WorldWideScience

Sample records for aid plant nutrient

  1. Chlorophyll Meters Aid Plant Nutrient Management

    Science.gov (United States)

    2009-01-01

    On December 7, 1972, roughly 5 hours and 6 minutes after launch, the crew of Apollo 17 took one of history s most famous photographs. The brilliant image of the fully illuminated Earth, the African and Antarctic continents peering out from behind swirling clouds, came to be known as the Blue Marble. Today, Earth still sometimes goes by the Blue Marble nickname, but as the satellites comprising NASA s Earth Observing System (EOS) scan the planet daily in ever greater resolutions, it is often the amount of green on the planet that is a focus of researchers attention. Earth s over 400,000 known plant species play essential roles in the planet s health: They absorb carbon dioxide and release the oxygen we breathe, help manage the Earth s temperature by absorbing and reflecting sunlight, provide food and habitats for animals, and offer building materials, medication, and sustenance for humans. As part of NASA s efforts to study our own planet along with the universe around it, the Agency s EOS satellites have been accumulating years of valuable data about Earth s vegetation (not to mention its land features, oceans, and atmosphere) since the first EOS satellite launched in 1997. Among the powerful sensors used is the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the NASA Terra and Aqua satellites. MODIS sweeps the entire Earth every few days, beaming back information gathered across 36 bands of visible and infrared light, yielding images that let scientists track how much of Earth is green over the course of seasons and years. Monitoring the density and distribution of vegetation on Earth provides a means of determining everything from the impact of natural and human-induced climate change to the potential outbreak of disease. (Goddard Space Flight Center and U.S. Department of Defense researchers have determined, for example, that vegetation density can be used to pinpoint regions of heavy rainfall in Africa regions ripe for outbreaks of rainfall

  2. Association of arsenic with nutrient elements in rice plants.

    Science.gov (United States)

    Duan, Guilan; Liu, Wenju; Chen, Xueping; Hu, Ying; Zhu, Yongguan

    2013-06-01

    Rice is the main cereal crop that feeds half of the world's population, and two thirds of the Chinese population. Arsenic (As) contamination in paddy soil and irrigation water elevates As concentration in rice grains, thus rice consumption is an important As intake route for populations in south and south-east Asia, where rice is the staple food. In addition to direct toxicity of As to human, As may limit the accumulation of micro-nutrients in rice grains, such as selenium (Se) and zinc (Zn). These micro-nutrients are essential for humans, while mineral deficiencies, especially iron (Fe) and Zn, are prevalent in China. Therefore, it is important to understand the interactions between As and micro-nutrients in rice plants, which is the principal source of these nutrients for people on rice diets. In addition, during the processes of As uptake, translocation and transformation, the status of macro-nutrients (e.g. silicon (Si), phosphors (P), sulfur (S)) are important factors affecting As dynamics in soil-plant systems and As accumulation in rice grains. Recently, synchrotron-based spectroscopic techniques have been applied to map the distribution of As and nutrient elements in rice plants, which will aid to understand how As are accumulated, complexed and transported within plants. This paper reviews the interactions between As and macro-nutrients, as well as micro-nutrients in rice plants. PMID:23771154

  3. Plant nutrient transporter regulation in arbuscular mycorrhizas

    DEFF Research Database (Denmark)

    Burleigh, Stephen; Bechmann, I.E.

    2002-01-01

    This review discusses the role arbuscular mycorrhizal fungi play in the regulation of plant nutrient transporter genes. Many plant nutrient transporter genes appear to be transcriptionally regulated by a feed-back mechanism that reduces their expression when the plant reaches an optimal level of...... nutrition. Their down-regulation in mycorrhizal roots, therefore, would be predicted as a result of symbiotic function. A variety of studies on Pi- Zn- and ammonium- or nitrate-transporter genes from two plant species indirectly support this model. For example, one study showed that the expression of the...... high-affinity Pi-transporter MtPT2 within mycorrhizal roots of Medicago truncatula was inversely correlated with the concentration of P within the shoots, which suggested that P supply from the fungus influenced this gene's expression. However, there is some evidence that these plant nutrient...

  4. Porous membrane utilization in plant nutrient delivery

    Science.gov (United States)

    Dreschel, T. W.; Hinkle, C. R.; Prince, R. P.; Knott, W. M., III

    1987-01-01

    A spacecraft hydroponic plant growth unit of tubular configuration, employing a microporous membrane as a capilary interface between plant roots and a nutrient solution, is presented. All three of the experimental trials undertaken successfully grew wheat from seed to harvest. Attention is given to the mass/seed, number of seeds/head, ratio of seed dry mass to total plant dry mass, production of tillers, and mass of seed/plant. Dry matter production is found to be reduced with increasing suction pressure; this is true for both average seed and average total dry matter/plant. This may be due to a reduction in water and nutrient availability through the microporous membrane.

  5. Endocytotic uptake of nutrients in carnivorous plants.

    Science.gov (United States)

    Adlassnig, Wolfram; Koller-Peroutka, Marianne; Bauer, Sonja; Koshkin, Edith; Lendl, Thomas; Lichtscheidl, Irene K

    2012-07-01

    Carnivorous plants trap, digest and absorb animals in order to supplement their mineral nutrition. Nutrients absorbed by the plant include different nitrogen species, phosphate, potassium, trace elements and small organic compounds. Uptake is usually thought to be performed via specific channels, but this study provides evidence that endocytosis is involved as well. Traps of the carnivorous plants Nepenthes coccinea, Nepenthes ventrata, Cephalotus follicularis, Drosophyllum lusitanicum, Drosera capensis, Dionaea muscipula, Aldrovanda vesiculosa, Genlisea violacea × lobata, Sarracenia psittacina and Sarracenia purpurea were stained with methylene blue in order to identify possible sites of uptake. The permeable parts of the traps were incubated with fluorescein isothiocyanate labelled bovine serum albumin (FITC-BSA) and other fluorescent endocytosis markers, combined with the soluble protein BSA or respiratory inhibitors. Uptake was studied by confocal microscopy. In Nepenthes, small fluorescent vesicles became visible 1 h after incubation with FITC-BSA. These vesicles fused to larger compartments within 30 h. A similar behaviour was found in the related genera Drosera, Dionaea, Aldrovanda and Drosophyllum but also in Cephalotus with glands of different evolutionary origin. In Genlisea and Sarracenia, no evidence for endocytosis was found. We propose that in many carnivorous plants, nutrient uptake by carriers is supplemented by endocytosis, which enables absorption and intracellular digestion of whole proteins. The advantage for the plant of reducing secretion of enzymes for extracellular digestion is evident. PMID:22417315

  6. Shoot Apex Demand Determines Assimilate and Nutrients Partitioning and Nutrient-uptake Rate in Tobacco Plants

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Our previous experiment revealed that apex-removed plants have larger root systems but a lower K+-uptake rates than intact tobacco plants.Since the apex is not only e center of growth and metabolism,but also an important place of auxin synthesis and export,the aims of this study were to distinguish whether the apex demand or auxin synthesized in the apex regulates assimilate and nutrients partitioning within plant,and to explain the reason for the lower K+-uptake rate of the apex-ramoved plant.In comparison with the control plant,covering the shoot apex with a black transparent plastic bag reduced net increases In dry matter and nutrients;however,the distribution of the dry matter and nutrients between shoot and roots and nutrient-uptake rates were not changed.Removal of the shoot apex shifted the dry mass and nutrients distributions to roots,and reduced the rate of nutrient uptake.Application of 1-naphthylacetic acid(NAA) could partly replace the role of the removed apex,stimulated assimilate and nutrient deposition into the treated tissue,and enhanced the reduced plasma membrane ATPase activity of roots to the control level.However,treatment of the apex-removed plants with NAA could not rescue the reduced nutrient uptake rate and the shifted assimilates and nutrients partitioning caused by excision of the apex.Higher nutrient uptake rate of the intact plants could not be explained by root growth parameters,such as total root surface area and number of root tips.The results from the present study indicate that strong apex demand determined assimilatas and nutrients partitioning and nutrient-uptake rate in tobacco(Nicotiana tabacum)plants.

  7. Biotechnology of nutrient uptake and assimilation in plants.

    Science.gov (United States)

    López-Arredondo, Damar L; Leyva-González, Marco A; Alatorre-Cobos, Fulgencio; Herrera-Estrella, Luis

    2013-01-01

    Plants require a complex balance of mineral nutrients to reproduce successfully. Because the availability of many of these nutrients in the soil is compromised by several factors, such as soil pH, cation presence, and microbial activity, crop plants depend directly on nutrients applied as fertilizers to achieve high yields. However, the excessive use of fertilizers is a major environmental concern due to nutrient leaching that causes water eutrophication and promotes toxic algae blooms. This situation generates the urgent need for crop plants with increased nutrient use efficiency and better-designed fertilization schemes. The plant biology revolution triggered by the development of efficient gene transfer systems for plant cells together with the more recent development of next-generation DNA and RNA sequencing and other omics platforms have advanced considerably our understanding on the molecular basis of plant nutrition and how plants respond to nutritional stress. To date, genes encoding sensors, transcription factors, transporters, and metabolic enzymes have been identified as potential candidates to improve nutrient use efficiency. In addition, the study of other genetic resources, such as bacteria and fungi, allows the identification of alternative mechanisms of nutrient assimilation, which are potentially applicable in plants. Although significant progress in this respect has been achieved by conventional breeding, in this review we focus on the biotechnological approaches reported to date aimed at boosting the use of the three most limiting nutrients in the majority of arable lands: nitrogen, phosphorus, and iron. PMID:24166442

  8. Nutrient allocation among stem, leaf and inflorescence of jatropha plants

    Directory of Open Access Journals (Sweden)

    Rosiane L. S. de Lima

    2015-08-01

    Full Text Available ABSTRACTInformation on the partitioning of nutrients among various organs in jatropha plants, as a complementary tool for the recommendation of fertilization, is still not available. This study aimed to evaluate the contents of macro and micronutrients in stems, leaves and inflorescences of jatropha branches at the beginning of flowering. At the beginning of flowering, adult jatropha plants were sampled and divided into five compartments: inflorescences, leaves from vegetative branches, leaves from flowering branches, stems from vegetative branches and stems from flowering branches. Jatropha inflorescences are a drain of nutrients. Leaves are important sources of nutrients demanded by the inflorescences at the beginning of flowering. The higher allocation of nutrients in the inflorescences suggests the need for preventive/corrective fertilizations, which must be performed at least 30 days before flowering, providing plants with nutrients in adequate amounts for a good yield.

  9. Plant response to nutrient availability across variable bedrock geologies

    Science.gov (United States)

    Castle, S.C.; Neff, J.C.

    2009-01-01

    We investigated the role of rock-derived mineral nutrient availability on the nutrient dynamics of overlying forest communities (Populus tremuloides and Picea engelmanni-Abies lasiocarpa v. arizonica) across three parent materials (andesite, limestone, and sandstone) in the southern Rocky Mountains of Colorado. Broad geochemical differences were observed between bedrock materials; however, bulk soil chemistries were remarkably similar between the three different sites. In contrast, soil nutrient pools were considerably different, particularly for P, Ca, and Mg concentrations. Despite variations in nutrient stocks and nutrient availability in soils, we observed relatively inflexible foliar concentrations and foliar stoichiometries for both deciduous and coniferous species. Foliar nutrient resorption (P and K) in the deciduous species followed patterns of nutrient content across substrate types, with higher resorption corresponding to lower bedrock concentrations. Work presented here indicates a complex plant response to available soil nutrients, wherein plant nutrient use compensates for variations in supply gradients and results in the maintenance of a narrow range in foliar stoichiometry. ?? 2008 Springer Science+Business Media, LLC.

  10. Pathogen infection drives patterns of nutrient resorption in citrus plants.

    Science.gov (United States)

    Cao, Jirong; Cheng, Chunzhen; Yang, Junjie; Wang, Qibing

    2015-01-01

    Nutrient resorption processes in the plants infected by pathogen remain poorly understood. Huanglongbing (HLB) is a destructive disease of citrus. HLB-pathogen 'Candidatus Liberibacter asiaticus' grows specifically in the phloem of hosts and may cause problems in the plant vascular system after infection. Therefore, it brings a great concern about the phloem nutrient transport and nutrient intra-cycling in HLB-affected plants. We investigated the effects of 'Ca. L. asiaticus' infection on nitrogen (N) and phosphorus (P) concentrations and resorption in different citrus species (i.e. Citrus reticulata, Citrus limon and Citrus maxima). HLB-pathogen infection had distinctive impacts on nutrient resorption in different species. P resorption efficiency substantially decreased in infected C. reticulata plants relative to the healthy plants in summer, which may account for the marked decrease in the average fruit yield. P resorption was more efficient in infected C. limon plants than in the healthy plants. However, for C. maxima plants, HLB had no significant effects on N:P ratio in live leaves and resorption efficiency as well as on fruit yield. Keeping efficient internal nutrient cycling can be a strategy of citrus species being tolerant to HLB. PMID:26419510

  11. Herbivores and nutrients control grassland plant diversity via light limitation.

    Science.gov (United States)

    Borer, Elizabeth T; Seabloom, Eric W; Gruner, Daniel S; Harpole, W Stanley; Hillebrand, Helmut; Lind, Eric M; Adler, Peter B; Alberti, Juan; Anderson, T Michael; Bakker, Jonathan D; Biederman, Lori; Blumenthal, Dana; Brown, Cynthia S; Brudvig, Lars A; Buckley, Yvonne M; Cadotte, Marc; Chu, Chengjin; Cleland, Elsa E; Crawley, Michael J; Daleo, Pedro; Damschen, Ellen I; Davies, Kendi F; DeCrappeo, Nicole M; Du, Guozhen; Firn, Jennifer; Hautier, Yann; Heckman, Robert W; Hector, Andy; HilleRisLambers, Janneke; Iribarne, Oscar; Klein, Julia A; Knops, Johannes M H; La Pierre, Kimberly J; Leakey, Andrew D B; Li, Wei; MacDougall, Andrew S; McCulley, Rebecca L; Melbourne, Brett A; Mitchell, Charles E; Moore, Joslin L; Mortensen, Brent; O'Halloran, Lydia R; Orrock, John L; Pascual, Jesús; Prober, Suzanne M; Pyke, David A; Risch, Anita C; Schuetz, Martin; Smith, Melinda D; Stevens, Carly J; Sullivan, Lauren L; Williams, Ryan J; Wragg, Peter D; Wright, Justin P; Yang, Louie H

    2014-04-24

    Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light. PMID:24670649

  12. Herbivores and nutrients control grassland plant diversity via light limitation

    Science.gov (United States)

    Borer, Elizabeth T.; Seabloom, Eric W.; Gruner, Daniel S.; Harpole, W. Stanley; Hillebrand, Helmut; Lind, Eric M.; Alder, Peter B.; Alberti, Juan; Anderson, T. Michael; Bakker, Jonathan D.; Biederman, Lori; Blumenthal, Dana; Brown, Cynthia S.; Brudvig, Lars A.; Buckley, Yvonne M.; Cadotte, Marc; Chu, Cheng-Jin; Cleland, Elsa E.; Crawley, Michael J.; Daleo, Pedro; Damschen, Ellen Ingman; Davies, Kendi F.; DeCrappeo, Nicole M.; Du, Guozhen; Firn, Jennifer; Hautier, Yann; Heckman, Robert W.; Hector, Andy; HilleRisLambers, Janneke; Iribarne, Oscar; Klein, Julia A.; Knops, Johannes M.H.; La Pierre, Kimberly J.; Leakey, Andrew D.B.; Li, Wei; MacDougall, Andrew S.; McCulley, Rebecca L.; Melbourne, Brett A.; Mitchell, Charles E.; Moore, Joslin L.; Mortensen, Brent; O'Halloran, Lydia R.; Orrock, John L.; Pascual, Jesús; Prober, Suzanne M.; Pyke, David A.; Risch, Anita C.; Schuetz, Martin; Smith, Melinda D.; Stevens, Carly J.; Sullivan, Lauren L.; Williams, Ryan J.; Wragg, Peter D.; Wright, Justin P.; Yang, Louie H.

    2014-01-01

    Human alterations to nutrient cycles and herbivore communities are affecting global biodiversity dramatically. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.

  13. Roots, plant production and nutrient use efficiency.

    NARCIS (Netherlands)

    Willigen, de P.; Noordwijk, van M.

    1987-01-01

    The role of roots in obtaining high crop production levels as well as a high nutrient use efficiency is discussed. Mathematical models of diffusion and massflow of solutes towards roots are developed for a constant daily uptake requirement. Analytical solutions are given for simple and more complica

  14. Plant Leachate Nutrient Recovery with Biological, Thermal, and Photocatalytic Pretreatments

    Science.gov (United States)

    Wong, Les

    2015-01-01

    Plants are ideal for long term space travel: provide essential resources - oxygen, water, food; Water-soaked plants expel soluble nutrients in a leachate solution - toxins and wastes are also expelled and inhibit growth; biological, thermal, photocatalytic coupled with an acid digestion treatment will hopefully maximize recovery and remove wastes

  15. Benchmarking Biological Nutrient Removal in Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Gernaey, Krist; Jeppsson, Ulf

    2011-01-01

    This paper examines the effect of different model assumptions when describing biological nutrient removal (BNR) by the activated sludge models (ASM) 1, 2d & 3. The performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) benchmark wastewater treatment plant...

  16. Modelling of the Nutrient Medium for Plants Cultivation in Spaceflight

    Science.gov (United States)

    Nechitailo, Galina S.

    2016-07-01

    MODELLING OF THE NUTRIENT MEDIUM FOR PLANTS CULTIVATION IN SPACEFLIGHT Nechitajlo G.S.*, Rakhmetova A.A.**, Bogoslovskaja O.A.**, Ol'hovskay I.P.**, Glushchenko N.N.** *Emanuel Institute of Biochemical Physics of Russian Academy of Sciences (IBCP RAS) mail: spacemal@mail.ru **V.L. Talrose Institute for Energy Problems of Chemical Physics of Russian Academy of Science (INEPCP RAS) mail: nnglu@ mail.ru The valuable life and fruitful activity of cosmonauts and researchers in conditions of spaceflights and prolonged work at space stations are only possible with creating life area providing fresh air, natural food, comfortable psychological conditions, etc. The solution of that problem under space conditions seems impossible without use of high nano- and biotechnologies for plants growth. A priority should be given not only to choose species of growth plants in space, but also to improve conditions for their growth which includes optimal nourishing components for plants, preparation of nutrient mediums, illumination and temperature. We are deeply convinced that just manipulations with growing conditions for cultivated plants, but not genes changes, is a guarantee of success in the decision of this problem. For improving the method of plants growing on the artificial nutrient medium with balanced content of components, being necessary for growth and development of plants, we added essential metal elements: Fe, Zn, Cu - in an electroneutral state in the form of nanoparticles instead of sulfates or other easily dissolving salts. Nanoparticulated metals are known to have a number of advantages in comparison with salts: metals in an electroneutral form are characterized with the prolonged and multifunctional action, low toxicity per se and appearing to be much below the toxicity of the same metals in the ionic forms, accumulation as a reserve being used in biotic dozes, active distribution in bodies and organs of plants and stimulation of vital processes. A high reactivity

  17. Herbivores and nutrients control grassland plant diversity via light limitation.

    Energy Technology Data Exchange (ETDEWEB)

    Borer, Elizabeth T. [Department of Ecology, Evolution, and Behavior, University of Minnesota; et al, et al

    2014-01-01

    Human alterations to nutrient cycles1,2 and herbivore communities3–7 are affecting global biodiversity dramatically2. Ecological theory predicts these changes should be strongly counteractive: nutrient addition drives plant species loss through intensified competition for light, whereas herbivores prevent competitive exclusion by increasing ground-level light, particularly in productive systems8,9. Here we use experimental data spanning a globally relevant range of conditions to test the hypothesis that herbaceous plant species losses caused by eutrophication may be offset by increased light availability due to herbivory. This experiment, replicated in 40 grasslands on 6 continents, demonstrates that nutrients and herbivores can serve as counteracting forces to control local plant diversity through light limitation, independent of site productivity, soil nitrogen, herbivore type and climate. Nutrient addition consistently reduced local diversity through light limitation, and herbivory rescued diversity at sites where it alleviated light limitation. Thus, species loss from anthropogenic eutrophication can be ameliorated in grasslands where herbivory increases ground-level light.

  18. Response of plant nutrient stoichiometry to fertilization varied with plant tissues in a tropical forest.

    Science.gov (United States)

    Mo, Qifeng; Zou, Bi; Li, Yingwen; Chen, Yao; Zhang, Weixin; Mao, Rong; Ding, Yongzhen; Wang, Jun; Lu, Xiankai; Li, Xiaobo; Tang, Jianwu; Li, Zhian; Wang, Faming

    2015-09-29

    Plant N:P ratios are widely used as indices of nutrient limitation in terrestrial ecosystems, but the response of these metrics in different plant tissues to altered N and P availability and their interactions remains largely unclear. We evaluated changes in N and P concentrations, N:P ratios of new leaves (1 yr), stems and mixed fine roots of seven species after 3-years of an N and P addition experiment in a tropical forest. Nitrogen addition only increased fine root N concentrations. P addition increased P concentrations among all tissues. The N × P interaction reduced leaf and stem P concentrations, suggesting a negative effect of N addition on P concentrations under P addition. The reliability of using nutrient ratios as indices of soil nutrient availability varied with tissues: the stoichiometric metrics of stems and older leaves were more responsive indicators of changed soil nutrient availability than those of new leaves and fine roots. However, leaf N:P ratios can be a useful indicator of inter-specific variation in plant response to nutrients availability. This study suggests that older leaf is a better choice than other tissues in the assessment of soil nutrient status and predicting plant response to altered nutrients using nutrients ratios.

  19. Microbial Communities in Danish Wastewater Treatment Plants with Nutrient Removal

    DEFF Research Database (Denmark)

    Mielczarek, Artur Tomasz

    -term investigations of the microbial community in full-scale wastewater treatment plants, where conventional identification, molecular identification by quantitative Fluorescent In Situ Hybridization and extensive process information related to treatment plant design and process performance have been compiled......Activated sludge treatment plants are the most used wastewater treatment systems worldwide for biological nutrient removal from wastewater. Nevertheless, the treatment systems have been for many years operated as so called “black-box”, where specific process parameters were adjusted without...... was devoted into detailed analysis of almost fifty full-scale treatment plants (Microbial Database over Danish Wastewater Treatment Plants.) in order to learn more about the activated sludge communities and the rules that govern their presence and growth. This is one of the first such comprehensive long...

  20. A Device for Simulating Soil Nutrient Extraction and Plant Uptake

    Institute of Scientific and Technical Information of China (English)

    YANG Xu-Jian; LAI Yong-Lin; MO Jin-Yu; SHEN Hong

    2012-01-01

    In situ evaluating the availability of soil nutrients has been a challenge.In this study,a new type of Device for Simulating Soil Nutrient Extraction and Plant Uptake (DSSNEPU) and its operating procedures were introduced.The device consists of a sampling tube,a fluid supply system,a low pressure system,a tube sheath and an elution cylinder.The sampling tube was firstly soaked in the solution of 0.5 mol L-1 NaHCO3 and then buried into soils.The fluid supply system was connected to the sampling tube and the deionized water was supplied.During the period,low pressure system started a vacuum for 3 min every 10 min interval.After extraction,the sampling tube was removed and the nutrients on the sampling tube were eluted with 0.5 mol L-1 HC1.The elution solution was used for nutrient measurement.The amounts of P and K extracted by DSSNEPU reached the maximal values after 4 h.No significant increases of P and K were observed for longer extraction duration.The optimal temperature for extracting P and K was 30 ℃ in this experiment.Extracted P and K were increased by 83.3% and 84.6% with the employment of low pressure system in comparison to those without employing low pressure system.Correlation analysis indicated that P and K extracted by DSSNEPU were highly correlated with those by conventional chemical extraction and by plant uptake.The above results suggest that this device is applicable to assess the availability of nutrients in soils.

  1. Mathematical modelling of plant water and nutrient uptake

    Science.gov (United States)

    Roose, Tiina

    2010-05-01

    In this presentation I will describe a model of plant water and nutrient uptake and how to translate this model and experimental data from the single root scale to the root branching structure scale. The model starts at the single root scale and describes the water and nutrient movement in the soil using Richards' equation (water uptake) and diffusion-convection equation (nutrient uptake). The water and nutrient uptake in the single root scale model is represented by boundary conditions. In the case of nutrient uptake this has the form of a non-linear Michaelis-Menten uptake law and in the case of water this is given by a soil-xylem pressure difference boundary condition. The flow of water in the xylem is modeled as Poiseuille flow. We solve the single root scale models using the analytic approximate technique of asymptotic expansions similar to Oseen expansions known from fluid dynamics. We will then discuss how to use the analytic expression to estimate the water and nutrient uptake by growing root branching systems. We model the growth of the root system using a dynamic population model to describe the branching and elongation of roots in the branching system. This root branching population model results in a hyperbolic equation similar to age dependent population models and it can be solved fully analytically using the method of characteristics. Thus we have a fully analytic description of the root branching system evolution. We use this branching model to estimate the nutrient uptake in a scenario when the competition between subbranches is small, i.e., as it is in the case of phosphate, potassium and arsenic. We compare our approximate analytic model to a full 3d simulation of the root system phosphate uptake and find that the analytic model almost perfectly reproduces the 3d numerical model. In addition the analytic model can be included in larger field/catchment/climate scale models something which is not practically possible with the numerical simulations

  2. Nutrient content of four edible wild plants from west Africa.

    Science.gov (United States)

    Glew, Robert S; Vanderjagt, Dorothy J; Chuang, L-T; Huang, Y-S; Millson, M; Glew, Robert H

    2005-12-01

    Non-cereal plant foods in the Western Sahel of Africa contribute significantly to the diets of local residents, especially during periods of grain shortages. In this paper, we analyze four such plant foods including diyan kwakwa (nut of coconut palm, Cocos nucifera L.), muricin giginya (young shoot of Borassus aethiopum), tsamiya biri (fruit of the tree, Tamarindus indica), and yari (a mixture of lichens, mainly Rimelia reticulate) that grows on ebony trees (Diospyros mespiliformis). They were analyzed for their content of amino acids, fatty acids, and minerals. Although diyan kwakwa contained the highest protein content (27.1%), its protein quality fell below the WHO standard in 3 of 8 essential amino acid categories. Yari and muricin giginya contained moderate levels of good quality protein. Only diyan kwakwa contained calorically significant amount of total fatty acid (24.7%); however, none of the plants contained useful amounts of the essential fatty acids, linoleic acid, or alpha-linolenic acid. All four plants contained useful amounts of zinc (> 12 microg/g dry weight), while yari contained the most calcium (14.7 mg/g dry weight) and iron (1.41 mg/g), and diyan kwakwa the most copper. All the four plant foods contained lesser amounts of magnesium, molybdenum, or selenium. These data indicate that the four plants contain useful amounts of various essential nutrients that could supplement the diets of populations inhabiting the Western Sahel.

  3. [The content of nutrient elements of plant in KCl fertilizer].

    Science.gov (United States)

    Xu, Fang; Rui, Yu-Kui; Lin, Qiang; Zhang, Fu-Suo

    2009-03-01

    Potassium is one of the three most important plant nutrient elements, so many researchers pay attention on its fertilizer efficiency. But fertilizers were all industrial products containing many other nutrient elements in most experiments of fertilizer efficiency. All the other nutrient elements, including necessitous elements and beneficial elements in potassium fertilizer (KCl) were analyzed by method of ICP-MS. The results showed that KCl fertilizer contained many necessitous elements (Mg, Ca, Mn, Fe, Ni, Cu, Zn and Mo), the concentrations of them are 50.51, 1 309.48, 5.44, 500.83 microg x g(-1) and 65.54, 238.85, 212.44, 10.40 ng x g(-1) respectively; beneficial elements (Na, Al, Si, Co and Se) are 25 095.89, 3.83, 3.40 microg x g(-1) and 13.12, 23.25 ng x g(-1) respectively. All the above elements could influence the results of potassium fertilizer efficiency experiments, so pure fertilizer should be used in the future potassium fertilizer efficiency experiments.

  4. Plant traits mediate consumer and nutrient control on plant community productivity and diversity.

    Science.gov (United States)

    Eskelinen, Anu; Harrison, Susan; Tuomi, Maria

    2012-12-01

    The interactive effects of consumers and nutrients on terrestrial plant communities, and the role of plant functional traits in mediating these responses, are poorly known. We carried out a six-year full-factorial field experiment using mammalian herbivore exclusion and fertilization in two habitat types (fertile and infertile alpine tundra heaths) that differed in plant functional traits related to resource acquisition and palatability. Infertile habitats were dominated by species with traits indicative of a slow-growing strategy: high C:N ratio, low specific leaf area, and high condensed tannins. We found that herbivory counteracted the effect of fertilization on biomass, and that this response differed between the two habitats and was correlated with plant functional traits. Live biomass dominated the treatment responses in infertile habitats, whereas litter accumulation dominated the treatment responses in fertile habitats and was strongly negatively associated with resident community tannin concentration. Species richness declined under herbivore exclusion and fertilization in fertile habitats, where litter accumulation was greatest. Community means of plant C:N ratio predicted treatment effects on diversity: fertilization decreased and herbivory increased dominance in communities originally dominated by plants with high C:N, while fertilization increased and herbivory diminished dominance in communities where low C:N species were abundant. Our results highlight the close interdependence between consumer effects, soil nutrients, and plant functional traits and suggest that plant traits may provide an improved understanding of how consumers and nutrients influence plant community productivity and diversity.

  5. Plant nutrient supply and movement. Report of a panel

    International Nuclear Information System (INIS)

    Despite the emphasis given by the Agency to the more practical field experimentation in agriculture like soil fertility and fertilizer utilization, it is obvious that any long-term programme of soil fertility research must also take into account the fundamentals of plant nutrient supply and movement. Thus a large gap exists between the present methods used for predicting the response of a crop to fertilizer on any given soil and fundamental knowledge in soil physics, chemistry and biology. Only when precise determinations can be made of the quantity of ions in the soil solution, the adsorption complex, and the rate at which the exchange processes occur, will it be possible to develop a scientific basis for the evaluation of the nutrient status of soils and to make efficient fertilizer recommendations. Study of these processes, and others, such as ion movement as affected by water flow and diffusion phenomena, have been carried out on a very limited scale by individual scientists in widely separated institutes. Comparative lack of progress in this field is, at least in part, due to the absence of co-ordinated planning and exchange of information among scientists working on these problems, and it is for this reason that this meeting has been organized by the Agency. From the research point of view a co-ordinated research contract programme on plant nutrient supply and movement has already been initiated and at present there are six contractors. An essential feature of the programme is co-ordination, and this Panel partly represents the second planning meeting of these contractors. The discussions will, however, have wider scope, as other acknowledged specialists in the subject are participating in this Panel

  6. Fiber optic spectrophotometry monitoring of plant nutrient deficiency under hydroponic culture conditions

    Science.gov (United States)

    Liew, Oi Wah; Boey, William S. L.; Asundi, Anand K.; Chen, Jun-Wei; He, Duo-Min

    1999-05-01

    In this paper, fiber optic spectrophotometry (FOSpectr) was adapted to provide early detection of plant nutrient deficiency by measuring leaf spectral reflectance variation resulting from nutrient stress. Leaf reflectance data were obtained form a local vegetable crop, Brassica chinensis var parachinensis (Bailey), grown in nitrate-nitrogen (N)- and calcium (Ca)- deficient hydroponics nutrient solution. FOSpectr analysis showed significant differences in leaf reflectance within the first four days after subjecting plants to nutrient-deficient media. Recovery of the nutrient-stressed plants could also be detected after transferring them back to complete nutrient solution. In contrast to FOSpectr, plant response to nitrogen and calcium deficiency in terms of reduced growth and tissue elemental levels was slower and less pronounced. Thus, this study demonstrated the feasibility of using FOSpectr methodology as a non-destructive alternative to augment current methods of plant nutrient analysis.

  7. Nutrient allocation among plant organs across 13 tree species in three Bornean rain forests with contrasting nutrient availabilities.

    Science.gov (United States)

    Aoyagi, Ryota; Kitayama, Kanehiro

    2016-07-01

    Allocation of nitrogen (N) and phosphorus (P) among plant organs is an important factor regulating growth rate, which is a key ecological process associated with plant life-history strategies. However, few studies have explored how N and P investment in photosynthetic (leaves) and non-photosynthetic (stems and roots) organs changes in relation to depletion of each element. We investigated nutrient concentrations of plant organs in relation to whole-plant nutrient concentration (total nutrient weight per total biomass) as an index of nutrient status of each individual using the saplings of the 13 species in three tropical rain forests with contrasting N and P availabilities (tropical evergreen forests and tropical heath forests). We found a steeper decrease in foliar N concentration than foliar P concentration with decreasing whole-plant nutrient concentration. Moreover, the steeper decrease in foliar N concentration was associated with relatively stable N concentration in stems, and vice versa for P. We suggest that the depletion of N is associated with a rapid dilution of foliar N because the cell walls in non-photosynthetic organs function as an N sink. On the other hand, these species can maintain foliar P concentration by decreasing stem P concentrations despites the depletion of P. Our results emphasize the significance of non-photosynthetic organs as an N sink for understanding the variation of foliar nutrient concentrations for the tree species in the three Bornean rain forests with different N and P availabilities.

  8. Desalination plant aids Australian water shortage

    Energy Technology Data Exchange (ETDEWEB)

    Stocking, A.W.

    2010-09-15

    This article described a reverse-osmosis desalination plant that was commissioned for Adelaide, South Australia, which operates under permanent water restrictions. The plant will supplement the freshwater supply, reduce the pressure on the existing rainwater catchment system, and allow water levels to regenerate. The company that won the bid on the project used 3-dimensional modelling to get accurate cost estimates and visualize the plant impact on the environment, the community, and a culturally important site. A detailed diffusion plan was devised to mitigate the effects of saline concentrate release. As reverse osmosis is so energy intensive that it can be difficult to justify a plant on sustainability grounds. Energy recovery devices were included in the process building and outfall shaft, and solar energy panels will be installed on the process building roof. The energy recovery devices use energy stored in the brine to increase the output of the high-pressure pumps that feed the reverse osmosis units. Energy recovery units in the outfall shaft will produce electricity and provide power to the grid for the process plant to use. The 3-dimensional model was credited as a key factor in winning the bid, and the many advantages of 3-dimensional modelling were described. 3 figs.

  9. A Computer Aided System for Tropical Leaf Medicinal Plant Identification

    Directory of Open Access Journals (Sweden)

    Yeni Herdiyeni

    2013-01-01

    Full Text Available The objective of this paper is to develop a computer aided system for leaf medicinal plant identification using ProbabilisticNeural Network. In Indonesia only 20-22% of medicinal plants have been cultivated. Generally, identification process of medicinalplants has been done manually by a herbarium taxonomist using guidebook of taxonomy/dendrology. This system is designed to helptaxonomist to identify leaf medicinal plant automatically using acomputer-aided system. This system uses three features of leaf toidentify the medicinal plant, i.e., morphology, shape, and texture. Leaf is used in this system for identification because easily to find.To classify medicinal plant we used Probabilistic Neural Network. The features will be combined using Product Decision Rule (PDR.The system was tested on 30 species medicinal plant from Garden of Biopharmaca Research Center and Greenhouse Center of Exsitu Conservation of Medicinal Indonesian Tropical Forest Plants, Faculty of Forestry, Bogor Agriculture University, Indonesia.Experiment results showed that the accuracy of medicinal plant identification using combination of leaf features increase until74,67%.The comparative analysis of leaf features has been performed statistically. It showed that shape is a dominant features for plant identification. This system is very promising to help people identify medicinal plant automatically and for conservation and utilization of medicinal plants.

  10. Improving nuclear power plant safety through operator aids

    International Nuclear Information System (INIS)

    In October 1986, the IAEA convened a one-week Technical Committee Meeting on Improving Nuclear Power Plant Safety Through Operator Aids. The term ''operator aid'' or more formally ''operator support system'' refers to a class of devices designed to be added to a nuclear power plant control station to assist an operator in performing his job and thereby decrease the probability of operator error. The addition of a carefully planned and designed operator aid should result in an increase in nuclear power plant safety and reliability. Operator aids encompass a wide range of devices from the very simple, such as color coding a display to distinguish it out of a group of similar displays, to the very complex, such as a computer-generated video display which concentrates a number of scattered indicator readings located around a control room into a concise display in front of the operator. This report provides guidelines and information to help make a decision as to whether an operator aid is needed, what kinds of operator aids are available and whether it should be purchased or developed by the utility. In addition, a discussion is presented on advanced operator aids to provide information on what may become available in the future. The broad scope of these guidelines makes it most suitable for use by a multi-disciplinary team. The document consists of two parts. The recommendations and results of the meeting discussions are given in the first part. The second part is the annex where the papers presented at the Technical Committee Meeting are printed. A separate abstract was prepared for each of the 10 papers. Refs, figs and tabs

  11. Interspecific nutrient transfer in a tallgrass prairie plant community

    International Nuclear Information System (INIS)

    Interplant nutrient transfer may be an important ecological process in grasslands, and may significantly influence plant neighborhood interactions. We investigated the potential for phosphorus transfer between the dominant grass Andropogon gerardii and several neighboring plant species in tallgrass prairie via a field 32PO4 labelling experiment. The mean amount of 32P received from donor shoots differed significantly among neighboring species and decreased with increasing distance from the donor. In general, forbs and cool-season C3 grasses received more labelled 32P than warm-season C4 grasses. Phosphorus transfer occurred over distances up to 0.5 m. The effects of species and distance on movement of phosphorus changed with increasing time after labelling. The relative mass of receiver and donor shoots did not affect amounts of 32P transfer. A benomyl fungicide treatment, applied to suppress mycorrhizal activity, likely did not affect existing vegetative hyphae and did not affect the amount of 32P transferred. These studies demonstrate that: (1) phosphorus is transferred among neighboring species in tallgrass prairie plant communities, (2) phosphorus may be transferred over significantly greater distances than reported in other grasslands, and (3) there is differential transfer among co-occurring species. Hypothesized mechanisms accounting for these patterns in tallgrass prairie include mycorrhizal hyphal interconnections and/or extensive and differential root and rhizosphere overlap among neighboring species

  12. Nutrient cycle of planted forest of Pinus tabulaeformis in the Miyun Reservoir Watershed, Beijing

    Institute of Scientific and Technical Information of China (English)

    Shihai LIU; Xinxiao YU

    2009-01-01

    We studied the nutrient cycle of a planted for-est ofPinus tabulaeformis in the Miyun Reservoir Water-shed, Beijing. Results show that the total biomass of P.tabulaeformis stands at age 29 in the experimental area is 92627 kg/hm2, and the total nutrient store is 695.17 kg/hm2 including nitrogen (N), phosphorus (P), kalium (K), calium (Ca) and magnesium (Mg). The sequence of their contents in different organs was given as follows: needle > branch >trunk > root. The annual amount of 85.37 kg/hm2 of five nutrient elements were assimilated by P. tabulaeformis,about 0.34% of the total store in soil, and 3.30% of available nutrient store in soil depth from 0 to 30 cm. The nutrient annual retention is 35.92 kg/hm2, annual returning 49.46kg/hm2, the rain input 26.04kg/hm2 to the five nutrient elements. The parameter absorption coefficient,utilization coefficient, cycle coefficient and turnover period were cited to describe the nutrient elements cycle characteristic of the planted forest ecosystem of P.tabulaeformis. The absorption coefficient is the ratio of plant nutrient element content to soil nutrient element content, and its sequence of five nutrient elements was given as follows: N > P > K > Ca > Mg. Utilization coef-ficient is the ratio of the nutrient element annual uptake amount to the nutrient element storage in standing crops,and its sequence of five nutrient elements was: Mg > K >P > N > Ca. The big utilization coefficient means more nutrients stored in the plant. The cycle coefficient is the ratio of the nutrient element annual return amount to the nutrient element annual uptake amount, its sequence:Ca > N > P > K > Mg. Turnover period is the ratio of the nutrient storage in the crops to the annual returning, its sequence: Mg > K > P > N > Ca.

  13. Soil-Plant Nutrient Interactions on Manure-Enriched Calcareous Soils

    Science.gov (United States)

    Nutrient accumulations on heavily manured soils can trigger soil and plant nutrient interactions. The goal of the study was to determine the current impact of dairy manure applications on nutrient concentrations in soil and tissue for irrigated corn silage crops grown in Southern Idaho. At harvest,...

  14. Plants adapted to nutrient limitation allocate less biomass into stems in an arid-hot grassland.

    Science.gov (United States)

    Yan, Bangguo; Ji, Zhonghua; Fan, Bo; Wang, Xuemei; He, Guangxiong; Shi, Liangtao; Liu, Gangcai

    2016-09-01

    Biomass allocation can exert a great influence on plant resource acquisition and nutrient use. However, the role of biomass allocation strategies in shaping plant community composition under nutrient limitations remains poorly addressed. We hypothesized that species-specific allocation strategies can affect plant adaptation to nutrient limitations, resulting in species turnover and changes in community-level biomass allocations across nutrient gradients. In this study, we measured species abundance and the concentrations of nitrogen and phosphorus in leaves and soil nutrients in an arid-hot grassland. We quantified species-specific allocation parameters for stems vs leaves based on allometric scaling relationships. Species-specific stem vs leaf allocation parameters were weighted with species abundances to calculate the community-weighted means driven by species turnover. We found that the community-weighted means of biomass allocation parameters were significantly related to the soil nutrient gradient as well as to leaf stoichiometry, indicating that species-specific allocation strategies can affect plant adaptation to nutrient limitations in the studied grassland. Species that allocate less to stems than leaves tend to dominate nutrient-limited environments. The results support the hypothesis that species-specific allocations affect plant adaptation to nutrient limitations. The allocation trade-off between stems and leaves has the potential to greatly affect plant distribution across nutrient gradients. PMID:27101947

  15. Nutrient Abatement Potential and Abatement Costs of Waste Water Treatment Plants in the Baltic Sea Region

    OpenAIRE

    Hautakangas, Sami; Ollikainen, Markku; Aarnos, Kari; Rantanen, Pirjo

    2013-01-01

    We assess the physical potential to reduce nutrient loads from waste water treatment plants in the Baltic Sea region and determine the costs of abating nutrients based on the estimated potential. We take a sample of waste water treatment plants of different size classes and generalize its properties to the whole population of waste water treatment plants. Based on a detailed investment and operational cost data on actual plants, we develop the total and marginal abatement cost functions for b...

  16. Test of job performance aids for power plants. Final report

    International Nuclear Information System (INIS)

    The objective of EPRI Research Project 1396-1 was to evaluate the applicability and effectiveness of Job Performance Aids (JPAs) in nuclear power plant situations. For over twenty years, JPAs have been developed in military situations to meet the problems of confusing, incomplete, and inaccurate procedures on maintenance jobs. Kinton, Incorporated of Alexandria, Virginia applied the military experience with JPAs to nuclear power plant situations and identified potential benefits in terms of cost reductions and improved performance. Sample JPAs were developed for Control Room Operations, Maintenance, Plant Operations, Instrumentation and Control, Health Physics, and Quality Assurance tasks (procedures) in selected nuclear plants. JPAs were also developed for a prototype condenser tube leak detection system in the design stage, as well as for generic classes of circuit breaker equipment. Based on the results of the study, the use of JPAs is recommended for plant procedures of medium to high difficulty and for those tasks performed infrequently, even if fairly simple

  17. Accumulation of arsenic and nutrients by castor bean plants grown on an As-enriched nutrient solution.

    Science.gov (United States)

    Melo, E E C; Costa, E T S; Guilherme, L R G; Faquin, V; Nascimento, C W A

    2009-08-30

    Phytoextraction is a remediation technique that consists in using plants to remove contaminants from soils and water. This study evaluated arsenic (As) accumulation in Castor bean (Ricinus communis cv. Guarany) grown in nutrient solution in order to assess its phytoextraction ability. Castor bean plants were grown under greenhouse conditions in pots containing a nutrient solution amended with increasing doses of As (0, 10, 50, 100, 250, 500 and 5000 microg L(-1)) in a completely randomized design with four replications. Shoot and roots dry matter production as well as arsenic and nutrient tissue concentrations were measured at the end of the experiment. The results showed that increasing As concentration in nutrient solution caused a decrease in shoot and root biomass but did not result in severe toxicity symptoms in castor bean growing under a range of As concentration from 0 to 5000 microg L(-1). The As doses tested did not affect the accumulation of nutrients by castor bean. Although castor bean did not pose characteristics of a plant suitable for commercial phytoextraction, it could be useful for revegetation of As-contaminated areas while providing an additional income by oil production.

  18. Uptake and partitioning of nutrients in blackberry and raspberry and evaluating plant nutrient status for accurate assessment of fertilizer requirements

    Science.gov (United States)

    Raspberry and blackberry plantings have a relatively low nutrient requirement compared to many other perennial fruit crops. Annual total N accumulation ranged from 62-110 lb/a in red raspberry and 33-39 lb/a in blackberry. Primocanes rely primarily on fertilizer N for growth, whereas floricane growt...

  19. Hydroponics: A Versatile System to Study Nutrient Allocation and Plant Responses to Nutrient Availability and Exposure to Toxic Elements.

    Science.gov (United States)

    Nguyen, Nga T; McInturf, Samuel A; Mendoza-Cózatl, David G

    2016-01-01

    Hydroponic systems have been utilized as one of the standard methods for plant biology research and are also used in commercial production for several crops, including lettuce and tomato. Within the plant research community, numerous hydroponic systems have been designed to study plant responses to biotic and abiotic stresses. Here we present a hydroponic protocol that can be easily implemented in laboratories interested in pursuing studies on plant mineral nutrition. This protocol describes the hydroponic system set up in detail and the preparation of plant material for successful experiments. Most of the materials described in this protocol can be found outside scientific supply companies, making the set up for hydroponic experiments less expensive and convenient. The use of a hydroponic growth system is most advantageous in situations where the nutrient media need to be well controlled and when intact roots need to be harvested for downstream applications. We also demonstrate how nutrient concentrations can be modified to induce plant responses to both essential nutrients and toxic non-essential elements. PMID:27500800

  20. Hydroponics: A Versatile System to Study Nutrient Allocation and Plant Responses to Nutrient Availability and Exposure to Toxic Elements.

    Science.gov (United States)

    Nguyen, Nga T; McInturf, Samuel A; Mendoza-Cózatl, David G

    2016-07-13

    Hydroponic systems have been utilized as one of the standard methods for plant biology research and are also used in commercial production for several crops, including lettuce and tomato. Within the plant research community, numerous hydroponic systems have been designed to study plant responses to biotic and abiotic stresses. Here we present a hydroponic protocol that can be easily implemented in laboratories interested in pursuing studies on plant mineral nutrition. This protocol describes the hydroponic system set up in detail and the preparation of plant material for successful experiments. Most of the materials described in this protocol can be found outside scientific supply companies, making the set up for hydroponic experiments less expensive and convenient. The use of a hydroponic growth system is most advantageous in situations where the nutrient media need to be well controlled and when intact roots need to be harvested for downstream applications. We also demonstrate how nutrient concentrations can be modified to induce plant responses to both essential nutrients and toxic non-essential elements.

  1. Agrogeochemical cycles of plant nutrients in the territory of Russia

    Science.gov (United States)

    Kudeyarov, V. N.; Semenov, V. M.

    2008-12-01

    The contribution of mineral fertilization to the agrogeochemical cycles of major nutrients (N, P, K) was estimated. The agrogeochemical budgets of major nutrients (NPK) in the territory of Russia are unfavorable for agricultural production for the present and the nearest future. The removal of major nutrients with crops significantly exceeds their input to the soil with fertilizers and other sources. The nutritional degradation of arable soils increases, which can result in irreversible catastrophic consequences within 20-30 years.

  2. Plant Biomass Leaching for Nutrient Recovery in Closed Loop Systems Project

    Science.gov (United States)

    Zeitlin, Nancy P.; Wheeler, Raymond (Compiler); Lunn, Griffin

    2015-01-01

    Plants will be important for food and O2 production during long term human habitation in space. Recycling of nutrients (e.g., from waste materials) could reduce the resupply costs of fertilizers for growing these plants. Work at NASA's Kennedy Space Center has shown that ion exchange resins can extract fertilizer (plant essential nutrients) from human waste water, after which the residual brine could be treated with electrodialysis to recover more water and produce high value chemicals (e.g., acids and bases). In habitats with significant plant production, inedible biomass becomes a major source of solid waste. To "close the loop" we also need to recover useful nutrients and fertilizer from inedible biomass. We are investigating different approaches to retrieve nutrients from inedible plant biomass, including physical leaching with water, processing the biomass in bioreactors, changing the pH of leaching processing, and/or conducting multiple leaches of biomass residues.

  3. Effect of Cultural Measures on Nutrient Contents in Rice Plants with Erect Panicles

    Institute of Scientific and Technical Information of China (English)

    WANGBOLUN; ZOUBANGJItffu

    1999-01-01

    Field experiments were carried out with rice variety of Shenong 91 of short culms and erect panicles to study nutrient contents in high-yiedlding rice plants and to increase rice yield by appropriate fertilization.Nitrogen,phosphorus,potassium,magnesium,zinc,manganese,iron and copper contents in rice plants varied with different treatment factors.The relationship between the nutrient contents and treatment factors could be simulated using a multiple quadratic equation.The nutrient contents in plants should be appropriate for high-yielding rice.If the mean nutrient content in rice plants producuing 11 t ha-1 or more of grain (uj) was set as the standard value and the standard deviation (σj) was set as the range of variation,the nutrient content in high-yielding rice plants should be μj±1.99σj.Rice leaves were sensitive to the nutrient elements.Heavy nitrogen dressing increased the content of nitrogen in rice plants.Sparse transplanting also increased nitrogen content,Improper application of nitrogen,phosphorus and potassium could affect the nutrient contents and decrease the grain yield.

  4. Response of plant growth to low calcium concentration in the nutrient solution

    NARCIS (Netherlands)

    Amor, del F.M.; Marcelis, L.F.M.

    2005-01-01

    Many studies have indicated the importance of calcium in fruit disorders. This nutrient is often applied in the nutrient solution in relatively high amounts throughout the crop season, usually without taking into account the physiological stage of the plant. Our study aimed to determine the effect o

  5. Comparison of nutrient acquisition in exotic plant species and congeneric natives

    NARCIS (Netherlands)

    Meisner, A.; Boer, de W.; Verhoeven, K.J.F.; Boschker, H.T.S.; Putten, van der W.H.

    2011-01-01

    1. The ability of exotic plant species to establish and expand in new areas may be enhanced by a relatively high ability to acquire soil nutrients. To test this hypothesis, we predicted that the capacity for nutrient acquisition would be higher in seedlings of exotic species than in seedlings of nat

  6. Comparison of nutrient acquisition in exotic plant species and congeneric natives

    NARCIS (Netherlands)

    Meisner, A.; De Boer, W.; Verhoeven, K.J.F.; Boschker, H.T.S.; Van der Putten, W.H.

    2011-01-01

    1.The ability of exotic plant species to establish and expand in new areas may be enhanced by a relatively high ability to acquire soil nutrients. To test this hypothesis, we predicted that the capacity for nutrient acquisition would be higher in seedlings of exotic species than in seedlings of nati

  7. Contribution of Wastewater Treatment Plant Effluents to Nutrient Dynamics in Aquatic Systems: A Review

    Science.gov (United States)

    Carey, Richard O.; Migliaccio, Kati W.

    2009-08-01

    Excessive nutrient loading (considering nitrogen and phosphorus) is a major ongoing threat to water quality and here we review the impact of nutrient discharges from wastewater treatment plants (WWTPs) to United States (U.S.) freshwater systems. While urban and agricultural land uses are significant nonpoint nutrient contributors, effluent from point sources such as WWTPs can overwhelm receiving waters, effectively dominating hydrological characteristics and regulating instream nutrient processes. Population growth, increased wastewater volumes, and sustainability of critical water resources have all been key factors influencing the extent of wastewater treatment. Reducing nutrient concentrations in wastewater is an important aspect of water quality management because excessive nutrient concentrations often prevent water bodies from meeting designated uses. WWTPs employ numerous physical, chemical, and biological methods to improve effluent water quality but nutrient removal requires advanced treatment and infrastructure that may be economically prohibitive. Therefore, effluent nutrient concentrations vary depending on the particular processes used to treat influent wastewater. Increasingly stringent regulations regarding nutrient concentrations in discharged effluent, along with greater freshwater demand in populous areas, have led to the development of extensive water recycling programs within many U.S. regions. Reuse programs provide an opportunity to reduce or eliminate direct nutrient discharges to receiving waters while allowing for the beneficial use of reclaimed water. However, nutrients in reclaimed water can still be a concern for reuse applications, such as agricultural and landscape irrigation.

  8. Response of plant growth to low calcium concentration in the nutrient solution

    OpenAIRE

    Amor, del, F.M.; Marcelis, L.F.M.

    2005-01-01

    Many studies have indicated the importance of calcium in fruit disorders. This nutrient is often applied in the nutrient solution in relatively high amounts throughout the crop season, usually without taking into account the physiological stage of the plant. Our study aimed to determine the effect of calcium supply on growth of young, vegetative tomato plants. The experiment was carried out in a growth chamber under fully controlled climate conditions. Treatments consisted of four periods of ...

  9. Ash characteristics and plant nutrients in some aquatic biomasses

    Science.gov (United States)

    Masto, Reginald; Pandit, Ankita; George, Joshy; Mukhopadhyay, Sangeeta; Selvi, Vetrivel; Ram, Lal

    2016-04-01

    is released at 800 °C. The salgging tendencies based on both base: acid ratio and slagging factor, fouling probabilities based on fouling factors is in the order Hydrilla > Eichornia > Lemna > Spirogyra. Among the different heavy metals Zn, Pb, Cu, and Ni have concentration > 100 mg/kg; Cr and V content was > 50 mg/kg; Co, > 10 mg/kg. In general the heavy metal contents were higher in Spirogyra. Due to the volatile nature Cd and Pb decreases in ash with temperature and is lost continuously in flue gas. Plant nutrient content was relatively higher for Eichornia: K (8 - 12.8 %), P (5.7 - 7.3 %), Ca (9.2 - 10.8 %), Mg (2.8 - 3.6 %), S (1.9 - 2.9 %), Zn (0.033 - 0.045 %), Fe (3.3 - 4.7 %), Cu (0.009 - 0.013 %), Mn (0.8 -1.3%). Among the four biomasses we have studied, Eichornia could be a potential candidate for energy extraction in view of its C content and widespread availability in many parts of the globe, and fast multiplication associated with the eutrophication of water bodies.

  10. Plant Growth Environments with Programmable Relative Humidity and Homogeneous Nutrient Availability

    Science.gov (United States)

    Lind, Kara R.; Lee, Nigel; Sizmur, Tom; Siemianowski, Oskar; Van Bruggen, Shawn; Ganapathysubramaniam, Baskar

    2016-01-01

    We describe the design, characterization, and use of “programmable”, sterile growth environments for individual (or small sets of) plants. The specific relative humidities and nutrient availability experienced by the plant is established (RH between 15% and 95%; nutrient concentration as desired) during the setup of the growth environment, which takes about 5 minutes and hydroponics conditions (e.g., root phenotyping, complete control over nutrient composition, scalability) and soil conditions (e.g., aeration of roots, shading of roots), while being comparable in cost and setup time to Magenta® boxes. PMID:27304431

  11. Effect of Nutrient Amendments of Diesel Oil Polluted Soil on Plant Growth Parameters

    Directory of Open Access Journals (Sweden)

    C.O. Akujobi

    2011-07-01

    Full Text Available The study investigated the effect of nutrient amendments of diesel oil polluted soil on plant height, leaf area and leaf numbers of eggplant (Solanum melongena. Soil samples were polluted and amended separately with different weights of poultry waste, pig waste, cow dung and inorganic fertilizer. Soil samples were also polluted with diesel oil without amendment to achieve 2, 4, 6, 8 and 10% pollution. Samples were analyzed at two weeks interval for sixteen weeks. The plant growth parameters were affected adversely by the diesel oil pollution and the higher the level of pollution, the more the effect. The nutrient amendments were able to remedy the effect of the diesel oil pollution. The remediation effect was nutrient weight dependent and the best remediation effect was observed in poultry waste amended samples. This study has shown that diesel oil contaminated soil may have adverse effect on plants, but this can be remedied by addition of organic nutrient supplements especially poultry waste.

  12. Reciprocal effects of litter from exotic and congeneric native plant species via soil nutrients.

    OpenAIRE

    Annelein Meisner; Wietse de Boer; Cornelissen, Johannes H. C.; van der Putten, Wim H.

    2012-01-01

    Invasive exotic plant species are often expected to benefit exclusively from legacy effects of their litter inputs on soil processes and nutrient availability. However, there are relatively few experimental tests determining how litter of exotic plants affects their own growth conditions compared to congeneric native plant species. Here, we test how the legacy of litter from three exotic plant species affects their own performance in comparison to their congeneric natives that co-occur in the...

  13. A review on beneficial effects of rhizosphere bacteria on soil nutrient availability and plant nutrient uptake.

    OpenAIRE

    Osorio Vega, Nelson Walter

    2011-01-01

    Este artículo se constituye en una revisión de los beneficios de bacterias rizosféricas sobre la nutrición vegetal. La interacción entre planta y bacterias solubilizadoras de fosfato es explicada en mayor detalle y usada como modelo para ilustrar el rol que algunas bacterias de la rizosfera juegan en la disponibilidad de nutrientes en el suelo. Las condiciones ambientales de la rizosfera también se discuten con detalle. Los beneficios de estas bacterias han sido obtenidos, y mejorados, en pre...

  14. Examining Dehydration and Hypoxic Stress in Wheat Plants Using a Porous Tube Plant Nutrient Delivery System Developed for Microgravity

    Science.gov (United States)

    Dreschel, T. W.; Hall, C. R.; Foster, T. E.; Salganic, M.; Warren, L.; Corbett, M.

    2005-01-01

    The Porous Tube Plant Nutrient Delivery System (PTPNDS) was designed for NASA to grow plants in microgravity of space. The system utilizes a controlled fluid loop to supply nutrients and water to plant roots growing on a ceramic surface moistened by capiflary action. A PTPNDS test bed was developed and utilizing remote sensing systems, spectral analyses procedures, gas-exchange, and fluorescence measurements, we examined differences in plant water status for wheat plants (Triticum aestivum, cv. Perigee) grown in a modified growth chamber during the summers of 2003 and 2004. Some differences in plant performance were detectable in the gas-exchange and fluorescence measurements. For instance, in both years the plants grown with the most available water had the lowest rates of photosynthesis and exhibited higher proportions of non-photochemical quenching particularly under low light levels. In addition, small differences in mean leaf water content between treatments were detected using spectral reflectance analyses.

  15. Computer based aids for operator support in nuclear power plants

    International Nuclear Information System (INIS)

    In the framework of the Agency's programme on nuclear safety a survey was carried out based on a questionnaire to collect information on computer based aids for operator support in nuclear power plants in Member States. The intention was to put together a state-of-the-art report where different systems under development or already implemented would be described. This activity was also supported by an INSAG (International Nuclear Safety Advisory Group) recommendation. Two consultant's meetings were convened and their work is reflected in the two sections of the technical document. The first section, produced during the first meeting, is devoted to provide some general background material on the overall usability of Computerized Operator Decision Aids (CODAs), their advantages and shortcomings. During this first meeting, the first draft of the questionnaire was also produced. The second section presents the evaluation of the 40 questionnaires received from 11 Member States and comprises a short description of each system and some statistical and comparative observations. The ultimate goal of this activity was to inform Member States, particularly those who are considering implementation of a CODA, on the status of related developments elsewhere. 8 refs, 10 figs, 4 tabs

  16. Influence of calcium foliar fertilization on plant growth, nutrient concentrations, and fruit quality of papaya.

    Science.gov (United States)

    Calcium (Ca) is a major plant nutrient that affects cell wall and plasma membrane formation and plays a key role in plant growth and biomass production. It can be used to decrease fruit decay and increase firmness and shelf life. So far, little attention has been paid to investigate the effects of f...

  17. Nutrient Recovery of Plant Leachates Under Thermal, Biological, and Photocatalytic Pretreatments

    Science.gov (United States)

    Wong, Les

    2015-01-01

    Nutrient recovery has always been a problem for long distance and long-term space missions. To allow humans to man these missions, a steady source of oxygen, water, and food are necessary for survival beyond Earth's atmosphere. Plants are currently an area of interest since they are capable of providing all three resources for life sustainability. We are currently interested in nutrient recovery for future plant growth and simple aqueous leachate extractions can recover some of the nutrients. However, leaching plants also removes water-soluble organic plant wastes, which inhibits plant growth if not separated properly. To combat the issues with waste and maximize nutrient recovery, we are attempting to pre-treat the plant matter using biological, thermal, and photocatalytic methods before subjecting the solution with variable-strength acid digestion. For the biological method, the inoculums: mixed heterotrophic/nitrifying bioreactor effluent and Trichoderma vessei are used in an attempt to liberate more nutrients from the plant matter. For the thermal method, plants are subjected to varying temperatures at different retention times to determine nutrient recovery. Lastly, the photocatalytic method utilizes TiO (sub 2)'s oxidizing abilities under specific pHs and retention times to reduce organic wastes and improve nutrient gains. A final acid digestion serves to liberate nutrients even further in order to maximize recovery. So far, we have tested ideal acid digestion variables for practicality and performance in our experiments. We found that a low retention time of 10 minutes and a high acid concentration of 0.1 and 1 mole HCl were the most effective at nutrient recovery. For space travel purposes, 0.1 mole currently looks like a viable acid digestion to use since it is relatively effective and sustainable from a mass and energy balance if acid recovery can be performed on waste brines. Biological pretreatments do not look to be too effective and the thermal and

  18. Comparative growth behaviour and leaf nutrient status of native trees planted on mine spoil with and without nutrient amendment

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.; Singh, J.S. [Banaras Hindu University, Varanasi (India). Dept. of Botany

    2001-07-01

    The effect of nutrient amendment on growth of nine indigenous tree species planted on coal mine spoil was studied. Greater growth in fertilized plots was accompanied by greater foliar N and P concentrations in all species. The response to fertilization varied among species and was greater in non-leguminous than in leguminous species. Furthermore, leguminous species exhibited higher growth rates compared to non-leguminous species. Acacia catechu, Dalbergia sissoo, Gmelina arborea and Azadirachta indica fitted the elastic similarity model of tree growth; whereas Pongamia pinnata and Phyllanthus emblica followed the constant stress model. Tectona grandis was the only species which fitted the geometric similarity model.

  19. Functional compatibility in cucumber mycorrhizas in terms of plant growth performance and foliar nutrient composition.

    Science.gov (United States)

    Ravnskov, S; Larsen, J

    2016-09-01

    Functional compatibility in cucumber mycorrhizas in terms of plant and fungal growth, and foliar nutrient composition from all possible combinations of six cucumber varieties and three species of arbuscular mycorrhizal (AM) fungi was evaluated. Measurements of foliar nutrient composition included N, P, K, Mg, Ca, Na, Fe, Zn, Mn and Cu. Growth of AM fungi was measured in terms of root colonisation, as examined with microscopy and the AM fungus biomarker fatty acid 16:1ω5 from both phospholipids and neutral lipids. Different responses of plant growth and foliar nutrient profiles were observed for the different AM symbioses examined. The AM fungus Claroideoglomus claroideum caused growth depression in association with four out of six cucumber varieties; Rhizophagus irregularis caused growth promotion in one of six cucumber varieties; whereas Funneliformis mosseae had no effect on the growth performance of any of the cucumber varieties examined. All three AM fungi markedly altered host plant shoot nutrient composition, with the strongest contrast observed between cucumber-R. irregularis symbioses and non-mycorrhizal cucumber plants, independent of cucumber variety. On the other hand, AM fungal growth in roots differed between the three AM fungi, but was unaffected by host genotype. Strong build-up of storage lipids was observed for R. irregularis, which was more moderate in the two other AM fungi. In conclusion, strong differential responses of cucumber varieties to inoculation with different AM fungi in terms of growth and shoot nutrient composition revealed high functional diversity in AM symbioses in cucumber plants.

  20. A mathematical model of water and nutrient transport in xylem vessels of a wheat plant.

    Science.gov (United States)

    Payvandi, S; Daly, K R; Jones, D L; Talboys, P; Zygalakis, K C; Roose, T

    2014-03-01

    At a time of increasing global demand for food, dwindling land and resources, and escalating pressures from climate change, the farming industry is undergoing financial strain, with a need to improve efficiency and crop yields. In order to improve efficiencies in farming, and in fertiliser usage in particular, understanding must be gained of the fertiliser-to-crop-yield pathway. We model one aspect of this pathway; the transport of nutrients within the vascular tissues of a crop plant from roots to leaves. We present a mathematical model of the transport of nutrients within the xylem vessels in response to the evapotranspiration of water. We determine seven different classes of flow, including positive unidirectional flow, which is optimal for nutrient transport from the roots to the leaves; and root multidirectional flow, which is similar to the hydraulic lift process observed in plants. We also investigate the effect of diffusion on nutrient transport and find that diffusion can be significant at the vessel termini especially if there is an axial efflux of nutrient, and at night when transpiration is minimal. Models such as these can then be coupled to whole-plant models to be used for optimisation of nutrient delivery scenarios. PMID:24557938

  1. Nutrient dynamics and plant assemblages of Macrotermes falciger mounds in a savanna ecosystem

    Science.gov (United States)

    Muvengwi, Justice; Ndagurwa, Hilton G. T.; Nyenda, Tatenda; Mbiba, Monicah

    2016-10-01

    Termites through mound construction and foraging activities contribute significantly to carbon and nutrient fluxes in nutrient-poor savannas. Despite this recognition, studies on the influence of termite mounds on carbon and nitrogen dynamics in sub-tropical savannas are limited. In this regard, we examined soil nutrient concentrations, organic carbon and nitrogen mineralization in incubation experiments in mounds of Macrotermes falciger and surrounding soils of sub-tropical savanna, northeast Zimbabwe. We also addressed whether termite mounds altered the plant community and if effects were similar across functional groups i.e. grasses, forbs or woody plants. Mound soils had significantly higher silt and clay content, pH and concentrations of calcium (Ca), magnesium (Mg), potassium (K), organic carbon (C), ammonium (NH4+) and nitrate (NO3-) than surrounding soils, with marginal differences in phosphorus (P) and sodium (Na) between mounds and matrix soils. Nutrient enrichment increased by a factor ranging from 1.5 for C, 4.9 for Mg up to 10.3 for Ca. Although C mineralization, nitrification and nitrification fraction were similar between mounds and matrix soils, nitrogen mineralization was elevated on mounds relative to surrounding matrix soils. As a result, termite mounds supported unique plant communities rich and abundant in woody species but less diverse in grasses and forbs than the surrounding savanna matrix in response to mound-induced shifts in soil parameters specifically increased clay content, drainage and water availability, nutrient status and base cation (mainly Ca, Mg and Na) concentration. In conclusion, by altering soil properties such as texture, moisture content and nutrient status, termite mounds can alter the structure and composition of sub-tropical savanna plant communities, and these results are consistent with findings in other savanna systems suggesting that increase in soil clay content, nutrient status and associated changes in the plant

  2. Plant Growth Environments with Programmable Relative Humidity and Homogeneous Nutrient Availability.

    Science.gov (United States)

    Lind, Kara R; Lee, Nigel; Sizmur, Tom; Siemianowski, Oskar; Van Bruggen, Shawn; Ganapathysubramaniam, Baskar; Cademartiri, Ludovico

    2016-01-01

    We describe the design, characterization, and use of "programmable", sterile growth environments for individual (or small sets of) plants. The specific relative humidities and nutrient availability experienced by the plant is established (RH between 15% and 95%; nutrient concentration as desired) during the setup of the growth environment, which takes about 5 minutes and Brassica rapa plants growing in different relative humidities (55%, 75%, and 95%). While most phenotypes were found to be sensitive to these environmental changes, a phenotype tightly associated with root system topology-the size distribution of the areas encircled by roots-appeared to be remarkably and counterintuitively insensitive to humidity changes. These setups combine many of the advantages of hydroponics conditions (e.g., root phenotyping, complete control over nutrient composition, scalability) and soil conditions (e.g., aeration of roots, shading of roots), while being comparable in cost and setup time to Magenta® boxes. PMID:27304431

  3. Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions

    Science.gov (United States)

    Gebremikael, Mesfin T.; Steel, Hanne; Buchan, David; Bert, Wim; De Neve, Stefaan

    2016-01-01

    The role of soil fauna in crucial ecosystem services such as nutrient cycling remains poorly quantified, mainly because of the overly reductionistic approach adopted in most experimental studies. Given that increasing nitrogen inputs in various ecosystems influence the structure and functioning of soil microbes and the activity of fauna, we aimed to quantify the role of the entire soil nematode community in nutrient mineralization in an experimental set-up emulating nutrient-rich field conditions and accounting for crucial interactions amongst the soil microbial communities and plants. To this end, we reconstructed a complex soil foodweb in mesocosms that comprised largely undisturbed native microflora and the entire nematode community added into defaunated soil, planted with Lolium perenne as a model plant, and amended with fresh grass-clover residues. We determined N and P availability and plant uptake, plant biomass and abundance and structure of the microbial and nematode communities during a three-month incubation. The presence of nematodes significantly increased plant biomass production (+9%), net N (+25%) and net P (+23%) availability compared to their absence, demonstrating that nematodes link below- and above-ground processes, primarily through increasing nutrient availability. The experimental set-up presented allows to realistically quantify the crucial ecosystem services provided by the soil biota. PMID:27605154

  4. Nematodes enhance plant growth and nutrient uptake under C and N-rich conditions.

    Science.gov (United States)

    Gebremikael, Mesfin T; Steel, Hanne; Buchan, David; Bert, Wim; De Neve, Stefaan

    2016-01-01

    The role of soil fauna in crucial ecosystem services such as nutrient cycling remains poorly quantified, mainly because of the overly reductionistic approach adopted in most experimental studies. Given that increasing nitrogen inputs in various ecosystems influence the structure and functioning of soil microbes and the activity of fauna, we aimed to quantify the role of the entire soil nematode community in nutrient mineralization in an experimental set-up emulating nutrient-rich field conditions and accounting for crucial interactions amongst the soil microbial communities and plants. To this end, we reconstructed a complex soil foodweb in mesocosms that comprised largely undisturbed native microflora and the entire nematode community added into defaunated soil, planted with Lolium perenne as a model plant, and amended with fresh grass-clover residues. We determined N and P availability and plant uptake, plant biomass and abundance and structure of the microbial and nematode communities during a three-month incubation. The presence of nematodes significantly increased plant biomass production (+9%), net N (+25%) and net P (+23%) availability compared to their absence, demonstrating that nematodes link below- and above-ground processes, primarily through increasing nutrient availability. The experimental set-up presented allows to realistically quantify the crucial ecosystem services provided by the soil biota. PMID:27605154

  5. Approaches in the determination of plant nutrient uptake and distribution in space flight conditions

    Science.gov (United States)

    Heyenga, A. G.; Forsman, A.; Stodieck, L. S.; Hoehn, A.; Kliss, M.

    2000-01-01

    The effective growth and development of vascular plants rely on the adequate availability of water and nutrients. Inefficiency in either the initial absorption, transportation, or distribution of these elements are factors which impinge on plant structure and metabolic integrity. The potential effect of space flight and microgravity conditions on the efficiency of these processes is unclear. Limitations in the available quantity of space-grown plant material and the sensitivity of routine analytical techniques have made an evaluation of these processes impractical. However, the recent introduction of new plant cultivating methodologies supporting the application of radionuclide elements and subsequent autoradiography techniques provides a highly sensitive investigative approach amenable to space flight studies. Experiments involving the use of gel based 'nutrient packs' and the radionuclides calcium-45 and iron-59 were conducted on the Shuttle mission STS-94. Uptake rates of the radionuclides between ground and flight plant material appeared comparable.

  6. Nutrients of Topsoil for Sugarcane Planting in Xinping County of Yunnan Province

    OpenAIRE

    Ma, Jiabin; Tian, Wanghai; Long, Shunfa; Li, Huazhen; Su, Long; Yin, Zhitao; Gao, Yuanyuan

    2014-01-01

    To provide reference for fertilizer application of sugarcane planting in Xinping County, this paper analyzed nutrient content of topsoil according to the nutrient indicators established in the Second Soil Census. The results show that 51.76% soil in sugarcane planting area of Xinping County is faintly acid, 50.88% soil has relatively low organic matter, 45.88% soil lacks alkali-hydrolyzable nitrogen (N), 26.47% soil lacks phosphorus (P), 50.29% soil lacks potassium (K), 37.14% soil lacks sulf...

  7. Hydrological management for improving nutrient assimilative capacity in plant-dominated wetlands: A modelling approach.

    Science.gov (United States)

    Xu, Zhihao; Yang, Zhifeng; Yin, Xinan; Cai, Yanpeng; Sun, Tao

    2016-07-15

    Wetland eutrophication is a global environmental problem. Besides reducing pollutant emissions, improving nutrient assimilative capacity in wetlands is also significant for preventing eutrophication. Hydrological management can improve nutrient assimilative capacity in wetlands through physical effects on the dilution capacity of water body and ecological effects on wetland nutrient cycles. The ecological effects are significant while were rarely considered in previous research. This study focused on the ecological effects of hydrological management on two crucial nutrient removal processes, plant uptake and biological denitrification, in plant-dominated wetlands. A dual-objective optimization model for hydrological management was developed to improve wetland nitrogen and phosphorus assimilative capacities, using upstream reservoir release as water regulating measure. The model considered the interactions between ecological processes and hydrological cycles in wetlands, and their joint effects on nutrient assimilative capacity. Baiyangdian Wetland, the largest freshwater wetland in northern China, was chosen as a case study. The results found that the annual total assimilative capacity of nitrogen (phosphorus) was 4754 (493) t under the optimal scheme for upstream reservoir operation. The capacity of nutrient removal during the summer season accounted for over 80% of the annual total removal capacity. It was interesting to find that the relationship between water inflow and nutrient assimilative capacity in a plant-dominated wetland satisfied a dose-response relationship commonly describing the response of an organism to an external stressor in the medical field. It illustrates that a plant-dominated wetland shows similar characteristics to an organism. This study offers a useful tool and some fresh implications for future management of wetland eutrophication prevention. PMID:27085151

  8. Improving Lowland Rice (O. sativa L. cv. MR219) Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances.

    Science.gov (United States)

    Palanivell, Perumal; Ahmed, Osumanu Haruna; Ab Majid, Nik Muhamad; Jalloh, Mohamadu Boyie; Susilawati, Kasim

    2015-01-01

    High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot(-1)). Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot(-1)) significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot(-1)) and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials.

