system using image recognition.

  6. Comparison of Different Computer–Aided Surgery Systems in Skull Base Surgery

    OpenAIRE

    Ecke, U.; Luebben, B.; Maurer, J.; Boor, S.; Mann, W. J.

    2003-01-01

    Computer–aided surgery (CAS) based on high–resolution imaging techniques represents an important adjunct to precise intraoperative orientation when anatomical landmarks are distorted or missing. Several commercial systems, mostly based on optical or electromagnetic navigation principles, are on the market. This study investigated the application of EasyGuide®, VectorVision®, and InstaTrak® CAS systems in ENT surgery under practical and laboratory conditions. System accuracy, time required, ha...

  7. Navigation and flight director guidance for the NASA/FAA helicopter MLS curved approach flight test program

    Science.gov (United States)

    Phatak, A. V.; Lee, M. G.

    1985-01-01

    The navigation and flight director guidance systems implemented in the NASA/FAA helicopter microwave landing system (MLS) curved approach flight test program is described. Flight test were conducted at the U.S. Navy's Crows Landing facility, using the NASA Ames UH-lH helicopter equipped with the V/STOLAND avionics system. The purpose of these tests was to investigate the feasibility of flying complex, curved and descending approaches to a landing using MLS flight director guidance. A description of the navigation aids used, the avionics system, cockpit instrumentation and on-board navigation equipment used for the flight test is provided. Three generic reference flight paths were developed and flown during the test. They were as follows: U-Turn, S-turn and Straight-In flight profiles. These profiles and their geometries are described in detail. A 3-cue flight director was implemented on the helicopter. A description of the formulation and implementation of the flight director laws is also presented. Performance data and analysis is presented for one pilot conducting the flight director approaches.

  8. Control algorithms for autonomous robot navigation

    International Nuclear Information System (INIS)

    Jorgensen, C.C.

    1985-01-01

    This paper examines control algorithm requirements for autonomous robot navigation outside laboratory environments. Three aspects of navigation are considered: navigation control in explored terrain, environment interactions with robot sensors, and navigation control in unanticipated situations. Major navigation methods are presented and relevance of traditional human learning theory is discussed. A new navigation technique linking graph theory and incidental learning is introduced

  9. Collective animal navigation and migratory culture: from theoretical models to empirical evidence

    Science.gov (United States)

    Dell, Anthony I.

    2018-01-01

    Animals often travel in groups, and their navigational decisions can be influenced by social interactions. Both theory and empirical observations suggest that such collective navigation can result in individuals improving their ability to find their way and could be one of the key benefits of sociality for these species. Here, we provide an overview of the potential mechanisms underlying collective navigation, review the known, and supposed, empirical evidence for such behaviour and highlight interesting directions for future research. We further explore how both social and collective learning during group navigation could lead to the accumulation of knowledge at the population level, resulting in the emergence of migratory culture. This article is part of the theme issue ‘Collective movement ecology’. PMID:29581394

  10. Semiotic resources for navigation

    DEFF Research Database (Denmark)

    Due, Brian Lystgaard; Lange, Simon Bierring

    2018-01-01

    This paper describes two typical semiotic resources blind people use when navigating in urban areas. Everyone makes use of a variety of interpretive semiotic resources and senses when navigating. For sighted individuals, this especially involves sight. Blind people, however, must rely on everything...... else than sight, thereby substituting sight with other modalities and distributing the navigational work to other semiotic resources. Based on a large corpus of fieldwork among blind people in Denmark, undertaking observations, interviews, and video recordings of their naturally occurring practices...... of walking and navigating, this paper shows how two prototypical types of semiotic resources function as helpful cognitive extensions: the guide dog and the white cane. This paper takes its theoretical and methodological perspective from EMCA multimodal interaction analysis....

  11. Sensitivity of Magnetospheric Multi-Scale (MMS) Mission Navigation Accuracy to Major Error Sources

    Science.gov (United States)

    Olson, Corwin; Long, Anne; Car[emter. Russell

    2011-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four satellites flying in formation in highly elliptical orbits about the Earth, with a primary objective of studying magnetic reconnection. The baseline navigation concept is independent estimation of each spacecraft state using GPS pseudorange measurements referenced to an Ultra Stable Oscillator (USO) with accelerometer measurements included during maneuvers. MMS state estimation is performed onboard each spacecraft using the Goddard Enhanced Onboard Navigation System (GEONS), which is embedded in the Navigator GPS receiver. This paper describes the sensitivity of MMS navigation performance to two major error sources: USO clock errors and thrust acceleration knowledge errors.

  12. A RLS-SVM Aided Fusion Methodology for INS during GPS Outages.

    Science.gov (United States)

    Yao, Yiqing; Xu, Xiaosu

    2017-02-24

    In order to maintain a relatively high accuracy of navigation performance during global positioning system (GPS) outages, a novel robust least squares support vector machine (LS-SVM)-aided fusion methodology is explored to provide the pseudo-GPS position information for the inertial navigation system (INS). The relationship between the yaw, specific force, velocity, and the position increment is modeled. Rather than share the same weight in the traditional LS-SVM, the proposed algorithm allocates various weights for different data, which makes the system immune to the outliers. Field test data was collected to evaluate the proposed algorithm. The comparison results indicate that the proposed algorithm can effectively provide position corrections for standalone INS during the 300 s GPS outage, which outperforms the traditional LS-SVM method. Historical information is also involved to better represent the vehicle dynamics.

  13. A RLS-SVM Aided Fusion Methodology for INS during GPS Outages

    Directory of Open Access Journals (Sweden)

    Yiqing Yao

    2017-02-01

    Full Text Available In order to maintain a relatively high accuracy of navigation performance during global positioning system (GPS outages, a novel robust least squares support vector machine (LS-SVM-aided fusion methodology is explored to provide the pseudo-GPS position information for the inertial navigation system (INS. The relationship between the yaw, specific force, velocity, and the position increment is modeled. Rather than share the same weight in the traditional LS-SVM, the proposed algorithm allocates various weights for different data, which makes the system immune to the outliers. Field test data was collected to evaluate the proposed algorithm. The comparison results indicate that the proposed algorithm can effectively provide position corrections for standalone INS during the 300 s GPS outage, which outperforms the traditional LS-SVM method. Historical information is also involved to better represent the vehicle dynamics.

  14. Efficacy of navigation in skull base surgery using composite computer graphics of magnetic resonance and computed tomography images

    International Nuclear Information System (INIS)

    Hayashi, Nakamasa; Kurimoto, Masanori; Hirashima, Yutaka; Ikeda, Hiroaki; Shibata, Takashi; Tomita, Takahiro; Endo, Shunro

    2001-01-01

    The efficacy of a neurosurgical navigation system using three-dimensional composite computer graphics (CGs) of magnetic resonance (MR) and computed tomography (CT) images was evaluated in skull base surgery. Three-point transformation was used for integration of MR and CT images. MR and CT image data were obtained with three skin markers placed on the patient's scalp. Volume-rendering manipulations of the data produced three-dimensional CGs of the scalp, brain, and lesions from the MR images, and the scalp and skull from the CT. Composite CGs of the scalp, skull, brain, and lesion were created by registering the three markers on the three-dimensional rendered scalp images obtained from MR imaging and CT in the system. This system was used for 14 patients with skull base lesions. Three-point transformation using three-dimensional CGs was easily performed for multimodal registration. Simulation of surgical procedures on composite CGs aided in comprehension of the skull base anatomy and selection of the optimal approaches. Intraoperative navigation aided in determination of actual spatial position in the skull base and the optimal trajectory to the tumor during surgical procedures. (author)

  15. Navigating oceans and cultures: Polynesian and European navigation systems in the late eighteenth century

    Science.gov (United States)

    Walker, M.

    2012-05-01

    Significant differences in the rotation of the celestial dome between the tropical and temperate zones did not stop the peoples of either the tropical Pacific or temperate Europe from using geocentric astronomy to guide exploration of the oceans. Although the differences in the night sky contributed to differences between the Pacific Island and European systems for navigation at sea, the two navigation systems exhibit substantial similarities. Both systems define positions on the surface of the Earth using two coordinates that vary at right angles to each other and use stars, and to a lesser extent the sun, to determine directions. This essay explores similarities and differences in the use of geocentric astronomy for navigation at sea by the peoples of Polynesia and Europe in the late eighteenth century. Captain Cook's orders to discover the unknown southern continent after observing the transit of Venus combined with differences in language and culture to obscure the deeper similarities between the navigation systems used by Cook and the Polynesians. Although it was a further 200 years before anthropologists studied Pacific navigation, collaborations in voyaging with communities in Oceania demonstrated the effectiveness of Pacific navigation systems, revived interest in traditional voyaging in island communities around the Pacific, and potentially open the way for further collaborations in other areas.

  16. Real-time precision pedestrian navigation solution using Inertial Navigation System and Global Positioning System

    OpenAIRE

    Yong-Jin Yoon; King Ho Holden Li; Jiahe Steven Lee; Woo-Tae Park

    2015-01-01

    Global Positioning System and Inertial Navigation System can be used to determine position and velocity. A Global Positioning System module is able to accurately determine position without sensor drift, but its usage is limited in heavily urbanized environments and heavy vegetation. While high-cost tactical-grade Inertial Navigation System can determine position accurately, low-cost micro-electro-mechanical system Inertial Navigation System sensors are plagued by significant errors. Global Po...

  17. Usability Testing of Two Ambulatory EHR Navigators.

    Science.gov (United States)

    Hultman, Gretchen; Marquard, Jenna; Arsoniadis, Elliot; Mink, Pamela; Rizvi, Rubina; Ramer, Tim; Khairat, Saif; Fickau, Keri; Melton, Genevieve B

    2016-01-01

    Despite widespread electronic health record (EHR) adoption, poor EHR system usability continues to be a significant barrier to effective system use for end users. One key to addressing usability problems is to employ user testing and user-centered design. To understand if redesigning an EHR-based navigation tool with clinician input improved user performance and satisfaction. A usability evaluation was conducted to compare two versions of a redesigned ambulatory navigator. Participants completed tasks for five patient cases using the navigators, while employing a think-aloud protocol. The tasks were based on Meaningful Use (MU) requirements. The version of navigator did not affect perceived workload, and time to complete tasks was longer in the redesigned navigator. A relatively small portion of navigator content was used to complete the MU-related tasks, though navigation patterns were highly variable across participants for both navigators. Preferences for EHR navigation structures appeared to be individualized. This study demonstrates the importance of EHR usability assessments to evaluate group and individual performance of different interfaces and preferences for each design.

  18. Navigation and Control of a Vehicle to the Parking Place Using Ins

    Directory of Open Access Journals (Sweden)

    Rastislav PIRNÍK

    2015-11-01

    Full Text Available This article discusses possibility of usage of the inertial navigation system for an autonomous navigation of a vehicle to the parking place inside intelligent parking house. Our research has shown that inertial navigation is suitable only for heading and attitude estimation. In order to achieve reliable and precise position estimation the additional odometer sensor is required. Article also describes control algorithm which can be used for steering control of the car according to pre-set waypoints. Waypoints have to be placed with respect to the dimensions and overall maneuverability of the vehicle.

  19. An Online Solution of LiDAR Scan Matching Aided Inertial Navigation System for Indoor Mobile Mapping

    OpenAIRE

    Niu, Xiaoji; Yu, Tong; Tang, Jian; Chang, Le

    2017-01-01

    Multisensors (LiDAR/IMU/CAMERA) integrated Simultaneous Location and Mapping (SLAM) technology for navigation and mobile mapping in a GNSS-denied environment, such as indoor areas, dense forests, or urban canyons, becomes a promising solution. An online (real-time) version of such system can extremely extend its applications, especially for indoor mobile mapping. However, the real-time response issue of multisensors is a big challenge for an online SLAM system, due to the different sampling f...

  20. Inertial navigation without accelerometers

    Science.gov (United States)

    Boehm, M.

    The Kennedy-Thorndike (1932) experiment points to the feasibility of fiber-optic inertial velocimeters, to which state-of-the-art technology could furnish substantial sensitivity and accuracy improvements. Velocimeters of this type would obviate the use of both gyros and accelerometers, and allow inertial navigation to be conducted together with vehicle attitude control, through the derivation of rotation rates from the ratios of the three possible velocimeter pairs. An inertial navigator and reference system based on this approach would probably have both fewer components and simpler algorithms, due to the obviation of the first level of integration in classic inertial navigators.

  1. Image navigation as a means to expand the boundaries of fluorescence-guided surgery.

    Science.gov (United States)

    Brouwer, Oscar R; Buckle, Tessa; Bunschoten, Anton; Kuil, Joeri; Vahrmeijer, Alexander L; Wendler, Thomas; Valdés-Olmos, Renato A; van der Poel, Henk G; van Leeuwen, Fijs W B

    2012-05-21

    Hybrid tracers that are both radioactive and fluorescent help extend the use of fluorescence-guided surgery to deeper structures. Such hybrid tracers facilitate preoperative surgical planning using (3D) scintigraphic images and enable synchronous intraoperative radio- and fluorescence guidance. Nevertheless, we previously found that improved orientation during laparoscopic surgery remains desirable. Here we illustrate how intraoperative navigation based on optical tracking of a fluorescence endoscope may help further improve the accuracy of hybrid surgical guidance. After feeding SPECT/CT images with an optical fiducial as a reference target to the navigation system, optical tracking could be used to position the tip of the fluorescence endoscope relative to the preoperative 3D imaging data. This hybrid navigation approach allowed us to accurately identify marker seeds in a phantom setup. The multispectral nature of the fluorescence endoscope enabled stepwise visualization of the two clinically approved fluorescent dyes, fluorescein and indocyanine green. In addition, the approach was used to navigate toward the prostate in a patient undergoing robot-assisted prostatectomy. Navigation of the tracked fluorescence endoscope toward the target identified on SPECT/CT resulted in real-time gradual visualization of the fluorescent signal in the prostate, thus providing an intraoperative confirmation of the navigation accuracy.

  2. An interactive videogame designed to improve respiratory navigator efficiency in children undergoing cardiovascular magnetic resonance.

    Science.gov (United States)

    Hamlet, Sean M; Haggerty, Christopher M; Suever, Jonathan D; Wehner, Gregory J; Grabau, Jonathan D; Andres, Kristin N; Vandsburger, Moriel H; Powell, David K; Sorrell, Vincent L; Fornwalt, Brandon K

    2016-09-06

    Advanced cardiovascular magnetic resonance (CMR) acquisitions often require long scan durations that necessitate respiratory navigator gating. The tradeoff of navigator gating is reduced scan efficiency, particularly when the patient's breathing patterns are inconsistent, as is commonly seen in children. We hypothesized that engaging pediatric participants with a navigator-controlled videogame to help control breathing patterns would improve navigator efficiency and maintain image quality. We developed custom software that processed the Siemens respiratory navigator image in real-time during CMR and represented diaphragm position using a cartoon avatar, which was projected to the participant in the scanner as visual feedback. The game incentivized children to breathe such that the avatar was positioned within the navigator acceptance window (±3 mm) throughout image acquisition. Using a 3T Siemens Tim Trio, 50 children (Age: 14 ± 3 years, 48 % female) with no significant past medical history underwent a respiratory navigator-gated 2D spiral cine displacement encoding with stimulated echoes (DENSE) CMR acquisition first with no feedback (NF) and then with the feedback game (FG). Thirty of the 50 children were randomized to undergo extensive off-scanner training with the FG using a MRI simulator, or no off-scanner training. Navigator efficiency, signal-to-noise ratio (SNR), and global left-ventricular strains were determined for each participant and compared. Using the FG improved average navigator efficiency from 33 ± 15 to 58 ± 13 % (p < 0.001) and improved SNR by 5 % (p = 0.01) compared to acquisitions with NF. There was no difference in navigator efficiency (p = 0.90) or SNR (p = 0.77) between untrained and trained participants for FG acquisitions. Circumferential and radial strains derived from FG acquisitions were slightly reduced compared to NF acquisitions (-16 ± 2 % vs -17 ± 2 %, p < 0.001; 40 ± 10

  3. USCG Local Notice to Mariners: 2007

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  4. USCG Local Notice to Mariners: 1998

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  5. USCG Local Notice to Mariners: 2004

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  6. USCG Local Notice to Mariners: 2009

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  7. USCG Local Notice to Mariners: 2006

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  8. USCG Local Notice to Mariners: 2011

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  9. USCG Local Notice to Mariners: 1997

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  10. USCG Local Notice to Mariners: 2008

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  11. USCG Local Notice to Mariners: 1996

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  12. USCG Local Notice to Mariners: 2001

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  13. USCG Local Notice to Mariners: 2012

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  14. USCG Local Notice to Mariners: 1999

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  15. USCG Local Notice to Mariners: 2013

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  16. USCG Local Notice to Mariners: 2002

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  17. USCG Local Notice to Mariners: 1995

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  18. USCG Local Notice to Mariners: 2010

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  19. USCG Local Notice to Mariners: 2000

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  20. USCG Local Notice to Mariners: 2003

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  1. USCG Local Notice to Mariners: 2005

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  2. 75 FR 50884 - Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments, Sector...

    Science.gov (United States)

    2010-08-18

    ... 3 and 165 to reflect changes in Coast Guard internal organizational structure. Sector Portland and... 1625-ZA25 Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments, Sector... Waters; Technical, Organizational, and Conforming Amendments, Sector Columbia River.'' 2. On page 48564...

  3. Collaborative filtering to improve navigation of large radiology knowledge resources.

    Science.gov (United States)

    Kahn, Charles E

    2005-06-01

    Collaborative filtering is a knowledge-discovery technique that can help guide readers to items of potential interest based on the experience of prior users. This study sought to determine the impact of collaborative filtering on navigation of a large, Web-based radiology knowledge resource. Collaborative filtering was applied to a collection of 1,168 radiology hypertext documents available via the Internet. An item-based collaborative filtering algorithm identified each document's six most closely related documents based on 248,304 page views in an 18-day period. Documents were amended to include links to their related documents, and use was analyzed over the next 5 days. The mean number of documents viewed per visit increased from 1.57 to 1.74 (P Collaborative filtering can increase a radiology information resource's utilization and can improve its usefulness and ease of navigation. The technique holds promise for improving navigation of large Internet-based radiology knowledge resources.

  4. Navigation Lights - USACE IENC

    Data.gov (United States)

    Department of Homeland Security — These inland electronic Navigational charts (IENCs) were developed from available data used in maintenance of Navigation channels. Users of these IENCs should be...

  5. From Resource-Adaptive Navigation Assistance to Augmented Cognition

    Science.gov (United States)

    Zimmer, Hubert D.; Münzer, Stefan; Baus, Jörg

    In an assistance scenario, a computer provides purposive information supporting a human user in an everyday situation. Wayfinding with navigation assistance is a prototypical assistance scenario. The present chapter analyzes the interplay of the resources of the assistance system and the resources of the user. The navigation assistance system provides geographic knowledge, positioning information, route planning, spatial overview information, and route commands at decision points. The user's resources encompass spatial knowledge, spatial abilities and visuo-spatial working memory, orientation strategies, and cultural habit. Flexible adaptations of the assistance system to available resources of the user are described, taking different wayfinding goals, situational constraints, and individual differences into account. Throughout the chapter, the idea is pursued that the available resources of the user should be kept active.

  6. NFC Internal: An Indoor Navigation System

    Science.gov (United States)

    Ozdenizci, Busra; Coskun, Vedat; Ok, Kerem

    2015-01-01

    Indoor navigation systems have recently become a popular research field due to the lack of GPS signals indoors. Several indoors navigation systems have already been proposed in order to eliminate deficiencies; however each of them has several technical and usability limitations. In this study, we propose NFC Internal, a Near Field Communication (NFC)-based indoor navigation system, which enables users to navigate through a building or a complex by enabling a simple location update, simply by touching NFC tags those are spread around and orient users to the destination. In this paper, we initially present the system requirements, give the design details and study the viability of NFC Internal with a prototype application and a case study. Moreover, we evaluate the performance of the system and compare it with existing indoor navigation systems. It is seen that NFC Internal has considerable advantages and significant contributions to existing indoor navigation systems in terms of security and privacy, cost, performance, robustness, complexity, user preference and commercial availability. PMID:25825976

  7. From Navigation to Star Hopping: Forgotten Formulae

    Indian Academy of Sciences (India)

    IAS Admin

    Mathematics and wrote a book Navigation and Nautical Astronomy for Sea-men in 1821 with tables ... and arcseconds. The reference ... Roger W Sinnott, an astronomy graduate from Harvard, served on the editorial board of the monthly ...

  8. A Dynamic Precision Evaluation Method for the Star Sensor in the Stellar-Inertial Navigation System.

    Science.gov (United States)

    Lu, Jiazhen; Lei, Chaohua; Yang, Yanqiang

    2017-06-28

    Integrating the advantages of INS (inertial navigation system) and the star sensor, the stellar-inertial navigation system has been used for a wide variety of applications. The star sensor is a high-precision attitude measurement instrument; therefore, determining how to validate its accuracy is critical in guaranteeing its practical precision. The dynamic precision evaluation of the star sensor is more difficult than a static precision evaluation because of dynamic reference values and other impacts. This paper proposes a dynamic precision verification method of star sensor with the aid of inertial navigation device to realize real-time attitude accuracy measurement. Based on the gold-standard reference generated by the star simulator, the altitude and azimuth angle errors of the star sensor are calculated for evaluation criteria. With the goal of diminishing the impacts of factors such as the sensors' drift and devices, the innovative aspect of this method is to employ static accuracy for comparison. If the dynamic results are as good as the static results, which have accuracy comparable to the single star sensor's precision, the practical precision of the star sensor is sufficiently high to meet the requirements of the system specification. The experiments demonstrate the feasibility and effectiveness of the proposed method.

  9. Navigating hybridity: investigating the dance between culture and values within the cuban national education system.

    Directory of Open Access Journals (Sweden)

    Erik Byker

    2013-12-01

    Full Text Available Hybridity is the dynamic relationship between local and global factors that push and pull on people and nations. Hybridity is deeply situated in socio-contextual factors, like cultural beliefs, education, and political systems, that aid and hinder a people’s navigation of globalized phenomena. Simply put, hybridity is how people and societies adapt to a changing world. This article examines the case of Cuba in response to hybridity. Specifically, the article’s purpose is to examine ways that the Cuban National Education System impacts how Cubans navigate the global march towards hybridity. The article reports on a focused ethnographic study of a week long education trip to Cuba during February 2013. The ethnography includes over 100 hours of data collection, including semi-structured interviews with 26 Cuban participants. The study uses Freire’s (1970 notion of “humanizing pedagogy” to analyze how the impact of the Cuban National Education System values in the context of Cuba and larger global context. The study found that three values in particular, amor, solidaridad, and conciencia de derechos y response, were deeply embedded in the Cuban National Education System and effect the way that Cubans navigate the complex hybridity that situates their island nation.

  10. To reiterate the concept of self-aid and buddy-aid for combat wounded

    Directory of Open Access Journals (Sweden)

    Zhong-jie HE

    2015-11-01

    Full Text Available Explore new concept of self-aid and buddy-aid for combat wounded based on the emergency timeliness and the challenges we are going to face in the future combats, the importance of self-aid, buddy-aid and rescue are discussed. The concept and characteristics of self-aid and buddy-aid in our army are reviewed, and the care of the wounded in foreign armies were reviewed. Based on the experiences gained from previous combats, and the results of "Medical Service Mission-2014 Drill", it was believed that the emergency rescue of battle wounded should follow the timeliness rule and the principle of self-aid and buddy-aid technology. It might be beneficial to use cell protective agent, urgent relief of life-threatening conditions such as profuse bleeding from extremities, suffocation, pneumothorax, and traumatic shock etc., in order to stabilize the general condition of the wounded, according to the regime of "Platinum 10 minutes" and "golden 1 hour", self-aid and buddy-aid might play an important role in preventing early death and late morbidity of the wounded, thus helps reduce the mortality rate or the victims of combat wounds. DOI: 10.11855/j.issn.0577-7402.2015.11.01

  11. SLAM algorithm applied to robotics assistance for navigation in unknown environments

    Directory of Open Access Journals (Sweden)

    Lobo Pereira Fernando

    2010-02-01

    Full Text Available Abstract Background The combination of robotic tools with assistance technology determines a slightly explored area of applications and advantages for disability or elder people in their daily tasks. Autonomous motorized wheelchair navigation inside an environment, behaviour based control of orthopaedic arms or user's preference learning from a friendly interface are some examples of this new field. In this paper, a Simultaneous Localization and Mapping (SLAM algorithm is implemented to allow the environmental learning by a mobile robot while its navigation is governed by electromyographic signals. The entire system is part autonomous and part user-decision dependent (semi-autonomous. The environmental learning executed by the SLAM algorithm and the low level behaviour-based reactions of the mobile robot are robotic autonomous tasks, whereas the mobile robot navigation inside an environment is commanded by a Muscle-Computer Interface (MCI. Methods In this paper, a sequential Extended Kalman Filter (EKF feature-based SLAM algorithm is implemented. The features correspond to lines and corners -concave and convex- of the environment. From the SLAM architecture, a global metric map of the environment is derived. The electromyographic signals that command the robot's movements can be adapted to the patient's disabilities. For mobile robot navigation purposes, five commands were obtained from the MCI: turn to the left, turn to the right, stop, start and exit. A kinematic controller to control the mobile robot was implemented. A low level behavior strategy was also implemented to avoid robot's collisions with the environment and moving agents. Results The entire system was tested in a population of seven volunteers: three elder, two below-elbow amputees and two young normally limbed patients. The experiments were performed within a closed low dynamic environment. Subjects took an average time of 35 minutes to navigate the environment and to learn how

  12. Getting Lost Through Navigation

    DEFF Research Database (Denmark)

    Debus, Michael S.

    2017-01-01

    In this presentation, I argued two things. First, that it is navigation that lies at the core of contemporary (3D-) videogames and that its analysis is of utmost importance. Second, that this analysis needs a more rigorous differentiation between specific acts of navigation. Considering the Oxford...... in videogames is a configurational rather than an interpretational one (Eskelinen 2001). Especially in the case of game spaces, navigation appears to be of importance (Wolf 2009; Flynn 2008). Further, it does not only play a crucial role for the games themselves, but also for the experience of the player...

  13. Switching from reaching to navigation: differential cognitive strategies for spatial memory in children and adults.

    Science.gov (United States)

    Belmonti, Vittorio; Cioni, Giovanni; Berthoz, Alain

    2015-07-01

    Navigational and reaching spaces are known to involve different cognitive strategies and brain networks, whose development in humans is still debated. In fact, high-level spatial processing, including allocentric location encoding, is already available to very young children, but navigational strategies are not mature until late childhood. The Magic Carpet (MC) is a new electronic device translating the traditional Corsi Block-tapping Test (CBT) to navigational space. In this study, the MC and the CBT were used to assess spatial memory for navigation and for reaching, respectively. Our hypothesis was that school-age children would not treat MC stimuli as navigational paths, assimilating them to reaching sequences. Ninety-one healthy children aged 6 to 11 years and 18 adults were enrolled. Overall short-term memory performance (span) on both tests, effects of sequence geometry, and error patterns according to a new classification were studied. Span increased with age on both tests, but relatively more in navigational than in reaching space, particularly in males. Sequence geometry specifically influenced navigation, not reaching. The number of body rotations along the path affected MC performance in children more than in adults, and in women more than in men. Error patterns indicated that navigational sequences were increasingly retained as global paths across development, in contrast to separately stored reaching locations. A sequence of spatial locations can be coded as a navigational path only if a cognitive switch from a reaching mode to a navigation mode occurs. This implies the integration of egocentric and allocentric reference frames, of visual and idiothetic cues, and access to long-term memory. This switch is not yet fulfilled at school age due to immature executive functions. © 2014 John Wiley & Sons Ltd.

  14. A High-Rate Virtual Instrument of Marine Vehicle Motions for Underwater Navigation and Ocean Remote Sensing

    CERN Document Server

    Gelin, Chrystel

    2013-01-01

    Dead-Reckoning aided with Doppler velocity measurement has been the most common method for underwater navigation for small vehicles. Unfortunately DR requires frequent position recalibrations and underwater vehicle navigation systems are limited to periodic position update when they surface. Finally standard Global Positioning System (GPS) receivers are unable to provide the rate or precision required when used on a small vessel. To overcome this, a low cost high rate motion measurement system for an Unmanned Surface Vehicle (USV) with underwater and oceanographic purposes is proposed. The proposed onboard system for the USV consists of an Inertial Measurement Unit (IMU) with accelerometers and rate gyros, a GPS receiver, a flux-gate compass, a roll and tilt sensor and an ADCP. Interfacing all the sensors proved rather challenging because of their different characteristics. The proposed data fusion technique integrates the sensors and develops an embeddable software package, using real time data fusion method...

  15. Sex differences in navigation strategy and efficiency.

    Science.gov (United States)

    Boone, Alexander P; Gong, Xinyi; Hegarty, Mary

    2018-05-22

    Research on human navigation has indicated that males and females differ in self-reported navigation strategy as well as objective measures of navigation efficiency. In two experiments, we investigated sex differences in navigation strategy and efficiency using an objective measure of strategy, the dual-solution paradigm (DSP; Marchette, Bakker, & Shelton, 2011). Although navigation by shortcuts and learned routes were the primary strategies used in both experiments, as in previous research on the DSP, individuals also utilized route reversals and sometimes found the goal location as a result of wandering. Importantly, sex differences were found in measures of both route selection and navigation efficiency. In particular, males were more likely to take shortcuts and reached their goal location faster than females, while females were more likely to follow learned routes and wander. Self-report measures of strategy were only weakly correlated with objective measures of strategy, casting doubt on their usefulness. This research indicates that the sex difference in navigation efficiency is large, and only partially related to an individual's navigation strategy as measured by the dual-solution paradigm.

  16. Local Notice to Mariners by USCG District

    Data.gov (United States)

    Department of Homeland Security — The LNM is the primary means for disseminating information concerning aids to navigation, hazards to navigation, and other items of marine information of interest to...

  17. An on-line monitoring system for navigation equipment

    Science.gov (United States)

    Wang, Bo; Yang, Ping; Liu, Jing; Yang, Zhengbo; Liang, Fei

    2017-10-01

    Civil air navigation equipment is the most important infrastructure of Civil Aviation, which is closely related to flight safety. In addition to regular flight inspection, navigation equipment's patrol measuring, maintenance measuring, running measuring under special weather conditions are the important means of ensuring aviation flight safety. According to the safety maintenance requirements of Civil Aviation Air Traffic Control navigation equipment, this paper developed one on-line monitoring system with independent intellectual property rights for navigation equipment, the system breakthroughs the key technologies of measuring navigation equipment on-line including Instrument Landing System (ILS) and VHF Omni-directional Range (VOR), which also meets the requirements of navigation equipment ground measurement set by the ICAO DOC 8071, it provides technical means of the ground on-line measurement for navigation equipment, improves the safety of navigation equipment operation, and reduces the impact of measuring navigation equipment on airport operation.

  18. Access to Adequate Healthcare for Hmong Women: A Patient Navigation Program to Increase Pap Test Screening

    Directory of Open Access Journals (Sweden)

    Moon S. Chen, Jr

    2010-01-01

    Full Text Available This paper describes the development and implementation of a Hmong Cervical Cancer Intervention Program utilizing a patient navigation model to raise cervical cancer awareness for Hmong women through educational workshops and to assist Hmong women in obtaining a Pap test. Out of 402 women who participated in a baseline survey, the Patient Navigation Program was able to enroll 109 participants who had not had a Pap test in the past 3 years and had never had a Pap test. Through utilization of outreach, an awareness campaign and patient navigation support, at least 38 percent of 109 participants obtained a Pap test. Overall, 21 workshops and 43 outreach activities were conducted by the Hmong Women’s Heritage Association, leading to 63 percent of those enrolled in the Patient Navigation Program who could be contacted to obtain a Pap test.

  19. Autonomous Robot Navigation based on Visual Landmarks

    DEFF Research Database (Denmark)

    Livatino, Salvatore

    2005-01-01

    The use of landmarks for robot navigation is a popular alternative to having a geometrical model of the environment through which to navigate and monitor self-localization. If the landmarks are defined as special visual structures already in the environment then we have the possibility of fully a...... automatically learn and store visual landmarks, and later recognize these landmarks from arbitrary positions and thus estimate robot position and heading.......The use of landmarks for robot navigation is a popular alternative to having a geometrical model of the environment through which to navigate and monitor self-localization. If the landmarks are defined as special visual structures already in the environment then we have the possibility of fully...... autonomous navigation and self-localization using automatically selected landmarks. The thesis investigates autonomous robot navigation and proposes a new method which benefits from the potential of the visual sensor to provide accuracy and reliability to the navigation process while relying on naturally...

  20. Developing Autonomous Vehicles That Learn to Navigate by Mimicking Human Behavior

    Science.gov (United States)

    2006-09-28

    navigate in an unstructured environment to a specific target or location. 15. SUBJECT TERMS autonomous vehicles , fuzzy logic, learning behavior...ANSI-Std Z39-18 Developing Autonomous Vehicles That Learn to Navigate by Mimicking Human Behavior FINAL REPORT 9/28/2006 Dean B. Edwards Department...the future, as greater numbers of autonomous vehicles are employed, it is hoped that lower LONG-TERM GOALS Use LAGR (Learning Applied to Ground Robots

  1. 32 CFR 644.3 - Navigation Projects.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Navigation Projects. 644.3 Section 644.3 National... HANDBOOK Project Planning Civil Works § 644.3 Navigation Projects. (a) Land to be acquired in fee. All... construction and borrow areas. (3) In navigation-only projects, the right to permanently flood should be...

  2. Navigating Institutions and Institutional Leadership to Address Sexual Violence

    Science.gov (United States)

    Sisneros, Kathy; Rivera, Monica

    2018-01-01

    Using an institutional example, this chapter offers strategies to effectively navigate institutional culture, processes, and structures to engage the entire campus community in addressing sexual violence.

  3. Quantum imaging for underwater arctic navigation

    Science.gov (United States)

    Lanzagorta, Marco

    2017-05-01

    The precise navigation of underwater vehicles is a difficult task due to the challenges imposed by the variable oceanic environment. It is particularly difficult if the underwater vehicle is trying to navigate under the Arctic ice shelf. Indeed, in this scenario traditional navigation devices such as GPS, compasses and gyrocompasses are unavailable or unreliable. In addition, the shape and thickness of the ice shelf is variable throughout the year. Current Arctic underwater navigation systems include sonar arrays to detect the proximity to the ice. However, these systems are undesirable in a wartime environment, as the sound gives away the position of the underwater vehicle. In this paper we briefly describe the theoretical design of a quantum imaging system that could allow the safe and stealthy navigation of underwater Arctic vehicles.

