WorldWideScience

Sample records for ahuachapan geothermal field

  1. The Ahuachapan geothermal field, El Salvador: Reservoir analysis

    Energy Technology Data Exchange (ETDEWEB)

    Aunzo, Z.; Bodvarsson, G.S.; Laky, C.; Lippmann, M.J.; Steingrimsson, B.; Truesdell, A.H.; Witherspoon, P.A. (Lawrence Berkeley Lab., CA (USA); Icelandic National Energy Authority, Reykjavik (Iceland); Geological Survey, Menlo Park, CA (USA); Lawrence Berkeley Lab., CA (USA))

    1989-08-01

    The Earth Sciences Division of Lawrence Berkeley Laboratory (LBL) is conducting a reservoir evaluation study of the Ahuachapan geothermal field in El Salvador. This work is being performed in cooperation with the Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) and the Los Alamos National Laboratory (LANL). This report describes the work done during the first year of the study (FY 1988--89), and includes the (1) development of geological and conceptual models of the field, (2) evaluation of the initial thermodynamic and chemical conditions and their changes during exploitation, (3) evaluation of interference test data and the observed reservoir pressure decline, and (4) the development of a natural state model for the field. The geological model of the field indicates that there are seven (7) major and five (5) minor faults that control the fluid movement in the Ahuachapan area. Some of the faults act as a barrier to flow as indicated by large temperature declines towards the north and west. Other faults act as preferential pathways to flow. The Ahuachapan Andesites provide good horizontal permeability to flow and provide most of the fluids to the wells. The underlying Older Agglomerates also contribute to well production, but considerably less than the Andesites. 84 refs.

  2. Sustainability analysis of the Ahuachapan geothermal field: management and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Monterrosa, Manuel; Montalvo Lopez, Francisco E. [LaGeo S.A. de C.V., Reservoir Engineering, 15 Av. Sur, Colonia Utila, Santa Tecla, La Libertad (El Salvador)

    2010-12-15

    The Ahuachapan geothermal field (AGF) is located in north western El Salvador. To date, 53 wells (20 producers and 8 injectors) have been drilled in the Ahuachapan geothermal field and the adjacent Chipilapa area. Over the past 33 years, 550 Mtonnes have been extracted from the reservoir, and the reservoir pressure has declined by more than 15 bars. By 1985, the large pressure drawdown due to over-exploitation of the resource reduced the power generation capacity to only 45 MW{sub e}. Several activities were carried out in the period 1997-2005 as part of ''stabilization'' and ''optimization'' projects to increase the electric energy generation to 85 MW{sub e}, with a total mass extraction of 850 kg/s. LaGeo is assessing the sustainability of geothermal reservoir utilization. Preliminary results indicate the planned power production and mass extraction (95 MW, 900 kg/s) cannot be sustained for more than 50 years using current power plant technology. To sustain the exploitation for at least 100 years, the following changes should be implemented: (1) improve the gathering system using large-diameter steam pipelines, (2) expand the exploitation area to the southeast and southwest, and (3) reduce the inlet pressure of the turbines to less than 4 bars. (author)

  3. Results of investigation at the Ahuachapan Geothermal Field, El Salvador

    Energy Technology Data Exchange (ETDEWEB)

    Fink, J.B. (HydroGeophysics, Tucson, AZ (United States))

    1990-04-01

    The Ahuachapan Geothermal Field (AGF) is a 95 megawatt geothemal-sourced power-plant operated by the Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) of El Salvador. During the past decade, as part of an effort to increase in situ thermal reserves in order to realize the full generation capacity of the AGF, extensive surface geophysical coverage has been obtained over the AGF and the prospective Chipilapa area to the east. The geophysical surveys were performed to determine physical property characteristics of the known reservoir and then to search for similar characteristics in the Chipilapa area. A secondary objective was to evaluate the surface recharge area in the highlands to the south of the AGF. The principal surface electrical geophysical methods used during this period were DC resistivity and magnetotellurics. Three available data sets have been reinterpreted using drillhole control to help form geophysical models of the area. The geophysical models are compared with the geologic interpretations.

  4. Results of investigations at the Ahuachapan geothermal field, El Salvador

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, B.; Goff, F.; Van Eeckhout, E.; Hanold, B. (comps.)

    1990-04-01

    Well logging operations were performed in eight of the geothermal wells at Ahuachapan. High-temperature downhole instruments, including a temperature/rabbit, caliper, fluid velocity spinner/temperature/pressure (STP), and fluid sampler, were deployed in each well. The caliper tool was used primarily to determine if chemical deposits were present in well casings or liners and to investigate a suspected break in the casing in one well. STP logs were obtained from six of the eight wells at various flow rates ranging from 30 to 80 kg/s. A static STP log was also run with the wells shut-in to provide data to be used in the thermodynamic analysis of several production wells. The geochemical data obtained show a system configuration like that proposed by C. Laky and associates in 1989. Our data indicate recharge to the system from the volcanic highlands south of the field. Additionally, our data indicate encroachment of dilute fluids into deeper production zones because of overproduction. 17 refs., 50 figs., 10 tabs.

  5. The Ahuachapan geothermal field, El Salvador: Exploitation model, performance predictions, economic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ripperda, M.; Bodvarsson, G.S.; Lippmann, M.J.; Witherspoon, P.A.; Goranson, C.

    1991-05-01

    The Earth Sciences Division of Lawrence Berkeley Laboratory (LBL) is conducting a reservoir evaluation study of the Ahuachapan geothermal field in El Salvador. This work is being performed in cooperation with the Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) and the Los Alamos National Laboratory (LANL) with funding from the US Agency for International Development (USAID). This report describes the work done during the second year of the study (FY89--90). The first year's report included (1) the development of geological and conceptual models of the field, (2) the evaluation of the reservoir's initial thermodynamic and chemical conditions and their changes during exploitation, (3) the evaluation of interference test data and the observed reservoir pressure decline and (4) the development of a natural state model for the field. In the present report the results of reservoir engineering studies to evaluate different production-injection scenarios for the Ahuachapan geothermal field are discussed. The purpose of the work was to evaluate possible reservoir management options to enhance as well as to maintain the productivity of the field during a 30-year period (1990--2020). The ultimate objective was to determine the feasibility of increasing the electrical power output at Ahuachapan from the current level of about 50 MW{sub e} to the total installed capacity of 95 MW{sub e}. 20 refs., 75 figs., 10 tabs.

  6. Simulation studies for wells AH-4bis/AH-17 and AH-18, Ahuachapan Geothermal Field

    Energy Technology Data Exchange (ETDEWEB)

    Monterrosa, Manuel Ernesto

    1996-01-24

    Well AH-4bis, at the Ahuachapan Geothermal Field is planned to be drilled on the same pad as the former AH-4. A simulation study was carried out for two casing dameters 13 5/8 and 9 5/8” in order to estimate its production and to know its economic feasibility. The simulation results indcate a high probability of production in the range of 7 Mwe, equivalent to 120 kg/s total mass flow rate, 1250 kJ/kg at 6 bar-a for the new well AH-4bis. Well AH- 17 is good producer, during 1991 after ten years of production, the well was shut-in due to silica scaling problems. A wellbore simulation was carried out in order to predict the new production conditions after the work-over, mainly to estimate the water flow rate in order to reduce the silica scaling. The results indicate a very low water flow rate. The match between the simulated and measured production curves after the work-over was successful. The well AH-18 is located at the southern part of the actual bore field. CEL is planning to expand the borefield at this area and it is neccessary to estimate the possible production condtions at that zone. The results indicate a high probabilty of production at that area. The power potential is estimated at 3.5 Mwe per well at WHP 6 bar-a and the wells will not require induction.

  7. Near-surface groundwater responses to injection of geothermal wastes

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, S.C.

    1984-06-01

    This report assesses the feasibility of injection as an alternative for geothermal wastewater disposal and analyzes hydrologic controls governing the upward migration of injected fluids. Injection experiences at several geothermal developments are presented including the following: Raft River Valley, Salton Sea, East Mesa, Otake, Hatchobaru, and Ahuachapan geothermal fields.

  8. Environmental impact in geothermal fields

    International Nuclear Information System (INIS)

    Birkle, P.; Torres R, V.; Gonzalez P, E.; Guevara G, M.

    1996-01-01

    Generally, water exploitation and deep steam of geothermal fields may be cause of a pollution potential on the surface, specially by the chemical composition of geothermal water which has a high concentration of minerals, salts and heavy metals. The utilization of stable isotopes as deuterium and oxygen 18 as radioactive tracers and water origin indicators allow to know the trajectories and sources of background waters as well as possible moistures between geothermal waters and meteoric waters. Some ions such as chlorides and fluorides present solubilities that allow their register as yet long distances of their source. (Author)

  9. Geothermal emissions data base, Wairakei geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, S.R. (comp.)

    1978-04-01

    A database subset on the gaseous emissions from the Wairakei geothermal field is presented. Properties and states of the reservoir fluid such as flow rates, wellhead pressure, and enthalpy are included in the file along with the well name and constituent measurement. This subset is the result of an initial screening of the data covering 1965 to 1971, and new additions will be appended periodically to the file. The data is accessed by a database management system as are all other subsets in the file. Thereby, one may search the database for specific data requirements and print selective output. For example, one may wish to locate reservoir conditions for cases only when the level of the constituent exceeded a designated value. Data output is available in the form of numerical compilations such as the attached, or graphical displays disposed to paper, film or magnetic tape.

  10. Deformation study of Kamojang geothermal field

    Science.gov (United States)

    Ramdhani, B. D.; Meilano, I.; Sarsito, D. A.

    2017-07-01

    GPS has proven to be an indispensable tool in the effort to understand crust deformation before, during, and after the big earthquake events through data analysis and numerical simulation. The development of GPS technology has been able to prove as a method for the detection of geothermal activity that related to deformation. Furthermore, the correlation of deformation and geothermal activity are related to the analysis of potential hazards in the geothermal field itself. But unfortunately, only few GPS observations established to see the relationship of tectonic and geothermal activity around geothermal energy area in Indonesia. This research will observe the interaction between deformation and geothermal sources around the geothermal field Kamojang using geodetic GPS. There are 4 campaign observed points displacement direction to north-east, and 2 others heading to south-east. The displacement of the observed points may have not able proven cause by deformation of geothermal activity due to duration of observation. Since our research considered as pioneer for such investigation in Indonesia, we expect our methodology and our findings could become a starter for other geothermal field cases in Indonesia.

  11. Geothermal Field Investigations of Turkey

    Science.gov (United States)

    Sayın, N.; Özer, N.

    2017-12-01

    Geothermal energy is a type of energy that are found in the accessible depth of the crust, in the reservoirs by way of the permeable rocks, specially in heated fluid. Geothermal system is made of 3 main components; heat source, reservoir, and fluid bearing heat. Geothermal system mechanism is comprise of fluid transmission. Convection current (heat transmission) is caused by heating and causes the fluid in the system to expand. Heated fluid with low density show tendency to rise in system. Geothermal system occurs with variable geophysics and geochemical properties. Geophysical methods can determine structural properties of shallow and deep reservoirs with temperature, mineralization, gas amount, fluid movement, faulting, and sudden change in lithostratigraphic strata. This study revealed possible reservoir structures and showed examples of geophysics and gas measuring results in Turkey which is wealthy in regard to Geothermal sources.

  12. Klamath Falls geothermal field, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Culver, G.; Lund, J.W.

    1989-09-01

    Klamath Falls, Oregon, is located in a Known Geothermal Resource Area which has been used by residents, principally to obtain geothermal fluids for space heating, at least since the turn of the century. Over 500 shallow-depth wells ranging from 90 to 2,000 ft (27 to 610 m) in depth are used to heat (35 MWt) over 600 structures. This utilization includes the heating of homes, apartments, schools, commercial buildings, hospital, county jail, YMCA, and swimming pools by individual wells and three district heating systems. Geothermal well temperatures range from 100 to 230{degree}F (38 to 110{degree}C) and the most common practice is to use downhole heat exchangers with city water as the circulating fluid. Larger facilities and district heating systems use lineshaft vertical turbine pumps and plate heat exchangers. Well water chemistry indicates approximately 800 ppM dissolved solids, with sodium sulfate having the highest concentration. Some scaling and corrosion does occur on the downhole heat exchangers (black iron pipe) and on heating systems where the geo-fluid is used directly. 73 refs., 49 figs., 6 tabs.

  13. Geothermal Field Development in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, Hector Alonso

    1983-12-15

    Mexico is a Country characterized by its diversified means of Power Gerneration. Actual installed capacity is almost 19000 MW, of which 205 MW corresponds to Geothermal Plants, that is, 180 MW in Cerro Prieto and 25 MW of Portable Plants in Los Azufres. To date, 346 area with exploitation possibilites, are known. They are mainly distributed along the Volcanic Belt where the most prominent are, Los Azufres, La Primavera, Los Humeros, Ixtlan De Los Hervores and Los Negritos, among others. Proved reserves are 920 MW, and the accessible resource base are 4600 MW identified and 6000 MW undiscovered. The long range construction studies intends to achieve a total installed capacity of 100000 MW, by the end of this century, including 2000 MW Geothermal, through conventional and Portable Plants. It is not a definite program but a development strategy. The carrying out of a definite program, will depend upon the confirmation of Hypothesis made in previous studies, and the economic decisions related to the financial sources availability, and techologies to be used in the future as well.

  14. Cerro Prieto geothermal field: exploration during exploitation

    Energy Technology Data Exchange (ETDEWEB)

    1982-07-01

    Geological investigations at Momotombo included photogeology, field mapping, binocular microscope examination of cuttings, and drillhole correlations. Among the geophysical techniques used to investigate the field sub-structure were: Schlumberger and electromagnetic soundings, dipole mapping and audio-magnetotelluric surveys, gravity and magnetic measurements, frequency domain soundings, self-potential surveys, and subsurface temperature determinations. The geochemical program analyzed the thermal fluids of the surface and in the wells. The description and results of exploration methods used during the investigative stages of the Momotombo Geothermal Field are presented. A conceptual model of the geothermal field was drawn from the information available at each exploration phase. The exploration methods have been evaluated with respect to their contributions to the understanding of the field and their utilization in planning further development.