  9. Improving Lowland Rice (O. sativa L. cv. MR219 Plant Growth Variables, Nutrients Uptake, and Nutrients Recovery Using Crude Humic Substances

    Directory of Open Access Journals (Sweden)

    Perumal Palanivell

    2015-01-01

    Full Text Available High cation exchange capacity and organic matter content of crude humic substances from compost could be exploited to reduce ammonia loss from urea and to as well improve rice growth and soil chemical properties for efficient nutrients utilization in lowland rice cultivation. Close-dynamic air flow system was used to determine the effects of crude humic substances on ammonia volatilization. A pot experiment was conducted to determine the effects of crude humic substances on rice plant growth, nutrients uptake, nutrients recovery, and soil chemical properties using an acid soil mixed with three rates of crude humic substances (20, 40, and 60 g pot−1. Standard procedures were used to evaluate rice plant dry matter production, nutrients uptake, nutrients recovery, and soil chemical properties. Application of crude humic substances increased ammonia volatilization. However, the lowest rate of crude humic substances (20 g pot−1 significantly improved total dry matter, nutrients uptake, nutrients recovery, and soil nutrients availability compared with crude humic substances (40 and 60 g pot−1 and the normal fertilization. Apart from improving growth of rice plants, crude humic substances can be used to ameliorate acid soils in rice cultivation. The findings of this study are being validated in our ongoing field trials.

  10. New Ways to Determine Plant Nutrient Deficiences Using Fast Spectroscopy

    DEFF Research Database (Denmark)

    van Maarschalkerweerd, Marie

    leaves. The method is specific for Cu, and the condition can be diagnosed so early that it is reversible. Paper III describes a method to diagnose P deficiency in barley plants and quantify P concentration in deficient plants. It was found that the I-step in the OJIP transient, which is the outcome......, S and Fe may have so far unknown, specific effects on the OJIP transient. A patent application has been filed on the method, enclosed as Paper IV. The obtained results can relatively simply be further developed into actual instruments, as both NIR and chlo ophyll a fluorescence are already widely...

  11. Medicinal Plants Qua Glucagon-Like Peptide-1 Secretagogue via Intestinal Nutrient Sensors

    Directory of Open Access Journals (Sweden)

    Ki-Suk Kim

    2015-01-01

    Full Text Available Glucagon-like peptide-1 (GLP-1 participates in glucose homeostasis and feeding behavior. Because GLP-1 is rapidly inactivated by the enzymatic cleavage of dipeptidyl peptidase-4 (DPP4 long-acting GLP-1 analogues, for example, exenatide and DPP4 inhibitors, for example, liraglutide, have been developed as therapeutics for type 2 diabetes mellitus (T2DM. However, the inefficient clinical performance and the incidence of side effects reported on the existing therapeutics for T2DM have led to the development of a novel therapeutic strategy to stimulate endogenous GLP-1 secretion from enteroendocrine L cells. Since the GLP-1 secretion of enteroendocrine L cells depends on the luminal nutrient constituents, the intestinal nutrient sensors involved in GLP-1 secretion have been investigated. In particular, nutrient sensors for tastants, cannabinoids, and bile acids are able to recognize the nonnutritional chemical compounds, which are abundant in medicinal plants. These GLP-1 secretagogues derived from medicinal plants are easy to find in our surroundings, and their effectiveness has been demonstrated through traditional remedies. The finding of GLP-1 secretagogues is directly linked to understanding of the role of intestinal nutrient sensors and their recognizable nutrients. Concurrently, this study demonstrates the possibility of developing novel therapeutics for metabolic disorders such as T2DM and obesity using nutrients that are readily accessible in our surroundings.

  12. Biochar as carrier for plant nutrients and microorganisms - techniques of agro-activation

    Science.gov (United States)

    Schmidt, H.-P.

    2012-04-01

    The soil enhancing qualities of biochar are strongly linked to its influence on nutrient cycling dynamics, sorption dynamics and to changing habitat condition for soil fauna. But as shown in multiple studies, the addition of pure biochar to agricultural soils may provoke reduced plant growth caused by the immobilisation of plant nutrients. The very potent sorption dynamics of biochar makes it an effective carrier for plant nutrients and plant-root symbiotic microorganisms. At the Delinat-Institute, we tried sundry methods of charging biochars with organic and mineral plant nutrients as well as with microorganisms. This includes the use of biochar as bulk agent in aerobic composting, in malolactic fermentation and as treatment for liquid manure, but also formulations of mineral carbon-fertilizers. Those biochar products are tested in pot and also large scale field trials. Results and experiences of these trials as well as different activation methods will be explained. A short overview of industrial designing of biochar based products will be given.

  13. Nutrient acquisition and secondary metabolites in plant pathogenic fungi

    DEFF Research Database (Denmark)

    Droce, Aida

    called autophagy, is crucial. In this ph.d project autophagy and dipeptide transport in Fg and Bgh is assessed with respect to pathology, developmental processes and mycotoxins production. Several techniques within molecular biology, bioinformatics, microbiology, analytical chemistry and plant pathology...

  14. [Anatomical and nutrient features of plant leaves in Yuanjiang savanna valley].

    Science.gov (United States)

    Song, Fuqiang; Cao, Kunfang

    2005-01-01

    Due to rain shadow effect, the valleys in southwestern China mountainous areas have hot and dry climate, and savanna or semi-savanna vegetations occur on the slopes of these valleys. Yuanjiang dry-hot valley is such a valley, which has a distinct dry season of about six months from November to next April. This paper studied the anatomical and nutrient features of the leaves of twenty plant species, including those on upland soils and hilly slopes. The results showed that compared with the species on upland soil and the rain forest, the leaves of the plants from savanna showed more xeromorphic features, such as thicker leaf thickness, greater leaf mass per area (LMA), smaller ratios of spongy/palisade tissues (S:P) and higher stomatal density (SD), which mainly came from the more severe drought in Yuanjiang savanna valley. Seven plant species in the savanna valley showed a shortage of nutrients in their leaves, and the leaf nutrient content was in order of 1.3% > Ca > N > K > 1% > Mg > P > S. Savanna had lower leaf mineral element concentrations than rain forest, but higher than other dry forests, including Asian heath forest and Bana forest. The differences in leaf nutrient concentrations between Yuanjiang valley savanna and other dry forests were mainly ascribed to the difference of soil nutrient contents, while those between valley savanna and rainforest were largely determined by the different plant biology. It could be concluded that the leaves of plant species in Yuanjiang savanna valley not only had obvious xeromorphic features, but also were deficit in nutrients. PMID:15852953

  15. Exergetic and Parametric Study of a Solar Aided Coal-Fired Power Plant

    OpenAIRE

    Eric Hu; Kaiyu Tan; Yongping Yang; Yong Zhu; Rongrong Zhai

    2013-01-01

    A solar-aided coal-fired power plant realizes the integration of a fossil fuel (coal or gas) and clean energy (solar). In this paper, a conventional 600 MW coal-fired power plant and a 600 MW solar-aided coal-fired power plant have been taken as the study case to understand the merits of solar-aided power generation (SAPG) technology. The plants in the case study have been analyzed by using the First and Second Laws of Thermodynamics principles. The solar irradiation and load ratio have been ...

  16. Kareel plant: A natural source of medicines and nutrients

    Directory of Open Access Journals (Sweden)

    Ravi K Upadhyay

    2011-01-01

    Full Text Available Capparis decidua or kareel is an indigenous medicinal plant of India having large biodiversity in different north-western states of India. The young flower bud and fruits are used to make pickles while caper berries are used as vegetable. Plant has its wider utility in traditional folk medicine and is used as ailments to relieve variety of pains or aches such as toothache, cough and asthma heal. Plant contains few important secondary metabolites such as quercetin which act as melanogenesis stimulator and also increase tyrosinase protein expression. Capparis sp. seeds contain lectin that exhibit potent anti HIV-1 reverse transcriptase inhibition activity and also inhibits proliferation of hepatoma HepG2 and breast cancer MCF-7 cells. It shows anti-rheumatic, anti-diabitic, anti-arthritis and anti-gout agent. C. decidua contains generous quantities of alkaloids, fatty acids, terpenes, vitamins, fibre and oils that show greater medicinal and nutritive value. It also contains saccharides, glycosides, flavonoids, volatile oils, sterols and steroids, which showed multiple pharmacological effects such as anti-inflammatory, odynolysis, anti-fungus, hepatoprotective effect, hypoglycemic activity, anti-oxidation, anti-hyperlipemia, anti-coagulated blood, smooth muscle stimulation, anti-stress reaction. Cadabicine an alkaloid that occurs in leaves shows anti-parasitic activity, while root bark and pulp are used to kill helminthes. Due to enzymatic inhibition plant extract shows the ability to control Leishmania major and L. infantum, L. donovani, L. braziliensis, Crithidia fasciculata and Herpetomonas muscarum infection. In the present review article both medicinal and nutraceutical properties of C decidua have been described in detail and special emphasis is given on its sustainable use of plant and its conservation in natural habitat.

  17. Are ant feces nutrients for plants? A metabolomics approach to elucidate the nutritional effects on plants hosting weaver ants

    DEFF Research Database (Denmark)

    Vidkjær, Nanna Hjort; Wollenweber, Bernd; Gislum, René;

    2015-01-01

    with control plants. The results showed elevated levels of total nitrogen, amino acids, fatty acids, caffeine, and secondary metabolites of the phenylpropanoid pathway in leaves from ant-hosting plants. Minor effects were observed for sugars, whereas little or no effect was observed for organic acids, despite...... the fact that lower levels of total carbon were found in ant-hosting plants. The increased levels of total nitrogen, amino acids, fatty acids and caffeine and the decreased total carbon were consistent with changes observed in plants grown with an increased supply of nitrogen-containing nutrients. The up...

  18. Nutrients of Topsoil for Sugarcane Planting in Xinping County of Yunnan Province

    Institute of Scientific and Technical Information of China (English)

    Jiabin; MA; Wanghai; TIAN; Shunfa; LONG; Huazhen; LI; Long; SU; Zhitao; YIN; Yuanyuan; GAO

    2014-01-01

    To provide reference for fertilizer application of sugarcane planting in Xinping County,this paper analyzed nutrient content of topsoil according to the nutrient indicators established in the Second Soil Census. The results show that 51. 76% soil in sugarcane planting area of Xinping County is faintly acid,50. 88% soil has relatively low organic matter,45. 88% soil lacks alkali-hydrolyzable nitrogen( N),26. 47% soil lacks phosphorus( P),50. 29% soil lacks potassium( K),37. 14% soil lacks sulfur( S),12. 86% soil lacks magnesium( Mg),10% soil lacks manganese( Mn),and 31. 43% soil lacks zinc( Zn). In the sugarcane production,it is required to pay attention to increase of application of organic fertilizer,to foster soil fertility,supplement boron fertilizer,to keep balance of soil nutrients.

  19. Characterization of the in situ ecophysiology of novel phylotypes in nutrient removal activated sludge treatment plants

    DEFF Research Database (Denmark)

    McIlroy, Simon Jon; Awata, Takanori; Nierychlo, Marta;

    2015-01-01

    An in depth understanding of the ecology of activated sludge nutrient removal wastewater treatment systems requires detailed knowledge of the community composition and metabolic activities of individual members. Recent 16S rRNA gene amplicon surveys of activated sludge wastewater treatment plants...... with nutrient removal indicate the presence of a core set of bacterial genera. These organisms are likely responsible for the bulk of nutrient transformations underpinning the functions of these plants. While the basic activities of some of these genera in situ are known, there is little to no information...... for the majority. This study applied microautoradiography coupled with fluorescence in situ hybridization (MAR-FISH) for the in situ characterization of selected genus-level-phylotypes for which limited physiological information is available. These included Sulfuritalea and A21b, both within the class...

  20. Adaptive radiation with regard to nutrient sequestration strategies in the carnivorous plants of the genus Nepenthes.

    Science.gov (United States)

    Pavlovič, Andrej

    2012-02-01

    Carnivorous pitcher plants of the genus Nepenthes have evolved a great diversity of pitcher morphologies. Selective pressures for maximizing nutrient uptake have driven speciation and diversification of the genus in a process known as adaptive radiation. This leads to the evolution of pitchers adapted to specific and often bizarre source of nutrients, which are not strictly animal-derived. One example is Nepenthes ampullaria with unusual growth pattern and pitcher morphology what enables the plant to capture a leaf litter from the canopy above. We showed that the plant benefits from nitrogen uptake by increased rate of photosynthesis and growth what may provide competitive advantage over others co-habiting plants. A possible impact of such specialization toward hybridization, an important mechanism in speciation, is discussed.

  1. Kinetic start-up performance of two large treatment plants for nutrient removal

    DEFF Research Database (Denmark)

    Haarbo, A.; Harremoës, Poul; Thirsing, C.

    2001-01-01

    of the start-up of the two full-scale plants with the main emphasis laid on the kinetic performance in relation to the information achieved from the pilot tests. The results showed that the start-up of the full scale plants proceeded with great accuracy as expected from the investigations. Accordingly......In 1987 an action plan was passed in the Danish Parliament demanding a considerable reduction of the discharge of nutrients to the aquatic environment in Denmark. Consequently, the two largest wastewater treatment plants in the Copenhagen area had to be upgraded to include nutrient removal....... For more than 8 years an extensive effort has been made to determine an optimum solution for this upgrading from a technical and financial point of view. The work included six years of comprehensive pilot plant investigations with the aim of thoroughly studying and interpreting the kinetics...

  2. Effect of temperature and nutrients on the growth and development of seedlings of an invasive plant.

    Science.gov (United States)

    Skálová, Hana; Moravcová, Lenka; Dixon, Anthony F G; Kindlmann, P; Pyšek, Petr

    2015-04-28

    Plant species distributions are determined by the response of populations to regional climates; however, little is known about how alien plants that arrive in central Europe from climatically warmer regions cope with the temperature conditions at the early stage of population development. Ambrosia artemisiifolia (common ragweed) is an invasive annual plant causing considerable health and economic problems in Europe. Although climate-based models predict that the whole of the Czech Republic is climatically suitable for this species, it is confined to the warmest regions. To determine the factors possibly responsible for its restricted occurrence, we investigated the effects of temperature and nutrient availability on its seedlings. The plants were cultivated at one of seven temperature regimes ranging from 10 to 34 °C, combined with three nutrient levels. The data on the rate of leaf development were used to calculate the lower developmental threshold (LDT, the temperature, in °C, below which development ceases), the sum of effective temperatures (SET, the amount of heat needed to complete a developmental stage measured in degree days above LDT) and width of the thermal window. The rate of development decreased with decrease in temperature and nutrient supply. Besides this, the decrease in the availability of nutrients resulted in decreased LDT, increased SET and wider thermal window. The dependence of LDT and SET on the availability of nutrients contradicts the concept that thermal constants do not vary. Our results highlight temperature as the main determinant of common ragweed's distribution and identify nutrient availability as a factor that results in the realized niche being smaller than the fundamental niche; both of these need to be taken into account when predicting the future spread of A. artemisiifolia.

  3. Effect of Nutrient Amendments of Diesel Oil Polluted Soil on Plant Growth Parameters

    OpenAIRE

    C.O. Akujobi; R.A. Onyeagba; V.O. Nwaugo; N.N. Odu

    2011-01-01

    The study investigated the effect of nutrient amendments of diesel oil polluted soil on plant height, leaf area and leaf numbers of eggplant (Solanum melongena). Soil samples were polluted and amended separately with different weights of poultry waste, pig waste, cow dung and inorganic fertilizer. Soil samples were also polluted with diesel oil without amendment to achieve 2, 4, 6, 8 and 10% pollution. Samples were analyzed at two weeks interval for sixteen weeks. The plant growth parameters ...

  4. Combating Human Micronutrient Deficiencies through Soil Management Practices that Enhance Bioavailability of Nutrients to Plants

    Science.gov (United States)

    O'Meara, Mary

    2009-01-01

    Micronutrient malnutrition affects the health and well being of 3 billion people globally. Identifying means to improve the micronutrient density in the edible portions of crops is an important way to combat nutrient deficiencies. By studying how plants obtain micronutrients from the soil, we can develop methods to enhance uptake. Although more…

  5. Interactions between plant growth and soil nutrient cycling under elevated CO2: a meta-analysis

    NARCIS (Netherlands)

    Graaff, de M.A.; Groenigen, van K.J.; Six, J.; Hungate, B.; Kessel, van C.

    2006-01-01

    free air carbon dioxide enrichment (FACE) and open top chamber (OTC) studies are valuable tools for evaluating the impact of elevated atmospheric CO2 on nutrient cycling in terrestrial ecosystems. Using meta-analytic techniques, we summarized the results of 117 studies on plant biomass production, s

  6. Effects of dominant plant species on soils during succession in nutrient-poor ecosystems.

    NARCIS (Netherlands)

    Berendse, F.

    1998-01-01

    During the initial phases of succession on nutrient-poor, mineral substrates dead plant material accumulates rapidly in the soil. This accumulation of soil organic matter can result in a more than 10-fold increase in nitrogen mineralization within a few decades. These changes in soil features have i

  7. Nutrient-enhanced decomposition of plant biomass in a freshwater wetland

    Science.gov (United States)

    Bodker, James E.; Turner, Robert Eugene; Tweel, Andrew; Schulz, Christopher; Swarzenski, Christopher M.

    2015-01-01

    We studied soil decomposition in a Panicum hemitomon (Schultes)-dominated freshwater marsh located in southeastern Louisiana that was unambiguously changed by secondarily-treated municipal wastewater effluent. We used four approaches to evaluate how belowground biomass decomposition rates vary under different nutrient regimes in this marsh. The results of laboratory experiments demonstrated how nutrient enrichment enhanced the loss of soil or plant organic matter by 50%, and increased gas production. An experiment demonstrated that nitrogen, not phosphorus, limited decomposition. Cellulose decomposition at the field site was higher in the flowfield of the introduced secondarily treated sewage water, and the quality of the substrate (% N or % P) was directly related to the decomposition rates. We therefore rejected the null hypothesis that nutrient enrichment had no effect on the decomposition rates of these organic soils. In response to nutrient enrichment, plants respond through biomechanical or structural adaptations that alter the labile characteristics of plant tissue. These adaptations eventually change litter type and quality (where the marsh survives) as the % N content of plant tissue rises and is followed by even higher decomposition rates of the litter produced, creating a positive feedback loop. Marsh fragmentation will increase as a result. The assumptions and conditions underlying the use of unconstrained wastewater flow within natural wetlands, rather than controlled treatment within the confines of constructed wetlands, are revealed in the loss of previously sequestered carbon, habitat, public use, and other societal benefits.

  8. International symposium on nuclear techniques in integrated plant nutrient, water and soil management. Book of extended synopses

    International Nuclear Information System (INIS)

    This document contains extended synopsis of 92 papers presented at the International Symposium on Nuclear Techniques in Integrated Plant Nutrient, Water, and Soil Management held in Vienna, Austria, 16-20 October 2000. The efficient use of plant nutrient and fertilizer using carbon 13 and nitrogen 15 tracers; plant water use using oxygen 18 and moisture gauges, as well as soil and plant radioactivity monitoring, are some of the major subjects covered by these papers

  9. Functional compatibility in cucumber mycorrhizas in terms of plant growth performance and foliar nutrient composition.

    Science.gov (United States)

    Ravnskov, S; Larsen, J

    2016-09-01

    Functional compatibility in cucumber mycorrhizas in terms of plant and fungal growth, and foliar nutrient composition from all possible combinations of six cucumber varieties and three species of arbuscular mycorrhizal (AM) fungi was evaluated. Measurements of foliar nutrient composition included N, P, K, Mg, Ca, Na, Fe, Zn, Mn and Cu. Growth of AM fungi was measured in terms of root colonisation, as examined with microscopy and the AM fungus biomarker fatty acid 16:1ω5 from both phospholipids and neutral lipids. Different responses of plant growth and foliar nutrient profiles were observed for the different AM symbioses examined. The AM fungus Claroideoglomus claroideum caused growth depression in association with four out of six cucumber varieties; Rhizophagus irregularis caused growth promotion in one of six cucumber varieties; whereas Funneliformis mosseae had no effect on the growth performance of any of the cucumber varieties examined. All three AM fungi markedly altered host plant shoot nutrient composition, with the strongest contrast observed between cucumber-R. irregularis symbioses and non-mycorrhizal cucumber plants, independent of cucumber variety. On the other hand, AM fungal growth in roots differed between the three AM fungi, but was unaffected by host genotype. Strong build-up of storage lipids was observed for R. irregularis, which was more moderate in the two other AM fungi. In conclusion, strong differential responses of cucumber varieties to inoculation with different AM fungi in terms of growth and shoot nutrient composition revealed high functional diversity in AM symbioses in cucumber plants. PMID:27094118

  10. Nutrient capital sequestration in pioneer plant communities on surface-mine spoil

    Energy Technology Data Exchange (ETDEWEB)

    Wade, G.L.

    1985-01-01

    Four pioneer plant communities on a surface-mine spoil were compared in terms of biomass production and nutrient capital sequestration. A chenopodium album-dominated community (Treatment 4) produced the greatest amount of biomass. Next were a community derived from a forest topsoil seed bank spread over mine spoil (Treatment 2), a seed bank community with common reclamation species seeded into it (Treatment 3), and a mix of grasses and Lespedeza commonly used in reclamation (Treatment 1). Amounts of nutrients sequestered in vegetation were not strictly proportional to biomass. Community nutrient contents were largely influenced by community biomass and the nutrient uptake characteristics of the species with most biomass. Significant changes in soil chemistry were found after one growing season. Addition of the reclamation mix of grasses and Lespedeza to the seed bank resulted in significantly fewer established native species. Native species lost their normal dominance and exhibited stunted growth and phenological delay in Treatment 3. Nutrient content niche, nutrient content niche share, and niche breadth (Levins; B) were calculated for important species in each community. Native species generally had reduced niche breadths and niche shares when reclamation species were added to the community. Community content niche, the sums of species content niches, varied between different types of pioneer communities.

  11. Status of porous tube plant growth unit research - Development of a plant nutrient delivery system for space

    Science.gov (United States)

    Dreschel, T. W.; Wheeler, R. M.; Sager, J. C.

    1988-01-01

    A system developed for plant production in space was used to grow wheat, beans, rice, and white potatoes. It was found that the negative gauge pressure used to control the nutrient solution at the root/membrane interface and the pore size influence plant production. The results suggest that wheat, rice, beans, and lettuce can probably be grown with production values resembling those of plants grown in other media. Potato growth seemed to be stunted; this could be a possible response to root restriction.

  12. Plant diversity effects on grassland productivity are robust to both nutrient enrichment and drought

    Science.gov (United States)

    Isbell, Forest; Manning, Pete; Connolly, John; Bruelheide, Helge; Ebeling, Anne; Roscher, Christiane; van Ruijven, Jasper; Weigelt, Alexandra; Wilsey, Brian; Beierkuhnlein, Carl; de Luca, Enrica; Griffin, John N.; Hautier, Yann; Hector, Andy; Jentsch, Anke; Kreyling, Jürgen; Lanta, Vojtech; Loreau, Michel; Meyer, Sebastian T.; Mori, Akira S.; Naeem, Shahid; Palmborg, Cecilia; Polley, H. Wayne; Reich, Peter B.; Schmid, Bernhard; Siebenkäs, Alrun; Seabloom, Eric; Thakur, Madhav P.; Tilman, David; Vogel, Anja; Eisenhauer, Nico

    2016-01-01

    Global change drivers are rapidly altering resource availability and biodiversity. While there is consensus that greater biodiversity increases the functioning of ecosystems, the extent to which biodiversity buffers ecosystem productivity in response to changes in resource availability remains unclear. We use data from 16 grassland experiments across North America and Europe that manipulated plant species richness and one of two essential resources—soil nutrients or water—to assess the direction and strength of the interaction between plant diversity and resource alteration on above-ground productivity and net biodiversity, complementarity, and selection effects. Despite strong increases in productivity with nutrient addition and decreases in productivity with drought, we found that resource alterations did not alter biodiversity–ecosystem functioning relationships. Our results suggest that these relationships are largely determined by increases in complementarity effects along plant species richness gradients. Although nutrient addition reduced complementarity effects at high diversity, this appears to be due to high biomass in monocultures under nutrient enrichment. Our results indicate that diversity and the complementarity of species are important regulators of grassland ecosystem productivity, regardless of changes in other drivers of ecosystem function. PMID:27114579

  13. Dynamics of Nutrient Accumulation in Maize Plants Under Different Water and N Supply Conditions

    Institute of Scientific and Technical Information of China (English)

    SONG Hai-xing; LI Sheng-xiu

    2002-01-01

    The dynamics of accumulations of plant dry matter, nutrient uptake and N fertilizer recoverywere studied with different water and N supply, using summer maize (Zea mays L. var. Shandang) as an indi-cator crop. The total dry matter (including roots) and N, P, K uptake amounts were continuously increasedwith plant growth, and their accumulations with time during plant-growing period were shaped in S curves thatcould be described by exponential regression equations. Differentiating the regression equations fitting thecurves over time for first derivatives, the momentary rate was obtained of the dry matter and nutrient uptake.Results show that the dry matter and the nutrient uptake were not in the same rate at all time, but changedfrom one time to another. Usually, the rate increased rapidly at early stages, and gradually decreased afterreaching their peak. Of N, P and K, the uptake rate of N and K was higher, and their increase and decreasewere both fast while P was reversed. The time of the maximum absorptive rate appeared earlier for K, fol-lowed by N, and then by P. In any case, the maximum nutrient uptake rate appeared earlier than did the drymatter. The momentary N recovery rate was similar in trend to those of dry matter and N uptake, and its max-imum recovery rate occurred almost at the same time as its maximum uptake rate. Supplemental irrigationraised the cumulative and momentary rates of N. Although water and N supplies increased dry matter and nu-trient uptake rates, they did not alter their changing trends during the plant-growing period.

  14. Genetic Based Plant Resistance and Susceptibility Traits to Herbivory Influence Needle and Root Litter Nutrient Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Classen, Aimee T [ORNL; Chapman, Samantha K. [Smithsonian Environmental Research Center, Edgewater, MD; Whitham, Thomas G [Northern Arizona University; Hart, Stephen C [Northern Arizona University; Koch, George W [Northern Arizona University

    2007-01-01

    It is generally assumed that leaf and root litter decomposition have similar drivers and that nutrient release from these substrates is synchronized. Few studies have examined these assumptions, and none has examined how plant genetics (i.e., plant susceptibility to herbivory) could affect these relationships. Here we examine the effects of herbivore susceptibility and resistance on needle and fine root litter decomposition of pi on pine, Pinus edulis. The study population consists of individual trees that are either susceptible or resistant to herbivory by the pi on needle scale, Matsucoccus acalyptus, or the stem-boring moth, Dioryctria albovittella. Genetic analyses and experimental removals and additions of these insects have identified trees that are naturally resistant and susceptible to these insects. These herbivores increase the chemical quality of litter inputs and alter soil microclimate, both of which are important decomposition drivers. Our research leads to four major conclusions: Herbivore susceptibility and resistance effects on 1) needle litter mass loss and phosphorus (P) retention in moth susceptible and resistant litter are governed by microclimate, 2) root litter nitrogen (N) and P retention, and needle litter N retention are governed by litter chemical quality, 3) net nutrient release from litter can reverse over time, 4) root and needle litter mass loss and nutrient release are determined by location (above- vs. belowground), suggesting that the regulators of needle and root decomposition differ at the local scale. Understanding of decomposition and nutrient retention in ecosystems requires consideration of herbivore effects on above- and belowground processes and how these effects may be governed by plant genotype. Because an underlying genetic component to herbivory is common to most ecosystems of the world and herbivory may increase in climatic change scenarios, it is important to evaluate the role of plant genetics in affecting carbon and

  15. Decomposition and nutrient release of leguminous plants in coffee agroforestry systems

    Directory of Open Access Journals (Sweden)

    Eduardo da Silva Matos

    2011-02-01

    Full Text Available Leguminous plants used as green manure are an important nutrient source for coffee plantations, especially for soils with low nutrient levels. Field experiments were conducted in the Zona da Mata of Minas Gerais State, Brazil to evaluate the decomposition and nutrient release rates of four leguminous species used as green manures (Arachis pintoi, Calopogonium mucunoides, Stizolobium aterrimum and Stylosanthes guianensis in a coffee agroforestry system under two different climate conditions. The initial N contents in plant residues varied from 25.7 to 37.0 g kg-1 and P from 2.4 to 3.0 g kg-1. The lignin/N, lignin/polyphenol and (lignin+polyphenol/N ratios were low in all residues studied. Mass loss rates were highest in the first 15 days, when 25 % of the residues were decomposed. From 15 to 30 days, the decomposition rate decreased on both farms. On the farm in Pedra Dourada (PD, the decomposition constant k increased in the order C. mucunoides < S. aterrimum < S. guianensis < A. pintoi. On the farm in Araponga (ARA, there was no difference in the decomposition rate among leguminous plants. The N release rates varied from 0.0036 to 0.0096 d-1. Around 32 % of the total N content in the plant material was released in the first 15 days. In ARA, the N concentration in the S. aterrimum residues was always significantly higher than in the other residues. At the end of 360 days, the N released was 78 % in ARA and 89 % in PD of the initial content. Phosphorus was the most rapidly released nutrient (k values from 0.0165 to 0.0394 d-1. Residue decomposition and nutrient release did not correlate with initial residue chemistry and biochemistry, but differences in climatic conditions between the two study sites modified the decomposition rate constants.

  16. Identification and Control of Nutrient Removing Processes in Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Nielsen, Marinus K.; Madsen, Henrik; Carstensen, Niels Jacob

    1994-01-01

    Today the use of on-line control for wastewater treatment plants is very low. A main reason is the lack of quality of the data, and the fact that more sophisticated control strategies must be based on a model of the dynamics of the biological processes. This paper discusses the historical reasons...... for the limited use of modern control strategies for wastewater treatment plants. Today, however, on-line nutrient sensors are more reliable. In the present context the use of on-line monitored values of ammonia, nitrate and phosphate from a full scale plant are used as the background for discussing...

  17. Study of water and nutrient stresses in the plant using fluorescence kinetics

    International Nuclear Information System (INIS)

    We consider the plant like Monihot Utilissima and record the fluorescence intensity emitted by the plant pigments as a function of time and steady state fluorescence spectrum and investigate the physiological processes taking place in the plant leaves, when the plant experience the water and nutrient stresses. The light incident on the plant leaves induces the photosynthesis reaction together with the fluorescence. It is observed that the fluorescence intensity decreases as the stress is increased and thus this technique may be used to study the effect of stresses like water, light intensity, heat, temperature and pollution on the plant health. The reversibility and the irreversibility of the effect of stresses may also be investigated using fluorescence kinetics. The study of stresses in detail may help in the study of water management in India. (author)

  18. Review of decision aids for nuclear-plant operators

    International Nuclear Information System (INIS)

    Responses to various computer-based operational aids varied widely in detail, thus forcing distillation of the salient features of many operational aids from information sources other than the initial questionnaire. These sources included technical and management presentations, technical papers and reports, personal discussions, taped responses, sales brochures, system specifications and schematics, and other documents. The data base is dynamic, not static, owing to the nature of current trends in operational aid development. The information contained in it is subject to review and revision by the developing organizations. More systems are pending review and entry into the data base; hence the list is incomplete

  19. Source Separation of Urine as an Alternative Solution to Nutrient Management in Biological Nutrient Removal Treatment Plants.

    Science.gov (United States)

    Jimenez, Jose; Bott, Charles; Love, Nancy; Bratby, John

    2015-12-01

    Municipal wastewater contains a mixture of brown (feces and toilet paper), yellow (urine), and gray (kitchen, bathroom and wash) waters. Urine contributes approximately 70-80% of the nitrogen (N), 50-70% of the phosphorus (P) load and 60-70% of the pharmaceutical residues in normal domestic sewage. This study evaluated the impact of different levels of source separation of urine on an existing biological nutrient removal (BNR) process. A process model of an existing biological nutrient removal (BNR) plant was used. Increasing the amount of urine diverted from the water reclamation facilities, has little impact on effluent ammonia (NH₃-N) concentration, but effluent nitrate (NO₃-N) concentration decreases. If nitrification is necessary then no reduction in the sludge age can be realized. However, a point is reached where the remaining influent nitrogen load matches the nitrogen requirements for biomass growth, and no residual nitrogen needs to be nitrified. That allows a significant reduction in sludge age, implying reduced process volume requirements. In situations where nitrification is required, lower effluent nitrate (NO₃-N) concentrations were realized due to both the lower influent nitrogen content in the wastewater and a more favorable nitrogen-to-carbon ratio for denitrification. The external carbon requirement for denitrification decreases as the urine separation efficiency increases due to the lower influent nitrogen content in the wastewater and a more favorable nitrogen-to-carbon ratio for denitrification. The effluent phosphorus concentration decreases when the amount of urine sent to water reclamation facilities is decreased due to lower influent phosphorus concentrations. In the case of chemical phosphate removal, urine separation reduces the amount of chemicals required. PMID:26652123

  20. Mechanical damage to pollen aids nutrient acquisition in Heliconius butterflies (Nymphalidae).

    Science.gov (United States)

    Krenn, Harald W; Eberhard, Monika J B; Eberhard, Stefan H; Hikl, Anna-Laetitia; Huber, Werner; Gilbert, Lawrence E

    2009-12-01

    Neotropical Heliconius and Laparus butterflies actively collect pollen onto the proboscis and extract nutrients from it. This study investigates the impact of the processing behaviour on the condition of the pollen grains. Pollen samples (n = 72) were collected from proboscides of various Heliconius species and Laparus doris in surrounding habitats of the Tropical Research Station La Gamba (Costa Rica). Examination using a light microscope revealed that pollen loads contained 74.88 ± 53.67% of damaged Psychotria pollen, 72.04 ± 23.4% of damaged Psiguria/Gurania pollen, and 21.35 ± 14.5% of damaged Lantana pollen (numbers represent median ± first quartile). Damaged pollen grains showed deformed contours, inhomogeneous and/or leaking contents, or they were empty. Experiments with Heliconius and Laparus doris from a natural population in Costa Rica demonstrated that 200 min of pollen processing behaviour significantly increased the percentage of damaged pollen of Psychotria compared to pollen from anthers (P = 0.015, Z = -2.44, Mann-Whitney U-test). Examination of pollen loads from green house reared Heliconius butterflies resulted in significantly greater amounts of damaged Psiguria pollen after 200 min of processing behaviour compared to pollen from flowers (P < 0.001, Z = -4.583, Mann-Whitney U-test). These results indicate that pollen processing functions as extra oral digestion whereby pollen grains are ruptured to make the content available for ingestion.

  1. A Targeted Management of the Nutrient Solution in a Soilless Tomato Crop According to Plant Needs.

    Science.gov (United States)

    Signore, Angelo; Serio, Francesco; Santamaria, Pietro

    2016-01-01

    The adoption of closed soilless systems is useful in minimizing the environmental impact of the greenhouse crops. Instead, a significant problem in closed soilless systems is represented by the accumulation of ions in the recycled nutrient solution (NS), in particular the unabsorbed or poorly absorbed ones. To overcome such problem, we: (1) studied the effect of several values of the electrical conductivity (EC) of NS in a NFT (Nutrient Film Technique) system on a cherry type tomato crop, and (2) define a NS (called recovery solution), based on the concept of "uptake concentration" and transpiration-biomass ratio, that fits the real needs of the plant with respect to water and nutrients. Three levels of EC set point (SP), above which the NS was completely replaced (SP5, SP7.5, and SP10 for the EC limit of 5, 7.5, and 10 dS m(-1), respectively), were established. The SP10 treatment yield was not different from other treatments, and it allowed a better quality of the berries (for dry matter and total soluble solids) and higher environmental sustainability due to a lower discharge of total nutrients into the environment (37 and 59% with respect to SP7.5 and SP5, respectively). The recovery solution used in the second trial allowed a more punctual NS management, by adapting to the real needs of the crop. Moreover, it allowed a lesser amount of water and nutrients to be discharged into the environment and a better use of brackish water, due to a more accurate management of the EC of the NS. The targeted management, based on transpiration-biomass ratio, indicates that, in some stages of the plant cycle, the NS used can be diluted, in order to save water and nutrients. With such management a closed cycle can be realized without affecting the yield, but improving the quality of the tomato berries. PMID:27242804

  2. Plant allocation of carbon to defense as a function of herbivory, light and nutrient availability

    Science.gov (United States)

    DeAngelis, Donald L.; Ju, Shu; Liu, Rongsong; Bryant, John P.; Gourley, Stephen A.

    2012-01-01

    We use modeling to determine the optimal relative plant carbon allocations between foliage, fine roots, anti-herbivore defense, and reproduction to maximize reproductive output. The model treats these plant components and the herbivore compartment as variables. Herbivory is assumed to be purely folivory. Key external factors include nutrient availability, degree of shading, and intensity of herbivory. Three alternative functional responses are used for herbivory, two of which are variations on donor-dependent herbivore (models 1a and 1b) and one of which is a Lotka–Volterra type of interaction (model 2). All three were modified to include the negative effect of chemical defenses on the herbivore. Analysis showed that, for all three models, two stable equilibria could occur, which differs from most common functional responses when no plant defense component is included. Optimal strategies of carbon allocation were defined as the maximum biomass of reproductive propagules produced per unit time, and found to vary with changes in external factors. Increased intensity of herbivory always led to an increase in the fractional allocation of carbon to defense. Decreases in available limiting nutrient generally led to increasing importance of defense. Decreases in available light had little effect on defense but led to increased allocation to foliage. Decreases in limiting nutrient and available light led to decreases in allocation to reproduction in models 1a and 1b but not model 2. Increases in allocation to plant defense were usually accompanied by shifts in carbon allocation away from fine roots, possibly because higher plant defense reduced the loss of nutrients to herbivory.

  3. Layered Plant-Growth Media for Optimizing Gaseous, Liquid and Nutrient Requirements: Modeling, Design and Monitoring

    Science.gov (United States)

    Heinse, R.; Jones, S. B.; Bingham, G.; Bugbee, B.

    2006-12-01

    Rigorous management of restricted root zones utilizing coarse-textured porous media greatly benefits from optimizing the gas-water balance within plant-growth media. Geophysical techniques can help to quantify root- zone parameters like water content, air-filled porosity, temperature and nutrient concentration to better address the root systems performance. The efficiency of plant growth amid high root densities and limited volumes is critically linked to maintaining a favorable water content/air-filled porosity balance while considering adequate fluxes to replenish water at decreasing hydraulic conductivities during uptake. Volumes adjacent to roots also need to be optimized to provide adequate nutrients throughout the plant's life cycle while avoiding excessive salt concentrations. Our objectives were to (1) design and model an optimized root zone system using optimized porous media layers, (2) verify our design by monitoring the water content distribution and tracking nutrient release and transport, and (3) mimic water and nutrient uptake using plants or wicks to draw water from the root system. We developed a unique root-zone system using layered Ottawa sands promoting vertically uniform water contents and air-filled porosities. Watering was achieved by maintaining a shallow saturated layer at the bottom of the column and allowing capillarity to draw water upward, where coarser particle sizes formed the bottom layers with finer particles sizes forming the layers above. The depth of each layer was designed to optimize water content based on measurements and modeling of the wetting water retention curves. Layer boundaries were chosen to retain saturation between 50 and 85 percent. The saturation distribution was verified by dual-probe heat-pulse water-content sensors. The nutrient experiment involved embedding slow release fertilizer in the porous media in order to detect variations in electrical resistivity versus time during the release, diffusion and uptake of

  4. The Evaluation of Solar Contribution in Solar Aided Coal-Fired Power Plant

    OpenAIRE

    Rongrong Zhai; Yongping Yang; Yong Zhu; Denggao Chen

    2013-01-01

    Solar aided coal-fired power plants utilize various types of solar thermal energy for coupling coal-fired power plants by using the characteristics of various thermal needs of the plants. In this way, the costly thermal storage system and power generating system will be unnecessary while the intermittent and unsteady way of power generation will be avoided. Moreover, the large-scale utilization of solar thermal power and the energy-saving aim of power plants will be realized. The contribution...

  5. Benchmarking Biological Nutrient Removal in Wastewater Treatment Plants:Influence of Mathematical Model Assumptions

    OpenAIRE

    Flores-Alsina, Xavier; Gernaey, Krist; Jeppsson, Ulf

    2011-01-01

    This paper examines the effect of different model assumptions when describing biological nutrient removal (BNR) by the activated sludge models (ASM) 1, 2d & 3. The performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) benchmark wastewater treatment plant was compared for a series of model assumptions. Three different model approaches describing BNR are considered. In the reference case, the original model implementations are used to simulate WWTP...

  6. Hydroponic potato production on nutrients derived from anaerobically-processed potato plant residues

    Science.gov (United States)

    Mackowiak, C. L.; Stutte, G. W.; Garland, J. L.; Finger, B. W.; Ruffe, L. M.

    1997-01-01

    Bioregenerative methods are being developed for recycling plant minerals from harvested inedible biomass as part of NASA's Advanced Life Support (ALS) research. Anaerobic processing produces secondary metabolites, a food source for yeast production, while providing a source of water soluble nutrients for plant growth. Since NH_4-N is the nitrogen product, processing the effluent through a nitrification reactor was used to convert this to NO_3-N, a more acceptable form for plants. Potato (Solanum tuberosum L.) cv. Norland plants were used to test the effects of anaerobically-produced effluent after processing through a yeast reactor or nitrification reactor. These treatments were compared to a mixed-N treatment (75:25, NO_3:NH_4) or a NO_3-N control, both containing only reagent-grade salts. Plant growth and tuber yields were greatest in the NO_3-N control and yeast reactor effluent treatments, which is noteworthy, considering the yeast reactor treatment had high organic loading in the nutrient solution and concomitant microbial activity.

  7. Reciprocal effects of litter from exotic and congeneric native plant species via soil nutrients.

    Directory of Open Access Journals (Sweden)

    Annelein Meisner

    Full Text Available Invasive exotic plant species are often expected to benefit exclusively from legacy effects of their litter inputs on soil processes and nutrient availability. However, there are relatively few experimental tests determining how litter of exotic plants affects their own growth conditions compared to congeneric native plant species. Here, we test how the legacy of litter from three exotic plant species affects their own performance in comparison to their congeneric natives that co-occur in the invaded habitat. We also analyzed litter effects on soil processes. In all three comparisons, soil with litter from exotic plant species had the highest respiration rates. In two out of the three exotic-native species comparisons, soil with litter from exotic plant species had higher inorganic nitrogen concentrations than their native congener, which was likely due to higher initial litter quality of the exotics. When litter from an exotic plant species had a positive effect on itself, it also had a positive effect on its native congener. We conclude that exotic plant species develop a legacy effect in soil from the invaded range through their litter inputs. This litter legacy effect results in altered soil processes that can promote both the exotic plant species and their native congener.

  8. Plant Growth Environments with Programmable Relative Humidity and Homogeneous Nutrient Availability

    Science.gov (United States)

    Lind, Kara R.; Lee, Nigel; Sizmur, Tom; Siemianowski, Oskar; Van Bruggen, Shawn; Ganapathysubramaniam, Baskar

    2016-01-01

    We describe the design, characterization, and use of “programmable”, sterile growth environments for individual (or small sets of) plants. The specific relative humidities and nutrient availability experienced by the plant is established (RH between 15% and 95%; nutrient concentration as desired) during the setup of the growth environment, which takes about 5 minutes and <1$ in disposable cost. These systems maintain these environmental parameters constant for at least 14 days with minimal intervention (one minute every two days). The design is composed entirely of off-the-shelf components (e.g., LEGO® bricks) and is characterized by (i) a separation of root and shoot environment (which is physiologically relevant and facilitates imposing specific conditions on the root system, e.g., darkness), (ii) the development of the root system on a flat surface, where the root enjoys constant contact with nutrient solution and air, (iii) a compatibility with root phenotyping. We demonstrate phenotyping by characterizing root systems of Brassica rapa plants growing in different relative humidities (55%, 75%, and 95%). While most phenotypes were found to be sensitive to these environmental changes, a phenotype tightly associated with root system topology–the size distribution of the areas encircled by roots–appeared to be remarkably and counterintuitively insensitive to humidity changes. These setups combine many of the advantages of hydroponics conditions (e.g., root phenotyping, complete control over nutrient composition, scalability) and soil conditions (e.g., aeration of roots, shading of roots), while being comparable in cost and setup time to Magenta® boxes. PMID:27304431

  9. Nuclear techniques in integrated plant nutrient, water and soil management. Proceedings

    International Nuclear Information System (INIS)

    The need to produce sufficient food of acceptable quality in the context of an ever-expanding human population has been recognized as a priority by several international conventions and agreements. Intensification, rather than expansion of agriculture into new areas, will be required if the goal of food security is to become a reality. Problems related to the sustainable production of food, fuel and fibre, both in low input and in high input agricultural systems, are now widely recognized. The overexploitation of the natural resource base has led to serious declines in soil fertility through loss of organic matter, nutrient mining, and soil erosion. The overuse of external inputs of water and manufactured fertilizers has resulted in salinization and pollution of ground and surface waters. Nuclear science has a crucial role to play in supporting research and development of sustainable farming systems. An FAO/IAEA International Symposium on Nuclear Techniques in Integrated Plant Nutrient, Water and Soil Management, held in Vienna from 16 to 20 October 2000, was attended by 117 participants representing forty-three countries and five organizations. The purpose was to provide an international forum for a comprehensive review of the state of the art and recent advances made in this specific field, as well as a basis for delineating further research and development needs. The participation of soil, crop and environmental scientists, as well as isotope specialists, ensured an exchange of information and views on recent advances in interdisciplinary and multidisciplinary approaches to addressing problems in sustainable land management. The symposium was organized around seven themes, each represented by a technical session introduced by a keynote speaker: Evaluation and management of natural and manufactured nutrient sources; Soil organic matter dynamics and nutrient cycling; Soil water management and conservation; Plant tolerance to environmental stress; Environmental and

  10. Importance of Marine-Derived Nutrients Supplied by Planktivorous Seabirds to High Arctic Tundra Plant Communities

    Science.gov (United States)

    Zwolicki, Adrian; Zmudczyńska-Skarbek, Katarzyna; Richard, Pierre; Stempniewicz, Lech

    2016-01-01

    We studied the relative importance of several environmental factors for tundra plant communities in five locations across Svalbard (High Arctic) that differed in geographical location, oceanographic and climatic influence, and soil characteristics. The amount of marine-derived nitrogen in the soil supplied by seabirds was locally the most important of the studied environmental factors influencing the tundra plant community. We found a strong positive correlation between δ15N isotopic values and total N content in the soil, confirming the fundamental role of marine-derived matter to the generally nutrient-poor Arctic tundra ecosystem. We also recorded a strong correlation between the δ15N values of soil and of the tissues of vascular plants and mosses, but not of lichens. The relationship between soil δ15N values and vascular plant cover was linear. In the case of mosses, the percentage ground cover reached maximum around a soil δ 15N value of 8‰, as did plant community diversity. This soil δ15N value clearly separated the occurrence of plants with low nitrogen tolerance (e.g. Salix polaris) from those predominating on high N content soils (e.g. Cerastium arcticum, Poa alpina). Large colonies of planktivorous little auks have a great influence on Arctic tundra vegetation, either through enhancing plant abundance or in shaping plant community composition at a local scale. PMID:27149113

  11. Importance of Marine-Derived Nutrients Supplied by Planktivorous Seabirds to High Arctic Tundra Plant Communities.

    Directory of Open Access Journals (Sweden)

    Adrian Zwolicki

    Full Text Available We studied the relative importance of several environmental factors for tundra plant communities in five locations across Svalbard (High Arctic that differed in geographical location, oceanographic and climatic influence, and soil characteristics. The amount of marine-derived nitrogen in the soil supplied by seabirds was locally the most important of the studied environmental factors influencing the tundra plant community. We found a strong positive correlation between δ15N isotopic values and total N content in the soil, confirming the fundamental role of marine-derived matter to the generally nutrient-poor Arctic tundra ecosystem. We also recorded a strong correlation between the δ15N values of soil and of the tissues of vascular plants and mosses, but not of lichens. The relationship between soil δ15N values and vascular plant cover was linear. In the case of mosses, the percentage ground cover reached maximum around a soil δ 15N value of 8‰, as did plant community diversity. This soil δ15N value clearly separated the occurrence of plants with low nitrogen tolerance (e.g. Salix polaris from those predominating on high N content soils (e.g. Cerastium arcticum, Poa alpina. Large colonies of planktivorous little auks have a great influence on Arctic tundra vegetation, either through enhancing plant abundance or in shaping plant community composition at a local scale.

  12. Importance of Marine-Derived Nutrients Supplied by Planktivorous Seabirds to High Arctic Tundra Plant Communities.

    Science.gov (United States)

    Zwolicki, Adrian; Zmudczyńska-Skarbek, Katarzyna; Richard, Pierre; Stempniewicz, Lech

    2016-01-01

    We studied the relative importance of several environmental factors for tundra plant communities in five locations across Svalbard (High Arctic) that differed in geographical location, oceanographic and climatic influence, and soil characteristics. The amount of marine-derived nitrogen in the soil supplied by seabirds was locally the most important of the studied environmental factors influencing the tundra plant community. We found a strong positive correlation between δ15N isotopic values and total N content in the soil, confirming the fundamental role of marine-derived matter to the generally nutrient-poor Arctic tundra ecosystem. We also recorded a strong correlation between the δ15N values of soil and of the tissues of vascular plants and mosses, but not of lichens. The relationship between soil δ15N values and vascular plant cover was linear. In the case of mosses, the percentage ground cover reached maximum around a soil δ 15N value of 8‰, as did plant community diversity. This soil δ15N value clearly separated the occurrence of plants with low nitrogen tolerance (e.g. Salix polaris) from those predominating on high N content soils (e.g. Cerastium arcticum, Poa alpina). Large colonies of planktivorous little auks have a great influence on Arctic tundra vegetation, either through enhancing plant abundance or in shaping plant community composition at a local scale. PMID:27149113

  13. The sanitary officer: first aid coordinator on EDF nuclear power plant

    International Nuclear Information System (INIS)

    The internal organisation for first aid to the injured in case of an accident on E.D.F. nuclear power plant calls for the immediate assistance of a first aid team, consisting of five workers, under the direction of a principal first aid officer; one of the first aid workers, the sanitary officer who instructs the first aid workers intervention awaiting the arrival of an external medical. When the 'Sanitary on-site Emergency Plan' was up' dated, twenty medical doctors and seventy members of staff from five different sites were questioned as to the function of the sanitary officer. The conclusions revealed a notable difference of training amongst the different sites, and concerning first aid organisation, difference of priority of actions, extent of their participation once the medical team arrives and their participation in case of decontamination treatment. The medical doctors and staff lay a particular stress on importance of defining on a national scale the limits of role and responsibilities of the sanitary officer and establish a more specific training in this field, consequently motivating commitment and professionalism involvement. There is a great difference between the training and coaching of the first aid assistance and fire protection teams. To conclude, we propose that the first aid officer be known as first aid coordinator and the qualification of 'Certificat de Formation aux Premiers Secours en Equipe' in compliance with the current legislation together with a specific nuclear module and they should undergo regular on-site drills. (author)

  14. Nutrients quantities on the leaves of plants in production stage and nutrients exportation by acerola fruits on Paraíba State

    Directory of Open Access Journals (Sweden)

    João Vilian de Moraes Lima Marinus

    2007-11-01

    Full Text Available This research was done out and indoors with acerola cultures (Malpighia emarginata D.C. on harvest times, aiming the quantization of the macro nutrients nitrogen, phosphorus and potassium on their leaves and mature fruits, and estimate the nutrients exportation from distinct micro regions on the state of Paraíba. The studied cultures have existence time varied between four and five years. The methodology used based on the casualized blocks, which had six treatments and fifteen cycles. It is concluded the nitrogen quantities on the leaves were higher than the ones found on the pulp on all cultures; the phosphorus average quantities were similar on all parts of the plants studied on all cultures; the nutrients exportation by the fruits harvested followed this decreasing order: potassium, nitrogen and phosphorus, without location; and the quantity of nutrients, in mg 100g-1 on the edible portion, was 76.48 of nitrogen, 12.58 of phosphorus and 151.38 of potassium. Key words: Malpighia emarginata D.C., nutrients concentration, nutrients exportation, fruits composition.

  15. The node, a hub for mineral nutrient distribution in graminaceous plants.

    Science.gov (United States)

    Yamaji, Naoki; Ma, Jian Feng

    2014-09-01

    Mineral elements, including both essential and toxic elements, are delivered to different tissues after they are taken up from the roots, but the mechanism (or mechanisms) underlying the distribution remains poorly understood. In graminaceous plants, this distribution occurs in nodes, which have a complex, well-organized vascular system. A transfer of mineral elements between different vascular bundles is required, especially for preferential distribution to developing tissues that have low transpiration but high nutrient requirements. This intervascular transfer is mediated by various transporters localized at different cells in the node. In this opinion article, we propose four modes of distribution for different mineral elements: xylem-switch, phloem-tropic, phloem-kickback, and minimum-shift, based on specific molecular transport processes identified in the nodes mainly of rice (Oryza sativa). We also discuss the prospects for future studies on mineral nutrient distribution in the nodes.

  16. The effect of nutrients on pyrrolizidine alkaloids in Senecio plants and their interactions with herbivores and pathogens.

    Science.gov (United States)

    Hol, W H G

    2011-03-01

    The aim of this review is to combine the knowledge of studies on effects of nutrients on pyrrolizidine alkaloids (PAs) in Senecio with those studies of effects of PAs on herbivores and pathogens in order to predict the effects that nutrients may have on herbivores and pathogens via changes in PAs. We discuss whether these predictions match with the outcome of studies where the effect of nutrients on herbivores and insects were measured. PA concentrations in S. jacobaea, S. vulgaris and S. aquaticus were mostly reduced by NPK fertilization, with genotype-specific effects occurring. Plant organs varied in their response to increased fertilization; PA concentrations in flowers remained constant, while shoot and roots were mostly negatively affected. Biomass change is probably largely responsible for the change in concentrations. Nutrients affect both the variety and the levels of PAs in the plant. The reduced PA concentrations after NPK fertilization was expected to benefit herbivores, but no or negative responses from insect herbivores were observed. Apparently other changes in the plant after fertilization are overriding the effect of PAs. Pathogens do seem to benefit from the lower PA concentrations after fertilization; they were more detrimental to fertilized plants than to unfertilized control plants. Future studies should include the effect of each element of nutrients separately and in combinations in order to gain more insight in the effect of specific nutrients on PA content in Senecio plants. PMID:21475405

  17. Atmospheric NH3 as plant nutrient: A case study with Brassica oleracea

    International Nuclear Information System (INIS)

    Nutrient-sufficient and nitrate- or sulfate-deprived plants of Brassica oleracea L. were exposed to 4 μl l-1 NH3 (2.8 mg m-3), and effects on biomass production and allocation, N-compounds and root morphology investigated. Nitrate-deprived plants were able to transfer to atmospheric NH3 as nitrogen source, but biomass allocation in favor of the root was not changed by exposure to NH3. NH3 reduced the difference in total root length between nitrate-sufficient and nitrate-deprived plants, and increased the specific root length in the latter. The internal N status, therefore, might be involved in controlling root length in B. oleracea. Root surface area, volume and diameter were unaffected by both nitrate deprivation and NH3 exposure. In sulfate-deprived plants an inhibitory effect of NH3 on root morphological parameters was observed. These plants, therefore, might be more susceptible to atmospheric NH3 than nitrate-deprived plants. The relevance of the present data under field conditions is discussed. - Atmospheric NH3 can serve as sole N source for Brassica oleracea, but does not change root biomass allocation in nitrate-deprived plants

  18. Relative quantitative RT-PCR to study the expression of plant nutrient transporters in arbuscular mycorrhizas

    DEFF Research Database (Denmark)

    Burleigh, S.H.

    2001-01-01

    The influence of arbuscular mycorrhizal fungi (AMF) on the expression of plant nutrient transporters was studied using a relative. quantitative reverse-transcription polymerase chain-reaction (RQRT-PCR) technique. Reverse-transcribed 18S rRNA was used to standardize the treatments. The technique...... had high reproducibility and reflected trends in gene expression as observed by Northern blotting. Using this technique, it was demonstrated that both the high-affinity phosphate transporter MtPt2 and a putative nitrate transporter from Medicago truncatula were down-regulated in roots when colonized...... by some, but not all AMF. Colonization by the AMF Glomus rosen, in particular, failed to strongly down-regulate these plant genes within the root. This technique may be suitable for the study of plant genes in mycorrhizal roots when Northern blotting is not possible due to low gene expression or when...

  19. Nutrient Allocation Strategies of Woody Plants: An Approach From the Scaling of Nitrogen and Phosphorus Between Twigs and Leaves

    Science.gov (United States)

    Yan, Z.; Li, P.; Chen, Y.; Han, W.; Fang, J.

    2015-12-01

    Allocation of limited nutrients, such as nitrogen (N) and phosphorus (P), among plant organs reflects the influences of evolutionary and ecological processes on functional traits of plants, and thus is related to functional groups and environmental conditions. In this study, we tested this hypothesis by exploring the stoichiometric scaling of N and P concentrations between twigs and leaves of 335 woody species from 12 forest sites across eastern China. There were significant scaling relationships between twig N (or P) and leaf N (or P) using reduced major axis (RMA) regression analysis; yet their scaling exponents varied among functional groups and changed with environmental factors. Evergreen broad-leaved plants had a higher exponent (αP) of twig P to leaf P than that of deciduous broad-leaved plants (1.26 vs. 0.96, p species exhibited a higher exponent than non-legume species (1.44 vs. 0.99 for αN; 1.86 vs. 0.88 for αP). Moreover, with increasing latitude, both αN and αP significantly decreased from > 1 at low latitude (23.2°N) to forest types (i.e., tropical, temperate and boreal forests) across the study area. These results suggested that, as plant nutrient concentration increased, plants at low latitudes showed a faster increase in twig nutrient concentration, whereas plants at high latitudes presented a faster increase in leaf nutrient concentration. Such shifts in nutrient allocation strategy from low to high latitudes may be controlled by temperature. Overall, our findings provide a new approach to explore plant nutrient allocation strategies by analysing the stoichiometric scaling of nutrients among organs, which could broaden our understanding of the interactions between plants and their environments.

  20. Influence of nutrient composition and plant growth regulators on callus induction and plant regeneration in glutinous rice (Oryza sativa L.).

    Science.gov (United States)

    Duangsee, K; Bunnag, S

    2014-01-01

    The potential for callus induction and regeneration depends on nutrient composition and plant growth regulators. The aim of the present study was to investigate the effect of nutrient composition and plant growth regulators on callus induction and plant regeneration in the glutinous rice cultivar Khunvang. The effect of 2,4-D concentrations (1, 2, 3, 4 and 5 mg L(-1)) on callus induction and growth were investigated. The results revealed that the highest percentage of callus induction (97%) was observed in MS medium supplemented with 5 mg L(-1) 2,4-D under 16 h Photoperiod. The effects of casein hydrolysate concentrations of casein hydrolysate (0, 300, 500, 700 and 900 mg L(-1)) and proline (0, 300, 500, 700 and 900 mg L(-1)) on callus induction and growth of Khunvang were also observed. The results indicated that the increasing casein hydrolysate and proline concentrations did not show a significant effect on callus growth. However, proline concentration of 900 mg L(-1) yielded 85.67% of callus growth.

  1. PILOT PLANT STUDY ON NATURAL WATER COAGULANTS AS COAGULAN AIDS FOR WATER SUPPLY

    Directory of Open Access Journals (Sweden)

    B BINA

    2001-06-01

    Full Text Available Introduction: Natural plant coagulants have an important role to play in provision of portable water to rural communities in the developing world. The plant material that their coagulation properties have been confirmed in previous lab scale studies and can be found widely in Iran was selected as coagulant aids. Pilot plant study was done to evaluate the efficiency of natural material such as Starch/Gum Tragacanth, Fenugreek and Yeast as coagulant aids in conjunction with comercial alum. Methods: The pilot was placed in Isfahan Water Treatment Plant (IWTP and efficiency of these materials in removal of turbidity from raw water enters the IWTP was evaluated. The results indicated while these materials were used as coagulant aids in concentration of 1-5 mg/l conjunction with alum are able to reduced the turbidity and final residuals turbidity meets the standards limits. Results: The coagulation efficiency of these material were found to be effected by certain physico-chemical factors, namely, concentration of suspended solids, divalent cation metal and time of agitation. The relative importance of these variable was evaluated. The results of COD test proved that the natural coagulant aids in the optimum doses produce no any significant organic residual. Discussion: Economical considerations showed that using of these material as coagulant aids can cause reduction in alum consumption and in some cases are more econmical than synthetic polyelectrolyte.

  2. A mathematical model for investigating the effect of cluster roots on plant nutrient uptake

    KAUST Repository

    Zygalakis, K. C.

    2012-04-01

    Cluster roots are thought to play an important role in mediating nutrient uptake by plants. In this paper we develop a mathematical model for the transport and uptake of phosphate by a single root. Phosphate is assumed to diffuse in the soil fluid phase and can also solubilised due to citrate exudation. Using multiple scale homogenisation techniques we derive an effective model that accounts for the cumulative effect of citrate exudation and phosphate uptake by cluster roots whilst still retaining all the necessary information about the microscale geometry and effects. © 2012 EDP Sciences and Springer.

  3. A mathematical model for investigating the effect of cluster roots on plant nutrient uptake

    Science.gov (United States)

    Zygalakis, K. C.; Roose, T.

    2012-04-01

    Cluster roots are thought to play an important role in mediating nutrient uptake by plants. In this paper we develop a mathematical model for the transport and uptake of phosphate by a single root. Phosphate is assumed to diffuse in the soil fluid phase and can also solubilised due to citrate exudation. Using multiple scale homogenisation techniques we derive an effective model that accounts for the cumulative effect of citrate exudation and phosphate uptake by cluster roots whilst still retaining all the necessary information about the microscale geometry and effects.

  4. Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings

    OpenAIRE

    Turan, Metin; EKİNCİ, Melek; YILDIRIM, Ertan; GÜNEŞ, Adem; Karagöz, Kenan; KOTAN, Recep; Dursun, Atilla

    2014-01-01

    A greenhouse experiment was conducted to observe the effects of Bacillus megaterium strain TV-91C, Pantoea agglomerans strain RK-92, and B. subtilis strain TV-17C inoculation on the growth, nutrient, and hormone content of cabbage seedlings. The seeds of cabbage were incubated in flasks by shaking at 80 rpm for 2 h at 28 °C to coat the seeds with the rhizobacteria. Plant growth-promoting rhizobacteria (PGPR) treatments increased fresh and dry shoot and root weight, stem diameter, seedling hei...

  5. Effect of arbuscular mycorrhizal colonization and two levels of compost supply on nutrient uptake and flowering of pelargonium plants.

    Science.gov (United States)

    Perner, Henrike; Schwarz, Dietmar; Bruns, Christian; Mäder, Paul; George, Eckhard

    2007-07-01

    Two challenges frequently encountered in the production of ornamental plants in organic horticulture are: (1) the rate of mineralization of phosphorus (P) and nitrogen (N) from organic fertilizers can be too slow to meet the high nutrient demand of young plants, and (2) the exclusive use of peat as a substrate for pot-based plant culture is discouraged in organic production systems. In this situation, the use of beneficial soil microorganisms in combination with high quality compost substrates can contribute to adequate plant growth and flower development. In this study, we examined possible alternatives to highly soluble fertilizers and pure peat substrates using pelargonium (Pelargonium peltatum L'Her.) as a test plant. Plants were grown on a peat-based substrate with two rates of compost addition and with and without arbuscular mycorrhizal (AM) fungi. Inoculation with three different commercial AM inocula resulted in colonization rates of up to 36% of the total root length, whereas non-inoculated plants remained free of root colonization. Increasing the rate of compost addition increased shoot dry weight and shoot nutrient concentrations, but the supply of compost did not always completely meet plant nutrient demand. Mycorrhizal colonization increased the number of buds and flowers, as well as shoot P and potassium (K) concentrations, but did not significantly affect shoot dry matter or shoot N concentration. We conclude that addition of compost in combination with mycorrhizal inoculation can improve nutrient status and flower development of plants grown on peat-based substrates.

  6. Influence of Phosphorus and Manganese Rats in Nutrient Solution on Mn-54 Uptake by Mango Plants

    International Nuclear Information System (INIS)

    A greenhouse experiment was designed using solution culture and Mn-54 to study the effect of P and Mn rates on absorption of Mn-54, its translocation and percentage using six month old mango seedlings (Hindi Bi-Sinara cv.). Rates of P in nutrient solution were zero, half, one and two strength i.e. 0, 1, 2 and 4 m M whereas Mn rates were 1, 2 and 3 strength i.e. 2, 4 and 6 μM. The prepared nutrient solutions were labelled with carrier free Mn-54. Total absorption of Mn-54 by mango roots from nutrient solution was highly increased by increasing Mn rates, moreover, increasing P rates in media tended to enhance Mn-54 absorption. Translocation and distribution pattern of absorbed Mn-54 followed, to a great extent, the same trend of total absorption of it but with different magnitude. In this concern, more than 90% (about 94%) of total absorption of Mn-54 was retained in root system, whereas about 4% and 2% was translocated in stems and leaves, respectively. Retained Mn in mango roots is considered a good source of Mn for supplying mango plants with it for long term during growing season.

  7. Science Study Aids 4: Plant Pigments - Studies in Color Changes.

    Science.gov (United States)

    McConnell, Bill; McCready, R. M.

    This publication is the fourth of a series of seven supplementary investigative materials for use in secondary science classes providing up-to-date research-related investigations. This unit is structured for grades 9 through 12. It deals with physical factors that affect color changes in plant foods during processing and in the preparation of…

  8. Three-dimensional computer aided design system for plant layout

    International Nuclear Information System (INIS)

    The CAD system for three-dimensional plant layout planning, with which the layout of pipings, cable trays, air conditioning ducts and so on in nuclear power plants can be planned and designed effectively in a short period is reported. This system comprises the automatic routing system by storing the rich experience and know-how of designers in a computer as the knowledge, and deciding the layout automatically following the predetermined sequence by using these, the interactive layout system for reviewing the routing results from higher level and modifying to the optimum layout, the layout evaluation system for synthetically evaluating the layout from the viewpoint of the operability such as checkup and maintenance, and the data base system which enables these effective planning and design. In this report, the total constitution of this system and the technical features and effects of the individual subsystems are outlined. In this CAD system for three-dimensional plant layout planning, knowledge engineering, CAD/CAM, computer graphics and other latest technology were introduced, accordingly by applying this system to plant design, the design can be performed quickly, various case studies can be carried out at planning stage, and systematic and optimum layout planning becomes possible. (Kako, I.)

  9. A novel type of nutritional ant-plant interaction: ant partners of carnivorous pitcher plants prevent nutrient export by dipteran pitcher infauna.

    Directory of Open Access Journals (Sweden)

    Mathias Scharmann

    Full Text Available Many plants combat herbivore and pathogen attack indirectly by attracting predators of their herbivores. Here we describe a novel type of insect-plant interaction where a carnivorous plant uses such an indirect defence to prevent nutrient loss to kleptoparasites. The ant Camponotus schmitzi is an obligate inhabitant of the carnivorous pitcher plant Nepenthes bicalcarata in Borneo. It has recently been suggested that this ant-plant interaction is a nutritional mutualism, but the detailed mechanisms and the origin of the ant-derived nutrient supply have remained unexplained. We confirm that N. bicalcarata host plant leaves naturally have an elevated (15N/(14N stable isotope abundance ratio (δ(15N when colonised by C. schmitzi. This indicates that a higher proportion of the plants' nitrogen is insect-derived when C. schmitzi ants are present (ca. 100%, vs. 77% in uncolonised plants and that more nitrogen is available to them. We demonstrated direct flux of nutrients from the ants to the host plant in a (15N pulse-chase experiment. As C. schmitzi ants only feed on nectar and pitcher contents of their host, the elevated foliar δ(15N cannot be explained by classic ant-feeding (myrmecotrophy but must originate from a higher efficiency of the pitcher traps. We discovered that C. schmitzi ants not only increase the pitchers' capture efficiency by keeping the pitchers' trapping surfaces clean, but they also reduce nutrient loss from the pitchers by predating dipteran pitcher inhabitants (infauna. Consequently, nutrients the pitchers would have otherwise lost via emerging flies become available as ant colony waste. The plants' prey is therefore conserved by the ants. The interaction between C. schmitzi, N. bicalcarata and dipteran pitcher infauna represents a new type of mutualism where animals mitigate the damage by nutrient thieves to a plant.

  10. Temporal-spatial dynamics in orthoptera in relation to nutrient availability and plant species richness.

    Directory of Open Access Journals (Sweden)

    Rob J J Hendriks

    Full Text Available Nutrient availability in ecosystems has increased dramatically over the last century. Excess reactive nitrogen deposition is known to negatively impact plant communities, e.g. by changing species composition, biomass and vegetation structure. In contrast, little is known on how such impacts propagate to higher trophic levels. To evaluate how nitrogen deposition affects plants and herbivore communities through time, we used extensive databases of spatially explicit historical records of Dutch plant species and Orthoptera (grasshoppers and crickets, a group of animals that are particularly susceptible to changes in the C:N ratio of their resources. We use robust methods that deal with the unstandardized nature of historical databases to test whether nitrogen deposition levels and plant richness changes influence the patterns of richness change of Orthoptera, taking into account Orthoptera species functional traits. Our findings show that effects indeed also propagate to higher trophic levels. Differences in functional traits affected the temporal-spatial dynamics of assemblages of Orthoptera. While nitrogen deposition affected plant diversity, contrary to our expectations, we could not find a strong significant effect of food related traits. However we found that species with low habitat specificity, limited dispersal capacity and egg deposition in the soil were more negativly affected by nitrogen deposition levels. Despite the lack of significant effect of plant richness or food related traits on Orthoptera, the negative effects of nitrogen detected within certain trait groups (e.g. groups with limited disperse ability could be related to subtle changes in plant abundance and plant quality. Our results, however, suggest that the changes in soil conditions (where many Orthoptera species lay their eggs or other habitat changes driven by nitrogen have a stronger influence than food related traits. To fully evaluate the negative effects of nitrogen

  11. Influence of Pulsed Electromagnetic Field on Plant Growth, Nutrient Absorption and Yield of Durum Wheat

    Directory of Open Access Journals (Sweden)

    Nikolaos KATSENIOS

    2015-12-01

    Full Text Available Researchers have adopted the use of magnetic field as a new pre-sowing, environmental friendly technique. Enhancements on plant characteristics with economic impact on producer’s income could be the future of a modern, organic and sustainable agriculture. A field experiment was established at Soil Science Institute of Athens, Lycovrissi, Greece, in the winter of 2014. Two durum wheat cultivars were used. It was a pot experiment with 6 treatments (2 cultivars with 3 magnetic field time exposure. The seeds were treated using a PAPIMI electromagnetic field generator for 0, 30 and 45 minutes one day before planting. The experiment followed a completely randomized design with six treatments and 30 replications. The aim of this study was to evaluate the positive effect of magnetic field pre-sowing treatment in a wide range of plant measurements, including yield. The influence of pulsed electromagnetic field on two varieties of durum wheat seeds showed some statistically significant differences at the 0.05 level in growth measurements, physiological measurements and root growth measurements. Plant tissue analysis showed that magnetic field treatments had higher values than control in total nitrogen, phosphorus, potassium, magnesium, copper (only MF-45, zinc (only MF-30 and boron content, although values showed statistically significant differences only in total nitrogen. The results indicate that this innovative technique can increase the yield of durum wheat, through enhanced absorption of nutrients. Pre-sowing treatment of the seeds leads to vigorous plant growth that are more productive.

  12. Effect of mycorrhizas application on plant growth and nutrient uptake in cucumber production under field conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ortas, I.

    2010-07-01

    Mycorrhizas application in horticultural production in the Eastern Mediterranean region of Turkey has been studied under field conditions for several years. The effects of different arbuscular mycorrhizal fungi (AMF) have been evaluated under field conditions for cucumber production. The parameters measured were seedling survival, plant growth and yield, and root colonization. In 1998 and 1999, Glomus mosseae and Glomus etunicatum inoculated cucumber seedlings were treated with and without P (100 kg P2O5 ha-1) application. A second experiment was set up to evaluate the response of cucumber to the inoculation with a consortia of indigenous mycorrhizae, G. mosseae, G. etunicatum, Glomus clarum, Glomus caledonium and a mixture of these four species. Inoculated and control non inoculated cucumber seedlings were established under field conditions in 1998, 2001, 2002 and 2004. Seedling quality, seedling survival under field conditions and yield response to mycorrhiza were tested. Fruits were harvested periodically; at blossom, plant leaves and root samples were taken for nutrient content and mycorrhizal colonization analysis respectively. The field experiment results showed that mycorrhiza inoculation significantly increased cucumber seedling survival, fruit yield, P and Zn shoot concentrations. Indigenous mycorrhiza inoculum was successful in colonizing plant roots and resulted in better plant growth and yield. The relative effectiveness of each of the inocula tested was not consistent in the different experiments, although inoculated plants always grew better than control no inoculated. The most relevant result for growers was the increased survival of seedlings. (Author) 20 refs.

  13. Biomass accumulation and nutrient uptake of 16 riparian woody plant species in Northeast China

    Institute of Scientific and Technical Information of China (English)

    Shuai Yu; Wei Chen; Xingyuan He; Zhouli Liu; Yanqing Huang

    2014-01-01

    Our research focused on eutrophication control and species screening for riparian zone vegetation restoration in the upstream reach of the Hun River. We studied 16 hardwood plant species to investigate nutrient concentrations and nitrogen and phosphorus accumulations. After about 120 days of growth in pots, these 16 species varied in dry matter biomass, ranging from 15.13 to 637.16 g. Total nitrogen (TN) and total phosphorus (TP) concentrations and distribution in roots, stems and foliage differed both within and between tested species. Mean TN and TP accumulation ranged from 0.167 to 14.730 g per plant and from 0.016 to 1.20 g, respectively. All 16 species, but especially Lespedeza bicolor, Robinia pseudoacacia and Sorbaria sorbifolia had strong potential to remove TN and TP from soil and could be widely utilized for the restora-tion of destroyed riparian zones in northeast China.

  14. Benchmarking biological nutrient removal in wastewater treatment plants: influence of mathematical model assumptions

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Gernaey, Krist V.; Jeppsson, Ulf

    2012-01-01

    This paper examines the effect of different model assumptions when describing biological nutrient removal (BNR) by the activated sludge models (ASM) 1, 2d & 3. The performance of a nitrogen removal (WWTP1) and a combined nitrogen and phosphorus removal (WWTP2) benchmark wastewater treatment plant...... of the non-reactive TSS sedimentation and transport in the reference case with the full set of ASM processes. Finally, the third set of models is based on including electron acceptor dependency of biomass decay rates for ASM1 (WWTP1) and ASM2d (WWTP2). The results show that incorporation of a reactive...... settler: (1) increases the hydrolysis of particulates; (2) increases the overall plant's denitrification efficiency by reducing the SNOx concentration at the bottom of the clarifier; (3) increases the oxidation of COD compounds; (4) increases XOHO and XANO decay; and, finally, (5) increases the growth...