  4. Physicians Mutual Aid Group: A Response to AIDS-Related Burnout.

    Science.gov (United States)

    Garside, Bruce

    1993-01-01

    Describes origins and functioning of physician's mutual aid group for physicians providing primary care to people with Acquired Immune Deficiency Syndrome (AIDS). Offers suggestions related to overcoming resistance physicians might have to participating in such a group and reviews modalities that were helpful in facilitating participants' ability…

  5. NFC Internal: An Indoor Navigation System

    Directory of Open Access Journals (Sweden)

    Busra Ozdenizci

    2015-03-01

    Full Text Available Indoor navigation systems have recently become a popular research field due to the lack of GPS signals indoors. Several indoors navigation systems have already been proposed in order to eliminate deficiencies; however each of them has several technical and usability limitations. In this study, we propose NFC Internal, a Near Field Communication (NFC-based indoor navigation system, which enables users to navigate through a building or a complex by enabling a simple location update, simply by touching NFC tags those are spread around and orient users to the destination. In this paper, we initially present the system requirements, give the design details and study the viability of NFC Internal with a prototype application and a case study. Moreover, we evaluate the performance of the system and compare it with existing indoor navigation systems. It is seen that NFC Internal has considerable advantages and significant contributions to existing indoor navigation systems in terms of security and privacy, cost, performance, robustness, complexity, user preference and commercial availability.

  6. How to Get Hearing Aids

    Science.gov (United States)

    ... if desired. What questions should I ask before buying hearing aids? Before you buy a hearing aid, ... the period of warranty? Does the warranty cover future maintenance and repairs? Will loaner aids be provided ...

  7. Design of all-weather celestial navigation system

    Science.gov (United States)

    Sun, Hongchi; Mu, Rongjun; Du, Huajun; Wu, Peng

    2018-03-01

    In order to realize autonomous navigation in the atmosphere, an all-weather celestial navigation system is designed. The research of celestial navigation system include discrimination method of comentropy and the adaptive navigation algorithm based on the P value. The discrimination method of comentropy is studied to realize the independent switching of two celestial navigation modes, starlight and radio. Finally, an adaptive filtering algorithm based on P value is proposed, which can greatly improve the disturbance rejection capability of the system. The experimental results show that the accuracy of the three axis attitude is better than 10″, and it can work all weather. In perturbation environment, the position accuracy of the integrated navigation system can be increased 20% comparing with the traditional method. It basically meets the requirements of the all-weather celestial navigation system, and it has the ability of stability, reliability, high accuracy and strong anti-interference.

  8. From translation to navigation of different discourses

    DEFF Research Database (Denmark)

    Livonen, Mirja; Sonnenwald, Diane H.

    1998-01-01

    ' own search experience. Data further suggest that searchers navigate these discourses dynamically and have preferences for certain discourses. Conceptualizing the selection of search terms as a meeting place of different discourses provides new insights into the complex nature of the search term...

  9. Development of navigational working memory: evidence from 6- to 10-year-old children.

    Science.gov (United States)

    Piccardi, Laura; Leonzi, Marina; D'Amico, Simonetta; Marano, Assunta; Guariglia, Cecilia

    2014-06-01

    The ability to learn complex environments may require the contribution of different types of working memory. Therefore, we investigated the development of different types of working memory (navigational, reaching, and verbal) in 129 typically developing children. We aimed to determine whether navigational working memory develops at the same rate as other types of working memory and whether the gender differences reported in adults are already present during development. We found that navigational working memory is less developed than both verbal and reaching working memory and that gender predicts performance only for navigational working memory. Our results are in line with reports that children made significantly more errors in far space than adults, showing that near space representation develops before far space representation. © 2014 The British Psychological Society.

  10. Intelligent personal navigator supported by knowledge-based systems for estimating dead reckoning navigation parameters

    Science.gov (United States)

    Moafipoor, Shahram

    Personal navigators (PN) have been studied for about a decade in different fields and applications, such as safety and rescue operations, security and emergency services, and police and military applications. The common goal of all these applications is to provide precise and reliable position, velocity, and heading information of each individual in various environments. In the PN system developed in this dissertation, the underlying assumption is that the system does not require pre-existing infrastructure to enable pedestrian navigation. To facilitate this capability, a multisensor system concept, based on the Global Positioning System (GPS), inertial navigation, barometer, magnetometer, and a human pedometry model has been developed. An important aspect of this design is to use the human body as navigation sensor to facilitate Dead Reckoning (DR) navigation in GPS-challenged environments. The system is designed predominantly for outdoor environments, where occasional loss of GPS lock may happen; however, testing and performance demonstration have been extended to indoor environments. DR navigation is based on a relative-measurement approach, with the key idea of integrating the incremental motion information in the form of step direction (SD) and step length (SL) over time. The foundation of the intelligent navigation system concept proposed here rests in exploiting the human locomotion pattern, as well as change of locomotion in varying environments. In this context, the term intelligent navigation represents the transition from the conventional point-to-point DR to dynamic navigation using the knowledge about the mechanism of the moving person. This approach increasingly relies on integrating knowledge-based systems (KBS) and artificial intelligence (AI) methodologies, including artificial neural networks (ANN) and fuzzy logic (FL). In addition, a general framework of the quality control for the real-time validation of the DR processing is proposed, based on a

  11. Low Cost Integrated Navigation System for Unmanned Vessel

    Directory of Open Access Journals (Sweden)

    Yang Changsong

    2017-11-01

    Full Text Available Large errors of low-cost MEMS inertial measurement unit (MIMU lead to huge navigation errors, even wrong navigation information. An integrated navigation system for unmanned vessel is proposed. It consists of a low-cost MIMU and Doppler velocity sonar (DVS. This paper presents an integrated navigation method, to improve the performance of navigation system. The integrated navigation system is tested using simulation and semi-physical simulation experiments, whose results show that attitude, velocity and position accuracy has improved awfully, giving exactly accurate navigation results. By means of the combination of low-cost MIMU and DVS, the proposed system is able to overcome fast drift problems of the low cost IMU.

  12. Compact autonomous navigation system (CANS)

    Science.gov (United States)

    Hao, Y. C.; Ying, L.; Xiong, K.; Cheng, H. Y.; Qiao, G. D.

    2017-11-01

    Autonomous navigation of Satellite and constellation has series of benefits, such as to reduce operation cost and ground station workload, to avoid the event of crises of war and natural disaster, to increase spacecraft autonomy, and so on. Autonomous navigation satellite is independent of ground station support. Many systems are developed for autonomous navigation of satellite in the past 20 years. Along them American MANS (Microcosm Autonomous Navigation System) [1] of Microcosm Inc. and ERADS [2] [3] (Earth Reference Attitude Determination System) of Honeywell Inc. are well known. The systems anticipate a series of good features of autonomous navigation and aim low cost, integrated structure, low power consumption and compact layout. The ERADS is an integrated small 3-axis attitude sensor system with low cost and small volume. It has the Earth center measurement accuracy higher than the common IR sensor because the detected ultraviolet radiation zone of the atmosphere has a brightness gradient larger than that of the IR zone. But the ERADS is still a complex system because it has to eliminate many problems such as making of the sapphire sphere lens, birefringence effect of sapphire, high precision image transfer optical fiber flattener, ultraviolet intensifier noise, and so on. The marginal sphere FOV of the sphere lens of the ERADS is used to star imaging that may be bring some disadvantages., i.e. , the image energy and attitude measurements accuracy may be reduced due to the tilt image acceptance end of the fiber flattener in the FOV. Besides Japan, Germany and Russia developed visible earth sensor for GEO [4] [5]. Do we have a way to develop a cheaper/easier and more accurate autonomous navigation system that can be used to all LEO spacecraft, especially, to LEO small and micro satellites? To return this problem we provide a new type of the system—CANS (Compact Autonomous Navigation System) [6].

  13. How to develop a company AIDS policy.

    Science.gov (United States)

    Bompey, S H

    1986-07-01

    It is for most businesses only a matter of time before they will have experience with Acquired Immune Deficiency Syndrome (AIDS), and the experience could be very costly for companies which fail to implement an effective AIDS policy. Potential AIDS problems include: antidiscrimination suits based on firing or failing to hire an individual who had AIDS or carries the AIDS virus antibodies; defamation suits from employees who are wrongly identified; disability claims that do not fit the pattern for other diseases; civil rights penalties in some situations when AIDS victims are prevented from working; and run-ins with the Occupational Safety and Health Administration or the National Labor Relations Board if healthy workers refuse to work alongside AIDS victims. A company needs to think through its AIDS policy, but that does not mean establishing a "special" AIDS policy which may create paranoia among employees. The best approach is to develop a health policy that includes all catastrophic illnesses, not just AIDS. There have been few court decisions involving AIDS because AIDS is a recent illness, victims often do not live long enough to pursue the matter, and it often pays to settle AIDS cases out of court. Employers need to know that judges, administrative agencies, and arbitrators take the position that AIDS is a disability. As such, AIDS is treated under the anti-handicap discrimination laws on the books of most states. Additionally, the Federal Rehabilitation Act of 1973 prohibits discrimination against the disabled by companies that contract with the federal government or receive federal financial assistance. It usually is illegal to discriminate against the disabled workers, and in some states against workers who are perceived to have a disability. The best defense against the fear of working alongside and AIDs sufferer is education.

  14. 14 CFR 121.349 - Communication and navigation equipment for operations under VFR over routes not navigated by...

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Communication and navigation equipment for... § 121.349 Communication and navigation equipment for operations under VFR over routes not navigated by... receiver providing visual and aural signals; and (iii) One ILS receiver; and (3) Any RNAV system used to...

  15. Use of navigation channels by Lake Sturgeon: Does channelization increase vulnerability of fish to ship strikes?

    Directory of Open Access Journals (Sweden)

    Darryl W Hondorp

    Full Text Available Channelization for navigation and flood control has altered the hydrology and bathymetry of many large rivers with unknown consequences for fish species that undergo riverine migrations. In this study, we investigated whether altered flow distributions and bathymetry associated with channelization attracted migrating Lake Sturgeon (Acipenser fulvescens into commercial navigation channels, potentially increasing their exposure to ship strikes. To address this question, we quantified and compared Lake Sturgeon selection for navigation channels vs. alternative pathways in two multi-channel rivers differentially affected by channelization, but free of barriers to sturgeon movement. Acoustic telemetry was used to quantify Lake Sturgeon movements. Under the assumption that Lake Sturgeon navigate by following primary flow paths, acoustic-tagged Lake Sturgeon in the more-channelized lower Detroit River were expected to choose navigation channels over alternative pathways and to exhibit greater selection for navigation channels than conspecifics in the less-channelized lower St. Clair River. Consistent with these predictions, acoustic-tagged Lake Sturgeon in the more-channelized lower Detroit River selected the higher-flow and deeper navigation channels over alternative migration pathways, whereas in the less-channelized lower St. Clair River, individuals primarily used pathways alternative to navigation channels. Lake Sturgeon selection for navigation channels as migratory pathways also was significantly higher in the more-channelized lower Detroit River than in the less-channelized lower St. Clair River. We speculated that use of navigation channels over alternative pathways would increase the spatial overlap of commercial vessels and migrating Lake Sturgeon, potentially enhancing their vulnerability to ship strikes. Results of our study thus demonstrated an association between channelization and the path use of migrating Lake Sturgeon that could prove

  16. Adaptive Landmark-Based Navigation System Using Learning Techniques

    DEFF Research Database (Denmark)

    Zeidan, Bassel; Dasgupta, Sakyasingha; Wörgötter, Florentin

    2014-01-01

    The goal-directed navigational ability of animals is an essential prerequisite for them to survive. They can learn to navigate to a distal goal in a complex environment. During this long-distance navigation, they exploit environmental features, like landmarks, to guide them towards their goal. In...... hexapod robots. As a result, it allows the robots to successfully learn to navigate to distal goals in complex environments.......The goal-directed navigational ability of animals is an essential prerequisite for them to survive. They can learn to navigate to a distal goal in a complex environment. During this long-distance navigation, they exploit environmental features, like landmarks, to guide them towards their goal....... Inspired by this, we develop an adaptive landmark-based navigation system based on sequential reinforcement learning. In addition, correlation-based learning is also integrated into the system to improve learning performance. The proposed system has been applied to simulated simple wheeled and more complex...

  17. How to perform first aid.

    Science.gov (United States)

    Gloster, Annabella Satu; Johnson, Phillip John

    2016-01-13

    RATIONALE AND KEY POINTS: This article aims to help nurses to perform first aid in a safe, effective and patient-centred manner. First aid comprises a series of simple, potentially life-saving steps that an individual can perform with minimal equipment. Although it is not a legal requirement to respond to an emergency situation outside of work, nurses have a professional duty to respond and provide care within the limits of their competency. First aid is the provision of immediate medical assistance to an ill or injured person until definitive medical treatment can be accessed. First aid can save lives and it is essential that nurses understand the basic principles. REFLECTIVE ACTIVITY: Clinical skills articles can help update your practice and ensure it remains evidence based. Apply this article to your practice. Reflect on and write a short account of: 1. Your skill in performing first aid and any areas where you may need to extend your knowledge. 2. How reading this article will change your practice. Subscribers can upload their reflective accounts at: rcni.com/portfolio .

  18. A navigational evaluation model for content management systems

    International Nuclear Information System (INIS)

    Gilani, S.; Majeed, A.

    2016-01-01

    Web applications are widely used world-wide, however it is important that the navigation of these websites is effective, to enhance usability. Navigation is not limited to links between pages, it is also how we complete a task. Navigational structure presented as hypertext is one of the most important component of the Web application besides content and presentation. The main objective of this paper is to explore the navigational structure of various open source Content Management Systems from the developer's perspective. For this purpose three CMS are chosen which are WordPress, Joomla, and Drupal. Objective of the research is to identify the important navigational aspects present in these CMSs. Moreover, a comparative study of these CMSs in terms of navigational support is required. For this purpose an industrial survey is conducted based on our proposed navigational evaluation model. The results shows that there exist correlation between the identified factors and these CMSs provide helpful and effective navigational support to their users. (author)

  19. Intraoperative magnetic resonance imaging to update interactive navigation in neurosurgery: method and preliminary experience.

    Science.gov (United States)

    Wirtz, C R; Bonsanto, M M; Knauth, M; Tronnier, V M; Albert, F K; Staubert, A; Kunze, S

    1997-01-01

    We report on the first successful intraoperative update of interactive image guidance based on an intraoperatively acquired magnetic resonance imaging (MRI) date set. To date, intraoperative imaging methods such as ultrasound, computerized tomography (CT), or MRI have not been successfully used to update interactive navigation. We developed a method of imaging patients intraoperatively with the surgical field exposed in an MRI scanner (Magnetom Open; Siemens Corp., Erlangen, Germany). In 12 patients, intraoperatively acquired 3D data sets were used for successful recalibration of neuronavigation, accounting for any anatomical changes caused by surgical manipulations. The MKM Microscope (Zeiss Corp., Oberkochen, Germany) was used as navigational system. With implantable fiducial markers, an accuracy of 0.84 +/- 0.4 mm for intraoperative reregistration was achieved. Residual tumor detected on MRI was consequently resected using navigation with the intraoperative data. No adverse effects were observed from intraoperative imaging or the use of navigation with intraoperative images, demonstrating the feasibility of recalibrating navigation with intraoperative MRI.

  20. A Navigation System for the Visually Impaired: A Fusion of Vision and Depth Sensor

    Science.gov (United States)

    Kanwal, Nadia; Bostanci, Erkan; Currie, Keith; Clark, Adrian F.

    2015-01-01

    For a number of years, scientists have been trying to develop aids that can make visually impaired people more independent and aware of their surroundings. Computer-based automatic navigation tools are one example of this, motivated by the increasing miniaturization of electronics and the improvement in processing power and sensing capabilities. This paper presents a complete navigation system based on low cost and physically unobtrusive sensors such as a camera and an infrared sensor. The system is based around corners and depth values from Kinect's infrared sensor. Obstacles are found in images from a camera using corner detection, while input from the depth sensor provides the corresponding distance. The combination is both efficient and robust. The system not only identifies hurdles but also suggests a safe path (if available) to the left or right side and tells the user to stop, move left, or move right. The system has been tested in real time by both blindfolded and blind people at different indoor and outdoor locations, demonstrating that it operates adequately. PMID:27057135

  1. Development of field navigation system; Field navigation system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ibara, S; Minode, M; Nishioka, K [Daihatsu Motor Co. Ltd., Osaka (Japan)

    1995-04-20

    This paper describes the following matters on a field navigation system developed for the purpose of covering a field of several kilometer square. This system consists of a center system and a vehicle system, and the center system comprises a map information computer and a communication data controlling computer; since the accuracy for a vehicle position detected by a GPS is not sufficient, an attempt of increasing the accuracy of vehicle position detection is made by means of a hybrid system; the hybrid system uses a satellite navigation method of differential system in which the error components in the GPS are transmitted from the center, and also uses a self-contained navigation method which performs an auxiliary function when the accuracy in the GPS has dropped; corrected GPS values, emergency messages to all of the vehicles and data of each vehicle position are communicated by wireless transmission in two ways between the center and vehicles; and accommodation of the map data adopted a system that can respond quickly to any change in roads and facilities. 3 refs., 13 figs., 1 tab.

  2. The attack navigator

    DEFF Research Database (Denmark)

    Probst, Christian W.; Willemson, Jan; Pieters, Wolter

    2016-01-01

    The need to assess security and take protection decisions is at least as old as our civilisation. However, the complexity and development speed of our interconnected technical systems have surpassed our capacity to imagine and evaluate risk scenarios. This holds in particular for risks...... that are caused by the strategic behaviour of adversaries. Therefore, technology-supported methods are needed to help us identify and manage these risks. In this paper, we describe the attack navigator: a graph-based approach to security risk assessment inspired by navigation systems. Based on maps of a socio...

  3. Introduction to the Navigation Team: Johnson Space Center EG6 Internship

    Science.gov (United States)

    Gualdoni, Matthew

    2017-01-01

    The EG6 navigation team at NASA Johnson Space Center, like any team of engineers, interacts with the engineering process from beginning to end; from exploring solutions to a problem, to prototyping and studying the implementations, all the way to polishing and verifying a final flight-ready design. This summer, I was privileged enough to gain exposure to each of these processes, while also getting to truly experience working within a team of engineers. My summer can be broken up into three projects: i) Initial study and prototyping: investigating a manual navigation method that can be utilized onboard Orion in the event of catastrophic failure of navigation systems; ii) Finalizing and verifying code: altering a software routine to improve its robustness and reliability, as well as designing unit tests to verify its performance; and iii) Development of testing equipment: assisting in developing and integrating of a high-fidelity testbed to verify the performance of software and hardware.

  4. An Aerial-Ground Robotic System for Navigation and Obstacle Mapping in Large Outdoor Areas

    Directory of Open Access Journals (Sweden)

    David Zapata

    2013-01-01

    Full Text Available There are many outdoor robotic applications where a robot must reach a goal position or explore an area without previous knowledge of the environment around it. Additionally, other applications (like path planning require the use of known maps or previous information of the environment. This work presents a system composed by a terrestrial and an aerial robot that cooperate and share sensor information in order to address those requirements. The ground robot is able to navigate in an unknown large environment aided by visual feedback from a camera on board the aerial robot. At the same time, the obstacles are mapped in real-time by putting together the information from the camera and the positioning system of the ground robot. A set of experiments were carried out with the purpose of verifying the system applicability. The experiments were performed in a simulation environment and outdoor with a medium-sized ground robot and a mini quad-rotor. The proposed robotic system shows outstanding results in simultaneous navigation and mapping applications in large outdoor environments.

  5. Risk management model of winter navigation operations

    International Nuclear Information System (INIS)

    Valdez Banda, Osiris A.; Goerlandt, Floris; Kuzmin, Vladimir; Kujala, Pentti; Montewka, Jakub

    2016-01-01

    The wintertime maritime traffic operations in the Gulf of Finland are managed through the Finnish–Swedish Winter Navigation System. This establishes the requirements and limitations for the vessels navigating when ice covers this area. During winter navigation in the Gulf of Finland, the largest risk stems from accidental ship collisions which may also trigger oil spills. In this article, a model for managing the risk of winter navigation operations is presented. The model analyses the probability of oil spills derived from collisions involving oil tanker vessels and other vessel types. The model structure is based on the steps provided in the Formal Safety Assessment (FSA) by the International Maritime Organization (IMO) and adapted into a Bayesian Network model. The results indicate that ship independent navigation and convoys are the operations with higher probability of oil spills. Minor spills are most probable, while major oil spills found very unlikely but possible. - Highlights: •A model to assess and manage the risk of winter navigation operations is proposed. •The risks of oil spills in winter navigation in the Gulf of Finland are analysed. •The model assesses and prioritizes actions to control the risk of the operations. •The model suggests navigational training as the most efficient risk control option.

  6. Collective navigation of complex networks: Participatory greedy routing.

    Science.gov (United States)

    Kleineberg, Kaj-Kolja; Helbing, Dirk

    2017-06-06

    Many networks are used to transfer information or goods, in other words, they are navigated. The larger the network, the more difficult it is to navigate efficiently. Indeed, information routing in the Internet faces serious scalability problems due to its rapid growth, recently accelerated by the rise of the Internet of Things. Large networks like the Internet can be navigated efficiently if nodes, or agents, actively forward information based on hidden maps underlying these systems. However, in reality most agents will deny to forward messages, which has a cost, and navigation is impossible. Can we design appropriate incentives that lead to participation and global navigability? Here, we present an evolutionary game where agents share the value generated by successful delivery of information or goods. We show that global navigability can emerge, but its complete breakdown is possible as well. Furthermore, we show that the system tends to self-organize into local clusters of agents who participate in the navigation. This organizational principle can be exploited to favor the emergence of global navigability in the system.

  7. Correction of Navigational Information Supplied to Biomimetic Autonomous Underwater Vehicle

    Directory of Open Access Journals (Sweden)

    Praczyk Tomasz

    2018-03-01

    Full Text Available In order to autonomously transfer from one point of the environment to the other, Autonomous Underwater Vehicles (AUV need a navigational system. While navigating underwater the vehicles usually use a dead reckoning method which calculates vehicle movement on the basis of the information about velocity (sometimes also acceleration and course (heading provided by on-board devicesl ike Doppler Velocity Logs and Fibre Optical Gyroscopes. Due to inaccuracies of the devices and the influence of environmental forces, the position generated by the dead reckoning navigational system (DRNS is not free from errors, moreover the errors grow exponentially in time. The problem becomes even more serious when we deal with small AUVs which do not have any speedometer on board and whose course measurement device is inaccurate. To improve indications of the DRNS the vehicle can emerge onto the surface from time to time, record its GPS position, and measure position error which can be further used to estimate environmental influence and inaccuracies caused by mechanisms of the vehicle. This paper reports simulation tests which were performed to determine the most effective method for correction of DRNS designed for a real Biomimetic AUV.

  8. ANALYSIS OF FREE ROUTE AIRSPACE AND PERFORMANCE BASED NAVIGATION IMPLEMENTATION IN THE EUROPEAN AIR NAVIGATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Svetlana Pavlova

    2014-12-01

    Full Text Available European Air Traffic Management system requires continuous improvements as air traffic is increasingday by day. For this purpose it was developed by international organizations Free Route Airspace and PerformanceBased Navigation concepts that allow to offer a required level of safety, capacity, environmental performance alongwith cost-effectiveness. The aim of the article is to provide detailed analysis of Free Route Airspace and PerformanceBased Navigation implementation status within European region including Ukrainian air navigation system.

  9. Applications of navigation for orthognathic surgery.

    Science.gov (United States)

    Bobek, Samuel L

    2014-11-01

    Stereotactic surgical navigation has been used in oral and maxillofacial surgery for orbital reconstruction, reduction of facial fractures, localization of foreign bodies, placement of implants, skull base surgery, tumor removal, temporomandibular joint surgery, and orthognathic surgery. The primary goals in adopting intraoperative navigation into these different surgeries were to define and localize operative anatomy, to localize implant position, and to orient the surgical wound. Navigation can optimize the functional and esthetic outcomes in patients with dentofacial deformities by identifying pertinent anatomic structures, transferring the surgical plan to the patient, and verifying the surgical result. This article discusses the principles of navigation-guided orthognathic surgery. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. A personal tourism navigation system to support traveling multiple destinations with time restrictions

    OpenAIRE

    Maruyama, Atsushi; Shibata, Naoki; Murata, Yoshihiro; Yasumoto, Keiichi; Ito, Minoru

    2004-01-01

    We propose a personal navigation system (called PNS) which navigates a tourist through multiple destinations efficiently. In our PNS, a tourist can specify multiple destinations with desired arrival/stay time and preference degree. The system calculates the route including part of the destinations satisfying tourist's requirements and navigates him/her. For the above route search problem, we have developed an efficient route search algorithm using a genetic algorithm. We have designed and imp...

  11. Cell Cycle Regulates Nuclear Stability of AID and Determines the Cellular Response to AID.

    Directory of Open Access Journals (Sweden)

    Quy Le

    2015-09-01

    Full Text Available AID (Activation Induced Deaminase deaminates cytosines in DNA to initiate immunoglobulin gene diversification and to reprogram CpG methylation in early development. AID is potentially highly mutagenic, and it causes genomic instability evident as translocations in B cell malignancies. Here we show that AID is cell cycle regulated. By high content screening microscopy, we demonstrate that AID undergoes nuclear degradation more slowly in G1 phase than in S or G2-M phase, and that mutations that affect regulatory phosphorylation or catalytic activity can alter AID stability and abundance. We directly test the role of cell cycle regulation by fusing AID to tags that destabilize nuclear protein outside of G1 or S-G2/M phases. We show that enforced nuclear localization of AID in G1 phase accelerates somatic hypermutation and class switch recombination, and is well-tolerated; while nuclear AID compromises viability in S-G2/M phase cells. We identify AID derivatives that accelerate somatic hypermutation with minimal impact on viability, which will be useful tools for engineering genes and proteins by iterative mutagenesis and selection. Our results further suggest that use of cell cycle tags to regulate nuclear stability may be generally applicable to studying DNA repair and to engineering the genome.

  12. Acute stress switches spatial navigation strategy from egocentric to allocentric in a virtual Morris water maze.

    Science.gov (United States)

    van Gerven, Dustin J H; Ferguson, Thomas; Skelton, Ronald W

    2016-07-01

    Stress and stress hormones are known to influence the function of the hippocampus, a brain structure critical for cognitive-map-based, allocentric spatial navigation. The caudate nucleus, a brain structure critical for stimulus-response-based, egocentric navigation, is not as sensitive to stress. Evidence for this comes from rodent studies, which show that acute stress or stress hormones impair allocentric, but not egocentric navigation. However, there have been few studies investigating the effect of acute stress on human spatial navigation, and the results of these have been equivocal. To date, no study has investigated whether acute stress can shift human navigational strategy selection between allocentric and egocentric navigation. The present study investigated this question by exposing participants to an acute psychological stressor (the Paced Auditory Serial Addition Task, PASAT), before testing navigational strategy selection in the Dual-Strategy Maze, a modified virtual Morris water maze. In the Dual-Strategy maze, participants can chose to navigate using a constellation of extra-maze cues (allocentrically) or using a single cue proximal to the goal platform (egocentrically). Surprisingly, PASAT stress biased participants to solve the maze allocentrically significantly more, rather than less, often. These findings have implications for understanding the effects of acute stress on cognitive function in general, and the function of the hippocampus in particular. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Interactive navigation-guided ophthalmic plastic surgery: navigation enabling of telescopes and their use in endoscopic lacrimal surgeries

    Directory of Open Access Journals (Sweden)

    Ali MJ

    2016-11-01

    Full Text Available Mohammad Javed Ali,1 Swati Singh,1 Milind N Naik,1 Swathi Kaliki,2 Tarjani Vivek Dave1 1The Institute of Dacryology, 2The Operation Eyesight Universal Institute for Eye Cancer, L.V. Prasad Eye Institute, Hyderabad, India Purpose: The aims of this study were to report the preliminary experience of using telescopes, which were enabled for navigation guidance, and their utility in complex endoscopic lacrimal surgeries. Methods: Navigation enabling of the telescope was achieved by using the AxiEM™ malleable neuronavigation shunt stylet. Image-guided dacryolocalization was performed in five patients using the intraoperative image-guided StealthStation™ system in the electromagnetic mode. The “look ahead” protocol software was used to assist the surgeon in assessing the intraoperative geometric location of the endoscope and what lies ahead in real time. All patients underwent navigation-guided powered endoscopic dacryocystorhinostomy. The utility of uninterrupted navigation guidance throughout the surgery with the endoscope as the navigating tool was noted. Results: Intraoperative geometric localization of the lacrimal sac and the nasolacrimal duct could be easily deciphered. Constant orientation of the lacrimal drainage system and the peri-lacrimal anatomy was possible without the need for repeated point localizations throughout the surgery. The “look ahead” features could accurately alert the surgeon of anatomical structures that exists at 5, 10 and 15 mm in front of the endoscope. Good securing of the shunt stylet with the telescope was found to be essential for constant and accurate navigation. Conclusion: Navigation-enabled endoscopes provide the surgeon with the advantage of sustained stereotactic anatomical awareness at all times during the surgery. Keywords: telescope, endoscope, image guidance, navigation, lacrimal surgery, powered endoscopic DCR

  14. Vibrotactile in-vehicle navigation system

    NARCIS (Netherlands)

    Erp, J.B.F. van; Veen, H.J. van

    2004-01-01

    A vibrotactile display, consisting ofeight vibrating elements or tactors mounted in a driver's seat, was tested in a driving simulator. Participants drove with visual, tactile and multimodal navigation displays through a built-up area. Workload and the reaction time to navigation messages were

  15. 78 FR 41304 - Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments; Correction

    Science.gov (United States)

    2013-07-10

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Part 105 [Docket No. USCG-2013-0397] RIN 1625-AC06 Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments; Correction AGENCY: Coast Guard, DHS. ACTION: Final rule; correction. SUMMARY: The Coast Guard published a final rule...

  16. Investigation of air transportation technology at Ohio University, 1980. [general aviation aircraft and navigation aids

    Science.gov (United States)

    Mcfarland, R. H.

    1981-01-01

    Specific configurations of first and second order all digital phase locked loops were analyzed for both ideal and additive gaussian noise inputs. In addition, a design for a hardware digital phase locked loop capable of either first or second order operation was evaluated along with appropriate experimental data obtained from testing of the hardware loop. All parameters chosen for the analysis and the design of the digital phase locked loop were consistent with an application to an Omega navigation receiver although neither the analysis nor the design are limited to this application. For all cases tested, the experimental data showed close agreement with the analytical results indicating that the Markov chain model for first and second order digital phase locked loops are valid.

  17. SLS Model Based Design: A Navigation Perspective

    Science.gov (United States)

    Oliver, T. Emerson; Anzalone, Evan; Park, Thomas; Geohagan, Kevin

    2018-01-01

    The SLS Program has implemented a Model-based Design (MBD) and Model-based Requirements approach for managing component design information and system requirements. This approach differs from previous large-scale design efforts at Marshall Space Flight Center where design documentation alone conveyed information required for vehicle design and analysis and where extensive requirements sets were used to scope and constrain the design. The SLS Navigation Team is responsible for the Program-controlled Design Math Models (DMMs) which describe and represent the performance of the Inertial Navigation System (INS) and the Rate Gyro Assemblies (RGAs) used by Guidance, Navigation, and Controls (GN&C). The SLS Navigation Team is also responsible for navigation algorithms. The navigation algorithms are delivered for implementation on the flight hardware as a DMM. For the SLS Block 1B design, the additional GPS Receiver hardware model is managed as a DMM at the vehicle design level. This paper describes the models, and discusses the processes and methods used to engineer, design, and coordinate engineering trades and performance assessments using SLS practices as applied to the GN&C system, with a particular focus on the navigation components.

  18. An investigation of the roles of geomagnetic and acoustic cues in whale navigation and orientation

    Science.gov (United States)

    Allen, Ann Nichole

    Many species of whales migrate annually between high-latitude feeding grounds and low-latitude breeding grounds. Yet, very little is known about how these animals navigate during these migrations. This thesis takes a first look at the roles of geomagnetic and acoustic cues in humpback whale navigation and orientation, in addition to documenting some effects of human-produced sound on beaked whales. The tracks of satellite-tagged humpback whales migrating from Hawaii to Alaska were found to have systematic deviations from the most direct route to their destination. For each whale, a migration track was modeled using only geomagnetic inclination and intensity as navigation cues. The directions in which the observed and modeled tracks deviated from the direct route were compared and found to match for 7 out of 9 tracks, which suggests that migrating humpback whales may use geomagnetic cues for navigation. Additionally, in all cases the observed tracks followed a more direct route to the destination than the modeled tracks, indicating that the whales are likely using additional navigational cues to improve their routes. There is a significant amount of sound available in the ocean to aid in navigation and orientation of a migrating whale. This research investigates the possibility that humpback whales migrating near-shore listen to sounds of snapping shrimp to detect the presence of obstacles, such as rocky islands. A visual tracking study was used, together with hydrophone recordings near a rocky island, to determine whether the whales initiated an avoidance reaction at distances that varied with the acoustic detection range of the island. No avoidance reaction was found. Propagation modeling of the snapping shrimp sounds suggested that the detection range of the island was beyond the visual limit of the survey, indicating that snapping shrimp sounds may be suited as a long-range indicator of a rocky island. Lastly, this thesis identifies a prolonged avoidance

  19. The return to foreign aid

    DEFF Research Database (Denmark)

    Dalgaard, Carl-Johan Lars; Hansen, Henrik

    We investigate the marginal productivity of investment across countries. The aim is to estimate the return on investments financed by foreign aid and by domestic resource mobilization, using aggregate data. Both returns are expected to vary across countries and time. Consequently we develop...... a correlated random coefficients model, to estimate the average aggregate return on ‘aid investments’ and ‘domestic investments’. Across different estimators and two different sources for GDP and investment data our findings are remarkably robust; the average gross return on ‘aid investments’ is about 20 per...

  20. Restricted Navigation Areas - USACE IENC

    Data.gov (United States)

    Department of Homeland Security — These inland electronic Navigational charts (IENCs) were developed from available data used in maintenance of Navigation channels. Users of these IENCs should be...

  1. Optical surgical navigation system causes pulse oximeter malfunction.

    Science.gov (United States)

    Satoh, Masaaki; Hara, Tetsuhito; Tamai, Kenji; Shiba, Juntaro; Hotta, Kunihisa; Takeuchi, Mamoru; Watanabe, Eiju

    2015-01-01

    An optical surgical navigation system is used as a navigator to facilitate surgical approaches, and pulse oximeters provide valuable information for anesthetic management. However, saw-tooth waves on the monitor of a pulse oximeter and the inability of the pulse oximeter to accurately record the saturation of a percutaneous artery were observed when a surgeon started an optical navigation system. The current case is thought to be the first report of this navigation system interfering with pulse oximetry. The causes of pulse jamming and how to manage an optical navigation system are discussed.

  2. Target relative navigation results from hardware-in-the-loop tests using the sinplex navigation system

    NARCIS (Netherlands)

    Steffes, S.; Dumke, M.; Heise, D.; Sagliano, M.; Samaan, M.; Theil, S.; Boslooper, E.C.; Oosterling, J.A.J.; Schulte, J.; Skaborn, D.; Söderholm, S.; Conticello, S.; Esposito, M.; Yanson, Y.; Monna, B.; Stelwagen, F.; Visee, R.

