WorldWideScience

Sample records for aiaa theoretical fluid

  1. Theoretical Fluid Dynamics

    CERN Document Server

    Shivamoggi, Bhimsen K

    1998-01-01

    "Although there are many texts and monographs on fluid dynamics, I do not know of any which is as comprehensive as the present book. It surveys nearly the entire field of classical fluid dynamics in an advanced, compact, and clear manner, and discusses the various conceptual and analytical models of fluid flow." - Foundations of Physics on the first edition. Theoretical Fluid Dynamics functions equally well as a graduate-level text and a professional reference. Steering a middle course between the empiricism of engineering and the abstractions of pure mathematics, the author focuses

  2. Mathematical Fluid Dynamics of Store and Stage Separation

    Science.gov (United States)

    2005-05-01

    34Theoretical Aerodynamics in Today’s Real World," Opportunities and Challenges," Julian D. Cole Lecture , 4 th AIAA Theoretical Fluid Dynamics Meeting, June...Reports A 4th AIAA Theoretical Fluid Dynamics Meeting Julian D. Cole Lecture June 6-9, 2005 Toronto, Canada AIAA 2005-5059 Theoretical Aerodynamics in...technique was developed to treat the problem of shock manipulation by MHD Lorentz forces in Ref. 68 that has been validated by large scale CFD and

  3. Investigations of Fluid-Structure-Coupling and Turbulence Model Effects on the DLR Results of the Fifth AIAA CFD Drag Prediction Workshop

    Science.gov (United States)

    Keye, Stefan; Togiti, Vamish; Eisfeld, Bernhard; Brodersen, Olaf P.; Rivers, Melissa B.

    2013-01-01

    The accurate calculation of aerodynamic forces and moments is of significant importance during the design phase of an aircraft. Reynolds-averaged Navier-Stokes (RANS) based Computational Fluid Dynamics (CFD) has been strongly developed over the last two decades regarding robustness, efficiency, and capabilities for aerodynamically complex configurations. Incremental aerodynamic coefficients of different designs can be calculated with an acceptable reliability at the cruise design point of transonic aircraft for non-separated flows. But regarding absolute values as well as increments at off-design significant challenges still exist to compute aerodynamic data and the underlying flow physics with the accuracy required. In addition to drag, pitching moments are difficult to predict because small deviations of the pressure distributions, e.g. due to neglecting wing bending and twisting caused by the aerodynamic loads can result in large discrepancies compared to experimental data. Flow separations that start to develop at off-design conditions, e.g. in corner-flows, at trailing edges, or shock induced, can have a strong impact on the predictions of aerodynamic coefficients too. Based on these challenges faced by the CFD community a working group of the AIAA Applied Aerodynamics Technical Committee initiated in 2001 the CFD Drag Prediction Workshop (DPW) series resulting in five international workshops. The results of the participants and the committee are summarized in more than 120 papers. The latest, fifth workshop took place in June 2012 in conjunction with the 30th AIAA Applied Aerodynamics Conference. The results in this paper will evaluate the influence of static aeroelastic wing deformations onto pressure distributions and overall aerodynamic coefficients based on the NASA finite element structural model and the common grids.

  4. Experimental and theoretical advances in fluid dynamics

    CERN Document Server

    Klapp, Jaime; Fuentes, Oscar Velasco

    2011-01-01

    The book is comprised of lectures and selected contributions presented at the Enzo Levi and XVI Annual Meeting of the Fluid Dynamic Division of the Mexican Physical Society in 2010. It is aimed at fourth year undergraduate and graduate students, as well as scientists in the fields of physics, engineering and chemistry with an interest in fluid dynamics from the experimental and theoretical point of view. The lectures are introductory and avoid the use of complicated mathematics. The other selected contributions are also geared to fourth year undergraduate and graduate students. The fluid dynam

  5. The Janus fluid a theoretical perspective

    CERN Document Server

    Fantoni, Riccardo

    2013-01-01

    The state-of-the-art in the theoretical statistical physics treatment of the Janus fluid is reported with a bridge between new research results published in journal articles and a contextual literature review. Recent Monte Carlo simulations on the Kern and Frenkel model of the Janus fluid have revealed that in the vapor phase, below the critical point, there is the formation of preferred inert clusters made up of a well-defined number of particles: the micelles and the vesicles. This is responsible for a re-entrant gas branch of the gas-liquid binodal. Detailed account of this findings are given in the first chapter where the Janus fluid is introduced as a product of new sophisticated synthesis laboratory techniques. In the second chapter a cluster theory is developed to approximate the exact clustering properties stemming from the simulations. It is shown that the theory is able to reproduce semi-quantitatively the micellization phenomenon.

  6. An introduction to theoretical fluid mechanics

    CERN Document Server

    Childress, Stephen

    2009-01-01

    This book gives an overview of classical topics in fluid dynamics, focusing on the kinematics and dynamics of incompressible inviscid and Newtonian viscous fluids, but also including some material on compressible flow. The topics are chosen to illustrate the mathematical methods of classical fluid dynamics. The book is intended to prepare the reader for more advanced topics of current research interest.

  7. Space and Missile Systems Center Tailoring: Tailoring Instructions for AIAA-S-120-2006

    Science.gov (United States)

    2013-01-02

    space system have been included properly. 4.4.3.4 Customer-Furnished Equipment ( CFE ) The contractor’s mass properties records should have a separate...tabulation of all CFE . 4.5 Documentation Use AIAA-S-120-2006 for all paragraphs except as noted below. 20 4.5.1 Mass Properties Control Plan A

  8. Maier-Saupe nematogenic fluid: field theoretical approach

    Directory of Open Access Journals (Sweden)

    M. Holovko

    2011-09-01

    Full Text Available We adopt a field theoretical approach to study the structure and thermodynamics of a homogeneous Maier-Saupe nematogenic fluid interacting with anisotropic Yukawa potential. In the mean field approximation we retrieve the standard Maier-Saupe theory for liquid crystals. In this theory the density is expressed via the second order Legendre polynomial of molecule orientations. In the Gaussian approximation we obtain analytical expressions for the correlation functions, the elasticity constant, the free energy, the pressure, and the chemical potential. We also use Ward symmetry identities to set a simple condition for the correlation functions. Subsequently we find corrections due to fluctuations and show that density now contains Legendre polynomials of higher orders.

  9. Summary of the Fourth AIAA CFD Drag Prediction Workshop

    Science.gov (United States)

    Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Rider, Ben; Zickuhr, Tom; Levy, David W.; Brodersen, Olaf P.; Eisfeld, Bernhard; Crippa, Simone; Wahls, Richard A.; Morrison, Joseph H.; Mavriplis, Dimitri J.; Murayama, Mitcuhiro

    2010-01-01

    Results from the Fourth AIAA Drag Prediction Workshop (DPW-IV) are summarized. The workshop focused on the prediction of both absolute and differential drag levels for wing-body and wing-body-horizontal-tail configurations that are representative of transonic transport air- craft. Numerical calculations are performed using industry-relevant test cases that include lift- specific flight conditions, trimmed drag polars, downwash variations, dragrises and Reynolds- number effects. Drag, lift and pitching moment predictions from numerous Reynolds-Averaged Navier-Stokes computational fluid dynamics methods are presented. Solutions are performed on structured, unstructured and hybrid grid systems. The structured-grid sets include point- matched multi-block meshes and over-set grid systems. The unstructured and hybrid grid sets are comprised of tetrahedral, pyramid, prismatic, and hexahedral elements. Effort is made to provide a high-quality and parametrically consistent family of grids for each grid type about each configuration under study. The wing-body-horizontal families are comprised of a coarse, medium and fine grid; an optional extra-fine grid augments several of the grid families. These mesh sequences are utilized to determine asymptotic grid-convergence characteristics of the solution sets, and to estimate grid-converged absolute drag levels of the wing-body-horizontal configuration using Richardson extrapolation.

  10. Development of a theoretical framework for analyzing cerebrospinal fluid dynamics

    DEFF Research Database (Denmark)

    Cohen, Benjamin; Voorhees, Abram; Vedel, Søren

    2009-01-01

    Background: To date hydrocephalus researchers acknowledge the need for rigorous but utilitarian fluid mechanics understanding and methodologies in studying normal and hydrocephalic intracranial dynamics. Pressure volume models and electric circuit analogs introduced pressure into volume conservat......Background: To date hydrocephalus researchers acknowledge the need for rigorous but utilitarian fluid mechanics understanding and methodologies in studying normal and hydrocephalic intracranial dynamics. Pressure volume models and electric circuit analogs introduced pressure into volume...

  11. Theoretical aspects concerning working fluids in hydraulic systems

    Directory of Open Access Journals (Sweden)

    Tița Irina

    2017-01-01

    Full Text Available Among the properties of working fluid, viscosity is the most important as it regards especially to pumps. In order to study the behavior of hydrostatic transmission it is important to create a reliable research instrument for dynamic simulation. Our research expertise being in SimHydraulics consequently this instrument is the suitable block diagram. The purpose of this paper is to present the possible ways to customize the properties of the working fluid in the block diagram.

  12. Modelling general relativistic perfect fluids in field theoretic language

    CERN Document Server

    Mitskievich, N V

    1999-01-01

    Skew-symmetric massless fields, their potentials being $r$-forms, are close analogues of Maxwell's field (though the non-linear cases also should be considered). We observe that only two of them ($r=$2 and 3) automatically yield stress-energy tensors characteristic to normal perfect fluids. It is shown that they naturally describe both non-rotating ($r=2$) and rotating (then a combination of $r=2$ and $r=3$ fields is indispensable) general relativistic perfect fluids possessing every type of equations of state. Meanwile, a free $r=3$ field is completely equivalent to appearance of the cosmological term in Einstein's equations. Sound waves represent perturbations propagating on the background of the $r=2$ field. Some exotic properties of these two fields are outlined.

  13. Theoretical models for fluid thermodynamics based on the quasi-Gaussian entropy theory

    NARCIS (Netherlands)

    Amadei, Andrea

    1998-01-01

    Summary The theoretical modeling of fluid thermodynamics is one of the most challenging fields in physical chemistry. In fact the fluid behavior, except at very low density conditions, is still extremely difficult to be modeled from a statistical mechanical point of view, as for any realistic model

  14. State of the Art Review on Theoretical Tribology of Fluid Power Displacement Machines

    DEFF Research Database (Denmark)

    Cerimagic, Remzija; Johansen, Per; Andersen, Torben O.

    2016-01-01

    Over the past 20 years an increasing focus on efficiency and reliability in fluid power displacement machines has provided an incentive to study loss and wear mechanisms. One example is the hydrostatic fluid power transmission systems for wind and wave energy applications. The loss and wear...... mechanisms are mainly attributed to the tribological interfaces in fluid power machines. Consequently, optimization of efficiency and reliability of fluid power machines imply considerations of tribological interface design. The majority of the work done by researchers and engineers on the study of loss...... and wear mechanisms in the lubricating gaps in fluid power machines is confined to simulation models, as experimental treatments of these mechanisms are very difficult. The aim of this paper is a state of the art review on the theoretical work for the design and optimization of fluid power displacement...

  15. Application of Exactly Linearized Error Transport Equations to AIAA CFD Prediction Workshops

    Science.gov (United States)

    Derlaga, Joseph M.; Park, Michael A.; Rallabhandi, Sriram

    2017-01-01

    The computational fluid dynamics (CFD) prediction workshops sponsored by the AIAA have created invaluable opportunities in which to discuss the predictive capabilities of CFD in areas in which it has struggled, e.g., cruise drag, high-lift, and sonic boom pre diction. While there are many factors that contribute to disagreement between simulated and experimental results, such as modeling or discretization error, quantifying the errors contained in a simulation is important for those who make decisions based on the computational results. The linearized error transport equations (ETE) combined with a truncation error estimate is a method to quantify one source of errors. The ETE are implemented with a complex-step method to provide an exact linearization with minimal source code modifications to CFD and multidisciplinary analysis methods. The equivalency of adjoint and linearized ETE functional error correction is demonstrated. Uniformly refined grids from a series of AIAA prediction workshops demonstrate the utility of ETE for multidisciplinary analysis with a connection between estimated discretization error and (resolved or under-resolved) flow features.

  16. Summary and Statistical Analysis of the First AIAA Sonic Boom Prediction Workshop

    Science.gov (United States)

    Park, Michael A.; Morgenstern, John M.

    2014-01-01

    A summary is provided for the First AIAA Sonic Boom Workshop held 11 January 2014 in conjunction with AIAA SciTech 2014. Near-field pressure signatures extracted from computational fluid dynamics solutions are gathered from nineteen participants representing three countries for the two required cases, an axisymmetric body and simple delta wing body. Structured multiblock, unstructured mixed-element, unstructured tetrahedral, overset, and Cartesian cut-cell methods are used by the participants. Participants provided signatures computed on participant generated and solution adapted grids. Signatures are also provided for a series of uniformly refined workshop provided grids. These submissions are propagated to the ground and loudness measures are computed. This allows the grid convergence of a loudness measure and a validation metric (dfference norm between computed and wind tunnel measured near-field signatures) to be studied for the first time. Statistical analysis is also presented for these measures. An optional configuration includes fuselage, wing, tail, flow-through nacelles, and blade sting. This full configuration exhibits more variation in eleven submissions than the sixty submissions provided for each required case. Recommendations are provided for potential improvements to the analysis methods and a possible subsequent workshop.

  17. A Theoretical and Experimental Study for a Developing Flow in a Thin Fluid Gap

    Science.gov (United States)

    Wu, Qianhong; Lang, Ji; Jen, Kei-Peng; Nathan, Rungun; Vucbmss Team

    2016-11-01

    In this paper, we report a novel theoretical and experimental approach to examine a fast developing flow in a thin fluid gap. Although the phenomena are widely observed in industrial applications and biological systems, there is a lack of analytical approach that captures the instantaneous fluid response to a sudden impact. An experimental setup was developed that contains a piston instrumented with a laser displacement sensor and a pressure transducer. A sudden impact was imposed on the piston, creating a fast compaction on the thin fluid gap underneath. The motion of the piston was captured by the laser displacement sensor, and the fluid pressure build-up and relaxation was recorded by the pressure transducer. For this dynamic process, a novel analytical approach was developed. It starts with the inviscid limit when the viscous fluid effect has no time to appear. This short process is followed by a developing flow, in which the inviscid core flow region decreases and the viscous wall region increases until the entire fluid gap is filled with viscous fluid flow. A boundary layer integral method is used during the process. Lastly, the flow is completely viscous dominant featured by a typical squeeze flow in a thin gap. Excellent agreement between the theory and the experiment was achieved. The study presented herein, filling the gap in the literature, will have broad impact in industrial and biomedical applications. This research was supported by the National Science Foundation under Award #1511096.

  18. Theoretical and experimental study of magneto-rheological fluid disc brake

    Directory of Open Access Journals (Sweden)

    E.M. Attia

    2017-06-01

    The fluid is inserted between the rotating and fixed discs and a magnetic field is imposed on the fluid. In this paper, a complete test rig for an MR fluid disc brake is introduced. Experiments are conducted to measure the braking torque and speed of shaft during braking process and the results are presented at different voltage input to the brake. Also theoretical analysis for both MR brake and the mechanical system is developed and is solved numerically using finite difference method and Matlab software. Effect of current input to the MR brake, viscosity of fluid and design parameters is taken into consideration. A validation of the theoretical results with CFD model is introduced. The experimental results are performed and both angular velocity and the braking torque are obtained as responses during the braking process. A comparison between braking torques obtained from theoretical and experimental work shows agreement when voltage is 2 V at speed of 150 rpm and also agreement when voltage is 2 and 3 V at speed of 250 rpm.

  19. Overview and Summary of the Second AIAA High Lift Prediction Workshop

    Science.gov (United States)

    Rumsey, Christopher L.; Slotnick, Jeffrey P.

    2014-01-01

    The second AIAA CFD High-Lift Prediction Workshop was held in San Diego, California, in June 2013. The goals of the workshop continued in the tradition of the first high-lift workshop: to assess the numerical prediction capability of current-generation computational fluid dynamics (CFD) technology for swept, medium/high-aspect-ratio wings in landing/takeoff (high-lift) configurations. This workshop analyzed the flow over the DLR-F11 model in landing configuration at two different Reynolds numbers. Twenty-six participants submitted a total of 48 data sets of CFD results. A variety of grid systems (both structured and unstructured) were used. Trends due to grid density and Reynolds number were analyzed, and effects of support brackets were also included. This paper analyzes the combined results from all workshop participants. Comparisons with experimental data are made. A statistical summary of the CFD results is also included.

  20. Statistical Analysis of CFD Solutions from the Fourth AIAA Drag Prediction Workshop

    Science.gov (United States)

    Morrison, Joseph H.

    2010-01-01

    A graphical framework is used for statistical analysis of the results from an extensive N-version test of a collection of Reynolds-averaged Navier-Stokes computational fluid dynamics codes. The solutions were obtained by code developers and users from the U.S., Europe, Asia, and Russia using a variety of grid systems and turbulence models for the June 2009 4th Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic configuration for this workshop was a new subsonic transport model, the Common Research Model, designed using a modern approach for the wing and included a horizontal tail. The fourth workshop focused on the prediction of both absolute and incremental drag levels for wing-body and wing-body-horizontal tail configurations. This work continues the statistical analysis begun in the earlier workshops and compares the results from the grid convergence study of the most recent workshop with earlier workshops using the statistical framework.

  1. Statistical Analysis of CFD Solutions From the Fifth AIAA Drag Prediction Workshop

    Science.gov (United States)

    Morrison, Joseph H.

    2013-01-01

    A graphical framework is used for statistical analysis of the results from an extensive N-version test of a collection of Reynolds-averaged Navier-Stokes computational fluid dynamics codes. The solutions were obtained by code developers and users from North America, Europe, Asia, and South America using a common grid sequence and multiple turbulence models for the June 2012 fifth Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic configuration for this workshop was the Common Research Model subsonic transport wing-body previously used for the 4th Drag Prediction Workshop. This work continues the statistical analysis begun in the earlier workshops and compares the results from the grid convergence study of the most recent workshop with previous workshops.

  2. Study on Theoretical Modeling of Semi-Active Electro-Rheological Fluid Damper

    Institute of Scientific and Technical Information of China (English)

    饶柱石; 傅志方; 张华良

    2003-01-01

    This paper emphases on analyzing and investigating the mechanical behavior of electro-rheological fluid (ERF) semi-active damper. Theoretical model was developed to describe the relationship between electric field and the resistance force of ERF flowing through two parallel plane electrodes. In the model, the pressure drop along electrodes was supposed to consist of two parts: one related with viscosity and the other related with dynamic yield shear stress. The concept of yield stress in fluence factor was developed inderiving the theoretical formula for calculating the pressure drop in the damper. The influences of some other factors, such as, nonideal Newtonian fluid and temperature have also been taken into account. Numerical and experimental work have been performed to prove the validity of the proposed model. The comparison of both results shows that the developed model is quite effective and practicable.

  3. Theoretical aspects of non-newtonian fluids flow simulation in food technologies

    Directory of Open Access Journals (Sweden)

    E. Biletskii

    2015-05-01

    Full Text Available Introduction. The problems of simulating viscoplastic longitudinal and cross-sectional flow of non-Newtonian fluids are overviewed. Materials and methods. For the first time the superposition method by expressing the components of the stress tensor for building flow fields with higher dimension from flow fields with lower dimension with various boundary conditions when rheological parameters change depending on pressure was used. The flows in the channel are categorized by velocity and pressure values in each point of the section. Results.The theoretical methods for simulating flows of non-Newtonian fluids in channels of different geometry with moving bounds and pressure drop on channel edges with respect to functional connections between main process parameters are described using the superposition method. It is shown that longitudinal and cross-sectional are reduced to the collection of one-dimensional longitudinal flows of the same type which allow to describe three-dimensional isothermal in rectangular channel and two-dimensional flows in flat channels with different channel aspect ratio. The received theoretical two- and three-dimensional model of viscous flows in channels with basic geometry allow to research main regularities of the process and to establish optimal macro-kinetic and macro-dynamic flow characteristics of non-Newtonian materials which are aimed at reducing energy costs and material consumption of food processing equipment. Conclusion.The developed and theoretically reasonable three-dimensional models flows of non-Newtonian fluids in channels allow to perform qualitatively new design of food processing equipment which allows to reduce energy costs and material consumption.

  4. AIAA Educator Academy: Enriching STEM Education for K-12 Students

    Science.gov (United States)

    Slagle, E.; Bering, E. A.; Longmier, B. W.; Henriquez, E.; Milnes, T.; Wiedorn, P.; Bacon, L.

    2012-12-01

    Educator Academy is a K-12 STEM curriculum developed by the STEM K-12 Outreach Committee of the American Institute of Aeronautics and Astronautics (AIAA). Consisting of three independent curriculum modules, K-12 students participate in inquiry-based engineering challenges to improve critical thinking skills and enhance problem solving skills. The Mars Rover Celebration Curriculum Module is designed for students in grades 3-8. Throughout this module, students learn about Mars and the solar system. Working with given design criteria, students work in teams to do basic research about Mars that will determine the operational objectives and structural features of their rover. Then, students participate in the design and construction of a model of a mock-up Mars Rover to carry out a specific science mission on the surface of Mars. At the end of this project, students have the opportunity to participate in a regional capstone event where students share their rover designs and what they have learned. The Electric Cargo Plan Curriculum Module is designed for students in grades 6-12. Throughout this module, students learn about aerodynamics and the four forces of flight. Working individually or in teams, students design and construct an electrically-powered model aircraft to fly a tethered flight of at least one lap without cargo, followed by a second tethered flight of one lap carrying as much cargo as possible. At the end of this project, students have the opportunity to participate in a regional capstone event where students share what they have learned and compete with their different cargo plane designs. The Space Weather Balloon Curriculum Module is designed for students in grades 9-12. Throughout this module, students learn and refine physics concepts as well as experimental research skills. Students participate in project-based learning that is experimental in nature. Students are engaged with the world around them as they collaborate to launch a high altitude

  5. AIAA Educator Academy: The Space Weather Balloon Module

    Science.gov (United States)

    Longmier, B.; Henriquez, E.; Bering, E. A.; Slagle, E.

    2013-12-01

    Educator Academy is a K-12 STEM curriculum developed by the STEM K-12 Outreach Committee of the American Institute of Aeronautics and Astronautics (AIAA). Consisting of three independent curriculum modules, K-12 students participate in inquiry-based science and engineering challenges to improve critical thinking skills and enhance problem solving skills. The Space Weather Balloon Curriculum Module is designed for students in grades 9-12. Throughout this module, students learn and refine physics concepts as well as experimental research skills. Students participate in project-based learning that is experimental in nature. Students are engaged with the world around them as they collaborate to launch a high altitude balloon equipped with HD cameras.The program leaders launch high altitude weather balloons in collaboration with schools and students to teach physics concepts, experimental research skills, and to make space exploration accessible to students. A weather balloon lifts a specially designed payload package that is composed of HD cameras, GPS tracking devices, and other science equipment. The payload is constructed and attached to the balloon by the students with low-cost materials. The balloon and payload are launched with FAA clearance from a site chosen based on wind patterns and predicted landing locations. The balloon ascends over 2 hours to a maximum altitude of 100,000 feet where it bursts and allows the payload to slowly descend using a built-in parachute. The payload is located using the GPS device. In April 2012, the Space Weather Balloon team conducted a prototype field campaign near Fairbanks Alaska, sending several student-built experiments to an altitude of 30km, underneath several strong auroral displays. To better assist teachers in implementing one or more of these Curriculum Modules, teacher workshops are held to give teachers a hands-on look at how this curriculum is used in the classroom. And, to provide further support, teachers are each

  6. Supercritical Fluid Chromatography--Theoretical Background and Applications on Natural Products.

    Science.gov (United States)

    Hartmann, Anja; Ganzera, Markus

    2015-11-01

    The use of supercritical fluid chromatography for natural product analysis as well as underlying theoretical mechanisms and instrumental requirements are summarized in this review. A short introduction focusing on the historical development of this interesting separation technique is followed by remarks on the current instrumental design, also describing possible detection modes and useable stationary phases. The overview on relevant applications is grouped based on their basic intention, may it be (semi)preparative or purely analytical. They indicate that supercritical fluid chromatography is still primarily considered for the analysis of nonpolar analytes like carotenoids, fatty acids, or terpenes. The low polarity of supercritical carbon dioxide, which is used with modifiers almost exclusively as a mobile phase today, combined with high efficiency and fast separations might explain the popularity of supercritical fluid chromatography for the analysis of these compounds. Yet, it has been shown that more polar natural products (e.g., xanthones, flavonoids, alkaloids) are separable too, with the same (if not superior) selectivity and reproducibility than established approaches like HPLC or GC.

  7. Comparison of NTF Experimental Data with CFD Predictions from the Third AIAA CFD Drag Prediction Workshop

    Science.gov (United States)

    Vassberg, John C.; Tinoco, Edward N.; Mani, Mori; Levy, David; Zickuhr, Tom; Mavriplis, Dimitri J.; Wahls, Richard A.; Morrison, Joseph H.; Brodersen, Olaf P.; Eisfeld, Bernhard; Murayama, Mitsuhiro

    2008-01-01

    Recently acquired experimental data for the DLR-F6 wing-body transonic transport con figuration from the National Transonic Facility (NTF) are compared with the database of computational fluid dynamics (CFD) predictions generated for the Third AIAA CFD Drag Prediction Workshop (DPW-III). The NTF data were collected after the DPW-III, which was conducted with blind test cases. These data include both absolute drag levels and increments associated with this wing-body geometry. The baseline DLR-F6 wing-body geometry is also augmented with a side-of-body fairing which eliminates the flow separation in this juncture region. A comparison between computed and experimentally observed sizes of the side-of-body flow-separation bubble is included. The CFD results for the drag polars and separation bubble sizes are computed on grids which represent current engineering best practices for drag predictions. In addition to these data, a more rigorous attempt to predict absolute drag at the design point is provided. Here, a series of three grid densities are utilized to establish an asymptotic trend of computed drag with respect to grid convergence. This trend is then extrapolated to estimate a grid-converged absolute drag level.

  8. Summary of Data from the First AIAA CFD Drag Prediction Workshop

    Science.gov (United States)

    Levy, David W.; Zickuhr, Tom; Vassberg, John; Agrawal, Shreekant; Wahls, Richard A.; Pirzadeh, Shahyar; Hemsch, Michael J.

    2002-01-01

    The results from the first AIAA CFD Drag Prediction Workshop are summarized. The workshop was designed specifically to assess the state-of-the-art of computational fluid dynamics methods for force and moment prediction. An impartial forum was provided to evaluate the effectiveness of existing computer codes and modeling techniques, and to identify areas needing additional research and development. The subject of the study was the DLR-F4 wing-body configuration, which is representative of transport aircraft designed for transonic flight. Specific test cases were required so that valid comparisons could be made. Optional test cases included constant-C(sub L) drag-rise predictions typically used in airplane design by industry. Results are compared to experimental data from three wind tunnel tests. A total of 18 international participants using 14 different codes submitted data to the workshop. No particular grid type or turbulence model was more accurate, when compared to each other, or to wind tunnel data. Most of the results overpredicted C(sub Lo) and C(sub Do), but induced drag (dC(sub D)/dC(sub L)(exp 2)) agreed fairly well. Drag rise at high Mach number was underpredicted, however, especially at high C(sub L). On average, the drag data were fairly accurate, but the scatter was greater than desired. The results show that well-validated Reynolds-Averaged Navier-Stokes CFD methods are sufficiently accurate to make design decisions based on predicted drag.

  9. Theoretical calculation of equilibrium copper (I) isotope fractionations in ore-forming fluid

    Science.gov (United States)

    Seo, J.; Lee, I.; Lee, S.

    2006-05-01

    Equilibrium isotope fractionation of Cu (I) complexes in hydrothermal ore-forming fluid is calculated. Ab-initio quantum calculation of molecular structures and vibrational frequencies is conducted by Density Functional Theory (DFT) and Hartree-Fock Self Consistent Field (HF-SCF) method. Cu isotope (65Cu, 63Cu) exchange is expressed as reduced partition function ratios, 103·ln(β65-63), for liquid phase complexes (copper chlorides, copper hydrosulfides), and vapor phase complexes (hydrated copper chloride). Isodensity Polarizable Continuum Model (IPCM) is applied to the liquid complexes, whereas the vapor complexes are calculated in vacuo. Large fractionation (more than 2‰ at 25°C) is predicted between coexisting phases without changing oxidation state. CuCl(H2O)2 (vapor phase) is enriched in 65Cu better than any other studied complexes, whereas [CuCl3]2- (liquid phase) is mostly depleted. Heavy copper isotope is favor to partition into vapor phase complexes than coexisting liquid phase complexes. In the sea-floor hydrothermal system, after separation of phases into vapor and brine, vapor phase (CuCl(H2O)2) and chlorine-rich brine ([CuCl3]2-) will show +0.418‰ and -0.688‰ deviation from [CuCl2]1- at 150°C, respectively. However, most of the dominant copper-bearing species in hydrothermal condition, [CuCl2]1- and [Cu(HS)2]1-, fractionate at almost the same degree. Possible ranges of copper isotope ratio, δ65Cu, can be constrained from the calculated equilibrium isotope fractionation. Changes of oxidation state in low-temperature (e.g. supergene formation) have been thought to trigger most copper isotope fractionations, so far. However, measurable Cu isotope fractionation (1.106‰ at 150°C and 0.615‰ at 300°C) in hydrothermal ore-forming fluid is predicted within +1 valence state by theoretical study. Molecular structures and vibrational frequencies are compared with measured data. However, there is no experimental or theoretical work of some molecules

  10. Experimental and theoretical constraints on the origin of mid-ocean ridge geothermal fluids

    Energy Technology Data Exchange (ETDEWEB)

    Berndt, M.E.

    1987-01-01

    Hydrothermal experiments were performed using basalt, diabase, and two synthetic plagioclase bearing assemblages and Na-Ca-K-Cl fluids of seawater chlorinity at conditions from 350 to 425/sup 0/C and 250 to 400 bars. Dissolved Ca, Na, SiO/sub 2/, and pH appear to be controlled by equilibrium with plagioclase and epidote. Fluids reacting with diabase at low fluid/rock ratios (0.5-1) remain undersaturated with respect to quartz due to formation of olivine hydration products, whereas fluids reacting with basalt become supersaturated with respect to quartz due to breakdown of fractionated glass and formation of amphibole. High SiO/sub 2/ activities during basalt alteration, leads to high Ca and base metal concentrations and low pH compared to diabase alteration at the same conditions. Dissolved Li, K, Rb, and Ba concentrations reach higher levels during basalt alteration than during diabase alteration. Since these elements avoid incorporation into crystalline phases during solidification of magmas they are concentrated in the glass which is easily altered by fluids and explains their increased mobility during basalt alteration. Na-Ca-pH-SiO/sub 2/ relationships in vent fluids can be used to constrain reaction zone conditions assuming the fluids are equilibrated with plagioclase and epidote. The temperatures predicted by such models are higher than measured vent fluid temperatures. Dissolved Sr/Ca ratios for ridge crest fluids are similar to those produced during diabase alteration and higher than those produced during basalt alteration. This observation supports deep-seated reaction of the hydrothermal fluids with diabase dikes and/or gabbro for vent fluid origin. Only 4% of the Sr initially present in basalt is mobilized during hydrothermal alteration even after 800 hours of reaction.

  11. Boundary conditions at the cartilage-synovial fluid interface for joint lubrication and theoretical verifications.

    Science.gov (United States)

    Hou, J S; Holmes, M H; Lai, W M; Mow, V C

    1989-02-01

    The objective of this study is to establish and verify the set of boundary conditions at the interface between a biphasic mixture (articular cartilage) and a Newtonian or non-Newtonian fluid (synovial fluid) such that a set of well-posed mathematical problems may be formulated to investigate joint lubrication problems. A "pseudo-no-slip" kinematic boundary condition is proposed based upon the principle that the conditions at the interface between mixtures or mixtures and fluids must reduce to those boundary conditions in single phase continuum mechanics. From this proposed kinematic boundary condition, and balances of mass, momentum and energy, the boundary conditions at the interface between a biphasic mixture and a Newtonian or non-Newtonian fluid are mathematically derived. Based upon these general results, the appropriate boundary conditions needed in modeling the cartilage-synovial fluid-cartilage lubrication problem are deduced. For two simple cases where a Newtonian viscous fluid is forced to flow (with imposed Couette or Poiseuille flow conditions) over a porous-permeable biphasic material of relatively low permeability, the well known empirical Taylor slip condition may be derived using matched asymptotic analysis of the boundary layer at the interface.

  12. A Content Analysis of AIAA/ITEA/ITEEA Conference Special Interest Sessions: 1978-2014

    Science.gov (United States)

    Reed, Philip A.; LaPorte, James E.

    2015-01-01

    Associations routinely hold annual conferences to aid with professional development and actively promote the ideals of their membership and the profession they represent. The American Industrial Arts Association (AIAA) was created in 1939 and has held an annual conference the past 76 years to further these goals (Starkweather, 1995). Throughout…

  13. AIAA Employment Workshops (September 1, 1970-December 31, 1971). Volume 1, Final Report.

    Science.gov (United States)

    American Inst. of Aeronautics and Astronautics, New York, NY.

    In response to growing unemployment among professional personnel in the aerospace industry, a series of 175 workshops were conducted by the American Institute of Aeronautics and Astronautics (AIAA) in 43 cities. Nearly 15,000 unemployed engineers and scientists attended the workshops and reviewed job counseling and placement services from…

  14. AIAA Employment Workshops (September 1, 1970-December 31, 1971). Volume III, Workshop Handbook.

    Science.gov (United States)

    American Inst. of Aeronautics and Astronautics, New York, NY.

    In response to growing unemployment among professional personnel in the aerospace industry, a series of 175 workshops were conducted by the American Institute of Aeronautics and Astronautics (AIAA) in 43 cities. Nearly 15,000 unemployed engineers and scientists attended the workshops and reviewed job counseling and placement services from…

  15. Theoretical Treatment of the Thermophysical Properties of Fluids Containing Chain-like Molecules

    Energy Technology Data Exchange (ETDEWEB)

    Carol K. Hall

    2008-11-14

    This research program was designed to enhance our understanding of the behavior of fluids and fluid mixtures containing chain-like molecules. The original objective was to explain and predict the experimentally observed thermophysical properties, including phase equilibria and dynamics, of systems containing long flexible molecules ranging in length from alkanes to polymers. Over the years the objectives were expanded to include the treatment of molecules that were not chain-like. Molecular dynamics and Monte Carlo computer simulations were used to investigate how variations in molecular size, shape and architecture influence the types of phase equilibria, thermodynamic properties, structure and surface interactions that are observed experimentally. The molecular insights and theories resulting from this program could eventually serve as the foundation upon which to build correlations of the properties of fluids that are both directly and indirectly related to the Nation’s energy resources including: petroleum, natural gas, and polymer solutions, melts, blends, and materials.

  16. Organization's Orderly Interest Exploration: Inception, Development and Insights of AIAA's Topics Database

    Science.gov (United States)

    Marshall, Jospeh R.; Morris, Allan T.

    2007-01-01

    Since 2003, AIAA's Computer Systems and Software Systems Technical Committees (TCs) have developed a database that aids technical committee management to map technical topics to their members. This Topics/Interest (T/I) database grew out of a collection of charts and spreadsheets maintained by the TCs. Since its inception, the tool has evolved into a multi-dimensional database whose dimensions include the importance, interest and expertise of TC members and whether or not a member and/or a TC is actively involved with the topic. In 2005, the database was expanded to include the TCs in AIAA s Information Systems Group and then expanded further to include all AIAA TCs. It was field tested at an AIAA Technical Activities Committee (TAC) Workshop in early 2006 through live access by over 80 users. Through the use of the topics database, TC and program committee (PC) members can accomplish relevant tasks such as: to identify topic experts (for Aerospace America articles or external contacts), to determine the interest of its members, to identify overlapping topics between diverse TCs and PCs, to guide new member drives and to reveal emerging topics. This paper will describe the origins, inception, initial development, field test and current version of the tool as well as elucidate the benefits and insights gained by using the database to aid the management of various TC functions. Suggestions will be provided to guide future development of the database for the purpose of providing dynamics and system level benefits to AIAA that currently do not exist in any technical organization.

  17. Theoretical signposts for tracing spirituality within the fluid decision-making of a mobile virtual reality

    Directory of Open Access Journals (Sweden)

    Jan-Albert van den Berg

    2012-02-01

    Full Text Available In the context of the interconnected world of the information age, and demarcated by a virtual existence through the use of the Internet, decision-making has become even more dynamic. In an evolving era of virtuality, with special emphasis on the increasing role of mobile communication technology, it is indicated that decision-making has become fluid. As part of the phenomenon of fluid decision-making, not only is the evolutionary character of virtual connectivity acknowledged, but the ever-increasing and important role of mobile platforms is also emphasised. In a hermeneutical practical theology of lived spirituality, focusing on the praxis of everyday living, the possible role of spirituality in informing the fluid decision-making processes in a mobile virtual world was traced. A qualitatively inspired analysis, using data collected from various virtual forums, was proposed. In the description of these contours, special emphasis was placed on narrative-inspired biographical accents. The research made a contribution in terms of possible new articulations of the language of faith as embodied in fluid decision-making in a mobile virtual reality.

  18. Theoretical and Experimental Investigation of Flexural Wave Propagating in a Periodic Pipe with Fluid-Filled Loading

    Institute of Scientific and Technical Information of China (English)

    WEN Ji-Hong; SHEN Hui-Jie; YU Dian-Long; WEN Xi-Sen

    2010-01-01

    @@ Based on the Bragg scattering mechanism of phononic crystals(PCs),a periodic composite material pipe with fluid loading is designed and studied.The band structure of the flexural wave in the periodic pipe is calculated with the transfer matrix(TM)method.A periodic piping experimental system is designed,and the vibration experiment is performed to validate the attenuation ability of the periodic pipe structure.Finally,a finiteelement pipe model is constructed using the MSC-Actran software,and the calculated results match well with the vibration experiment.The errors between the theoretical calculation results and the vibration experimental results are analyzed.

  19. Theoretical Investigation of Uniform and Non-uniform Penetrable Sphere Fluid

    Institute of Scientific and Technical Information of China (English)

    ZHOU Shi-Qi

    2006-01-01

    A bridge function approximation is proposed for a single-component fluid consisting of penetrable sphere interacting via a potential that remains finite and constant for center-center distance smaller than the particle diameter and is zero otherwise. The radial distribution function from the Ornstein-Zernike integral equation combined with the present bridge function approximation is in satisfactory agreement with the corresponding simulation data for all of the investigated state points. The presently calculated excess Helmholtz free energy respectively based on virial route and compressibility route is highly self-consistent, and is in very good agreement with simulational results for the case of low temperatures. The present bridge function approximation, combined with the bridge density functional approximation,can reproduce very accurately density profiles of the penetrable sphere fluid confined in a hard spherical cavity for all the cases where simulational results are available.

  20. Theoretical study of ejector refrigeration system with working fluid R410a

    Directory of Open Access Journals (Sweden)

    Sandeep Kashyap

    2011-08-01

    Full Text Available In this paper, simulation program is developed on based of one dimensional mathematical modal to analysis the performance ejector refrigeration cycle with working fluid R410a and also compared with performance of R134a. A performance comparison is made on various operating condition and ejector geometry. The result shows that performance of R134a is better than R410a for area ratio 5.64 and 7.84.

  1. Theoretical study of ejector refrigeration system with working fluid R410a

    OpenAIRE

    Sandeep Kashyap; R.C. Gupta

    2011-01-01

    In this paper, simulation program is developed on based of one dimensional mathematical modal to analysis the performance ejector refrigeration cycle with working fluid R410a and also compared with performance of R134a. A performance comparison is made on various operating condition and ejector geometry. The result shows that performance of R134a is better than R410a for area ratio 5.64 and 7.84.

  2. A THEORETICAL AND NUMERICAL STUDY FOR THE ROD-LIKE MODEL OF A POLYMERIC FLUID

    Institute of Scientific and Technical Information of China (English)

    Hui Zhang; Ping-wen Zhang

    2004-01-01

    The first part of this paper is concerned with the well-posedness for the rigid rod-like model in shear flow of a polymeric fluid. The constitutive relations considered in this work are motivated by the kinetic theory. The stress tensor is given by an integral which involves the solution of the Fokker-Planck equation. A novel numerical scheme for the FokkerPlanck equation is proposed, which preserves the positivity of the distribution function.Another part of this work establishes the convergence theory of the fully discretized schemes for a simple micro-macro simulation of a polymeric flow.

  3. Left ventricular fluid mechanics: the long way from theoretical models to clinical applications.

    Science.gov (United States)

    Pedrizzetti, Gianni; Domenichini, Federico

    2015-01-01

    The flow inside the left ventricle is characterized by the formation of vortices that smoothly accompany blood from the mitral inlet to the aortic outlet. Computational fluid dynamics permitted to shed some light on the fundamental processes involved with vortex motion. More recently, patient-specific numerical simulations are becoming an increasingly feasible tool that can be integrated with the developing imaging technologies. The existing computational methods are reviewed in the perspective of their potential role as a novel aid for advanced clinical analysis. The current results obtained by simulation methods either alone or in combination with medical imaging are summarized. Open problems are highlighted and perspective clinical applications are discussed.

  4. Statistical Analysis of CFD Solutions from the 6th AIAA CFD Drag Prediction Workshop

    Science.gov (United States)

    Derlaga, Joseph M.; Morrison, Joseph H.

    2017-01-01

    A graphical framework is used for statistical analysis of the results from an extensive N- version test of a collection of Reynolds-averaged Navier-Stokes computational uid dynam- ics codes. The solutions were obtained by code developers and users from North America, Europe, Asia, and South America using both common and custom grid sequencees as well as multiple turbulence models for the June 2016 6th AIAA CFD Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic con guration for this workshop was the Common Research Model subsonic transport wing- body previously used for both the 4th and 5th Drag Prediction Workshops. This work continues the statistical analysis begun in the earlier workshops and compares the results from the grid convergence study of the most recent workshop with previous workshops.

  5. Theoretical and experimental investigation of fluid rheology effects on modulated ultrasound propagation.

    Science.gov (United States)

    Özkök, Okan; Uludag, Yusuf

    2014-09-01

    A mathematical model is developed and presented to capture the effect of viscoelastic nature of a material on modulated ultrasound (US) pulses. The model is established by considering perturbation of material elements subject to modulated US pulses and by introducing the exponential relaxation of the perturbed fluid elements with a spectrum of time constants. Both the model and experimental findings revealed that consecutive perturbation of a material via the modulated US pulses enabled to probe the relaxation times of similar order of magnitudes to the frequency of the US modulation while filtering out the impact of other relaxation times on the US measurement. The US experimental results were verified by those of a conventional rheometer. Hence carrying out measurements at different US modulation frequencies in the Hz ranges seems to allow one to obtain the relaxation time spectrum of the investigated material in the time scales of milliseconds to seconds. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Highly deformable and highly fluid vesicles as potential drug delivery systems: theoretical and practical considerations

    Directory of Open Access Journals (Sweden)

    Romero EL

    2013-08-01

    Full Text Available Eder Lilia Romero, Maria Jose Morilla Nanomedicine Research Program, Department of Science and Technology, National University of Quilmes, Bernal, Buenos Aires, Argentina Abstract: Vesicles that are specifically designed to overcome the stratum corneum barrier in intact skin provide an efficient transdermal (systemic or local drug delivery system. They can be classified into two main groups according to the mechanisms underlying their skin interaction. The first group comprises those possessing highly deformable bilayers, achieved by incorporating edge activators to the bilayers or by mixing with certain hydrophilic solutes. The vesicles of this group act as drug carriers that penetrate across hydrophilic pathways of the intact skin. The second group comprises those possessing highly fluid bilayers, owing to the presence of permeation enhancers. The vesicles of this group can act as carriers of drugs that permeate the skin after the barrier of the stratum corneum is altered because of synergistic action with the permeation enhancers contained in the vesicle structure. We have included a detailed overview of the different mechanisms of skin interaction and discussed the most promising preclinical applications of the last five years of Transfersomes® (IDEA AG, Munich, Germany, ethosomes, and invasomes as carriers of antitumoral and anti-inflammatory drugs applied by the topical route. Keywords: Transfersomes, ethosomes, antitumoral, anti-inflammatory, topical delivery

  7. Highly deformable and highly fluid vesicles as potential drug delivery systems: theoretical and practical considerations

    Science.gov (United States)

    Romero, Eder Lilia; Morilla, Maria Jose

    2013-01-01

    Vesicles that are specifically designed to overcome the stratum corneum barrier in intact skin provide an efficient transdermal (systemic or local) drug delivery system. They can be classified into two main groups according to the mechanisms underlying their skin interaction. The first group comprises those possessing highly deformable bilayers, achieved by incorporating edge activators to the bilayers or by mixing with certain hydrophilic solutes. The vesicles of this group act as drug carriers that penetrate across hydrophilic pathways of the intact skin. The second group comprises those possessing highly fluid bilayers, owing to the presence of permeation enhancers. The vesicles of this group can act as carriers of drugs that permeate the skin after the barrier of the stratum corneum is altered because of synergistic action with the permeation enhancers contained in the vesicle structure. We have included a detailed overview of the different mechanisms of skin interaction and discussed the most promising preclinical applications of the last five years of Transfersomes® (IDEA AG, Munich, Germany), ethosomes, and invasomes as carriers of antitumoral and anti-inflammatory drugs applied by the topical route. PMID:23986634

  8. A theoretical model of a wake of a body towed in a stratified fluid at large Reynolds and Froude numbers

    Directory of Open Access Journals (Sweden)

    Y. I. Troitskaya

    2006-01-01

    Full Text Available The objective of the present paper is to develop a theoretical model describing the evolution of a turbulent wake behind a towed sphere in a stably stratified fluid at large Froude and Reynolds numbers. The wake flow is considered as a quasi two-dimensional (2-D turbulent jet flow whose dynamics is governed by the momentum transfer from the mean flow to a quasi-2-D sinuous mode growing due to hydrodynamic instability. The model employs a quasi-linear approximation to describe this momentum transfer. The model scaling coefficients are defined with the use of available experimental data, and the performance of the model is verified by comparison with the results of a direct numerical simulation of a 2-D turbulent jet flow. The model prediction for the temporal development of the wake axis mean velocity is found to be in good agreement with the experimental data obtained by Spedding (1997.

  9. Gravity-Driven Flow of non-Newtonian Fluids in Heterogeneous Porous Media: a Theoretical and Experimental Analysis

    Science.gov (United States)

    Di Federico, V.; Longo, S.; Ciriello, V.; Chiapponi, L.

    2015-12-01

    A theoretical and experimental analysis of non-Newtonian gravity-driven flow in porous media with spatially variable properties is presented. The motivation for our study is the rheological complexity exhibited by several environmental contaminants (wastewater sludge, oil pollutants, waste produced by the minerals and coal industries) and remediation agents (suspensions employed to enhance the efficiency of in-situ remediation). Natural porous media are inherently heterogeneous, and this heterogeneity influences the extent and shape of the porous domain invaded by the contaminant or remediation agent. To grasp the combined effect of rheology and spatial heterogeneity, we consider: a) the release of a thin current of non-Newtonian power-law fluid into a 2-D, semi-infinite and saturated porous medium above a horizontal bed; b) perfectly stratified media, with permeability and porosity varying along the direction transverse (vertical) or parallel (horizontal) to the flow direction. This continuous variation of spatial properties is described by two additional parameters. In order to represent several possible spreading scenarios, we consider: i) instantaneous injection with constant mass; ii) continuous injection with time-variable mass; iii) instantaneous release of a mound of fluid, which can drain freely out of the formation at the origin (dipole flow). Under these assumptions, scalings for current length and thickness are derived in self similar form. An analysis of the conditions on model parameters required to avoid an unphysical or asymptotically invalid result is presented. Theoretical results are validated against multiple sets of experiments, conducted for different combinations of spreading scenarios and types of stratification. Two basic setups are employed for the experiments: I) direct flow simulation in an artificial porous medium constructed superimposing layers of glass beads of different diameter; II) a Hele-Shaw (HS) analogue made of two parallel

  10. Theoretical description of the photopyroelectric technique in the slanted detector configuration for thermal diffusivity measurements in fluids

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Trigos, J.B., E-mail: rjosebruno@yahoo.com.mx [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaría 694, Colonia Irrigación, C.P. 11500 México D. F. (Mexico); Marín, E. [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaría 694, Colonia Irrigación, C.P. 11500 México D. F. (Mexico); Mansanares, A.M. [Instituto de Física Gleb Wataghin, Universidade Estadual de Campinas, UNICAMP, 13083-859 Campinas, SP (Brazil); Cedeño, E.; Juárez-Gracia, G.; Calderón, A. [Instituto Politécnico Nacional, Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Legaría 694, Colonia Irrigación, C.P. 11500 México D. F. (Mexico)

    2014-04-01

    Highlights: • A model for photopyroelectric thermal characterization of fluids is presented. • A slanted detector configuration is considered with a finite measurement cell. • The mean temperature distribution in the photopyroelectric detector, as function of the beam spot position, is calculated. • The influence of the excitation beam spot size, the thermal diffusion length and size of the sample is discussed. • The high lateral resolution of the method observed in experiments is explain. - Abstract: This work presents an extended description about the theoretical aspects related to the generation of the photopyroelectric signal in a recently proposed wedge-like heat transmission detection configuration, which recreates the well-known Angstrom method (widely used for solid samples) for accurate thermal diffusivity measurement in gases and liquids. The presented model allows for the calculation of the temperature profile detected by the pyroelectric sensor as a function of the excitation beam position, and the study of the influence on it of several parameters, such as spot size, thermal properties of the absorber layer, and geometrical parameters of the measurement cell. Through computer simulations, it has been demonstrated that a narrow temperature distribution is created at the sensor surface, independently of the lateral diffusion of heat taking place at the sample's surface.

  11. Experimental and theoretical study of fluid-structure interactions in plunging hydrofoils and gravity-driven falling plates

    Science.gov (United States)

    Tian, Ruijun

    Two typical unsteady fluid-structure interaction problems have been investigated in the present study. One of them was about actively plunged flexible hydrofoil; the other was about gravity-driven falling plates in water. Real-time velocity field and dynamic response on the moving objects were measured to study these unsteady and highly nonlinear problems. For a long time, scientists have believed that bird and insect flight benefits greatly from the flexibility and morphing facility of their wings via flapping motion. A significant advantage flexible wing models have over quasi-steady rigid wing models is a much higher lift generation capability. Both experimental and computational studies have shown that the leading and trailing edge vortexes (LEV and TEV) play a major role in the efficient generation of such unconventionally high lift force. In this study, two NACA0012 miniature hydrofoils, one flexible and the other rigid, were actively plunged at various frequencies in a viscous glycerol-water solution to study the influence of flexibility. Two-dimensional, phase-locked particle image velocimetry (PIV) measurements were conducted to investigate the temporal and spacial development of LEVs and TEVs. Simultaneous measurements of lift and thrust forces were recorded to reveal the relationship between hydrodynamic force and the evolution of the surrounding flow field. Results from the flexible hydrofoil were compared to those from the rigid one in order to quantitatively analyze the effects of flexibility. The second problem focused on fluid-structure interaction of gravity driven falling plates. Falling leaves and paper cards in air has drawn plenty of research interest in the past decades to investigate the interaction between the fluid flow and the falling object. In this research, time-resolved PIV were employed to experimentally visualize the flow field evolution around the gravity-driven falling plates. The plates were made of different materials with

  12. Theoretical and Experimental Investigations of Identifying the Ingredients of an Oil-Water Mixture Based on a Characteristic Fluid Inverse Problem

    Science.gov (United States)

    Zhang, Ji; Yuan, Han; Zhao, Jian; Mei, Ning

    2016-12-01

    To identify the ingredients of an oil-water mixture in petroleum production or petrochemicals process, a method based on a characteristic liquid inverse problem was developed by clarifying its real viscosity and thermal conductivity. A heat transfer and fluid flow model for an oil-water mixture was established for tube flow in this paper. By means of the measured temperature distribution in the tube, the thermal physical properties of the oil-water mixture can be obtained by the governing equations in the model according to their characteristics as a Newtonian or non-Newtonian fluid. The fluid characteristic can be deduced by the rheological properties of the oil-water mixture. Both the Newtonian fluid and non-Newtonian fluid governing equations were established to determine the mixture components. Experiments were also conducted to verify the numerical solutions for the ingredients of the oil-water mixture. The comparison between theoretical solutions and experimental results shows that the maximum error based on the suitable fluid model is 3.11 %, which demonstrated the feasibility of the proposed method for estimating the ingredients of an oil-water mixture.