  15. Geoelectromagnetic and geothermic investigations in the Ihlara Valley geothermal field

    Science.gov (United States)

    İlkişik, O. Metin; Gürer, Aysan; Tokgöz, Tuǧrul; Kaya, Cemal

    1997-09-01

    The Ihlara Valley is situated within a volcanic arc that is formed by the collision of the eastern Mediterranean plate system with the Anatolian plate. In this study we will present data from a reservoir monitoring project over the Ihlara-Ziga geothermal field, located 22 km east of Aksaray, in central Anatolia. Although identified geothermal resources in the Ihlara Valley are modest, substantial undiscovered fields have been inferred primarily from the volcanic and tectonic setting but also from the high regional heat flow (150-200 mWm -2) on the Kirşehir Massif. In 1988 and 1990, geoelectromagnetic surveys were undertaken by MTA-Ankara to confirm the presence of a relatively shallow (≈ 0.5-1 km), hydrothermally caused conductive layer or zone. CSAMT and Schlumberger resistivity data show good correspondence with each other, and 2-D geoelectric models are also in harmony with geologic data and gravity anomalies. The depth of the resistive basement, which is interpreted as Paleozoic limestone, is 200-250 m in the western part and increases eastward (≈ 600-750 m). This may imply N-S-oriented normal faulting within the survey area. The parameters of the top layer are a resistivity of 25 to 95 ohm m and a thickness of between 100 and 250 m. The thickness of the conductive tuffs between the top layer and the basement, whose resistivity is about 4-5 o hmm, also increases eastward (from 100 to 450 m). The apparent resistivity maps for the frequencies between 32 and 2 Hz reveal a localized low resistivity anomaly to the east of Belisirma.

  16. Optimization of injection scheduling in geothermal fields

    Energy Technology Data Exchange (ETDEWEB)

    Lovekin, J.

    1987-05-01

    This study discusses the application of algorithms developed in Operations Research to the optimization of brine reinjection in geothermal fields. The injection optimization problem is broken into two sub-problems: (1) choosing a configuration of injectors from an existing set of wells, and (2) allocating a total specified injection rate among chosen injectors. The allocation problem is solved first. The reservoir is idealized as a network of channels or arcs directly connecting each pair of wells in the field. Each arc in the network is considered to have some potential for thermal breakthrough. This potential is quantified by an arc-specific break-through index, b/sub ij/, based on user-specified parameters from tracer tests, field geometry, and operating considerations. The sum of b/sub ij/-values for all arcs is defined as the fieldwide breakthrough index, B. Injection is optimized by choosing injection wells and rates so as to minimize B subject to constraints on the number of injectors and the total amount of fluid to be produced and reinjected. The study presents four computer programs which employ linear or quadratic programming to solve the allocation problem. In addition, a program is presented which solves the injector configuration problem by a combination of enumeration and quadratic programming. The use of the various programs is demonstrated with reference both to hypothetical data and an actual data set from the Wairakei Geothermal Field in New Zealand.

  17. Crustal stress heterogeneity in the vicinity of a geothermal field: Coso Geothermal Field, CA

    Science.gov (United States)

    Blake, Kelly

    Borehole induced structures seen in image logs from the Coso Geothermal Field, CA record variation in the azimuth of principal stress. Image logs of these structures from five boreholes were analyzed to quantify the stress heterogeneity for three geologically distinct locations: two boreholes within the Coso Geothermal Field (one in an actively produced volume), two on the margin of the Coso Geothermal Field and outside the production area, and a control borehole several tens of kilometers south of the Coso Geothermal Field. Average directions of Shmin and its standard deviation are similar along the eastern portion of the geothermal field at ˜107 +/- 28°; this is distinct from the western portion which has an azimuth of 081 +/- 18° and also distinct from outside the geothermal field where the average azimuth is 092 +/- 47°. These relationships suggest a correlation of stress orientation and heterogeneity with slip on the Coso Wash fault, suggesting that ˜20 years of production has not affected the Shmin.orientation. The slope of power spectrum quantifies the length-scale dependence of stress rotations for the volume of the brittle crust penetrated by each borehole. Spectral analysis was applied to the depth variation of stress direction and it demonstrates that: (1) the data set contains distinct wavelengths of stress rotation, (2) that the relative power of these wavelengths in the total scaling of stress directions demonstrates a fractal distribution and (3) in a manner consistent with earthquakes causing the stress rotations. While the vertically averaged Shmin orientation for the three eastern boreholes varied by as little as 1°, the spectral slopes varied by 0.4 log (deg2 *m)(m) from the inside to the margin unproduced areas of the Coso Geothermal Field. The two boreholes inside the field had spectral slopes within one standard deviation, even though Shmin orientations were not parallel. These results suggest that at the kilometer length scale, the

  18. Geothermal power plants of Mexico and Central America: a technical survey of existing and planned installations

    Energy Technology Data Exchange (ETDEWEB)

    DiPippo. R.

    1978-07-01

    In this report, the fifth in a series describing the geothermal power plants of the world, the countries of Mexico and of Central America are studied. The geothermal plants are located in areas of recent and active volcanism; the resources are of the liquid-dominated type. Details are given about the plants located at Cerro Prieto in Mexico and at Ahuachapan in El Salvador. In both cases, attention is paid to the geologic nature of the fields, the well programs, geofluid characteristics, energy conversion systems, materials of construction, effluent handling systems, economic factors and plant operating experience. Exploration and development activities are described for other promising geothermal areas in Mexico and El Salvador, along with those in the countries of Costa Rica, Nicaragua, Guatemala, Honduras, and Panama.

  19. Geothermal Resource Analysis and Structure of Basin and Range Systems, Especially Dixie Valley Geothermal Field, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    David Blackwell; Kenneth Wisian; Maria Richards; Mark Leidig; Richard Smith; Jason McKenna

    2003-08-14

    Publish new thermal and drill data from the Dizie Valley Geothermal Field that affect evaluation of Basin and Range Geothermal Resources in a very major and positive way. Completed new geophysical surveys of Dizie Valley including gravity and aeromagnetics and integrated the geophysical, seismic, geological and drilling data at Dizie Valley into local and regional geologic models. Developed natural state mass and energy transport fluid flow models of generic Basin and Range systems based on Dizie Valley data that help to understand the nature of large scale constraints on the location and characteristics of the geothermal systems. Documented a relation between natural heat loss for geothermal and electrical power production potential and determined heat flow for 27 different geothermal systems. Prepared data set for generation of a new geothermal map of North American including industry data totaling over 25,000 points in the US alone.

  20. Pilot fruit drier for Los Azufres geothermal field, Michoacan, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Lund, J.W.

    1993-02-01

    Comision Federal de Electricidad (CFE) has a Division in charge of the exploration of a geothermal reservoir located in Los Azufres, State of Michoacan. At present, CFE is only using the steam of the wells and rejecting the hot water that comes off associated with the steam. Based on a trip to the Los Azufres geothermal field in December of 1992, a design for a pilot geothermal fruit drier was undertaken for CFE. The details of the geothermal field and the local fruit production are detailed.

  1. Structural investigations of Great Basin geothermal fields: Applications and implications

    Energy Technology Data Exchange (ETDEWEB)

    Faulds, James E [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Hinz, Nicholas H. [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Coolbaugh, Mark F [Great Basin Center for Geothermal Energy, Univ. of Nevada, Reno, NV (United States)

    2010-11-01

    Because fractures and faults are commonly the primary pathway for deeply circulating hydrothermal fluids, structural studies are critical to assessing geothermal systems and selecting drilling targets for geothermal wells. Important tools for structural analysis include detailed geologic mapping, kinematic analysis of faults, and estimations of stress orientations. Structural assessments are especially useful for evaluating geothermal fields in the Great Basin of the western USA, where regional extension and transtension combine with high heat flow to generate abundant geothermal activity in regions having little recent volcanic activity. The northwestern Great Basin is one of the most geothermally active areas in the USA. The prolific geothermal activity is probably due to enhanced dilation on N- to NNE-striking normal faults induced by a transfer of NW-directed dextral shear from the Walker Lane to NW-directed extension. Analysis of several geothermal fields suggests that most systems occupy discrete steps in normal fault zones or lie in belts of intersecting, overlapping, and/or terminating faults. Most fields are associated with steeply dipping faults and, in many cases, with Quaternary faults. The structural settings favoring geothermal activity are characterized by subvertical conduits of highly fractured rock along fault zones oriented approximately perpendicular to the WNW-trending least principal stress. Features indicative of these settings that may be helpful in guiding exploration for geothermal resources include major steps in normal faults, interbasinal highs, groups of relatively low discontinuous ridges, and lateral jogs or terminations of mountain ranges.

  2. The Geothermal Field Camp: Capacity building for geothermal energy systems in Indonesia

    Science.gov (United States)

    Moeck, I.; Sule, R.; Saptadji, N. M.; Deon, F.; Herdianita, N. R.; Jolie, E.; Suryantini, N.; Erbas, K.

    2012-04-01

    In July 2011, the first geothermal field camp was hold on Java/Indonesia near the city Bandung south of the volcanic field Tangkuban Perahu. The course was organized by the Institut Teknologie Bandung (ITB) and International Centre for Geothermal Research (ICGR) of the German Centre of Geosciences (GFZ). The purpose of the Geothermal Field Camp is to combine both field based work and laboratory analysis to ultimately better understand the data collected in field and to integrate data gained by various disciplines. The training belongs to a capacity building program for geothermal energy systems in Indonesia and initially aims to train the trainers. In a later stage, the educational personal trained by the Geothermal Field Camp shall be able to hold their individual Geothermal Field Camp. This is of special interest for Indonesia where the multitude of islands hindered a broad uniform education in geothermal energy systems. However, Indonesia hold the largest geothermal potential worldwide and educated personal is necessary to successfully develop this huge potential scattered over region in future. The interdisciplinary and integrative approach combined with field based and laboratory methodologies is the guiding principle of the Geothermal Field Camp. Tangkuban Perahu was selected because this field allows the integration of field based structural geological analysis, observation and sampling of geothermal manifestations as hot springs and sinters and ultimately of structural geology and surface geochemistry. This innovative training introduces in methods used in exploration geology to study both, fault and fracture systems and fluid chemistry to better understand the selective fluid flow along certain fractures and faults. Field geology covered the systematic measurement of faults and fractures, fault plane and fracture population analysis. In addition, field hydro-geochemistry focused on sampling techniques and field measurements onsite. Subsequent data analysis

  3. Development of an Enhanced Two-Phase Production System at the Geysers Geothermal Field; FINAL

    International Nuclear Information System (INIS)

    Steven Enedy

    2001-01-01

    A method was developed to enhance geothermal steam production from two-phase wells at THE Geysers Geothermal Field. The beneficial result was increased geothermal production that was easily and economically delivered to the power plant

  4. Deep Seawater Intrusion Enhanced by Geothermal Through Deep Faults in Xinzhou Geothermal Field in Guangdong, China

    Science.gov (United States)

    Lu, G.; Ou, H.; Hu, B. X.; Wang, X.

    2017-12-01

    This study investigates abnormal sea water intrusion from deep depth, riding an inland-ward deep groundwater flow, which is enhanced by deep faults and geothermal processes. The study site Xinzhou geothermal field is 20 km from the coast line. It is in southern China's Guangdong coast, a part of China's long coastal geothermal belt. The geothermal water is salty, having fueled an speculation that it was ancient sea water retained. However, the perpetual "pumping" of the self-flowing outflow of geothermal waters might alter the deep underground flow to favor large-scale or long distant sea water intrusion. We studied geochemical characteristics of the geothermal water and found it as a mixture of the sea water with rain water or pore water, with no indication of dilution involved. And we conducted numerical studies of the buoyancy-driven geothermal flow in the deep ground and find that deep down in thousand meters there is favorable hydraulic gradient favoring inland-ward groundwater flow, allowing seawater intrude inland for an unusually long tens of kilometers in a granitic groundwater flow system. This work formed the first in understanding geo-environment for deep ground water flow.

  5. Geothermal Fields on the Volcanic Axis of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Mercado, S.; Gonzalez, A.

    1980-12-16

    At present in Mexico, geothermal energy is receiving a great impulse due to the excellent results obtained in the Cerro Prieto geothermal field, in which a geothermoelectric plant is operated. This plant has four units of 37.5 MW each, with a total capacity of 150 MW, and under program 470 MW more by 1984. The Government Institution, Comisi6n Federal de Electricidad, is in charge of the exploration and exploitation of geothermal fields as well as construction and operation of power plants in Mexico. By this time CFE has an extensive program of exploration in the central part of Mexico, in the Eje Neovolcdnico. In this area, several fields with hydrothermal alteration are under exploration, like the Michoac6n geothermal area, where Los Azufres geothermal field is being developed. Seventeen wells have been drilled and twelve of them presented excellent results, including two dry steam wells. In other areas, such as Arar6, Cuitzeo, San Agustln del Maiz,Ixtldn de Los Hervores and Los Negritos, geological, geophysical and geochemical explorations have been accomplished, including shallow well drilling with good results. Another main geothermal area is in the State of Jalisco with an extension of 5,000 m2, where La Primavera geothermal field shows a lot of volcanic domes and has an intensive hydrothermal activity. Deep wells have been drilled, one of them with a bottom temperature of 29OOC. Other fields in this area, like San Narcos, Hervores de La Vega, La Soledad, Villa Corona, etc., have a good geothermal potential. A new geothermal area has been explored recently in the eastern part of the country named Los Humeros, Puebla. In this area studies are being made and there are plans for well drilling exploration by the beginning of 1981. Like this one, there are many other areas in the country in which 300 hydrothermal alteration zones are been classified and 100 of them are considered economically exploitable.