  15. Co-composted biochar can promote plant growth by serving as a nutrient carrier: first mechanistic insights

    Science.gov (United States)

    Kammann, Claudia; Haider, Ghulam; Messerschmidt, Nicole; Schmidt, Hans-Peter; Koyro, Hans-Werner; Steffens, Diedrich; Clough, Timothy; Müller, Christoph

    2014-05-01

    Pyrogenic carbon (biochar) offers considerable potential for carbon capture (CCSS) and soil storage and meta-analysis suggests that it can significantly reduce soil N2O emissions. Freshly produced biochars, however, do not always have yield-improving effects; pure, production-fresh biochar seems to 'claim' some nutrients initially from soil, particularly nitrogen, although the mechanisms are unclear to date. Hence, combining biochar with organic nutrient-rich materials and waste streams may be a promising strategy to enable CCSS by yield improvements, which may enable economically feasible biochar use in agriculture. We explored the potential of organically post-treated biochar to act as a nutrient carrier and thus to increase its socio-economic value as beneficial soil amendment with associated CCSS value. In a first proof-of-concept study the effects of untreated biochar were compared to those of co-composted biochar, combined with stepwise improved nutritional regimes (+/- compost; +/- mineral-N application). While the untreated biochar reduced plant growth under N-limiting conditions, or at best did not reduce it, the co-composted biochar always significantly stimulated plant growth. The relative stimulation was largest with the lowest nutrient additions (305% versus 61% of control with untreated biochar). Subsequent electro-ultra-filtration analyses revealed that the co-composted but not the untreated biochar carried considerable amounts of easily extractable as well as more strongly sorbed plant nutrients, in particular nitrate and phosphorus. Nevertheless the co-composted N-rich biochar still sorbed 15N labelled NH4+ or NO3- when present in the soil, and again released it to growing barley plants. We will report on the relationship between particle size, increased nutrient content, and plant accessibility of the nutrients associated with the co-composted biochar, and analyse the extent to which the strongly sorbed nutrients on the biochar may be 'invisible

  16. Relationships between nutrient-related plant traits and combinations of soil N and P fertility measures.

    Directory of Open Access Journals (Sweden)

    Yuki Fujita

    Full Text Available Soil fertility and nutrient-related plant functional traits are in general only moderately related, hindering the progress in trait-based prediction models of vegetation patterns. Although the relationships may have been obscured by suboptimal choices in how soil fertility is expressed, there has never been a systematic investigation into the suitability of fertility measures. This study, therefore, examined the effect of different soil fertility measures on the strength of fertility-trait relationships in 134 natural plant communities. In particular, for eight plot-mean traits we examined (1 whether different elements (N or P have contrasting or shared influences, (2 which timescale of fertility measures (e.g. mineralization rates for one or five years has better predictive power, and (3 if integrated fertility measures explain trait variation better than individual fertility measures. Soil N and P had large mutual effects on leaf nutrient concentrations, whereas they had element-specific effects on traits related to species composition (e.g. Grime's CSR strategy. The timescale of fertility measures only had a minor impact on fertility-trait relationships. Two integrated fertility measures (one reflecting overall fertility, another relative availability of soil N and P were related significantly to most plant traits, but were not better in explaining trait variation than individual fertility measures. Using all fertility measures together, between-site variations of plant traits were explained only moderately for some traits (e.g. 33% for leaf N concentrations but largely for others (e.g. 66% for whole-canopy P concentration. The moderate relationships were probably due to complex regulation mechanisms of fertility on traits, rather than to a wrong choice of fertility measures. We identified both mutual (i.e. shared and divergent (i.e. element-specific and stoichiometric effects of soil N and P on traits, implying the importance of explicitly

  17. Relationships between nutrient-related plant traits and combinations of soil N and P fertility measures.

    Science.gov (United States)

    Fujita, Yuki; van Bodegom, Peter M; Witte, Jan-Philip M

    2013-01-01

    Soil fertility and nutrient-related plant functional traits are in general only moderately related, hindering the progress in trait-based prediction models of vegetation patterns. Although the relationships may have been obscured by suboptimal choices in how soil fertility is expressed, there has never been a systematic investigation into the suitability of fertility measures. This study, therefore, examined the effect of different soil fertility measures on the strength of fertility-trait relationships in 134 natural plant communities. In particular, for eight plot-mean traits we examined (1) whether different elements (N or P) have contrasting or shared influences, (2) which timescale of fertility measures (e.g. mineralization rates for one or five years) has better predictive power, and (3) if integrated fertility measures explain trait variation better than individual fertility measures. Soil N and P had large mutual effects on leaf nutrient concentrations, whereas they had element-specific effects on traits related to species composition (e.g. Grime's CSR strategy). The timescale of fertility measures only had a minor impact on fertility-trait relationships. Two integrated fertility measures (one reflecting overall fertility, another relative availability of soil N and P) were related significantly to most plant traits, but were not better in explaining trait variation than individual fertility measures. Using all fertility measures together, between-site variations of plant traits were explained only moderately for some traits (e.g. 33% for leaf N concentrations) but largely for others (e.g. 66% for whole-canopy P concentration). The moderate relationships were probably due to complex regulation mechanisms of fertility on traits, rather than to a wrong choice of fertility measures. We identified both mutual (i.e. shared) and divergent (i.e. element-specific and stoichiometric) effects of soil N and P on traits, implying the importance of explicitly

  18. Relationships between nutrient-related plant traits and combinations of soil N and P fertility measures.

    Science.gov (United States)

    Fujita, Yuki; van Bodegom, Peter M; Witte, Jan-Philip M

    2013-01-01

    Soil fertility and nutrient-related plant functional traits are in general only moderately related, hindering the progress in trait-based prediction models of vegetation patterns. Although the relationships may have been obscured by suboptimal choices in how soil fertility is expressed, there has never been a systematic investigation into the suitability of fertility measures. This study, therefore, examined the effect of different soil fertility measures on the strength of fertility-trait relationships in 134 natural plant communities. In particular, for eight plot-mean traits we examined (1) whether different elements (N or P) have contrasting or shared influences, (2) which timescale of fertility measures (e.g. mineralization rates for one or five years) has better predictive power, and (3) if integrated fertility measures explain trait variation better than individual fertility measures. Soil N and P had large mutual effects on leaf nutrient concentrations, whereas they had element-specific effects on traits related to species composition (e.g. Grime's CSR strategy). The timescale of fertility measures only had a minor impact on fertility-trait relationships. Two integrated fertility measures (one reflecting overall fertility, another relative availability of soil N and P) were related significantly to most plant traits, but were not better in explaining trait variation than individual fertility measures. Using all fertility measures together, between-site variations of plant traits were explained only moderately for some traits (e.g. 33% for leaf N concentrations) but largely for others (e.g. 66% for whole-canopy P concentration). The moderate relationships were probably due to complex regulation mechanisms of fertility on traits, rather than to a wrong choice of fertility measures. We identified both mutual (i.e. shared) and divergent (i.e. element-specific and stoichiometric) effects of soil N and P on traits, implying the importance of explicitly

  19. Calcium isotope fractionation during plant growth under a limited nutrient supply

    Science.gov (United States)

    Schmitt, Anne-Désirée; Cobert, Florian; Bourgeade, Pascale; Ertlen, Damien; Labolle, François; Gangloff, Sophie; Badot, Pierre-Marie; Chabaux, François; Stille, Peter

    2013-06-01

    Hydroponic experiments were performed on bean plants using a nutrient solution at pH 6 with an initial Ca concentration of 5 ppm to test the effect of Ca deficiency on the Δ44/40Calateral roots/nutritive solution and the δ44/40Ca signatures of the different bean organs. The results of the study suggest that the process of Ca uptake by the roots follows a closed-system equilibrium fractionation with a fractionation factor (αbean plant/nutritive solution) of 0.9988, suggesting that Ca forms exchangeable bonds with the root surfaces and thus confirming 40Ca adsorption onto pectic RCOO- groups in the cell wall structure of the lateral roots. The study further suggests that for a constant pH value (i.e., 6), the average signature of the bean plants depends on the Ca isotope signature of the nutritive medium. Moreover, regardless of the concentration of the nutritive solution, the fractionation mechanism between the roots and shoots remains the same, and only the intensity of fractionation between the different organs is modified. Finally, with a decreasing Ca supply in the solution and the appearance of deficiency effects within the bean plants, the Ca isotopic signature of the leaves ceases to reflect that of free Ca but rather that of Ca oxalate crystals. The study also emphasises that Ca isotopes are important tracers of the Ca nutrient availability in soils and may be used as a tool to identify and quantify Ca recycling in soils.

  20. Advanced nutrient root-feeding system for conveyor-type cylindrical plant growth facilities for microgravity.

    Science.gov (United States)

    Berkovich, Yu A; Krivobok, N M; Krivobok, A S; Smolyanina, S O

    2016-02-01

    A compact and reliable automatic method for plant nutrition supply is needed to monitor and control space-based plant production systems. The authors of this study have designed a nutrient root-feeding system that minimizes and regulates nutrient and water supply without loss of crop yields in a space greenhouse. The system involves an ion-exchange fibrous artificial soil (AS) BIONA-V3(TM) as the root-inhabited medium; a pack with slow-release fertilizer as the main source of nitrogen, phosphorus, and potassium; and a cartridge with granular mineral-rich ionite (GMRI) as a source of calcium, magnesium, sulfur, and iron. A controller equipped with an electrical conductivity meter controls the solution flow and concentration of the solution in the mixing tank at specified values. Experiments showed that the fibrous AS-stabilized pH of the substrate solution within the range of 6.0-6.6 is favorable to the majority of crops. The experimental data confirmed that this technique allowed solution preparation for crops in space greenhouses by means of pumping water through the cartridge and minimization of the AS stock onboard the space vehicle. PMID:26948009

  1. Growth, Root Formation, and Nutrient Value of Triticale Plants Fertilized with Biosolids

    Directory of Open Access Journals (Sweden)

    Wendy Mercedes Rauw

    2012-01-01

    Full Text Available Biosolids are utilized as nutrient rich fertilizer. Little material is available on benefits to forage crops resulting from fertilization with biosolids. This paper aimed to compare the effects of fertilization with biosolids versus commercial nitrogen fertilizer on growth, root formation, and nutrient value of triticale plants in a greenhouse experiment. Per treatment, five pots were seeded with five triticale seeds each. Treatments included a nonfertilized control, fertilization with 100, 200, 300, 400, and 500 ml biosolids per pot, and fertilization with a commercial nitrogen fertilizer at the recommended application rate and at double that rate. Biomass production, root length, root diameter, nitrogen, phosphorus, and potassium concentration were analyzed at harvest. Fertilization with biosolids increased triticale production (P<0.001; production was similar for the 100 to 400 mL treatments. Root length, nitrogen, and phosphorus concentration increased, and potassium concentration decreased linearly with application rate. At the recommended rate, biomass production was similar between fertilization with biosolids and commercial fertilizer. However, plants fertilized with commercial fertilizer had considerably longer roots (P<0.001, higher nitrogen concentration (P<0.05, and lower potassium concentration (P<0.01 than those fertilized with biosolids. Our results indicate that at the recommended application rate, biomass production was similar between fertilization with biosolids and with commercial nitrogen fertilizer, indicating the value of biosolids fertilization as a potential alternative.

  2. Advanced nutrient root-feeding system for conveyor-type cylindrical plant growth facilities for microgravity

    Science.gov (United States)

    Berkovich, Yu. A.; Krivobok, N. M.; Krivobok, A. S.; Smolyanina, S. O.

    2016-02-01

    A compact and reliable automatic method for plant nutrition supply is needed to monitor and control space-based plant production systems. The authors of this study have designed a nutrient root-feeding system that minimizes and regulates nutrient and water supply without loss of crop yields in a space greenhouse. The system involves an ion-exchange fibrous artificial soil (AS) BIONA-V3TM as the root-inhabited medium; a pack with slow-release fertilizer as the main source of nitrogen, phosphorus, and potassium; and a cartridge with granular mineral-rich ionite (GMRI) as a source of calcium, magnesium, sulfur, and iron. A controller equipped with an electrical conductivity meter controls the solution flow and concentration of the solution in the mixing tank at specified values. Experiments showed that the fibrous AS-stabilized pH of the substrate solution within the range of 6.0-6.6 is favorable to the majority of crops. The experimental data confirmed that this technique allowed solution preparation for crops in space greenhouses by means of pumping water through the cartridge and minimization of the AS stock onboard the space vehicle.

  3. Nutrient limitation and nutrient-driven shifts in plant species composition in a species-rich fen meadow

    NARCIS (Netherlands)

    Hoek, D. van der; Mierlo, A. van; Groenendael, J.M. van

    2004-01-01

    Question: We studied the development and persistence of the effects of nutrient pulses on biomass production and species composition in a fen meadow. Location: Nature reserve, central Netherlands, 5 m a.s.l. Methods: Single pulse fertilization with N and P in a factorial design on an undrained centr

  4. SOIL-PLANT NUTRIENT INTERACTIONS IN TWO MANGROVE AREAS AT SOUTHERN BRAZIL

    Directory of Open Access Journals (Sweden)

    Ana Paula Lang Martins Madi

    2015-11-01

    Full Text Available ABSTRACTMangrove forests have a simple architecture. They shelter a few number of arboreal species that grow in a saline environment subject to tidal activity. The research objective was to evaluate possible interactions between physical-chemical soil attributes and plant-leaf nutrient concentrations of different mangrove species. Different mangrove species growing in the same soil, and the same mangrove species growing in two different soil classes were evaluated as to their leaf nutrient concentration patterns. The study was carried out in mangrove areas of the State of Paraná, southern Brazil, in two distinct soil classes: HISTOSOL THIOMORPHIC Salic sodic and GLEYSOL THIOMORPHIC Salic sodic; and three different species: Avicennia schaueriana, Laguncularia racemosa and Rhizophora mangle. Two subareas were delimited within each area from which soil and leaf samples were collected. Samplings from five individuals of each dominant mangrove species were taken from the soil (0-10 cm deep under each tree crown projection. The data was submitted to statistical analysis using a set of simple and multivariate analysis in order to determine possible differences among mangrove species leaf nutrient concentrations, and whether these differences might be correlated with the soil attributes or not. The results exposed that the nutritional state of the mangrove species is different and independent form the soil attributes in which they grow. Few correlations were found among leaf nutrient concentrations and soil attributes, suggesting differential selective nutrient uptake among species.RESUMENLos manglares son bosques de arquitectura simple que albergan pocas especies arbóreas, creciendo en un ambiente salino sometido a la influencia de las mareas. El objetivo de este trabajo fue evaluar las posibles interacciones entre las propiedades fisicoquímicas del suelo y la concentración de nutrientes en hojas de diferentes especies de mangle. Se investigó si

  5. Seasonal variations and effects of nutrient applications on N and P and microbial biomass under two temperate heathland plants

    DEFF Research Database (Denmark)

    Nielsen, Pia Lund; Andresen, Louise Christoffersen; Michelsen, Anders;

    2009-01-01

    . The microbial biomass on the other hand was positively related to soil water content in fertilized plots indicating that this was due to an indirect effect of enhanced nutrient availability. Microbial N and P pools were respectively 1000 and 100 times higher than the pool of inorganic N and P, and microbes...... this process. In this study the soil properties under two dominant heathland plants, the dwarf shrub Calluna vulgaris and the grass Deschampsia flexuosa, were investigated, with focus on nutrient content in the organic top soil and soil microbes during the main growing season and effects of nutrient amendments...... therefore may play an important role in regulating plant nutrient supply. Judged from responses of inorganic and microbial N and P concentrations to added N and P, N seemed to limit C. vulgaris and soil microbes below while P seemed to limit D. flexuosa and soil microbes below this species. There were lower...

  6. Complexity of nutrient use efficiency in plants : Metabolic and environmental control at a whole plant perspective

    NARCIS (Netherlands)

    Reich, Martin

    2015-01-01

    To meet the increasing demand for food of a fast growing world population, agriculture needs to be more productive. During last century the agricultural production was worldwide strongly improved by plant breeding and the use of pesticides and fertilizers. This has also resulted in negative environm

  7. Studies on Some Pedological Indices, Nutrient Flux Pattern and Plant Distribution in Metropolitan Dumpsites in Uyo, Akwa Ibom State

    Directory of Open Access Journals (Sweden)

    Felix Ogbemudia and Emem Mbong*

    2013-06-01

    Full Text Available The physical and chemical properties of soils and plants distribution in metropolitan dumpsites in Uyo,Nigeria were studied. Soil samples were collected from two popular dumpsites and analysed using standardscientific procedures. The Results showed that there were slight desparities in the nutrient profile of thesedumpsites. Generally, the nutrients levels were high and soil heavy metals concentration were found to bewithin permissible limits. This study also revealed the monospecific nature of dumpsite 1 and higherspecies presence corresponding with increased nutrient levels in dumpsite site 2. This study encourages theuse of dumpsites soils for agricultural purpose(s when the soil heavy metal falls within permissible range.

  8. Three-dimensional computer-aided design system for plant layout

    International Nuclear Information System (INIS)

    A three-dimensional CAD system for plant layout of nuclear power plants has been developed, adopting the latest technologies of knowledge engineering, CAD/CAM, and interactive computer graphics. With this system, Hitachi is now able to plan plant layout more effectively, reduce design time and cost, and detect defective designs before actual construction problems occur. Hitachi is planning to enhance this three-dimensional CAD system to a plant total life computer-aided engineering (CAE) system. This system will include a construction CAE system, a test operation and in-service inspection control system, and a plant maintenance system. After completion of this system, Hitachi will be able to plan, monitor, and control all major aspects in the life of a nuclear power plant from the very first stage of the planning to its decommissioning

  9. Simple procedure for nutrient analysis of coffee plant with energy dispersive X-ray fluorescence spectrometry (EDXRF)

    Energy Technology Data Exchange (ETDEWEB)

    Tezotto, Tiago; Favarin, Jose Laercio; Neto, Ana Paula; Azevedo, Ricardo Antunes, E-mail: tiago.tezotto@usp.br [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil); Gratao, Priscila Lupino [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP/ FCAV), Jaboticabal, SP (Brazil). Dept. de Biologia Aplicada a Agropecuaria; Mazzafera, Paulo [Universidade Estadual de Campinas (UNICAMP/IB), SP (Brazil). Dept. Biologia Vegetal

    2013-07-15

    Nutrient analysis is used to estimate nutrient content of crop plants to manage fertilizer application for sustained crop production. Direct solid analysis of agricultural and environmental samples by energy dispersive X-ray fluorescence spectrometry (EDXRF) was chosen as alternative technique to evaluate the simultaneous multielemental quantification of the most important essential elements in coffee (Coffea arabica L.) plants. Inductively coupled plasma atomic emission spectrometry and certified reference materials made from leaves were used to calibrate and check the trueness of EDXRF method for the determination of the concentration of several nutrients in coffee leaves and branches. Fluorescence spectrometry proved to be advantageous and presented low cost as loose powder samples could be used. Samples collected from a field experiment where coffee plants were treated with excess of Ni and Zn were used to verify the practical application of the method. Good relationships were achieved between certified values and data obtained by EDXRF, with recoveries ranging from 82 to 117 %.(author)

  10. Simple procedure for nutrient analysis of coffee plant with energy dispersive X-ray fluorescence spectrometry (EDXRF)

    International Nuclear Information System (INIS)

    Nutrient analysis is used to estimate nutrient content of crop plants to manage fertilizer application for sustained crop production. Direct solid analysis of agricultural and environmental samples by energy dispersive X-ray fluorescence spectrometry (EDXRF) was chosen as alternative technique to evaluate the simultaneous multielemental quantification of the most important essential elements in coffee (Coffea arabica L.) plants. Inductively coupled plasma atomic emission spectrometry and certified reference materials made from leaves were used to calibrate and check the trueness of EDXRF method for the determination of the concentration of several nutrients in coffee leaves and branches. Fluorescence spectrometry proved to be advantageous and presented low cost as loose powder samples could be used. Samples collected from a field experiment where coffee plants were treated with excess of Ni and Zn were used to verify the practical application of the method. Good relationships were achieved between certified values and data obtained by EDXRF, with recoveries ranging from 82 to 117 %.(author)

  11. Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests

    Directory of Open Access Journals (Sweden)

    Q. Zhu

    2015-03-01

    Full Text Available Soil is a complex system where biotic (e.g., plant roots, micro-organisms and abiotic (e.g., mineral surfaces consumers compete for resources necessary for life (e.g., nitrogen, phosphorus. This competition is ecologically significant, since it regulates the dynamics of soil nutrients and controls aboveground plant productivity. Here we develop, calibrate, and test a nutrient competition model that accounts for multiple soil nutrients interacting with multiple biotic and abiotic consumers. As applied here for tropical forests, the Nutrient COMpetition model (N-COM includes three primary soil nutrients (NH4+, NO3−, and POx (representing the sum of PO43−, HPO42−, and H2PO4− and five potential competitors (plant roots, decomposing microbes, nitrifiers, denitrifiers, and mineral surfaces. The competition is formulated with a quasi-steady-state chemical equilibrium approximation to account for substrate (multiple substrates share one consumer and consumer (multiple consumers compete for one substrate effects. N-COM successfully reproduced observed soil heterotrophic respiration, N2O emissions, free phosphorus, sorbed phosphorus, and free NH4+ at a tropical forest site (Tapajos. The overall model posterior uncertainty was moderately well constrained. Our sensitivity analysis revealed that soil nutrient competition was primarily regulated by consumer-substrate affinity rather than environmental factors such as soil temperature or soil moisture. Our results imply that the competitiveness (from most to least competitive followed this order: (1 for NH4+, nitrifiers ~ decomposing microbes > plant roots, (2 for NO3−, denitrifiers ~ decomposing microbes > plant roots, (3 for POx, mineral surfaces > decomposing microbes ~ plant roots. Although smaller, plant relative competitiveness is of the same order of magnitude as microbes. We then applied the N-COM model to analyze field nitrogen and phosphorus perturbation experiments in two tropical forest

  12. Content of nutrient and antinutrient in edible flowers of wild plants in Mexico.

    Science.gov (United States)

    Sotelo, Angela; López-García, Semeí; Basurto-Peña, Francisco

    2007-09-01

    Nutrient and antinutritional/toxic factors present in some edible flowers consumed in Mexico were determined. The edible flowers were: Agave salmiana, Aloe vera, Arbutus xalapensis, Cucurbita pepo (cultivated), Erythrina americana, Erythrina caribaea, Euphorbia radians benth and Yucca filifera. The nutrient content in the flowers studied is similar to that of the edible leaves and flowers studied mainly in Africa. The moisture content of the flowers varied from 860 to 932 g kg(-1). Crude protein (CP) was between 113 to 275 g kg(-1) DM, crude fiber, 104 to 177 g kg(-1) DM and the nitrogen free extract, between 425 to 667 g kg(-1) DM. The highest chemical score (CS) was found in E. americana and A. salmiana; in five samples the limiting amino acid was lysine, and in three of them it was tryptophan. Trypsin inhibitors and hemaglutinnins had a very low concentration. Alkaloids were present in both the Erythrina species and the saponins in A. salmiana and Y. filifera. Cyanogenic glucosides were not found in the studied flowers. The traditional process of preparing these specific flowers before consumption is by cooking them and discarding the broth; in this way the toxic substances are diminished or eliminated. These edible flowers from wild plants consumed in local areas of the country play an important role in the diet of the people at least during the short time of the season where they are blooming. PMID:17768684

  13. Exergetic and Parametric Study of a Solar Aided Coal-Fired Power Plant

    Directory of Open Access Journals (Sweden)

    Eric Hu

    2013-03-01

    Full Text Available A solar-aided coal-fired power plant realizes the integration of a fossil fuel (coal or gas and clean energy (solar. In this paper, a conventional 600 MW coal-fired power plant and a 600 MW solar-aided coal-fired power plant have been taken as the study case to understand the merits of solar-aided power generation (SAPG technology. The plants in the case study have been analyzed by using the First and Second Laws of Thermodynamics principles. The solar irradiation and load ratio have been considered in the analysis. We conclude that if the solar irradiation was 925 W/m2 and load ratio of the SAPG plant was 100%, the exergy efficiency would be 44.54% and the energy efficiency of the plant (46.35%. It was found that in the SAPG plant the largest exergy loss was from the boiler, which accounted for about 76.74% of the total loss. When the load ratio of the unit remains at 100%, and the solar irradiation varies from 500 W/m2 to 1,100 W/m2, the coal savings would be in the range of 8.6 g/kWh to 15.8 g/kWh. If the solar irradiation were kept at 925 W/m2 while the load ratio of the plant changed from 30% to 100%, the coal savings could be in the range of 11.99 g/kWh to 13.75 g/kWh.

  14. Investigation of the Biomass and Nutrient Content of Green Manuring Plants as Second Crops in Hungary

    Directory of Open Access Journals (Sweden)

    Peter MIKO

    2012-05-01

    Full Text Available The growth, and the development and trends of the nutrient content parameters of three different plant species (Phacelia tanacecifolia,Sinapis alba, Raphanus sativus grown as secondary crops for green manure, as a function of two different fertiliser doses (0 kg/ha N; 50kg/ha N, was studied under unfavourable site conditions at the Crop Production and Biomass Utilisation Demonstration Centre of theSzent István University, Gödöllő, Hungary. The application of the small, 50 kg/ha dose of nitrogen increased the biomass yield in eachcase, to 2.78-3.11 times that of the control field. The dry matter content of the produce increased only by 2.11-2.66 times, as the watercontent of the green manure plants also increased as a result of the nitrogen supplement. The increased amount of nitrogen boosted theavailability of all of the other macro elements for the plants. In view of the present findings it can be recommend the application of somenitrogen fertiliser in the given site before growing some crop for use as green manure in all cases but where the straw after cereals is left onthe soil surface nitrogen should be applied to alleviate the pentosan effect and to increase the uptake of macro elements.

  15. Preliminary assessment of nutritional value of plant-based diets in relation to human nutrients.

    Science.gov (United States)

    Aberoumand, Ali

    2009-01-01

    In this research, we present preliminary nutritional data for traditional vegetables and fruits including their content of mineral elements (calcium, potassium, sodium, zinc, and iron) and antioxidant phenolic compounds levels. Eight vegetables and vegetables were studied. Plant foods Asparagus officinalis DC, Chlorophytum comosum Linn., Cordia myxa Roxb., Portulaca oleracia Linn. and Solanum indicum Linn. were collected in Behbehan, south Iran, and also Alocacia indica Sch., Eulophia ocherata Lindl. and Momordica dioica Roxb. were collected from the south of India. Nutrients were measured with food analytical standard methods. The results of this study provide evidence that these local traditional vegetables, which do not require formal cultivation, could be important contributors to improving the nutritional content of Pune and Behbehan people. Results indicate that 50% of the vegetables have significant energy values ranging from 281.4 to 303.9 kcal/100 g. From this study, it was determined that five vegetables, namely A. officinalis, C. comosum, E. ocherata, P. oleracia and S. indicum, provide mineral concentrations exceeding 2% of the plant dry weight and are much higher than typical mineral concentrations in conventional edible vegetables; they are thus recommended for future commercial cultivation. High levels of antioxidant compounds were noticed in P. oleracia and S. indicum. The three plants S. indicum, A. officinalis and P. oleracia are suitable for high-temperature food processes. PMID:19274594

  16. Intraspecific trait variation drives functional responses of old-field plant communities to nutrient enrichment.

    Science.gov (United States)

    Siefert, Andrew; Ritchie, Mark E

    2016-05-01

    Environmental changes are expected to shift the distribution of functional trait values in plant communities through a combination of species turnover and intraspecific variation. The strength of these shifts may depend on the availability of individuals with trait values adapted to new environmental conditions, represented by the functional diversity (FD) of existing community residents or dispersal from the regional species pool. We conducted a 3-year nutrient- and seed-addition experiment in old-field plant communities to examine the contributions of species turnover and intraspecific variation to community trait shifts, focusing on four key plant functional traits: vegetative height, leaf area, specific leaf area (SLA), and leaf dry matter content (LDMC). We further examined the influence of initial FD and seed availability on the strength of these shifts. Community mean height, leaf area, and SLA increased in response to fertilization, and these shifts were driven almost entirely by intraspecific variation. The strength of intraspecific shifts in height and leaf area was positively related to initial intraspecific FD in these traits. Intraspecific trait responses to fertilization varied among species, with species of short stature displaying stronger shifts in SLA and LDMC but weaker shifts in leaf area. Trait shifts due to species turnover were generally weak and opposed intraspecific responses. Seed addition altered community taxonomic composition but had little effect on community trait shifts. These results highlight the importance of intraspecific variation for short-term community functional responses and demonstrate that the strength of these responses may be mediated by community FD. PMID:26826004

  17. Acute methemoglobinemia with hemolytic anemia following bio-organic plant nutrient compound exposure: Two case reports.

    Science.gov (United States)

    Malkarnekar, Santoshi Balkrishna; Anjanappa, Raveesha; Naveen, L; Kiran, B G

    2014-02-01

    Two young women, were reffered to our hospital on two different occasions with history of breathlessness and mental confusion, following consumption of two different bio-organic plant nutrient compounds with a suicidal intent. On examination, they had cyanotic mucous membranes, and their blood samples showed the classic 'dark chocolate brown' appearance. Work up revealed cyanosis unresponsive to oxygen supplementation and absence of cardiopulmonary abnormality. Pulse oximetry revealed saturation of 75% in case 1 and 80% in case 2, on 8 liters oxygen supplementation via face masks, although their arterial blood gas analysis was normal, suggestive of "saturation gap". Methemoglobinemia was suspected based on these findings and was confirmed by Carbon monoxide-oximetry (CO-oximetry). Methylene blue was administered and the patients showed dramatic improvement. Both the patients developed evidence of hemolysis approximately 72 hours following admission which improved with blood transfusion and supportive treatment. The patients were eventually discharged without any neurological sequalae. PMID:24678158

  18. Screening of Less known Two Food Plants for Comparison of Nutrient Contents: Iranian and Indian Vegetables

    Directory of Open Access Journals (Sweden)

    Ali Aberoumand

    2011-10-01

    Full Text Available Background: Greater consumption of fruits and vegetables is associated with reduced risk of cardiovascular disease, stroke, and cancers. The most important nutrients present in plants are carbohydrates, such as the starch and free sugars, oils, proteins, minerals, ascorbic acid, and the antioxidant phenols. Plants are an essential component of the universe. Human beings have used those as medicine from the very beginning of time.Methods: The proximate composition and mineral constituents of Asparagus officinalis stem and Momordica dioica fruit were evaluated in order to scientific standard methods of Association for Official and Analytical Chemists (AOAC.Results: The stem contained ashes: 10.70% crude protein: 32.69%, crude lipid: 3.44%, crude fiber: 18.50%, and carbohydrates: 34.67%. Stem also have high energy value (384.27kcal/100g dry weight. Mineral ranges (mg/100g dry weight, DW were: K (10.94, Na (1.84, Ca (0.67, Fe (0.19, and Zn (2.60. The fruits contained ashes: 9.1%, crude protein: 5.44%, crude lipid: 3.25%, crude fiber: 22.9%, and carbohydrates: 59.31%. The fruits also have high energy value (288.25kcal/100g dry weight. Mineral ranges (mg/100g dry weight, DW were: K (4.63, Na (1.62, Ca (7.37, Fe (5.04, and Zn (3.83.Conclusion: Comparing proximate and minerals contents of the stem and the fruit, the results indicated that Asparagus officinalis stem could be a good supplement for some nutrients such as protein, lipid, potassium and zinc, fibre and carbohydrates while Momordica dioica fruit was good source of lipid, crude fiber, carbohydrates, iron and zinc.Functional Foods in Health and Disease 2011; 10:416-424

  19. Relationship of soybean aphid (Hemiptera: Aphididae) to soybean plant nutrients, landscape structure, and natural enemies.

    Science.gov (United States)

    Noma, Takuji; Gratton, Claudio; Colunga-Garcia, Manuel; Brewer, Michael J; Mueller, Emily E; Wyckhuys, Kris A G; Heimpel, George E; O'Neal, Matthew E

    2010-02-01

    In the north central United States, populations of the exotic soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), are highly variable across space, complicating effective aphid management. In this study we examined relationships of plant nutrients, landscape structure, and natural enemies with soybean aphid abundance across Iowa, Michigan, Minnesota, and Wisconsin, representing the range of conditions where soybean aphid outbreaks have occurred since its introduction. We sampled soybean aphid and its natural enemies, quantified vegetation land cover and measured soybean nutrients (potassium [K] and nitrogen [N]) in 26 soybean sites in 2005 and 2006. Multiple regression models found that aphid abundance was negatively associated with leaf K content in 2005, whereas it was negatively associated with habitat diversity (Simpson's index) and positively associated with leaf N content in 2006. These variables accounted for 25 and 27% of aphid variability in 2005 and 2006, respectively, suggesting that other sources of variability are also important. In addition, K content of soybean plants decreased with increasing prevalence of corn-soybean cropland in 2005, suggesting that landscapes that have a high intensification of agriculture (as indexed by increasing corn and soybean) are more likely to have higher aphid numbers. Soybean aphid natural enemies, 26 species of predators and parasitoids, was positively related to aphid abundance; however, enemy-to-aphid abundance ratios were inversely related to aphid density, suggesting that soybean aphids are able to escape control by resident natural enemies. Overall, soybean aphid abundance was most associated with soybean leaf chemistry and landscape heterogeneity. Agronomic options that can ameliorate K deficiency and maintaining heterogeneity in the landscape may reduce aphid risk.

  20. Soil inoculation with symbiotic microorganisms promotes plant growth and nutrient transporter genes expression in durum wheat.

    Science.gov (United States)

    Saia, Sergio; Rappa, Vito; Ruisi, Paolo; Abenavoli, Maria Rosa; Sunseri, Francesco; Giambalvo, Dario; Frenda, Alfonso S; Martinelli, Federico

    2015-01-01

    In a field experiment conducted in a Mediterranean area of inner Sicily, durum wheat was inoculated with plant growth-promoting rhizobacteria (PGPR), with arbuscular mycorrhizal fungi (AMF), or with both to evaluate their effects on nutrient uptake, plant growth, and the expression of key transporter genes involved in nitrogen (N) and phosphorus (P) uptake. These biotic associations were studied under either low N availability (unfertilized plots) and supplying the soil with an easily mineralizable organic fertilizer. Regardless of N fertilization, at the tillering stage, inoculation with AMF alone or in combination with PGPR increased the aboveground biomass yield compared to the uninoculated control. Inoculation with PGPR enhanced the aboveground biomass yield compared to the control, but only when N fertilizer was added. At the heading stage, inoculation with all microorganisms increased the aboveground biomass and N. Inoculation with PGPR and AMF+PGPR resulted in significantly higher aboveground P compared to the control and inoculation with AMF only when organic N was applied. The role of microbe inoculation in N uptake was elucidated by the expression of nitrate transporter genes. NRT1.1, NRT2, and NAR2.2 were significantly upregulated by inoculation with AMF and AMF+PGPR in the absence of organic N. A significant down-regulation of the same genes was observed when organic N was added. The ammonium (NH4 (+)) transporter genes AMT1.2 showed an expression pattern similar to that of the NO3 (-) transporters. Finally, in the absence of organic N, the transcript abundance of P transporters Pht1 and PT2-1 was increased by inoculation with AMF+PGPR, and inoculation with AMF upregulated Pht2 compared to the uninoculated control. These results indicate the soil inoculation with AMF and PGPR (alone or in combination) as a valuable option for farmers to improve yield, nutrient uptake, and the sustainability of the agro-ecosystem.

  1. Measuring calcium, potassium, and nitrate in plant nutrient solutions using ion-selective electrodes in hydroponic greenhouse of some vegetables.

    Science.gov (United States)

    Vardar, Gökay; Altıkatoğlu, Melda; Ortaç, Deniz; Cemek, Mustafa; Işıldak, İbrahim

    2015-01-01

    Generally, the life cycle of plants depends on the uptake of essential nutrients in a balanced manner and on toxic elements being under a certain concentration. Lack of control of nutrient levels in nutrient solution can result in reduced plant growth and undesired conditions such as blossom-end rot. In this study, sensitivity and selectivity tests for various polyvinylchloride (PVC)-based ion-selective membranes were conducted to identify those suitable for measuring typical concentration ranges of macronutrients, that is, NO(3-), K(+), and Ca(2+), in hydroponic solutions. The sensitivity and selectivity of PVC-membrane-based ion-selective sensors prepared with tetradodecylammoniumnitrate for NO(3-), valinomycin for K(+), and Ca ionophore IV for Ca(2+) were found to be satisfactory for measuring NO(3-), K(+), and Ca(2+) ions in nutrient solutions over typical ranges of hydroponic concentrations. Potassium, calcium, and nitrate levels that were utilized by cucumber and tomato seedlings in the greenhouse were different. The findings show that tomato plants consumed less amounts of nitrate than cucumber plants over the first 2 months of their growth. We also found that the potassium intake was higher than other nutritional elements tested for all plants.

  2. Measuring calcium, potassium, and nitrate in plant nutrient solutions using ion-selective electrodes in hydroponic greenhouse of some vegetables.

    Science.gov (United States)

    Vardar, Gökay; Altıkatoğlu, Melda; Ortaç, Deniz; Cemek, Mustafa; Işıldak, İbrahim

    2015-01-01

    Generally, the life cycle of plants depends on the uptake of essential nutrients in a balanced manner and on toxic elements being under a certain concentration. Lack of control of nutrient levels in nutrient solution can result in reduced plant growth and undesired conditions such as blossom-end rot. In this study, sensitivity and selectivity tests for various polyvinylchloride (PVC)-based ion-selective membranes were conducted to identify those suitable for measuring typical concentration ranges of macronutrients, that is, NO(3-), K(+), and Ca(2+), in hydroponic solutions. The sensitivity and selectivity of PVC-membrane-based ion-selective sensors prepared with tetradodecylammoniumnitrate for NO(3-), valinomycin for K(+), and Ca ionophore IV for Ca(2+) were found to be satisfactory for measuring NO(3-), K(+), and Ca(2+) ions in nutrient solutions over typical ranges of hydroponic concentrations. Potassium, calcium, and nitrate levels that were utilized by cucumber and tomato seedlings in the greenhouse were different. The findings show that tomato plants consumed less amounts of nitrate than cucumber plants over the first 2 months of their growth. We also found that the potassium intake was higher than other nutritional elements tested for all plants. PMID:25388287

  3. Plant Community and Nutrient Status of the Soils of Schirmacher Oasis, East Antarctica

    Institute of Scientific and Technical Information of China (English)

    Shiv Mohan Singh; Jagdev Sharma; Rasik Ravindra; Purnima Singh

    2008-01-01

    Investigations on plant community and micronutrient status of Schirmacher Oasis,East Antarctica have been presented in this paper.The dominant plant communities include moss and lichen.The frequency of species occurrence and changes in species composition at different location varied.Thirty four soil samples were analyzed for chemical properties of the soils of Schirmacher Oasis and Nunatak,East Antarctica.The most common plant species growing throughout the areas of Schirmacher Oasis and Nunataks are: Candelariella flava (lichen) and Bryum pseudotriquetrum (moss).Large variations were observed among different soil samples in all the nutrients and other measured soil chemical parameters.The soils are characterized by acidic pH ranging from 4.42-6.80.The mean organic carbon content was 0.62 and ranged from 0.06-1.29%.The electrical conductivity in 1:2 soil water ratio ranged from 0.06-1.29.The average content of macronutrient cation,which are ammonium acetate extractable was in the order of Ca>K>Na>Mg.The average content of DTPA extractable micronutrient cations was in the order of Fe>Mn>Cu>Zn.Thirty one out of 34 samples contained less than 0.80 ppm DTPA extractable Zn.Correlation studies revealed that content of macronutrient cationssignificantly and positively correlated to that of chlorides.Electrical conductivity exhibited significant and positive relationship with pH,K,Ca,Mg,Na and chloride content.Sodium (r=0.876 **) exhibited highest correlation followed by K (r=0.831 **) with chloride content.The correlation coefficient for chlorides was higher with electrical conductivity (r=0.732 **) than pH (r=0.513 **).Organic carbon content of the soil was positively correlated with Fe (r=0.442 *).The nutrient status did not appear to be a limiting factor in growth of plants.Lichen and moss community structure and composition inthe study area were not related with fertility status of soil.Terrestrial mosses are most abundant and luxuriant along the soil habitats

  4. Tactical and strategic decision-making aids for nuclear power plant emergency response

    International Nuclear Information System (INIS)

    This paper examines the prospective role of computer-based decision aids for nuclear power plant emergency response. The role of these systems is subordinate to human activities, but in a complementary manner these systems process decision logic more accurately and foster a more thorough understanding of emergency situations than might other wise be possible. Within this context two decision support systems being developed are discussed. Both of these systems utilize technology derived from artificial intelligence, focussing on two different facets of emergency response. An automated emergency operating procedures (EOP) tracking expert system is described as a tactical aid for control room operator response. A reactor emergency action level monitor (REALM) expert system is proposed as a strategic decision aid for site emergency response. The discrimination between tactical and strategic decision-making is an intrinsic part of this examination

  5. Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests

    Science.gov (United States)

    Zhu, Q.; Riley, W. J.; Tang, J.; Koven, C. D.

    2016-01-01

    Soil is a complex system where biotic (e.g., plant roots, micro-organisms) and abiotic (e.g., mineral surfaces) consumers compete for resources necessary for life (e.g., nitrogen, phosphorus). This competition is ecologically significant, since it regulates the dynamics of soil nutrients and controls aboveground plant productivity. Here we develop, calibrate and test a nutrient competition model that accounts for multiple soil nutrients interacting with multiple biotic and abiotic consumers. As applied here for tropical forests, the Nutrient COMpetition model (N-COM) includes three primary soil nutrients (NH4+, NO3- and POx; representing the sum of PO43-, HPO42- and H2PO4-) and five potential competitors (plant roots, decomposing microbes, nitrifiers, denitrifiers and mineral surfaces). The competition is formulated with a quasi-steady-state chemical equilibrium approximation to account for substrate (multiple substrates share one consumer) and consumer (multiple consumers compete for one substrate) effects. N-COM successfully reproduced observed soil heterotrophic respiration, N2O emissions, free phosphorus, sorbed phosphorus and NH4+ pools at a tropical forest site (Tapajos). The overall model uncertainty was moderately well constrained. Our sensitivity analysis revealed that soil nutrient competition was primarily regulated by consumer-substrate affinity rather than environmental factors such as soil temperature or soil moisture. Our results also imply that under strong nutrient limitation, relative competitiveness depends strongly on the competitor functional traits (affinity and nutrient carrier enzyme abundance). We then applied the N-COM model to analyze field nitrogen and phosphorus perturbation experiments in two tropical forest sites (in Hawaii and Puerto Rico) not used in model development or calibration. Under soil inorganic nitrogen and phosphorus elevated conditions, the model accurately replicated the experimentally observed competition among

  6. Agricola use of compost and vermicomposts of urban wastes: supplying of nutrients to soil and plant; Uso agricola de compost y vermicompost de basuras urbanas: capacidad de cesion de nutrientes al suelo y la plant

    Energy Technology Data Exchange (ETDEWEB)

    Nogales, R.; Elvira, C.; Benitez, E.; Gallardo-Lara, F. [Dpto. Agroecoliga y Proteccion Vegetal, Estacion Experimental del Zaidin, CSIC (Spain)

    1996-06-01

    Compost and vermicomposts from town refuse can be considered as a valuable resource for supplying nitrogen, potassium and some micro nutrients to soils and plants. Application of these mature organic materials increase crop yield, although they are less efficient than mineral fertilizers in order to obtain inmediate crops. (Author) 79 refs.

  7. Effects of High Ammonium Concentration on Growth and Nutrient Uptake of Lettuce Plants with Solution Culture

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    A nutrition solution experiment was conducted over two months to investigate the response of vegetable crops to high concentrations of ammonium, using lettuce (Lactuca sativa L. cv. Angustana Irish) as a test crop. Ammonium concentrations were designed in 5 levels, ranging from 12 mmol N L-1 to 22 mmol N L-1 and local tap water was used as water source. At the first culture stage (0-9 days), lettuce plants maintained normal growth while the lettuce roots were increasingly impaired. During the subsequent three stages the root structure was greatly damaged, and roots became brown or black through continuous supply of high concentration of ammonium. However, there was no obvious reduction of the aboveground biomass of the plants in the high ammonium treatments compared to those supplied with nitrate alone. In contrast to results obtained in another experiment from us with distilled water, the detrimental effect of high ammonium concentration on lettuce growth was greatly alleviated. Based on the results, it was postulated that the small amount of nitrate and the higher amount of bicarbonate existed in the tap water might mitigate the adverse effects of high ammonium N. The higher bicarbonate content in water and soil has usually been regarded as a major constraint factor limiting plant growth in calcareous soil areas. However, the reaction of bicarbonate to ammonium might produce positively interactive effect on reduction of both damages. The lettuce plants grown in ammonium solutions took up less P, K, Fe, Mn and Cu and more Ca than those grown in the nitrate nutrient solution. In conclusion, the results indicated that the N form imposed an obvious influence on absorption of cations and anions. Supplying ammonium-N stimulated transport of Ca, Mg and Mn to shoots of lettuce.

  8. Export of nutrients in plants jambu under different fertilizationExportação de nutrientes em plantas de jambu, sob diferentes adubações

    Directory of Open Access Journals (Sweden)

    Luciana da Silva Borges

    2013-03-01

    Full Text Available The jambu is a broad vegetable consumption in Northern Brazil, especially in Pará, known by the jambu and other common names is native to the Amazon region has been used and cultivated for culinary and also recently in natural medicines by their chemical properties, attributed to the spilanthol compound. Knowing the amount of nutrient uptake in plants, especially at the taken, it is important to evaluate the removal of nutrients necessary for economic fertilizer recommendations. So the goal of this project was to determine the accumulation of nutrients in plants of jambu (leaf and inflorescence under different fertilizations. The experiment was conducted at São Manuel Experimental Farm UNESP. The statistical was arranged in the randomized block design, in a 2 x 6 factorial scheme, two sources of fertilizers (organic and mineral and six doses of nitrogen, with four replications. We evaluated the macronutrients of accumulation N, P, K, Ca, Mg, S and micronutrients of accumulation B, Cu, Fe and Zn in leaves and inflorescence. The plants responded more jambu nutrients of translocation phosphorus (P, magnesium (Mg, sulfhur (S, boron (B, copper (Cu and iron (Fe in the inflorescences and phosphorus (P, calcium (Ca, manganese (Mg, sulfur (S, boron (B, copper (Cu and iron (Fe in leaves to organic fertilization demonstrating the effectiveness of using this source of fertilizer nutrients indicating that this was a defining characteristic in response to the accumulation of nutrients in the leaves and inflorescences jambu. Plants jambu are more responsive to fertilizer for the mineral of translocation nitrogen (N and manganese (Mn for both the sheet and for the inflorescences of plants jambu. O jambu é uma hortaliça de largo consumo na região Norte do Brasil, conhecida por diferentes nomes populares, como agrião do Pará, erva maluca, botão de ouro, é uma espécie nativa da Amazônia, bastante utilizada na culinária regional e também em

  9. Modifications of Morphometrical and Physiological Parameters of Pepper Plants Grown on Artificial Nutrient Medium for Experiments in Spaceflight

    Science.gov (United States)

    Nechitailo, Galina S.

    2016-07-01

    MODIFICATIONS OF MORPHOMETRICAL AND PHYSIOLOGICAL PARAMETERS OF PEPPER PLANTS GROWN ON ARTIFICIAL NUTRIENT MEDIUM FOR EXPERIMENTS IN SPACEFLIGHT Lui Min*, Zhao Hui*, Chen Yu*, Lu Jinying*, Li Huasheng*, Sun Qiao*, Nechitajlo G.S.**, Glushchenko N.N.*** *Shenzhou Space Biotechnology Group, China Academy of Space Technology (CAST), **Emanuel Institute of Biochemical Physics of Russian Academy of Sciences (IBCP RAS) mail: spacemal@mail.ru ***V.L. Talrose Institute for Energy Problems of Chemical Physics of Russian Academy of Science (INEPCP RAS) mail: nnglu@ mail.ru In circumstances of space flights, long residence of the staff at space stations and space settlements an optimal engineering system of the life-support allowing to solve a number of technical and psychological problems for successful work and a life of cosmonauts, researchers, etc. is important and prime. In this respect it is necessary to consider growing plants on board of spacecraft as one of the units in a life-support system. It is feasible due to modern development of biotechnologies in growing plants allowing us to receive materials with new improved properties. Thus, a composition and ratio of components of nutrient medium can considerably influence on plants properties. We have developed the nutrient medium in which essential metals such as iron, zinc, copper were added in an electroneutral state in the form of nanoparticles instead of sulfates or other salts of the same metals. Such replacement is appropriate through unique nanoparticles properties: metal nanoparticles are less toxic than their corresponding ionic forms; nanoparticles produce a prolonged effect, serving as a depot for elements in an organism; nanoparticles introduced in biotic doses stimulate the metabolic processes of the organism; nanoparticles effect is multifunctional. Pepper strain LJ-king was used for growing on a nutrient medium with ferrous, zinc, copper nanoparticles in different concentrations. Pepper plants grown on

  10. Biological Nutrient Removal Model No. 2 (BNRM2): a general model for wastewater treatment plants.

    Science.gov (United States)

    Barat, R; Serralta, J; Ruano, M V; Jiménez, E; Ribes, J; Seco, A; Ferrer, J

    2013-01-01

    This paper presents the plant-wide model Biological Nutrient Removal Model No. 2 (BNRM2). Since nitrite was not considered in the BNRM1, and this previous model also failed to accurately simulate the anaerobic digestion because precipitation processes were not considered, an extension of BNRM1 has been developed. This extension comprises all the components and processes required to simulate nitrogen removal via nitrite and the formation of the solids most likely to precipitate in anaerobic digesters. The solids considered in BNRM2 are: struvite, amorphous calcium phosphate, hidroxyapatite, newberite, vivianite, strengite, variscite, and calcium carbonate. With regard to nitrogen removal via nitrite, apart from nitrite oxidizing bacteria two groups of ammonium oxidizing organisms (AOO) have been considered since different sets of kinetic parameters have been reported for the AOO present in activated sludge systems and SHARON (Single reactor system for High activity Ammonium Removal Over Nitrite) reactors. Due to the new processes considered, BNRM2 allows an accurate prediction of wastewater treatment plant performance in wider environmental and operating conditions. PMID:23552235

  11. Impacts of alien invasive plants on soil nutrients are correlated with initial site conditions in NW Europe

    OpenAIRE

    Dassonville, Nicolas; Vanderhoeven, Sonia; Vanparys, Valerie; Hayez, Mathieu; Gruber, Wolf; Meerts, Pierre

    2008-01-01

    Alien invasive plants are capable of modifying ecosystem function. However, it is difficult to make generalisations because impacts often appear to be species- and site-specific. In this study, we examined the impacts of seven highly invasive plant species in NW Europe (Fallopia japonica, Heracleum mantegazzianum, Impatiens glandulifera, Prunus serotina, Rosa rugosa, Senecio inaequidens, Solidago gigantea) on nutrient pools in the topsoil and the standing biomass. We tested if the impacts fol...

  12. Advanced oxidation to eliminate growth inhibition and to degrade plant protection products in a recirculating nutrient solution in Rose cultivation

    NARCIS (Netherlands)

    Os, van E.A.; Maas, van der A.A.; Meijer, R.J.M.; Khodabaks, M.R.; Blok, C.; Enthoven, N.L.M.

    2012-01-01

    The EU Water Framework Directive demands a sound ecological and chemical basis for ground and surface waters. This has motivated the Dutch greenhouse industry to seek more sustainable water management procedures which will enable a zero-emission of nutrients and plant protection products (PPP) in th

  13. Sensing Site-Specific Variability in Soil and Plant Phosphorus and Other Mineral Nutrients by X-Ray Fluorescence Spectrometry

    Science.gov (United States)

    Detection and rapid response to in-season changes of soil nutrient availability and plant needs with weather conditions and site-specific characteristics are essential to the optimal performance of an agronomic crop production system. With recent advances in material science, detector design and se...

  14. Proceedings of the IFPRI/FAO Workshop on Plant Nutrient Management, Food Security, and Sustainable Agriculture: The future through 2020

    OpenAIRE

    Gruhn, P.; Goletti, F. (ed.); Roy, R N

    1998-01-01

    The International Food Policy Research Institute (IFPRI) led an international initiative entitled A 2020 Vision for Food, Agriculture and the Environment. In support of the 2020 Vision, IFPRI, in collaboration with the Food and Agriculture Organization of the United Nations, sponsored a workshop in Viterbo, Italy, May 16-17 1995 on Plant Nutrient Management, Food Security, and Sustainable Agriculture: The Future through 2020.

  15. Advanced nutrient root feeding system for conveyer-type cylindrical plant growth facilities developed for microgravity

    Science.gov (United States)

    Berkovich, Yuliy A.; Smolyanina, Svetlana O.; Krivobok, Anna; Krivobok, Nikolay

    A new brand of cylindrical conveyer-type space plant growth facilities (PGF) has been created to improve of cosmonauts’ diet in the microgravity conditions. Up to date several ground prototypes of the space PGF have been made and tested: “Phytocycle”, “Vitacycle”, “Phytocycle-LED”, “Phytoconveyer”; now the space PGF “Vitacycle-T” for the Russian segment of the ISS is under developing. In the PGFs the ion-exchange salt-saturated fibrous artificial soil (AS) is used as a root medium. We have proposed the system for enrichment of irrigation water by nutrients to decrease of the AS store required for PGF working during the long space mission. The system includes root modules filled in fibrous ion-exchange AS, the enrichment column with crumble salt-saturation ion-exchange resin and the cassette with slow releasing fertilizer (SRF). Both substrates (ion-exchange resin and SRF) are necessary because of the SRF contains mostly N, P and K but another three essential elements S, Ca, Mg are provided by the ion-exchange resin. In the system water goes throw the enrichment column with ion-exchange resin fertilizing by the nutrients and comes into the mixer cell fertilize equipped with the electrical conductivity sensor. When the signal of the conductivity sensor is coming to the controller it turns on the pump directed the water flow throw the cassette with SRF until the electric conductivity of the solution in the mixer cell will reach the setpoint. The nutrient root feeding system was tested during 88 days when Chinese cabbage grew in PGF “Phytocycle-LED”. The crop has been continuously illuminated by red and blue LEDs in the PPF ratio 7 to 1; an integral PPF level has been (240 ± 10) µmol/(m2×s). There was no renewal of the used fibrous AS during the experiment. The PGF total electric power consumption was of 0,45 kW. The average fresh biomass productivity of the PGF during steady state working mode was equal 135×g/day per m2 of the illuminated

  16. The Evaluation of Solar Contribution in Solar Aided Coal-Fired Power Plant

    Directory of Open Access Journals (Sweden)

    Rongrong Zhai

    2013-01-01

    Full Text Available Solar aided coal-fired power plants utilize various types of solar thermal energy for coupling coal-fired power plants by using the characteristics of various thermal needs of the plants. In this way, the costly thermal storage system and power generating system will be unnecessary while the intermittent and unsteady way of power generation will be avoided. Moreover, the large-scale utilization of solar thermal power and the energy-saving aim of power plants will be realized. The contribution evaluating system of solar thermal power needs to be explored. This paper deals with the evaluation method of solar contribution based on the second law of thermodynamics and the principle of thermoeconomics with a case of 600 MW solar aided coal-fired power plant. In this study, the feasibility of the method has been carried out. The contribution of this paper is not only to determine the proportion of solar energy in overall electric power, but also to assign the individual cost components involving solar energy. Therefore, this study will supply the theoretical reference for the future research of evaluation methods and new energy resource subsidy.

  17. Increasing Plant Based Foods or Dairy Foods Differentially Affects Nutrient Intakes: Dietary Scenarios Using NHANES 2007-2010.

    Science.gov (United States)

    Cifelli, Christopher J; Houchins, Jenny A; Demmer, Elieke; Fulgoni, Victor L

    2016-07-11

    Diets rich in plant foods and lower in animal-based products have garnered increased attention among researchers, dietitians and health professionals in recent years for their potential to, not only improve health, but also to lessen the environmental impact. However, the potential effects of increasing plant-based foods at the expense of animal-based foods on macro- and micronutrient nutrient adequacy in the U.S. diet is unknown. In addition, dairy foods are consistently under consumed, thus the impact of increased dairy on nutrient adequacy is important to measure. Accordingly, the objective of this study was to use national survey data to model three different dietary scenarios to assess the effects of increasing plant-based foods or dairy foods on macronutrient intake and nutrient adequacy. Data from the National Health and Nutrition Examination Survey (NHANES) 2007-2010 for persons two years and older (n = 17,387) were used in all the analyses. Comparisons were made of usual intake of macronutrients and shortfall nutrients of three dietary scenarios that increased intakes by 100%: (i) plant-based foods; (ii) protein-rich plant-based foods (i.e., legumes, nuts, seeds, soy); and (iii) milk, cheese and yogurt. Scenarios (i) and (ii) had commensurate reductions in animal product intake. In both children (2-18 years) and adults (≥19 years), the percent not meeting the Estimated Average Requirement (EAR) decreased for vitamin C, magnesium, vitamin E, folate and iron when plant-based foods were increased. However the percent not meeting the EAR increased for calcium, protein, vitamin A, and vitamin D in this scenario. Doubling protein-rich plant-based foods had no effect on nutrient intake because they were consumed in very low quantities in the baseline diet. The dairy model reduced the percent not meeting the EAR for calcium, vitamin A, vitamin D, magnesium, and protein, while sodium and saturated fat levels increased. Our modeling shows that increasing plant

  18. Increasing Plant Based Foods or Dairy Foods Differentially Affects Nutrient Intakes: Dietary Scenarios Using NHANES 2007-2010.

    Science.gov (United States)

    Cifelli, Christopher J; Houchins, Jenny A; Demmer, Elieke; Fulgoni, Victor L

    2016-01-01

    Diets rich in plant foods and lower in animal-based products have garnered increased attention among researchers, dietitians and health professionals in recent years for their potential to, not only improve health, but also to lessen the environmental impact. However, the potential effects of increasing plant-based foods at the expense of animal-based foods on macro- and micronutrient nutrient adequacy in the U.S. diet is unknown. In addition, dairy foods are consistently under consumed, thus the impact of increased dairy on nutrient adequacy is important to measure. Accordingly, the objective of this study was to use national survey data to model three different dietary scenarios to assess the effects of increasing plant-based foods or dairy foods on macronutrient intake and nutrient adequacy. Data from the National Health and Nutrition Examination Survey (NHANES) 2007-2010 for persons two years and older (n = 17,387) were used in all the analyses. Comparisons were made of usual intake of macronutrients and shortfall nutrients of three dietary scenarios that increased intakes by 100%: (i) plant-based foods; (ii) protein-rich plant-based foods (i.e., legumes, nuts, seeds, soy); and (iii) milk, cheese and yogurt. Scenarios (i) and (ii) had commensurate reductions in animal product intake. In both children (2-18 years) and adults (≥19 years), the percent not meeting the Estimated Average Requirement (EAR) decreased for vitamin C, magnesium, vitamin E, folate and iron when plant-based foods were increased. However the percent not meeting the EAR increased for calcium, protein, vitamin A, and vitamin D in this scenario. Doubling protein-rich plant-based foods had no effect on nutrient intake because they were consumed in very low quantities in the baseline diet. The dairy model reduced the percent not meeting the EAR for calcium, vitamin A, vitamin D, magnesium, and protein, while sodium and saturated fat levels increased. Our modeling shows that increasing plant

  19. Increasing Plant Based Foods or Dairy Foods Differentially Affects Nutrient Intakes: Dietary Scenarios Using NHANES 2007–2010

    Directory of Open Access Journals (Sweden)

    Christopher J. Cifelli

    2016-07-01

    Full Text Available Diets rich in plant foods and lower in animal-based products have garnered increased attention among researchers, dietitians and health professionals in recent years for their potential to, not only improve health, but also to lessen the environmental impact. However, the potential effects of increasing plant-based foods at the expense of animal-based foods on macro- and micronutrient nutrient adequacy in the U.S. diet is unknown. In addition, dairy foods are consistently under consumed, thus the impact of increased dairy on nutrient adequacy is important to measure. Accordingly, the objective of this study was to use national survey data to model three different dietary scenarios to assess the effects of increasing plant-based foods or dairy foods on macronutrient intake and nutrient adequacy. Data from the National Health and Nutrition Examination Survey (NHANES 2007–2010 for persons two years and older (n = 17,387 were used in all the analyses. Comparisons were made of usual intake of macronutrients and shortfall nutrients of three dietary scenarios that increased intakes by 100%: (i plant-based foods; (ii protein-rich plant-based foods (i.e., legumes, nuts, seeds, soy; and (iii milk, cheese and yogurt. Scenarios (i and (ii had commensurate reductions in animal product intake. In both children (2–18 years and adults (≥19 years, the percent not meeting the Estimated Average Requirement (EAR decreased for vitamin C, magnesium, vitamin E, folate and iron when plant-based foods were increased. However the percent not meeting the EAR increased for calcium, protein, vitamin A, and vitamin D in this scenario. Doubling protein-rich plant-based foods had no effect on nutrient intake because they were consumed in very low quantities in the baseline diet. The dairy model reduced the percent not meeting the EAR for calcium, vitamin A, vitamin D, magnesium, and protein, while sodium and saturated fat levels increased. Our modeling shows that

  20. Rhizofiltration of lead using an aromatic medicinal plant Plectranthus amboinicus cultured in a hydroponic nutrient film technique (NFT) system.

    Science.gov (United States)

    Ignatius, A; Arunbabu, V; Neethu, J; Ramasamy, E V

    2014-11-01

    Heavy metal contamination of water bodies and groundwater is a major concern of the modern world. Rhizofiltration--the use of plant root system to remove/extract pollutants from wastewater--has proven advantages over conventional methods of treatment. However, commercialization of this in situ remediation technology requires a better understanding of plant-metal interactions especially on the ability of different plant species to accumulate metals at different parts of the plant system which is critical for the successful remediation of contaminated medium. Many aquatic and terrestrial plants have been reported to accumulate heavy metals when grown hydroponically. Therefore, a batch experiment with different concentrations of lead and a nutrient film technique (NFT) experiment with recycling of wastewater were employed in this study in order to investigate the rhizofiltration of lead-containing wastewater using Plectranthus amboinicus, an aromatic medicinal plant. Results show that P. amboinicus is tolerant to a wide range of lead concentrations and nutrient deficiency. The plant accumulates considerable amount of lead, particularly in the roots, and translocation to the stem and leaf was limited, indicating that the use of leaves/above-ground parts of the plant for medicinal purposes is not hindered by its ability to remove lead from the soil or water. The study also suggests that the plant can be considered for the clean-up of lead-contaminated wastewater in combination with safe biomass disposal alternatives. PMID:24994103

  1. Rhizofiltration of lead using an aromatic medicinal plant Plectranthus amboinicus cultured in a hydroponic nutrient film technique (NFT) system.

    Science.gov (United States)

    Ignatius, A; Arunbabu, V; Neethu, J; Ramasamy, E V

    2014-11-01

    Heavy metal contamination of water bodies and groundwater is a major concern of the modern world. Rhizofiltration--the use of plant root system to remove/extract pollutants from wastewater--has proven advantages over conventional methods of treatment. However, commercialization of this in situ remediation technology requires a better understanding of plant-metal interactions especially on the ability of different plant species to accumulate metals at different parts of the plant system which is critical for the successful remediation of contaminated medium. Many aquatic and terrestrial plants have been reported to accumulate heavy metals when grown hydroponically. Therefore, a batch experiment with different concentrations of lead and a nutrient film technique (NFT) experiment with recycling of wastewater were employed in this study in order to investigate the rhizofiltration of lead-containing wastewater using Plectranthus amboinicus, an aromatic medicinal plant. Results show that P. amboinicus is tolerant to a wide range of lead concentrations and nutrient deficiency. The plant accumulates considerable amount of lead, particularly in the roots, and translocation to the stem and leaf was limited, indicating that the use of leaves/above-ground parts of the plant for medicinal purposes is not hindered by its ability to remove lead from the soil or water. The study also suggests that the plant can be considered for the clean-up of lead-contaminated wastewater in combination with safe biomass disposal alternatives.

  2. Effect of nitrogen rate and irrigation frequency on plant growth and nutrient uptake of container-grown Hydrangea macrophylla ‘Merritt’s Supreme’

    Science.gov (United States)

    The production of high quality container-grown nursery plants requires adequate but not excessive nutrients and water during production. Given the knowledge that N is the most important nutrient element for plant growth and that it is often the limiting factor, nursery growers tend to apply high lev...

  3. Increasing nitrogen rates in rice and its effect on plant nutrient composition and nitrogen apparent recovery

    Directory of Open Access Journals (Sweden)

    Juan Hirzel

    2013-12-01

    Full Text Available Rice (Oryza sativa L. is one of the essential foods of the human diet; advances in agronomic crop management can improve productivity and profitability as well as reduce adverse environmental impacts. Nitrogen rates in Chile are generally based on crop yield without considering other agronomic factors. The objective of this experiment was to determine the effect of increasing N rates on plant nutrient composition and N apparent recovery in rice cultivated in five different locations in Chile. The five sites located in central Chile belong to one of the following soil orders: Inceptisol, Alfisol, and Vertisol; they were cropped in field conditions with 'Zafiro-INIA' rice fertilized with 0, 80, and 160 kg N ha-1. Whole-plant total DM, macronutrient composition, and N apparent recovery efficiency (NARE were determined at grain harvest. Results indicate that all evaluated parameters, with the exception of K concentration, were affected by the soil used. Nitrogen rates only affected total DM production and P, K, and Mg concentrations in plants. Phosphorus and K response decreased when N was added to some soils, which is associated with its chemical properties. Magnesium concentration exhibited an erratic effect, but it was not affected by the N rate in most soils. Nitrogen apparent recovery efficiency was not affected by the N rate and accounted for approximately 49% and 41% for 80 and 160 kg N ha-1, respectively. Macronutrient composition was 5.1-7.7 g N, 1.3-1.8 g P, 5.4-10.8 g K, 1.68-2.57 g Ca, and 0.81-1.45 g Mg kg-1 of total DM.

  4. Influence of Nitrogen Sources and Plant Growth-Promoting Rhizobacteria Inoculation on Growth, Crude Fiber and Nutrient Uptake in Squash (Cucurbita moschata Duchesne ex Poir. Plants

    Directory of Open Access Journals (Sweden)

    Alice I. TCHIAZE

    2016-06-01

    Full Text Available Plant growth promoting rhizobacteria (PGPR, B have immense potential application in sustainable agriculture as ecofriendly biofertilizers and biopesticides. In this study, the effects of three nitrogen (N sources (NO3-, NH4+ and NO3NH4 and PGPR on growth, crude fiber and nutrient uptake were investigated in squash plants. Some growth parameters [root dry weight (RDW, shoot dry weight (SDW, total plant dry weight (PDW, number of leaves (NL, shoot length (SL, stem diameter (SD and number of ramifications (NR], crude fiber (cellulose content and nutrient uptake (N, P, K, Ca, Mg, Na, Fe, Cu, Mn and Zn were determined. Application of NO3-,NH4+ or NO3NH4 singly or in combination with PGPR inoculation led to a significant increase in RDW, SDW, PDW, NL, SL, SD and NR. Na, Cu and Zn contents, on the contrary, decreased in inoculated treated plants while no significant differences were recorded in cellulose contents (CE of leaves except in plants fed with NO3-. The leaf CE content ranged from 12.58 to 13.67%. The plants supplied with NO3+B, NH4+B and NO3NH4+B showed significantly higher plant biomass and accumulation of N, P, K and Mn concentrations in leaves compared to all other treatments. These results suggest that specific combinations of PGPR with NO3-, NH4+ or NO3NH4 fertilizers can be considered as efficient alternative biofertilizers to improve significantly the squash growth and nutrient uptake.

  5. Absorção de nutrientes pela batatinha Nutritional studies with the potato plant

    Directory of Open Access Journals (Sweden)

    H. Gargantini

    1963-01-01

    Full Text Available A marcha da absorção dos elementos nutritivos essenciais pela batatinha (Solanum tuberosum L. foi estudada em plantas cultivadas em vasos de barro, interna, mente vidrados, e com capacidade para 10 quilos de terra. Em cada 10 dias, durante todo o ciclo vegetativo, eram colhidas plantas e analisados os teores de N, P, K, Ca, Mg e S. Tôdas as plantas receberam os mesmos cuidados em tratos culturais, fitossanitários e água. Propiciaram-se, ainda, iguais condições de fertilidade, dando-se a todos os vasos adubação completa, inclusive com os micronutrientes necessários ao bom desenvolvimento e produção da batata. Os resultados obtidos mostram que a batata absorve em grande quantidade o nitrogênio e o potássio, sendo o último em maior proporção. Dos outros elementos estudados, o fósforo, o cálcio, o magnésio e enxôfre, são absorvidos em pequenas quantidades, não ultrapassando nenhum dêles 16 kg/ha. Os dados mostram ainda que as quantidades totais necessárias de nitrogênio, potássio, magnésio e enxôfre são absorvidas pela cultura, até completar 50 dias após a germinação, enquanto o fósforo e o cálcio são requeridos desde o inicio até o final do ciclo vegetativo da planta.Nutritional studies were carried out with potted potato plants, aiming at determining the absorption rate and uptake of essential nutrients in relation to age of the crop. The experimental plants were grown in pots containing 10 kg of soil. Cultural practices, water, and fertility conditions (including addition of minor elements were uniform for all pots. Samples composed of an adequate number of plants (according to age were harvested at ten-day intervals during the entire vegetative cycle of the crop and analysed for N, P, K, Ca, Mg, and S. The results obtained indicated that the potato plant absorbs a large amount of nitrogen, followed by potassium. Phosphorus, calcium, magnesium, and sulfur are absorbed in small quantities, not more than 16 kg

  6. Development of a test bed for operator aid and advanced control concepts in nuclear power plants

    International Nuclear Information System (INIS)

    A great amount of research and development is currently under way in the utilization of artificial intelligence (AI), expert system, and control theory advances in nuclear power plants as a basis for operator aids and automatic control systems. This activity requires access to the measured dynamic responses of the plant to malfunction, operator- or automatic-control-initiated actions. This can be achieved by either simulating plant behavior or by using an actual plant. The advantage of utilizing an actual plant versus a simulator is that the true behavior is assured of both the power generation system and instrumentation. Clearly, the disadvantages of using an actual plant are availability due to licensing, economic, and risk constraints and inability to address accident conditions. In this work the authors have decided to employ a functional one-ninth scale model of a pressurized water reactor (PWR). The scaled PWR (SPWR) facility is a two-loop representation of a Westinghouse PWR utilizing freon as the working fluid and electric heater rods for the core. The heater rods are driven by a neutron kinetics model accounting for measured thermal core conditions. A control valve in the main steam line takes the place of the turbine generator. A range of normal operating and accident situations can be addressed. The SPWR comes close to offering all the advantages of both a simulator and an actual physical plant in regard to research and development on AI, expert system, and control theory applications. The SPWR is being employed in the development of an expert-system-based operator aid system. The current status of this project is described

  7. Response diversity of free-floating plants to nutrient stoichiometry and temperature: growth and resting body formation.

    Science.gov (United States)

    McCann, Michael J

    2016-01-01

    Free-floating plants, like most groups of aquatic primary producers, can become nuisance vegetation under certain conditions. On the other hand, there is substantial optimism for the applied uses of free-floating plants, such as wastewater treatment, biofuel production, and aquaculture. Therefore, understanding the species-specific responses of floating plants to abiotic conditions will inform both management decisions and the beneficial applications of these plants. I measured the responses of three floating plant species common in the northeast United States (Lemna minor, Spirodela polyrhiza, and Wolffia brasiliensis) to nutrient stoichiometry (nitrogen and phosphorus) and temperature in the laboratory. I also used survey data to determine the pattern of species richness of floating plants in the field and its relationship with the dominance of this group. Floating plant species exhibited unique responses to nutrient stoichiometry and temperature in the laboratory, especially under low temperatures (18 °C) and low nutrient conditions (0.5 mg N L(-1), 0.083 mg P L(-1)). The three species displayed an apparent tradeoff with different strategies of growth or dormancy. In the field, water bodies with three or more species of floating plants were not more frequently dominated by this group. The response diversity observed in the lab may not be associated with the dominance of this group in the field because it is masked by environmental variability, has a weak effect, or is only important during transient circumstances. Future research to develop applied uses of floating plants should examine response diversity across a greater range of species or clones and environmental conditions. PMID:26989619

  8. Response diversity of free-floating plants to nutrient stoichiometry and temperature: growth and resting body formation.

    Science.gov (United States)

    McCann, Michael J

    2016-01-01

    Free-floating plants, like most groups of aquatic primary producers, can become nuisance vegetation under certain conditions. On the other hand, there is substantial optimism for the applied uses of free-floating plants, such as wastewater treatment, biofuel production, and aquaculture. Therefore, understanding the species-specific responses of floating plants to abiotic conditions will inform both management decisions and the beneficial applications of these plants. I measured the responses of three floating plant species common in the northeast United States (Lemna minor, Spirodela polyrhiza, and Wolffia brasiliensis) to nutrient stoichiometry (nitrogen and phosphorus) and temperature in the laboratory. I also used survey data to determine the pattern of species richness of floating plants in the field and its relationship with the dominance of this group. Floating plant species exhibited unique responses to nutrient stoichiometry and temperature in the laboratory, especially under low temperatures (18 °C) and low nutrient conditions (0.5 mg N L(-1), 0.083 mg P L(-1)). The three species displayed an apparent tradeoff with different strategies of growth or dormancy. In the field, water bodies with three or more species of floating plants were not more frequently dominated by this group. The response diversity observed in the lab may not be associated with the dominance of this group in the field because it is masked by environmental variability, has a weak effect, or is only important during transient circumstances. Future research to develop applied uses of floating plants should examine response diversity across a greater range of species or clones and environmental conditions.