  13. Summary of the First AIAA CFD High Lift Prediction Workshop (invited)

    Science.gov (United States)

    Rumsey, C. L.; Long, M.; Stuever, R. A.; Wayman, T. R.

    2011-01-01

    The 1st AIAA CFD High Lift Prediction Workshop was held in Chicago in June 2010. The goals of the workshop included an assessment of the numerical prediction capability of current-generation CFD technology/ codes for swept, medium/high-aspect ratio wings in landing/take-off (high lift) configurations. 21 participants from 8 countries and 18 organizations, submitted a total of 39 datasets of CFD results. A variety of grid systems (both structured and unstructured) were used. Trends due to flap angle were analyzed, and effects of grid family, grid density, solver, and turbulence model were addressed. Some participants also assessed the effects of support brackets used to attach the flap and slat to the main wing. This invited paper describes the combined results from all workshop participants. Comparisons with experimental data are made. A statistical summary of the CFD results is also included.

  14. Dynamic bulk and shear moduli due to grain-scale local fluid flow in fluid-saturated cracked poroelastic rocks: Theoretical model

    Science.gov (United States)

    Song, Yongjia; Hu, Hengshan; Rudnicki, John W.

    2016-07-01

    Grain-scale local fluid flow is an important loss mechanism for attenuating waves in cracked fluid-saturated poroelastic rocks. In this study, a dynamic elastic modulus model is developed to quantify local flow effect on wave attenuation and velocity dispersion in porous isotropic rocks. The Eshelby transform technique, inclusion-based effective medium model (the Mori-Tanaka scheme), fluid dynamics and mass conservation principle are combined to analyze pore-fluid pressure relaxation and its influences on overall elastic properties. The derivation gives fully analytic, frequency-dependent effective bulk and shear moduli of a fluid-saturated porous rock. It is shown that the derived bulk and shear moduli rigorously satisfy the Biot-Gassmann relationship of poroelasticity in the low-frequency limit, while they are consistent with isolated-pore effective medium theory in the high-frequency limit. In particular, a simplified model is proposed to quantify the squirt-flow dispersion for frequencies lower than stiff-pore relaxation frequency. The main advantage of the proposed model over previous models is its ability to predict the dispersion due to squirt flow between pores and cracks with distributed aspect ratio instead of flow in a simply conceptual double-porosity structure. Independent input parameters include pore aspect ratio distribution, fluid bulk modulus and viscosity, and bulk and shear moduli of the solid grain. Physical assumptions made in this model include (1) pores are inter-connected and (2) crack thickness is smaller than the viscous skin depth. This study is restricted to linear elastic, well-consolidated granular rocks.

  15. Theoretical and Computational Studies of Stability, Transition and Flow Control in High-Speed Flows

    Science.gov (United States)

    2011-02-22

    layers. AIAA J., 47:1057–1068, 2009. [Bat03] G. K. Batchelor . An introduction to fluid dynamics . Cambridge University Press, 2003. [Ber91] F. P. Bertolotti...identified reveals the pervasive importance of several basic fluid dynamic phenomena. One of these, and possibly the least understood, is that of high...Introduction The progress being made in computational fluid dynamics provides an opportunity for reli- able simulations of such complex phenomena as laminar

  16. Theoretical constraints of physical and chemical properties of hydrothermal fluids on variations in chemolithotrophic microbial communities in seafloor hydrothermal systems

    Science.gov (United States)

    Nakamura, Kentaro; Takai, Ken

    2014-12-01

    In the past few decades, chemosynthetic ecosystems at deep-sea hydrothermal vents have received attention as plausible analogues to the early ecosystems of Earth, as well as to extraterrestrial ecosystems. These ecosystems are sustained by chemical energy obtained from inorganic redox substances (e.g., H2S, CO2, H2, CH4, and O2) in hydrothermal fluids and ambient seawater. The chemical and isotope compositions of the hydrothermal fluid are, in turn, controlled by subseafloor physical and chemical processes, including fluid-rock interactions, phase separation and partitioning of fluids, and precipitation of minerals. We hypothesized that specific physicochemical principles describe the linkages among the living ecosystems, hydrothermal fluids, and geological background in deep-sea hydrothermal systems. We estimated the metabolic energy potentially available for productivity by chemolithotrophic microorganisms at various hydrothermal vent fields. We used a geochemical model based on hydrothermal fluid chemistry data compiled from 89 globally distributed hydrothermal vent sites. The model estimates were compared to the observed variability in extant microbial communities in seafloor hydrothermal environments. Our calculations clearly show that representative chemolithotrophic metabolisms (e.g., thiotrophic, hydrogenotrophic, and methanotrophic) respond differently to geological and geochemical variations in the hydrothermal systems. Nearly all of the deep-sea hydrothermal systems provide abundant energy for organisms with aerobic thiotrophic metabolisms; observed variations in the H2S concentrations among the hydrothermal fluids had little effect on the energetics of thiotrophic metabolism. Thus, these organisms form the base of the chemosynthetic microbial community in global deep-sea hydrothermal environments. In contrast, variations in H2 concentrations in hydrothermal fluids significantly impact organisms with aerobic and anaerobic hydrogenotrophic metabolisms

  17. Geochemical Controls on the Mobility of Cu and Fe in Hydrothermal Vent Fluids at Mid-Ocean Ridges: Experimental and Theoretical Constraints

    Science.gov (United States)

    Schaen, A. T.; Tutolo, B. M.; Seyfried, W. E.

    2012-12-01

    It has long been recognized that MOR hydrothermal vent fluids are characterized by variably high concentrations of dissolved transition metals. These metalliferous fluids play a role in the formation of seafloor massive sulfide deposits, serving as analogues for similar deposits on land, while also contributing to the flux of metals to seawater, with biogeochemical implications. Owing to the evolution of magmatic and tectonic processes associated with crustal formation at both fast and slow spreading ridges, chemical and physical conditions can change in space and time with corresponding changes in the solubility of Cu and Fe. Indeed, time series observations of hydrothermal vent fluids at EPR 9o N have provided unambiguous evidence of both diking and eruptive events with important implications for temperature and pressure changes affecting phase equilibria controls on mineral solubility. At the same time, recent advances in theoretical data have resulted in more robust thermodynamic models that can be used to calculate the effect of temperature and pressure, redox variability and dissolved chloride on metal mobility. However, fluid speciation calculations employing currently accepted Helgeson-Kirkham-Flowers (HKF) parameters for aqueous species result in Cu and Fe solubilities that differ significantly from constraints imposed by published experimental data and sampled MOR vent fluids. Consequently, new thermodynamic data is retrieved in this study from recent high P, T experimental data for Cu and Fe complexes and validated against new experiments to ensure accurate fluid speciation and trace metal solubility calculations. The addition of new experimental data to the thermodynamic data retrieval process strengthens predictions of geochemical interactions not only at the P and T of the experiments, but also over the entire range of applicability of the HKF model. For example, theoretical modeling of seawater salinity fluids (550 mmol/kg Cl) at 400 oC show

  18. Theoretical Investigation on Internal Leakage and Its Effect on the Efficiency of Fluid Switcher-Energy Recovery Device for Reverse Osmosis Desalting Plant

    Institute of Scientific and Technical Information of China (English)

    乞炳蔚; 王越; 王照成; 张燕平; 徐世昌; 王世昌

    2013-01-01

    This work is focused on the theoretical investigation of internal leakage of a newly developed pi-lot-scale fluid switcher-energy recovery device (FS-ERD) for reverse osmosis (RO) system. For the purpose of in-creasing FS-ERD efficiency and reducing the operating cost of RO, it is required to control the internal leakage in a low level. In this work, the internal leakage rates at different leakage gaps and retentate brine pressures are investi-gated by computational fluid dynamics (CFD) method and validating experiments. It is found that the internal leak-age has a linear relationship with the retentate brine pressure and a polynomial relationship with the scale of leakage gap. The results of the present work imply that low internal leakage and high retentate brine pressure bring benefits to achieve high FS-ERD efficiency.

  19. Wind-US Code Contributions to the First AIAA Shock Boundary Layer Interaction Prediction Workshop

    Science.gov (United States)

    Georgiadis, Nicholas J.; Vyas, Manan A.; Yoder, Dennis A.

    2013-01-01

    This report discusses the computations of a set of shock wave/turbulent boundary layer interaction (SWTBLI) test cases using the Wind-US code, as part of the 2010 American Institute of Aeronautics and Astronautics (AIAA) shock/boundary layer interaction workshop. The experiments involve supersonic flows in wind tunnels with a shock generator that directs an oblique shock wave toward the boundary layer along one of the walls of the wind tunnel. The Wind-US calculations utilized structured grid computations performed in Reynolds-averaged Navier-Stokes mode. Four turbulence models were investigated: the Spalart-Allmaras one-equation model, the Menter Baseline and Shear Stress Transport k-omega two-equation models, and an explicit algebraic stress k-omega formulation. Effects of grid resolution and upwinding scheme were also considered. The results from the CFD calculations are compared to particle image velocimetry (PIV) data from the experiments. As expected, turbulence model effects dominated the accuracy of the solutions with upwinding scheme selection indicating minimal effects.

  20. Observations on CFD Verification and Validation from the AIAA Drag Prediction Workshops

    Science.gov (United States)

    Morrison, Joseph H.; Kleb, Bil; Vassberg, John C.

    2014-01-01

    The authors provide observations from the AIAA Drag Prediction Workshops that have spanned over a decade and from a recent validation experiment at NASA Langley. These workshops provide an assessment of the predictive capability of forces and moments, focused on drag, for transonic transports. It is very difficult to manage the consistency of results in a workshop setting to perform verification and validation at the scientific level, but it may be sufficient to assess it at the level of practice. Observations thus far: 1) due to simplifications in the workshop test cases, wind tunnel data are not necessarily the “correct” results that CFD should match, 2) an average of core CFD data are not necessarily a better estimate of the true solution as it is merely an average of other solutions and has many coupled sources of variation, 3) outlier solutions should be investigated and understood, and 4) the DPW series does not have the systematic build up and definition on both the computational and experimental side that is required for detailed verification and validation. Several observations regarding the importance of the grid, effects of physical modeling, benefits of open forums, and guidance for validation experiments are discussed. The increased variation in results when predicting regions of flow separation and increased variation due to interaction effects, e.g., fuselage and horizontal tail, point out the need for validation data sets for these important flow phenomena. Experiences with a recent validation experiment at NASA Langley are included to provide guidance on validation experiments.

  1. 美国AIAA代表团访华%AIAA Delegation Visits China

    Institute of Scientific and Technical Information of China (English)

    张瑶

    2010-01-01

    @@ 2010年10月25日至29日,应中国宇航学会的邀请,美国航空航天学会(AIAA)贸易代表团一行11人对中国进行了访问.代表团团长为美国国家航天研究院院长、AIAA董事会副主席罗伯特·林德伯格.代表团成员包括来自轨道科学公司、波音公司、美国空间公司、联合发射联盟、洛克达因公司和约翰霍普金斯大学等美国知名航天企业和研究机构的高层管理人员.这些企业和机构均为AIAA会员单位.

  2. Experimental and theoretical analysis of nanofluids based on high temperature-heat transfer fluid with enhanced thermal properties

    Science.gov (United States)

    Navas, Javier; Sánchez-Coronilla, Antonio; Martín, Elisa I.; Gómez-Villarejo, Roberto; Teruel, Miriam; Gallardo, Juan Jesús; Aguilar, Teresa; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; Martín-Calleja, Joaquín

    2017-04-01

    In this work, nanofluids were prepared using commercial Cu nanoparticles and a commercial high temperature-heat transfer Fluid (eutectic mixture of diphenyl oxide and biphenyl) as the base fluid, which is used in concentrating solar power (CSP) plants. Different properties such as density, viscosity, heat capacity and thermal conductivity were characterized. Nanofluids showed enhanced heat transfer efficiency. In detail, the incorporation of Cu nanoparticles led to an increase of the heat capacity up to 14%. Also, thermal conductivity was increased up to 13%. Finally, the performance of the nanofluids prepared increased up to 11% according to the Dittus-Boelter correlation. On the other hand, equilibrium molecular dynamics simulation was used to model the experimental nanofluid system studied. Thermodynamic properties such as heat capacity and thermal conductivity were calculated and the results were compared with experimental data. The analysis of the radial function distributions (RDFs) and the inspection of the spatial distribution functions (SDFs) indicate the important role that plays the metal-oxygen interaction in the system. Dynamic properties such as the diffusion coefficients of base fluid and nanofluid were computed according to Einstein relation by computing the mean square displacement (MSD). Supplementary online material is available in electronic form at http://www.epjap.org

  3. Theoretical analysis of the velocity field, stress field and vortex sheet of generalized second order fluid withfractional anomalous diffusion

    Institute of Scientific and Technical Information of China (English)

    徐明瑜; 谭文长

    2001-01-01

    The velocity field of generalized second order fluid with fractional anomalous diffusion caused by a plate moving impulsively in its own plane is investigated and the anomalous diffusion problems of the stress field and vortex sheet caused by this process are studied. Many previous and classical results can be considered as particular cases of this paper, such as the solutions of the fractional diffusion equations obtained by Wyss; the classical Rayleigh' s time-space similarity solution; the relationship between stress field and velocity field obtained by Bagley and co-worker and Podlubny' s results on the fractional motion equation of a plate. In addition, a lot of significant results also are obtained. For example, the necessary condition for causing the vortex sheet is that the time fractional diffusion index β must be greater than that of generalized second order fluid α; the establishment of the vorticity distribution function depends on the time history of the velocity profile at a given point, and the time history can be described by the fractional calculus.

  4. Summary of Data from the Fifth AIAA CFD Drag Prediction Workshop

    Science.gov (United States)

    Levy, David W.; Laflin, Kelly R.; Tinoco, Edward N.; Vassberg, John C.; Mani, Mori; Rider, Ben; Rumsey, Chris; Wahls, Richard A.; Morrison, Joseph H.; Brodersen, Olaf P.; Crippa, Simone; Mavriplis, Dimitri J.; Murayama, Mitsuhiro

    2013-01-01

    Results from the Fifth AIAA CFD Drag Prediction Workshop (DPW-V) are presented. As with past workshops, numerical calculations are performed using industry-relevant geometry, methodology, and test cases. This workshop focused on force/moment predictions for the NASA Common Research Model wing-body configuration, including a grid refinement study and an optional buffet study. The grid refinement study used a common grid sequence derived from a multiblock topology structured grid. Six levels of refinement were created resulting in grids ranging from 0.64x10(exp 6) to 138x10(exp 6) hexahedra - a much larger range than is typically seen. The grids were then transformed into structured overset and hexahedral, prismatic, tetrahedral, and hybrid unstructured formats all using the same basic cloud of points. This unique collection of grids was designed to isolate the effects of grid type and solution algorithm by using identical point distributions. This study showed reduced scatter and standard deviation from previous workshops. The second test case studied buffet onset at M=0.85 using the Medium grid (5.1x106 nodes) from the above described sequence. The prescribed alpha sweep used finely spaced intervals through the zone where wing separation was expected to begin. Some solutions exhibited a large side of body separation bubble that was not observed in the wind tunnel results. An optional third case used three sets of geometry, grids, and conditions from the Turbulence Model Resource website prepared by the Turbulence Model Benchmarking Working Group. These simple cases were intended to help identify potential differences in turbulence model implementation. Although a few outliers and issues affecting consistency were identified, the majority of participants produced consistent results.

  5. Theoretical study on the need for laser iridotomy in an implantable collamer lens with a hole using computational fluid dynamics.

    Science.gov (United States)

    Kawamorita, T; Shimizu, K; Shoji, N

    2017-01-20

    PurposeAlthough one of the advantages of the Hole-ICL implantation is that laser iridotomy (LI) is unnecessary, the evidence have not been reported from the viewpoint of aqueous humor circulation. We investigated the effect of laser iridotomy (LI) on the fluid dynamics of aqueous humor in an implantable collamer lens (ICL) with a central hole, that is, a Hole-ICL using computational fluid dynamics.MethodsA fluid dynamics simulation was performed using the thermal-hydraulic analysis software FloEFD (Mentor Graphics Corp.). For the simulation, three-dimensional eye models with a conventional ICL (Model ICM, STAAR SURGICAL) and a Hole-ICL were used. The LI diameters were 250 and 500 μm. The flow distribution between the anterior surface of the crystalline lens and the posterior surface of the ICL was also calculated.ResultsThe flow velocity 0.25 mm in front of the center of the crystalline lens in the Hole-ICL without LI, with LI of 250 μm, and with LI of 500 μm was 1.48 × 10(-1), 1.20 × 10(-1), and 4.52 × 10(-2) mm/s, respectively. The flow velocity in the conventional ICL without LI, with LI of 250 μm, and with LI of 500 μm was 1.21 × 10(-5), 3.60 × 10(-4), and 6.33 × 10(-4) mm/s, respectively.ConclusionsThese results suggest that there is less need for LI in a posterior chamber phakic intraocular lens with a central hole from the viewpoint of aqueous humor circulation, although the results can be considered only in an ideal condition and further studies are needed to clarify the effect of LI in clinical practice.Eye advance online publication, 20 January 2017; doi:10.1038/eye.2016.279.

  6. Theoretical Analysis of Shear Thinning Hyperbolic Tangent Fluid Model for Blood Flow in Curved Artery with Stenosis

    Directory of Open Access Journals (Sweden)

    Sohail Nadeem

    2016-01-01

    Full Text Available In this paper, we have considered the blood flow in a curved channel with abnormal development of stenosis in an axis-symmetric manner. The constitutive equations for incompressible and steady non-Newtonian tangent hyperbolic fluid have been modeled under the mild stenosis case. A perturbation technique and homotopy perturbation technique have been used to obtain analytical solutions for the wall shear stress, resistance impedance to flow, wall shear stress at the stenosis throat and velocity profile. The obtained results have been discussed for different tapered arteries i.e., diverging tapering, converging tapering, non-tapered arteries with the help of different parameters of interest and found that tapering dominant the curvature of the curved channel.

  7. Theoretical analysis of the velocity field, stress field and vortex sheet of generalized second order fluid withfractional anomalous diffusion

    Institute of Scientific and Technical Information of China (English)

    XU; Mingyu(

    2001-01-01

    [1]Nonnemacher, T. F., Metzler, R., On the Riemann-Liouville fractional calculus and some recent applications, Fractals,1995, 3(3): 557-566.[2]Mainardi, F., Fractional calculus: some basic problems in continuum and statistical mechanics, in Fractals and Fractional Calculus in Continuum Mechanics (eds. Cappinteri, A., Mainardi, F.), New York: Springer Wien, 1997, 291-348.[3]Rossikhin, Y. A., Shitikova, M. V. , Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids, Appl. Mech. Rev., 1997, 50(1): 15-67.[4]Podlubny, I., Fractional Differential Equations, San Diego: Academic Press, 1999, 86-231.[5]Henry, B. I. , Wearne, S. L. , Fractional reaction-diffusion, Physica A, 2000, 276(3): 448-455.[6]Wyss, W., The fractional diffusion equation, J. Math. Phys., 1986, 27(11): 2782-2785.[7]Bagley, R. L. , Torvik, P. J., On the appearance of the fractional derivative in the behavior of real materials, J. Appl.Mech., 1984, 51(2): 294-298.[8]Mathai, A. M., Saxena, R. K., The H-function with Applications in Statistics and Other Disciplines, New Delhi-BangaloreBombay: Wiley Eastern Limited, 1978, 1-12.[9]Gorentlo, R. , Luchko, Y., Mainardi, F., Wright function as scale-invariant solutions of the diffusion-wave equation, J.Comput. Appl. Math., 2000, 118(1): 175-191.[10]Yih, C. S. , Fluid Mechanics: A Concise Introduction to the Theory, New York: MeGraw-Hill, Inc. , 1969, 321-324.[11]Wu Wangyi, Fluid Mechanics (in Chinese), Beijing: Peking Univ. Press, 1983, 226-230.[12]Mainardi, F., Gorenflo, R., On Mittag-Leffler-Type function in fractional evolution processes, J. Comput. Appl. Math.2000, 118(2): 283-299.[13]Anhand, V. V., Leonenko, N. N., Scaling law for fractional diffusion-wave equations with singular data, Statistics and Probability Letters, 2000, 48(3): 239-252.[14]Kivyakova, V., Multiple (multiindex) Mittag-Leffler functions and relations to

  8. An experimental and theoretical study to relate uncommon rock/fluid properties to oil recovery. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Watson, R.

    1995-07-01

    Waterflooding is the most commonly used secondary oil recovery technique. One of the requirements for understanding waterflood performance is a good knowledge of the basic properties of the reservoir rocks. This study is aimed at correlating rock-pore characteristics to oil recovery from various reservoir rock types and incorporating these properties into empirical models for Predicting oil recovery. For that reason, this report deals with the analyses and interpretation of experimental data collected from core floods and correlated against measurements of absolute permeability, porosity. wettability index, mercury porosimetry properties and irreducible water saturation. The results of the radial-core the radial-core and linear-core flow investigations and the other associated experimental analyses are presented and incorporated into empirical models to improve the predictions of oil recovery resulting from waterflooding, for sandstone and limestone reservoirs. For the radial-core case, the standardized regression model selected, based on a subset of the variables, predicted oil recovery by waterflooding with a standard deviation of 7%. For the linear-core case, separate models are developed using common, uncommon and combination of both types of rock properties. It was observed that residual oil saturation and oil recovery are better predicted with the inclusion of both common and uncommon rock/fluid properties into the predictive models.

  9. An experimental and theoretical study to relate uncommon rock/fluid properties to oil recovery. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Watson, R.

    1995-07-01

    Waterflooding is the most commonly used secondary oil recovery technique. One of the requirements for understanding waterflood performance is a good knowledge of the basic properties of the reservoir rocks. This study is aimed at correlating rock-pore characteristics to oil recovery from various reservoir rock types and incorporating these properties into empirical models for Predicting oil recovery. For that reason, this report deals with the analyses and interpretation of experimental data collected from core floods and correlated against measurements of absolute permeability, porosity. wettability index, mercury porosimetry properties and irreducible water saturation. The results of the radial-core the radial-core and linear-core flow investigations and the other associated experimental analyses are presented and incorporated into empirical models to improve the predictions of oil recovery resulting from waterflooding, for sandstone and limestone reservoirs. For the radial-core case, the standardized regression model selected, based on a subset of the variables, predicted oil recovery by waterflooding with a standard deviation of 7%. For the linear-core case, separate models are developed using common, uncommon and combination of both types of rock properties. It was observed that residual oil saturation and oil recovery are better predicted with the inclusion of both common and uncommon rock/fluid properties into the predictive models.

  10. Theoretical treatment of the thermophysical properties of fluids containing chain-like molecules. Final technical report, June 1, 1994--May 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Hall, C.K.

    1997-12-31

    The author has been engaged in a research program aimed at enhancing the understanding of the thermo-physical properties of fluids containing long, flexible, chain-like molecules. She has been working on four main fronts: (1) the development of an equation of state that is capable of predicting the experimentally observed thermodynamic properties, including phase equilibria, of fluids containing chain-like molecules ranging in length from alkanes to polymers; (2) computer simulation studies of the transport properties of chain fluids, with special focus on the role played by entanglements in the dynamical properties of polymer melts, (3) computer simulation studies and theoretical treatment of the static and dynamic properties of polymer networks and gels, and (4) computer simulation studies of the permeation of penetrants in polymer membranes. The theories resulting from this research could eventually serve as the foundation upon which to build correlations of petroleum and natural gas, as well as of polymer solutions, melts, blends, networks, and gels. In this progress report the author summarizes work accomplished under DOE sponsorship of the period December 1993 to December 1996. In section 2, she summarizes the stated objectives of their previous (1993) proposal, indicating which work has been accomplished, which work is continuing, and which work has been discontinued. In section 3, she summarizes the three new objectives that were added after December 1993. In section 4, she provides a detailed description of the work accomplished, omitting those descriptions that appear in the accompanying proposal. In section 5, she describes their human resource development efforts. Finally, in section 6 she lists the publications resulting from this work. Abstracts of these papers are presented in the appendix.

  11. AIAA Educator Academy - Mars Rover Curriculum: A 6 week multidisciplinary space science based curriculum

    Science.gov (United States)

    Henriquez, E.; Bering, E. A.; Slagle, E.; Nieser, K.; Carlson, C.; Kapral, A.

    2013-12-01

    The Curiosity mission has captured the imagination of children, as NASA missions have done for decades. The AIAA and the University of Houston have developed a flexible curriculum program that offers children in-depth science and language arts learning culminating in the design and construction of their own model rover. The program is called the Mars Rover Model Celebration. It focuses on students, teachers and parents in grades 3-8. Students learn to research Mars in order to pick a science question about Mars that is of interest to them. They learn principles of spacecraft design in order to build a model of a Mars rover to carry out their mission on the surface of Mars. The model is a mock-up, constructed at a minimal cost from art supplies. This project may be used either informally as an after school club or youth group activity or formally as part of a class studying general science, earth science, solar system astronomy or robotics, or as a multi-disciplinary unit for a gifted and talented program. The project's unique strength lies in engaging students in the process of spacecraft design and interesting them in aerospace engineering careers. The project is aimed at elementary and secondary education. Not only will these students learn about scientific fields relevant to the mission (space science, physics, geology, robotics, and more), they will gain an appreciation for how this knowledge is used to tackle complex problems. The low cost of the event makes it an ideal enrichment vehicle for low income schools. It provides activities that provide professional development to educators, curricular support resources using NASA Science Mission Directorate (SMD) content, and provides family opportunities for involvement in K-12 student learning. This paper will describe the structure and organization of the 6 week curriculum. A set of 30 new 5E lesson plans have been written to support this project as a classroom activity. The challenge of developing interactive

  12. Summary of Data from the Sixth AIAA CFD Drag Prediction Workshop: CRM Cases 2 to 5

    Science.gov (United States)

    Tinoco, Edward N.; Brodersen, Olaf P.; Keye, Stefan; Laflin, Kelly R.; Feltrop, Edward; Vassberg, John C.; Mani, Mori; Rider, Ben; Wahls, Richard A.; Morrison, Joseph H.; hide

    2017-01-01

    Results from the Sixth AIAA CFD Drag Prediction Workshop Common Research Model Cases 2 to 5 are presented. As with past workshops, numerical calculations are performed using industry-relevant geometry, methodology, and test cases. Cases 2 to 5 focused on force/moment and pressure predictions for the NASA Common Research Model wing-body and wing-body-nacelle-pylon configurations, including Case 2 - a grid refinement study and nacelle-pylon drag increment prediction study; Case 3 - an angle-of-attack buffet study; Case 4 - an optional wing-body grid adaption study; and Case 5 - an optional wing-body coupled aero-structural simulation. The Common Research Model geometry differed from previous workshops in that it was deformed to the appropriate static aeroelastic twist and deflection at each specified angle-of-attack. The grid refinement study used a common set of overset and unstructured grids, as well as user created Multiblock structured, unstructured, and Cartesian based grids. For the supplied common grids, six levels of refinement were created resulting in grids ranging from 7x10(exp 6) to 208x10(exp 6) cells. This study (Case 2) showed further reduced scatter from previous workshops, and very good prediction of the nacelle-pylon drag increment. Case 3 studied buffet onset at M=0.85 using the Medium grid (20 to 40x10(exp 6) nodes) from the above described sequence. The prescribed alpha sweep used finely spaced intervals through the zone where wing separation was expected to begin. Although the use of the prescribed aeroelastic twist and deflection at each angle-of-attack greatly improved the wing pressure distribution agreement with test data, many solutions still exhibited premature flow separation. The remaining solutions exhibited a significant spread of lift and pitching moment at each angle-of-attack, much of which can be attributed to excessive aft pressure loading and shock location variation. Four Case 4 grid adaption solutions were submitted. Starting

  13. Surface Tension of Mixtures of Molecular Fluids: Comparison between the Experimental and Theoretical Study of CH4 + Kr, Kr + NO, and CH4 + NO

    Science.gov (United States)

    Calado; Mendonca; Saramago; Soares

    1997-01-01

    We report a study of the surface tension of three binary liquid mixtures of molecular fluids. A microscopic mean field theory (MFT) has been used to calculate the theoretical results enabling the comparison with the experimental data. The mean field theory has been successfully used in the prediction of the surface properties of simple systems composed by quasi-spherical molecules. In the present study the MFT was able to reproduce the essential features of the interfacial properties of the systems CH4 + Kr, Kr + NO and CH4 + NO. The pure components were modeled by Lennard-Jones potentials with a set of intermolecular parameters taken from the literature for Kr and calculated from the fitting of the energy parameters (epsilon) to the surface tension, for CH4 and NO. In the case of the mixtures, it was found that reasonable agreement with experiment can only be obtained by allowing deviations from the Lorentz-Berthelot combining rules. For the CH4 + Kr system we used the binary energy parameter xi obtained through a fitting to the bulk properties; for the Kr + NO and CH4 + NO systems the binary parameter was adjusted to the interfacial properties.

  14. Surface tension of mixtures of molecular fluids: Comparison between the experimental and theoretical study of CH{sub 4} + Kr, Kr + NO, and CH{sub 4} + NO

    Energy Technology Data Exchange (ETDEWEB)

    Calado, J.C.G.; Saramago, B.J.V. [Instituto Superior Tecnico, Lisbon (Portugal). Centro de Quimica Estrutural; Santos Mendonca, A.F.S. dos; Soares, V.A.M. [Univ. de Lisboa, Lisbon (Portugal). Centro de Ciencia e Tecnologia de Materiais

    1997-01-01

    The authors report a study of the surface tension of three binary liquid mixtures of molecular fluids. A microscopic mean field theory (MFT) has been used to calculate the theoretical results enabling the comparison with the experimental data. The mean field theory has been successfully used in the prediction of the surface properties of simple systems composed by quasi-spherical molecules. In the present study the MFT was able to reproduce the essential features of the interfacial properties of the systems CH{sub 4} + Kr, Kr + NO and CH{sub 4} + NO. The pure components were modeled by Lennard-Jones potentials with a set of intermolecular parameters taken from the literature for Kr and calculated from the fitting of the energy parameters to the surface tension, for CH{sub 4} and NO. In the case of the mixtures, it was found that reasonable agreement with experiment can only be obtained by allowing deviations from the Lorentz-Berthelot combining rules. For the CH{sub 4} + Kr system the authors used the binary energy parameter {xi} obtained through a fitting to the bulk properties; for the Kr + NO and CH{sub 4} + NO systems the binary parameter was adjusted to the interfacial properties.

  15. 电流变液阻尼器半主动控制的理论建模%Study on Theoretical Modeling of Semi-Active Electro-Rheological Fluid Damper

    Institute of Scientific and Technical Information of China (English)

    张华良; 饶柱石; 傅志方

    2003-01-01

    This paper emphases on analyzing and investigating the mechanical behavior of electro-theological fluid (ERF) semi-active damper. Theoretical model was developed to describe the relationship between electric field and the resistance force of ERF flowing through two parallel plane electrodes. In the model, the pressure drop along electrodes was supposed to consist of two parts: one related with viscosity and the other related with dynamic yield shear stress. The concept of yield stress influence factor was developed in deriving the theoretical formula for calculating the pressure drop in the damper. The influences of some other factors, such as, nonideal Newtonian fluid and temperature have also been taken into account. Numerical and experimental work have been performed to prove the validity of the proposed model. The comparison of both results shows that the developed model is quite effective and practicable.

  16. Thermophysical Properties of Fluids and Fluid Mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Sengers, Jan V.; Anisimov, Mikhail A.

    2004-05-03

    The major goal of the project was to study the effect of critical fluctuations on the thermophysical properties and phase behavior of fluids and fluid mixtures. Long-range fluctuations appear because of the presence of critical phase transitions. A global theory of critical fluctuations was developed and applied to represent thermodynamic properties and transport properties of molecular fluids and fluid mixtures. In the second phase of the project, the theory was extended to deal with critical fluctuations in complex fluids such as polymer solutions and electrolyte solutions. The theoretical predictions have been confirmed by computer simulations and by light-scattering experiments. Fluctuations in fluids in nonequilibrium states have also been investigated.

  17. Theoretical and Computational Studies of Condensed-Phase Phenomena: The Origin of Biological Homochirality, and the Liquid-Liquid Phase Transition in Network-Forming Fluids

    Science.gov (United States)

    Ricci, Francesco

    This dissertation describes theoretical and computational studies of the origin of biological homochirality, and the existence of a liquid-liquid phase transition in pure-component network-forming fluids. A common theme throughout these studies is the use of sophisticated computer simulation and statistical mechanics techniques to study complex condensed-phase phenomena. In the first part of this dissertation, we use an elementary lattice model with molecular degrees of freedom, and satisfying microscopic reversibility, to investigate the effect of reaction reversibility on the evolution of stochastic symmetry breaking via autocatalysis and mutual inhibition in a closed system. We identify conditions under which the system's evolution towards racemic equilibrium becomes extremely slow, allowing for long-time persistence of a symmetry-broken state. We also identify a "monomer purification" mechanism, due to which a nearly homochiral state can persist for long times, even in the presence of significant reverse reaction rates. Order of magnitude estimates show that with reasonable physical parameters a symmetry broken state could persist over geologically-relevant time scales. In the second part of this dissertation, we study a chiral-symmetry breaking mechanism known as Viedma ripening. We develop a Monte Carlo model to gain further insights into the mechanisms capable of reproducing key experimental signatures associated with this phenomenon. We also provide a comprehensive investigation of how the model parameters impact the system's overall behavior. It is shown that size-dependent crystal solubility alone is insufficient to reproduce most experimental signatures, and that some form of a solid-phase chiral feedback mechanism (e.g., agglomeration) must be invoked in our model. In the third part of this dissertation, we perform rigorous free energy calculations to investigate the possibility of a liquid-liquid phase transition (LLPT) in the Stillinger-Weber (SW

  18. Group Theoretical Analysis of non-Newtonian Fluid Flow, Heat and Mass Transfer over a Stretching Surface in the Presence of Thermal Radiation

    Directory of Open Access Journals (Sweden)

    Muhammad Tufail

    2016-01-01

    Full Text Available The present article examines the flow, heat and mass transfer of a non-Newtonian fluid known as Casson fluid over a stretching surface in the presence of thermal radiations effects. Lie Group analysis is used to reduce the governing partial differential equations into non-linear ordinary differential equations. These equations are then solved by an analytical technique known as Homotopy Analysis Method (HAM. A comprehensive study of the problem is being made for various parameters involving in the equations through tables and graphs.

  19. Development and Use of Engineering Standards for Computational Fluid Dynamics for Complex Aerospace Systems

    Science.gov (United States)

    Lee, Hyung B.; Ghia, Urmila; Bayyuk, Sami; Oberkampf, William L.; Roy, Christopher J.; Benek, John A.; Rumsey, Christopher L.; Powers, Joseph M.; Bush, Robert H.; Mani, Mortaza

    2016-01-01

    Computational fluid dynamics (CFD) and other advanced modeling and simulation (M&S) methods are increasingly relied on for predictive performance, reliability and safety of engineering systems. Analysts, designers, decision makers, and project managers, who must depend on simulation, need practical techniques and methods for assessing simulation credibility. The AIAA Guide for Verification and Validation of Computational Fluid Dynamics Simulations (AIAA G-077-1998 (2002)), originally published in 1998, was the first engineering standards document available to the engineering community for verification and validation (V&V) of simulations. Much progress has been made in these areas since 1998. The AIAA Committee on Standards for CFD is currently updating this Guide to incorporate in it the important developments that have taken place in V&V concepts, methods, and practices, particularly with regard to the broader context of predictive capability and uncertainty quantification (UQ) methods and approaches. This paper will provide an overview of the changes and extensions currently underway to update the AIAA Guide. Specifically, a framework for predictive capability will be described for incorporating a wide range of error and uncertainty sources identified during the modeling, verification, and validation processes, with the goal of estimating the total prediction uncertainty of the simulation. The Guide's goal is to provide a foundation for understanding and addressing major issues and concepts in predictive CFD. However, this Guide will not recommend specific approaches in these areas as the field is rapidly evolving. It is hoped that the guidelines provided in this paper, and explained in more detail in the Guide, will aid in the research, development, and use of CFD in engineering decision-making.

  20. Experimental Verification of Theoretical Magnetic Field Model of Immersed Magnet Self-levitating in Magnetic Fluid%磁流体中永磁悬浮磁场解析模型试验验证

    Institute of Scientific and Technical Information of China (English)

    徐晨; 刘桂雄; 张沛强

    2009-01-01

    Magnet can self-levitate in magnetic fluid. Exact data of self-levitation is the key of validating theoretical model and achieving controllable levitation by getparms magnetic force. The magnetic field distribution is unique existence. The levitating magnets position model Hz can derive from the field intensity model in magnetic fluid field Hf. The Hz and magnet displacement r have the relation of one-to-one correspondence,which can be adopted to locate the magnet position in magnetic fluid. The relation of levitation position and magnetic field distribution is pointwise calibrated in holl detection test to verify the theoretical model r-Hz. The results show that the test data and theoretical curve match perfectly. the self-levitation height,43.13±0.05 mm,is acquired by test equipment. Comparing to the theoretical result 43.34 mm,it can draw a conclusion that the levitating magnets position model Hz is correct and effective in levitation height prediction.%永磁体在磁流体中能够自悬浮,准确获取悬浮位置信息是验证理论模型、调节各种影响磁场力的参数以实现悬浮位置可控的关键.磁场分布具有唯一性原理,通过磁场分布模型计算推导,可以得出永磁体悬浮位置模型HZ.该模型与永磁体位移r具有唯一对应关系.利用这种对应关系即可对磁流体中的永磁体进行定位.采用霍尔检测方法逐点测量磁场与永磁体位置之间关系,验证解析模型.结果表明试验与理论曲线匹配度好.在试验中测量得到悬浮位置为43.13±0.05 mm,与根据模型计算结果43.34 mm非常吻合,证明永磁体悬浮位置模型应用于悬浮高度预测中是正确有效的.

  1. Calculation of the Residual Blood Volume after Acute, Non-Ongoing Hemorrhage Using Serial Hematocrit Measurements and the Volume of Isotonic Fluid Infused: Theoretical Hypothesis Generating Study.

    Science.gov (United States)

    Oh, Won Sup; Chon, Sung-Bin

    2016-05-01

    Fluid resuscitation, hemostasis, and transfusion is essential in care of hemorrhagic shock. Although estimation of the residual blood volume is crucial, the standard measuring methods are impractical or unsafe. Vital signs, central venous or pulmonary artery pressures are inaccurate. We hypothesized that the residual blood volume for acute, non-ongoing hemorrhage was calculable using serial hematocrit measurements and the volume of isotonic solution infused. Blood volume is the sum of volumes of red blood cells and plasma. For acute, non-ongoing hemorrhage, red blood cell volume would not change. A certain portion of the isotonic fluid would increase plasma volume. Mathematically, we suggest that the residual blood volume after acute, non-ongoing hemorrhage might be calculated as 0·25N/[(Hct1/Hct2)-1], where Hct1 and Hct2 are the initial and subsequent hematocrits, respectively, and N is the volume of isotonic solution infused. In vivo validation and modification is needed before clinical application of this model.

  2. Experimental and Theoretical Analysis for a Fluid-Loaded, Simply Supported Plate Covered by a Damping and Decoupling Composite Acoustic Coating

    Directory of Open Access Journals (Sweden)

    Baihua Yuan

    2017-01-01

    Full Text Available This work presents a vibroacoustic response model for a fluid-loaded, simply supported rectangular plate covered by a composite acoustic coating consisting of damping and decoupling layers. The model treated the damping layer and base plate as a unified whole under pure bending moments and the decoupling layer as a three-dimensional, isotropic, linear elastic solid. The validity of the model was verified by both numerical analysis and experiments and was shown to accurately extend previous studies that were limited to a plate covered by a single damping or decoupling layer with an evaluation confined solely to numerical analysis. The trends of the numerical and experimental results are generally consistent, with some differences due to the influences of water pressure and the frequency dependence of the material parameters, which are not taken into account by the numerical analysis. Both experimental and numerical results consistently show that the radiated noise reduction effect of the composite coating is superior to that of single-type coatings, which is attributed to the fact that the composite coating combines the merits of both the high vibration suppression performance of the damping layer and the superior vibration isolation performance of the decoupling layer.

  3. 极地冰层取心钻进超低温钻井液理论与试验研究%Theoretical and Experimental Research on the Ultra-low Temperature Drilling Fluids for the Polar Ice Coring Drilling

    Institute of Scientific and Technical Information of China (English)

    韩俊杰; 韩丽丽; 徐会文; 于达慧; 曹品鲁; Pavel・ Tatalay

    2013-01-01

      南极冰层取心钻进的关键之一是钻井液的耐温能力。根据南极冰层钻进的特点及对钻井液的特殊要求,在综合分析国内外冰层钻进钻井液应用经验的基础上,对有机硅、氟代烃、一元脂肪酸酯及二元脂肪酸酯进行了理论上的分析研究,测试了各自在不同温度条件下的粘度和密度,分析了粘度与密度变化的机理。确定出分子间相互作用中无氢键形成的物质的粘温系数最小,脂肪酸酯的粘温系数受到分子间氢键的数量影响最大,指出了介质密度的增加是由于体积收缩所致,与介质的分子结构与形态无关。所得到的结论对于极地冰层取心钻进钻井液的选择与确定具有重要的理论与实际意义。%  The low temperature resistance of drilling fluid is one of the keys for core drilling in Antarctica ice sheet.Ac-cording to the characteristics of ice core drilling and the special requirements for drilling fluids in Antarctic, based on the comprehensive analysis on the application experience of ice drilling fluids both in China and abroad, theoretical study was made on organosilicon, fluohydrocarbon, aliphatic monocarboxylic acid ester and aliphatic dibasic acid ester, their viscosity and density were tested under different temperatures and the mechanism of changes in viscosity and density were also ana-lyzed.The result indicates that the hydrogen bond strongly influences the viscosity temperature coefficient of the fatty acid ester, and the lowest viscosity temperature coefficient of drilling fluid could be obtained if there is no hydrogen bond forma-tion.Besides, the increase of the density mainly depends on the shrinking volume of the drilling fluid;the chemical struc-ture and morphology have nothing to do with the change of density.These results have theoretical and practical significance for the selection and optimization of the ultra-low temperature drilling fluid system for ice

  4. Turbomachinery Fluid Mechanics and Control

    Science.gov (United States)

    2010-01-01

    STEVEN L. PUTERBAUGH WILLIAM W. COPENHAVER Compressor Aero Research Lab...report. Bailie, S.T., Ng, W., Wicks, S., and Copenhaver , W.W., “Effects of Flow Control on Forced Response and Performance of a Transonic Compressor...34, 44th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2006, AIAA Paper No. 2006-0417. Car, D., Kuprowicz, N.J., Estevadeordal, J., Zha, G

  5. Network-Theoretic Modeling of Fluid Flow

    Science.gov (United States)

    2015-07-29

    connections. Identifying such locations is especially critical when containment 3 measures are designed to control outbreaks of HIV [5], SARS [6...intuitive explanation that turbulent flows will be resilient against small-scale forcing while the global behavior can be easily modified by large-scale

  6. Theoretical microfluidics

    DEFF Research Database (Denmark)

    Bruus, Henrik

    in complexity, a proper theoretical understanding becomes increasingly important. The basic idea of the book is to provide a self-contained formulation of the theoretical framework of microfluidics, and at the same time give physical motivation and examples from lab-on-a-chip technology. After three chapters...

  7. Refrigerating fluids; Fluides frigorigenes

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1999-03-01

    Refrigerating fluids are experiencing a real revolution since few years. CFCs with their destructive effect on the ozone layer are now prohibited while HCFCs will be progressively eliminated and replaced by HFCs. However, HFCs can contribute to the increase of the greenhouse effect. The solutions proposed by thermal engineering professionals consist in the confinement of air-conditioning installations (elimination of recurrent leaks) and in the improvement of installations efficiency. HCFC fluids like the R 22 are still widely used in air-conditioning but they are supposed to be replaced by HFC fluids like the R 134a, the R 407C or the R 410A. This short paper gives a brief presentation of these fluids and of their chemical characteristics. (J.S.)

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 26: The technical communication practices of aerospace engineering students: Results of the phase 3 AIAA National Student Survey

    Science.gov (United States)

    Pinelli, Thomas E.; Hecht, Laura M.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    This report describes similarities and differences between undergraduate and graduate engineering students in the context of two general aspects of the educational experience. First, we explore the extent to which students differ regarding the factors that lead to the choice of becoming an engineer, current satisfaction with that choice, and career-related goals and objectives. Second, we look at the technical communication practices, habits, and training of aerospace engineering students. The reported data were obtained from a survey of student members of the American Institute of Aeronautics and Astronautics (AIAA). The survey was undertaken as a phase 3 activity of the NASA/DoD Aerospace Knowledge Diffusion Research Project. Data are reported for the following categories: student demographics; skill importance, skill training, and skill helpfulness; collaborative writing; computer and information technology use and importance; use of electronic networks; use and importance of libraries and library services; use and importance of information sources and products; use of foreign language technical reports; and foreign language (reading and speaking) skills.

  9. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 33: The technical communications practices of US aerospace engineers and scientists: Results of the phase 1 AIAA mail survey

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists who are members of the American Institute of Aeronautics and Astronautics (AIAA).

  10. Drag prediction of DLR-F4 from AIAA drag prediction workshop%DLR-F4翼身组合体的阻力计算

    Institute of Scientific and Technical Information of China (English)

    王运涛; 王光学; 洪俊武; 陈作斌

    2003-01-01

    为了考察自行研发的CFD软件的计算能力和阻力计算精度,本文采用LU-SGS方法、MUSCL差分格式和Baldwin-Lomax代数湍流模型,数值模拟了AIAA 阻力计算工作室提供的DLR-F4翼身组合体的绕流流场,综合分析了case1和case2的气动力的计算结果,并与NASA Christopher L. Rumsey采用CFL3D6.0和AFRL/VAAC Don W. Kinsey采用Cobalt60提供的两组计算结果以及AGARD 提供的两种不同风洞的测力试验结果作了比较.计算结果表明,本文计算精度与国外CFD软件相当.为了提高激波/边界层干扰的模拟精度,今后要重点加强湍流模型的应用研究.

  11. Theoretical hydrodynamics

    CERN Document Server

    Milne-Thomson, L M

    2011-01-01

    This classic exposition of the mathematical theory of fluid motion is applicable to both hydrodynamics and aerodynamics. Based on vector methods and notation with their natural consequence in two dimensions - the complex variable - it offers more than 600 exercises and nearly 400 diagrams. Prerequisites include a knowledge of elementary calculus. 1968 edition.

  12. Multidisciplinary Design Optimization Techniques: Implications and Opportunities for Fluid Dynamics Research

    Science.gov (United States)

    Zang, Thomas A.; Green, Lawrence L.

    1999-01-01

    A challenge for the fluid dynamics community is to adapt to and exploit the trend towards greater multidisciplinary focus in research and technology. The past decade has witnessed substantial growth in the research field of Multidisciplinary Design Optimization (MDO). MDO is a methodology for the design of complex engineering systems and subsystems that coherently exploits the synergism of mutually interacting phenomena. As evidenced by the papers, which appear in the biannual AIAA/USAF/NASA/ISSMO Symposia on Multidisciplinary Analysis and Optimization, the MDO technical community focuses on vehicle and system design issues. This paper provides an overview of the MDO technology field from a fluid dynamics perspective, giving emphasis to suggestions of specific applications of recent MDO technologies that can enhance fluid dynamics research itself across the spectrum, from basic flow physics to full configuration aerodynamics.

  13. Amniotic fluid

    Science.gov (United States)

    ... carefully. Removing a sample of the fluid through amniocentesis can provide information about the sex, health, and development of the fetus. Images Amniocentesis Amniotic fluid Polyhydramnios Amniotic fluid References Cunningham FG, ...

  14. Fluid transport due to nonlinear fluid-structure interaction

    Energy Technology Data Exchange (ETDEWEB)

    Soendergaard Jensen, J.

    1996-08-01

    This work considers nonlinear fluid-structure interaction for a vibrating pipe containing fluid. Transverse pipe vibrations will force the fluid to move relative to the pipe creating uni-directional fluid flow towards the pipe end. The fluid flow induced affects the damping and the stiffness of the pipe. The behavior of the system in response to lateral resonant base excitation is analyzed numerically mode of vibration seems to be most effective for high mean fluid speed, whereas higher modes of vibration can be used to transport fluid with the same fluid speed but with smaller magnitude of pipe vibrations. The effect of the nonlinear geometrical terms is analyzed and these terms are shown to affect the response for higher modes of vibration. Experimental investigations show good agreement with theoretical predictions. (au) 16 refs.