    2014-01-01

    The goal of the SINPLEX project is to develop an innovative solution to significantly reduce the mass of the navigation subsystem for exploration missions which include landing and/or rendezvous and capture phases. The system mass is reduced while still maintaining good navigation performance as

  3. Time and Motion Study of a Community Patient Navigator

    Directory of Open Access Journals (Sweden)

    Sara S. Phillips

    2014-04-01

    Full Text Available Research on patient navigation has focused on validating the utility of navigators by defining their roles and analyzing their effects on patient outcomes, patient satisfaction, and cost effectiveness. Patient navigators are increasingly used outside the research context, and their roles without research responsibilities may look very different. This pilot study captured the activities of a community patient navigator for uninsured women with a positive screening test for breast cancer, using a time and motion approach over a period of three days. We followed the actions of this navigator minute by minute to assess the relative ratios of actions performed and to identify areas for time efficiency improvement to increase direct time with patients. This novel approach depicts the duties of a community patient navigator no longer fettered by navigation logs, research team meetings, surveys, and the consent process. We found that the community patient navigator was able to spend more time with patients in the clinical context relative to performing paperwork or logging communication with patients as a result of her lack of research responsibilities. By illuminating how community patient navigation functions as separate from the research setting, our results will inform future hiring and training of community patient navigators, system design and operations for improving the efficiency and efficacy of navigators, and our understanding of what community patient navigators do in the absence of research responsibilities.

  4. Reliability of image-free navigation to monitor lower-limb alignment.

    Science.gov (United States)

    Pearle, Andrew D; Goleski, Patrick; Musahl, Volker; Kendoff, Daniel

    2009-02-01

    Proper alignment of the mechanical axis of the lower limb is the principal goal of a high tibial osteotomy. A well-accepted and relevant technical specification is the coronal plane lower-limb alignment. Target values for coronal plane alignment after high tibial osteotomy include 2 degrees of overcorrection, while tolerances for this specification have been established as 2 degrees to 4 degrees. However, the role of axial plane and sagittal plane realignment after high tibial osteotomy is poorly understood; consequently, targets and tolerance for this technical specification remain undefined. This article reviews the literature concerning the reliability and precision of navigation in monitoring the clinically relevant specification of lower-limb alignment in high tibial osteotomy. We conclude that image-free navigation registration may be clinically useful for intraoperative monitoring of the coronal plane only. Only fair and poor results for the axial and sagittal planes can be obtained by image-free navigation systems. In the future, combined image-based data, such as those from radiographs, magnetic resonance imaging, and gait analysis, may be used to help to improve the accuracy and reproducibility of quantitative intraoperative monitoring of lower-limb alignment.

  5. Navigating the fifth dimension: new concepts in interactive multimodality and multidimensional image navigation

    Science.gov (United States)

    Ratib, Osman; Rosset, Antoine; Dahlbom, Magnus; Czernin, Johannes

    2005-04-01

    Display and interpretation of multi dimensional data obtained from the combination of 3D data acquired from different modalities (such as PET-CT) require complex software tools allowing the user to navigate and modify the different image parameters. With faster scanners it is now possible to acquire dynamic images of a beating heart or the transit of a contrast agent adding a fifth dimension to the data. We developed a DICOM-compliant software for real time navigation in very large sets of 5 dimensional data based on an intuitive multidimensional jog-wheel widely used by the video-editing industry. The software, provided under open source licensing, allows interactive, single-handed, navigation through 3D images while adjusting blending of image modalities, image contrast and intensity and the rate of cine display of dynamic images. In this study we focused our effort on the user interface and means for interactively navigating in these large data sets while easily and rapidly changing multiple parameters such as image position, contrast, intensity, blending of colors, magnification etc. Conventional mouse-driven user interface requiring the user to manipulate cursors and sliders on the screen are too cumbersome and slow. We evaluated several hardware devices and identified a category of multipurpose jogwheel device that is used in the video-editing industry that is particularly suitable for rapidly navigating in five dimensions while adjusting several display parameters interactively. The application of this tool will be demonstrated in cardiac PET-CT imaging and functional cardiac MRI studies.

  6. Indication and training protocols to provide “vision” aids

    NARCIS (Netherlands)

    Kooijman, Aart C.; Steyvers, Franciscus J.J.M.; Melis, Bart; Havik, Else

    2011-01-01

    Introduction. Support for visually impaired or blind people (VIPs) can be a selection out of a wide range of opportunities: optical magnifiers, CCTV magnifiers, guide dogs, Braille display, night vision goggles, GPS-based navigation systems, indoor navigation systems, orientation and route

  7. 75 FR 48564 - Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments, Sector...

    Science.gov (United States)

    2010-08-11

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard 33 CFR Parts 3 and 165 [Docket No. USCG-2010-0351] RIN 1625-ZA25 Navigation and Navigable Waters; Technical, Organizational, and Conforming Amendments, Sector Columbia River, WA AGENCY: Coast Guard, DHS. ACTION: Final rule. SUMMARY: This rule makes non-substantive...

  8. Landmarks or panoramas: what do navigating ants attend to for guidance?

    Directory of Open Access Journals (Sweden)

    Beugnon Guy

    2011-08-01

    Full Text Available Abstract Background Insects are known to rely on terrestrial landmarks for navigation. Landmarks are used to chart a route or pinpoint a goal. The distant panorama, however, is often thought not to guide navigation directly during a familiar journey, but to act as a contextual cue that primes the correct memory of the landmarks. Results We provided Melophorus bagoti ants with a huge artificial landmark located right near the nest entrance to find out whether navigating ants focus on such a prominent visual landmark for homing guidance. When the landmark was displaced by small or large distances, ant routes were affected differently. Certain behaviours appeared inconsistent with the hypothesis that guidance was based on the landmark only. Instead, comparisons of panoramic images recorded on the field, encompassing both landmark and distal panorama, could explain most aspects of the ant behaviours. Conclusion Ants navigating along a familiar route do not focus on obvious landmarks or filter out distal panoramic cues, but appear to be guided by cues covering a large area of their panoramic visual field, including both landmarks and distal panorama. Using panoramic views seems an appropriate strategy to cope with the complexity of natural scenes and the poor resolution of insects' eyes. The ability to isolate landmarks from the rest of a scene may be beyond the capacity of animals that do not possess a dedicated object-perception visual stream like primates.

  9. Randomized controlled dissemination study of community-to-clinic navigation to promote CRC screening: Study design and implications.

    Science.gov (United States)

    Larkey, Linda; Szalacha, Laura; Herman, Patricia; Gonzalez, Julie; Menon, Usha

    2017-02-01

    Regular screening facilitates early diagnosis of colorectal cancer (CRC) and reduction of CRC morbidity and mortality. Screening rates for minorities and low-income populations remain suboptimal. Provider referral for CRC screening is one of the strongest predictors of adherence, but referrals are unlikely among those who have no clinic home (common among poor and minority populations). This group randomized controlled study will test the effectiveness of an evidence based tailored messaging intervention in a community-to-clinic navigation context compared to no navigation. Multicultural, underinsured individuals from community sites will be randomized (by site) to receive CRC screening education only, or education plus navigation. In Phase I, those randomized to education plus navigation will be guided to make a clinic appointment to receive a provider referral for CRC screening. Patients attending clinic appointments will continue to receive navigation until screened (Phase II) regardless of initial arm assignment. We hypothesize that those receiving education plus navigation will be more likely to attend clinic appointments (H1) and show higher rates of screening (H2) compared to those receiving education only. Phase I group assignment will be used as a control variable in analysis of screening follow-through in Phase II. Costs per screening achieved will be evaluated for each condition and the RE-AIM framework will be used to examine dissemination results. The novelty of our study design is the translational dissemination model that will allow us to assess the real-world application of an efficacious intervention previously tested in a randomized controlled trial. Copyright © 2016. Published by Elsevier Inc.

  10. Examining Augmented Reality to Improve Navigation Skills in Postsecondary Students with Intellectual Disability

    Science.gov (United States)

    Smith, Cate C.; Cihak, David F.; Kim, Byungkeon; McMahon, Don D.; Wright, Rachel

    2017-01-01

    The purpose of this study was to examine the effects of using mobile technology to improve navigation skills in three students with intellectual disability (ID) in a postsecondary education program. Navigation skills included using an augmented reality iPhone app to make correct "waypoint" decisions when traveling by foot on a university…

  11. Estimation with applications to tracking and navigation theory, algorthims and software

    CERN Document Server

    Bar-Shalom, Yaakov; Kirubarajan, Thiagalingam

    2001-01-01

    Expert coverage of the design and implementation of state estimation algorithms for tracking and navigation Estimation with Applications to Tracking and Navigation treats the estimation of various quantities from inherently inaccurate remote observations. It explains state estimator design using a balanced combination of linear systems, probability, and statistics. The authors provide a review of the necessary background mathematical techniques and offer an overview of the basic concepts in estimation. They then provide detailed treatments of all the major issues in estimatio

  12. Fault-tolerant and Diagnostic Methods for Navigation

    DEFF Research Database (Denmark)

    Blanke, Mogens

    2003-01-01

    to diagnose faults and autonomously provide valid navigation data, disregarding any faulty sensor data and use sensor fusion to obtain a best estimate for users. This paper discusses how diagnostic and fault-tolerant methods are applicable in marine systems. An example chosen is sensor fusion for navigation......Precise and reliable navigation is crucial, and for reasons of safety, essential navigation instruments are often duplicated. Hardware redundancy is mostly used to manually switch between instruments should faults occur. In contrast, diagnostic methods are available that can use analytic redundancy...

  13. Navigating ‘riskscapes’

    DEFF Research Database (Denmark)

    Gee, Stephanie; Skovdal, Morten

    2017-01-01

    This paper draws on interview data to examine how international health care workers navigated risk during the unprecedented Ebola outbreak in West Africa. It identifies the importance of place in risk perception, including how different spatial localities give rise to different feelings of threat...... or safety, some from the construction of physical boundaries, and others mediated through aspects of social relations, such as trust, communication and team dynamics. Referring to these spatial localities as ‘riskscapes’, the paper calls for greater recognition of the role of place in understanding risk...... perception, and how people navigate risk....

  14. Comparison of Navigation-Related Brain Regions in Migratory versus Non-Migratory Noctuid Moths

    Directory of Open Access Journals (Sweden)

    Liv de Vries

    2017-09-01

    Full Text Available Brain structure and function are tightly correlated across all animals. While these relations are ultimately manifestations of differently wired neurons, many changes in neural circuit architecture lead to larger-scale alterations visible already at the level of brain regions. Locating such differences has served as a beacon for identifying brain areas that are strongly associated with the ecological needs of a species—thus guiding the way towards more detailed investigations of how brains underlie species-specific behaviors. Particularly in relation to sensory requirements, volume-differences in neural tissue between closely related species reflect evolutionary investments that correspond to sensory abilities. Likewise, memory-demands imposed by lifestyle have revealed similar adaptations in regions associated with learning. Whether this is also the case for species that differ in their navigational strategy is currently unknown. While the brain regions associated with navigational control in insects have been identified (central complex (CX, lateral complex (LX and anterior optic tubercles (AOTU, it remains unknown in what way evolutionary investments have been made to accommodate particularly demanding navigational strategies. We have thus generated average-shape atlases of navigation-related brain regions of a migratory and a non-migratory noctuid moth and used volumetric analysis to identify differences. We further compared the results to identical data from Monarch butterflies. Whereas we found differences in the size of the nodular unit of the AOTU, the LX and the protocerebral bridge (PB between the two moths, these did not unambiguously reflect migratory behavior across all three species. We conclude that navigational strategy, at least in the case of long-distance migration in lepidopteran insects, is not easily deductible from overall neuropil anatomy. This suggests that the adaptations needed to ensure successful migratory behavior

  15. Magnetic navigation in a coronary phantom: experimental results.

    Science.gov (United States)

    García-García, Héctor M; Tsuchida, Keiichi; Meulenbrug, Hans; Ong, Andrew T L; Van der Giessen, Willem J; Serruys, Patrick W

    2005-11-01

    The objective was to investigate the efficacy of a magnetic navigation system (MNS) in a coronary phantom. The number of coronary interventional procedures performed is steadily increasing with the availability of new devices to treat more complex lesions. Vessel tortuosity remains an important limiting factor in percutaneous coronary intervention. The MNS can orient the tip of magnetized wire. The coronary phantom is a representation of the coronary tree. Two operators using both a magnetic wire and a standard wire, measured the procedural time (PT), the fluoroscopic time (FT) and the radiation exposure/area product (DAP) required to navigate through to fourteen segments. Ten wire advancements were performed per segment. In all but two segments, the PT was significantly longer using magnetic navigation than using manual navigation. The median FT in the left main artery (LMA) - first septal segment was 7 seconds vs. 18 seconds, with magnetic and manual navigation respectively, (p=0.05); in the LMA - obtuse marginal segment the median FT was 15 seconds with magnetic navigation vs. 29.5 seconds with manual navigation, (p=0.01); in the segment from proximal right coronary artery (RCA1) to the acute marginal branch, the median FT was 8 seconds with magnetic vs. 11 seconds with manual navigation, (p=0.05); and in the RCA1 -posterior descending segment the median FT was 9.5 seconds with magnetic vs. 15 seconds with manual navigation, (p=0.006). The MNS facilitates wire access to distal segments in a coronary phantom, with a reduction in FT and radiation exposure using magnetic navigation in tortuous segments.

  16. Using HIV&AIDS statistics in pre-service Mathematics Education to integrate HIV&AIDS education.

    Science.gov (United States)

    van Laren, Linda

    2012-12-01

    In South Africa, the HIV&AIDS education policy documents indicate opportunities for integration across disciplines/subjects. There are different interpretations of integration/inclusion and mainstreaming HIV&AIDS education, and numerous levels of integration. Integration ensures that learners experience the disciplines/subjects as being linked and related, and integration is required to support and expand the learners' opportunities to attain skills, acquire knowledge and develop attitudes and values across the curriculum. This study makes use of self-study methodology where I, a teacher educator, aim to improve my practice through including HIV&AIDS statistics in Mathematics Education. This article focuses on how I used HIV&AIDS statistics to facilitate pre-service teacher reflection and introduce them to integration of HIV&AIDS education across the curriculum. After pre-service teachers were provided with HIV statistics, they drew a pie chart which graphically illustrated the situation and reflected on issues relating to HIV&AIDS. Three themes emerged from the analysis of their reflections. The themes relate to the need for further HIV&AIDS education, the changing pastoral role of teachers and the changing context of teaching. This information indicates that the use of statistics is an appropriate means of initiating the integration of HIV&AIDS education into the academic curriculum.

  17. 33 CFR 209.170 - Violations of laws protecting navigable waters.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Violations of laws protecting navigable waters. 209.170 Section 209.170 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF... navigable waters. (a) [Reserved] (b) Injuries to Government works. Section 14 of the River and Harbor Act of...

  18. Nothing prepared me to manage AIDS.

    Science.gov (United States)

    Banas, G E

    1992-01-01

    Articles and seminars about AIDS in the workplace are not adequate preparation for the genuine problems faced by actual managers in real organizations. There are no easy, win-win solutions to the impossible dilemmas AIDS presents, only various forms of damage control and, at best, more or less humane compromises. Gary Banas knows. Over a period of four years, two of his direct reports developed AIDS, and he watched them suffer through debility, slowly deteriorating performance, and eventual death. He also watched the gradual decline of their subordinates' productivity and morale. He found that, to different degrees, both men refused to acknowledge their illness and their decreasing organizational effectiveness. One of them resisted the author's efforts to give him an easier job at no loss in salary. Both insisted on confidentiality long after the rumor mill had identified their problem. In the course of these two consecutive ordeals, Banas discovered that AIDS patients fall into no single, neat category. AIDS is not an issue but a disease, and the people who get it are human beings first and victims second. He also learned that AIDS affects everyone around the sick individual and that almost every choice a manager makes will injure someone. Finally, he came to understand that while managers have an unequivocal obligation to treat AIDS-afflicted employees with compassion and respect, they have an equally unequivocal obligation to keep their organizations functioning. "Don't let anyone kid you," Banas warns. "When you confront AIDS in the workplace, you will face untenable choices that seem to pit your obligation to humanity against your obligation to your organization.(ABSTRACT TRUNCATED AT 250 WORDS)

  19. The Return to Foreign Aid

    DEFF Research Database (Denmark)

    Dalgaard, Carl-Johan Lars; Hansen, Henrik

    2017-01-01

    We estimate the average rate of return on investments financed by aid and by domestic resource mobilisation, using aggregate data. Both returns are expected to vary across countries and time. Consequently we develop a correlated random coefficients model to estimate the average returns. Across...... different estimators and two different data sources for GDP and investment our findings are remarkably robust; the average gross return on ‘aid investments’ is about 20 per cent. This is in accord with micro estimates of the economic rate of return on aid projects and with aggregate estimates of the rate...

  20. Comparative advantage between traditional and smart navigation systems

    Science.gov (United States)

    Shin, Jeongkyu; Kim, Pan-Jun; Kim, Seunghwan

    2013-03-01

    The smart navigation system that refers to real-time traffic data is believed to be superior to traditional navigation systems. To verify this belief, we created an agent-based traffic model and examined the effect of changing market share of the traditional shortest-travel-time algorithm based navigation and the smart navigation system. We tested our model on the grid and actual metropolitan road network structures. The result reveals that the traditional navigation system have better performance than the smart one as the market share of the smart navigation system exceeds a critical value, which is contrary to conventional expectation. We suggest that the superiority inversion between agent groups is strongly related to the traffic weight function form, and is general. We also found that the relationship of market share, traffic flow density and travel time is determined by the combination of congestion avoidance behavior of the smartly navigated agents and the inefficiency of shortest-travel-time based navigated agents. Our results can be interpreted with the minority game and extended to the diverse topics of opinion dynamics. This work was supported by the Original Technology Research Program for Brain Science through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology(No. 2010-0018847).

  1. Differential GNSS and Vision-Based Tracking to Improve Navigation Performance in Cooperative Multi-UAV Systems

    Directory of Open Access Journals (Sweden)

    Amedeo Rodi Vetrella

    2016-12-01

    Full Text Available Autonomous navigation of micro-UAVs is typically based on the integration of low cost Global Navigation Satellite System (GNSS receivers and Micro-Electro-Mechanical Systems (MEMS-based inertial and magnetic sensors to stabilize and control the flight. The resulting navigation performance in terms of position and attitude accuracy may not suffice for other mission needs, such as the ones relevant to fine sensor pointing. In this framework, this paper presents a cooperative UAV navigation algorithm that allows a chief vehicle, equipped with inertial and magnetic sensors, a Global Positioning System (GPS receiver, and a vision system, to improve its navigation performance (in real time or in the post processing phase exploiting formation flying deputy vehicles equipped with GPS receivers. The focus is set on outdoor environments and the key concept is to exploit differential GPS among vehicles and vision-based tracking (DGPS/Vision to build a virtual additional navigation sensor whose information is then integrated in a sensor fusion algorithm based on an Extended Kalman Filter. The developed concept and processing architecture are described, with a focus on DGPS/Vision attitude determination algorithm. Performance assessment is carried out on the basis of both numerical simulations and flight tests. In the latter ones, navigation estimates derived from the DGPS/Vision approach are compared with those provided by the onboard autopilot system of a customized quadrotor. The analysis shows the potential of the developed approach, mainly deriving from the possibility to exploit magnetic- and inertial-independent accurate attitude information.

  2. Inland Electronic Navigational Charts (IENC)

    Data.gov (United States)

    Army Corps of Engineers, Department of the Army, Department of Defense — These Inland Electronic Navigational Charts (IENCs) were developed from available data used in maintenance of Navigation channels. Users of these IENCs should be...

  3. Navigating diversity with nursing students through difficult dialogues: A qualitative study

    Directory of Open Access Journals (Sweden)

    Deirdre E. van Jaarsveldt

    2015-01-01

    Full Text Available The Difficult Dialogues project is an international initiative that promotes the development of the art and skill of civil discourse as an essential outcome of higher education. At the University of the Free State, South Africa, the project is implemented by the Centre for Teaching and Learning. When intergroup conflict started disrupting the academic performance of first year nursing students, the School of Nursing consulted with the centre to facilitate a Difficult Dialogues session. This article describes the engineering of a session programme to facilitate learning about navigating diversity and responding to conflict in a constructive way. The rich data of a qualitative inquiry conducted via the Critical Incident Questionnaire are triangulated with literature and other feedback provided to describe to what extent the session contributed towards student learning. A number of participants indicated that they had learnt to respect diversity and had realised that they could co-operate as a team in spite of individual differences. As additional evidence, the students listed specific skills that could aid them in navigating diversity and conflict in future. Considering that the School strives to establish inclusion during the orientation of students, this case raises questions about the sufficiency of such endeavours. In conclusion it is asked to what extent nurse educators should be expected to implement strategies to address issues of diversity in the classroom on a continuous basis.

  4. Exploitation of Semantic Building Model in Indoor Navigation Systems

    Science.gov (United States)

    Anjomshoaa, A.; Shayeganfar, F.; Tjoa, A. Min

    2009-04-01

    There are many types of indoor and outdoor navigation tools and methodologies available. A majority of these solutions are based on Global Positioning Systems (GPS) and instant video and image processing. These approaches are ideal for open world environments where very few information about the target location is available, but for large scale building environments such as hospitals, governmental offices, etc the end-user will need more detailed information about the surrounding context which is especially important in case of people with special needs. This paper presents a smart indoor navigation solution that is based on Semantic Web technologies and Building Information Model (BIM). The proposed solution is also aligned with Google Android's concepts to enlighten the realization of results. Keywords: IAI IFCXML, Building Information Model, Indoor Navigation, Semantic Web, Google Android, People with Special Needs 1 Introduction Built environment is a central factor in our daily life and a big portion of human life is spent inside buildings. Traditionally the buildings are documented using building maps and plans by utilization of IT tools such as computer-aided design (CAD) applications. Documenting the maps in an electronic way is already pervasive but CAD drawings do not suffice the requirements regarding effective building models that can be shared with other building-related applications such as indoor navigation systems. The navigation in built environment is not a new issue, however with the advances in emerging technologies like GPS, mobile and networked environments, and Semantic Web new solutions have been suggested to enrich the traditional building maps and convert them to smart information resources that can be reused in other applications and improve the interpretability with building inhabitants and building visitors. Other important issues that should be addressed in building navigation scenarios are location tagging and end-user communication

  5. A fuzzy logic based navigation for mobile robot

    International Nuclear Information System (INIS)

    Adel Ali S Al-Jumaily; Shamsudin M Amin; Mohamed Khalil

    1998-01-01

    The main issue of intelligent robot is how to reach its goal safely in real time when it moves in unknown environment. The navigational planning is becoming the central issue in development of real-time autonomous mobile robots. Behaviour based robots have been successful in reacting with dynamic environment but still there are some complexity and challenging problems. Fuzzy based behaviours present as powerful method to solve the real time reactive navigation problems in unknown environment. We shall classify the navigation generation methods, five some characteristics of these methods, explain why fuzzy logic is suitable for the navigation of mobile robot and automated guided vehicle, and describe a reactive navigation that is flexible to react through their behaviours to the change of the environment. Some simulation results will be presented to show the navigation of the robot. (Author)

  6. Using Chatbots to Aid Transition

    Science.gov (United States)

    Carayannopoulos, Sofy

    2018-01-01

    Purpose: The purpose of this paper is to examine how chatbots can be used to address two key struggles that students face in first year--a sense of being disconnected from the instructor, and information overload. The authors propose that chatbots can be a useful tool for helping students navigate the volumes of information that confront them as…

  7. Shape Perception and Navigation in Blind Adults

    Science.gov (United States)

    Gori, Monica; Cappagli, Giulia; Baud-Bovy, Gabriel; Finocchietti, Sara

    2017-01-01

    Different sensory systems interact to generate a representation of space and to navigate. Vision plays a critical role in the representation of space development. During navigation, vision is integrated with auditory and mobility cues. In blind individuals, visual experience is not available and navigation therefore lacks this important sensory signal. In blind individuals, compensatory mechanisms can be adopted to improve spatial and navigation skills. On the other hand, the limitations of these compensatory mechanisms are not completely clear. Both enhanced and impaired reliance on auditory cues in blind individuals have been reported. Here, we develop a new paradigm to test both auditory perception and navigation skills in blind and sighted individuals and to investigate the effect that visual experience has on the ability to reproduce simple and complex paths. During the navigation task, early blind, late blind and sighted individuals were required first to listen to an audio shape and then to recognize and reproduce it by walking. After each audio shape was presented, a static sound was played and the participants were asked to reach it. Movements were recorded with a motion tracking system. Our results show three main impairments specific to early blind individuals. The first is the tendency to compress the shapes reproduced during navigation. The second is the difficulty to recognize complex audio stimuli, and finally, the third is the difficulty in reproducing the desired shape: early blind participants occasionally reported perceiving a square but they actually reproduced a circle during the navigation task. We discuss these results in terms of compromised spatial reference frames due to lack of visual input during the early period of development. PMID:28144226

  8. A Qualitative Comparison between the Proportional Navigation and Differential Geometry Guidance Algorithms

    Directory of Open Access Journals (Sweden)

    Yunes Sh. ALQUDSI

    2018-06-01

    Full Text Available This paper discusses and presents an overview of the proportional navigation (PN guidance law as well as the differential geometry (DG guidance algorithm that are used to develop the intercept course of a certain target. The intent of this study is to illustrate the advantages of the guidance algorithm generated based on the concepts of differential geometry against the well-known PN guidance law. The basic principles behind the both algorithms are mentioned. Moreover, the different versions of the PN approach is briefly clarified to show the essential improvement from one version to the other. The paper terminated with numerous two-dimension simulation figures to give a great value of visual aids, illustrating the significant relations and main features and properties of both algorithms.

  9. Computer aided systems human engineering: A hypermedia tool

    Science.gov (United States)

    Boff, Kenneth R.; Monk, Donald L.; Cody, William J.

    1992-01-01

    The Computer Aided Systems Human Engineering (CASHE) system, Version 1.0, is a multimedia ergonomics database on CD-ROM for the Apple Macintosh II computer, being developed for use by human system designers, educators, and researchers. It will initially be available on CD-ROM and will allow users to access ergonomics data and models stored electronically as text, graphics, and audio. The CASHE CD-ROM, Version 1.0 will contain the Boff and Lincoln (1988) Engineering Data Compendium, MIL-STD-1472D and a unique, interactive simulation capability, the Perception and Performance Prototyper. Its features also include a specialized data retrieval, scaling, and analysis capability and the state of the art in information retrieval, browsing, and navigation.

  10. A simultaneous navigation and radiation evasion algorithm (SNARE)

    Energy Technology Data Exchange (ETDEWEB)

    Khasawneh, Mohammed A., E-mail: mkha@ieee.org [Department of Electrical Engineering, Jordan University of Science and Technology, Irbid 221 10 (Jordan); Jaradat, Mohammad A., E-mail: majaradat@just.edu.jo [Department of Mechanical Engineering, Jordan University of Science and Technology, Irbid 221 10 (Jordan); Al-Shboul, Zeina Aman M., E-mail: xeinaaman@gmail.com [Department of Electrical Engineering, Jordan University of Science and Technology, Irbid 221 10 (Jordan)

    2013-12-15

    Highlights: • A new navigation algorithm for radiation evasion around nuclear facilities. • An optimization criteria minimized under algorithm operation. • A man-borne device guiding the occupational worker towards paths that warrant least radiation × time products. • Benefits of using localized navigation as opposed to global navigation schemas. • A path discrimination function for finding the navigational paths exhibiting the least amounts of radiation. - Abstract: In this paper, we address the issue of localization as pertains to indoor navigation under radiation contaminated environments. In this context, navigation, in the absence of any GPS signals, is guided by the location of the sensors that make up the entire wireless sensor network in a given locality within a nuclear facility. It, also, draws on the radiation levels as measured by the sensors around a given locale. Here, localization is inherently embedded into the algorithm presented in (Khasawneh et al., 2011a, 2011b) which was designed to provide navigational guidance to optimize any of two criteria: “Radiation Evasion” and “Nearest Exit”. As such, the algorithm can either be applied to setting a navigational “lowest” radiation exposure path from an initial point A to some other point B; a case typical of occupational workers performing maintenance operations around the facility; or providing a radiation-safe passage from point A to the nearest exit. Algorithm's navigational performance is tested under statistical reference, wherein for a given number of runs (trials) algorithm performance is evaluated as a function of the number of steps of look-ahead it uses to acquire navigational information, and is compared against the performance of the renowned Dijkstra global navigation algorithm. This is done with reference to the amount of (radiation × time) product and that of the time needed to reach an exit point, under the two optimization criteria. To evaluate algorithm

  11. A simultaneous navigation and radiation evasion algorithm (SNARE)

    International Nuclear Information System (INIS)

    Khasawneh, Mohammed A.; Jaradat, Mohammad A.; Al-Shboul, Zeina Aman M.

    2013-01-01

    Highlights: • A new navigation algorithm for radiation evasion around nuclear facilities. • An optimization criteria minimized under algorithm operation. • A man-borne device guiding the occupational worker towards paths that warrant least radiation × time products. • Benefits of using localized navigation as opposed to global navigation schemas. • A path discrimination function for finding the navigational paths exhibiting the least amounts of radiation. - Abstract: In this paper, we address the issue of localization as pertains to indoor navigation under radiation contaminated environments. In this context, navigation, in the absence of any GPS signals, is guided by the location of the sensors that make up the entire wireless sensor network in a given locality within a nuclear facility. It, also, draws on the radiation levels as measured by the sensors around a given locale. Here, localization is inherently embedded into the algorithm presented in (Khasawneh et al., 2011a, 2011b) which was designed to provide navigational guidance to optimize any of two criteria: “Radiation Evasion” and “Nearest Exit”. As such, the algorithm can either be applied to setting a navigational “lowest” radiation exposure path from an initial point A to some other point B; a case typical of occupational workers performing maintenance operations around the facility; or providing a radiation-safe passage from point A to the nearest exit. Algorithm's navigational performance is tested under statistical reference, wherein for a given number of runs (trials) algorithm performance is evaluated as a function of the number of steps of look-ahead it uses to acquire navigational information, and is compared against the performance of the renowned Dijkstra global navigation algorithm. This is done with reference to the amount of (radiation × time) product and that of the time needed to reach an exit point, under the two optimization criteria. To evaluate algorithm

  12. Responsibility navigator

    NARCIS (Netherlands)

    Kuhlmann, Stefan; Edler, Jakob; Ordonez Matamoros, Hector Gonzalo; Randles, Sally; Walhout, Bart; Walhout, Bart; Gough, Clair; Lindner, Ralf; Lindner, Ralf; Kuhlmann, Stefan; Randles, Sally; Bedsted, Bjorn; Gorgoni, Guido; Griessler, Erich; Loconto, Allison; Mejlgaard, Niels

    2016-01-01

    Research and innovation activities need to become more responsive to societal challenges and concerns. The Responsibility Navigator, developed in the Res-AGorA project, supports decision-makers to govern such activities towards more conscious responsibility. What is considered “responsible” will

  13. Metrics for evaluating patient navigation during cancer diagnosis and treatment: crafting a policy-relevant research agenda for patient navigation in cancer care.

    Science.gov (United States)

    Guadagnolo, B Ashleigh; Dohan, Daniel; Raich, Peter

    2011-08-01

    Racial and ethnic minorities as well as other vulnerable populations experience disparate cancer-related health outcomes. Patient navigation is an emerging health care delivery innovation that offers promise in improving quality of cancer care delivery to these patients who experience unique health-access barriers. Metrics are needed to evaluate whether patient navigation can improve quality of care delivery, health outcomes, and overall value in health care during diagnosis and treatment of cancer. Information regarding the current state of the science examining patient navigation interventions was gathered via search of the published scientific literature. A focus group of providers, patient navigators, and health-policy experts was convened as part of the Patient Navigation Leadership Summit sponsored by the American Cancer Society. Key metrics were identified for assessing the efficacy of patient navigation in cancer diagnosis and treatment. Patient navigation data exist for all stages of cancer care; however, the literature is more robust for its implementation during prevention, screening, and early diagnostic workup of cancer. Relatively fewer data are reported for outcomes and efficacy of patient navigation during cancer treatment. Metrics are proposed for a policy-relevant research agenda to evaluate the efficacy of patient navigation in cancer diagnosis and treatment. Patient navigation is understudied with respect to its use in cancer diagnosis and treatment. Core metrics are defined to evaluate its efficacy in improving outcomes and mitigating health-access barriers. Copyright © 2011 American Cancer Society.

  14. Learning to navigate the healthcare system in a new country: a qualitative study.

    Science.gov (United States)

    Straiton, Melanie L; Myhre, Sonja

    2017-12-01

    Learning to navigate a healthcare system in a new country is a barrier to health care. Understanding more about the specific navigation challenges immigrants experience may be the first step towards improving health information and thus access to care. This study considers the challenges that Thai and Filipino immigrant women encounter when learning to navigate the Norwegian primary healthcare system and the strategies they use. A qualitative interview study using thematic analysis. Norway. Fifteen Thai and 15 Filipino immigrant women over the age of 18 who had been living in Norway at least one year. The women took time to understand the role of the general practitioner and some were unaware of their right to an interpreter during consultations. In addition to reliance on family members and friends in their social networks, voluntary and cultural organisations provided valuable tips and advice on how to navigate the Norwegian health system. While some women actively engaged in learning more about the system, they noted a lack of information available in multiple languages. Informal sources play an important role in learning about the health care system. Formal information should be available in different languages in order to better empower immigrant women.

  15. Location Accuracy of INS/Gravity-Integrated Navigation System on the Basis of Ocean Experiment and Simulation.

    Science.gov (United States)

    Wang, Hubiao; Wu, Lin; Chai, Hua; Bao, Lifeng; Wang, Yong

    2017-12-20

    An experiment comparing the location accuracy of gravity matching-aided navigation in the ocean and simulation is very important to evaluate the feasibility and the performance of an INS/gravity-integrated navigation system (IGNS) in underwater navigation. Based on a 1' × 1' marine gravity anomaly reference map and multi-model adaptive Kalman filtering algorithm, a matching location experiment of IGNS was conducted using data obtained using marine gravimeter. The location accuracy under actual ocean conditions was 2.83 nautical miles (n miles). Several groups of simulated data of marine gravity anomalies were obtained by establishing normally distributed random error N ( u , σ 2 ) with varying mean u and noise variance σ 2 . Thereafter, the matching location of IGNS was simulated. The results show that the changes in u had little effect on the location accuracy. However, an increase in σ 2 resulted in a significant decrease in the location accuracy. A comparison between the actual ocean experiment and the simulation along the same route demonstrated the effectiveness of the proposed simulation method and quantitative analysis results. In addition, given the gravimeter (1-2 mGal accuracy) and the reference map (resolution 1' × 1'; accuracy 3-8 mGal), location accuracy of IGNS was up to reach ~1.0-3.0 n miles in the South China Sea.