  6. Symposium in the field of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Miguel; Mock, John E.

    1989-04-01

    Mexico and the US are nations with abundant sources of geothermal energy, and both countries have progressed rapidly in developing their more accessible resources. For example, Mexico has developed over 600 MWe at Cerro Prieto, while US developers have brought in over 2000 MWe at the Geysers. These successes, however, are only a prologue to an exciting future. All forms of energy face technical and economic barriers that must be overcome if the resources are to play a significant role in satisfying national energy needs. Geothermal energy--except for the very highest grade resources--face a number of barriers, which must be surmounted through research and development. Sharing a common interest in solving the problems that impede the rapid utilization of geothermal energy, Mexico and the US agreed to exchange information and participate in joint research. An excellent example of this close and continuing collaboration is the geothermal research program conducted under the auspices of the 3-year agreement signed on April 7, 1986 by the US DOE and the Mexican Comision Federal de Electricidad (CFE). The major objectives of this bilateral agreement are: (1) to achieve a thorough understanding of the nature of geothermal reservoirs in sedimentary and fractured igneous rocks; (2) to investigate how the geothermal resources of both nations can best be explored and utilized; and (3) to exchange information on geothermal topics of mutual interest.

  7. Extremely Shallow Extensional Faulting Near Geothermal Fields

    Science.gov (United States)

    Hudnut, K. W.; Wei, S.; Donnellan, A.; Fielding, E. J.; Graves, R. W.; Helmberger, D. V.; Liu, Z.; Parker, J. W.; Treiman, J. A.

    2013-12-01

    side down slip. Up to 18 cm/s ground motion were observed at four seismic stations within 10 km which are modeled by northward rupture directivity with rupture speed of ~1.0-1.5 km/s. Although most energy in Brawley Seismic Zone swarms is released in deeper and larger strike-slip events, we observe surprisingly that the recent cases of surface faulting in 2005 on the Kalin fault (Rymer et al., USGS OFR 2010-1333) and 2012 preferentially involve normal fault surface slip in close proximity to geothermal fields, as did the 2006 Morelia fault case (Suárez-Vidal et al., SRL 2007). The Aug. 2012 case was the latest of three minor extensional surface ruptures, each associated with moderate seismic activity near geothermal fields. We compare this latest case, with its ~3.5 km surface break, and the two earlier examples with ~0.5 km (2005) and ~2.0 km (2006) long surface breaks with similar NE-SW to NNE-SSW orientations. All three cases had tectonic surface slip of greater than 15 cm but less than 30 cm, involved mostly normal fault slip, and occurred within extensional step-over zones between the San Andreas and Imperial faults (2005 & 2012), and between the Imperial and Cerro Prieto faults (2006).

  8. Multi-usages of the Ilan geothermal field, NE Taiwan

    Science.gov (United States)

    Lee, C. S.; Tseng, P.; Wang, S.; Chang, C.

    2017-12-01

    The tectonics of Taiwan is very dynamic. The area produces more than 30,000 earthquakes/year; the mountains uplift 4-5 cm/year; the rainfall culminates 3,000 mm/year; there are some 4,000 hot spring operators. One of the two hot geothermal areas is located in NE Taiwan - the Ilan geothermal field. In order to develop the geothermal energy for the electricity need, the Ministry of Science and Technology have provided the fund to drill two 2,500 deep wells. The results are not so encourage for the need of an Enhanced Geothermal System. However, one of the wells has a bottom temperature of 160oC and the water up loading with 60 ton/hr. This can be combined with the near-by wells drilled by the private drilling company and the Cardinal Tien Junior College of Healthcare and Management to develop the multi-usages of the geothermal energy, such as 1 MW of electricity for the college and village, the long-term healthcare and hot spring medicare, aquaculture and agriculture need etc. The universities and private drilling company cooperate together to join the development. Hope this will provide a new model for the need of a self-sufficient community. The geothermal is a clean, renewable, and no pollution energy. Taiwan is in an initial stage of using this green energy.

  9. Is radon a potential risk in geothermal fields?

    Energy Technology Data Exchange (ETDEWEB)

    Balcazar, M.; Tavera, L.; Lopez, A. [Instituto Nacional de Investigaciones Nucleares, Mexico City (Mexico)

    1998-12-31

    Some environmental groups in Mexico have shown concern, by the fact that natural radon emanation in geothermal fields could be considered as a potential risk for human health. As part of the studies recommended by the Ministry of Energy and to provide technical answers to the request of environmental groups, a study of the radon emanation and its impact to human health was carried out at the Primavera Mexican geothermal energy field under prospecting. It was found that radon concentration decreases with temperature of geothermal fluids and increases with the enthalpy of the well. In any case, using the appropriate corrections, radon values were similar to those of ground water. Radon values in the atmosphere of the field show no potential risk for human health. (author)

  10. Some comments on the La Primavera geothermal field, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez A, B.; Lippmann, M.J.

    1983-12-01

    The La Primavera geothermal field is located about 20 km west of the city of Guadalajara, Jalisco, in the western part of the Mexican Neovolcanic Axis. Initial results of five deep exploration wells (down to 2000 m depth) were very promising; measured downhole temperatures exceed 300/sup 0/C. During production, however, downhole temperatures dropped, and the chemistry of the fluids changed. The analysis of geologic, mineralogic, geochemical, and well completion data indicate that colder fluids flow down the wellbore from shallower aquifers cooling the upper zones of the geothermal reservoir. This problem is attributed to inadequate well completions. Doubts have arisen about continuing the exploration of the field because of the somewhat disappointing drilling results. However, a more thorough analysis of all available data indicates that a good geothermal prospect might exist below 3000 m, and that it could be successfully developed with appropriately located and completed wells.

  11. The Hydrogeochemistry of Qingshui Geothermal Field, Northeastern Taiwan.

    Science.gov (United States)

    Yu-Wen, Chen; Cheng-Kuo, Lin; Wayne, Lin; Yu-Te, Chang; Pei-Shan, Hsieh

    2015-04-01

    The Qingshui geothermal field is located at the upstream valley of Lanyang Creek, northeastern Taiwan. It is renowned as a geothermal field. The previous studies demonstrated a higher geothermal gradient, 100oC/km warmer than a normal geotherm. However, Qingshui geothermal field has not been well developed due to the higher mining costs. In the recent years, the Taiwan government has been focusing on developing alternative and renewable energy and initiated a 10 year project, Nation Energy Program. This study is part of this project In general, it is very difficult to collect deep downhole samples without considerable change of hydro- and gas- chemistry of water under high temperature and pressure. A new sampling tool, GTF Sampler, was designed by the research team, Green Energy and Environment Laboratories, Industrial Technology Research Institute. This tool can simultaneously collect high quality geothermal water and gas sample and moreover, the sampling depth can reach up to 800 meters. Accordingly, a more accurate measurements can be conducted in the laboratory. In this study, 10 geothermal samples were collected and measured. The results demonstrate that geothermal water samples are characterized with Na(K)-HCO3 water type and located at the mature water area in Giggenbach Na-K-Mg diagram. Several geothermometers, including silica and cation geothermometry, were used to estimate potential temperature in the geothermal reservoir systems. In general, the geothermoters of Na-K and Na-K-Ca obtain reservoir temperatures between 120-190oC and 130-210oC, respectively, but the silica geothermometer indicates a lower reservoir temperature between 90 and 170oC. There is no big difference among them. It is worth to note that all calculated temperatures are lower than those of in-situ downhole measurements; therefore, more detailed and advanced researches would be needed for the inconsistency. To examine the argument about igneous heat source in the previous studies, rare

  12. Radon studies for extending Los Azufres geothermal energy field in Mexico

    CERN Document Server

    Tavera, L; Camacho, M E; Chavez, A; Pérez, H; Gómez, J

    1999-01-01

    Los Azufres is a 98 MW producing geothermal energy field situated in the Mexican volcanic belt at the west part of the country. Recently, hydrothermal activity and geochemical analysis of geothermal fluids from the north part of the geothermal field gave indications of a possible geothermal-production area, similar to the already producing field. In order to investigate the activity of geological structures, which are considered the means of geothermal fluids transporters, radon mapping was carried out using sets of 240 LR-115 detectors in the area of interest. Radon values higher than 10 kBq m sup - sup 3 were considered anomalous and indicative of geothermal anomalies.

  13. Radon studies for extending Los Azufres geothermal energy field in Mexico

    International Nuclear Information System (INIS)

    Tavera, L.; Balcazar, M.; Camacho, M.E.; Chavez, A.; Perez, H.; Gomez, J.

    1999-01-01

    Los Azufres is a 98 MW producing geothermal energy field situated in the Mexican volcanic belt at the west part of the country. Recently, hydrothermal activity and geochemical analysis of geothermal fluids from the north part of the geothermal field gave indications of a possible geothermal-production area, similar to the already producing field. In order to investigate the activity of geological structures, which are considered the means of geothermal fluids transporters, radon mapping was carried out using sets of 240 LR-115 detectors in the area of interest. Radon values higher than 10 kBq m -3 were considered anomalous and indicative of geothermal anomalies

  14. Oxygen isotope studies of the Salton Sea geothermal field

    International Nuclear Information System (INIS)

    Olson, E.R.

    1978-01-01

    Interbedded shales and sandstones were drilled to a depth of 1588 metres in Sinclair Number Four Well, Salton Sea Geothermal Field. Bottom hole temperatures are approximately 290 0 C. The oxygen dels of hydrothermal and detrital calcite have a systematic relationship at any depth in the geothermal reservoir. Typical values are: vein calcite, +6 0 / 00 ; calcite in white sandstone, +10 0 / 00 ; calcite in dark gray shale, +11 0 / 00 ; calcite in light gray shale, +17 0 / 00 ; calcite in red-brown shale, +20 0 / 00 . This succession represents decreasing water-rock interaction that is also indicated by the clay mineralogy of the shales. Permeability has a marked effect on the equilibration of water and rocks at any given temperature. Original differences in permeability have resulted in partial preservation of original detrital sedimentary compositions. The fluids in the Salton Sea Geothermal Field are probabaly partially evaporated Colorado River water, and their oxygen del values vary as much as 4 0 / 00 throughout the field. Truesdell's (1974) data suggest that dissolved salts may make the water oxygen activity del as much as 6 0 / 00 greater than the concentration del in the geothermal reservoir. Such an uncertainty is a serious impediment to precise isotope geothermometry in this system.(auth.)

  15. Absence of remote earthquake triggering within the Coso and Salton Sea geothermal production fields

    Science.gov (United States)

    Zhang, Qiong; Lin, Guoqing; Zhan, Zhongwen; Chen, Xiaowei; Qin, Yan; Wdowinski, Shimon

    2017-01-01

    Geothermal areas are long recognized to be susceptible to remote earthquake triggering, probably due to the high seismicity rates and presence of geothermal fluids. However, anthropogenic injection and extraction activity may alter the stress state and fluid flow within the geothermal fields. Here we examine the remote triggering phenomena in the Coso geothermal field and its surrounding areas to assess possible anthropogenic effects. We find that triggered earthquakes are absent within the geothermal field but occur in the surrounding areas. Similar observation is also found in the Salton Sea geothermal field. We hypothesize that continuous geothermal operation has eliminated any significant differential pore pressure between fractures inside the geothermal field through flushing geothermal precipitations and sediments out of clogged fractures. To test this hypothesis, we analyze the pore-pressure-driven earthquake swarms, and they are found to occur outside or on the periphery of the geothermal production field. Therefore, our results suggest that the geothermal operation has changed the subsurface fracture network, and differential pore pressure is the primary controlling factor of remote triggering in geothermal fields.

  16. Magnetotelluric-Geochemistry Investigations of Blawan Geothermal Field, East Java, Indonesia

    OpenAIRE

    Sukir Maryanto; Cinantya N. Dewi; Vanisa Syahra; Arief Rachmansyah; James Foster; Ahmad Nadhir; Didik R. Santoso

    2017-01-01

    An integrated magnetotelluric (MT) and geochemical study of the Blawan geothermal field has been performed. The character of the hot springs, the reservoir temperature, and geothermal reserve potential of Blawan geothermal field are assessed. MT measurements, with 250 m up to 1200 m spacings, were made at 19 sites, and 6 locations at the Blawan hot springs have been sampled for geochemical survey. The results of 2D modelling indicated that the geothermal system in the research area consisted...

  17. Development case histories: Tongonan and Palinpinon geothermal fields, Philippines

    International Nuclear Information System (INIS)

    Ogena, M.S.

    1992-01-01

    The background on the general scenario of energy resource development in the country is described. Highlights of the exploration history of the Tongonan and Palinpinon geothermal fields in the Philippines are then presented. This is discussed in conjunction with the strategies and policies taken in the development of each field. Finally, the common policies and contrasting development strategies are compared and evaluated. The conclusion derived is that the development strategy decisions at Tongonan are influenced by the regional power demand, topography, and the large extent of the resource. In contrast, the development at Palinpinon is less constrained by the external influence of regional power needs, but, instead, is significantly dominated by the limitations imposed by the rugged terrain and the physical characteristics of the resource area. Such comparison demonstrates the site-specific nature of geothermal development. (auth.). 8 figs.; 2 refs

  18. Some Comments on the La Primavera Geothermal Field, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    A., Bernardo Dominguez; Lippmann, Marcelo J.

    1983-12-15

    The La Primavera geothermal field is located about 20 km west of the city of Guadalajara, Jalisco, in the western part of the Mexican Neovolcanic Axis. Initial results of five deep exploration wells (down to 2000 m depth) were very promising; measured downhole temperatures exceed 300{degrees}C. During production, however, downhole temperatures dropped, and the chemistry of the fluids changed. The analysis of geologic, mineralogic, geochemical, and well completion data indicate that colder fluids flow down the wellbore from shallower aqifers cooling the upper zones of the gothermal reservoir. This problem is attributed to inadequate well completions. Doubts have arisen about continuing the exploration of the field because of the somewhat disappointing drilling results. However, a more thorough analysis of all available data indicates that a good geothermal prospect might exist below 3000 m, and that it could be successfully developed with appropriately located and completed wells.