  15. 美国AIAA风洞试验管理标准浅析%Remark on AIAA Standard for Wind Tunnel Testing Management

    Institute of Scientific and Technical Information of China (English)

    战培国

    2013-01-01

    The large wind tunnel managing has the trend of something like that of the enterprises in overseas countries. Wind tunnel management is relation to test cycle, quality and cost, affects the performance and competition of product developing. This paper introduces the background of wind tunnel testing development, summarizes the drawing process and contents of the wind tunnel standard of AIAA, expounds the thoughts and managing measures of the standards, analyzes the advancements of American wind tunnel testing techniques reflecting from the standard. The purpose is to provide thoughts and references for large wind tunnel running management and innovation development in domestic wind tunnel testing field.%  国外大型风洞的运营已呈现出企业化发展模式。风洞试验管理直接关系到试验周期、质量和成本,影响研制型号的性能和竞争力。本文归纳了风洞试验发展的历史背景,简述了美国AIAA风洞试验管理标准制定的过程和内容,重点阐述了标准中的风洞试验理念和管理做法,分析了标准中映射出的美国风洞试验技术的先进点,为国内大型风洞生产性试验的科学管理和创新发展提供参考。

  16. Theoretical chemistry advances and perspectives

    CERN Document Server

    Eyring, Henry

    1980-01-01

    Theoretical Chemistry: Advances and Perspectives, Volume 5 covers articles concerning all aspects of theoretical chemistry. The book discusses the mean spherical approximation for simple electrolyte solutions; the representation of lattice sums as Mellin-transformed products of theta functions; and the evaluation of two-dimensional lattice sums by number theoretic means. The text also describes an application of contour integration; a lattice model of quantum fluid; as well as the computational aspects of chemical equilibrium in complex systems. Chemists and physicists will find the book usef

  17. Statistical hydrodynamic models for mixing instability flows in turbulent regime: theoretical 0D evaluation criteria and comparison of one and two-fluid approaches; Modeles hydrodynamiques statistiques pour les ecoulements d'instabilites de melange en regime developpe: criteres theoriques d'evaluation ''0D'' et comparaison des approches mono et bifluides

    Energy Technology Data Exchange (ETDEWEB)

    Llor, A

    2001-07-01

    Theoretical criteria are defined to perform quick analytical evaluations of statistical hydro models for turbulent mixing flows induced by Kelvin-Helmholtz, Rayleigh-Taylor and Richtmyer-Meshkov instabilities. They are based on a global energy balance analysis of the mixing zone ('0D' projection) in the limit of zero Atwood number, for incompressible fluids, and in self-similar regime. It is then shown that single-fluid descriptions must be replaced by two-fluid descriptions, particularly for the Rayleigh-Taylor case with variable acceleration. The interaction between a shock and heterogeneities is also considered. Various approaches for the development of new models are finally given. (author)

  18. Theoretical Issues

    Energy Technology Data Exchange (ETDEWEB)

    Marc Vanderhaeghen

    2007-04-01

    The theoretical issues in the interpretation of the precision measurements of the nucleon-to-Delta transition by means of electromagnetic probes are highlighted. The results of these measurements are confronted with the state-of-the-art calculations based on chiral effective-field theories (EFT), lattice QCD, large-Nc relations, perturbative QCD, and QCD-inspired models. The link of the nucleon-to-Delta form factors to generalized parton distributions (GPDs) is also discussed.

  19. Theoretical geology

    Science.gov (United States)

    Mikeš, Daniel

    2010-05-01

    Theoretical geology Present day geology is mostly empirical of nature. I claim that geology is by nature complex and that the empirical approach is bound to fail. Let's consider the input to be the set of ambient conditions and the output to be the sedimentary rock record. I claim that the output can only be deduced from the input if the relation from input to output be known. The fundamental question is therefore the following: Can one predict the output from the input or can one predict the behaviour of a sedimentary system? If one can, than the empirical/deductive method has changes, if one can't than that method is bound to fail. The fundamental problem to solve is therefore the following: How to predict the behaviour of a sedimentary system? It is interesting to observe that this question is never asked and many a study is conducted by the empirical/deductive method; it seems that the empirical method has been accepted as being appropriate without question. It is, however, easy to argument that a sedimentary system is by nature complex and that several input parameters vary at the same time and that they can create similar output in the rock record. It follows trivially from these first principles that in such a case the deductive solution cannot be unique. At the same time several geological methods depart precisely from the assumption, that one particular variable is the dictator/driver and that the others are constant, even though the data do not support such an assumption. The method of "sequence stratigraphy" is a typical example of such a dogma. It can be easily argued that all the interpretation resulting from a method that is built on uncertain or wrong assumptions is erroneous. Still, this method has survived for many years, nonwithstanding all the critics it has received. This is just one example of the present day geological world and is not unique. Even the alternative methods criticising sequence stratigraphy actually depart from the same

  20. Theoretical physics

    CERN Document Server

    Joos, Georg

    1986-01-01

    Among the finest, most comprehensive treatments of theoretical physics ever written, this classic volume comprises a superb introduction to the main branches of the discipline and offers solid grounding for further research in a variety of fields. Students will find no better one-volume coverage of so many essential topics; moreover, since its first publication, the book has been substantially revised and updated with additional material on Bessel functions, spherical harmonics, superconductivity, elastomers, and other subjects.The first four chapters review mathematical topics needed by theo

  1. Verification strategies for fluid-based plasma simulation models

    Science.gov (United States)

    Mahadevan, Shankar

    2012-10-01

    Verification is an essential aspect of computational code development for models based on partial differential equations. However, verification of plasma models is often conducted internally by authors of these programs and not openly discussed. Several professional research bodies including the IEEE, AIAA, ASME and others have formulated standards for verification and validation (V&V) of computational software. This work focuses on verification, defined succinctly as determining whether the mathematical model is solved correctly. As plasma fluid models share several aspects with the Navier-Stokes equations used in Computational Fluid Dynamics (CFD), the CFD verification process is used as a guide. Steps in the verification process: consistency checks, examination of iterative, spatial and temporal convergence, and comparison with exact solutions, are described with examples from plasma modeling. The Method of Manufactured Solutions (MMS), which has been used to verify complex systems of PDEs in solid and fluid mechanics, is introduced. An example of the application of MMS to a self-consistent plasma fluid model using the local mean energy approximation is presented. The strengths and weaknesses of the techniques presented in this work are discussed.

  2. Theoretical Exploration of Exponential Heat Source and Thermal Stratification Effects on The Motion of 3-Dimensional Flow of Casson Fluid Over a Low Heat Energy Surface at Initial Unsteady Stage

    Directory of Open Access Journals (Sweden)

    Sandeep N.

    2017-06-01

    Full Text Available Within the last few decades, experts and scientists dealing with the flow of non-Newtonian fluids (most especially Casson fluid have confirmed the existence of such flow on a stretchable surface with low heat energy (i.e. absolute zero of temperature. This article presents the motion of a three-dimensional of such fluid. Influence of uniform space dependent internal heat source on the intermolecular forces holding the molecules of Casson fluid is investigated. It is assumed that the stagnation flow was induced by an external force (pressure gradient together with impulsive. Based on these assumptions, variable thermophysical properties are most suitable; hence modified kinematic viscosity model is presented. The system of governing equations of 3-dimensional unsteady Casson fluid was non-dimensionalized using suitable similarity transformation which unravels the behavior of the flow at full fledge short period. The numerical solution of the corresponding boundary value problem (ODE was obtained using Runge-Kutta fourth order along with shooting technique. The intermolecular forces holding the molecules of Casson fluid flow in both horizontal directions when magnitude of velocity ratio parameters are greater than unity breaks continuously with an increase in Casson parameter and this leads to an increase in velocity profiles in both directions.

  3. Theoretical Exploration of Exponential Heat Source and Thermal Stratification Effects on The Motion of 3-Dimensional Flow of Casson Fluid Over a Low Heat Energy Surface at Initial Unsteady Stage

    Science.gov (United States)

    Sandeep, N.; Animasaun, I. L.

    2017-06-01

    Within the last few decades, experts and scientists dealing with the flow of non-Newtonian fluids (most especially Casson fluid) have confirmed the existence of such flow on a stretchable surface with low heat energy (i.e. absolute zero of temperature). This article presents the motion of a three-dimensional of such fluid. Influence of uniform space dependent internal heat source on the intermolecular forces holding the molecules of Casson fluid is investigated. It is assumed that the stagnation flow was induced by an external force (pressure gradient) together with impulsive. Based on these assumptions, variable thermophysical properties are most suitable; hence modified kinematic viscosity model is presented. The system of governing equations of 3-dimensional unsteady Casson fluid was non-dimensionalized using suitable similarity transformation which unravels the behavior of the flow at full fledge short period. The numerical solution of the corresponding boundary value problem (ODE) was obtained using Runge-Kutta fourth order along with shooting technique. The intermolecular forces holding the molecules of Casson fluid flow in both horizontal directions when magnitude of velocity ratio parameters are greater than unity breaks continuously with an increase in Casson parameter and this leads to an increase in velocity profiles in both directions.

  4. Theoretical Mathematics

    Science.gov (United States)

    Stöltzner, Michael

    Answering to the double-faced influence of string theory on mathematical practice and rigour, the mathematical physicists Arthur Jaffe and Frank Quinn have contemplated the idea that there exists a `theoretical' mathematics (alongside `theoretical' physics) whose basic structures and results still require independent corroboration by mathematical proof. In this paper, I shall take the Jaffe-Quinn debate mainly as a problem of mathematical ontology and analyse it against the backdrop of two philosophical views that are appreciative towards informal mathematical development and conjectural results: Lakatos's methodology of proofs and refutations and John von Neumann's opportunistic reading of Hilbert's axiomatic method. The comparison of both approaches shows that mitigating Lakatos's falsificationism makes his insights about mathematical quasi-ontology more relevant to 20th century mathematics in which new structures are introduced by axiomatisation and not necessarily motivated by informal ancestors. The final section discusses the consequences of string theorists' claim to finality for the theory's mathematical make-up. I argue that ontological reductionism as advocated by particle physicists and the quest for mathematically deeper axioms do not necessarily lead to identical results.

  5. Fluid Mechanics.

    Science.gov (United States)

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  6. Fluid Interfaces

    DEFF Research Database (Denmark)

    Hansen, Klaus Marius

    2001-01-01

    Fluid interaction, interaction by the user with the system that causes few breakdowns, is essential to many user interfaces. We present two concrete software systems that try to support fluid interaction for different work practices. Furthermore, we present specificity, generality, and minimality...... as design goals for fluid interfaces....

  7. Fluid Mechanics.

    Science.gov (United States)

    Drazin, Philip

    1987-01-01

    Outlines the contents of Volume II of "Principia" by Sir Isaac Newton. Reviews the contributions of subsequent scientists to the physics of fluid dynamics. Discusses the treatment of fluid mechanics in physics curricula. Highlights a few of the problems of modern research in fluid dynamics. Shows that problems still remain. (CW)

  8. Theoretical Physics 1. Theoretical Mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Dreizler, Reiner M.; Luedde, Cora S. [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik

    2010-07-01

    After an introduction to basic concepts of mechanics more advanced topics build the major part of this book. Interspersed is a discussion of selected problems of motion. This is followed by a concise treatment of the Lagrangian and the Hamiltonian formulation of mechanics, as well as a brief excursion on chaotic motion. The last chapter deals with applications of the Lagrangian formulation to specific systems (coupled oscillators, rotating coordinate systems, rigid bodies). The level of this textbook is advanced undergraduate. The authors combine teaching experience of more than 40 years in all fields of Theoretical Physics and related mathematical disciplines and thorough knowledge in creating advanced eLearning content. The text is accompanied by an extensive collection of online material, in which the possibilities of the electronic medium are fully exploited, e.g. in the form of applets, 2D- and 3D-animations. (orig.)

  9. Theoretical Writing

    Directory of Open Access Journals (Sweden)

    Barney G. Glaser, Ph.D., Hon. Ph.D.

    2009-11-01

    Full Text Available Theoretical sorting has brought the analyst to the point of pent-up pressure to write: to see the months of work actualized in a “piece.” But this is only a personal pressure. The goal of grounded theory methodology, above all is to offer the results to the public, usually through one or more publications. We will focus on writing for publication, which is the most frequent way that the analyst can tell how people are “buying” what really matters in sociology, or in other fields.Both feedback on and use of publications will be the best evaluation of the analyst’s grounded theory. It will be his main source or criticism, constructive critique, and frequently of career rewards. In any case, he has to write to expand his audience beyond the limited number of close colleagues and students. Unless there is a publication, his work will be relegated to limited discussion, classroom presentation, or even private fantasy. The rigor and value of grounded theory work deserves publication. And many analysts have a stake in effecting wider publics, which makes their substantive grounded theory count.

  10. Theoretical geodesy

    Directory of Open Access Journals (Sweden)

    Borkowski Andrzej

    2015-12-01

    Full Text Available The paper presents a summary of research activities concerning theoretical geodesy performed in Poland in the period of 2011-2014. It contains the results of research on new methods of the parameter estimation, a study on robustness properties of the M-estimation, control network and deformation analysis, and geodetic time series analysis. The main achievements in the geodetic parameter estimation involve a new model of the M-estimation with probabilistic models of geodetic observations, a new Shift-Msplit estimation, which allows to estimate a vector of parameter differences and the Shift-Msplit(+ that is a generalisation of Shift-Msplit estimation if the design matrix A of a functional model has not a full column rank. The new algorithms of the coordinates conversion between the Cartesian and geodetic coordinates, both on the rotational and triaxial ellipsoid can be mentioned as a highlights of the research of the last four years. New parameter estimation models developed have been adopted and successfully applied to the control network and deformation analysis.

  11. Theoretical geodesy

    Science.gov (United States)

    Borkowski, Andrzej; Kosek, Wiesław

    2015-12-01

    The paper presents a summary of research activities concerning theoretical geodesy performed in Poland in the period of 2011-2014. It contains the results of research on new methods of the parameter estimation, a study on robustness properties of the M-estimation, control network and deformation analysis, and geodetic time series analysis. The main achievements in the geodetic parameter estimation involve a new model of the M-estimation with probabilistic models of geodetic observations, a new Shift-Msplit estimation, which allows to estimate a vector of parameter differences and the Shift-Msplit(+) that is a generalisation of Shift-Msplit estimation if the design matrix A of a functional model has not a full column rank. The new algorithms of the coordinates conversion between the Cartesian and geodetic coordinates, both on the rotational and triaxial ellipsoid can be mentioned as a highlights of the research of the last four years. New parameter estimation models developed have been adopted and successfully applied to the control network and deformation analysis. New algorithms based on the wavelet, Fourier and Hilbert transforms were applied to find time-frequency characteristics of geodetic and geophysical time series as well as time-frequency relations between them. Statistical properties of these time series are also presented using different statistical tests as well as 2nd, 3rd and 4th moments about the mean. The new forecasts methods are presented which enable prediction of the considered time series in different frequency bands.

  12. Fluid-fluid versus fluid-solid demixing in mixtures of parallel hard hypercubes

    Science.gov (United States)

    Lafuente, Luis; Martínez-Ratón, Yuri

    2011-02-01

    It is well known that increase of the spatial dimensionality enhances the fluid-fluid demixing of a binary mixture of hard hyperspheres, i.e. the demixing occurs for lower mixture size asymmetry as compared to the three-dimensional case. However, according to simulations, in the latter dimension the fluid-fluid demixing is metastable with respect to the fluid-solid transition. According to the results obtained from approximations to the equation of state of hard hyperspheres in higher dimensions, the fluid-fluid demixing might become stable for high enough dimension. However, this conclusion is rather speculative since none of these works have taken into account the stability of the crystalline phase (by a minimization of a given density functional, by spinodal calculations or by MC simulations). Of course, the lack of results is justified by the difficulty of performing density functional calculations or simulations in high dimensions and, in particular, for highly asymmetric binary mixtures. In the present work, we will take advantage of a well tested theoretical tool, namely the fundamental measure density functional theory for parallel hard hypercubes (in the continuum and in the hypercubic lattice). With this, we have calculated the fluid-fluid and fluid-solid spinodals for different spatial dimensions. We have obtained, no matter what the dimensionality, the mixture size asymmetry or the polydispersity (included as a bimodal distribution function centered around the asymmetric edge lengths), that the fluid-fluid critical point is always located above the fluid-solid spinodal. In conclusion, these results point to the existence of demixing between at least one solid phase rich in large particles and one fluid phase rich in small ones, preempting a fluid-fluid demixing, independently of the spatial dimension or the polydispersity.

  13. Theoretical Mechanics Theoretical Physics 1

    CERN Document Server

    Dreizler, Reiner M

    2011-01-01

    After an introduction to basic concepts of mechanics more advanced topics build the major part of this book. Interspersed is a discussion of selected problems of motion. This is followed by a concise treatment of the Lagrangian and the Hamiltonian formulation of mechanics, as well as a brief excursion on chaotic motion. The last chapter deals with applications of the Lagrangian formulation to specific systems (coupled oscillators, rotating coordinate systems, rigid bodies). The level of this textbook is advanced undergraduate. The authors combine teaching experience of more than 40 years in all fields of Theoretical Physics and related mathematical disciplines and thorough knowledge in creating advanced eLearning content. The text is accompanied by an extensive collection of online material, in which the possibilities of the electronic medium are fully exploited, e.g. in the form of applets, 2D- and 3D-animations. - A collection of 74 problems with detailed step-by-step guidance towards the solutions. - A col...

  14. Fluid mechanics

    CERN Document Server

    Kundu, Pijush K; Dowling, David R

    2011-01-01

    Fluid mechanics, the study of how fluids behave and interact under various forces and in various applied situations-whether in the liquid or gaseous state or both-is introduced and comprehensively covered in this widely adopted text. Revised and updated by Dr. David Dowling, Fluid Mechanics, 5e is suitable for both a first or second course in fluid mechanics at the graduate or advanced undergraduate level. Along with more than 100 new figures, the text has been reorganized and consolidated to provide a better flow and more cohesion of topics.Changes made to the

  15. Fluid Dynamics

    DEFF Research Database (Denmark)

    Brorsen, Michael

    These lecture notes are intended mainly for the 7th semester course "Fluid Dynamics" offered by the Study Committee on Civil Engineering, Aalborg University.......These lecture notes are intended mainly for the 7th semester course "Fluid Dynamics" offered by the Study Committee on Civil Engineering, Aalborg University....

  16. 沉积盆地中的流体包裹体:理论基础、图解与分析方法%Fluid inclusions in sedimentary basins:Theoretical basis, diagrams, analytical techniques

    Institute of Scientific and Technical Information of China (English)

    Jean DUBESSY

    2004-01-01

    This paper is focused on the methods to study fluid inclusions in order to get the relevant information. First, the H2 Osalts systems are described and special attention is made upon the determination of the composition from microthermometric data and using new analytical techniques. Application to the study of fluid mixing is exemplified. The different diagrams of H2O-( gas)-salts systems with special attention of the CO2-CH4 system are presented. The complexity of the H2 O-( gas)-salts systems at low temperature, due to the presence of clathrates, is described. The use of micro-Raman spectrometry is specially focused for methanebearing aqueous fluids. The identification of the immiscibility process based on phase diagrams analysis is detailed.%本文主要介绍如何利用流体包裹体来获得合理的数据.首先对H2O-体系进行总结,着重介绍利用显微测温法和其他新的分析技术来确定流体的组成,并举例说明流体混合在流体包裹体研究中的应用.介绍了H2O-(气)-盐体系特别是CO2-CH4体系的图解,探讨了在低温下由于笼合物的形成H2O-(气)-盐体系的复杂相变.重点介绍显微激光拉曼光谱仪在含甲烷水溶液流体中的应用,并根据相图详细讨论了如何确定流体的不混溶.

  17. Fluid dynamics of dilatant fluid

    DEFF Research Database (Denmark)

    Nakanishi, Hiizu; Nagahiro, Shin-ichiro; Mitarai, Namiko

    2012-01-01

    A dense mixture of granules and liquid often shows a severe shear thickening and is called a dilatant fluid. We construct a fluid dynamics model for the dilatant fluid by introducing a phenomenological state variable for a local state of dispersed particles. With simple assumptions for an equation...... of the state variable, we demonstrate that the model can describe basic features of the dilatant fluid such as the stress-shear rate curve that represents discontinuous severe shear thickening, hysteresis upon changing shear rate, and instantaneous hardening upon external impact. An analysis of the model...... reveals that the shear thickening fluid shows an instability in a shear flow for some regime and exhibits the shear thickening oscillation (i.e., the oscillatory shear flow alternating between the thickened and the relaxed states). The results of numerical simulations are presented for one- and two...

  18. Advances in Environmental Fluid Mechanics

    CERN Document Server

    Mihailovic, Dragutin T

    2010-01-01

    Environmental fluid mechanics (EFM) is the scientific study of transport, dispersion and transformation processes in natural fluid flows on our planet Earth, from the microscale to the planetary scale. This book brings together scientists and engineers working in research institutions, universities and academia, who engage in the study of theoretical, modeling, measuring and software aspects in environmental fluid mechanics. It provides a forum for the participants, and exchanges new ideas and expertise through the presentations of up-to-date and recent overall achievements in this field.

  19. Assessment of Computational Fluid Dynamics (CFD) Models for Shock Boundary-Layer Interaction

    Science.gov (United States)

    DeBonis, James R.; Oberkampf, William L.; Wolf, Richard T.; Orkwis, Paul D.; Turner, Mark G.; Babinsky, Holger

    2011-01-01

    A workshop on the computational fluid dynamics (CFD) prediction of shock boundary-layer interactions (SBLIs) was held at the 48th AIAA Aerospace Sciences Meeting. As part of the workshop numerous CFD analysts submitted solutions to four experimentally measured SBLIs. This paper describes the assessment of the CFD predictions. The assessment includes an uncertainty analysis of the experimental data, the definition of an error metric and the application of that metric to the CFD solutions. The CFD solutions provided very similar levels of error and in general it was difficult to discern clear trends in the data. For the Reynolds Averaged Navier-Stokes methods the choice of turbulence model appeared to be the largest factor in solution accuracy. Large-eddy simulation methods produced error levels similar to RANS methods but provided superior predictions of normal stresses.

  20. Fluid dynamics

    CERN Document Server

    Bernard, Peter S

    2015-01-01

    This book presents a focused, readable account of the principal physical and mathematical ideas at the heart of fluid dynamics. Graduate students in engineering, applied math, and physics who are taking their first graduate course in fluids will find this book invaluable in providing the background in physics and mathematics necessary to pursue advanced study. The book includes a detailed derivation of the Navier-Stokes and energy equations, followed by many examples of their use in studying the dynamics of fluid flows. Modern tensor analysis is used to simplify the mathematical derivations, thus allowing a clearer view of the physics. Peter Bernard also covers the motivation behind many fundamental concepts such as Bernoulli's equation and the stream function. Many exercises are designed with a view toward using MATLAB or its equivalent to simplify and extend the analysis of fluid motion including developing flow simulations based on techniques described in the book.

  1. Fluid mechanics in the perivascular space.

    Science.gov (United States)

    Wang, Peng; Olbricht, William L

    2011-04-07

    Perivascular space (PVS) within the brain is an important pathway for interstitial fluid (ISF) and solute transport. Fluid flowing in the PVS can affect these transport processes and has significant impacts on physiology. In this paper, we carry out a theoretical analysis to investigate the fluid mechanics in the PVS. With certain assumptions and approximations, we are able to find an analytical solution to the problem. We discuss the physical meanings of the solution and particularly examine the consequences of the induced fluid flow in the context of convection-enhanced delivery (CED). We conclude that peristaltic motions of the blood vessel walls can facilitate fluid and solute transport in the PVS.

  2. Analysis and Design of Circular Plate MR Fluids Brake

    Institute of Scientific and Technical Information of China (English)

    Yang Yan; Lin Chang-Hua; Li Hui; Zhou Jing

    2004-01-01

    A magnetorheological (MR) fluids brake is a device to achieve brake by shear force of MR fluids. A MR rotary brake has the property that its braking torque changes quickly in response to an external magnetic field. In this study, the design method of the circular plate MR fluids brake is investigated theoretically. The equation of the torque transmitted by the MR fluids in the brake is derived to provide the theoretical foundation in the design of the brake. Based on this equation, after mathematically manipulated, the calculations of the volume, thickness and width of the MR fluids within the circular plate MR fluids brake are yield.

  3. Characteristics of fluid substitution in porous rocks

    Institute of Scientific and Technical Information of China (English)

    Li Shengjie

    2009-01-01

    Analysis of the effect of changes in fluid properties of rocks on the compressional-wave velocity VP and shear-wave velocity Vs is very important for understanding the rock physical properties, especially in oilfield exploration and development.The fluid substitution process was analyzed by using ultrasonic measurement and theoretical calculations.The results showed that the effect of fluid substitution on the rock elastic modulus was mainly controlled by fluid properties, saturation, and confining pressure.For a rock with specific properties and porosity, the result of theoretical prediction for fluid substitution accorded with the experimental result under high confining pressure (higher than 60 MPa for our experimental data), but failed to describe the trend of experimental result under low confining pressure and VP predicted by Gassmann's equation was higher than that measured by experiment.A higher porosity resulted in stronger sensitivity of the bulk modulus of saturated rocks to the change of fluid properties.

  4. R fluids

    Directory of Open Access Journals (Sweden)

    Caimmi R.

    2008-01-01

    Full Text Available A theory of collisionless fluids is developed in a unified picture, where nonrotating (Ωf1 = Ωf2 = Ωf3 = 0 figures with some given random velocity component distributions, and rotating (Ωf1 = Ωf2 = Ωf3 figures with a different random velocity component distributions, make adjoint configurations to the same system. R fluids are defined as ideal, self-gravitating fluids satisfying the virial theorem assumptions, in presence of systematic rotation around each of the principal axes of inertia. To this aim, mean and rms angular velocities and mean and rms tangential velocity components are expressed, by weighting on the moment of inertia and the mass, respectively. The figure rotation is defined as the mean angular velocity, weighted on the moment of inertia, with respect to a selected axis. The generalized tensor virial equations (Caimmi and Marmo 2005 are formulated for R fluids and further attention is devoted to axisymmetric configurations where, for selected coordinate axes, a variation in figure rotation has to be counterbalanced by a variation in anisotropy excess and vice versa. A microscopical analysis of systematic and random motions is performed under a few general hypotheses, by reversing the sign of tangential or axial velocity components of an assigned fraction of particles, leaving the distribution function and other parameters unchanged (Meza 2002. The application of the reversion process to tangential velocity components is found to imply the conversion of random motion rotation kinetic energy into systematic motion rotation kinetic energy. The application of the reversion process to axial velocity components is found to imply the conversion of random motion translation kinetic energy into systematic motion translation kinetic energy, and the loss related to a change of reference frame is expressed in terms of systematic motion (imaginary rotation kinetic energy. A number of special situations are investigated in greater

  5. R Fluids

    Directory of Open Access Journals (Sweden)

    Caimmi, R.

    2008-06-01

    Full Text Available A theory of collisionless fluids is developed in a unified picture, where nonrotating $(widetilde{Omega_1}=widetilde{Omega_2}= widetilde{Omega_3}=0$ figures with some given random velocity component distributions, and rotating $(widetilde{Omega_1} ewidetilde{Omega_2} e widetilde{Omega_3} $ figures with a different random velocity component distributions, make adjoint configurations to the same system. R fluids are defined as ideal, self-gravitating fluids satisfying the virial theorem assumptions, in presence of systematic rotation around each of the principal axes of inertia. To this aim, mean and rms angular velocities and mean and rms tangential velocity components are expressed, by weighting on the moment of inertia and the mass, respectively. The figure rotation is defined as the mean angular velocity, weighted on the moment of inertia, with respectto a selected axis. The generalized tensor virial equations (Caimmi and Marmo 2005 are formulated for R fluidsand further attention is devoted to axisymmetric configurations where, for selected coordinateaxes, a variation in figure rotation has to be counterbalanced by a variation in anisotropy excess and viceversa. A microscopical analysis of systematic and random motions is performed under a fewgeneral hypotheses, by reversing the sign of tangential or axial velocity components of anassigned fraction of particles, leaving the distribution function and other parametersunchanged (Meza 2002. The application of the reversion process to tangential velocitycomponents is found to imply the conversion of random motion rotation kinetic energy intosystematic motion rotation kinetic energy. The application ofthe reversion process to axial velocity components is found to imply the conversionof random motion translation kinetic energy into systematic motion translation kinetic energy, and theloss related to a change of reference frame is expressed in terms of systematic motion (imaginary rotation kinetic

  6. Fluid Shifts

    Science.gov (United States)

    Stenger, M. B.; Hargens, A. R.; Dulchavsky, S. A.; Arbeille, P.; Danielson, R. W.; Ebert, D. J.; Garcia, K. M.; Johnston, S. L.; Laurie, S. S.; Lee, S. M. C.; Liu, J.; Macias, B.; Martin, D. S.; Minkoff, L.; Ploutz-Snyder, R.; Ribeiro, L. C.; Sargsyan, A.; Smith, S. M.

    2017-01-01

    Introduction. NASA's Human Research Program is focused on addressing health risks associated with long-duration missions on the International Space Station (ISS) and future exploration-class missions beyond low Earth orbit. Visual acuity changes observed after short-duration missions were largely transient, but now more than 50 percent of ISS astronauts have experienced more profound, chronic changes with objective structural findings such as optic disc edema, globe flattening and choroidal folds. These structural and functional changes are referred to as the visual impairment and intracranial pressure (VIIP) syndrome. Development of VIIP symptoms may be related to elevated intracranial pressure (ICP) secondary to spaceflight-induced cephalad fluid shifts, but this hypothesis has not been tested. The purpose of this study is to characterize fluid distribution and compartmentalization associated with long-duration spaceflight and to determine if a relation exists with vision changes and other elements of the VIIP syndrome. We also seek to determine whether the magnitude of fluid shifts during spaceflight, as well as any VIIP-related effects of those shifts, are predicted by the crewmember's pre-flight status and responses to acute hemodynamic manipulations, specifically posture changes and lower body negative pressure. Methods. We will examine a variety of physiologic variables in 10 long-duration ISS crewmembers using the test conditions and timeline presented in the figure below. Measures include: (1) fluid compartmentalization (total body water by D2O, extracellular fluid by NaBr, intracellular fluid by calculation, plasma volume by CO rebreathe, interstitial fluid by calculation); (2) forehead/eyelids, tibia, and calcaneus tissue thickness (by ultrasound); (3) vascular dimensions by ultrasound (jugular veins, cerebral and carotid arteries, vertebral arteries and veins, portal vein); (4) vascular dynamics by MRI (head/neck blood flow, cerebrospinal fluid

  7. Theoretical models in low-Reynolds-number locomotion

    CERN Document Server

    Pak, On Shun

    2014-01-01

    The locomotion of microorganisms in fluids is ubiquitous and plays an important role in numerous biological processes. In this chapter we present an overview of theoretical modeling for low-Reynolds-number locomotion.

  8. Bistability in a simple fluid network due to viscosity contrast

    CERN Document Server

    Geddes, John B; Gardner, David; Carr, Russell T

    2009-01-01

    We study the existence of multiple equilibrium states in a simple fluid network using Newtonian fluids and laminar flow. We demonstrate theoretically the presence of hysteresis and bistability, and we confirm these predictions in an experiment using two miscible fluids of different viscosity--sucrose solution and water. Possible applications include bloodflow, microfluidics, and other network flows governed by similar principles.

  9. Fluid Effects in Polymers and Polymeric Composites

    CERN Document Server

    Weitsman, Y Jack

    2012-01-01

    Fluid Effects in Polymers and Polymeric Composites, written by the late Dr. Y. Jack Weitsman, addresses the wide range of parameters that affect the interaction of fluids with polymers and polymeric composites. The book aims at broadening the scope of available data, mostly limited up to this time to weight-gain recordings of fluid ingress into polymers and composites, to the practical circumstances of fluctuating exposure. Various forms of experimental data are given, in conjunction with theoretical models derived from basic scientific principles, and correlated with severity of exposure conditions and interpreted by means of rationally based theoretical models. The practical implications of the effects of fluids are discussed. The issue of fluid effects on polymers and polymeric composites is of concern to engineers and scientists active in aerospace and naval structures, as an increasing portion of these structures are made of polymeric composites and employ polymeric adhesives as a joining device. While...

  10. Fluid dynamics

    CERN Document Server

    Ruban, Anatoly I

    This is the first book in a four-part series designed to give a comprehensive and coherent description of Fluid Dynamics, starting with chapters on classical theory suitable for an introductory undergraduate lecture course, and then progressing through more advanced material up to the level of modern research in the field. The present Part 1 consists of four chapters. Chapter 1 begins with a discussion of Continuum Hypothesis, which is followed by an introduction to macroscopic functions, the velocity vector, pressure, density, and enthalpy. We then analyse the forces acting inside a fluid, and deduce the Navier-Stokes equations for incompressible and compressible fluids in Cartesian and curvilinear coordinates. In Chapter 2 we study the properties of a number of flows that are presented by the so-called exact solutions of the Navier-Stokes equations, including the Couette flow between two parallel plates, Hagen-Poiseuille flow through a pipe, and Karman flow above an infinite rotating disk. Chapter 3 is d...

  11. Analysis on Standards of American AIAA Wind Tunnel Test Management and Practitioners%美国AIAA风洞试验管理标准与从业者标准浅析

    Institute of Scientific and Technical Information of China (English)

    战培国

    2013-01-01

    This paper introduces the background of wind tunnel test development, summarizes the developing process and contents of the AIAA wind tunnel standards, expounds the thoughts, management method and the recommended practice of wind tunnel test project in standards, analyzes the advancements of American wind tunnel test techniques reflected from the standards, as well as discusses the inspirations from the usual practive of standards to improve domestic wind tunnel test.%本文归纳了风洞试验发展的历史背景,简述了美国AIAA风洞试验管理标准和从业者标准制定的过程和内容,重点阐述了标准中风洞试验的理念、管理和推荐的风洞试验具体做法,分析了标准中映射出的美国风洞试验技术的先进点,探讨了标准对改进国内风洞试验通常做法的启示。

  12. Pleural Fluid Analysis Test

    Science.gov (United States)

    ... Home Visit Global Sites Search Help? Pleural Fluid Analysis Share this page: Was this page helpful? Formal name: Pleural Fluid Analysis Related tests: Pericardial Fluid Analysis , Peritoneal Fluid Analysis , ...

  13. Scattering methods in complex fluids

    CERN Document Server

    Chen, Sow-Hsin

    2015-01-01

    Summarising recent research on the physics of complex liquids, this in-depth analysis examines the topic of complex liquids from a modern perspective, addressing experimental, computational and theoretical aspects of the field. Selecting only the most interesting contemporary developments in this rich field of research, the authors present multiple examples including aggregation, gel formation and glass transition, in systems undergoing percolation, at criticality, or in supercooled states. Connecting experiments and simulation with key theoretical principles, and covering numerous systems including micelles, micro-emulsions, biological systems, and cement pastes, this unique text is an invaluable resource for graduate students and researchers looking to explore and understand the expanding field of complex fluids.

  14. Heat transfer in space systems; Proceedings of the Symposium, AIAA/ASME Thermophysics and Heat Transfer Conference, Seattle, WA, June 18-20, 1990

    Science.gov (United States)

    Chan, S. H.; Anderson, E. E.; Simoneau, R. J.; Chan, C. K.; Pepper, D. W.

    Theoretical and experimental studies of heat-tranfer in a space environment are discussed in reviews and reports. Topics addressed include a small-scale two-phase thermosiphon to cool high-power electronics, a low-pressure-drop heat exchanger with integral heat pipe, an analysis of the thermal performance of heat-pipe radiators, measurements of temperature and concentration fields in a rectangular heat pipe, and a simplified aerothermal heating method for axisymmetric blunt bodies. Consideration is given to entropy production in a shock wave, bubble-slug transition in a two-phase liquid-gas flow under microgravity, plasma arc welding under normal and zero gravity, the Microgravity Thaw Experiment, the flow of a thin film on stationary and rotating disks, an advanced ceramic fabric body-mounted radiator for Space Station Freedom phase 0 design, and lunar radiators with specular reflectors.

  15. Enhanced active swimming in viscoelastic fluids

    CERN Document Server

    Riley, Emily E

    2014-01-01

    Swimming microorganisms often self propel in fluids with complex rheology. While past theoretical work indicates that fluid viscoelasticity should hinder their locomotion, recent experiments on waving swimmers suggest a possible non-Newtonian enhancement of locomotion. We suggest a physical mechanism, based on fluid-structure interaction, leading to swimming in a viscoelastic fluid at a higher speed than in a Newtonian one. Using Taylor's two-dimensional swimming sheet model, we solve for the shape of an active swimmer as a balance between the external fluid stresses, the internal driving moments, and the passive elastic resistance. We show that this dynamic balance leads to a generic transition from hindered rigid swimming to enhanced flexible locomotion. The results are physically interpreted as due to a viscoelastic suction increasing the swimming amplitude in a non-Newtonian fluid and overcoming viscoelastic damping.

  16. Mathematical Fluid Dynamics of Plasma Flow Control Over High Speed Wings

    Science.gov (United States)

    2009-02-01

    Jan. 2004. P3. Malmuth, N., Krivtsov, V., and Soloviev, V., "Quick, Gridless Estimations of MHD Effects on Hypersonic Inlet Ramp Shocks," AIAA...Opportunities and Challenges," Julian D. Cole Lecture , AIAA J., 44, No.7, 2006, pp. 1377-1392 P6. Malmuth, N.D., Zhakharov, S.B., and

  17. Computational Fluid Dynamics (CFD) Simulations of a Finned Projectile with Microflaps for Flow Control

    Science.gov (United States)

    2016-04-01

    diameter is 30 mm. The conical nose is 2.84 cal. long and is followed by a 7.16-cal. cylindrical section. Four rectangular fins are located on the back...turbulence modeling for unsteady flow with acoustic resonance . Presented at the 38th AIAA Aerospace Sciences Meeting; 2000 Jan; Reno, NV. AIAA Paper No

  18. Theoretical and computational dynamics of a compressible flow

    Science.gov (United States)

    Pai, Shih-I; Luo, Shijun

    1991-01-01

    An introduction to the theoretical and computational fluid dynamics of a compressible fluid is presented. The general topics addressed include: thermodynamics and physical properties of compressible fluids; 1D flow of an inviscid compressible fluid; shock waves; fundamental equations of the dynamics of a compressible inviscid non-heat-conducting and radiating fluid, method of small perturbations, linearized theory; 2D subsonic steady potential flow; hodograph and rheograph methods, exact solutions of 2D insentropic steady flow equations, 2D steady transonic and hypersonic flows, method of characteristics, linearized theory of 3D potential flow, nonlinear theory of 3D compressibe flow, anisentropic (rotational) flow of inviscid compressible fluid, electromagnetogasdynamics, multiphase flows, flows of a compressible fluid with transport phenomena.

  19. Rotational superradiance in fluid laboratories

    CERN Document Server

    Cardoso, Vitor; Richartz, Mauricio; Weinfurtner, Silke

    2016-01-01

    Rotational superradiance has been predicted theoretically decades ago, and is the chief responsible for a number of important effects and phenomenology in black hole physics. However, rotational superradiance has never been observed experimentally. Here, with the aim of probing superradiance in the lab, we investigate the behaviour of sound and surface waves in fluids resting in a circular basin at the center of which a rotating cylinder is placed. We show that with a suitable choice for the material of the cylinder, surface and sound waves are amplified. By confining the superradiant modes near the rotating cylinder, an instability sets in. Our findings are experimentally testable in existing fluid laboratories and hence offer experimental exploration and comparison of dynamical instabilities arising from rapidly rotating boundary layers in astrophysical as well as in fluid dynamical systems.

  20. Fluid Mechanics in Sommerfeld's School

    Science.gov (United States)

    Eckert, Michael

    2015-01-01

    Sommerfeld's affiliation with fluid mechanics started when he began his career as an assistant of the mathematician Felix Klein at Göttingen. He always regarded fluid mechanics as a particular challenge. In 1904, he published a theory of hydrodynamic lubrication. Four years later, he conceived an approach for the analysis of flow instability (the Orr-Sommerfeld approach) as an attempt to account for the transition from laminar to turbulent flow. The onset of turbulence also became a major challenge for some of his pupils, in particular Ludwig Hopf and Fritz Noether. Both contributed considerably to elaborate the Orr-Sommerfeld theory. Heisenberg's doctoral work was another attempt in this quest. When Sommerfeld published his lectures on theoretical physics during World War II, he dedicated one of the six volumes to the mechanics of continuous media. With chapters on boundary layer theory and turbulence, it exceeded the scope of contemporary theoretical physics—revealing Sommerfeld's persistent appreciation of fluid mechanics. He resorted to Prandtl's Göttingen school of fluid mechanics in order to stay abreast of the rapid development of these specialties.

  1. Magnetoviscous model fluids

    CERN Document Server

    Kröger, M; Hess, S

    2003-01-01

    We review, apply and compare diverse approaches to the theoretical understanding of the dynamical and rheological behaviour of ferrofluids and magnetorheological (MR) fluids subject to external magnetic and flow fields. Simple models are introduced which are directly solvable by nonequilibrium Brownian or molecular dynamics computer simulation. In particular, the numerical results for ferrofluids quantify the domain of validity of uniaxial alignment of magnetic moments (in and) out of equilibrium. A Fokker-Planck equation for the dynamics of the magnetic moments - corresponding to the Brownian dynamics approach - and its implications are analysed under this approximation. The basic approach considers the effect of external fields on the dynamics of ellipsoid shaped permanent ferromagnetic domains (aggregates), whose size should depend on the strength of flow and magnetic field, the magnetic interaction parameter and concentration (or packing fraction). Results from analytic calculations and from simulation ar...

  2. Theoretical treatment of fluid flow for accelerating bodies

    CSIR Research Space (South Africa)

    Gledhill, Irvy MA

    2016-02-01

    Full Text Available changes are observed over a trajectory which is orders of magnitude longer than the vehicle itself. Added mass effects are important for manoeuvre for vehicles suspended in a medium of similar density to their own, such as airships and submarines...

  3. Theoretical investigation of micropolar fluid flow between two porous disks

    Institute of Scientific and Technical Information of China (English)

    P Valipour; S E Ghasemi; M Vatani

    2015-01-01

    The steady, laminar, incompressible and two dimensional micropolar flow between two porous disks was investigated using optimal homotopy asymptotic method (OHAM) and fourth order Runge–Kutta numerical method. Comparison between OHAM and numerical method shows that OHAM is an exact and high efficient method for solving these kinds of problems. The results are presented to study the velocity and rotation profiles for different physical parameters such as Reynolds number, vortex viscosity parameter, spin gradient viscosity and microinertia density parameter. As an important outcome, the magnitude of the microrotation increases with an increase in the values of injection velocity while it decreases by increasing the values of suction velocity.

  4. Capillary condensation for fluids in spherical cavities

    OpenAIRE

    Urrutia, Ignacio; Szybisz, Leszek

    2005-01-01

    The capillary condensation for fluids into spherical nano-cavities is analyzed within the frame of two theoretical approaches. One description is based on a widely used simplified version of the droplet model formulated for studying atomic nuclei. The other, is a more elaborated calculation performed by applying a density functional theory. The agreement between both models is examined and it is shown that a small correction to the simple fluid model improves the predictions. A connection to ...

  5. Lattice Boltzmann simulation of transverse wave travelling in Maxwell viscoelastic fluid

    Institute of Scientific and Technical Information of China (English)

    Li Hua-Bing; Fang Hai-Ping

    2004-01-01

    A nine-velocity lattice Boltzmann method for Maxwell viscoelastic fluid is proposed. Travelling of transverse wave in Maxwell viscoelastic fluid is simulated. The instantaneous oscillating velocity, transverse shear speed and decay rate agree with theoretical results very well.

  6. A microsphere suspension model of metamaterial fluids

    Directory of Open Access Journals (Sweden)

    Qian Duan

    2017-05-01

    Full Text Available Drawing an analogy to the liquid phase of natural materials, we theoretically propose a microsphere suspension model to realize a metamaterial fluid with artificial electromagnetic indexes. By immersing high-ε, micrometer-sized dielectric spheres in a low-ε insulating oil, the structured fluid exhibits liquid-like properties from dispersing phase as well as the isotropic negative electromagnetic parameters caused by Mie resonances from dispersed microspheres. The work presented here will benefit the development of structured fluids toward metamaterials.

  7. Microfabrication of hybrid fluid membrane for microengines

    Science.gov (United States)

    Chutani, R.; Formosa, F.; de Labachelerie, M.; Badel, A.; Lanzetta, F.

    2015-12-01

    This paper describes the microfabrication and dynamic characterization of thick membranes providing a technological solution for microengines. The studied membranes are called hybrid fluid-membrane (HFM) and consist of two thin membranes that encapsulate an incompressible fluid. This work details the microelectromechanical system (MEMS) scalable fabrication and characterization of HFMs. The membranes are composite structures based on Silicon spiral springs embedded in a polymer (RTV silicone). The anodic bonding of multiple stacks of Si/glass structures, the fluid filling and the sealing have been demonstrated. Various HFMs were successfully fabricated and their dynamic characterization demonstrates the agreement between experimental and theoretical results.

  8. Fluid dynamics theory, computation, and numerical simulation

    CERN Document Server

    Pozrikidis, C

    2001-01-01

    Fluid Dynamics Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes Two distinguishing features of the discourse are solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty Matlab codes are presented and discussed for a broad...

  9. Fluid Dynamics Theory, Computation, and Numerical Simulation

    CERN Document Server

    Pozrikidis, Constantine

    2009-01-01

    Fluid Dynamics: Theory, Computation, and Numerical Simulation is the only available book that extends the classical field of fluid dynamics into the realm of scientific computing in a way that is both comprehensive and accessible to the beginner. The theory of fluid dynamics, and the implementation of solution procedures into numerical algorithms, are discussed hand-in-hand and with reference to computer programming. This book is an accessible introduction to theoretical and computational fluid dynamics (CFD), written from a modern perspective that unifies theory and numerical practice. There are several additions and subject expansions in the Second Edition of Fluid Dynamics, including new Matlab and FORTRAN codes. Two distinguishing features of the discourse are: solution procedures and algorithms are developed immediately after problem formulations are presented, and numerical methods are introduced on a need-to-know basis and in increasing order of difficulty. Matlab codes are presented and discussed for ...

  10. Theoretical nuclear physics

    CERN Document Server

    Blatt, John M

    2010-01-01

    A classic work by two leading physicists and scientific educators endures as an uncommonly clear and cogent investigation and correlation of key aspects of theoretical nuclear physics. It is probably the most widely adopted book on the subject. The authors approach the subject as ""the theoretical concepts, methods, and considerations which have been devised in order to interpret the experimental material and to advance our ability to predict and control nuclear phenomena.""The present volume does not pretend to cover all aspects of theoretical nuclear physics. Its coverage is restricted to

  11. Numerical simulation of multi-fluid shock-turbulence interaction

    Science.gov (United States)

    Tian, Yifeng; Jaberi, Farhad; Livescu, Daniel; Li, Zhaorui

    2017-01-01

    Accurate numerical simulation of multi-fluid Shock-Turbulence Interaction (STI) is conducted by a hybrid monotonicity preserving-compact finite difference scheme for a detailed study of STI in variable density flows. Theoretical and numerical assessments of data confirm that all turbulence scales as well as the STI are well captured by the computational method. Comparison of multi-fluid and single-fluid data indicates that the turbulent kinetic energy is amplified more and the scalar mixing is enhanced more by the shock in flows involving two different fluids/densities when compared with those observed in single-fluid flows.

  12. Theoretical Computer Science

    DEFF Research Database (Denmark)

    2002-01-01

    The proceedings contains 8 papers from the Conference on Theoretical Computer Science. Topics discussed include: query by committee, linear separation and random walks; hardness results for neural network approximation problems; a geometric approach to leveraging weak learners; mind change...

  13. Order-theoretical connectivity

    Directory of Open Access Journals (Sweden)

    T. A. Richmond

    1990-01-01

    Full Text Available Order-theoretically connected posets are introduced and applied to create the notion of T-connectivity in ordered topological spaces. As special cases T-connectivity contains classical connectivity, order-connectivity, and link-connectivity.

  14. Theoretical Computer Science

    DEFF Research Database (Denmark)

    2002-01-01

    The proceedings contains 8 papers from the Conference on Theoretical Computer Science. Topics discussed include: query by committee, linear separation and random walks; hardness results for neural network approximation problems; a geometric approach to leveraging weak learners; mind change...

  15. Consensus theoretic classification methods

    Science.gov (United States)

    Benediktsson, Jon A.; Swain, Philip H.

    1992-01-01

    Consensus theory is adopted as a means of classifying geographic data from multiple sources. The foundations and usefulness of different consensus theoretic methods are discussed in conjunction with pattern recognition. Weight selections for different data sources are considered and modeling of non-Gaussian data is investigated. The application of consensus theory in pattern recognition is tested on two data sets: 1) multisource remote sensing and geographic data and 2) very-high-dimensional remote sensing data. The results obtained using consensus theoretic methods are found to compare favorably with those obtained using well-known pattern recognition methods. The consensus theoretic methods can be applied in cases where the Gaussian maximum likelihood method cannot. Also, the consensus theoretic methods are computationally less demanding than the Gaussian maximum likelihood method and provide a means for weighting data sources differently.

  16. Theoretical and computational chemistry.

    Science.gov (United States)

    Meuwly, Markus

    2010-01-01

    Computer-based and theoretical approaches to chemical problems can provide atomistic understanding of complex processes at the molecular level. Examples ranging from rates of ligand-binding reactions in proteins to structural and energetic investigations of diastereomers relevant to organo-catalysis are discussed in the following. They highlight the range of application of theoretical and computational methods to current questions in chemical research.

  17. Theoretical physics and astrophysics

    CERN Document Server

    Ginzburg, VL

    1979-01-01

    The aim of this book is to present, on the one hand various topics in theoretical physics in depth - especially topics related to electrodynamics - and on the other hand to show how these topics find applications in various aspects of astrophysics. The first text on theoretical physics and astrophysical applications, it covers many recent advances including those in X-ray, &ggr;-ray and radio-astronomy, with comprehensive coverage of the literature

  18. Auxillary Fluid Flowmeter

    DEFF Research Database (Denmark)

    RezaNejad Gatabi, Javad; Forouzbakhsh, Farshid; Ebrahimi Darkhaneh, Hadi

    2010-01-01

    and with measuring its travel time between two different positions, its velocity could be calculated. Given the velocity of the auxiliary fluid, the velocity of the main fluid could be calculated. Using this technique, it is possible to measure the velocity of any kind of fluids, if an appropriate auxiliary fluid...

  19. Fluid mechanics in fluids at rest.

    Science.gov (United States)

    Brenner, Howard

    2012-07-01

    Using readily available experimental thermophoretic particle-velocity data it is shown, contrary to current teachings, that for the case of compressible flows independent dye- and particle-tracer velocity measurements of the local fluid velocity at a point in a flowing fluid do not generally result in the same fluid velocity measure. Rather, tracer-velocity equality holds only for incompressible flows. For compressible fluids, each type of tracer is shown to monitor a fundamentally different fluid velocity, with (i) a dye (or any other such molecular-tagging scheme) measuring the fluid's mass velocity v appearing in the continuity equation and (ii) a small, physicochemically and thermally inert, macroscopic (i.e., non-Brownian), solid particle measuring the fluid's volume velocity v(v). The term "compressibility" as used here includes not only pressure effects on density, but also temperature effects thereon. (For example, owing to a liquid's generally nonzero isobaric coefficient of thermal expansion, nonisothermal liquid flows are to be regarded as compressible despite the general perception of liquids as being incompressible.) Recognition of the fact that two independent fluid velocities, mass- and volume-based, are formally required to model continuum fluid behavior impacts on the foundations of contemporary (monovelocity) fluid mechanics. Included therein are the Navier-Stokes-Fourier equations, which are now seen to apply only to incompressible fluids (a fact well-known, empirically, to experimental gas kineticists). The findings of a difference in tracer velocities heralds the introduction into fluid mechanics of a general bipartite theory of fluid mechanics, bivelocity hydrodynamics [Brenner, Int. J. Eng. Sci. 54, 67 (2012)], differing from conventional hydrodynamics in situations entailing compressible flows and reducing to conventional hydrodynamics when the flow is incompressible, while being applicable to both liquids and gases.

  20. Videotapes and Movies on Fluid Dynamics and Fluid Machines

    OpenAIRE

    Carr, Bobbie; Young, Virginia E.