  9. Effects of plant herb combination supplementation on rumen fermentation and nutrient digestibility in beef cattle.

    Science.gov (United States)

    Wanapat, M; Kang, S; Khejornsart, P; Wanapat, S

    2013-08-01

    Four rumen-fistulated crossbred beef cattle (Brahman native) were randomly assigned according to a 4×4 Latin square design experiment to be fed plant herb supplements in their concentrate mixture. The treatments were: without herb supplementation (Control), lemongrass meal supplementation at 100 g/d (L), lemongrass meal supplementation at 100 g/d plus peppermint powder at 10 g/d (LP), and lemongrass meal supplementation at 100 g/d plus peppermint powder at 10 g/d with garlic powder 40 g/d (LPG), respectively. Based on the present study, the DMI and apparent digestibility of DM, OM, aNDF and ADF were not affected by dietary herb supplementation while CP digestibility tended to be decreased by herb supplement. Moreover, NH3-N and BUN were decreased in all herb supplemented treatments and there was a tendency to an increase in ruminal pH in all herb supplemented groups. While there was no change in TVFA and C4 among lemongrass treatments, C2 was decreased in all herb supplemented treatments while C3 was increased. Methane production by calculation was the lowest in the LP and LPG groups. Population sizes of bacteria and protozoa were decreased in all herb supplemented groups, but not fungal zoospores. In all supplemented groups, total viable and proteolytic bacteria were decreased, while amylolytic and cellulolytic bacteria were similar. More importantly, in all herb supplemented groups, there were higher N balances, while there was no difference among treatments on purine derivative (PD) excretion or microbial N. Based on the results above, it could be concluded that there was no negative effect on ruminal fermentation characteristics and nutrient utilization by plant herb supplement, but protozoal population and CH4 production were reduced. Thus, lemongrass alone or in combination with peppermint and garlic powder could be used as feed additives to improve rumen fermentation efficiency. PMID:25049893

  10. An ethnobotanical survey of plants used to manage HIV/AIDS opportunistic infections in Katima Mulilo, Caprivi region, Namibia

    Directory of Open Access Journals (Sweden)

    Chinsembu Kazhila C

    2010-09-01

    Full Text Available Abstract Katima Mulilo has the highest burden of HIV/AIDS in Namibia. Due to several constraints of the antiretroviral therapy programme, HIV-infected persons still use ethnomedicines to manage AIDS-related opportunistic infections. Despite the reliance on plants to manage HIV/AIDS in Katima Mulilo, there have been no empirical studies to document the specific plant species used by traditional healers to treat AIDS-related opportunistic infections. In this study, an ethnobotanical survey was conducted to record the various plant families, species, and plant parts used to manage different HIV/AIDS-related opportunistic infections in Katima Mulilo, Caprivi region, Namibia. The results showed that a total of 71 plant species from 28 families, mostly the Combretaceae (14%, Anacardiaceae (8%, Mimosaceae (8%, and Ebanaceae (7%, were used to treat conditions such as herpes zoster, diarrhoea, coughing, malaria, meningitis, and tuberculosis. The most plant parts used were leaves (33%, bark (32%, and roots (28% while the least used plant parts were fruits/seeds (4%. Further research is needed to isolate the plants' active chemical compounds and understand their modes of action.

  11. Factors affecting population of filamentous bacteria in wastewater treatment plants with nutrients removal.

    Science.gov (United States)

    Miłobędzka, Aleksandra; Witeska, Anna; Muszyński, Adam

    2016-01-01

    Filamentous population in activated sludge and key operational parameters of full-scale municipal wastewater treatment plants (WWTPs) with bulking problems representative for Poland were investigated with quantitative fluorescence in situ hybridization. Statistical analyses revealed few relationships between operational parameters and biovolume of filamentous bacteria. Sludge age was not only positively correlated with abundance of Chloroflexi (parametric correlation and principal component analysis (PCA)), but also differentiated Microthrix population (analysis of variance (ANOVA)). Phylum Chloroflexi and pH presented a negative relation during the study (PCA). ANOVA showed that pH of influent and sludge volume index (SVI) differentiated abundance of types 0803 and 1851 of Chloroflexi and candidate division TM7. SVI increased along with higher abundance of Microthrix (positive parametric and non-parametric correlations and positive relation in PCA). Biovolumes of morphotypes 0803 and 1851 of Chloroflexi were differentiated by organic matter in influent, also by nutrients in the case of Chloroflexi type 1851. Chemical and biological oxygen demands (COD and BOD5, respectively) were negatively correlated with Microthrix. COD also differentiated the abundance of Haliscomenobacter hydrossis. Results of the study can be used to prevent WWTPs from excessive proliferation of filamentous bacteria and operational problems caused by them--bulking and foaming of activated sludge.

  12. Altitudinal patterns and controls of plant and soil nutrient concentrations and stoichiometry in subtropical China

    Science.gov (United States)

    He, Xianjin; Hou, Enqing; Liu, Yang; Wen, Dazhi

    2016-04-01

    Altitude is a determining factor of ecosystem properties and processes in mountains. This study investigated the changes in the concentrations of carbon (C), nitrogen (N), and phosphorus (P) and their ratios in four key ecosystem components (forest floor litter, fine roots, soil, and soil microorganisms) along an altitudinal gradient (from 50 m to 950 m a.s.l.) in subtropical China. The results showed that soil organic C and microbial biomass C concentrations increased linearly with increasing altitude. Similar trends were observed for concentrations of total soil N and microbial biomass N. In contrast, the N concentration of litter and fine roots decreased linearly with altitude. With increasing altitude, litter, fine roots, and soil C:N ratios increased linearly, while the C:N ratio of soil microbial biomass did not change significantly. Phosphorus concentration and C:P and N:P ratios of all ecosystem components generally had nonlinear relationships with altitude. Our results indicate that the altitudinal pattern of plant and soil nutrient status differs among ecosystem components and that the relative importance of P vs. N limitation for ecosystem functions and processes shifts along altitudinal gradients.

  13. Crescimento, absorção e exportação de nutrientes por uma cultura de urucu Growth, nutrient absorption and nutrient export by anato plants

    Directory of Open Access Journals (Sweden)

    H.P. Haag

    1992-01-01

    Full Text Available Sementes de urucu (Bixa orellana L. var. Peruana foram postas para germinar num substrato constituido de duas partes de terra para uma de matéria orgânica, onde foram adicionados 1,5g de superfosfato triplo por litro de substrato. Após 115 dias as plantas foram transplantadas para um Latossolo Vermelho Escuro Orto série "Luiz de Queiroz" de alta fertilidade natural. O espaçamento foi de 5m x 5m. Aos 201 dias foi feita uma adubação em cobertura com 5g de KCl + 10g de uréia por planta. Plantas foram coletadas a partir dos 115 dias com intervalos de 60 dias até a produção aos 507 dias. As plantas em número de quatro por amostragem foram subdivididas em folhas, ramos, caule e órgãos reprodutivos. Aos 507 dias foram coletados frutos que foram subdivididos em casca e sementes. Os resultados mostraram que o urucu cresce lentamente até aos 267 dias intensificando o seu crescimento até os 447 dias quando ocorre uma paralização. A extração de macro e micronutrientes por uma cultura de 400 plantas/ha aos 507 dias foi de: N - 25,7kg, P - 4,1kg, K -16,7kg, Ca - 16,4kg, Mg - 4,4kg, S - 2,5kg, B - 56,4g, Cu - 16,2g, Fe - 240- 130,3g e Zn - 50,7g.Anato plant seeds (Bixa orellana var. Peruana were germinated in a soil + organic matter (2:1 substrate that received triple superphosphate (1.5 g/l. After 115 days, plants were transplanted to a high fertility Dark Red Latosol. Spacing was 5m x 5m a top dressing with 5g of KCl and l0g urea per plant was applied at the 201 day. Starting on day 115 plants (4 per sampling were collected at 60 day intervals until the 507 day. Samples were subdivided in leaves, branches, stem and reproductive parts. At the 507 day fruits were taken and divided into seeds and hulls. Anato plants grew slowly until the 267 day and improved growth rate from then on to the 447 day, when growth almost stopped. The macro and micronutrient extraction by a 400 plant per hectare crop at the 507 day were: N - 25.7 kg, P - 4.1 kg

  14. Identification of Appropriate Reference Genes for Normalization of miRNA Expression in Grafted Watermelon Plants under Different Nutrient Stresses

    Science.gov (United States)

    Wu, Weifang; Deng, Qin; Shi, Pibiao; Yang, Jinghua; Hu, Zhongyuan; Zhang, Mingfang

    2016-01-01

    Watermelon (Citrullus lanatus) is a globally important crop belonging to the family Cucurbitaceae. The grafting technique is commonly used to improve its tolerance to stress, as well as to enhance its nutrient uptake and utilization. It is believed that miRNA is most likely involved in its nutrient-starvation response as a graft-transportable signal. The quantitative real-time reverse transcriptase polymerase chain reaction is the preferred method for miRNA functional analysis, in which reliable reference genes for normalization are crucial to ensure the accuracy. The purpose of this study was to select appropriate reference genes in scion (watermelon) and rootstocks (squash and bottle gourd) of grafted watermelon plants under normal growth conditions and nutrient stresses (nitrogen and phosphorus starvation). Under nutrient starvation, geNorm identified miR167c and miR167f as two most stable genes in both watermelon leaves and squash roots. miR166b was recommended by both geNorm and NormFinder as the best reference in bottle gourd roots under nutrient limitation. Expression of a new Cucurbitaceae miRNA, miR85, was used to validate the reliability of candidate reference genes under nutrient starvation. Moreover, by comparing several target genes expression in qRT-PCR analysis with those in RNA-seq data, miR166b and miR167c were proved to be the most suitable reference genes to normalize miRNA expression under normal growth condition in scion and rootstock tissues, respectively. This study represents the first comprehensive survey of the stability of miRNA reference genes in Cucurbitaceae and provides valuable information for investigating more accurate miRNA expression involving grafted watermelon plants. PMID:27749935

  15. Biodegradation of dichlorodiphenyltrichloroethanes (DDTs) and hexachlorocyclohexanes (HCHs) with plant and nutrients and their effects on the microbial ecological kinetics.

    Science.gov (United States)

    Sun, Guangdong; Zhang, Xu; Hu, Qing; Zhang, Heqing; Zhang, Dayi; Li, Guanghe

    2015-02-01

    Four pilot-scale test mesocosms were conducted for the remediation of organochlorine pesticides (OCPs)-contaminated aged soil. The results indicate that the effects on degradation of hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs) were in the following order: nutrients/plant bioaugmentation (81.18 % for HCHs; 85.4 % for DDTs) > nutrients bioaugmentation > plant bioaugmentation > only adding water > control, and nutrients/plant bioaugmentation greatly enhanced the degradation of HCHs (81.18 %) and DDTs (85.4 %). The bacterial community structure, diversity and composition were assessed by 454-pyrosequencing of 16S recombinant RNA (rRNA), whereas the abundance of linA gene was determined by quantitative polymerase chain reaction. Distinct differences in bacterial community composition, structure, and diversity were a function of remediation procedure. Predictability of HCH/DDT degradation in soils was also investigated. A positive correlation between linA gene abundance and the removal ratio of HCHs was indicated by correlation analyses. A similar relationship was also confirmed between the degradation of HCHs/DDTs and the abundance of some assemblages (Gammaproteobacteria and Flavobacteria). Our results offer microbial ecological insight into the degradation of HCHs and DDTs in aged contaminated soil, which is helpful for the intensification of bioremediation through modifying plant-microbe patterns, and cessation of costly and time-consuming assays.

  16. Availability of nutrients and toxic heavy metals in marigold plants=Disponibilidade de nutrientes e metais pesados tóxicos em plantas de calêndula

    Directory of Open Access Journals (Sweden)

    Herbert Nacke

    2012-10-01

    Full Text Available Availability of nutrients and toxic heavy metals in marigold plants. This study was performed aiming to assess the availability of nutrients and toxic heavy metals present in marigold plants (Calendula officinalis treated with different fertilizers. The treatments were arranged in factorial scheme (2 x 2 x 3 in a completely randomized experimental design (CRD, with two textures of soil (sandy and clayey, two forms of fertilization (organic and chemical and three fertilization levels (without fertilization, recommended dose, and twice the recommended dose totaling 12 treatments, with four replications. The results showed that the clayey soil promoted the availability of N P, K, Mg, Cu, Zn and Fe; on the other hand, the sandy soil favored the availability of Ca, Mn, Pb and Cr. The organic fertilization provided higher levels of P and Fe, while the leaf tissue of marigold plants chemically fertilized presented higher concentrations of K and Mn.Realizou-se este trabalho com o objetivo de avaliar a disponibilidade de nutrientes e de metais pesados tóxicos presentes em plantas de calêndula (Calendula officinalis após diferentes tipos de adubação. Os tratamentos foram arranjados em esquema fatorial (2 x 2 x 3 dispostos em delineamento experimental inteiramente casualizado (DIC, sendo duas texturas de solo, (argilosa e arenosa, duas formas de adubação (química e orgânica e três doses de adubação (sem adubação, dose recomendada e o dobro da dose recomendada, totalizando 12 tratamentos com quatro repetições. Os resultados demonstraram que os solos argilosos favoreceram a disponibilidade de N P, K, Mg, Cu, Zn e Fe; os solos de textura arenosa favoreceram a disponibilidade de Ca, Mn, Pb e Cr. A adubação orgânica disponibilizou maiores teores de P e Fe, enquanto o tecido foliar de plantas de calêndula adubadas com adubação química apresentaram concentrações maiores de K e Mn.

  17. The Change of Nutrients in Tidal Swamp Soil and Palm Oil Plant Due to Several Dosages of Application of Palm Oil Mill Effluent on Planting Media

    Directory of Open Access Journals (Sweden)

    Bakri

    2015-07-01

    Full Text Available The change of several soil nutrients in tidal swamp area due to addition of palm oil mill effluent (POME on soil media. The research objective was to determine the effect of different dosages application of palm oil mill effluent on nutrient changes within planting media. This experiment was conducted in a plastic house by using 8 month ages of plants consisting of 9 pots combined with 6 levels of BOD treatment (Biological Oxygen Demand concentrations as follows: 20.000 mg/l (L5, 15.000 mg/l (L4, 10.000 mg/l(L3, 5.000 mg/l (L2, 2.500 mg/l (L1 and water only (Lo. The plants were grown for six months from December 2014 to June 2015. The variables observed were pH (H2O, pH KCl, C-Organic, N-Total, P-Bray I (ppm, K- dd, Na, Ca, Mg, Cation Exchange Capacity, Al-dd and H-dd as well as N, P and K nutrients of crop tissues. The results showed that addition of palm oil mill effluent increased soil pH and availability of soil N, P, K, Ca and Mg. Meanwhile nutrients content of N, P and K in tissues were not increased significantly by given POME with BOD up to 20.000 mg/l.

  18. Impacts of alien invasive plants on soil nutrients are correlated with initial site conditions in NW Europe.

    Science.gov (United States)

    Dassonville, Nicolas; Vanderhoeven, Sonia; Vanparys, Valérie; Hayez, Mathieu; Gruber, Wolf; Meerts, Pierre

    2008-08-01

    Alien invasive plants are capable of modifying ecosystem function. However, it is difficult to make generalisations because impacts often appear to be species- and site-specific. In this study, we examined the impacts of seven highly invasive plant species in NW Europe (Fallopia japonica, Heracleum mantegazzianum, Impatiens glandulifera, Prunus serotina, Rosa rugosa, Senecio inaequidens, Solidago gigantea) on nutrient pools in the topsoil and the standing biomass. We tested if the impacts follow predictable patterns, across species and sites or, alternatively, if they are entirely idiosyncratic. To that end, we compared invaded and adjacent uninvaded plots in a total of 36 sites with widely divergent soil chemistry and vegetation composition. For all species, invaded plots had increased aboveground biomass and nutrient stocks in standing biomass compared to uninvaded vegetation. This suggests that enhanced nutrient uptake may be a key trait of highly invasive plant species. The magnitude and direction of the impact on topsoil chemical properties were strongly site-specific. A striking finding is that the direction of change in soil properties followed a predictable pattern. Thus, strong positive impacts (higher topsoil nutrient concentrations in invaded plots compared to uninvaded ones) were most often found in sites with initially low nutrient concentrations in the topsoil, while negative impacts were generally found under the opposite conditions. This pattern was significant for potassium, magnesium, phosphorus, manganese and nitrogen. The particular site-specific pattern in the impacts that we observed provides the first evidence that alien invasive species may contribute to a homogenisation of soil conditions in invaded landscapes. PMID:18491146

  19. Application of integrated computer-aided engineering for design, construction and operation of nuclear power plant

    International Nuclear Information System (INIS)

    Computer-aided-engineering (CAE) is an essential tool for modern nuclear power plant engineering. It greatly varies in definition, application, and technology from project to project and company to company. Despite the fast growing technologies and applications of CAE, its complexty and variety have thrown aonther puzzle to management of a nuclear project. Without due consideration of an integrated CAE system in early planning stage, the overall efficiency of a nuclear project would slow down due to the inefficiency in data flow. In this paper, practices and perspectives of CAE appliation are discussed under the Korea Power Engineering Company (KOPEC) philosophy in CAE approach. (author)

  20. Integrated Nutrient Management on Growth, Yield, Quality and Economics of Bhumyamalaki (Phyllanthus amarus – An Anti-jaundice Plant

    Directory of Open Access Journals (Sweden)

    Aruna Kumar R

    2011-01-01

    Full Text Available Bhumyamalaki (Phyllanthus amarus Schum and Thonn is an important anti-jaundice medicinal plant which contains several alkaloids in leaves. Phyllanthin and hypo-phyllanthin are important alkaloids having anti-hepatotoxic property. A field experiment was conducted during kharif, 2004-05 to study the response of organic and inorganic sources of nutrients on growth, yield and economics of P. amarus. Four organic sources (Farmyard manure, poultry manure, distillery bio-compost and city compost were applied alone or super imposed over 25, 50 and 75% of recommended dose of inorganic fertilisers on N basis, and compared with control. Amongst the organic sources, the conjunctive use of 75% nutrients through fertilisers and 25% through FYM recorded maximum plant height, number of branches, number of compound leaves, fresh and dry herbage yield and total alkaloid yields (phyllanthin and hypo-phyllanthin, besides obtaining maximum net returns and highest benefit: cost ratio.

  1. Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry

    OpenAIRE

    Ahmet ESITKEN; Yildiz, Hilal E.; Ercisli, Sezai; Donmez, M.Figen; Turan, Metin; Gunes, Adem

    2009-01-01

    The effects of plant growth promoting bacteria (PGPB) on the fruit yield, growth and nutrient element content of strawberry cv. Fern were investigated under organic growing conditions between 2006 and 2008. The experimental plot was a completely randomized design with 3 replicates. Three PGPB strains (Pseudomonas BA-8, Bacillus OSU-142 and Bacillus M-3) were used alone or in combination as biofertilizer agent in the experiment. Data through 3 years showed that the use of PGPB sign...

  2. Use of plant residues for improving soil fertility, pod nutrients, root growth and pod weight of okra (Abelmoschus esculentum L).

    Science.gov (United States)

    Moyin-Jesu, Emmanuel Ibukunoluwa

    2007-08-01

    The effect of wood ash, sawdust, ground cocoa husk, spent grain and rice bran upon root development, ash content, pod yield and nutrient status and soil fertility for okra (Abelmoschus esculentum L NHAe 47 variety) was studied. The five organic fertilizer treatments were compared to chemical fertilizer (400kg/ha/crop NPK 15-15-15) and unfertilized controls in four field experiments replicated four times in a randomized complete block design. The results showed that the application of 6tha(-1) of plant residues increased (Pfertility improvement and yield of okra. Spent grain, wood ash and cocoa husk were the most effective in improving okra pod weight, pod nutrients, ash content, root length and soil fertility whereas the rice bran and sawdust were the least effective. This was because the spent grain, wood ash and cocoa husk had lower C/N ratio and higher nutrient composition than rice bran and sawdust, thus, the former enhanced an increase in pod nutrients, composition for better human dietary intake, increased the root length, pod weight of okra and improved soil fertility and plant nutrition crop. The significance of the increases in okra mineral nutrition concentration by plant residues is that consumers will consume more of these minerals in their meals and monetarily spend less for purchasing vitamins and mineral supplement drugs to meet health requirements. In addition, the increase in plant nutrition and soil fertility would help to reduce the high cost of buying synthetic inorganic fertilizers and maintain the long term productivity of soils for sustainable cultivation of okra. PMID:17336057

  3. Plants sensitivity on nickel under different conditions of iron or calcium concentration in the nutrient medium

    Directory of Open Access Journals (Sweden)

    Renata Matraszek

    2013-12-01

    Full Text Available The sensitivity of six vegetable plants on nickel at early stages of their growth was investigated by index of tolerance. Besides the possibility of nickel fitostabilization by additional application of iron or calcium was tested. The experiment was conducted on Petri dishes. Different concentrations of nickel (0; 0,03; 0,06mM Ni as nickel sulphate, iron (0,05; O,OlmM Fe as Fe2+ citrate and calcium (0,50; 0,75; lmM Ca as calcium carbonate were added. Taking into consideration the sensitivity, investigated vegetables can be ordered in the following way: Cucurbita pepo conv. giromontiina L.>Lactuca sativa L.>Sinapis alba L.>Spinacia oleracea L.=Zea mays var. saccharata Kcke.>Phaseolus vulgaris L. Positive, statistically significant effect ofnickel fitostabilization (0,03 or 0,06mM Ni on elongative growth by the iron application (0,10mM Fe was shown for Zea mays var. saccharata Kcke independently of Ni concentration in the nutrient medium as well as for Sinapis alba L. and Phaseolus vulgaris L. in 0,06mM Ni. Addition as much as 0,75mM Ca in the presence 0,03mM Ni had positive result on Sinapis alba L and Phaseolus vulgaris L. seedlings as well as on Zea mays var. saccharata Kcke and Lactuca sativa L. roots and Cucurbita pepo convar. giromontiina L. shoots. Addition of 0,75mM Ca in the presence 0,06mM Ni promoted elongative growth of Zea mays var. saccharata Kcke seedlings. Application lmM Ca resulted in the promotion of elongative growth of Zea mays var. saccharata Kcke. roots (0,03mM Ni as well as Spinacia oleracea L. roots (0,06mM Ni.

  4. Thermophilic sludge digestion improves energy balance and nutrient recovery potential in full-scale municipal wastewater treatment plants.

    Science.gov (United States)

    De Vrieze, Jo; Smet, Davey; Klok, Jacob; Colsen, Joop; Angenent, Largus T; Vlaeminck, Siegfried E

    2016-10-01

    The conventional treatment of municipal wastewater by means of activated sludge is typically energy demanding. Here, the potential benefits of: (1) the optimization of mesophilic digestion; and (2) transitioning to thermophilic sludge digestion in three wastewater treatment plants (Tilburg-Noord, Land van Cuijk and Bath) in the Netherlands is evaluated, including a full-scale trial validation in Bath. In Tilburg-Noord, thermophilic sludge digestion covered the energy requirements of the plant (102%), whereas 111% of sludge operational treatment costs could be covered in Bath. Thermophilic sludge digestion also resulted in a strong increase in nutrient release. The potential for nutrient recovery was evaluated via: (1) stripping/absorption of ammonium; (2) autotrophic removal of ammonium via partial nitritation/anammox; and (3) struvite precipitation. This research shows that optimization of sludge digestion may lead to a strong increase in energy recovery, sludge treatment costs reduction, and the potential for advanced nutrient management in full-scale sewage treatment plants. PMID:27423372

  5. Plant nutrient acquisition strategies in tundra species: at which soil depth do species take up their nitrogen?

    Science.gov (United States)

    Limpens, Juul; Heijmans, Monique; Nauta, Ake; van Huissteden, Corine; van Rijssel, Sophie

    2016-04-01

    The Arctic is warming at unprecedented rates. Increased thawing of permafrost releases nutrients locked up in the previously frozen soils layers, which may initiate shifts in vegetation composition. The direction in which the vegetation shifts will co-determine whether Arctic warming is mitigated or accelerated, making understanding successional trajectories urgent. One of the key factors influencing the competitive relationships between plant species is their access to nutrients, in particularly nitrogen (N). We assessed the depth at which plant species took up N by performing a 15N tracer study, injecting 15(NH4)2SO4 at three depths (5, 15, 20 cm) into the soil in arctic tundra in north-eastern Siberia in July. In addition we explored plant nutrient acquisition strategy by analyzing natural abundances of 15N in leaves. We found that vascular plants took up 15N at all injection depths, irrespective of species, but also that species showed a clear preference for specific soil layers that coincided with their functional group (graminoids, dwarf shrubs, cryptogams). Graminoids took up most 15N at 20 cm depth nearest to the thaw front, with grasses showing a more pronounced preference than sedges. Dwarf shrubs took up most 15N at 5 cm depth, with deciduous shrubs displaying more preference than evergreens. Cryptogams did not take up any of the supplied 15N . The natural 15N abundances confirmed the pattern of nutrient acquisition from deeper soil layers in graminoids and from shallow soil layers in both deciduous and evergreen dwarf shrubs. Our results prove that graminoids and shrubs differ in their N uptake strategies, with graminoids profiting from nutrients released at the thaw front, whereas shrubs forage in the upper soil layers. The above implies that graminoids, grasses in particular, will have a competitive advantage over shrubs as the thaw front proceeds and/or superficial soil layers dry out. Our results suggest that the vertical distribution of nutrients

  6. Acidification, heavy metal mobility and nutrient accumulation in the soil-plant system of a revegetated acid mine wasteland.

    Science.gov (United States)

    Yang, Sheng-Xiang; Liao, Bin; Li, Jin-tian; Guo, Tao; Shu, Wen-Sheng

    2010-08-01

    A revegetation program was established at an extreme acidic and metal-toxic pyrite/copper mine wasteland in Guangdong Province, PR China using a combination of four native grass species and one non-native woody species. It was continued and monitored for 2 y. The emphasis was on acidification, metal mobility and nutrient accumulation in the soil-plant system. Our results showed the following: (i) the acid-forming potential of the mine soils decreased steadily with time, which might be due to plant root-induced changes inhibiting the oxidization of sulphide minerals; (ii) heavy metal extractability (diethylene-triamine-pentaacetic acid-extractable Pb and Zn) in the soils increased with time despite an increase in soil pH, which might be attributed to soil disturbance and plant rhizospheric processes, as well as a consequence of the enhanced metal accumulation in plants over time; and (iii) the vegetation cover increased rapidly with time, and plant development accelerated the accumulation of major nutrients (organic matter, total and ammonium-N, and available P and K). The 2-y field experiment demonstrates that direct seeding/planting of native plant species in combination with lime and manure amelioration is a practical approach to the initial establishment of a self-sustaining vegetation cover on this metalliferous and sulphide-bearing mine wasteland. However, heavy metal accumulation in the soil-plant system should be of great concern, and long-term monitoring of ecological risk must be an integral part of such a restoration scheme. PMID:20580409

  7. Responses of plant diversity and primary productivity to nutrient addition in aStipa baicalensis grassland, China

    Institute of Scientific and Technical Information of China (English)

    YU Li; SONG Xiao-long; ZHAO Jian-ning; WANG Hui; BAI Long; YANG Dian-lin

    2015-01-01

    Nutrient addition can affect the structure and diversity of grassland plant communities, thus alter the grassland productivity. Studies on grassland plant community composition, structure and diversity in response to nutrient addition have an import-ant theoretical and practical signiifcance for the scientiifc management of grassland, protection of plant diversity and the recovery of degraded grassland. A randomized block design experiment was conducted with six blocks of eight treatments each: control (no nutrient addition) and K, P, N, PK, NK, NP, and NPK addition. We evaluated plant composition, height, coverage, density, and aboveground biomass to estimate primary productivity and plant diversity. Results showed that al treatments increased primary productivity signiifcantly (P<0.05) with the exception of the K and the NPK treatments had the greatest effect, increasing aboveground biomass 2.46 times compared with the control (P<0.05). One-way ANOVA and factorial analysis were used for the species richness, Shannon-Wiener index, Pielou index and aboveground biomass, and the relationships between the diversity indices and aboveground biomass were determined through linear regression. We found that fertilization altered the community structure; N (but not P or K) addition increased the proportion of perennial rhizome grasses and signiifcantly reduced that of perennial forbs (P<0.05), thus it presented a trend of decrease in species richness, Shannon-Wiener and Pielou indexex, respectively. Only the main effects of N had signiifcant impacts on both the diversity indices and the aboveground biomass (P<0.05), and the interactions between N-P, N-K, P-K and N-P-K could be neglected. With fertilization, plant diversity (correlation coefifcient, –0.61), species richness (–0.49), and species even-ness (–0.51) were al negatively linearly correlated with primary productivity. The correlations were al signiifcant (P<0.01). Scientiifc nutrient management is an effective

  8. Computer aided data acquisition tool for high-throughput phenotyping of plant populations

    Directory of Open Access Journals (Sweden)

    Basha Pinjari

    2009-12-01

    Full Text Available Abstract Background The data generated during a course of a biological experiment/study can be sometimes be massive and its management becomes quite critical for the success of the investigation undertaken. The accumulation and analysis of such large datasets often becomes tedious for biologists and lab technicians. Most of the current phenotype data acquisition management systems do not cater to the specialized needs of large-scale data analysis. The successful application of genomic tools/strategies to introduce desired traits in plants requires extensive and precise phenotyping of plant populations or gene bank material, thus necessitating an efficient data acquisition system. Results Here we describe newly developed software "PHENOME" for high-throughput phenotyping, which allows researchers to accumulate, categorize, and manage large volume of phenotypic data. In this study, a large number of individual tomato plants were phenotyped with the "PHENOME" application using a Personal Digital Assistant (PDA with built-in barcode scanner in concert with customized database specific for handling large populations. Conclusion The phenotyping of large population of plants both in the laboratory and in the field is very efficiently managed using PDA. The data is transferred to a specialized database(s where it can be further analyzed and catalogued. The "PHENOME" aids collection and analysis of data obtained in large-scale mutagenesis, assessing quantitative trait loci (QTLs, raising mapping population, sampling of several individuals in one or more ecological niches etc.

  9. Growth and fruit development of mangosteen (Garcinia mangostana L. in related with plant nutrients during phenological development

    Directory of Open Access Journals (Sweden)

    Nilnond, C.

    2005-12-01

    Full Text Available The imbalance or deficiency of essential nutrients in soils and plant may cause poor fruit quality of mangosteen fruit; translucent flesh disorder (TFD and internal gumming fruits. Therefore, an investigation of nutrient changes in soils and plant (root, branch, leaf and fruit of mangosteen (Garcinia mangostana L. during phenological development is a useful guideline for fertilizer management. This research aimed to investigate the pattern of plant nutrients accumulation and nutrient requirement during phenological development of the mangosteen trees. Soil sampling was taken at 4 depths; 0-15, 15-30, 30-50 and 50-100 cm, from soil surface around the middle of the tree canopy and analyzed for some important chemical and physical properties. Roots, branches, leaves and fruits from mangosteen trees at 4 periods of growth; preflowering, flowering, fruit development (from bloom to 7th week and harvesting were sampled, and analyzed related to the changes of soil nutrients. The results indicated that the soil texture varied from sandy clay loam to clay loam (Ruso soil series (Ro; Typic Pelehumults. In addition, the natural soils in mangosteen orchards was strong acid to very strong acid (pH 4.62-4.93, soil:water = 1:5. Mangosteen trees might take high amounts of nutrients from the surface soils (0-15 cm as follows: N, K, Mg and S for growth in the preflowering period; N, K, S and B in the flowering period; K, Ca and Mg in the 1st half of fruit development period (bloom to 7th week of fruit development and P in the 2nd half of fruit development period (7th week of fruit development to harvest compared to other growth periods. The results also showed that in the root, branch and leaf, mangosteen trees required higher amounts of Ca for growth in the preflowering period; K, Mg and S in the flowering period; N in the 1st half of fruit development period and K, Mg and B in the 2nd half of fruit development period compared to other growth periods. In the

  10. Variabilidade de nutrientes em plantas de milho cultivado em talhão manejado homogeneamente Corn plant nutrient variability in an homogeneously managed crop field

    Directory of Open Access Journals (Sweden)

    Zaqueu Fernando Montezano

    2008-12-01

    Full Text Available O conhecimento da variabilidade da nutrição de plantas e da produtividade em áreas cultivadas pode fornecer importantes subsídios na racionalização do uso de insumos e auxiliar no manejo da fertilidade do solo. O objetivo deste trabalho foi avaliar a variabilidade da nutrição mineral de plantas de milho por meio do fracionamento de um talhão cultivado comercialmente em células de manejo e verificar as relações com a produtividade. O estudo foi realizado na Fazenda Alto Alegre, em Planaltina (GO, em área de 373 hectares de Latossolo Vermelho-Amarelo Distroférrico, cultivado com milho na safra 2003/04. Traçado um polígono da área, procedeu-se sua divisão em 80 células de manejo de quatro hectares cada uma. A amostragem de folhas em cada célula seguiu uma diagonal com 12 pontos para compor uma amostra composta. Realizou-se a análise dos macro e micronutrientes nas folhas. A produtividade para cada célula foi obtida por meio de colhedora equipada com GPS. Na análise da variabilidade dos resultados foram considerados os parâmetros estatísticos descritivos. O teste ausência de correlação foi realizado com o nível de significância de 5%. A variabilidade da concentração dos nutrientes na folha indicadora do milho foi considerada baixa para N, P, K, S e Mg; e média para Ca, Cu, Fe, Mn e Zn. A variabilidade da produtividade de milho revelou diferenças de produção para cada célula analisada. Os coeficientes de correlação entre os nutrientes e a produtividade foram significativamente diferentes de zero (pThe knowledge of variability of plant nutrition and grain productivity in cultivated areas may provide important information for rational use of fertilizers and soil amendments. The objective of this case study was to determine the corn plant mineral nutrition variability through the fractionation of a commercial grown corn field into small management cells. The study was carried out at the farm Alto Alegre in

  11. The role of tolerant genotypes and plant nutrients in the management of acid soil infertility in upland rice

    International Nuclear Information System (INIS)

    Full text: Upland rice is the staple food for 100 million people including some of the poorest people in the world. The upland ecosystem in West Africa is very important to rice production. About 70% of upland rice is in the humid zone of the subregion. Like in other parts of the humid tropics, acid-related soil infertility is the major constraint to crop production on low-activity clay soils in the humid and sub-humid zones of West Africa. For increasing and stabilising rice productivity of the acid uplands at reasonable levels, a strategy is needed that integrates the use of tolerant rice cultivars with soil and plant nutrient management. Research conducted on Alfisols and Ultisols of the humid forest and savannah zones in West Africa showed that upland rice is a very robust crop and possesses a wide range in tolerance to acid soil conditions. Recent research at WARDA also showed that the tolerance to acid soil conditions can be further enhanced through the use of interspecific Oryza sativa and O. glaberrima Steud. progenies. The development of interspecific progenies has not only increased the rice plant's tolerance to acid soil conditions, but they also possess superior overall adaptability to the diverse upland rice growing environments in the subregion. Our research in the diagnosis of acid soil infertility problems on the Ultisols and Alfisols in the humid savannah and forest zones indicated that P deficiency is the most important nutrient disorder for upland rice. In the forest zone, response to N depended on the application of P. In the savannah and forest-savannah transition zones, N deficiency is more important than P deficiency. Among other plant nutrients, the application of Ca and Mg (as plant nutrients) did not appear initially as important on the performance of acid-tolerant upland rice cultivars. The results from a long-term study on an Ultisol with four acid-tolerant rice cultivars, revealed that they differed in agronomic and physiological P

  12. Utilization of the water soluable fraction of wheat straw as a plant nutrient source

    Science.gov (United States)

    Mackowiak, C. L.; Garland, J. L.

    1990-01-01

    Recovery of water soluble, inorganic nutrients from the inedible portion of wheat was found to be an effective means of recycling nutrients within hydroponic systems. Through aqueous extraction (leaching), 60 percent of the total inorganic nutrient weight was removed from wheat straw and roots, although the recovery of individual nutrients varied. Leaching also removed about 20 percent of the total organic carbon from the biomass. In terms of dry weight, the leachate was comprised of approximately 60 percent organic and 40 percent inorganic compounds. Direct use of wheat straw leachate in static hydroponic systems had an inhibitory effect on wheat growth, both in the presence and absence of microorganisms. Biological treatment of leachate either with a mixed microbial community or the oyster mushroom Pleurotus ostreatus L., prior to use in hydroponic solutions, significantly reduced both the organic content and the inhibitory effects of the leachate. The inhibitory effects of unprocessed leachate appear to be a result of rapidly acting phytotoxic compounds that are detoxified by microbial activity. Leaching holds considerable promise as a method for nutrient recycling in a Controlled Ecological Life Support System (CELSS).

  13. Effects of organic plant oils and role of oxidation on nutrient utilization in juvenile rainbow trout (Oncorhynchus mykiss)

    DEFF Research Database (Denmark)

    Lund, Ivar; Dalsgaard, Anne Johanne Tang; Jacobsen, Charlotte;

    2013-01-01

    digestibility was furthermore examined. Four organic oils with either a relatively high or low content of polyunsaturated fatty acids were considered: linseed oil, rapeseed oil, sunflower oil and grapeseed oil. Substituting FO with organic oils did not affect feed intake (P.0.05), FCR or SGR (P.0.05) despite......Producing organic fish diets requires that the use of both fishmeal and fish oil (FO) be minimized and replaced by sustainable, organic sources. The purpose of the present study was to replace FO with organic oils and evaluate the effects on feed intake, feed conversion ratio (FCR), daily specific...... growth rate (SGR) and nutrient digestibility in diets in which fishmeal protein was partly substituted by organic plant protein concentrates. It is prohibited to add antioxidants to organic oils, and therefore the effects of force-oxidizing the oils (including FO) on feed intake and nutrient...

  14. Effect of nanosilica and silicon sources on plant growth promoting rhizobacteria, soil nutrients and maize seed germination.

    Science.gov (United States)

    Karunakaran, Gopalu; Suriyaprabha, Rangaraj; Manivasakan, Palanisamy; Yuvakkumar, Rathinam; Rajendran, Venkatachalam; Prabu, Periyasamy; Kannan, Narayanasamy

    2013-09-01

    The study was aimed at evaluating the effect of nanosilica and different sources of silicon on soil properties, total bacterial population and maize seed germination. Nanosilica was synthesised using rice husk and characterised. Silica powder was amorphous (50 nm) with >99.9% purity. Sodium silicate treated soil inhibited plant growth promoting rhizobacteria in contrast to nanosilica and other bulk sources. Surface property and effect of soil nutrient content of nanosilica treatment were improved. Colony forming unit (CFU) was doubled in the presence of nanosilica from 4 × 105 CFU (control) to 8 × 105 CFU per gram of soil. The silica and protein content of bacterial biomass clearly showed an increase in uptake of silica with an increase in nanosilica concentration. Nanosilica promoted seed germination percentage (100%) in maize than conventional Si sources. These studies show that nanosilica has favourable effect on beneficial bacterial population and nutrient value of soil. PMID:24028804

  15. Fishing for nutrients in heterogeneous landscapes: modelling plant growth trade-offs in monocultures and mixed communities.

    Science.gov (United States)

    Croft, Simon Antony; Pitchford, Jonathan W; Hodge, Angela

    2015-01-01

    The problem of how best to find and exploit essential resources, the quality and locations of which are unknown, is common throughout biology. For plants, the need to grow an efficient root system so as to acquire patchily distributed soil nutrients is typically complicated by competition between plants, and by the costs of maintaining the root system. Simple mechanistic models for root growth can help elucidate these complications, and here we argue that these models can be usefully informed by models initially developed for foraging fish larvae. Both plant and fish need to efficiently search a spatio-temporally variable environment using simple algorithms involving only local information, and both must perform this task against a backdrop of intra- and inter-specific competition and background mortality. Here we develop these parallels by using simple stochastic models describing the growth and efficiency of four contrasting idealized root growth strategies. We show that plants which grow identically in isolation in homogeneous substrates will typically perform very differently when grown in monocultures, in heterogeneous nutrient landscapes and in mixed-species competition. In particular, our simulations show a consistent result that plants which trade-off rapid growth in favour of a more efficient and durable root system perform better, both on average and in terms of the best performing individuals, than more rapidly growing ephemeral root systems. Moreover, when such slower growing but more efficient plants are grown in competition, the overall community productivity can exceed that of the constituent monocultures. These findings help to disentangle many of the context-dependent behaviours seen in the experimental literature, and may form a basis for future studies at the level of complex population dynamics and life history evolution. PMID:26371292

  16. Isolation of ethyl acetic based AGF bio-nutrient and its application on the growth of Capsicum annum L. plants

    Science.gov (United States)

    Hendrawan, Sonjaya, Yaya; Khoerunnisa, Fitri; Musthapa, Iqbal; Nurmala, Astri Rizki

    2015-12-01

    The study aimed to obtain the bionutrient derived from extraction of AGF leafs in ethyl acetic solvents and to explore its application on the plant growth of capsicum annum L. (curly red chili). Particularly, the fraction of secondary metabolites groups composed bionutrient was intensively elucidated by liquid vacuum chromatography technique. The characterization of secondary metabolites groups was conducted through several methods, i.e. thin layer chromatography, phytochemical screening, and FTIR spectroscopy. The AGF extracts based bionutrient then was applied on capsicum annum L. plants with dosage of 2 and 10 mL/L. The ethyl acetic solvent and commercial nutrient of Phonska and pesticide of curacron (EC 500) were selected as a blank and a positive control to evaluate the growth pattern of capsicum annum L., respectively. The result showed that the CF 1 dan CF2 of AGF extract contained alkaloid and terpenoid of secondary metabolite group, the CF 3, and CF 4 of AGF extracts were dominated by alkaloid, flavonoid, and terpenoid, while the CF 5 of AGF extract contained alkaloid, tannin and terpenoid groups. The CF 2 of AGF extract has the highest growth rate constant of 0.1702 week-1 with the number and heaviest mass of the yield of 82 pieces and 186.60, respectively. It was also showed the significant bio-pesticide activity that should be useful to support plant growth, indicating that AGF extract can be applied as both bio-nutrient and bio-pesticide.

  17. Carbon and nutrient stocks of tea plantations differing in age, genotype and plant population density

    NARCIS (Netherlands)

    Kamau, D.M.; Spiertz, J.H.J.; Oenema, O.

    2008-01-01

    Tea (Camellia sinensis L.) is a perennial evergreen shrub managed intensively for continuous growth of young shoots. Most tea plantations were established at the expense of native forest. Change in carbon (C) and nutrient (nitrogen, phosphorus, potassium (NPK)) accumulation in forests over time has

  18. Nutrient uptake, biomass yield and quantitative analysis of aliphatic aldehydes in cilantro plants

    Science.gov (United States)

    The objective of this study was to evaluate the nutrient uptake, biomass production and yield of the major compounds in the essential oil of five genotypes of Coriandrum sativum L. The treatments were four accessions donated by the National Genetic Resources Advisory Council (NGRAC), U.S. Department...

  19. Effects of supplemental enzymes on apparent nutrient digestibility in rainbow trout (Oncorhynchus mykiss) fed plant-based diets

    DEFF Research Database (Denmark)

    Dalsgaard, Anne Johanne Tang; Hjermitslev, Niels Harthøj; Ekmann, Kim Schøn;

    2010-01-01

    Exogenous enzymes are widely applied in feed for monogastric animals including pigs and poultry as a means to increase the nutritional value of viscous grains by reducing the anti-nutritional effects of primarily non-starch polysaccharides (NSPs). In comparison, there is very limited information...... carried out using a modified Guelph set-up. Rainbow trout were fed the un-supplemented diets and enzyme supplemented plant-based diets in triplicates for three weeks. While moderate effects of the enzymes on nutrient digestibility were obtained with sunflower and rapeseed meal based diets, both enzymes...

  20. Effect of Plant Growth-Promoting Rhizobacteria on Growth,Nodulation and Nutrient Accumulation of Lentil Under Controlled Conditions

    Institute of Scientific and Technical Information of China (English)

    M.ZAFAR; M.K.ABBASI; M.A.KHAN; A.KHALIQ; T.SULTAN; M.ASLAM

    2012-01-01

    Application of plant growth-promoting rhizobacteria (PGPR) has been shown to increase legume growth and development under field and controlled environmental conditions.The present study was conducted to isolate plant growth-promoting rhizobacteria (PGPR) from the root nodules of lentil (Lens culinaris Medik.) grown in arid/semi-arid region of Punjab,Pakistan and examined their plant growth-promoting abilities.Five bacterial isolates were isolated,screened in vitro for plant growth-promoting (PGP)characteristics and their effects on the growth of lentil were assessed under in vitro,hydroponic and greenhouse (pot experiment)conditions.All the isolates were Gram negative,rod-shaped and circular in form and exhibited the plant growth-promoting attributes of phosphate solubilization and auxin (indole acetic acid,IAA) production.The IAA production capacity ranged in 0.5-11.0 μgmL-1and P solubilization ranged in 3 16 mg L-1.When tested for their effects on plant growth,the isolated strains had a stimulatory effect on growth,nodulation and nitrogen (N) and phosphorus (P) uptake in plants on nutrient-deficient soil.In the greenhouse pot experiment,application of PGPR significantly increased shoot length,fresh weight and dry weight by 65%,43% and 63% and the increases in root length,fresh weight and dry weight were 74%,54% and 92%,respectively,as compared with the uninoculated control.The relative increases in growth characteristics under in vitro and hydroponic conditions were even higher.PGPR also increased the number of pods per plant,1000-grain weight,dry matter yield and grain yield by 50%,13%,28% and 29%,respectively,over the control.The number of nodules and nodule dry mass increased by 170% and 136%,respectively.After inoculation with effective bacterial strains,the shoot,root and seed N and P contents increased,thereby increasing both N and P uptake in plants. The root elongation showed a positive correlation (R2 =0.67) with the IAA

  1. Pectin as a barrier and nutrient source for fungal plant pathogens

    NARCIS (Netherlands)

    Zhang, L.; Kan, van J.A.L.

    2013-01-01

    Fungi that interact with plants gain access to host tissues by actively passing the surface through the cuticle and/or cell wall. Cell walls provide plant tissue strength and structure, and form a barrier against microbial invasion. Plants invest substantial resources in constructing the cell wall a

  2. Ethnobotanical Study of Plants Used in the Management of HIV/AIDS-Related Diseases in Livingstone, Southern Province, Zambia

    Directory of Open Access Journals (Sweden)

    Kazhila C. Chinsembu

    2016-01-01

    Full Text Available Faced with critical shortages of staff, long queues, and stigma at public health facilities in Livingstone, Zambia, persons who suffer from HIV/AIDS-related diseases use medicinal plants to manage skin infections, diarrhoea, sexually transmitted infections, tuberculosis, cough, malaria, and oral infections. In all, 94 medicinal plant species were used to manage HIV/AIDS-related diseases. Most remedies are prepared from plants of various families such as Combretaceae, Euphorbiaceae, Fabaceae, and Lamiaceae. More than two-thirds of the plants (mostly leaves and roots are utilized to treat two or more diseases related to HIV infection. Eighteen plants, namely, Achyranthes aspera L., Lannea discolor (Sond. Engl., Hyphaene petersiana Klotzsch ex Mart., Asparagus racemosus Willd., Capparis tomentosa Lam., Cleome hirta Oliv., Garcinia livingstonei T. Anderson, Euclea divinorum Hiern, Bridelia cathartica G. Bertol., Acacia nilotica Delile, Piliostigma thonningii (Schumach. Milne-Redh., Dichrostachys cinerea (L. Wight and Arn., Abrus precatorius L., Hoslundia opposita Vahl., Clerodendrum capitatum (Willd. Schumach., Ficus sycomorus L., Ximenia americana L., and Ziziphus mucronata Willd., were used to treat four or more disease conditions. About 31% of the plants in this study were administered as monotherapies. Multiuse medicinal plants may contain broad-spectrum antimicrobial agents. However, since widely used plants easily succumb to the threats of overharvesting, they need special protocols and guidelines for their genetic conservation. There is still need to confirm the antimicrobial efficacies, pharmacological parameters, cytotoxicity, and active chemical ingredients of the discovered plants.

  3. Ethnobotanical Study of Plants Used in the Management of HIV/AIDS-Related Diseases in Livingstone, Southern Province, Zambia.

    Science.gov (United States)

    Chinsembu, Kazhila C

    2016-01-01

    Faced with critical shortages of staff, long queues, and stigma at public health facilities in Livingstone, Zambia, persons who suffer from HIV/AIDS-related diseases use medicinal plants to manage skin infections, diarrhoea, sexually transmitted infections, tuberculosis, cough, malaria, and oral infections. In all, 94 medicinal plant species were used to manage HIV/AIDS-related diseases. Most remedies are prepared from plants of various families such as Combretaceae, Euphorbiaceae, Fabaceae, and Lamiaceae. More than two-thirds of the plants (mostly leaves and roots) are utilized to treat two or more diseases related to HIV infection. Eighteen plants, namely, Achyranthes aspera L., Lannea discolor (Sond.) Engl., Hyphaene petersiana Klotzsch ex Mart., Asparagus racemosus Willd., Capparis tomentosa Lam., Cleome hirta Oliv., Garcinia livingstonei T. Anderson, Euclea divinorum Hiern, Bridelia cathartica G. Bertol., Acacia nilotica Delile, Piliostigma thonningii (Schumach.) Milne-Redh., Dichrostachys cinerea (L.) Wight and Arn., Abrus precatorius L., Hoslundia opposita Vahl., Clerodendrum capitatum (Willd.) Schumach., Ficus sycomorus L., Ximenia americana L., and Ziziphus mucronata Willd., were used to treat four or more disease conditions. About 31% of the plants in this study were administered as monotherapies. Multiuse medicinal plants may contain broad-spectrum antimicrobial agents. However, since widely used plants easily succumb to the threats of overharvesting, they need special protocols and guidelines for their genetic conservation. There is still need to confirm the antimicrobial efficacies, pharmacological parameters, cytotoxicity, and active chemical ingredients of the discovered plants. PMID:27069489

  4. Nutrient enrichment effects on photosynthesis in the wetland plants Typha orientalis and Phormium tenax

    DEFF Research Database (Denmark)

    Sorrell, Brian Keith; Brix, Hans; Tanner, Chris;

    chlorophyll in its leaf tissue than flax. Photosynthetic rates were significantly higher in raupo than flax in both field and experimental situations, except at very low nutrient availability, where they were similar. Photosynthesis in raupo increased strongly with N availability, whereas there was only...... a weak relationship between N and photosynthesis in flax in experimental cultures, and no effect at all of N on flax photosynthesis in the field. Both species had significantly higher photosynthesis rates in experimental cultures than in the field; for raupo this was due to N limitation in the field......-growing species raupo (Typha orientalis) and slower-growing flax (Phormium tenax). Photosynthesis was compared between 9 field locations differing in nutrient availability where the two species co-existed, and in an outdoor growth experiment. Raupo accumulated higher concentrations of nitrogen (N) and especially...

  5. Perspectives and challenges in the future use of plant nutrients in tilled and mixed agricultural systems.

    Science.gov (United States)

    Bergström, Lars; Goulding, Keith W T

    2005-06-01

    Producing an adequate quantity of healthy food without polluting the environment is a serious challenge for future agriculture around the world. The Food 21 research program in Sweden has researched all aspects--economic, environmental, and social--of sustainable farming systems. This paper presents some of the research from that and other relevant international research programs that have focused on better nutrient-use efficiency, especially for nitrogen and phosphorus. It shows that a range of sustainable solutions to nutrient-use efficiency exists, some of which are complex but some very simple. Government policies, including subsidies; research and technology; and public acceptance of farming practices all combine to create these solutions. Participatory approaches to knowledge transfer are needed, in which scientists, policy makers, farmers, advisers, and consumers exchange information and together build sustainable farming systems.

  6. Energy and nutrient recovery for munipal wastewater treatment : how to design a feasible plant layout?

    OpenAIRE

    Khiewwijit, R.; Temmink, B.G.; Rijnaarts, H. H. M.; Keesman, K. J.

    2016-01-01

    Activated sludge systems are commonly used for robust and efficient treatment of municipal wastewater. However, these systems cannot achieve their maximum potential to recover valuable resources from wastewater. This study demonstrates a procedure to design a feasible novel configuration for maximizing energy and nutrient recovery. A simulation model was developed based on literature data and recent experimental research using steady-state energy and mass balances with conversions. The analys...

  7. A mathematical model of water and nutrient transport in xylem vessels of a wheat plant

    OpenAIRE

    Payvandi, Sevil; Daly, Keith R.; Jones, David; Talboys, Peter; Zygalakis, K. C.; Roose, Tiina

    2014-01-01

    At a time of increasing global demand for food, dwindling land and re- sources, and escalating pressures from climate change, the farming industry is undergoing financial strain, with a need to improve efficiency and crop yields. In order to improve efficiencies in crop farming, and in fertiliser us- age in particular, understanding must be gained of the fertiliser-to-crop-yield pathway. We model one aspect of this pathway; the transport of nutrients within the vascular tissues of a crop plan...

  8. Chemical, Physical, and Biological Factors Influencing Nutrient Availability and Plant Growth in a Pine Tree Substrate

    OpenAIRE

    Jackson, Brian Eugene

    2008-01-01

    Pine tree substrate (PTS) produced from freshly harvested loblolly pine (Pinus taeda L.) trees has potential for replacing or reducing the use of aged pine bark (PB) and peat moss as container substrates for horticulture crop production. The objective of this work was to determine the factors influencing nutrient availability in PTS compared to PB or peat substrates. Chapter two reports data on the response of japanese holly and azalea to fertilizer rate when grown in PTS and PB. This stud...

  9. Acúmulo de matéria seca e absorção de nutrientes pelo meloeiro "pele-de-sapo" Dry matter accumulation and nutrient uptake by "pele-de-sapo" melon plants

    Directory of Open Access Journals (Sweden)

    Manoel J. da Silva Júnior

    2006-06-01

    Full Text Available O melão produzido no estado do Rio Grande do Norte é cultivado sob irrigação e fertirrigação. Com o uso da fertirrigação e o conhecimento das curvas de absorção de nutrientes, é possível parcelar a dose total dos nutrientes em várias aplicações, durante o ciclo da cultura. Com o exposto, objetivou-se obter curvas de acúmulo de matéria seca e a absorção de nitrogênio, fósforo, potássio, cálcio e magnésio pelo meloeiro "pele-de-sapo" e determinar a extração total desses nutrientes no final do ciclo da cultura. O experimento foi montado em blocos completamente casualizados com três repetições. Coletou-se planta aos 22, 33, 43, 54 e 69 dias após a semeadura e se determinaram a matéria seca e os teores de N, P, K, Ca e Mg. Observou-se que: 1 mais de 50% dos nutrientes extraídos foram acumulados na parte vegetativa da planta; 2 o potássio, o cálcio e o nitrogênio são os nutrientes mais exigidos pelo meloeiro "pele-de-sapo"; 3 o período de maior exigência de nutrientes ocorreu entre 43 e 54 dias após a semeadura; 4 folhas e frutos são os principais drenos de nutrientes em todo o ciclo da cultura.The melon produced in the state of Rio Grande do Norte is cultivated under irrigation and fertigation. With the use of fertigation and knowledge of the nutrients uptake curves it is possible to divide the total dose of nutrients in several applications during the crop cycle. Thus, the objectives of this study were to obtain curves of dry matter accumulation and the uptake of nitrogen, phophorus, potassium, calcium and magnesium for the "pele-de-sapo" melon plants and to determine the total uptake of these nutrients at the end of the crop cycle. The experimental design was an entirely randomized blocks with three replications. Plants were sampled at 22, 33, 43, 54 and 69 days after the sowing and were determined the dry matter and plant contents of N, P, K, Ca and Mg. It was observed that: 1 more than 50% of the extracted

  10. The role of tolerant genotypes and plant nutrients in the management of acid soil infertility in upland rice

    International Nuclear Information System (INIS)

    As in other parts of the humid tropics, acid-related problems are the major constraint to crop production on low-activity clay soils in the humid and sub-humid zones of West Africa. The upland ecosystem of West Africa is very important to rice production. About 70% of upland rice is grown in the humid zone of the sub-region. To increase and stabilize rice productivity of the acid uplands at reasonable levels, a strategy is needed that integrates the use of tolerant cultivars with soil and plant-nutrient management. Research conducted on Alfisols and Ultisols of the humid-forest and savannah zones in West Africa showed that upland rice is a robust crop, possessing a wide range of tolerance to acid-soil conditions. Recent research at WARDA showed also that acid-soil tolerance can be enhanced through interspecific Oryza sativa x O. glaberrima progenies, which not only possess increased tolerance of acid-soil conditions, but also have superior overall adaptability to diverse upland environments in the sub-region. Our research on the diagnosis of acid-soil infertility problems on the Ultisols and Alfisols of the humid savannah and forest zones indicates that P deficiency is the most important nutrient disorder for upland rice. In the forest zone, response to N depended on the application of P. In the savannah and forest-savannah transition zones, N deficiency was more important than P deficiency. Among other plant nutrients, the application of Ca and Mg (as plant nutrients) did not appear initially to improve the performance of acid-tolerant upland rice cultivars. The results from a long-term study on an Ultisol with four acid-tolerant rice cultivars, revealed that they differed in agronomic and physiological P efficiencies, and the efficiencies were higher at lower rates of P. The amounts of total P removed in three successive crops were similar for all four cultivars although P-harvest index was 10 to 12% higher in the P-efficient than the inefficient cultivars. The

  11. Use of alkaline flyash-based products to amend acid soils: Plant growth response and nutrient uptake

    Energy Technology Data Exchange (ETDEWEB)

    Spark, K.M.; Swift, R.S. [University of Queensland, Gatton, Qld. (Australia)

    2008-07-01

    Vast quantities of flyash are generated annually by the burning of coal in the power industry, with most of this material being stockpiled with little prospect of being utilised at present. Two alkaline flyash-based products (FAP) for use as soil amendments (FAP1 and FAP2) have been assessed using glasshouse pot trials to determine the suitability of using these products to treat acid soils. The products both contain about 80% flyash which originated from coal-fired electricity generation. The acid soils used in the study were 2 Podsols and a Ferrosol, all originating from south-east Queensland and ranging in pH (1 : 5 suspension in water) from 4 to 5.5. The flyash products when applied to the soil significantly enhanced growth of maize plants (Zea mays L.), with optimal application rates in the range 1.25-5% w/w. The FAP/soil mixtures and plants were analysed using a range of methods including extraction with DTPA, and plant biomass (aboveground dry matter). The results indicate that in addition to the liming effect, the flyash in the alkaline flyash products may enhance plant growth as a result of increasing the uptake of micro-nutrients such as copper, zinc, and manganese. The study suggests that flyash has the potential to be used as a base material in the production of soil amendment materials that can change soil pH and act as a fertiliser for certain soil micro-nutrients such as Cu, Mn, and Zn.

  12. Plants Responses to Nutrients Follow the Saturation Kinetic Typical of Enzyme Systems: Biological, Economical and Environmental Implications

    Directory of Open Access Journals (Sweden)

    R. P. Lana

    2008-01-01

    Full Text Available Agricultural efficiency has been associated with high plant productivity. However, it is dependent on fertilizers, which are nonrenewable resources. Crop production response to fertilizers is hyperbolic, following the Michaelis-Menten model and the law of diminishing return. Data of crop production (barley, bean, corn, cotton, soybean and wheat as a function of nitrogen, phosphorus, and potassium fertilization were analyzed by Lineweaver-Burk data transformation (L-B, that allows to calculate the amount of a specific nutrient needed to reach half (ks or other percentages of the theoretical maximum response (kmax and the efficiency of fertilizer use (kg of grain/kg of fertilizer. The efficiency of fertilizer use presented exponential decay by increasing fertilization: 55 to 3; 63 to 5; and 47 to 1 kg of corn/kg of fertilizer, by increasing nitrogen, P2O5 and potassium from 40 to 200; 40 to 200; and 60 to 300 kg ha-1, respectively. The L-B can be an alternative to the linear-plateau and polynomial regression methods of recommendation of plant fertilization, in which the fertilizers recommendation should be based on their efficiency of use, avoiding losses of nutrients, environmental pollution, waste of nonrenewable natural resources, and reducing productive costs.

  13. Downstairs drivers--root herbivores shape communities of above-ground herbivores and natural enemies via changes in plant nutrients.

    Science.gov (United States)

    Johnson, Scott N; Mitchell, Carolyn; McNicol, James W; Thompson, Jacqueline; Karley, Alison J

    2013-09-01

    1. Terrestrial food webs are woven from complex interactions, often underpinned by plant-mediated interactions between herbivores and higher trophic groups. Below- and above-ground herbivores can influence one another via induced changes to a shared host plant, potentially shaping the wider community. However, empirical evidence linking laboratory observations to natural field populations has so far been elusive. 2. This study investigated how root-feeding weevils (Otiorhynchus sulcatus) influence different feeding guilds of herbivore (phloem-feeding aphids, Cryptomyzus galeopsidis, and leaf-chewing sawflies, Nematus olfaciens) in both controlled and field conditions. 3. We hypothesized that root herbivore-induced changes in plant nutrients (C, N, P and amino acids) and defensive compounds (phenolics) would underpin the interactions between root and foliar herbivores, and ultimately populations of natural enemies of the foliar herbivores in the field. 4. Weevils increased field populations of aphids by ca. 700%, which was followed by an increase in the abundance of aphid natural enemies. Weevils increased the proportion of foliar essential amino acids, and this change was positively correlated with aphid abundance, which increased by 90% on plants with weevils in controlled experiments. 5. In contrast, sawfly populations were 77% smaller during mid-June and adult emergence delayed by >14 days on plants with weevils. In controlled experiments, weevils impaired sawfly growth by 18%, which correlated with 35% reductions in leaf phosphorus caused by root herbivory, a previously unreported mechanism for above-ground-below-ground herbivore interactions. 6. This represents a clear demonstration of root herbivores affecting foliar herbivore community composition and natural enemy abundance in the field via two distinct plant-mediated nutritional mechanisms. Aphid populations, in particular, were initially driven by bottom-up effects (i.e. plant-mediated effects of root

  14. Conservative nutrient use by big-leaf mahogany (Swietenia macrophylla king planted under contrasting environmental conditions

    Directory of Open Access Journals (Sweden)

    Ernesto Medina

    2014-06-01

    Full Text Available We analyzed the nutritional composition and isotope ratios (C and N of big-leaf mahogany (Swietenia macrophylla King leaves in plantations established on contrasting soils and climates in Central America (State of Quintana Roo, Yucatán, México and South America (State of Pará, Brazil. The objective was to determine the adaptability of this species to large differences in nutrient availability and rainfall regimes. Nutrient concentrations of leaves and soils were determined spectrophotometrically, and isotope ratios were measured using mass spectrometric techniques.In Pará soils were sandier, and acidic, receiving above 2000 mm of rain, whereas in Quintana Roo soils were predominantly clayey, with neutral to alkaline pH due to the underlying calcareous substrate, with about 1300 mm of rain. Leaf area/weight ratio was similar for both sites, but leaves from Quintana Roo were significantly smaller. Average N and K concentrations of adult leaves were similar, whereas Ca concentration was only slightly lower in Pará in spite of large differences in Ca availability. Leaves from this site had slightly higher P and lower Al concentrations. Differences in water use efficiency as measured by the natural abundance of 13C were negligible, the main effect of lower rainfall in Quintana Roo seemed to be a reduction in leaf area. The N isotope signature (δ15N was more positive in Pará than in Quintana Roo, suggesting higher denitrification rates in the former. Results reveal a calciotrophic behavior and a remarkable capacity of mahogany to compensate for large differences in soil texture and nutrient availability.

  15. Engineering strategies for the design of plant nutrient delivery systems for use in space: approaches to countering microbiological contamination

    Science.gov (United States)

    Gonzales, A. A.; Schuerger, A. C.; Barford, C.; Mitchell, R.

    Microbiological contamination of crops within space-based plant growth research chambers has been postulated as a potentially significant problem. Microbial infestations; fouling of Nutrient Delivery System (NDS) fluid loops; and the formation of biofilms have been suggested as the most obvious and important manifestations of the problem. Strict sanitation and quarantine procedures will reduce, but not eliminate, microbial species introduced into plant growth systems in space habitats. Microorganisms transported into space most likely will occur as surface contaminants on spacecraft components, equipment, the crew, and plant-propagative materials. Illustrations of the potential magnitude of the microbiological contamination issue will be drawn from the literature and from documentation of laboratory and commercial field experience. Engineering strategies for limiting contamination and for the development of countermeasures will be described. Microbiological control technologies and NDS hardware will be discussed. Configurations appropriate for microgravity research facilities, as well as anticipated bio-regenerative life support system implementations, will be explored. An efficiently designed NDS, capable of adequately meeting the environmental needs of crop plants in space, is considered to be critical in both the research and operational domains. Recommended experiments, tests, and technology developments, structured to allow the development of prudent engineering solutions also will be presented.

  16. Influence of NaCl Salinity and Different Substracts on Plant Growth, Mineral Nutrient Assimilation and Fruit Yield of Strawberry

    Directory of Open Access Journals (Sweden)

    Asghar RAHIMI

    2011-11-01

    Full Text Available A hydroponic culture was carried out with strawberry cv. Camarosa to investigate the effects of four salinity levels and four different substrates on plant growth, mineral nutrient assimilation and fruit yield of strawberry. Total dry weight accumulation of plants was not inhibited at low salinities, but it was significantly inhibited at 60 mM NaCl. Dry mass (DM partitioning in NaCl-stressed plants was in favor of crown and petioles and at the expense of root, stem and leaf, whereas leaf, stem and root DM progressively declined with an increase in salinity. Specific leaf area (SLA and leaf area ratio (LAR significantly decreased in cv. Camarosa at 60 and 90 mM. Results also showed that the presence of NaCl in the root medium induced an increase in total Na+ content of the plants in the shoot and root. Despite Na+ and K+, the increase in total inorganic ions resulted from increasing salinity, with Ca2+ and Mg2+ concentrations decreasing in shoot and increasing in roots with an increase in salinity. For all micro- and macroelements however, significant concentration changes related to different substrates were not detected in the present experiments. Results also showed a significant decline of Fe content of 40% and 49% in shoot and root, respectively.

  17. Groundwater Availability Alters Soil-plant Nutrient Cycling in a Stand of Invasive, N-fixing Phreatophytes

    Science.gov (United States)

    Dudley, B. D.; Miyazawa, Y.; Hughes, F.; Ostertag, R.; Kettwich, S. K.; MacKenzie, R.; Dulaiova, H.; Waters, C. A.; Bishop, J.; Giambelluca, T. W.

    2013-12-01

    N-fixing phreatophytic trees are common in arid and semi-arid regions worldwide, and can play significant roles in modifying hydrology and soil-plant nutrient cycling where they are present. In light of reductions in groundwater levels in many arid regions we estimated annual transpiration rates at a stand level, and alterations to C, N and P accretion in soils as a function of groundwater depth in a ca.120 year old stand of Prosopis pallida along an elevation gradient in coastal leeward Hawaii. We measured sapflow and stand level sapwood area to quantify transpiration, and calculated groundwater transpiration rates using P. pallida stem water δ18O values. By measuring soil resistivity, we were able to compare the volume of groundwater transpired by these trees to groundwater depth across the stand. We examined nutrient deposition and accretion in soils in lowland areas of the stand with accessible shallow groundwater, compared to upland areas with no groundwater access, as indicated by stem water δ18O values. Resistivity results suggested that groundwater was at a height close to sea level throughout the stand. Transpiration was around 1900 m3 ha-1 year-1 in the areas of the stand closest to the sea (where groundwater was at around 1-4 m below ground level) and decreased to around a tenth of that volume where groundwater was not accessible. Litterfall rates over the course of the year studied were 17 times greater at lowland sites, but this litterfall contributed ca. 24 times the N, and 35 times the P of upland sites. Thus, groundwater access contributed to the total mass of nitrogen and phosphorus deposited in the form of litter through higher litter quantity and quality. Total N content of soils was 4.7 times greater and inorganic N pools were eight times higher at lowland plots. These results suggest that groundwater depth can have strong effects on soil-plant nutrient cycling, so that reductions in the availability of shallow groundwater are likely to impact

  18. [Nutrient contents and heavy metal pollutions in composted sewage sludge from different municipal wastewater treatment plants in Beijing region].

    Science.gov (United States)

    Bai, Li-Ping; Qi, Hong-Tao; Fu, Ya-Ping; Li, Ping

    2014-12-01

    Changes of nutrient contents and heavy metal pollutions in composted sewage sludge from different municipal wastewater treatment plants (as represented by CSS-A and CSS-B, respectively) in Beijing region were investigated. The results showed that the pH values, nutrient contents, trace elements and heavy metals in CSS-A and CSS-B depended on the sludge resources and particular years. The average of organic matter content in different years (203 338.0 mg x kg(-1)) from CSS-A met both the requirement of sludge quality standard for agricultural use (CJ/T 309-2009) and land improvement (GB/T 24600-2009) in China except the permitted limit of sludge quality standards for garden or park use (GB/T 23486-2009) in China. Moreover, the average of organic matter in different years (298531.5 mg x kg(-1)) from CSS-B and the averages of pH values (7.1 and 7.2, respectively) and NPK concentrations (41 111.7 mg x kg(-1) and 65 901.5 mg x kg(-1), respectively) in different years from CSS-A and CSS-B all met the requirements of sludge quality standards for the above-mentioned disposal types of sewage sludge from municipal wastewater treatment plants. The contents of heavy metals in CSS-A and CSS-B except Hg and Ni were below the permitted limits of the A-class sludge quality standard for agricultural use (CJ/T 309-2009) , being the most stringent standards in China. It was suggested that composted sewage sludge from different municipal wastewater treatment plants in Beijing region use as a fertilizer in agriculture, land improvement, and garden or park, but the top concern about potential environmental pollution of Hg and Ni should be considered. PMID:25826937

  19. The effects of elevated CO2 on clonal growth and nutrient content of submerge plant Vallisneria spinulosa.

    Science.gov (United States)

    Yan, Xue; Yu, Dan; Li, Yong-Ke

    2006-01-01

    An approximately four months long glasshouse experiment was conducted to examine the effects of elevated carbon dioxide (CO(2)) concentration (1,000 +/- 50 micromol mol(-1)) in the atmosphere on biomass accumulation and allocation pattern, clonal growth and nitrogen (N), phosphorus (P) accumulation by the submerged plant Vallisneria spinulosa Yan. Elevated CO(2) significantly increased V. spinulosa total fresh biomass ( approximately 130%) after 120 days, due to more biomass accumulation in all morphological organs than in those at ambient CO(2) (390 +/- 20 micromol mol(-1)). About 75% of the additional total biomass at elevated CO(2) was accounted for by leaf and rhizome (above ground) biomass and only 25% of it belonged to root and turion (below ground). However, the turions biomass exhibited a greater increase rate than that of organ above ground, which caused reduction in the above/below ground biomass ratio. The clonal growth of V. spinulosa responded positively to elevated CO(2). The number of primary ramets increased up to 1.4-folds at elevated CO(2) and induced a dense growth pattern. For nutrients absorption, concentration of N in leaf and in turion was significantly (p plant biomass accumulation, and it should be an adaptive strategy for clonal plants to increase the nutrient absorption efficiency of root and reproduce more clonal ramets to exploit enough resources to match with higher growth in elevated CO(2). PMID:16083940

  20. Effect of nutrient solution, effective microorganisms (EM-A), and assimilation illumination of plants on the induction of the growth of lettuce (Lactuca sativa L.) in hydroponic cultivation

    OpenAIRE

    Tomasz Kleiber; Justyna Starzyk; Maciej Bosiacki

    2013-01-01

    The main aim of the present study was to evaluate the influence of the chemical composition of a nutrient solution (NS I, NS II), seed inoculation with Effective Microorganisms (EM), and assimilation illumination (AI) of plants on the growth, development and nutritional status of lettuce (Lactuca sativa L.) in hydroponic cultivation and microbiological changes in the medium. The measurements were as follows: quantity of leaves per plant (LQ), surface area of the biggest leaves of plants (SBL)...

  1. Varying plant density and harvest time to optimize cowpea leaf yield and nutrient content

    Science.gov (United States)

    Ohler, T. A.; Nielsen, S. S.; Mitchell, C. A.

    1996-01-01

    Plant density and harvest time were manipulated to optimize vegetative (foliar) productivity of cowpea [Vigna unguiculata (L.) Walp.] canopies for future dietary use in controlled ecological life-support systems as vegetables or salad greens. Productivity was measured as total shoot and edible dry weights (DW), edible yield rate [(EYR) grams DW per square meter per day], shoot harvest index [(SHI) grams DW per edible gram DW total shoot], and yield-efficiency rate [(YER) grams DW edible per square meter per day per grams DW nonedible]. Cowpeas were grown in a greenhouse for leaf-only harvest at 14, 28, 42, 56, 84, or 99 plants/m2 and were harvested 20, 30, 40, or 50 days after planting (DAP). Shoot and edible dry weights increased as plant density and time to harvest increased. A maximum of 1189 g shoot DW/m2 and 594 g edible DW/m2 were achieved at an estimated plant density of 85 plants/m2 and harvest 50 DAP. EYR also increased as plant density and time to harvest increased. An EYR of 11 g m-2 day-1 was predicted to occur at 86 plants/m2 and harvest 50 DAP. SHI and YER were not affected by plant density. However, the highest values of SHI (64%) and YER (1.3 g m-2 day-1 g-1) were attained when cowpeas were harvested 20 DAP. The average fat and ash contents [dry-weight basis (dwb)] of harvested leaves remained constant regardless of harvest time. Average protein content increased from 25% DW at 30 DAP to 45% DW at 50 DAP. Carbohydrate content declined from 50% DW at 30 DAP to 45% DW at 50 DAP. Total dietary fiber content (dwb) of the leaves increased from 19% to 26% as time to harvest increased from 20 to 50 days.

  2. Use of Bayesian decision aid analysis for assessment of nuclear power plant dependability

    International Nuclear Information System (INIS)

    Nuclear plant operating reliability studies concern the behavior of reliable systems or components, where the failure probability is very low. Frequency-based statistics are unsuited to these conditions and do not enable determination of confidence intervals for equipment failure rates when operating feedback data are collected via dissimilar feedback procedures. Bayes' statistics, on the contrary, are well suited to inference from on the job data. The Bayes' approach was initially considered simply as a new technique for assessment of equipment reliability parameters. The failure rate, which is not known, is considered as a random variable and is determined on the basis of an a priori authoritative opinion of experts, together with random field observations, which may in addition, be subsequently censored. In fact, the Bayes' principle, as a prediction tool, has much more to offer analysts and can be used as a decision aid. This approach is consistent in terms of probability. It cannot be simply rejected when discrepancies are observed between the a priori know-how of the experts and operating feedback. The end of the paper concerns numerical integration problems arising when the Bayes' theorem is used. These problems have now been solved, as shown here, by integration of an a priori uniform probability density, in conjunction with a Weibull type observation distribution, which was one of the numerical obstacles to use of the Bayes' approach. (authors). 7 refs

  3. Experimental biofilms within drinking water treatment plant origin; evaluation of nutrient concentration and temperature influences upon their development

    Directory of Open Access Journals (Sweden)

    Anca FARKAS

    2009-11-01

    Full Text Available From the planktonic free-floating state, microorganisms pass to the solid state, the biofilm, cells being strongly attached to each other and usually to the interface. This changing in cells’ behavior induces surface colonization and complex interactions development within the biofilm. If the biofilm’s role into the natural aquatic habitats is, undoubtedly, a positive one, consisting in water self-purification, drinking water pipe networks biofouling can be responsible for a wide range of water quality and operational problems. This exploratory experiment was performed in order to investigate, in a time interval of 7 days, the influence of certain environmental factors such as nutrient concentration and temperature upon in vitro biofilm’s development, origin in the biofilm of water treatment plant. The method used for in vitro biofilm growth monitoring is the colorimetric measurement of the biomass. Descriptive analyses, including the mean value, variability, trends, correlations and graphic displays were performed. The correlation analysis shown that the biofilm development in the discussed experiment was influenced as by the origin source as by the temperature, time and nutrients concentration. The biomass increment was significantly different for the biofilms with clarifier and sand filter sites origin, grown at 22 oC, while at 8 oC, the differences were not significant from a statistical point of view. For all the dilutions, moments and temperatures considered, the biofilm’s development with clarifier origin registered was significantly higher than the biofilm with sand filter origin.