  16. Ballistic Aspects of Feasibility for Prospective Satellite Navigation Technologies

    Directory of Open Access Journals (Sweden)

    L. N. Lysenko

    2015-01-01

    Full Text Available When modeling the operating processes of ballistics and navigation support it is expedient to make decomposition of the general problem of coordinate-time and navigation support into the typical options of its engineering implementation.As the satellite navigation technologies the paper considers inter-satellite measurement and autonomous navigation mode of differential correction. It also assesses the possibility of their application to improve the accuracy of navigation determinations.Technologies using inter-satellite measurement tools such as GLONASS / GPS equipment, equipment of inter-satellite radio link, astro-optical space based devices are an independent class of navigation technologies.However, each of these options has both advantages and disadvantages that affect the eva luation of the appropriateness and feasibility of their use.The paper separately considers the problem of increasing survivability of space systems and conservation of ground control complex due to introduction of requirements to ensure the independent functioning of spacecraft and application of technologies of ballistics and navigation support, supposing to involve minimum means of automated ground control complex for these purposes.Currently, there is a completely developed theory of autonomous navigation based on astronomical positional gauges, which are used as onboard optical sensors of orientation and stabilization systems.To date, the differential navigation mode is, virtually, the only approach that can allow the olution of tasks in terms of increased accuracy, but with some restrictions.The implementation of differential mode of treatment is carried out through the creation of differential subsystems of the satellite navigation systems. These subsystems are usually divided into wide-range, regional and local ones.Analysis of ballistic aspects to implement discussed navigation technologies allowed us to identify constraints for improving accuracy to define

  17. Clinical applications of virtual navigation bronchial intervention.

    Science.gov (United States)

    Kajiwara, Naohiro; Maehara, Sachio; Maeda, Junichi; Hagiwara, Masaru; Okano, Tetsuya; Kakihana, Masatoshi; Ohira, Tatsuo; Kawate, Norihiko; Ikeda, Norihiko

    2018-01-01

    In patients with bronchial tumors, we frequently consider endoscopic treatment as the first treatment of choice. All computed tomography (CT) must satisfy several conditions necessary to analyze images by Synapse Vincent. To select safer and more precise approaches for patients with bronchial tumors, we determined the indications and efficacy of virtual navigation intervention for the treatment of bronchial tumors. We examined the efficacy of virtual navigation bronchial intervention for the treatment of bronchial tumors located at a variety of sites in the tracheobronchial tree using a high-speed 3-dimensional (3D) image analysis system, Synapse Vincent. Constructed images can be utilized to decide on the simulation and interventional strategy as well as for navigation during interventional manipulation in two cases. Synapse Vincent was used to determine the optimal planning of virtual navigation bronchial intervention. Moreover, this system can detect tumor location and alsodepict surrounding tissues, quickly, accurately, and safely. The feasibility and safety of Synapse Vincent in performing useful preoperative simulation and navigation of surgical procedures can lead to safer, more precise, and less invasion for the patient, and makes it easy to construct an image, depending on the purpose, in 5-10 minutes using Synapse Vincent. Moreover, if the lesion is in the parenchyma or sub-bronchial lumen, it helps to perform simulation with virtual skeletal subtraction to estimate potential lesion movement. By using virtual navigation system for simulation, bronchial intervention was performed with no complications safely and precisely. Preoperative simulation using virtual navigation bronchial intervention reduces the surgeon's stress levels, particularly when highly skilled techniques are needed to operate on lesions. This task, including both preoperative simulation and intraoperative navigation, leads to greater safety and precision. These technological instruments

  18. Cloud Absorption Radiometer Autonomous Navigation System - CANS

    Science.gov (United States)

    Kahle, Duncan; Gatebe, Charles; McCune, Bill; Hellwig, Dustan

    2013-01-01

    CAR (cloud absorption radiometer) acquires spatial reference data from host aircraft navigation systems. This poses various problems during CAR data reduction, including navigation data format, accuracy of position data, accuracy of airframe inertial data, and navigation data rate. Incorporating its own navigation system, which included GPS (Global Positioning System), roll axis inertia and rates, and three axis acceleration, CANS expedites data reduction and increases the accuracy of the CAR end data product. CANS provides a self-contained navigation system for the CAR, using inertial reference and GPS positional information. The intent of the software application was to correct the sensor with respect to aircraft roll in real time based upon inputs from a precision navigation sensor. In addition, the navigation information (including GPS position), attitude data, and sensor position details are all streamed to a remote system for recording and later analysis. CANS comprises a commercially available inertial navigation system with integral GPS capability (Attitude Heading Reference System AHRS) integrated into the CAR support structure and data system. The unit is attached to the bottom of the tripod support structure. The related GPS antenna is located on the P-3 radome immediately above the CAR. The AHRS unit provides a RS-232 data stream containing global position and inertial attitude and velocity data to the CAR, which is recorded concurrently with the CAR data. This independence from aircraft navigation input provides for position and inertial state data that accounts for very small changes in aircraft attitude and position, sensed at the CAR location as opposed to aircraft state sensors typically installed close to the aircraft center of gravity. More accurate positional data enables quicker CAR data reduction with better resolution. The CANS software operates in two modes: initialization/calibration and operational. In the initialization/calibration mode

  19. Teaching Young Adults with Intellectual and Developmental Disabilities Community-Based Navigation Skills to Take Public Transportation.

    Science.gov (United States)

    Price, Richard; Marsh, Abbie J; Fisher, Marisa H

    2018-03-01

    Facilitating the use of public transportation enhances opportunities for independent living and competitive, community-based employment for individuals with intellectual and developmental disabilities (IDD). Four young adults with IDD were taught through total-task chaining to use the Google Maps application, a self-prompting, visual navigation system, to take the bus to locations around a college campus and the community. Three of four participants learned to use Google Maps to independently navigate public transportation. Google Maps may be helpful in supporting independent travel, highlighting the importance of future research in teaching navigation skills. Learning to independently use public transportation increases access to autonomous activities, such as opportunities to work and to attend postsecondary education programs on large college campuses.Individuals with IDD can be taught through chaining procedures to use the Google Maps application to navigate public transportation.Mobile map applications are an effective and functional modern tool that can be used to teach community navigation.

  20. Off the Beaten tracks: Exploring Three Aspects of Web Navigation

    NARCIS (Netherlands)

    Weinreich, H.; Obendorf, H.; Herder, E.; Mayer, M.; Edmonds, H.; Hawkey, K.; Kellar, M.; Turnbull, D.

    2006-01-01

    This paper presents results of a long-term client-side Web usage study, updating previous studies that range in age from five to ten years. We focus on three aspects of Web navigation: changes in the distribution of navigation actions, speed of navigation and within-page navigation. “Navigation

  1. Image Based Solution to Occlusion Problem for Multiple Robots Navigation

    Directory of Open Access Journals (Sweden)

    Taj Mohammad Khan

    2012-04-01

    Full Text Available In machine vision, occlusions problem is always a challenging issue in image based mapping and navigation tasks. This paper presents a multiple view vision based algorithm for the development of occlusion-free map of the indoor environment. The map is assumed to be utilized by the mobile robots within the workspace. It has wide range of applications, including mobile robot path planning and navigation, access control in restricted areas, and surveillance systems. We used wall mounted fixed camera system. After intensity adjustment and background subtraction of the synchronously captured images, the image registration was performed. We applied our algorithm on the registered images to resolve the occlusion problem. This technique works well even in the existence of total occlusion for a longer period.

  2. Optimal Geometric Deployment of a Ground Based Pseudolite Navigation System to Track a Landing Aircraft

    National Research Council Canada - National Science Library

    Crawford, Matthew P

    2006-01-01

    With much of the military and civilian communities becoming dependent on GPS technology to navigate it has become imperative that the navigation systems be tested in situations in which GPS does not work...

  3. Architectural elements of hybrid navigation systems for future space transportation

    Science.gov (United States)

    Trigo, Guilherme F.; Theil, Stephan

    2017-12-01

    The fundamental limitations of inertial navigation, currently employed by most launchers, have raised interest for GNSS-aided solutions. Combination of inertial measurements and GNSS outputs allows inertial calibration online, solving the issue of inertial drift. However, many challenges and design options unfold. In this work we analyse several architectural elements and design aspects of a hybrid GNSS/INS navigation system conceived for space transportation. The most fundamental architectural features such as coupling depth, modularity between filter and inertial propagation, and open-/closed-loop nature of the configuration, are discussed in the light of the envisaged application. Importance of the inertial propagation algorithm and sensor class in the overall system are investigated, being the handling of sensor errors and uncertainties that arise with lower grade sensory also considered. In terms of GNSS outputs we consider receiver solutions (position and velocity) and raw measurements (pseudorange, pseudorange-rate and time-difference carrier phase). Receiver clock error handling options and atmospheric error correction schemes for these measurements are analysed under flight conditions. System performance with different GNSS measurements is estimated through covariance analysis, being the differences between loose and tight coupling emphasized through partial outage simulation. Finally, we discuss options for filter algorithm robustness against non-linearities and system/measurement errors. A possible scheme for fault detection, isolation and recovery is also proposed.

  4. Architectural elements of hybrid navigation systems for future space transportation

    Science.gov (United States)

    Trigo, Guilherme F.; Theil, Stephan

    2018-06-01

    The fundamental limitations of inertial navigation, currently employed by most launchers, have raised interest for GNSS-aided solutions. Combination of inertial measurements and GNSS outputs allows inertial calibration online, solving the issue of inertial drift. However, many challenges and design options unfold. In this work we analyse several architectural elements and design aspects of a hybrid GNSS/INS navigation system conceived for space transportation. The most fundamental architectural features such as coupling depth, modularity between filter and inertial propagation, and open-/closed-loop nature of the configuration, are discussed in the light of the envisaged application. Importance of the inertial propagation algorithm and sensor class in the overall system are investigated, being the handling of sensor errors and uncertainties that arise with lower grade sensory also considered. In terms of GNSS outputs we consider receiver solutions (position and velocity) and raw measurements (pseudorange, pseudorange-rate and time-difference carrier phase). Receiver clock error handling options and atmospheric error correction schemes for these measurements are analysed under flight conditions. System performance with different GNSS measurements is estimated through covariance analysis, being the differences between loose and tight coupling emphasized through partial outage simulation. Finally, we discuss options for filter algorithm robustness against non-linearities and system/measurement errors. A possible scheme for fault detection, isolation and recovery is also proposed.

  5. PRIVATE GRAPHS – ACCESS RIGHTS ON GRAPHS FOR SEAMLESS NAVIGATION

    Directory of Open Access Journals (Sweden)

    W. Dorner

    2016-06-01

    Full Text Available After the success of GNSS (Global Navigational Satellite Systems and navigation services for public streets, indoor seems to be the next big development in navigational services, relying on RTLS – Real Time Locating Services (e.g. WIFI and allowing seamless navigation. In contrast to navigation and routing services on public streets, seamless navigation will cause an additional challenge: how to make routing data accessible to defined users or restrict access rights for defined areas or only to parts of the graph to a defined user group? The paper will present case studies and data from literature, where seamless and especially indoor navigation solutions are presented (hospitals, industrial complexes, building sites, but the problem of restricted access rights was only touched from a real world, but not a technical perspective. The analysis of case studies will show, that the objective of navigation and the different target groups for navigation solutions will demand well defined access rights and require solutions, how to make only parts of a graph to a user or application available to solve a navigational task. The paper will therefore introduce the concept of private graphs, which is defined as a graph for navigational purposes covering the street, road or floor network of an area behind a public street and suggest different approaches how to make graph data for navigational purposes available considering access rights and data protection, privacy and security issues as well.

  6. Requirements for e-Navigation Architectures

    Directory of Open Access Journals (Sweden)

    Axel Hahn

    2016-12-01

    Full Text Available Technology is changing the way of navigation. New technologies for communication and navigation can be found on virtually every vessel. System architectures define structure and cooperation of components and subsystems. IMO, IALA, costal authorities, technology provider and many more actually propose new architectures for e-Navigation. This paper looks at other transportation domains and technical as normative requirements for e-Navigation architectures. With the aim of identifying possible synergies in the research, development, certification and standardization, this paper sets out to compare requirements and approaches of these two domains with respect to safety and security aspects. Since from an autonomy perspective, the automotive domain has started earlier and therefore has achieved a higher degree of technical progress, we will start with an overview of the developments in this domain. After that, the paper discusses the requirements on automation and assistance systems in the maritime domain and gives an overview of the developments into this direction within the maritime domain. This then allows us to compare developments in both domains and to derive recommendations for further developments in the maritime domain at the end of this paper.

  7. 33 CFR 207.170d - Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee...

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Taylor Creek, navigation lock (S-193) across the entrance to Taylor Creek at Lake Okeechobee, Okeechobee, Fla.; use, administration..., DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.170d Taylor Creek, navigation lock...

  8. Surgical Navigation

    DEFF Research Database (Denmark)

    Azarmehr, Iman; Stokbro, Kasper; Bell, R. Bryan

    2017-01-01

    Purpose: This systematic review investigates the most common indications, treatments, and outcomes of surgical navigation (SN) published from 2010 to 2015. The evolution of SN and its application in oral and maxillofacial surgery have rapidly developed over recent years, and therapeutic indicatio...

  9. Neuro-fuzzy controller to navigate an unmanned vehicle.

    Science.gov (United States)

    Selma, Boumediene; Chouraqui, Samira

    2013-12-01

    A Neuro-fuzzy control method for an Unmanned Vehicle (UV) simulation is described. The objective is guiding an autonomous vehicle to a desired destination along a desired path in an environment characterized by a terrain and a set of distinct objects, such as obstacles like donkey traffic lights and cars circulating in the trajectory. The autonomous navigate ability and road following precision are mainly influenced by its control strategy and real-time control performance. Fuzzy Logic Controller can very well describe the desired system behavior with simple "if-then" relations owing the designer to derive "if-then" rules manually by trial and error. On the other hand, Neural Networks perform function approximation of a system but cannot interpret the solution obtained neither check if its solution is plausible. The two approaches are complementary. Combining them, Neural Networks will allow learning capability while Fuzzy-Logic will bring knowledge representation (Neuro-Fuzzy). In this paper, an artificial neural network fuzzy inference system (ANFIS) controller is described and implemented to navigate the autonomous vehicle. Results show several improvements in the control system adjusted by neuro-fuzzy techniques in comparison to the previous methods like Artificial Neural Network (ANN).

  10. GPS Navigation and Tracking Device

    Directory of Open Access Journals (Sweden)

    Yahya Salameh Khraisat

    2011-10-01

    Full Text Available Since the introduction of GPS Navigation systems in the marketplace, consumers and businesses have been coming up with innovative ways to use the technology in their everyday life. GPS Navigation and Tracking systems keep us from getting lost when we are in strange locations, they monitor children when they are away from home, keep track of business vehicles and can even let us know where a philandering partner is at all times. Because of this we attend to build a GPS tracking device to solve the mentioned problems. Our work consists of the GPS module that collects data from satellites and calculates the position information before transmitting them to the user’s PC (of Navigation system or observers (of Tracking System using wireless technology (GSM.

  11. Navigation in musculoskeletal oncology: An overview

    Directory of Open Access Journals (Sweden)

    Guy Vernon Morris

    2018-01-01

    Full Text Available Navigation in surgery has increasingly become more commonplace. The use of this technological advancement has enabled ever more complex and detailed surgery to be performed to the benefit of surgeons and patients alike. This is particularly so when applying the use of navigation within the field of orthopedic oncology. The developments in computer processing power coupled with the improvements in scanning technologies have permitted the incorporation of navigational procedures into day-to-day practice. A comprehensive search of PubMed using the search terms “navigation”, “orthopaedic” and “oncology” yielded 97 results. After filtering for English language papers, excluding spinal surgery and review articles, this resulted in 38 clinical studies and case reports. These were analyzed in detail by the authors (GM and JS and the most relevant papers reviewed. We have sought to provide an overview of the main types of navigation systems currently available within orthopedic oncology and to assess some of the evidence behind its use.

  12. Virtual environment to evaluate multimodal feedback strategies for augmented navigation of the visually impaired.

    Science.gov (United States)

    Hara, Masayuki; Shokur, Solaiman; Yamamoto, Akio; Higuchi, Toshiro; Gassert, Roger; Bleuler, Hannes

    2010-01-01

    This paper proposes a novel experimental environment to evaluate multimodal feedback strategies for augmented navigation of the visually impaired. The environment consists of virtual obstacles and walls, an optical tracking system and a simple device with audio and vibrotactile feedback that interacts with the virtual environment, and presents many advantages in terms of safety, flexibility, control over experimental parameters and cost. The subject can freely move in an empty room, while the position of head and arm are tracked in real time. A virtual environment (walls, obstacles) is randomly generated, and audio and vibrotactile feedback are given according to the distance from the subjects arm to the virtual walls/objects. We investigate the applicability of our environment using a simple, commercially available feedback device. Experiments with unimpaired subjects show that it is possible to use the setup to "blindly" navigate in an unpredictable virtual environment. This validates the environment as a test platform to investigate navigation and exploration strategies of the visually impaired, and to evaluate novel technologies for augmented navigation.

  13. Learning to navigate the healthcare system in a new country: a qualitative study

    Science.gov (United States)

    Straiton, Melanie L.; Myhre, Sonja

    2017-01-01

    Objective Learning to navigate a healthcare system in a new country is a barrier to health care. Understanding more about the specific navigation challenges immigrants experience may be the first step towards improving health information and thus access to care. This study considers the challenges that Thai and Filipino immigrant women encounter when learning to navigate the Norwegian primary healthcare system and the strategies they use. Design A qualitative interview study using thematic analysis. Setting Norway. Participants Fifteen Thai and 15 Filipino immigrant women over the age of 18 who had been living in Norway at least one year. Results The women took time to understand the role of the general practitioner and some were unaware of their right to an interpreter during consultations. In addition to reliance on family members and friends in their social networks, voluntary and cultural organisations provided valuable tips and advice on how to navigate the Norwegian health system. While some women actively engaged in learning more about the system, they noted a lack of information available in multiple languages. Conclusions Informal sources play an important role in learning about the health care system. Formal information should be available in different languages in order to better empower immigrant women. PMID:29087232

  14. Terminal area automatic navigation, guidance, and control 1: Automatic rollout, turnoff, and taxis

    Science.gov (United States)

    Pines, S.

    1981-01-01

    A study developed for the TCV B-737, designed to apply existing navigation aids plus magnetic leader cable signals and develop breaking and reverse thrust guidance laws to provide for rapid automated rollout, turnoff, and taxi to reduce runway occupation time for a wide variety of landing conditions for conventional commercial-type aircraft, is described. Closed loop guidance laws for braking and reverse thrust are derived for rollout, turnoff, and taxi, as functions of the landing speed, the desired taxi speed and the distance to go. Brake limitations for wet runway conditions and reverse thrust limitations are taken into account to provide decision rules to avoid tire skid and to choose an alternate turnoff point, farther down the runway, to accommodate extreme landing conditions.

  15. Usability testing of ANSWER: a web-based methotrexate decision aid for patients with rheumatoid arthritis.

    Science.gov (United States)

    Li, Linda C; Adam, Paul M; Townsend, Anne F; Lacaille, Diane; Yousefi, Charlene; Stacey, Dawn; Gromala, Diane; Shaw, Chris D; Tugwell, Peter; Backman, Catherine L

    2013-12-01

    Decision aids are evidence-based tools designed to inform people of the potential benefit and harm of treatment options, clarify their preferences and provide a shared decision-making structure for discussion at a clinic visit. For patients with rheumatoid arthritis (RA) who are considering methotrexate, we have developed a web-based patient decision aid called the ANSWER (Animated, Self-serve, Web-based Research Tool). This study aimed to: 1) assess the usability of the ANSWER prototype; 2) identify strengths and limitations of the ANSWER from the patient's perspective. The ANSWER prototype consisted of: 1) six animated patient stories and narrated information on the evidence of methotrexate for RA; 2) interactive questionnaires to clarify patients' treatment preferences. Eligible participants for the usability test were patients with RA who had been prescribed methotrexate. They were asked to verbalize their thoughts (i.e., think aloud) while using the ANSWER, and to complete the System Usability Scale (SUS) to assess overall usability (range = 0-100; higher = more user friendly). Participants were audiotaped and observed, and field notes were taken. The testing continued until no new modifiable issues were found. We used descriptive statistics to summarize participant characteristics and the SUS scores. Content analysis was used to identified usability issues and navigation problems. 15 patients participated in the usability testing. The majority were aged 50 or over and were university/college graduates (n = 8, 53.4%). On average they took 56 minutes (SD = 34.8) to complete the tool. The mean SUS score was 81.2 (SD = 13.5). Content analysis of audiotapes and field notes revealed four categories of modifiable usability issues: 1) information delivery (i.e., clarity of the information and presentation style); 2) navigation control (i.e., difficulties in recognizing and using the navigation control buttons); 3) layout (i.e., position of the

  16. Global navigation satellite systems performance analysis and augmentation strategies in aviation

    Science.gov (United States)

    Sabatini, Roberto; Moore, Terry; Ramasamy, Subramanian

    2017-11-01

    In an era of significant air traffic expansion characterized by a rising congestion of the radiofrequency spectrum and a widespread introduction of Unmanned Aircraft Systems (UAS), Global Navigation Satellite Systems (GNSS) are being exposed to a variety of threats including signal interferences, adverse propagation effects and challenging platform-satellite relative dynamics. Thus, there is a need to characterize GNSS signal degradations and assess the effects of interfering sources on the performance of avionics GNSS receivers and augmentation systems used for an increasing number of mission-essential and safety-critical aviation tasks (e.g., experimental flight testing, flight inspection/certification of ground-based radio navigation aids, wide area navigation and precision approach). GNSS signal deteriorations typically occur due to antenna obscuration caused by natural and man-made obstructions present in the environment (e.g., elevated terrain and tall buildings when flying at low altitude) or by the aircraft itself during manoeuvring (e.g., aircraft wings and empennage masking the on-board GNSS antenna), ionospheric scintillation, Doppler shift, multipath, jamming and spurious satellite transmissions. Anyone of these phenomena can result in partial to total loss of tracking and possible tracking errors, depending on the severity of the effect and the receiver characteristics. After designing GNSS performance threats, the various augmentation strategies adopted in the Communication, Navigation, Surveillance/Air Traffic Management and Avionics (CNS + A) context are addressed in detail. GNSS augmentation can take many forms but all strategies share the same fundamental principle of providing supplementary information whose objective is improving the performance and/or trustworthiness of the system. Hence it is of paramount importance to consider the synergies offered by different augmentation strategies including Space Based Augmentation System (SBAS), Ground

  17. A navigator-based rigid body motion correction for magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ullisch, Marcus Goerge

    2012-01-01

    A novel three-dimensional navigator k-space trajectory for rigid body motion detection for Magnetic Resonance Imaging (MRI) - the Lissajous navigator - was developed and quantitatively compared to the existing spherical navigator trajectory [1]. The spherical navigator cannot sample the complete spherical surface due to slew rate limitations of the scanner hardware. By utilizing a two dimensional Lissajous figure which is projected onto the spherical surface, the Lissajous navigator overcomes this limitation. The complete sampling of the sphere consequently leads to rotation estimates with higher and more isotropic accuracy. Simulations and phantom measurements were performed for both navigators. Both simulations and measurements show a significantly higher overall accuracy of the Lissajous navigator and a higher isotropy of the rotation estimates. Measured under identical conditions with identical postprocessing, the measured mean absolute error of the rotation estimates for the Lissajous navigator was 38% lower (0.3 ) than for the spherical navigator (0.5 ). The maximum error of the Lissajous navigator was reduced by 48% relative to the spherical navigator. The Lissajous navigator delivers higher accuracy of rotation estimation and a higher degree of isotropy than the spherical navigator with no evident drawbacks; these are two decisive advantages, especially for high-resolution anatomical imaging.

  18. A navigator-based rigid body motion correction for magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ullisch, Marcus Goerge

    2012-01-24

    A novel three-dimensional navigator k-space trajectory for rigid body motion detection for Magnetic Resonance Imaging (MRI) - the Lissajous navigator - was developed and quantitatively compared to the existing spherical navigator trajectory [1]. The spherical navigator cannot sample the complete spherical surface due to slew rate limitations of the scanner hardware. By utilizing a two dimensional Lissajous figure which is projected onto the spherical surface, the Lissajous navigator overcomes this limitation. The complete sampling of the sphere consequently leads to rotation estimates with higher and more isotropic accuracy. Simulations and phantom measurements were performed for both navigators. Both simulations and measurements show a significantly higher overall accuracy of the Lissajous navigator and a higher isotropy of the rotation estimates. Measured under identical conditions with identical postprocessing, the measured mean absolute error of the rotation estimates for the Lissajous navigator was 38% lower (0.3 ) than for the spherical navigator (0.5 ). The maximum error of the Lissajous navigator was reduced by 48% relative to the spherical navigator. The Lissajous navigator delivers higher accuracy of rotation estimation and a higher degree of isotropy than the spherical navigator with no evident drawbacks; these are two decisive advantages, especially for high-resolution anatomical imaging.

  19. 33 CFR 117.458 - Inner Harbor Navigation Canal, New Orleans.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Inner Harbor Navigation Canal, New Orleans. 117.458 Section 117.458 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF... Harbor Navigation Canal, New Orleans. (a) The draws of the SR 46 (St. Claude Avenue) bridge, mile 0.5...

  20. Rosetta Star Tracker and Navigation Camera

    DEFF Research Database (Denmark)

    Thuesen, Gøsta

    1998-01-01

    Proposal in response to the Invitation to Tender (ITT) issued by Matra Marconi Space (MSS) for the procurement of the ROSETTA Star Tracker and Navigation Camera.......Proposal in response to the Invitation to Tender (ITT) issued by Matra Marconi Space (MSS) for the procurement of the ROSETTA Star Tracker and Navigation Camera....

  1. Ego-motion based on EM for bionic navigation

    Science.gov (United States)

    Yue, Xiaofeng; Wang, L. J.; Liu, J. G.

    2015-12-01

    Researches have proved that flying insects such as bees can achieve efficient and robust flight control, and biologists have explored some biomimetic principles regarding how they control flight. Based on those basic studies and principles acquired from the flying insects, this paper proposes a different solution of recovering ego-motion for low level navigation. Firstly, a new type of entropy flow is provided to calculate the motion parameters. Secondly, EKF, which has been used for navigation for some years to correct accumulated error, and estimation-Maximization, which is always used to estimate parameters, are put together to determine the ego-motion estimation of aerial vehicles. Numerical simulation on MATLAB has proved that this navigation system provides more accurate position and smaller mean absolute error than pure optical flow navigation. This paper has done pioneering work in bionic mechanism to space navigation.

  2. Recruiting newly referred lung cancer patients to a patient navigator intervention (PACO)

    DEFF Research Database (Denmark)

    Kjær, Trille Kristina; Mellemgaard, Anders; Stensøe Oksen, Marianne

    2017-01-01

    OBJECTIVES: The incidence of and survival from lung cancer are associated with socioeconomic position, and disparities have been observed in both curative and palliative treatment for lung cancer. 'Patient navigation' is valuable in addressing health disparity, with timely treatment and transitio...... of internal and external obstacles to patients' recruitment. The study provides insight into the barriers to recruitment of socially disadvantaged cancer patients to clinical trials and will inform future trial designs....... to care. We conducted a pilot study to test the feasibility of a patient navigator program (PAtient COach) for newly diagnosed lung cancer. We present the trial, the findings from the pilot study and discuss factors that might have affected recruitment rates. MATERIAL AND METHODS: We invited 24 lung...... of 1 or 2 or be over 65 years of age. The patient navigators targeted four phases of treatment: planning, initiation, compliance and end of treatment. RESULTS: Six months after the start of the study, we had recruited only six patients, due mainly to inherent patient resistance and because only 50...

  3. Cancer Patient Navigator Tasks across the Cancer Care Continuum

    Science.gov (United States)

    Braun, Kathryn L.; Kagawa-Singer, Marjorie; Holden, Alan E. C.; Burhansstipanov, Linda; Tran, Jacqueline H.; Seals, Brenda F.; Corbie-Smith, Giselle; Tsark, JoAnn U.; Harjo, Lisa; Foo, Mary Anne; Ramirez, Amelie G.

    2011-01-01

    Cancer patient navigation (PN) programs have been shown to increase access to and utilization of cancer care for poor and underserved individuals. Despite mounting evidence of its value, cancer patient navigation is not universally understood or provided. We describe five PN programs and the range of tasks their navigators provide across the cancer care continuum (education and outreach, screening, diagnosis and staging, treatment, survivorship, and end-of-life). Tasks are organized by their potential to make cancer services understandable, available, accessible, affordable, appropriate, and accountable. Although navigators perform similar tasks across the five programs, their specific approaches reflect differences in community culture, context, program setting, and funding. Task lists can inform the development of programs, job descriptions, training, and evaluation. They also may be useful in the move to certify navigators and establish mechanisms for reimbursement for navigation services. PMID:22423178

  4. Piles, tabs and overlaps in navigation among documents

    DEFF Research Database (Denmark)

    Jakobsen, Mikkel Rønne; Hornbæk, Kasper

    2010-01-01

    Navigation among documents is a frequent, but ill supported activity. Overlapping or tabbed documents are widespread, but they offer limited visibility of their content. We explore variations on navigation support: arranging documents with tabs, as overlapping windows, and in piles. In an experim......Navigation among documents is a frequent, but ill supported activity. Overlapping or tabbed documents are widespread, but they offer limited visibility of their content. We explore variations on navigation support: arranging documents with tabs, as overlapping windows, and in piles....... In an experiment we compared 11 participants’ navigation with these variations and found strong task effects. Overall, overlapping windows were preferred and their structured layout worked well with some tasks. Surprisingly, tabbed documents were efficient in tasks requiring simply finding a document. Piled...... on document navigation and its support by piling....

  5. Growing Homophilic Networks Are Natural Navigable Small Worlds.

    Science.gov (United States)

    Malkov, Yury A; Ponomarenko, Alexander

    2016-01-01

    Navigability, an ability to find a logarithmically short path between elements using only local information, is one of the most fascinating properties of real-life networks. However, the exact mechanism responsible for the formation of navigation properties remained unknown. We show that navigability can be achieved by using only two ingredients present in the majority of networks: network growth and local homophily, giving a persuasive answer how the navigation appears in real-life networks. A very simple algorithm produces hierarchical self-similar optimally wired navigable small world networks with exponential degree distribution by using only local information. Adding preferential attachment produces a scale-free network which has shorter greedy paths, but worse (power law) scaling of the information extraction locality (algorithmic complexity of a search). Introducing saturation of the preferential attachment leads to truncated scale-free degree distribution that offers a good tradeoff between these parameters and can be useful for practical applications. Several features of the model are observed in real-life networks, in particular in the brain neural networks, supporting the earlier suggestions that they are navigable.

  6. Growing Homophilic Networks Are Natural Navigable Small Worlds.

    Directory of Open Access Journals (Sweden)

    Yury A Malkov

    Full Text Available Navigability, an ability to find a logarithmically short path between elements using only local information, is one of the most fascinating properties of real-life networks. However, the exact mechanism responsible for the formation of navigation properties remained unknown. We show that navigability can be achieved by using only two ingredients present in the majority of networks: network growth and local homophily, giving a persuasive answer how the navigation appears in real-life networks. A very simple algorithm produces hierarchical self-similar optimally wired navigable small world networks with exponential degree distribution by using only local information. Adding preferential attachment produces a scale-free network which has shorter greedy paths, but worse (power law scaling of the information extraction locality (algorithmic complexity of a search. Introducing saturation of the preferential attachment leads to truncated scale-free degree distribution that offers a good tradeoff between these parameters and can be useful for practical applications. Several features of the model are observed in real-life networks, in particular in the brain neural networks, supporting the earlier suggestions that they are navigable.

  7. Assisting Older Persons With Adjusting to Hearing Aids.

    Science.gov (United States)

    Lane, Kari R; Clark, M Kathleen

    2016-02-01

    This intervention study tested the feasibility and initial effect of Hearing Aid Reintroduction (HEAR) to assist persons aged 70 to 85 years adjust to hearing aids. Following this 30-day intervention, hearing aid use increased between 1 and 8 hr per day with 50% of participants able to wear them for at least 4 hr. Hearing aid satisfaction improved from not satisfied to satisfied overall. The study demonstrated that HEAR is feasible and could improve hearing aid use of a substantial number of older persons who had previously failed to adjust to their hearing aids and had given up. However, further testing among a larger and more diverse population is needed to better understand the effectiveness and sustainability of the intervention. © The Author(s) 2014.

  8. Development Aid: A Guide to Facts and Issues.

    Science.gov (United States)

    de Silva, Leelananda

    This eight-chapter book provides information on Official Development Assistance (ODA), its importance in relation to developed and developing countries, and its prospects and limitations. Major areas discussed include: (1) the institutional evolution of development aid; (2) forms of ODA, including project aid, program aid, bilateral aid,…

  9. Autonomous self-navigating drug-delivery vehicles: from science fiction to reality.

    Science.gov (United States)

    Petrenko, Valery A

    2017-12-01

    Low efficacy of targeted nanomedicines in biological experiments enforced us to challenge the traditional concept of drug targeting and suggest a paradigm of 'addressed self-navigating drug-delivery vehicles,' in which affinity selection of targeting peptides and vasculature-directed in vivo phage screening is replaced by the migration selection, which explores ability of 'promiscuous' phages and their proteins to migrate through the tumor-surrounding cellular barriers, using a 'hub and spoke' delivery strategy, and penetrate into the tumor affecting the diverse tumor cell population. The 'self-navigating' drug-delivery paradigm can be used as a theoretical and technical platform in design of a novel generation of molecular medications and imaging probes for precise and personal medicine. [Formula: see text].

  10. Fault-tolerant Sensor Fusion for Marine Navigation

    DEFF Research Database (Denmark)

    Blanke, Mogens

    2006-01-01

    Reliability of navigation data are critical for steering and manoeuvring control, and in particular so at high speed or in critical phases of a mission. Should faults occur, faulty instruments need be autonomously isolated and faulty information discarded. This paper designs a navigation solution...... where essential navigation information is provided even with multiple faults in instrumentation. The paper proposes a provable correct implementation through auto-generated state-event logics in a supervisory part of the algorithms. Test results from naval vessels document the performance and shows...... events where the fault-tolerant sensor fusion provided uninterrupted navigation data despite temporal instrument defects...

  11. EYE TRACKING TO EXPLORE THE IMPACTS OF PHOTOREALISTIC 3D REPRESENTATIONS IN PEDSTRIAN NAVIGATION PERFORMANCE

    Directory of Open Access Journals (Sweden)

    W. Dong

    2016-06-01

    Full Text Available Despite the now-ubiquitous two-dimensional (2D maps, photorealistic three-dimensional (3D representations of cities (e.g., Google Earth have gained much attention by scientists and public users as another option. However, there is no consistent evidence on the influences of 3D photorealism on pedestrian navigation. Whether 3D photorealism can communicate cartographic information for navigation with higher effectiveness and efficiency and lower cognitive workload compared to the traditional symbolic 2D maps remains unknown. This study aims to explore whether the photorealistic 3D representation can facilitate processes of map reading and navigation in digital environments using a lab-based eye tracking approach. Here we show the differences of symbolic 2D maps versus photorealistic 3D representations depending on users’ eye-movement and navigation behaviour data. We found that the participants using the 3D representation were less effective, less efficient and were required higher cognitive workload than using the 2D map for map reading. However, participants using the 3D representation performed more efficiently in self-localization and orientation at the complex decision points. The empirical results can be helpful to improve the usability of pedestrian navigation maps in future designs.