  19. The Geysers Geothermal Field Update1990/2010

    Energy Technology Data Exchange (ETDEWEB)

    Brophy, P.; Lippmann, M.; Dobson, P.F.; Poux, B.

    2010-10-01

    In this report, we have presented data in four sections: (1) THE GEYSERS HISTORICAL UPDATE 1990-2010 - A historical update of the primary developments at The Geysers between 1990 and 2010 which uses as its start point Section IIA of the Monograph - 'Historical Setting and History of Development' that included articles by James Koenig and Susan Hodgson. (2) THE GEYSERS COMPREHENSIVE REFERENCE LIST 1990-2010 - In this section we present a rather complete list of technical articles and technical related to The Geysers that were issued during the period 1990-2010. The list was compiled from many sources including, but not limited to scientific journals and conference proceedings. While the list was prepared with care and considerable assistance from many geothermal colleagues, it is very possible that some papers could have been missed and we apologize to their authors in advance. The list was subdivided according to the following topics: (1) Field characterization; (2) Drilling; (3) Field development and management; (4) Induced seismicity; (5) Enhanced Geothermal Systems; (6) Power production and related issues; (7) Environment-related issues; and (8) Other topics. (3) GRC 2010 ANNUAL MEETING GEYSERS PAPERS - Included in this section are the papers presented at the GRC 2010 Annual Meeting that relate to The Geysers. (4) ADDITIONAL GEYSERS PAPERS 1990-2010 - Eighteen additional technical papers were included in this publication in order to give a broad background to the development at The Geysers after 1990. The articles issued during the 1990-2010 period were selected by colleagues considered knowledgeable in their areas of expertise. We forwarded the list of references given in Section 2 to them asking to send us with their selections with a preference, because of limited time, to focus on those papers that would not require lengthy copyright approval. We then chose the articles presented in this section with the purpose of providing the broadest possible

  20. Interstratified Illite/Montmorillonite in Kamojang Geothermal Field, Indonesia

    Directory of Open Access Journals (Sweden)

    D. F. Yudiantoro

    2014-07-01

    Full Text Available DOI: 10.17014/ijog.v8i4.167Kamojang geothermal field located in West Java Province, falls under the Pangkalan Subregency, Bandung Regency. The researched area is a geothermal field located in the Quaternary volcanic caldera system of about 0.452 to 1.2 Ma. The volcanic activity generated hydrothermal fluids, interacting with rocks producing mineral alteration. The minerals formed in the areas of research are interstratified illite/montmorillonite (I/M. Analyses to identify interstratified I/M have been performed by X-ray diffraction using ethylene glycol, while the determination of the type and percentage of interstratified I/M was based on the calculation method of Watanabe. The methodology was applied on core and cutting samples from Wells KMJ-8, 9, 11, 13, 16, 23, 49, 51, and 54. The result of analysis of the samples shows that the type of clay is interstratified illite/montmorillonite and the minerals are formed at temperatures ranging from 180 to 220° C. The type of interstratified I/M in the studied area is S = 0 and S = 1. The percentage of illite type S = 0 is between 20 - 35% illite, whereas type S = 1 has about 45 - 72% illite. Along with the increasing depth, the percentage of illite is getting greater. This is consistent with the vertical distribution of temperature which increases according to the depth. This correlation results in an interpretation that the upflow zone of the geothermal reservoir is located in the centre of the Kamojang geothermal field.

  1. Strain rate orientations near the Coso Geothermal Field

    Science.gov (United States)

    Ogasa, N. T.; Kaven, J. O.; Barbour, A. J.; von Huene, R.

    2016-12-01

    Many geothermal reservoirs derive their sustained capacity for heat exchange in large part due to continuous deformation of preexisting faults and fractures that permit permeability to be maintained. Similarly, enhanced geothermal systems rely on the creation of suitable permeability from fracture and faults networks to be viable. Stress measurements from boreholes or earthquake source mechanisms are commonly used to infer the tectonic conditions that drive deformation, but here we show that geodetic data can also be used. Specifically, we quantify variations in the horizontal strain rate tensor in the area surrounding the Coso Geothermal Field (CGF) by analyzing more than two decades of high accuracy differential GPS data from a network of 14 stations from the University of Nevada Reno Geodetic Laboratory. To handle offsets in the data, from equipment changes and coseismic deformation, we segment the data, perform a piecewise linear fit and take the average of each segment's strain rate to determine secular velocities at each station. With respect to North America, all stations tend to travel northwest at velocities ranging from 1 to 10 mm/yr. The nearest station to CGF shows anomalous motion compared to regional stations, which otherwise show a coherent increase in network velocity from the northeast to the southwest. We determine strain rates via linear approximation using GPS velocities in Cartesian reference frame due to the small area of our network. Principal strain rate components derived from this inversion show maximum extensional strain rates of 30 nanostrain/a occur at N87W with compressional strain rates of 37nanostrain/a at N3E. These results generally align with previous stress measurements from borehole breakouts, which indicate the least compressive horizontal principal stress is east-west oriented, and indicative of the basin and range tectonic setting. Our results suggest that the CGF represents an anomaly in the crustal deformation field, which

  2. Hydrothermal surface alteration in the Copahue Geothermal Field (Argentina)

    Energy Technology Data Exchange (ETDEWEB)

    Mas, Graciela R.; Mas, Luis C.; Bengochea, Leandro

    1996-01-24

    In the area of the Copahue Geothermal Field, there are five active geothermal manifestations, which mainly consist of fumaroles, hot springs and mud pots. Four of these manifestations are located in Argentina: Las Máquinas, Termas de Copahue, Las Maquinitas and El Anfiteatro, and the fifth on the Chilean side: Chancho Co. All of them present a strong acid sulfate country rock alteration, characterized by the assemblage alunite + kaolinite + quartz + cristobalite + pyrite + sulfur + jarosite, as the result of the base leaching by fluids concentrated in H2SO4 by atmospheric oxidation at the water table in a steam heated environment of H2S released by deeper boiling fluids. Another alteration zone in this area, called COP-2, is a fossil geothermal manifestation which shows characteristics of neutral to alkaline alteration represented mainly by the siliceous sinter superimposed over the acid alteration. The mineralogy and zoning of these alteration zones, and their relation with the hidrothermal solutions and the major structures of the area are analized.

  3. Seismicity and coupled deformation modeling at the Coso Geothermal Field

    Science.gov (United States)

    Kaven, J. O.; Hickman, S. H.; Davatzes, N. C.

    2015-12-01

    Micro-seismicity in geothermal reservoirs, in particular in enhanced geothermal systems (EGS), is a beneficial byproduct of injection and production, as it can indicate the generation of high-permeability pathways on either pre-existing or newly generated faults and fractures. The hazard of inducing an earthquake large enough to be felt at the surface, however, is not easily avoided and has led to termination of some EGS projects. To explore the physical processes leading to permeability creation and maintenance in geothermal systems and the physics of induced earthquakes , we investigated the evolution of seismicity and the factors controlling the migration, moment release rate, and timing of seismicity in the Coso Geothermal Field (CGF). We report on seismicity in the CGF that has been relocated with high precision double-difference relocation techniques and simultaneous velocity inversions to understand hydrologic reservoir compartmentalization and the nature of subsurface boundaries to fluid flow. We find that two distinct compartments are present within the CGF, which are divided by an aseismic gap showing a relatively low Vp/Vs ratio, likely indicating lower temperatures or lower pore pressures within the gap than in the adjacent reservoir compartments. Well-located events with Mw> 3.5 tend to map onto reactivated fault structures that were revealed when imaged by the relocated micro-seismicity. We relate the temporal and spatial migration of moment release rate to the injection and production histories in the reservoir by employing a thermo-poro-elastic finite element model that takes into account the compartment boundaries defined by the seismicity. We find that pore pressure effects alone are not responsible for the migration of seismicity and that poro-elastic and thermo-elastic stress changes are needed in addition to fluid pressure effects to account for the observed moment release rates.

  4. Field testing advanced geothermal turbodrill (AGT). Phase 1 final report

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, W.C.; Cohen, J.H.

    1999-06-01

    Maurer Engineering developed special high-temperature geothermal turbodrills for LANL in the 1970s to overcome motor temperature limitations. These turbodrills were used to drill the directional portions of LANL`s Hot Dry Rock Geothermal Wells at Fenton Hill, New Mexico. The Hot Dry Rock concept is to drill parallel inclined wells (35-degree inclination), hydraulically fracture between these wells, and then circulate cold water down one well and through the fractures and produce hot water out of the second well. At the time LANL drilled the Fenton Hill wells, the LANL turbodrill was the only motor in the world that would drill at the high temperatures encountered in these wells. It was difficult to operate the turbodrills continuously at low speed due to the low torque output of the LANL turbodrills. The turbodrills would stall frequently and could only be restarted by lifting the bit off bottom. This allowed the bit to rotate at very high speeds, and as a result, there was excessive wear in the bearings and on the gauge of insert roller bits due to these high rotary speeds. In 1998, Maurer Engineering developed an Advanced Geothermal Turbodrill (AGT) for the National Advanced Drilling and Excavation Technology (NADET) at MIT by adding a planetary speed reducer to the LANL turbodrill to increase its torque and reduce its rotary speed. Drilling tests were conducted with the AGT using 12 1/2-inch insert roller bits in Texas Pink Granite. The drilling tests were very successful, with the AGT drilling 94 ft/hr in Texas Pink Granite compared to 45 ft/hr with the LANL turbodrill and 42 ft/hr with a rotary drill. Field tests are currently being planned in Mexico and in geothermal wells in California to demonstrate the ability of the AGT to increase drilling rates and reduce drilling costs.

  5. Strategies and Perceptions of Students' Field Note-Taking Skills: Insights from a Geothermal Field Lesson

    Science.gov (United States)

    Dohaney, Jacqueline; Brogt, Erik; Kennedy, Ben

    2015-01-01

    Field note-taking skills are fundamental in the geosciences but are rarely explicitly taught. In a mixed-method study of an introductory geothermal field lesson, we characterize the content and perceptions of students' note-taking skills to derive the strategies that students use in the field. We collected several data sets: observations of the…

  6. Numerical investigation of the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir: a case study of the Daming geothermal field in China.

    Science.gov (United States)

    Guo, Xuyang; Song, Hongqing; Killough, John; Du, Li; Sun, Pengguang

    2018-02-01

    The utilization of geothermal energy is clean and has great potential worldwide, and it is important to utilize geothermal energy in a sustainable manner. Mathematical modeling studies of geothermal reservoirs are important as they evaluate and quantify the complex multi-physical effects in geothermal reservoirs. However, previous modeling efforts lack the study focusing on the emission reduction efficiency and the deformation at geothermal wellbores caused by geothermal water extraction/circulation. Emission efficiency is rather relevant in geothermal projects introduced in areas characterized by elevated air pollution where the utilization of geothermal energy is as an alternative to burning fossil fuels. Deformation at geothermal wellbores is also relevant as significant deformation caused by water extraction can lead to geothermal wellbore instability and can consequently decrease the effectiveness of the heat extraction process in geothermal wells. In this study, the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir in Daming County, China, are numerically investigated based on a coupled multi-physical model. Relationships between the efficiency of emission reduction and heat extraction, deformation at geothermal well locations, and geothermal field parameters including well spacing, heat production rate, re-injection temperature, rock stiffness, and geothermal well placement patterns are analyzed. Results show that, although large heat production rates and low re-injection temperatures can lead to decreased heat production in the last 8 years of heat extraction, they still improve the overall heat production capacity and emission reduction capacity. Also, the emission reduction capacity is positively correlated with the heat production capacity. Deformation at geothermal wellbore locations is alleviated by smaller well spacing, lower heat production rates, and smaller numbers of injectors in the well pattern, and by

  7. The Ngatamariki Geothermal Field, NZ: Surface Manifestations - Past and Present

    Energy Technology Data Exchange (ETDEWEB)

    Brotheridge, J.M.A.; Browne, P.R.L.; Hochstein, M.P.

    1995-01-01

    The Ngatamariki geothermal field, located 7 km south of Orakeikorako, discharges dilute chloride-bicarbonate waters of almost neutral pH from springs mostly on the margins of the field. Rhyolite tuffs in the northwestern part of the field are weakly silicified, probably due to their having reacted with heated groundwaters. Sinter deposits are common at Ngatamariki but are mostly relict from former activity. In 1994, the natural heat loss from the field was 30 {+-} 5 MW{sub thermal}. There has been a shift of thermal activity southward over the past 60 years; the changes were recognized by comparing air photographs taken in 1941 and 1991. In 1948, a hydrothermal eruption deposited breccia around its crater, which is now occupied by a pool at 52.5 C. Another pool at 88 C, first noticed in 1993, deposits a mixture of silica and calcite.

  8. Development of a geothermal resource in a fractured volcanic formation: Case study of the Sumikawa Geothermal Field, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Garg, S.K.; Pritchett, J.W.; Stevens, J.L.; Luu, L. [Maxwell Federal Div., Inc., San Diego, CA (United States); Combs, J. [Geo-Hills Associates, Los Altos, CA (United States)

    1996-11-01

    The principal purpose of this case study of the Sumikawa Geothermal Field is to document and to evaluate the use of drilling logs, surface and downhole geophysical measurements, chemical analyses, and pressure transient data for the assessment of a high temperature volcanic geothermal field. The work accomplished during Year 1 of this ongoing program is described in the present report. A brief overview of the Sumikawa Geothermal Field is given. The drilling information and downhole pressure, temperature, and spinner surveys are used to determine feedzone locations, pressures and temperatures. Available injection and production data from both slim holes and large-diameter wells are analyzed to evaluate injectivity/productivity indices and to investigate the variation of discharge rate with borehole diameter. Finally, plans for future work are outlined.