    1996-01-01

    Chapter 17 of Handbook of Fluid Dynamics and Fluid Machinery: Experimental and Computational Fluid Dynamics, Volume 11. A list of videorecordings and 16mm motion pictures about Fluid Dynamics and Fluid Machines.

  1. Linking rigid multibody systems via controllable thin fluid films

    DEFF Research Database (Denmark)

    Estupinan, Edgar Alberto; Santos, Ilmar

    2009-01-01

    , this paper gives a theoretical contribution to the combined fields of fluid–structure interaction and vibration control. The methodology is applied to a reciprocating linear compressor, where the dynamics of the mechanical components are described with help of multibody dynamics. The crank is linked...... of the journal orbits, maximum fluid film pressure and minimum fluid film thickness....

  2. Mesoscale Structures at Complex Fluid-Fluid Interfaces: a Novel Lattice Boltzmann / Molecular Dynamics Coupling

    OpenAIRE

    Sega, Marcello; Sbragaglia, Mauro; Kantorovich, Sofia Sergeevna; Ivanov, Alexey Olegovich

    2013-01-01

    Complex fluid-fluid interfaces featuring mesoscale structures with adsorbed particles are key components of newly designed materials which are continuously enriching the field of soft matter. Simulation tools which are able to cope with the different scales characterizing these systems are fundamental requirements for efficient theoretical investigations. In this paper we present a novel simulation method, based on the approach of Ahlrichs and D\\"unweg [Ahlrichs and D\\"unweg, Int. J. Mod. Phy...

  3. Turbulence theories and modelling of fluids and plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, Akira; Yokoi, Nobumitsu [Institute of Industrial Science, Univ. of Tokyo, Tokyo (Japan); Itoh, Sanae-I. [Research Institute for Applied Mechanics, Kyushu Univ., Kasuga, Fukuoka (Japan); Itoh, Kimitaka [National Inst. for Fusion Science, Toki, Gifu (Japan)

    2001-04-01

    Theoretical and heuristic modelling methods are reviewed for studying turbulence phenomena of fluids and plasmas. Emphasis is put on understanding of effects on turbulent characteristics due to inhomogeneities of field and plasma parameters. The similarity and dissimilarity between the methods for fluids and plasmas are sought in order to shed light on the properties that are shared or not by fluid and plasma turbulence. (author)

  4. Turbulence theories and modelling of fluids and plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, Akira; Yokio, Nobumitsu [Institute of Industrial Science, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Itoh, Sanae-I [Research Institute for Applied Mechanics, Kyushu University, 87, Kasuga 816-8580 (Japan); Itoh, Kimitaka [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2001-03-01

    Theoretical and heuristic modelling methods are reviewed for studying turbulence phenomena of fluids and plasmas. Emphasis is placed on understanding of effects on turbulence characteristics due to inhomogeneities of field and plasma parameters. The similarity and dissimilarity between the methods for fluids and plasmas are sought in order to shed light on the properties that are shared or not by fluid and plasma turbulence. (author)

  5. Experimental Approach to Teaching Fluids

    Science.gov (United States)

    Stern, Catalina

    2015-11-01

    For the last 15 years we have promoted experimental work even in the theoretical courses. Fluids appear in the Physics curriculum of the National University of Mexico in two courses: Collective Phenomena in their sophomore year and Continuum Mechanics in their senior year. In both, students are asked for a final project. Surprisingly, at least 85% choose an experimental subject even though this means working extra hours every week. Some of the experiments were shown in this congress two years ago. This time we present some new results and the methodology we use in the classroom. I acknowledge support from the Physics Department, Facultad de Ciencias, UNAM.

  6. Earthquakes triggered by fluid extraction

    Science.gov (United States)

    Segall, P.

    1989-01-01

    Seismicity is correlated in space and time with production from some oil and gas fields where pore pressures have declined by several tens of megapascals. Reverse faulting has occurred both above and below petroleum reservoirs, and normal faulting has occurred on the flanks of at least one reservoir. The theory of poroelasticity requires that fluid extraction locally alter the state of stress. Calculations with simple geometries predict stress perturbations that are consistent with observed earthquake locations and focal mechanisms. Measurements of surface displacement and strain, pore pressure, stress, and poroelastic rock properties in such areas could be used to test theoretical predictions and improve our understanding of earthquake mechanics. -Author

  7. Theoretical Criteria for the Occurrence of Turbulence in Burger's Equation

    CERN Document Server

    Imperio, J C; Laganapan, A; Esguerra, J P H; Muriel, A

    2007-01-01

    Throughout the history of the study of turbulence in fluid dynamics, there has yet to arise a unique definition or theoretical criterion for this important phenomenon. There have been interesting conjectures made by Ruelle [2], Muriel [3], and Getreuer, Albano and Muriel [6], however, attempting to provide the sufficient criteria for the onset of turbulence. In this paper, a classic equation in fluid dynamics, Burger's equation, is solved in one and two dimensions, and these conjectures are illustrated. This illustration supports these conjectures by showing that the proposed criteria do arise mathematically from the solutions of an equation modelling fluid flows.

  8. Reflections on theoretical pragmatics

    Institute of Scientific and Technical Information of China (English)

    黄衍

    2001-01-01

    This paper provides a critical survey of theoretical pragmatics in contemporary linguistics. Among the topics that are addressed in the essay include the Anglo-American, and European Continental schools of thought;neo-Gricean pragmatic, and Relevance theories, the pragmatics-semantics interface; and the pragmatics-syntax interface.

  9. Free fingering at the contact between spreading viscous fluids

    Science.gov (United States)

    Neufeld, Jerome; Gell, Laura; Box, Finn

    2015-11-01

    The spreading of viscous fluids is an everyday phenomena with large-scale applications to the flow of glaciers and the dynamics of mountain formation in continental collisions. When viscous fluids spread on an undeformable base the contact line is stable to perturbations. In contrast, when less viscous fluids displace more viscous fluids, as in a Hele-Shaw cell or porous matrix, the contact line is unstable to a fingering phenomena. Here we show, experimentally and theoretically, that when a viscous fluid spreads on a pre-existing layer of fixed depth and differing viscosity the geometry of the contact line depends sensitively on the ratio of fluid viscosities, the input flux and the initial layer depth. When the injected fluid is less viscous the contact line may become unstable to a fingering pattern reminiscent of Saffman-Taylor fingering. We explore the parameter space of this new instability, and highlight its applicability to understanding mountain formation and glacial ice streams.

  10. A flexible micro fluid transport system featuring magnetorheological elastomer

    Science.gov (United States)

    Behrooz, Majid; Gordaninejad, Faramarz

    2016-02-01

    This study presents a flexible magnetically-actuated micro fluid transport system utilizing an isotropic magnetorheological elastomer (MRE). Theoretical modeling and analysis of this system is presented for a two-dimensional model. This fluid transport system can propel the fluid by applying a fluctuating magnetic field on the MRE. The magneto-fluid-structure interaction analysis is employed to determine movement of the solid domain and the velocity of the fluid under a controllable magnetic field. The effects of key material, geometric, and magnetic parameters on the behavior of this system are examined. It is demonstrated that the proposed system can propel the fluid unidirectionally, and the volume of the transported fluid is significantly affected by some of the design parameters.

  11. Synovial fluid analysis

    Science.gov (United States)

    ... bursae (fluid-filled sacs in the joints), and tendon sheaths. After the joint area is cleaned, the ... HS. Synovial fluid analysis, synovial biopsy, and synovial pathology. In: Firestein GS, Budd RC, Gabriel SE, McInnes ...

  12. Amniotic fluid (image)

    Science.gov (United States)

    Amniotic fluid surrounds the growing fetus in the womb and protects the fetus from injury and temperature changes. ... of fetal movement and permits musculoskeletal development. The amniotic fluid can be withdrawn in a procedure called amniocentsis ...

  13. Pericardial Fluid Analysis

    Science.gov (United States)

    ... help diagnose the cause of inflammation of the pericardium (pericarditis) and/or fluid accumulation around the heart ( ... pressure within blood vessels or inflammation of the pericardium. An initial set of tests, including fluid protein ...

  14. Pericardial fluid Gram stain

    Science.gov (United States)

    ... staining a sample of fluid taken from the pericardium. This is the sac surrounding the heart to ... sample of fluid will be taken from the pericardium. This is done through a procedure called pericardiocentesis . ...

  15. Lectures on fluid mechanics

    CERN Document Server

    Shinbrot, Marvin

    2012-01-01

    Readable and user-friendly, this high-level introduction explores the derivation of the equations of fluid motion from statistical mechanics, classical theory, and a portion of the modern mathematical theory of viscous, incompressible fluids. 1973 edition.

  16. Electric fluid pump

    Science.gov (United States)

    Van Dam, Jeremy Daniel; Turnquist, Norman Arnold; Raminosoa, Tsarafidy; Shah, Manoj Ramprasad; Shen, Xiaochun

    2015-09-29

    An electric machine is presented. The electric machine includes a hollow rotor; and a stator disposed within the hollow rotor, the stator defining a flow channel. The hollow rotor includes a first end portion defining a fluid inlet, a second end portion defining a fluid outlet; the fluid inlet, the fluid outlet, and the flow channel of the stator being configured to allow passage of a fluid from the fluid inlet to the fluid outlet via the flow channel; and wherein the hollow rotor is characterized by a largest cross-sectional area of hollow rotor, and wherein the flow channel is characterized by a smallest cross-sectional area of the flow channel, wherein the smallest cross-sectional area of the flow channel is at least about 25% of the largest cross-sectional area of the hollow rotor. An electric fluid pump and a power generation system are also presented.

  17. Fluid force transducer

    Science.gov (United States)

    Jendrzejczyk, Joseph A.

    1982-01-01

    An electrical fluid force transducer for measuring the magnitude and direction of fluid forces caused by lateral fluid flow, includes a movable sleeve which is deflectable in response to the movement of fluid, and a rod fixed to the sleeve to translate forces applied to the sleeve to strain gauges attached to the rod, the strain gauges being connected in a bridge circuit arrangement enabling generation of a signal output indicative of the magnitude and direction of the force applied to the sleeve.

  18. Problems in Microgravity Fluid Mechanics: G-Jitter Convection

    Science.gov (United States)

    Homsy, G. M.

    2005-01-01

    This is the final report on our NASA grant, Problems in Microgravity Fluid Mechanics NAG3-2513: 12/14/2000 - 11/30/2003, extended through 11/30/2004. This grant was made to Stanford University and then transferred to the University of California at Santa Barbara when the PI relocated there in January 2001. Our main activity has been to conduct both experimental and theoretical studies of instabilities in fluids that are relevant to the microgravity environment, i.e. those that do not involve the action of buoyancy due to a steady gravitational field. Full details of the work accomplished under this grant are given below. Our work has focused on: (i) Theoretical and computational studies of the effect of g-jitter on instabilities of convective states where the convection is driven by forces other than buoyancy (ii) Experimental studies of instabilities during displacements of miscible fluid pairs in tubes, with a focus on the degree to which these mimic those found in immiscible fluids. (iii) Theoretical and experimental studies of the effect of time dependent electrohydrodynamic forces on chaotic advection in drops immersed in a second dielectric liquid. Our objectives are to acquire insight and understanding into microgravity fluid mechanics problems that bear on either fundamental issues or applications in fluid physics. We are interested in the response of fluids to either a fluctuating acceleration environment or to forces other than gravity that cause fluid mixing and convection. We have been active in several general areas.

  19. THE THEORETICAL MODEL FOR PREDICTING CIRCULATION VELOCITY OF HYDRAULIC BRAKE

    Institute of Scientific and Technical Information of China (English)

    刘英林; 侯春生

    1997-01-01

    By rational hypothesis of fluid flow pattern, applied the law of conservation of energy and integrated the laboratory test results, finished the prediction by the theoretical model of circulation velocity of hydraulic brake which is important parameter. Thus provide the theoritical basis for hydraulic brake of belt conveyor whose research has just been started.

  20. Lectures on Geophysical Fluid Dynamics

    Science.gov (United States)

    Samelson, Roger M.

    The fluid kaleidoscope of the Earth's ocean and atmosphere churns and sparkles with jets, gyres, eddies, waves, streams, and cyclones. These vast circulations, essential elements of the physical environment that support human life, are given a special character by the Earth's rotation and by their confinement to a shallow surficial layer, thin relative to the solid Earth in roughly the same proportion as an apple skin is to an apple. Geophysical fluid dynamics exploits this special character to develop a unified theoretical approach to the physics of the ocean and atmosphere.With Lectures on Geophysical Fluid Dynamics, Rick Salmon has added an insightful and provocative volume to the handful of authoritative texts currently available on the subject. The book is intended for first-year graduate students, but advanced students and researchers also will find it useful. It is divided into seven chapters, the first four of these adapted from course lectures. The book is well written and presents a fresh and stimulating perspective that complements existing texts. It would serve equally well either as the main text for a core graduate curriculum or as a supplementary resource for students and teachers seeking new approaches to both classical and contemporary problems. A lively set of footnotes contains many references to very recent work. The printing is attractive, the binding is of high quality, and typographical errors are few.

  1. Theoretical atomic physics

    CERN Document Server

    Friedrich, Harald

    2017-01-01

    This expanded and updated well-established textbook contains an advanced presentation of quantum mechanics adapted to the requirements of modern atomic physics. It includes topics of current interest such as semiclassical theory, chaos, atom optics and Bose-Einstein condensation in atomic gases. In order to facilitate the consolidation of the material covered, various problems are included, together with complete solutions. The emphasis on theory enables the reader to appreciate the fundamental assumptions underlying standard theoretical constructs and to embark on independent research projects. The fourth edition of Theoretical Atomic Physics contains an updated treatment of the sections involving scattering theory and near-threshold phenomena manifest in the behaviour of cold atoms (and molecules). Special attention is given to the quantization of weakly bound states just below the continuum threshold and to low-energy scattering and quantum reflection just above. Particular emphasis is laid on the fundamen...

  2. Compendium of theoretical physics

    CERN Document Server

    Wachter, Armin

    2006-01-01

    Mechanics, Electrodynamics, Quantum Mechanics, and Statistical Mechanics and Thermodynamics comprise the canonical undergraduate curriculum of theoretical physics. In Compendium of Theoretical Physics, Armin Wachter and Henning Hoeber offer a concise, rigorous and structured overview that will be invaluable for students preparing for their qualifying examinations, readers needing a supplement to standard textbooks, and research or industrial physicists seeking a bridge between extensive textbooks and formula books. The authors take an axiomatic-deductive approach to each topic, starting the discussion of each theory with its fundamental equations. By subsequently deriving the various physical relationships and laws in logical rather than chronological order, and by using a consistent presentation and notation throughout, they emphasize the connections between the individual theories. The reader’s understanding is then reinforced with exercises, solutions and topic summaries. Unique Features: Every topic is ...

  3. Robustness - theoretical framework

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Rizzuto, Enrico; Faber, Michael H.

    2010-01-01

    More frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure combined with increased requirements to efficiency in design and execution followed by increased risk of human errors has made the need of requirements to robustness of new struct...... of this fact sheet is to describe a theoretical and risk based framework to form the basis for quantification of robustness and for pre-normative guidelines....

  4. Electrochemical kinetics theoretical aspects

    CERN Document Server

    Vetter, Klaus J

    1967-01-01

    Electrochemical Kinetics: Theoretical Aspects focuses on the processes, methodologies, reactions, and transformations in electrochemical kinetics. The book first offers information on electrochemical thermodynamics and the theory of overvoltage. Topics include equilibrium potentials, concepts and definitions, electrical double layer and electrocapillarity, and charge-transfer, diffusion, and reaction overvoltage. Crystallization overvoltage, total overvoltage, and resistance polarization are also discussed. The text then examines the methods of determining electrochemical reaction mechanisms

  5. Theoretical Delay Time Distributions

    CERN Document Server

    Nelemans, Gijs; Bours, Madelon

    2012-01-01

    We briefly discuss the method of population synthesis to calculate theoretical delay time distributions of type Ia supernova progenitors. We also compare the results of the different research groups and conclude that although one of the main differences in the results for single degenerate progenitors is the retention efficiency with which accreted hydrogen is added to the white dwarf core, this cannot explain all the differences.

  6. Theoretical Delay Time Distributions

    Science.gov (United States)

    Nelemans, Gijs; Toonen, Silvia; Bours, Madelon

    2013-01-01

    We briefly discuss the method of population synthesis to calculate theoretical delay time distributions of Type Ia supernova progenitors. We also compare the results of different research groups and conclude that, although one of the main differences in the results for single degenerate progenitors is the retention efficiency with which accreted hydrogen is added to the white dwarf core, this alone cannot explain all the differences.

  7. Silicene: Recent theoretical advances

    KAUST Repository

    Lew Yan Voon, L. C.

    2016-04-14

    Silicene is a two-dimensional allotrope of silicon with a puckered hexagonal structure closely related to the structure of graphene and that has been predicted to be stable. To date, it has been successfully grown in solution (functionalized) and on substrates. The goal of this review is to provide a summary of recent theoretical advances in the properties of both free-standing silicene as well as in interaction with molecules and substrates, and of proposed device applications.

  8. MARKETING MIX THEORETICAL ASPECTS

    OpenAIRE

    Margarita Išoraitė

    2016-01-01

    Aim of article is to analyze marketing mix theoretical aspects. The article discusses that marketing mix is one of the main objectives of the marketing mix elements for setting objectives and marketing budget measures. The importance of each element depends not only on the company and its activities, but also on the competition and time. All marketing elements are interrelated and should be seen in the whole of their actions. Some items may have greater importance than others; it depends main...

  9. Robustness - theoretical framework

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Rizzuto, Enrico; Faber, Michael H.

    2010-01-01

    More frequent use of advanced types of structures with limited redundancy and serious consequences in case of failure combined with increased requirements to efficiency in design and execution followed by increased risk of human errors has made the need of requirements to robustness of new struct...... of this fact sheet is to describe a theoretical and risk based framework to form the basis for quantification of robustness and for pre-normative guidelines....

  10. Theoretical numerical analysis

    CERN Document Server

    Wendroff, Burton

    1966-01-01

    Theoretical Numerical Analysis focuses on the presentation of numerical analysis as a legitimate branch of mathematics. The publication first elaborates on interpolation and quadrature and approximation. Discussions focus on the degree of approximation by polynomials, Chebyshev approximation, orthogonal polynomials and Gaussian quadrature, approximation by interpolation, nonanalytic interpolation and associated quadrature, and Hermite interpolation. The text then ponders on ordinary differential equations and solutions of equations. Topics include iterative methods for nonlinear systems, matri

  11. Observations of spontaneous oscillations in simple two-fluid networks

    CERN Document Server

    Storey, Brian D; Karst, Nathaniel J; Geddes, John B

    2014-01-01

    Nonlinear phenomena including multiple equilibria and spontaneous oscillations are common in fluid networks containing either multiple phases or constituent flows. In many systems, such behavior might be attributed to the complicated geometry of the network, the complex rheology of the constituent fluids, or, in the case of microvascular blood flow, biological control. In this paper we investigate a simple fluid network containing two miscible Newtonian fluids of differing viscosities. We demonstrate experimentally that such networks can be unstable and that experiments agree with theoretical predictions of the existence of such oscillations.

  12. COMPLEX HEAT TRANSFER ENHANCEMENT BY FLUID INDUCED VIBRATION

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    A new method of heat transfer enhancement by fluid induced vibration was put forward, and its theoretical analysis and experimental study were performed. Though people always try to prophylaxis fluid induced vibration for regarding it as an accident, the utilization space of fluid induced vibration is still very large. The in-surface and out-surface vibrations which come from the fluid induce elastic tube bundles, can effectively increase the convective heat transfer coefficient, and also decrease the fouling resistance, then increase the heat transfer coefficient remarkably.

  13. Theoretical Developments in SUSY

    Science.gov (United States)

    Shifman, M.

    2009-01-01

    I am proud that I was personally acquainted with Julius Wess. We first met in 1999 when I was working on the Yuri Golfand Memorial Volume (The Many Faces of the Superworld, World Scientific, Singapore, 2000). I invited him to contribute, and he accepted this invitation with enthusiasm. After that, we met many times, mostly at various conferences in Germany and elsewhere. I was lucky to discuss with Julius questions of theoretical physics, and hear his recollections on how supersymmetry was born. In physics Julius was a visionary, who paved the way to generations of followers. In everyday life he was a kind and modest person, always ready to extend a helping hand to people who were in need of his help. I remember him telling me how concerned he was about the fate of theoretical physicists in Eastern Europe after the demise of communism. His ties with Israeli physicists bore a special character. I am honored by the opportunity to contribute an article to the Julius Wess Memorial Volume. I will review theoretical developments of the recent years in non-perturbative supersymmetry.

  14. Theoretical developments in SUSY

    Energy Technology Data Exchange (ETDEWEB)

    Shifman, M. [University of Minnesota, William I. Fine Theoretical Physics Institute, Minneapolis, MN (United States)

    2009-01-15

    I am proud that I was personally acquainted with Julius Wess. We first met in 1999 when I was working on the Yuri Golfand Memorial Volume (The Many Faces of the Superworld, World Scientific, Singapore, 2000). I invited him to contribute, and he accepted this invitation with enthusiasm. After that, we met many times, mostly at various conferences in Germany and elsewhere. I was lucky to discuss with Julius questions of theoretical physics, and hear his recollections on how supersymmetry was born. In physics Julius was a visionary, who paved the way to generations of followers. In everyday life he was a kind and modest person, always ready to extend a helping hand to people who were in need of his help. I remember him telling me how concerned he was about the fate of theoretical physicists in Eastern Europe after the demise of communism. His ties with Israeli physicists bore a special character. I am honored by the opportunity to contribute an article to the Julius Wess Memorial Volume. I review theoretical developments of the recent years in non-perturbative supersymmetry. (orig.)

  15. An immersed boundary method for two-phase fluids and gels and the swimming of Caenorhabditis elegans through viscoelastic fluids

    Science.gov (United States)

    Lee, Pilhwa; Wolgemuth, Charles W.

    2016-01-01

    The swimming of microorganisms typically involves the undulation or rotation of thin, filamentary objects in a fluid or other medium. Swimming in Newtonian fluids has been examined extensively, and only recently have investigations into microorganism swimming through non-Newtonian fluids and gels been explored. The equations that govern these more complex media are often nonlinear and require computational algorithms to study moderate to large amplitude motions of the swimmer. Here, we develop an immersed boundary method for handling fluid-structure interactions in a general two-phase medium, where one phase is a Newtonian fluid and the other phase is viscoelastic (e.g., a polymer melt or network). We use this algorithm to investigate the swimming of an undulating, filamentary swimmer in 2D (i.e., a sheet). A novel aspect of our method is that it allows one to specify how forces produced by the swimmer are distributed between the two phases of the fluid. The algorithm is validated by comparing theoretical predictions for small amplitude swimming in gels and viscoelastic fluids. We show how the swimming velocity depends on material parameters of the fluid and the interaction between the fluid and swimmer. In addition, we simulate the swimming of Caenorhabditis elegans in viscoelastic fluids and find good agreement between the swimming speeds and fluid flows in our simulations and previous experimental measurements. These results suggest that our methodology provides an accurate means for exploring the physics of swimming through non-Newtonian fluids and gels.

  16. Fluid and particle mechanics

    CERN Document Server

    Michell, S J

    2013-01-01

    Fluid and Particle Mechanics provides information pertinent to hydraulics or fluid mechanics. This book discusses the properties and behavior of liquids and gases in motion and at rest. Organized into nine chapters, this book begins with an overview of the science of fluid mechanics that is subdivided accordingly into two main branches, namely, fluid statics and fluid dynamics. This text then examines the flowmeter devices used for the measurement of flow of liquids and gases. Other chapters consider the principle of resistance in open channel flow, which is based on improper application of th

  17. Fluid cooled electrical assembly

    Science.gov (United States)

    Rinehart, Lawrence E.; Romero, Guillermo L.

    2007-02-06

    A heat producing, fluid cooled assembly that includes a housing made of liquid-impermeable material, which defines a fluid inlet and a fluid outlet and an opening. Also included is an electrical package having a set of semiconductor electrical devices supported on a substrate and the second major surface is a heat sink adapted to express heat generated from the electrical apparatus and wherein the second major surface defines a rim that is fit to the opening. Further, the housing is constructed so that as fluid travels from the fluid inlet to the fluid outlet it is constrained to flow past the opening thereby placing the fluid in contact with the heat sink.

  18. Spinning fluids reactor

    Science.gov (United States)

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  19. Theoretical and computational analyses of LNG evaporator

    Science.gov (United States)

    Chidambaram, Palani Kumar; Jo, Yang Myung; Kim, Heuy Dong

    2017-04-01

    Theoretical and numerical analysis on the fluid flow and heat transfer inside a LNG evaporator is conducted in this work. Methane is used instead of LNG as the operating fluid. This is because; methane constitutes over 80% of natural gas. The analytical calculations are performed using simple mass and energy balance equations. The analytical calculations are made to assess the pressure and temperature variations in the steam tube. Multiphase numerical simulations are performed by solving the governing equations (basic flow equations of continuity, momentum and energy equations) in a portion of the evaporator domain consisting of a single steam pipe. The flow equations are solved along with equations of species transport. Multiphase modeling is incorporated using VOF method. Liquid methane is the primary phase. It vaporizes into the secondary phase gaseous methane. Steam is another secondary phase which flows through the heating coils. Turbulence is modeled by a two equation turbulence model. Both the theoretical and numerical predictions are seen to match well with each other. Further parametric studies are planned based on the current research.

  20. Theoretical Astrophysics at Fermilab

    Science.gov (United States)

    2004-01-01

    The Theoretical Astrophysics Group works on a broad range of topics ranging from string theory to data analysis in the Sloan Digital Sky Survey. The group is motivated by the belief that a deep understanding of fundamental physics is necessary to explain a wide variety of phenomena in the universe. During the three years 2001-2003 of our previous NASA grant, over 120 papers were written; ten of our postdocs went on to faculty positions; and we hosted or organized many workshops and conferences. Kolb and collaborators focused on the early universe, in particular and models and ramifications of the theory of inflation. They also studied models with extra dimensions, new types of dark matter, and the second order effects of super-horizon perturbations. S tebbins, Frieman, Hui, and Dodelson worked on phenomenological cosmology, extracting cosmological constraints from surveys such as the Sloan Digital Sky Survey. They also worked on theoretical topics such as weak lensing, reionization, and dark energy. This work has proved important to a number of experimental groups [including those at Fermilab] planning future observations. In general, the work of the Theoretical Astrophysics Group has served as a catalyst for experimental projects at Fennilab. An example of this is the Joint Dark Energy Mission. Fennilab is now a member of SNAP, and much of the work done here is by people formerly working on the accelerator. We have created an environment where many of these people made transition from physics to astronomy. We also worked on many other topics related to NASA s focus: cosmic rays, dark matter, the Sunyaev-Zel dovich effect, the galaxy distribution in the universe, and the Lyman alpha forest. The group organized and hosted a number of conferences and workshop over the years covered by the grant. Among them were:

  1. Institute for Theoretical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Giddings, S.B.; Ooguri, H.; Peet, A.W.; Schwarz, J.H.

    1998-06-01

    String theory is the only serious candidate for a unified description of all known fundamental particles and interactions, including gravity, in a single theoretical framework. Over the past two years, activity in this subject has grown rapidly, thanks to dramatic advances in understanding the dynamics of supersymmetric field theories and string theories. The cornerstone of these new developments is the discovery of duality which relates apparently different string theories and transforms difficult strongly coupled problems of one theory into weakly coupled problems of another theory.

  2. Theoretical astrophysics an introduction

    CERN Document Server

    Bartelmann, Matthias

    2013-01-01

    A concise yet comprehensive introduction to the central theoretical concepts of modern astrophysics, presenting hydrodynamics, radiation, and stellar dynamics all in one textbook. Adopting a modular structure, the author illustrates a small number of fundamental physical methods and principles, which are sufficient to describe and understand a wide range of seemingly very diverse astrophysical phenomena and processes. For example, the formulae that define the macroscopic behavior of stellar systems are all derived in the same way from the microscopic distribution function. This function it

  3. Theoretical Optics An Introduction

    CERN Document Server

    Römer, Hartmann

    2004-01-01

    Starting from basic electrodynamics, this volume provides a solid, yet concise introduction to theoretical optics, containing topics such as nonlinear optics, light-matter interaction, and modern topics in quantum optics, including entanglement, cryptography, and quantum computation. The author, with many years of experience in teaching and research, goes way beyond the scope of traditional lectures, enabling readers to keep up with the current state of knowledge. Both content and presentation make it essential reading for graduate and phD students as well as a valuable reference for researche

  4. Theoretical solid state physics

    CERN Document Server

    Haug, Albert

    2013-01-01

    Theoretical Solid State Physics, Volume 1 focuses on the study of solid state physics. The volume first takes a look at the basic concepts and structures of solid state physics, including potential energies of solids, concept and classification of solids, and crystal structure. The book then explains single-electron approximation wherein the methods for calculating energy bands; electron in the field of crystal atoms; laws of motion of the electrons in solids; and electron statistics are discussed. The text describes general forms of solutions and relationships, including collective electron i

  5. Tactic-specific differences in seminal fluid influence sperm performance.

    Science.gov (United States)

    Locatello, Lisa; Poli, Federica; Rasotto, Maria B

    2013-03-22

    Seminal fluid often makes up a large part of an ejaculate, yet most empirical and theoretical studies on sperm competition have focused on how sperm characteristics (number and quality) affect fertilization success. However, seminal fluid influences own sperm performance and may potentially influence the outcome of sperm competition, by also affecting that of rivals. As a consequence males may be expected to allocate their investment in both sperm and seminal fluid in relation to the potential level of competition. Grass goby (Zosterisessor ophiocephalus) is an external fertilizer with guard-sneaker mating tactics, where sperm competition risk varies according to the tactic adopted. Here, we experimentally manipulated grass goby ejaculates by separately combining sperm and seminal fluid from territorial and sneaker males. While sperm of sneaker and territorial males did not differ in their performance when they interacted with their own seminal fluid only, sperm of sneakers increased their velocity and fertilization rate in the presence of territorial males' seminal fluid. By contrast, sneaker males' seminal fluid had a detrimental effect on the performance of territorial males' sperm. Sperm velocity was unaffected by the seminal fluid of males employing the same tactic, suggesting that seminal fluid's effect on rival-tactic sperm is not based on a self/non-self recognition mechanism. Our findings show that cross interactions of sperm and seminal fluid may influence the fertilization success of competing ejaculates with males investing in both sperm and seminal fluid in response to sperm competition risk.

  6. Theoretical Plasma Physics

    Energy Technology Data Exchange (ETDEWEB)

    Vahala, George M. [College of William and Mary, Williamsburg, VA (United States)

    2013-12-31

    Lattice Boltzmann algorithms are a mesoscopic method to solve problems in nonlinear physics which are highly parallelized – unlike the direction solution of the original problem. These methods are applied to both fluid and magnetohydrodynamic turbulence. By introducing entropic constraints one can enforce the positive definiteness of the distribution functions and so be able to simulate fluids at high Reynolds numbers without numerical instabilities. By introducing a vector distribution function for the magnetic field one can enforce the divergence free condition on the magnetic field automatically, without the need of divergence cleaning as needed in most direct numerical solutions of the resistive magnetohydrodynamic equations. The principal reason for the high parallelization of lattice Boltzmann codes is that they consist of a kinetic collisional relaxation step (which is purely local) followed by a simple shift of the relaxed data to neighboring lattice sites. In large eddy simulations, the closure schemes are highly nonlocal – the most famous of these schemes is that due to Smagorinsky. Under a lattice Boltzmann representation the Smagorinsky closure is purely local – being simply a particular moment on the perturbed distribution fucntions. After nonlocal fluid moment models were discovered to represent Landau damping, it was found possible to model these fluid models using an appropriate lattice Boltzmann algorithm. The close to ideal parallelization of the lattice Boltzmann codes permitted us to be Gordon Bell finalists on using the Earth Simulation in Japan. We have also been involved in the radio frequency propagation of waves into a tokamak and into a spherical overdense tokamak plasma. Initially we investigated the use of a quasi-optical grill for the launching of lower hybrid waves into a tokamak. It was found that the conducting walls do not prevent the rods from being properly irradiated, the overloading of the quasi-optical grill is not severe

  7. Design factors for “linear” ball valve: theoretical and experimental studies

    OpenAIRE

    Thananchai Leephakpreeda

    2005-01-01

    Generic non-linear flow characteristics of the conventional ball valve limit the applications of flow modulation in fluid processes. This work presents the flow characteristics of fluid flowing through the conventional and modified ball valves for feasibility of a “linear” ball valve. Theoretical studies are discussed for determining explicit and implicit factors on the valve coefficient, which modulates the flow rate of fluid when the ball valve is operated in flow control processes. In expe...

  8. Considerations of blood properties, outlet boundary conditions and energy loss approaches in computational fluid dynamics modeling.

    Science.gov (United States)

    Moon, Ji Young; Suh, Dae Chul; Lee, Yong Sang; Kim, Young Woo; Lee, Joon Sang

    2014-02-01

    Despite recent development of computational fluid dynamics (CFD) research, analysis of computational fluid dynamics of cerebral vessels has several limitations. Although blood is a non-Newtonian fluid, velocity and pressure fields were computed under the assumptions of incompressible, laminar, steady-state flows and Newtonian fluid dynamics. The pulsatile nature of blood flow is not properly applied in inlet and outlet boundaries. Therefore, we present these technical limitations and discuss the possible solution by comparing the theoretical and computational studies.

  9. Statistical mechanics of homogeneous partly pinned fluid systems.

    Science.gov (United States)

    Krakoviack, Vincent

    2010-12-01

    The homogeneous partly pinned fluid systems are simple models of a fluid confined in a disordered porous matrix obtained by arresting randomly chosen particles in a one-component bulk fluid or one of the two components of a binary mixture. In this paper, their configurational properties are investigated. It is shown that a peculiar complementarity exists between the mobile and immobile phases, which originates from the fact that the solid is prepared in presence of and in equilibrium with the adsorbed fluid. Simple identities follow, which connect different types of configurational averages, either relative to the fluid-matrix system or to the bulk fluid from which it is prepared. Crucial simplifications result for the computation of important structural quantities, both in computer simulations and in theoretical approaches. Finally, possible applications of the model in the field of dynamics in confinement or in strongly asymmetric mixtures are suggested.

  10. Dye solubility in supercritical carbon dioxide fluid

    Directory of Open Access Journals (Sweden)

    Yan Jun

    2015-01-01

    Full Text Available Supercritical carbon dioxide fluid is an alternative solvent for the water of the traditional dyeing. The solubility of dyestuff affects greatly the dyeing process. A theoretical model for predicting the dye solubility is proposed and verified experimentally. The paper concludes that the pressure has a greater impact on the dyestuff solubility than temperature, and an optimal dyeing condition is suggested for the highest distribution coefficient of dyestuff.

  11. Resonant Triad Instability in Stratified Fluids

    CERN Document Server

    Joubaud, Sylvain; Odier, Philippe; Dauxois, Thierry

    2012-01-01

    Internal gravity waves contribute to fluid mixing and energy transport, not only in oceans but also in the atmosphere and in astrophysical bodies. We provide here the first experimental measurement of the growth rate of a resonant triad instability (also called parametric subharmonic instability) transferring energy to smaller scales where it is dissipated. We make careful and quantitative comparisons with theoretical predictions for propagating vertical modes in laboratory experiments.

  12. Studies of complexity in fluid systems

    Energy Technology Data Exchange (ETDEWEB)

    Kadanoff, L.P.; Constantin, P.; Dupont, T.F.; Nagel, S.

    1993-02-01

    Objective is to bring together researchers from several disciplines (mathematics, numerical computation, theoretical and experimental physics) who share an interest in the development of complexity in fluid systems. Work is in progress on development of singular interfluid interfaces on several fronts. Striking variations in droplet formation can be observed in physical experiments and simulations based on simple models. High-speed photographs are being taken of small liquid drop breaking into droplets. Experimental studies of granular materials are being continued.

  13. Detecting Rotational Superradiance in Fluid Laboratories

    OpenAIRE

    Cardoso, Vitor; Coutant, Antonin; Richartz, Mauricio; Weinfurtner, Silke

    2016-01-01

    Rotational superradiance was predicted theoretically decades ago, and is chiefly responsible for a number of important effects and phenomenology in black-hole physics. However, rotational superradiance has never been observed experimentally. Here, with the aim of probing superradiance in the lab, we investigate the behavior of sound and surface waves in fluids resting in a circular basin at the center of which a rotating cylinder is placed. We show that with a suitable choice for the material...

  14. Quantum turbulence: Theoretical and numerical problems

    Science.gov (United States)

    Nemirovskii, Sergey K.

    2013-03-01

    The term “quantum turbulence” (QT) unifies the wide class of phenomena where the chaotic set of one dimensional quantized vortex filaments (vortex tangles) appear in quantum fluids and greatly influence various physical features. Quantum turbulence displays itself differently depending on the physical situation, and ranges from quasi-classical turbulence in flowing fluids to a near equilibrium set of loops in phase transition. The statistical configurations of the vortex tangles are certainly different in, say, the cases of counterflowing helium and a rotating bulk, but in all the physical situations very similar theoretical and numerical problems arise. Furthermore, quite similar situations appear in other fields of physics, where a chaotic set of one dimensional topological defects, such as cosmic strings, or linear defects in solids, or lines of darkness in nonlinear light fields, appear in the system. There is an interpenetration of ideas and methods between these scientific topics which are far apart in other respects. The main purpose of this review is to bring together some of the most commonly discussed results on quantum turbulence, focusing on analytic and numerical studies. We set out a series of results on the general theory of quantum turbulence which aim to describe the properties of the chaotic vortex configuration, starting from vortex dynamics. In addition we insert a series of particular questions which are important both for the whole theory and for the various applications. We complete the article with a discussion of the hot topic, which is undoubtedly mainstream in this field, and which deals with the quasi-classical properties of quantum turbulence. We discuss this problem from the point of view of the theoretical results stated in the previous sections. We also included section, which is devoted to the experimental and numerical suggestions based on the discussed theoretical models.

  15. Fluid dynamics theory, computation, and numerical simulation

    CERN Document Server

    Pozrikidis, C

    2017-01-01

    This book provides an accessible introduction to the basic theory of fluid mechanics and computational fluid dynamics (CFD) from a modern perspective that unifies theory and numerical computation. Methods of scientific computing are introduced alongside with theoretical analysis and MATLAB® codes are presented and discussed for a broad range of topics: from interfacial shapes in hydrostatics, to vortex dynamics, to viscous flow, to turbulent flow, to panel methods for flow past airfoils. The third edition includes new topics, additional examples, solved and unsolved problems, and revised images. It adds more computational algorithms and MATLAB programs. It also incorporates discussion of the latest version of the fluid dynamics software library FDLIB, which is freely available online. FDLIB offers an extensive range of computer codes that demonstrate the implementation of elementary and advanced algorithms and provide an invaluable resource for research, teaching, classroom instruction, and self-study. This ...

  16. Detecting Rotational Superradiance in Fluid Laboratories

    Science.gov (United States)

    Cardoso, Vitor; Coutant, Antonin; Richartz, Mauricio; Weinfurtner, Silke

    2016-12-01

    Rotational superradiance was predicted theoretically decades ago, and is chiefly responsible for a number of important effects and phenomenology in black-hole physics. However, rotational superradiance has never been observed experimentally. Here, with the aim of probing superradiance in the lab, we investigate the behavior of sound and surface waves in fluids resting in a circular basin at the center of which a rotating cylinder is placed. We show that with a suitable choice for the material of the cylinder, surface and sound waves are amplified. Two types of instabilities are studied: one sets in whenever superradiant modes are confined near the rotating cylinder and the other, which does not rely on confinement, corresponds to a local excitation of the cylinder. Our findings are experimentally testable in existing fluid laboratories and, hence, offer experimental exploration and comparison of dynamical instabilities arising from rapidly rotating boundary layers in astrophysical as well as in fluid dynamical systems.

  17. Undulatory swimming in shear-thinning fluids

    CERN Document Server

    Gagnon, David A; Arratia, Paulo E

    2014-01-01

    The swimming behaviour of microorganisms can be strongly influenced by the rheology of their fluid environment. In this manuscript, we experimentally investigate the effects of shear-thinning viscosity on the swimming behaviour of an undulatory swimmer, the nematode Caenorhabditis elegans. Tracking methods are used to measure the swimmer's kinematic data (including propulsion speed) and velocity fields. We find that shear-thinning viscosity modifies the velocity fields produced by the swimming nematode but does not modify the nematode's speed and beating kinematics. Velocimetry data show significant enhancement in local vorticity and circulation, and an increase in fluid velocity near the nematode's tail, compared to Newtonian fluids of similar effective viscosity. These findings are in good agreement with recent theoretical and numerical results.

  18. Nonlinear waves in strongly interacting relativistic fluids

    CERN Document Server

    Fogaça, D A; Filho, L G Ferreira

    2013-01-01

    During the past decades the study of strongly interacting fluids experienced a tremendous progress. In the relativistic heavy ion accelerators, specially the RHIC and LHC colliders, it became possible to study not only fluids made of hadronic matter but also fluids of quarks and gluons. Part of the physics program of these machines is the observation of waves in this strongly interacting medium. From the theoretical point of view, these waves are often treated with li-nearized hydrodynamics. In this text we review the attempts to go beyond linearization. We show how to use the Reductive Perturbation Method to expand the equations of (ideal and viscous) relativistic hydrodynamics to obtain nonlinear wave equations. These nonlinear wave equations govern the evolution of energy density perturbations (in hot quark gluon plasma) or baryon density perturbations (in cold quark gluon plasma and nuclear matter). Different nonlinear wave equations, such as the breaking wave, Korteweg-de Vries and Burgers equations, are...

  19. Detecting Rotational Superradiance in Fluid Laboratories.

    Science.gov (United States)

    Cardoso, Vitor; Coutant, Antonin; Richartz, Mauricio; Weinfurtner, Silke

    2016-12-30

    Rotational superradiance was predicted theoretically decades ago, and is chiefly responsible for a number of important effects and phenomenology in black-hole physics. However, rotational superradiance has never been observed experimentally. Here, with the aim of probing superradiance in the lab, we investigate the behavior of sound and surface waves in fluids resting in a circular basin at the center of which a rotating cylinder is placed. We show that with a suitable choice for the material of the cylinder, surface and sound waves are amplified. Two types of instabilities are studied: one sets in whenever superradiant modes are confined near the rotating cylinder and the other, which does not rely on confinement, corresponds to a local excitation of the cylinder. Our findings are experimentally testable in existing fluid laboratories and, hence, offer experimental exploration and comparison of dynamical instabilities arising from rapidly rotating boundary layers in astrophysical as well as in fluid dynamical systems.

  20. Metalworking and machining fluids

    Science.gov (United States)

    Erdemir, Ali; Sykora, Frank; Dorbeck, Mark

    2010-10-12

    Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.

  1. Electrorheological fluids and methods

    Energy Technology Data Exchange (ETDEWEB)

    Green, Peter F.; McIntyre, Ernest C.

    2015-06-02

    Electrorheological fluids and methods include changes in liquid-like materials that can flow like milk and subsequently form solid-like structures under applied electric fields; e.g., about 1 kV/mm. Such fluids can be used in various ways as smart suspensions, including uses in automotive, defense, and civil engineering applications. Electrorheological fluids and methods include one or more polar molecule substituted polyhedral silsesquioxanes (e.g., sulfonated polyhedral silsesquioxanes) and one or more oils (e.g., silicone oil), where the fluid can be subjected to an electric field.

  2. The Fluids RAP

    Science.gov (United States)

    Nedyalkov, Ivaylo

    2016-11-01

    After fifteen years of experience in rap, and ten in fluid mechanics, "I am coming here with high-Reynolds-number stamina; I can beat these rap folks whose flows are... laminar." The rap relates fluid flows to rap flows. The fluid concepts presented in the song have varying complexity and the listeners/viewers will be encouraged to read the explanations on a site dedicated to the rap. The music video will provide an opportunity to share high-quality fluid visualizations with a general audience. This talk will present the rap lyrics, the vision for the video, and the strategy for outreach. Suggestions and comments will be welcomed.

  3. Fluid dynamics transactions

    CERN Document Server

    Fiszdon, W

    1965-01-01

    Fluid Dynamics Transactions, Volume 2 compiles 46 papers on fluid dynamics, a subdiscipline of fluid mechanics that deals with fluid flow. The topics discussed in this book include developments in interference theory for aeronautical applications; diffusion from sources in a turbulent boundary layer; unsteady motion of a finite wing span in a compressible medium; and wall pressure covariance and comparison with experiment. The certain classes of non-stationary axially symmetric flows in magneto-gas-dynamics; description of the phenomenon of secondary flows in curved channels by means of co

  4. Theoretical Particle Astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Kamionkowski, Marc

    2013-08-07

    Abstract: Theoretical Particle Astrophysics The research carried out under this grant encompassed work on the early Universe, dark matter, and dark energy. We developed CMB probes for primordial baryon inhomogeneities, primordial non-Gaussianity, cosmic birefringence, gravitational lensing by density perturbations and gravitational waves, and departures from statistical isotropy. We studied the detectability of wiggles in the inflation potential in string-inspired inflation models. We studied novel dark-matter candidates and their phenomenology. This work helped advance the DoE's Cosmic Frontier (and also Energy and Intensity Frontiers) by finding synergies between a variety of different experimental efforts, by developing new searches, science targets, and analyses for existing/forthcoming experiments, and by generating ideas for new next-generation experiments.

  5. Theoretical physics 5 thermodynamics

    CERN Document Server

    Nolting, Wolfgang

    2017-01-01

    This concise textbook offers a clear and comprehensive introduction to thermodynamics, one of the core components of undergraduate physics courses. It follows on naturally from the previous volumes in this series, defining macroscopic variables, such as internal energy, entropy and pressure,together with thermodynamic principles. The first part of the book introduces the laws of thermodynamics and thermodynamic potentials. More complex themes are covered in the second part of the book, which describes phases and phase transitions in depth. Ideally suited to undergraduate students with some grounding in classical mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful German editions, the eight volumes of this series cove...

  6. Theoretical Molecular Biophysics

    CERN Document Server

    Scherer, Philipp

    2010-01-01

    "Theoretical Molecular Biophysics" is an advanced study book for students, shortly before or after completing undergraduate studies, in physics, chemistry or biology. It provides the tools for an understanding of elementary processes in biology, such as photosynthesis on a molecular level. A basic knowledge in mechanics, electrostatics, quantum theory and statistical physics is desirable. The reader will be exposed to basic concepts in modern biophysics such as entropic forces, phase separation, potentials of mean force, proton and electron transfer, heterogeneous reactions coherent and incoherent energy transfer as well as molecular motors. Basic concepts such as phase transitions of biopolymers, electrostatics, protonation equilibria, ion transport, radiationless transitions as well as energy- and electron transfer are discussed within the frame of simple models.

  7. Social Security: Theoretical Aspects

    Directory of Open Access Journals (Sweden)

    O. I. Kashnik

    2013-01-01

    Full Text Available The paper looks at the phenomena of security and social security from the philosophical, sociological and psychological perspective. The undertaken analysis of domestic and foreign scientific materials demonstrates the need for interdisciplinary studies, including pedagogy and education, aimed at developing the guidelines for protecting the social system from destruction. The paper defines the indicators, security level indices and their assessment methods singled out from the analytical reports and security studies by the leading Russian sociological centers and international expert organizations, including the United Nations.The research is aimed at finding out the adequate models of personal and social security control systems at various social levels. The theoretical concepts can be applied by the teachers of the Bases of Life Safety course, the managers and researches developing the assessment criteria and security indices of educational environment evaluation, as well as the methods of diagnostics and expertise of educational establishments from the security standpoint. 

  8. Theoretical physics 3 electrodynamics

    CERN Document Server

    Nolting, Wolfgang

    2016-01-01

    This textbook offers a clear and comprehensive introduction to electrodynamics, one of the core components of undergraduate physics courses. It follows on naturally from the previous volumes in this series. The first part of the book describes the interaction of electric charges and magnetic moments by introducing electro- and magnetostatics. The second part of the book establishes deeper understanding of electrodynamics with the Maxwell equations, quasistationary fields and electromagnetic fields. All sections are accompanied by a detailed introduction to the math needed. Ideally suited to undergraduate students with some grounding in classical and analytical mechanics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful Germa...

  9. A primer on quantum fluids

    CERN Document Server

    Barenghi, Carlo

    2016-01-01

    The aim of this primer is to cover the essential theoretical information, quickly and concisely, in order to enable senior undergraduate and beginning graduate students to tackle projects in topical research areas of quantum fluids, for example, solitons, vortices and collective modes. The selection of the material, both regarding the content and level of presentation, draws on the authors analysis of the success of relevant research projects with newcomers to the field, as well as of the students feedback from many taught and self-study courses on the subject matter. Starting with a brief historical overview, this text covers particle statistics, weakly interacting condensates and their dynamics and finally superfluid helium and quantum turbulence. At the end of each chapter (apart from the first) there will be some exercises. Detailed solutions can be made available to instructors upon request to the authors. .

  10. Investigations on Actuator Dynamics through Theoretical and Finite Element Approach

    Directory of Open Access Journals (Sweden)

    Somashekhar S. Hiremath

    2010-01-01

    Full Text Available This paper gives a new approach for modeling the fluid-structure interaction of servovalve component-actuator. The analyzed valve is a precision flow control valve-jet pipe electrohydraulic servovalve. The positioning of an actuator depends upon the flow rate from control ports, in turn depends on the spool position. Theoretical investigation is made for No-load condition and Load condition for an actuator. These are used in finite element modeling of an actuator. The fluid-structure-interaction (FSI is established between the piston and the fluid cavities at the piston end. The fluid cavities were modeled with special purpose hydrostatic fluid elements while the piston is modeled with brick elements. The finite element method is used to simulate the variation of cavity pressure, cavity volume, mass flow rate, and the actuator velocity. The finite element analysis is extended to study the system's linearized response to harmonic excitation using direct solution steady-state dynamics. It was observed from the analysis that the natural frequency of the actuator depends upon the position of the piston in the cylinder. This is a close match with theoretical and simulation results. The effect of bulk modulus is also presented in the paper.

  11. Theoretical Calculations on Sediment Transport on Titan, and the Possible Production of Streamlined Forms

    Science.gov (United States)

    Burr, D. M.; Emery, J. P.; Lorenz, R. D.

    2005-01-01

    The Cassini Imaging Science System (ISS) has been returning images of Titan, along with other Saturnian satellites. Images taken through the 938 nm methane window see down to Titan's surface. One of the purposes of the Cassini mission is to investigate possible fluid cycling on Titan. Lemniscate features shown recently and radar evidence of surface flow prompted us to consider theoretically the creation by methane fluid flow of streamlined forms on Titan. This follows work by other groups in theoretical consideration of fluid motion on Titan's surface.

  12. Space Station fluid management logistics

    Science.gov (United States)

    Dominick, Sam M.

    1990-01-01

    Viewgraphs and discussion on space station fluid management logistics are presented. Topics covered include: fluid management logistics - issues for Space Station Freedom evolution; current fluid logistics approach; evolution of Space Station Freedom fluid resupply; launch vehicle evolution; ELV logistics system approach; logistics carrier configuration; expendable fluid/propellant carrier description; fluid carrier design concept; logistics carrier orbital operations; carrier operations at space station; summary/status of orbital fluid transfer techniques; Soviet progress tanker system; and Soviet propellant resupply system observations.