  12. Design Issues for MEMS-Based Pedestrian Inertial Navigation Systems

    Directory of Open Access Journals (Sweden)

    P. S. Marinushkin

    2015-01-01

    Full Text Available The paper describes design issues for MEMS-based pedestrian inertial navigation systems. By now the algorithms to estimate navigation parameters for strap-down inertial navigation systems on the basis of plural observations have been already well developed. At the same time mathematical and software processing of information in the case of pedestrian inertial navigation systems has its specificity, due to the peculiarities of their functioning and exploitation. Therefore, there is an urgent task to enhance existing fusion algorithms for use in pedestrian navigation systems. For this purpose the article analyzes the characteristics of the hardware composition and configuration of existing systems of this class. The paper shows advantages of various technical solutions. Relying on their main features it justifies a choice of the navigation system architecture and hardware composition enabling improvement of the estimation accuracy of user position as compared to the systems using only inertial sensors. The next point concerns the development of algorithms for complex processing of heterogeneous information. To increase an accuracy of the free running pedestrian inertial navigation system we propose an adaptive algorithm for joint processing of heterogeneous information based on the fusion of inertial info rmation with magnetometer measurements using EKF approach. Modeling of the algorithm was carried out using a specially developed functional prototype of pedestrian inertial navigation system, implemented as a hardware/software complex in Matlab environment. The functional prototype tests of the developed system demonstrated an improvement of the navigation parameters estimation compared to the systems based on inertial sensors only. It enables to draw a conclusion that the synthesized algorithm provides satisfactory accuracy for calculating the trajectory of motion even when using low-grade inertial MEMS sensors. The developed algorithm can be

  13. [Aged woman's vulnerability related to AIDS].

    Science.gov (United States)

    Silva, Carla Marins; Lopes, Fernanda Maria do Valle Martins; Vargens, Octavio Muniz da Costa

    2010-09-01

    This article is a systhematic literature review including the period from 1994 to 2009, whose objective was to discuss the aged woman's vulnerability in relation to Acquired Imunodeficiency Syndrome (Aids). The search for scientific texts was accomplished in the following databases: Biblioteca Virtual em Saúde, Scientific Eletronic Library Online (SciELO), Literatura Latino-Americana e do Caribe em Ciências da Saúde (LILACS) and Medical Literature Analysis and Retrieval System Online (MEDLINE). The descriptors used were vulnerability, woman and Aids. Eighteen texts were analyzed, including articles in scientific journals, thesis and dissertations. As a conclusion, it was noted that aged women and vulnerability to Aids are directly related, through gender characteristics including submission and that were built historical and socially. We consider as fundamental the development of studies which may generate publications accessible to women, in order to help them see themselves as persons vulnerable to Aids contagion just for being women.

  14. Visual navigation using edge curve matching for pinpoint planetary landing

    Science.gov (United States)

    Cui, Pingyuan; Gao, Xizhen; Zhu, Shengying; Shao, Wei

    2018-05-01

    Pinpoint landing is challenging for future Mars and asteroid exploration missions. Vision-based navigation scheme based on feature detection and matching is practical and can achieve the required precision. However, existing algorithms are computationally prohibitive and utilize poor-performance measurements, which pose great challenges for the application of visual navigation. This paper proposes an innovative visual navigation scheme using crater edge curves during descent and landing phase. In the algorithm, the edge curves of the craters tracked from two sequential images are utilized to determine the relative attitude and position of the lander through a normalized method. Then, considering error accumulation of relative navigation, a method is developed. That is to integrate the crater-based relative navigation method with crater-based absolute navigation method that identifies craters using a georeferenced database for continuous estimation of absolute states. In addition, expressions of the relative state estimate bias are derived. Novel necessary and sufficient observability criteria based on error analysis are provided to improve the navigation performance, which hold true for similar navigation systems. Simulation results demonstrate the effectiveness and high accuracy of the proposed navigation method.

  15. Paediatric patient navigation models of care in Canada: An environmental scan.

    Science.gov (United States)

    Luke, Alison; Doucet, Shelley; Azar, Rima

    2018-05-01

    (1) To provide other organizations with useful information when implementing paediatric navigation programs and (2) to inform the implementation of a navigation care centre in New Brunswick for children with complex health conditions. This environmental scan consisted of a literature review of published and grey literature for paediatric patient navigation programs across Canada. Additional programs were found following discussions with program coordinators and navigators. Interviews were conducted with key staff from each program and included questions related to patient condition; target population and location; method delivery; navigator background; and navigator roles. Data analysis included analysis of interviews and identification of common themes across the different programs. We interviewed staff from 19 paediatric navigation programs across Canada. Programs varied across a number of different themes, including: condition and disease type, program location (e.g., hospital or clinic), navigator background (e.g., registered nurse or peer/lay navigator) and method of delivery (e.g., phone or face-to-face). Overall, navigator roles are similar across all programs, including advocacy, education, support and assistance in accessing resources from both within and outside the health care system. This scan offers a road map of Canadian paediatric navigation programs. Knowledge learned from this scan will inform stakeholders who are either involved in the delivery of paediatric patient navigation programs or planning to implement such a program. Specifically, our scan informed the development of a navigation centre for children with complex health conditions in New Brunswick.

  16. Gendered vulnerability to AIDS and its research implications

    OpenAIRE

    Wiegers, E.S.

    2008-01-01

    According to the various studies, AIDS affects all facets of people’s livelihoods through illness and death and the subsequent care for orphaned children. Much of this literature uses rural households affected by HIV/AIDS as the unit of analysis and do not disaggregate data by hosting orphans, AIDS-related chronic illness and AIDS death. However, the AIDS epidemic has resulted in increased appearance of households headed by widows, elderly and orphans; households with orphaned children; house...

  17. Can AIDS stigma be reduced to poverty stigma? Exploring Zimbabwean children's representations of poverty and AIDS

    Science.gov (United States)

    Campbell, C; Skovdal, M; Mupambireyi, Z; Madanhire, C; Robertson, L; Nyamukapa, C A; Gregson, S

    2012-01-01

    Objective We use children's drawings to investigate social stigmatization of AIDS-affected and poverty-affected children by their peers, in the light of suggestions that the stigmatization of AIDS-affected children might derive more from the poverty experienced by these children than from their association with AIDS. Methods A qualitative study, in rural Zimbabwe, used draw-and-write techniques to elicit children's (10–12 years) representations of AIDS-affected children (n= 30) and poverty-affected children (n= 33) in 2009 and 2010 respectively. Results Representations of children affected by AIDS and by poverty differed significantly. The main problems facing AIDS-affected children were said to be the psychosocial humiliations of AIDS stigma and children's distress about sick relatives. Contrastingly, poverty-affected children were depicted as suffering from physical and material neglect and deprivation. Children affected by AIDS were described as caregivers of parents whom illness prevented from working. This translated into admiration and respect for children's active contribution to household survival. Poverty-affected children were often portrayed as more passive victims of their guardians' inability or unwillingness to work or to prioritize their children's needs, with these children having fewer opportunities to exercise agency in response to their plight. Conclusions The nature of children's stigmatization of their AIDS-affected peers may often be quite distinct from poverty stigma, in relation to the nature of suffering (primarily psychosocial and material respectively), the opportunities for agency offered by each affliction, and the opportunities each condition offers for affected children to earn the respect of their peers and community. We conclude that the particular nature of AIDS stigma offers greater opportunities for stigma reduction than poverty stigma. PMID:21985490

  18. Can AIDS stigma be reduced to poverty stigma? Exploring Zimbabwean children's representations of poverty and AIDS.

    Science.gov (United States)

    Campbell, C; Skovdal, M; Mupambireyi, Z; Madanhire, C; Robertson, L; Nyamukapa, C A; Gregson, S

    2012-09-01

    We use children's drawings to investigate social stigmatization of AIDS-affected and poverty-affected children by their peers, in the light of suggestions that the stigmatization of AIDS-affected children might derive more from the poverty experienced by these children than from their association with AIDS. A qualitative study, in rural Zimbabwe, used draw-and-write techniques to elicit children's (10-12 years) representations of AIDS-affected children (n= 30) and poverty-affected children (n= 33) in 2009 and 2010 respectively. Representations of children affected by AIDS and by poverty differed significantly. The main problems facing AIDS-affected children were said to be the psychosocial humiliations of AIDS stigma and children's distress about sick relatives. Contrastingly, poverty-affected children were depicted as suffering from physical and material neglect and deprivation. Children affected by AIDS were described as caregivers of parents whom illness prevented from working. This translated into admiration and respect for children's active contribution to household survival. Poverty-affected children were often portrayed as more passive victims of their guardians' inability or unwillingness to work or to prioritize their children's needs, with these children having fewer opportunities to exercise agency in response to their plight. The nature of children's stigmatization of their AIDS-affected peers may often be quite distinct from poverty stigma, in relation to the nature of suffering (primarily psychosocial and material respectively), the opportunities for agency offered by each affliction, and the opportunities each condition offers for affected children to earn the respect of their peers and community. We conclude that the particular nature of AIDS stigma offers greater opportunities for stigma reduction than poverty stigma. © 2011 Blackwell Publishing Ltd.

  19. Navigation in Cross-cultural business relationships

    DEFF Research Database (Denmark)

    Andersen, Poul Houman

    2001-01-01

    Cross-cultural business navigation concerns the process of handling the complexity of several interacting cultural spheres of influence......Cross-cultural business navigation concerns the process of handling the complexity of several interacting cultural spheres of influence...

  20. Survey of computer vision technology for UVA navigation

    Science.gov (United States)

    Xie, Bo; Fan, Xiang; Li, Sijian

    2017-11-01

    Navigation based on computer version technology, which has the characteristics of strong independence, high precision and is not susceptible to electrical interference, has attracted more and more attention in the filed of UAV navigation research. Early navigation project based on computer version technology mainly applied to autonomous ground robot. In recent years, the visual navigation system is widely applied to unmanned machine, deep space detector and underwater robot. That further stimulate the research of integrated navigation algorithm based on computer version technology. In China, with many types of UAV development and two lunar exploration, the three phase of the project started, there has been significant progress in the study of visual navigation. The paper expounds the development of navigation based on computer version technology in the filed of UAV navigation research and draw a conclusion that visual navigation is mainly applied to three aspects as follows.(1) Acquisition of UAV navigation parameters. The parameters, including UAV attitude, position and velocity information could be got according to the relationship between the images from sensors and carrier's attitude, the relationship between instant matching images and the reference images and the relationship between carrier's velocity and characteristics of sequential images.(2) Autonomous obstacle avoidance. There are many ways to achieve obstacle avoidance in UAV navigation. The methods based on computer version technology ,including feature matching, template matching, image frames and so on, are mainly introduced. (3) The target tracking, positioning. Using the obtained images, UAV position is calculated by using optical flow method, MeanShift algorithm, CamShift algorithm, Kalman filtering and particle filter algotithm. The paper expounds three kinds of mainstream visual system. (1) High speed visual system. It uses parallel structure, with which image detection and processing are

  1. Visual Guided Navigation

    National Research Council Canada - National Science Library

    Banks, Martin

    1999-01-01

    .... Similarly, the problem of visual navigation is the recovery of an observer's self-motion with respect to the environment from the moving pattern of light reaching the eyes and the complex of extra...

  2. Benefits of multisensory presentation on perception, memory and navigation

    NARCIS (Netherlands)

    Philippi, T.G.|info:eu-repo/dai/nl/313711577

    2012-01-01

    Navigation is the process of planning and following routes to travel from the current location to a target location. In comparison with real world navigation, we have considerable difficulty with navigation in virtual environments. An important cause is that less information is presented in a

  3. Navigation system for interstitial brachytherapy

    International Nuclear Information System (INIS)

    Strassmann, G.; Kolotas, C.; Heyd, R.

    2000-01-01

    The purpose of the stud was to develop a computed tomography (CT) based electromagnetic navigation system for interstitial brachytherapy. This is especially designed for situations when needles have to be positioned adjacent to or within critical anatomical structures. In such instances interactive 3D visualisation of the needle positions is essential. The material consisted of a Polhemus electromagnetic 3D digitizer, a Pentium 200 MHz laptop and a voice recognition for continuous speech. In addition, we developed an external reference system constructed of Perspex which could be positioned above the tumour region and attached to the patient using a non-invasive fixation method. A specially designed needle holder and patient bed were also developed. Measurements were made on a series of phantoms in order to study the efficacy and accuracy of the navigation system. The mean navigation accuracy of positioning the 20.0 cm length metallic needles within the phantoms was in the range 2.0-4.1 mm with a maximum of 5.4 mm. This is an improvement on the accuracy of a CT-guided technique which was in the range 6.1-11.3 mm with a maximum of 19.4 mm. The mean reconstruction accuracy of the implant geometry was 3.2 mm within a non-ferromagnetic environment. We found that although the needles were metallic this did not have a significant influence. We also found for our experimental setups that the CT table and operation table non-ferromagnetic parts had no significant influence on the navigation accuracy. This navigation system will be a very useful clinical tool for interstitial brachytherapy applications, particularly when critical structures have to be avoided. It also should provide a significant improvement on our existing technique

  4. Ecodesign Navigator

    DEFF Research Database (Denmark)

    Simon, M; Evans, S.; McAloone, Timothy Charles

    The Ecodesign Navigator is the product of a three-year research project called DEEDS - DEsign for Environment Decision Support. The initial partners were Manchester Metropolitan University, Cranfield University, Engineering 6 Physical Sciences Resaech Council, Electrolux, ICL, and the Industry...

  5. Project Management Using Modern Guidance, Navigation and Control Theory

    Science.gov (United States)

    Hill, Terry R.

    2011-01-01

    of the system. The behavior of a system, as captured in the system modeling, when properly done will aid in accurately predicting future system performance. The Feedback Control system understands the state and behavior of the system and uses feedback to adjust control inputs into the system. The feedback, which is the right arm of the Control system, allows change to be affected in the overall system; it therefore is important to not only correctly identify the system feedback inputs, but also the system response to the feedback inputs. The Navigation system takes multiple data inputs and based on a priori knowledge of the inputs, develops a statistically based weighting of the inputs and measurements to determine the system's state. Guidance and Planning Logic of the system, complete with an understanding of where the system is (provided by the Navigation system), will in turn determine where the system needs to be and how to get it there. With any system/project, it is critical that the objective of the system/project be clearly defined -- not only to plan but to measure performance and to aid in guiding the system or the project. The system principles discussed above, which can be and have been applied to the current CxP space suit development project, can also be mapped to real-world constituents, thus allowing project managers to apply systems theories that are well defined in engineering and mathematics to a discipline (i.e., Project Management) that historically has been based in personal experience and intuition. This mapping of GN&C theory to Project Management will, in turn, permit a direct, methodical approach to Project Management, planning and control providing a tool to help predict (and guide) performance and an understanding of the project constraints, how the project can be controlled, and the impacts to external influences and inputs. This approach, to a project manager, flows down to the three bottom-line variables of cost, schedule, and scope

  6. 3D-navigation for interstitial stereotactic brachytherapy; 3D-Navigation in der interstitiellen stereotaktischen Brachytherapie

    Energy Technology Data Exchange (ETDEWEB)

    Auer, T.; Hensler, E.; Eichberger, P.; Bluhm, A.; Lukas, P. [Innsbruck Univ. (Austria). Klinik fuer Strahlentherapie und Radioonkologie; Gunkel, A.; Freysinger, W.; Bale, R.; Thumfart, W.F. [Innsbruck Univ. (Austria). Klinik fuer HNO-Krankheiten; Gaber, O. [Innsbruck Univ. (Austria). Inst. fuer Anatomie

    1998-02-01

    The aim of this paper is to describe the adaption of 3D-navigation for interstitial brachytherapy. The new method leads to prospective and therefore improved planning of the therapy (position of the needle and dose distribution) and to the possibility of a virtual simulation (control if vessels or nerves are on the pathway of the needle). The EasyGuide Neuro {sup trademark} navigation system (Philips) was adapted in the way, that needles for interstitial bracachytherapy were made connectable to the pointer and correctly displayed on the screen. To determine the positioning accuracy, several attempts were performed to hit defined targets on phantoms. Two methods were used: `Free navigation`, where the needle was under control of the navigation system, and the `guided navigation` where an aligned template was used additionally to lead the needle to the target. In addition a mask system was tested, whether it met the requirements of stable and reproducible positioning. The potential of applying this method is clinical practice was tested with an anatomical specimen. About 91% of all attempts lied within 5 mm. There were even better results on the more rigid table (94%<4 mm). No difference could be seen between both application methods (`free navigation` and `navigation with template`), they showed the same accuracy. (orig./MG) [Deutsch] Es war das Ziel dieser Arbeit, ein 3D-Infrarotnavigationssystem fuer die Anforderungen der interstitiellen stereotaktischen Brachytherapie zu adaptieren. Damit wird die Planung der Therapie verbessert (prospektive Planung der Nadelpositionen und der Dosisverteilung), und eine virtuelle Simulation wird realisierbar (Kontrolle des vorgeplanten Zugangs bezueglich Verletzungsmoeglichkeit von Gefaessen oder Nerven). Das EasyGuide-Neuro {sup trademark} -Navigagationssystem (Philips) wurde so veraendert, dass Nadeln, die in der Brachytherapie Verwendung finden, am Pointer befestigt werden konnten und am Bildschirm angezeigt wurden. Um die

  7. Tinnitus Patient Navigator

    Science.gov (United States)

    ... Cure About Us Initiatives News & Events Professional Resources Tinnitus Patient Navigator Want to get started on the ... unique and may require a different treatment workflow. Tinnitus Health-Care Providers If you, or someone you ...

  8. Business leaders form alliance to fight AIDS. Thailand.

    Science.gov (United States)

    1993-10-11

    It is estimated that 33% of deaths among the working population in Thailand by the year 2000 will result from AIDS. AIDS mortality will bring decreased productivity, increased healthcare costs, a decline in tourism, reduced labor exports, and labor shortages. The AIDS epidemic in the country therefore has a direct impact upon companies' productivity and resulting profitability. Acknowledging this reality and the need for action, the Managing Director of Northwest Airlines for Thailand, Indochina, and West Asia, James P. Reinnoldt, and the General Manager of Bangkok's Regent Hotel, Bill Black, started the nonprofit Thailand Business Coalition on AIDS (TBCA) to combat AIDS. The TBCA will provide leadership, coordination, education, and resources to help companies and the business sector get a positive response to the AIDS dilemma. The organization was established to lead through and beyond the AIDS epidemic in the interest of business by promoting coherent HIV/AIDS policies and workplace education with help from nongovernmental organizations. The TBCA will be supported by membership dues, private contributions, and grants. Member companies will receive a manual and a quarterly newsletter and be allowed to join a training course on managing AIDS in the workplace. The organization's target of enlisting 250 member companies within the next 12 months means that help will be rendered in the training of 50,000 Thai workers.

  9. The impact of fMRI on multimodal navigation in surgery of cerebral lesions: four years clinical experience

    International Nuclear Information System (INIS)

    Wurm, Gabriele; Schnizer, Mathilde; Fellner, Claudia

    2008-01-01

    Neuronavigation with display of intraoperative structures, instrument locations, orientation and relationships to nearby structures can increase anatomic precision while enhancing the surgeon's confidence and his/her perception of safety. Combination of neuronavigation with functional imaging provides multimodal guidance for surgery of cerebral lesions. We evaluated the impact of functional MRI (fMRI) on surgical decision making and outcome. A neuronavigational device (StealthStation (tm), Medtronic Inc.) was used as platform to merge fMRI data with anatomic images, and to implement intraoperative multimodal guidance. In a 52-month period, where 977 surgical procedures were performed with the aid of neuronavigation, 88 patients underwent image-guided procedures using multimodal guidance. Patient, surgical and outcome data of this series was prospectively collected. Evaluation of 88 procedures on cerebral lesions in complex regions where fMRI data were integrated using the navigation system demonstrated that the additional information was presented in a user-friendly way. Computer assisted fMRI integration was found to be especially helpful in planning the best approach, in assessing alternative approaches, and in defining the extent of the surgical exposure. Furthermore, the surgeons found it more effective to interpret fMRI information when shown in a navigation system as compared to the traditional display on a light board or monitor. Multimodal navigation enhanced by fMRI was judged useful for optimization of surgery of cerebral lesions, especially in and around eloquent regions by experienced neurosurgeons. (orig.)

  10. Motor transfer from map ocular exploration to locomotion during spatial navigation from memory.

    Science.gov (United States)

    Demichelis, Alixia; Olivier, Gérard; Berthoz, Alain

    2013-02-01

    Spatial navigation from memory can rely on two different strategies: a mental simulation of a kinesthetic spatial navigation (egocentric route strategy) or visual-spatial memory using a mental map (allocentric survey strategy). We hypothesized that a previously performed "oculomotor navigation" on a map could be used by the brain to perform a locomotor memory task. Participants were instructed to (1) learn a path on a map through a sequence of vertical and horizontal eyes movements and (2) walk on the slabs of a "magic carpet" to recall this path. The main results showed that the anisotropy of ocular movements (horizontal ones being more efficient than vertical ones) influenced performances of participants when they change direction on the central slab of the magic carpet. These data suggest that, to find their way through locomotor space, subjects mentally repeated their past ocular exploration of the map, and this visuo-motor memory was used as a template for the locomotor performance.

  11. Pioneering efforts to control AIDS. Review: IHO.

    Science.gov (United States)

    Chatterji, A; Sehgal, K

    1995-01-01

    The Indian Health Organisation (IHO) is a nongovernmental organization based in Bombay with more than 12 years experience in HIV/AIDS prevention and control efforts. It has attacked ignorance and prejudice via communication efforts. IHO has created a bond with some hospital systems of Bombay. IHO disseminated information about HIV/AIDS in Bombay's red light districts and has bridged the gap between the city's medical establishment and the community most in need. IHO's aggressive street-level fighting in a sector replete with sensitive issues has somewhat isolated it from mainstream national NGOs involved in HIV/AIDS education and control as well as from the medical establishment and potential partners. IHO funds have been reduced, forcing IHO to reduce intervention programs and responses to field demands. It suffers from a high rate of turnover among middle management staff. IHO's chief advantage is its confidence gained over the past 12 years. IHO has clearly delineated the direction it wants to go: care and support programs for persons affected by HIV/AIDS and for commercial sex workers to allow them to quit prostitution, orphan care, and development of training institutions for the education and motivation of medical personnel on HIV/AIDS care and prevention. It plans to build a hospice for AIDS patients and orphans and a training center. Training activities will vary from one-week orientation programs to three-month certificate courses for medical workers, NGOs, and managers from the commercial sector. IHO is prepared to share its experiences in combating HIV/AIDS in Bombay in a team effort. As official and bilateral funding has been decreasing, IHO has targeted industry for funding. Industry has responded, which enables IHO to sustain its core programs and approaches. IHO observations show a decrease in the number of men visiting red-light districts. IHO enjoys a positive relationship with Bombay's media reporting on AIDS.

  12. Evaluation on real-time dynamic performance of BDS in PPP, RTK, and INS tightly aided modes

    Science.gov (United States)

    Gao, Zhouzheng; Li, Tuan; Zhang, Hongping; Ge, Maorong; Schuh, Harald

    2018-05-01

    Since China's BeiDou satellite navigation system (BDS) began to provide regional navigation service for Asia-Pacific region after 2012, more new generation BDS satellites have been launched to further expand BDS's coverage to be global. In this contribution, precise positioning models based on BDS and the corresponding mathematical algorithms are presented in detail. Then, an evaluation on BDS's real-time dynamic positioning and navigation performance is presented in Precise Point Positioning (PPP), Real-time Kinematic (RTK), Inertial Navigation System (INS) tightly aided PPP and RTK modes by processing a set of land-borne vehicle experiment data. Results indicate that BDS positioning Root Mean Square (RMS) in north, east, and vertical components are 2.0, 2.7, and 7.6 cm in RTK mode and 7.8, 14.7, and 24.8 cm in PPP mode, which are close to GPS positioning accuracy. Meanwhile, with the help of INS, about 38.8%, 67.5%, and 66.5% improvements can be obtained by using PPP/INS tight-integration mode. Such enhancements in RTK/INS tight-integration mode are 14.1%, 34.0%, and 41.9%. Moreover, the accuracy of velocimetry and attitude determination can be improved to be better than 1 cm/s and 0.1°, respectively. Besides, the continuity and reliability of BDS in both PPP and RTK modes can also be ameliorated significantly by INS during satellite signal missing periods.

  13. The Navigation Metaphor in Security Economics

    DEFF Research Database (Denmark)

    Pieters, Wolter; Barendse, Jeroen; Ford, Margaret

    2016-01-01

    The navigation metaphor for cybersecurity merges security architecture models and security economics. By identifying the most efficient routes for gaining access to assets from an attacker's viewpoint, an organization can optimize its defenses along these routes. The well-understood concept of na...... of navigation makes it easier to motivate and explain security investment to a wide audience, encouraging strategic security decisions....

  14. [Hearing aid application performance evaluation questionnaire to presbycusis].

    Science.gov (United States)

    Chen, Xianghong; Zhou, Huifang; Zhang, Jing; Wang, Liqun

    2011-02-01

    By matching patients with presbycusis hearing aids,hearing aid performance assessment questionnaire to fill out to assess the effect of its use and targeted to solve problems encountered in its use and improve the quality of life of older persons. Through face to face way to investigate and analyse patients with hearing aids fitting, totally 30 subjects accepted the analysis, preliminary assessment of the use of hearing aids in patient with presbycusis results and solve problems encountered in its use by using SPSS software to analyze the collecting data. HHIE questionnaire on statistical analysis, obtained in patients with hearing loss use hearing aids after the problem is a significant improvement statistical analysis of the SADL questionnaire, the conclusion is relatively satisfied with the overall satisfaction. Effects Assessment Questionnaire in patients with hearing aids hearing impairment can be epitomized the disabled after use to improve the situation and understand the satisfaction of patients with hearing aids can be an initial effect as the rehabilitation of a reliable subjective assessment of the impact assessment indicators.

  15. Markers and residual time to AIDS

    NARCIS (Netherlands)

    Geskus, R. B.

    2002-01-01

    The value of immunological and virological markers as predictors of progression to AIDS, or death by AIDS, is a topic of much current interest. Mostly, the influence of markers is investigated in a time-dependent or a baseline proportional hazard model, relating time-varying or baseline marker

  16. Mobile Robot Navigation

    DEFF Research Database (Denmark)

    Andersen, Jens Christian

    2007-01-01

    the current position to a desired destination. This thesis presents and experimentally validates solutions for road classification, obstacle avoidance and mission execution. The road classification is based on laser scanner measurements and supported at longer ranges by vision. The road classification...... is sufficiently sensitive to separate the road from flat roadsides, and to distinguish asphalt roads from gravelled roads. The vision-based road detection uses a combination of chromaticity and edge detection to outline the traversable part of the road based on a laser scanner classified sample area....... The perception of these two sensors are utilised by a path planner to allow a number of drive modes, and especially the ability to follow road edges are investigated. The navigation mission is controlled by a script language. The navigation script controls route sequencing, junction detection, junction crossing...

  17. Gravity Compensation Using EGM2008 for High-Precision Long-Term Inertial Navigation Systems

    Directory of Open Access Journals (Sweden)

    Ruonan Wu

    2016-12-01

    Full Text Available The gravity disturbance vector is one of the major error sources in high-precision and long-term inertial navigation applications. Specific to the inertial navigation systems (INSs with high-order horizontal damping networks, analyses of the error propagation show that the gravity-induced errors exist almost exclusively in the horizontal channels and are mostly caused by deflections of the vertical (DOV. Low-frequency components of the DOV propagate into the latitude and longitude errors at a ratio of 1:1 and time-varying fluctuations in the DOV excite Schuler oscillation. This paper presents two gravity compensation methods using the Earth Gravitational Model 2008 (EGM2008, namely, interpolation from the off-line database and computing gravity vectors directly using the spherical harmonic model. Particular attention is given to the error contribution of the gravity update interval and computing time delay. It is recommended for the marine navigation that a gravity vector should be calculated within 1 s and updated every 100 s at most. To meet this demand, the time duration of calculating the current gravity vector using EGM2008 has been reduced to less than 1 s by optimizing the calculation procedure. A few off-line experiments were conducted using the data of a shipborne INS collected during an actual sea test. With the aid of EGM2008, most of the low-frequency components of the position errors caused by the gravity disturbance vector have been removed and the Schuler oscillation has been attenuated effectively. In the rugged terrain, the horizontal position error could be reduced at best 48.85% of its regional maximum. The experimental results match with the theoretical analysis and indicate that EGM2008 is suitable for gravity compensation of the high-precision and long-term INSs.

  18. Gravity Compensation Using EGM2008 for High-Precision Long-Term Inertial Navigation Systems.

    Science.gov (United States)

    Wu, Ruonan; Wu, Qiuping; Han, Fengtian; Liu, Tianyi; Hu, Peida; Li, Haixia

    2016-12-18

    The gravity disturbance vector is one of the major error sources in high-precision and long-term inertial navigation applications. Specific to the inertial navigation systems (INSs) with high-order horizontal damping networks, analyses of the error propagation show that the gravity-induced errors exist almost exclusively in the horizontal channels and are mostly caused by deflections of the vertical (DOV). Low-frequency components of the DOV propagate into the latitude and longitude errors at a ratio of 1:1 and time-varying fluctuations in the DOV excite Schuler oscillation. This paper presents two gravity compensation methods using the Earth Gravitational Model 2008 (EGM2008), namely, interpolation from the off-line database and computing gravity vectors directly using the spherical harmonic model. Particular attention is given to the error contribution of the gravity update interval and computing time delay. It is recommended for the marine navigation that a gravity vector should be calculated within 1 s and updated every 100 s at most. To meet this demand, the time duration of calculating the current gravity vector using EGM2008 has been reduced to less than 1 s by optimizing the calculation procedure. A few off-line experiments were conducted using the data of a shipborne INS collected during an actual sea test. With the aid of EGM2008, most of the low-frequency components of the position errors caused by the gravity disturbance vector have been removed and the Schuler oscillation has been attenuated effectively. In the rugged terrain, the horizontal position error could be reduced at best 48.85% of its regional maximum. The experimental results match with the theoretical analysis and indicate that EGM2008 is suitable for gravity compensation of the high-precision and long-term INSs.

  19. SLS Navigation Model-Based Design Approach

    Science.gov (United States)

    Oliver, T. Emerson; Anzalone, Evan; Geohagan, Kevin; Bernard, Bill; Park, Thomas

    2018-01-01

    The SLS Program chose to implement a Model-based Design and Model-based Requirements approach for managing component design information and system requirements. This approach differs from previous large-scale design efforts at Marshall Space Flight Center where design documentation alone conveyed information required for vehicle design and analysis and where extensive requirements sets were used to scope and constrain the design. The SLS Navigation Team has been responsible for the Program-controlled Design Math Models (DMMs) which describe and represent the performance of the Inertial Navigation System (INS) and the Rate Gyro Assemblies (RGAs) used by Guidance, Navigation, and Controls (GN&C). The SLS Navigation Team is also responsible for the navigation algorithms. The navigation algorithms are delivered for implementation on the flight hardware as a DMM. For the SLS Block 1-B design, the additional GPS Receiver hardware is managed as a DMM at the vehicle design level. This paper provides a discussion of the processes and methods used to engineer, design, and coordinate engineering trades and performance assessments using SLS practices as applied to the GN&C system, with a particular focus on the Navigation components. These include composing system requirements, requirements verification, model development, model verification and validation, and modeling and analysis approaches. The Model-based Design and Requirements approach does not reduce the effort associated with the design process versus previous processes used at Marshall Space Flight Center. Instead, the approach takes advantage of overlap between the requirements development and management process, and the design and analysis process by efficiently combining the control (i.e. the requirement) and the design mechanisms. The design mechanism is the representation of the component behavior and performance in design and analysis tools. The focus in the early design process shifts from the development and

  20. 33 CFR 66.01-10 - Characteristics.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Characteristics. 66.01-10 Section 66.01-10 Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY AIDS TO... Characteristics. The characteristics of a private aid to navigation must conform to those prescribed by the United...

  1. Adaptation of spatial navigation tests to virtual reality.

    OpenAIRE

    Šupalová, Ivana

    2009-01-01

    At the Department of Neurophysiology of Memory in the Academy of Sciences in Czech Republic are recently performed tests of spatial navigation of people in experimental real enviroment called Blue Velvet Arena. In introdution of this thesis is described importancy of these tests for medical purposes and the recent solution. The main aim is to adapt this real enviroment to virtual reality, allow it's configuration and enable to collect data retieved during experiment's execution. Resulting sys...

  2. Approach to intraoperative electromagnetic navigation in orthognathic surgery: A phantom skull based trial.

    Science.gov (United States)

    Berger, Moritz; Kallus, Sebastian; Nova, Igor; Ristow, Oliver; Eisenmann, Urs; Dickhaus, Hartmut; Kuhle, Reinald; Hoffmann, Jürgen; Seeberger, Robin

    2015-11-01

    Intraoperative guidance using electromagnetic navigation is an upcoming method in maxillofacial surgery. However, due to their unwieldy structures, especially the line-of-sight problem, optical navigation devices are not used for daily orthognathic surgery. Therefore, orthognathic surgery was simulated on study phantom skulls, evaluating the accuracy and handling of a new electromagnetic tracking system. Le-Fort I osteotomies were performed on 10 plastic skulls. Orthognathic surgical planning was done in the conventional way using plaster models. Accuracy of the gold standard, splint-based model surgery versus an electromagnetic tracking system was evaluated by measuring the actual maxillary deviation using bimaxillary splints and preoperative and postoperative cone beam computer tomography imaging. The distance of five anatomical marker points were compared pre- and postoperatively. The electromagnetic tracking system was significantly more accurate in all measured parameters compared with the gold standard using bimaxillary splints (p orthognathic surgery to 0.3 mm on average. The data of this preliminary study shows a high level of accuracy in surgical orthognathic performance using electromagnetic navigation, and may offer greater precision than the conventional plaster model surgery with bimaxillary splints. This preliminary work shows great potential for the establishment of an intraoperative electromagnetic navigation system for maxillofacial surgery. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  3. Navigational Strategies of Migrating Monarch Butterflies

    Science.gov (United States)

    2014-11-10

    AFRL-OSR-VA-TR-2014-0339 NAVIGATIONAL STRATEGIES OF MIGRATING MONARCH BUTTERFLIES Steven Reppert UNIVERSITY OF MASSACHUSETTS Final Report 11/10/2014...Final Progress Statement to (Dr. Patrick Bradshaw) Contract/Grant Title: Navigational Strategies of Migrating Monarch Butterflies Contract...Grant #: FA9550-10-1-0480 Reporting Period: 01-Sept-10 to 31-Aug-14 Overview of accomplishments: Migrating monarch butterflies (Danaus

  4. Elections to the Mutual Aid Fund

    CERN Document Server

    2016-01-01

    Every two years, according to Article 6 of the Regulations of the Mutual Aid Fund, the Committee of the Mutual Aid Fund must renew one third of its membership. This year three members are outgoing. Of these three, two will stand again and one will not.   Candidates should be ready to give approximately two hours a month during working time to the Fund whose aim is to assist colleagues in financial difficulties. We invite applications from CERN Staff who wish to stand for election as a member of the CERN Mutual Aid Fund to send in their application before 17 June 2016, by email to the Fund’s President, Connie Potter (connie.potter@cern.ch).