  9. Shear velocity of the Rotokawa geothermal field using ambient noise

    Science.gov (United States)

    Civilini, F.; Savage, M. K.; Townend, J.

    2014-12-01

    Ambient noise correlation is an increasingly popular seismological technique that uses the ambient seismic noise recorded at two stations to construct an empirical Green's function. Applications of this technique include determining shear velocity structure and attenuation. An advantage of ambient noise is that it does not rely on external sources of seismic energy such as local or teleseismic earthquakes. This method has been used in the geothermal industry to determine the depths at which magmatic processes occur, to distinguish between production and non-production areas, and to observe seismic velocity perturbations associated with fluid extraction. We will present a velocity model for the Rotokawa geothermal field near Taupo, New Zealand, produced from ambient noise cross correlations. Production at Rotokawa is based on the "Rotokawa A" combined cycle power station established in 1997 and the "Nga Awa Purua" triple flash power plant established in 2010. Rotokawa Joint Venture, a partnership between Mighty River Power and Tauhara North No. 2 Trust currently operates 174 MW of generation at Rotokawa. An array of short period seismometers was installed in 2008 and occupies an area of roughly 5 square kilometers around the site. Although both cultural and natural noise sources are recorded at the stations, the instrument separation distance provides a unique challenge for analyzing cross correlations produced by both signal types. The inter-station spacing is on the order of a few kilometers, so waves from cultural sources generally are not coherent from one station to the other, while the wavelength produced by natural noise is greater than the station separation. Velocity models produced from these two source types will be compared to known geological models of the site. Depending on the amount of data needed to adequately construct cross-correlations, a time-dependent model of velocity will be established and compared with geothermal production processes.

  10. Geothermal Energy

    International Nuclear Information System (INIS)

    Haluska, Oscar P.; Tangir, Daniel; Perri, Matias S.

    2002-01-01

    A general overview of geothermal energy is given that includes a short description of the active and stable areas in the world. The possibilities of geothermal development in Argentina are analyzed taking into account the geothermal fields of the country. The environmental benefits of geothermal energy are outlined

  11. Time lapse gravity monitoring at Coso geothermal field

    Science.gov (United States)

    Woolf, Rachel Vest

    An extensive time lapse gravity data set was acquired over the Coso geothermal field near Ridgecrest, California starting in 1987, with the latest data set acquired in 2013. In this thesis I use these gravity data to obtain a better understanding of mass changes occurring within the geothermal field. Geothermal energy is produced by flashing naturally heated ground water into steam which is used to turn turbines. Brine and re-condensed steam are then re-injected into the reservoir. A percentage of the water removed from the system is lost to the process. The time lapse gravity method consists of gravity measurements taken at the same locations over time, capturing snap shots of the changing field. After careful processing, the final data are differenced to extract the change in gravity over time. This change in gravity can then be inverted to recover the change in density and therefore mass over time. The inversion process also produces information on the three dimensional locations of these mass changes. Thirty five gravity data sets were processed and a subsection were inverted with two different starting times, a sixteen point data set collected continuously between 1991 and 2005, and a thirty-eight point data set collected between 1996 and 2005. The maximum change in gravity in the 1991 data group was -350 microGal observed near station CSE2. For the 1996 data group the maximum gravity change observed over the nine year period was -248 microGal. The gravity data were then inverted using the surface inversion method. Three values of density contrast were used, -0.05 g/cm3, -0.10 g/cm3, and -0.20 g/cm3. The starting surface in 1991 was set to 2,500 ft above sea level. The changes in surfaces were then converted to mass changes. The largest total mass change recovered was -1.39x1011 kg. This mass value is of the same order of magnitude as published well production data for the field. Additionally, the gravity data produces a better understanding of the spatial

  12. Reservoir engineering studies of the Cerro Prieto geothermal field

    Science.gov (United States)

    Goyal, K. P.; Lippmann, M. J.; Tsang, C. F.

    1982-09-01

    Reservoir engineering studies of the Cerro Prieto geothermal field began in 1978 under a five-year cooperative agreement between the US Department of Energy and the Comision Federal de Electricidad de Mexico, with the ultimate objective of simulating the reservoir to forecast its production capacity, energy longevity, and recharge capability under various production and injection scenarios. During the fiscal year 1981, attempts were made to collect information on the evolution history of the field since exploitation began; the information is to be used later to validate the reservoir model. To this end, wellhead production data were analyzed for heat and mass flow and also for changes in reservoir pressures, temperatures, and saturations for the period from March 1973 to November 1980.

  13. Geothermal injection treatment: process chemistry, field experiences, and design options

    Energy Technology Data Exchange (ETDEWEB)

    Kindle, C.H.; Mercer, B.W.; Elmore, R.P.; Blair, S.C.; Myers, D.A.

    1984-09-01

    The successful development of geothermal reservoirs to generate electric power will require the injection disposal of approximately 700,000 gal/h (2.6 x 10/sup 6/ 1/h) of heat-depleted brine for every 50,000 kW of generating capacity. To maintain injectability, the spent brine must be compatible with the receiving formation. The factors that influence this brine/formation compatibility and tests to quantify them are discussed in this report. Some form of treatment will be necessary prior to injection for most situations; the process chemistry involved to avoid and/or accelerate the formation of precipitate particles is also discussed. The treatment processes, either avoidance or controlled precipitation approaches, are described in terms of their principles and demonstrated applications in the geothermal field and, when such experience is limited, in other industrial use. Monitoring techniques for tracking particulate growth, the effect of process parameters on corrosion and well injectability are presented. Examples of brine injection, preinjection treatment, and recovery from injectivity loss are examined and related to the aspects listed above.

  14. Sources of subsidence at the Salton Sea Geothermal Field

    Science.gov (United States)

    Barbour, Andrew J.; Evans, Eileen; Hickman, Stephen H.; Eneva, Mariana

    2016-01-01

    At the Salton Sea Geothermal Field (SSGF) in Southern California, surface deformation associated with geologic processes including sediment compaction, tectonic strain, and fault slip may be augmented by energy production activities. Separating the relative contributions from natural and anthropogenic sources is especially important at the SSGF, which sits at the apex of a complex tectonic transition zone connecting the southern San Andreas Fault with the Imperial Fault; but this has been a challenging task so far. Here we analyze vertical surface velocities obtained from the persistent scatterer InSAR method and find that two of the largest subsidence anomalies can be represented by a set of volumetric strain nuclei at depths comparable to geothermal well completion zones. In contrast, the rates needed to achieve an adequate fit to the magnitudes of subsidence are almost an order of magnitude greater than rates reported for annual changes in aggregate net-production volume, suggesting that the physical mechanism responsible for subsidence at the SSGF is a complicated interplay between natural and anthropogenic sources.

  15. Exploration and development of the Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Lippmann, M.J.; Goldstein, N.E.; Halfman, S.E.; Witherspoon, P.A.

    1983-07-01

    A multidisciplinary effort to locate, delineate, and characterize the geothermal system at Cerro Prieto, Baja California, Mexico, began about 25 years ago. It led to the identification of an important high-temperature, liquid-dominated geothermal system which went into production in 1973. Initially, the effort was undertaken principally by the Mexican electric power agency, the Comision Federal de Electricidad (CFE). Starting in 1977 a group of US organizations sponsored by the US Department of Energy, joined CFE in this endeavor. An evaluation of the different studies carried out at Cerro Prieto has shown that: (1) surface electrical resistivity and seismic reflection surveys are useful in defining targets for exploratory drilling; (2) the mineralogical studies of cores and cuttings and the analysis of well logs are important in designing the completion of wells, identifying geological controls on fluid movement, determining thermal effects and inferring the thermal history of the field; (3) geochemical surveys help to define zones of recharge and paths of fluid migration; and (4) reservoir engineering studies are necessary in establishing the characteristics of the reservoir and in predicting its response to fluid production.

  16. A reservoir engineering assessment of the San Jacinto-Tizate Geothermal Field, Nicaragua

    Energy Technology Data Exchange (ETDEWEB)

    Ostapenko, S.; Spektor, S.; Davila, H.; Porras, E.; Perez, M.

    1996-01-24

    More than twenty yews have passed since geothermal research and drilling took place at the geothermal fields in Nicaragua- Tbe well horn Momotombo Geothermal Field (70 We) has been generating electricity since 1983, and now a new geothermal field is under exploration. the San Jacinto-Tizate. Two reservoirs hydraulic connected were found. The shallow reservoir (270°C) at the depth of 550 - 1200 meters, and the deep one at > 1600 meters. Both of theme are water dominated reservoirs, although a two phase condition exist in the upper part of the shallow one. Different transient tests and a multi-well interference test have been carried out, very high transmissivity value were estimated around the well SJ-4 and average values for the others. A preliminar conceptual model of the geothermal system is given in this paper, as the result of the geology, geophysics, hydrology studies, drilling and reservoir evaluation.

  17. Modeling study of the Pauzhetsky geothermal field, Kamchatka, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Kiryukhin, A.V. [Institute of Volcanology, Kamchatsky (Russian Federation); Yampolsky, V.A. [Kamchatskburgeotermia State Enterprise, Elizovo (Russian Federation)

    2004-08-01

    Exploitation of the Pauzhetsky geothermal field started in 1966 with a 5 MW{sub e} power plant. A hydrogeological model of the Pauzhetsky field has been developed based on an integrated analysis of data on lithological units, temperature, pressure, production zones and natural discharge distributions. A one-layer 'well by well' model with specified vertical heat and mass exchange conditions has been used to represent the main features of the production reservoir. Numerical model development was based on the TOUGH2 code [Pruess, 1991. TOUGH2 - A General Purpose Numerical Simulator for Multiphase Fluid and Heat Flow, Lawrence Berkeley National Laboratory Report, Berkeley, CA; Pruess et al., 1999. TOUGH2 User's Guide, Version 2.0, Report LBNL-43134, Lawrence Berkeley National Laboratory, Berkeley, CA] coupled with tables generated by the HOLA wellbore simulator [Aunzo et al., 1991. Wellbore Models GWELL, GWNACL, and HOLA, Users Guide, Draft, 81 pp.]. Lahey Fortran-90 compiler and computer graphical packages (Didger-3, Surfer-8, Grapher-3) were also used to model the development process. The modeling study of the natural-state conditions was targeted on a temperature distribution match to estimate the natural high-temperature upflow parameters: the mass flow-rate was estimated at 220 kg/s with enthalpy of 830-920 kJ/kg. The modeling study for the 1964-2000 exploitation period of the Pauzhetsky geothermal field was targeted at matching the transient reservoir pressure and flowing enthalpies of the production wells. The modeling study of exploitation confirmed that 'double porosity' in the reservoir, with a 10-20% active volume of 'fractures', and a thermo-mechanical response to reinjection (including changes in porosity due to compressibility and expansivity), were the key parameters of the model. The calibrated model of the Pauzhetsky geothermal field was used to forecast reservoir behavior under different exploitation scenarios for

  18. Innovative approach for risk assessment in green field geothermal project

    NARCIS (Netherlands)

    Batini, F.; Wees, J.-D. van

    2010-01-01

    At present, the worldwide geothermal energy production provides less than 1% of the world's energy needs but the geothermal resources confined in the first 6 km of the earth's crust are estimated to be in the fairly above 200 GW of which 50-80 GW are located in Europe. Exploring and developing at

  19. Hydrogeology of the Owego-Apalachin Elementary School Geothermal Fields, Tioga County, New York

    Science.gov (United States)

    Williams, John H.; Kappel, William M.

    2015-12-22

    The hydrogeology of the Owego-Apalachin Elementary School geothermal fields, which penetrate saline water and methane in fractured upper Devonian age bedrock in the Owego Creek valley, south-central New York, was characterized through the analysis of drilling and geophysical logs, water-level monitoring data, and specific-depth water samples. Hydrogeologic insights gained during the study proved beneficial for the design of the geothermal drilling program and protection of the overlying aquifer during construction, and may be useful for the development of future geothermal fields and other energy-related activities, such as drilling for oil and natural gas in similar fractured-bedrock settings.

  20. Plate boundary deformation and man-made subsidence around geothermal fields on the Reykjanes Peninsula, Iceland

    KAUST Repository

    Keiding, Marie

    2010-07-01

    We present Interferometric Synthetic Aperture Radar (InSAR) data from 1992-1999 and 2003-2008 as well as GPS data from 2000-2009 for the active plate boundary on the Reykjanes Peninsula, southwest Iceland. The geodetic data reveal deformation mainly due to plate spreading, anthropogenic subsidence caused by geothermal fluid extraction and, possibly, increasing pressure in a geothermal system. Subsidence of around 10. cm is observed during the first 2. years of production at the Reykjanes geothermal power plant, which started operating in May 2006. We model the surface subsidence around the new power plant using point and ellipsoidal pressure sources in an elastic halfspace. Short-lived swarms of micro-earthquakes as well as aseismic fault movement are observed near the geothermal field following the start of production, possibly triggered by the stresses induced by geothermal fluid extraction. © 2010 Elsevier B.V.

  1. Resistivity Imaging by CSAMT Method in Takigami Geothermal Field in Kyushu, Japan

    OpenAIRE

    Mustopa, Enjang Jaenal; Furuya, Shigetsugu; Jotaki, Hisashi; Ushijima, Keisuke

    2003-01-01

    Controlled-source audiofrequency magnetotelluric (CSAMT) survey was carried out in Takigami geothermal field. Stations were taken closely with regular grid spacing of 150 m. The purpose of the measurements is to delineate a detailed resistivity structure

  2. Seismotectonics of the Cerro Prieto Geothermal Field, Baja California, Mexico.

    Science.gov (United States)

    Rebollar, C. J.; Reyes, L. M.; Quintanar, L.; Arellano, J. F.