  13. Theoretical Description and Numerical Simulation of the Hydrodynamic Coupling

    Directory of Open Access Journals (Sweden)

    V. O. Lomakin

    2016-01-01

    Full Text Available The article’s subject is to study and describe the processes in the hydrodynamic coupling during its operation. The hydrodynamic coupling is a type of hydrodynamic transmission that provides a flexible connection between the input and output shafts, in contrast to the mechanical coupling. Currently, the fluid couplings are widely used and the theoretical description of their operation has been given long before. However, in Russia these units are not produced, the theoretical model is very simple while the experimental data are scattered and non-systematized. So the problem is relevant and requires consideration.The research objective is to complement the existing theoretical model for better describing the fluid coupling operation as well as to compare the results, based on its using, with the numerical simulation results. The main part of the article contains these sections.The mathematical model shows: the equations used for theoretical description of the fluid coupling operation, the basic hydrodynamic equations converted to solve the problem in a stationary setting, and the applied turbulence model (k-ω. The author backslides from the standard jet theory in which the calculation is performed at an average trickle in order to take into consideration the non-uniformity of the velocity distribution in the fluid coupling.The article also raised the issue on the applicability of the stationary formulation of the problem for the numerical simulation. The study revealed that the solutions obtained under stationary and non-stationary calculations practically match. The verification was conducted by three points of characteristic of the hydraulic coupling.The article gives the fluid coupling dimensions, represents an image of its threedimensional model and of the computational grid. It also shows some figures to illustrate the processes in a fluid coupling obtained by its numerical modeling.During the study it was found out that the proposed

  14. Dynamics of Complex Fluid-Fluid Interfaces

    NARCIS (Netherlands)

    Sagis, L.M.C.

    2016-01-01

    This chapter presents an overview of recent progress in modelling the behaviour of complex fluid–fluid interfaces with non-equilibrium thermodynamics. We will limit ourselves to frameworks employing the Gibbs dividing surface model, and start with a general discussion of the surface excess variables

  15. Fluid loading responsiveness

    NARCIS (Netherlands)

    Geerts, Bart

    2011-01-01

    Patients in the intensive care unit (ICU) and in the peri-operative phase are dependent on physicians and nurses for their fluid intake. Volume status optimization is required to maximize oxygen delivery to vital organs. Unnecessary fluid administration can, however, lead to general and pulmonary

  16. Fluid loading responsiveness

    NARCIS (Netherlands)

    Geerts, Bart

    2011-01-01

    Patients in the intensive care unit (ICU) and in the peri-operative phase are dependent on physicians and nurses for their fluid intake. Volume status optimization is required to maximize oxygen delivery to vital organs. Unnecessary fluid administration can, however, lead to general and pulmonary oe

  17. Peritoneal fluid culture

    Science.gov (United States)

    Culture - peritoneal fluid ... sent to the laboratory for Gram stain and culture. The sample is checked to see if bacteria ... The peritoneal fluid culture may be negative, even if you have ... diagnosis of peritonitis is based on other factors, in addition ...

  18. Applications of fluid dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Round, G.R.; Garg, V.K.

    1986-01-01

    This book describes flexible and practical approach to learning the basics of fluid dynamics. Each chapter is a self-contained work session and includes a fluid dynamics concept, an explanation of the principles involved, an illustration of their application and references on where more detailed discussions can be found.

  19. Fluid loading responsiveness

    NARCIS (Netherlands)

    Geerts, Bart

    2011-01-01

    Patients in the intensive care unit (ICU) and in the peri-operative phase are dependent on physicians and nurses for their fluid intake. Volume status optimization is required to maximize oxygen delivery to vital organs. Unnecessary fluid administration can, however, lead to general and pulmonary oe

  20. Numerical simulation of orbitally shaken viscous fluids with free surface

    OpenAIRE

    Discacciati, Marco; Hacker, David; Quarteroni, A.; Quinodoz, Samuel; Tissot, Stéphanie; Wurm, M. Florian

    2013-01-01

    Orbitally shaken bioreactors are an emerging alternative to stirred-tank bioreactors for large-scale mam- malian cell culture, but their fluid dynamics is still not well defined. Among the theoretical and practical issues that remain to be resolved, the characterization of the liquid free surface during orbital shaking remains a major challenge because it is an essential aspect of gas transfer and mixing in these reactors. To simulate the fluid behavior and the free surface shape, we develope...

  1. Meteorological fluid dynamics asymptotic modelling, stability and chaotic atmospheric motion

    CERN Document Server

    Zeytounian, Radyadour K

    1991-01-01

    The author considers meteorology as a part of fluid dynamics. He tries to derive the properties of atmospheric flows from a rational analysis of the Navier-Stokes equations, at the same time analyzing various types of initial and boundary problems. This approach to simulate nature by models from fluid dynamics will be of interest to both scientists and students of physics and theoretical meteorology.

  2. On the fluid-loaded thin-panel absorbers

    Institute of Scientific and Technical Information of China (English)

    TONG Xiaopeng; BAI Guofeng; LIU Ke; TIAN Jing

    2009-01-01

    The sound absorption of fluid-loaded thin-panel absorbers was investigated. A general theory and an approximate theory are given. Parameters of potential energy kinetic energy, and the fluid-loading factor are proposed. This has made the absorption mechanism clearer, and the computation simpler than before. The absorption coefficients and impedances of thin-panel absorbers were tested with a hydro-acoustical tube. The experimental results agreed well with the theoretical results.

  3. Fluid blade disablement tool

    Energy Technology Data Exchange (ETDEWEB)

    Jakaboski, Juan-Carlos [Albuquerque, NM; Hughs, Chance G [Albuquerque, NM; Todd, Steven N [Rio Rancho, NM

    2012-01-10

    A fluid blade disablement (FBD) tool that forms both a focused fluid projectile that resembles a blade, which can provide precision penetration of a barrier wall, and a broad fluid projectile that functions substantially like a hammer, which can produce general disruption of structures behind the barrier wall. Embodiments of the FBD tool comprise a container capable of holding fluid, an explosive assembly which is positioned within the container and which comprises an explosive holder and explosive, and a means for detonating. The container has a concavity on the side adjacent to the exposed surface of the explosive. The position of the concavity relative to the explosive and its construction of materials with thicknesses that facilitate inversion and/or rupture of the concavity wall enable the formation of a sharp and coherent blade of fluid advancing ahead of the detonation gases.

  4. An immersed boundary method for two-phase fluids and gels and the swimming of Caenorhabditis elegans through viscoelastic fluids

    Science.gov (United States)

    Lee, Pilhwa; Wolgemuth, Charles

    2016-11-01

    While swimming in Newtonian fluids has been examined extensively, only recently have investigations into microorganism swimming through non-Newtonian fluids and gels been explored. The equations that govern these more complex media are often nonlinear and require computational algorithms to study moderate to large amplitude motions of the swimmer. Here we develop an immersed boundary method for handling fluid-structure interactions in a general two-phase medium, where one phase is a Newtonian fluid and the other phase is viscoelastic. We use this algorithm to investigate the swimming of an undulating, filamentary swimmer in 2D. A novel aspect of our method is that it allows one to specify how forces produced by the swimmer are distributed between the two phases of the fluid. The algorithm is validated by comparison to theoretical predictions for small amplitude swimming in gels and viscoelastic fluids. We show how the swimming velocity depends on material parameters of the fluid and the interaction between the fluid and swimmer. In addition, we simulate the swimming of Caenorhabditis elegans in viscoelastic fluids and find good agreement between the swimming speeds and fluid flows in our simulations and previous experimental measurements. NIH R01 GM072004, NIH P50GM094503.

  5. Fluid Structure Interactions for Blast Wave Mitigation

    Science.gov (United States)

    2011-05-01

    the flow elds both in front and at the back of the plate are solved using the an Leer flux vector splitting scheme 13,14 coupled with the onotone...directions of characteristic velocity hould be established before the upwind scheme can be imple- ented. The van Leer flux vector splitting scheme is...Anderson, W. K., Thomas, J. L., and Van Leer , B., 1986, “Comparison of Finite Volume Flux Vector Splitting for the Euler Equations,” AIAA J., 249

  6. Theoretical plasma physics

    Science.gov (United States)

    Boozer, A. H.; Vahala, G. M.

    1992-05-01

    Work during the past year in the areas of classical and anomalous transport, three-dimensional equilibria, divertor physics, and diagnostic techniques using waves is reported. Although much work was done on classical transport, the validity of the guiding-center drift equations, which are the basis of much of the theory, has received little attention. The limitations of the drift approximation are being studied. Work on three-dimensional equilibria, which shows that quasi-helical symmetry is broken in third order in the inverse aspect ratio, on the modification of the current profile due to tearing modes was completed. This work is relevant to the maintenance of a steady-state tokamak by the bootstrap current. Divertor physics is a primary area that required development for ITER. One of the few methods by which the physics of the divertor can be modified or controlled is magnetic perturbations. The effect of magnetic perturbations on the divertor scrapeoff layer in collaboration with Hampton University is being studied. The evolution of magnetic field embedded in a moving plasma is a dynamics problem of potential importance. Renormalization techniques gave important insights first in the theory of phase transitions. The applications of these techniques has extended to many areas of physics, including turbulence in fluids and plasmas. Essentially no diagnostics for magnetic fluctuations inside a fusion-grade plasma exist. A collaborative program with Old Dominion University and the Princeton Plasma Physics Laboratory to develop such a diagnostic based on the conversion of electromagnetic waves from the ordinary to the extraordinary mode is underway.

  7. Theoretical Approaches to Coping

    Directory of Open Access Journals (Sweden)

    Sofia Zyga

    2013-01-01

    Full Text Available Introduction: Dealing with stress requires conscious effort, it cannot be perceived as equal to individual's spontaneous reactions. The intentional management of stress must not be confused withdefense mechanisms. Coping differs from adjustment in that the latter is more general, has a broader meaning and includes diverse ways of facing a difficulty.Aim: An exploration of the definition of the term "coping", the function of the coping process as well as its differentiation from other similar meanings through a literature review.Methodology: Three theoretical approaches of coping are introduced; the psychoanalytic approach; approaching by characteristics; and the Lazarus and Folkman interactive model.Results: The strategic methods of the coping approaches are described and the article ends with a review of the approaches including the functioning of the stress-coping process , the classificationtypes of coping strategies in stress-inducing situations and with a criticism of coping approaches.Conclusions: The comparison of coping in different situations is difficult, if not impossible. The coping process is a slow process, so an individual may select one method of coping under one set ofcircumstances and a different strategy at some other time. Such selection of strategies takes place as the situation changes.

  8. Amniotic fluid water dynamics.

    Science.gov (United States)

    Beall, M H; van den Wijngaard, J P H M; van Gemert, M J C; Ross, M G

    2007-01-01

    Water arrives in the mammalian gestation from the maternal circulation across the placenta. It then circulates between the fetal water compartments, including the fetal body compartments, the placenta and the amniotic fluid. Amniotic fluid is created by the flow of fluid from the fetal lung and bladder. A major pathway for amniotic fluid resorption is fetal swallowing; however in many cases the amounts of fluid produced and absorbed do not balance. A second resorption pathway, the intramembranous pathway (across the amnion to the fetal circulation), has been proposed to explain the maintenance of normal amniotic fluid volume. Amniotic fluid volume is thus a function both of the amount of water transferred to the gestation across the placental membrane, and the flux of water across the amnion. Membrane water flux is a function of the water permeability of the membrane; available data suggests that the amnion is the structure limiting intramembranous water flow. In the placenta, the syncytiotrophoblast is likely to be responsible for limiting water flow across the placenta. In human tissues, placental trophoblast membrane permeability increases with gestational age, suggesting a mechanism for the increased water flow necessary in late gestation. Membrane water flow can be driven by both hydrostatic and osmotic forces. Changes in both osmotic/oncotic and hydrostatic forces in the placenta my alter maternal-fetal water flow. A normal amniotic fluid volume is critical for normal fetal growth and development. The study of amniotic fluid volume regulation may yield important insights into the mechanisms used by the fetus to maintain water homeostasis. Knowledge of these mechanisms may allow novel treatments for amniotic fluid volume abnormalities with resultant improvement in clinical outcome.

  9. Nonlinear interactions between the pumping kinetics, fluid dynamics and optical resonator of cw fluid flow lasers. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Sentman, L.H.; Nayfeh, M.H.

    1983-12-01

    This research is an integrated theoretical and experimental investigation of the nonlinear interactions which may occur between the chemical kinetics, the fluid dynamics and the unstable resonator of a continuous wave fluid flow laser. The objectives of this grant were to measure the frequency and amplitude of the time dependent pulsations in the power spectral output which have been predicted to occur in cw chemical lasers employing unstable resonators to extract power.

  10. Micromachined Fluid Inertial Sensors

    Directory of Open Access Journals (Sweden)

    Shiqiang Liu

    2017-02-01

    Full Text Available Micromachined fluid inertial sensors are an important class of inertial sensors, which mainly includes thermal accelerometers and fluid gyroscopes, which have now been developed since the end of the last century for about 20 years. Compared with conventional silicon or quartz inertial sensors, the fluid inertial sensors use a fluid instead of a solid proof mass as the moving and sensitive element, and thus offer advantages of simple structures, low cost, high shock resistance, and large measurement ranges while the sensitivity and bandwidth are not competitive. Many studies and various designs have been reported in the past two decades. This review firstly introduces the working principles of fluid inertial sensors, followed by the relevant research developments. The micromachined thermal accelerometers based on thermal convection have developed maturely and become commercialized. However, the micromachined fluid gyroscopes, which are based on jet flow or thermal flow, are less mature. The key issues and technologies of the thermal accelerometers, mainly including bandwidth, temperature compensation, monolithic integration of tri-axis accelerometers and strategies for high production yields are also summarized and discussed. For the micromachined fluid gyroscopes, improving integration and sensitivity, reducing thermal errors and cross coupling errors are the issues of most concern.

  11. FRACTURING FLUID CHARACTERIZATION FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    Subhash Shah

    2000-08-01

    Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

  12. Coupling electrokinetics and rheology: Electrophoresis in non-Newtonian fluids.

    Science.gov (United States)

    Khair, Aditya S; Posluszny, Denise E; Walker, Lynn M

    2012-01-01

    We present a theoretical scheme to calculate the electrophoretic motion of charged colloidal particles immersed in complex (non-Newtonian) fluids possessing shear-rate-dependent viscosities. We demonstrate that this non-Newtonian rheology leads to an explicit shape and size dependence of the electrophoretic velocity of a uniformly charged particle in the thin-Debye-layer regime, in contrast to electrophoresis in Newtonian fluids. This dependence is caused by non-Newtonian stresses in the bulk (electroneutral) fluid outside the Debye layer, whose magnitude is naturally characterized in an electrophoretic Deborah number.

  13. Surface tension driven flow in glass melts and model fluids

    Science.gov (United States)

    Mcneil, T. J.; Cole, R.; Subramanian, R. S.

    1982-01-01

    Surface tension driven flow has been investigated analytically and experimentally using an apparatus where a free column of molten glass or model fluids was supported at its top and bottom faces by solid surfaces. The glass used in the experiments was sodium diborate, and the model fluids were silicone oils. In both the model fluid and glass melt experiments, conclusive evidence was obtained to prove that the observed flow was driven primarily by surface tension forces. The experimental observations are in qualitative agreement with predictions from the theoretical model.

  14. Applied fluid mechanics; Mecanique des fluides appliquee

    Energy Technology Data Exchange (ETDEWEB)

    Viollet, P.L.; Chabard, J.P.; Esposito, P.; Laurence, D. [Ecole Nationale des Ponts et Chaussees (ENPC), 75 - Paris (France)]|[Electricite de France (EDF), 75 - Paris (France). Direction des Etudes et Recherches

    2002-07-01

    Computational hydraulics, computational fluid dynamics, and hydro-informatics have invaded virtually all domains of research and application in hydro-science and fluids engineering. To the extent that this invasion has led to improved understanding of complex fluid phenomena and provided a frame of reference for testing and verifying designs and operational schemes, we have all benefited from it. But to the extent that it has shifted attention away from fundamental descriptions and understanding of fluid phenomena, and toward computational and numerical issues, this invasion has left avoid in the scientific and technical literature. This void exists somewhere between student exposure to first principles of solid and fluid mechanics on the one hand, and advanced-student and researcher/practitioner exposure to computational techniques and applications on the other. This new text naturally and refreshingly steps in to fill this void, and as such is a most welcome addition to the literature and to personal and institutional libraries. The text is refreshing in its innovative and careful attention to setting the historical framework of general and specific topics. This is most notable in the first chapter, which very gracefully and efficiently leads the reader through historical developments to contemporary mathematical statements of basic fluid phenomena. Once the authors have established this foundation of fundamental principles, they tie each succeeding chapter back into the introduction with appropriate and supportive historical contexts. Although the text does not shy away from rigorous analytical descriptions of fluid phenomena, it is unique in providing this delightful historical context for each topic. The authors have also made a special effort to tie the chapters together into a unified whole, with ample references forward and back; this is indeed rare, and much appreciated, in a text of multiple authorship. The topics treated and chapter structures reflect

  15. Fundamentals of fluid lubrication

    Science.gov (United States)

    Hamrock, Bernard J.

    1991-01-01

    The aim is to coordinate the topics of design, engineering dynamics, and fluid dynamics in order to aid researchers in the area of fluid film lubrication. The lubrication principles that are covered can serve as a basis for the engineering design of machine elements. The fundamentals of fluid film lubrication are presented clearly so that students that use the book will have confidence in their ability to apply these principles to a wide range of lubrication situations. Some guidance on applying these fundamentals to the solution of engineering problems is also provided.

  16. Physics of Fluids

    OpenAIRE

    2007-01-01

    Periodic motion of three stirrers in a two-dimensional flow can lead to chaotic transport of the surrounding fluid. For certain stirrer motions, the generation of chaos is guaranteed solely by the topology of that motion and continuity of the fluid. Work in this area has focused largely on using physical rods as stirrers, but the theory also applies when the "stirrers" are passive fluid particles. We demonstrate the occurrence of topological chaos for Stokes flow in a two-dimensional lid-driv...

  17. Supercritical fluid extraction

    Science.gov (United States)

    Wai, Chien M.; Laintz, Kenneth

    1994-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated or lipophilic crown ether or fluorinated dithiocarbamate. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  18. Geophysical fluid flow experiment

    Science.gov (United States)

    Broome, B. G.; Fichtl, G.; Fowlis, W.

    1979-01-01

    The essential fluid flow processes associated with the solar and Jovian atmospheres will be examined in a laboratory experiment scheduled for performance on Spacelab Missions One and Three. The experimental instrumentation required to generate and to record convective fluid flow is described. Details of the optical system configuration, the lens design, and the optical coatings are described. Measurement of thermal gradient fields by schlieren techniques and measurement of fluid flow velocity fields by photochromic dye tracers is achieved with a common optical system which utilizes photographic film for data recording. Generation of the photochromic dye tracers is described, and data annotation of experimental parameters on the film record is discussed.

  19. Synthetic Base Fluids

    Science.gov (United States)

    Brown, M.; Fotheringham, J. D.; Hoyes, T. J.; Mortier, R. M.; Orszulik, S. T.; Randles, S. J.; Stroud, P. M.

    The chemical nature and technology of the main synthetic lubricant base fluids is described, covering polyalphaolefins, alkylated aromatics, gas-to-liquid (GTL) base fluids, polybutenes, aliphatic diesters, polyolesters, polyalkylene glycols or PAGs and phosphate esters.Other synthetic lubricant base oils such as the silicones, borate esters, perfluoroethers and polyphenylene ethers are considered to have restricted applications due to either high cost or performance limitations and are not considered here.Each of the main synthetic base fluids is described for their chemical and physical properties, manufacture and production, their chemistry, key properties, applications and their implications when used in the environment.

  20. Seismicity and faulting attributable to fluid extraction

    Science.gov (United States)

    Yerkes, R.F.; Castle, R.O.

    1976-01-01

    The association between fluid injection and seismicity has been well documented and widely publicized. Less well known, but probably equally widespread are faulting and shallow seismicity attributable solely to fluid extraction, particularly in association with petroleum production. Two unequivocable examples of seismicity and faulting associated with fluid extraction in the United States are: The Goose Creek, Texas oil field event of 1925 (involving surface rupture); and the Wilmington, California oil field events (involving subsurface rupture) of 1947, 1949, 1951 (2), 1955, and 1961. Six additional cases of intensity I-VII earthquakes (M oil and gas fields. In addition to these examples are thirteen cases of apparently aseismic surface rupture associated with production from California and Texas oil fields. Small earthquakes in the Eloy-Picacho area of Arizona may be attributable to withdrawal of groundwater, but their relation to widespread fissuring is enigmatic. The clearest example of extraction-induced seismicity outside of North America is the 1951 series of earthquakes associated with gas production from the Po River delta near Caviga, Italy. Faulting and seismicity associated with fluid extraction are attributed to differential compaction at depth caused by reduction of reservoir fluid pressure and attendant increase in effective stress. Surface and subsurface measurements and theoretical and model studies show that differential compaction leads not only to differential subsidence and centripetally-directed horizontal displacements, but to changes in both vertical- and horizontal-strain regimes. Study of well-documented examples indicates that the occurrence and nature of faulting and seismicity associated with compaction are functions chiefly of: (1) the pre-exploitation strain regime, and (2) the magnitude of contractional horizontal strain centered over the compacting materials relative to that of the surrounding annulus of extensional horizontal

  1. Physics through the 1990s: Plasmas and fluids

    Science.gov (United States)

    1986-01-01

    The volume contains recommendations for programs in, and government support of, plasma and fluid physics. Four broad areas are covered: the physics of fluids, general plasma physics, fusion, and space and astrophysical plasmas. In the first section, the accomplishments of fluid physics and a detailed review of its sub-fields, such as combustion, non-Newtonian fluids, turbulence, aerodynamics, and geophysical fluid dynamics, are described. The general plasma physics section deals with the wide scope of the theoretical concepts involved in plasma research, and with the machines; intense beam systems, collective and laser-driven accelerators, and the associated diagnostics. The section on the fusion plasma research program examines confinement and heating systems, such as Tokamaks, magnetic mirrors, and inertial-confinement systems, and several others. Finally, theory and experiment in space and astrophysical plasma research is detailed, ranging from the laboratory to the solar system and beyond. A glossary is included.

  2. Electrokinetics of non-Newtonian fluids: a review.

    Science.gov (United States)

    Zhao, Cunlu; Yang, Chun

    2013-12-01

    This work presents a comprehensive review of electrokinetics pertaining to non-Newtonian fluids. The topic covers a broad range of non-Newtonian effects in electrokinetics, including electroosmosis of non-Newtonian fluids, electrophoresis of particles in non-Newtonian fluids, streaming potential effect of non-Newtonian fluids and other related non-Newtonian effects in electrokinetics. Generally, the coupling between non-Newtonian hydrodynamics and electrostatics not only complicates the electrokinetics but also causes the fluid/particle velocity to be nonlinearly dependent on the strength of external electric field and/or the zeta potential. Shear-thinning nature of liquids tends to enhance electrokinetic phenomena, while shear-thickening nature of liquids leads to the reduction of electrokinetic effects. In addition, directions for the future studies are suggested and several theoretical issues in non-Newtonian electrokinetics are highlighted.

  3. Laminar flow of two miscible fluids in a simple network

    CERN Document Server

    Karst, Casey M; Geddes, John B

    2012-01-01

    When a fluid comprised of multiple phases or constituents flows through a network, non-linear phenomena such as multiple stable equilibrium states and spontaneous oscillations can occur. Such behavior has been observed or predicted in a number of networks including the flow of blood through the microcirculation, the flow of picoliter droplets through microfluidic devices, the flow of magma through lava tubes, and two-phase flow in refrigeration systems. While the existence of non-linear phenomena in a network with many inter-connections containing fluids with complex rheology may seem unsurprising, this paper demonstrates that even simple networks containing Newtonian fluids in laminar flow can demonstrate multiple equilibria. The paper describes a theoretical and experimental investigation of the laminar flow of two miscible Newtonian fluids of different density and viscosity through a simple network. The fluids stratify due to gravity and remain as nearly distinct phases with some mixing occurring only by d...

  4. Instabilities in relativistic two-component (super)fluids

    CERN Document Server

    Haber, Alexander; Stetina, Stephan

    2016-01-01

    We study two-fluid systems with nonzero fluid velocities and compute their sound modes, which indicate various instabilities. For the case of two zero-temperature superfluids we employ a microscopic field-theoretical model of two coupled bosonic fields, including an entrainment coupling and a non-entrainment coupling. We analyse the onset of the various instabilities systematically and point out that the dynamical two-stream instability can only occur beyond Landau's critical velocity, i.e., in an already energetically unstable regime. A qualitative difference is found for the case of two normal fluids, where certain transverse modes suffer a two-stream instability in an energetically stable regime if there is entrainment between the fluids. Since we work in a fully relativistic setup, our results are very general and of potential relevance for (super)fluids in neutron stars and, in the non-relativistic limit of our results, in the laboratory.

  5. Topics in Theoretical Physics

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Andrew [Boston Univ., MA (United States); Schmaltz, Martin [Boston Univ., MA (United States); Katz, Emmanuel [Boston Univ., MA (United States); Rebbi, Claudio [Boston Univ., MA (United States); Glashow, Sheldon [Boston Univ., MA (United States); Brower, Richard [Boston Univ., MA (United States); Pi, So-Young [Boston Univ., MA (United States)

    2016-09-30

    This award supported a broadly based research effort in theoretical particle physics, including research aimed at uncovering the laws of nature at short (subatomic) and long (cosmological) distances. These theoretical developments apply to experiments in laboratories such as CERN, the facility that operates the Large Hadron Collider outside Geneva, as well as to cosmological investigations done using telescopes and satellites. The results reported here apply to physics beyond the so-called Standard Model of particle physics; physics of high energy collisions such as those observed at the Large Hadron Collider; theoretical and mathematical tools and frameworks for describing the laws of nature at short distances; cosmology and astrophysics; and analytic and computational methods to solve theories of short distance physics. Some specific research accomplishments include + Theories of the electroweak interactions, the forces that give rise to many forms of radioactive decay; + Physics of the recently discovered Higgs boson. + Models and phenomenology of dark matter, the mysterious component of the universe, that has so far been detected only by its gravitational effects. + High energy particles in astrophysics and cosmology. + Algorithmic research and Computational methods for physics of and beyond the Standard Model. + Theory and applications of relativity and its possible limitations. + Topological effects in field theory and cosmology. + Conformally invariant systems and AdS/CFT. This award also supported significant training of students and postdoctoral fellows to lead the research effort in particle theory for the coming decades. These students and fellows worked closely with other members of the group as well as theoretical and experimental colleagues throughout the physics community. Many of the research projects funded by this grant arose in response to recently obtained experimental results in the areas of particle physics and cosmology. We describe a few of

  6. The Basic Theoretical Framework

    Science.gov (United States)

    Loeb, Abraham

    Cosmology is by now a mature experimental science. We are privileged to live at a time when the story of genesis (how the Universe started and developed) can be critically explored by direct observations. Looking deep into the Universe through powerful telescopes, we can see images of the Universe when it was younger because of the finite time it takes light to travel to us from distant sources. Existing data sets include an image of the Universe when it was 0.4 million years old (in the form of the cosmic microwave background), as well as images of individual galaxies when the Universe was older than a billion years. But there is a serious challenge: in between these two epochs was a period when the Universe was dark, stars had not yet formed, and the cosmic microwave background no longer traced the distribution of matter. And this is precisely the most interesting period, when the primordial soup evolved into the rich zoo of objects we now see. The observers are moving ahead along several fronts. The first involves the construction of large infrared telescopes on the ground and in space, that will provide us with new photos of the first galaxies. Current plans include ground-based telescopes which are 24-42 m in diameter, and NASA's successor to the Hubble Space Telescope, called the James Webb Space Telescope. In addition, several observational groups around the globe are constructing radio arrays that will be capable of mapping the three-dimensional distribution of cosmic hydrogen in the infant Universe. These arrays are aiming to detect the long-wavelength (redshifted 21-cm) radio emission from hydrogen atoms. The images from these antenna arrays will reveal how the non-uniform distribution of neutral hydrogen evolved with cosmic time and eventually was extinguished by the ultra-violet radiation from the first galaxies. Theoretical research has focused in recent years on predicting the expected signals for the above instruments and motivating these ambitious

  7. Theoretically Optimal Distributed Anomaly Detection

    Data.gov (United States)

    National Aeronautics and Space Administration — A novel general framework for distributed anomaly detection with theoretical performance guarantees is proposed. Our algorithmic approach combines existing anomaly...

  8. Characteristics of laminar MHD fluid hammer in pipe

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Z.Y.; Liu, Y.J., E-mail: yajun@scut.edu.cn

    2016-01-01

    As gradually wide applications of MHD fluid, transportation as well as control with pumps and valves is unavoidable, which induces MHD fluid hammer. The paper attempts to combine MHD effect and fluid hammer effect and to investigate the characteristics of laminar MHD fluid hammer. A non-dimensional fluid hammer model, based on Navier–Stocks equations, coupling with Lorentz force is numerically solved in a reservoir–pipe–valve system with uniform external magnetic field. The MHD effect is represented by the interaction number which associates with the conductivity of the MHD fluid as well as the external magnetic field and can be interpreted as the ratio of Lorentz force to Joukowsky force. The transient numerical results of pressure head, average velocity, wall shear stress, velocity profiles and shear stress profiles are provided. The additional MHD effect hinders fluid motion, weakens wave front and homogenizes velocity profiles, contributing to obvious attenuation of oscillation, strengthened line packing and weakened Richardson annular effect. Studying the characteristics of MHD laminar fluid hammer theoretically supplements the gap of knowledge of rapid-transient MHD flow and technically provides beneficial information for MHD pipeline system designers to better devise MHD systems. - Highlights: • Characteristics of laminar MHD fluid hammer are discussed by simulation. • MHD effect has significant influence on attenuation of wave. • MHD effect strengthens line packing. • MHD effect inhibits Richardson annular effect.

  9. A theoretical equation of state for detonation products

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, M.S.

    1998-12-31

    A theoretical equation of state for detonation products is described that places particular emphasis on the characterization of small carbon clusters (20{angstrom}--50{angstrom} in diameter) in the products. Diamond clusters are modeled with the dangling bonds on the surface atoms (up to 30% of the cluster) capped by various radicals composed of C, H, N, and O from the background molecular fluid mixture. Free energy methods for the surface groups are used to determine the chemical equilibrium composition of the cluster surface as well as the surrounding molecular fluid mixture. The surface composition shows dramatic changes in composition over some regions and varies slowly in others. A perturbation theory approach is used for the mixture of molecular fluids that also includes features based on Monte Carlo simulations.

  10. A field theoretical prediction of the tropical cyclone properties

    CERN Document Server

    Spineanu, Florin

    2013-01-01

    The large scale atmospheric vortices (tropical cyclones, tornadoes) are complex physical systems combining thermodynamics and fluid-mechanical processes. The late phase of the evolution towards stationarity consists of the vorticity concentration, a well known tendency to self-organization, an universal property of the two-dimensional fluids. It may then be expected that the stationary state of the tropical cyclone has the same nature as the vortices of many other systems in nature: ideal (Euler) fluids, superconductors, Bose - Einsetin condensate, cosmic strings, etc. Indeed it was found that there is a description of the atmospheric vortex in terms of a field theory. It is compatible with the more conventional treatment based on conservation laws, but the field theoretical model reveals properties that are almost inaccessible to the conventional formulation: it identifies the stationary states as being close to self-duality. This is of highest importance: the self-duality is known to be the origin of all co...

  11. Peritoneal Fluid Analysis

    Science.gov (United States)

    ... Peritoneal fluid glucose, amylase, tumor markers, bilirubin, creatinine, lactate dehydrogenase (LD) Microscopic examination – may be performed if infection or cancer is suspected; a laboratory professional may use a ...

  12. Culture - joint fluid

    Science.gov (United States)

    Joint fluid culture ... fungi, or viruses grow. This is called a culture. If these germs are detected, other tests may ... is no special preparation needed for the lab culture. How to prepare for the removal of joint ...

  13. Pericardial fluid culture

    Science.gov (United States)

    ... the thin sac that surrounds the heart (the pericardium). A small amount of fluid is removed. You ... may be due to an infection of the pericardium. The specific organism causing the infection may be ...

  14. Polymer Fluid Dynamics.

    Science.gov (United States)

    Bird, R. Byron

    1980-01-01

    Problems in polymer fluid dynamics are described, including development of constitutive equations, rheometry, kinetic theory, flow visualization, heat transfer studies, flows with phase change, two-phase flow, polymer unit operations, and drag reduction. (JN)

  15. Nonpolluting drilling fluid composition

    Energy Technology Data Exchange (ETDEWEB)

    Larson, D.E.; Mocek, C.J.; Mouton, R.J.

    1983-02-22

    Disclosed is a nonpolluting drilling fluid composition. The composition mixture consisting essentially of a concentrate and any nonpolluting oil. The concentrate consists essentially of diethanolamide, a fatty acid, and a imidazoline/amide mixture.

  16. Cerebrospinal fluid (CSF) culture

    Science.gov (United States)

    ... is a laboratory test to look for bacteria, fungi, and viruses in the fluid that moves in ... culture medium. Laboratory staff then observe if bacteria, fungi, or viruses grow in the dish. Growth means ...

  17. [Diagnosis: synovial fluid analysis].

    Science.gov (United States)

    Gallo Vallejo, Francisco Javier; Giner Ruiz, Vicente

    2014-01-01

    Synovial fluid analysis in rheumatological diseases allows a more accurate diagnosis in some entities, mainly infectious and microcrystalline arthritis. Examination of synovial fluid in patients with osteoarthritis is useful if a differential diagnosis will be performed with other processes and to distinguish between inflammatory and non-inflammatory forms. Joint aspiration is a diagnostic and sometimes therapeutic procedure that is available to primary care physicians. Copyright © 2014 Elsevier España, S.L. All rights reserved.

  18. Conventional cerebrospinal fluid scanning

    Energy Technology Data Exchange (ETDEWEB)

    Schicha, H.

    1985-06-01

    Conventional cerebrospinal fluid scanning (CSF scanning) today is mainly carried out in addition to computerized tomography to obtain information about liquor flow kinetics. Especially in patients with communicating obstructive hydrocephalus, CSF scanning is clinically useful for the decision for shunt surgery. In patients with intracranial cysts, CSF scanning can provide information about liquor circulation. Further indications for CSF scanning include the assessment of shunt patency especially in children, as well as the detection and localization of cerebrospinal fluid leaks.

  19. Fullerol ionic fluids

    KAUST Repository

    Fernandes, Nikhil

    2010-01-01

    We report for the first time an ionic fluid based on hydroxylated fullerenes (fullerols). The ionic fluid was synthesized by neutralizing the fully protonated fullerol with an amine terminated polyethylene/polypropylene oxide oligomer (Jeffamine®). The ionic fluid was compared to a control synthesized by mixing the partially protonated form (sodium form) of the fullerols with the same oligomeric amine in the same ratio as in the ionic fluids (20 wt% fullerol). In the fullerol fluid the ionic bonding significantly perturbs the thermal transitions and melting/crystallization behavior of the amine. In contrast, both the normalized heat of fusion and crystallization of the amine in the control are similar to those of the neat amine consistent with a physical mixture of the fullerols/amine with minimal interactions. In addition to differences in thermal behavior, the fullerol ionic fluid exhibits a complex viscoelastic behavior intermediate between the neat Jeffamine® (liquid-like) and the control (solid-like). © 2010 The Royal Society of Chemistry.

  20. Viscous Flow with Large Fluid-Fluid Interface Displacement

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Hassager, Ole; Saasen, Arild

    1998-01-01

    The arbitrary Lagrange-Euler (ALE) kinematic description has been implemented in a 3D transient finite element program to simulate multiple fluid flows with fluid-fluid interface or surface displacements. The description of fluid interfaces includes variable interfacial tension, and the formulation...

  1. Two-phase cooling fluids; Les fluides frigoporteurs diphasiques

    Energy Technology Data Exchange (ETDEWEB)

    Lallemand, A. [Institut National des Sciences Appliquees (INSA), 69 - Lyon (France)

    1997-12-31

    In the framework of the diminution of heat transfer fluid consumption, the concept of indirect refrigerating circuits, using cooling intermediate fluids, is reviewed and the fluids that are currently used in these systems are described. Two-phase cooling fluids advantages over single-phase fluids are presented with their thermophysical characteristics: solid fraction, two-phase mixture enthalpy, thermal and rheological properties, determination of heat and mass transfer characteristics, and cold storage through ice slurry

  2. Seismoelectric fluid/porous-medium interface response model and measurements

    NARCIS (Netherlands)

    Schakel, M.D.; Smeulders, D.M.J.; Slob, E.C.; Heller, H.K.J.

    2011-01-01

    Coupled seismic and electromagnetic (EM) wave effects in fluid-saturated porous media are measured since decades. However, direct comparisons between theoretical seismoelectric wavefields and measurements are scarce. A seismoelectric full-waveform numerical model is developed, which predicts both th

  3. Flow Curve Determination for Non-Newtonian Fluids.

    Science.gov (United States)

    Tjahjadi, Mahari; Gupta, Santosh K.

    1986-01-01

    Describes an experimental program to examine flow curve determination for non-Newtonian fluids. Includes apparatus used (a modification of Walawender and Chen's set-up, but using a 50cc buret connected to a glass capillary through a Tygon tube), theoretical information, procedures, and typical results obtained. (JN)

  4. Magnetocaloric effect in temperature-sensitive magnetic fluids

    Indian Academy of Sciences (India)

    Kinnari Parekh; R V Upadhyay; R V Mehta

    2000-04-01

    The magnetocaloric properties of three different temperature-sensitive magnetic fluids were studied. The pyromagnetic coefficient for all the materials were obtained and it was found that this property depends on physical and magnetic properties like size, magnetization and Curie temperature. A theoretical model was developed to explain the behaviour of change in entropy with temperature.

  5. Inflationary Universe with a Viscous Fluid Avoiding Self-Reproduction

    CERN Document Server

    Brevik, I; Obukhov, V V; Timoshkin, A V

    2016-01-01

    We consider a universe with a bulk viscous cosmic fluid, in a flat Friedmann-Lemaitre-Robertson-Walker geometry. We derive the conditions for the existence of inflation, and those which at the same time prevent the occurrence of self-reproduction. Our theoretical model gives results which are in perfect agreement with the most recent data from the PLANCK surveyor.

  6. Asymptotic stability of steady compressible fluids

    CERN Document Server

    Padula, Mariarosaria

    2011-01-01

    This volume introduces a systematic approach to the solution of some mathematical problems that arise in the study of the hyperbolic-parabolic systems of equations that govern the motions of thermodynamic fluids. It is intended for a wide audience of theoretical and applied mathematicians with an interest in compressible flow, capillarity theory, and control theory. The focus is particularly on recent results concerning nonlinear asymptotic stability, which are independent of assumptions about the smallness of the initial data. Of particular interest is the loss of control that sometimes results when steady flows of compressible fluids are upset by large disturbances. The main ideas are illustrated in the context of three different physical problems: (i) A barotropic viscous gas in a fixed domain with compact boundary. The domain may be either an exterior domain or a bounded domain, and the boundary may be either impermeable or porous. (ii) An isothermal viscous gas in a domain with free boundaries. (iii) A h...

  7. Boiler using combustible fluid

    Science.gov (United States)

    Baumgartner, H.; Meier, J.G.

    1974-07-03

    A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

  8. Amniotic fluid embolism

    Directory of Open Access Journals (Sweden)

    Kiranpreet Kaur

    2016-01-01

    Full Text Available Amniotic fluid embolism (AFE is one of the catastrophic complications of pregnancy in which amniotic fluid, fetal cells, hair, or other debris enters into the maternal pulmonary circulation, causing cardiovascular collapse. Etiology largely remains unknown, but may occur in healthy women during labour, during cesarean section, after abnormal vaginal delivery, or during the second trimester of pregnancy. It may also occur up to 48 hours post-delivery. It can also occur during abortion, after abdominal trauma, and during amnio-infusion. The pathophysiology of AFE is not completely understood. Possible historical cause is that any breach of the barrier between maternal blood and amniotic fluid forces the entry of amniotic fluid into the systemic circulation and results in a physical obstruction of the pulmonary circulation. The presenting signs and symptoms of AFE involve many organ systems. Clinical signs and symptoms are acute dyspnea, cough, hypotension, cyanosis, fetal bradycardia, encephalopathy, acute pulmonary hypertension, coagulopathy etc. Besides basic investigations lung scan, serum tryptase levels, serum levels of C3 and C4 complements, zinc coproporphyrin, serum sialyl Tn etc are helpful in establishing the diagnosis. Treatment is mainly supportive, but exchange transfusion, extracorporeal membrane oxygenation, and uterine artery embolization have been tried from time to time. The maternal prognosis after amniotic fluid embolism is very poor though infant survival rate is around 70%.

  9. The Effects of Fluid Viscosity on the Orifice Rotameter

    Directory of Open Access Journals (Sweden)

    Jiang Wei

    2016-04-01

    Full Text Available Due to the viscous shear stress, there is an obvious error between the real flow rate and the rotameter indication for measuring viscous fluid medium. At 50 cSt the maximum error of DN40 orifice rotameter is up to 35 %. The fluid viscosity effects on the orifice rotameter are investigated using experimental and theoretical models. Wall jet and concentric annulus laminar theories were adapted to study the influence of viscosity. And a new formula is obtained for calculating the flow rate of viscous fluid. The experimental data were analyzed and compared with the calculated results. At high viscosity the maximum theoretical results error is 6.3 %, indicating that the proposed measurement model has very good applicability.

  10. The problem of fluid-dynamics in semicircular canal

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    An analytical solution with high accuracy which holds for any values of ε for fluid-dynamics model equation in a single semicircular canal presented by Buskirk and his co-workers has been obtained.It not only includes all of the results of Buskirk et al.but also covers three possible kinds of dynamical response modes in practice.The theoretical results are in better agreement with those of experimental observations.This investigation has laid a reliable theoretical foundation for quantitatively understanding fluid-dynamics in semicircular canal,especially fluid dynamical response.The distribution of the velocity of the endolymph in semicircular canal is given.A nonstandard method of the inverse Laplace transform is presented.

  11. The problem of fluid-dynamics in semicircular canal

    Institute of Scientific and Technical Information of China (English)

    徐明瑜; 谭文长

    2000-01-01

    An analytical solution with high accuracy which holds for any values of E for fluid-dynamics model eguation in a single semicircular canal presented by Buskirk and his co-workers has been ob-tained. it not only includes ali of the results of Buskirk et al. but also covers three possible kinds of dy-namical response modes in practice. The theoretical results are in betler agreement with those of ex-perimental observations. This investigation has laid a reliable theoretical foundation for quantitatively understanding fluid-dynamics in semicircular canal, especially fluid dynamical response. The distribu-tion of the velocity of the endolymph in semicircular canal is given. A nonstandard method of the in-verse Laplace transform is presented.

  12. Revisiting Newtonian and Non-Newtonian Fluid Mechanics Using Computer Algebra

    Science.gov (United States)

    Knight, D. G.

    2006-01-01

    This article illustrates how a computer algebra system, such as Maple[R], can assist in the study of theoretical fluid mechanics, for both Newtonian and non-Newtonian fluids. The continuity equation, the stress equations of motion, the Navier-Stokes equations, and various constitutive equations are treated, using a full, but straightforward,…

  13. Revisiting Newtonian and Non-Newtonian Fluid Mechanics Using Computer Algebra

    Science.gov (United States)

    Knight, D. G.

    2006-01-01

    This article illustrates how a computer algebra system, such as Maple[R], can assist in the study of theoretical fluid mechanics, for both Newtonian and non-Newtonian fluids. The continuity equation, the stress equations of motion, the Navier-Stokes equations, and various constitutive equations are treated, using a full, but straightforward,…

  14. Equilibrium structure of the multi-component screened charged hard-sphere fluid.

    Science.gov (United States)

    Sánchez-Díaz, Luis E; Mendez-Maldonado, Gloria A; González-Melchor, Minerva; Ruiz-Estrada, Honorina; Medina-Noyola, Magdaleno

    2011-07-07

    The generalized mean spherical approximation of the structural properties of the binary charge-symmetric fluid of screened charged hard-spheres of the same diameter, i.e., the screened restricted primitive model, is extended to include binary charge-asymmetric and multi-component fluids. Molecular dynamics simulation data are generated to assess the accuracy of the corresponding theoretical predictions.

  15. Effect of fluid damping on vibration response of immersed rotors

    Directory of Open Access Journals (Sweden)

    Mahmud Rasheed Ismail, Mustafa Asaad Hussein

    2016-01-01

    Full Text Available As immersed rotors vibrate in a viscous media such as fluid, a considerable amount of damping may be generated due to the interaction phenomena between the rotor components and the fluid media.Such damping is depending on many factors such as; fluid drag,fluid friction,turbulence, vortex and so on. Immersed rotors find their application in many engineering fields such as Marines machines, gear box, turbine and pumps.In the presentwork, a mathematical modelis attempted to investigate the dynamical behaviorimmersed rotor.The model takes into account the effects of the most rotordynamic parameters, namely; fluid drag,damping and stiffness of bearing,unbalance and gyroscopic effects of the attacheddisc, and elastic bending and internal damping of rotor shaft.Four types of fluid are employed as a fluid immersing media which are; Air, Water, SAE 20 andSAE 40oils.The experimental apparatus includes a sample rotor with single disc and plastic fluid container.Two proximate sensors are employed for measuring the unbalance response and orbits shapes under different rotor speeds, and discs size and locations.Modal analysis is employed for solving the governing equation of vibration motion. To check the validity of the mathematical model the theoretical results are compared with the experimental results. It is found that; the theoretical results are in a good agreement with the experimental ones, where the maximum error is not exceeded (6.8 %, and that;the fluid damping can highly reduce the peak amplitude of the unbalance response (up to 60 % however, it has slight effect on the critical speeds which are highly affected by the size and location of the attached disc.

  16. Electro-osmotic mobility of non-Newtonian fluids.

    Science.gov (United States)

    Zhao, Cunlu; Yang, Chun

    2011-03-23

    Electrokinetically driven microfluidic devices are usually used to analyze and process biofluids which can be classified as non-Newtonian fluids. Conventional electrokinetic theories resulting from Newtonian hydrodynamics then fail to describe the behaviors of these fluids. In this study, a theoretical analysis of electro-osmotic mobility of non-Newtonian fluids is reported. The general Cauchy momentum equation is simplified by incorporation of the Gouy-Chapman solution to the Poisson-Boltzmann equation and the Carreau fluid constitutive model. Then a nonlinear ordinary differential equation governing the electro-osmotic velocity of Carreau fluids is obtained and solved numerically. The effects of the Weissenberg number (Wi), the surface zeta potential (ψ¯s), the power-law exponent(n), and the transitional parameter (β) on electro-osmotic mobility are examined. It is shown that the results presented in this study for the electro-osmotic mobility of Carreau fluids are quite general so that the electro-osmotic mobility for the Newtonian fluids and the power-law fluids can be obtained as two limiting cases.

  17. Pediatric Diabetic Ketoacidosis, Fluid Therapy and Cerebral Injury: The Design of a Factorial Randomized Controlled Trial

    OpenAIRE

    Glaser, Nicole S.; Ghetti, Simona; Casper, T. Charles; Dean, J. Michael; Kuppermann, Nathan

    2013-01-01

    Treatment protocols for pediatric diabetic ketoacidosis (DKA) vary considerably among centers in the United States and worldwide. The optimal protocol for intravenous fluid administration is an area of particular controversy, mainly in regard to possible associations between rates of intravenous fluid infusion and the development of cerebral edema, the most common and most feared complication of DKA in children. Theoretical concerns about associations between osmotic fluid shifts and cerebral...

  18. Review of Rare Earths and Fluid-Rock Interaction

    Institute of Scientific and Technical Information of China (English)

    凌其聪; 刘丛强

    2002-01-01

    As demonstrated by a great amount of geologic and experimental evidences, RE of rock systems may be mobilized during fluid-rock interaction when solutions are rich in F-, Cl-, CO32-, HCO3-, CO2, HPO42-, HS-, S2-, SO42-, though little has been known about the mobilizing mechanism of these anions or ligands. The fractionation of RE resulted from hydrothermal alterations, i. e., fluid-rock interactions, are distinctive. One set of field data implies the preferential mobility of the LRE, while another set of field observations demonstrates the dominant mobilization of the HRE, and some theoretical prediction is not consistent with the field evidence. The Eu anomalies caused by fluid-rock interaction are complex and compelling explanation is not available due to inadequate experimental approaches. To know the exact behavior of RE during fluid-rock interaction and to solve the contradiction between some theoretical predictions and field observations, the following works remain to be done: (1) experimental investigations of RE mobility and fractionation as a function of fluid chemistry, e.g., the activity of F-, Cl-, CO32-, HCO3-, CO2, HPO42-, HS-, S2-, SO42-, etc.; (2) experimental determination of RE mobility and fractionation as a function of T, P, pH, Eh and water/rock ratios; (3) investigation of the mechanism and the controlling factors of RE partitioning between hydrothermal minerals and fluids. It was demonstrated that RE mobility is a potentially useful method for exploration.

  19. Stochastic interpenetration of fluids

    Energy Technology Data Exchange (ETDEWEB)

    Steinkamp, M.J.; Clark, T.T.; Harlow, F.H.

    1995-11-01

    We describe a spectral approach to the investigation of fluid instability, generalized turbulence, and the interpenetration of fluids across an interface. The technique also applies to a single fluid with large variations in density. Departures of fluctuating velocity components from the local mean are far subsonic, but the mean Mach number can be large. Validity of the description is demonstrated by comparisons with experiments on turbulent mixing due to the late stages of Rayleigh-Taylor instability, when the dynamics become approximately self-similar in response to a constant body force. Generic forms for anisotropic spectral structure are described and used as a basis for deriving spectrally integrated moment equations that can be incorporated into computer codes for scientific and engineering analyses.

  20. Vorticity in holographic fluids

    CERN Document Server

    Caldarelli, Marco M; Petkou, Anastasios C; Petropoulos, P Marios; Pozzoli, Valentina; Siampos, Konstadinos

    2012-01-01

    In view of the recent interest in reproducing holographically various properties of conformal fluids, we review the issue of vorticity in the context of AdS/CFT. Three-dimensional fluids with vorticity require four-dimensional bulk geometries with either angular momentum or nut charge, whose boundary geometries fall into the Papapetrou--Randers class. The boundary fluids emerge in stationary non-dissipative kinematic configurations, which can be cyclonic or vortex flows, evolving in compact or non-compact supports. A rich network of Einstein's solutions arises, naturally connected with three-dimensional Bianchi spaces. We use Fefferman--Graham expansion to handle holographic data from the bulk and discuss the alternative for reversing the process and reconstruct the exact bulk geometries.