  5. Food aid to developing countries: a survey

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, S J; Singer, H W

    1979-03-01

    Food air currently constitutes nearly 15% of official development assistance and hence has considerable potential as a stimulant to growth in less-developed countries (LDCs). This paper reviews the evidence on the impact of food aid on growth and its associated factors. While recognizing that the use of food aid is influenced by a constellation of interests in recipient and donor countries, it identifies a set of guiding principles for maximizing the effectiveness of food aid. These include the need for food (relative to other development needs), its level of substitutability with commercial imports, its incorporation in a poverty-oriented development plan, its guaranteed availability and its complementarity with financial aid. Current food air programs recognize the relevance of some of these principles - e.g. the criteria of necessity - but ignore others - notably the need to situate food aid in a comprehensive plan for improving patterns of income distribution in LDCs. 203 notes, 203 references.

  6. Navigation in space by X-ray pulsars

    CERN Document Server

    Emadzadeh, Amir Abbas

    2011-01-01

    This book covers modeling of X-ray pulsar signals and explains how X-ray pulsar signals can be used to solve the relative navigation problem. It formulates the problem, proposes a recursive solution and analyzes different aspects of the navigation system.

  7. "Aid to Thought"--Just Simulate It!

    Science.gov (United States)

    Kinczkowski, Linda; Cardon, Phillip; Speelman, Pamela

    2015-01-01

    This paper provides examples of Aid-to-Thought uses in urban decision making, classroom laboratory planning, and in a ship antiaircraft defense system. Aid-to-Thought modeling and simulations are tools students can use effectively in a STEM classroom while meeting Standards for Technological Literacy Benchmarks O and R. These projects prepare…

  8. Rapid Design and Navigation Tools to Enable Small-Body Missions

    Data.gov (United States)

    National Aeronautics and Space Administration — Rapid design and navigation tools broaden the number and scope of available missions by making the most of advances in astrodynamics and in computer software and...

  9. How to Make Financial Aid "Freshman-Friendly"

    Science.gov (United States)

    Pugh, Susan L.; Johnson, David B.

    2011-01-01

    Ultimately, making financial aid "freshman friendly" also makes financial aid "sophomore friendly," "junior friendly," and "senior friendly." Indiana University has in place an Office of Enrollment Management (OEM) model that includes focused financial aid packaging strategies complemented by unique contact…

  10. A voxelization approach to navigate through nested geometries

    CERN Document Server

    Harrison, Brent Andrew

    2016-01-01

    High energy physics experiment software typically implements a detailed description of the geometry of the relevant detector. As modern detectors increase in complexity, modelling them becomes more challenging. Typically such models are built as a nested hierarchy of O(10000) volumes reaching a depth of 10 - 20. It is desirable to develop data structures and algorithms which allow fast and efficient navigation though a given detector geometry model. We investigate the feasibility of voxelisation techniques to this end.

  11. Application of γ ray to field investigation of float mud in ocean outfalls and navigation channels

    International Nuclear Information System (INIS)

    Yi Ruiji; Ding Yuanguo; Cheng Hesen

    2007-01-01

    The γ ray gauge is used to investigate the density and distribution of float mud in navigation channel area on site. The results provide important prototype information for effectively using navigable depth and studying rules of back silting. (authors)

  12. A Navigation Analysis Tool (NAT) to assess spatial behavior in open-field and structured mazes.

    Science.gov (United States)

    Jarlier, Frédéric; Arleo, Angelo; Petit, Géraldine H; Lefort, Julie M; Fouquet, Céline; Burguière, Eric; Rondi-Reig, Laure

    2013-05-15

    Spatial navigation calls upon mnemonic capabilities (e.g. remembering the location of a rewarding site) as well as adaptive motor control (e.g. fine tuning of the trajectory according to the ongoing sensory context). To study this complex process by means of behavioral measurements it is necessary to quantify a large set of meaningful parameters on multiple time scales (from milliseconds to several minutes), and to compare them across different paradigms. Moreover, the issue of automating the behavioral analysis is critical to cope with the consequent computational load and the sophistication of the measurements. We developed a general purpose Navigation Analysis Tool (NAT) that provides an integrated architecture consisting of a data management system (implemented in MySQL), a core analysis toolbox (in MATLAB), and a graphical user interface (in JAVA). Its extensive characterization of trajectories over time, from exploratory behavior to goal-oriented navigation with decision points using a wide range of parameters, makes NAT a powerful analysis tool. In particular, NAT supplies a new set of specific measurements assessing performances in multiple intersection mazes and allowing navigation strategies to be discriminated (e.g. in the starmaze). Its user interface enables easy use while its modular organization provides many opportunities of extension and customization. Importantly, the portability of NAT to any type of maze and environment extends its exploitation far beyond the field of spatial navigation. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Mapping, Navigation, and Learning for Off-Road Traversal

    DEFF Research Database (Denmark)

    Konolige, Kurt; Agrawal, Motilal; Blas, Morten Rufus

    2009-01-01

    The challenge in the DARPA Learning Applied to Ground Robots (LAGR) project is to autonomously navigate a small robot using stereo vision as the main sensor. During this project, we demonstrated a complete autonomous system for off-road navigation in unstructured environments, using stereo vision......, online terrain traversability learning, visual odometry, map registration, planning, and control. At the end of 3 years, the system we developed outperformed all nine other teams in final blind tests over previously unseen terrain.......The challenge in the DARPA Learning Applied to Ground Robots (LAGR) project is to autonomously navigate a small robot using stereo vision as the main sensor. During this project, we demonstrated a complete autonomous system for off-road navigation in unstructured environments, using stereo vision...

  14. Examining care navigation: librarian participation in a teambased approach?

    Directory of Open Access Journals (Sweden)

    A. Tyler Nix, MSLS

    2016-11-01

    Full Text Available Objective: This study investigated responsibilities, skill sets, degrees, and certifications required of health care navigators in order to identify areas of potential overlap with health sciences librarianship. Method: The authors conducted a content analysis of health care navigator position announcements and developed and assigned forty-eight category terms to represent the sample’s responsibilities and skill sets. Results: Coordination of patient care and a bachelor’s degree were the most common responsibility and degree requirements, respectively. Results also suggest that managing and providing health information resources is an area of overlap between health care navigators and health sciences librarians, and that librarians are well suited to serve on navigation teams. Conclusion: Such overlap may provide an avenue for collaboration between navigators and health sciences librarians.

  15. Conceptual Grounds of Navigation Safety

    Directory of Open Access Journals (Sweden)

    Vladimir Torskiy

    2016-04-01

    Full Text Available The most important global problem being solved by the whole world community nowadays is to provide sustainable mankind development. Recent research in the field of sustainable development states that civilization safety is impossible without transfer sustainable development. At the same time, sustainable development (i.e. preservation of human culture and biosphere is impossible as a system that serves to meet economical, cultural, scientific, recreational and other human needs without safety. Safety plays an important role in sustainable development goals achievement. An essential condition of effective navigation functioning is to provide its safety. The “prescriptive” approach to the navigation safety, which is currently used in the world maritime field, is based on long-term experience and ship accidents investigation results. Thus this approach acted as an the great fact in reduction of number of accidents at sea. Having adopted the International Safety Management Code all the activities connected with navigation safety problems solution were transferred to the higher qualitative level. Search and development of new approaches and methods of ship accidents prevention during their operation have obtained greater importance. However, the maritime safety concept (i.e. the different points on ways, means and methods that should be used to achieve this goal hasn't been formed and described yet. The article contains a brief review of the main provisions of Navigation Safety Conceptions, which contribute to the number of accidents and incidents at sea reduction.

  16. Navigation System of Marks Areas - USACE IENC

    Data.gov (United States)

    Department of Homeland Security — These inland electronic Navigational charts (IENCs) were developed from available data used in maintenance of Navigation channels. Users of these IENCs should be...

  17. Navigating in higher education

    DEFF Research Database (Denmark)

    Thingholm, Hanne Balsby; Reimer, David; Keiding, Tina Bering

    Denne rapport er skrevet på baggrund af spørgeskemaundersøgelsen – Navigating in Higher Education (NiHE) – der rummer besvarelser fra 1410 bachelorstuderende og 283 undervisere fordelt på ni uddannelser fra Aarhus Universitet: Uddannelsesvidenskab, Historie, Nordisk sprog og litteratur, Informati......Denne rapport er skrevet på baggrund af spørgeskemaundersøgelsen – Navigating in Higher Education (NiHE) – der rummer besvarelser fra 1410 bachelorstuderende og 283 undervisere fordelt på ni uddannelser fra Aarhus Universitet: Uddannelsesvidenskab, Historie, Nordisk sprog og litteratur...

  18. Cislunar navigation

    Science.gov (United States)

    Cesarone, R. J.; Burke, J. D.; Hastrup, R. C.; Lo, M. W.

    2003-01-01

    In the future, navigation and communication in Earth-Moon space and on the Moon will differ from past practice due to evolving technology and new requirements. Here we describe likely requirements, discuss options for meeting them, and advocate steps that can be taken now to begin building the navcom systems needed in coming years for exploring and using the moon.

  19. Neurosurgical robotic arm drilling navigation system.

    Science.gov (United States)

    Lin, Chung-Chih; Lin, Hsin-Cheng; Lee, Wen-Yo; Lee, Shih-Tseng; Wu, Chieh-Tsai

    2017-09-01

    The aim of this work was to develop a neurosurgical robotic arm drilling navigation system that provides assistance throughout the complete bone drilling process. The system comprised neurosurgical robotic arm navigation combining robotic and surgical navigation, 3D medical imaging based surgical planning that could identify lesion location and plan the surgical path on 3D images, and automatic bone drilling control that would stop drilling when the bone was to be drilled-through. Three kinds of experiment were designed. The average positioning error deduced from 3D images of the robotic arm was 0.502 ± 0.069 mm. The correlation between automatically and manually planned paths was 0.975. The average distance error between automatically planned paths and risky zones was 0.279 ± 0.401 mm. The drilling auto-stopping algorithm had 0.00% unstopped cases (26.32% in control group 1) and 70.53% non-drilled-through cases (8.42% and 4.21% in control groups 1 and 2). The system may be useful for neurosurgical robotic arm drilling navigation. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Navigable windows of the Northwest Passage

    Science.gov (United States)

    Liu, Xing-he; Ma, Long; Wang, Jia-yue; Wang, Ye; Wang, Li-na

    2017-09-01

    Artic sea ice loss trends support a greater potential for Arctic shipping. The information of sea ice conditions is important for utilizing Arctic passages. Based on the shipping routes given by ;Arctic Marine Shipping Assessment 2009 Report;, the navigable windows of these routes and the constituent legs were calculated by using sea ice concentration product data from 2006 to 2015, by which a comprehensive knowledge of the sea ice condition of the Northwest Passage was achieved. The results showed that Route 4 (Lancaster Sound - Barrow Strait - Prince Regent Inlet and Bellot Strait - Franklin Strait - Larsen Sound - Victoria Strait - Queen Maud Gulf - Dease Strait - Coronation Gulf - Dolphin and Union Strait - Amundsen Gulf) had the best navigable expectation, Route 2 (Parry Channel - M'Clure Strait) had the worst, and the critical legs affecting the navigation of Northwest Passage were Viscount Melville Sound, Franklin Strait, Victoria Strait, Bellot Strait, M'Clure Strait and Prince of Wales Strait. The shortest navigable period of the routes of Northwest Passage was up to 69 days. The methods used and the results of the study can help the selection and evaluation of Arctic commercial routes.

  1. Adaptive Iterated Extended Kalman Filter and Its Application to Autonomous Integrated Navigation for Indoor Robot

    Directory of Open Access Journals (Sweden)

    Yuan Xu

    2014-01-01

    Full Text Available As the core of the integrated navigation system, the data fusion algorithm should be designed seriously. In order to improve the accuracy of data fusion, this work proposed an adaptive iterated extended Kalman (AIEKF which used the noise statistics estimator in the iterated extended Kalman (IEKF, and then AIEKF is used to deal with the nonlinear problem in the inertial navigation systems (INS/wireless sensors networks (WSNs-integrated navigation system. Practical test has been done to evaluate the performance of the proposed method. The results show that the proposed method is effective to reduce the mean root-mean-square error (RMSE of position by about 92.53%, 67.93%, 55.97%, and 30.09% compared with the INS only, WSN, EKF, and IEKF.

  2. Evolved Navigation Theory and Horizontal Visual Illusions

    Science.gov (United States)

    Jackson, Russell E.; Willey, Chela R.

    2011-01-01

    Environmental perception is prerequisite to most vertebrate behavior and its modern investigation initiated the founding of experimental psychology. Navigation costs may affect environmental perception, such as overestimating distances while encumbered (Solomon, 1949). However, little is known about how this occurs in real-world navigation or how…

  3. Lost in Virtual Space: Studies in Human and Ideal Spatial Navigation

    Science.gov (United States)

    Stankiewicz, Brian J.; Legge, Gordon E.; Mansfield, J. Stephen; Schlicht, Erik J.

    2006-01-01

    The authors describe 3 human spatial navigation experiments that investigate how limitations of perception, memory, uncertainty, and decision strategy affect human spatial navigation performance. To better understand the effect of these variables on human navigation performance, the authors developed an ideal-navigator model for indoor navigation…

  4. Benchmark Framework for Mobile Robots Navigation Algorithms

    Directory of Open Access Journals (Sweden)

    Nelson David Muñoz-Ceballos

    2014-01-01

    Full Text Available Despite the wide variety of studies and research on mobile robot systems, performance metrics are not often examined. This makes difficult to establish an objective comparison of achievements. In this paper, the navigation of an autonomous mobile robot is evaluated. Several metrics are described. These metrics, collectively, provide an indication of navigation quality, useful for comparing and analyzing navigation algorithms of mobile robots. This method is suggested as an educational tool, which allows the student to optimize the algorithms quality, relating to important aspectsof science, technology and engineering teaching, as energy consumption, optimization and design.

  5. Navigating nuclear science: Enhancing analysis through visualization

    Energy Technology Data Exchange (ETDEWEB)

    Irwin, N.H.; Berkel, J. van; Johnson, D.K.; Wylie, B.N.

    1997-09-01

    Data visualization is an emerging technology with high potential for addressing the information overload problem. This project extends the data visualization work of the Navigating Science project by coupling it with more traditional information retrieval methods. A citation-derived landscape was augmented with documents using a text-based similarity measure to show viability of extension into datasets where citation lists do not exist. Landscapes, showing hills where clusters of similar documents occur, can be navigated, manipulated and queried in this environment. The capabilities of this tool provide users with an intuitive explore-by-navigation method not currently available in today`s retrieval systems.

  6. Enabling Autonomous Navigation for Affordable Scooters.

    Science.gov (United States)

    Liu, Kaikai; Mulky, Rajathswaroop

    2018-06-05

    Despite the technical success of existing assistive technologies, for example, electric wheelchairs and scooters, they are still far from effective enough in helping those in need navigate to their destinations in a hassle-free manner. In this paper, we propose to improve the safety and autonomy of navigation by designing a cutting-edge autonomous scooter, thus allowing people with mobility challenges to ambulate independently and safely in possibly unfamiliar surroundings. We focus on indoor navigation scenarios for the autonomous scooter where the current location, maps, and nearby obstacles are unknown. To achieve semi-LiDAR functionality, we leverage the gyros-based pose data to compensate the laser motion in real time and create synthetic mapping of simple environments with regular shapes and deep hallways. Laser range finders are suitable for long ranges with limited resolution. Stereo vision, on the other hand, provides 3D structural data of nearby complex objects. To achieve simultaneous fine-grained resolution and long range coverage in the mapping of cluttered and complex environments, we dynamically fuse the measurements from the stereo vision camera system, the synthetic laser scanner, and the LiDAR. We propose solutions to self-correct errors in data fusion and create a hybrid map to assist the scooter in achieving collision-free navigation in an indoor environment.

  7. Navigator. Volume 45, Number 2, Winter 2009

    Science.gov (United States)

    National Science Education Leadership Association, 2009

    2009-01-01

    The National Science Education Leadership Association (NSELA) was formed in 1959 to meet a need to develop science education leadership for K-16 school systems. "Navigator" is published by NSELA to provide the latest NSELA events. This issue of "Navigator" contains the following reports: (1) A Message from the President: Creating Networks of…

  8. Natural Language Navigation Support in Virtual Reality

    NARCIS (Netherlands)

    van Luin, J.; Nijholt, Antinus; op den Akker, Hendrikus J.A.; Giagourta, V.; Strintzis, M.G.

    2001-01-01

    We describe our work on designing a natural language accessible navigation agent for a virtual reality (VR) environment. The agent is part of an agent framework, which means that it can communicate with other agents. Its navigation task consists of guiding the visitors in the environment and to

  9. Autonomous navigation - The ARMMS concept. [Autonomous Redundancy and Maintenance Management Subsystem

    Science.gov (United States)

    Wood, L. J.; Jones, J. B.; Mease, K. D.; Kwok, J. H.; Goltz, G. L.; Kechichian, J. A.

    1984-01-01

    A conceptual design is outlined for the navigation subsystem of the Autonomous Redundancy and Maintenance Management Subsystem (ARMMS). The principal function of this navigation subsystem is to maintain the spacecraft over a specified equatorial longitude to within + or - 3 deg. In addition, the navigation subsystem must detect and correct internal faults. It comprises elements for a navigation executive and for orbit determination, trajectory, maneuver planning, and maneuver command. Each of these elements is described. The navigation subsystem is to be used in the DSCS III spacecraft.

  10. Environmental layout complexity affects neural activity during navigation in humans.

    Science.gov (United States)

    Slone, Edward; Burles, Ford; Iaria, Giuseppe

    2016-05-01

    Navigating large-scale surroundings is a fundamental ability. In humans, it is commonly assumed that navigational performance is affected by individual differences, such as age, sex, and cognitive strategies adopted for orientation. We recently showed that the layout of the environment itself also influences how well people are able to find their way within it, yet it remains unclear whether differences in environmental complexity are associated with changes in brain activity during navigation. We used functional magnetic resonance imaging to investigate how the brain responds to a change in environmental complexity by asking participants to perform a navigation task in two large-scale virtual environments that differed solely in interconnection density, a measure of complexity defined as the average number of directional choices at decision points. The results showed that navigation in the simpler, less interconnected environment was faster and more accurate relative to the complex environment, and such performance was associated with increased activity in a number of brain areas (i.e. precuneus, retrosplenial cortex, and hippocampus) known to be involved in mental imagery, navigation, and memory. These findings provide novel evidence that environmental complexity not only affects navigational behaviour, but also modulates activity in brain regions that are important for successful orientation and navigation. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  11. Examining care navigation: librarian participation in a team-based approach?

    Science.gov (United States)

    Nix, A Tyler; Huber, Jeffrey T; Shapiro, Robert M; Pfeifle, Andrea

    2016-04-01

    This study investigated responsibilities, skill sets, degrees, and certifications required of health care navigators in order to identify areas of potential overlap with health sciences librarianship. The authors conducted a content analysis of health care navigator position announcements and developed and assigned forty-eight category terms to represent the sample's responsibilities and skill sets. Coordination of patient care and a bachelor's degree were the most common responsibility and degree requirements, respectively. Results also suggest that managing and providing health information resources is an area of overlap between health care navigators and health sciences librarians, and that librarians are well suited to serve on navigation teams. Such overlap may provide an avenue for collaboration between navigators and health sciences librarians.

  12. Hearing aids' electromagnetic immunity to environmental RF fields

    International Nuclear Information System (INIS)

    Facta, S.; Benedetto, A.; Anglesio, L.; D'Amore, G.

    2004-01-01

    In this work, the electromagnetic interference on hearing aids was evaluated. Electromagnetic (EM) immunity tests on different types of hearing aids were carried out, using signals of intensity and modulation comparable to those present in the environment. The purpose of this work is to characterise the interference, establishing the immunity threshold for different frequencies and finding out which types of hearing aids are more susceptible, and in which frequency range. The tests were carried out in a GTEM cell on seven hearing aids, using AM and GSM signals in the radiofrequency (RF) range. (authors)

  13. Navigator. Volume 45, Number 3, Spring 2009

    Science.gov (United States)

    National Science Education Leadership Association, 2009

    2009-01-01

    The National Science Education Leadership Association (NSELA) was formed in 1959 to meet a need to develop science education leadership for K-16 school systems. "Navigator" is published by NSELA to provide the latest NSELA events. This issue of "Navigator" includes the following items: (1) A Message from the President (Brenda Wojnowski); (2) NSELA…

  14. Satellite Imagery Assisted Road-Based Visual Navigation System

    Science.gov (United States)

    Volkova, A.; Gibbens, P. W.

    2016-06-01

    There is a growing demand for unmanned aerial systems as autonomous surveillance, exploration and remote sensing solutions. Among the key concerns for robust operation of these systems is the need to reliably navigate the environment without reliance on global navigation satellite system (GNSS). This is of particular concern in Defence circles, but is also a major safety issue for commercial operations. In these circumstances, the aircraft needs to navigate relying only on information from on-board passive sensors such as digital cameras. An autonomous feature-based visual system presented in this work offers a novel integral approach to the modelling and registration of visual features that responds to the specific needs of the navigation system. It detects visual features from Google Earth* build a feature database. The same algorithm then detects features in an on-board cameras video stream. On one level this serves to localise the vehicle relative to the environment using Simultaneous Localisation and Mapping (SLAM). On a second level it correlates them with the database to localise the vehicle with respect to the inertial frame. The performance of the presented visual navigation system was compared using the satellite imagery from different years. Based on comparison results, an analysis of the effects of seasonal, structural and qualitative changes of the imagery source on the performance of the navigation algorithm is presented. * The algorithm is independent of the source of satellite imagery and another provider can be used

  15. 33 CFR 67.01-15 - Classification of structures.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Classification of structures. 67... AIDS TO NAVIGATION AIDS TO NAVIGATION ON ARTIFICIAL ISLANDS AND FIXED STRUCTURES General Requirements § 67.01-15 Classification of structures. (a) When will structures be assigned to a Class? The District...

  16. Human-robot collaborative navigation for autonomous maintenance management of nuclear installation

    International Nuclear Information System (INIS)

    Nugroho, Djoko Hari

    2002-01-01

    Development of human and robot collaborative navigation for autonomous maintenance management of nuclear installation has been conducted. The human-robot collaborative system is performed using a switching command between autonomous navigation and manual navigation that incorporate a human intervention. The autonomous navigation path is conducted using a novel algorithm of MLG method based on Lozano-Perez s visibility graph. The MLG optimizes the shortest distance and safe constraints. While the manual navigation is performed using manual robot tele operation tools. Experiment in the MLG autonomous navigation system is conducted for six times with 3-D starting point and destination point coordinate variation. The experiment shows a good performance of autonomous robot maneuver to avoid collision with obstacle. The switching navigation is well interpreted using open or close command to RS-232C constructed using LabVIEW

  17. Fuzzy Behavior Modulation with Threshold Activation for Autonomous Vehicle Navigation

    Science.gov (United States)

    Tunstel, Edward

    2000-01-01

    This paper describes fuzzy logic techniques used in a hierarchical behavior-based architecture for robot navigation. An architectural feature for threshold activation of fuzzy-behaviors is emphasized, which is potentially useful for tuning navigation performance in real world applications. The target application is autonomous local navigation of a small planetary rover. Threshold activation of low-level navigation behaviors is the primary focus. A preliminary assessment of its impact on local navigation performance is provided based on computer simulations.

  18. Gray and White Matter Correlates of Navigational Ability in Humans

    NARCIS (Netherlands)

    Wegman, J.B.T.; Fonteijn, H.M.; Ekert, J. van; Tyborowska, A.B.; Jansen, C.; Janzen, G.

    2014-01-01

    Humans differ widely in their navigational abilities. Studies have shown that self-reports on navigational abilities are good predictors of performance on navigation tasks in real and virtual environments. The caudate nucleus and medial temporal lobe regions have been suggested to subserve different

  19. Unraveling navigational strategies in migratory insects

    OpenAIRE

    Merlin, Christine; Heinze, Stanley; Reppert, Steven M.

    2011-01-01

    Long-distance migration is a strategy some animals use to survive a seasonally changing environment. To reach favorable grounds, migratory animals have evolved sophisticated navigational mechanisms that rely on a map and compasses. In migratory insects, the existence of a map sense (sense of position) remains poorly understood, but recent work has provided new insights into the mechanisms some compasses use for maintaining a constant bearing during long-distance navigation. The best-studied d...

  20. Flight evaluations of approach/landing navigation sensor systems. MLS to kohokei hiko jikken. ; 1990 nendo no jikken gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    Flight test results of such navigation sensor systems as MLS (microwave landing system), GPS(global positioning system) and INS (inertial navigation system) on the Dornier-228 research aircraft in 1990 were reported, which tests have being promoted by National Aerospace Laboratory (NAL), Japan to develop unmanned approach/landing (A/L) navigation sensor systems for the future spaceplane HOPE. The measured data corresponding to a WGS84 (world geodetic system 1984) navigation coordinate system were evaluated, and the reference orbit was also prepared by laser tracker analysis. The navigation sensor systems such as MLS were evaluated on the basis of CMN (control motion noise) or PFE (path following error), and preliminary calculation was also conducted for a GPS-INS hybrid system. As experimental results, several data were gathered for each sensor system resulting in possible data comparison between the sensor systems, and the feasibility of the GPS-INS hybrid system was also confirmed. 35 refs., 49 figs., 22 tabs.

  1. 76 FR 27337 - Houston/Galveston Navigation Safety Advisory Committee

    Science.gov (United States)

    2011-05-11

    ... DEPARTMENT OF HOMELAND SECURITY Coast Guard [USCG-2010-1116] Houston/Galveston Navigation Safety...: The Houston/Galveston Navigation Safety Advisory Committee postponed its originally scheduled February... Houston Ship Channel, and various other navigation safety matters in the Galveston Bay area. The meeting...

  2. Autonomous Vehicles Navigation with Visual Target Tracking: Technical Approaches

    Directory of Open Access Journals (Sweden)

    Zhen Jia

    2008-12-01

    Full Text Available This paper surveys the developments of last 10 years in the area of vision based target tracking for autonomous vehicles navigation. First, the motivations and applications of using vision based target tracking for autonomous vehicles navigation are presented in the introduction section. It can be concluded that it is very necessary to develop robust visual target tracking based navigation algorithms for the broad applications of autonomous vehicles. Then this paper reviews the recent techniques in three different categories: vision based target tracking for the applications of land, underwater and aerial vehicles navigation. Next, the increasing trends of using data fusion for visual target tracking based autonomous vehicles navigation are discussed. Through data fusion the tracking performance is improved and becomes more robust. Based on the review, the remaining research challenges are summarized and future research directions are investigated.

  3. Social networks improve leaderless group navigation by facilitating long-distance communication

    Directory of Open Access Journals (Sweden)

    Nikolai W. F. BODE, A. Jamie WOOD, Daniel W. FRANKS

    2012-04-01

    Full Text Available Group navigation is of great importance for many animals, such as migrating flocks of birds or shoals of fish. One theory states that group membership can improve navigational accuracy compared to limited or less accurate individual navigational ability in groups without leaders (“Many-wrongs principle”. Here, we simulate leaderless group navigation that includes social connections as preferential interactions between individuals. Our results suggest that underlying social networks can reduce navigational errors of groups and increase group cohesion. We use network summary statistics, in particular network motifs, to study which characteristics of networks lead to these improvements. It is networks in which preferences between individuals are not clustered, but spread evenly across the group that are advantageous in group navigation by effectively enhancing long-distance information exchange within groups. We suggest that our work predicts a base-line for the type of social structure we might expect to find in group-living animals that navigate without leaders [Current Zoology 58 (2: 329-341, 2012].

  4. Vision Based Navigation for Autonomous Cooperative Docking of CubeSats

    Science.gov (United States)

    Pirat, Camille; Ankersen, Finn; Walker, Roger; Gass, Volker

    2018-05-01

    A realistic rendezvous and docking navigation solution applicable to CubeSats is investigated. The scalability analysis of the ESA Autonomous Transfer Vehicle Guidance, Navigation & Control (GNC) performances and the Russian docking system, shows that the docking of two CubeSats would require a lateral control performance of the order of 1 cm. Line of sight constraints and multipath effects affecting Global Navigation Satellite System (GNSS) measurements in close proximity prevent the use of this sensor for the final approach. This consideration and the high control accuracy requirement led to the use of vision sensors for the final 10 m of the rendezvous and docking sequence. A single monocular camera on the chaser satellite and various sets of Light-Emitting Diodes (LEDs) on the target vehicle ensure the observability of the system throughout the approach trajectory. The simple and novel formulation of the measurement equations allows differentiating unambiguously rotations from translations between the target and chaser docking port and allows a navigation performance better than 1 mm at docking. Furthermore, the non-linear measurement equations can be solved in order to provide an analytic navigation solution. This solution can be used to monitor the navigation filter solution and ensure its stability, adding an extra layer of robustness for autonomous rendezvous and docking. The navigation filter initialization is addressed in detail. The proposed method is able to differentiate LEDs signals from Sun reflections as demonstrated by experimental data. The navigation filter uses a comprehensive linearised coupled rotation/translation dynamics, describing the chaser to target docking port motion. The handover, between GNSS and vision sensor measurements, is assessed. The performances of the navigation function along the approach trajectory is discussed.

  5. Microsurgical and Endoscopic Anatomy for Intradural Temporal Bone Drilling and Applications of the Electromagnetic Navigation System: Various Extensions of the Retrosigmoid Approach.

    Science.gov (United States)

    Matsushima, Ken; Komune, Noritaka; Matsuo, Satoshi; Kohno, Michihiro

    2017-07-01

    The use of the retrosigmoid approach has recently been expanded by several modifications, including the suprameatal, transmeatal, suprajugular, and inframeatal extensions. Intradural temporal bone drilling without damaging vital structures inside or beside the bone, such as the internal carotid artery and jugular bulb, is a key step for these extensions. This study aimed to examine the microsurgical and endoscopic anatomy of the extensions of the retrosigmoid approach and to evaluate the clinical feasibility of an electromagnetic navigation system during intradural temporal bone drilling. Five temporal bones and 8 cadaveric cerebellopontine angles were examined to clarify the anatomy of retrosigmoid intradural temporal bone drilling. Twenty additional cerebellopontine angles were dissected in a clinical setting with an electromagnetic navigation system while measuring the target registration errors at 8 surgical landmarks on and inside the temporal bone. Retrosigmoid intradural temporal bone drilling expanded the surgical exposure to allow access to the petroclival and parasellar regions (suprameatal), internal acoustic meatus (transmeatal), upper jugular foramen (suprajugular), and petrous apex (inframeatal). The electromagnetic navigation continuously guided the drilling without line of sight limitation, and its small devices were easily manipulated in the deep and narrow surgical field in the posterior fossa. Mean target registration error was less than 0.50 mm during these procedures. The combination of endoscopic and microsurgical techniques aids in achieving optimal exposure for retrosigmoid intradural temporal bone drilling. The electromagnetic navigation system had clear advantages with acceptable accuracy including the usability of small devices without line of sight limitation. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. 19 CFR 4.66b - Pollution of coastal and navigable waters.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Pollution of coastal and navigable waters. 4.66b... coastal and navigable waters. (a) If any Customs officer has reason to believe that any refuse matter is being or has been deposited in navigable waters or any tributary of any navigable waters in violation of...

  7. Ground-Based Global Navigation Satellite System GLONASS (GLObal NAvigation Satellite System) Combined Broadcast Ephemeris Data (daily files) from NASA CDDIS

    Data.gov (United States)

    National Aeronautics and Space Administration — This dataset consists of ground-based Global Navigation Satellite System (GNSS) GLONASS Combined Broadcast Ephemeris Data (daily files of all distinct navigation...

  8. 33 CFR 207.580 - Buffalo Harbor, N.Y.; use, administration, and navigation.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Buffalo Harbor, N.Y.; use, administration, and navigation. 207.580 Section 207.580 Navigation and Navigable Waters CORPS OF ENGINEERS, DEPARTMENT OF THE ARMY, DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.580 Buffalo Harbor, N.Y.; use...

  9. World poverty and the duty to aid

    NARCIS (Netherlands)

    Graafland, J.J.; Bosma, M.E.; Merle, J.C.

    2013-01-01

    Currently, many countries are reducing their contribution to development aid as a consequence of the economic crisis and the need for limiting government budget deficits. In the Netherlands, some political parties have proposed to abolish or substantially reduce the budget for development aid. In

  10. Current use of navigation system in ACL surgery: a historical review.

    Science.gov (United States)

    Zaffagnini, S; Urrizola, F; Signorelli, C; Grassi, A; Di Sarsina, T Roberti; Lucidi, G A; Marcheggiani Muccioli, G M; Bonanzinga, T; Marcacci, M

    2016-11-01

    The present review aims to analyse the available literature regarding the use of navigation systems in ACL reconstructive surgery underling the evolution during the years. A research of indexed scientific papers was performed on PubMed and Cochrane Library database. The research was performed in December 2015 with no publication year restriction. Only English-written papers and related to the terms ACL, NAVIGATION, CAOS and CAS were considered. Two reviewers independently selected only those manuscripts that presented at least the application of navigation system for ACL reconstructive surgery. One hundred and forty-six of 394 articles were finally selected. In this analysis, it was possible to review the main uses of navigation system in ACL surgery including tunnel positioning for primary and revision surgery and kinematic assessment of knee laxity before and after different surgical procedures. In the early years, until 2006, navigation system was mainly used to improve tunnel positioning, but since the last decade, this tool has been principally used for kinematics evaluation. Increased accuracy of tunnel placement was observed using navigation surgery, especially, regarding femoral, 42 of 146 articles used navigation to guide tunnel positioning. During the following years, 82 of 146 articles have used navigation system to evaluate intraoperative knee kinematic. In particular, the importance of controlling rotatory laxity to achieve better surgical outcomes has been underlined. Several applications have been described and despite the contribution of navigation systems, its potential uses and theoretical advantages, there are still controversies about its clinical benefit. The present papers summarize the most relevant studies that have used navigation system in ACL reconstruction. In particular, the analysis identified four main applications of the navigation systems during ACL reconstructive surgery have been identified: (1) technical assistance for tunnel

  11. 76 FR 58105 - Regulated Navigation Area; Saugus River, Lynn, MA

    Science.gov (United States)

    2011-09-20

    ... final rule. SUMMARY: The Coast Guard is establishing a Regulated Navigation Area (RNA) on the navigable... INFORMATION: Regulatory Information The Coast Guard is issuing this temporary rule without prior notice and... Pipeline bridge poses to the navigational channel necessitates that all mariners comply with this RNA...