    2002-12-01

    We studied the background seismic activity in the Cerro Prieto geothermal field (CPGF) using a network of 21 digital stations. Earthquakes are located below the exploitation area of the CPGF, between 3 and 12 km depth, within the basement. Earthquakes follow roughly a N30°E trend perpendicular to the Cerro Prieto fault. This activity is located on a horst-like structure below the geothermal field and coincides with the zone of maximum subsidence in the CPGF. Two earthquake swarms occurred along the SE-NW strike of the Cerro Prieto fault and in the neighborhood of the Cerro Prieto volcano. Magnitudes range from -0.3 to 2.5. A Vp/Vs=1.91 ratio of the activity below the volcano suggests a water-saturated medium and/or a partial-melt medium. We calculated 76 focal mechanisms of individual events. On June 1 and September 10, 1999, two earthquakes of Mw 5.2 and 5.3 occurred in the basement at depths of 7.4 and 3.8 km below the CPGF. Maximum peak accelerations above the hypocenter ranged from 128.0 to 432.0 cm/s2. Waveform modeling results in a fault geometries given by strike=236°, dip=60°, rake=-58° (normal) and strike=10°, dip=90°, rake=159° (right lateral strike-slip) for the June and September events. Observed triangular source time function of 0.7 seconds and a double source with a total duration of 1.9 seconds for the June and September events were used to calculate the synthetics seismograms. Static stress drops and seismic moments for the June and September events are: Δ\\sigma=82.5 MPa (825 bars), Mo= 7.65x1016 Nm (7.65x1023 dyne-cm) and Δ\\sigma=31.3 MPa (313 bars) and Mo=1.27x1017 Nm (1.27x1024 dyne-cm). These stress drops are typical of continental events rather than stress drops of events originated in spreading centers. We concluded from the focal mechanisms of the background seismicity and June and September 1999 events, that a complex stress environment exits in the CPGF due to the continual thinning of the crust in the Cerro Prieto basin.

  3. Resistivity imaging of Aluto-Langano geothermal field using 3-D magnetotelluric inversion

    Science.gov (United States)

    Cherkose, Biruk Abera; Mizunaga, Hideki

    2018-03-01

    Magnetotelluric (MT) method is a widely used geophysical method in geothermal exploration. It is used to image subsurface resistivity structures from shallow depths up to several kilometers of depth. Resistivity imaging using MT method in high-enthalpy geothermal systems is an effective tool to identify conductive clay layers that cover the geothermal systems and to detect a potential reservoir. A resistivity model is vital for deciding the location of pilot and production sites at the early stages of a geothermal project. In this study, a 3-D resistivity model of Aluto-Langano geothermal field was constructed to map structures related to a geothermal resource. The inversion program, ModEM was used to recover the 3-D resistivity model of the study area. The 3-D inversion result revealed the three main resistivity structures: a high-resistivity surface layer related to unaltered volcanic rocks at shallow depth, underlain by a conductive zone associated with the presence of conductive clay minerals, predominantly smectite. Beneath the conductive layer, the resistivity increases gradually to higher values related to the formation of high-temperature alteration minerals such as chlorite and epidote. The resistivity model recovered from 3-D inversion in Aluto-Langano corresponds very well to the conceptual model for high-enthalpy volcanic geothermal systems. The conductive clay cap is overlying the resistive propylitic upflow zone as confirmed by the geothermal wells in the area.

  4. A review of the microbiology of the Rehai geothermal field in Tengchong, Yunnan Province, China

    OpenAIRE

    Hedlund, Brian P.; Cole, Jessica K.; Williams, Amanda J.; Hou, Weiguo; Zhou, Enmin; Li, Wenjun; Dong, Hailiang

    2012-01-01

    The Rehai Geothermal Field, located in Tengchong County, in central-western Yunnan Province, is the largest and most intensively studied geothermal field in China. A wide physicochemical diversity of springs (ambient to ∼97 °C; pH from ≤1.8 to ≥9.3) provides a multitude of niches for extremophilic microorganisms. A variety of studies have focused on the cultivation, identification, basic physiology, taxonomy, and biotechnological potential of thermophilic microorganisms from Rehai. Thermophil...

  5. Radon and ammonia transects across the Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Semprini, L.; Kruger, P.

    1981-01-01

    Radon and ammonia transects, conducted at the Cerro Prieto geothermal field, involve measurement of concentration gradients at wells along lines of structural significance in the reservoir. Analysis of four transects showed radon concentrations ranging from 0.20 to 3.60 nCi/kg and ammonia concentrations from 17.6 to 59.3 mg/l. The data showed the lower concentrations in wells of lowest enthalpy fluid and the higher concentrations in wells of highest enthalpy fluid. Linear correlation analysis of the radon-enthalpy data indicated a strong relationship, with a marked influence by the two-phase conditions of the produced fluid. It appears that after phase separation in the reservoir, radon achieves radioactive equilibrium between fluid and rock, suggesting that the phase separation occurs well within the reservoir. A two-phase mixing model based on radon-enthalpy relations allows estimation of the fluid phase temperatures in the reservoir. Correlations of ammonia concentration with fluid enthalpy suggests an equilibrium partitioning model in which enrichment of ammonia correlates with higher enthalpy vapor.

  6. Field Studies of Geothermal Reservoirs Rio Grande Rift, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    James C Witcher

    2002-07-30

    The Rio Grande rift provides an excellent field laboratory to study the nature of geothermal systems in an extensional environment. Much of the geologic complexity that is found in the Basin and Range is absent because the rift is located on cratonic crust with a thin and well-characterized Phanerozoic stratigraphy and tectonic history. On the other hand, the Neogene thermo-tectonic history of the rift has many parallels with the Basin and Range to the west. The geology of the southern Rio Grande rift is among the best characterized of any rift system in the world. Also, most geologic maps for the region are rather unique in that detailed analyses of Quaternary stratigraphic and surficial unit are added in concert with the details of bedrock geology. Pleistocene to Holocene entrenchment of the Rio Grande and tributaries unroofs the alteration signatures and permeability attributes of paleo outflow plumes and upflow zones, associated with present-day, but hidden or ''blind,'' hydrothermal systems at Rincon and San Diego Mountain.

  7. Applications of stable isotopes and radioisotopes in the exploration and reservoir management of Philippine geothermal fields

    International Nuclear Information System (INIS)

    Ferrer, H.P.; Alvis-Isidro, R.R.

    1996-01-01

    The development of indigenous geothermal energy resources is currently one of the primary thrusts of the country's energy program. Presently, the Philippines has a total of geothermal generating capacity of about 1400 MWe. This comprises about 20% of the total energy mix and electricity requirements of the country. By 1998, an additional capacity of about 500 MWe will be commissioned, and the PHilippines would be generating 1900 MWe of electricity from geothermal energy resources. From 1990 to 1993, PNOC EDC (Philippine National Oil Company, Energy Development Corporation) has been granted a research contract by the International Atomic Energy Agency (IAEA). The Company has also been a recipient since 1991 of an IAEA Technical Assistance on the use of stable isotope techniques in geothermal hydrology. Stable isotopes, particularly 18 O and 2 H, in conjunction with other geochemical parameters and geological and geophysical data, have been used to: a) establish the local meteoric water line; b) determine the origin of geothermal fluids; c) delineate the elevation of recharge of geothermal and ground water systems; d) confirm pre-exploitation hydrochemical models; e) identify physical and chemical processes due to exploitation of the geothermal resource (i.e. reinjection fluid returns, incursion of cold meteoric water, boiling due to pressure drawdown and mixing with acidic steam condensates); and, f) estimate reservoir temperatures. Techniques using radioisotopes, such as 14 C, have also been used for the age-dating of charred wood samples collected from some of our geothermal exploration areas. The detection of 3 H has also been used as an indicator for the incursion of recent cold meteoric water into the geothermal system. Tracer studies using 131 I, have also been previously carried out, in coordination with the Philippine Nuclear Research Institute, to determine local hydrology and flow paths of reinjected water in some of our geothermal fields

  8. Application of ethanol as a geothermal tracer: a field-test in the Los Azufres geothermal field, Michoacan, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Tello Hinojosa, Enrique [Comision Federal de Electricidad, Morelia, Michoacan (Mexico); Pal Verma, Mahendra [Comision Federal de Electricidad, Morelia, Michoacan (Mexico); Suarez Arriaga, Mario C. [Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Michoacan (Mexico); Barrera Conzalez, Victor; Sandoval Medina, Fernando [Comision Federal de Electricidad, Morelia, Michoacan (Mexico)

    2005-12-01

    The thermal decomposition rate of ethanol, rhodamine WT and fluoroscein was determined from laboratory data obtained under conditions of temperature and pressure that simulated a geothermal reservoir. It was found that ethylic alcohol had better thermal stability rhodamine and fluoroscein. Using data obtained from de-ionized water experiments after 168 hours and 200 degree centigrade of temperature, the rhodamine WT and fluoroscein presented a degradation of 99.4% and 99.7%, respectively, while for the ethanol the degradation percentage under the same conditions was only of 44.6%. According to this, ethylic alcohol can be used as a conservative tracer up to about 250 degree centigrade, while rhodamine WT and fluoroscein can be used only at less than 200 degree centigrade, and only where the transit return time is expected to be less than 7 days. Ethanol was used as a conservative tracer in a field test in the southern zone of the Los Azufres geothermal field. The highest concentration was detected in a monitoring well in the steam phase 15 days after the injection, and in the liquid phase, or brine, 34 days after the injection. This suggests that alcohol fractionates preferentially in the steam phase and moves or migrates twice as fast than it does in the liquid phase. The tracer speed can be calculated in 176 m/day in the steam phase and 77.5 m/day in the brine. The ethanol presents good enough characteristics to be used as a tracer in both phases in geothermal environments. [Spanish] Se determino la velocidad de descomposicion termica del etanol, la rodamina y la fluoresceina a partir de datos de laboratorio obtenidos bajo condiciones de presion y de temperatura que simulan las de un yacimiento geotermico. Se encontro que el alcohol etilico presenta una mayor estabilidad termica que la rodamina y la fluoresceina. Empleando los datos obtenidos de experimentos con agua de-ionizada despues de 168 horas y a 200 grados centigrados de temperatura, la rodamina y la

  9. Fluid flow model of the Cerro Prieto Geothermal Field based on well log interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Halfman, S.E.; Lippmann, M.J.; Zelwe, R.; Howard, J.H.

    1982-08-10

    The subsurface geology of the Cerro Prieto geothermal field was analyzed using geophysical and lithologic logs. The distribution of permeable and relatively impermeable units and the location of faults are shown in a geologic model of the system. By incorporating well completion data and downhole temperature profiles into the geologic model, it was possible to determine the direction of geothermal fluid flow and the role of subsurface geologic features that control this movement.

  10. The Momotombo Geothermal Field, Nicaragua: Exploration and development case history study

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-07-01

    This case history discusses the exploration methods used at the Momotombo Geothermal Field in western Nicaragua, and evaluates their contributions to the development of the geothermal field models. Subsequent reservoir engineering has not been synthesized or evaluated. A geothermal exploration program was started in Nicaragua in 1966 to discover and delineate potential geothermal reservoirs in western Nicaragua. Exploration began at the Momotombo field in 1970 using geological, geochemical, and geophysical methods. A regional study of thermal manifestations was undertaken and the area on the southern flank of Volcan Momotombo was chosen for more detailed investigation. Subsequent exploration by various consultants produced a number of geotechnical reports on the geology, geophysics, and geochemistry of the field as well as describing production well drilling. Geological investigations at Momotombo included photogeology, field mapping, binocular microscope examination of cuttings, and drillhole correlations. Among the geophysical techniques used to investigate the field sub-structure were: Schlumberger and electromagnetic soundings, dipole mapping and audio-magnetotelluric surveys, gravity and magnetic measurements, frequency domain soundings, self-potential surveys, and subsurface temperature determinations. The geochemical program analyzed the thermal fluids of the surface and in the wells. This report presents the description and results of exploration methods used during the investigative stages of the Momotombo Geothermal Field. A conceptual model of the geothermal field was drawn from the information available at each exploration phase. The exploration methods have been evaluated with respect to their contributions to the understanding of the field and their utilization in planning further development. Our principal finding is that data developed at each stage were not sufficiently integrated to guide further work at the field, causing inefficient use of

  11. Contributions of arsenic and chloride from the Kawerau geothermal field to the Tarawera River, New Zealand

    International Nuclear Information System (INIS)

    Mroczek, E.K.

    2005-01-01

    The Tarawera River flows through the Kawerau geothermal field. Natural geothermal drainage as well as geothermal production fluid effluent (0.193 m 3 /s) discharge to the river. The concentrations and fluxes of arsenic and chloride were measured upstream and downstream of the field to quantify the proportion of natural inflows of geothermal fluid compared to the discharge of effluent. Upstream of the geothermal effluent outfalls, the arsenic and chloride concentrations in the river are about 0.021 mg/l and 39 mg/l, respectively. The discharge of effluent increases the concentrations in the river to 0.029 mg/l and 48 mg/l, respectively. Calculated concentrations, given the known discharge of effluent, are 0.038 mg/l for arsenic and 50 mg/l for chloride. The differences between the measured and calculated concentrations are within the gauging and analytical errors. At minimum and maximum mean river flows (1984-1992), the concentrations would increase and decrease by 23% and 46%, respectively. Arsenic appears to be soluble and not associated with suspended solids. However, increased transport of arsenic by suspended solids may be a factor at higher river flows. The input of natural geothermal fluid upstream of the effluent outfalls (estimated < 0.170 m3/s) could not be detected (within the errors) by an increase in river chloride concentrations. (author)

  12. Magnetotelluric-Geochemistry Investigations of Blawan Geothermal Field, East Java, Indonesia

    Directory of Open Access Journals (Sweden)

    Sukir Maryanto

    2017-06-01

    Full Text Available An integrated magnetotelluric (MT and geochemical study of the Blawan geothermal field has been performed. The character of the hot springs, the reservoir temperature, and geothermal reserve potential of Blawan geothermal field are assessed. MT measurements, with 250 m up to 1200 m spacings, were made at 19 sites, and 6 locations at the Blawan hot springs have been sampled for geochemical survey. The results of 2D modelling indicated that the geothermal system in the research area consisted of a cap rock zone (≤32 Ω•m, reservoir zone (>32 – ≤512 Ω•m, and heat source zone (>512 Ω•m, and also identified faults. The characteristics of the hot spring water were identified through analyzing the major and minor elements. A ternary diagram (Cl-SO4-HCO3 showed that the Blawan hot springs consist of bicarbonate water (at locations of AP-01, AP-02, AP-03 and chloride water (at locations of AP-04, AP-05, and AP-06, with a reservoir temperature of approximately 90 °C based on the Na–K–Ca geothermometer results. An estimate of the geothermal energy using the volumetric method, gave a total geothermal reserve potential of 1.823 MWe.