  1. Theory of inertial waves in rotating fluids

    Science.gov (United States)

    Gelash, Andrey; L'vov, Victor; Zakharov, Vladimir

    2017-04-01

    The inertial waves emerge in the geophysical and astrophysical flows as a result of Earth rotation [1]. The linear theory of inertial waves is known well [2] while the influence of nonlinear effects of wave interactions are subject of many recent theoretical and experimental studies. The three-wave interactions which are allowed by inertial waves dispersion law (frequency is proportional to cosine of the angle between wave direction and axes of rotation) play an exceptional role. The recent studies on similar type of waves - internal waves, have demonstrated the possibility of formation of natural wave attractors in the ocean (see [3] and references herein). This wave focusing leads to the emergence of strong three-wave interactions and subsequent flows mixing. We believe that similar phenomena can take place for inertial waves in rotating flows. In this work we present theoretical study of three-wave and four-wave interactions for inertial waves. As the main theoretical tool we suggest the complete Hamiltonian formalism for inertial waves in rotating incompressible fluids [4]. We study three-wave decay instability and then present statistical description of inertial waves in the frame of Hamiltonian formalism. We obtain kinetic equation, anisotropic wave turbulence spectra and study the problem of parametric wave turbulence. These spectra were previously found in [5] by helicity decomposition method. Taking this into account we discuss the advantages of suggested Hamiltonian formalism and its future applications. Andrey Gelash thanks support of the RFBR (Grant No.16-31-60086 mol_a_dk) and Dr. E. Ermanyuk, Dr. I. Sibgatullin for the fruitful discussions. [1] Le Gal, P. Waves and instabilities in rotating and stratified flows, Fluid Dynamics in Physics, Engineering and Environmental Applications. Springer Berlin Heidelberg, 25-40, 2013. [2] Greenspan, H. P. The theory of rotating fluids. CUP Archive, 1968. [3] Brouzet, C., Sibgatullin, I. N., Scolan, H., Ermanyuk, E

  2. Rotating convection in a viscoelastic magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, L.M. [Departamento de Fíisica y Matemática Aplicada, Universidad de Navarra, 31080 Pamplona (Spain); Laroze, D., E-mail: dlarozen@uta.cl [Instituto de Alta Investigación, Universidad de Tarapacá, Casilla 7D, Arica (Chile); Díaz, P. [Departamento de Ciencias Físicas, Universidad de La Frontera, Casilla 54 D, Temuco (Chile); Martinez-Mardones, J. [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla 4059, Valparaíso (Chile); Mancini, H.L. [Departamento de Fíisica y Matemática Aplicada, Universidad de Navarra, 31080 Pamplona (Spain)

    2014-09-01

    We report theoretical and numerical results on convection for a magnetic fluid in a viscoelastic carrier liquid under rotation. The viscoelastic properties are given by the Oldroyd model. We obtain explicit expressions for the convective thresholds in terms of the parameters of the system in the case of idealized boundary conditions. We also calculate numerically the convective thresholds for the case of realistic boundary conditions. The effects of the rheology and of the rotation rate on the instability thresholds for a diluted magnetic suspension are emphasized. - Highlights: • Ferrofluids. • Thermal convection. • Viscoelastic model. • Realistic boundary conditions.

  3. Computational fluid dynamics

    CERN Document Server

    Magoules, Frederic

    2011-01-01

    Exploring new variations of classical methods as well as recent approaches appearing in the field, Computational Fluid Dynamics demonstrates the extensive use of numerical techniques and mathematical models in fluid mechanics. It presents various numerical methods, including finite volume, finite difference, finite element, spectral, smoothed particle hydrodynamics (SPH), mixed-element-volume, and free surface flow.Taking a unified point of view, the book first introduces the basis of finite volume, weighted residual, and spectral approaches. The contributors present the SPH method, a novel ap

  4. Fluids in cosmology

    CERN Document Server

    Cervantes-Cota, Jorge L

    2014-01-01

    We review the role of fluids in cosmology by first introducing them in General Relativity and then applied to a FRW Universe's model. We describe how relativistic and non-relativistic components evolve in the background dynamics. We also introduce scalar fields to show that they are able to yield an inflationary dynamics at very early times (inflation) and late times (quintessence). Then, we proceed to study the thermodynamical properties of the fluids and, lastly, its perturbed kinematics. We make emphasis in the constrictions of parameters by recent cosmological probes.

  5. Computational fluid dynamics

    CERN Document Server

    Blazek, Jiri

    2015-01-01

    Computational Fluid Dynamics: Principles and Applications, Third Edition presents students, engineers, and scientists with all they need to gain a solid understanding of the numerical methods and principles underlying modern computation techniques in fluid dynamics. By providing complete coverage of the essential knowledge required in order to write codes or understand commercial codes, the book gives the reader an overview of fundamentals and solution strategies in the early chapters before moving on to cover the details of different solution techniques. This updated edition includes new

  6. Mechanics of fluid flow

    CERN Document Server

    Basniev, Kaplan S; Chilingar, George V 0

    2012-01-01

    The mechanics of fluid flow is a fundamental engineering discipline explaining both natural phenomena and human-induced processes, and a thorough understanding of it is central to the operations of the oil and gas industry.  This book, written by some of the world's best-known and respected petroleum engineers, covers the concepts, theories, and applications of the mechanics of fluid flow for the veteran engineer working in the field and the student, alike.  It is a must-have for any engineer working in the oil and gas industry.

  7. Theoretical approaches to elections defining

    Directory of Open Access Journals (Sweden)

    Natalya V. Lebedeva

    2011-01-01

    Full Text Available Theoretical approaches to elections defining develop the nature, essence and content of elections, help to determine their place and a role as one of the major national law institutions in democratic system.

  8. Fsusy and Field Theoretical Construction

    CERN Document Server

    Sedra, M B

    2009-01-01

    Following our previous work on fractional spin symmetries (FSS) \\cite{6, 7}, we consider here the construction of field theoretical models that are invariant under the $D=2(1/3,1/3)$ supersymmetric algebra.

  9. Theoretical Foundations of Learning Communities

    Science.gov (United States)

    Jessup-Anger, Jody E.

    2015-01-01

    This chapter describes the historical and contemporary theoretical underpinnings of learning communities and argues that there is a need for more complex models in conceptualizing and assessing their effectiveness.

  10. Theoretical Studies of Proton Radioactivity

    Institute of Scientific and Technical Information of China (English)

    Ldia S Ferreira; Enrico Maglione

    2016-01-01

    In the paper, we will discuss the most recent theoretical approaches developed by our group, to understand the mechanisms of decay by one proton emission, and the structure and shape of exotic nuclei at the limits of stability.

  11. Euclid's Number-Theoretical Work

    CERN Document Server

    Zhang, Shaohua

    2009-01-01

    The object of this paper is to affirm the number-theoretical role of Euclid and the historical significance of Euclid's algorithm. We give a brief introduction about Euclid's number-theoretical work. Our study is the first to show that Euclid's algorithm is essentially equivalent with Division algorithm which is the basis of Theory of Divisibility. Note also that Euclid's algorithm implies Euclid's first theorem and Euclid's second theorem. Thus, in the nature of things, Euclid's algorithm is the most important number-theoretical work of Euclid. For this reason, we further summarize briefly the influence of Euclid's algorithm. It leads to the conclusion that Euclid's algorithm is the greatest number-theoretical achievement of the age.

  12. THEORETICAL APPROACHES IN INTERNATIONAL RELATIONS ...

    African Journals Online (AJOL)

    plt

    understanding of the social dynamics of the world we live in. Theoretical approaches are also instrumental in shaping perceptions of what matters in international politics ... This implies that, as a technique of last resort, the military instrument.

  13. Pattern formation in rotating fluids

    Science.gov (United States)

    Bühler, Karl

    2009-06-01

    Flows in nature and technology are often associated with specific structures and pattern. This paper deals with the development and behaviour of such flow pattern. Flow structures are important for the mass, momentum and energy transport. The behaviour of different flow pattern is used by engineers to obtain an efficient mass and energy consumption. Mechanical power is transmitted via the momentum of rotating machine parts. Therefore the physical and mathematical knowledge of these basic concepts is important. Theoretical and experimental investigations of principle experiments are described in the following. We start with the classical problem of the flow between two concentric cylinders where the inner cylinder rotates. Periodic instabilities occur which are called Taylor vortices. The analogy between the cylindrical gap flow, the heat transfer in a horizontal fluid layer exposed to the gravity field and the boundary layer flow along concave boundaries concerning their stability behaviour is addressed. The vortex breakdown phenomenon in a cylinder with rotating cover is also described. A generalization to spherical sectors leads then to investigations with different boundary conditions. The spherical gap flow exhibits interesting phenomena concerning the nonlinear character of the Navier-Stokes equations. Multiple solutions in the nonlinear regime give rise to different routes during the laminar-turbulent transition. The interaction of two rotating spheres results in flow structures with separation and stagnation lines. Experimental results are confirmed by numerical simulations.

  14. Fluid Jet Polishing

    NARCIS (Netherlands)

    Booij, S.M.

    2003-01-01

    The goal of this thesis research was to investigate the possibilities and limitations of the Fluid Jet Polishing (FJP) technique. FJP is a new optical fabrication technique that is capable of making shape corrections and reducing the surface roughness of glass and other materials. The principle of o

  15. Proteomics of body fluids

    NARCIS (Netherlands)

    L.J.M. Dekker (Lennard)

    2007-01-01

    textabstractIn this thesis we present newly developed methods for biomarker discovery. We applied these methods to discover biomarkers of leptomeningeal metastasis (LM) in the cerebrospinal fluid (CSF) from breast cancer patients and in serum from patients with prostate cancer. Early diagnos

  16. Fluid Jet Polishing

    NARCIS (Netherlands)

    Booij, S.M.

    2003-01-01

    The goal of this thesis research was to investigate the possibilities and limitations of the Fluid Jet Polishing (FJP) technique. FJP is a new optical fabrication technique that is capable of making shape corrections and reducing the surface roughness of glass and other materials. The principle of

  17. Orbital Fluid Resupply Assessment

    Science.gov (United States)

    Eberhardt, Ralph N.

    1989-01-01

    Orbital fluid resupply can significantly increase the cost-effectiveness and operational flexibility of spacecraft, satellites, and orbiting platforms and observatories. Reusable tankers are currently being designed for transporting fluids to space. A number of options exist for transporting the fluids and propellant to the space-based user systems. The fluids can be transported to space either in the Shuttle cargo bay or using expendable launch vehicles (ELVs). Resupply can thus be accomplished either from the Shuttle bay, or the tanker can be removed from the Shuttle bay or launched on an ELV and attached to a carrier such as the Orbital Maneuvering Vehicle (OMV) or Orbital Transfer Vehicle (OTV) for transport to the user to be serviced. A third option involves locating the tanker at the space station or an unmanned platform as a quasi-permanent servicing facility or depot which returns to the ground for recycling once its tanks are depleted. Current modular tanker designs for monopropellants, bipropellants, and water for space station propulsion are discussed. Superfluid helium tankers are addressed, including trade-offs in tanker sizes, shapes to fit the range of ELVs currently available, and boil-off losses associated with longer-term (greater than 6-month) space-basing. It is concluded that the mixed fleet approach to on-orbit consumables resupply offers significant advantages to the overall logistics requirements.

  18. Fluid resuscitation in trauma

    Directory of Open Access Journals (Sweden)

    Rudra A

    2006-01-01

    Full Text Available Appropriate fluid replacement is an essential component of trauma fluid resuscitation. Once hemorrhage is controlled, restoration of normovolemia is a priority. In the presence of uncontrolled haemorrhage, aggressive fluid management may be harmful. The crystalloid-colloid debate continues but existing clinical practice is more likely to reflect local biases rather than evidence based medicine. Colloids vary substantially in their pharmacology and pharmacokinetics,and the experimental finding based on one colloid cannot be extrapolated reliably to another. In the initial stages of trauma resuscitation the precise fluid used is probably not important as long as an appropriate volume is given. Later, when the microcirculation is ′leaky′, there may be some advantages to high or medium weight colloids such as hydroxyethyl starch. Hypertonic saline solutions may have some benefit in patients with head injuries. A number of hemoglobin solutions are under development, but one of the most promising of these has been withdrawn recently. It is highly likely that at least one of these solutions will eventually become routine therapy for trauma patient resuscitation. In the meantime, contrary to traditional teaching, recent data suggest that restrictive strategy of red cell transfusion may improve outcome in some critically ill patients.

  19. Amniotic Fluid Embolism

    Science.gov (United States)

    ... embolisms are rare, which makes it difficult to identify risk factors. It's estimated that there are between 1 ... Kramer MS, et al. Amniotic fluid embolism: Incidence, risk factors, and impact on perinatal outcome. BJOG: An International Journal of Obstetrics and Gynaecology. 2012;119:874. Baskett ...

  20. Relativistic viscoelastic fluid mechanics.

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  1. The effects of variable fluid properties on thin film stability

    Science.gov (United States)

    D'Alessio, S. J. D.; Seth, C. J. M. P.; Pascal, J. P.

    2014-12-01

    A theoretical investigation has been conducted to study the impact of variable fluid properties on the stability of gravity-driven flow of a thin film down a heated incline. The incline is maintained at a uniform temperature which exceeds the temperature of the ambient gas above the fluid and is thus responsible for heating the thin fluid layer. The variable fluid properties are allowed to vary linearly with temperature. It is assumed that long-wave perturbations are most unstable. Based on this, a stability analysis was carried out whereby the governing linearized perturbation equations were expanded in powers of the wavenumber which is a small parameter. New interesting results illustrating how the critical Reynolds number and perturbation phase speed depend on the various dimensionless parameters have been obtained.

  2. Statistical Decoupling of Lagrangian Fluid Parcel in Newtonian Cosmology

    CERN Document Server

    Wang, Xin

    2016-01-01

    The Lagrangian dynamics of a single fluid element within a self-gravitational matter field is intrinsically non-local due to the presence of the tidal force. This complicates the theoretical investigation of the non-linear evolution of various cosmic objects, e.g. dark matter halos, in the context of Lagrangian fluid dynamics, since a fluid parcel with given initial density and shape may evolve differently depending on their environments. In this paper, we provide a statistical solution that could decouple this environmental dependence. After deriving the probability distribution evolution equation of the matter field, our method produces a set of closed ordinary differential equations whose solution is uniquely determined by the initial condition of the fluid element. Mathematically, it corresponds to the projected characteristic curve of the transport equation of the density-weighted probability density function (PDF). Consequently it is guaranteed that the one-point PDF would be preserved by evolving these...

  3. Density Fluctuations of Hard-Sphere Fluids in Narrow Confinement

    Science.gov (United States)

    Nygârd, Kim; Sarman, Sten; Hyltegren, Kristin; Chodankar, Shirish; Perret, Edith; Buitenhuis, Johan; van der Veen, J. Friso; Kjellander, Roland

    2016-01-01

    Spatial confinement induces microscopic ordering of fluids, which in turn alters many of their dynamic and thermodynamic properties. However, the isothermal compressibility has hitherto been largely overlooked in the literature, despite its obvious connection to the underlying microscopic structure and density fluctuations in confined geometries. Here, we address this issue by probing density profiles and structure factors of hard-sphere fluids in various narrow slits, using x-ray scattering from colloid-filled nanofluidic containers and integral-equation-based statistical mechanics at the level of pair distributions for inhomogeneous fluids. Most importantly, we demonstrate that density fluctuations and isothermal compressibilities in confined fluids can be obtained experimentally from the long-wavelength limit of the structure factor, providing a formally exact and experimentally accessible connection between microscopic structure and macroscopic, thermodynamic properties. Our approach will thus, for example, allow direct experimental verification of theoretically predicted enhanced density fluctuations in liquids near solvophobic interfaces.

  4. On the future of controllable fluid film bearings

    DEFF Research Database (Denmark)

    Santos, Ilmar

    2011-01-01

    This work gives an overview of the theoretical and experimental achievements of mechatronics applied to fluid film bearings. Compressible and uncompressible fluids are addressed. Rigid and elastic (deformable) bearing profiles are investigated. Hydraulic, pneumatic, magnetic and piezoelectric...... controllable fluid film bearings is to improve the overall machine performance by: controlling the lateral vibration of rigid and flexible rotating shafts; modifying bearing dynamic characteristics, such as stiffness and damping properties; increasing the rotational speed ranges by enhancing damping...... and eliminating instability problems, for example, by compensating cross-coupling destabilizing effects; reducing start-up torque and energy dissipation in bearings; compensating thermal effects. It is shown that such controllable fluid film bearings can act as “smart” machine components and be applied...

  5. Examination of a Theoretical Model of Streaming Potential Coupling Coefficient

    Directory of Open Access Journals (Sweden)

    D. T. Luong

    2014-01-01

    Full Text Available Seismoelectric effects and streaming potentials play an important role in geophysical applications. The key parameter for those phenomena is the streaming potential coupling coefficient, which is, for example, dependent on the zeta potential of the interface of the porous rocks. Comparison of an existing theoretical model to experimental data sets from available published data for streaming potentials has been performed. However, the existing experimental data sets are based on samples with dissimilar fluid conductivity, pH of pore fluid, temperature, and sample compositions. All those dissimilarities may cause the observed deviations. To critically assess the models, we have carried out streaming potential measurement as a function of electrolyte concentration and temperature for a set of well-defined consolidated samples. The results show that the existing theoretical model is not in good agreement with the experimental observations when varying the electrolyte concentration, especially at low electrolyte concentration. However, if we use a modified model in which the zeta potential is considered to be constant over the electrolyte concentration, the model fits the experimental data well in a whole range of concentration. Also, for temperature dependence, the comparison shows that the theoretical model is not fully adequate to describe the experimental data but does describe correctly the increasing trend of the coupling coefficient as function of temperature.

  6. Theoretical analysis of a pressure setting and control system with PWM direction control valve

    Science.gov (United States)

    Avram, M.; Duminică, D.; Cartal, L. A.

    2016-08-01

    The paper tackles theoretical aspects concerning an original automated system that sets and controls the pressure inside a tank chamber of fixed volume. The structure of the system integrates an original device developed and designed by the authors. The device digitally controls the one way flow of the working fluid using pulse width modulation, allowing the free flow in the other way. The purpose of this research stage was the theoretical establishing of the variation law of the pressure inside the controlled chamber.

  7. Nonlinear mechanics a supplement to theoretical mechanics of particles and continua

    CERN Document Server

    Fetter, Alexander L

    2006-01-01

    In their prior Dover book, Theoretical Mechanics of Particles and Continua, Alexander L. Fetter and John Dirk Walecka provided a lucid and self-contained account of classical mechanics, together with appropriate mathematical methods. This supplement-an update of that volume-offers a bridge to contemporary mechanics.The original book's focus on continuum mechanics-with chapters on sound waves in fluids, surface waves on fluids, heat conduction, and viscous fluids-forms the basis for this supplement's discussion of nonlinear continuous systems. Topics include linearized stability analysis; a det

  8. Theoretical behaviorism meets embodied cognition : Two theoretical analyses of behavior

    NARCIS (Netherlands)

    Keijzer, F.A.

    2005-01-01

    This paper aims to do three things: First, to provide a review of John Staddon's book Adaptive dynamics: The theoretical analysis of behavior. Second, to compare Staddon's behaviorist view with current ideas on embodied cognition. Third, to use this comparison to explicate some outlines for a theore

  9. Theoretical behaviorism meets embodied cognition : Two theoretical analyses of behavior

    NARCIS (Netherlands)

    Keijzer, F.A.

    2005-01-01

    This paper aims to do three things: First, to provide a review of John Staddon's book Adaptive dynamics: The theoretical analysis of behavior. Second, to compare Staddon's behaviorist view with current ideas on embodied cognition. Third, to use this comparison to explicate some outlines for a theore

  10. Microgravity Fluids for Biology, Workshop

    Science.gov (United States)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.

    2013-01-01

    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  11. Mechanics lectures on theoretical physics

    CERN Document Server

    Sommerfeld, Arnold Johannes Wilhelm

    1952-01-01

    Mechanics: Lectures on Theoretical Physics, Volume I covers a general course on theoretical physics. The book discusses the mechanics of a particle; the mechanics of systems; the principle of virtual work; and d'alembert's principle. The text also describes oscillation problems; the kinematics, statics, and dynamics of a rigid body; the theory of relative motion; and the integral variational principles of mechanics. Lagrange's equations for generalized coordinates and the theory of Hamilton are also considered. Physicists, mathematicians, and students taking Physics courses will find the book

  12. Theoretical Framework for Robustness Evaluation

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2011-01-01

    This paper presents a theoretical framework for evaluation of robustness of structural systems, incl. bridges and buildings. Typically modern structural design codes require that ‘the consequence of damages to structures should not be disproportional to the causes of the damages’. However, although...... the importance of robustness for structural design is widely recognized the code requirements are not specified in detail, which makes the practical use difficult. This paper describes a theoretical and risk based framework to form the basis for quantification of robustness and for pre-normative guidelines...

  13. Group theoretical approach to entanglement

    CERN Document Server

    Korbicz, J K

    2006-01-01

    We examine a potential relevance of methods of harmonic analysis for the study of quantum entanglement. By changing the mathematical object representing quantum states, we reformulate the separability problem in group-theoretical terms. We also translate the positivity of partial transpose (PPT) criterion and one of the necessary-and-sufficient criteria for pure states to the group-theoretical language. The formal relation of our formalism to local hidden variable models is briefly examined. We also remark on the connection between entanglement and some certain non-commutativity.

  14. Social Impact, a Theoretical Model

    Directory of Open Access Journals (Sweden)

    Jenny Onyx

    2014-01-01

    Full Text Available This paper constructs a theoretical model of social impact as it applies to civil society organisations. It does so by drawing on the recent literature on the topic as well as recently completed empirical studies. First, the relationship between impact and evaluation is examined. This is followed by an exploration of the capitals, notably social, human, and cultural capital and their interrelationships, as a theoretical base for the explication of social impact. A formal model of social impact is then identified together with a set of basic principles that may be said to define social impact. Finally the implications of the model are discussed for social policy and organisational management.

  15. Theoretical mechanics for sixth forms

    CERN Document Server

    Plumpton, C

    1971-01-01

    Theoretical Mechanics for Sixth Forms, Second Edition is a 14-chapter book that begins by elucidating the nature of theoretical mechanics. The book then describes the statics of a particle in illustration of the techniques of handling vector quantities. Subsequent chapters focus on the principle of moments, parallel forces and centers of gravity; and the application of Newton's second law to the dynamics of a particle and the ideas of work and energy, impulse and momentum, and power. The concept of friction is also explained. This volume concludes with chapters concerning motion in a circle an

  16. Theoretical chemistry advances and perspectives

    CERN Document Server

    Eyring, Henry

    1977-01-01

    Theoretical Chemistry: Advances and Perspectives, Volume 2 covers all aspects of theoretical chemistry.This book reviews the techniques that have been proven successful in the study of interatomic potentials in order to describe the interactions between complex molecules. The ground state properties of the interacting electron gas when a magnetic field is present are also elaborated, followed by a discussion on the Gellman-Brueckner-Macke theory of the correlation energy that has applications in atomic and molecular systems.This volume considers the instability of the Hartree-Fock ground state

  17. Tumor interstitial fluid

    DEFF Research Database (Denmark)

    Gromov, Pavel; Gromova, Irina; Olsen, Charlotta J.

    2013-01-01

    Tumor interstitial fluid (TIF) is a proximal fluid that, in addition to the set of blood soluble phase-borne proteins, holds a subset of aberrantly externalized components, mainly proteins, released by tumor cells and tumor microenvironment through various mechanisms, which include classical...... secretion, non-classical secretion, secretion via exosomes and membrane protein shedding. Consequently, the interstitial aqueous phase of solid tumors is a highly promising resource for the discovery of molecules associated with pathological changes in tissues. Firstly, it allows one to delve deeper...... into the regulatory mechanisms and functions of secretion-related processes in tumor development. Secondly, the anomalous secretion of molecules that is innate to tumors and the tumor microenvironment, being associated with cancer progression, offers a valuable source for biomarker discovery and possible targets...

  18. Electrorheologic fluids; Fluidos electroreologicos

    Energy Technology Data Exchange (ETDEWEB)

    Rejon G, Leonardo; Lopez G, Francisco; Montoya T, Gerardo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Manero B, Octavio [Instituto de Investigaciones en Materiales, UNAM.(Mexico)

    2003-07-01

    The present article has as an objective to offer a review of the research work made in the Instituto de Investigaciones Electricas (IIE) on the study of the electrorheologic fluids whose flow properties can abruptly change in the presence of an electric field when this is induced by a direct current. The electrorheologic fluids have their main application in the manufacture of self-controlling damping systems. [Spanish] El presente articulo tiene por objetivo ofrecer una resena de los trabajos de investigacion realizados en el Instituto de Investigaciones Electricas (IIE) sobre el estudio de los fluidos electroreologicos cuyas propiedades de flujo pueden cambiar abruptamente en presencia de un campo electrico cuando este es inducido por una corriente directa. Los fluidos electroreologicos tienen su principal aplicacion en la fabricacion de sistemas de amortiguamiento autocontrolables.

  19. COUPLED CHEMOTAXIS FLUID MODEL

    KAUST Repository

    LORZ, ALEXANDER

    2010-06-01

    We consider a model system for the collective behavior of oxygen-driven swimming bacteria in an aquatic fluid. In certain parameter regimes, such suspensions of bacteria feature large-scale convection patterns as a result of the hydrodynamic interaction between bacteria. The presented model consist of a parabolicparabolic chemotaxis system for the oxygen concentration and the bacteria density coupled to an incompressible Stokes equation for the fluid driven by a gravitational force of the heavier bacteria. We show local existence of weak solutions in a bounded domain in d, d = 2, 3 with no-flux boundary condition and in 2 in the case of inhomogeneous Dirichlet conditions for the oxygen. © 2010 World Scientific Publishing Company.

  20. Galilean relativistic fluid mechanics

    CERN Document Server

    Ván, Péter

    2015-01-01

    Single component Galilean-relativistic (nonrelativistic) fluids are treated independently of reference frames. The basic fields are given, their balances, thermodynamic relations and the entropy production is calculated. The usual relative basic fields, the mass, momentum and energy densities, the diffusion current density, the pressure tensor and the heat flux are the time- and spacelike components of the third order mass-momentum-energy density tensor according to a velocity field. The transformation rules of the basic fields are derived and prove that the non-equilibrium thermodynamic background theory, that is the Gibbs relation, extensivity condition and the entropy production is absolute, that is independent of the reference frame and also of the fluid velocity. --- Az egykomponensu Galilei-relativisztikus (azaz nemrelativisztikus) disszipativ folyadekokat vonatkoztatasi rendszertol fuggetlenul targyaljuk. Megadjuk az alapmennyisegeket, ezek merlegeit, a termodinamikai osszefuggeseket es kiszamoljuk az ...

  1. Zinc Determination in Pleural Fluid

    OpenAIRE

    Nazan DEMİR; DEMİR, Yaşar

    2000-01-01

    In this study, an enzymatic zinc determination method was applied to pleural fluid, the basis of which was the regaining of the activity of apo carbonic anhydrase by the zinc present in the sample. The method was used for pleural fluid zinc determination in order to show the application to body fluids other than serum. For this purpose, pleural fluids were obtained from 20 patients and zinc concentrations were determined. Carbonic anhydrase was purified by affinity chromatography from bovine ...

  2. Handbook of hydraulic fluid technology

    CERN Document Server

    Totten, George E

    2011-01-01

    ""The Handbook of Hydraulic Fluid Technology"" serves as the foremost resource for designing hydraulic systems and for selecting hydraulic fluids used in engineering applications. Featuring new illustrations, data tables, as well as practical examples, this second edition is updated with essential information on the latest hydraulic fluids and testing methods. The detailed text facilitates unparalleled understanding of the total hydraulic system, including important hardware, fluid properties, and hydraulic lubricants. Written by worldwide experts, the book also offers a rigorous overview of h

  3. Experimental microchannel heat sink performance studies using nano-fluids

    Energy Technology Data Exchange (ETDEWEB)

    Chein, Reiyu; Chuang, Jason [Department of Mechanical Engineering, National Chung Hsing University, 250 Kuo-Kuang Rd., Taichung City, Taiwan (China)

    2007-01-15

    In this study, microchannel heat sink (MCHS) performance using nano-fluids as coolants is addressed. We first carried out a simple theoretical analysis that indicated more energy and lower MCHS wall temperature could be obtained under the assumption that heat transfer could be enhanced by the presence of nano-particles. Experiments were then performed to verify the theoretical predictions. A silicon MCHS was made and CuO-H{sub 2}O mixtures without a dispersion agent were used as the coolants. The CuO particle volume fraction was in the range of 0.2 to 0.4%. It was found that nano-fluid-cooled MCHS could absorb more energy than water-cooled MCHS when the flow rate was low. For high flow rates, the heat transfer was dominated by the volume flow rate and nano-particles did not contribute to the extra heat absorption. The measured MCHS wall temperature variations agreed with the theoretical prediction for low flow rate. For high flow rate, the measured MCHS wall temperatures did not completely agree with the theoretical prediction due to the particle agglomeration and deposition. It was also found that raising the nano-fluid bulk temperature could prevent the particles from being agglomerated into larger scale particle clusters. The experimental result also indicated that only slightly increase in pressure drop due to the presence of nano-particles in MCHS operation. (author)

  4. Amniotic fluid embolism

    OpenAIRE

    Thongrong, Cattleya; Kasemsiri, Pornthep; Hofmann, James P; Bergese, Sergio D.; Thomas J Papadimos; Gracias, Vicente H.; Adolph, Michael D.; Stawicki, Stanislaw P A

    2013-01-01

    Amniotic fluid embolism (AFE) is an unpredictable and as-of-yet unpreventable complication of maternity. With its low incidence it is unlikely that any given practitioner will be confronted with a case of AFE. However, this rare occurrence carries a high probability of serious sequelae including cardiac arrest, ARDS, coagulopathy with massive hemorrhage, encephalopathy, seizures, and both maternal and infant mortality. In this review the current state of medical knowledge about AFE is outline...

  5. Galilean relativistic fluid mechanics

    OpenAIRE

    Ván, Péter

    2015-01-01

    Single component nonrelativistic dissipative fluids are treated independently of reference frames and flow-frames. First the basic fields and their balances, then the related thermodynamic relations and the entropy production are calculated and the linear constitutive relations are given. The usual basic fields of mass, momentum, energy and their current densities, the heat flux, pressure tensor and diffusion flux are the time- and spacelike components of the third order mass-momentum-energy ...

  6. Physics of Fluids

    OpenAIRE

    Luton, J. A.; Ragab, Saad A.

    1997-01-01

    The interaction of vortices passing near a solid surface has been examined using direct numerical simulation. The configuration studied is a counter-rotating vortex pair approaching a wall in an otherwise quiescent fluid. The focus of these simulations is on the three-dimensional effects, of which little is known. To the authors' knowledge, this is the first three-dimensional simulation that lends support to the short-wavelength instability of the secondary vortex. It has been shown how this ...

  7. Soluble oil cutting fluid

    Energy Technology Data Exchange (ETDEWEB)

    Rawlinson, A.P.; White, J.

    1987-06-23

    A soluble oil, suitable when diluted with water, for use as a cutting fluid comprises an alkali or alkaline-earth metal alkyl benzene sulphonate, a fatty acid diethanolamide, a mixed alkanolamine borate, a polyisobutenesuccinimide and a major proportion of mineral oil. The soluble oil is relatively stable without the need for a conventional coupling agent and some soluble oil emulsions are bio-static even though conventional biocides are not included.

  8. Light scattering studies of an electrorheological fluid

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.E.; Odinek, J.

    1993-08-01

    We report real-time, two-dimensional light scattering studies of the evolution of structure in an electrorheological fluid in the quiescent state and under shear. We find that when an electric field is applied to the quiescent fluid, particles chain along the electric field lines and cause strong light scattering lobes to appear at a finite scattering wavevector q orthogonal to the field lines. These lobes then brighten as they move to q=O, indicating the existence of an unstable concentration fluctuation that signifies the segregation of chains into columns. In fact, the observed power law growth kinetics of the characteristic length, as well as the form of the structure factor, are qualitatively similar to two-dimensional spinodal decomposition in a system with a conserved order parameter. When the sample is subjected to shear, we find that the scattering pattern approaches a steady state, with lobes that are rotated in the direction of fluid vorticity. The angle of rotation is found to increase as the cube root of the shear rate, in agreement with a theoretical prediction of the steady state structure of fragmenting particle chains.

  9. Fluid Dynamics and Viscosity in Strongly Correlated Fluids

    CERN Document Server

    Schaefer, Thomas

    2014-01-01

    We review the modern view of fluid dynamics as an effective low energy, long wavelength theory of many body systems at finite temperature. We introduce the notion of a nearly perfect fluid, defined by a ratio $\\eta/s$ of shear viscosity to entropy density of order $\\hbar/k_B$ or less. Nearly perfect fluids exhibit hydrodynamic behavior at all distances down to the microscopic length scale of the fluid. We summarize arguments that suggest that there is fundamental limit to fluidity, and review the current experimental situation with regard to measurements of $\\eta/s$ in strongly coupled quantum fluids.

  10. Mimicking static anisotropic fluid spheres in general relativity

    Science.gov (United States)

    Boonserm, Petarpa; Ngampitipan, Tritos; Visser, Matt

    2016-11-01

    We argue that an arbitrary general relativistic static anisotropic fluid sphere, (static and spherically symmetric but with transverse pressure not equal to radial pressure), can nevertheless be successfully mimicked by suitable linear combinations of theoretically attractive and quite simple classical matter: a classical (charged) isotropic perfect fluid, a classical electromagnetic field and a classical (minimally coupled) scalar field. While the most general decomposition is not unique, a preferred minimal decomposition can be constructed that is unique. We show how the classical energy conditions for the anisotropic fluid sphere can be related to energy conditions for the isotropic perfect fluid, electromagnetic field, and scalar field components of the model. Furthermore, we show how this decomposition relates to the distribution of both electric charge density and scalar charge density throughout the model. The generalized TOV equation implies that the perfect fluid component in this model is automatically in internal equilibrium, with pressure forces, electric forces, and scalar forces balancing the gravitational pseudo-force. Consequently, we can build theoretically attractive matter models that can be used to mimic almost any static spherically symmetric spacetime.

  11. Downhole Fluid Analyzer Development

    Energy Technology Data Exchange (ETDEWEB)

    Bill Turner

    2006-11-28

    A novel fiber optic downhole fluid analyzer has been developed for operation in production wells. This device will allow real-time determination of the oil, gas and water fractions of fluids from different zones in a multizone or multilateral completion environment. The device uses near infrared spectroscopy and induced fluorescence measurement to unambiguously determine the oil, water and gas concentrations at all but the highest water cuts. The only downhole components of the system are the fiber optic cable and windows. All of the active components--light sources, sensors, detection electronics and software--will be located at the surface, and will be able to operate multiple downhole probes. Laboratory testing has demonstrated that the sensor can accurately determine oil, water and gas fractions with a less than 5 percent standard error. Once installed in an intelligent completion, this sensor will give the operating company timely information about the fluids arising from various zones or multilaterals in a complex completion pattern, allowing informed decisions to be made on controlling production. The research and development tasks are discussed along with a market analysis.

  12. Astrophysical fluid dynamics

    Science.gov (United States)

    Ogilvie, Gordon I.

    2016-06-01

    > These lecture notes and example problems are based on a course given at the University of Cambridge in Part III of the Mathematical Tripos. Fluid dynamics is involved in a very wide range of astrophysical phenomena, such as the formation and internal dynamics of stars and giant planets, the workings of jets and accretion discs around stars and black holes and the dynamics of the expanding Universe. Effects that can be important in astrophysical fluids include compressibility, self-gravitation and the dynamical influence of the magnetic field that is `frozen in' to a highly conducting plasma. The basic models introduced and applied in this course are Newtonian gas dynamics and magnetohydrodynamics (MHD) for an ideal compressible fluid. The mathematical structure of the governing equations and the associated conservation laws are explored in some detail because of their importance for both analytical and numerical methods of solution, as well as for physical interpretation. Linear and nonlinear waves, including shocks and other discontinuities, are discussed. The spherical blast wave resulting from a supernova, and involving a strong shock, is a classic problem that can be solved analytically. Steady solutions with spherical or axial symmetry reveal the physics of winds and jets from stars and discs. The linearized equations determine the oscillation modes of astrophysical bodies, as well as their stability and their response to tidal forcing.

  13. Corrosion in supercritical fluids

    Energy Technology Data Exchange (ETDEWEB)

    Propp, W.A.; Carleson, T.E.; Wai, Chen M.; Taylor, P.R.; Daehling, K.W.; Huang, Shaoping; Abdel-Latif, M.

    1996-05-01

    Integrated studies were carried out in the areas of corrosion, thermodynamic modeling, and electrochemistry under pressure and temperature conditions appropriate for potential applications of supercritical fluid (SCF) extractive metallurgy. Carbon dioxide and water were the primary fluids studied. Modifiers were used in some tests; these consisted of 1 wt% water and 10 wt% methanol for carbon dioxide and of sulfuric acid, sodium sulfate, ammonium sulfate, and ammonium nitrate at concentrations ranging from 0.00517 to 0.010 M for the aqueous fluids. The materials studied were Types 304 and 316 (UNS S30400 and S31600) stainless steel, iron, and AISI-SAE 1080 (UNS G10800) carbon steel. The thermodynamic modeling consisted of development of a personal computer-based program for generating Pourbaix diagrams at supercritical conditions in aqueous systems. As part of the model, a general method for extrapolating entropies and related thermodynamic properties from ambient to SCF conditions was developed. The experimental work was used as a tool to evaluate the predictions of the model for these systems. The model predicted a general loss of passivation in iron-based alloys at SCF conditions that was consistent with experimentally measured corrosion rates and open circuit potentials. For carbon-dioxide-based SCFs, measured corrosion rates were low, indicating that carbon steel would be suitable for use with unmodified carbon dioxide, while Type 304 stainless steel would be suitable for use with water or methanol as modifiers.

  14. Geophysical fluid dynamics

    CERN Document Server

    Pedlosky, Joseph

    1979-01-01

    The content of this book is based, largely, on the core curriculum in geophys­ ical fluid dynamics which I and my colleagues in the Department of Geophysical Sciences at The University of Chicago have taught for the past decade. Our purpose in developing a core curriculum was to provide to advanced undergraduates and entering graduate students a coherent and systematic introduction to the theory of geophysical fluid dynamics. The curriculum and the outline of this book were devised to form a sequence of courses of roughly one and a half academic years (five academic quarters) in length. The goal of the sequence is to help the student rapidly advance to the point where independent study and research are practical expectations. It quickly became apparent that several topics (e. g. , some aspects of potential theory) usually thought of as forming the foundations of a fluid-dynamics curriculum were merely classical rather than essential and could be, however sadly, dispensed with for our purposes. At the same ti...

  15. Geophysical fluid dynamics

    CERN Document Server

    Pedlosky, Joseph

    1982-01-01

    The content of this book is based, largely, on the core curriculum in geophys­ ical fluid dynamics which land my colleagues in the Department of Geophysical Sciences at The University of Chicago have taught for the past decade. Our purpose in developing a core curriculum was to provide to advanced undergraduates and entering graduate students a coherent and systematic introduction to the theory of geophysical fluid dynamics. The curriculum and the outline of this book were devised to form a sequence of courses of roughly one and a half academic years (five academic quarters) in length. The goal of the sequence is to help the student rapidly advance to the point where independent study and research are practical expectations. It quickly became apparent that several topics (e. g. , some aspects of potential theory) usually thought of as forming the foundations of a fluid-dynamics curriculum were merely classical rather than essential and could be, however sadly, dispensed with for our purposes. At the same tim...

  16. Galilean relativistic fluid mechanics

    Science.gov (United States)

    Ván, P.

    2017-01-01

    Single-component nonrelativistic dissipative fluids are treated independently of reference frames and flow-frames. First the basic fields and their balances are derived, then the related thermodynamic relations and the entropy production are calculated and the linear constitutive relations are given. The usual basic fields of mass, momentum, energy and their current densities, the heat flux, pressure tensor and diffusion flux are the time- and spacelike components of the third-order mass-momentum-energy density-flux four-tensor. The corresponding Galilean transformation rules of the physical quantities are derived. It is proved that the non-equilibrium thermodynamic frame theory, including the thermostatic Gibbs relation and extensivity condition and also the entropy production, is independent of the reference frame and also the flow-frame of the fluid. The continuity-Fourier-Navier-Stokes equations are obtained almost in the traditional form if the flow of the fluid is fixed to the temperature. This choice of the flow-frame is the thermo-flow. A simple consequence of the theory is that the relation between the total, kinetic and internal energies is a Galilean transformation rule.

  17. The Viscosity of Polymeric Fluids.

    Science.gov (United States)

    Perrin, J. E.; Martin, G. C.

    1983-01-01

    To illustrate the behavior of polymeric fluids and in what respects they differ from Newtonian liquids, an experiment was developed to account for the shear-rate dependence of non-Newtonian fluids. Background information, procedures, and results are provided for the experiment. Useful in transport processes, fluid mechanics, or physical chemistry…

  18. CT of retrorenal fluid collections

    Energy Technology Data Exchange (ETDEWEB)

    Love, L.; Demos, T.C.; Posniak, H.

    1985-07-01

    Fluid collections dorsal to one or both kidneys are often observed on CT. Most of these collections are located in the posterior pararenal space, but occasionally fluid collections that do not originate in this space also occur. The authors review retrorenal fluid collections with explanations for their occurrence.

  19. Basic concepts of fluid responsiveness

    NARCIS (Netherlands)

    T.G.V. Cherpanath (Thomas); B.F. Geerts (Bart); W.K. Lagrand (Wim); M.J. Schultz (Marcus); A.B.J. Groeneveld (Johan)

    2013-01-01

    textabstractPredicting fluid responsiveness, the response of stroke volume to fluid loading, is a relatively novel concept that aims to optimise circulation, and as such organ perfusion, while avoiding futile and potentially deleterious fluid administrations in critically ill patients. Dynamic param

  20. Fluid flow dynamics in MAS systems.

    Science.gov (United States)

    Wilhelm, Dirk; Purea, Armin; Engelke, Frank

    2015-08-01

    The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3mm-rotor diameter has been analyzed for spinning rates up to 67kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.

  1. Translational invariance in nucleation theories: Theoretical formulation

    Energy Technology Data Exchange (ETDEWEB)

    Drossinos, Y.; Kevrekidis, P. G.; Georgopoulos, P. G.

    2001-03-01

    The consequences of spontaneously broken translational invariance on the nucleation-rate statistical prefactor in theories of first-order phase transitions are analyzed. A hybrid, semiphenomenological approach based on field-theoretic analyses of condensation and modern density-functional theories of nucleation is adopted to provide a unified prescription for the incorporation of translational-invariance corrections to nucleation-rate predictions. A connection between these theories is obtained starting from a quantum-mechanical Hamiltonian and using methods developed in the context of studies on Bose-Einstein condensation. An extremum principle is used to derive an integro-differential equation for the spatially nonuniform mean-field order-parameter profile; the appropriate order parameter becomes the square root of the fluid density. The importance of the attractive intermolecular potential is emphasized, whereas the repulsive two-body potential is approximated by considering hard-sphere collisions. The functional form of the degenerate translational eigenmodes in three dimensions is related to the mean-field order parameter, and their contribution to the nucleation-rate prefactor is evaluated. The solution of the Euler-Lagrange variational equation is discussed in terms of either a proposed variational trial function or the complete numerical solution of the associated boundary-value integro-differential problem. Alternatively, if the attractive potential is not explicitly known, an approach that allows its formal determination from its moments is presented.

  2. Fluid transport due to nonlinear fluid-structure interaction

    DEFF Research Database (Denmark)

    Jensen, Jakob Søndergaard

    1997-01-01

    This work considers nonlinear fluid-structure interaction for a vibrating pipe containing fluid. Transverse pipe vibrations will force the fluid to move relative to the pipe creating unidirectional fluid flow towards the pipe end. The fluid flow induced affects the damping and the stiffness...... of the pipe. The behavior of the system in response to lateral resonant base excitation is analysed numerically and by the use of a perturbation method (multiple scales). Exciting the pipe in the fundamental mode of vibration seems to be most effective for transferring energy from the shaker to the fluid......, whereas higher modes of vibration can be used to transport fluid with pipe vibrations of smaller amplitude. The effect of the nonlinear geometrical terms is analysed and these terms are shown to affect the response for higher modes of vibration. Experimental investigations show good agreement...

  3. Position feedback control of a nonmagnetic body levitated in magnetic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J H; Nam, Y J; Park, M K [Graduate School, Pusan National University, Busan 609-735 (Korea, Republic of); Yamane, R [Kokushikan University, Tokyo 154-8515 (Japan)], E-mail: magooro@pusan.ac.kr

    2009-02-01

    This paper is concerned with the position feedback control of a magnetic fluid actuator which is characterized by the passive levitation of a nonmagnetic body immersed in a magnetic fluid under magnetic fields. First of all, the magnetic fluid actuator is designed based on the ferrohydrostatic relation. After manufacturing the actuator, its static and dynamic characteristics are investigated experimentally. With the aid of the dynamic governing relation obtained experimentally and the proportional-derivative controller, the position tracking control of the actuator is carried out both theoretically and experimentally. As a result, the applicability of the proposed magnetic fluid actuator to various engineering devices is verified.

  4. Tunable magneto-optic modulation based on magnetically responsive nanostructured magnetic fluid

    Institute of Scientific and Technical Information of China (English)

    Bai Xue-Kun; Pu Sheng-Li; Wang Lun-Wei; Wang Xiang; Yu Guo-Jun; Ji Hong-Zhu

    2011-01-01

    Magnetic fluid is a kind of functional composite material with nanosized structure and unique optical properties.The tunable magneto-optic modulation of magnetic fluid under external magnetic field,achieved by adjusting the polarization direction of incident light,is investigated theoretically and experimentally in this work.The corresponding modulation depth and response time are obtained.The accompanying mechanisms are clarified by using the theory of dichroism of magnetic fluid and the aggregation/disintegration processes of magnetic particles within magnetic fluid when the external magnetic field turns on/off.

  5. Theoretical Calculation of MMF's Bandwidth

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-fu; JIANG De-sheng; YU Hai-hu

    2004-01-01

    The difference between over-filled launch bandwidth (OFL BW) and restricted mode launch bandwidth (RML BW) is described. A theoretical model is founded to calculate the OFL BW of grade index multimode fiber (GI-MMF),and the result is useful to guide the modification of the manufacturing method.

  6. Theoretical foundations for collaboration engineering

    NARCIS (Netherlands)

    Kolfschoten, G.L.

    2007-01-01

    Collaboration is often presented as the solution to numerous problems in business and society. However, collaboration is challenging, and collaboration support is not an off-the-shelf-product. This research offers theoretical foundations for Collaboration Engineering. Collaboration Engineering is an

  7. Theoretical Framework for Robustness Evaluation

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard

    2011-01-01

    This paper presents a theoretical framework for evaluation of robustness of structural systems, incl. bridges and buildings. Typically modern structural design codes require that ‘the consequence of damages to structures should not be disproportional to the causes of the damages’. However, althou...

  8. Lightning Talks 2015: Theoretical Division

    Energy Technology Data Exchange (ETDEWEB)

    Shlachter, Jack S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-11-25

    This document is a compilation of slides from a number of student presentations given to LANL Theoretical Division members. The subjects cover the range of activities of the Division, including plasma physics, environmental issues, materials research, bacterial resistance to antibiotics, and computational methods.

  9. Theoretical Advanced Study Institute: 2014

    Energy Technology Data Exchange (ETDEWEB)

    DeGrand, Thomas [Univ. of Colorado, Boulder, CO (United States)

    2016-08-17

    The Theoretical Advanced Study Institute was held at the University of Colorado, Boulder, during June 2-27, 2014. The topic was "Journeys through the Precision Frontier: Amplitudes for Colliders." The organizers were Professors Lance Dixon (SLAC) and Frank Petriello (Northwestern and Argonne). There were fifty one students. Nineteen lecturers gave sixty seventy five minute lectures. A Proceedings was published.

  10. Theoretical Approaches to Political Communication.

    Science.gov (United States)

    Chesebro, James W.

    Political communication appears to be emerging as a theoretical and methodological academic area of research within both speech-communication and political science. Five complimentary approaches to political science (Machiavellian, iconic, ritualistic, confirmational, and dramatistic) may be viewed as a series of variations which emphasize the…

  11. Data, Methods, and Theoretical Implications

    Science.gov (United States)

    Hannagan, Rebecca J.; Schneider, Monica C.; Greenlee, Jill S.

    2012-01-01

    Within the subfields of political psychology and the study of gender, the introduction of new data collection efforts, methodologies, and theoretical approaches are transforming our understandings of these two fields and the places at which they intersect. In this article we present an overview of the research that was presented at a National…

  12. Thermo-Fluid Dynamics of Two-Phase Flow

    CERN Document Server

    Ishii, Mamrou

    2011-01-01

    "Thermo-fluid Dynamics of Two-Phase Flow, Second Edition" is focused on the fundamental physics of two-phase flow. The authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to: Nuclear reactor transient and accident analysis; Energy systems; Power generation systems; Chemical reactors and process systems; Space propulsion; Transport processes. This edition features updates on two-phase flow formulation and constitutive equations and CFD simulation codes such as FLUENT and CFX, new coverage of the lift force model, which is of part

  13. Concentration-Dependent Diffusion Instability in Reactive Miscible Fluids

    CERN Document Server

    Bratsun, Dmitry; Mizev, Alexey; Mosheva, Elena

    2015-01-01

    We report new chemoconvective pattern formation phenomena observed in a two-layer system of miscible fluids filling a vertical Hele-Shaw cell. We show both experimentally and theoretically that the concentration-dependent diffusion coupled with the frontal acid-base neutralization can give rise to formation of the local unstable zone low in density resulting in a perfectly regular cell-type convective pattern. The described effect gives an example of yet another powerful mechanism which allows the reaction-diffusion processes to govern the flow of reacting fluids under gravity condition.

  14. Concentration-dependent diffusion instability in reactive miscible fluids

    Science.gov (United States)

    Bratsun, Dmitry; Kostarev, Konstantin; Mizev, Aleksey; Mosheva, Elena

    2015-07-01

    We report on chemoconvective pattern formation phenomena observed in a two-layer system of miscible fluids filling a vertical Hele-Shaw cell. We show both experimentally and theoretically that the concentration-dependent diffusion coupled with frontal acid-base neutralization can give rise to the formation of a local unstable zone low in density, resulting in a perfectly regular cell-type convective pattern. The described effect gives an example of yet another powerful mechanism which allows the reaction-diffusion processes to govern the flow of reacting fluids under gravity conditions.

  15. Preliminary evaluation of fluid chemistry in the East Mesa KGRA

    Energy Technology Data Exchange (ETDEWEB)

    Hoagland, J.R.

    1976-10-04

    One of the major problems needing consideration when bringing a geothermal field into production is the anticipation and control of mineral precipitation in both the producing formations and production equipment. Prediction of the chemical interactions between natural multicomponent thermal fluids and the minerals comprising a producing formation can be accomplished by the study of equilibrium models approximating the natural system. Models are constructed from theoretically and experimentally derived thermodynamic data for the involved minerals and aqueous species. This equilibrium modeling approach was applied to the rock-water system at the East Mesa geothermal area in the Imperial Valley of California. Results of petrographic and fluid analyses are given. (JGB)

  16. Shocks, singularities and oscillations in nonlinear optics and fluid mechanics

    CERN Document Server

    Santo, Daniele; Lannes, David

    2017-01-01

    The book collects the most relevant results from the INdAM Workshop "Shocks, Singularities and Oscillations in Nonlinear Optics and Fluid Mechanics" held in Rome, September 14-18, 2015. The contributions discuss recent major advances in the study of nonlinear hyperbolic systems, addressing general theoretical issues such as symmetrizability, singularities, low regularity or dispersive perturbations. It also investigates several physical phenomena where such systems are relevant, such as nonlinear optics, shock theory (stability, relaxation) and fluid mechanics (boundary layers, water waves, Euler equations, geophysical flows, etc.). It is a valuable resource for researchers in these fields. .