  12. Enabling Autonomous Navigation for Affordable Scooters

    Directory of Open Access Journals (Sweden)

    Kaikai Liu

    2018-06-01

    Full Text Available Despite the technical success of existing assistive technologies, for example, electric wheelchairs and scooters, they are still far from effective enough in helping those in need navigate to their destinations in a hassle-free manner. In this paper, we propose to improve the safety and autonomy of navigation by designing a cutting-edge autonomous scooter, thus allowing people with mobility challenges to ambulate independently and safely in possibly unfamiliar surroundings. We focus on indoor navigation scenarios for the autonomous scooter where the current location, maps, and nearby obstacles are unknown. To achieve semi-LiDAR functionality, we leverage the gyros-based pose data to compensate the laser motion in real time and create synthetic mapping of simple environments with regular shapes and deep hallways. Laser range finders are suitable for long ranges with limited resolution. Stereo vision, on the other hand, provides 3D structural data of nearby complex objects. To achieve simultaneous fine-grained resolution and long range coverage in the mapping of cluttered and complex environments, we dynamically fuse the measurements from the stereo vision camera system, the synthetic laser scanner, and the LiDAR. We propose solutions to self-correct errors in data fusion and create a hybrid map to assist the scooter in achieving collision-free navigation in an indoor environment.

  13. AIDS: new threat to the third world.

    Science.gov (United States)

    Heise, L

    1988-01-01

    Acquired immuneodeficiency syndrome (AIDS) threatens to have a catastrophic historical impact on the 3rd world, undermining decades of progress toward improved health and sustained economic development. By 1986, the World Health Organization (WHO) estimate between 5 and 10 million people worldwide were carriers. By 1990, WHO projects 50 to 100 million may be infected, leaving 15 to 30 million dead by 1995. The extent of AIDS cases in LDCs is most likely underreported as these countries already have limited access to health care. The infection rate could be 100 times higher in African cities than in the US as a whole. With an estimated 2 million infected, Africa is the hardest hit region in the world; Asia is the least affected with Japan having the highest number of reported cases at 43. Overall rate of transmission is likely to remain higher in the 3rd world for numerous reasons including the prevalence of sexually transmitted diseases, lack of money to screen blood for transfusions, high number of sexual partners due to socio-economic conditions, chronic exposure to viral and parasitic infections, and unhygienic conditions. Unlike developed nations, LDCs do not have the health care budgets to care for the opportunistic infections of AIDS patients. Therefore they often are subject to triage, passed over in favor of patients with curable diseases. AIDS provides an even greater threat as a multiplier of existing but dormant diseases such as tuberculosis. AIDS will undermine the decades of progress in maternal and child health and may soon be significant factor in the mother/child survival quotient. Some African cities report that 8 to 14% of women attending prenatal clinics test positive. Since it strikes the most productive age group--those between 20 and 49-- AIDS threatens to undermine the economies of LDCs at a time when most LDCsa are already struggling. Meeting the global challenge of AIDS will requre unprecedented international cooperation. The fact that both

  14. Wavefront Propagation and Fuzzy Based Autonomous Navigation

    Directory of Open Access Journals (Sweden)

    Adel Al-Jumaily

    2005-06-01

    Full Text Available Path planning and obstacle avoidance are the two major issues in any navigation system. Wavefront propagation algorithm, as a good path planner, can be used to determine an optimal path. Obstacle avoidance can be achieved using possibility theory. Combining these two functions enable a robot to autonomously navigate to its destination. This paper presents the approach and results in implementing an autonomous navigation system for an indoor mobile robot. The system developed is based on a laser sensor used to retrieve data to update a two dimensional world model of therobot environment. Waypoints in the path are incorporated into the obstacle avoidance. Features such as ageing of objects and smooth motion planning are implemented to enhance efficiency and also to cater for dynamic environments.

  15. Bio-robots automatic navigation with electrical reward stimulation.

    Science.gov (United States)

    Sun, Chao; Zhang, Xinlu; Zheng, Nenggan; Chen, Weidong; Zheng, Xiaoxiang

    2012-01-01

    Bio-robots that controlled by outer stimulation through brain computer interface (BCI) suffer from the dependence on realtime guidance of human operators. Current automatic navigation methods for bio-robots focus on the controlling rules to force animals to obey man-made commands, with animals' intelligence ignored. This paper proposes a new method to realize the automatic navigation for bio-robots with electrical micro-stimulation as real-time rewards. Due to the reward-seeking instinct and trial-and-error capability, bio-robot can be steered to keep walking along the right route with rewards and correct its direction spontaneously when rewards are deprived. In navigation experiments, rat-robots learn the controlling methods in short time. The results show that our method simplifies the controlling logic and realizes the automatic navigation for rat-robots successfully. Our work might have significant implication for the further development of bio-robots with hybrid intelligence.

  16. Exploiting Speech for Automatic TV Delinearization: From Streams to Cross-Media Semantic Navigation

    Directory of Open Access Journals (Sweden)

    Guinaudeau Camille

    2011-01-01

    Full Text Available The gradual migration of television from broadcast diffusion to Internet diffusion offers countless possibilities for the generation of rich navigable contents. However, it also raises numerous scientific issues regarding delinearization of TV streams and content enrichment. In this paper, we study how speech can be used at different levels of the delinearization process, using automatic speech transcription and natural language processing (NLP for the segmentation and characterization of TV programs and for the generation of semantic hyperlinks in videos. Transcript-based video delinearization requires natural language processing techniques robust to transcription peculiarities, such as transcription errors, and to domain and genre differences. We therefore propose to modify classical NLP techniques, initially designed for regular texts, to improve their robustness in the context of TV delinearization. We demonstrate that the modified NLP techniques can efficiently handle various types of TV material and be exploited for program description, for topic segmentation, and for the generation of semantic hyperlinks between multimedia contents. We illustrate the concept of cross-media semantic navigation with a description of our news navigation demonstrator presented during the NEM Summit 2009.

  17. Accuracy of the hypothetical sky-polarimetric Viking navigation versus sky conditions: revealing solar elevations and cloudinesses favourable for this navigation method

    Science.gov (United States)

    Száz, Dénes; Farkas, Alexandra; Barta, András; Kretzer, Balázs; Blahó, Miklós; Egri, Ádám; Szabó, Gyula; Horváth, Gábor

    2017-09-01

    According to Thorkild Ramskou's theory proposed in 1967, under overcast and foggy skies, Viking seafarers might have used skylight polarization analysed with special crystals called sunstones to determine the position of the invisible Sun. After finding the occluded Sun with sunstones, its elevation angle had to be measured and its shadow had to be projected onto the horizontal surface of a sun compass. According to Ramskou's theory, these sunstones might have been birefringent calcite or dichroic cordierite or tourmaline crystals working as polarizers. It has frequently been claimed that this method might have been suitable for navigation even in cloudy weather. This hypothesis has been accepted and frequently cited for decades without any experimental support. In this work, we determined the accuracy of this hypothetical sky-polarimetric Viking navigation for 1080 different sky situations characterized by solar elevation θ and cloudiness ρ, the sky polarization patterns of which were measured by full-sky imaging polarimetry. We used the earlier measured uncertainty functions of the navigation steps 1, 2 and 3 for calcite, cordierite and tourmaline sunstone crystals, respectively, and the newly measured uncertainty function of step 4 presented here. As a result, we revealed the meteorological conditions under which Vikings could have used this hypothetical navigation method. We determined the solar elevations at which the navigation uncertainties are minimal at summer solstice and spring equinox for all three sunstone types. On average, calcite sunstone ensures a more accurate sky-polarimetric navigation than tourmaline and cordierite. However, in some special cases (generally at 35° ≤ θ ≤ 40°, 1 okta ≤ ρ ≤ 6 oktas for summer solstice, and at 20° ≤ θ ≤ 25°, 0 okta ≤ ρ ≤ 4 oktas for spring equinox), the use of tourmaline and cordierite results in smaller navigation uncertainties than that of calcite. Generally, under clear or less cloudy

  18. Determining navigability of terrain using point cloud data.

    Science.gov (United States)

    Cockrell, Stephanie; Lee, Gregory; Newman, Wyatt

    2013-06-01

    This paper presents an algorithm to identify features of the navigation surface in front of a wheeled robot. Recent advances in mobile robotics have brought about the development of smart wheelchairs to assist disabled people, allowing them to be more independent. These robots have a human occupant and operate in real environments where they must be able to detect hazards like holes, stairs, or obstacles. Furthermore, to ensure safe navigation, wheelchairs often need to locate and navigate on ramps. The algorithm is implemented on data from a Kinect and can effectively identify these features, increasing occupant safety and allowing for a smoother ride.

  19. Kilohoku Ho`okele Wa`a : Astronomy of the Hawaiian Navigators

    Science.gov (United States)

    Slater, Stephanie; Slater, Timothy F.; Baybayan, Kalepa C.

    2016-01-01

    This poster provides an introduction to the astronomy of the Hawaiian wayfinders, Kilohoku Ho`okele Wa`a. Rooted in a legacy of navigation across the Polynesian triangle, wayfinding astronomy has been part of a suite of skills that allows navigators to deliberately hop between the small islands of the Pacific, for thousands of years. Forty years ago, in one manifestation of the Hawaiian Renaissance, our teachers demonstrated that ancient Hawaiians were capable of traversing the wide Pacific to settle and trade on islands separated by thousands of miles. Today those same mentors train a new generation of navigators, making Hawaiian voyaging a living, evolving, sustainable endeavor. This poster presents two components of astronomical knowledge that all crewmen, but particularly those in training to become navigators, learn early in their training. Na Ohana Hoku, the Hawaiian Star Families constitute the basic units of the Hawaiian sky. In contrast to the Western system of 88 constellations, Na Ohana Hoku divides the sky into four sections that each run from the northern to the southern poles. This configuration reduces cognitive load, allowing the navigator to preserve working memory for other complex tasks. In addition, these configurations of stars support the navigator in finding and generatively using hundreds of individual, and navigationally important pairs of stars. The Hawaiian Star Compass divides the celestial sphere into a directional system that uses 32 rather than 8 cardinal points. Within the tropics, the rising and setting of celestial objects are consistent within the Hawaiian Star Compass, providing for extremely reliable direction finding. Together, Na Ohana Hoku and the Hawaiian Star Compass provide the tropical navigator with astronomical assistance that is not available to, and would have been unknown to Western navigators trained at higher latitudes.

  20. Comparing two types of navigational interfaces for Virtual Reality.

    Science.gov (United States)

    Teixeira, Luís; Vilar, Elisângela; Duarte, Emília; Rebelo, Francisco; da Silva, Fernando Moreira

    2012-01-01

    Previous studies suggest significant differences between navigating virtual environments in a life-like walking manner (i.e., using treadmills or walk-in-place techniques) and virtual navigation (i.e., flying while really standing). The latter option, which usually involves hand-centric devices (e.g., joysticks), is the most common in Virtual Reality-based studies, mostly due to low costs, less space and technology demands. However, recently, new interaction devices, originally conceived for videogames have become available offering interesting potentialities for research. This study aimed to explore the potentialities of the Nintendo Wii Balance Board as a navigation interface in a Virtual Environment presented in an immersive Virtual Reality system. Comparing participants' performance while engaged in a simulated emergency egress allows determining the adequacy of such alternative navigation interface on the basis of empirical results. Forty university students participated in this study. Results show that participants were more efficient when performing navigation tasks using the Joystick than with the Balance Board. However there were no significantly differences in the behavioral compliance with exit signs. Therefore, this study suggests that, at least for tasks similar to the studied, the Balance Board have good potentiality to be used as a navigation interface for Virtual Reality systems.

  1. Navigational efficiency of nocturnal Myrmecia ants suffers at low light levels.

    Directory of Open Access Journals (Sweden)

    Ajay Narendra

    Full Text Available Insects face the challenge of navigating to specific goals in both bright sun-lit and dim-lit environments. Both diurnal and nocturnal insects use quite similar navigation strategies. This is despite the signal-to-noise ratio of the navigational cues being poor at low light conditions. To better understand the evolution of nocturnal life, we investigated the navigational efficiency of a nocturnal ant, Myrmecia pyriformis, at different light levels. Workers of M. pyriformis leave the nest individually in a narrow light-window in the evening twilight to forage on nest-specific Eucalyptus trees. The majority of foragers return to the nest in the morning twilight, while few attempt to return to the nest throughout the night. We found that as light levels dropped, ants paused for longer, walked more slowly, the success in finding the nest reduced and their paths became less straight. We found that in both bright and dark conditions ants relied predominantly on visual landmark information for navigation and that landmark guidance became less reliable at low light conditions. It is perhaps due to the poor navigational efficiency at low light levels that the majority of foragers restrict navigational tasks to the twilight periods, where sufficient navigational information is still available.

  2. Absolute Navigation Information Estimation for Micro Planetary Rovers

    Directory of Open Access Journals (Sweden)

    Muhammad Ilyas

    2016-03-01

    Full Text Available This paper provides algorithms to estimate absolute navigation information, e.g., absolute attitude and position, by using low power, weight and volume Microelectromechanical Systems-type (MEMS sensors that are suitable for micro planetary rovers. Planetary rovers appear to be easily navigable robots due to their extreme slow speed and rotation but, unfortunately, the sensor suites available for terrestrial robots are not always available for planetary rover navigation. This makes them difficult to navigate in a completely unexplored, harsh and complex environment. Whereas the relative attitude and position can be tracked in a similar way as for ground robots, absolute navigation information, unlike in terrestrial applications, is difficult to obtain for a remote celestial body, such as Mars or the Moon. In this paper, an algorithm called the EASI algorithm (Estimation of Attitude using Sun sensor and Inclinometer is presented to estimate the absolute attitude using a MEMS-type sun sensor and inclinometer, only. Moreover, the output of the EASI algorithm is fused with MEMS gyros to produce more accurate and reliable attitude estimates. An absolute position estimation algorithm has also been presented based on these on-board sensors. Experimental results demonstrate the viability of the proposed algorithms and the sensor suite for low-cost and low-weight micro planetary rovers.

  3. THE DEVELOPMENT OF NAVIGATION SYSTEMS IN CIVIL AVIATION

    Directory of Open Access Journals (Sweden)

    Anastasiya Sergeyevna Stepanenko

    2017-01-01

    Full Text Available The article describes the history of navigation systems formation, such as "Cicada" system, which at that time could compete with the US "Transit", European, Chinese Beidou navigation system and the Japanese Quasi-Zenit.The detailed information about improving the American GPS system, launched in 1978 and working till now is provided. The characteristics of GPS-III counterpart "Transit", which became the platform for creating such modern globalnavigation systems as GLONASS and GPS. The process of implementation of the GLONASS system in civil aviation, itssegments, functions and features are considered. The stages of GLONASS satellite system orbital grouping formation are analyzed. The author draws the analogy with the American GPS system, the GALILEO system, which has a number of additional advantages, are given. The author remarks the features of the European counterpart of the GALILEO global nav- igation system. One of the goals of this system is to provide a high-precision positioning system, which Europe can rely on regardless of the Russian GLONASS system, the US - GPS and the Chinese Beidou. GALILEO offers a unique global search and rescue function called SAR, with an important feedback function. The peculiarities of Chinese scientists’ navi- gation system, the Beidou satellite system, and the Japanese global Quasi-Zenith Satellite System are described.Global navigation systems development tendencies are considered. The author dwells upon the path to world satel- lite systems globalization, a good example of which is the trend towards GLONASS and Beidou unification. Most attention was paid to the latest development of Russian scientists’ autonomous navigation system SINS 2015, which is a strap-down inertial navigation system and allows you to navigate the aircraft without being connected to a global satellite system. The ways of navigation systems further development in Russia are determined. The two naturally opposite directions are

  4. Gender differences in navigational memory: pilots vs. nonpilots.

    Science.gov (United States)

    Verde, Paola; Piccardi, Laura; Bianchini, Filippo; Guariglia, Cecilia; Carrozzo, Paolo; Morgagni, Fabio; Boccia, Maddalena; Di Fiore, Giacomo; Tomao, Enrico

    2015-02-01

    The coding of space as near and far is not only determined by arm-reaching distance, but is also dependent on how the brain represents the extension of the body space. Recent reports suggest that the dissociation between reaching and navigational space is not limited to perception and action but also involves memory systems. It has been reported that gender differences emerged only in adverse learning conditions that required strong spatial ability. In this study we investigated navigational versus reaching memory in air force pilots and a control group without flight experience. We took into account temporal duration (working memory and long-term memory) and focused on working memory, which is considered critical in the gender differences literature. We found no gender effects or flight hour effects in pilots but observed gender effects in working memory (but not in learning and delayed recall) in the nonpilot population (Women's mean = 5.33; SD= 0.90; Men's mean = 5.54; SD= 0.90). We also observed a difference between pilots and nonpilots in the maintenance of on-line reaching information: pilots (mean = 5.85; SD=0.76) were more efficient than nonpilots (mean = 5.21; SD=0.83) and managed this type of information similarly to that concerning navigational space. In the navigational learning phase they also showed better navigational memory (mean = 137.83; SD=5.81) than nonpilots (mean = 126.96; SD=15.81) and were significantly more proficient than the latter group. There is no gender difference in a population of pilots in terms of navigational abilities, while it emerges in a control group without flight experience. We found also that pilots performed better than nonpilots. This study suggests that once selected, male and female pilots do not differ from each other in visuo-spatial abilities and spatial navigation.

  5. Image processing and applications based on visualizing navigation service

    Science.gov (United States)

    Hwang, Chyi-Wen

    2015-07-01

    When facing the "overabundant" of semantic web information, in this paper, the researcher proposes the hierarchical classification and visualizing RIA (Rich Internet Application) navigation system: Concept Map (CM) + Semantic Structure (SS) + the Knowledge on Demand (KOD) service. The aim of the Multimedia processing and empirical applications testing, was to investigating the utility and usability of this visualizing navigation strategy in web communication design, into whether it enables the user to retrieve and construct their personal knowledge or not. Furthermore, based on the segment markets theory in the Marketing model, to propose a User Interface (UI) classification strategy and formulate a set of hypermedia design principles for further UI strategy and e-learning resources in semantic web communication. These research findings: (1) Irrespective of whether the simple declarative knowledge or the complex declarative knowledge model is used, the "CM + SS + KOD navigation system" has a better cognition effect than the "Non CM + SS + KOD navigation system". However, for the" No web design experience user", the navigation system does not have an obvious cognition effect. (2) The essential of classification in semantic web communication design: Different groups of user have a diversity of preference needs and different cognitive styles in the CM + SS + KOD navigation system.

  6. Polar Cooperative Navigation Algorithm for Multi-Unmanned Underwater Vehicles Considering Communication Delays

    Directory of Open Access Journals (Sweden)

    Zheping Yan

    2018-03-01

    Full Text Available To solve the navigation accuracy problems of multi-Unmanned Underwater Vehicles (multi-UUVs in the polar region, a polar cooperative navigation algorithm for multi-UUVs considering communication delays is proposed in this paper. UUVs are important pieces of equipment in ocean engineering for marine development. For UUVs to complete missions, precise navigation is necessary. It is difficult for UUVs to establish true headings because of the rapid convergence of Earth meridians and the severe polar environment. Based on the polar grid navigation algorithm, UUV navigation in the polar region can be accomplished with the Strapdown Inertial Navigation System (SINS in the grid frame. To save costs, a leader-follower type of system is introduced in this paper. The leader UUV helps the follower UUVs to achieve high navigation accuracy. Follower UUVs correct their own states based on the information sent by the leader UUV and the relative position measured by ultra-short baseline (USBL acoustic positioning. The underwater acoustic communication delay is quantized by the model. In this paper, considering underwater acoustic communication delay, the conventional adaptive Kalman filter (AKF is modified to adapt to polar cooperative navigation. The results demonstrate that the polar cooperative navigation algorithm for multi-UUVs that considers communication delays can effectively navigate the sailing of multi-UUVs in the polar region.

  7. US refuses to issue entry visas to people with HIV / AIDS.

    Science.gov (United States)

    1991-07-01

    The US government, ignoring the almost unanimous recommendation of medical and public health experts throughout the world, continues to ban both immigration and travel by people with HIV. Following recommendations from the US Centers for Disease Control and Prevention, the US Department of Health and Human Services indicated its intention to reduce the list of dangerous and contagious diseases for excluding entry to the US to include only active tuberculosis. That decision would have removed HIV/AIDS from the list. However, due to the subsequent 35,000 letters and postcards, mostly generated by conservative religious broadcasters and mailing houses opposed to lifting the ban, AIDS remained on the list. Opposition to lifting the ban came from the US Justice Department, as well as in the form of a signed statement to that end from 67 Republican members of the US Congress. US AIDS activists have organized their own letter campaign to support the removal of HIV/AIDS from the list. The June 1990 Sixth International Conference on AIDS was disrupted because of the travel ban. More than 70 AIDS, medical, and governmental organizations, including the International Red Cross, the British Medical Association, and the European Parliament boycotted the conferences. Planning for the 8th International Conference on AIDS, scheduled to be held in Boston in May 1992, is already being disputed and may not be held.

  8. Mobile Robot Designed with Autonomous Navigation System

    Science.gov (United States)

    An, Feng; Chen, Qiang; Zha, Yanfang; Tao, Wenyin

    2017-10-01

    With the rapid development of robot technology, robots appear more and more in all aspects of life and social production, people also ask more requirements for the robot, one is that robot capable of autonomous navigation, can recognize the road. Take the common household sweeping robot as an example, which could avoid obstacles, clean the ground and automatically find the charging place; Another example is AGV tracking car, which can following the route and reach the destination successfully. This paper introduces a new type of robot navigation scheme: SLAM, which can build the environment map in a totally strange environment, and at the same time, locate its own position, so as to achieve autonomous navigation function.

  9. Comparison of three filters in asteroid-based autonomous navigation

    International Nuclear Information System (INIS)

    Cui Wen; Zhu Kai-Jian

    2014-01-01

    At present, optical autonomous navigation has become a key technology in deep space exploration programs. Recent studies focus on the problem of orbit determination using autonomous navigation, and the choice of filter is one of the main issues. To prepare for a possible exploration mission to Mars, the primary emphasis of this paper is to evaluate the capability of three filters, the extended Kalman filter (EKF), unscented Kalman filter (UKF) and weighted least-squares (WLS) algorithm, which have different initial states during the cruise phase. One initial state is assumed to have high accuracy with the support of ground tracking when autonomous navigation is operating; for the other state, errors are set to be large without this support. In addition, the method of selecting asteroids that can be used for navigation from known lists of asteroids to form a sequence is also presented in this study. The simulation results show that WLS and UKF should be the first choice for optical autonomous navigation during the cruise phase to Mars

  10. Sequential egocentric navigation and reliance on landmarks in Williams syndrome and typical development

    Directory of Open Access Journals (Sweden)

    Hannah eBroadbent

    2015-02-01

    Full Text Available Visuospatial difficulties in Williams syndrome (WS are well documented. Recently, research has shown that spatial difficulties in WS extend to large-scale space, particularly in coding space using an allocentric frame of reference. Typically developing (TD children and adults predominantly rely on the use of a sequential egocentric strategy to navigate a large-scale route (retracing a sequence of left-right body turns. The aim of this study was to examine whether individuals with WS are able to employ a sequential egocentric strategy to guide learning and the retracing of a route. Forty-eight TD children, aged 5, 7 and 9 years and 18 participants with WS were examined on their ability to learn and retrace routes in two (6-turn virtual environment mazes (with and without landmarks. The ability to successfully retrace a route following the removal of landmarks (use of sequential egocentric coding was also examined.Although in line with TD 5 year-olds when learning a route with landmarks, individuals with WS showed significantly greater detriment when these landmarks were removed, relative to all TD groups. Moreover, the WS group made significantly more errors than all TD groups when learning a route that never contained landmarks. On a perceptual view-matching task, results revealed a high level of performance across groups, indicative of an ability to use this visual information to potentially aid navigation. These findings suggest that individuals with WS rely on landmarks to a greater extent than TD children, both for learning a route and for retracing a recently learned route. TD children, but not individuals with WS, were able to fall back on the use of a sequential egocentric strategy to navigate when landmarks were not present. Only TD children therefore coded sequential route information simultaneously with landmark information. The results are discussed in relation to known atypical cortical development and perceptual-matching abilities

  11. Celestial Navigation on the Surface of Mars

    Science.gov (United States)

    Malay, Benjamin P.

    2001-05-01

    A simple, accurate, and autonomous method of finding position on the surface of Mars currently does not exist. The goal of this project is to develop a celestial navigation process that will fix a position on Mars with 100-meter accuracy. This method requires knowing the position of the stars and planets referenced to the Martian surface with one arcsecond accuracy. This information is contained in an ephemeris known as the Aeronautical Almanac (from Ares, the god of war) . Naval Observatory Vector Astrometry Subroutines (NOVAS) form the basis of the code used to generate the almanac. Planetary position data come the JPL DE405 Planetary Ephemeris. The theoretical accuracy of the almanac is determined mathematically and compared with the Ephemeris for Physical Observations of Mars contained in the Astronautical Almanac. A preliminary design of an autonomous celestial navigation system is presented. Recommendations of how to integrate celestial navigation into NASA=s current Mars exploration program are also discussed. This project is a useful and much-needed first step towards establishing celestial navigation as a practical way to find position on the surface of Mars.

  12. Pareto navigation-algorithmic foundation of interactive multi-criteria IMRT planning

    International Nuclear Information System (INIS)

    Monz, M; Kuefer, K H; Bortfeld, T R; Thieke, C

    2008-01-01

    Inherently, IMRT treatment planning involves compromising between different planning goals. Multi-criteria IMRT planning directly addresses this compromising and thus makes it more systematic. Usually, several plans are computed from which the planner selects the most promising following a certain procedure. Applying Pareto navigation for this selection step simultaneously increases the variety of planning options and eases the identification of the most promising plan. Pareto navigation is an interactive multi-criteria optimization method that consists of the two navigation mechanisms 'selection' and 'restriction'. The former allows the formulation of wishes whereas the latter allows the exclusion of unwanted plans. They are realized as optimization problems on the so-called plan bundle-a set constructed from pre-computed plans. They can be approximately reformulated so that their solution time is a small fraction of a second. Thus, the user can be provided with immediate feedback regarding his or her decisions. Pareto navigation was implemented in the MIRA navigator software and allows real-time manipulation of the current plan and the set of considered plans. The changes are triggered by simple mouse operations on the so-called navigation star and lead to real-time updates of the navigation star and the dose visualizations. Since any Pareto-optimal plan in the plan bundle can be found with just a few navigation operations the MIRA navigator allows a fast and directed plan determination. Besides, the concept allows for a refinement of the plan bundle, thus offering a middle course between single plan computation and multi-criteria optimization. Pareto navigation offers so far unmatched real-time interactions, ease of use and plan variety, setting it apart from the multi-criteria IMRT planning methods proposed so far

  13. Pareto navigation: algorithmic foundation of interactive multi-criteria IMRT planning.

    Science.gov (United States)

    Monz, M; Küfer, K H; Bortfeld, T R; Thieke, C

    2008-02-21

    Inherently, IMRT treatment planning involves compromising between different planning goals. Multi-criteria IMRT planning directly addresses this compromising and thus makes it more systematic. Usually, several plans are computed from which the planner selects the most promising following a certain procedure. Applying Pareto navigation for this selection step simultaneously increases the variety of planning options and eases the identification of the most promising plan. Pareto navigation is an interactive multi-criteria optimization method that consists of the two navigation mechanisms 'selection' and 'restriction'. The former allows the formulation of wishes whereas the latter allows the exclusion of unwanted plans. They are realized as optimization problems on the so-called plan bundle -- a set constructed from pre-computed plans. They can be approximately reformulated so that their solution time is a small fraction of a second. Thus, the user can be provided with immediate feedback regarding his or her decisions. Pareto navigation was implemented in the MIRA navigator software and allows real-time manipulation of the current plan and the set of considered plans. The changes are triggered by simple mouse operations on the so-called navigation star and lead to real-time updates of the navigation star and the dose visualizations. Since any Pareto-optimal plan in the plan bundle can be found with just a few navigation operations the MIRA navigator allows a fast and directed plan determination. Besides, the concept allows for a refinement of the plan bundle, thus offering a middle course between single plan computation and multi-criteria optimization. Pareto navigation offers so far unmatched real-time interactions, ease of use and plan variety, setting it apart from the multi-criteria IMRT planning methods proposed so far.

  14. Addressing the Influence of Space Weather on Airline Navigation

    Science.gov (United States)

    Sparks, Lawrence

    2012-01-01

    The advent of satellite-based augmentation systems has made it possible to navigate aircraft safely using radio signals emitted by global navigation satellite systems (GNSS) such as the Global Positioning System. As a signal propagates through the earth's ionosphere, it suffers delay that is proportional to the total electron content encountered along the raypath. Since the magnitude of this total electron content is strongly influenced by space weather, the safety and reliability of GNSS for airline navigation requires continual monitoring of the state of the ionosphere and calibration of ionospheric delay. This paper examines the impact of space weather on GNSS-based navigation and provides an overview of how the Wide Area Augmentation System protects its users from positioning error due to ionospheric disturbances

  15. 22 CFR 401.25 - Government brief regarding navigable waters.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Government brief regarding navigable waters. 401... PROCEDURE Applications § 401.25 Government brief regarding navigable waters. When in the opinion of the Commission it is desirable that a decision should be rendered which affects navigable waters in a manner or...

  16. Malaysia urges ASEAN to tackle AIDS crisis.

    Science.gov (United States)

    2000-08-07

    Urgent action is needed to fight the alarming spread of HIV/AIDS that infected 1.3 million people in Southeast Asia last year alone, Malaysia's foreign minister said July 24, 2000. Syed Hamid said the Association of Southeast Asian Nations (ASEAN) should tackle at regional and national level an epidemic that was taking its most drastic toll among the region's youth. "HIV/AIDS not only represents a major public health and social problem but is a serious challenge to development as well," Syed Hamid told the opening ceremony of ASEAN's 33rd annual foreign ministers' meeting. The crisis requires commitment at the "highest political level," he said, warning that HIV/AIDS could become a transnational problem within the 10-member group. Foreign ministers have recommended their leaders discuss the crisis later this year at an informal summit in Singapore and hold a summit on HIV/AIDS in conjunction with the 7th ASEAN Summit in Brunei next year. "I think people recognized the importance and the adverse impacts on our social development," Syed Hamid told reporters later. "I think it is a real issue that we cannot run away from." Among ASEAN members, Thailand, Cambodia, and Myanmar have some of the highest infection rates in Asia of HIV, the virus that causes AIDS. full text

  17. The mechanism of selecting priority options and sequence of solutions to ensure the safety of towing caravan navigation

    Directory of Open Access Journals (Sweden)

    Brazhnyy A. I.

    2016-12-01

    Full Text Available The paper considers navigational safety movement of the towed object and tugboat. Some methods of alternatives choice of decision-maker persons (DMP to manage the safety of towing a caravan have been presented. Examples of navigation safety conditions, their operational relationship, critical and emergency character with respect to the predetermined position of the band have been given; the sequence of forming actions of the algorithm based on an assessment of possible losses for the sustainability of the towing operation has been proposed. The aim is to research and develop a sequence of logical conclusions for forming some mechanism to take corrective action when navigating the composition of the output of the towing caravan of navigation stable security situation for its return to the original settings of sustainable movement. To assess the risks of navigation functions the risk analysis method has been used, with further selection of management synthesized for towing process, taking into account the possible reaction of the "human element". For estimations well-known in the probability theory and mathematical statistics methods have been used. An iterative mathematical model of the tow caravan considering the posterior distribution of parameters caravan phase coordinates for the given cases has been built. The possibility of resource losses when choosing the optimal alternative has been investigated. It has been established that while selecting and adopting a single decision under risk, including alternatives to the losses, one can always find such an alternative which is able to ensure the management of the caravan navigational safety decreasing the probability of large losses. When operating the navigation state of towing caravan one should choose the optimal alternative that minimizes the possibility of the maximum cost, and then based on it to choose (with incomplete awareness of decision-makers optimal sequence of controls which in turn

  18. X-ray Pulsar Navigation Algorithms and Testbed for SEXTANT

    Science.gov (United States)

    Winternitz, Luke M. B.; Hasouneh, Monther A.; Mitchell, Jason W.; Valdez, Jennifer E.; Price, Samuel R.; Semper, Sean R.; Yu, Wayne H.; Ray, Paul S.; Wood, Kent S.; Arzoumanian, Zaven; hide

    2015-01-01

    The Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) is a NASA funded technologydemonstration. SEXTANT will, for the first time, demonstrate real-time, on-board X-ray Pulsar-based Navigation (XNAV), a significant milestone in the quest to establish a GPS-like navigation capability available throughout our Solar System and beyond. This paper describes the basic design of the SEXTANT system with a focus on core models and algorithms, and the design and continued development of the GSFC X-ray Navigation Laboratory Testbed (GXLT) with its dynamic pulsar emulation capability. We also present early results from GXLT modeling of the combined NICER X-ray timing instrument hardware and SEXTANT flight software algorithms.

  19. Financing the response to AIDS: some fiscal and macroeconomic considerations.

    Science.gov (United States)

    Haacker, Markus

    2008-07-01

    This article examines the international response to AIDS from a fiscal perspective: first the financing of the international response to AIDS, especially the role of external financing, and second, a more comprehensive perspective on the costs of the national response to AIDS relevant for fiscal policy. The second half of the article focuses on the effectiveness of the response to AIDS. We find that there is little basis for concerns about macroeconomic constraints to scaling up, in light of the moderate scale of AIDS-related aid flows relative to overall aid. Regarding sectoral constraints, the picture is more differentiated. Many countries with high prevalence rates have also achieved high rates of access to treatment, but most of these are middle-income countries. Our econometric analysis credits external aid as a key factor that has enabled higher-prevalence countries to cope with the additional demands for health services. At the same time, gross domestic product per capita and health sector capacities are important determinants of access to treatment.

  20. Does intraoperative navigation improve the accuracy of pedicle screw placement in the apical region of dystrophic scoliosis secondary to neurofibromatosis type I: comparison between O-arm navigation and free-hand technique.

    Science.gov (United States)

    Jin, Mengran; Liu, Zhen; Liu, Xingyong; Yan, Huang; Han, Xiao; Qiu, Yong; Zhu, Zezhang

    2016-06-01

    To assess the accuracy of O-arm-navigation-based pedicle screw insertion in dystrophic scoliosis secondary to NF-1 and compare it with free-hand pedicle screw insertion technique. 32 patients with dystrophic NF-1-associated scoliosis were divided into two groups. A total of 92 pedicle screws were implanted in apical region (two vertebrae above and below the apex each) in 13 patients using O-arm-based navigation (O-arm group), and 121 screws were implanted in 19 patients using free-hand technique (free-hand group). The postoperative CT images were reviewed and analyzed for pedicle violation. The screw penetration was divided into four grades: grade 0 (ideal placement), grade 1 (penetration 4 mm). The accuracy rate of pedicle screw placement (grade 0, 1) was significantly higher in the O-arm group (79 %, 73/92) compared to 67 % (81/121) of the free-hand group (P = 0.045). Meanwhile, a significantly lower prevalence of grade 2-3 perforation was observed in the O-arm group (21 vs. 33 %, P arm navigation compared to free-hand technique (2 vs. 15 %, P arm navigation (58 vs. 42 %, P arm-based pedicle screw placement in dystrophic NF-1-associated scoliosis. O-arm navigation system does facilitate pedicle screw insertion in dystrophic NF-1-associated scoliosis, demonstrating superiorities in the safety and accuracy of pedicle screw placement in comparison with free-hand technique.