  13. The Use of Unmanned Aerial Vehicle for Geothermal Exploitation Monitoring: Khankala Field Example

    Directory of Open Access Journals (Sweden)

    Sergey V. Cherkasov

    2018-06-01

    Full Text Available The article is devoted to the use of unmanned aerial vehicle for geothermal waters exploitation monitoring. Development of a geothermal reservoir usually requires a system of wells, pipelines and pumping equipment and control of such a system is quite complicated. In this regard, use of unmanned aerial vehicle is relevant. Two test unmanned aerial vehicle based infrared surveys have been conducted at the Khankala field (Chechen Republic with the Khankala geothermal plant operating at different regimes: during the first survey – with, and the second – without reinjection of used geothermal fluid. Unmanned aerial vehicle Geoscan 201 equipped with digital (Sony DSX-RX1 and thermal imaging (Thermoframe-MX-TTX cameras was used. Besides different images of the geothermal plant obtained by the surveys, 13 thermal anomalies have been identified. Analysis of the shape and temperature facilitated determination of their different sources: fire, heating systems, etc., which was confirmed by a ground reconnaissance. Results of the study demonstrate a high potential of unmanned aerial vehicle based thermal imagery use for environmental and technological monitoring of geothermal fields under operation.

  14. Atmospheric dispersion and noise propagation at Imperial Valley Geothermal Fields

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, R.E.

    1976-04-15

    Quantitative estimations are made for the atmospheric dispersion of gases, heat, and noise due to geothermal energy sources in Southern California's Imperial Valley. In particular, gas concentration per unit source strength, change in mixing ratio, relative humidity, temperature, and the ratio of heat flux to solar constant are calculated. The possibility of atmospheric refraction of source noise is also considered.

  15. Evaluation of mineral-aqueous chemical equilibria of felsic reservoirs with low-medium temperature: A comparative study in Yangbajing geothermal field and Guangdong geothermal fields

    Science.gov (United States)

    Li, Jiexiang; Sagoe, Gideon; Yang, Guang; Lu, Guoping

    2018-02-01

    Classical geothermometers are useful tools for estimating reservoir temperatures of geothermal systems. However, their application to low-medium temperature reservoirs is limited because large variations of temperatures calculated by different classical geothermometers are usually observed. In order to help choose the most appropriate classical geothermometer for calculating the temperatures of low-medium temperature reservoirs, this study evaluated the mineral-aqueous equilibria of typical low-medium temperature felsic reservoirs in the Yangbajing geothermal field and Guangdong geothermal fields. The findings of this study support that reservoirs in the Guangdong geothermal fields have no direct magma influence. Also, natural reservoirs may represent the intermediate steady state before reaching full equilibrium, which rarely occurs. For the low-medium temperature geothermal systems without the influence of magma, even with seawater intrusion, the process of minerals reaching mineral-aqueous equilibrium is sequential: chlorite and chalcedony are the first, then followed by K-feldspar, kaolinite and K-mica. Chlorite may reach equilibrium at varying activity values, and the equilibrium between K-feldspar and kaolinite or K-feldspar and K-mica can fix the contents of K and Al in the solutions. Although the SiO2 and Al attain equilibrium state, albite and laumontite remain unsaturated and thus may affect low-medium temperature calculations. In this study, the chalcedony geothermometer was found to be the most suitable geothermometer for low-medium temperature reservoirs. The results of K-Mg geothermometer may be useful to complement that of the chalcedony geothermometer in low-medium temperature reservoir systems. Na-K geothermometer will give unreliable results at low-medium temperatures; and Na-K-Ca will also be unsuitable to calculate reservoir temperatures lower than 180 °C, probably caused by the chemical imbalance of laumontite.

  16. Near-surface groundwater responses to injection of geothermal wastes

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, S.C.

    1984-06-01

    Experiences with injecting geothermal fluids have identified technical problems associated with geothermal waste disposal. This report assesses the feasibility of injection as an alternative for geothermal wastewater disposal and analyzes hydrologic controls governing the upward migration of injected fluids. Injection experiences at several geothermal developments are presented, including: Raft River, Salton Sea, East Mesa, Otake and Hatchobaru in Japan, and Ahuachapan in El Salvador. Hydrogeologic and design/operational factors affecting the success of an injection program are identified. Hydrogeologic factors include subsidence, near-surface effects of injected fluids, and seismicity. Design/operational factors include hydrodynamic breakthrough, condition of the injection system and reservoir maintenance. Existing and potential effects of production/injection on these factors are assessed.

  17. Session 10: The Cerro Prieto Geothermal Field, Mexico: The Experiences Gained from Its Exploration and Development

    Energy Technology Data Exchange (ETDEWEB)

    Lippman, M.J.; Goldstein, N.E.; Halfman, S.E.; Witherspoon, P.A.

    1983-12-01

    The Cerro Prieto case study demonstrated the value of a multidisciplinary effort for exploring and developing a geothermal field. There was no problem in recognizing the geothermal potential of the Cerro Prieto area because of the many obvious surface manifestations. However, the delineation of the geothermal reservoir at depth was not so straightforward. Wells drilled near the abundant surface manifestations only produced fluids of relatively low enthalpy. Later it was determined that these zones of high heat loss corresponded to discharge areas where faults and fractures allowed thermal fluids to leak to the surface, and not to the main geothermal reservoir. The early gravity and seismic refraction surveys provided important information on the general structure of the area. Unaware of the existence of a higher density zone of hydrothermally altered sediments capping the geothermal reservoir, CFE interpreted a basement horst in the western part of the field and hypothesized that the bounding faults were controlling the upward flow of thermal fluids. Attempting to penetrate the sedimentary column to reach the ''basement horst'', CFE discovered the {alpha} geothermal reservoir (in well M-5). The continuation of the geothermal aquifer (actually the {beta} reservoir) east of the original well field was later confirmed by a deep exploration well (M-53). The experience of Cerro Prieto showed the importance of chemical ratios, and geothermometers in general, in establishing the subsurface temperatures and fluid flow patterns. Fluid chemical and isotopic compositions have also been helpful to determine the origin of the fluids, fluid-production mechanisms and production induced effects on the reservoir.

  18. Geothermal system boundary at the northern edge of Patuha Geothermal Field based on integrated study of volcanostratigraphy, geological field mapping, and cool springs contamination by thermal fluids

    Science.gov (United States)

    Suryantini; Rachmawati, C.; Abdurrahman, M.

    2017-12-01

    Patuha Geothermal System is a volcanic hydrothermal system. In this type of system, the boundary of the system is often determined by low resistivity (10 ohm.m) anomaly from Magnetotelluric (MT) or DC-Resistivity survey. On the contrary, during geothermal exploration, the system boundary often need to be determined as early as possible even prior of resistivity data available. Thus, a method that use early stage survey data must be developed properly to reduce the uncertainty of the geothermal area extent delineation at the time the geophysical data unavailable. Geological field mapping, volcanostratigraphy analysis and fluid chemistry of thermal water and cold water are the data available at the early stage of exploration. This study integrates this data to delineate the geothermal system boundary. The geological mapping and volcanostratigraphy are constructed to limit the extent of thermal and cold springs. It results that springs in the study area are controlled hydrologically by topography of Patuha Volcanic Crown (complex) or so called PVC, the current geothermal field and Masigit Volcanic Crown (complex) or so called MVC, the dormant volcano not associated with active geothermal system. Some of the cold springs at PVC are contaminated by subsurface steam heated outflow while others are not contaminated. The contaminated cold springs have several characteristics such as higher water temperature than ambient temperature at the time it was measured, higher total disolved solid (TDS), and lower pH. The soluble elements analysis support the early contamination indication by showing higher cation and anion, and positive oxygen shifting of stable isotope of these cool springs. Where as the uncontaminated spring shows similar characteristic with cool springs occur at MVC. The boundary of the system is delineated by an arbitrary line drawn between distal thermal springs from the upflow or contaminated cool springs with the cool uncontaminated springs. This boundary is

  19. Seismic discrimination of a geothermal field: Cerro Prieto

    Energy Technology Data Exchange (ETDEWEB)

    Blakeslee, S.

    1984-04-01

    Extensive reprocessing of a subset of the seismic reflection data from Cerro Prieto has been performed. The formations and faults identified in the resulting seismic profile were correlated to cross-sections constructed from well log data. The production region coincides with a zone of reflection attenuation. A detailed velocity analysis reveals a lid of high velocity events rimming the reflection attenuation zone. This may prove to be a valuable discriminant for locating a geothermal resource using seismic reflection data.

  20. Numerical simulations of passing seismic waves at the Larderello-Travale Geothermal Field, Italy

    Science.gov (United States)

    Lupi, Matteo; Fuchs, Florian; Saenger, Erik H.

    2017-06-01

    Passing seismic waves released by large-magnitude earthquakes may affect geological systems located thousands of miles far from the epicenter. The M9.0 Tohoku earthquake struck on 11 March 2011 in Japan. We detected local seismic activity at the Larderello-Travale geothermal field, Italy, coinciding with the maximum amplitudes of the Rayleigh waves generated by the Tohoku earthquake. We suggest that the earthquakes were triggered by passing Rayleigh waves that induced locally a maximum vertical displacement of approximately 7.5 mm (for waves with period of 100 s). The estimated dynamic stress was about 8 kPa for a measured peak ground velocity of 0.8 mm/s. Previous similar observations pointed out local seismicity at the Larderello-Travale Geothermal Field triggered by the 2012 Mw5.9 Po Plain earthquake. We conducted forward numerical modeling to investigate the effects caused by passing P, S, Love, and Rayleigh waves through the known velocity structure of the geothermal field. Results indicate that maximum displacements focus differently when considering body or surface waves, with displacement values being higher within the first 2 km of depth. The focusing of the displacement below 3 km seems to be strongly controlled by the velocity structure of the Larderello-Travale geothermal field. We propose that seismic activity triggered by passing seismic waves may be related to a clock-advancing mechanism for local seismic events that may have occurred in any case. Furthermore, our analysis shows that local anisotropies in the velocity structure of the Larderello-Travale geothermal field (possibly linked to compartments of elevated pore pressures) strongly control the reactivation of regions of the geothermal field affected by passing seismic waves.

  1. State-of-the-art of liquid waste disposal for geothermal energy systems: 1979. Report PNL-2404

    Energy Technology Data Exchange (ETDEWEB)

    Defferding, L.J.

    1980-06-01

    The state-of-the-art of geothermal liquid waste disposal is reviewed and surface and subsurface disposal methods are evaluated with respect to technical, economic, legal, and environmental factors. Three disposal techniques are currently in use at numerous geothermal sites around the world: direct discharge into surface waters; deep-well injection; and ponding for evaporation. The review shows that effluents are directly discharged into surface waters at Wairakei, New Zealand; Larderello, Italy; and Ahuachapan, El Salvador. Ponding for evaporation is employed at Cerro Prieto, Mexico. Deep-well injection is being practiced at Larderello; Ahuachapan; Otake and Hatchobaru, Japan; and at The Geysers in California. All sites except Ahuachapan (which is injecting only 30% of total plant flow) have reported difficulties with their systems. Disposal techniques used in related industries are also reviewed. The oil industry's efforts at disposal of large quantities of liquid effluents have been quite successful as long as the effluents have been treated prior to injection. This study has determined that seven liquid disposal methods - four surface and three subsurface - are viable options for use in the geothermal energy industry. However, additional research and development is needed to reduce the uncertainties and to minimize the adverse environmental impacts of disposal. (MHR)

  2. Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California

    Energy Technology Data Exchange (ETDEWEB)

    Rutqvist, Jonny; Rutqvist, J.; Oldenburg, C.M.

    2008-05-15

    In this study we analyze relative contributions to the cause and mechanism of injection-induced micro-earthquakes (MEQs) at The Geysers geothermal field, California. We estimated the potential for inducing seismicity by coupled thermal-hydrological-mechanical analysis of the geothermal steam production and cold water injection to calculate changes in stress (in time and space) and investigated if those changes could induce a rock mechanical failure and associated MEQs. An important aspect of the analysis is the concept of a rock mass that is critically stressed for shear failure. This means that shear stress in the region is near the rock-mass frictional strength, and therefore very small perturbations of the stress field can trigger an MEQ. Our analysis shows that the most important cause for injection-induced MEQs at The Geysers is cooling and associated thermal-elastic shrinkage of the rock around the injected fluid that changes the stress state in such a way that mechanical failure and seismicity can be induced. Specifically, the cooling shrinkage results in unloading and associated loss of shear strength in critically shear-stressed fractures, which are then reactivated. Thus, our analysis shows that cooling-induced shear slip along fractures is the dominant mechanism of injection-induced MEQs at The Geysers.

  3. Reservoir Simulation on the Cerro Prieto Geothermal Field: A Continuing Study

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda, M.; Marquez, R.; Arellano, V.; Esquer, C.A.