  17. Multilayer contactless dielectrophoresis: theoretical considerations.

    Science.gov (United States)

    Sano, Michael B; Salmanzadeh, Alireza; Davalos, Rafael V

    2012-07-01

    Dielectrophoresis (DEP), the movement of dielectric particles in a nonuniform electric field, is of particular interest due to its ability to manipulate particles based on their unique electrical properties. Contactless DEP (cDEP) is an extension of traditional and insulator-based DEP topologies. The devices consist of a sample channel and fluid electrode channels filled with a highly conductive media. A thin insulating membrane between the sample channel and the fluid electrode channels serves to isolate the sample from direct contact with metal electrodes. Here we investigate, for the first time, the properties of multilayer devices in which the sample and electrode channels occupy distinct layers. Simulations are conducted using commercially available finite element software and a less computationally demanding numerical approximation is presented and validated. We show that devices can be created that achieve a similar level of electrical performance to other cDEP devices presented in the literature while increasing fluid throughput. We conclude, based on these models, that the ultimate limiting factors in device performance resides in breakdown voltage of the barrier material and the ability to generate high-voltage, high-frequency signals. Finally, we demonstrate trapping of MDA-MB-231 breast cancer cells in a prototype device at a flow rate of 1.0 mL/h when 250 V(RMS) at 600 kHz is applied. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Modified interfacial statistical associating fluid theory: a perturbation density functional theory for inhomogeneous complex fluids.

    Science.gov (United States)

    Jain, Shekhar; Dominik, Aleksandra; Chapman, Walter G

    2007-12-28

    A density functional theory based on Wertheim's first order perturbation theory is developed for inhomogeneous complex fluids. The theory is derived along similar lines as interfacial statistical associating fluid theory [S. Tripathi and W. G. Chapman, J. Chem. Phys. 122, 094506 (2005)]. However, the derivation is more general and applies broadly to a range of systems, retaining the simplicity of a segment density based theory. Furthermore, the theory gives the exact density profile for ideal chains in an external field. The general avail of the theory has been demonstrated by applying the theory to lipids near surfaces, lipid bilayers, and copolymer thin films. The theoretical results show excellent agreement with the results from molecular simulations.

  19. Fluid friction in incompressible laminar convection: Reynolds' analogy revisited for variable fluid properties

    Science.gov (United States)

    Mahulikar, S. P.; Herwig, H.

    2008-03-01

    The Reynolds' analogy between the Stanton number (St) and the skin friction coefficient (cf) is popularly believed to hold when St increases with increasing cf, for simple situations. In this investigation, the validity of Reynolds' analogy between St and cf for micro-convection of liquids with variations in fluid properties is re-examined. It is found that the Sieder-Tate's property-ratio method for obtaining Nusselt number corrections is theoretically based on the validity of Reynolds' analogy. The inverse dependence of Reynolds number and skin friction coefficient is the basis for validity of the Reynolds' analogy, in convective flows with fluid property variations. This leads to the unexpected outcome that Reynolds' analogy now results in St increasing with decreasing cf. These results and their analyses indicate that the validity of Reynolds' analogy is based on deeper foundations, and the well-known validity criterion is a special case.

  20. The flow and spray characteristics of gelled fluids; Die Stroemungs- und Verspruehungseigenschaften gelfoermiger Fluide

    Energy Technology Data Exchange (ETDEWEB)

    Madlener, K.

    2008-07-01

    In the present study gelled fluids are investigated concerning their application as propellants in storable and thrust controllable rocket propulsion systems. The correlations between the non-Newtonian viscosity properties and the flow and spray characteristics are discussed. Based on the proposed viscosity model Herschel-Bulkley-Extended (HBE) the laminar pipe flow is calculated for the investigated propellants. With the introduction of a generalized form of the Reynolds number and the presentation of a possibility to determine the critical values of this number it is possible to calculate the laminar-turbulent transition in a pipe flow. The theoretical results are evaluated with experimental data. The spray characteristics of various gelled fluids are examined using an experimental setup with impinging-jet-injectors. (orig.)

  1. Supercritical fluid reverse micelle separation

    Science.gov (United States)

    Fulton, John L.; Smith, Richard D.

    1993-01-01

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W.sub.o that determines the maximum size of the reverse micelles. The maximum ratio W.sub.o of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions.

  2. Supercritical fluid reverse micelle separation

    Science.gov (United States)

    Fulton, J.L.; Smith, R.D.

    1993-11-30

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

  3. Structural Transition in Supercritical Fluids

    Directory of Open Access Journals (Sweden)

    Boris I. Sedunov

    2011-01-01

    Full Text Available The extension of the saturation curve ( on the PT diagram in the supercritical region for a number of monocomponent supercritical fluids by peak values for different thermophysical properties, such as heat capacities and and compressibility has been studied. These peaks signal about some sort of fluid structural transition in the supercritical region. Different methods give similar but progressively diverging curves st( for this transition. The zone of temperatures and pressures near these curves can be named as the zone of the fluid structural transition. The outstanding properties of supercritical fluids in this zone help to understand the physical sense of the fluid structural transition.

  4. Undulatory swimming in viscoelastic fluids

    CERN Document Server

    Shen, Xiaoning

    2011-01-01

    The effects of fluid elasticity on the swimming behavior of the nematode \\emph{Caenorhabditis elegans} are experimentally investigated by tracking the nematode's motion and measuring the corresponding velocity fields. We find that fluid elasticity hinders self-propulsion. Compared to Newtonian solutions, fluid elasticity leads to 35% slower propulsion speed. Furthermore, self-propulsion decreases as elastic stresses grow in magnitude in the fluid. This decrease in self-propulsion in viscoelastic fluids is related to the stretching of flexible molecules near hyperbolic points in the flow.

  5. Heat transfer fluids containing nanoparticles

    Science.gov (United States)

    Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.

    2016-05-17

    A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.

  6. Undulatory swimming in viscoelastic fluids.

    Science.gov (United States)

    Shen, X N; Arratia, P E

    2011-05-20

    The effects of fluid elasticity on the swimming behavior of the nematode Caenorhabditis elegans are experimentally investigated by tracking the nematode's motion and measuring the corresponding velocity fields. We find that fluid elasticity hinders self-propulsion. Compared to Newtonian solutions, fluid elasticity leads to up to 35% slower propulsion. Furthermore, self-propulsion decreases as elastic stresses grow in magnitude in the fluid. This decrease in self-propulsion in viscoelastic fluids is related to the stretching of flexible molecules near hyperbolic points in the flow.

  7. Microbial enhancement of non-Darcy flow: Theoretical consideration

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jianxin; Schneider, D.R.

    1995-12-31

    In the near well-bore region and perforations, petroleum fluids usually flow at high velocities and may exhibit non-Darcy-flow behavior. Microorganisms can increase permeability and porosity by removing paraffin or asphaltene accumulations. They can also reduce interfacial tension by producing biosurfactants. These changes can significantly affect non-Darcy flow behavior. Theoretical analysis shows that microbial activities can enhance production by decreasing the turbulence pressure drop and in some cases increasing the drag force exerted to the oil phase. This implies that the effects of microbial activities on non-Darcy flow are important and should be considered in the evaluation of microbial well stimulation and enhanced oil recovery.

  8. Concepts and methods in modern theoretical chemistry statistical mechanics

    CERN Document Server

    Ghosh, Swapan Kumar

    2013-01-01

    Concepts and Methods in Modern Theoretical Chemistry: Statistical Mechanics, the second book in a two-volume set, focuses on the dynamics of systems and phenomena. A new addition to the series Atoms, Molecules, and Clusters, this book offers chapters written by experts in their fields. It enables readers to learn how concepts from ab initio quantum chemistry and density functional theory (DFT) can be used to describe, understand, and predict chemical dynamics. This book covers a wide range of subjects, including discussions on the following topics: Time-dependent DFT Quantum fluid dynamics (QF

  9. Theoretical Analysis of Magnetorheological Damper Characteristics in Squeeze Mode

    Directory of Open Access Journals (Sweden)

    Sapiński Bogdan

    2015-06-01

    Full Text Available The paper summarises the theoretical study of a magnetorheological (MR damper operated in squeeze mode, intended to be used as an actuator in a semi-active mount system in a car motor. The structural design and operating principle of the damper are described and a simplified model of the MR fluid flow in the gap is presented. The plots of the damper force generated by the MR damper are obtained for monoharmonic piston motion with respect to the centre point of the gap height and in the conditions of the control coil being supplied with direct current.

  10. Fluid viscosity under confined conditions

    Science.gov (United States)

    Rudyak, V. Ya.; Belkin, A. A.

    2014-12-01

    Closed equations of fluid transfer in confined conditions are constructed in this study using ab initio methods of nonequilibrium statistical mechanics. It is shown that the fluid viscosity is not determined by the fluid properties alone, but becomes a property of the "fluid-nanochannel walls" system as a whole. Relations for the tensor of stresses and the interphase force, which specifies the exchange by momentum of fluid molecules with the channel-wall molecules, are derived. It is shown that the coefficient of viscosity is now determined by the sum of three contributions. The first contribution coincides with the expression for the coefficient of the viscosity of fluid in the bulk being specified by the interaction of fluid molecules with each other. The second contribution has the same structure as the first one but is determined by the interaction of fluid molecules with the channel-wall molecules. Finally, the third contribution has no analog in the usual statistical mechanics of transport processes of a simple fluid. It is associated with the correlation of intermolecular forces of the fluid and the channel walls. Thus, it is established that the coefficient of viscosity of fluid in sufficiently small channels will substantially differ from its bulk value.

  11. Method to Estimate the Dissolved Air Content in Hydraulic Fluid

    Science.gov (United States)

    Hauser, Daniel M.

    2011-01-01

    In order to verify the air content in hydraulic fluid, an instrument was needed to measure the dissolved air content before the fluid was loaded into the system. The instrument also needed to measure the dissolved air content in situ and in real time during the de-aeration process. The current methods used to measure the dissolved air content require the fluid to be drawn from the hydraulic system, and additional offline laboratory processing time is involved. During laboratory processing, there is a potential for contamination to occur, especially when subsaturated fluid is to be analyzed. A new method measures the amount of dissolved air in hydraulic fluid through the use of a dissolved oxygen meter. The device measures the dissolved air content through an in situ, real-time process that requires no additional offline laboratory processing time. The method utilizes an instrument that measures the partial pressure of oxygen in the hydraulic fluid. By using a standardized calculation procedure that relates the oxygen partial pressure to the volume of dissolved air in solution, the dissolved air content is estimated. The technique employs luminescent quenching technology to determine the partial pressure of oxygen in the hydraulic fluid. An estimated Henry s law coefficient for oxygen and nitrogen in hydraulic fluid is calculated using a standard method to estimate the solubility of gases in lubricants. The amount of dissolved oxygen in the hydraulic fluid is estimated using the Henry s solubility coefficient and the measured partial pressure of oxygen in solution. The amount of dissolved nitrogen that is in solution is estimated by assuming that the ratio of dissolved nitrogen to dissolved oxygen is equal to the ratio of the gas solubility of nitrogen to oxygen at atmospheric pressure and temperature. The technique was performed at atmospheric pressure and room temperature. The technique could be theoretically carried out at higher pressures and elevated

  12. Noncommutative Fluid and Cosmological Perturbations

    CERN Document Server

    Das, Praloy

    2016-01-01

    In the present paper we have developed a Non-Commutative (NC) generalization of perfect fluid model from first principles, in a Hamiltonian framework. The noncommutativity is introduced at the Lagrangian (particle) coordinate space brackets and the induced NC fluid bracket algebra for the Eulerian (fluid) field variables is derived. Together with a Hamiltonian this NC algebra generates the generalized fluid dynamics that satisfies exact local conservation laws for mass and energy thereby maintaining mass and energy conservation. However, nontrivial NC correction terms appear in charge and energy fluxes. Other non-relativistic spacetime symmetries of the NC fluid are also discussed in detail. This constitutes the NC fluid dynamics and kinematics. In the second part we construct an extension of Friedmann-Robertson-Walker (FRW) cosmological model based on the NC fluid dynamics presented here. We outline the way in which NC effects generate cosmological perturbations bringing in anisotropy and inhomogeneity in th...

  13. Active colloids in complex fluids

    CERN Document Server

    Patteson, Alison E; Arratia, Paulo E

    2016-01-01

    We review recent work on active colloids or swimmers, such as self-propelled microorganisms, phoretic colloidal particles, and artificial micro-robotic systems, moving in fluid-like environments. These environments can be water-like and Newtonian but can frequently contain macromolecules, flexible polymers, soft cells, or hard particles, which impart complex, nonlinear rheological features to the fluid. While significant progress has been made on understanding how active colloids move and interact in Newtonian fluids, little is known on how active colloids behave in complex and non-Newtonian fluids. An emerging literature is starting to show how fluid rheology can dramatically change the gaits and speeds of individual swimmers. Simultaneously, a moving swimmer induces time dependent, three dimensional fluid flows, that can modify the medium (fluid) rheological properties. This two-way, non-linear coupling at microscopic scales has profound implications at meso- and macro-scales: steady state suspension proper...

  14. Fluid dynamics of heart development.

    Science.gov (United States)

    Santhanakrishnan, Arvind; Miller, Laura A

    2011-09-01

    The morphology, muscle mechanics, fluid dynamics, conduction properties, and molecular biology of the developing embryonic heart have received much attention in recent years due to the importance of both fluid and elastic forces in shaping the heart as well as the striking relationship between the heart's evolution and development. Although few studies have directly addressed the connection between fluid dynamics and heart development, a number of studies suggest that fluids may play a key role in morphogenic signaling. For example, fluid shear stress may trigger biochemical cascades within the endothelial cells of the developing heart that regulate chamber and valve morphogenesis. Myocardial activity generates forces on the intracardiac blood, creating pressure gradients across the cardiac wall. These pressures may also serve as epigenetic signals. In this article, the fluid dynamics of the early stages of heart development is reviewed. The relevant work in cardiac morphology, muscle mechanics, regulatory networks, and electrophysiology is also reviewed in the context of intracardial fluid dynamics.

  15. Non-Newtonian Effects of Second-Order Fluids on the Hydrodynamic Lubrication of Inclined Slider Bearings.

    Science.gov (United States)

    Apparao, Siddangouda; Biradar, Trimbak Vaijanath; Naduvinamani, Neminath Bhujappa

    2014-01-01

    Theoretical study of non-Newtonian effects of second-order fluids on the performance characteristics of inclined slider bearings is presented. An approximate method is used for the solution of the highly nonlinear momentum equations for the second-order fluids. The closed form expressions for the fluid film pressure, load carrying capacity, frictional force, coefficient of friction, and centre of pressure are obtained. The non-Newtonian second order fluid model increases the film pressure, load carrying capacity, and frictional force whereas the center of pressure slightly shifts towards exit region. Further, the frictional coefficient decreases with an increase in the bearing velocity as expected for an ideal fluid.

  16. Fluid and Electrolyte Nutrition

    Science.gov (United States)

    Lane, Helen W.; Smith, Scott M.; Leach, Carolyn S.; Rice, Barbara L.

    1999-01-01

    Studies of fluid and electrolyte homeostasis have been completed since the early human space flight programs, with comprehensive research completed on the Spacelab Life Sciences missions SLS-1 and SLS-2 flights, and more recently on the Mir 18 mission. This work documented the known shifts in fluids, the decrease in total blood volume, and indications of reduced thirst. Data from these flights was used to evaluate the nutritional needs for water, sodium, and potassium. Interpretations of the data are confounded by the inadequate energy intakes routinely observed during space flight. This in turn results in reduced fluid intake, as food provides approximately 70% water intake. Subsequently, body weight, lean body mass, total body water, and total body potassium may decrease. Given these issues, there is evidence to support a minimum required water intake of 2 L per day. Data from previous Shuttle flights indicated that water intake is 2285 +/- 715 ml/day (mean +/- SD, n=26). There are no indications that sodium intake or homeostasis is compromised during space flight. The normal or low aldosterone and urinary sodium levels suggest adequate sodium intake (4047 +/- 902 mg/day, n=26). Because excessive sodium intake is associated with hypercalciuria, the recommended maximum amount of sodium intake during flight is 3500 mg/day (i.e., similar to the Recommended Dietary Allowance, RDA). Potassium metabolism appears to be more complex. Data indicate loss of body potassium related to muscle atrophy and low dietary intake (2407 +/- 548 mg/day, n=26). Although possibly related to measurement error, the elevations in blood potassium suggest alterations in potassium homeostasis. The space RDA for minimum potassium intake is 3500 mg/day. With the documented inadequate intakes, efforts are being made to increase dietary consumption of potassium.

  17. Theoretical aspects of electrical power generation from two-phase flow streaming potentials

    NARCIS (Netherlands)

    Sherwood, J.D.; Xie, Yanbo; van den Berg, Albert; Eijkel, Jan C.T.

    A theoretical analysis of the generation of electrical streaming currents and electrical power by two-phase flow in a rectangular capillary is presented. The injection of a second, non-conducting fluid phase tends to increase the internal electrical resistance of the electrical generator, thereby

  18. THEORETICAL FLOW MODEL THROUGH A CENTRIFUGAL PUMP USED FOR WATER SUPPLY IN AGRICULTURE IRRIGATION

    Directory of Open Access Journals (Sweden)

    SCHEAUA Fanel Dorel

    2017-05-01

    motion of the rotor. A theoretical model for calculating the flow of the working fluid through the interior of a centrifugal pump model is presented in this paper as well as the numerical analysis on the virtual model performed with the ANSYS CFX software in order to highlight the flow parameters and flow path-lines that are formed during centrifugal pump operation.

  19. Acoustic concentration of particles in fluid flow

    Science.gov (United States)

    Ward, Michael D.; Kaduchak, Gregory

    2010-11-23

    An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  20. Acoustic concentration of particles in fluid flow

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Michael W.; Kaduchak, Gregory

    2017-08-15

    Disclosed herein is a acoustic concentration of particles in a fluid flow that includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  1. Communication: Fundamental measure theory for hard disks: fluid and solid.

    Science.gov (United States)

    Roth, Roland; Mecke, Klaus; Oettel, Martin

    2012-02-28

    Two-dimensional hard-particle systems are rather easy to simulate but surprisingly difficult to treat by theory. Despite their importance from both theoretical and experimental points of view, theoretical approaches are usually qualitative or at best semi-quantitative. Here, we present a density functional theory based on the ideas of fundamental measure theory for two-dimensional hard-disk mixtures, which allows for the first time an accurate description of the structure of the dense fluid and the equation of state for the solid phase within the framework of density functional theory. The properties of the solid phase are obtained by freely minimizing the functional.

  2. Transport Coefficients of Fluids

    CERN Document Server

    Eu, Byung Chan

    2006-01-01

    Until recently the formal statistical mechanical approach offered no practicable method for computing the transport coefficients of liquids, and so most practitioners had to resort to empirical fitting formulas. This has now changed, as demonstrated in this innovative monograph. The author presents and applies new methods based on statistical mechanics for calculating the transport coefficients of simple and complex liquids over wide ranges of density and temperature. These molecular theories enable the transport coefficients to be calculated in terms of equilibrium thermodynamic properties, and the results are shown to account satisfactorily for experimental observations, including even the non-Newtonian behavior of fluids far from equilibrium.

  3. Essential Computational Fluid Dynamics

    CERN Document Server

    Zikanov, Oleg

    2011-01-01

    This book serves as a complete and self-contained introduction to the principles of Computational Fluid Dynamic (CFD) analysis. It is deliberately short (at approximately 300 pages) and can be used as a text for the first part of the course of applied CFD followed by a software tutorial. The main objectives of this non-traditional format are: 1) To introduce and explain, using simple examples where possible, the principles and methods of CFD analysis and to demystify the `black box’ of a CFD software tool, and 2) To provide a basic understanding of how CFD problems are set and

  4. Electrochemistry in supercritical fluids

    Science.gov (United States)

    Branch, Jack A.; Bartlett, Philip N.

    2015-01-01

    A wide range of supercritical fluids (SCFs) have been studied as solvents for electrochemistry with carbon dioxide and hydrofluorocarbons (HFCs) being the most extensively studied. Recent advances have shown that it is possible to get well-resolved voltammetry in SCFs by suitable choice of the conditions and the electrolyte. In this review, we discuss the voltammetry obtained in these systems, studies of the double-layer capacitance, work on the electrodeposition of metals into high aspect ratio nanopores and the use of metallocenes as redox probes and standards in both supercritical carbon dioxide–acetonitrile and supercritical HFCs. PMID:26574527

  5. Electrochemistry in supercritical fluids.

    Science.gov (United States)

    Branch, Jack A; Bartlett, Philip N

    2015-12-28

    A wide range of supercritical fluids (SCFs) have been studied as solvents for electrochemistry with carbon dioxide and hydrofluorocarbons (HFCs) being the most extensively studied. Recent advances have shown that it is possible to get well-resolved voltammetry in SCFs by suitable choice of the conditions and the electrolyte. In this review, we discuss the voltammetry obtained in these systems, studies of the double-layer capacitance, work on the electrodeposition of metals into high aspect ratio nanopores and the use of metallocenes as redox probes and standards in both supercritical carbon dioxide-acetonitrile and supercritical HFCs.

  6. Mixture of Anisotropic Fluids

    Science.gov (United States)

    Florkowski, W.; Maj, R.

    The recently introduced approach describing coupled quark and gluon anisotropic fluids is generalized to include explicitly the transitions between quarks and gluons. We study the effects of such processes on the thermalization rate of anisotropic systems. We find that the quark-gluon transitions may enhance the overall thermalization rate in the cases where the initial momentum anisotropies correspond to mixed oblate-prolate or prolate configurations. On the other hand, no effect on the thermalization rate is found in the case of oblate configurations. The observed regularities are connected with the late-time behavior of the analyzed systems which is described either by the exponential decay or the power law.

  7. Mixture of anisotropic fluids

    CERN Document Server

    Florkowski, Wojciech

    2013-01-01

    The recently introduced approach describing coupled quark and gluon anisotropic fluids is generalized to include explicitly the transitions between quarks and gluons. We study the effects of such processes on the thermalization rate of anisotropic systems. We find that the quark-gluon transitions may enhance the overall thermalization rate in the cases where the initial momentum anisotropies correspond to mixed oblate-prolate or prolate configurations. On the other hand, no effect on the thermalization rate is found in the case of oblate configurations. The observed regularities are connected with the late-time behavior of the analyzed systems which is described either by the exponential decay or the power law.

  8. Conformal fluid dynamics

    CERN Document Server

    Jarvis, P D

    2006-01-01

    We present a conformal theory of a dissipationless relativistic fluid in 2 space-time dimensions. The theory carries with it a representation of the algebra of 2-$D$ area-preserving diffeomorphisms in the target space of the complex scalar potentials. A complete canonical description is given, and the central charge of the current algebra is calculated. The passage to the quantum theory is discussed in some detail; as a result of operator ordering problems, full quantization at the level of the fields is as yet an open problem.

  9. Reliability of fluid systems

    Directory of Open Access Journals (Sweden)

    Kopáček Jaroslav

    2016-01-01

    Full Text Available This paper focuses on the importance of detection reliability, especially in complex fluid systems for demanding production technology. The initial criterion for assessing the reliability is the failure of object (element, which is seen as a random variable and their data (values can be processed using by the mathematical methods of theory probability and statistics. They are defined the basic indicators of reliability and their applications in calculations of serial, parallel and backed-up systems. For illustration, there are calculation examples of indicators of reliability for various elements of the system and for the selected pneumatic circuit.

  10. Quantum mechanics the theoretical minimum

    CERN Document Server

    Susskind, Leonard

    2014-01-01

    From the bestselling author of The Theoretical Minimum, an accessible introduction to the math and science of quantum mechanicsQuantum Mechanics is a (second) book for anyone who wants to learn how to think like a physicist. In this follow-up to the bestselling The Theoretical Minimum, physicist Leonard Susskind and data engineer Art Friedman offer a first course in the theory and associated mathematics of the strange world of quantum mechanics. Quantum Mechanics presents Susskind and Friedman’s crystal-clear explanations of the principles of quantum states, uncertainty and time dependence, entanglement, and particle and wave states, among other topics. An accessible but rigorous introduction to a famously difficult topic, Quantum Mechanics provides a tool kit for amateur scientists to learn physics at their own pace.

  11. Theoretical Provision of Tax Transformation

    Directory of Open Access Journals (Sweden)

    Feofanova Iryna V.

    2016-05-01

    Full Text Available The article is aimed at defining the questions, giving answers to which is necessary for scientific substantiation of the tax transformation in Ukraine. The article analyzes the structural-logical relationships of the theories, providing substantiation of tax systems and transformation of them. Various views on the level of both the tax burden and the distribution of the tax burden between big and small business have been systematized. The issues that require theoretical substantiation when choosing a model of tax system have been identified. It is determined that shares of both indirect and direct taxes and their rates can be substantiated by calculations on the basis of statistical data. The results of the presented research can be used to develop the algorithm for theoretical substantiation of tax transformation

  12. Theoretical Advanced Study Institute: 2014

    Energy Technology Data Exchange (ETDEWEB)

    DeGrand, Thomas [Univ. of Colorado, Boulder, CO (United States)

    2016-08-17

    The Theoretical Advanced Study Institute (TASI) was held at the University of Colorado, Boulder, during June 2-27, 2014. The topic was "Journeys through the Precision Frontier: Amplitudes for Colliders." The organizers were Professors Lance Dixon (SLAC) and Frank Petriello (Northwestern and Argonne). There were fifty-one students. Nineteen lecturers gave sixty seventy-five minute lectures. A Proceedings was published. This TASI was unique for its large emphasis on methods for calculating amplitudes. This was embedded in a program describing recent theoretical and phenomenological developments in particle physics. Topics included introductions to the Standard Model, to QCD (both in a collider context and on the lattice), effective field theories, Higgs physics, neutrino interactions, an introduction to experimental techniques, and cosmology.

  13. Theoretical issues in Spheromak research

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, R. H.; Hooper, E. B.; LoDestro, L. L.; Mattor, N.; Pearlstein, L. D.; Ryutov, D. D.

    1997-04-01

    This report summarizes the state of theoretical knowledge of several physics issues important to the spheromak. It was prepared as part of the preparation for the Sustained Spheromak Physics Experiment (SSPX), which addresses these goals: energy confinement and the physics which determines it; the physics of transition from a short-pulsed experiment, in which the equilibrium and stability are determined by a conducting wall (``flux conserver``) to one in which the equilibrium is supported by external coils. Physics is examined in this report in four important areas. The status of present theoretical understanding is reviewed, physics which needs to be addressed more fully is identified, and tools which are available or require more development are described. Specifically, the topics include: MHD equilibrium and design, review of MHD stability, spheromak dynamo, and edge plasma in spheromaks.

  14. Theoretical Aspects of Cosmic Acceleration

    CERN Document Server

    Trodden, Mark

    2016-01-01

    Efforts to understand and map the possible explanations for the late time acceleration of the universe have led to a broad range of suggestions, ranging from the cosmological constant and straightforward dark energy, to exotically coupled models, to infrared modifications of General Relativity. If we are to uncover which, if any, of these approaches might provide a serious answer to the problem, it is crucial to understand the constraints that theoretical consistency places on the models, and on the regimes in which they make predictions. In this talk, delivered as an invited plenary lecture at the Dark Side of the Universe conference in Kyoto, Japan, I briefly describe some modern attempts to carry out this program and some of the more interesting ideas that have emerged. As an example, I use the Galileon model, discussing how the Vainshtein mechanism occurs, and how a number of these theoretical problems arise around such backgrounds.

  15. A course in theoretical physics

    CERN Document Server

    Shepherd, P J

    2013-01-01

    This book is a comprehensive account of five extended modules covering the key branches of twentieth-century theoretical physics, taught by the author over a period of three decades to students on bachelor and master university degree courses in both physics and theoretical physics. The modules cover nonrelativistic quantum mechanics, thermal and statistical physics, many-body theory, classical field theory (including special relativity and electromagnetism), and, finally, relativistic quantum mechanics and gauge theories of quark and lepton interactions, all presented in a single, self-contained volume. In a number of universities, much of the material covered (for example, on Einstein’s general theory of relativity, on the BCS theory of superconductivity, and on the Standard Model, including the theory underlying the prediction of the Higgs boson) is taught in postgraduate courses to beginning PhD students. A distinctive feature of the book is that full, step-by-step mathematical proofs of all essentia...

  16. Theoretical Prospects for B Physics

    CERN Document Server

    Fleischer, Robert

    2015-01-01

    The exploration of B-meson decays has reached an unprecedented level of sophistication, with a phase of even much higher precision ahead of us thanks to run 2 of the LHC and the future era of Belle II and the LHCb upgrade. For many processes, the theoretical challenge in the quest to reveal possible footprints of physics beyond the Standard Model will be the control of uncertainties from strong interactions. After a brief discussion of the global picture emerging from the LHC data, I will focus on the theoretical prospects and challenges for benchmark B decays to search for new sources of CP violation, and highlight future opportunities to probe the Standard Model with strongly suppressed rare B decays.

  17. Theoretical Studies of Nanocluster Formation

    Science.gov (United States)

    2016-05-26

    5f. WORK UNIT NUMBER Q188 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NO. Air Force Research...For presentation at AFOSR Molecular Dynamics and Theoretical Chemistry Program Review; Arlington, VA (25 May 2016) PA Case Number: #16215; Clearance...Approved for public release; Distribution Unlimited. PA Clearance No: 16215 This briefing contains information up to: 2 Outline 1. Introduction

  18. CONTRACT ASSIGNMENT – THEORETICAL ASPECTS

    Directory of Open Access Journals (Sweden)

    Bogdan NAZAT

    2016-12-01

    Full Text Available This project aims to study in detail the theoretical aspects concerning the contract assignment, as provided by the relevant regulation, and the doctrine corresponding to old and current regulations. In this respect, this project aims to give the reader a comprehensive look on the institution in question, the regulation offered by the current Civil Code is reviewed taking into account the national and international doctrine.

  19. ABOUT COMMON AND THEORETICAL INFORMATICS

    Directory of Open Access Journals (Sweden)

    Andrey A. Mayorov

    2015-01-01

    Full Text Available In this article are considered the integrant importance of informatics and informational technologys includes the sciences and the humanities.There are a differences between scientifi c grounds of the various information orientations, which include physical informatics, bioinfomatics, technical and social informatics. Creation of a united theoretical base for these orientations is very problematical. The metodologically important issue of classifi cation different informatics is a part of the general informatics, the example of which are considered here. 

  20. Theoretical Studies of Silicon Chemistry

    Science.gov (United States)

    1990-02-01

    Molecular and Electronic Structure of Silyl Nitrene , M.S. Gordon, Chem. Phys. Lett., 146, 148 (1988). 18. A Theoretical Study of the Three-Membered Rings...phase and crystal structures. Of course, all three possibilities may contribute. B. The Electronic and Molecular Structure of Silyl Nitrene , M.S...a silaimine. An interesting question regarding the primary process is whether the silyl nitrene , R3SiN, is formed as an intermediate. As a first step

  1. Theoretical Studies of Reaction Surfaces

    Science.gov (United States)

    2007-11-02

    Similar levels of agreement are being found in studies of water clusters12 , the Menshutkin reaction 13 (ion separation reaction ), a prototypical SN2 ...of both reactants and products. These analyses reveal that Bery pseudorotation occurs repeatedly during the side attack, whereas the SN2 reaction H...31 Aug 97 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS AASERT93 THEORETICAL STUDIES OF REACTION SURFACES F49620-93-1-0556 3484/XS 6. AUTHOR(S) 61103D DR

  2. Null Fluids - A New Viewpoint of Galilean Fluids

    CERN Document Server

    Banerjee, Nabamita; Jain, Akash

    2015-01-01

    This article is a detailed version of our short letter `On equilibrium partition function for non-relativistic fluid' [arXiv:1505.05677] extended to include an anomalous $U(1)$ symmetry. We construct a relativistic system, which we call null fluid and show that it is in one-to-one correspondence with a Galilean fluid living in one lower dimension. The correspondence is based on light cone reduction, which is known to reduce the Poincare symmetry of a theory to Galilean in one lower dimension. We show that the proposed null fluid and the corresponding Galilean fluid have exactly same symmetries, thermodynamics, constitutive relations, and equilibrium partition to all orders in derivative expansion. We also devise a mechanism to introduce $U(1)$ anomaly in even dimensional Galilean theories using light cone reduction, and study its effect on the constitutive relations of a Galilean Fluid.

  3. Null fluids: A new viewpoint of Galilean fluids

    Science.gov (United States)

    Banerjee, Nabamita; Dutta, Suvankar; Jain, Akash

    2016-05-01

    In this article, we study a Galilean fluid with a conserved U (1 ) current up to anomalies. We construct a relativistic system, which we call a null fluid and show that it is in one-to-one correspondence with a Galilean fluid living in one lower dimension. The correspondence is based on light cone reduction, which is known to reduce the Poincaré symmetry of a theory to Galilean in one lower dimension. We show that the proposed null fluid and the corresponding Galilean fluid have exactly same symmetries, thermodynamics, constitutive relations, and equilibrium partition to all orders in the derivative expansion. We also devise a mechanism to introduce U (1 ) anomaly in even dimensional Galilean theories using light cone reduction, and study its effect on the constitutive relations of a Galilean fluid.

  4. ADSORPTION OF ASSOCIATING FLUIDS AT ACTIVE SURFACES: A DENSITY FUNCTIONAL THEORY

    Directory of Open Access Journals (Sweden)

    S.Tripathi

    2003-01-01

    Full Text Available We present a density functional theory (DFT to describe adsorption in systems where molecules of associating fluids can bond (or associate with discrete, localized functional groups attached to the surfaces, in addition to other fluid molecules. For such systems as water adsorbing on activated carbon, silica, clay minerals etc. this is a realistic model to account for surface heterogeneity rather than using a continuous smeared surface-fluid potential employed in most of the theoretical works on adsorption on heterogeneous surfaces. Association is modelled within the framework of first order thermodynamic perturbation theory (TPT1. The new theory accurately predicts the distribution of bonded and non-bonded species and adsorption behavior under various conditions of bulk pressure, surface-fluid and fluid-fluid association strengths. Competition between the surface-fluid and fluid-fluid association is analyzed for fluids with multiple association sites and its impact on adsorption is discussed. The theory, supported by simulations demonstrates that the extent and the nature of adsorption (e.g. monolayer vary with the number of association sites on the fluid molecules.

  5. Gas inflow in oil base fluids; Influxo de gas em fluidos a base de oleo

    Energy Technology Data Exchange (ETDEWEB)

    Lazaro, Welmar [PETROBRAS, Rio de Janeiro (Brazil). Dept. de Perfuracao. Div. de Fluidos de Perfuracao; Boas, Mario Barbosa V. [PETROBRAS, Rio de Janeiro (Brazil). Centro de Pesquisas. Div. de Explotacao

    1989-12-31

    One of the major problems related to the use of oil base fluids is the dissolution of the natural gas in the fluid. This paper attempts initially at making a bibliographical review of all that was written on the subject of drilling fluids up to now. It also mentions some theoretical aspects regarding the process of gas dissolution in diesel oils, in order to produce an understanding of how the dissolution mechanism is processed. For a same increase in measured volume on the surface, the amount of gas incorporated into the fluid is significantly larger if the gas is dissolved in the oil phase than if it is emulsified in the fluid, as occurs when the fluid is water base. A rig team used to working with water-base fluids may be surprised with the fact that an increase of 20 bbl of fluid on the surface of a 5000 m well can mean the incorporation of about 1800 m{sup 3} of gas, if the fluid is oil-base and all the gas is in solution instead of the incorporation of 900 m{sup 3} if the fluid is water base. This paper has the goal of warning drilling engineers and technicians about this problem, as well as presenting charts and equations that allow for a more realistic evaluation of the amount of gas incorporated into oil fluids. (author) 16 refs., 7 figs., 2 tabs.

  6. The cost of swimming in generalized Newtonian fluids: experiments with C. elegans

    Science.gov (United States)

    Gagnon, D. A.; Arratia, P. E.

    2016-08-01

    Numerous natural processes are contingent on microorganisms' ability to swim through fluids with non-Newtonian rheology. Here, we use the model organism Caenorhabditis elegans and tracking methods to experimentally investigate the dynamics of undulatory swimming in shear-thinning fluids. Theory and simulation have proposed that the cost of swimming, or mechanical power, should be lower in a shear-thinning fluid compared to a Newtonian fluid of the same zero-shear viscosity. We aim to provide an experimental investigation into the cost of swimming in a shear-thinning fluid from (i) an estimate of the mechanical power of the swimmer and (ii) the viscous dissipation rate of the flow field, which should yield equivalent results for a self-propelled low Reynolds number swimmer. We find the cost of swimming in shear-thinning fluids is less than or equal to the cost of swimming in Newtonian fluids of the same zero-shear viscosity; furthermore, the cost of swimming in shear-thinning fluids scales with a fluid's effective viscosity and can be predicted using fluid rheology and simple swimming kinematics. Our results agree reasonably well with previous theoretical predictions and provide a framework for understanding the cost of swimming in generalized Newtonian fluids.

  7. DESIGN METHOD OF MAGNETORHEOLOGICAL FLUID SHOCK ABSORBER FOR CAR SUSPENSION

    Institute of Scientific and Technical Information of China (English)

    LIAO Changrong; ZHANG Honghui; YU Miao; CHEN Weimin

    2008-01-01

    The Bingham constitutive model, which is previously used in depiction of magnetorheological (MR) fluids rheological behaviors for design devices, exhibits discontinuous characteristics in representation of pre-yield behaviors and post-yield behaviors. A Biviscous constitutive model is presented to depict rheological behaviors of MR fluids and design automotive shock absorber. Quasi-static flow equations of MR fluids in annular channels are set theoretically up based on Navier-Stokes equations and several rational simplifications are made. And both flow boundary conditions and flow compatibilities conditions are established. Meantime, analytical velocity profiles of MR fluids though annular channels are obtained via solution of the quasi-static flow equations using Biviscous constitutive model. The prediction methodology of damping force offered by MR fluid shock absorber is formulated and damping performances are predicated in order to determine design parameters. MR fluid shock absorber for Mazda 323 car suspension is designed and fabricated in Chongqing University, China. Measurements from sinusoidal displacement cycle by Shanchuan Shock Absorber Ltd. of China North Industry Corporation reveal that the analytical methodology and design theory are reasonable.

  8. Saffman-Taylor instability in yield stress fluids

    Energy Technology Data Exchange (ETDEWEB)

    Maleki-Jirsaraei, Nahid [Laboratoire de Physique Statistique, Ecole Normale Superieure, 24, Rue Lhomond, F-75231 Paris Cedex 05 (France); Complex Systems Laboratory, Physics Department, Azzahra University, Tehran (Iran, Islamic Republic of); Lindner, Anke [LMDH-PMMH, Ecole de Physique et Chimie de la Ville de Paris, 10 rue Vauquelin, 75231 Paris Cedex 05 (France); Rouhani, Shahin [Physics Department, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Bonn, Daniel [Laboratoire de Physique Statistique, Ecole Normale Superieure, 24, Rue Lhomond, F-75231 Paris Cedex 05 (France); Van der Waals-Zeeman Instituut, Valckenierstraat 65, 1018 XE Amsterdam (Netherlands)

    2005-04-13

    Pushing a fluid with a less viscous one gives rise to the well known Saffman-Taylor instability. This instability is important in a wide variety of applications involving strongly non-Newtonian fluids that often exhibit a yield stress. Here we investigate the Saffmann-Taylor instability in this type of fluid, in longitudinal flows in Hele-Shaw cells. In particular, we study Darcy's law for yield stress fluids. The dispersion equation for the flow is similar to the equations obtained for ordinary viscous fluids but the viscous terms in the dimensionless numbers conditioning the instability now contain the yield stress. This also has repercussions on the wavelength of the instability as it follows from a linear stability analysis. As a consequence of the presence of yield stress, the wavelength of maximum growth is finite even at vanishing velocities. We study Darcy's law and the fingering patterns experimentally for a yield stress fluid in a linear Hele-Shaw cell. The results are in rather good agreement with the theoretical predictions. In addition we observe different regimes that lead to different morphologies of the fingering patterns, in both rectangular and circular Hele-Shaw cells.

  9. Temporal stability of superposed magnetic fluids in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Zakaria, Kadry; Sirwah, Magdy A; Alkharashi, Sameh [Mathematics Department, Faculty of Science, Tanta University, Tanta (Egypt)

    2008-02-15

    The present work deals with the stability properties of time periodically streaming superposed magnetic fluids through porous media under the influence of an oblique alternating magnetic field. The system is composed of a middle fluid sheet of finite thickness embedded between two other bounded layers. The fluids are assumed to be incompressible and there are no volume charges in the layers of the fluids. Such configurations are of relevance in a variety of astrophysical and space configurations. The solutions of the linearized equations of motion and boundary conditions lead to deriving two more general simultaneous Mathieu equations of damping terms with complex coefficients. The method of multiple time scales is used to obtain approximate solutions and analyze the stability criteria for both the non-resonant and resonant cases and hence transition curves are obtained for such cases. The stability criteria are examined theoretically and numerically from which stability diagrams are obtained. It is found that the fluid sheet thickness plays a destabilizing role in the presence of a constant field and velocity, while the damping role is observed for the resonant cases. Dual roles are observed for the fluid velocity and the porosity in the stability criteria.

  10. Amniotic fluid embolism

    Directory of Open Access Journals (Sweden)

    Rudra A

    2009-01-01

    Full Text Available The disastrous entry of amniotic fluid into the maternal circulation leads to dramatic sequelae of clinical events, characteristically referred to as Amniotic fluid embolism (AFE. The underlying mechanism for AFE is still poorly understood. Unfortunately, this situation has very grave maternal and fetal consequences. AFE can occur during labor, caesarean section, dilatation and evacuation or in the immediate postpartum period. The pathophysiology is believed to be immune mediated which affects the respiratory, cardiovascular, neurological and hematological systems. Undetected and untreated it culminates into fulminant pulmonary edema, intractable convulsions, disseminated intravascular coagulation (DIC, malignant arrhythmias and cardiac arrest. Definite diagnosis can be confirmed by identification of lanugo, fetal hair and fetal squamous cells (squames in blood aspirated from the right ventricle. Usually the diagnosis is made clinically and by exclusion of other causes. The cornerstone of management is a multidisciplinary approach with supportive treatment of failing organs systems. Despite improved modalities for diagnosing AFE, and better intensive care support facilities, the mortality is still high.

  11. Cryptobiosis: a new theoretical perspective.

    Science.gov (United States)

    Neuman, Yair

    2006-10-01

    The tardigrade is a microscopic creature that under environmental stress conditions undergoes cryptobiosis [Feofilova, E.P., 2003. Deceleration of vital activity as a universal biochemical mechanism ensuring adaptation of microorganisms to stress factors: A review. Appl. Biochem. Microbiol. 39, 1-18; Nelson, D.R., 2002. Current status of the tardigrada: Evolution and ecology. Integrative Comp. Biol. 42, 652-659]-a temporary metabolic depression-which is considered to be a third state between life and death [Clegg, J.S., 2001. Cryptobiosis-a peculiar state of biological organization. Comp. Biochem. Physiol. Part B 128, 613-624]. In contrast with death, cryptobiosis is a reversible state, and as soon as environmental conditions change, the tardigrade "returns to life." Cryptobiosis in general, and among the tardigrade in particular, is a phenomenon poorly understood [Guppy, M., 2004. The biochemistry of metabolic depression: a history of perceptions. Comp. Biochem. Physiol. Part B 139, 435-442; Schill, R.O., et al., 2004. Stress gene (hsp70) sequences and quantitative expression in Milensium tardigradum (Tardigrade) during active and cryptobiotic stages. J. Exp. Biol. 207, 1607-1613; Watanabe, M., et al., 2002. Mechanisn allowing an insect to survive complete dehydration and extreme temperatures. J. Exp. Biol. 205, 2799-2802; Wright, J.C., 2001. Cryptobiosis 300 years on from van Leuwenhoek: what have we learned about tardigrades? Zool. Anz. 240, 563-582]. Moreover, the ability of the tardigrade to bootstrap itself and to return to life seems paradoxical like the legendary Baron von Munchausen who pulled himself out of the swamp by grabbing his own hair. Two theoretical obstacles prevent us from advancing our knowledge of cryptobiosis. First, we lack appropriate theoretical understanding of reversible processes of biological computation in living systems. Second, we lack appropriate theoretical understanding of bootstrapping in living systems. In this short opinion

  12. Suction blister fluid as potential body fluid for biomarker proteins.

    Science.gov (United States)

    Kool, Jeroen; Reubsaet, Léon; Wesseldijk, Feikje; Maravilha, Raquel T; Pinkse, Martijn W; D'Santos, Clive S; van Hilten, Jacobus J; Zijlstra, Freek J; Heck, Albert J R

    2007-10-01

    Early diagnosis is important for effective disease management. Measurement of biomarkers present at the local level of the skin could be advantageous in facilitating the diagnostic process. The analysis of the proteome of suction blister fluid, representative for the interstitial fluid of the skin, is therefore a desirable first step in the search for potential biomarkers involved in biological pathways of particular diseases. Here, we describe a global analysis of the suction blister fluid proteome as potential body fluid for biomarker proteins. The suction blister fluid proteome was compared with a serum proteome analyzed using identical protocols. By using stringent criteria allowing less than 1% false positive identifications, we were able to detect, using identical experimental conditions and amount of starting material, 401 proteins in suction blister fluid and 240 proteins in serum. As a major result of our analysis we construct a prejudiced list of 34 proteins, relatively highly and uniquely detected in suction blister fluid as compared to serum, with established and putative characteristics as biomarkers. We conclude that suction blister fluid might potentially serve as a good alternative biomarker body fluid for diseases that involve the skin.

  13. PREDICTION OF THERMODYNAMIC PROPERTIES OF COMPLEX FLUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Marc Donohue

    2006-01-05

    ABSTRACT The goal of this research has been to generalize Density Functional Theory (DFT) for complex molecules, i.e. molecules whose size, shape, and interaction energies cause them to show significant deviations from mean-field behavior. We considered free energy functionals and minimized them for systems with different geometries and dimensionalities including confined fluids (such as molecular layers on surfaces and molecules in nano-scale pores), systems with directional interactions and order-disorder transitions, amphiphilic dimers, block copolymers, and self-assembled nano-structures. The results of this procedure include equations of equilibrium for these systems and the development of computational tools for predicting phase transitions and self-assembly in complex fluids. DFT was developed for confined fluids. A new phenomenon, surface compression of confined fluids, was predicted theoretically and confirmed by existing experimental data and by simulations. The strong attraction to a surface causes adsorbate molecules to attain much higher densities than that of a normal liquid. Under these conditions, adsorbate molecules are so compressed that they repel each other. This phenomenon is discussed in terms of experimental data, results of Monte Carlo simulations, and theoretical models. Lattice version of DFT was developed for modeling phase transitions in adsorbed phase including wetting, capillary condensation, and ordering. Phase behavior of amphiphilic dimers on surfaces and in solutions was modeled using lattice DFT and Monte Carlo simulations. This study resulted in predictive models for adsorption isotherms and for local density distributions in solutions. We have observed a wide variety of phase behavior for amphiphilic dimers, including formation of lamellae and micelles. Block copolymers were modeled in terms of configurational probabilities and in the approximation of random mixing entropy. Probabilities of different orientations for the

  14. Demonstration of anisotropic fluid closure capturing the kinetic structure of magnetic reconnection.

    Science.gov (United States)

    Ohia, O; Egedal, J; Lukin, V S; Daughton, W; Le, A

    2012-09-14

    Collisionless magnetic reconnection in high-temperature plasmas has been widely studied through fluid-based models. Here, we present results of fluid simulation implementing new equations of state for guide-field reconnection. The new fluid closure accurately accounts for the anisotropic electron pressure that builds in the reconnection region due to electric and magnetic trapping of electrons. In contrast to previous fluid models, our fluid simulation reproduces the detailed reconnection region as observed in fully kinetic simulations. We hereby demonstrate that the new fluid closure self-consistently captures all the physics relevant to the structure of the reconnection region, providing a gateway to a renewed and deeper theoretical understanding of reconnection in weakly collisional regimes.

  15. How Fluids Bend: the Elastic Expansion for Higher-Dimensional Black Holes

    CERN Document Server

    Armas, Jay

    2013-01-01

    Hydrodynamics can be consistently formulated on surfaces of arbitrary co-dimension in a background space-time, providing the effective theory describing long-wavelength perturbations of black branes. When the co-dimension is non-zero, the system acquires fluid-elastic properties and constitutes what is called a fluid brane. Applying an effective action approach, the most general form of the free energy quadratic in the extrinsic curvature and extrinsic twist potential of stationary fluid brane configurations is constructed to second order in a derivative expansion. This construction generalizes the Helfrich-Canham bending energy for fluid membranes studied in theoretical biology to the case in which the fluid is rotating. It is found that stationary fluid brane configurations are characterized by a set of 5 elastic response coefficients, 5 hydrodynamic response coefficients and 1 spin response coefficient for co-dimension greater than one. Moreover, the elastic degrees of freedom present in the system are cou...

  16. Transport between two fluids across their mutual flow interface: the streakline approach

    CERN Document Server

    Balasuriya, Sanjeeva

    2016-01-01

    Mixing between two different miscible fluids with a mutual interface must be initiated by fluid transporting across this fluid interface, caused for example by applying an unsteady velocity agitation. In general, there is no necessity for this physical flow barrier between the fluids to be associated with extremal or exponential attraction as might be revealed by applying Lagrangian coherent structures, finite-time Lyapunov exponents or other methods on the fluid velocity. It is shown that streaklines are key to understanding the breaking of the interface under velocity agitations, and a theory for locating the relevant streaklines is presented. Simulations of streaklines in a cross-channel mixer and a perturbed Kirchhoff's elliptic vortex are quantitatively compared to the theoretical results. A methodology for quantifying the unsteady advective transport between the two fluids using streaklines is presented.

  17. Lagrangian analysis of fluid transport in empirical vortex ring flows

    OpenAIRE

    Shadden, Shawn C.; Dabiri, John O.; Marsden, Jerrold E.

    2006-01-01

    In this paper we apply dynamical systems analyses and computational tools to fluid transport in empirically measured vortex ring flows. Measurements of quasisteadily propagating vortex rings generated by a mechanical piston-cylinder apparatus reveal lobe dynamics during entrainment and detrainment that are consistent with previous theoretical and numerical studies. In addition, the vortex ring wake of a free-swimming Aurelia aurita jellyfish is measured and analyzed in the framework of dynami...