  4. [Effects of ground surface mulching in tea garden on soil water and nutrient dynamics and tea plant growth].

    Science.gov (United States)

    Sun, Li-tao; Wang, Yu; Ding, Zhao-tang

    2011-09-01

    Taking a 2-year-old tea garden in Qingdao of Shandong Province as test object, this paper studied the effects of different mulching modes on the soil water and nutrient dynamics and tea plant growth. Four treatments were installed, i.e., no mulching (CK), straw mulching (T1), plastic film mulching (T2), and straw plus plastic film mulching (T3). Comparing with CK, mulching could keep the soil water content at a higher level, and enhance the water use efficiency. In treatments T1 and T3, the tea growth water use efficiency and yield water use efficiency increased by 43%-48% and 7%-13%, respectively, compared with CK. Also in treatments T1 and T3, the contents of soil organic matter, available-N, nitrate-N, and ammonium-N increased significantly, with the soil fertility improved, and the leaf nitrate-N content and nitrate reductase activity increased, which promoted the tea growth and yield (12%-13% higher than CK) and made the peak period of bud growth appeared earlier. Considering the tea growth and yield, water and nutrient use efficiency, environment safety and economic benefit, straw mulching could be an effective ground surface mulching mode for young tea garden. PMID:22126038

  5. Comparison of ion-exchange resin counterions in the nutrient measurement of calcareous soils: Implications for correlative studies of plant-soil relationships

    Science.gov (United States)

    Sherrod, S.K.; Belnap, J.; Miller, M.E.

    2003-01-01

    uptake mechanisms of plants or functional groups of interest. The effects of different extraction techniques on nutrient measures should be understood before selecting an extraction method. For example, in the calcareous soils used for this experiment, nutrient extraction methods that alter soil carbonates through dissolution or precipitation could compromise the accurate measurement of plant-available nutrients. The implications of this study emphasize the universal importance of understanding the differential effects of alternate methods on soil chemistry.

  6. Impairment of respiratory chain under nutrient deficiencies in plants: does it play a role in the regulation of iron and sulfur responsive genes?

    Directory of Open Access Journals (Sweden)

    GIANPIERO eVIGANI

    2016-01-01

    Full Text Available Plant production and plant product quality strongly depends on the availability of mineral nutrients. Among them, sulfur (S and iron (Fe play a central role, as they are needed for many proteins of the respiratory chain. Plant mitochondria play essential bioenergetic and biosynthetic functions as well as they have an important role in signalling processes into the cell. Here, by comparing several transcriptomic data sets from plants impaired in their respiratory function with the genes regulated under Fe or S deficiencies obtained from other data sets, nutrient-responsive genes potentially regulated by hypothetical mitochondrial retrograde signalling pathway are evidenced. It leads us to hypothesize that plant mitochondria could be therefore required for regulating the expression of key genes involved both in Fe and S metabolisms.

  7. Absorção de nutrientes pelo tomateiro cultivado sob condições de campo e de ambiente protegido Nutrient absorption by tomato plants grown under field and protected conditions

    Directory of Open Access Journals (Sweden)

    Jamil Abdalla Fayad

    2002-03-01

    Full Text Available Foram realizados dois experimentos, na Universidade Federal de Viçosa, objetivando caracterizar a absorção de nutrientes pelo tomateiro cultivado sob condições de campo e de ambiente protegido. O primeiro, com a cultivar Santa Clara, cultivada a campo, no sistema de cerca cruzada e sete cachos. O segundo, em estufa plástica, com o híbrido EF-50, conduzidas verticalmente, mantendo-se oito cachos em cada uma. Ambos experimentos foram delineados em blocos ao acaso, com quatro repetições. O primeiro constituído por oito e o segundo por nove tratamentos. Em ambos experimentos, o padrão de absorção de nutrientes seguiu o acúmulo de matéria seca pelas plantas. No experimento de campo, a ordem decrescente de acúmulo de nutrientes na parte aérea foi: K, N, Ca, S, P, Mg, Cu, Mn, Fe e Zn, alcançando os valores máximos de 360; 206; 202; 49; 32; 29 kg.ha-1; 3.415; 2.173; 1.967 e 500 g.ha-1, respectivamente. Em ambiente protegido, o acúmulo de nutrientes na parte aérea do tomateiro decresceu na seguinte ordem: K, N, Ca, S, Mg, P, Mn, Fe; Cu e Zn, alcançando os valores de 264; 211; 195; 49; 40; 30 kg.ha-1; 3.200; 2.100; 1.600 e 700 g.ha-1, respectivamente. As taxas de absorção diária dos nutrientes são apresentadas bem como as porcentagens de absorção do N e de K em determinados períodos do crescimento do tomateiro, visando auxiliar na programação das épocas de aplicação destes nutrientes em cobertura.Two experiments were conducted at Universidade Federal de Viçosa to evaluate nutrient absortion by tomato plants grown under field and protected conditions. In the first experiment, tomato cv. Santa Clara was grown in the field with seven clusters/plant. In the second one tomato hybrid EF-50 was grown in plastic greenhouse and pruned to eight clusters. Both experiments were designed as randomized blocks, with four replicates. The first and second experiments were performed with eight and nine treatments, respectively. In both

  8. RELATIVE CHLOROPHYLL CONTENT CHANGES DURING UPTAKING OF SELENITE AND SELENATE BY MAIZE PLANTS GROWN IN NUTRIENT SOLUTION

    Directory of Open Access Journals (Sweden)

    Farzaneh Garousi

    2015-02-01

    Full Text Available Chlorophyll content (chl, one of the most important physiological parameters related to plant photosynthesis, is usually used to predict plant potential and portable, non-destructive chlorophyll meters could be a valuable and effective tool for estimating Relative Chlorophyll Content (RCC in leaves. In this study, two species of soluble inorganic Selenium forms, selenite (SeIV and selenate (SeVI at different concentrations were investigated on maize plants that were growing in nutrient solutions during 2 weeks and changes of RCC within this time was monitored. It means chlorophyll content of three leaves of maize when everyone grew completely was measured according to Special Products Analysis Division (SPAD value and the results revealed that high concentrations of SeIV (10, 30 and 90 mg.kg-1 were toxic for maize even lower amounts (1 and 3 mg.kg-1 had effects of damage on it while this state wasn’t adjusted for lower concentrations of SeVI (1 and 3 mg.kg-1 and treated samples didn’t have significant differences with controls although in higher amounts (10 and 30 mg.kg-1 toxic effects were seen in them, too.

  9. Effect of nutrient solution, effective microorganisms (EM-A, and assimilation illumination of plants on the induction of the growth of lettuce (Lactuca sativa L. in hydroponic cultivation

    Directory of Open Access Journals (Sweden)

    Tomasz Kleiber

    2013-04-01

    Full Text Available The main aim of the present study was to evaluate the influence of the chemical composition of a nutrient solution (NS I, NS II, seed inoculation with Effective Microorganisms (EM, and assimilation illumination (AI of plants on the growth, development and nutritional status of lettuce (Lactuca sativa L. in hydroponic cultivation and microbiological changes in the medium. The measurements were as follows: quantity of leaves per plant (LQ, surface area of the biggest leaves of plants (SBL, relative chlorophyll content (SPAD units, total fresh weight (TFW, total dry weight (TDW, percentage (% of dry matter (% DM, chemical composition of leaves, nutrient uptake (N, P, K, Ca, Mg, Na of the aboveground parts of the plant. It was shown that the simultaneous inoculation of seeds with EM and application of NS II had an effect on improving seed germination (1st–5th day after sowing, but a significantly positive influence of NS I on seed germination was found from the 5th to 9th day. The application of NS II and EM-A had a positive influence on the development of leaves on the plant. The chemical composition of the nutrient solution was found to have a significant effect on the biometrical parameters of plants. The use of supplemental lighting in cultivation of lettuce affected positively both the growth and development of plants. The chemical composition of the nutrient solution significantly modified the macronutrient nutrition status of plants, while the illumination of plants only in case of phosphorus – but at the same time it had a significant influence on the uptake of all nutrients by the plant. The influence of EM was not proved. The microbiological analysis showed a significant influence of the chemical composition of nutrient solutions on the changes in the numbers of the analyzed groups of microorganisms, showing an increase in their numbers in nutrient solutions with higher contents of chemical elements. However, there were no significant

  10. Optimization of isolation and cultivation of bacterial endophytes through addition of plant extract to nutrient media.

    Science.gov (United States)

    Eevers, N; Gielen, M; Sánchez-López, A; Jaspers, S; White, J C; Vangronsveld, J; Weyens, N

    2015-07-01

    Many endophytes have beneficial effects on plants and can be exploited in biotechnological applications. Studies hypothesize that only 0.001-1% of all plant-associated bacteria are cultivable. Moreover, even after successful isolations, many endophytic bacteria often show reduced regrowth capacity. This research aimed to optimize isolation processes and culturing these bacteria afterwards. We compared several minimal and complex media in a screening. Beside the media themselves, two gelling agents and adding plant extract to media were investigated to enhance the number and diversity of endophytes as well as the growth capacity when regrown after isolation. In this work, 869 medium delivered the highest numbers of cultivable bacteria, as well as the highest diversity. When comparing gelling agents, no differences were observed in the numbers of bacteria. Adding plant extract to the media lead to a slight increase in diversity. However, when adding plant extract to improve the regrowth capacity, sharp increases of viable bacteria occurred in both rich and minimal media.

  11. Nutrients in the cassava (Manihot esculenta Crantz leaf meal at three ages of the plant Nutrientes na farinha de folhas de mandioca (Manihot esculenta Crantz em três idades da planta

    Directory of Open Access Journals (Sweden)

    Carmen Wobeto

    2006-12-01

    Full Text Available The high number of cassava cultivars adapted to many different regions provides a wide variation in the chemical composition of cassava leaves meal (CLM. Therefore, the contents of some nutrients in CLM from five cultivars at three ages of the plant were investigated in order to select the cultivars and ages with superior levels of these nutrients. When the plants were 12 months old, the highest levels of crude protein (CP, beta-carotene, iron, magnesium, phosphorus and sulfur were observed. The IAC 289-70 cv. showed the highest levels of magnesium, as well as considerable contents of CP, beta-carotene, iron, zinc and sulfur, which did not differ statistically from the cultivars showing the highest levels of these nutrients.O número elevado de cultivares de mandioca adaptados às mais diversas regiões confere ampla variação na composição química da farinha de folhas de mandioca (FFM. Portanto, foram investigados os teores de alguns nutrientes nas FFM de cinco cultivares em três idades da planta, a fim de selecionar cultivares e idades com níveis superiores destes nutrientes. Aos 12 meses de idade da planta, observaram-se os maiores níveis de proteína bruta (PB, beta-caroteno, ferro, magnésio, fósforo e enxofre. O cultivar IAC 289-70 apresentou os maiores níveis de magnésio, assim como teores apreciáveis de PB, beta-caroteno, ferro, zinco e enxofre, pois não diferiu estatisticamente dos cultivares com os níveis mais elevados destes nutrientes.

  12. Effect of tetracycline on the growth and nutrient removal capacity of Chlamydomonas reinhardtii in simulated effluent from wastewater treatment plants.

    Science.gov (United States)

    Li, Jie; Zheng, Xiaoqian; Liu, Kaichuan; Sun, Shujuan; Li, Xiaochen

    2016-10-01

    The aim of this work was to study the effect of tetracycline, which is on the growth, physiological characteristics, and contaminants removal by Chlamydomonas reinhardtii. The results showed that the biomass and photosynthetic pigment concentration of C. reinhardtii exposed to tetracycline were lower than those of the control, while the superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities, and the malondialdehyde (MDA) content, were higher than those of the control. Additionally, when the tetracycline concentration reached 0.25mg/L, the removal of total nitrogen (TN), total phosphorus (TP), and chemical oxygen demand (COD) decreased from 80.8 to 55.0%, 100 to 92.5%, and 36.5 to 11.5%, respectively. Thus, tetracycline concentrations of 0-0.25mg/L are expected to have a significant effect on the growth and nutrient removal of C. reinhardtii in recycled water from wastewater treatment plants. PMID:27472492

  13. Plant Sterols as Anticancer Nutrients: Evidence for Their Role in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Bruce J. Grattan

    2013-01-01

    Full Text Available While many factors are involved in the etiology of cancer, it has been clearly established that diet significantly impacts one’s risk for this disease. More recently, specific food components have been identified which are uniquely beneficial in mitigating the risk of specific cancer subtypes. Plant sterols are well known for their effects on blood cholesterol levels, however research into their potential role in mitigating cancer risk remains in its infancy. As outlined in this review, the cholesterol modulating actions of plant sterols may overlap with their anti-cancer actions. Breast cancer is the most common malignancy affecting women and there remains a need for effective adjuvant therapies for this disease, for which plant sterols may play a distinctive role.

  14. Nutrient removal of a floating plant system receiving low- pollution wastewater: Effects of plant species and influent concentration

    Science.gov (United States)

    Duan, J. J.; Zhao, J. N.; Xue, L. H.; Yang, L. Z.

    2016-08-01

    Plant floating bed was adopted in this study to compare the purification effect of four plant species (Oenanthe javanica, Ipomoea aquatica, Hydrocotyle vulgaris, and Iris sibirica) receiving high and low treated domestic sewage. The experiment was conducted for eight months during the low temperature season. The results indicated that the average removal rates of TN and NH4+-N in I. aquatica floating bed were relatively high both under high and low influent concentration during the first stage of the experiment. During the second stage, H. vulgaris showed the best performance for nitrogen treatment, and the average removal rates of TN were 70.7% and 87.7% under high and low influent concentration, while the average removal rates of NH4 +-N were as high as 98.9% and 98.9%, accordingly. Moreover, H. vulgaris contributed most for plant assimilation to nitrogen removal among different plant floating systems. It was also found that the existence of hydrophytes effectively controlled the rise of water pH value and algae growth and reproduction, which helped to improve the aquatic environment. The results provide engineering parameters for the future design of an ecological remediation technology for low-pollution wastewater purification.

  15. Effect of iron stress on Withania somnifera L.: antioxidant enzyme response and nutrient elemental uptake of in vitro grown plants.

    Science.gov (United States)

    Rout, Jyoti Ranjan; Behera, Sadhana; Keshari, Nitin; Ram, Shidharth Sankar; Bhar, Subhajit; Chakraborty, Anindita; Sudarshan, Mathummal; Sahoo, Santi Lata

    2015-03-01

    In the present study the response of antioxidant enzyme activities and the level of expression of their corresponding genes on bioaccumulation of iron (Fe) were investigated. In vitro germinated Withania somnifera L. were grown in Murashige and Skoog's liquid medium with increasing concentrations (0, 25, 50, 100 and 200 µM) of FeSO4 for 7 and 14 days. Root and leaf tissues analyzed for catalase (CAT, EC 1.11.1.6), superoxide dismutase (SOD, EC 1.15.1.1) and guaiacol peroxidase (GPX, EC 1.11.1.7), have shown an increase in content with respect to exposure time. Isoforms of CAT, SOD and GPX were separated using non-denaturing polyacrylamide gel electrophoresis and observed that the isoenzymes were greatly affected by higher concentrations of Fe. Reverse transcriptase polymerase chain reaction analysis performed by taking three pairs of genes of CAT (RsCat, Catalase1, Cat1) and SOD (SodCp, TaSOD1.2, MnSOD) to find out the differential expression of antioxidant genes under Fe excess. RsCat from CAT and MnSOD from SOD have exhibited high levels of gene expression under Fe stress, which was consistent with the changes of the activity assayed in solution after 7 days of treatment. Analysis by proton induced X-ray emission exhibited an increasing uptake of Fe in plants by suppressing and expressing of other nutrient elements. The results of the present study suggest that higher concentration of Fe causes disturbance in nutrient balance and induces oxidative stress in plant.

  16. Moss cushions facilitate water and nutrient supply for plant species on bare limestone pavements

    DEFF Research Database (Denmark)

    Jensen, Kaj Sand; Hammer, Kathrine

    2012-01-01

    Dense moss cushions of different size are distributed across the bare limestone pavements on Øland, SE Sweden. Increasing cushion size is predicted to physically protect and improve performance and colonization by vascular plants. Therefore, we tested water balance, phosphorus supply, and species...... desiccation. Phosphorus concentrations increased stepwise and four-fold from detritus to surface mosses and to vascular plants, and all three pools increased with cushion size. We conclude that cushion mosses and cushion size play a critical role in this resource-limited limestone environment by offering...

  17. Phytoremediation of nutrient polluted stormwater runoff: water hyacinth as a model plant

    NARCIS (Netherlands)

    Fox, L.J.

    2009-01-01

    Het doel van het in dit proefschrift beschreven onderzoek was om te verkennen in hoeverre fytoremediatie met behulp van waterplanten kon beheersen en de waterkwaliteit te verbeterenPhytoremediation of nutriënt polluted stormwater runoff using water hyacinth as a model plant was explored in greenhous

  18. Dissimilar response of plant and soil biota communities to long-term nutrient adition in grasslands

    NARCIS (Netherlands)

    Wal, van der A.; Geerts, R.H.E.M.; Korevaar, H.; Schouten, A.J.; Jagers op Akkerhuis, G.A.J.M.; Rutgers, M.; Mulder, C.

    2009-01-01

    The long-term effect of fertilizers on plant diversity and productivity is well known, but long-term effects on soil biota communities have received relatively little attention. Here, we used an exceptional long-lasting (>40 years) grassland fertilization experiment to investigate the long-term e

  19. Interactions between plants and soil nutrient cycling under elevated CO2

    NARCIS (Netherlands)

    Graaff, de M.A.

    2007-01-01

    The atmospheric concentration of the greenhouse gas CO2 is rising and may stimulate plant production and soil C input. If soil C input rates exceed soil C respiration rates under elevated CO2, global warming may be mitigated by long-term soil C sequestration. However, whether s

  20. Sequential extraction partitioning of trace and nutrient elements in ashes from biomass firing district heating plants

    Directory of Open Access Journals (Sweden)

    Šyc M.

    2013-04-01

    Full Text Available Four different ashes from three district heating plants firing biomass were studied with the respect to their potential application as soil fertilizers. Major and trace elements content and some important characteristics of the studied ashes are also presented. Five stage sequential extraction procedure was used for the determination of distribution and speciation of As, Ca, Cd, Cr, Cu, K, Mg, Na, Ni, Pb and Zn in studied ash samples.

  1. Sequential Extraction Partitioning of Trace and Nutrient Elements in Ashes from Biomass Firing District Heating Plants

    OpenAIRE

    Šyc M.; Tošnarová M.; Hrma J.; Pohořelý M.; Svoboda K.; Punčochář M.

    2012-01-01

    Four different ashes from three district heating plants firing biomass were studied with the respect to their potential application as soil fertilizers. Major and trace elements content and some important characteristics of the studied ashes are also presented. Five stage sequential extraction procedure was used for the determination of distribution and speciation of As, Ca, Cd, Cr, Cu, K, Mg, Na, Ni, Pb and Zn in studied ash samples.

  2. The Microbial Database for Danish wastewater treatment plants with nutrient removal (MiDas-DK) – a tool for understanding activated sludge population dynamics and community stability

    DEFF Research Database (Denmark)

    Mielczarek, Artur Tomasz; Saunders, Aaron Marc; Larsen, Poul;

    2013-01-01

    , analyzed and associated with extensive operational data from the plants. The community composition was analyzed by quantitative fluorescence in situ hybridization (FISH) supported by 16S rRNA amplicon sequencing and deep metagenomics. MiDas-DK has been a powerful tool to study the complex activated sludge......Since 2006 more than 50 Danish full-scale wastewater treatment plants with nutrient removal have been investigated in a project called ‘The Microbial Database for Danish Activated Sludge Wastewater Treatment Plants with Nutrient Removal (MiDas-DK)’. Comprehensive sets of samples have been collected...... ecosystems, and, besides many scientific articles on fundamental issues on mixed communities encompassing nitrifiers, denitrifiers, bacteria involved in P-removal, hydrolysis, fermentation, and foaming, the project has provided results that can be used to optimize the operation of full-scale plants and carry...

  3. Human urine and wood ash as plant nutrients for red beet (Beta vulgaris) cultivation: impacts on yield quality.

    Science.gov (United States)

    Pradhan, Surendra K; Holopainen, Jarmo K; Weisell, Janne; Heinonen-Tanski, Helvi

    2010-02-10

    The objective of this study was to evaluate the effect of human urine and wood ash fertilization on the yield and quality of red beet by measuring the microbial, nutrient, and antioxidant (betanin) content of the roots. Red beets were fertilized with 133 kg of N/ha as mineral fertilizer, urine and ash, and only urine with no fertilizer as a control. The mineral-fertilized plants and urine- and ash-fertilized plants also received 89 kg of P/ha. Urine and ash and only urine fertilizer produced 1720 and 656 kg/ha more root biomass, respectively, versus what was obtained from the mineral fertilizer. Few fecal coliforms and coliphage were detected in mineral-fertilized and urine- and ash-fertilized red beet roots. The protein and betanin contents in red beet roots were similar in all treatments. In conclusion, this study revealed that urine with or without ash can increase the yield of red beet and furthermore the microbial quality and chemical quality were similar to the situation in mineral-fertilized products. PMID:20050665

  4. In search for key biogeochemical factors for the conservation of plant species of acidic nutrient-poor habitats: comparing growth sites of common and endangered species

    NARCIS (Netherlands)

    Kleijn, D.; Bekker, R.M.; Bobbink, R.; Graaf, de M.C.C.; Roelofs, J.G.M.

    2008-01-01

    Summary During the last century, many plant species typical of heathland and nutrient-poor acidic grasslands have become rare whereas others have remained common. Habitat restoration often fails to enhance the rare species, which may in part be caused by the failure to restore the biogeochemical con

  5. Density and composition of microorganisms during long-term (418 day) growth of potato using biologically reclaimed nutrients from inedible plant biomass

    Science.gov (United States)

    Garland, J. L.; Cook, K. L.; Johnson, M.; Sumner, R.; Fields, N.; Sager, J. C. (Principal Investigator)

    1997-01-01

    A study evaluating alternative methods for long term operation of biomass production systems was recently completed at the Kennedy Space Center (KSC). The 418-day study evaluated repeated batch versus mixed-aged production of potato grown on either standard 1/2-strength Hoagland's nutrient solution or solutions including nutrients recycled from inedible plant material. The long term effects of closure and recycling on microbial dynamics were evaluated by monitoring the microbial communities associated with various habitats within the plant growth system (i.e., plant roots, nutrient solution, biofilms within the hydroponic systems, atmosphere, and atmospheric condensate). Plate count methods were used to enumerate and characterize microorganisms. Microscopic staining methods were used to estunate total cell densities. The primary finding was that the density and composition of microbial communities associated with controlled environmental plant growth systems are stable during long term operation. Continuous production resulted in slightly greater stability. Nutrient recycling, despite the addition of soluble organic material from the waste processing system, did not significantly increase microbial density in any of the habitats.

  6. Density and composition of microorganisms during long-term (418 day) growth of potato using biologically reclaimed nutrients from inedible plant biomass

    Science.gov (United States)

    Garland, J. L.; Cook, K. L.; Johnson, M.; Sumner, R.; Fields, N.

    1997-01-01

    A study evaluating alternative methods for long term operation of biomass production systems was recently completed at the Kennedy Space Center (KSC). The 418-day study evaluated repeated batch versus mixed-aged production of potato grown on either standard 1/2-strength Hoagland's nutrient solution or solutions including nutrients recycled from inedible plant material. The long term effects of closure and recycling on microbial dynamics were evaluated by monitoring the microbial communities associated with various habitats within the plant growth system (i.e., plant roots, nutrient solution, biofilms within the hydroponic systems, atmosphere, and atmospheric condensate). Plate count methods were used to enumerate and characterize microorganisms. Microscopic staining methods were used to estimate total cell densities. The primary finding was that the density and composition of microbial communities associated with controlled environmental plant growth systems are stable during long term operation. Continuous production resulted in slightly greater stability. Nutrient recycling, despite the addition of soluble organic material from the waste processing system, did not significantly increase microbial density in any of the habitats.

  7. Heavy metal and nutrient concentration in soil and plants growing on a metalliferous chromite minespoil.

    Science.gov (United States)

    Samantaray, S; Rout, G R; Das, P

    2001-10-01

    Metal contamination in soil and plant samples from a chromite mine and its adjoining regions was determined. The metal concentration varied in stem, leaf and root of different tree species. In the case of shrubs, the highest concentration of iron (18.5 mg kg(-1) was detected in the stem of Combretum roxburghii. The concentration of aluminium varied from 1.8 - 5.3 mg kg(-1) dry weight, whereas the nickel content was found to be the highest in the stem of Calotropis gigantea. In the case of herbs, chromium concentration was highest (60.9 mg kg(-1) dry weight) in Evovulus alsenoides and the lowest (18.8 mg kg(-1) dry weight) in Andrographis paniculata. There was a significant correlation observed between chromium in soil with the root of tree species like Lagerstroemia parviflora, Madhuca longifolia, Anogeissus latifolia and Haldina cordyfolia. Nickel in soil was significantly correlated with the stem and leaf of all the tree species except Chlroxylon sweitenta. Iron in soil showed correlation with the stem and leaf of Chloroxylon sweitenia. Among the shrubs (Calotropis gigantea, Combretum roxburghii and Smilax zeylancia), chromium in soil showed a correlation with the root. Nickel in soil was positively correlated with the stem and leaf of Calotropis gigantea and Combretum roxburghii. Among the herbs, chromium in the whole plant of Evolvulus alsenoids, Solanum surattense and Phyllanthus fraternus showed significant positive correlation with soil; nickel in Solanum surattense showed significant positive correlation with soil. The positive correlation coefficient was observed between iron in the whole plant and soil on Phyllanthus virgatus, Phyllanthus fraternus and Andrographis paniculata. The above information would be useful for the establishment of a vegetation cover on the minewaste heaps. PMID:11766037

  8. Heavy metal and nutrient concentration in soil and plants growing on a metalliferous chromite minespoil.

    Science.gov (United States)

    Samantaray, S; Rout, G R; Das, P

    2001-10-01

    Metal contamination in soil and plant samples from a chromite mine and its adjoining regions was determined. The metal concentration varied in stem, leaf and root of different tree species. In the case of shrubs, the highest concentration of iron (18.5 mg kg(-1) was detected in the stem of Combretum roxburghii. The concentration of aluminium varied from 1.8 - 5.3 mg kg(-1) dry weight, whereas the nickel content was found to be the highest in the stem of Calotropis gigantea. In the case of herbs, chromium concentration was highest (60.9 mg kg(-1) dry weight) in Evovulus alsenoides and the lowest (18.8 mg kg(-1) dry weight) in Andrographis paniculata. There was a significant correlation observed between chromium in soil with the root of tree species like Lagerstroemia parviflora, Madhuca longifolia, Anogeissus latifolia and Haldina cordyfolia. Nickel in soil was significantly correlated with the stem and leaf of all the tree species except Chlroxylon sweitenta. Iron in soil showed correlation with the stem and leaf of Chloroxylon sweitenia. Among the shrubs (Calotropis gigantea, Combretum roxburghii and Smilax zeylancia), chromium in soil showed a correlation with the root. Nickel in soil was positively correlated with the stem and leaf of Calotropis gigantea and Combretum roxburghii. Among the herbs, chromium in the whole plant of Evolvulus alsenoids, Solanum surattense and Phyllanthus fraternus showed significant positive correlation with soil; nickel in Solanum surattense showed significant positive correlation with soil. The positive correlation coefficient was observed between iron in the whole plant and soil on Phyllanthus virgatus, Phyllanthus fraternus and Andrographis paniculata. The above information would be useful for the establishment of a vegetation cover on the minewaste heaps.

  9. Influence of effluents from a Wastewater Treatment Plant on nutrient distribution in a coastal creek from southern Brazil

    Directory of Open Access Journals (Sweden)

    Isaac Rodrigues Santos

    2008-02-01

    Full Text Available The hypothesis that effluents treated through activated sludge process cause changes in nutrient biogeochemistry of receiving water bodies was investigated in Vieira creek, southern Brazil. Dissolved oxygen, suspended matter, and pH did not vary among the sampling stations. Nutrient, biochemical oxygen demand, and conductivity values were significantly higher downstream from the Wastewater Treatment Plant (WWTP effluents. Further downstream, nitrate concentrations were higher due to ammonium nitrification, organic matter remineralization and/or the occurrence of unidentified sources. Per capita nutrient emission factors were estimated to be 0.16 kg P.yr-1 and 4.14 kg N.yr-1. Under pristine conditions, low N:P ratios were observed, which were significantly increased downstream due to the high ammonium input. The mixing zone of the nitrogen-rich waters from Vieira creek with the phosphorus-enriched waters from Patos lagoon estuary was considered under high risk of eutrophication. The results could be useful for planning and management of WWTP-effluent receiving waters in temperate regions from developing countries.A hipótese de que efluentes urbanos tratados através de um sistema de lodo ativado causam alterações na qualidade de água de ambientes aquáticos foi investigada no Arroio Vieira, Rio Grande, RS. Amostras de água foram coletadas a montante e a jusante dos emissários de uma estação de tratamento de esgoto (ETE. Oxigênio, material em suspensão e pH não variaram espacialmente. Já os valores para os nutrientes e para a demanda bioquímica do oxigênio foram significativamente maiores a jusante dos efluentes. Mais a jusante, as concentrações de nitrato aumentam devido à nitrificação do nitrogênio amoniacal, remineralização da matéria orgânica e/ou ocorrência de outros aportes não-identificados. A emissão de nutrientes per capita após o tratamento dos efluentes domésticos (0.16 kg P ano-1 e 4.14 kg N ano-1

  10. Biomass production and control of nutrient leaching of willows using different planting methods with special emphasis on an appraisal of the electrical impedance for roots

    Energy Technology Data Exchange (ETDEWEB)

    Yang Cao

    2011-07-01

    Willow reproduction can be achieved through vertically or horizontally planted cuttings. Conventionally, plantations are established by inserting cuttings vertically into the soil. There is, however, a lack of information about the biomass production and nutrient leaching of plantations established through horizontally planted cuttings. A greenhouse experiment and a field trial were carried out to investigate whether horizontally planted Salix schwerinii cuttings have a positive effect on stem yield, root distribution and nutrient leaching in comparison with vertically planted cuttings with different planting densities. The shoots' height of horizontally planted cuttings was significantly smaller than that of vertically planted cuttings during the first two weeks after planting in the pot experiment. Thereafter, no significant effect of planting orientation on the stem biomass was observed in the two conducted experiments. In both experiments the total stem biomass increased with the planting density. It was also found that the fine root biomass and the specific root length were not affected by the planting orientation or density, while the fine root surface area and the absorbing root surface area (ARSA) were affected only by the planting density. The planting orientation did not affect the nutrient concentrations in the soil leachate, apart from SO{sub 4}-S and PO{sub 4}-P in the pot experiment. The ARSA in the pot experiment was assessed by using the earth impedance method. The applicability of this method was evaluated in a hydroponic study of willow cuttings where root and stem were measured independently. Electrical resistance had a good correlation with the contact area of the roots with the solution. However, the resistance depended strongly on the contact area of the stem with the solution, which caused a bias in the evaluation of root surface area. A similar experimental set-up with electrical impedance spectroscopy was employed to study the

  11. A new method for antimony speciation in plant biomass and nutrient media using anion exchange cartridge.

    Science.gov (United States)

    Tisarum, Rujira; Ren, Jing-Hua; Dong, Xiaoling; Chen, Hao; Lessl, Jason T; Ma, Lena Q

    2015-11-01

    A selective separation method based on anion exchange cartridge was developed to determine antimony (Sb) speciation in biological matrices by graphite furnace atomic absorption spectrophotometry (GFAAS). The selectivity of the cartridge towards antimonite [Sb(III)] and antimonate [Sb(V)] reversed in the presence of deionized (DI) water and 2mM citric acid. While Sb(V) was retained by the cartridge in DI water, Sb(III) was retained in citric acid media. At pH 6, Sb(III) and Sb(V) formed Sb(III)- and Sb(V)-citrate complexes, but the cartridge had higher affinity towards the Sb(III)-citrate complex. Separation of Sb(III) was tested at various concentrations in fresh and spent growth media and plant tissues. Our results showed that cartridge-based Sb speciation was successful in plant tissues, which was confirmed by HPLC-ICP-MS. The cartridge retained Sb(III) and showed 92-104% Sb(V) recovery from arsenic hyperaccumulator Pteris vittata roots treated with Sb(III) and Sb(V). The cartridge procedure is an effective alternative for Sb speciation, offering low cost, reproducible results, and simple Sb analysis using GFAAS.

  12. Effects of warming and altered precipitation on plant and nutrient dynamics of a New England salt marsh.

    Science.gov (United States)

    Charles, Heather; Dukes, Jeffrey S

    2009-10-01

    Salt marsh structure and function, and consequently ability to support a range of species and to provide ecosystem services, may be affected by climate change. To better understand how salt marshes will respond to warming and associated shifts in precipitation, we conducted a manipulative experiment in a tidal salt marsh in Massachusetts, USA. We exposed two plant communities (one dominated by Spartina patens-Distichlis spicata and one dominated by short form Spartina alternifora) to five climate manipulations: warming via passive open-topped chambers, doubled precipitation, warming and doubled precipitation, extreme drought via rainout shelter, and ambient conditions. Modest daytime warming increased total aboveground biomass of the S. alterniflora community (24%), but not the S. patens-D. spicata community. Warming also increased maximum stem heights of S. alterniflora (8%), S. patens (8%), and D. spicata (15%). Decomposition was marginally accelerated by warming in the S. alternifora community. Drought markedly increased total biomass of the S. alterniflora community (53%) and live S. patens (69%), perhaps by alleviating waterlogging of sediments. Decomposition was accelerated by increased precipitation and slowed by drought, particularly in the S. patens-D. spicata community. Flowering phenology responded minimally to the treatments, and pore water salinity, sulfide, ammonium, and phosphate concentrations showed no treatment effects in either plant community. Our results suggest that these salt marsh communities may be resilient to modest amounts of warming and large changes in precipitation. If production increases under climate change, marshes will have a greater ability to keep pace with sea-level rise, although an increase in decomposition could offset this. As long as marshes are not inundated by flooding due to sea-level rise, increases in aboveground biomass and stem heights suggest that marshes may continue to export carbon and nutrients to coastal

  13. COMPARATIVE EVALUATION OF THE NUTRIENT PROFILE OF THE SEEDS OF FOUR SELECTED TROPICAL PLANTS AND MAIZE

    Directory of Open Access Journals (Sweden)

    Amata, I.A

    2013-02-01

    Full Text Available This study compares the proximate composition, mineral composition and the presence of antinutritional elements of Zea mays with the seeds of four selected tropical plants which include Gmelina arborea, Terminalia catappa, Dacroydes edulis and Delonix regia. The matured fruits of the test materials were collected from farmlands in Asaba, Delta State Nigeria (6014’N and 6049’E. The seeds were carefully removed from the matured fruits and proximate analysis carried out to determine the levels of crude protein, crude fiber, energy, total ash and ether extract. The presence of the following mineral elements: calcium, magnesium, potassium, sodium, iron and zinc was determined. The presence of alkaloids and oxalate, which are anti-nutritional elements, was also determined. Significantly different means were separated using Duncan’s multiple range procedure. Significance was reported at 5% level of probability. Significant differences between the test materials were observed for all parameters measured.

  14. Overstory structure and soil nutrients effect on plant diversity in unmanaged moist tropical forest

    Science.gov (United States)

    Gautam, Mukesh Kumar; Manhas, Rajesh Kumar; Tripathi, Ashutosh Kumar

    2016-08-01

    Forests with intensive management past are kept unmanaged to restore diversity and ecosystem functioning. Before perpetuating abandonment after protracted restitution, understanding its effect on forest vegetation is desirable. We studied plant diversity and its relation with environmental variables and stand structure in northern Indian unmanaged tropical moist deciduous forest. We hypothesized that post-abandonment species richness would have increased, and the structure of contemporary forest would be heterogeneous. Vegetation structure, composition, and diversity were recorded, in forty 0.1 ha plots selected randomly in four forest ranges. Three soil samples per 0.1 ha were assessed for physicochemistry, fine sand, and clay mineralogy. Contemporary forest had less species richness than pre-abandonment reference period. Fourteen species were recorded as either seedling or sapling, suggesting reappearance or immigration. For most species, regeneration was either absent or impaired. Ordination and multiple regression results showed that exchangeable base cations and phosphorous affected maximum tree diversity and structure variables. Significant correlations between soil moisture and temperature, and shrub layer was observed, besides tree layer correspondence with shrub richness, suggesting that dense overstory resulting from abandonment through its effect on soil conditions, is responsible for dense shrub layer. Herb layer diversity was negatively associated with tree layer and shrub overgrowth (i.e. Mallotus spp.). Protracted abandonment may not reinforce species richness and heterogeneity; perhaps result in high tree and shrub density in moist deciduous forests, which can impede immigrating or reappearing plant species establishment. This can be overcome by density/basal area reduction strategies, albeit for both tree and shrub layer.

  15. Nutri-medicinal plants used in the management of HIV/AIDS opportunistic infections in western Uganda : documentation, phytochemistry and bioactivity evaluation

    OpenAIRE

    Asiimwe, Savina

    2015-01-01

    As a result of the AIDS epidemic, many people are immunocompromised and opportunistic infections are common. Medicinal plants constitute one of the fundaments of HIV treatment and are commonly used in management of HIV–related ailments, and also to counteract the side effects of antiretroviral therapy. This study documents and evaluates nutri-medicinal plants traditionally used in the management of opportunistic infections associated with HIV/AIDS in western Uganda. A six-stage process of doc...

  16. Allometric analysis reveals relatively little variation in nitrogen versus biomass accrual in four plant species exposed to varying light, nutrients, water and CO2.

    Science.gov (United States)

    Bernacchi, Carl J; Thompson, Jennifer N; Coleman, James S; McConnaughay, Kelly D M

    2007-10-01

    Nitrogen concentrations in plant tissues can vary as a function of resource availability. Altered rates of plant growth and development under varying resource availabilities were examined to determine their effects on changes in whole-plant N use efficiency (NUE). Three species of old-field annuals were grown at broadly varying light, nutrient and water levels, and four species at varying atmospheric concentrations of CO2. Study results show highly variable N accrual rates when expressed as a function of plant age or size, but similar patterns of whole-plant N versus non-N biomass accrual over a wide range of environmental conditions. However, severely light-limited plants showed increased N versus biomass accrual for two of three species, and severely nutrient-limited plants had decreased N versus biomass accrual for all species. Whole-plant N accrual versus age and N versus biomass accrual increased under saturating water for two of three species. A marginally significant, modest decrease in N versus biomass accrual was found at high CO2 levels for two of four species. Physiological adjustments in NUE, expressed as N versus biomass accrual, were limited to environments with severely limited or overabundant resources. PMID:17727413

  17. INFLUENCE OF ELEMENTAL SULFUR AND/OR INOCULATION WITH SULFUR OXIDIZING BACTERIA ON GROWTH, AND NUTRIENT CONTENT OF SORGHUM PLANTS GROWN ON DIFFERENT SOILS

    OpenAIRE

    Hala Kandil; M. H. El-Halfawi; Ibrahim, S. A.

    2011-01-01

    A pot experiment was conducted to study the effect of elemental sulfur(E.S) rates (300 and 600 ppm) and/or sulfur oxidizing bacteria (S.O.B. ATCC 8158) on growth and nutrients content of sorghum plants grown on different soils (sandy soils(I & II) and clay loam soil).The obtained results could be summarized in the followings:Sorghum plants:Significant increases over the control were observed in fresh and dry weights of sorghum plant as well as its content of SO4=, N, P, K, Fe, Mn, Zn and Cu b...

  18. Effect of calcium carbonate on cadmium and nutrients uptake in tobacco (Nicotiana tabacum L.) planted on contaminated soil.

    Science.gov (United States)

    Zeng, Wei-Ai; Li, Fan; Zhou, Hang; Qin, Xiao-Li; Zou, Zi-Jin; Tian, Tao; Zeng, Min; Liao, Bo-Han

    2016-01-01

    In the present study, calcium carbonate (CaCO3) was applied to Cd-contaminated soil at rates of 0, 0.5 and 1.0 g kg(-1). The effect of CaCO3 on soil pH, organic matter, available Cd, exchangeable Cd and level of major nutrients in a tobacco field and on accumulation of various elements in tobacco plants was determined. The results showed that CaCO3 application significantly increased the pH level, available P and exchangeable Ca but decreased organic matter, available Cd, exchangeable Cd, available heavy metals (Fe, Mn, Zn and Cu) and available K in soil. Additionally, CaCO3 application substantially reduced Cd accumulation in tobacco roots, stems, upper leaves, middle leaves and lower leaves, with maximum decrease of 22.3%, 32.1%, 24.5%, 22.0% and 18.2%, respectively. There were large increase in total Ca and slight increases in total N and K but decrease to varying degrees in total Fe, Cu and Zn due to CaCO3 application. CaCO3 had little effect on total P and Mn levels in tobacco leaves.

  19. Effect of Glomus mosseae and plant growth promoting rhizomicroorganisms (PGPR's on growth, nutrients and content of secondary metabolites in Begonia malabarica Lam.

    Directory of Open Access Journals (Sweden)

    Thangavel Selvaraj

    2008-10-01

    Full Text Available Begonia malabarica Lam. (Begoniaceae is one of the important medicinal plants whose main secondary metabolites are luteolin, quercetin and β-sitosterol. The leaves are used for the treatment of respiratory tract infections, diarrhoea, blood cancer and skin diseases. A study was undertaken to determine the effect of arbuscular mycorrhizal (AM fungus, Glomus mosseae, and some plant growth promoting rhizomicro-organisms (PGPR's on the growth, biomass, nutrients, and content of secondary metabolites of B. malabarica plant under green house conditions. Various plant growth parameters (total plant biomass, mycorrhizal parameter, shoot and root phosphorus, mineral content (potassium, iron, zinc, and copper, and secondary metabolites (total phenols, ortho-dihydroxy phenols, tannins, flavonoids, and alkaloids were determined and found to vary with different treatments. Among all the treatments, plants inoculated with 'microbial consortium' consisting of Glomus mosseae + Bacillus coagulans + Trichoderma viride performed better than with other treatments or uninoculated control plants. The results of this experiment clearly indicated that inoculation of B. malabarica with G. mosseae along with PGPR's enhanced its growth, biomass yield, nutrients and secondary metabolites.

  20. Total primary production and the balance between benthic and pelagic plants in different nutrient regimes in a shallow estuary

    DEFF Research Database (Denmark)

    Markager, Svend Stiig; Krause-Jensen, Dorte; Dalsgaard, Tage

    on a large monitoring data set in combination with historical information we have quantified and compared the benthic and the pelagic primary production along nutrient gradients in space and time for the shallow estuary Limfjorden, Denmark. As expected, increases in nutrient load stimulated the pelagic...... production at the expense of the benthic. Phytoplankton showed a strong positive response to increased nutrient concentrations while benthic primary producers were shaded. The ecosystem thus experienced a regime shift from benthic to pelagic dominance of GPP with increasing load. However, as nutrient load...

  1. Application of integrated computer-aided engineering for design, construction and operation of nuclear power plant: practice and prospects

    International Nuclear Information System (INIS)

    Computer-aided-engineering (CAE) is an essential tool for modern nuclear power plant engineering. It greatly varies in definition, application, and technology from project to project and company to company. Despite the fast growing technologies and applications of CAE, its complexity and variety have thrown another puzzle to management of a nuclear project. Without due consideration of an integrated CAE system in early planning stage, the overall efficiency of a nuclear project would slow down due to the inefficiency in data flow. In this application are discussed under the Korea Power engineering Company philosophy in CAE approach

  2. Intercropping of green garlic (Allium sativum L. induces nutrient concentration changes in the soil and plants in continuously cropped cucumber (Cucumis sativus L. in a plastic tunnel.

    Directory of Open Access Journals (Sweden)

    Xuemei Xiao

    Full Text Available A pot-based experiment was conducted to investigate nutrient concentrations in cucumber plants intercropped with various amounts of green garlic. In addition, the soil nutrient contents were studied over two consecutive growing seasons. The results revealed that the accumulation of biomass and the nutritional elements nitrogen (N, phosphorus (P, potassium (K, calcium (Ca and manganese (Mn in cucumber plants were significantly increased for intercropping treatments during the two growing seasons compared to monoculture. Conversely, magnesium (Mg concentrations were decreased in the cucumber plants. Shoot iron (Fe concentrations decreased whereas root Fe concentrations increased in the intercropping system. Shoot and root zinc (Zn concentrations decreased during the fall of 2011 but increased during the spring of 2012. Soil organic matter and available N, P and K were significantly increased as the proportion of intercropped green garlic increasing. Medium levels of intercropping green garlic improved cucumber nutrient concentrations the most. The regression analysis showed that the concentrations of most elements were significantly related to the amounts of garlic bulbs, especially the microelements in the spring 2011. The available soil N and organic matter were linearly related to the amounts of garlic bulbs. The results indicate that the nutritional status of the soil and plants of continuously cropped cucumber could be improved by intercropping with green garlic.

  3. [Nutrient Characteristics and Nitrogen Forms of Rhizosphere Soils Under Four Typical Plants in the Littoral Zone of TGR].

    Science.gov (United States)

    Wang, Xiao-feng; Yuan, Xing-zhong; Liu, Hong; Zhang, Lei; Yu, Jian-jun; Yue, Jun-sheng

    2015-10-01

    The Three Gorges Reservoir (TGR), which is the largest water conservancy project ever built in tne world, produced a drawdown area of about 348.93 km2 because of water level control. The biological geochemical cycle of the soil in the drawdown zone has been changed as the result of long-term winter flooding and summer drought and vegetation covering. The loss of soil nitrogen in the drawdown zone poses a threat to the water environmental in TGR. Pengxi river, is an important anabranch, which has the largest drawdown area has been selected in the present study. The four typical vegetation, contained Cynodon dactylon, Cyperus rotundus, Anthium sibiricum and Zea mays L. as the control, were studied to measure nutrient characteristics and nitrogen forms of rhizosphere and non-rhizosphere soils in three distribution areas with different soil types (paddy soil, purple soil and fluvo-aquic soils). The variables measured included organic matter (OM), total nitrogen (TN), total phosphorus (TP), total potassium (TK), hydrolysis N, available P and available K, pH, ion-exchangeable N (IEE-N), weak acid extractable N (CF-N) , iron-manganese oxides N (IMOF-N), organic matter sulfide N (OSF-N), added up four N forms for total transferable N (TF-N) and TN minus TF-N for non-transferable N (NTF-N). The results showed: (1) pH of rhizosphere soil was generally lower than that of non-rhizosphere soil under different vegetation in different type soils because the possible organic acid and H+ released form plant roots and cation absorption differences, and the OM, TP, TN and hydrolysis N of rhizosphere soil were generally higher than those of non-rhizosphere soil, and that the enrichment ratio (ER) of all the four nutrient indicators showed Cyperus rotundus > Cynodon dactylon > Zea mays L. > Anthium sibiricum. Available P showed enrichment in the rhizosphere of three natural vegetations but lose under corn, and available K, TK showed different ER in different conditions. (2) IEF-N CF

  4. Produção de fitomassa e acúmulo de nutrientes na parte aérea do sorgo de Guiné gigante Biomass production and accumulation of nutrients in shoots of Giant Guinea sorghum plants

    Directory of Open Access Journals (Sweden)

    Gustavo Pavan Mateus

    2011-12-01

    Full Text Available A escolha de espécies com elevada produção de fitomassa para utilização como plantas de cobertura no sistema de semeadura direta é extremamente importante em regiões de inverno seco. O objetivo deste trabalho foi avaliar a produção de fitomassa e acúmulo de nutrientes na parte aérea das plantas de sorgo Guiné gigante (Sorghum bicolor subespécie bicolor raça guinea, semeados em diferentes épocas de semeadura. Foi utilizado um delineamento em blocos ao acaso, com seis tratamentos e quatro repetições. Os tratamentos foram constituídos por seis épocas de semeadura (25/09/2000; 25/10/2000; 24/11/2000; 22/12/2000; 22/02/2001 e 03/04/2001. Por ocasião do florescimento das plantas, avaliou-se a produção de matéria seca, o número e diâmetro de colmos e a altura das plantas. Também foi determinado o teor e acúmulo de macro e micronutrientes, além da relação C/N. O ciclo das plantas diminuiu com o atraso da época de semeadura, e, conseqüentemente, a produção de matéria seca e a relação C/N também foram menores. Comportamento contrário foi observado para o teor de nutrientes. O sorgo de Guiné gigante é sensível ao fotoperíodo e, portanto, semeaduras mais tardias ocasionam diminuição do crescimento das plantas, produção de biomassa e acúmulo de nutrientes. Esta espécie consiste em uma boa opção para cultivo como planta de cobertura no sistema de semeadura direta devido a alta produção de fitomassa e ciclagem de N, P e K.Choosing species with high phytomass production to be cropped in no tillage system is extremely important in dry winter regions. The purpose of this research was to study plant biomass production and accumulation of nutrients in shoots of Giant Guinea sorghum plants (Sorghum bicolor subspecies bicolor race Guinea sown in different sowing dates. A randomized complete block design with six treatments and four replications was performed. Treatments consisted of six sowing dates (09/25/2000; 10

  5. Nutrient Control Seminars

    Science.gov (United States)

    These Nutrient Control Seminars will present an extensive state-of-the-technology review of the engineering design and operation of nitrogen and phosphorous control technologies and techniques applied at municipal wastewater treatment plants (WWTPs). These seminars will present ...

  6. Leaf-mining by Phyllonorycter blancardella reprograms the host-leaf transcriptome to modulate phytohormones associated with nutrient mobilization and plant defense.

    Science.gov (United States)

    Zhang, Hui; Dugé de Bernonville, Thomas; Body, Mélanie; Glevarec, Gaëlle; Reichelt, Michael; Unsicker, Sybille; Bruneau, Maryline; Renou, Jean-Pierre; Huguet, Elisabeth; Dubreuil, Géraldine; Giron, David

    2016-01-01

    Phytohormones have long been hypothesized to play a key role in the interactions between plant-manipulating organisms and their host-plants such as insect-plant interactions that lead to gall or 'green-islands' induction. However, mechanistic understanding of how phytohormones operate in these plant reconfigurations is lacking due to limited information on the molecular and biochemical phytohormonal modulation following attack by plant-manipulating insects. In an attempt to fill this gap, the present study provides an extensive characterization of how the leaf-miner Phyllonorycter blancardella modulates the major phytohormones and the transcriptional activity of plant cells in leaves of Malus domestica. We show here, that cytokinins strongly accumulate in mined tissues despite a weak expression of plant cytokinin-related genes. Leaf-mining is also associated with enhanced biosynthesis of jasmonic acid precursors but not the active form, a weak alteration of the salicylic acid pathway and a clear inhibition of the abscisic acid pathway. Our study consolidates previous results suggesting that insects may produce and deliver cytokinins to the plant as a strategy to manipulate the physiology of the leaf to create a favorable nutritional environment. We also demonstrate that leaf-mining by P. blancardella leads to a strong reprogramming of the plant phytohormonal balance associated with increased nutrient mobilization, inhibition of leaf senescence and mitigation of plant direct and indirect defense.

  7. Synergistic Effects of Plant Growth Promoting Rhizobacteria and Chitosan on In Vitro Seeds Germination, Greenhouse Growth, and Nutrient Uptake of Maize (Zea mays L.)

    OpenAIRE

    Agbodjato, Nadège A.; Pacôme A. Noumavo; Adolphe Adjanohoun; Léonce Agbessi; Lamine Baba-Moussa

    2016-01-01

    This study aimed to assess the effects of three plant growth promoting rhizobacteria (PGPR) and chitosan either singly or in combination on maize seeds germination and growth and nutrient uptake. Maize seeds were treated with chitosan and bacterial solution. The germination and growth tests were carried out in square Petri dishes and plastic pots. The combination chitosan-A. lipoferum-P. fluorescens has increased the seeds vigor index up to 36.44% compared to the control. In comparison to the...

  8. Distribution and the Correlativety of Plant Nutrient Element in Carex lasiocarpa Wetland%毛果苔草湿地植物营养元素分布及其相关性

    Institute of Scientific and Technical Information of China (English)

    何池全

    2002-01-01

    The distribution of nutrient was different for different dominant plant species in C.lasiocarpa wetland ecosystem.The distribution of nutrient was also different for different plant components in Carex lasiocarpa.The gross nutrient element distribution for N,P,K,Ca,Mg,Cu and Fe in C.lasiocarpa was in order of:redicula>rhizoma>spike>blade>sheath>inflorescence.But this rule for the gross nutrient element distribution of Zn and Mn was not obvious.The seasonal dynamic trends of nutrient element contents in dead stand were decreaseing.The liberation of general elements N,P,K and microelement Mn were continuous,and with monotone downtrend;the liberation rate of microelement Cu,Zn,Fe were faster than other elemnts,while the trend for Ca was all through incremental.There were different degrees of correlativity among different nutrient elements in C. Lasiocarpa.

  9. NOVA: a computer-aided system to monitor proper behaviour of plant components in the Gundremmingen nuclear power plant (KRB II)

    International Nuclear Information System (INIS)

    In the Gundremmingen nuclear power plant (KRB II), a computer-aided evaluation system for signal messages of the process computer has been developed to application maturity and installed. The self-acting system checks sequences of automatic operations for their proper function. Results are available only minutes after an action has happened. The high level of detail permits to detect faults before they result in system failure or loss. Since all short-time safety functions are performed automatically, these consistent and detailed checks increase the safety substantially. In addition, the NOVA-system makes it possible to search all over the signal message report for certain signals as well as to produce an overview protocol of the current (or a past) status of the plant. (orig.)

  10. Scale-dependent bi-trophic interactions in a semi-arid savanna: how herbivores eliminate benefits of nutrient patchiness to plants.

    Science.gov (United States)

    van der Waal, Cornelis; de Kroon, Hans; van Langevelde, Frank; de Boer, Willem F; Heitkönig, Ignas M A; Slotow, Rob; Pretorius, Yolanda; Prins, Herbert H T

    2016-08-01

    The scale of resource heterogeneity may influence how resources are locally partitioned between co-existing large and small organisms such as trees and grasses in savannas. Scale-related plant responses may, in turn, influence herbivore use of the vegetation. To examine these scale-dependent bi-trophic interactions, we varied fertilizer [(nitrogen (N)/phosphorus (P)/potassium (K)] applications to patches to create different scales of nutrient patchiness (patch size 2 × 2 m, 10 × 10 m, or whole-plot 50 × 50 m) in a large field experiment in intact African savanna. Within-patch fertilizer concentration and the total fertilizer load per plot were independently varied. We found that fertilization increased the leaf N and P concentrations of trees and grasses, resulting in elevated utilization by browsers and grazers. Herbivory off-take was particularly considerable at higher nutrient concentrations. Scale-dependent effects were weak. The net effect of fertilization and herbivory was that plants in fertilized areas tended to grow less and develop smaller rather than larger standing biomass compared to plants growing in areas that remained unfertilized. When all of these effects were considered together at the community (plot) level, herbivory completely eliminated the positive effects of fertilization on the plant community. While this was true for all scales of fertilization, grasses tended to profit more from coarse-grained fertilization and trees from fine-grained fertilization. We conclude that in herbivore-dominated communities, such as the African savanna, nutrient patchiness results in the herbivore community profiting rather more than the plant community, irrespective of the scale of patchiness. At the community level, the allometric scaling theory's prediction of plant-and probably also animal-production does not hold or may even be reversed as a result of complex bi-trophic interactions. PMID:27094543

  11. Defining the distribution of arsenic species and plant nutrients in rice ( Oryza sativa L.) from the root to the grain

    Science.gov (United States)

    Seyfferth, Angelia L.; Webb, Samuel M.; Andrews, Joy C.; Fendorf, Scott

    2011-11-01

    The transport mechanisms of As from contaminated soil or irrigation water into roots and subsequently into grain, and the As species distribution—a toxicity determinant, is critical for assessing health risks imposed by As. However, the commonly-employed extraction of plant material with trifluoroacetic acid (TFA) has not proven successful in preserving inorganic As species. Synchrotron-based spectroscopic techniques are useful for discerning elemental distributions and chemical speciation of elements in situ. Here, we both characterize the mineral phases of Fe coatings on rice roots, and quantify plant nutrients and As species in situ on roots and grain samples. Arsenic in rice grains was present in bran layers as oxidized As (69-88% as As(V) i and 12-31% as DMA) and in the germ as a mixture of As(V) i and As(III) i, but was non-detected from the endosperm, which is consistent with previous findings. The extent of Fe coatings on rice roots was variable and, when present, consisted of lepidocrocite (γ-FeOOH), goethite (α-FeOOH) and ferrihydrite (Fe(OH) 3· nH 2O). Arsenic was co-located with root Fe coatings, but our findings indicate that Fe is not a direct interceptor of As uptake, and is rather a bulk scavenger mostly near the air-water interface. On whole root mounts with Fe plaque, arsenic was present as mixed species of As(V) i (44-66%) and As(III) i (34-56%). Within a root cross-section, oxidized As species were dominant in the xylem (86% as As(V) i and 14% as DMA) whereas mostly reduced species (71% as As(III) i, 29% as AsGlu 3) resided within a vacuole adjacent to the xylem. This finding contrasts the prevailing view that As(V) i is rapidly reduced in roots and transported to shoots as As(III) i, and points to the importance of interspecies differences in As-uptake dynamics.

  12. Effect of gamma radiation on wheat plant growth due to impact on gas exchange characteristics and mineral nutrient uptake and utilization

    International Nuclear Information System (INIS)

    The experiment was conducted to determine the effect of gamma radiation on plant growth and development, flag leaf gas exchange characteristics such as net photosynthetic rate (PN), stomatal conductance (gs), and transpiration rate (E) and activity of key carbon and nitrogen assimilating enzymes like Rubisco, starch synthase (SS) and nitrate reductase (NR) in field grown wheat. Grains of cultivar PBW-343 were exposed to a 60Co (Cobalt-60) gamma source at a dose range from 0 to 500 Gy (Gray). Gas exchange characteristics of flag leaf were measured using Infrared Gas Analyzer (IRGA), while mineral nutrients were analyzed spectrophotometrically. Our results show that an irradiation treatment, in general, caused an improvement in plant growth and yield characteristics such as shoot and root mass, root length and surface area, leaf area and chlorophyll SPAD index, tiller number and grain yield. However, irradiation exceeding 5 Gy reduced the magnitude of radiation advantage for most of the investigated physiological and biochemical traits. No germination was recorded at 500 Gy irradiation dose. A dose-dependant increase in shoot Fe in radiated plants up to 25 Gy reflected its higher plant root to shoot translocation which may yield micronutrient rich grains. At higher dose of 100 Gy, there was a drastic reduction in flag leaf membrane stability index (MSI), photosynthesis, Rubisco, NR, and nutrients like K, P, Mg, Fe, and Zn. Starch synthase enzyme activity was unaffected by gamma irradiation indicating that the negative effect of high dose (100 Gy) on the grain yield were caused by the adverse effect of radiation on the gas exchange attributes particularly photosynthesis, carbon, and nitrogen assimilation efficiency and the plant uptake of mineral nutrients. The study concludes that gamma radiation at a low dose (25 Gy or lower) stimulates, while a high dose (100 Gy and above) inhibits plant growth and development of wheat. The adverse effect at 100 Gy and beyond could

  13. Accident management advisor system (AMAS): A Decision Aid for Interpreting Instrument Information and Managing Accident Conditions in Nuclear Power Plants

    International Nuclear Information System (INIS)

    Accident management can be characterized as the optimized use of all available plant resources to stop or mitigate the progression of a nuclear power plant accident sequence which may otherwise result i n reactor vessel and containment failure. It becomes important under conditions that have low probability of occurring. However, given that these conditions may lead to extremely severe financial consequences and public health effects, it is now recognized that it is important for the plant owners to develop realistic strategies and guidelines. Recent studies have classified accident management strategies as: - the use of alternative resources (i.e., air, water, power), - the use of alternative equipment (i.e., pumps, water lines, generators), the use of alternative actions (i.e., manual depressurization and injection, 'feed and bleed', etc.) The matching of these alternative actions and resources to an actual plant condition represents a decision process affected by a high degree of uncertainty in several of its fundamental inputs. This uncertainty includes the expected accident progression phenomenology (e.g., the issue of high pressure core ejection from the vessel in a PWR plant with possible 'direct containment heating'), as well as the expected availability and behavior of plant systems and of plant instrumentation. To support the accident management decision process with computer-based decision aids, one needs to develop accident progression models that can be stored in a computer knowledge based and retrieved at will for comparison with actual plant conditions, so that these conditions can be recognized and dealt with accordingly. Recent Probabilistic Safety Assessments (PSAs) [1] show the progression of a severe accident through and beyond the core melt stages via multi-branch accident progression trees. Although these 'accident tree models' were originally intended for accident probability assessment purposes, they do provide a basis of initial information

  14. Exploitation of nutrient- and C-rich paleosols by deep rooting plants in Dutch drift- and coversands

    Science.gov (United States)

    Gocke, Martina; Kessler, Fabian; van Mourik, Jan; Jansen, Boris; Wiesenberg, Guido L. B.

    2015-04-01

    Plant roots are commonly assumed to be most abundant in topsoil, with strongly decreasing frequencies in underlying soil horizons with incrasing depth and almost absence of roots below the uppermost few dm due to unfavorable environmental conditions in terms of e.g. aeration, nutrient availability or water, that hamper root growth. It still remains unknown, to which extent roots might be able to exploit deeper parts of soils and underlying soil parent material as well as burried paleosols. The study site is located in SE Netherlands. Undisturbed oak forests developed about 200 years ago on stabilized driftsand, deposited on a plaggic Anthrosol after approximately 700 years of agricultural use. The soil profile, consisting of the recent initial Podzol in driftsand, overlying 1.1 m thick plaggic deposits that were established in a 0.5 m thick residual Podzol in coversand, was excavated in a pit of 2.3 m depth. Living and dead roots were counted throughout the profile on both, the vertical wall and horizontal levels. Additionally, soil or sediment samples free of visible root remains were collected in depth intervals between 0.05 m and 0.15 m from topsoil down to the coversand. A multi-proxy approach, including assessment of bulk elemental composition of soil, sediments and paleosol and molecular structure of organic matter therein, organic carbon contents, bulk density and pH was applied in order to comprehensively describe the varying environmental conditions within the soil profile and in transects from roots to root-free material. The burried agricultural soil revealed low density and high organic carbon contents compared to the coversand parent material, and especially in its lower part, high phosphorous contents. In contrast, the burried Podzol was characterized by completely different geochemical and physical properties, like increasing pH with depth and high iron and aluminium contents. In the recent initial Podzol, fine roots (≤ 2 mm), deriving from both

  15. EFECTOS BENEFICOS DE BACTERIAS RIZOSFÉRICAS EN LA DISPONIBILIDAD DE NUTRIENTES EN EL SUELO Y LA ABSORCIÓN DE NUTRIENTES POR LAS PLANTAS A REVIEW ON BENEFICIAL EFFECTS OF RHIZOSPHERE BACTERIA ON SOIL NUTRIENT AVAILABILITY AND PLANT NUTRIENT UPTAKE

    Directory of Open Access Journals (Sweden)

    Nelson Walter Osorio Vega

    2007-06-01

    participan en el biocontrol de patógenos de plantas. Debido a estos beneficios sobre la nutrición y el crecimiento vegetal estas bacterias rizosfericas han sido llamadas “rizobacterias promotoras del crecimiento vegetal” (PGPR, por sus siglas en inglés.This paper is a review of the benefits of rhizosphere bacteria on plant nutrition. The interaction between plant and phosphate-solubilizing- bacteria is explained in more detail and used as model to illustrate the role that rhizosphere bacteria play on soil nutrient availability. Environmental conditions of rhizosphere and mycorrhizosphere are also discussed. Plants can release carbohydrates, aminoacids, lipids, and vitamins trough their roots to stimulate microorganisms in the soil. The soil volume affected by these root exudates, aproximately 2 mm from the root surface, is termed rhizosphere. Rhizosphere bacteria participate in the geochemical cycling of nutrients and determine their availability for plants and soil microbial community. For instance, in the rhizosphere there are organisms able to fix N2 forming specialized structures (e.g., Rhizobium and related genera or simply establishing associative relationships (e.g. Azospirillium, Acetobacter. On the other hand, bacterial ammonifiers and nitrifiers are responsible for the conversion of organic N compounds into inorganic forms (NH4+ and NO3- which are available for plants. Rhizosphere bacteria can also enhance the solubility of insoluble minerals that control the availability of phosphorus (native or applied using for that organic acids or producing phosphatases that act on organic phosphorus pools. The availability of sulfur, iron and manganese are also affected by redox reactions carried out by rhizosphere bacteria. Likewise, chelating agents can control the availability of micronutrients and participate in mechanisms of biocontrol of plant pathogens. Due to these and other benefits on plant growth, some rhizosphere bacteria have been called Plant Growth

  16. Off-design thermodynamic performances on typical days of a 330 MW solar aided coal-fired power plant in China

    International Nuclear Information System (INIS)

    Highlights: • Optical loss and heat loss of solar field under different turbine load were investigated. • Off-design thermodynamic feature was disclosed by analyzing several operational parameters. • Possible schemes was proposed to improve the net solar-to-electricity efficiency. - Abstract: The contribution of mid-temperature solar thermal power to improve the performance of coal-fired power plant is analyzed in the present paper. In the solar aided coal-fired power plant, solar heat at <300 °C is used to replace the extracted steam from the steam turbine to heat the feed water. In this way, the steam that was to be extracted could consequently expand in the steam turbine to boost output power. The advantages of a solar aided coal-fired power plant in design condition have been discussed by several researchers. However, thermodynamic performances on off-design operation have not been well discussed until now. In this paper, a typical 330 MW coal-fired power plant in Sinkiang Province of China is selected as the case study to demonstrate the advantages of the solar aided coal-fired power plant under off-design conditions. Hourly thermodynamic performances are analyzed on typical days under partial load. The effects of several operational parameters, such as solar irradiation intensity, incident angle, flow rate of thermal oil, on the performance of solar field efficiency and net solar-to-electricity efficiency were examined. Possible schemes have been proposed for improving the solar aided coal-fired power plant on off-design operation. The results obtained in the current study could provide a promising approach to solve the poor thermodynamic performance of solar thermal power plant and also offer a basis for the practical operation of MW-scale solar aided coal-fired power plant

  17. Nutrição mineral e extração de nutrientes de planta de milho irrigada com água salina Mineral nutrition and extraction of nutrients by corn plant irrigated with saline water

    Directory of Open Access Journals (Sweden)

    Geocleber G. de Sousa

    2010-11-01

    Full Text Available A utilização de água salina na agricultura irrigada pode causar desequilíbrio nutricional e inibição competitiva na absorção de nutrientes. O objetivo deste trabalho foi avaliar os efeitos da salinidade da água de irrigação sobre o acúmulo, os totais extraídos e a distribuição de nutrientes em plantas de milho. O estudo foi conduzido em condições de campo em um Argissolo Vermelho Amarelo na estação seca, no delineamento em blocos ao acaso, com cinco repetições, de setembro a dezembro de 2007, em Fortaleza, CE. As plantas de milho foram coletadas aos 90 dias após a semeadura e realizadas as seguintes avaliações: teores, extração e distribuição de elementos minerais nas diferentes partes da planta (folha, colmo, grão e sabugo. O aumento da salinidade da água de irrigação aos 90 dias após a semeadura, inibiu o acúmulo de potássio nas folhas e de magnésio e fósforo nos grãos. A extração dos nutrientes e sódio pelas plantas irrigadas com água de salinidade variando de 0,8 a 3,6 dS m-1 obedeceu à seguinte ordem decrescente: K > Mg > Ca > P > Na; no tratamento de maior salinidade (5,0 dS m-1 a sequência de extração foi: K > Ca > Na > P > Mg.The use of saline water in irrigated agriculture can cause nutritional imbalance and competitive inhibition in the absorption of nutrients. The objective of this study was to evaluate the effects of salinity of irrigation water on the accumulation, the total absorption, and the distribution of mineral elements in maize plants. The study was conducted under field conditions in an Yellow Red Argisol in the dry season, in the randomized blocks design with five replicates during September to December 2007 in Fortaleza - CE. The maize plants were collected at 90 days after sowing, and the following assessments were made: content, extraction and distribution of mineral elements in the plant parts (leaf, stem, grain and elderberry. The increase of salinity of irrigation water

  18. Biogas plants site selection integrating Multicriteria Decision Aid methods and GIS techniques: A case study in a Portuguese region

    International Nuclear Information System (INIS)

    This work addresses the problem of determining the most suitable sites for locating biogas plants using dairy manure as feedstock, specifically in the Entre-Douro-e-Minho Region in Portugal. A Multicriteria Spatial Decision Support System is developed to tackle this complex multicriteria decision-making problem, involving constraints and many environmental, economic, safety, and social factors. The approach followed combines the use of a Geographic Information System (GIS) to manage and process spatial information with the flexibility of Multicriteria Decision Aid (MCDA) to assess factual information (e.g. soil type, slope, infrastructures) with more subjective information (e.g. expert opinion). The MCDA method used is ELECTRE TRI, an outranking-type method that yields a classification of the possible alternatives. The results of the performed analysis show that the use of ELECTRE TRI is suitable to address real-world problems of land suitability, leading towards a flexible and integrated assessment. - Highlights: • We present a spatial multi-criteria methodology to decide biogas plants siting. • Methodology combines ELECTRE TRI with GIS for spatial analysis. • Constraints and environmental, economic and social factors have been identified. • The methodology is illustrated with application to a case study in the EDM Region. • A suitability map was generated, identifying the most suitable biogas plant locations

  19. Variability of δ15N in soil and plants at a New Zealand hill country site: correlations with soil chemistry and nutrient inputs

    International Nuclear Information System (INIS)

    This study investigated 15N enrichment and nutrient cycling in hill country used for semi-extensive pastoral agriculture, at a site where pre-European seabird breeding occurred. Soil (>15 cm) and plant samples were taken from 18 ridgeline and sideslope transects. Three stock camps (locations which grazing animals frequent) were identified within the study area, two on the ridgeline and one on the sideslope. Soil 15N enrichment was greatest at stock camps, and lowest where stock input was minimal. Soil natural abundance 15N (815N) was therefore an index of stock nutrient inputs. Soil δ15N increased with decreasing C:N ratio, consistent with N loss through volatilisation and/or nitrate leaching from net mineralisation. Plant δ15N from stock camps was lower than its associated soil, implying that 15N enrichment of plant-available N was lower than that of total soil N. However, the correlation between plant δ15N and soil δ15N varied between stock camps, indicating differences in N cycling. Olsen P was higher at stock camps, although again differences were found between stock camps. Total P and N were correlated neither with stock camps nor topography, but were higher than expected from parent material concentrations and literature results, respectively. It is postulated that significant contributions of both elements from former seabird breeding remain in the soil. Copyright (2000) CSIRO Publishing

  20. Productivity and accumulation of nutrients in plants of jambu, under mineral and organic fertilizationProdutividade e acúmulo de nutrientes em plantas de jambu, sob adubação orgânica e mineral

    Directory of Open Access Journals (Sweden)

    Luciana da Silva Borges

    2013-03-01

    Full Text Available The organic production is a system that allows achieving good levels of productivity, while avoiding the risks of chemical contamination of farmers, consumers and the environment. Because jambu plant is widely used as alternative medicine and cosmetics industries, has been increasing interest in its cultivation. The aim of this study was to analyze the biomass, accumulation of nutrient, productivity and determine the pesticide residue in plant jambu when grown under organic and mineral fertilization. The experiment was conducted at the Experimental Farm São Manuel, FCA / UNESP. The experiment was conducted at São Manuel Experimental Farm UNESP. The statistical was arranged in the randomized block design, in a 2 x 6 factorial scheme, two sources of fertilizers (organic and mineral and six doses of nitrogen, with four replications. The characteristics evaluated were plant height, fresh and dry weight, nutrients of accumulation in shoots and productivity. Mineral fertilizer gave higher biomass, productivity and accumulation of N and K in relation to organic fertilizer used. It is recommended the dose of 90g m-2 of urea as appropriate to obtain these results. However the organic fertilization favored the accumulation of phosphorus in plants jambu in relation the mineral fertilizer, and the dose of 10 kg m-2 of cattle manure recommended to achieve this result in plants jambu. We did not detect the presence of phosphorous and carbamate on leaves of jambu under organic and mineral fertilization. However, we observed the presence of chlorine in the leaves used for the two fertilizations.A produção orgânica é um sistema que permite alcançar bons níveis de produtividade, evitando ao mesmo tempo os riscos de contaminação química do agricultor, dos consumidores e do meio ambiente. Pelo fato da planta de jambu ser bastante utilizada como medicamento alternativo e por indústrias de cosméticos, vem aumentando o interesse pelo seu cultivo. Assim, o

  1. User's manual for the computer-aided plant transient data compilation

    International Nuclear Information System (INIS)

    The objective of this project is the compilation of data for nuclear power plants needed for transient analyses. The concept has been already described. This user's manual gives a detailed description of all functions of the dialogue system that supports data acquisition and retrieval. (orig.)

  2. Impact of defoliation intensities on plant biomass, nutrient uptake and arbuscular mycorrhizal symbiosis in Lotus tenuis growing in a saline-sodic soil.

    Science.gov (United States)

    García, I; Mendoza, R

    2012-11-01

    The impact of different defoliation intensities on the ability of Lotus tenuis plants to regrowth, mobilise nutrients and to associate with native AM fungi and Rhizobium in a saline-sodic soil was investigated. After 70 days, plants were subjected to 0, 25, 50, 75 and 100% defoliation and shoot regrowth was assessed at the end of subsequent 35 days. Compared to non-defoliated plants, low or moderate defoliation up to 75% did not affect shoot regrowth. However, 100% treatment affected shoot regrowth and the clipped plants were not able to compensate the growth attained by non-defoliated plants. Root growth was more affected by defoliation than shoot growth. P and N concentrations in shoots and roots increased with increasing defoliation while Na(+) concentration in shoots of non-defoliated and moderately defoliated plants was similar. Non-defoliated and moderately defoliated plants prevented increases of Na(+) concentration in shoots through both reducing Na(+) uptake and Na(+) transport to shoots by accumulating Na(+) in roots. At high defoliation, the salinity tolerance mechanism is altered and Na(+) concentration in shoots was higher than in roots. Reduction in the photosynthetic capacity induced by defoliation neither changed the root length colonised by AM fungi nor arbuscular colonisation but decreased the vesicular colonisation. Spore density did not change, but hyphal density and Rhizobium nodules increased with defoliation. The strategy of the AM symbiont consists in investing most of the C resources to preferentially retain arbuscular colonisation as well as inoculum density in the soil. PMID:22512871

  3. Cadmium uptake by wheat from sewage sludge used as a plant nutrient source: a comparative study using flameless atomic absorption and neutron activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Linnman, L.; Andersson, A.; Nilsson, K.O.; Lind, B.; Kjellstroem, T.; Friberg, L.