  1. Performance Evaluation and Requirements Assessment for Gravity Gradient Referenced Navigation

    Directory of Open Access Journals (Sweden)

    Jisun Lee

    2015-07-01

    Full Text Available In this study, simulation tests for gravity gradient referenced navigation (GGRN are conducted to verify the effects of various factors such as database (DB and sensor errors, flight altitude, DB resolution, initial errors, and measurement update rates on the navigation performance. Based on the simulation results, requirements for GGRN are established for position determination with certain target accuracies. It is found that DB and sensor errors and flight altitude have strong effects on the navigation performance. In particular, a DB and sensor with accuracies of 0.1 E and 0.01 E, respectively, are required to determine the position more accurately than or at a level similar to the navigation performance of terrain referenced navigation (TRN. In most cases, the horizontal position error of GGRN is less than 100 m. However, the navigation performance of GGRN is similar to or worse than that of a pure inertial navigation system when the DB and sensor errors are 3 E or 5 E each and the flight altitude is 3000 m. Considering that the accuracy of currently available gradiometers is about 3 E or 5 E, GGRN does not show much advantage over TRN at present. However, GGRN is expected to exhibit much better performance in the near future when accurate DBs and gravity gradiometer are available.

  2. Vision Based Autonomous Robot Navigation Algorithms and Implementations

    CERN Document Server

    Chatterjee, Amitava; Nirmal Singh, N

    2013-01-01

    This book is devoted to the theory and development of autonomous navigation of mobile robots using computer vision based sensing mechanism. The conventional robot navigation systems, utilizing traditional sensors like ultrasonic, IR, GPS, laser sensors etc., suffer several drawbacks related to either the physical limitations of the sensor or incur high cost. Vision sensing has emerged as a popular alternative where cameras can be used to reduce the overall cost, maintaining high degree of intelligence, flexibility and robustness. This book includes a detailed description of several new approaches for real life vision based autonomous navigation algorithms and SLAM. It presents the concept of how subgoal based goal-driven navigation can be carried out using vision sensing. The development concept of vision based robots for path/line tracking using fuzzy logic is presented, as well as how a low-cost robot can be indigenously developed in the laboratory with microcontroller based sensor systems. The book descri...

  3. AID SELECTIVITY PRACTICE AND AID EFFECTIVENESS IN SUB-SAHARAN AFRICA

    Directory of Open Access Journals (Sweden)

    Adeniyi Jimmy Adedokun

    2017-09-01

    Full Text Available Foreign aid strategies have undergone restructuring as donors adopt aid selectivity practice to improve aid effectiveness. This study investigates the impact of aid selectivity practice on aid effectiveness (aid-growth relationship in Sub-Saharan Africa (SSA and several groups of countries within SSA from 1980 to 2012. Employing system generalized methods of moments (system GMM technique; the study produces strong evidence that there is significant improvement in aid effectiveness due to aid selectivity practice.

  4. Opt-Out Patient Navigation to Improve Breast and Cervical Cancer Screening Among Homeless Women.

    Science.gov (United States)

    Asgary, Ramin; Naderi, Ramesh; Wisnivesky, Juan

    2017-09-01

    A patient navigation model was implemented to improve breast and cervical cancer screening among women who were homeless in five shelters and shelter clinics in New York City in 2014. Navigation consisted of opt-out screening to eligible women; cancer health and screening education; scheduling and following up for screening completion, obtaining, and communicating results to patients and providers; and care coordination with social services organizations. Women (n = 162, aged 21-74, 58% black) completed mammogram (88%) and Pap testing (83%) from baselines of 59% and 50%, respectively. There was no association between mental health or substance abuse and screening completion. Adjusted analysis showed a significant association between refusing/missing Pap testing and older age (odds ratio [OR] 1.12, 95% confidence interval [CI] 1.04-1.20); independent predictors of mammogram included more pregnancies (OR 0.57, 95% CI 0.37-0.88) and older age (OR 0.84, 95% CI 0.79-0.90). Opt-out patient navigation is feasible and effective and may mitigate multilevel barriers to cancer screening among women with unstable housing.

  5. Navigation of robotic system using cricket motes

    Science.gov (United States)

    Patil, Yogendra J.; Baine, Nicholas A.; Rattan, Kuldip S.

    2011-06-01

    This paper presents a novel algorithm for self-mapping of the cricket motes that can be used for indoor navigation of autonomous robotic systems. The cricket system is a wireless sensor network that can provide indoor localization service to its user via acoustic ranging techniques. The behavior of the ultrasonic transducer on the cricket mote is studied and the regions where satisfactorily distance measurements can be obtained are recorded. Placing the motes in these regions results fine-grain mapping of the cricket motes. Trilateration is used to obtain a rigid coordinate system, but is insufficient if the network is to be used for navigation. A modified SLAM algorithm is applied to overcome the shortcomings of trilateration. Finally, the self-mapped cricket motes can be used for navigation of autonomous robotic systems in an indoor location.

  6. 75 FR 45114 - Rite Aid Corporation; Analysis of Proposed Consent Order to Aid Public Comment

    Science.gov (United States)

    2010-08-02

    ..., among other things, approximately 4,900 retail pharmacy stores in the United States (collectively, ``Rite Aid pharmacies'') and an online pharmacy business. The company allows consumers buying products in... obtained by all Rite Aid entities, including, but not limited to, retail pharmacies. The security program...

  7. Navigation Architecture for a Space Mobile Network

    Science.gov (United States)

    Valdez, Jennifer E.; Ashman, Benjamin; Gramling, Cheryl; Heckler, Gregory W.; Carpenter, Russell

    2016-01-01

    The Tracking and Data Relay Satellite System (TDRSS) Augmentation Service for Satellites (TASS) is a proposed beacon service to provide a global, space based GPS augmentation service based on the NASA Global Differential GPS (GDGPS) System. The TASS signal will be tied to the GPS time system and usable as an additional ranging and Doppler radiometric source. Additionally, it will provide data vital to autonomous navigation in the near Earth regime, including space weather information, TDRS ephemerides, Earth Orientation Parameters (EOP), and forward commanding capability. TASS benefits include enhancing situational awareness, enabling increased autonomy, and providing near real-time command access for user platforms. As NASA Headquarters' Space Communication and Navigation Office (SCaN) begins to move away from a centralized network architecture and towards a Space Mobile Network (SMN) that allows for user initiated services, autonomous navigation will be a key part of such a system. This paper explores how a TASS beacon service enables the Space Mobile Networking paradigm, what a typical user platform would require, and provides an in-depth analysis of several navigation scenarios and operations concepts. This paper provides an overview of the TASS beacon and its role within the SMN and user community. Supporting navigation analysis is presented for two user mission scenarios: an Earth observing spacecraft in low earth orbit (LEO), and a highly elliptical spacecraft in a lunar resonance orbit. These diverse flight scenarios indicate the breadth of applicability of the TASS beacon for upcoming users within the current network architecture and in the SMN.

  8. Image-based path planning for automated virtual colonoscopy navigation

    Science.gov (United States)

    Hong, Wei

    2008-03-01

    Virtual colonoscopy (VC) is a noninvasive method for colonic polyp screening, by reconstructing three-dimensional models of the colon using computerized tomography (CT). In virtual colonoscopy fly-through navigation, it is crucial to generate an optimal camera path for efficient clinical examination. In conventional methods, the centerline of the colon lumen is usually used as the camera path. In order to extract colon centerline, some time consuming pre-processing algorithms must be performed before the fly-through navigation, such as colon segmentation, distance transformation, or topological thinning. In this paper, we present an efficient image-based path planning algorithm for automated virtual colonoscopy fly-through navigation without the requirement of any pre-processing. Our algorithm only needs the physician to provide a seed point as the starting camera position using 2D axial CT images. A wide angle fisheye camera model is used to generate a depth image from the current camera position. Two types of navigational landmarks, safe regions and target regions are extracted from the depth images. Camera position and its corresponding view direction are then determined using these landmarks. The experimental results show that the generated paths are accurate and increase the user comfort during the fly-through navigation. Moreover, because of the efficiency of our path planning algorithm and rendering algorithm, our VC fly-through navigation system can still guarantee 30 FPS.

  9. Three-dimensional Cross-Platform Planning for Complex Spinal Procedures: A New Method Adaptive to Different Navigation Systems.

    Science.gov (United States)

    Kosterhon, Michael; Gutenberg, Angelika; Kantelhardt, Sven R; Conrad, Jens; Nimer Amr, Amr; Gawehn, Joachim; Giese, Alf

    2017-08-01

    A feasibility study. To develop a method based on the DICOM standard which transfers complex 3-dimensional (3D) trajectories and objects from external planning software to any navigation system for planning and intraoperative guidance of complex spinal procedures. There have been many reports about navigation systems with embedded planning solutions but only few on how to transfer planning data generated in external software. Patients computerized tomography and/or magnetic resonance volume data sets of the affected spinal segments were imported to Amira software, reconstructed to 3D images and fused with magnetic resonance data for soft-tissue visualization, resulting in a virtual patient model. Objects needed for surgical plans or surgical procedures such as trajectories, implants or surgical instruments were either digitally constructed or computerized tomography scanned and virtually positioned within the 3D model as required. As crucial step of this method these objects were fused with the patient's original diagnostic image data, resulting in a single DICOM sequence, containing all preplanned information necessary for the operation. By this step it was possible to import complex surgical plans into any navigation system. We applied this method not only to intraoperatively adjustable implants and objects under experimental settings, but also planned and successfully performed surgical procedures, such as the percutaneous lateral approach to the lumbar spine following preplanned trajectories and a thoracic tumor resection including intervertebral body replacement using an optical navigation system. To demonstrate the versatility and compatibility of the method with an entirely different navigation system, virtually preplanned lumbar transpedicular screw placement was performed with a robotic guidance system. The presented method not only allows virtual planning of complex surgical procedures, but to export objects and surgical plans to any navigation or

  10. GPS Navigation Above 76,000 km for the MMS Mission

    Science.gov (United States)

    Winternitz, Luke; Bamford, Bill; Price, Samuel; Long, Anne; Farahmand, Mitra; Carpenter, Russell

    2016-01-01

    NASA's MMS mission, launched in March of 2015,consists of a controlled formation of four spin-stabilized spacecraft in similar highly elliptic orbits reaching apogee at radial distances of 12and 25 Earth radii in the first and second phases of the mission. Navigation for MMS is achieved independently onboard each spacecraft by processing GPS observables using NASA GSFC's Navigator GPS receiver and the Goddard Enhanced Onboard Navigation System (GEONS) extended Kalman filter software. To our knowledge, MMS constitutes, by far, the highest-altitude operational use of GPS to date and represents the culmination of over a decade of high-altitude GPS navigation research and development at NASA GSFC. In this paper we will briefly describe past and ongoing high-altitude GPS research efforts at NASA GSFC and elsewhere, provide details on the design of the MMS GPS navigation system, and present on-orbit performance data. We extrapolate these results to predict performance in the Phase 2b mission orbit, and conclude with a discussion of the implications of the MMS results for future high-altitude GPS navigation, which we believe to be broad and far-reaching.

  11. Ser mãe e estar com AIDS: revivescimento do pecado original To be mother and to have AIDS: the original evil reviviscency

    Directory of Open Access Journals (Sweden)

    Maria Lúcia Duarte Pereira

    1999-12-01

    Full Text Available O estudo objetivou compreender o significado de estar com AIDS para mães portadoras do HIV/AIDS, identificar as emoções e os modos de enfrentamento decorrentes da relação mãe-filho sadio. Realizado à luz da teoria das representações sociais, teve como resultante "ser mãe" e "estar com AIDS" representado como um processo que não se esgota na doença, mas mostra-se vinculado à polaridade do bem e do mal. Traz ainda a sexualidade como algo que contém essas polaridades e a AIDS, vinculada ao aspecto mal. As mulheres deste estudo mostraram se julgar culpadas de algo e merecem o castigo imposto pela doença.This study aimed to understand the meaning of being with AIDS among HIV/AIDS mothers. It looks for to identify the emotions and the way of cope with the situation as a mother has a healthy son. This study was conducted based on the Social Representations Theory. The findings showed "to be mother" and "to have AIDS" represented as a process that does not finish in the disease itself Also it was found that there is a polarize link between the good and the evil. Indeed, this study brought the sexuality likewise the polarized link, being AIDS linked to evil aspect. These women from this study had perceived themselves as guilty of something, as a result, they deserved the punishment that the AIDS imposed on them.

  12. Expected Navigation Flight Performance for the Magnetospheric Multiscale (MMS) Mission

    Science.gov (United States)

    Olson, Corwin; Wright, Cinnamon; Long, Anne

    2012-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four formation-flying spacecraft placed in highly eccentric elliptical orbits about the Earth. The primary scientific mission objective is to study magnetic reconnection within the Earth s magnetosphere. The baseline navigation concept is the independent estimation of each spacecraft state using GPS pseudorange measurements (referenced to an onboard Ultra Stable Oscillator) and accelerometer measurements during maneuvers. State estimation for the MMS spacecraft is performed onboard each vehicle using the Goddard Enhanced Onboard Navigation System, which is embedded in the Navigator GPS receiver. This paper describes the latest efforts to characterize expected navigation flight performance using upgraded simulation models derived from recent analyses.

  13. Navigation To and From a Page: Which Links Get Clicked From Where

    Science.gov (United States)

    Use Google Analytics navigation summary data to find out what page users most frequently click your Contact Us link from (Previous Page Path), or which links on your homepage are popular or unpopular (Next Page Path).

  14. Spatial navigation by congenitally blind individuals.

    Science.gov (United States)

    Schinazi, Victor R; Thrash, Tyler; Chebat, Daniel-Robert

    2016-01-01

    Spatial navigation in the absence of vision has been investigated from a variety of perspectives and disciplines. These different approaches have progressed our understanding of spatial knowledge acquisition by blind individuals, including their abilities, strategies, and corresponding mental representations. In this review, we propose a framework for investigating differences in spatial knowledge acquisition by blind and sighted people consisting of three longitudinal models (i.e., convergent, cumulative, and persistent). Recent advances in neuroscience and technological devices have provided novel insights into the different neural mechanisms underlying spatial navigation by blind and sighted people and the potential for functional reorganization. Despite these advances, there is still a lack of consensus regarding the extent to which locomotion and wayfinding depend on amodal spatial representations. This challenge largely stems from methodological limitations such as heterogeneity in the blind population and terminological ambiguity related to the concept of cognitive maps. Coupled with an over-reliance on potential technological solutions, the field has diffused into theoretical and applied branches that do not always communicate. Here, we review research on navigation by congenitally blind individuals with an emphasis on behavioral and neuroscientific evidence, as well as the potential of technological assistance. Throughout the article, we emphasize the need to disentangle strategy choice and performance when discussing the navigation abilities of the blind population. For further resources related to this article, please visit the WIREs website. © 2015 The Authors. WIREs Cognitive Science published by Wiley Periodicals, Inc.

  15. Structured Kernel Subspace Learning for Autonomous Robot Navigation.

    Science.gov (United States)

    Kim, Eunwoo; Choi, Sungjoon; Oh, Songhwai

    2018-02-14

    This paper considers two important problems for autonomous robot navigation in a dynamic environment, where the goal is to predict pedestrian motion and control a robot with the prediction for safe navigation. While there are several methods for predicting the motion of a pedestrian and controlling a robot to avoid incoming pedestrians, it is still difficult to safely navigate in a dynamic environment due to challenges, such as the varying quality and complexity of training data with unwanted noises. This paper addresses these challenges simultaneously by proposing a robust kernel subspace learning algorithm based on the recent advances in nuclear-norm and l 1 -norm minimization. We model the motion of a pedestrian and the robot controller using Gaussian processes. The proposed method efficiently approximates a kernel matrix used in Gaussian process regression by learning low-rank structured matrix (with symmetric positive semi-definiteness) to find an orthogonal basis, which eliminates the effects of erroneous and inconsistent data. Based on structured kernel subspace learning, we propose a robust motion model and motion controller for safe navigation in dynamic environments. We evaluate the proposed robust kernel learning in various tasks, including regression, motion prediction, and motion control problems, and demonstrate that the proposed learning-based systems are robust against outliers and outperform existing regression and navigation methods.

  16. Navigation of Pedicle Screws in the Thoracic Spine with a New Electromagnetic Navigation System: A Human Cadaver Study

    Directory of Open Access Journals (Sweden)

    Patrick Hahn

    2015-01-01

    Full Text Available Introduction. Posterior stabilization of the spine is a standard procedure in spinal surgery. In addition to the standard techniques, several new techniques have been developed. The objective of this cadaveric study was to examine the accuracy of a new electromagnetic navigation system for instrumentation of pedicle screws in the spine. Material and Method. Forty-eight pedicle screws were inserted in the thoracic spine of human cadavers using EMF navigation and instruments developed especially for electromagnetic navigation. The screw position was assessed postoperatively by a CT scan. Results. The screws were classified into 3 groups: grade 1 = ideal position; grade 2 = cortical penetration <2 mm; grade 3 = cortical penetration ≥2 mm. The initial evaluation of the system showed satisfied positioning for the thoracic spine; 37 of 48 screws (77.1%, 95% confidence interval [62.7%, 88%] were classified as group 1 or 2. Discussion. The screw placement was satisfactory. The initial results show that there is room for improvement with some changes needed. The ease of use and short setup times should be pointed out. Instrumentation is achieved without restricting the operator’s mobility during navigation. Conclusion. The results indicate a good placement technique for pedicle screws. Big advantages are the easy handling of the system.

  17. Current Role of Computer Navigation in Total Knee Arthroplasty.

    Science.gov (United States)

    Jones, Christopher W; Jerabek, Seth A

    2018-01-31

    Computer-assisted surgical (CAS) navigation has been developed with the aim of improving the accuracy and precision of total knee arthroplasty (TKA) component positioning and therefore overall limb alignment. The historical goal of knee arthroplasty has been to restore the mechanical alignment of the lower limb by aligning the femoral and tibial components perpendicular to the mechanical axis of the femur and tibia. Despite over 4 decades of TKA component development and nearly 2 decades of interest in CAS, the fundamental question remains; does the alignment goal and/or the method of achieving that goal affect the outcome of the TKA in terms of patient-reported outcome measures and/or overall survivorship? The quest for reliable and reproducible achievement of the intraoperative alignment goal has been the primary motivator for the introduction, development, and refinement of CAS navigation. Numerous proprietary systems now exist, and rapid technological advancements in computer processing power are stimulating further development of robotic surgical systems. Three categories of CAS can be defined: image-based large-console navigation; imageless large-console navigation, and more recently, accelerometer-based handheld navigation systems have been developed. A review of the current literature demonstrates that there are enough well-designed studies to conclude that both large-console CAS and handheld navigation systems improve the accuracy and precision of component alignment in TKA. However, missing from the evidence base, other than the subgroup analysis provided by the Australian Orthopaedic Association National Joint Replacement Registry, are any conclusive demonstrations of a clinical superiority in terms of improved patient-reported outcome measures and/or decreased cumulative revision rates in the long term. Few authors would argue that accuracy of alignment is a goal to ignore; therefore, in the absence of clinical evidence, many of the arguments against

  18. Using a sand wave model for optimal monitoring of navigation depth

    NARCIS (Netherlands)

    Knaapen, Michiel; Hulscher, Suzanne J.M.H.; Tiessen, Meinard C.H.; van den Berg, J.; Parker, G.; García, M.H.

    2005-01-01

    In the Euro Channel to Rotterdam Harbor, sand waves reduce the navigable depth to an unacceptable level. To avoid the risk of grounding, the navigation depth is monitored and sand waves that reduce the navigation depth unacceptably are dredged. After the dredging, the sand waves slowly regain their

  19. New Paradigms for Computer Aids to Invention.

    Science.gov (United States)

    Langston, M. Diane

    Many people are interested in computer aids to rhetorical invention and want to know how to evaluate an invention aid, what the criteria are for a good one, and how to assess the trade-offs involved in buying one product or another. The frame of reference for this evaluation is an "old paradigm," which treats the computer as if it were…

  20. A Novel Scheme for DVL-Aided SINS In-Motion Alignment Using UKF Techniques

    Directory of Open Access Journals (Sweden)

    Wenqi Wu

    2013-01-01

    Full Text Available In-motion alignment of Strapdown Inertial Navigation Systems (SINS without any geodetic-frame observations is one of the toughest challenges for Autonomous Underwater Vehicles (AUV. This paper presents a novel scheme for Doppler Velocity Log (DVL aided SINS alignment using Unscented Kalman Filter (UKF which allows large initial misalignments. With the proposed mechanism, a nonlinear SINS error model is presented and the measurement model is derived under the assumption that large misalignments may exist. Since a priori knowledge of the measurement noise covariance is of great importance to robustness of the UKF, the covariance-matching methods widely used in the Adaptive KF (AKF are extended for use in Adaptive UKF (AUKF. Experimental results show that the proposed DVL-aided alignment model is effective with any initial heading errors. The performances of the adaptive filtering methods are evaluated with regards to their parameter estimation stability. Furthermore, it is clearly shown that the measurement noise covariance can be estimated reliably by the adaptive UKF methods and hence improve the performance of the alignment.

  1. Foreign aid

    DEFF Research Database (Denmark)

    Tarp, Finn

    2008-01-01

    Foreign aid has evolved significantly since the Second World War in response to a dramatically changing global political and economic context. This article (a) reviews this process and associated trends in the volume and distribution of foreign aid; (b) reviews the goals, principles and instituti......Foreign aid has evolved significantly since the Second World War in response to a dramatically changing global political and economic context. This article (a) reviews this process and associated trends in the volume and distribution of foreign aid; (b) reviews the goals, principles...... and institutions of the aid system; and (c) discusses whether aid has been effective. While much of the original optimism about the impact of foreign aid needed modification, there is solid evidence that aid has indeed helped further growth and poverty reduction...

  2. Intrathecal synthesis of antibodies to HTLV-III in patients without AIDS or AIDS related complex

    NARCIS (Netherlands)

    Goudsmit, J.; Wolters, E. C.; Bakker, M.; Smit, L.; van der Noordaa, J.; Hische, E. A.; Tutuarima, J. A.; van der Helm, H. J.

    1986-01-01

    De novo synthesis in the central nervous system of IgG antibodies to human T cell lymphotropic virus type III (HTLV-III) (lymphadenopathy associated virus) was shown in seven of 10 seropositive men who had syphilis but not the acquired immune deficiency syndrome (AIDS) or AIDS related complex. None

  3. Perceived vulnerability to aids among rural Black South African ...

    African Journals Online (AJOL)

    Almost a third (30%) worried about getting AIDS and even more (40%) thought they will get AIDS. There were important age- and gender-related differences regarding vulnerability and fears about AIDS, which have relevant implications for AIDS education addressing developmentally appropriate concerns. Journal of Child ...

  4. AID SELECTIVITY PRACTICE AND AID EFFECTIVENESS IN SUB-SAHARAN AFRICA

    OpenAIRE

    Adedokun, Adeniyi Jimmy; Abiodun O. Folawewo, Abiodun O.

    2017-01-01

    Foreign aid strategies have undergone restructuring as donors adopt aid selectivity practice to improve aid effectiveness. This study investigates the impact of aid selectivity practice on aid effectiveness (aid-growth relationship) in Sub-Saharan Africa (SSA) and several groups of countries within SSA from 1980 to 2012. Employing system generalized methods of moments (system GMM) technique; the study produces strong evidence that there is significant improvement in aid effectiveness due to a...

  5. Interference and deception detection technology of satellite navigation based on deep learning

    Science.gov (United States)

    Chen, Weiyi; Deng, Pingke; Qu, Yi; Zhang, Xiaoguang; Li, Yaping

    2017-10-01

    Satellite navigation system plays an important role in people's daily life and war. The strategic position of satellite navigation system is prominent, so it is very important to ensure that the satellite navigation system is not disturbed or destroyed. It is a critical means to detect the jamming signal to avoid the accident in a navigation system. At present, the detection technology of jamming signal in satellite navigation system is not intelligent , mainly relying on artificial decision and experience. For this issue, the paper proposes a method based on deep learning to monitor the interference source in a satellite navigation. By training the interference signal data, and extracting the features of the interference signal, the detection sys tem model is constructed. The simulation results show that, the detection accuracy of our detection system can reach nearly 70%. The method in our paper provides a new idea for the research on intelligent detection of interference and deception signal in a satellite navigation system.

  6. Radiofrequency Ablation of an Atrial Tachycardia Emanating From the Non-coronary Aortic Cusp Guided by an Electroanatomic Navigation System

    Directory of Open Access Journals (Sweden)

    Agustin Bortone

    2010-02-01

    Full Text Available We report on an atrial tachycardia (AT, emanating from the non-coronary (NC aortic cusp, ablated with the aid of an electro-anatomical navigation system. In this setting, the electrocardiographic, electrophysiologic (EP, anatomical, and ablative considerations are discussed.Although NC aortic cusp focal ATs are an uncommon EP finding, their ablation is effective and safe, especially from an atrio-ventricular (AV conductive point of view. This origin of AT must be invoked and systematically disclosed when a peri-AV nodal AT origin is suspected, in order to avoid a potentially harmful energy application at the vicinity of the AV conductive tissue.

  7. Governing AIDS through aid to civil society: Global solutions meet ...

    African Journals Online (AJOL)

    The aim of this article is to explore how international donors influence civil society organisations (CSOs) in Mozambique through funding mechanisms, the creation of partnerships, or inclusion in targeted programmes. The main focus is the relationship between donors and AIDS non-governmental organisations (NGOs).

  8. Performance Improvement of Inertial Navigation System by Using Magnetometer with Vehicle Dynamic Constraints

    Directory of Open Access Journals (Sweden)

    Daehee Won

    2015-01-01

    Full Text Available A navigation algorithm is proposed to increase the inertial navigation performance of a ground vehicle using magnetic measurements and dynamic constraints. The navigation solutions are estimated based on inertial measurements such as acceleration and angular velocity measurements. To improve the inertial navigation performance, a three-axis magnetometer is used to provide the heading angle, and nonholonomic constraints (NHCs are introduced to increase the correlation between the velocity and the attitude equation. The NHCs provide a velocity feedback to the attitude, which makes the navigation solution more robust. Additionally, an acceleration-based roll and pitch estimation is applied to decrease the drift when the acceleration is within certain boundaries. The magnetometer and NHCs are combined with an extended Kalman filter. An experimental test was conducted to verify the proposed method, and a comprehensive analysis of the performance in terms of the position, velocity, and attitude showed that the navigation performance could be improved by using the magnetometer and NHCs. Moreover, the proposed method could improve the estimation performance for the position, velocity, and attitude without any additional hardware except an inertial sensor and magnetometer. Therefore, this method would be effective for ground vehicles, indoor navigation, mobile robots, vehicle navigation in urban canyons, or navigation in any global navigation satellite system-denied environment.

  9. 33 CFR 64.16 - Duration of marking on sunken vessels in navigable waters.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Duration of marking on sunken vessels in navigable waters. 64.16 Section 64.16 Navigation and Navigable Waters COAST GUARD, DEPARTMENT... Sunken Vessels and Other Obstructions § 64.16 Duration of marking on sunken vessels in navigable waters...

  10. 33 CFR 207.600 - Rochester (Charlotte) Harbor, N.Y.; use, administration, and navigation.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Rochester (Charlotte) Harbor, N.Y.; use, administration, and navigation. 207.600 Section 207.600 Navigation and Navigable Waters CORPS OF... (Charlotte) Harbor, N.Y.; use, administration, and navigation. (a)-(b) [Reserved] (c) No vessel shall moor or...

  11. Cost-Effectiveness Analysis of a Navigation Program for Colorectal Cancer Screening to Reduce Social Health Inequalities: A French Cluster Randomized Controlled Trial.

    Science.gov (United States)

    De Mil, Rémy; Guillaume, Elodie; Guittet, Lydia; Dejardin, Olivier; Bouvier, Véronique; Pornet, Carole; Christophe, Véronique; Notari, Annick; Delattre-Massy, Hélène; De Seze, Chantal; Peng, Jérôme; Launoy, Guy; Berchi, Célia

    2018-06-01

    Patient navigation programs to increase colorectal cancer (CRC) screening adherence have become widespread in recent years, especially among deprived populations. To evaluate the cost-effectiveness of the first patient navigation program in France. A total of 16,250 participants were randomized to either the usual screening group (n = 8145) or the navigation group (n = 8105). Navigation consisted of personalized support provided by social workers. A cost-effectiveness analysis of navigation versus usual screening was conducted from the payer perspective in the Picardy region of northern France. We considered nonmedical direct costs in the analysis. Navigation was associated with a significant increase of 3.3% (24.4% vs. 21.1%; P = 0.003) in participation. The increase in participation was higher among affluent participants (+4.1%; P = 0.01) than among deprived ones (+2.6%; P = 0.07). The cost per additional individual screened by navigation compared with usual screening (incremental cost-effectiveness ratio) was €1212 globally and €1527 among deprived participants. Results were sensitive to navigator wages and to the intervention effectiveness whose variations had the greatest impact on the incremental cost-effectiveness ratio. Patient navigation aiming at increasing CRC screening participation is more efficient among affluent individuals. Nevertheless, when the intervention is implemented for the entire population, social inequalities in CRC screening adherence increase. To reduce social inequalities, patient navigation should therefore be restricted to deprived populations, despite not being the most cost-effective strategy, and accepted to bear a higher extra cost per additional individual screened. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  12. 33 CFR 207.50 - Hudson River Lock at Troy, N.Y.; navigation.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Hudson River Lock at Troy, N.Y..., DEPARTMENT OF DEFENSE NAVIGATION REGULATIONS § 207.50 Hudson River Lock at Troy, N.Y.; navigation. (a...) [Reserved] (n) Trespass on U.S. property. Trespass on U.S. property, or willful injury to the banks, masonry...

  13. Autonomous GPS/INS navigation experiment for Space Transfer Vehicle

    Science.gov (United States)

    Upadhyay, Triveni N.; Cotterill, Stephen; Deaton, A. W.

    1993-01-01

    An experiment to validate the concept of developing an autonomous integrated spacecraft navigation system using on board Global Positioning System (GPS) and Inertial Navigation System (INS) measurements is described. The feasibility of integrating GPS measurements with INS measurements to provide a total improvement in spacecraft navigation performance, i.e. improvement in position, velocity and attitude information, was previously demonstrated. An important aspect of this research is the automatic real time reconfiguration capability of the system designed to respond to changes in a spacecraft mission under the control of an expert system.

  14. 33 CFR 165.1402 - Apra Outer Harbor, Guam-regulated navigation area.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Apra Outer Harbor, Guam-regulated....1402 Apra Outer Harbor, Guam—regulated navigation area. (a) The following is a regulated navigation area—The waters of the Pacific Ocean and Apra Outer Harbor enclosed by a line beginning at latitude 13...

  15. Navigation concepts for MR image-guided interventions.

    Science.gov (United States)

    Moche, Michael; Trampel, Robert; Kahn, Thomas; Busse, Harald

    2008-02-01

    The ongoing development of powerful magnetic resonance imaging techniques also allows for advanced possibilities to guide and control minimally invasive interventions. Various navigation concepts have been described for practically all regions of the body. The specific advantages and limitations of these concepts largely depend on the magnet design of the MR scanner and the interventional environment. Open MR scanners involve minimal patient transfer, which improves the interventional workflow and reduces the need for coregistration, ie, the mapping of spatial coordinates between imaging and intervention position. Most diagnostic scanners, in contrast, do not allow the physician to guide his instrument inside the magnet and, consequently, the patient needs to be moved out of the bore. Although adequate coregistration and navigation concepts for closed-bore scanners are technically more challenging, many developments are driven by the well-known capabilities of high-field systems and their better economic value. Advanced concepts such as multimodal overlays, augmented reality displays, and robotic assistance devices are still in their infancy but might propel the use of intraoperative navigation. The goal of this work is to give an update on MRI-based navigation and related techniques and to briefly discuss the clinical experience and limitations of some selected systems. (Copyright) 2008 Wiley-Liss, Inc.

  16. 33 CFR 209.325 - Navigation lights, aids to navigation, navigation charts, and related data policy, practices and...

    Science.gov (United States)

    2010-07-01

    ..., starting with number 1 at the beginning of each year. (i) Information pamphlets, maps, brochures and other... information pamphlets, maps, brochures, and other material on river and harbor, flood control, and other Civil...

  17. Navigation by environmental geometry: the use of zebrafish as a model.

    Science.gov (United States)

    Lee, Sang Ah; Vallortigara, Giorgio; Flore, Michele; Spelke, Elizabeth S; Sovrano, Valeria A

    2013-10-01

    Sensitivity to environmental shape in spatial navigation has been found, at both behavioural and neural levels, in virtually every species tested, starting early in development. Moreover, evidence that genetic deletions can cause selective deficits in such navigation behaviours suggests a genetic basis to navigation by environmental geometry. Nevertheless, the geometric computations underlying navigation have not been specified in any species. The present study teases apart the geometric components within the traditionally used rectangular enclosure and finds that zebrafish selectively represent distance and directional relationships between extended boundary surfaces. Similar behavioural results in geometric navigation tasks with human children provide prima facie evidence for similar underlying cognitive computations and open new doors for probing the genetic foundations that give rise to these computations.

  18. Biologically inspired autonomous agent navigation using an integrated polarization analyzing CMOS image sensor

    NARCIS (Netherlands)

    Sarkaer, M.; San Segundo Bello, D.; Van Hoof, C.; Theuwissen, A.

    2010-01-01

    The navigational strategies of insects using skylight polarization are interesting for applications in autonomous agent navigation because they rely on very little information for navigation. A polarization navigation sensor using the Stokes parameters to determine the orientation is presented. The

  19. Navigating across Cultures: Narrative Constructions of Lived Experience

    Science.gov (United States)

    Pufall-Jones, Elizabeth; Mistry, Jayanthi

    2010-01-01

    In this study, we investigated how individuals from diverse backgrounds learn to navigate the many worlds in which they live and explore how variations in life experiences are associated with aspects of navigating across cultures. We conducted the study using a phenomenological approach based on retrospective personal narratives from 19 young…

  20. FPGA-based real-time embedded system for RISS/GPS integrated navigation.

    Science.gov (United States)

    Abdelfatah, Walid Farid; Georgy, Jacques; Iqbal, Umar; Noureldin, Aboelmagd

    2012-01-01

    Navigation algorithms integrating measurements from multi-sensor systems overcome the problems that arise from using GPS navigation systems in standalone mode. Algorithms which integrate the data from 2D low-cost reduced inertial sensor system (RISS), consisting of a gyroscope and an odometer or wheel encoders, along with a GPS receiver via a Kalman filter has proved to be worthy in providing a consistent and more reliable navigation solution compared to standalone GPS receivers. It has been also shown to be beneficial, especially in GPS-denied environments such as urban canyons and tunnels. The main objective of this paper is to narrow the idea-to-implementation gap that follows the algorithm development by realizing a low-cost real-time embedded navigation system capable of computing the data-fused positioning solution. The role of the developed system is to synchronize the measurements from the three sensors, relative to the pulse per second signal generated from the GPS, after which the navigation algorithm is applied to the synchronized measurements to compute the navigation solution in real-time. Employing a customizable soft-core processor on an FPGA in the kernel of the navigation system, provided the flexibility for communicating with the various sensors and the computation capability required by the Kalman filter integration algorithm.