  18. Emergent long-range couplings in arrays of fluid cells

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Douglas Bruce [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-08-07

    We present a system exhibiting extraordinarily long-range cooperative effects, on a length scale far exceeding the bulk correlation length. We give a theoretical explanation of these phenomena based on the mesoscopic picture of phase coexistence in finite systems, which is confirmedly Monte Carlo (MC) simulation studies. Our work demonstrates that such action-at-a-distance can occur in classical systems involving simple or complex fluids, such as colloid-polymer mixtures, or ferromagnets.

  19. Mathematical Theory of Compressible Viscous Fluids: Analysis and Numerics

    OpenAIRE

    Feireisl, E. (Eduard); Karper, T.; Pokorný, M.

    2016-01-01

    This book offers an essential introduction to the mathematical theory of compressible viscous fluids. The main goal is to present analytical methods from the perspective of their numerical applications. Accordingly, we introduce the principal theoretical tools needed to handle well-posedness of the underlying Navier-Stokes system, study the problems of sequential stability, and, lastly, construct solutions by means of an implicit numerical scheme. Offering a unique contribution – by exploring...

  20. A variational approach to estimate incompressible fluid flows

    Indian Academy of Sciences (India)

    2017-02-01

    A variational approach is used to recover fluid motion governed by Stokes and Navier–Stokes equations. Unlike previous approaches where optical flow method is used to track rigid body motion, this new framework aims at investigating incompressible flows using optical flow techniques. We formulate a minimization problem and determine conditions under which unique solution exists. Numerical results using finite element method not only support theoretical results but also show that Stokes flow forced by a potential are recovered almost exactly.

  1. Representative equations for the thermodynamic and transport properties of fluids near the gas-liquid critical point

    Science.gov (United States)

    Sengers, J. V.; Basu, R. S.; Sengers, J. M. H. L.

    1981-01-01

    A survey is presented of representative equations for various thermophysical properties of fluids in the critical region. Representative equations for the transport properties are included. Semi-empirical modifications of the theoretically predicted asymtotic critical behavior that yield simple and practical representations of the fluid properties in the critical region are emphasized.

  2. Performance Testing of Cutting Fluids

    DEFF Research Database (Denmark)

    Belluco, Walter

    within the whole range of operations, materials, cutting fluids, operating conditions, etc. Cutting fluid performance was evaluated in turning, drilling, reaming and tapping, and with respect to tool life, cutting forces, chip formation and product quality (dimensional accuracy and surface integrity......). A number of different work materials were considered, with emphasis on austenitic stainless steel. Cutting fluids from two main groups were investigated, water miscible (reviewed from previous work) and straight oils. Results show that correlation of cutting fluid performance in different operations exists...... within the same group of cutting fluids, for stainless steel. A possible rationalisation of cutting fluid performance tests is suggested. In order to select a set of basic tests and optimise them for use as general and standardised testing methods, an original approach to the evaluation of cutting force...

  3. Fluid mechanics fundamentals and applications

    CERN Document Server

    Cengel, Yunus

    2013-01-01

    Cengel and Cimbala's Fluid Mechanics Fundamentals and Applications, communicates directly with tomorrow's engineers in a simple yet precise manner. The text covers the basic principles and equations of fluid mechanics in the context of numerous and diverse real-world engineering examples. The text helps students develop an intuitive understanding of fluid mechanics by emphasizing the physics, using figures, numerous photographs and visual aids to reinforce the physics. The highly visual approach enhances the learning of Fluid mechanics by students. This text distinguishes itself from others by the way the material is presented - in a progressive order from simple to more difficult, building each chapter upon foundations laid down in previous chapters. In this way, even the traditionally challenging aspects of fluid mechanics can be learned effectively. McGraw-Hill is also proud to offer ConnectPlus powered by Maple with the third edition of Cengel/Cimbabla, Fluid Mechanics. This innovative and powerful new sy...

  4. Complex Fluids and Hydraulic Fracturing.

    Science.gov (United States)

    Barbati, Alexander C; Desroches, Jean; Robisson, Agathe; McKinley, Gareth H

    2016-06-07

    Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process.

  5. Pure and Pseudo-pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp

    DEFF Research Database (Denmark)

    Bell, Ian H.; Wronski, Jorrit; Quoilin, Sylvain

    2014-01-01

    Over the last few decades, researchers have developed a number of empirical and theoretical models for the correlation and prediction of the thermophysical properties of pure fluids and mixtures treated as pseudo-pure fluids. In this paper, a survey of all the state-of-the-art formulations of the...... are included in the library, as well as properties of 40 incompressible fluids and humid air. The source code for the CoolProp library is included as an electronic annex....

  6. Modulated phases of graphene quantum Hall polariton fluids

    Science.gov (United States)

    Pellegrino, Francesco M. D.; Giovannetti, Vittorio; MacDonald, Allan H.; Polini, Marco

    2016-11-01

    There is a growing experimental interest in coupling cavity photons to the cyclotron resonance excitations of electron liquids in high-mobility semiconductor quantum wells or graphene sheets. These media offer unique platforms to carry out fundamental studies of exciton-polariton condensation and cavity quantum electrodynamics in a regime, in which electron-electron interactions are expected to play a pivotal role. Here, focusing on graphene, we present a theoretical study of the impact of electron-electron interactions on a quantum Hall polariton fluid, that is a fluid of magneto-excitons resonantly coupled to cavity photons. We show that electron-electron interactions are responsible for an instability of graphene integer quantum Hall polariton fluids towards a modulated phase. We demonstrate that this phase can be detected by measuring the collective excitation spectra, which is often at a characteristic wave vector of the order of the inverse magnetic length.

  7. Mathematical theory of compressible viscous fluids analysis and numerics

    CERN Document Server

    Feireisl, Eduard; Pokorný, Milan

    2016-01-01

    This book offers an essential introduction to the mathematical theory of compressible viscous fluids. The main goal is to present analytical methods from the perspective of their numerical applications. Accordingly, we introduce the principal theoretical tools needed to handle well-posedness of the underlying Navier-Stokes system, study the problems of sequential stability, and, lastly, construct solutions by means of an implicit numerical scheme. Offering a unique contribution – by exploring in detail the “synergy” of analytical and numerical methods – the book offers a valuable resource for graduate students in mathematics and researchers working in mathematical fluid mechanics. Mathematical fluid mechanics concerns problems that are closely connected to real-world applications and is also an important part of the theory of partial differential equations and numerical analysis in general. This book highlights the fact that numerical and mathematical analysis are not two separate fields of mathematic...

  8. Development of hyperbolic solution method for two fluids equation system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Jae; Chang, Won Pyo

    1997-07-01

    Using the concept of surface tension thickness, the mathematical ill-posedness of the two fluids equation system can now be removed by splitting the pressure discontinuity of the two fluids interface. The bulk modulus L1 and L2 derived from the concept of surface tension thickness makes two fluids equation system hyperbolic type. The hyperbolic equation system has five complete sets of eigenvectors, each of which having real eigenvalues. Three sets of them represents the propagation speeds of the physical properties for individual flow regimes such as the dispersed, the slug, and the separated flows. The propagation characteristics of these eigenvalues have good agreements with both the experimental data and other theoretical results in two-phase mixture. The feature of the hyperbolic model allows to apply advanced numerical upwind technique such as Flux vector splitting (FVS) method. The numerical test show that the characteristics of equation system clearly classify all flow regimes. (author). 25 refs., 3 tabs., 20 figs.

  9. Reduced carbonic fluid at magmatic PT conditions: new experimental data.

    Science.gov (United States)

    Simakin, Alexander; Salova, Tamara; Rinat, Gabitov; Sergey, Isaenko

    2017-04-01

    We study properties of the dry fluid of C-O-S composition at P=2000 bar and T=900-1000oC. Dry carbonic fluid was generated at the thermal decomposition of FeCO3 and (Fe,Mg)CO3. At the decomposition of pure FeCO3 assemblages of Wus-Mt and pure Mt was recognized. Wus-Mt corresponds to the fO2 on the level around QFM-2. Native carbon was formed from the fluid when CO concentration was above constrained by CCO buffer. Generated fluid was trapped as the bubbles within welded albite glass matrix. Micro-Raman study yields around 15 vol.% of CO in the mixture with CO2. The glass trap composition was interpreted to estimate the minimum solubilities of different elements in the studied fluid: Pt - 15 ppm, Mn - 262 ppm, P - 4100 ppm, Ce -22 ppm, S- 3400 ppm, Sr - 3300 ppm (Simakin et al., 2016). We add sulfur to the system in the form of FeS2, thermally decomposing after carbonates. Fluid interaction with platinum capsule walls to form PtS leads to the fast removal of sulfur. Analysis of the interaction products provides preliminary estimate of the Pt solubility. We observe transformation of magnetite to FeS at the reaction with COS. Pyrrhotite formed from oxide contains in average 1.5 wt.% of Pt. Assuming that at the reaction 1/3Fe3O4+COS+1/3CO = FeS +CO2 all dissolved in the fluid platinum was incorporated into the sulfide we get minimum Pt solubility of about 5000 ppm. To capture fluid composition we perform experiments in the Au capsules with sodium-silicate glass trap. Micro-Raman shows that presence of water in sodium-silicate leads to the partial COS decomposition to thiols and H2S, however, COS still was prevailing form of sulfur in the fluid as predicted theoretically (Simakin, 2014). Transport of siderophile (Ni, Cr, PGE, Au), LILE (Ba, Cs, Rb, Sr), LREE and chalcophile (Ag, Zn, Cu) elements by the dry fluid of C-O-S composition can be decisive during the formation of different volcanic aerosol phases. Study was partially supported by RFBR-DFG grant # 16

  10. Fluids in crustal deformation: Fluid flow, fluid-rock interactions, rheology, melting and resources

    Science.gov (United States)

    Lacombe, Olivier; Rolland, Yann

    2016-11-01

    Fluids exert a first-order control on the structural, petrological and rheological evolution of the continental crust. Fluids interact with rocks from the earliest stages of sedimentation and diagenesis in basins until these rocks are deformed and/or buried and metamorphosed in orogens, then possibly exhumed. Fluid-rock interactions lead to the evolution of rock physical properties and rock strength. Fractures and faults are preferred pathways for fluids, and in turn physical and chemical interactions between fluid flow and tectonic structures, such as fault zones, strongly influence the mechanical behaviour of the crust at different space and time scales. Fluid (over)pressure is associated with a variety of geological phenomena, such as seismic cycle in various P-T conditions, hydrofracturing (including formation of sub-horizontal, bedding-parallel veins), fault (re)activation or gravitational sliding of rocks, among others. Fluid (over)pressure is a governing factor for the evolution of permeability and porosity of rocks and controls the generation, maturation and migration of economic fluids like hydrocarbons or ore forming hydrothermal fluids, and is therefore a key parameter in reservoir studies and basin modeling. Fluids may also help the crust partially melt, and in turn the resulting melt may dramatically change the rheology of the crust.

  11. Conductivity effect in electrorheological fluids

    Institute of Scientific and Technical Information of China (English)

    TIAN; Yu; WEN; Shizhu; MENG; Yonggang

    2004-01-01

    Based on conduction model and cubic particle model, the relationship between current density and shear yield stress of electrorheological (ER) fluids was calculated and compared with some reported experimental results. The conductivity of the insulating oils is found to have been changed by the mixed particles. Several ways to decrease insulating liquid conductivity and increase the conductivity ratio of ER fluids have been proposed to prepare ER fluids with high shear yield stresses but low current densities.

  12. Fluid/Gas Process Controller

    Science.gov (United States)

    Ramos, Sergio

    1989-01-01

    Fluid/gas controller, or "Super Burper", developed to obtain precise fill quantities of working fluid and noncondensable gas in heat pipe by incorporating detachable external reservoir into system during processing stage. Heat pipe filled with precise quantities of working fluid and noncondensable gas, and procedure controlled accurately. Application of device best suited for high-quality, high performance heat pipes. Device successfully implemented with various types of heat pipes, including vapor chambers, thermal diodes, large space radiators, and sideflows.

  13. Working memory and fluid intelligence

    OpenAIRE

    Engel de Abreu, Pascale; Gathercole; Conway, A.

    2009-01-01

    The present study investigates how working memory and fluid intelligence are related in young children and which aspect of working memory span tasks– short-term storage or controlled attention - might drive the relationship. A sample of 119 children were followed from kindergarten to 2nd grade and completed assessments of working memory, short-term memory, and fluid intelligence. The data showed that working memory, verbal short-term memory, and fluid intelligence were highly related but sepa...

  14. Full Life Wind Turbine Gearbox Lubricating Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Glenn A.; Jungk, Manfred; Bryant, Jonathan J.; Lauer, Rebecca S.; Chobot, Anthony; Mayer, Tyler; Palmer, Shane; Kauffman, Robert E.

    2012-02-28

    for real world but creates the ability to test the lubricating fluids performance under the most extreme conditions. The PAO Reference oil also passed its testing without any noticeable deterioration of the gear surface. However the PAO Reference oil was replaced midway through the progressive loading, as the lubricant was burned in an attempt to raise the sump temperature to the same levels as for the PFPE. Both materials experienced a decrease of viscosity during their respective run times. The viscosity index decreased for the PAO there while there was a slight increase for the PFPE. FZG laboratory gear tests and measurements of the drive motor's current during the full scale gear box trial were made to characterize the relative efficiency between the PFPE fluid and the PAO Reference oil. In the FZG laboratory efficiency test, the PFPE fluids show much higher churning losses due to their higher viscosity and density. The analysis seems to show that the efficiency correlates better to dynamic viscosity than any other of the measured metrics such as film thickness. In load stages where the load, speed and temperature are similar, the PFPE fluid has a greater film thickness and theoretical gear protection, but requires a larger current for the drive motor than the PAO. However in load stages where the film thickness is the same, the PFPE fluid's reduced dynamic viscosity gives it a slight efficiency advantage relative to the PAO reference oil. Ultimately, many factors such as temperature, rotational speed, and fluid viscosity combine in a complex fashion to influence the results. However, the PFPE's much lower change of viscosity with respect to temperature, allows variations in designing an optimum viscosity to balance efficiency versus gear protection. Economic analysis was done using Cost of Energy calculations. The results vary from 5.3% for a 'Likely Case' to 16.8% for a 'Best Case' scenario as potential cost improvement by

  15. Inflationary universe in fluid description

    CERN Document Server

    Bamba, Kazuharu

    2016-01-01

    We investigate a fluid description of inflationary cosmology. It is shown that the three observables of the inflationary universe: the spectral index of the curvature perturbations, the tensor-to-scalar ratio of the density perturbations, and the running of the spectral index, can be compatible with the Planck analysis. In addition, we reconstruct the equation of state (EoS) for a fluid from the spectral index of the curvature perturbations consistent with the Planck results. We explicitly demonstrate that the universe can gracefully exit from inflation in the reconstructed fluid models. Furthermore, we explore the singular inflation for a fluid model.

  16. The fluid dynamics of climate

    CERN Document Server

    Palazzi, Elisa; Fraedrich, Klaus

    2016-01-01

    This volume provides an overview of the fluid aspects of the climate system, focusing on basic aspects as well as recent research developments. It will bring together contributions from diverse fields of the physical, mathematical and engineering sciences. The volume will be useful to doctorate students, postdocs and researchers working on different aspects of atmospheric, oceanic and environmental fluid dynamics. It will also be of interest to researchers interested in quantitatively understanding how fluid dynamics can be applied to the climate system, and to climate scientists willing to gain a deeper insight into the fluid mechanics underlying climate processes.

  17. Supersaturation in human gastric fluids.

    Science.gov (United States)

    Bevernage, Jan; Hens, Bart; Brouwers, Joachim; Tack, Jan; Annaert, Pieter; Augustijns, Patrick

    2012-05-01

    The current study reports on supersaturation, precipitation and excipient mediated precipitation inhibition of five poorly soluble drugs (loviride, glibenclamide, itraconazole, danazol, and etravirine) in human and simulated gastric fluids. Upon induction of supersaturation in human gastric fluids (HGFs), simulated gastric fluid (SGF), and fasted state simulated gastric fluid (FaSSGF) using a solvent shift method, supersaturation and precipitation were assessed as a function of time. In addition, the precipitation inhibitory capacity of three polymers (Eudragit® E PO, HPMC-E5, and PVP K25) was investigated. Supersaturation in human gastric fluids was observed for all model compounds, but proved to be relatively unstable (fast precipitation), except for itraconazole. Only modest excipient-mediated stabilizing effects on supersaturation were observed using HPMC-E5 and Eudragit® E PO whereas PVP K25 exerted no effect. In contrast to SGF, the observed precipitation behavior in FaSSGF was similar to the behavior in human gastric fluids. The present study demonstrates that supersaturation stability of drugs in human gastric fluids is in general inferior to supersaturation stability in intestinal fluids. As the potential for excipient mediated precipitation inhibition in gastric fluids was only limited, our data suggest that supersaturation should preferably be targeted to the intestine. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. CISM Course on Rotating Fluids

    CERN Document Server

    1992-01-01

    The volume presents a comprehensive overview of rotation effects on fluid behavior, emphasizing non-linear processes. The subject is introduced by giving a range of examples of rotating fluids encountered in geophysics and engineering. This is then followed by a discussion of the relevant scales and parameters of rotating flow, and an introduction to geostrophic balance and vorticity concepts. There are few books on rotating fluids and this volume is, therefore, a welcome addition. It is the first volume which contains a unified view of turbulence in rotating fluids, instability and vortex dynamics. Some aspects of wave motions covered here are not found elsewhere.

  19. Assessing and documenting fluid balance.

    Science.gov (United States)

    Pinnington, Sarah; Ingleby, Sarah; Hanumapura, Prasanna; Waring, Deryn

    2016-12-07

    Concerns about inadequate patient hydration and suboptimal monitoring of fluid balance have been documented in recent reports. The Fluid Balance Improvement Project at Central Manchester University Hospitals NHS Foundation Trust was undertaken to identify risk factors influencing hydration and to implement a revised process to manage these risks, resulting in the development of a hydration pathway. This new approach to monitoring patient hydration, together with staff education and support, has resulted in improved compliance with fluid balance monitoring standards, as well as significant improvements in identifying patients at risk of dehydration, and an increase in patients with acute kidney injury commencing appropriate fluid balance monitoring.

  20. INFANTILISM: THEORETICAL CONSTRUCT AND OPERATIONALIZATION

    Directory of Open Access Journals (Sweden)

    Yelena V. Sabelnikova

    2016-01-01

    Full Text Available The aim of the presented research is to define and operationalize theoretically the concept of infantilism and its construct. The content of theoretical construct «infantilism» is analyzed. Methods. The methods of theoretical research involve analysis and synthesis. The age and content criteria are analysed in the context of childhood and adulthood. The traits which can be interpreted as adult infantile traits are described. Results. The characteristics of adult infantilism in modern world taking into account the increasing of information flows and socio-economic changes are defined. The definition of the concept «infantilism» including its main features is given. Infantilism is defined as the personal organization including features and models of the previous age period not adequate for the real age stage with emphasis on immaturity of the emotional and volitional sphere. Scientific novelty. The main psychological characteristics of adulthood are described as the reflection, requirement to work and professional activity, existence of professional self-determination, possession of labor skills, need for selfrealization, maturity of the emotional and volitional sphere. As objective adulthood characteristics are considered the following: transition to economic and territorial independence of a parental family, and also development of new social roles, such as a worker, spouse, and parent. Two options of a possible operationalization of concept are allocated: objective (existence / absence in real human life of objective criteria of adulthood and subjective (the self-report on subjective feeling of existence / lack of psychological characteristics of adulthood. Practical significance consists in a construct operationalization of «infantilism» which at the moment has so many interpretations. That operationalization is necessary for the further analysis and carrying out various researches. 

  1. Supercritical fluid technology

    Energy Technology Data Exchange (ETDEWEB)

    Penninger, J.M.L.; McHugh, M.A.; Radosz, M.; Krukonis, V.J.

    1985-01-01

    This book presents the state-of-the-art in the science and technology of supercritical fluid (scf) processing. Current research as described in the book, focuses on developments in equations of state for binary and multicomponent mixtures (including polymer solutions), solubility measurements at near-critical conditions, measurements of critical properties of binary mixtures and their correlation with equations of state. Progress in thermodynamics, coupled with advances in the design and construction of high pressure equipment, has opened up a wide avenue of commercial application (e.g. decaffeination of coffee beans, extractions of flavours and spices, purification of pharmaceutical products, separations of polymeric materials, deodorization and deacidification of vegetable oils, fractionation of fatty acids, coal liquefaction, wood delignitication, etc.)

  2. FLUID CONTACTOR APPARATUS

    Science.gov (United States)

    Spence, R.; Streeton, R.J.W.

    1956-04-17

    The fluid contactor apparatus comprises a cylindrical column mounted co- axially and adapted to rotate within a cylindrical vessel, for the purpose of extracting a solute from am aqueous solution by means of an organic solvent. The column is particularly designed to control the vortex pattern so as to reduce the height of the vortices while, at the same time, the width of the annular radius in the radial direction between the vessel and column is less than half the radius of the column. A plurality of thin annular fins are spaced apart along the rotor approximately twice the radial dimension of the column such that two contrarotating substantially circular vortices are contained within each pair of fins as the column is rotated.

  3. Catenaries in viscous fluid

    CERN Document Server

    Chakrabarti, Brato

    2015-01-01

    This work explores a simple model of a slender, flexible structure in a uniform flow, providing analytical solutions for the translating, axially flowing equilibria of strings subjected to a uniform body force and drag forces linear in the velocities. The classical catenaries are extended to a five-parameter family of curves. A sixth parameter affects the tension in the curves. Generic configurations are planar, represented by a single first order equation for the tangential angle. The effects of varying parameters on representative shapes, orbits in angle-curvature space, and stress distributions are shown. As limiting cases, the solutions include configurations corresponding to "lariat chains" and the towing, reeling, and sedimentation of flexible cables in a highly viscous fluid. Regions of parameter space corresponding to infinitely long, semi-infinite, and finite length curves are delineated. Almost all curves subtend an angle less than $\\pi$ radians, but curious special cases with doubled or infinite ra...

  4. Fluid Genetic Algorithm (FGA

    Directory of Open Access Journals (Sweden)

    Ruholla Jafari-Marandi

    2017-04-01

    Full Text Available Genetic Algorithm (GA has been one of the most popular methods for many challenging optimization problems when exact approaches are too computationally expensive. A review of the literature shows extensive research attempting to adapt and develop the standard GA. Nevertheless, the essence of GA which consists of concepts such as chromosomes, individuals, crossover, mutation, and others rarely has been the focus of recent researchers. In this paper method, Fluid Genetic Algorithm (FGA, some of these concepts are changed, removed, and furthermore, new concepts are introduced. The performance of GA and FGA are compared through seven benchmark functions. FGA not only shows a better success rate and better convergence control, but it can be applied to a wider range of problems including multi-objective and multi-level problems. Also, the application of FGA for a real engineering problem, Quadric Assignment Problem (AQP, is shown and experienced.

  5. Respiratory fluid mechanics.

    Science.gov (United States)

    Grotberg, James B

    2011-02-01

    This article covers several aspects of respiratory fluid mechanics that have been actively investigated by our group over the years. For the most part, the topics involve two-phase flows in the respiratory system with applications to normal and diseased lungs, as well as therapeutic interventions. Specifically, the topics include liquid plug flow in airways and at airway bifurcations as it relates to surfactant, drug, gene, or stem cell delivery into the lung; liquid plug rupture and its damaging effects on underlying airway epithelial cells as well as a source of crackling sounds in the lung; airway closure from "capillary-elastic instabilities," as well as nonlinear stabilization from oscillatory core flow which we call the "oscillating butter knife;" liquid film, and surfactant dynamics in an oscillating alveolus and the steady streaming, and surfactant spreading on thin viscous films including our discovery of the Grotberg-Borgas-Gaver shock.

  6. Qualitative methods in theoretical physics

    CERN Document Server

    Maslov, Dmitrii

    2017-01-01

    This book comprises a set of tools which allow researchers and students to arrive at a qualitatively correct answer without undertaking lengthy calculations. In general, Qualitative Methods in Theoretical Physics is about combining approximate mathematical methods with fundamental principles of physics: conservation laws and symmetries. Readers will learn how to simplify problems, how to estimate results, and how to apply symmetry arguments and conduct dimensional analysis. A comprehensive problem set is included. The book will appeal to a wide range of students and researchers.

  7. THEORETICAL CONCEPTIONS OF GEOGRAPHY TEACHERS

    Directory of Open Access Journals (Sweden)

    Eloy Montes Galbán

    2007-11-01

    Full Text Available The main goal of this research was to determine the current theoretical concepts handled by third stage basic education geography teachers. A non experimental descriptive study was made. Data was collected through a semi structured questionnaire. The population was conformed by the teachers who work at the National schools placed in the parishes Raul Leoni and Cacique Mara of Maracaibo city, Zulia State. There is not clarity in regard to the correct handling of the different geographic currents, and the slight notion teachers have leans towards a traditional, descriptive, retrospective memory based conception.

  8. Theoretical studies of combustion dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, J.M. [Emory Univ., Atlanta, GA (United States)

    1993-12-01

    The basic objectives of this research program are to develop and apply theoretical techniques to fundamental dynamical processes of importance in gas-phase combustion. There are two major areas currently supported by this grant. One is reactive scattering of diatom-diatom systems, and the other is the dynamics of complex formation and decay based on L{sup 2} methods. In all of these studies, the authors focus on systems that are of interest experimentally, and for which potential energy surfaces based, at least in part, on ab initio calculations are available.

  9. Interconnection policy: a theoretical survey

    Directory of Open Access Journals (Sweden)

    César Mattos

    2003-01-01

    Full Text Available This article surveys the theoretical foundations of interconnection policy. The requirement of an interconnection policy should not be taken for granted in all circumstances, even considering the issue of network externalities. On the other hand, when it is required, an encompassing interconnection policy is usually justified. We provide an overview of the theory on interconnection pricing that results in several different prescriptions depending on which problem the regulator aims to address. We also present a survey on the literature on two-way interconnection.

  10. Machine learning a theoretical approach

    CERN Document Server

    Natarajan, Balas K

    2014-01-01

    This is the first comprehensive introduction to computational learning theory. The author's uniform presentation of fundamental results and their applications offers AI researchers a theoretical perspective on the problems they study. The book presents tools for the analysis of probabilistic models of learning, tools that crisply classify what is and is not efficiently learnable. After a general introduction to Valiant's PAC paradigm and the important notion of the Vapnik-Chervonenkis dimension, the author explores specific topics such as finite automata and neural networks. The presentation

  11. Start Up Research Effort in Fluid Mechanics. Advanced Methods for Acoustic and Thrust Benefits for Aircraft Engine Nozzle

    Science.gov (United States)

    White, Samuel G.; Gilinsky, Mikhail M.

    1997-01-01

    In accordance with the project plan for the report period in the proposal titled above, HU and FML teams investigated two sets of concepts for reduction of noise and improvement in efficiency for jet exhaust nozzles of aircraft engines and screws for mixers, fans, propellers and boats. The main achievements in the report period are: (a) Publication of the paper in the AIAA Journal, which described our concepts and some results. (b) The Award in the Civil Research and Development Foundation (CRDF) competition. This 2 year grant for Hampton University (HU) and Central AeroHydrodynamic Institute (TSAGI, Moscow, Russia) supports the research implementation under the current NASA FAR grant. (c) Selection for funding by NASA HQ review panel of the Partnership Awards Concept Paper. This two year grant also will support our current FAR grant. (d) Publication of a Mobius Strip concept in NASA Technical Briefs, June, 1996, and a great interest of many industrial companies in this invention. Successful experimental results with the Mobius shaped screw for mixers, which save more than 30% of the electric power by comparison with the standard screws. Creation of the scientific-popular video-film which can be used for commercial and educational purposes. (e) Organization work, joint meetings and discussions of the NASA LARC JNL Team and HU professors and administration for the solution of actual problems and effective work of the Fluid Mechanics Laboratory at Hampton University. In this report the main designs are enumerated. It also contains for both concept sets: (1) the statement of the problem for each design, some results, publications, inventions, patents, our vision for continuation of this research, and (2) present and expected problems in the future.

  12. Dynamics of the Gay-Berne fluid

    Energy Technology Data Exchange (ETDEWEB)

    de Miguel, E.; Rull, L.F. (Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Sevilla, Apartado 1065, Sevilla 41080 (Spain)); Gubbins, K.E. (School of Chemical Engineering, Cornell University, Ithaca, New York 14853 (United States))

    1992-03-15

    Using molecular-dynamics computer simulation, we study the dynamical behavior of the isotropic and nematic phases of highly anisotropic molecular fluids. The interactions are modeled by means of the Gay-Berne potential with anisotropy parameters {kappa}=3 and {kappa}{prime}=5. The linear-velocity autocorrelation function shows no evidence of a negative region in the isotropic phase, even at the higher densities considered. The self-diffusion coefficient parallel to the molecular axis shows an anomalous increase with density as the system enters the nematic region. This enhancement in parallel diffusion is also observed in the isotropic side of the transition as a precursor effect. The molecular reorientation is discussed in the light of different theoretical models. The Debye diffusion model appears to explain the reorientational mechanism in the nematic phase. None of the models gives a satisfactory account of the reorientation process in the isotropic phase.

  13. A modular system for computational fluid dynamics

    Science.gov (United States)

    McCarthy, D. R.; Foutch, D. W.; Shurtleff, G. E.

    This paper describes the Modular System for Compuational Fluid Dynamics (MOSYS), a software facility for the construction and execution of arbitrary solution procedures on multizone, structured body-fitted grids. It focuses on the structure and capabilities of MOSYS and the philosophy underlying its design. The system offers different levels of capability depending on the objectives of the user. It enables the applications engineer to quickly apply a variety of methods to geometrically complex problems. The methods developer can implement new algorithms in a simple form, and immediately apply them to problems of both theoretical and practical interest. And for the code builder it consitutes a toolkit for fast construction of CFD codes tailored to various purposes. These capabilities are illustrated through applications to a particularly complex problem encountered in aircraft propulsion systems, namely, the analysis of a landing aircraft in reverse thrust.

  14. Design factors for “linear” ball valve: theoretical and experimental studies

    Directory of Open Access Journals (Sweden)

    Thananchai Leephakpreeda

    2005-03-01

    Full Text Available Generic non-linear flow characteristics of the conventional ball valve limit the applications of flow modulation in fluid processes. This work presents the flow characteristics of fluid flowing through the conventional and modified ball valves for feasibility of a “linear” ball valve. Theoretical studies are discussed for determining explicit and implicit factors on the valve coefficient, which modulates the flow rate of fluid when the ball valve is operated in flow control processes. In experiment, the cross- sectional opening area at various opening degrees, the shape, and the location of the hole passage in valve ball are examined for complicated relations dependent to the flow rate of fluid. It can be concluded that those factors cause the modulation of flow rate when the ball is turned at different opening degree. In extended design of flow characteristics for linearity, they are to be taken into account.

  15. Salinity of oceanic hydrothermal fluids: a fluid inclusion study

    Science.gov (United States)

    Nehlig, Pierre

    1991-03-01

    An extensive microthermometric study of quartz, epidote, plagioclase, anhydrite and sphalerite-hosted fluid inclusions from ophiolitic [Semail (Oman) and Trinity (California) ophiolites] and oceanic (East Pacific Rise hydrothermal vents, Gorringe Bank, ODP Leg 111 Hole 504B) crust has been carried out in order to constrain a model accounting for wide salinity variations measured in the oceanic hydrothermal fluids. Recorded salinities in fluid inclusions vary between 0.3 and 52 wt% NaCl eq. However, more than 60% of the mean (± standard deviation) salinities of the samples are within the range 3.2 ± 0.3wt% NaCl eq (= microthermometric error) and the mean salinity of all fluid inclusions (without the brines) is 4.0 wt% NaCl eq with a standard deviation of 1.6 wt% NaCl eq. Whereas most samples display slightly higher salinities than seawater, several samples exhibit very high salinities (more than two times that of seawater). These high salinities are restricted to the plagiogranites (Semail and Trinity ophiolites) which mark the top of the fossil magma chamber, in the transition zone between the plutonic sequence and the sheeted dyke complex. The fluid inclusion population studied in the plagiogranites is characterized by the occurrence of four major fluid inclusion families: (1) low- to medium-salinity Liquid/Vapor fluid inclusions which homogenize into the liquid phase; (2) low-salinity Liquid/Vapor fluid inclusions with pseudocritical homogenization; (3) low- to medium-salinity Liquid/Vapor fluid inclusions which homogenize into the vapor phase; and (4) high-salinity Liquid/Vapor/Halite fluid inclusions which homogenize into the liquid phase by halite dissolution and exhibit salinities as high as 52 wt% NaCl eq. These fluid inclusion families are interpreted as resulting from phase separation occurring in hydrothermal or magmatic fluids within the transition zone between the hydrothermal system and the magma chamber at temperatures higher than 500°C. Very low

  16. Enhanced inertia from lossy effective fluids using multi-scale sonic crystals

    Directory of Open Access Journals (Sweden)

    Matthew D. Guild

    2014-12-01

    Full Text Available In this work, a recent theoretically predicted phenomenon of enhanced permittivity with electromagnetic waves using lossy materials is investigated for the analogous case of mass density and acoustic waves, which represents inertial enhancement. Starting from fundamental relationships for the homogenized quasi-static effective density of a fluid host with fluid inclusions, theoretical expressions are developed for the conditions on the real and imaginary parts of the constitutive fluids to have inertial enhancement, which are verified with numerical simulations. Realizable structures are designed to demonstrate this phenomenon using multi-scale sonic crystals, which are fabricated using a 3D printer and tested in an acoustic impedance tube, yielding good agreement with the theoretical predictions and demonstrating enhanced inertia.

  17. The European Theoretical Spectroscopy Facility

    Science.gov (United States)

    Godby, Rex

    2007-03-01

    The ETSF (www.etsf.eu) is being created as a permanent output of the EU-funded Nanoquanta Network of Excellence (www.nanoquanta.eu, 2004-8), which joins 10 groups and over 100 researchers in research on the theory and simulation of spectroscopy of electrons in matter, and related excited-state electronic properties including quantum transport. The ETSF is intended to contribute significantly to nanoscience and nanotechnology through the development and application of theoretical spectroscopy, involving close collaboration between theorists (the existing Nanoquanta groups together with further theoretical groups) and a new community of experimental and industrial researchers who wish to apply modern theories of spectroscopy. In this talk I shall review some of the scientific output of the project so far, including the development of new ideas and techniques in many-body perturbation theory and time-dependent density-functional theory, and their application to a variety of prototype and actual systems including quantum transport in nanostructures, optical absorption in biological molecules and advanced materials, optical properties of nanoclusters and nanotubes, non-linear optical response, and spectroscopies of complex surfaces. I shall also briefly describe the network's integration activities, including code interoperability and modularity, training of internal and external researchers, and the legal, financial and organizational preparations for the ETSF.

  18. Theoretical approaches to superionic conductivity

    Indian Academy of Sciences (India)

    C S Sunandana; P Senthil Kumar

    2004-02-01

    Recent theoretical approaches to the understanding of superionic conductivity in polycrystalline, glassy and polymeric materials are briefly reviewed. Phase transitions to the superionic conducting state in the AgI family are apparently triggered by cluster formation and strong mobile ion interaction within the clusters. Anomalous conductivity and related physical properties are explained in the cluster induced distortion model. Ionic composites such as AgX : Al2O3 ( = Cl, Br and I) involve conducting and non-conducting phases and the all-important interface between the two whose space charge enhances the conductivity and also trigger phase transitions to exotic polymorphic phases, for which the mechanisms are yet to be explored. Ion hopping dynamics controls the conductivity of superionic glasses. Mode coupling and jump relaxation theories account for the non-Debye relaxation observed in a.c. conductivity of these glasses. The theory of conductivity in polymer electrolytes-still in its infancy-involves their complex structure and glass transition behaviour. Preparative and thermal history, composition and crystallinity control ionic conductivity. New approaches to the synthesis of optimal polymer electrolytes such as rubbery electrolytes, crystalline polymers and nanocomposites must be considered before achieving a comprehensive theoretical understanding.

  19. Theoretical perspectives on narrative inquiry.

    Science.gov (United States)

    Emden, C

    1998-04-01

    Narrative inquiry is gaining momentum in the field of nursing. As a research approach it does not have any single heritage of methodology and its practitioners draw upon diverse sources of influence. Central to all narrative inquiry however, is attention to the potential of stories to give meaning to people's lives, and the treatment of data as stories. This is the first of two papers on the topic and addresses the theoretical influences upon a particular narrative inquiry into nursing scholars and scholarship. The second paper, Conducting a narrative analysis, describes the actual narrative analysis as it was conducted in this same study. Together, the papers provide sufficient detail for others wishing to pursue a similar approach to do so, or to develop the ideas and procedures according to their own way of thinking. Within this first theoretical paper, perspectives from Jerome Bruner (1987) and Wade Roof (1993) are outlined. These relate especially to the notion of stories as 'imaginative constructions' and as 'cultural narratives' and as such, highlight the profound importance of stories as being individually and culturally meaningful. As well, perspectives on narrative inquiry from nursing literature are highlighted. Narrative inquiry in this instance lies within the broader context of phenomenology.

  20. Theoretical perspectives on strange physics

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, J.

    1983-04-01

    Kaons are heavy enough to have an interesting range of decay modes available to them, and light enough to be produced in sufficient numbers to explore rare modes with satisfying statistics. Kaons and their decays have provided at least two major breakthroughs in our knowledge of fundamental physics. They have revealed to us CP violation, and their lack of flavor-changing neutral interactions warned us to expect charm. In addition, K/sup 0/-anti K/sup 0/ mixing has provided us with one of our most elegant and sensitive laboratories for testing quantum mechanics. There is every reason to expect that future generations of kaon experiments with intense sources would add further to our knowledge of fundamental physics. This talk attempts to set future kaon experiments in a general theoretical context, and indicate how they may bear upon fundamental theoretical issues. A survey of different experiments which would be done with an Intense Medium Energy Source of Strangeness, including rare K decays, probes of the nature of CP isolation, ..mu.. decays, hyperon decays and neutrino physics is given. (WHK)

  1. Sixth International Symposium on Bifurcations and Instabilities in Fluid Dynamics (BIFD2015)

    DEFF Research Database (Denmark)

    Bar-Yoseph, P. Z.; Brøns, Morten; Gelfgat, A.

    2016-01-01

    Hydrodynamic stability is of fundamental importance in fluid dynamics. As a well-established subject of scientific investigation, it continues to attract great interest in the fluid mechanics community. Bifurcations and instabilities are observed in all areas of fundamental and applied fluid...... dynamics and remain a challenge for experimental, theoretical and computational studies. Examples of prototypical hydrodynamic instabilities are the Rayleigh–Bénard, Taylor–Couette, Bénard–Marangoni, Rayleigh–Taylor, and Kelvin–Helmholtz instabilities. A fundamental understanding of bifurcation patterns...... International Symposium on Instability and Bifurcations in Fluid Dynamics (BIFD) held at the ESPCI, Paris, 15–17 July2015. With four invited and nearly 400 contributed talks, the symposium gave an overview of the state of the art of the field including experimental, theoretical, and computational approaches...

  2. Mechanical and chemical behavior of intergranular fluids in nonhydrostatically stressed rocks at low temperature

    Institute of Scientific and Technical Information of China (English)

    刘亮明; 彭省临

    2001-01-01

    Intergranular fluids within the nonhydrostatically stressed solids are a sort of important fluids in the crust. Research on the mechanical and chemical behavior of the intergranular fluids in nonhydrostatically stressed rocks at low temperature is a key for understanding deformation and syntectonic geochemical processes in mid to shallow crust. Theoretically, it is suggested that the fluid film sandwiched between solid grains is one of the main states of intergranular fluids in the nonhydrostatically stressed solids. Their superthin thickness makes the fluid films have the mechanical and chemical behavior very different from the common fluids. Because of hydration force, double-layer repulsive force or osmotic pressure due to double-layer, the fluid films can transmit nonhydrostatic stress. The solid minerals-intergranular fluids interaction and mass transfer by intergranular fluids is stress-related, because the stress in solid minerals can enhance the free energy of solid matter on the interfaces. The thermodynamic and kinetic equations for the simple case of stress induced processes are derived.

  3. Advances in the microrheology of complex fluids.

    Science.gov (United States)

    Waigh, Thomas Andrew

    2016-07-01

    New developments in the microrheology of complex fluids are considered. Firstly the requirements for a simple modern particle tracking microrheology experiment are introduced, the error analysis methods associated with it and the mathematical techniques required to calculate the linear viscoelasticity. Progress in microrheology instrumentation is then described with respect to detectors, light sources, colloidal probes, magnetic tweezers, optical tweezers, diffusing wave spectroscopy, optical coherence tomography, fluorescence correlation spectroscopy, elastic- and quasi-elastic scattering techniques, 3D tracking, single molecule methods, modern microscopy methods and microfluidics. New theoretical techniques are also reviewed such as Bayesian analysis, oversampling, inversion techniques, alternative statistical tools for tracks (angular correlations, first passage probabilities, the kurtosis, motor protein step segmentation etc), issues in micro/macro rheological agreement and two particle methodologies. Applications where microrheology has begun to make some impact are also considered including semi-flexible polymers, gels, microorganism biofilms, intracellular methods, high frequency viscoelasticity, comb polymers, active motile fluids, blood clots, colloids, granular materials, polymers, liquid crystals and foods. Two large emergent areas of microrheology, non-linear microrheology and surface microrheology are also discussed.

  4. Temperature induced pore fluid pressurization in geomaterials

    CERN Document Server

    Ghabezloo, Siavash

    2010-01-01

    The theoretical basis of the thermal response of the fluid-saturated porous materials in undrained condition is presented. It has been demonstrated that the thermal pressurization phenomenon is controlled by the discrepancy between the thermal expansion of the pore fluid and of the solid phase, the stress-dependency of the compressibility and the non-elastic volume changes of the porous material. For evaluation of the undrained thermo-poro-elastic properties of saturated porous materials in conventional triaxial cells, it is important to take into account the effect of the dead volume of the drainage system. A simple correction method is presented to correct the measured pore pressure change and also the measured volumetric strain during an undrained heating test. It is shown that the porosity of the tested material, its drained compressibility and the ratio of the volume of the drainage system to the one of the tested sample, are the key parameters which influence the most the error induced on the measuremen...

  5. Experimental characterisation of nonlocal photon fluids

    CERN Document Server

    Vocke, David; Marino, Francesco; Wright, Ewan M; Carusotto, Iacopo; Faccio, Daniele

    2015-01-01

    Quantum gases of atoms and exciton-polaritons are nowadays a well established theoretical and experimental tool for fundamental studies of quantum many-body physics and suggest promising applications to quantum computing. Given their technological complexity, it is of paramount interest to devise other systems where such quantum many-body physics can be investigated at a lesser technological expense. Here we examine a relatively well-known system of laser light propagating through thermo-optical defocusing media: based on a hydrodynamical description of light as a quantum fluid of interacting photons, we propose such systems as a valid, room temperature alternative to atomic or exciton-polariton condensates for studies of many-body physics. First, we show that by using a technique traditionally used in oceanography, it is possible to perform a direct measurement of the single-particle part of the dispersion relation of the elementary excitations on top of the photon fluid and to detect its global flow. Then, ...

  6. Materials processing using supercritical fluids

    Directory of Open Access Journals (Sweden)

    Orlović Aleksandar M.

    2005-01-01

    Full Text Available One of the most interesting areas of supercritical fluids applications is the processing of novel materials. These new materials are designed to meet specific requirements and to make possible new applications in Pharmaceuticals design, heterogeneous catalysis, micro- and nano-particles with unique structures, special insulating materials, super capacitors and other special technical materials. Two distinct possibilities to apply supercritical fluids in processing of materials: synthesis of materials in supercritical fluid environment and/or further processing of already obtained materials with the help of supercritical fluids. By adjusting synthesis parameters the properties of supercritical fluids can be significantly altered which further results in the materials with different structures. Unique materials can be also obtained by conducting synthesis in quite specific environments like reversed micelles. This paper is mainly devoted to processing of previously synthesized materials which are further processed using supercritical fluids. Several new methods have been developed to produce micro- and nano-particles with the use of supercritical fluids. The following methods: rapid expansion of supercritical solutions (RESS supercritical anti-solvent (SAS, materials synthesis under supercritical conditions and encapsulation and coating using supercritical fluids were recently developed.

  7. Thermomolecular Orientation of Nonpolar Fluids

    NARCIS (Netherlands)

    Römer, F.; Bresme, F.; Muscatello, J.; Bedeaux, D.; Rubi, J.M.

    2012-01-01

    We investigate the response of molecular fluids to temperature gradients. Using nonequilibrium molecular dynamics computer simulations we show that nonpolar diatomic fluids adopt a preferred orientation as a response to a temperature gradient. We find that the magnitude of this thermomolecular orien

  8. Fetal fluid and protein dynamics

    NARCIS (Netherlands)

    Pasman, Suzanne

    2010-01-01

    In this thesis fetal fluid and protein dynamics are investigated to gain insight in fetal (patho-)physiology. Studies were performed in fetuses with severe anemia and/or hydrops fetalis. Measurements were performed in fetal blood or amniotic fluid, obtained before or during intrauterine transfusion.

  9. Prehospital fluid resuscitation in trauma

    NARCIS (Netherlands)

    Raum, M. R.; Waydhas, C.

    2009-01-01

    The indications for and type and amount of fluid resuscitation for trauma patients in the field remains highly controversial. There is unanimity, however, that trauma victims may suffer from acute blood loss. In addition to stopping the bleeding fluid resuscitation is the second mainstay in shock th

  10. Fluid simulation for computer graphics

    CERN Document Server

    Bridson, Robert

    2008-01-01

    Animating fluids like water, smoke, and fire using physics-based simulation is increasingly important in visual effects, in particular in movies, like The Day After Tomorrow, and in computer games. This book provides a practical introduction to fluid simulation for graphics. The focus is on animating fully three-dimensional incompressible flow, from understanding the math and the algorithms to the actual implementation.

  11. Applied Fluid Mechanics. Lecture Notes.

    Science.gov (United States)

    Gregg, Newton D.

    This set of lecture notes is used as a supplemental text for the teaching of fluid dynamics, as one component of a thermodynamics course for engineering technologists. The major text for the course covered basic fluids concepts such as pressure, mass flow, and specific weight. The objective of this document was to present additional fluids…

  12. Introduction to mathematical fluid dynamics

    CERN Document Server

    Meyer, Richard E

    2010-01-01

    An introduction to the behavior of liquids and gases, this volume provides excellent coverage of kinematics, momentum principle, Newtonian fluid, rotating fluids, compressibility, and more. It is geared toward advanced undergraduate and graduate students of mathematics and general science, and it requires a background in calculus and vector analysis. 1971 edition.

  13. Coiling of yield stress fluids

    NARCIS (Netherlands)

    Y. Rahmani; M. Habibi; A. Javadi; D. Bonn

    2011-01-01

    We present an experimental investigation of the coiling of a filament of a yield stress fluid falling on a solid surface. We use two kinds of yield stress fluids, shaving foam and hair gel, and show that the coiling of the foam is similar to the coiling of an elastic rope. Two regimes of coiling (el

  14. An Introduction to Fluid Dynamics

    Science.gov (United States)

    Batchelor, G. K.

    2000-02-01

    First published in 1967, Professor Batchelor's classic work is still one of the foremost texts on fluid dynamics. His careful presentation of the underlying theories of fluids is still timely and applicable, even in these days of almost limitless computer power. This reissue ensures that a new generation of graduate students experiences the elegance of Professor Batchelor's writing.

  15. Heart failure - fluids and diuretics

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000112.htm Heart failure - fluids and diuretics To use the sharing features on ... at Home When you have heart failure, your heart does not pump out enough blood. This causes fluids to build up in your body. If you ...

  16. Applied Fluid Mechanics. Lecture Notes.

    Science.gov (United States)

    Gregg, Newton D.

    This set of lecture notes is used as a supplemental text for the teaching of fluid dynamics, as one component of a thermodynamics course for engineering technologists. The major text for the course covered basic fluids concepts such as pressure, mass flow, and specific weight. The objective of this document was to present additional fluids…

  17. MEASUREMENT AND PREDICTION OF VOLUMETRIC AND TRANSPORT PROPERTIES OF RESERVOIR FLUIDS AT HIGH PRESSURE

    OpenAIRE

    Ungerer, Philippe; Batut, C.; Moracchini, G.; Sanchez, J.; Sant'ana,H. B.; Carrier, J; Jensen, D. M.

    1998-01-01

    International audience; Discoveries of oil and gas fields under severe conditions of temperature (above 150¡C) or pressure (in excess of 50 MPa) have been made in various regions of the world. In the North Sea, production is scheduled from deep reservoirs at 190¡ C and 110 MPa. This brings with it important challenges for predicting the properties of reservoir fluids, both from an experimental and a theoretical standpoint. In order to perform fluid studies for these reservoir conditions, IFP ...

  18. An Analysis of the Characteristics of the Thermal Boundary Layer in Power Law Fluid

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper presents a theoretical analysis of the heat transfer for the boundary layer flow on a continuous moving surface in power law fluid. The expressions of the thermal boundary layer thickness with the different heat conductivity coefficients are obtained according to the theory of the dimensional analysis of fluid dynamics and heat transfer. And the numerical results of CFD agree well with the proposed expressions. The estimate formulas can be successfully applied to giving the thermal boundary layer thickness.

  19. Effective perfect fluids in cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Ballesteros, Guillermo [Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Piazza del Viminale 1, I-00184 Rome (Italy); Bellazzini, Brando, E-mail: guillermo.ballesteros@unige.ch, E-mail: brando.bellazzini@pd.infn.it [Dipartimento di Fisica, Università di Padova and INFN, Sezione di Padova, Via Marzolo 8, I-35131 Padova (Italy)

    2013-04-01

    We describe the cosmological dynamics of perfect fluids within the framework of effective field theories. The effective action is a derivative expansion whose terms are selected by the symmetry requirements on the relevant long-distance degrees of freedom, which are identified with comoving coordinates. The perfect fluid is defined by requiring invariance of the action under internal volume-preserving diffeomorphisms and general covariance. At lowest order in derivatives, the dynamics is encoded in a single function of the entropy density that characterizes the properties of the fluid, such as the equation of state and the speed of sound. This framework allows a neat simultaneous description of fluid and metric perturbations. Longitudinal fluid perturbations are closely related to the adiabatic modes, while the transverse modes mix with vector metric perturbations as a consequence of vorticity conservation. This formalism features a large flexibility which can be of practical use for higher order perturbation theory and cosmological parameter estimation.

  20. Hybrid models for complex fluids

    CERN Document Server

    Tronci, Cesare

    2010-01-01

    This paper formulates a new approach to complex fluid dynamics, which accounts for microscopic statistical effects in the micromotion. While the ordinary fluid variables (mass density and momentum) undergo usual dynamics, the order parameter field is replaced by a statistical distribution on the order parameter space. This distribution depends also on the point in physical space and its dynamics retains the usual fluid transport features while containing the statistical information on the order parameter space. This approach is based on a hybrid moment closure for Yang-Mills Vlasov plasmas, which replaces the usual cold-plasma assumption. After presenting the basic properties of the hybrid closure, such as momentum map features, singular solutions and Casimir invariants, the effect of Yang-Mills fields is considered and a direct application to ferromagnetic fluids is presented. Hybrid models are also formulated for complex fluids with symmetry breaking. For the special case of liquid crystals, a hybrid formul...