    1973-07-01

    Wheat has been grown in test pots at four different sewage sludge concentrations and three different pH levels in order to study the cadmium uptake from sewage sludge. The sludge contained 10 parts per million (ppm) cadmium, which is below the average cadmium concentration in sludge from Swedish sewage sludge plants. The analysis of cadmium in wheat has been performed by two methods, atomic absorption and neutron activation analysis, and good agreement was found between results from the methods. The results show that the cadmium uptake increases strongly with increasing sewage sludge concentrations. It can be concluded beyond any doubt that cadmium from sewage sludge used as a plant nutrient source is resorbed by plants. The pH of the soil was found to be of great importance for the uptake of cadmium. Lower pH gave greater cadmium uptake. 7 references, 1 figure, 4 tables.

  4. Densidade de plantio na produtividade e nos teores de nutrientes nas folhas e frutos da bananeira cv. Thap Maeo Plants density on yield and nutrients concentration in leaves and fruits of banana cv. Thap Maeo

    Directory of Open Access Journals (Sweden)

    Adônis Moreira

    2007-01-01

    Full Text Available O objetivo deste estudo foi avaliar o efeito da densidade de plantio na produtividade, tempo de colheita e teores dos nutrientes nas folhas e nos frutos de bananeira cv. Thap Maeo (AAB cultivada em Manaus (AM. O delineamento experimental foi o de blocos casualizados, com três repetições. Os tratamentos foram constituídos pelos fatores: três densidades de plantio (1.111; 1.667 e 3.333 plantas ha-1 e duas épocas de colheita (primeiro e segundo ciclos. Os resultados do primeiro e segundo ciclos mostraram incremento significativo da produtividade, com aumento da densidade de plantio. O tempo médio para colheita dos cachos foi menor na densidade de 1.111 plantas ha-1 (1º ciclo, 338 e 2º ciclo, 401 dias. Na média das densidades e independentemente do ciclo, os teores de macronutrientes nos frutos apresentaram a ordem de: K>N>P>Mg>Ca=S, enquanto a dos micronutrientes foi: 1º ciclo - Cl>Fe>Mn=B>Zn>Cu e 2º ciclo - Cl>Fe>Zn>B=Mn>Cu.This study aimed to evaluate the effect of plants density on yield, period of harvest and nutrients concentration in leaves and fruits of banana cv. Thap Maeo (AAB, cultivated in Manaus, State of Amazonas, Brazil. The experiment was conduced in a randomized blocks, with three replicates. Treatments were comprised of planting density (1,111; 1,667 and 3,333 plants ha-1, and two cycles of harvest (sub treatments. The results obtained from 1st cycle and 2nd cycle showed significant increase in the yield per unit area as the employed plant density increased. The shortest average period to harvest banana bunches (1st cycle, 338 days and 2nd cycle, 401 days was observed for the lower density (1,111 plants ha-1. Pooled data of density and cycles showed that exportation of macronutrients through the fruits was, in order: K>N>P>Mg>Ca=S, while in micronutrients was: 1st cycle - Cl>Fe>Mn=B>Zn>Cu, and 2nd cycle - Cl>Fe>Zn>B=Mn>Cu.

  5. Research within the coordinated programme on isotope-aided micro-nutrient studies in rice production with special reference to zinc deficiency

    International Nuclear Information System (INIS)

    A series of pot and field experiments with flooded rice were carried out on contrasting soil types of the Punjab, Pakistan to study the zinc status of soils, evaluate chemical methods for extracting available zinc and copper in flooded rice soils, study the residual effects of zinc fertilizer, evaluate the efficiency of zinc application to rice. The results show a wide-spread deficiency of Zn and, to some extent, of Cu in rice plants; (2) the correlation coefficient values between soil-available Zn and Cu and that extracted by rice plants were very small; (3) the various sources of Zn applied to rice by different ways proved quite effective in alleviating Zn deficiency under pot and field experiments; (4) uptake of N, P, Cu in rice plants was variably affected with Zn applied; (5) the addition of P in any form alone and with Zn or Cu invariably depressed Zn uptake by rice plants; (6) both Zn and Cu concentrations in plants were depressed with manure applications alone, as well as when Zn or Cu was respectively applied with it; (7) Zn reduced Cu while Cu induced Zn concentration in plants

  6. Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea mays L.).

    Science.gov (United States)

    Zahid, Mahwish; Abbasi, M Kaleem; Hameed, Sohail; Rahim, Nasir

    2015-01-01

    Introduction and exploitation of plant growth promoting rhizobacteria (PGPR) in agro-ecosystems enhance plant-microbes interactions that may affect ecosystems sustainability, agricultural productivity, and environmental quality. The present study was conducted to isolate and identify PGPRs associated with maize (Zea mays L.) from twenty sites of Himalayan region of Hajira-Rawalakot, Azad Jammu and Kashmir (AJK), Pakistan. A total of 100 isolates were isolated from these sites, out of which eight (HJR1, HJR2, HJR3, HJR4, HJR5, MR6, HJR7, HJR8) were selected in vitro for their plant growth promoting ability (PGPA) including phosphorus solubilization, indole-3-acetic acid (IAA) production and N2 fixation. The 16S rRNA gene sequencing technique was used for molecular identity and authentication. Isolates were then further tested for their effects on growth and nutrient contents of maize (Z. mays L.) under pouch and pot conditions. The 16S rRNA gene sequencing and phylogenetic analysis identified these isolates belong to Pseudomonas and Bacillus genera. The isolates promoted plant growth by solubilizing soil P which ranged between 19.2 and 35.6 μg mL(-1). The isolates HJR1, HJR2, HJR3, and HJR5 showed positive activity in acetylene reduction assay showing their N2-fixation potential. All eight isolates showed the potential to produce IAA in the range of 0.9-5.39 μg mL(-1) and promote plant growth. Results from a subsequent pot experiment indicated PGPRs distinctly increased maize shoot and root length, shoot and root dry weight, root surface area, leaf surface area, shoot and root N and P contents. Among the eight isolates, HR3 showed a marked P-solubilizing activity, plant growth-promoting attributes, and the potential to be developed as a biofertilizers for integrated nutrient management strategies. PMID:25852667

  7. Isolation and Identification of Indigenous Plant Growth Promoting Rhizobacteria from Himalayan Region of Kashmir and their Effect on Improving Growth and Nutrient Contents of Maize (Zea Mays L.

    Directory of Open Access Journals (Sweden)

    Mahwish eZahid

    2015-03-01

    Full Text Available IIntroduction and exploitation of plant growth promoting rhizobacteria (PGPR in agro-ecosystems enhance plant-microbes interactions that may affect ecosystems sustainability, agricultural productivity and environmental quality. The present study was conducted to isolate and identify PGPRs associated with maize (Zea mays L. from twenty sites of Himalayan region of Hajira-Rawalakot, Azad Jammu and Kashmir (AJK, Pakistan. A total of one hundred isolates were isolated from these sites, out of which eight (HJR1, HJR2, HJR3, HJR4, HJR5, MR6, HJR7, HJR8 were selected in vitro for their plant growth promoting ability (PGPA including phosphorus solubilization, indole acetic acid (IAA production and N2 fixation. The 16S rRNA gene sequencing technique was used for molecular identity and authentication. Isolates were then further tested for their effects on growth and nutrient contents of maize (Zea mays L. under pouch and pot conditions. The 16S rRNA gene sequencing and phylogenetic analysis identified these isolates belong to Pseudomonas and Bacillus genera. The isolates promoted plant growth by solubilizing soil P which ranged between 19.2 and 35.6 µgmL−1. The isolates HJR1, HJR2, HJR3 and HJR5 showed positive activity in acetylene reduction assay showing their N2-fixation potential. All eight isolates showed the potential to produce IAA in the range of 0.9−5.39 µgmL−1 and promote plant growth. Results from a subsequent pot experiment indicated PGPRs distinctly increased maize shoot and root length, shoot and root dry weight, root surface area, leaf surface area, shoot and root N and P contents. Among the eight isolates, HR3 showed a marked P-solubilizing activity, plant growth-promoting attributes, and the potential to be developed as a biofertilizers for integrated nutrient management strategies

  8. Conception and development of a computer-aided design for a spent fuel reprocessing plant

    International Nuclear Information System (INIS)

    A spent fuel reprocessing plant is composed of connected equipments. The aim of this study is the creation of schemes representing the different workshops of the plant and the calculation of linkage characteristics (flux) from a graphic description of functional structures. The program, written in FORTRAN 77, based on mass, flow rate and energy conservation, uses a module library each corresponding to an elementary operation of chemical engineering. Verification is necessary for result quality and accuracy. The important number of parameters and variables used in the program, requires a diagnosis accelerating research of errors for correction. Knowledges used in these last operations are qualitative (knowledge of experts) and quantitative (results of calculations) for the development of an expert system written in D-PROLOG

  9. Rhizosphere priming: a nutrient perspective

    OpenAIRE

    Feike Auke Dijkstra; Yolima eCarrillo; Elise ePendall; Morgan, Jack A.

    2013-01-01

    Rhizosphere priming is the change in decomposition of soil organic matter (SOM) caused by root activity. Rhizosphere priming plays a crucial role in soil carbon (C) dynamics and their response to global climate change. Rhizosphere priming may be affected by soil nutrient availability, but rhizosphere priming itself can also affect nutrient supply to plants. These interactive effects may be of particular relevance in understanding the sustained increase in plant growth and nutrient supply i...

  10. Configuration Method Design for Reconfigurable Manufacturing System with the aid of Plant Simulation

    DEFF Research Database (Denmark)

    Li, Yang; Zhang, Shuai; Bilberg, Arne;

    2014-01-01

    A new Reconfigurable Manufacturing System structure has been recently designed by a large consumer goods manufacturer in Europe, aiming to balance the performance of productivity and flexibility. This article shows an exploratory research on the (re)configuration procedure of the new RMS structure....... Following the procedure which is designed in this paper, the (re)configuration of RMS can be managed as part of the daily operation with the help of computer simulation. Keywords: Plant Simulation, Tecnomatix, Reconfigurable Manufacturing System, modular manufacturing....

  11. A public policy aid for bioenergy investment: Case study of failed plants

    International Nuclear Information System (INIS)

    Recent failures of renewable energy plants have raised concerns regarding government's role in providing credit subsidies and have harmed the long-run development of renewable energy. The major reason for these failures lies in government loan appraisers not having a model that addresses these root causes and instead relying on traditional net present value (NPV) analysis. What is required is a model representing entrepreneurs' investment decision processes when faced with uncertainty, irreversibility, and flexibility that characterize renewable energy investments. The aim is to develop such a model with a real options analysis (ROA) criterion as the foundation. A case study comparing NPV with ROA decisions for 50 and 100 million gallon ethanol plants is used as a basis for future development of a template government loan appraisers can use for evaluating the feasibility of renewable energy investments. - Highlights: ► The role net present value (NPV) analysis is investigated in failed ethanol plants. ► NPV optimal entry and exit margins are compared to real options approach (ROA). ► The entry–exit margin gap is smaller under the NPV than it is under the ROA. ► Government policymakers employing NPV tend to react aggressively to margin stimuli.

  12. COMPUTER AIDED DESIGN OF WASTE WATER TREATMENT PLANT WITH ACTIVATED SLUDGE PROCESS

    Directory of Open Access Journals (Sweden)

    K. SUNDARA KUMAR

    2011-04-01

    Full Text Available There are two fundamental reasons for treatment of wastewater viz., prevention of pollution and thereby protecting the environment, and protecting the public health by safe guarding water supplies andpreventing the spread of water borne diseases. Proper design, construction together with good operation and maintenance are essential for waste water treatment plants (WWTP, in order to produce effluents which are satisfying the safe disposal standards prescribed by the regulatory authorities. In this work a computer program in C++ has been developed for comprehensive design of wastewater treatment plant which incorporates activated sludge process as biological treatment method. All the units of WWTP areincluded in the design and the program is developed in a very user friendly manner by referring various standard procedures and manuals. The validity of the software has been verified by test running andcomparison with an existing plant data. This program not only helps in sizing the treatment units but also helps in understanding the plant’s capacity as well as in deciding the future expansion works needed for increased hydraulic and organic loadings.

  13. Task analysis and computer aid development for human reliability analysis in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, W. C.; Kim, H.; Park, H. S.; Choi, H. H.; Moon, J. M.; Heo, J. Y.; Ham, D. H.; Lee, K. K.; Han, B. T. [Korea Advanced Institute of Science and Technology, Taejeon (Korea)

    2001-04-01

    Importance of human reliability analysis (HRA) that predicts the error's occurrence possibility in a quantitative and qualitative manners is gradually increased by human errors' effects on the system's safety. HRA needs a task analysis as a virtue step, but extant task analysis techniques have the problem that a collection of information about the situation, which the human error occurs, depends entirely on HRA analyzers. The problem makes results of the task analysis inconsistent and unreliable. To complement such problem, KAERI developed the structural information analysis (SIA) that helps to analyze task's structure and situations systematically. In this study, the SIA method was evaluated by HRA experts, and a prototype computerized supporting system named CASIA (Computer Aid for SIA) was developed for the purpose of supporting to perform HRA using the SIA method. Additionally, through applying the SIA method to emergency operating procedures, we derived generic task types used in emergency and accumulated the analysis results in the database of the CASIA. The CASIA is expected to help HRA analyzers perform the analysis more easily and consistently. If more analyses will be performed and more data will be accumulated to the CASIA's database, HRA analyzers can share freely and spread smoothly his or her analysis experiences, and there by the quality of the HRA analysis will be improved. 35 refs., 38 figs., 25 tabs. (Author)

  14. Effect of hydraulic retention time on inorganic nutrient recovery and biodegradable organics removal in a biofilm reactor treating plant biomass leachate

    Science.gov (United States)

    Krumins, Valdis; Hummerick, Mary; Levine, Lanfang; Strayer, Richard; Adams, Jennifer L.; Bauer, Jan

    2002-01-01

    A fixed-film (biofilm) reactor was designed and its performance was determined at various retention times. The goal was to find the optimal retention time for recycling plant nutrients in an advanced life support system, to minimize the size, mass, and volume (hold-up) of a production model. The prototype reactor was tested with aqueous leachate from wheat crop residue at 24, 12, 6, and 3 h hydraulic retention times (HRTs). Biochemical oxygen demand (BOD), nitrates and other plant nutrients, carbohydrates, total phenolics, and microbial counts were monitored to characterize reactor performance. BOD removal decreased significantly from 92% at the 24 h HRT to 73% at 3 h. Removal of phenolics was 62% at the 24 h retention time, but 37% at 3 h. Dissolved oxygen concentrations, nitric acid consumption, and calcium and magnesium removals were also affected by HRT. Carbohydrate removals, carbon dioxide (CO2) productions, denitrification, potassium concentrations, and microbial counts were not affected by different retention times. A 6 h HRT will be used in future studies to determine the suitability of the bioreactor effluent for hydroponic plant production.

  15. Effect of hydraulic retention time on inorganic nutrient recovery and biodegradable organics removal in a biofilm reactor treating plant biomass leachate

    Energy Technology Data Exchange (ETDEWEB)

    Krumins, V.; Hummerick, M.; Levine, L.; Strayer, R.; Adams, J.L.; Bauer, J. [Dynamac Corporation, Kennedy Space Center, FL (United States)

    2002-12-01

    A fixed-film (biofilm) reactor was designed and its performance was determined at various retention times. The goal was to find the optimal retention time for recycling plant nutrients in an advanced life support system, to minimize the size, mass, and volume (hold-up) of a production model. The prototype reactor was tested with aqueous leachate from wheat crop residue at 24, 12, 6, and 3 h hydraulic retention times (HRTs). Biochemical oxygen demand (BOD), nitrates and other plant nutrients, carbohydrates, total phenolics, and microbial counts were monitored to characterize reactor performance. BOD removal decreased significantly from 92% at the 24 h HRT to 73% at 3 h. Removal of phenolics was 62% at the 24 h retention time, but 37% at 3 h. Dissolved oxygen concentrations, nitric acid consumption, and calcium and magnesium removals were also affected by HRT. Carbohydrate removals, carbon dioxide (CO{sub 2}) productions, denitrification, potassium concentrations, and microbial counts were not affected by different retention times. A 6 h HRT will be used in future studies to determine the suitability of the bioreactor effluent for hydroponic plant production. (author)

  16. Synergistic Effects of Plant Growth Promoting Rhizobacteria and Chitosan on In Vitro Seeds Germination, Greenhouse Growth, and Nutrient Uptake of Maize (Zea mays L.).

    Science.gov (United States)

    Agbodjato, Nadège A; Noumavo, Pacôme A; Adjanohoun, Adolphe; Agbessi, Léonce; Baba-Moussa, Lamine

    2016-01-01

    This study aimed to assess the effects of three plant growth promoting rhizobacteria (PGPR) and chitosan either singly or in combination on maize seeds germination and growth and nutrient uptake. Maize seeds were treated with chitosan and bacterial solution. The germination and growth tests were carried out in square Petri dishes and plastic pots. The combination chitosan-A. lipoferum-P. fluorescens has increased the seeds vigor index up to 36.44% compared to the control. In comparison to the control, P. putida has significantly improved root weight (44.84%) and germinated seed weight (31.39%) whereas chitosan-P. putida has increased the shoot weight (65.67%). For the growth test, the maximal heights (17.66%) were obtained by plants treated with the combination A. lipoferum-P. fluorescens-P. putida. Chitosan-P. fluorescens induced the highest increases of leaves per plant (50.09%), aerial (84.66%), and underground biomass (108.77%) production. The plants inoculated with A. lipoferum had the large leaf areas with an increase of 54.08%, while combinations P. fluorescens-P. putida and chitosan-A. lipoferum improved the aerial and underground dry matter of plants to 26.35% and 18.18%. The nitrogen content of the plants was increased by chitosan-A. lipoferum-P. fluorescens-P. putida with an increasing of 41.61%. The combination of chitosan and PGPR can be used as biological fertilizers to increase maize production. PMID:26904295

  17. Plant oils' inclusion in high fish meal-substituted diets: Effect on digestion and nutrient absorption in gilthead sea bream (Sparus aurata L.)

    OpenAIRE

    Santigosa, Ester; García-Meilán, Irene; Valentín, Juana María; Navarro, Isabel; Pérez-Sánchez, Jaume; Gallardo, María Ángeles

    2011-01-01

    Here, we performed an 11-week trial to study the effects of four experimental diets on the digestion, nutrient absorption and intestinal histology of gilthead sea bream. The diets were formulated with a low fish meal content (25%) and were rich (75%) in plant proteins. Fish oil (FO) was replaced at 0%, 33%, 66% and 100% by graded levels of a blend of vegetable oils (VO) (diets FO, 33VO, 66VO and 100VO respectively). Protease activity increased in the pyloric caeca (PC) and decreased in the pr...

  18. Ethno-cognitive connections between HIV/AIDS and banana plants in the Bahaya agricultural society in north-western Tanzania

    NARCIS (Netherlands)

    Githinji, V.

    2008-01-01

    This paper focuses on ethno-cognitive connections between HIV/AIDS and banana plants in the Bahaya agricultural society that emerged from an anthropological study carried out in 2005-2006 in Nsisha, a rural village in Bukoba District, north-western Tanzania. The paper briefly describes the historica

  19. Yield performance and leaf nutrient levels of coffee cultivars under different plant densities Produtividade e níveis foliares de nutrientes em cultivares de café sob diferentes populações de plantas

    Directory of Open Access Journals (Sweden)

    Edison Martins Paulo

    2010-12-01

    Full Text Available Coffee (Coffea Arabica L. plantations using adapted cultivars to regional environmental conditions with optimal plant population density and adequate nutrition are expected to show high yield responses. The triennial production and leaf macronutrient concentrations of four coffee cultivars were studied under different plant population densities. Catuaí Amarelo (IAC 47, Obatã (IAC 1669-20, Acaiá (IAC 474-19 and Icatu Amarelo (IAC 2944 were planted in densities of 2,500; 5,000; 7,519; and 10,000 plants ha-1 with one plant per hole and two plants per hole in the 2,500 plant ha-1. Plants were homogeneously fertilized without liming. As the population density increased the triennial coffee productivity increased, the yield per plant decreased, and leaf concentrations of phosphorus (P, potassium (K and sulfur (S increased. Coffee plants under dense systems presented equal or higher leaf macronutrient concentrations compared to the plants under conventional population. Taller cultivars presented the highest nutrient concentration values, and Obatã, a dwarf cultivar, the lowest values. Higher coffee yields and lower leaf P, Ca and S concentrations were observed in plots with one plant compared to the plots with two plants. In general, the coffee cultivars had leaf N and S concentrations above the reference limits reported in the literature, but leaf concentrations of other macronutrients were within adequate ranges.Cultivares de cafeeiro (Coffea Arabica L. adaptadas às regiões de cultivo, com população de plantas otimizada e adequado estado nutricional são premissas para a obtenção de produções elevadas de café. Estudou-se a produção trienal de café e o teor foliar de macronutrientes de cultivares de cafeeiro em função das densidades de plantio. Foram utilizados os cultivares Catuaí Amarelo (IAC 47, Obatã (IAC 1669-20, Acaiá (IAC 474-19 e Icatu Amarelo (IAC 2944 nas populações de 2.500 plantas ha-1 com duas plantas por cova; e, 5

  20. A world first. Industrial operation of computer-aided master-slave manipulator at the La Hague recycling plant

    International Nuclear Information System (INIS)

    Since the beginning of industrial nuclear plants like recycling, mechanical master-slave manipulators have been widely used for operation and maintenance in hot cells, in conjunction with shielding windows. In the La Hague plant for instance, all hot cells where maintenance is or could be required are fitted with shielding windows and through-wall telescopic master-slave manipulators. This well mastered solution, if used by highly skilled workers, has demonstrated its capability to perform all the maintenance tasks required, as long as equipment and tools inside the cell were designed accordingly. However, this technology has also shown significant limitations in terms of capacity, flexibility, efficiency and reliability. In order to improve those characteristics, AREVA and CEA have developed together a new technology: computer-aided master-slave manipulators. By replacing the traditional mechanical link, between the 'slave arm' in the cell and the 'master arm', with motors, sensors and electronics, this new tool improves load capacity and provides added flexibility and efficiency, while protecting the slave arm from overload and therefore improving reliability. In addition, this new device was developed to be fully compatible with current La Hague configuration. After developing and testing this solution in realistic but inactive environment, by performing all kinds of operation and maintenance activities with trained workers, the first generation tool was improved by incorporating feed-back and suggestions from operators. Second generation system was then developed, and first introduced in 2010 in an active cell of the La Hague plant, namely a vitrification cell. After a few months in operation, feedback from manufacturing staff was so positive that implementation of several new arms was decided for 2011. This paper will describe how this development benefited from the existing know-how and component library jointly developed by AREVA and CEA, as well as the main

  1. Physiological indexese macro- and micronutrients in plant tissue and essential oil of Mentha piperita L. grown in nutrient solution with variation in N, P, K and Mg levels

    Directory of Open Access Journals (Sweden)

    E.F.S. David

    2014-03-01

    Full Text Available Mentha piperita L. is an aromatic and medicinal species of the family Lamiaceae, known as mint or peppermint, and its leaves and branches produce essential oil rich in menthol. This study aimed to evaluate physiological indexes, macro- and micronutrients inthe shootsand essential oil of Mentha piperita L. grown in nutrient solution number 2 of Hoagland and Arnon (1950 with different N, P, K and Mg levels. Shoot length, dry mass of the different organs, total dry mass, leaf area, essential oil yield and composition, and macronutrient (N, P, K, Mg, Ca, S and micronutrient (Mn, Cu, Fe, Zn contents in the shoot were evaluated. Plants treated with 65%N/50%P/25%K/100%Mg had a tendency towards longer shoot, greaterroot and leaf blade dry masses, higher essential oil yield, higher menthol levels and lower menthone levels. The results showed that Mentha can be grown in nutrient solution by reducing 65% N, 50% P, 25% K and 100% Mg. This solution had better development compared to the other tested treatments. Therefore,we recommendMentha piperita L. to be grown with such nutrient levels.

  2. Thresholds in the response of free-floating plant abundance to variation in hydraulic connectivity, nutrients, and macrophyte abundance in a large floodplain river

    Science.gov (United States)

    Giblin, Shawn M.; Houser, Jeffrey N.; Sullivan, John F.; Langrehr, H.A.; Rogala, James T.; Campbell, Benjamin D.

    2014-01-01

    Duckweed and other free-floating plants (FFP) can form dense surface mats that affect ecosystem condition and processes, and can impair public use of aquatic resources. FFP obtain their nutrients from the water column, and the formation of dense FFP mats can be a consequence and indicator of river eutrophication. We conducted two complementary surveys of diverse aquatic areas of the Upper Mississippi River as an in situ approach for estimating thresholds in the response of FFP abundance to nutrient concentration and physical conditions in a large, floodplain river. Local regression analysis was used to estimate thresholds in the relations between FFP abundance and phosphorus (P) concentration (0.167 mg l−1L), nitrogen (N) concentration (0.808 mg l−1), water velocity (0.095 m s−1), and aquatic macrophyte abundance (65 % cover). FFP tissue concentrations suggested P limitation was more likely in spring, N limitation was more likely in late summer, and N limitation was most likely in backwaters with minimal hydraulic connection to the channel. The thresholds estimated here, along with observed patterns in nutrient limitation, provide river scientists and managers with criteria to consider when attempting to modify FFP abundance in off-channel areas of large river systems.

  3. Sulphur and nitrogen supply - soil acidification and the absorption of nutrients in plants; Svovel og nitrogentilfoersel - jordforsuring og plantenes naeringstilgang

    Energy Technology Data Exchange (ETDEWEB)

    Abrahamsen, G.

    1996-01-01

    Ecologically, soil is of the greatest interest as a growth medium for plants, and which affects the quality of ground water and surface water. In this connection, the paper looks upon how the increased deposition of sulphur, nitrogen and hydrogen ions affect the quality of soil as a growth medium for plants. Topics cover: Interaction between soil and plants, effects of acid rain in soil, and the effects of acid rain on plants. 11 refs., 1 tab.

  4. The sanitary officer: first aid coordinator on EDF nuclear power plant; Le delegue sanitaire: coordonnateur des secouristes en centrale nucleaire a E.D.F

    Energy Technology Data Exchange (ETDEWEB)

    Masson, A

    2000-07-01

    The internal organisation for first aid to the injured in case of an accident on E.D.F. nuclear power plant calls for the immediate assistance of a first aid team, consisting of five workers, under the direction of a principal first aid officer; one of the first aid workers, the sanitary officer who instructs the first aid workers intervention awaiting the arrival of an external medical. When the 'Sanitary on-site Emergency Plan' was up' dated, twenty medical doctors and seventy members of staff from five different sites were questioned as to the function of the sanitary officer. The conclusions revealed a notable difference of training amongst the different sites, and concerning first aid organisation, difference of priority of actions, extent of their participation once the medical team arrives and their participation in case of decontamination treatment. The medical doctors and staff lay a particular stress on importance of defining on a national scale the limits of role and responsibilities of the sanitary officer and establish a more specific training in this field, consequently motivating commitment and professionalism involvement. There is a great difference between the training and coaching of the first aid assistance and fire protection teams. To conclude, we propose that the first aid officer be known as first aid coordinator and the qualification of 'Certificat de Formation aux Premiers Secours en Equipe' in compliance with the current legislation together with a specific nuclear module and they should undergo regular on-site drills. (author)

  5. New Methods Of Plant Selection For Food Aroma Recovery Aided By Oxidation Processes

    Directory of Open Access Journals (Sweden)

    Bezysov Anatoliy

    2015-12-01

    Full Text Available This paper presents a novel approach to the selection of plants to restore the lost aroma based on the oxidation processes. The predisposition of raw material components to lipid oxidation is the basis of selection criteria. It was determined that the content of unsaturated fatty acids in the lipid extract of watermelon, pumpkin, cucumbers is 30-40%, the ratio of linoleic and linolenic acids in fruit is different. The formation of diene conjugates and hydroperoxides, malondialdehyde after various processing treatment methods is shown. The efficiency of aroma restoration depends on the number of formed 9-, 13- hydroperoxides that serve as a substrate for aroma-forming enzymes. The antioxidant capacity and the oxidation-reduction potential of fresh fruits and fruits after cooking have been analyzed. These characteristics determine the fruit ability to repeated formation of aromatic components. It has been ascertained that gourds have sufficient potential to restore aroma by exogenous lipoxygenases.

  6. An industrial application virtual reality. An aid for designing maintenance in nuclear plants

    International Nuclear Information System (INIS)

    This paper shows a use of virtual reality in the industrial context of nuclear plant maintenance. The objective is to build a realistic simulation fool by means of virtual reality techniques. With such a tool, the designer of a maintenance operation can validate tools and sequencing of operations, reduce the time of intervention and minimize the radiation doses received by the operator on site. Several major functionalities have been studied: a navigation in 3D geometries faithfully reproducing terrain, geometries obtained by 3D digitization of installations; an optimized navigation to the intervention sites with both management of obstacles present along the way and room walls and guiding of navigator from one room to another by means of visual indicators (arrows) which he can capture and which virtually carry him; a programming of the environment in keeping with and translating faithfully the breakdown and sequencing of intervention operations; real time information on the surrounding radiation. (author)

  7. Computer-aided Framework for Synthesis, Design and Retrofit of Wastewater Treatment Plants

    DEFF Research Database (Denmark)

    Bozkurt, Hande

    plant (WWTP) design is a formidable challenge. One of the key steps involved is the process synthesis - defined as the selection of treatment processes as a combination of unit operations and processes to create the process flow diagram.As a consequence of the emerging technological developments......Water is used for several purposes in houses and industrial applications, which results in the generation of considerable amounts of wastewater. Wastewater should be handled appropriately which is required from legal, environmental as well as economic and societal perspectives. Wastewater treatment...... and resulting increase in the number of alternative wastewater treatment technologies, as well as stricter effluentlimit values imposed by regulations; it became increasingly harder to identify the mostfeasible decision regarding the WWTP network design. Retrofitting of existing treatmentplants can also...

  8. Perdas de elementos nutritivos pela erosão: II - Elementos minerais e carbono Plant nutrient losses caused by erosion: II. Minerals and carbon

    Directory of Open Access Journals (Sweden)

    F. Grohmann

    1956-01-01

    Full Text Available No presente trabalho procurou-se conhecer as perdas por erosão, dos elementos minerais e carbono na terra-roxa-misturada, quando submetida a práticas agrícolas diversas. Com essa finalidade foram usados coletores de enxurrada, do tipo Geib. No material sólido arrastado pela erosão, como também na enxurrada, foram feitas análises químicas dos principais elementos minerais e carbono. Procurou-se, também, estudar as relações entre a quantidade de material arrastado e volume de enxurrada com a composição química desses mesmos materiais. Procurou-se verificar a influência das diversas práticas agrícolas na composição da enxurrada, bem como a influência do material sólido em suspensão, na composição química da enxurrada.The losses of mineral nutrients caused by erosion in plots submitted to different farming practices was studied. The runoff and transported soil were collected by means of a Geib measuring device and then analysed chemically. The results indicated that the amount of nutrients lost by erosion from the plots that received the various farming practices was not affected by the treatments, but were proportional to the total amount of transported soil and to the total volume of runoff. A greater amount of plant nutrients was lost in the form of transported soil than dissolved or suspended in the runoff. The concentration of nutrients in the runoff was not correlated to its volume, except for calcium. The analyses of samples of transported soil and runoff, collected after a few rains, allow a good estimate of the annual losses to be made.

  9. [The morphological and karyological characteristics of MDCK and vero (B) cells cultures on plant hydrolyzate-based nutrient media].

    Science.gov (United States)

    Mikhailova, G R; Mazurkova, N A; Podchernyaeva, R Ya; Ryabchikova, E I; Troshkova, G P; Shishkina, L N

    2011-01-01

    MDCK and Vero (B) cell cultures were propagated during 10 passages in the experimental nutrient media containing the soybean powder hydrolyzate prepared using trypsin and bromelain enzymes and the rice powder hydrolysate prepared with trypsin and in the control DMEM and SFM4 MegaVir media. The karyological, morphological, and proliferative characteristics of continuous cultures were examined and compared. The experimental media supplied with 3% fetal bovine serum (FBS) (Gibco, U.S.A.) showed high growth-enhancing properties and failed to affect their morphology. After propagated during 10 passages in the experimental media preserved a stable karyotype. MDCK cell cultures in the nutrient media based on rice and soybean powder hydrolyzates low (2%) in FBS caused no substantial changes in the proliferation indices and morphological and karyological characteristics of cell cultures.

  10. The Possible Effects of Some Mineral Nutrients and Industrial Chemical Effuents on Wild Plants in Central Sudan

    OpenAIRE

    Hayati, Attayeb A. [الطيب أحمد المصطفى حياتي; Abd-Elrhman, Fatima M. [فاطمة محمد عبد الرحمن

    2006-01-01

    The effects of some mineral nutrients and industrial chemical effluents from a textile factory and tanning activities on the growth and distribution of Typha angustata, Cyperus laevigatus. Paspalum viginatum, Cassia senna and Xanthium brasilicum at Al-Bagair Industrial Area, in central Sudan, were investigated. Three sites were selected for this study namely: the "Textile site", the main site in this study, represented by the area affected by disposals of chemical effluents from a textile fac...

  11. Mixing effects of understory plant litter on decomposition and nutrient release of tree litter in two plantations in Northeast China.

    Science.gov (United States)

    Zhao, Lei; Hu, Ya-Lin; Lin, Gui-Gang; Gao, Yong-chao; Fang, Yun-Ting; Zeng, De-Hui

    2013-01-01

    Understory vegetation plays a crucial role in carbon and nutrient cycling in forest ecosystems; however, it is not clear how understory species affect tree litter decomposition and nutrient dynamics. In this study, we examined the impacts of understory litter on the decomposition and nutrient release of tree litter both in a pine (Pinus sylvestris var. mongolica) and a poplar (Populus × xiaozhuanica) plantation in Northeast China. Leaf litter of tree species, and senesced aboveground materials from two dominant understory species, Artemisia scoparia and Setaria viridis in the pine stand and Elymus villifer and A. sieversiana in the poplar stand, were collected. Mass loss and N and P fluxes of single-species litter and three-species mixtures in each of the two forests were quantified. Data from single-species litterbags were used to generate predicted mass loss and N and P fluxes for the mixed-species litterbags. In the mixture from the pine stand, the observed mass loss and N release did not differ from the predicted value, whereas the observed P release was greater than the predicted value. However, the presence of understory litter decelerated the mass loss and did not affect N and P releases from the pine litter. In the poplar stand, litter mixture presented a positive non-additive effect on litter mass loss and P release, but an addition effect on N release. The presence of understory species accelerated only N release of poplar litter. Moreover, the responses of mass loss and N and P releases of understory litter in the mixtures varied with species in both pine and poplar plantations. Our results suggest that the effects of understory species on tree litter decomposition vary with tree species, and also highlight the importance of understory species in litter decomposition and nutrient cycles in forest ecosystems. PMID:24143184

  12. Mixing effects of understory plant litter on decomposition and nutrient release of tree litter in two plantations in Northeast China.

    Directory of Open Access Journals (Sweden)

    Lei Zhao

    Full Text Available Understory vegetation plays a crucial role in carbon and nutrient cycling in forest ecosystems; however, it is not clear how understory species affect tree litter decomposition and nutrient dynamics. In this study, we examined the impacts of understory litter on the decomposition and nutrient release of tree litter both in a pine (Pinus sylvestris var. mongolica and a poplar (Populus × xiaozhuanica plantation in Northeast China. Leaf litter of tree species, and senesced aboveground materials from two dominant understory species, Artemisia scoparia and Setaria viridis in the pine stand and Elymus villifer and A. sieversiana in the poplar stand, were collected. Mass loss and N and P fluxes of single-species litter and three-species mixtures in each of the two forests were quantified. Data from single-species litterbags were used to generate predicted mass loss and N and P fluxes for the mixed-species litterbags. In the mixture from the pine stand, the observed mass loss and N release did not differ from the predicted value, whereas the observed P release was greater than the predicted value. However, the presence of understory litter decelerated the mass loss and did not affect N and P releases from the pine litter. In the poplar stand, litter mixture presented a positive non-additive effect on litter mass loss and P release, but an addition effect on N release. The presence of understory species accelerated only N release of poplar litter. Moreover, the responses of mass loss and N and P releases of understory litter in the mixtures varied with species in both pine and poplar plantations. Our results suggest that the effects of understory species on tree litter decomposition vary with tree species, and also highlight the importance of understory species in litter decomposition and nutrient cycles in forest ecosystems.

  13. Salts and nutrients present in regenerated waters induce changes in water relations, antioxidative metabolism, ion accumulation and restricted ion uptake in Myrtus communis L. plants.

    Science.gov (United States)

    Acosta-Motos, José R; Alvarez, Sara; Barba-Espín, Gregorio; Hernández, José A; Sánchez-Blanco, María J

    2014-12-01

    The use of reclaimed water (RW) constitutes a valuable strategy for the efficient management of water and nutrients in landscaping. However, RW may contain levels of toxic ions, affecting plant production or quality, a very important aspect for ornamental plants. The present paper evaluates the effect of different quality RWs on physiological and biochemical parameters and the recovery capacity in Myrtus communis L. plants. M. communis plants were submitted to 3 irrigation treatments with RW from different sources (22 weeks): RW1 (1.7 dS m(-1)), RW2 (4.0 dS m(-1)) and RW3 (8.0 dS m(-1)) and one control (C, 0.8 dS m(-1)). During a recovery period of 11 weeks, all plants were irrigated with the control water. The RW treatments did not negatively affect plant growth, while RW2 even led to an increase in biomass. After recovery,only plants irrigated with RW3 showed some negative effects on growth, which was related to a decrease in the net photosynthesis rate, higher Na accumulation and a reduction in K levels. An increase in salinity was accompanied by decreases in leaf water potential, relative water content and gas exchange parameters, and increases in Na and Cl uptake. Plants accumulated Na in roots and restricted its translocation to the aerial part. The highest salinity levels produced oxidative stress, as seen from the rise in electrolyte leakage and lipid peroxidation. The use of regenerated water together with carefully managed drainage practices, which avoid the accumulation of salt by the substrate, will provide economic and environmental benefits.

  14. Planetary Bioresources and Astroecology. 1. Planetary Microcosm Bioassays of Martian and Carbonaceous Chondrite Materials: Nutrients, Electrolyte Solutions, and Algal and Plant Responses

    Science.gov (United States)

    Mautner, Michael N.

    2002-07-01

    The biological fertilities of planetary materials can be assessed using microcosms based on meteorites. This study applies microcosm tests to martian meteorites and analogues and to carbonaceous chondrites. The biological fertilities of these materials are rated based on the soluble electrolyte nutrients, the growth of mesophile and cold-tolerant algae, and plant tissue cultures. The results show that the meteorites, in particular the Murchison CM2 carbonaceous chondrite and DaG 476 martian shergottite, contain high levels of water-extractable Ca, Mg, and SO 4-S. The martian meteorites DaG 476 and EETA 79001 also contain higher levels of extractable essential nutrients NO 3-N (0.013-0.017 g kg -1) and PO 4-P (0.019-0.046 g kg -1) than the terrestrial analogues. The yields of most of the water-extractable electrolytes vary only by factors of 2-3 under a wide range of planetary conditions. However, the long-term extractable phosphate increases significantly under a CO 2 atmosphere. The biological yields of algae and plant tissue cultures correlate with extractable NO 3-N and PO 4-P, identifying these as the limiting nutrients. Mesophilic algae and Asparagus officinalis cultures are identified as useful bioassay agents. A fertility rating system based on microcosm tests is proposed. The results rate the fertilities in the order martian basalts > terrestrial basalt, agricultural soil > carbonaceous chondrites, lava ash > cumulate igneous rock. The results demonstrate the application of planetary microcosms in experimental astroecology to rate planetary materials as targets for astrobiology exploration and as potential space bioresources. For example, the extractable materials in Murchison suggest that concentrated internal solutions in carbonaceous asteroids (3.8 mol L -1 electrolytes and 10 g L -1 organics) can support and disperse microorganisms introduced by natural or directed panspermia in early solar systems. The results also suggest that carbonaceous asteroids

  15. PMU-Aided Voltage Security Assessment for a Wind Power Plant: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, H.; Zhang, Y. C.; Zhang, J. J.; Muljadi, E.

    2015-04-08

    Because wind power penetration levels in electric power systems are continuously increasing, voltage stability is a critical issue for maintaining power system security and operation. The traditional methods to analyze voltage stability can be classified into two categories: dynamic and steady-state. Dynamic analysis relies on time-domain simulations of faults at different locations; however, this method needs to exhaust faults at all locations to find the security region for voltage at a single bus. With the widely located phasor measurement units (PMUs), the Thevenin equivalent matrix can be calculated by the voltage and current information collected by the PMUs. This paper proposes a method based on a Thevenin equivalent matrix to identify system locations that will have the greatest impact on the voltage at the wind power plant’s point of interconnection. The number of dynamic voltage stability analysis runs is greatly reduced by using the proposed method. The numerical results demonstrate the feasibility, effectiveness, and robustness of the proposed approach for voltage security assessment for a wind power plant.

  16. Effect of plant species, soil and environmental factors on vesicular-arbuscular mycorrhizal (VAM) infection and nutrient uptake

    International Nuclear Information System (INIS)

    The vesicular-arbuscular mycorrhizal (VAM) system should meaningfully be considered as a 3-way interaction between plant, soil and fungus. By disassembling the complex VA mycorrhizal symbiosis and considering each component in turn, it has become evident that many factors, such as plant species, soil and environmental conditions can affect the overall balance of the complete system. For the plant to gain maximum benefits from the association, the best possible contribution of plant, fungus and environmental conditions need to be identified and maintained. (author)

  17. Prospects for optimizing soil microbial functioning to improve plant nutrient uptake and soil carbon sequestration under elevated CO2

    Science.gov (United States)

    Nie, M.; Pendall, E. G.

    2013-12-01

    Potential to mitigate climate change through increasing plant productivity and its carbon (C) input to soil may be limited by soil nitrogen (N) availability. Using a novel 13C-CO2 and 15N-soil dual labeling method, we investigated whether plant growth-promoting bacteria would interact with atmospheric CO2 concentration to alter plant productivity and soil C storage. We grew Bouteloua gracilis under ambient (380 ppm) or elevated CO2 (700 ppm) in climate-controlled chambers, and plant individuals were grown with or without Pseudomonas fluorescens inoculum, which can produce N catabolic enzymes. We observed that both eCO2 and P. fluorescens increased plant productivity and its C allocation to soil. P. fluorescens relative to eCO2 enhanced plant N uptake from soil organic matter, which highly correlated with soil N enzyme activities and rhizosphere exudate C. More importantly, P. fluorescens increased microbial biomass and deceased specific microbial respiration in comparison with eCO2. These results indicate that application of plant growth-promoting bacteria can increase microbial C utilization efficiency with subsequent N mineralization from soil organic matter, and may improve plant N availability and soil C sequestration. Together, our findings highlight the potential of plant growth-promoting bacteria for global change mitigation by terrestrial ecosystems.

  18. Summary of the systems prioritization method as a decision-aiding method for the waste isolation pilot plant

    Energy Technology Data Exchange (ETDEWEB)

    Boak, D.M.; Prindle, N.H.; Lincoln, R. [and others

    1996-12-01

    In March 1994, the U.S. Department of Energy Carlsbad Area Office (DOE/CAO) implemented a performance-based decision-aiding method to assist in programmatic prioritization within the Waste Isolation Pilot Plant (WIPP) Project with respect to applicable U.S. Environmental Protection Agency (EPA) long-term performance requirements in 40 CFR 191.13(a) (radionuclide containment requirements) and 40 CFR 268.6 (hazardous constituent concentration requirements). This method, the Systems Prioritization Method (SPM), was designed by Sandia National Laboratories (SNL) to: (1) identify programmatic options (activities) and their costs and durations; (2) analyze combinations of activities (activity sets) in terms of their predicted contribution to long-term performance of the WIPP disposal system; and (3) analyze cost, duration, and performance tradeoffs. The results of the second iteration of SPM (SPM-2) were the basis for recommendations to DOE/CAO in May 1995 for programmatic prioritization within the WIPP project. This paper presents a summary of the SPM implementation, key results, and lessons learned.

  19. Condensed summary of the systems prioritization method as a decision-aiding approach for the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Boak, D.M.; Prindle, N.H.; Lincoln, R. [and others

    1997-03-01

    In March 1994, the US Department of Energy Carlsbad Area Office (DOE/CAO) implemented a performance based decision-aiding method to assist in programmatic prioritization within the Waste Isolation Pilot Plant (WIPP) project. The prioritization was with respect to 40 CFR Part 191.13(a) and 40 CFR part 268.6. U.S. Environmental Protection Agency (EPA) requirements for long-term isolation of radioactive and hazardous wastes. The Systems Prioritization Method (SPM), was designed by Sandia National Laboratories to: (1) identify programmatic options (activities), their costs and durations; (2) analyze combinations of activities in terms of their predicted contribution to long-term performance of the WIPP disposal system; and (3) analyze cost, duration, and performance tradeoffs. SPM results were the basis for activities recommended to DOE/CAO in May 1995. SPM identified eight activities (less than 15% of the 58 proposed for consideration) predicted to be essential in addressing key regulatory issues. The SPM method proved useful for risk or performance-based prioritization in which options are interdependent and system behavior is nonlinear. 10 refs., 2 figs., 1 tab.

  20. Crescimento e acumulação de nutrientes em plantas de taro sob níveis de sombreamento artificial Growth and nutrient accumulation of taro plants under artificial shading levels

    Directory of Open Access Journals (Sweden)

    Fabio Luiz de Oliveira

    2011-09-01

    Full Text Available Foi conduzido um experimento em vasos com solo com o objetivo de avaliar o crescimento e acumulação de nutrientes de plantas de taro (Colacasia esculenta sob níveis de sombreamento artificial. O experimento foi constituído de quatro níveis de sombreamento (0, 25, 50 e 75% de restrição de luz e nove coletas mensais, no delineamento de blocos casualizados em esquema de parcelas subdivididas, com quatro repetições. Os níveis de sombreamento foram obtidos com uso de armações galvanizadas revestidas de sombrite. A restrição de luz não modificou a biomassa total das plantas, todavia sob 50 e 75% de restrição de luz a razão raiz:parte aérea foi menor. Nessas condições, as plantas tiveram maiores alturas, número de folhas e área foliar, mas menor taxa de assimilação líquida. A restrição de 75% de luz atrasou em 30 dias a formação de rizomas-filhos e reduziu a produção final de rizomas. A restrição de luz não afetou a acumulação de macronu-trientes, sendo o máximo acúmulo observado aos 102 dias do plantio para N, P e K, e aos 123 dias para Ca e Mg. Condições de acentuada restrição de luz induziram investimento inicial das plantas de taro na parte aérea em detrimento de raízes, com posterior atraso na formação dos órgãos de reserva levando à redução na produção de rizomas.An experiment was carried out in pots with soil to evaluate the growth and nutrient accumulation of taro plants (Colacasia esculenta under artificial shading levels. The experiment consisted of four levels of shading (0, 25, 50 and 75% restriction of light and nine monthly samples in a split-plot randomized block design with four replications. Shading levels were obtained through cubic metal frames covered with nylon nets. The restriction of light did not change the total biomass of plants, but root:shoot ratio was lower under 50 and 75% light restriction. Under these conditions taro plants showed greater height, number of leaves and

  1. Water relations, nutrient content and developmental responses of Euonymus plants irrigated with water of different degrees of salinity and quality.

    Science.gov (United States)

    Gómez-Bellot, María José; Alvarez, Sara; Castillo, Marco; Bañón, Sebastián; Ortuño, María Fernanda; Sánchez-Blanco, María Jesús

    2013-07-01

    For 20 weeks, the physiological responses of Euonymus japonica plants to different irrigation sources were studied. Four irrigation treatments were applied at 100 % water holding capacity: control (electrical conductivity (EC) water normally used in the area (irrigator's water) IW (EC: 1.7 dS m(-1)); NaCl solution, NaCl (EC: 4 dS m(-1)); and wastewater, WW (EC: 4 dS m(-1)). This was followed by a recovery period of 13 weeks, when all the plants were rewatered with the same amount and quality of irrigation water as the control plants. Despite the differences in the chemical properties of the water used, the plants irrigated with NaCl and WW showed similar alterations in growth and size compared with the control even at the end of the recovery period. Leaf number was affected even when the EC of the irrigation water was of 1.7 dS m(-1) (IW), indicating the salt sensitivity of this parameter. Stomatal conductance (gs) and photosynthesis (Pn), as well as stem water potential (Ψstem), were most affected in plants irrigated with the most saline waters (NaCl and WW). At the end of the experiment the above parameters recovered, while IW plants showed similar values to the control. The higher Na(+) and Cl(+) uptake by NaCl and WW plants led them to show osmotic adjustment throughout the experiment. The highest amount of boron found in WW plants did not affect root growth. Wastewater can be used as a water management strategy for ornamental plant production, as long as the water quality is not too saline, since the negative effect of salt on the aesthetic value of plants need to be taken into consideration.

  2. Synergistic Effects of Plant Growth Promoting Rhizobacteria and Chitosan on In Vitro Seeds Germination, Greenhouse Growth, and Nutrient Uptake of Maize (Zea mays L.

    Directory of Open Access Journals (Sweden)

    Nadège A. Agbodjato

    2016-01-01

    Full Text Available This study aimed to assess the effects of three plant growth promoting rhizobacteria (PGPR and chitosan either singly or in combination on maize seeds germination and growth and nutrient uptake. Maize seeds were treated with chitosan and bacterial solution. The germination and growth tests were carried out in square Petri dishes and plastic pots. The combination chitosan-A. lipoferum-P. fluorescens has increased the seeds vigor index up to 36.44% compared to the control. In comparison to the control, P. putida has significantly improved root weight (44.84% and germinated seed weight (31.39% whereas chitosan-P. putida has increased the shoot weight (65.67%. For the growth test, the maximal heights (17.66% were obtained by plants treated with the combination A. lipoferum-P. fluorescens-P. putida. Chitosan-P. fluorescens induced the highest increases of leaves per plant (50.09%, aerial (84.66%, and underground biomass (108.77% production. The plants inoculated with A. lipoferum had the large leaf areas with an increase of 54.08%, while combinations P. fluorescens-P. putida and chitosan-A. lipoferum improved the aerial and underground dry matter of plants to 26.35% and 18.18%. The nitrogen content of the plants was increased by chitosan-A. lipoferum-P. fluorescens-P. putida with an increasing of 41.61%. The combination of chitosan and PGPR can be used as biological fertilizers to increase maize production.

  3. The Influence of Gamma Irradiation on the Bacterial Growth and the Concentration of Macro nutrient Plant Elements (N,P,K) in The Sludge

    International Nuclear Information System (INIS)

    The investigation of the gamma irradiation influence for bacterial growth and macro-nutrient plant element in the sludge has been done. The objective of the research is to study the gamma irradiation influence on bacterial growth and macro-nutrient plant element concentration; after that, can be determine the effective dose for killing pathogenic bacteria, while the other kind of bacteria such as the decomposer has been survived. The sludge samples was collected from the vicinity of Surabaya such as Sukolilo for sewage, PT SIER Rungkut for industrial and Dr. Sutomo hospital waste sludge. The irradiation of the sludge has been done at P3TIR-BATAN by Co-60 irradiator and the dose variation are 0, 5, 10, 15, 20 and 25 kGy. Microbiological observation was done after irradiation at FMIPA-UNAIR laboratory and the analysis of N,P,K elements by using fast neutron activation analysis. The observation involving total bacterial and one kind of pathogenic microbial which is Salmonella, from this observation can be deduced that population of total bacteria in the sludge is in the range at 1.0 x 107 to 3.7 x 108. For every 5 kGy increment could be able to decrease total bacterial growth about 10 times, and at 25 kGy the total bacterial growth can be suppressed. The higher population of Salmonella can be found in the hospital sludge is in range of 3.0 to 3.5 x 105, in the sewage sludge is 1.4 to 1.6 x 104 and industry is 1.0 to 1.4 x 103. For the Salmonella disinfection need the 15 to 20 kGy radiation dose. From the calculation results can be known that the nitrogen content in the sludge is in the range at 1.393 ± 0.692 to 3.147 ± 0.697 % , the phosphor 3.714 ± 0.892 to 8.120 ± 1.034 % and the potassium 1.999 ± 0.523 to 4.52 ± 0.599 %. The variation of the irradiation dose 10 - 25 kGy does not have any significant influence for the macro-nutrient plant (N,P,K) content in the sludge from the industrial, the sewage or the hospital waste water treatment. (author)

  4. Metabolic profiling reveals altered nitrogen nutrient regimes have diverse effects on the metabolism of hydroponically-grown tomato (Solanum lycopersicum) plants.

    Science.gov (United States)

    Urbanczyk-Wochniak, Ewa; Fernie, Alisdair R

    2005-01-01

    The role of inorganic nitrogen assimilation in the production of amino acids is one of the most important biochemical processes in plants. For this reason, a detailed broad-range characterization of the metabolic response of tomato (Solanum lycopersicum) leaves to the alteration of nitrate level was performed. Tomato plants were grown hydroponically in liquid culture under three different nitrate regimes: saturated (8 mM NO3-), replete (4 mM NO3-) and deficient (0.4 mM NO3-). All treatments were performed under varied light intensity, with leaf samples being collected after 7, 14, and 21 d. In addition, the short-term response (after 1, 24, 48, and 94 h) to varying nutrient status was evaluated at the higher light intensity. GC-MS analysis of the levels of amino acids, tricarboxylic acid cycle intermediates, sugars, sugar alcohols, and representative compounds of secondary metabolism revealed substantial changes under the various growth regimes applied. The data presented here suggest that nitrate nutrition has wide-ranging effects on plant leaf metabolism with nitrate deficiency resulting in decreases in many amino and organic acids and increases in the level of several carbohydrates and phosphoesters, as well as a handful of secondary metabolites. These results are compared with previously reported transcript profiles of altered nitrogen regimes and discussed within the context of current models of carbon nitrogen interaction. PMID:15596475

  5. Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize ( Zea mays) and implications for nanoagriculture

    Science.gov (United States)

    Tiwari, D. K.; Dasgupta-Schubert, N.; Villaseñor Cendejas, L. M.; Villegas, J.; Carreto Montoya, L.; Borjas García, S. E.

    2014-06-01

    The application of nano-biotechnology to crop-science/agriculture (`nanoagriculture') is a recent development. While carbon nanotubes (CNTs) have been shown to dramatically improve germination of some comestible plants, deficiencies in consistency of behavior and reproducibility arise, partially from the variability of the CNTs used. In this work, factory-synthesized multi-walled-CNTs (MWCNTs) of quality-controlled specifications were seen to enhance the germinative growth of maize seedlings at low concentrations but depress it at higher concentrations. Growth enhancement principally arose through improved water delivery by the MWCNT. Polarized EDXRF spectrometry showed that MWCNTs affect mineral nutrient supply to the seedling through the action of the mutually opposing forces of inflow with water and retention in the medium by the ion-CNT transient-dipole interaction. The effect varied with ion type and MWCNT concentration. The differences of the Fe tissue concentrations when relatively high equimolar Fe2+ or Fe3+ was introduced, implied that the ion-CNT interaction might induce redox changes to the ion. The tissue Ca2+ concentration manifested as the antipode of the Fe2+ concentration indicating a possible cationic exchange in the cell wall matrix. SEM images showed that MWCNTs perforated the black-layer seed-coat that could explain the enhanced water delivery. The absence of perforations with the introduction of FeCl2/FeCl3 reinforces the idea of the modification of MWCNT functionality by the ion-CNT interaction. Overall, in normal media, low dose MWCNTs were seen to be beneficial, improving water absorption, plant biomass and the concentrations of the essential Ca, Fe nutrients, opening a potential for possible future commercial agricultural applications.

  6. Ecological relevance of strigolactones in nutrient uptake and other abiotic stresses, and in plant-microbe interactions below ground

    NARCIS (Netherlands)

    Andreo Jimenez, B.; Ruyter-Spira, C.P.; Bouwmeester, H.J.; Lopez-Raez, J.A.

    2015-01-01

    Background Plants are exposed to ever changing and often unfavourable environmental conditions, which cause both abiotic and biotic stresses. They have evolved sophisticated mechanisms to flexibly adapt themselves to these stress conditions. To achieve such adaptation, they need to control and coord

  7. The ALMT family of organic acid transporters in plants and their involvement in detoxification and nutrient security

    Science.gov (United States)

    About a decade ago, members of a new protein family of anion channels were discovered on the basis of their ability to confer on plants the tolerance towards toxic aluminum ions in the soil. The efflux of Al3+ chelating malate anions through these channels is stimulated by external Al3+ ions. This f...

  8. Sugar Cane Nutrient Distribution Analysis

    International Nuclear Information System (INIS)

    Neutron Activation Analysis (NAA), Molecular Absorption Spectrometry (UV-Vis), and Flame Photometry techniques were applied to measure plant nutrient concentrations of Br, Ca, Cl, K, Mn, N, Na and P in sugar-cane root, stalk and leaves. These data will be used to explore the behavior of element concentration in different parts of the sugar-cane to better understand the plant nutrient distribution during its development.

  9. Study of the Effects Irrigation Water Sanity and pH on Production and Relative Absorption of some Elements Nutrient by the Tomato Plant

    Directory of Open Access Journals (Sweden)

    Hossein Afshari

    2011-01-01

    Full Text Available Problem statement: This study was conducted to examine the effects of irrigation water pH and sanity on the growth and absorption of P, Na, Ca, K by tomato. Approach:The study includes two sanity and pH factors and is consisted from 12 treatment and three repetitions. Tomato seeding grown in foam trays were transplanted in the joune 2010 to bags filled with perte in an Greenhouse at Damghan Islamic Azad University of Iran. Plant were divided into groups then irrigated with the targeted sane and pH levels. Plants were hand-irrigated with fresh water and fertized with required nutritional solutions were prepared based on bed nutrients mitation. Greenhouse temperature was maintained in suitable level using air conditioner and its humidity was controlled by hygrometer and adjusted in the range of 60-80%. Water sanity factors were consisted from four levels (0, 3, 6 and 9 dsm-1 and pH factor was consisted from three levels (6.5, 7.5 and 8.5. Sanity and pH treatments were adjusted with Nacl and H2SO4/N2CO3 salts respectively. Study of the effects of sanity and pH level on tomato were recorded and controlled depending on number of growing fruit, fertized flowers, plant dry weight, plant height, percentage of P, Na, Ca, K in leaves. Then results were studied by Anova Variance Analysis using SAS software and obtaining significant results, Dunken test was used for comparison of average levels in probabity level of 5%. Results: Data showed that all growth parameters such as plant height, leaf area, plant dry weight, percentage of P,Ca,K in leave responded negatively as the sanity and ph level increased. Only Na+ content in the leaves responded positively to increment in sanity and ph level. Conclusion: Based on results, sanity reduced plant height as well as dry weight and increasing of Sanity and ph increased supply of Na+ in tomato leaf.

  10. THE EFFECTS OF WET BREWER’S GRAIN WHOLE PLANT MAIZE MIXTURE SILAGES ON FERMENTATION CHARACTERISTICS AND NUTRIENT DIGESTIBILITY IN LAMBS

    Directory of Open Access Journals (Sweden)

    Fisun Koc

    2010-12-01

    Full Text Available This study was carried out to examine some quality characteristics and nutrient digestibility of wet brewers grain with whole plant maize mixture silages. Treatments were wet brewers grain, 25% + 75% whole plant maize (mixture 1 and %50 wet brewers grain + %50 whole plant maize (mixture 2. Relating to silage fermentation analysis of pH, ammonia nitrogen, water soluble carbohydrate, organic acids (lactic, acetic and butyric acid and microbiological analyses were carried out. Digestion rate of crude nutritive matters of silages was determined by classical digestive experiments. Dry matter, crude protein, NH3-N, lactic acid content and pH value of the silages were found respectively as 23.3, 26.4, 25.4, 24.7%; 22.3, 7.4, 10.6, 14.3%; 1.9, 0.5, 0.9, 1.0 g/kg DM; %1.0, 2.5, 2.1, 1.8; 4.1, 3.8, 3.9, 3.8 for the group of wet brewers grain, whole plant maize, mixture 1 and mixture 2, (P<0.01. Dry matter, crude protein digestibility were determined as 65.0, 70,5, 70,0, 67,10%; 71.5, 55.8, 58,7, 62.3%, respectively. The results indicated that WBG is a suitable by-product for ensiling and, when ensiled with WPM as a mixture, it improved fermentation quality and stability against aerobic deterioration.

  11. Intensity of Ground Cover Crop Arachis pintoi, Rhizobium Inoculation and Phosphorus Application and Their Effects on Field Growth and Nutrient Status of Cocoa Plants

    Directory of Open Access Journals (Sweden)

    John Bako Baon

    2006-08-01

    Full Text Available Arachis pintoiis potentially as a cover crop for cocoa (Theobroma cacaoL. farm, however information regarding its effect on the growth of cocoa plants in the field is very limited. The objective of this experiment is to investigate the combined influence of ground cover crop A. pintoi, rhizobial bacterial inoculation and phosphorus (P fertilizer on the growth of cocoa in the field and nutrient status. This experiment laid out in split-split plot design consisted of three levels of cover crop (without, A. pintoiand Calopogonium caeruleum, two levels of rhizobium inoculation (not inoculated and inoculated and two levels of phosphorus application (no P added and P added. The results showed that in field condition the presence of A. pintoias cover crop did not affect the growth of cocoa. On the other hand, C. caeruleumas cover crop tended to restrict cocoa growth compared to A. pintoi. Application of P increased leaf number of cocoa plant. Biomass production of A. pintoiwas 40% higher than C. caeruleum. Soil organic carbon and nitrogen contents were not affected by ground cover crops, though higher value (0.235% N and 1.63% organic C was obtained from combined treatments of inoculation and P addition or neither inoculation nor P addition. In the case of no rhizobium inoculation, soil N content in cocoa farm with A. pintoicover crop was lower than that of without cover crop or with C. caeruleum. Cover crop increased plant N content when there was no inoculation, on the other hand rhizobium inoculation decreased N content of cocoa tissue. Tissue P content of cocoa plant was not influenced by A. Pintoicover crop or by rhizobium inoculation, except that the P tissue content of cocoa was 28% higher when the cover crop was C. caeruleumand inoculated. Key words : Arachis pintoi, Theobroma cacao, Calopogonium caeruleum, rhizobium, nitrogen, phosphorus.

  12. Nutrientes em compostos orgânicos de resíduos vegetais e dejeto de suínos Nutrients in organic composts of plant residues and swine manure

    Directory of Open Access Journals (Sweden)

    Maria Aparecida Nogueira Sediyama

    2000-03-01

    Full Text Available Este trabalho objetivou avaliar a concentração de nutrientes de sete diferentes compostos orgânicos produzidos com bagaço de cana-de-açúcar, capim napier, palha de café e dejeto de suínos na forma líquida. Cada composto foi produzido com um ou mais resíduos vegetais associados ao dejeto de suínos, sendo o bagaço de cana-de-açúcar também associado ao gesso e ao superfosfato triplo. Foi utilizado o delineamento experimental de blocos casualizados, com três repetições e sete tratamentos. Aos 120 dias, as amostras foram coletadas e analisadas quimicamente, para quantificação, em espectrofotômetro de plasma, de macro e micronutrientes presentes nos compostos orgânicos. A presença do bagaço de cana-de-açúcar, como único resíduo vegetal, possibilitou a produção de compostos orgânicos com menor valor de K, Mg, B e pH. A adição de gesso e superfosfato triplo não proporcionou melhorias significativas na qualidade do composto produzido com bagaço de cana-de-açúcar e dejeto de suínos. Os compostos produzidos com palha de café apresentaram valores mais altos para K e pH. A combinação de bagaço de cana-de-açúcar com palha de café melhorou a qualidade dos compostos orgânicos e pode ser prática promissora para a Zona da Mata Mineira, pois estes são resíduos facilmente encontrados na região. A concentração de Cu, Fe e Zn, nos compostos produzidos não ultrapassaram os limites de segurança para sua utilização no solo.This study was carried out to evaluate the nutrient concentration in seven different organic composts produced with crushed sugarcane, nappier grass, coffee straw and liquid swine manure. Each compost was produced with one or more plant residues, associated to swine manure, whereas the crushed sugarcane was also associated to gypsum and triple superphosphate. A randomized block experimental design was used, with three replicates and seven treatments. After a 120-day period, the samples were

  13. Shallot (Allium cepa var. ascolonicum) responses to plant nutrients and soil moisture in a sub-humit tropical climate

    OpenAIRE

    Woldetsadik, Kebede

    2003-01-01

    Shallot requirements of nitrogen, phosphorus and potassium fertilizers were studied under rain-fed and irrigated conditions on heavy clay soils with low to medium organic matter contents in a sub-humid tropical climate of eastern Ethiopia. Influences of varying levels of irrigation water in combination with nitrogen fertilizer were assessed. Impacts of soil moisture stresses at different growth stages of the plant were evaluated in greenhouse and under field conditions. Different types of mul...

  14. Effects of Warming and Altered Precipitation on Plant and Nutrient Dynamics of a New England Salt Marsh.

    OpenAIRE

    Charles, Heather; Dukes, Jeffrey S.

    2009-01-01

    Salt marsh structure and function, and consequently ability to support a range of species and to provide ecosystem services, may be affected by climate change. To better understand how salt marshes will respond to warming and associated shifts in precipitation, we conducted a manipulative experiment in a tidal salt marsh in Massachusetts, USA. We exposed two plant communities (one dominated by Spartina patens–Distichlis spicata and one dominated by short form Spartina alterniflora) to five cl...

  15. Medicinal plants used by traditional medicine practitioners for the treatment of HIV/AIDS and related conditions in Uganda

    OpenAIRE

    Lamorde, Mohammed; Merry, Concepta

    2010-01-01

    IN_PRESS Introduction and objectives: In Uganda, there are over 1 million people with HIV/AIDS. When advanced, this disease is characterized by life-threatening opportunistic infections. As the formal health sector struggles to confront this epidemic, new medicines from traditional sources are needed to complement control efforts. This study was conducted to document herbal medicines used in the treatment of HIV/AIDS and related opportunistic infections, and to document the existing kno...

  16. Effect of nutrients and plant growth regulators on growth and yield of black gram in sandy loam soils of Cauvery new delta zone, India

    Directory of Open Access Journals (Sweden)

    S. Marimuthu

    2015-12-01

    Full Text Available Pulse productivity is very low in some of the sandy soil areas where, soils are having poor water and nutrient holding capacity. To improve the pulse productivity, field experiments were conducted at Agricultural Research Station, Tamil Nadu for two consecutive years to study the effect of phosphorus sources (mono- and diammonium phosphate with brassinolide and salicylic acid on growth and yield of black gram in sandy loam soils. The experiment was carried out in a randomized block design with three replications during kharif season. The treatments include 100% recommended dose of NPK along with foliar application of monoammonium phosphate (MAP, diammonium phosphate (DAP, brassinolide (0.25 ppm, and salicylic acid (100 ppm along with the combination of these treatments. TNAU pulse wonder at 5.0 kg ha−1 and TNAU micronutrient mixture (MN at 5 kg ha−1 were also tried. The results revealed that application of 100% recommended dose of NPK + DAP 2% + TNAU pulse wonder 5.0 kg ha−1 was statistically significant and recorded higher plant growth (37.62 cm, number of pods / plant (37.15, yield of black gram (1162 kg ha−1, and benefit cost ratio (2.98 over the other treatments. The lowest black gram yield (730 kg ha−1 was recorded for control.

  17. An indigenous plant food used by lactating mothers in west Africa: the nutrient composition of the leaves of Kigelia africana in Ghana.

    Science.gov (United States)

    Glew, R S; Amoako-Atta, B; Ankar-Brewoo, G; Presley, J M; Chang, Y-C; Chuang, L-T; Millson, M; Smith, B R; Glew, R H

    2010-01-01

    Although the leaves of Kigelia africana are used to make a palm-nut soup which is consumed mainly by lactating women in many parts of sub-Saharan Africa, little is known about the nutrient qualities of this underutilized and underappreciated plant food. Leaves of Kigelia africana, called "sausage tree" in English and "nufuten" in the Twi language of Ghana, were collected in Kumasi and analyzed for their content of nutritionally important fatty acids, amino acids, minerals, and trace elements. The dried leaves contained 1.62% fatty acids, of which α-linolenic acid and linolenic acid accounted for 44% and 20%, respectively, of the total. Protein accounted for 12.6% of the dry weight and, except for lysine, its overall essential amino acid profile compared favorably to a World Health Organization protein standard for school children. Kigelia leaf contained considerable amounts of many essential elements, including calcium (7,620 μg/g), iron (161 μg/g), magnesium (2,310 μg/g), manganese (14.6 μg/g), zinc (39.9 μg/g), and chromium (0.83 μg/g); selenium, however, was not detected. These data indicate that Kigelia africana leaf compares favorably with many other commonly-consumed green leafy vegetables such as spinach and provides a rational basis for promoting the conservation and propagation of the plant and encouraging its wider use in the diets of populations in sub-Saharan Africa. PMID:21883090

  18. Effects of water additions, chemical amendments, and plants on in situ measures of nutrient bioavailability in calcareous soils of southeastern Utah, USA

    Science.gov (United States)

    Miller, M.E.; Belnap, J.; Beatty, S.W.; Webb, B.L.

    2006-01-01

    We used ion-exchange resin bags to investigate effects of water additions, chemical amendments, and plant presence on in situ measures of nutrient bioavailability in conjunction with a study examining soil controls of ecosystem invasion by the exotic annual grass Bromus tectorum L. At five dryland sites in southeastern Utah, USA, resin bags were buried in experimental plots randomly assigned to combinations of two watering treatments (wet and dry), four chemical-amendment treatments (KCl, MgO, CaO, and no amendment), and four plant treatments (B. tectorum alone, the perennial bunchgrass Stipa hymenoides R. & S. alone, B. tectorum and S. hymenoides together, and no plants). Resin bags were initially buried in September 1997; replaced in January, April, and June 1998; and removed at the end of the study in October 1998. When averaged across watering treatments, plots receiving KCl applications had lower resin-bag NO 3- than plots receiving no chemical amendments during three of four measurement periods-probably due to NO 3- displacement from resin bags by Cl- ions. During the January-April period, KCl application in wet plots (but not dry plots) decreased resin-bag NH 4+ and increased resin-bag NO 3- . This interaction effect likely resulted from displacement of NH 4+ from resins by K+ ions, followed by nitrification and enhanced NO 3- capture by resin bags. In plots not receiving KCl applications, resin-bag NH 4+ was higher in wet plots than in dry plots during the same period. During the January-April period, resin-bag measures for carbonate-related ions HPO 42- , Ca2+, and Mn2+ tended to be greater in the presence of B. tectorum than in the absence of B. tectorum. This trend was evident only in wet plots where B. tectorum densities were much higher than in dry plots. We attribute this pattern to the mobilization of carbonate-associated ions by root exudates of B. tectorum. These findings indicate the importance of considering potential indirect effects of soil

  19. The Integrated Role of Water Availability, Nutrient Dynamics, and Xylem Hydraulic Dysfunction on Plant Rooting Strategies in Managed and Natural Ecosystems

    Science.gov (United States)

    Mackay, D. S.; Savoy, P.; Pleban, J. R.; Tai, X.; Ewers, B. E.

    2015-12-01

    Plants adapt or acclimate to changing environments in part by allocating biomass to roots and leaves to strike a balance between water and nutrient uptake requirements on the one hand and growth and hydraulic safety on the other hand. In a recent study examining experimental drought with the TREES model, which couples plant ecophysiology with rhizosphere-and-xylem hydraulics, we hypothesized that the asynchronous nature of soil water availability and xylem repair supported root-to-leaf area (RLA) proportionality that favored long-term survival over short-term carbon gain or water use. To investigate this as a possible general principal of plant adjustment to changing environmental conditions, TREES was modified to allocate carbon to fine and coarse roots organized in ten orders differing in biomass allocated per unit absorbing root area, root lifespan, and total absorbing root area in each of several soil-root zones with depth. The expanded model allowed for adjustment of absorbing root area and rhizosphere volume based on available carbohydrate production and nitrogen (N) availability, resulting in dynamic expansion and contraction of the supply-side of the rhizosphere-plant hydraulics and N uptake capacity in response to changing environmental conditions and plant-environment asynchrony. The study was conducted partly in a controlled experimental setting with six genotypes of a widely grown crop species, Brassica rapa. The implications for forests were investigated in controlled experiments and at Fluxnet sites representing temperate mixed forests, semi-arid evergreen needle-leaf, and Mediterranean biomes. The results showed that the effects of N deficiency on total plant growth was modulated by a relative increase in fine root biomass representing a larger absorbing root volume per unit biomass invested. We found that the total absorbing root area per unit leaf area was consistently lower than that needed to maximize short-term water uptake and carbohydrate gain

  20. Ash from cereal and rape straw used for heat production: liming effect and contents of plant nutrients and heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Sander, M.-L.; Andren, O. [Swedish University of Agricultural Sciences, Uppsala (Sweden). Dept. of Ecology and Environmental Research

    1997-01-01

    The composition of 79 samples of straw ash from seven heating plants in Sweden was analysed with the aim of evaluating straw ash as a fertilizer and liming agent. The variation in ash composition was explained mainly by ash fraction (bottom ash vs. fly ash) and straw type (wheat, barley, rye, rape) but also by heating plant. Compared with concentrations of Zn, Pb and Cd in bottom ash; levels in fly ash were 10-90 times higher. Fly ash also contained more Cu and K compared with bottom ash. The Cd/P ratio was 0.03 in bottom ash and 0.6 g Cd/kg P in fly ash. Ash from rape straw had a higher Ca content and liming effect compared with ash from cereal straw; e.g. the liming effect of rape ash was more than three times higher than that of wheat ash. The liming effect varied between 3.5 and 44% CaO and depended mainly on the Ca content. The average P content was 1.7% (0.2-4.4%) with slightly higher concentration in rape ash than in wheat ash. The potential for using straw ash as a fertilizer and liming agent is discussed. Compared with commercial fertilizers the use of bottom ash as a P fertilizer results in a lower addition of Cd. However, the total heavy metal content of straw ash poses a potential problem. 24 refs., 2 figs., 5 tabs.

  1. Determination of potentially toxic heavy metals in traditionally used medicinal plants for HIV/AIDS opportunistic infections in Ngamiland District in Northern Botswana

    International Nuclear Information System (INIS)

    Highlights: ► Determine As, Cr, Ni and Pb in traditional plants used to treat HIV/AIDS opportunistic infections. ► Metal levels and provisional tolerable weekly intake levels lower than WHO permissive maximum levels. ► Cr > Pb > As > Ni. ► Consumption of traditional medicinal plants are not health-comprising with respect to metals. - Abstract: The determination of four potentially toxic heavy metals, arsenic, chromium, lead and nickel in twelve plant species used for the treatment of perceived HIV and AIDS-associated opportunistic infections by traditional healers in Ngamiland District in Northern Botswana, a metal mining area, was carried out using atomic absorption spectrometry. The medicinal plants; Dichrostachys cinerea, Maerua angolensis, Mimusops zeyheri, Albizia anthelmintica, Plumbago zeylanica, Combretum imberbe, Indigofera flavicans, Clerodendrum ternatum, Solanum panduriforme, Capparis tomentosa, Terminalia sericea and Maytenus senegalensis contained heavy metals in varying quantities: arsenic 0.19–0.54 μg g−1, chromium 0.15–1.27 μg g−1, lead 0.12–0.23 μg g−1 and nickel 0.09–0.21 μg g−1 of dry weight. Chromium was found to be the most abundant followed by arsenic and lead. Nickel was undetectable in nine plant species. M. senegalensis contained the largest amounts of arsenic, chromium and lead. All metals determined were below the WHO permissive maximum levels. The possible maximum weekly intakes of the heavy metals following treatment regimes were insignificant compared to the provisional tolerable weekly intake levels recommended by WHO and the Joint FAO/WHO Expert Committee on Food Additives. This suggests that heavy metal exposure to patients originating from consumption of traditional medicinal plant preparations is within non health-compromising limits.

  2. Determination of potentially toxic heavy metals in traditionally used medicinal plants for HIV/AIDS opportunistic infections in Ngamiland District in Northern Botswana

    Energy Technology Data Exchange (ETDEWEB)

    Okatch, Harriet, E-mail: okatchh@mopipi.ub.bw [Department of Chemistry, University of Botswana, Private Bag UB 00704, Gaborone (Botswana); Ngwenya, Barbara [Okavango Research Institute, University of Botswana, Maun (Botswana); Raletamo, Keleabetswe M. [Department of Chemistry, University of Botswana, Private Bag UB 00704, Gaborone (Botswana); Andrae-Marobela, Kerstin [Department of Biological Sciences, University of Botswana, Gaborone (Botswana); Centre for Scientific Research, Indigenous Knowledge and Innovation (CESRIKI), P.O. Box 758, Gaborone (Botswana)

    2012-06-12

    Highlights: Black-Right-Pointing-Pointer Determine As, Cr, Ni and Pb in traditional plants used to treat HIV/AIDS opportunistic infections. Black-Right-Pointing-Pointer Metal levels and provisional tolerable weekly intake levels lower than WHO permissive maximum levels. Black-Right-Pointing-Pointer Cr > Pb > As > Ni. Black-Right-Pointing-Pointer Consumption of traditional medicinal plants are not health-comprising with respect to metals. - Abstract: The determination of four potentially toxic heavy metals, arsenic, chromium, lead and nickel in twelve plant species used for the treatment of perceived HIV and AIDS-associated opportunistic infections by traditional healers in Ngamiland District in Northern Botswana, a metal mining area, was carried out using atomic absorption spectrometry. The medicinal plants; Dichrostachys cinerea, Maerua angolensis, Mimusops zeyheri, Albizia anthelmintica, Plumbago zeylanica, Combretum imberbe, Indigofera flavicans, Clerodendrum ternatum, Solanum panduriforme, Capparis tomentosa, Terminalia sericea and Maytenus senegalensis contained heavy metals in varying quantities: arsenic 0.19-0.54 {mu}g g{sup -1}, chromium 0.15-1.27 {mu}g g{sup -1}, lead 0.12-0.23 {mu}g g{sup -1} and nickel 0.09-0.21 {mu}g g{sup -1} of dry weight. Chromium was found to be the most abundant followed by arsenic and lead. Nickel was undetectable in nine plant species. M. senegalensis contained the largest amounts of arsenic, chromium and lead. All metals determined were below the WHO permissive maximum levels. The possible maximum weekly intakes of the heavy metals following treatment regimes were insignificant compared to the provisional tolerable weekly intake levels recommended by WHO and the Joint FAO/WHO Expert Committee on Food Additives. This suggests that heavy metal exposure to patients originating from consumption of traditional medicinal plant preparations is within non health-compromising limits.

  3. Balanço de nutrientes em povoamento de Eucalyptus saligna implantado sobre Cambissolo Háplico no RS Nutrient balance in plantation of Eucalyptus saligna planted on Inceptisol in Rio Grande do Sul

    Directory of Open Access Journals (Sweden)

    Michael Mazurana

    2011-09-01

    Full Text Available A fragilidade de um sistema florestal pode ser avaliada através do balanço de nutrientes, destacando a eficiência da ciclagem sendo que, em certos casos, a adubação deve ser utilizada para manter ou elevar a produtividade do sistema. Objetivou-se com este estudo avaliar o comportamento de diferentes sistemas de preparo de solo em Cambissolo Háplico e sua influência nas perdas de nutrientes transportados por erosão em área cultivada com Eucalyptus saligna. Os tratamentos foram constituídos por quatro métodos de preparo do solo: subsolagem interrompida com resíduo (SIR, subsolagem contínua com resíduo (SCR, subsolagem contínua sem resíduo (SSR e coveamento mecânico (CME, em delineamento de blocos ao acaso com três repetições por tratamento. O sistema SSR apresentou as maiores perdas de nutrientes quando comparadas com as dos outros métodos de preparo de solo. As maiores perdas de nutrientes pela erosão hídrica foram, pela ordem, K > Ca > Mg > P > Cu > B. Os sistemas de preparo SIR e SSR apresentaram os maiores teores de nutrientes contidos na parte aérea e o menor balanço nutricional, respectivamente.The forest system fragility can be evaluated through nutrient balance, with an emphasis in the cycling efficiency to maintain or elevate of productivity of system. The objective of this study was to evaluate the effects of different soil tillage systems on nutrient losses transported by erosion on an Inceptisol with Eucalyptus saligna. Four tillage systems were tested: interrupted deep chiseling with residue (SIR, continuous deep chiseling with residue (SCR, continuous deep chiseling without residue (SSR and mechanical pitting (CME. The SIR system showed the greatest nutrient losses. The loss of nutrients was higher by water erosion, in the following order, K > Ca > Mg > P > Cu > B. SIR and SSR tillage systems had the highest levels of nutrients in shoots and lower nutritional balance, respectively.

  4. Silicate mineral impacts on the uptake and storage of arsenic and plant nutrients in rice ( Oryza sativa L.).

    Science.gov (United States)

    Seyfferth, Angelia L; Fendorf, Scott

    2012-12-18

    Arsenic-contaminated rice grain may threaten human health globally. Since H₃AsO₃⁰ is the predominant As species found in paddy pore-waters, and H₄SiO₄⁰ and H₃AsO₃⁰ share an uptake pathway, silica amendments have been proposed to decrease As uptake and consequent As concentrations in grains. Here, we evaluated the impact of two silicate mineral additions differing in solubility (+Si(L), diatomaceous earth, 0.29 mM Si; +Si(H), Si-gel, 1.1 mM Si) to soils differing in mineralogy on arsenic concentration in rice. The +Si(L) addition either did not change or decreased As concentration in pore-water but did not change or increased grain-As levels relative to the (+As--Si) control. The +Si(H) addition increased As in pore-water, but it significantly decreased grain-As relative to the (+As--Si) control. Only the +Si(H) addition resulted in significant increases in straw- and husk-Si. Total grain- and straw-As was negatively correlated with pore-water Si, and the relationship differed between two soils exhibiting different mineralogy. These differing results are a consequence of competition between H₄SiO₄⁰ and H₃AsO₃⁰ for adsorption sites on soil solids and subsequent plant-uptake, and illustrate the importance of Si mineralogy on arsenic uptake.

  5. Nutrient availability moderates transpiration in Ehrharta calycina.

    Science.gov (United States)

    Cramer, Michael D; Hoffmann, Vera; Verboom, G Anthony

    2008-01-01

    Transpiration-driven 'mass-flow' of soil-water can increase nutrient flow to the root surface. Here it was investigated whether transpiration could be partially regulated by nutrient status. Seeds of Ehrharta calycina from nine sites across a rainfall gradient were supplied with slow-release fertilizer dibbled into the sand surrounding the roots and directly available through interception, mass-flow and diffusion (dubbed 'interception'), or sequestered behind a 40-microm mesh and not directly accessible by the roots, but from which nutrients could move by diffusion or mass-flow (dubbed 'mass-flow'). Although mass-flow plants were significantly smaller than interception plants as a consequence of nutrient limitation, they transpired 60% faster, had 90% higher photosynthesis relative to transpiration (A/E), and 40% higher tissue P, Ca and Na concentrations than plants allowed to intercept nutrients directly. Tissue N and K concentrations were similar for interception and mass-flow plants. Transpiration was thus higher in the nutrient-constrained 'mass-flow' plants, increasing the transport of nutrients to the roots by mass-flow. Transpiration may have been regulated by N availability, resulting in similar tissue concentration between treatments. It is concluded that, although transpiration is a necessary consequence of photosynthetic CO(2) uptake in C(3) plants, plants can respond to nutrient limitation by varying transpiration-driven mass-flow of nutrients. PMID:18537891

  6. A virulence factor encoded by a polydnavirus confers tolerance to transgenic tobacco plants against lepidopteran larvae, by impairing nutrient absorption.

    Directory of Open Access Journals (Sweden)

    Ilaria Di Lelio

    Full Text Available The biological control of insect pests is based on the use of natural enemies. However, the growing information on the molecular mechanisms underpinning the interactions between insects and their natural antagonists can be exploited to develop "bio-inspired" pest control strategies, mimicking suppression mechanisms shaped by long co-evolutionary processes. Here we focus on a virulence factor encoded by the polydnavirus associated with the braconid wasp Toxoneuron nigriceps (TnBV, an endophagous parasitoid of noctuid moth larvae. This virulence factor (TnBVANK1 is a member of the viral ankyrin (ANK protein family, and appears to be involved both in immunosuppression and endocrine alterations of the host. Transgenic tobacco plants expressing TnBVANK1 showed insecticide activity and caused developmental delay in Spodoptera littoralis larvae feeding on them. This effect was more evident in a transgenic line showing a higher number of transcripts of the viral gene. However, this effect was not associated with evidence of translocation into the haemocoel of the entire protein, where the receptors of TnBVANK1 are putatively located. Indeed, immunolocalization experiments evidenced the accumulation of this viral protein in the midgut, where it formed a thick layer coating the brush border of epithelial cells. In vitro transport experiments demonstrated that the presence of recombinant TnBVANK1 exerted a dose-dependent negative impact on amino acid transport. These results open new perspectives for insect control and stimulate additional research efforts to pursue the development of novel bioinsecticides, encoded by parasitoid-derived genes. However, future work will have to carefully evaluate any effect that these molecules may have on beneficial insects and on non-target organisms.

  7. Effect of nutrients and fermentation conditions on the production of biosurfactants using rhizobacteria isolated from fique plants

    Directory of Open Access Journals (Sweden)

    Aura M. Pedroza-Rodríguez

    2010-12-01

    Full Text Available To isolate biosurfactant-producing microorganisms from the rhizosphere of fique and to select the best genus to evaluate theeffect of nutritional and fermentation conditions on the production of rhamnolipids. Materials and methods. Rhizospheric soil wassampled in three areas of Cauca. The best genus was selected for the experimental designs (Plackett Burman and 22 factorial and to find theproduction conditions for the growth kinetics at an Erlenmeyer flask scale. Results. Isolates from the rhizosphere of fique plants were fromgroups (or genera of Bacillus, Pseudomonas and Actinomycetes, being Pseudomonas the more responsive in preliminary testing foremulsification. From the results of the experimental designs and the kinetics of production, we found that rhamnose synthesis associatedwith rhamnolipids (3.2 g/l and emulsification (68% EC24 was significantly favored (p <0.0001 by cultivating an inoculum of 10% v/vof Pseudomonas fluorescens in a medium composed of: soybean oil 2% (v/v, K2HPO40.2% (w/v, yeast extract 0.4 g/l, NH4NO33.7 g/l, 1 ml trace elements (CoCl320 mg/l, H3BO330 mg/l, ZnSO410 mg/l, Cu2SO41 mg/l, Na2MoO43 mg/l, FeSO410 mg/l MnSO42,6 mg/l and pH 7.2. Conclusion. Of all the microbial genera isolated from the rhizosphere of fique, Pseudomonas fluorescens had the greatestpotential in the production of biosurfactants of the rhamnolipids family.

  8. Biological Nutrient Removal in a Full Scale Anoxic/Anaerobic/Aerobic/Pre-anoxic-MBR Plant for Low C/N Ratio Municipal Wastewater Treatment

    Institute of Scientific and Technical Information of China (English)

    胡香; 谢丽; 张善发; 杨殿海

    2014-01-01

    A novel full scale modified A2O (anoxic/anaerobic/aerobic/pre-anoxic)-membrane bioreactor (MBR) plant combined with the step feed strategy was operated to improve the biological nutrient removal (BNR) from low C/N ratio municipal wastewater in Southern China. Transformation of organic carbon, nitrogen and phosphorus, and membrane fouling were investigated. Experimental results for over four months demonstrated good efficiencies for chemical oxygen demand (COD) and 4NH+-N removal, with average values higher than 84.5%and 98.1%, re-spectively. A relatively higher total nitrogen (TN) removal efficiency (52.1%) was also obtained at low C/N ratio of 3.82, contributed by the configuration modification (anoxic zone before anaerobic zone) and the step feed with a distribution ratio of 1︰1. Addition of sodium acetate into the anoxic zone as the external carbon source, with a theoretical amount of 31.3 mg COD per liter in influent, enhanced denitrification and the TN removal efficiency in-creased to 74.9%. Moreover, the total phosphate (TP) removal efficiency increased by 18.0%. It is suggested that the external carbon source is needed to improve the BNR performance in treating low C/N ratio municipal waste-water in the modified A2O-MBR process.

  9. The role of river sediments in contamination storage downstream of a waste water treatment plant in low flow conditions: Organotins, faecal indicator bacteria and nutrients

    Science.gov (United States)

    Chahinian, N.; Bancon-Montigny, C.; Caro, A.; Got, P.; Perrin, J. L.; Rosain, D.; Rodier, C.; Picot, B.; Tournoud, M. G.

    2012-12-01

    In intermittent rivers, characterised by a specific hydrological behaviour, sediment-water column interactions may influence water quality during low flows. The main objective of this work was to assess the extent of anthropogenic pollution (organotins, faecal indicator bacteria and nutrients) in the river sediment of an intermittent river and its impact on the downstream water bodies: The Vène River, main tributary of the Thau lagoon. We first investigated anthropogenic pollution from water and sediment samples collected in situ along the river course (1.5 km); then, during laboratory experiments, we assessed the survival of faecal bacteria and quantified the degradation rates of organotins on the same sediments. The results indicate the presence of anthropogenic pollution all along the study reach. The waste water treatment plant effluent is a direct pollution input source for anthropogenic pollution. The sediment data points to an urban drainage ditch as a secondary point pollution source while the organotins data highlights the presence of other diffuse sources, specific to this substance. The results of the laboratory experiments show that both faecal bacteria and organotins may persist in the river sediments for up to two months in summer and even longer in winter. This indicates that sediments may, under favourable conditions, become important pollutant stores which may later be released and transported to the Thau lagoon during floods.

  10. EFECTOS BENEFICOS DE BACTERIAS RIZOSFÉRICAS EN LA DISPONIBILIDAD DE NUTRIENTES EN EL SUELO Y LA ABSORCIÓN DE NUTRIENTES POR LAS PLANTAS A REVIEW ON BENEFICIAL EFFECTS OF RHIZOSPHERE BACTERIA ON SOIL NUTRIENT AVAILABILITY AND PLANT NUTRIENT UPTAKE

    OpenAIRE

    Nelson Walter Osorio Vega

    2007-01-01

    Este artículo se constituye en una revisión de los beneficios de bacterias rizosféricas sobre la nutrición vegetal. La interacción entre planta y bacterias solubilizadoras de fosfato es explicada en mayor detalle y usada como modelo para ilustrar el rol que algunas bacterias de la rizosfera juegan en la disponibilidad de nutrientes en el suelo. Las condiciones ambientales de la rizosfera también se discuten con detalle. Los beneficios de estas bacterias han sido obtenidos, y mejorados, en pre...

  11. Effects of aluminum on plant growth and nutrient uptake in young physic nut plantsEfeitos do alumínio no crescimento e na absorção de nutrientes em plantas jovens de pinhão-manso

    Directory of Open Access Journals (Sweden)

    João Alexandre Lopes Dranski

    2012-10-01

    Full Text Available Aluminum (Al3+ toxicity is a major limiting factor to crop productivity in acid soils. The effects of aluminum on root and shoot growth of physic nut (Jatropha curcas L. young plants and, the uptake and distribution of phosphorus, calcium, magnesium and aluminum in the roots and shoots were investigated in the present study. Plants were grown in 2.5L pots in a greenhouse. After fourteen days of adaptation to nutrient solution, plants were exposed to Al concentrations of 0, 370, 740, 1,100 and 1,480 ?mol L–1, corresponding to an active Al3+ solution of 13.3, 35.3, 90.0, 153.3 and 220.7 ?mol L–1, respectively. The dry matter partitioning between roots, stems and leaves, and the concentrations of P, Ca, Mg and Al in plant tissue, were measured after 75 days exposure to Al. The increasing level of Al3+ activity in solution progressively decreased the growth of the shoot and root of physic nut plants, and at the two highest active Al3+ levels, plants showed morphological abnormalities typical of the toxicity caused by this metal. Higher Al3+ activity reduced P concentrations in leaves and Ca and Mg in leaves and roots of physic nut, demonstrating the effect of Al on the uptake, transport and use of these nutrients by plants. The Al accumulated preferentially in the roots of physic nut, whereas only a small amount was transported to shoots.A toxicidade de alumínio (Al3+ é um dos principais fatores que limitam a produtividade das culturas em solos ácidos. O objetivo deste estudo foi avaliar o efeito do alumínio no crescimento e na absorção de fósforo, cálcio, magnésio e alumínio em plantas jovens de pinhão-manso, cultivadas em solução nutritiva. O experimento foi conduzido em vasos de 2,5 L e as plantas crescidas em casa de vegetação. Após 14 dias de adaptação em solução nutritiva, as plantas foram submetidas a concentrações de Al de: 0; 370; 740; 1.110 e 1.480 ?mol L–1, que corresponderam a atividade de Al3+ em solução de

  12. Autophagy provides nutrients for nonassimilating fungal structures and is necessary for plant colonization but not for infection in the necrotrophic plant pathogen Fusarium graminearum

    DEFF Research Database (Denmark)

    Josefsen, Lone; Droce, Aida; Søndergaard, Teis;

    2012-01-01

    The role of autophagy in necrotrophic fungal physiology and infection biology is poorly understood. We have studied autophagy in the necrotrophic plant pathogen Fusarium graminearum in relation to development of nonassimilating structures and infection. We identified an ATG8 homolog F. graminearum...... starvation is severely inhibited in the Delta Fgatg8 strain demonstrating autophagy-dependent lipid utilization, lipophagy, in fungi. Radial growth rate of the Delta Fgatg8 strain is reduced compared with the wild type and the mutant does not grow over inert plastic surfaces in contrast to the wild type....... The ability to infect barley and wheat is normal but the mutant is unable to spread from spikelet to spikelet in wheat. Complementation by inserting the F. graminearum atg8 gene into a region adjacent to the actin gene in Delta Fgatg8 fully restores the WT phenotype. The results showed that autophagy plays...

  13. Determinação de nutrientes minerais em plantas medicinais Determination of minerals in medicinal plants

    Directory of Open Access Journals (Sweden)

    Maria Mozarina Beserra Almeida

    2002-01-01

    Full Text Available O uso de vegetais tem-se difundido largamente nos últimos anos para fins alimentícios, medicinais e cosméticos. Devido à importância do estudo da composição inorgânica desses vegetais, o presente trabalho se propõe a analisar a ocorrência de minerais com comprovadas funções no metabolismo humano em dez ervas de popular uso terapêutico. As amostras estudadas foram tratadas por dois métodos distintos: calcinação seguida de tratamento ácido ou infusão para a obtenção dos chás. Posteriormente, os metais foram determinados quantitativamente utilizando-se espectrofotometria de absorção atômica (Ca, Mg, Mn e Zn, espectrofotometria de absorção molecular (Al e Fe e fotometria de chama (K e Na. Comparando-se os resultados encontrados no presente trabalho com os valores diários recomendados pela RDA e WHO, sugere-se estudos para a utilização de Chenopodium ambrosioides L. como uma fonte alternativa complementar de Na, K, Mg e Zn, e do Ageratum conyzoides L. como fonte de Ca, Mg e Fe na dieta alimentar. Embora Lippia alba e Justicia gendarussa L. tenham apresentado elevados valores de Ca, recomenda-se uma certa prudência quanto ao uso desse vegetal, devido aos significativos teores encontrados para Al.The use of vegetables has become widely spread as nourishment, medicinal and cosmetic purposes in recent years. Due to the importance of the analytical study of this class of plants, and considering the growing interest about their inorganic composition that can be represented by the significant number of publications during the last years, the present work intended to analyze the occurrence of some minerals in ten herbs of popular therapeutic use that play important roles in the human metabolism. The studied samples were treated by two different methods: 1 dry ashing followed by acid treatment and 2 as tea by infusion of leaves in boiling water. Next, the metals were quantitatively determined by atomic absorption

  14. Sunflower plants nutrients accumulation and oil yield as affected by achenes vigour and sowing density
    Acúmulo de nutrientes e rendimento de óleo em plantas de girassol influenciados pelo vigor dos aquênios e pela densidade de semeadura

    OpenAIRE

    Madelon Rodrigues Sá Braz; Claudia Antônia Vieira Rossetto

    2010-01-01

    The objective this work was to evaluate the nutrients accumulation and achenes oil yield in sunflower plants as affected by achenes vigour and sowing density. An experiment was installed in the field at Seropédica, State of Rio de Janeiro, in October 2006 with three lots of sunflower achenes, cultivar Embrapa 122 V2000, classified as low, medium and high vigour and two sowing density (45,000 e 75,000 seeds.ha-1). The collected were realized at 20, 60 and 100 days after planting (DAP) to the d...

  15. 太阳能辅助燃煤发电技术经济分析%Techno-economic Analysis of Solar Thermal Aided Coal-fired Power Plants

    Institute of Scientific and Technical Information of China (English)

    毛剑; 杨勇平; 侯宏娟; 张楠

    2015-01-01

    太阳能与燃煤互补发电方式是近年来大规模太阳能热利用的发展方向之一。以槽式太阳能集热系统辅助某330MW燃煤机组替代高加回热抽汽加热给水的互补发电系统为例,对功率不变型互补发电系统的设计点热力性能及年热力性能进行了分析。结果表明,太阳能辅助发电系统的年光电转换效率可达到20.41%,高于单纯槽式太阳能热发电方式。在此基础上,以内部收益率(internal rate of return,IRR)作为评价指标,运用技术经济的基本原理对太阳能辅助燃煤机组互补发电系统的经济性能及其主要影响因素进行了定量的分析评价,得到了太阳能上网电价、集热器造价、燃料成本等关键因素对内部收益率的影响。%ABSTRACT:The solar aided coal-fired power generation system is one of the trends of the solar thermal applications on a large scale recently. The performance of a solar trough collector aided 330MW plant with part of extraction steam in high-pressure (HP) heaters replaced was analyzed as an example. The design point and typical annual performance of solar aided coal-fired power generation in fuel-saving operation mode was analyzed. The results show that the performance of solar aided coal-fired power generation system is superior to trough solar thermal power unit and the solar to power efficiency can reach 20.41%. On this basis, the economic benefits of the solar aided coal-fired power generation system was analyzed with internal rate of return (IRR) as index by using the fundamental theories of techno-economy, and the main factors which affect the project economy were evaluated quantitatively. The influences of electricity prices, collector prices, fuel prices on IRR were gained.

  16. Current Status of Nutrient Management in Hainan Rubber Planting Areas and Improvement Strategies%海南植胶区养分管理现状与改进策略

    Institute of Scientific and Technical Information of China (English)

    王大鹏; 王秀全; 成镜; 何鹏; 韦家少

    2013-01-01

    Fertilizer played an extremely important role on developing the rubber planting industry in China. However, after years of rubber planting production, it faced many serious problems in the planting area, such as difficulties in enhancing the unit area yield, soil nutrients decreasing. Based on those mentioned above, fertilization techniques are now urgent to be upgraded. In this paper, the nutrient management situation was reviewed in Hainan, the nutrient management problems of rubber plantation was discussed, on the basis of what the relevant improvement strategies were proposed.%施肥对我国植胶业的发展起了极其重要的作用,然而经过多年的植胶生产,各植胶区已面临单产提升困难、土壤养分大面积下降和施肥技术亟待提升等重大问题。本文对海南植胶区养分管理现状进行综述,探讨海南胶园养分管理的若干问题,并提出改进策略。

  17. Nutrient resorption is associated with leaf vein density and growth performance of dipterocarp tree species

    NARCIS (Netherlands)

    Zhang, J.L.; Zhang, S.B.; Chen, Y.J.; Zhang, Y.P.; Poorter, L.

    2015-01-01

    1.Nutrient resorption is important for the nutrient budget of plants, but little is known about which plant traits mediate nutrient resorption, how resorption efficiency is associated with other leaf traits and whether nutrient resorption has an impact on plant growth. 2.In this study, 17 dipterocar

  18. A new generic plant growth model framework (PMF): Simulating distributed dynamic interaction of biomass production and its interaction with water and nutrients fluxes

    Science.gov (United States)

    Multsch, Sebastian; Kraft, Philipp; Frede, Hans-Georg; Breuer, Lutz

    2010-05-01

    Today, crop models have a widespread application in natural sciences, because plant growth interacts and modifies the environment. Transport processes involve water and nutrient uptake from the saturated and unsaturated zone in the pedosphere. Turnover processes include the conversion of dead root biomass into organic matter. Transpiration and the interception of radiation influence the energy exchange between atmosphere and biosphere. But many more feedback mechanisms might be of interest, including erosion, soil compaction or trace gas exchanges. Most of the existing crop models have a closed structure and do not provide interfaces or code design elements for easy data transfer or process exchange with other models during runtime. Changes in the model structure, the inclusion of alternative process descriptions or the implementation of additional functionalities requires a lot of coding. The same is true if models are being upscaled from field to landscape or catchment scale. We therefore conclude that future integrated model developments would benefit from a model structure that has the following requirements: replaceability, expandability and independency. In addition to these requirements we also propose the interactivity of models, which means that models that are being coupled are highly interacting and depending on each other, i.e. the model should be open for influences from other independent models and react on influences directly. Hence, a model which consists of building blocks seems to be reasonable. The aim of the study is the presentation of the new crop model type, the plant growth model framework, PMF. The software concept refers to an object-oriented approach, which is developed with the Unified Modeling Language (UML). The model is implemented with Python, a high level object-oriented programming language. The integration of the models with a setup code enables the data transfer on the computer memory level and direct exchange of information

  19. Foreign aid

    DEFF Research Database (Denmark)

    Tarp, Finn

    2008-01-01

    Foreign aid has evolved significantly since the Second World War in response to a dramatically changing global political and economic context. This article (a) reviews this process and associated trends in the volume and distribution of foreign aid; (b) reviews the goals, principles...... and institutions of the aid system; and (c) discusses whether aid has been effective. While much of the original optimism about the impact of foreign aid needed modification, there is solid evidence that aid has indeed helped further growth and poverty reduction...

  20. Aid Effectiveness

    DEFF Research Database (Denmark)

    Arndt, Channing; Jones, Edward Samuel; Tarp, Finn

    Controversy over the aggregate impact of foreign aid has focused on reduced form estimates of the aid-growth link. The causal chain, through which aid affects developmental outcomes including growth, has received much less attention. We address this gap by: (i) specifying a structural model...... of the main relationships; (ii) estimating the impact of aid on a range of final and intermediate outcomes; and (iii) quantifying a simplied representation of the full structural form, where aid impacts on growth through key intermediate outcomes. A coherent picture emerges: aid stimulates growth and reduces...

  1. Application of Isotope Techniques for Assessing Nutrient Dynamics in River Basins

    International Nuclear Information System (INIS)

    Nutrients are necessary for the growth and survival of animals, plants and other organisms. However, industrial, agricultural and urban development has dramatically increased nutrient levels in river systems, including nitrogen and phosphorus containing substances, degrading water quality, causing acidification and eutrophication and affecting aquatic ecosystems. Nutrient assessment and management in river systems has been an important part of water resource management for the past few decades, but the provision of appropriate and effective nutrient assessment and management continues to be a challenge for water resource managers and policy makers. Difficulties in assessment and management are due in part to the fact that nutrients in rivers may originate from a variety of sources, take numerous pathways and transform into other substances. This publication presents the application of isotope techniques as a powerful tool for evaluating the sources, pathways, transformation, and fate of nutrients in river systems, focusing on nitrogen, phosphorus and carbon containing substances. Eleven researchers using various isotope techniques for different aspects of nutrient studies and two IAEA officers met in a technical meeting and discussed a publication that could assist water resource managers in dealing with nutrient assessment and management issues in river systems. These researchers also recognized the need for careful consideration in selecting appropriate isotope techniques in view of not only technical, but also financial, human resources and logistical capabilities, among others. These contributors are listed as major authors in the later pages of this document. This publication aims at serving water resource managers as a guidebook on the application of isotope techniques in nutrient assessment and management, but it is also expected to be of practical aid for other interested and concerned individuals and organization.

  2. AIDS (image)

    Science.gov (United States)

    AIDS (acquired immune deficiency syndrome) is caused by HIV (human immunodeficiency virus), and is a syndrome that ... life-threatening illnesses. There is no cure for AIDS, but treatment with antiviral medication can suppress symptoms. ...

  3. Hearing Aids

    Science.gov (United States)

    ... more in both quiet and noisy situations. Hearing aids help people who have hearing loss from damage ... your doctor. There are different kinds of hearing aids. They differ by size, their placement on or ...

  4. Knowledge-based system aided evaluation of replica results in terms of remaining life assessment of power plant components

    International Nuclear Information System (INIS)

    The expert system for remaining life assessment addresses the problem related to possible failures of high temperature pressurized components such as piping and pipework subcomponents in power and other industrial plants. The goals, structure, main parts, and step in the analysis of the expert system are described. (DG)

  5. Silício como amenizador da fitotoxicidade de zinco em plantas jovens de Eucalyptus urophylla cultivadas em solução nutritiva Silicon as alleviator of zinc toxicity in young Eucalyptus urophylla plants grown in nutrient solution

    Directory of Open Access Journals (Sweden)

    Sheila Isabel do Carmo Pinto

    2009-12-01

    Full Text Available Apesar de o zinco (Zn ser micronutriente fundamental para o crescimento e metabolismo das plantas, quando presente em níveis tóxicos no ambiente pode afetar o desenvolvimento vegetal. Entre os vários efeitos benéficos do silício (Si, cita-se sua influência na diminuição ou eliminação dos efeitos adversos de metais pesados no meio. O objetivo deste trabalho foi avaliar o efeito do Si na amenização da toxidez de Zn sobre o crescimento e nutrição mineral de plantas de Eucalyptus urophylla. As plantas foram cultivadas em vasos contendo 3 L de solução nutritiva de Clark, em esquema fatorial 6 x 2, sendo seis concentrações de Zn (0, 2, 50, 150, 300 e 450 µmol L-1 como ZnSO4 7H2O e duas de Si (0 e 1,78 mmol L-1 de Si como silicato de potássio. Após oito semanas, avaliaram-se alguns parâmetros morfológicos das plantas, produção de matéria seca, teores e utilização de nutrientes. O aumento das concentrações de Zn na solução nutritiva proporcionou maior fitotoxicidade nas raízes em relação à parte aérea. A adição do Si amenizou o efeito negativo do excesso de Zn sobre o crescimento, no entanto pouco influenciou os teores dos nutrientes avaliados nos tecidos, embora tenha proporcionado utilização mais eficiente de P, Ca, Mg e S pelas plantas de Eucalyptus urophylla.Zn is an essential micronutrient for the growth and metabolism of plants, but when present in toxic levels in the environment, it can affect the the development of plants. Among the several beneficial effects of silicon (Si, it presents an effect in the decrease or elimination of the adverse effects of heavy metals in the environment. The objective of this work was to evaluate the effect of Si in the alleviation of Zn toxicity on the growth and mineral nutrition of Eucalyptus urophylla seedlings cultivated in nutrient solution. Seedlings of Eucalyptus urophylla were grown in pots containing 3L of Clark nutrient solution, in a 6 x 2 factorial design, using

  6. MATÉRIA SECA E ABSORÇÃO DE NUTRIENTES EM FUNÇÃO DO ESPAÇAMENTO E DA DENSIDADE DE SEMEADURA EM ARROZ DE TERRA ALTA DRY MATTER AND NUTRIENT UPTAKE OF DRYLAND RICE RELATED TO ROW SPACING AND PLANT POPULATION

    Directory of Open Access Journals (Sweden)

    Carlos Alexandre Costa Crusciol

    1999-01-01

    Full Text Available Foi instalado um experimento em condições de campo, em um Latossolo Vermelho escuro, epi-eutrófico, textura argilosa, em Selvíria-MS, com arroz de sequeiro cv. IAC 201, estudando-se três espaçamentos entre fileiras (30, 40 e 50 cm e três densidades de semeadura (100, 150 e 200 sementes viáveis/m2. Foram avaliadas a produção de matéria seca da parte aérea no momento do florescimento e determinados os teores e quantidades de N, P, K, Ca, Mg e S absorvidos, assim como a eficiência de utilização de nutrientes. A redução do espaçamento entre fileiras aumentou a produção de matéria seca da parte aérea e a quantidade de nutrientes absorvidos. A variação da densidade de semeadura não afetou os parâmetros estudados. A redução do espaçamento entre fileiras proporcionou maior eficiência de utilização do Ca e diminuiu a do N e Mg. Os teores de nutrientes na matéria seca da parte aérea não foram afetados pela variação do espaçamento entre fileiras.A field experiment was conducted in a clayey Dark Red Latosol in Selviria, MS, Brazil, to study the effect of three row spacings (30, 40 and 50 cm and three seed densities (100, 150 and 200 viable seeds/m2 on plant dry matter yield, macronutrient (N, P, K, Ca, Mg and S uptake at flowering, and the nutrient use efficiency. A decrease in row spacing led to an increase in shoot dry matter production and nutrient uptake. There was no effect of plant densities on dry matter or nutrient uptake. The decrease in row spacing allowed a higher Ca use efficiency, but not for N and Mg. The concentration of the macronutrients in the shoots was not affected by spacing.

  7. Effect of integrated approach of plant nutrients on yield and yield attributes of different crops in wheat-sesame-T. Aman cropping pattern

    Directory of Open Access Journals (Sweden)

    M.A. Islam

    2013-12-01

    Full Text Available The experiment was carried out at FSRD site, Pushpopara, Pabna, during November, 2010 to December, 2011 to observe the comparative performance of integrated plant nutrients management (IPNS system through the use of organic (cowdung, cowdung slurry manure and inorganic fertilizer on wheat, sesame and T. Aman crops under wheat-sesame-T. Aman cropping pattern. The experiment was consisted with four treatments viz. T1: Soil test based inorganic fertilizer dose for high yield goal, T2: Cowdung @ 5 t ha-1 + IPNS basis inorganic fertilizer dose for high yield goal, T3: Cowdung slurry @ 5 t ha-1 + IPNS basis inorganic fertilizer dose for high yield goal and T4: Fertilizer dose usually practiced by the farmers. In case of wheat, the highest grain yield (3.80 t ha-1 was obtained from bio-slurry treated plot that means T3 treatment followed by T2 and the lowest (3.31 t ha-1 from T4. Higher seed yield (1.31 t ha-1 of sesame was obtained from T3 that was statistically identical to T2 and T1 and the lower (1.01 t ha-1 from T4. For T. Aman rice, the highest grain yield (4.89 t ha-1 was obtained from T3 which was statistically indistinguishable from T1 where as the lowest grain yield (4.1 t ha-1 was recorded from T4. Considering the whole pattern, it is observed that the highest gross return (271100 Tk ha-1 was obtained from T3 followed by T2 and the lowest (225650 Tk ha-1 from T1 treatment. Total variable cost was recorded as the highest (100368 Tk ha-1 in T2 followed by T3 and the lowest (86775 Tk ha-1 in T4 treatment. The highest marginal value of product (45450 Tk ha-1 was recorded in T3 followed by T2 where as the minimum (28710 Tk ha-1 was found in T1 over the T4 treatment. Marginal variable cost was observed as the highest (13593 Tk ha-1 in T2 treatment followed by T3 and the minimum (8899 Tk ha-1 was recorded in T1 treatment. The highest MBCR (4.15 was recorded from T3 followed by T2 and the minimum (2.31 from T2 treatment.

  8. Mycorrhizas effects on nutrient interception in two riparian grass species

    OpenAIRE

    Hamid Reza Asghari; Timothy Richard Cavagnaro

    2014-01-01

    Effects of arbuscular mycorrhizal (AM) fungi on plant growth and soil nutrient depletion are well known, but their roles as nutrient interceptor in riparian areas are less clear. The effects of AM fungi on growth, soil nutrient depletion and nutrient leaching were investigated in columns with two riparian grass species. Mycorrhizal and non mycorrhizal (NM) plants were grown in a mixture of riparian soil and sand (60% and 40%, w/w respectively) for 8 weeks under glasshouse conditions. Mycorrhi...

  9. Nano titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management.

    Science.gov (United States)

    Palmqvist, N G M; Bejai, S; Meijer, J; Seisenbaeva, G A; Kessler, V G

    2015-01-01

    A novel use of Titania nanoparticles as agents in the nano interface interaction between a beneficial plant growth promoting bacterium (Bacillus amyloliquefaciens UCMB5113) and oilseed rape plants (Brassica napus) for protection against the fungal pathogen Alternaria brassicae is presented. Two different TiO2 nanoparticle material were produced by the Sol-Gel approach, one using the patented Captigel method and the other one applying TiBALDH precursor. The particles were characterized by transmission electron microscopy, thermogravimetric analysis, X-ray diffraction, dynamic light scattering and nano particle tracking analysis. Scanning electron microscopy showed that the bacterium was living in clusters on the roots and the combined energy-dispersive X-ray spectroscopy analysis revealed that titanium was present in these cluster formations. Confocal laser scanning microscopy further demonstrated an increased bacterial colonization of Arabidopsis thaliana roots and a semi-quantitative microscopic assay confirmed an increased bacterial adhesion to the roots. An increased amount of adhered bacteria was further confirmed by quantitative fluorescence measurements. The degree of infection by the fungus was measured and quantified by real-time-qPCR. Results showed that Titania nanoparticles increased adhesion of beneficial bacteria on to the roots of oilseed rape and protected the plants against infection.

  10. Nano titania aided clustering and adhesion of beneficial bacteria to plant roots to enhance crop growth and stress management

    Science.gov (United States)

    Palmqvist, N. G. M.; Bejai, S.; Meijer, J.; Seisenbaeva, G. A.; Kessler, V. G.

    2015-05-01

    A novel use of Titania nanoparticles as agents in the nano interface interaction between a beneficial plant growth promoting bacterium (Bacillus amyloliquefaciens UCMB5113) and oilseed rape plants (Brassica napus) for protection against the fungal pathogen Alternaria brassicae is presented. Two different TiO2 nanoparticle material were produced by the Sol-Gel approach, one using the patented Captigel method and the other one applying TiBALDH precursor. The particles were characterized by transmission electron microscopy, thermogravimetric analysis, X-ray diffraction, dynamic light scattering and nano particle tracking analysis. Scanning electron microscopy showed that the bacterium was living in clusters on the roots and the combined energy-dispersive X-ray spectroscopy analysis revealed that titanium was present in these cluster formations. Confocal laser scanning microscopy further demonstrated an increased bacterial colonization of Arabidopsis thaliana roots and a semi-quantitative microscopic assay confirmed an increased bacterial adhesion to the roots. An increased amount of adhered bacteria was further confirmed by quantitative fluorescence measurements. The degree of infection by the fungus was measured and quantified by real-time-qPCR. Results showed that Titania nanoparticles increased adhesion of beneficial bacteria on to the roots of oilseed rape and protected the plants against infection.

  11. Decomposição e liberação de nutrientes de coquetéis vegetais para utilização no Semiárido brasileiro The decomposition and release of nutrients by plant mixtures in the Brazilian semi-arid regions

    Directory of Open Access Journals (Sweden)

    Vanderlise Giongo

    2011-09-01

    Full Text Available A decomposição e liberação de nutrientes de resíduos vegetais podem assumir importante papel no manejo da fertilidade dos solos da região semiárida. Portanto, o presente estudo teve por objetivo avaliar a taxa de decomposição da matéria seca (MS e liberação de carbono (C e nutrientes de coquetéis vegetais no Semiárido brasileiro. O experimento foi conduzido em casa de vegetação, no período de novembro de 2007 a junho de 2008, com coquetéis vegetais compostos por espécies de leguminosas (L (calopogônio, Crotalaria juncea, Crotalaria spectabilis, feijão de porco, guandu, lab-lab e não leguminosas (NL (gergelim, girassol, mamona, milheto e sorgo, combinados nos seguintes tratamentos: T1 - 100% NL; T2 - 100% L; T3 - 75% L e 25% NL; T 4 - 50% L e 50% NL; T5 - 25% L e 75% NL. As taxas de decomposição da MS e liberação dos nutrientes foram monitoradas por meio de coleta dos resíduos, realizadas aos 8; 15; 30; 60; 90; 120; 150; 180 e 210 dias após o início do experimento. Utilizou-se o delineamento experimental em blocos casualizados com três repetições. Os coquetéis apresentaram taxas de decomposição de MS e liberação de nutrientes semelhantes, exceto para Ca, Cu e Mn, em que os coquetéis compostos com predominância de espécies NL apresentaram liberação mais rápida. A partir da média dos valores de k para todos os coquetéis estabeleceu-se a seguinte ordem de liberação de macronutrientes: K > N > Ca > Mg > P e de micronutrientes: Fe > Mn > Cu > Zn > B.The decomposition and release of nutrients from plant residues can play an important role in the maintenance of soil fertility in semi-arid regions. Thus this study aimed to evaluate the rate of decomposition of dry matter (DM and the release of carbon (C and nutrients from plant mixtures used as green manure in the Brazilian Semi-arid regions. The experiment was carried out in a greenhouse, from November 2007 to July 2008, using plant mixtures made up of

  12. Novel ideas for maximising dew collection to aid plant establishment to combat desertification and restore degraded dry and arid lands

    Science.gov (United States)

    Kotzen, Benz

    2014-05-01

    This paper focuses on the potential of dew to provide water to plants and potentially to people as well in remote and difficult to reach areas where rainfall and underground water cannot be harvested. The combat of desertification and the restoration of degraded and desertified dry and arid lands has never been more urgent. A key practical component of this strategy is the restoration of habitat with planting. But for habitat and planting to survive there needs to be an adequate supply of water. In most cases providing water to the plant's roots is vital. In some areas where habitats have been destroyed, sufficient water is immediately available, for example through seasonal rainfall, or it can be harvested to concentrate adequate supplies of water to the roots. However, in arid and hyper arid areas, as well as in some dryland areas, a consistent and adequate supply of water cannot be provided by any conventional proven method. Thus, as the need to combat desertification and to restore desertified dry and arid land increases, so the need to find novel methods of establishing and maintaining planting and thus habitat increases. In more traditional land management scenarios this can be achieved through manipulating landform on a micro and macro scale, for example, by creating catchments, thereby collecting precipitation and directing it to the plants. Where this cannot be done, other means of water supply are usually required. Bainbridge (2007) and others have shown that supplying water to plants is possible through a number of traditional methods, for example, using clay pots. But most of these techniques require an introduced source of water, for example, obtained through water harvesting methods or by delivering water to site in tanks and by water bowser. This can work but requires continuous manpower. It is expensive and can be physically prohibitive in areas where access is difficult and/or remote. The concept of using dew to supply water in drylands is not new

  13. Soil micronutrients and its uptake by rice plant. Part of a coordinated programme on isotope-aided micronutrient studies in rice production with special reference to zinc deficiencies

    International Nuclear Information System (INIS)

    A series of field and greenhouse experiments with flooded rice was carried out on contrasting soil types of Korea to study the zinc status of soils, evaluate the chemical methods for extracting zinc from soils in terms of ability to identify zinc deficiency, perform 65Zn-aided experiments including the residual effects of zinc fertilizers to evaluate the efficiency of zinc sources and methods of zinc application to rice, and associated studies on factors affecting zinc nutrition in rice such as effect of organic matter and chelates. The results show that i) 0.05 N HCl solution for extracting available zinc in soil was effective to separating the soils which require zinc fertilizer application. The proposed zinc value to identify is 2.4 ppm. Among rice soils surveyed, the red-yellow podsolic soil derived from basalt, the reddish-brown lateritic soil of calcareous material and newly reclaimed saline soils were shown to be below this limit; ii) 5 kg Zn/ha as zinc sulphate introduced the highest response in terms of % Zndff, total zinc yield in rice plant, and the fertilizer zinc use efficiency. Applying higher zinc amounts, in case of 20 kg Zn/ha, retarded nitrogen uptake by the plant and as a result the rice grain yield was decreased; iii) Significant yields increases due to the residual effects of zinc fertilizers were obtained on the second and third crops; iv) On the zinc-deficient calcareous soil the use of chelated zinc sources is recommended

  14. Sensitive quantitation of polyamines in plant foods by ultrasound-assisted benzoylation and dispersive liquid-liquid microextraction with the aid of experimental designs.

    Science.gov (United States)

    Pinto, Edgar; Melo, Armindo; Ferreira, Isabel M P L V O

    2014-05-14

    A new method involving ultrasound-assisted benzoylation and dispersive liquid-liquid microextraction was optimized with the aid of chemometrics for the extraction, cleanup, and determination of polyamines in plant foods. Putrescine, cadaverine, spermidine, and spermine were derivatized with 3,5-dinitrobenzoyl chloride and extracted by dispersive liquid-liquid microextraction using acetonitrile and carbon tetrachloride as dispersive and extraction solvents, respectively. Two-level full factorial design and central composite design were applied to select the most appropriate derivatization and extraction conditions. The developed method was linear in the 0.5-10.0 mg/L range, with a R(2) ≥ 0.9989. Intra- and interday precisions ranged from 0.8 to 6.9% and from 3.0 to 10.3%, respectively, and the limit of detection ranged between 0.018 and 0.042 μg/g of fresh weight. This method was applied to the analyses of six different types of plant foods, presenting recoveries between 81.7 and 114.2%. The method is inexpensive, versatile, simple, and sensitive. PMID:24773181

  15. Nutrient and energy recovery from urine

    NARCIS (Netherlands)

    Kuntke, P.

    2013-01-01

    Keywords: urine, urine treatment, nutrient recovery, microbial fuel cells, energy production from urine, membrane capacitive deionization. In conventional wastewater treatment plants large amounts of energy are required for the removal and recovery of nutrients (i.e. nitrogen and phosphorus). Nitro

  16. Aid system in the attention direction for accidents diagnosis at nuclear power plants based on artificial intelligence

    International Nuclear Information System (INIS)

    Transient identification in Nuclear Power Plant (NPP) is often a very hard task and may involve a great amount of human cognition. The early identification of unexpected departures from steady state behavior is an essential step for the operation, control and accident management in NPPs. The bases for the transient identification relay on the evidence that different system faults and anomalies lead to different pattern evolution in the involved process variables. During an abnormal event, the operator must monitor a great amount of information from the instruments that represents a specific type of event Several systems based on specialist systems, neural-networks, and fuzzy logic have been developed for transient identification. In the work, we investigate the possibility of using a Neuro Fuzzy modeling tool for efficient transient identification, aiming to helping the operator crew to take decisions relative to the procedure to be followed in situations of accidents/transients at NPPs. The proposed system uses artificial neural networks (ANN) as first level transient diagnostic After the ANN has done the preliminary transient type identification, a fuzzy-logic system analyzes the results emitting reliability degree of it. A preliminary evaluation of the developed system was made at the Human-System Interface Laboratory (LABIHS). The obtained results show that the system can help the operators to take decisions during transients/accidents in the plant (author)

  17. Nutrient removal at the waste water treatment plant at Wathlingen. Special aspects of the enhanced biological phosphorus removal; Naehrstoffelemination auf der Klaeranlage Wathlingen. Besonderheiten bei der erhoehten biologischen Phosphatelimination

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, D. [Fachhochschule Suderburg (Germany); Fladerer, F. [Fachhochschule Suderburg (Germany)

    1996-01-01

    The article describes the problem of the nutrient removal in communal wastewater treatment plants. As an example the investigations about the optimisation of the denitrification and the enhanced biological phosphorus removal on the Wathlingen Wastewater Treatment Plant are explained. In this case the most important subjects are the anaerobic P-release despite a high amount of nitrate in the return sludge entering the anerobic tank, followed by an anoxic P-uptake in the denitrification zone before entering the aerobic tank for nitrification. Furthermore there is a short description of improvement measures carried out. The obtained effluent values show the success of these improvements. The specific P-dynamic in the treatment system requires conclusions supporting the optimisation of the nutrient removal in treatment plants using enhanced biological P-elimination and denitrification before nitrification. (orig.) [Deutsch] Der Artikel befasst sich mit der Problematik der Naehrstoffelimination auf kommunalen Klaeranlagen. Am Beispiel der Untersuchungen zur Optimierung der Dentrifikation und erhoehten biologischen Phosphorelimination auf der Klaeranlage Wathlingen werden Besonderheiten der biologischen P-Elimination dargestellt. Dabei geht es vor allem um eine anaerobe P-Freisetzung bei intermittierender Schlammumwaelzung im anaeroben Becken und gleichzeitigen hohen Nitrateintraegen ueber den Ruecklaufschlamm. Ebenso erfolgt die Darstellung der sich anschliessenden anoxischen P-Aufnahme im vorgeschalteten Denitrifikationsbecken. Des weiteren werden die druchgefuehrten Optimierungen kurz beschrieben und die damit erzielten Ablaufwerte aufgefuehrt. Schlussfolgerungen fuer die Prozessfuehrung bei Anlagenkonfigurationen mit biologischer P-Elimination und vorgeschalteter Denitrifikation ergeben sich aus dem Phaenomen der anoxischen Phosphataufnahme. (orig.)

  18. TOR Signaling and Nutrient Sensing.

    Science.gov (United States)

    Dobrenel, Thomas; Caldana, Camila; Hanson, Johannes; Robaglia, Christophe; Vincentz, Michel; Veit, Bruce; Meyer, Christian

    2016-04-29

    All living organisms rely on nutrients to sustain cell metabolism and energy production, which in turn need to be adjusted based on available resources. The evolutionarily conserved target of rapamycin (TOR) protein kinase is a central regulatory hub that connects environmental information about the quantity and quality of nutrients to developmental and metabolic processes in order to maintain cellular homeostasis. TOR is activated by both nitrogen and carbon metabolites and promotes energy-consuming processes such as cell division, mRNA translation, and anabolism in times of abundance while repressing nutrient remobilization through autophagy. In animals and yeasts, TOR acts antagonistically to the starvation-induced AMP-activated kinase (AMPK)/sucrose nonfermenting 1 (Snf1) kinase, called Snf1-related kinase 1 (SnRK1) in plants. This review summarizes the immense knowledge on the relationship between TOR signaling and nutrients in nonphotosynthetic organisms and presents recent findings in plants that illuminate the crucial role of this pathway in conveying nutrient-derived signals and regulating many aspects of metabolism and growth.

  19. Analysis of nutrient content and assessment of economic value for major salt-tolerant plants in coastal areas: a case study of Dongying City,Shandong Province

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Salinization of soil is a worldwide problem concerning resources and ecology,especially serious in coastal areas.Testing of 26 sorts of data or parameters are carried out on leaves of 22 plant species (in 24 plant variety) of existing main salt-tolerant plant of the Yellow River Delta region.Data or parameters include the following elements:contents of K+,Na+,Ca2+,Mg2+ and Cl-,contents of protein,fat,total energy,ash and contents of 17 amino acids.The results show that these tested plants have economic values.For example,according to their uses,they can be divided into edible plants,forage plants,medicine or health plants,and some of them can be used for multipurposes.These plants have played important roles in the sustainable utilization of plant resources in coastal areas.This paper has taken evaluations on the economic uses of salt-tolerant plants and given suggestions for saline soil improvement and resource utilization in coastal areas.Based on the results of investigation and experiments,we suppose that the salt-tolerant plants in coastal areas can be grouped into 9 main groups according to their eeonomic value:pioneer plants for saline land improvement,medicine,edible and forage plants,industry material forestation,breeding material,energy plants and eco-tourism resources.

  20. Doses de N e K no tomateiro sob estresse salino: I. Concentração de nutrientes no solo e na planta Doses of N and K in tomato under saline stress: I. Concentration of nutrients in the soil solution and plant

    Directory of Open Access Journals (Sweden)

    Flávio F. Blanco

    2008-02-01

    Full Text Available Em geral, culturas tolerantes à salinidade geralmente apresentam maiores teores foliares de certos nutrientes, sugerindo que a adubação em culturas sensíveis poderia elevar os teores desses nutrientes nas folhas, aumentando sua tolerância aos sais. Este trabalho teve o objetivo de estudar os efeitos do N e do K na condutividade elétrica, pH e concentração de nutrientes da solução do solo e nos teores de nutrientes e prolina nas folhas do tomateiro irrigado com água salina. Os tratamentos foram compostos da combinação de três níveis de N (7,5; 15,0 e 22,5 g por planta e de K (8, 16 e 24 gK2O por planta aplicados via fertirrigação por gotejamento, no esquema fatorial 3 x 3, com cinco repetições, sendo que à água de irrigação foram adicionados os sais cloreto de sódio e cloreto de cálcio, para obtenção de condutividade elétrica da água de 9,5 dS m-1. As concentrações de NO3 e K na solução do solo e de N e K nas folhas do tomateiro aumentaram com as doses de N e K mas não promoveram redução dos teores de Cl nem de Na nas folhas das plantas. O aumento do teor de prolina com as doses de K e a redução de Cl/N com as doses de N, sugerem que o aumento na adubação potássica e nitrogenada pode ser benéfico para o tomateiro sob condições de salinidade moderada.Crops tolerant to salinity generally present higher concentrations of some nutrients in the leaves, suggesting that the fertilization of sensitive crops could increase the contents of these nutrients in the leaves to increase the crop tolerance to salts. This work had the objective of studying the effects of N and K on electrical conductivity, pH and nutrient concentrations of soil solution and on concentration of nutrients and proline in the leaves of tomatos irrigated with saline water. The treatments were composed of the combination of three levels of N (7.5, 15.0 and 22.5 g per plant and K (8, 16 and 24 g K2O per plant applied by drip fertigation, in a 3

  1. Ergonomics as aid tool to identify and to analyze factors that can affect the operational performance of nuclear power plants

    International Nuclear Information System (INIS)

    The study of ergonomics has evolved around the world as one of the keys to understand human behavior in interaction with complex systems as nuclear power plant and to achieve the best match between the system and its users in the context of task to be performed. Increasing research efforts have yielded a considerable body of knowledge concerning the design of workstations, workplace, control rooms, human-system interfaces, user-interface interaction and organizational design to prevent worker discomfort, illness and also to improve productivity, product quality, ease of use and safety. The work ergonomics analysis consists of gathering a series of observation in order to better understand the work done and to propose changes and improvements in the working conditions. The work ergonomics analysis implies both the correction of existing situations (safety, reliability and production problems) and the development of new work system. Operator activity analysis provides a useful tool for the ergonomics approach, based on work ergonomics analysis. The operators will be systematically observed in their real work environment (control room) or in simulators. The focus is on description of the distributed regulated mechanisms (in the sense that operators work in crew), both in nominal and degraded situations, observing how operators regulate collectively their work during an increase in workload or when confronted with situations where incidents or accidents occur. Audio, video recorders and field notes can be used to collect empirical data, conversations and interactions that occur naturally within the work environment. Our research develops an applied ergonomics methodology, based on field studies, that permits to identify and analyze situations, factors that may affect the operational performance of nuclear power plants. Our contribution is related to the following technical topic: How best to learn from and share operational safety experience and manage changes during

  2. Feasibility study: using δ18O-PO4 to identify phosphate sources in Dutch surface waters: peat, manure, sewage treatment plant or natural, nutrient-rich groundwater?

    NARCIS (Netherlands)

    Verheul, M.R.A.; Tamburini, F.; Griffioen, J.J.; Chardon, W.

    2012-01-01

    High nutrient concentrations are in the Netherlands and most other European nations the biggest challenge to comply with the European water quality guidelines. The continuous application of manure and fertilizers by farmers has a strong impact on the phosphate concentrations in surface water systems

  3. Acúmulo e repartição da matéria seca da planta de pepino tipo conserva sob três doses de nutrientes minerais Dry matter accumulation and distribution of pickling cucumber plants under three mineral nutrient levels

    Directory of Open Access Journals (Sweden)

    Hugo Nicasio Rodríguez Espínola

    2001-06-01

    Full Text Available Determinou-se o efeito de três doses de nutrientes minerais sobre o acúmulo e distribuição da matéria seca da planta de pepino tipo conserva, híbrido Crispina. As plantas foram cultivadas em sacolas plásticas com 4,6kg de substrato composto por uma mistura de 40% de casca de arroz e 60% de solo, no interior de uma estufa de polietileno, na primavera de 1998 e no verão de 1999. Foi empregado um delineamento experimental de blocos casualizados, com três repetições e 15 plantas por parcela. Os tratamentos foram constituídos por três níveis múltiplos de uma dose padrão de nutrientes aplicada para cada planta, contendo N-P-K-Ca e Mg nas quantidades de 0,8-0,12-0,8-0,46-0,086g.pl-1, com 0,33m de solução de micronutrientes e 0,07m de quelato de ferro. Os níveis corresponderam às quantidades de 50%, 100% e 150% da dose padrão, denominados de tratamentos T1, T2 e T3, respectivamente, aplicados semanalmente através da fertirrigação em todas as plantas de uma mesma parcela. Determinou-se a matéria seca dos diferentes órgãos da parte aérea da planta a intervalos semanais. Houve efeito significativo dos tratamentos no acúmulo da matéria seca, nos dois experimentos. A maior fração foi alocada para os frutos, atingindo o valor mais elevado de 0,64 na primavera. Concluiu-se que a distribuição da matéria seca desse material vegetal não é constante, sofrendo interações com as variáveis do ambiente.It was determined the effect of three mineral nutrient levels on dry matter accumulation and distribution of pickling cucumber plants, hybrid Crispina, grown inside a polyethylene greenhouse, in spring 1998 and in summer 1999. Planting was made in bags filled with 4.6kg of a substrate mixture composed by 40% rice husks and 60% soil. A randomized block experimental design was used, with three replications and15 plants per plot. A reference nutrient dose was supplied weekly to each one of the plants, with the following composition

  4. Use of plant growth regulators in the conservation of grapes “Italy” as aids in post-harvest

    Directory of Open Access Journals (Sweden)

    Correa de Almeida Fabiane

    2014-01-01

    Full Text Available The objective of this study was to evaluate the effect of plant growth regulators on postharvest fine table grapes “Italy”. The grapes were harvested at a commercial vineyard in the city of Canguçu, RS, Brazil and transported to the UNIPAMPA-Campus Dom Pedrito. The treatments were: distilled water (control; 500 ppb of 1-methylcyclopropene [MCP-1 (12 h at 20 °C]; 10 μM of salicylic acid and; 100 ppm of ethylene. The design was randomized, where each treatment had three replicates, and each replicate consisted of 3 bunches (about 2 kg. The evaluations were performed on the day of harvest (characterization – day zero and at 7 and 14 days of storage at 18 °C controlled. It was evaluated: browning of stems, loss of fresh bunch weight, percentage of abscission of berries, rot incidence, total soluble solids – SS (° Brix, percentage of dehydration of the stem, titratable acidity – AT (% tartaric acid, gluconic acid, “ratio” (SS/TA and density. It was found that the application of 10 mM of salicylic acid in postharvest fine table grapes “Italy” can help a smaller abscission of berries and less dehydration of the stem, which may prolong the shelf life of these grapes.

  5. 达州市白肋烟区植烟土壤养分特征及适宜性研究%Stydu on Soft Nutrient Status and Suitability in Burley Tobacoo Planting Areas of Dazhou

    Institute of Scientific and Technical Information of China (English)

    石松柏; 王昌全; 蔡艳; 张文研

    2013-01-01

    为了解达州地区土壤肥力状况及土壤养分的适宜性,在达州市主要植烟乡镇采集了119个土壤样品进行土壤养分特征分析,并运用模糊数学隶属函数模型对土壤养分适宜性进行研究.结果表明:达州市植烟土壤pH值属适宜偏酸;土壤有机质含量较为丰富;土壤速效氮含量偏高,速效磷含量较高,速效钾含量相对缺乏;达州市土壤养分适宜性指数(IFI值)平均为0.58,变化范围为0.30 ~0.81,白马乡等15个乡镇的土壤养分适宜性达到中、高水平.%In order to understand the soil fertility status and soil nutrient suitability,119 soil samples were collected from the major planting townships of Dazhoushi to analyze their characteristics of soil nutrient,and their suitability of soil nutrient was studied by the fuzzy membership function of mathematical model.The result showed that the pH value of Dazhou planting tobacco soil was suitable for partial acid ; soil organic matter content was relatively rich; soil available nitrogen content was on the high side,available phosphorus content higher,and rapidly-available potassium content relative to the lack ; the average of Dazhoushi soil nutrient suitability index (IFI value) was 0.58,varying in the range of 0.30-0.81,and the soil nutrient suitability of 15 villages,including White horse,reached the middle and high level.

  6. Cobertura do solo e estoque de nutrientes de duas leguminosas perenes, considerando espaçamentos e densidades de plantio Soil cover and nutrient accumulation of two perennial legumes as functions of spacing and planting densities

    Directory of Open Access Journals (Sweden)

    A. Perin

    2004-02-01

    arrangement 2 x 2 x 4, with four replications. The treatments consisted of the plant species Galactia striata and Pueraria phaseoloides, planted in two spacings (25 and 50 cm apart and four sowing densities (5, 10, 15 and 20 plants m-1. The most adequate density for a fast soil cover was 10 plants m-1 for Pueraria phaseoloides and Galactia striata, in a 25 cm spacing between planting rows. The highest dry matter production and accumulation of N, P and K in the aerial part of the plant were found in the first cut, in a spacing of 25 cm and row density of 10 plants m-1. The 25 cm spacing with 10 plants m-1 was identified as the most adequate combination for the formation of a full soil cover with Pueraria phaseoloides and Galactia striata.

  7. Hearing Aids

    Science.gov (United States)

    ... prefer the open-fit hearing aid because their perception of their voice does not sound “plugged up.” ... My voice sounds too loud. The “plugged-up” sensation that causes a hearing aid user’s voice to ...

  8. Brand Aid

    DEFF Research Database (Denmark)

    Richey, Lisa Ann; Ponte, Stefano

    A critical account of the rise of celebrity-driven “compassionate consumption” Cofounded by the rock star Bono in 2006, Product RED exemplifies a new trend in celebrity-driven international aid and development, one explicitly linked to commerce, not philanthropy. Brand Aid offers a deeply informed...

  9. Current state of acoustic emission as an aid to the structural integrity assessment of nuclear power plants

    International Nuclear Information System (INIS)

    As an integral method permitting continuous monitoring and remote defect location, acoustic emission offers promising benefits for the nuclear industry. The potential applications relating to the integrity of the primary pressure boundary of nuclear reactors that are considered in this presentation are: detection of flaws during pre-service and requalification hydrotests and continuous monitoring for crack growth and leakage. The correlations between fracture mechanics and acoustic emission are discussed on the basis of certain fundamentals of material emission behaviour. The influence of instrumentation and wave propagation related aspects on the detectability and evaluation of acoustic emission signals is considered. A critical review is given of the application of acoustic emission to the assessment of reactor pressure vessel integrity, which demands a precise knowledge of the method's ability to distinguish different origins of acoustic emission, to detect and locate cracks and to evaluate the severity of cracks. World wide, at least 40 reactor pressure vessels and nuclear primary systems have been monitored by acoustic emission, either during acceptance pressure tests at the manufacturer's shop or during pre-service testing after installation in a plant. Together with the monitoring of requalification hydrotests after a certain period of operation, these applications of acoustic emission are currently receiving the most attention. The experience gained with continuous monitoring by acoustic emission is reported. The technique of leak detection by acoustic emission shows promising results, which permit the location and quantification of leaks. It is expected that practical experience and future research work will enhance the accuracy and detection sensitivity. (author)

  10. Influence of Nutrient Loading on the Invasion of an Alien Plant Species, Giant Reed (Arundo donax), in Southern California Riparian Ecosystems

    OpenAIRE

    Ambrose, Richard F.; Rundel, Philip W.

    2007-01-01

    Giant reed, Arundo donax L., is one of the greatest threats to riparian ecosystems of Mediterranean-type climate regions, including California. Forming extensive monotypic stands, A. donax increases the risks of flooding and fire, uses prodigious amounts of water, and reduces habitat value for wildlife. Urban and agricultural development adjacent to riparian ecosystems may contribute to its invasion success. The main hypothesis of this project is that the current abundance of nutrients, water...

  11. Effect of nutrients and plant growth regulators on growth and yield of black gram in sandy loam soils of Cauvery new delta zone, India

    OpenAIRE

    Marimuthu, S.; U. Surendran

    2015-01-01

    Pulse productivity is very low in some of the sandy soil areas where, soils are having poor water and nutrient holding capacity. To improve the pulse productivity, field experiments were conducted at Agricultural Research Station, Tamil Nadu for two consecutive years to study the effect of phosphorus sources (mono- and diammonium phosphate) with brassinolide and salicylic acid on growth and yield of black gram in sandy loam soils. The experiment was carried out in a randomized block design wi...

  12. Physiological indexese macro- and micronutrients in plant tissue and essential oil of Mentha piperita L. grown in nutrient solution with variation in N, P, K and Mg levels

    OpenAIRE

    E.F.S. David; M. M. MISCHAN; M.O.M. Marques; C.S.F. Boaro

    2014-01-01

    Mentha piperita L. is an aromatic and medicinal species of the family Lamiaceae, known as mint or peppermint, and its leaves and branches produce essential oil rich in menthol. This study aimed to evaluate physiological indexes, macro- and micronutrients inthe shootsand essential oil of Mentha piperita L. grown in nutrient solution number 2 of Hoagland and Arnon (1950) with different N, P, K and Mg levels. Shoot length, dry mass of the different organs, total dry mass, leaf area, essential oi...

  13. Short-term effect of soil disturbance by mechanical weeding on plant available nutrients in an organic vs conventional rotations experiment

    OpenAIRE

    Owen, D.; Leblanc, S.; Fillmore, S A E

    2006-01-01

    The question whether soil disturbance from mechanical weeding in organic systems affects nutrient release from organic matter in compost-amended soil was examined in a long-term organic-versus-conventional rotational cropping system experiment over three years. The experimental design included continuous snap beans, and a fully phased snap beans/fall rye crop rotation sequence. Treatments were combinations of yearly applied fertiliser (synthetic fertiliser, 1× compost, 3× compost) and weed co...

  14. 围封对阿尔乡沙地植物群落和土壤养分的影响%Effect of Exclosure on Soil NutrientPlant Community in Ar Desert

    Institute of Scientific and Technical Information of China (English)

    迟琳琳; 安宇宁; 张莉莉; 吴德东; 王国晨

    2012-01-01

    The factor of vegetation characteristics before after enclosure in Ar desert in southern edge of Horqin sandy land were investigated and soil nutrient content were analyzed.Result shows that: enclosure have significant effect on vegetation cover species diversity;enclosure have the biggest effect on top of sand dune;indicator plant of shifting sand semi-immobile sand after enclosure decline gradually;indicator plants of fixed sand gradually increase;enclosure can significantly increase the 0-10 cm content of soil nutrient,but not obvious on the effect of the 11-30 cm.%通过调查科尔沁沙地南缘阿尔乡沙地围封前后植被特征因子和分析土壤养分含量得出:围封对植被覆盖率和物种多样性均有显著影响,其中对沙丘顶部影响最大;围封后流动沙地和半流动沙地的指示植物逐渐衰退,而固定沙地的指示植物逐渐增多;围封可显著提高0~10 cm土壤养分含量,但对11~30 cm的影响不明显。

  15. Variation in wood nutrients along a tropical soil fertility gradient.

    Science.gov (United States)

    Heineman, Katherine D; Turner, Benjamin L; Dalling, James W

    2016-07-01

    Wood contains the majority of the nutrients in tropical trees, yet controls over wood nutrient concentrations and their function are poorly understood. We measured wood nutrient concentrations in 106 tree species in 10 forest plots spanning a regional fertility gradient in Panama. For a subset of species, we quantified foliar nutrients and wood density to test whether wood nutrients scale with foliar nutrients at the species level, or wood nutrient storage increases with wood density as predicted by the wood economics spectrum. Wood nutrient concentrations varied enormously among species from fourfold in nitrogen (N) to > 30-fold in calcium (Ca), potassium (K), magnesium (Mg) and phosphorus (P). Community-weighted mean wood nutrient concentrations correlated positively with soil Ca, K, Mg and P concentrations. Wood nutrients scaled positively with leaf nutrients, supporting the hypothesis that nutrient allocation is conserved across plant organs. Wood P was most sensitive to variation in soil nutrient availability, and significant radial declines in wood P indicated that tropical trees retranslocate P as sapwood transitions to heartwood. Wood P decreased with increasing wood density, suggesting that low wood P and dense wood are traits associated with tree species persistence on low fertility soils. Substantial variation among species and communities in wood nutrient concentrations suggests that allocation of nutrients to wood, especially P, influences species distributions and nutrient dynamics in tropical forests. PMID:26922861

  16. Effects of the application of sewage sludge and fowl manure on soils of Paraná state in maize plants (Zea mays L. as a macro-nutrients source

    Directory of Open Access Journals (Sweden)

    Marlene A. Gobbi

    2000-01-01

    Full Text Available The potential of two organic residues as sources of macro-nutrients in three types of soils of the third plateau of Paraná state was studied. Treatment consisted of a dose (38 t.ha-1 of fowl manure and sewage sludge neutralized by a 3:1 (CaO+MgO mixture. Fowl manure was kept in natura. Maize (Zea mays L.was reference plant. After 30 days of seeding, the aerial parts of the plants were cut. They were dried at 70 0C till constant weight was obtained, then weighted and ground. Analyses were undertaken after nitric-perchloric digestion of the samples. Macro-nutrient levels in soils and in plants were determined by atomic absorption spectrometry, flame technique. Results showed that production of dry matter was higher when fowl manure was used. Levels of macro-nutrients in Terra Roxa - TR were higher than those of Latossolo Vermelho Escuro - LE (Deep Red Latisol and Podzólico Vermelho - PV (Red Podzolic, soils respectively. In aerial parts of maize plants collected in the soils treated with organic residues the concentrations of K, Ca, Mg, S and P were higher than those without treatment. The sewage sludge caused highest relation in Ca:Mg.Em casa de vegetação avaliou-se a potencialidade de dois resíduos orgânicos como fonte de macronutrientes em três solos do terceiro Planalto do Estado do Paraná. Os tratamentos consistiram numa dose (38 t.ha.-1 de esterco de ave e de lodo de esgoto neutralizado, permanecendo o esterco de ave in natura. O milho safrinha (Zea mays L. foi utilizado como planta teste. Após 30 dias da semeadura, cortou-se a parte aérea das plantas. Estas, foram secadas a peso constante, moídas e analisadas após digestão nitro-perclórica. Os teores de macronutrientes nos solos e nas plantas foram determinados por espectrometria de absorção atômica. Os resultados mostraram que a produção de material seco foi superior com a cama de ave. Os teores de macronutrientes no solo TR (Terra Roxa foram superiores aos dos solos LE

  17. Hearing Aid

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A man realized that he needed to purchase ahearing aid, but he was unwilling to spend muchmoney. "How much do they run?"he asked theclerk. "That depends," said. the salesman. "Theyrun from 2 to 2000."

  18. Hearing Aid

    Science.gov (United States)

    ... and Food and Drug Administration Staff FDA permits marketing of new laser-based hearing aid with potential ... feeds Follow FDA on Twitter Follow FDA on Facebook View FDA videos on YouTube View FDA photos ...

  19. Adubação orgânica e inorgânica de batatinha em solos arenosos: produtividade, nutrientes na planta e lixiviação Organic and inorganic fertilization of potato in sandy soils: productivity, nutrients in the plant and leaching

    Directory of Open Access Journals (Sweden)

    Fabio F. de Oliveira

    2011-12-01

    Full Text Available As relações entre os teores de nutrientes em solos com adubação orgânica e inorgânica e os teores de nutrientes e produtividade de batatinha foram determinadas tal como as relações entre aportes e a lixiviação de N e bases trocáveis. Amostras de solo foram coletadas das camadas de 0-20, 20-40 e 40-60 cm em 18 áreas de produção com adições anuais de esterco variando entre 2 e 40 anos e, como controle, quatro áreas sob pastagem não adubadas. Amostras de solo e planta foram analisadas quanto aos teores de N, P, K, Ca e Mg. A produtividade de tubérculo com padrão comercial apresentou relação positiva com a quantidade de N aplicada e a produtividade total indicou relação com o estoque de N do solo; somente o Ca no solo se correlacionou com os teores na planta mas não com a produtividade. As bases trocáveis aumentaram nas três camadas, de acordo com o aumento do esterco aplicado enquanto no N total o aumento só ocorreu nas camadas de 0-20 e 20-40 cm; por fim, a translocação de nutrientes para camadas mais profundas representa prejuízo econômico e provável risco ambiental.The relationships between the nutrient content in soils fertilized with organic and inorganic sources, and the nutrient contents and productivities of potato as well as the relationships of applications and the leaching of N and exchangeable bases were determined. Soil samples were collected from the 0-20, 20-40 and 40-60 cm layers in 18 areas of potato production receiving annual applications of farm yard manure for the last 2 to 40 years and, as control, four areas under non-fertilized pasture. Soil and plant samples were analysed for N, P, K, Ca and Mg concentrations. The yield of large tubers had a positive relationship with the input of N while total yields related with total soil N. Only Ca in the soil correlated with the levels in the plant, but not with productivity. Exchangeable bases increased in the three layers following increases in

  20. Growth, respiration and nutrient acquisition by the arbuscular mycorrhizal fungus Glomus mosseae and its host plant Plantago lanceolata in cooled soil.

    Science.gov (United States)

    Karasawa, T; Hodge, A; Fitter, A H

    2012-04-01

    Although plant phosphate uptake is reduced by low soil temperature, arbuscular mycorrhizal (AM) fungi are responsible for P uptake in many plants. We investigated growth and carbon allocation of the AM fungus Glomus mosseae and a host plant (Plantago lanceolata) under reduced soil temperature. Plants were grown in compartmented microcosm units to determine the impact on both fungus and roots of a constant 2.7 °C reduction in soil temperature for 16 d. C allocation was measured using two (13)CO(2) pulse labels. Although root growth was reduced by cooling, AM colonization, growth and respiration of the extraradical mycelium (ERM) and allocation of assimilated (13)C to the ERM were all unaffected; the frequency of arbuscules increased. In contrast, root respiration and (13)C content and plant P and Zn content were all reduced by cooling. Cooling had less effect on N and K, and none on Ca and Mg content. The AM fungus G. mosseae was more able to sustain activity in cooled soil than were the roots of P. lanceolata, and so enhanced plant P content under a realistic degree of soil cooling that reduced plant growth. AM fungi may therefore be an effective means to promote plant nutrition under low soil temperatures.

  1. Fungos micorrízicos arbusculares em seringueira em latossolo amarelo distrófico da amazônia ocidental Arbuscular mycorrhizae fungi, growth and nutrient content in rubber plants in a xanthic ferrasol of western amazon

    Directory of Open Access Journals (Sweden)

    Larissa Alexandra Cardoso Moraes

    2010-06-01

    Full Text Available A colonização radicular com fungos micorrízicos arbusculares (FMA pode aumentar a eficiência no crescimento e absorção de nutrientes pelas plantas. Com o objetivo de verificar esse efeito, foram avaliados o grau de colonização em seringais adultos cultivados em Latossolo Amarelo distrófico e a eficiência de seis FMAs na colonização, crescimento e estado nutricional de mudas de seringueira com três e seis meses de transplantio. Os resultados indicaram baixo grau de colonização micorrízica e número de esporos em seringal adulto. Seis meses depois do transplantio das mudas de seringueira foram suficientes para ocorrer colonização de FMAs detectável. Não houve aumento no incremento em altura, diâmetro e emissão de folhas, independentemente do inóculo utilizado. Os teores foliares de nutrientes (N, P, K, Ca, Mg, Cu, Fe, Mn e Zn também não foram influenciados pelo número de esporos e grau de colonização, havendo diferenças apenas em função da idade das plantas.The infection roots with arbuscular mycorrhizal fungi (AMF can increase the efficiency in growth and nutrients uptake of plants. With the objective to verify this effect, the degree of colonization in rubber tree plantation cultivated in a Xanthic Ferralsol (dystrophic Yellow Latosol and the efficiency of six AMF in colonization, growth and nutritional status of rubber tree seedlings were evaluated, with three and six months of transplanting. The results showed a low level of mycorrhizal infection and number of spores in adult rubber tree. Six months of transplanting of rubber tree seedlings were sufficient detectable AMFs infection. There was no increase in height, diameter and number of leaves. The foliar nutrients concentration (N, P, K, Ca, Mg, Cu, Fe, Mn and Zn were also not influenced by the number of spores and infection degree, with only differences by age of the plants (three and six months of transplanting.

  2. Soil nutrient dynamics in small beef cattle backgrounding feedlot on karst environment

    Science.gov (United States)

    Beef cattle backgrounding feedlot systems that grow out weaned calves for feedlot finishing can become potential diffuse sources of manure derived soil nutrients. Better understanding of these nutrient concentrations and their distribution will aid in development of effective nutrient management gui...

  3. Effects of Reduced Tillage on Crop Yield, Plant Available Nutrients and Soil Organic Matter in a 12-Year Long-Term Trial under Organic Management

    Directory of Open Access Journals (Sweden)

    Wilhelm Claupein

    2013-09-01

    Full Text Available A field experiment was performed in Southwest Germany to examine the effects of long-term reduced tillage (2000–2012. Tillage treatments were deep moldboard plow: DP, 25 cm; double-layer plow; DLP, 15 + 10 cm, shallow moldboard plow: SP, 15 cm and chisel plow: CP, 15 cm, each of them with or without preceding stubble tillage. The mean yields of a typical eight-year crop rotation were 22% lower with CP compared to DP, and 3% lower with SP and DLP. Stubble tillage increased yields by 11% across all treatments. Soil nutrients were high with all tillage strategies and amounted for 34–57 mg kg−1 P and 48–113 mg kg−1 K (0–60 cm soil depth. Humus budgets showed a high carbon input via crops but this was not reflected in the actual Corg content of the soil. Corg decreased as soil depth increased from 13.7 g kg−1 (0–20 cm to 4.3 g kg−1 (40–60 cm across all treatments. After 12 years of experiment, SP and CP resulted in significantly higher Corg content in 0–20 cm soil depth, compared to DP and DLP. Stubble tillage had no significant effect on Corg. Stubble tillage combined with reduced primary tillage can sustain yield levels without compromising beneficial effects from reduced tillage on Corg and available nutrient content.

  4. Nutrient limitation in tropical savannas across multiple scales and mechanisms.

    Science.gov (United States)

    Pellegrini, Adam F A

    2016-02-01

    Nutrients have been hypothesized to influence the distribution of the savanna biome through two possible mechanisms. Low nutrient availability may restrict growth rates of trees, thereby allowing for intermittent fires to maintain low tree cover; alternatively, nutrient deficiency may even place an absolute constraint on the ability of forests to form, independent of fire. However, we have little understanding of the scales at which nutrient limitation operates, what nutrients are limiting, and the mechanisms that influence how nutrient limitation regulates savanna-forest transitions. Here, I review literature, synthesize existing data, and present a simple calculation of nutrient demand to evaluate how nutrient limitation may regulate the distribution of the savanna biome. The literature primarily supports the hypothesis that nutrients may interact dynamically with fire to restrict the transition of savanna into forest. A compilation of indirect metrics of nutrient limitation suggest that nitrogen and phosphorus are both in short supply and may limit plants. Nutrient demand calculations provided a number of insights. First, trees required high rates of nitrogen and phosphorus supply relative to empirically determined inputs. Second, nutrient demand increased as landscapes approached the transition point between savanna and forest. Third, the potential for fire-driven nutrient losses remained high throughout transitions, which may exaggerate limitation and could be a key feedback stabilizing the savanna biome. Fourth, nutrient limitation varied between functional groups, with fast-growing forest species having substantially greater nutrient demand and a higher susceptibility to fire-driven nutrient losses. Finally, African savanna trees required substantially larger amounts of nutrients supplied at greater rates, although this varied across plant functional groups. In summary, the ability of nutrients to control transitions emerges at individual and landscape

  5. Elemental bioavailability in nutrient solutions in relation to dissociation reactions

    OpenAIRE

    DeRijck, G; Schrevens, Eddie

    1997-01-01

    In general in hydroponic plant nutritional research as well as in commercial hydroponic plant cropping, the actual nutritional composition is supposed to be exactly the same as the desired one. Furthermore, it is supposed that the nutrients are present in the nutrient solution as free ions. This way of thinking does not take into account the dissociation, complexation, and precipitation reactions occurring in nutrient solutions. These chemical reactions seriously impact elemental speciation a...

  6. Isolation and Identification of Indigenous Plant Growth Promoting Rhizobacteria from Himalayan Region of Kashmir and their Effect on Improving Growth and Nutrient Contents of Maize (Zea Mays L.)

    OpenAIRE

    Mahwish eZahid

    2015-01-01

    IIntroduction and exploitation of plant growth promoting rhizobacteria (PGPR) in agro-ecosystems enhance plant-microbes interactions that may affect ecosystems sustainability, agricultural productivity and environmental quality. The present study was conducted to isolate and identify PGPRs associated with maize (Zea mays L.) from twenty sites of Himalayan region of Hajira-Rawalakot, Azad Jammu and Kashmir (AJK), Pakistan. A total of one hundred isolates were isolated from these sites, out of ...

  7. Steady state nutrition by transpiration controlled nutrient supply

    NARCIS (Netherlands)

    Braakhekke, W.G.; Labe, D.A.

    1990-01-01

    Programmed nutrient addition with a constant relative addition rate has been advocated as a suitable research technique for inducing steady state nutrition in exponentially growing plants. Transpiration controlled nutrient supply is proposed as an alternative technique for plants with a short or no

  8. Nutrient Exchange through Hyphae in Intercropping Systems Affects Yields

    Science.gov (United States)

    Thun, Tim Von

    2013-01-01

    Arbuscular mycorrhizae fungi (AMF) play a large role in the current understanding of the soil ecosystem. They increase nutrient and water uptake, improve soil structure, and form complex hyphal networks that transfer nutrients between plants within an ecosystem. Factors such as species present, the physiological balance between the plants in the…

  9. Choosing Nutrient Dense Foods

    Medline Plus

    Full Text Available ... beneficial nutrients. For example, fruits and vegetables not only offer important vitamins and minerals, but also provide ... ingredient of a nutrient-dense diet. They not only provide vitamins and minerals but also fiber. Dr. ...

  10. Choosing Nutrient Dense Foods

    Medline Plus

    Full Text Available ... Bales, Ph.D., R.D.: So what nutrient density does is allow you to choose between closely ... enough calories for the day, either way, nutrient density is a very important concept.

  11. Types of Hearing Aids

    Science.gov (United States)

    ... Devices Consumer Products Hearing Aids Types of Hearing Aids Share Tweet Linkedin Pin it More sharing options ... some features for hearing aids? What are hearing aids? Hearing aids are sound-amplifying devices designed to ...

  12. Associação micorrízica e teores de nutrientes nas folhas de cupuaçuzeiro (Theobroma grandiflorum e guaranazeiro (Paullinia cupana de um sistema agroflorestal em Manaus, Amazonas Arbuscular mycorrhizal association and foliar nutrient concentrations of cupuassu (Theobroma grandiflorum and guaraná (Paullinia cupana plants in an agroforestry system in Manaus, AM, Brazil

    Directory of Open Access Journals (Sweden)

    A. N. Oliveira

    2004-12-01

    Full Text Available As micorrizas arbusculares podem ser importantes na nutrição das plantas em solos ácidos e de baixa fertilidade, como são os da Amazônia de modo geral. Avaliaram-se a colonização radicular por fungos micorrízicos arbusculares (FMAs nativos e os teores de nutrientes em cupuaçuzeiro e guaranazeiro em um sistema agroflorestal no município de Manaus, Amazonas. Dez plantas de cada espécie foram selecionadas, das quais foram coletadas amostras de raiz, folha e solo durante o período seco e chuvoso da região de Manaus. Os guaranazeiros e os cupuaçuzeiros apresentaram maior colonização radicular por FMAs na época chuvosa. Os teores foliares de Ca, Mg, K, P, Zn, Cu e Mn nas duas espécies não foram influenciados pelas épocas de amostragem. O teor de Fe nas folhas dos cupuaçuzeiros foi maior na época chuvosa, enquanto o dos guaranazeiros, na época seca. A colonização micorrízica correlacionou-se com a concentração foliar de Ca, Mg, P e Cu nos cupuaçuzeiros e com a de Ca, Fe, Zn e Cu nos guaranazeiros.Arbuscular mycorrhiza can be important for plant nutrition in acid and low fertility soils such as those of the Amazon. The present study evaluated the mycorrhizal colonization by native arbuscular mycorrhizal fungi (AMF and nutrient concentrations of cupuassu and guarana leaves in an agroforestry system in Manaus, Amazonas State, Brazil. Ten plants of each species were selected, of which the roots, soil and leaves were sampled during the rainy and dry seasons. Guarana and cupuassu trees presented higher levels of AMF colonization during the rainy season. Ca, Mg, K, P, Zn, Cu, and Mn concentrations in both species were not affected by the season. Fe concentration was higher during the rainy season in the cupuassu leaves, but higher in the dry season in the guarana leaves. Mycorrhizal colonization correlated with Ca, Mg, P, and Cu concentrations in cupuassu plants and with Ca, Fe, Zn, and Cu in guarana plants.

  13. Monitoring the environmental effects of CeO2 and ZnO nanoparticles through the life cycle of corn (Zea mays) plants and in situ μ-XRF mapping of nutrients in kernels.

    Science.gov (United States)

    Zhao, Lijuan; Sun, Youping; Hernandez-Viezcas, Jose A; Hong, Jie; Majumdar, Sanghamitra; Niu, Genhua; Duarte-Gardea, Maria; Peralta-Videa, Jose R; Gardea-Torresdey, Jorge L

    2015-03-01

    Information about changes in physiological and agronomic parameters through the life cycle of plants exposed to engineered nanoparticles (NPs) is scarce. In this study, corn (Zea mays) plants were cultivated to full maturity in soil amended with either nCeO2 or nZnO at 0, 400, and 800 mg/kg. Gas exchange was monitored every 10 days, and at harvest, bioaccumulation of Ce and Zn in tissues was determined by ICP-OES/MS. The effects of NPs exposure on nutrient concentration and distribution in ears were also evaluated by ICP-OES and μ-XRF. Results showed that nCeO2 at both concentrations did not impact gas exchange in leaves at any growth stage, while nZnO at 800 mg/kg reduced net photosynthesis by 12%, stomatal conductance by 15%, and relative chlorophyll content by 10% at day 20. Yield was reduced by 38% with nCeO2 and by 49% with nZnO. Importantly, μ-XRF mapping showed that nCeO2 changed the allocation of calcium in kernels, compared to controls. In nCeO2 treated plants, Cu, K, Mn, and Zn were mainly localized at the insertion of kernels into cobs, but Ca and Fe were distributed in other parts of the kernels. Results showed that nCeO2 and nZnO reduced corn yield and altered quality of corn. PMID:25648544

  14. Negotiating Aid

    DEFF Research Database (Denmark)

    Whitfield, Lindsay; Fraser, Alastair

    2011-01-01

    This article presents a new analytical approach to the study of aid negotiations. Building on existing approaches but trying to overcome their limitations, it argues that factors outside of individual negotiations (or the `game' in game-theoretic approaches) significantly affect the preferences...... which investigated the strategies these states have adopted in talks with aid donors, the sources of leverage they have been able to bring to bear in negotiations, and the differing degrees of control that they have been able to exercise over the policies agreed in negotiations and those implemented...

  15. Calibration of cardy-ion meters to measure nutrient concentrations in soil solution an in plant sap Calibração de medidores de íons específicos para determinação da concentração de nutrientes na solução do solo e na seiva da planta

    Directory of Open Access Journals (Sweden)

    Marcos Vinícius Folegatti

    2005-01-01

    Full Text Available Fertigation management requires rapid and accurate methods to determine nutrient concentrations in soil solution and in plant sap. This study was developed to evaluate the performance of cardy-ion meters (CIM for the determinations of NO3-, K+ and Na+ concentrations in soil solution and tomato plant sap, for fertigation management purposes. Tomato was cultivated in a greenhouse with different levels of N, K and Na in the irrigation water. Soil solution was collected by suction at the 15 cm depth with porous ceramic cups and the concentrations of NO3-, K+ and Na+ were determined by CIM and also in the laboratory by standard methods. At the end of the cropping season, 50 leaf samples were also collected and concentrations of the nutrients in the petiole sap were analyzed by CIM and compared to the amounts of total-N, K and Na in the dry matter of the leaves. Concentrations in soil solution and plant sap determined by CIM presented good correlations with measurements in soil solution and in leaf dry matter, respectively, analysed by standard methods. The use of CIM is advantageous due to the quickness of the analyses and the low cost.O manejo da fertirrigação requer métodos rápidos e precisos para a determinação das concentrações de nutrientes na solução do solo e na seiva da planta. Este estudo foi desenvolvido para avaliar o desempenho de medidores de íons específicos (MIE na determinação das concentrações de NO3-, K+ and Na+ na solução do solo e na seiva de plantas de tomate para fins de manejo da fertirrigação. O tomateiro foi cultivado em um ambiente protegido com diferentes níveis de N, K e Na na água de irrigação. A solução do solo foi coletada a 15 cm de profundidade com cápsulas de cerâmica porosa e as concentrações de NO3-, K+ and Na+ foram determinadas com os MIE e também no laboratório pelos métodos-padrões. Ao final do ciclo da cultura, 50 amostras de folhas também foram coletadas e as concentra

  16. Responses of fungal root colonization, plant cover and leaf nutrients to long-term exposure to elevated atmospheric CO2 and warming in a subarctic birch forest understory

    DEFF Research Database (Denmark)

    Olsrud, Maria; Carlsson, Bengt Å.; Svensson, Brita M.;

    2010-01-01

    Responses of the mycorrhizal fungal community in terrestrial ecosystems to global change factors are not well understood. However, virtually all land plants form symbiotic associations with mycorrhizal fungi, with approximately 20% of the plants' net primary production transported down...... by mycorrhizal and other root-associated fungi to global change factors of all the fungal types studied could have broad implications for plant community structure and biogeochemistry of subarctic ecosystems....... to the fungal symbionts. In this study, we investigated how ericoid mycorrhiza (ErM), fine endophytes (FE) and dark septate endophytes (DSE) in roots responded to elevated atmospheric CO2 concentrations and warming in the dwarf shrub understory of a birch forest in the subarctic region of northern Sweden...

  17. Nutrient and energy recovery from urine

    OpenAIRE

    Kuntke, P.

    2013-01-01

    Keywords: urine, urine treatment, nutrient recovery, microbial fuel cells, energy production from urine, membrane capacitive deionization. In conventional wastewater treatment plants large amounts of energy are required for the removal and recovery of nutrients (i.e. nitrogen and phosphorus). Nitrogen (N) compounds are removed as inert nitrogen gas and phosphorus (P) is for example removed as iron phosphate. About 80% of the N and 50% of the P in wastewater originate from urine1, but urine on...

  18. Effects of fire and three fire-fighting chemicals on main soil properties, plant nutrient content and vegetation growth and cover after 10 years

    International Nuclear Information System (INIS)

    The study addresses a knowledge-gap in the long-term ecological consequences of fire and fire-fighting chemicals. Ten years after a prescribed fire and the application of three fire-fighting chemicals, their effects on the soil–plant system were evaluated. Five treatments were established: unburnt soils (US) and burnt soils treated with water alone (BS), foaming agent (BS + Fo), Firesorb (BS + Fi) and ammonium polyphosphate (BS + Ap). Soils (0–2 cm depth) and foliar material of shrubs (Erica umbellata, Pterospartum tridentatum and Ulex micranthus) and trees (Pinus pinaster) were analysed for total N, δ15N, and soil-available and plant total macronutrients and trace elements. Soil pH, NH4+–N and NO3−–N; pine basal diameter and height; and shrub cover and height were also measured. Compared with US plots, burnt soils had less nitrates and more Mo. Although differences were not always significant, BS + Ap had the highest levels of soil available P, Na and Al. Plants from BS + Ap plots had higher values of δ15N (P. pinaster and E. umbellata), P (all species), Na (P. tridentatum and U. micranthus) and Mg (E. umbellata and P. tridentatum) than other treatments; while K in plants from BS + Ap plots was the highest among treatments for P. pinaster and the lowest for the shrubs. Pines in US plots were higher and wider than in burnt treatments, except for BS + Ap, where the tallest and widest trees were found, although half of them were either dead (the second highest mortality after BS + Fi) or had a distorted trunk. BS + Ap was the treatment with strongest effects on plants, showing E. umbellata the lowest coverage and height, P. tridentatum the highest coverage, U. micranthus one of the lowest coverages and being the only treatment where Genista triacanthos was absent. Consequently, it is concluded that both fire and ammonium polyphosphate application had significant effects on the soil–plant system after 10 years. - Highlights: • We hypothesized that fire

  19. Effects of fire and three fire-fighting chemicals on main soil properties, plant nutrient content and vegetation growth and cover after 10 years

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Fernández, M., E-mail: mariafernandez@iiag.csic.es; Gómez-Rey, M.X., E-mail: mxgomez@iiag.csic.es; González-Prieto, S.J., E-mail: serafin@iiag.csic.es

    2015-05-15

    The study addresses a knowledge-gap in the long-term ecological consequences of fire and fire-fighting chemicals. Ten years after a prescribed fire and the application of three fire-fighting chemicals, their effects on the soil–plant system were evaluated. Five treatments were established: unburnt soils (US) and burnt soils treated with water alone (BS), foaming agent (BS + Fo), Firesorb (BS + Fi) and ammonium polyphosphate (BS + Ap). Soils (0–2 cm depth) and foliar material of shrubs (Erica umbellata, Pterospartum tridentatum and Ulex micranthus) and trees (Pinus pinaster) were analysed for total N, δ{sup 15}N, and soil-available and plant total macronutrients and trace elements. Soil pH, NH{sub 4}{sup +}–N and NO{sub 3}{sup −}–N; pine basal diameter and height; and shrub cover and height were also measured. Compared with US plots, burnt soils had less nitrates and more Mo. Although differences were not always significant, BS + Ap had the highest levels of soil available P, Na and Al. Plants from BS + Ap plots had higher values of δ{sup 15}N (P. pinaster and E. umbellata), P (all species), Na (P. tridentatum and U. micranthus) and Mg (E. umbellata and P. tridentatum) than other treatments; while K in plants from BS + Ap plots was the highest among treatments for P. pinaster and the lowest for the shrubs. Pines in US plots were higher and wider than in burnt treatments, except for BS + Ap, where the tallest and widest trees were found, although half of them were either dead (the second highest mortality after BS + Fi) or had a distorted trunk. BS + Ap was the treatment with strongest effects on plants, showing E. umbellata the lowest coverage and height, P. tridentatum the highest coverage, U. micranthus one of the lowest coverages and being the only treatment where Genista triacanthos was absent. Consequently, it is concluded that both fire and ammonium polyphosphate application had significant effects on the soil–plant system after 10 years

  20. Brand Aid

    DEFF Research Database (Denmark)

    Richey, Lisa Ann; Ponte, Stefano

    2011-01-01

    activists, scholars and venture capitalists, discusses the pros and cons of changing the world by ‘voting with your dollars’. Lisa Ann Richey and Stefano Ponte (Professor at Roskilde University and Senior Researcher at DIIS respectively), authors of Brand Aid: Shopping Well to Save the World, highlight how...

  1. Deeper snow alters soil nutrient availability and leaf nutrient status in high Arctic tundra

    DEFF Research Database (Denmark)

    Semenchuk, Philipp R.; Elberling, Bo; Amtorp, Cecilie;

    2015-01-01

    Nitrogen (N) mineralization, nutrient availability, and plant growth in the Arctic are often restricted by low temperatures. Predicted increases of cold-season temperatures may be important for plant nutrient availability and growth, given that N mineralization is also taking place during the cold...... season. Changing nutrient availability may be reflected in plant N and chlorophyll content and lead to increased photosynthetic capacity, plant growth, and ultimately carbon (C) assimilation by plants. In this study, we increased snow depth and thereby cold-season soil temperatures in high Arctic...... vegetation types, but the leaf sizes were unchanged. Leaves of Bistorta and Luzula were significantly larger but only significantly so in one moist vegetation type. Increased N and chlorophyll concentrations in leaves indicate a potential for increased growth (C uptake), supported by large leaf sizes...

  2. Foreign aid and sustainable forestry

    OpenAIRE

    KAUPPI, PEKKA

    2013-01-01

    Foreign aid can contribute to sustainable forestry in many ways. The goal is to secure forest benefits of the future, without compromising the needs of the present generations. This paper elaborates on forestry aid as it has evolved in the past. Future directions are suggested, referring to short and midterm projects, as well as long-term programmes. Tree planting has worked in the past, and is an option for scaling up the activity in the future. Distributing fuel efficient cooking stoves cou...

  3. Effects of fire and three fire-fighting chemicals on main soil properties, plant nutrient content and vegetation growth and cover after 10 years.

    Science.gov (United States)

    Fernández-Fernández, M; Gómez-Rey, M X; González-Prieto, S J

    2015-05-15

    The study addresses a knowledge-gap in the long-term ecological consequences of fire and fire-fighting chemicals. Ten years after a prescribed fire and the application of three fire-fighting chemicals, their effects on the soil-plant system were evaluated. Five treatments were established: unburnt soils (US) and burnt soils treated with water alone (BS), foaming agent (BS+Fo), Firesorb (BS+Fi) and ammonium polyphosphate (BS+Ap). Soils (0-2 cm depth) and foliar material of shrubs (Erica umbellata, Pterospartum tridentatum and Ulex micranthus) and trees (Pinus pinaster) were analysed for total N, δ(15)N, and soil-available and plant total macronutrients and trace elements. Soil pH, NH₄(+)-N and NO₃(-)-N; pine basal diameter and height; and shrub cover and height were also measured. Compared with US plots, burnt soils had less nitrates and more Mo. Although differences were not always significant, BS+Ap had the highest levels of soil available P, Na and Al. Plants from BS+Ap plots had higher values of δ(15)N (P. pinaster and E. umbellata), P (all species), Na (P. tridentatum and U. micranthus) and Mg (E. umbellata and P. tridentatum) than other treatments; while K in plants from BS+Ap plots was the highest among treatments for P. pinaster and the lowest for the shrubs. Pines in US plots were higher and wider than in burnt treatments, except for BS+Ap, where the tallest and widest trees were found, although half of them were either dead (the second highest mortality after BS+Fi) or had a distorted trunk. BS+Ap was the treatment with strongest effects on plants, showing E. umbellata the lowest coverage and height, P. tridentatum the highest coverage, U. micranthus one of the lowest coverages and being the only treatment where Genista triacanthos was absent. Consequently, it is concluded that both fire and ammonium polyphosphate application had significant effects on the soil-plant system after 10 years.

  4. Sunflower plants nutrients accumulation and oil yield as affected by achenes vigour and sowing densityAcúmulo de nutrientes e rendimento de óleo em plantas de girassol influenciados pelo vigor dos aquênios e pela densidade de semeadura

    Directory of Open Access Journals (Sweden)

    Madelon Rodrigues Sá Braz

    2010-02-01

    Full Text Available The objective this work was to evaluate the nutrients accumulation and achenes oil yield in sunflower plants as affected by achenes vigour and sowing density. An experiment was installed in the field at Seropédica, State of Rio de Janeiro, in October 2006 with three lots of sunflower achenes, cultivar Embrapa 122 V2000, classified as low, medium and high vigour and two sowing density (45,000 e 75,000 seeds.ha-1. The collected were realized at 20, 60 and 100 days after planting (DAP to the determination the dry mater, nitrogen, phosphorus, potassium and calcium. In the collecting at 100 DAP too it was evaluated the achene yield (kg ha-1, the content oil and oil yield (kg ha-1. The results indicated that to the 60 days high accumulation of dry mater, N, P K and Ca in stem, leaves and total at density of 45,000 seeds ha-1. The sunflower achenes oil yield and achenes and nutrients harvest index not affected by the achenes vigour and sowing density to. There was a preferential translocation of N and P for the achenes.O objetivo do trabalho foi avaliar o acúmulo de nutrientes e o rendimento de óleo dos aquênios em plantas de girassol produzidas sob a influência do vigor dos aquênios e da densidade de semeadura. Para isto, foi instalado um experimento no campo experimental no município de Seropédica/RJ, em outubro de 2006, com três distintos lotes de aquênios de girassol cv Embrapa 122 V2000, classificados como de baixo, de médio e de alto vigor, sob duas densidades de semeadura (45.000 e 75.000 sementes ha-1. Aos 20, 60 e 100 dias após a semeadura (DAS, foram coletadas as plantas para avaliação da massa de matéria seca e do acúmulo de nitrogênio, de fósforo, de potássio e de cálcio, no caule, nas folhas e nos capítulos. Nas plantas coletadas aos 100 DAS, foi feita também a avaliação do rendimento de aquênios (kg ha-1, do teor de óleo e do rendimento de óleo (kg ha-1. Observou-se que aos 60 DAS, no período entre o

  5. Development of a potassium-selective optode for hydroponic nutrient solution monitoring.

    Science.gov (United States)

    Bamsey, Matthew; Berinstain, Alain; Dixon, Michael

    2012-08-01

    Highly efficient and reliable plant growth such as that required in biological life support systems for future space-based missions can be better achieved with knowledge of ion concentrations within the hydroponic nutrient solution. This paper reports on the development and application of ion-selective bulk optodes to plant growth systems. Membranes for potassium-selective sensing are reported that have been tailored so that their dynamic range is centred on potassium activities within typical nutrient solution recipes. The developed sensors have been shown to exhibit a potassium activity measuring range from 0.134 to 117 mM at pH 6.0. These bulk optodes show full scale response on the order of several minutes. They show minimal interference to other cations and meet worst-case selectivity requirements for potassium monitoring in the considered half strength Hoagland solution. When continuously immersed in nutrient solution, these sensors demonstrated predicable lifetimes on the order of 50h. The developed instrument for absorption-based measurements including light source, mini-spectrometer and optode probe is presented. Custom instrument control and monitoring software including a spectral normalization procedure, use of a dual-wavelength absorbance ratio technique and automatic adjustment for pH variation result in an instrument that is self-calibrating and one that can account for effects such as light source fluctuations, membrane thickness variations and a variety of other factors. The low mass, low volume nature of bulk optode sensing systems, make them a promising technology for future space-based plant production systems. Their low-cost and technology transfer potential suggest that they could provide terrestrial growers a new and reliable mechanism to obtain ion-selective knowledge of their nutrient solution, improving yields, reducing costs and aiding in compliance to continually more stringent environmental regulation.

  6. Efficacy and reliability of upgraded industrial treatment plant at Porto Marghera, near Venice, Italy, in removing nutrients and dangerous micropollutants from petrochemical wastewaters.

    Science.gov (United States)

    Verlicchi, Paola; Cattaneo, Serena; Marciano, Ferdinando; Masotti, Luigi; Vecchiato, Giuseppe; Zaffaroni, Carlo

    2011-08-01

    Chemical and petrochemical wastewaters contain a host of contaminants that require different treatment strategies. Regulation of macropollutants and micropollutants in the final discharge from industrial wastewater treatment plants (WWTPs) have become increasingly stringent in recent decades, requiring many WWTPs to be upgraded. This article presents an analysis of a WWTP treating petrochemicals in Porto Marghera, Italy, that recently was upgraded following legislative changes. Because of strict legal limits for macropollutants and micropollutants and a lack of space necessary for a full-scale WWTP overhaul, the existing activated sludge tank was converted into a membrane biological reactor. The paper presents experimental data collected during a five-month investigation showing the removal rates achieved by the upgraded plant for macropollutants (particularly nitrogen compounds) and micropollutants (heavy metals and organic and inorganic toxic compounds). PMID:21905411

  7. Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea mays L.)

    OpenAIRE

    Zahid, Mahwish; Abbasi, M. Kaleem; Hameed, Sohail; Rahim, Nasir

    2015-01-01

    Introduction and exploitation of plant growth promoting rhizobacteria (PGPR) in agro-ecosystems enhance plant–microbes interactions that may affect ecosystems sustainability, agricultural productivity, and environmental quality. The present study was conducted to isolate and identify PGPRs associated with maize (Zea mays L.) from twenty sites of Himalayan region of Hajira-Rawalakot, Azad Jammu and Kashmir (AJK), Pakistan. A total of 100 isolates were isolated from these sites, out of which ei...

  8. Effect of mixed-cropping and water-stress on macro-nutrients and biochemical constituents of rhizomatous medicinal plants in Central Himalaya, India

    Institute of Scientific and Technical Information of China (English)

    L.S.Kandari; K.S.Rao; R.K.Maikhuri; Kusum Payal

    2012-01-01

    Plants in the alpine zone mainly depend on the reserved food materials stored in their rhizomes for the next growing season.We investigated the effect of mixed cropping (Phaseolus vulgaris L.var.Pinto)with four rhizomatous medicinal plants,i.e.,Angelica glauca,Arnebia benthamii,Rheum emodi and Pleurospermum angelicoides as well as three levels of water stress treatment under two conditions (shade net and open field) on macronutrients (NPK) and biochemicals (carbohydrates and protein).The experiment was conducted by completely randomized design (CDR).The data were analyzed with ANOVA as well as CDR.The experimental results show that in all the species shade conditions with sever water stress (SSWS) increased the level of macronutrients (NPK).However,(N) concentration was highest under shade with mixed cropping (SMIX).Under SMIX,carbohydrate content was highest than open field control conditions (CONT).This investigation results demonstrate that mixed cropping of medicinal plants with Phaseolus vulgaris could be a good livelihood option in the mountainous regions of Indian Central Himalaya.And the water-stress conditions along with mixed cropping could improve the biochemical constituents in the rhizome of these species.

  9. Characterization of nutrient deficiency in Hancornia speciosa Gomes seedlings by omitting micronutrients from the nutrient solution

    Directory of Open Access Journals (Sweden)

    Layara Alexandre Bessa

    2013-06-01

    Full Text Available Hancornia speciosa Gomes (Mangaba tree is a fruit tree belonging to the Apocynaceae family and is native to Brazil. The production of seedlings of this species is limited by a lack of technical and nutritional expertise. To address this deficiency, this study aimed to characterize the visual symptoms of micronutrient deficiency and to assess growth and leaf nutrient accumulation in H. speciosa seedlings supplied with nutrient solutions that lack individual micronutrients. H. speciosa plants were grown in nutrient solution in a greenhouse according to a randomized block design, with four replicates. The treatments consisted of a group receiving complete nutrient solution and groups treated with a nutrient solution lacking one of the following micronutrients: boron (B, copper (Cu, iron (Fe, manganese (Mn, zinc (Zn, and molybdenum (Mo. The visual symptoms of nutrient deficiency were generally easy to characterize. Dry matter production was affected by the omission of micronutrients, and the treatment lacking Fe most limited the stem length, stem diameter, root length, and number of leaves in H. speciosa seedlings as well as the dry weight of leaves, the total dry weight, and the relative growth in H. speciosa plants. The micronutrient contents of H. speciosa leaves from plants receiving the complete nutrient solution treatment were, in decreasing order, Fe>Mn>Cu>Zn>B.

  10. Tactile Aids

    Directory of Open Access Journals (Sweden)

    Mohtaramossadat Homayuni

    1996-04-01

    Full Text Available Tactile aids, which translate sound waves into vibrations that can be felt by the skin, have been used for decades by people with severe/profound hearing loss to enhance speech/language development and improve speechreading.The development of tactile aids dates from the efforts of Goults and his co-workers in the 1920s; Although The power supply was too voluminous and it was difficult to carry specially by children, it was too huge and heavy to be carried outside the laboratories and its application was restricted to the experimental usage. Nowadays great advances have been performed in producing this instrument and its numerous models is available in markets around the world.

  11. Restoration of Shallow Lakes in Subtropical and Tropical China: Response of Nutrients and Water Clarity to Biomanipulation by Fish Removal and Submerged Plant Transplantation

    Directory of Open Access Journals (Sweden)

    Jinlei Yu

    2016-10-01

    Full Text Available Fish removal has been used to restore temperate lakes, and positive effects on ecological state and water clarity have frequently been recorded in many lakes. Recently, a supplementary measure, transplantation of submerged macrophytes after fish removal, has been applied to restore warm Chinese shallow lakes in order to compensate for the expected lack of increasing grazing control of phytoplankton after the biomanipulation. These measures have successfully shifted turbid warm lakes to a clear water state, but little is known about the responses to restoration of key physico-chemical variables. We analyzed the seasonal variation in nutrient concentrations in two subtropical and one tropical biomanipulated shallow Chinese lakes subjected to restoration. In all three lakes, a marked decline occurred in the concentrations of lake total nitrogen (TN, total phosphorus (TP, total suspended solids (TSS, and chlorophyll a (Chl a, while the transparency (SD:WD ratio, Secchi depth to water depth ratio increased. A clear water state was established, lasting so far for 7 to 23 months, and TN, TP, Chl a, and TSS levels in the three restored lakes decreased to, on average, 49%, 58%, 41%, and 18% of the level prior to restoration and/or the level in a reference lake, respectively, while the annual mean SD:WD ratio exhibited a 1.5–4 fold increase. In conclusion, lake restoration by transplantation of submerged macrophytes after fish removal had major positive effects on the physico-chemical variables in our study lakes. However, continuous control of omnivorous and herbivorous fish biomass is recommended as the fish typically present in warm, shallow lakes to some extent feed on submerged macrophytes, when available.

  12. Isotopic-tracer-aided studies on undesirable effects of heavy metals in the soil-plant system. Part of a coordinated programme on isotopic-tracer-aided studies of agrochemical residue - soil biota interactions

    International Nuclear Information System (INIS)

    Uptake of isotopically labelled mercury (Hg-203), cadmium (Cd-115m) and zinc (Zn-65) from a calcareous chernozem and a podzolized brown earth by spring and winter varieties of wheat, rye and barley was investigated in pot experiments carried out until maturity of the plants. The labelled heavy metals, applied at concentrations innocuous to plant growth (0.5 ppm Hg or Cd, 50 ppm Zn) were determined radiometrically in the straw and in the grains of the harvested plants, as well as in the milling products (bran, semolina and flour) obtained by standard procedures of grain processing. Uptake of mercury was several hundred times smaller than the uptake of cadmium, if both metals were applied to the soil in equal amounts. Whereas the uptake of mercury from the acid soil was insignificant or not detectable, cadmium was taken up from this soil at a much higher rate than from the alkaline soil. Thus, not mercury, but cadmium imposes the greatest hazard on the food chain. Winter varieties of cereals took up more mercury and cadmium than did spring varieties. The content of heavy metals in the plants decreased considerably when plants approached maturity. During translocation through the plants the metals were gradually retained when passing from the stalks (''straw'') into the grains, and from the seed-cover (''bran'') into the endosperm (''flour''). The heavy metal contents of the grain fractions decreased in the order: bran > semolina > flour. Concentrations of heavy metals in flour were 3-8 times smaller than in straw, showing that flour is least affected by heavy metal pollution of cereals via the soil. The metal content of the various flour types was correlated with their percentage of bran and with their ash content. By adding an ion-exchanger to the soil the pattern of relative distribution of heavy metals in mature plants was not changed, but the cadmium content of all cereal products was considerably lowered

  13. Improving crop nutrient efficiency through root architecture modifications.

    Science.gov (United States)

    Li, Xinxin; Zeng, Rensen; Liao, Hong

    2016-03-01

    Improving crop nutrient efficiency becomes an essential consideration for environmentally friendly and sustainable agriculture. Plant growth and development is dependent on 17 essential nutrient elements, among them, nitrogen (N) and phosphorus (P) are the two most important mineral nutrients. Hence it is not surprising that low N and/or low P availability in soils severely constrains crop growth and productivity, and thereby have become high priority targets for improving nutrient efficiency in crops. Root exploration largely determines the ability of plants to acquire mineral nutrients from soils. Therefore, root architecture, the 3-dimensional configuration of the plant's root system in the soil, is of great importance for improving crop nutrient efficiency. Furthermore, the symbiotic associations between host plants and arbuscular mycorrhiza fungi/rhizobial bacteria, are additional important strategies to enhance nutrient acquisition. In this review, we summarize the recent advances in the current understanding of crop species control of root architecture alterations in response to nutrient availability and root/microbe symbioses, through gene or QTL regulation, which results in enhanced nutrient acquisition.

  14. Improving crop nutrient efficiency through root architecture modifications.

    Science.gov (United States)

    Li, Xinxin; Zeng, Rensen; Liao, Hong

    2016-03-01

    Improving crop nutrient efficiency becomes an essential consideration for environmentally friendly and sustainable agriculture. Plant growth and development is dependent on 17 essential nutrient elements, among them, nitrogen (N) and phosphorus (P) are the two most important mineral nutrients. Hence it is not surprising that low N and/or low P availability in soils severely constrains crop growth and productivity, and thereby have become high priority targets for improving nutrient efficiency in crops. Root exploration largely determines the ability of plants to acquire mineral nutrients from soils. Therefore, root architecture, the 3-dimensional configuration of the plant's root system in the soil, is of great importance for improving crop nutrient efficiency. Furthermore, the symbiotic associations between host plants and arbuscular mycorrhiza fungi/rhizobial bacteria, are additional important strategies to enhance nutrient acquisition. In this review, we summarize the recent advances in the current understanding of crop species control of root architecture alterations in response to nutrient availability and root/microbe symbioses, through gene or QTL regulation, which results in enhanced nutrient acquisition. PMID:26460087

  15. Neurological Complications of AIDS

    Science.gov (United States)

    ... Diversity Find People About NINDS Neurological Complications of AIDS Fact Sheet Feature Federal domestic HIV/AIDS information ... Where can I get more information? What is AIDS? AIDS (acquired immune deficiency syndrome) is a condition ...

  16. Composição mineral e sintomas visuais de deficiências de nutrientes em plantas de pimenta-longa (Piper hispidinervum C. DC. Mineral composition and visual symptoms of nutrients deficiencies in long pepper plants (Piper hispidinervum C. DC.

    Directory of Open Access Journals (Sweden)

    Ismael de Jesus Matos Veígas

    2013-03-01

    Full Text Available A pimenta-longa (Piper hispidinervum C. DC. é uma das principais fontes alternativas para a produção de safrol empregado como matéria prima na fabricação de inseticidas naturais e aromatizantes. O objetivo da pesquisa foi avaliar o efeito da omissão dos macronutrientes e micronutrientes, sobre a composição mineral de plantas de pimenta-longa, e caracterizar os sintomas de deficiências decorrentes dessa limitação, utilizando-se da técnica do elemento faltante. O experimento foi conduzido em casa de vegetação, com quatro repetições e doze tratamentos, completo e omissão individual de N, P, K, Ca, Mg, S, B, Cu, Fe, Mn e Zn em delineamento inteiramente ao acaso. Os valores dos teores foliares nos tratamentos com omissão dos nutrientes foram inferiores àqueles obtidos no tratamento completo. As omissões individuais dos nutrientes promoveram alterações na composição mineral de macro e micronutrientes. Os teores de macronutrientes (g kg-1 e micronutrientes (mg kg-1 obtidos nas folhas sem (completo e com sintomas de deficiências (omissões foram, respectivamente: N = 18,32; P = 7,02; K = 22,17; Ca = 15,75; Mg = 8,25; S = 5,12; B = 42,25; Fe = 325,00; Mn = 100; Zn = 61,50, com deficiência: N = 8,98; P = 2,52; K = 8,57; Ca = 10,20; Mg = 1,85; S = 0,90; B = 15,50; Fe = 234,00; Mn = 55; Zn = 53.The long pepper (Piper hispidinervum C. DC. is one of the main alternative sources for the production of safrol used as raw material in the manufacture of insecticides and natural flavoring. The objective of this research was to evaluate the effect of omission macronutrients and micronutrients, on the mineral composition of long pepper plants, and featuring the symptoms of deficiencies resulting from this limitation, using the missing element technique. The experiment was conducted in a greenhouse, with four replicates and twelve treatments, complete and individual omission of N, P, K, Ca, Mg, S, B, Cu, Fe, Mn and Zn in a completely

  17. Produtividade e estado nutricional do quiabeiro em função da densidade populacional e do biofertilizante suíno Effects of plant population and swine biofertilizer application on yield and nutrient content of okra

    Directory of Open Access Journals (Sweden)

    Maria Aparecida Nogueira Sediyama

    2009-01-01

    Full Text Available Este trabalho teve como objetivo avaliar a produtividade e o estado nutricional do quiabeiro 'Santa Cruz', cultivado em sistema orgânico, em função de populações de plantas e doses de biofertilizante suíno. O experimento foi realizado na Fazenda Experimental da EPAMIG, em Oratórios (MG, no período de 16/10/2007 a 22/2/2008. O delineamento foi em blocos casualizados, com quatro repetições, no esquema fatorial 2 x 5, sendo duas populações de plantas e cinco doses de biofertilizante, obtido pela fermentação anaeróbica de dejeto líquido de suíno. As populações foram 23.809 e 35.714 plantas ha-1, obtidas no espaçamento de 1,4 x 0,30 m com uma planta por cova e 1,4 x 0,40 m com duas plantas por cova. As doses de biofertilizante foram: 0; 6; 12; 24 e 48 m³ ha-1, sendo 80% aplicado no sulco de plantio, 15 dias antes do transplante, e 20% em cobertura, aos 30 dias após o transplante das mudas. Avaliaram-se teor foliar de nutrientes, índice SPAD, altura de plantas, número de hastes e produção de frutos comerciais e não comerciais. A aplicação do biofertilizante suíno proporcionou plantas com bom estado nutricional. O índice SPAD correlacionou positivamente com teores foliares de N, sendo as maiores concentrações obtidas nas maiores doses de biofertilizante, especialmente na menor população de plantas. O número e a produção de frutos comerciais por planta foram maiores quando se utilizou menor população de plantas. A maior produtividade obtida na população de 35.714 plantas ha-1 foi 31,23 t ha-1 e na população de 23.809 plantas ha-1 foi 21,90 t ha-1, ambas alcançadas com a maior dose de biofertilizante aplicada. A maior produtividade comercial de frutos de quiabo foi obtida na maior população de plantas.The objective of this work was to evaluate yield and nutritional status of organically cultivated Santa Cruz okra as a function of planting densities and doses of swine biofertilizer. The experiment was carried

  18. Nutrient Lossed in Soils on Loess Plateau

    Institute of Scientific and Technical Information of China (English)

    PENGLIN; WANGJI-ZENG; 等

    1995-01-01

    The soil nutrient losses due to excessive soil loss on Loess Plateau were studied by means of runoff plots and systematical determination of soil nutrients both in sediments and runoff.The results show that the amounts of nutrient losses depended on the amounts of ersoion sediments.Along with sediment,11-197kg nitrogen/hectare and 9-174kg phosphorus/hectare were lost,accounting for 92.46-99.47 percent of the total amount of nitrogen loss and 99.85-99.99 percent of the total amount of phosphorus loss respectively.The nutrient losses,very small in runoff,were mainly attributed to erosion of a few rainstorms during a year.The nutrient level in sediment was mostly higher than that in the original soil.Planting grass evidently redued the losses of soil nutrients.The N level was lower in runoff than in rainfall so that the N loss from runoff could be made up by rainfall.Fertilizer application to crops raised the nutrient level in runoff.

  19. Nutrient deifciency limits population development, yield formation, and nutrient uptake of direct sown winter oilseed rape

    Institute of Scientific and Technical Information of China (English)

    WANG Yin; LIU Tao; LI Xiao-kun; REN Tao; CONG Ri-huan; LU Jian-wei

    2015-01-01

    Direct-sowing establishment method has great signiifcance in improving winter oilseed rape (Brassica napus L.) production and guaranteeing edible oil security in China. However, nutrient responses on direct sown winter oilseed rape (DOR) performance and population development dynamic are stil not wel understood. Therefore, ifve on-farm experiments were conducted in the reaches of the Yangtze River (RYR) to determine the effects of nitrogen (N), phosphorus (P), and potassium (K) deifciencies on population density, dry matter production, nutrient uptake, seed yield, and yield components of DOR plants. Four fertilization treatments included the balanced NPK application treatment (NPK, 180 kg N, 39.3 kg P, 100 kg K, and 1.8 kg borax ha–1) and three nutrient deifciency treatments based on the NPK treatment, i.e.,–N,–P, and–K. The results indicated that DOR population density declined gradual y throughout the growing season, especial y at over-wintering and pod-development stages. Nutrient deifciency decreased nutrient concentration in DOR plants, limited dry matter production and nutrient uptake, and thereby exacerbated density reduction during plants growth. The poor individual growth and reduced population density together decreased seed yield in the nutrient deifciency treatment. Averaged across al the experiments, seed yield reduced 61% by N deifciency, 38.3% by P deifciency, and 14.4% by K deifciency. The negative effects of nutrient deifciency on DOR performances fol owed the order of–N>–P>–K, and the effects were various among different nutrient deifciencies. Although N deifciency improved DOR emergence, but it seriously limited dry matter production and nutrient uptake, which in turn led to substantial plants death and therefore resulted in a very low harvested density. The P deifciency signiifcantly reduced initial density, limited plants growth, and exacerbated density reduction. The K deifciency mainly decreased individual growth and yield, but

  20. Nutrient enrichment increases mortality of mangroves.

    Directory of Open Access Journals (Sweden)

    Catherine E Lovelock

    Full Text Available Nutrient enrichment of the coastal zone places intense pressure on marine communities. Previous studies have shown that growth of intertidal mangrove forests is accelerated with enhanced nutrient availability. However, nutrient enrichment favours growth of shoots relative to roots, thus enhancing growth rates but increasing vulnerability to environmental stresses that adversely affect plant water relations. Two such stresses are high salinity and low humidity, both of which require greater investment in roots to meet the demands for water by the shoots. Here we present data from a global network of sites that documents enhanced mortality of mangroves with experimental nutrient enrichment at sites where high sediment salinity was coincident with low rainfall and low humidity. Thus the benefits of increased mangrove growth in response to coastal eutrophication is offset by the costs of decreased resilience due to mortality during drought, with mortality increasing with soil water salinity along climatic gradients.

  1. Plant growth, Leaf Nutrient status, fruit yield and quality of Nagpur mandarin (Citrus reticulate Blanco as influenced by potassium (K fertigation with four potash fertilizer sources

    Directory of Open Access Journals (Sweden)

    Parameshwar Sidramappa Shirgure

    2013-04-01

    Full Text Available To investigate the effect of different potassium (K fertilizers applied through fertigation system during three different seasons on yield and quality behaviors of 14-16 years Nagpur mandarin an experiment was conducted at National Research Centre for Citrus, Nagpur during 2009-2012. The Nagpur mandarin plants requires potassium which, when applied in different amounts during the flower bud initiation to before fruit maturity can affect the yield and quality of fruit as well. The treatments in experiment consisted of; T1 - fertigation with potassium chloride [KCL], T2- fertigation with potassium nitrate [KNO3], T3- fertigation with potassium sulphate [K2SO4] and T4- fertigation with mono potassium phosphate [KH2PO4] @ 150 g K2O/plant. The recommended fertigation dose was 500:150:150 (N:P:K and given through these treatments along with various fertilizers combination of urea of phosphate, urea, and P2O5 acid. Nitrogen elemnet was given from October to January month and N, P and K all were given from February to June month. Each fertigation treatment was given at 15 days interval and fruit yield and quality were measured at harvest. Results showed the highest response of the fruit yield (31.13 t/ha with treatment mono potassium phosphate followed by in fertigation with potassium nitrate (29.4 t/ha. The total soluble solids was highest (10.49 0Brix in K fertigation with mono potassium phosphate followed by fertigation with potassium sulphate (10.48 0Brix. Highest juice content (38.76 % and low acidity (0.77 % was found in K fertigation with mono potassium phosphate. The highest TSS to acidity ratio (sweetness indicator was observed in Mono potassium Phosphate (13.6 followed by Potassium sulphate (13.1.

  2. AIDS Epidemiyolojisi

    OpenAIRE

    SÜNTER, A.T.; PEKŞEN, Y.

    2010-01-01

    AIDS was first defined in the United States in 1981. It spreads to nearly all the countries of the world with a great speed and can infect everbody without any differantiation. The infection results in death and there is no cure or vaccine for it, yet. To data given to World Health Organization until July-1994, it is estimated that there are about 1 million patients and about 22 millions HIV positive persons In the world. Sixty percent of HIV positive persons are men and 40% are women. The di...

  3. Nutrient signature of Quebec (Canada) cranberry (Vaccinium macrocarpon Ait.)

    OpenAIRE

    Sébastien Marchand; Serge-Étienne Parent; Jean-Pierre Deland; Léon-Étienne Parent

    2013-01-01

    Fertilizer recommendations for cranberry crops are guided by plant and soil tests. However, critical tissue concentration ranges used for diagnostic purposes are inherently biased by nutrient interactions and physiological age. Compositional data analysis using isometric log ratios (ilr) of nutrients as well as time detrending can avoid numerical biases. The objective was to derive unbiased nutrient signature standards for cranberry in Quebec and compare those standards to literature data. Fi...

  4. Mycorrhizas effects on nutrient interception in two riparian grass species

    Directory of Open Access Journals (Sweden)

    Hamid Reza Asghari

    2014-12-01

    Full Text Available Effects of arbuscular mycorrhizal (AM fungi on plant growth and soil nutrient depletion are well known, but their roles as nutrient interceptor in riparian areas are less clear. The effects of AM fungi on growth, soil nutrient depletion and nutrient leaching were investigated in columns with two riparian grass species. Mycorrhizal and non mycorrhizal (NM plants were grown in a mixture of riparian soil and sand (60% and 40%, w/w respectively for 8 weeks under glasshouse conditions. Mycorrhizal colonization, AM external hyphae development, plant growth, nutrient uptake and NO3, NH4 and available P in soil and leachate were measured. Mycorrhizal fungi highly colonized roots of exotic grass Phalaris aquatica and significantly increased plant growth and nutrient uptake. Columns containing of AM Phalaris aquatica had higher levels of AM external hyphae, lower levels of NO3, NH4 and available P in soil and leachate than NM columns. Although roots of native grass Austrodanthonia caespitosa had moderately high levels of AM colonization and AM external hyphae in soil, AM inoculation had no significant effects on plant growth, soil and leachate concentration of NO3 and NH4. But AM inoculation decreased available soil P concentration in deeper soil layer and had no effects on dissolved P in leachate. Although both grass species had nearly the same biomass, results showed that leachate collected from Austrodanthonia caespitosa columns significantly had lower levels of NO3, NH4 and dissolve P than leachate from exotic Phalaris aquatica columns. Taken together, these data shows that native plant species intercept higher nutrient than exotic plant species and had no responsiveness to AM fungi related to nutrient leaching, but AM fungi play an important role in interception of nutrient in exotic plant species.

  5. Nutrient management for rice production

    International Nuclear Information System (INIS)

    The nutrient removed by the crops far exceeds the amounts replenished through fertilizer, causing a much greater strain on the native soil reserves. The situation is further aggravated in countries like India, where sub-optimal fertilizer used by the farmers is a common phenomenon rather than an exception. The total consumption of nutrients of all crops in India, even though reached 15 million tons in 1997, remains much below the estimated nutrient removal of 25 million tons (Swarup and Goneshamurthy, 1998). The gap between nutrient removal supplied through fertilizer has widened further in 2000 to 34 million tons of plant nutrients from the soil against an estimated fertilizer availability of 18 million tons (Singh and Dwivedi, 1996). Nitrogen is the nutrient which limits the most the rice production worldwide. In Asia, where more than 90 percent of the world's rice is produced, about 60 percent of the N fertilizer consumed is used on rice (Stangel and De Dutta, 1985). Conjunctive use of organic material along with fertilizer has been proved an efficient source of nitrogen. Organic residue recycling is becoming an increasingly important aspect of environmentally sound sustainable agriculture. Returning residues like green manure to the soil is necessary for maintaining soil organic matter, which is important for favourable soil structure, soil water retention and soil microbial flora and fauna activities. Use of organic manures in conjunction or as an alternative to chemical fertilizer is receiving attention. Green manure, addition to some extent, helps not only in enhancing the yield but also in improving the physical and chemical nature of soils. The excessive application of chemical fertilizers made it imperative that a part of inorganic fertilizer may be substituted with the recycling of organic wastes. Organic manure has been recorded to enhance the efficiency and reduce the requirement of chemical fertilizers. Partial nitrogen substitution through organic

  6. Variation of nutrient contents in protected cultivation soil with different planting years in north area of Shanxi Province%晋北地区不同种植年限设施土壤养分含量的变化

    Institute of Scientific and Technical Information of China (English)

    湛润生; 岳新丽; 韩志平; 杨文; 戎婷婷

    2012-01-01

    以农田、露天菜地为对照,研究了山西阳高连作1、4、7、11、14、17 a设施栽培土壤pH值、养分含量及其相互关系.结果表明,与农田相比,设施栽培菜地土壤pH值降低、养分含量升高,差异达显著水平.随种植年限增加,设施内0 ~ 20 cm、20 ~ 40 cm土层有机质、碱解氮、有效磷含量表现出先升高后降低的趋势.依据设施菜地土壤养分含量标准,阳高设施土壤pH值、有机质、速效钾含量处于适宜水平,碱解氮含量较高,有效磷严重超标.相关分析表明,土壤pH值与速效钾含量间呈显著负相关,各土壤养分含量间呈显著正相关.当地设施蔬菜生产中的不合理施肥,已导致土壤化学性状发生明显变化,今后应推广科学施肥.%With farmland and open vegetable fields as control,soil pH value,nutrient contents and its relations in protected cultivation soil with continuous planting years (1,4,7,11,14,17 a) in Yanggao County were studied. The results indicated that pH value significantly decreased,nutrient contents obviously increased in protected cultivation soil in comparison with farmland. With increasing of cropping years,organic matter,alkali-hydrolyzable N and available P contents in 0 ~ 20 cm and 20 - 40 cm soil increased within short-term and reduced beyond some years. According to the criteria of soil nutrient contents for protected vegetable soil,pH value,organic matter and available K contents were appropriate,alkali-hydrolyzable N was high,and available P was seriously over proof in protected cultivation soil in Yanggao County. Correlation analysis showed that there were negative correlation between pH value and available K content,and positive correlation between every two soil nutrient contents. In short,soil chemical properties had been changed clearly due to irrational fertilization in protected cultivation,we should promote scientific fertilization in the future.

  7. Biological Nutrient Removal in Compact Biofilm Systems

    OpenAIRE

    Bassin, J.P.

    2012-01-01

    The removal of nutrients such as nitrogen and phosphorus from both domestic and industrial wastewaters is imperative since they potentially harm the environment. One of the main consequences of excessive availability of nitrogen and phosphorus in aquatic ecosystems (freshwater, marine and estuarine) is the overgrowth of algae and other aquatic plants, a phenomenon designated as eutrophication. Algae and aquatic plants induce depletion of oxygen in water basins, resulting in massive death of e...

  8. Annual meeting on nuclear technology '91. Technical session on 'Screen-aided man-machine dialogue for process control in nuclear power plant'

    International Nuclear Information System (INIS)

    The following topics were discussed in this session: Experience with fully computerized, screen-based control room operation in fossil-fuel power plant. Results of an evaluation of control room operation with CRT-based information display, and the resulting requirements for fully computerized control rooms in nuclear power plant. Simulator-based verification for 1400 MW PWR main control room. Concept and design of a fully computerized control room for future nuclear power plant. Requirements defined for fully computerized nuclear power plant control rooms from the licensing point of view. (orig./GL)

  9. Improving crop nutrient efficiency through root architecture modifications

    Institute of Scientific and Technical Information of China (English)

    Xinxin Li; Rensen Zeng; Hong Liao

    2016-01-01

    Improving crop nutrient efficiency becomes an essential consideration for environmentally friendly and sustainable agriculture. Plant growth and development is dependent on 17 essential nutrient elements, among them, nitrogen (N) and phosphorus (P) are the two most important mineral nutrients. Hence it is not surprising that low N and/or low P availability in soils severely constrains crop growth and productivity, and thereby have become high priority targets for improving nutrient efficiency in crops. Root exploration largely determines the ability of plants to acquire mineral nutrients from soils. Therefore, root architecture, the 3-dimensional configuration of the plant’s root system in the soil, is of great importance for improving crop nutrient efficiency. Furthermore, the symbiotic associations between host plants and arbuscular mycorrhiza fungi/rhizobial bacteria, are additional important strategies to enhance nutrient acquisition. In this review, we summarize the recent advances in the current understanding of crop species control of root architecture alterations in response to nutrient availability and root/microbe symbioses, through gene or QTL regulation, which results in enhanced nutrient acquisition.

  10. Modelling Nutrient Uptake of Sweet Pepper

    NARCIS (Netherlands)

    Marcelis, L.F.M.; Brajeul, E.; Elings, A.; Garate, A.; Heuvelink, E.

    2005-01-01

    Models simulating dry matter production have been developed for a large number of greenhouse crops during the past decades. This paper describes how plant-nutrient relationships can be incorporated in a model for greenhouse crops, with sweet pepper as an example. Based on climatic data, the model si

  11. Removal Efficiency of Faecal Indicator Organisms, Nutrients and Heavy Metals from a Peri-Urban Wastewater Treatment Plant in Thohoyandou, Limpopo Province, South Africa

    Directory of Open Access Journals (Sweden)

    Joshua N. Edokpayi

    2015-06-01

    Full Text Available Wastewater treatment facilities are known sources of fresh water pollution. This study was carried out from January to June 2014 to assess the reduction efficiency of some selected contaminants in the Thohoyandou wastewater treatment plant (WWTP. The pH and electrical conductivity of the effluent fell within the South African wastewater discharge guidelines. The WWTP showed the chemical oxygen demand reduction efficiency required by the Department of Water Affairs (DWA guidelines of 75 mg/L for the months of April and June, although it was below this standard in March and May. Free chlorine concentration varied between 0.26–0.96 mg/L and exceeded the DWA guideline value of 0.25 mg/L. The concentration of nitrate-nitrogen (NO3− N in the influent and effluent varied between 0.499–2.31 mg/L and 7.545–19.413 mg/L, respectively. The concentration of NO3− N in the effluent complied with DWA effluent discharge standard of 15 mg/L, except in April and May. Phosphate concentrations in the influent and effluent were in the ranges of 0.552–42.646 mg/L and 1.572–32.554 mg/L, respectively. The WWTP showed reduction efficiencies of E. coli and Enterococci during some sampling periods but the level found in the effluent exceeded the recommended guideline value of 1000 cfu/100 mL for faecal indicator organisms in wastewater effluents. Consistent removal efficiencies were observed for Al (32–74%, Fe (7–32% and Zn (24–94% in most of the sampling months. In conclusion, the Thohoyandou WWTP is inefficient in treating wastewater to the acceptable quality before discharge.

  12. Carbon storage in seagrass soils: long-term nutrient history exceeds the effects of near-term nutrient enrichment

    OpenAIRE

    Armitage, A. R.; J. W. Fourqurean

    2016-01-01

    The carbon sequestration potential in coastal soils is linked to aboveground and belowground plant productivity and biomass, which in turn, is directly and indirectly influenced by nutrient input. We evaluated the influence of long-term and near-term nutrient input on aboveground and belowground carbon accumulation in seagrass beds, using a nutrient enrichment (nitrogen and phosphorus) experiment embedded within a naturally occurring, long-term gradient of phosphorus availab...

  13. Carbon storage in seagrass soils: long-term nutrient history exceeds the effects of near-term nutrient enrichment

    OpenAIRE

    Armitage, A. R.; J. W. Fourqurean

    2015-01-01

    The carbon sequestration potential in coastal soils is linked to aboveground and belowground plant productivity and biomass, which in turn, is directly and indirectly influenced by nutrient input. We evaluated the influence of long-term and near-term nutrient input on aboveground and belowground carbon accumulation in seagrass beds, using a nutrient enrichment (nitrogen and phosphorus) experiment embedded within a naturally occurring, long-term gradient of phosphorus availab...

  14. Soil pH and nutrient uptake in cauliflower (Brassica oleracea L. var. botrytis) and Broccoli (Brassica oleracea L. var. italica) in Northern Sweden. Multielement studies by means of plant and soil analyses

    Energy Technology Data Exchange (ETDEWEB)

    Magnusson, Margareta [Swedish Univ. of Agricultural Sciences, Umeaa (Sweden). Dept. of Agricultural Research for Northern Sweden

    2000-07-01

    To reveal nutrient element deficiencies or imbalances limiting vegetable production in northern Sweden, multielement soil and plant analyses were performed in cauliflower and broccoli during the period 1989 to 1996. The pH range of the soils was 4.4-8. 1. The results were evaluated with the multivariate statistical methods PCA (Principal Component Analysis) and PLS (Partial Least Squares Projection to Latent Structures). The major yield-limiting elements were Mg, B, Mn, Zn, Fe and Cu. This was a result of high soil pH and large content of Ca in the soil. The reason for B deficiency was also low B content in the soil. Applications of green mulch increased yield on soils with a pH below 6.0. It also increased the uptake and concentration in the plants of B, Ba, Cl, Cu, K, Mg, Mn, N, P, Se and Zn, and decreased the uptake and concentration of Al, Cs and Tl. The mineral fertilizer applied, NPK 11-5-18 micro, decreased soil pH. This has resulted in larger uptake and higher concentrations in the plants of Co and Mn, in comparison to where cattle manure was applied. This fertilizer strongly decreased uptake of Mo, as a result of both the acidifying effect and the large S content. Repeated applications of nitrate of lime in combination with the NPK 11-5-18 strongly increased the uptake of Cs by the plants. The results in this investigation, together with the literature reviews, strongly indicate that a relatively low soil pH (5.0-5.5) is favourable when organic fertilizers are used and that harmful effects of very low soil pH (<5.0), are ameliorated by organic materials but aggravated by mineral fertilizers. The main purpose of lime is to counteract the acidity and increased leaching created by mineral fertilizers. Because of the historical context in which the lime requirements were established, the dangers of acid soils appear to have been strongly overestimated.

  15. First aid to fight hazards at the uranium ore processing plant at Seelingstaedt/Thuringia. Sofortgefahrenabwehr im Bereich der Uranerzaufbereitungsanlage Seelingstaedt/Thueringen

    Energy Technology Data Exchange (ETDEWEB)

    Gellermann, R.; Molitor, N.; Ripper, P. (Trischler und Partner GmbH, Darmstadt (Germany))

    Mining for uranium ore in Saxonia and Thuringen under the ownership of the German-Soviet group SDAG Wismut has severely affected the environment in the concerned regions over the last 45 years. By means of a special project, the article gives an overview of hazard potentials, acute hazards and envisaged first aid, as well as on additional measures to restore and revegetate the landscape. The state of knowledge on which the article is based is as at June 1991. (orig./HP).

  16. Biogas digestate and its economic impact on farms and biogas plants according to the upper limit for nitrogen spreading—the case of nutrient-burdened areas in north-west Germany

    Directory of Open Access Journals (Sweden)

    Sebastian Auburger

    2015-11-01

    Full Text Available At the end of 2012, an expert group presented its evaluation of the forthcoming amendment of the German Fertilizer Ordinance (DüV. The new proposal intends to include manure of plant origin in the calculation of the upper limit for nitrogen spreading, determined to be 170 kg per hectare. This would particularly affect regions of north-west Germany that are characterized by intensive animal husbandry and biogas production. This would lead to increased costs of the disposal of manure and the use of agricultural land, especially for pig farms and biogas producers. A spatial model of nutrient distribution demonstrates the regional impacts of the amendment, and example calculations at an enterprise level show that many farmers would no longer be able to suitably pay for the factors used. Monte Carlo analysis shows a relatively high probability that only successful pig farmers and biogas producers would be able to compensate for the rising costs of transport and land use in a sustainable manner. Successful piglet producers would improve their relative competitiveness compared to biogas producers and especially to pig-fattening enterprises. The adoption of new strategies should factor in both the water protection requirements and the ability of the affected farms to evolve and grow on a sustainable basis.

  17. AIDS.gov

    Science.gov (United States)

    ... concerns. Search Services Share This Help National HIV/AIDS Strategy Check out NHAS's latest progress in the ... from AIDS.gov Read more AIDS.gov tweets AIDS.gov HIV/AIDS Basics • Federal Resources • Using New ...

  18. Choosing Nutrient Dense Foods

    Medline Plus

    Full Text Available ... eat. Are they primarily nutrient-dense, like these, [ photos of melon, red bell pepper, oatmeal ] or are they mostly calorie dense, like these? [ photos of butter crackers, bacon, coffee cake ] Some older ...

  19. Choosing Nutrient Dense Foods

    Medline Plus

    Full Text Available ... coffee cake ] Some older adults answer the question this way: Richard: In the summertime, like now, fruit ... high in nutrients and low in calories. Eating this way is especially important as you age. Dr. ...

  20. Choosing Nutrient Dense Foods

    Medline Plus

    Full Text Available ... eat lots of them every day, usually in dishes that Richard prepares. Richard: When we are eating ... 100 calories that you obtain from a fruit dish, you might have only a few nutrients and ...

  1. Choosing Nutrient Dense Foods

    Medline Plus

    Full Text Available ... put some cheese in it. And with my diet, an ounce of cheese is okay. Narrator: Richard ... of all ages, older adults should consume a diet that includes a variety of nutrients from a ...

  2. Choosing Nutrient Dense Foods

    Medline Plus

    Full Text Available ... consume, it’s important to think about the nutrient value of the foods you eat. Dr. Connie W. ... foods, the one that is the best nutritional value for you. So for 100 calories that you ...

  3. Choosing Nutrient Dense Foods

    Medline Plus

    Full Text Available ... of butter crackers, bacon, coffee cake ] Some older adults answer the question this way: Richard: In the ... is okay. Narrator: Richard and Gloria are older adults who choose to eat nutrient-dense foods, foods ...

  4. Choosing Nutrient Dense Foods

    Medline Plus

    Full Text Available ... you eat. Are they primarily nutrient-dense, like these, [ photos of melon, red bell pepper, oatmeal ] or are they mostly calorie dense, like these? [ photos of butter crackers, bacon, coffee cake ] Some ...

  5. Excess nutrients in hydroponic solutions alter nutrient content of rice, wheat, and potato

    Science.gov (United States)

    McKeehen, J. D.; Mitchell, C. A.; Wheeler, R. M.; Bugbee, B.; Nielsen, S. S.

    1996-01-01

    Environment has significant effects on the nutrient content of field-grown crop plants. Little is known, however, about compositional changes caused by controlled environments in which plants receive only artificial radiation and soilless, hydroponic culture. This knowledge is essential for developing a safe, nutritious diet in a Controlled Ecological Life-Support System (CELSS). Three crops that are candidates for inclusion in a CELSS (rice, wheat, and white potato) were grown both in the field and in controlled environments where the hydroponic nutrient solution, photosynthetic photon flux (PPF), and CO2 level were manipulated to achieve rapid growth rates. Plants were harvested at maturity, separated into discrete parts, and dried prior to analysis. Plant materials were analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate, minerals, and amino-acid composition. The effect of environment on nutrient content varied by crop and plant part. Total N and nonprotein N (NPN) contents of plant biomass generally increased under controlled-environment conditions compared to field conditions, especially for leafy plant parts and roots. Nitrate levels were increased in hydroponically-grown vegetative tissues, but nitrate was excluded from grains and tubers. Mineral content changes in plant tissue included increased phosphorus and decreased levels of certain micronutrient elements under controlled-environment conditions. These findings suggest that cultivar selection, genetic manipulation, and environmental control could be important to obtain highly nutritious biomass in a CELSS.

  6. Excess nutrients in hydroponic solutions alter nutrient content of rice, wheat, and potato

    Science.gov (United States)

    McKeehen, J. D.; Mitchell, C. A.; Wheeler, R. M.; Bugbee, B.; Nielsen, S. S.

    Environment has significant effects on the nutrient content of field-grown crop plants. Little is known, however, about compositional changes caused by controlled environments in which plants receive only artificial radiation and soilless, hydroponic culture. This knowledge is essential for developing a safe, nutritious diet in a Controlled Ecological Life-Support System (CELSS). Three crops that are candidates for inclusion in a CELSS (rice, wheat, and white potato) were grown both in the field and in controlled environments where the hydroponic nutrient solution, photosynthetic photon flux (PPF), and CO_2 level were manipulated to achieve rapid growth rates. Plants were harvested at maturity, separated into discrete parts, and dried prior to analysis. Plant materials were analyzed for proximate composition (protein, fat, ash, and carbohydrate), total nitrogen (N), nitrate, minerals, and amino-acid composition. The effect of environment on nutrient content varied by crop and plant part. Total N and nonprotein N (NPN) contents of plant biomass generally increased under controlled-environment conditions compared to field conditions, especially for leafy plant parts and roots. Nitrate levels were increased in hydroponically-grown vegetative tissues, but nitrate was excluded from grains and tubers. Mineral content changes in plant tissue included increased phosphorus and decreased levels of certain micronutrient elements under controlled-environment conditions. These findings suggest that cultivar selection, genetic manipulation, and environmental control could be important to obtain highly nutritious biomass in a CELSS.

  7. Late gestational nutrient restriction

    DEFF Research Database (Denmark)

    Tygesen, Malin Plumhoff; Nielsen, Mette Olaf; Nørgaard, Peder;

    2008-01-01

    We investigated the effect of 50% nutrient restriction during the last 6 weeks of gestation on twin-pregnant ewes' plasma glucose, non-esterified fatty acid, ß-hydroxybutyrate, insulin, IGF-1 and leptin concentrations and the effects on lamb birth weight and ewes' lactation performance. Plasma...... changes in feed intake and energy balance. It is concluded that severely reduced nutrient availability in late gestation affects fetal growth in utero and has a prolonged negative effect on lactation performance....

  8. Nutrient Driven Topology Optimization

    OpenAIRE

    Satha, Ganarupan

    2010-01-01

    The aim of this thesis is to investigate how a biological structure changes its shape and boundary under different cases of load if flow of nutrients is included, since nutrient flow has not been taken into account in previous studies. In order to simulate such a scenario we construct a model by using topology optimization (the SIMP model) and a balance law which is suitable for biological structures. Moreover, the model is derived by using an analogy with the dissipation inequality and Colem...

  9. Macroeconomic Issues in Foreign Aid

    DEFF Research Database (Denmark)

    Hjertholm, Peter; Laursen, Jytte; White, Howard

    foreign aid, macroeconomics of aid, gap models, aid fungibility, fiscal response models, foreign debt,......foreign aid, macroeconomics of aid, gap models, aid fungibility, fiscal response models, foreign debt,...

  10. HIV and AIDS

    Science.gov (United States)

    ... Got Homework? Here's Help White House Lunch Recipes HIV and AIDS KidsHealth > For Kids > HIV and AIDS ... actually the virus that causes the disease AIDS. HIV Hurts the Immune System People who are HIV ...

  11. Nosebleed, First Aid

    Science.gov (United States)

    ... and rashes clinical tools newsletter | contact Share | Nosebleed, First Aid A A A First Aid for Nosebleed: View ... of the nose, causing bleeding into the throat. First Aid Guide The following self-care measures are recommended: ...

  12. Splinter, First Aid

    Science.gov (United States)

    ... and rashes clinical tools newsletter | contact Share | Splinter, First Aid A A A First Aid for Splinter: View ... wet, it makes the area prone to infection. First Aid Guide Self-care measures to remove a splinter ...

  13. HIV-AIDS Connection

    Science.gov (United States)

    ... Content Marketing Share this: Main Content Area The HIV-AIDS Connection AIDS was first recognized in 1981 ... cancers. Why is there overwhelming scientific consensus that HIV causes AIDS? Before HIV infection became widespread in ...

  14. Heart attack first aid

    Science.gov (United States)

    First aid - heart attack; First aid - cardiopulmonary arrest; First aid - cardiac arrest ... A heart attack occurs when the blood flow that carries oxygen to the heart is blocked. The heart muscle ...

  15. The selection of plant species-organic amendment combinations aids to restore soil microbial function recovery in a metal-contaminated soil

    Science.gov (United States)

    Kohler, Josef; Caravaca, Fuensanta; Azcón, Rosario; Diáz, Gisela; Fuensanta, Garcia-Orenes; Roldan, Antonio

    2014-05-01

    A mesocosm experiment was established to evaluate the effect of two organic wastes: fermented sugar beet residue (SBR) and urban waste compost on the stimulation of