    1983-12-15

    The Cerro Prieto geothermal field is a liquid-dominated geothermal reservoir of complex geological and hydrological structure. It is located at the southern end of the Salton-Mexicali trough which includes other geothermal anomalies as Heber and East Mesa. Although in 1973, the initial power plant installed capacity was 75 MW of electrical power, this amount increased to 180 MW in 1981 as field development continued. It is expected to have a generating capacity of 620 MW by the end of 1985, when two new plants will be completely in operation. Questions about field deliverability, reservoir life and ultimate recovery related to planned installations are being presently asked. Numerical modeling studies can give very valuable answers to these questions, even at the early stages in the development of a field. An effort to simulate the Cerro Prieto geothermal reservoir has been undergoing for almost two years. A joint project among Comision Federal de Electricidad (CFE), Instituto de Investigaciones Electricas (IIE) and Intercomp of Houstin, Texas, was created to perform reservoir engineering and simulation studies on this field. The final project objective is tosimulate the behavior of the old field region when production from additional wells located in the undeveloped field zones will be used for feeding the new power plants.

  4. Chemical Variations in the Rocks of La Primavera Geothermal Field (Mexico) Related with Hydrothermal Alteration

    Energy Technology Data Exchange (ETDEWEB)

    Prol-Ledesma, R.M.; Hernandez-Lombardini, S.I.; Lozano-Santa Cruz, R.

    1995-01-01

    The origin and fate of the components dissolved in the geothermal fluids are of great importance in the study of epithermal deposits, and in the environmental considerations for exploitation of geothermal fields. The chemical study of La Primavera geothermal field in Mexico has environmental importance due to the high arsenic concentration observed in the thermal water and the possible contamination of aquifers in the area. The variations in the chemistry of all altered samples with respect to unaltered samples indicates depletion of manganese, and the alkalis; and enrichment in iron and magnesium. Most samples show an enrichment in aluminum and titanium, and depletion in silica and calcium. Trace elements follow different trends at various depths: shallow depths are more favorable for deposition of the analyzed trace elements than the surface or the deep part of the reservoir.

  5. Microseismic monitoring during production and reinjection tests in the Chipilapa geothermal field (El Salvador)

    International Nuclear Information System (INIS)

    Fabriol, H.; Beauce, A.; Jacobo, R.; Quijano, J.

    1992-01-01

    The microseismic monitoring of the Chipilapa geothermal field has investigated the microseismic activity prior to and during the production and injection tests of three wells drilled between 1989 and 1991. Two surveys were carried out, in 1988 and 1991-1992 respectively, in order to study the reservoir and its recharge and to monitor microseismicity induced by reinjection. Natural microseismicity is distributed around the known geothermal area, and related either to tectonic activity under the volcanic range sited at the south (and which is the upflow zone of the geothermal field) or to the Central Graben at the north. No evidences of induced microseismicity appeared at this stage of interpretation, probably due to the unfavourable conditions prevailing during the tests: Namely reinjection by gravity and low productivity

  6. Integrated Resistivity and Ground Penetrating Radar Observations of Underground Seepage of Hot Water at Blawan-Ijen Geothermal Field

    OpenAIRE

    Maryanto, Sukir; Suciningtyas, Ika Karlina Laila Nur; Dewi, Cinantya Nirmala; Rachmansyah, Arief

    2016-01-01

    Geothermal resource investigation was accomplished for Blawan-Ijen geothermal system. Blawan geothermal field which located in the northern part of Ijen caldera presents hydrothermal activity related with Pedati fault and local graben. There were about 21 hot springs manifestations in Blawan-Ijen area with calculated temperature about 50°C. We have performed several geophysical studies of underground seepage of hot water characterization. The geoelectric resistivity and GPR methods are used i...

  7. Magnetotelluric Study on the Donan Geothermal Field, Southern Part of Hokkaido, Japan

    Science.gov (United States)

    Hayakawa, M.; Mogi, T.

    2016-12-01

    We performed a MT study in the Donan geothermal field where deep seated hot granitic rocks are distributing as a source of geothermal resources. But no prominent fracture zone were found in this area. Imaging a fracture zone and clarifying geothermal reservoirs are purpose of the study. Quaternary volcanoes, such as Hokkaido Komagatake and Esan in the southern part, and Karibayama in the northern part, are situated in the surroundings of the Donan area, southwestern Hokkaido, Japan. Even though recent volcanic activity is not seen in the central part, geothermal gradient is high. The geological structure of this region is dominated by the movement of basement blocks aligning in the north-south, and folds and fractures have developed. Many hot springs and geothermal manifestations are seen in this region where called "Yakumo-Nigorikawa geothermal zone." The Mori geothermal power plant, located at south area, is operating in the Nigorikawa caldera formed about 12,000 years ago. Like Nigorikawa, the Yakumo area, located at the central part of the Donan area, have been thought as promising geothermal area, and many geothermal study were performed in the 1990th. Six drilling holes were excavated and they showed that hot granitic rock are distributing at around below 1000m depth, and temperature is higher than 200 degrees in this area. We carried out new magnetotelluric (MT) survey at 20 stations in the Yakumo area. We constructed 2-D and 3-D resistivity model with MT data. Because the anomalous phases exceeding 90 degree were seen in some sites at frequency less than 0.1Hz, we only used the data at frequency range of 320Hz and 0.1Hz in this study. We used Ogawa and Uchida (1996) as a 2D inversion and Han et al. (2008) that have applied approximate sensitivity, as 3D inversion respectively. From the resistivity models, the remarkable low resistivity zone extending from deep to shallower is seen at the center of the survey area, that is inclined from south to north. A

  8. Orthogonal Test Analysis on Conditions Affecting Electricity Generation Performance of an Enhanced Geothermal System at Yangbajing Geothermal Field

    Directory of Open Access Journals (Sweden)

    Yuchao Zeng

    2017-12-01

    Full Text Available The main conditions affecting electricity generation performance of an enhanced geothermal system (EGS include reservoir porosity, reservoir permeability, rock heat conductivity, water production rate and injection temperature. Presently there is lack of systematic research the relative importance of the five aforementioned conditions. The orthogonal test method is a statistical approach to analyze multi-factor and multi-level influence on system performance. In this work, based on the geological data at Yangbajing geothermal field, we analyzed the five conditions affecting the electricity generation performance of EGS, and ranked the relative importance of the five factors. The results show that the order of the relative importance of the conditions on electric power is water production rate > injection temperature > reservoir porosity > rock heat conductivity > reservoir permeability; the order of the relative importance of the conditions on reservoir impedance is reservoir permeability > injection temperature > water production rate > reservoir porosity > rock heat conductivity; the order of the relative importance of the conditions on pump power is water production rate > reservoir permeability > injection temperature > reservoir porosity > rock heat conductivity, and; the order of the relative importance of the conditions on energy efficiency is water production rate > reservoir permeability > reservoir porosity > injection temperature > rock heat conductivity. The construction of an EGS reservoir should be located at a formation with higher reservoir porosity or rock heat conductivity, while the determination of reservoir permeability, water production rate and injection temperature should be based on the comprehensive target.

  9. Measured ground-surface movements, Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Massey, B.L.

    1981-01-01

    The Cerro Prieto geothermal area in the Mexicali Valley, 30 kilometers southeast of Mexicali, Baja California, incurred slight deformation because of the extraction of hot water and steam, and probably, active tectonism. During 1977 to 1978, the US Geological Survey established and measured two networks of horizontal control in an effort to define both types of movement. These networks consisted of: (1) a regional trilateration net brought into the mountain ranges west of the geothermal area from stations on an existing US Geological Survey crustal-strain network north of the international border; and (2) a local net tied to stations in the regional net and encompassing the present and planned geothermal production area. Electronic distance measuring instruments were used to measure the distances between stations in both networks in 1978, 1979 and 1981. Lines in the regional net averaged 25 km. in length and the standard deviation of an individual measurement is estimated to be approx. 0.3 part per million of line length. The local network was measured using different instrumentation and techniques. The average line length was about 5 km. and the standard deviation of an individual measurement approached 3 parts per million per line length. Ground-surface movements in the regional net, as measured by both the 1979 and 1981 resurveys, were small and did not exceed the noise level. The 1979 resurvey of the local net showed an apparent movement of 2 to 3 centimeters inward toward the center of the production area. This apparent movement was restricted to the general limits of the production area. The 1981 resurvey of the local net did not show increased movement attributable to fluid extraction.

  10. Advanced 3D Geological Modelling Using Multi Geophysical Data in the Yamagawa Geothermal Field, Japan

    Science.gov (United States)

    Mochinaga, H.; Aoki, N.; Mouri, T.

    2017-12-01

    We propose a robust workflow of 3D geological modelling based on integrated analysis while honouring seismic, gravity, and wellbore data for exploration and development at flash steam geothermal power plants. We design the workflow using temperature logs at less than 10 well locations for practical use at an early stage of geothermal exploration and development. In the workflow, geostatistical technique, multi-attribute analysis, and artificial neural network are employed for the integration of multi geophysical data. The geological modelling is verified by using a 3D seismic data which was acquired in the Yamagawa Demonstration Area (approximately 36 km2), located at the city of Ibusuki in Kagoshima, Japan in 2015. Temperature-depth profiles are typically characterized by heat transfer of conduction, outflow, and up-flow which have low frequency trends. On the other hand, feed and injection zones with high permeability would cause high frequency perturbation on temperature-depth profiles. Each trend is supposed to be caused by different geological properties and subsurface structures. In this study, we estimate high frequency (> 2 cycles/km) and low frequency (inversion, an ant-tracking seismic volume, and a geostatistical temperature model prior to application of artificial neural network on the geothermal modelling. As a result, the band-limited stepwise approach predicts a more precise geothermal model than that of full-band temperature profiles at a time. Besides, lithofacies interpretation confirms reliability of the predicted geothermal model. The integrated interpretation is significantly consistent with geological reports from previous studies. Isotherm geobodies illustrate specific features of geothermal reservoir and cap rock, shallow aquifer, and its hydrothermal circulation in 3D visualization. The advanced workflow of 3D geological modelling is suitable for optimization of well locations for production and reinjection in geothermal fields.

  11. Determination of Ground Heat Exchangers Temperature Field in Geothermal Heat Pumps

    Science.gov (United States)

    Zhurmilova, I.; Shtym, A.

    2017-11-01

    For the heating and cooling supply of buildings and constructions geothermal heat pumps using low-potential ground energy are applied by means of ground exchangers. The process of heat transfer in a system of ground exchangers is a phenomenon of complex heat transfer. The paper presents a mathematical modeling of heat exchange processes, the temperature fields are built which are necessary for the determination of the ground array that ensures an adequate supply of low potential energy excluding the freezing of soil around the pipes in the ground heat exchangers and guaranteeing a reliable operation of geothermal heat pumps.

  12. French know-how in the field of geothermal energy. District heating and electricity generation systems

    International Nuclear Information System (INIS)

    2012-08-01

    This brochure is aimed at presenting the French expertise, public and private, at international level in the field of geothermal energy (district heating and electricity generation systems). It presents a summary of the French public policy framework, measures to support Research and Development, innovation and training and offers from private companies. It has been designed by the ADEME in cooperation with the French ministry for Ecology and Sustainable Development, the French association of geothermal energy professionals, Ubifrance (the French Agency for international business development) and the French renewable energies union

  13. Workshop on CSDP data needs for the BACA geothermal field: a summary

    Energy Technology Data Exchange (ETDEWEB)

    Mangold, D.C.; Tsang, C.F. (eds.)

    1984-06-01

    These workshop summaries discuss the data needs of the Continental Scientific Drilling Program (CSDP) community and provide an introduction to the available geological, geophysical, geochemical and reservoir engineering data of the Baca geothermal field, Valles Caldera, New Mexico. Individual abstracts have been prepared for the presentations. (ACR)

  14. The possibilities of utilisation of heat from Tattapani Geothermal field, India

    Energy Technology Data Exchange (ETDEWEB)

    Sarolkar, P.B. [Geological Survey of India, Hyderabad (India); Pitale, U.L. [Geological Survey of India, Nagpur (India)

    1996-12-31

    The Tattapani Geothermal field produces + 1800 1pm thermal water of 100{degrees}C from five production wells. The hot water production can sustain electricity production of 300 kWe by using a binary cycle power plant. The heat energy of effluent water from power plant can be utilized for direct heat utilization on horticulture, aquaculture, cold storage, silviculture etc; to augment the economics of the power plant be spot can be developed as a centre for tourist attraction by constructing botanical park, greenhouse, geyser show and crocodile farm. The direct heat utilization shemes can be planned in cascading order to achieve maximum utility of thermal water. Additional deep drilling is essential for optimum commercial utilization of the Geothermal energy. The direct heat utilisation shemes along with binary cycle power plant may help in development of the geothermal energy and boosting the economy of this region.

  15. Brine treatment test for reinjection on Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Hurtado, R.; Mercado, S.; Gamino, H. (Departamento de Geotermia, Division de Fuentes de Energia, Instituto de Investigaciones Electricas, Justo Sierra y Herreros Sur 2098-Altos C.P. 21020, Mexicali, B.C. (MX))

    1989-01-01

    Reinjection of disposal brine from the Cerro Prieto Geothermal Power Plant System is attractive mainly because, on top of solving the brine disposal problem, it may significantly contribute to extend the reservoir useful lifetime, through thermal and hydraulic recharge. Because the high concentration of colloidal silica in the disposal brine, laboratory and pilot plant tests were conducted in order to develop the brine treatment process. Addition of 20-40 mg/1 lime to flashed and aged brine for 10-20 minutes yields a clarified brine relatively low in suspended solids (10-30 mg/1) when the over flow rate is 38.5 1/min-m/sup 2/. 1.1 mills/kWh was the estimated cost for treatment of 800 kg/s of separated brine from the Cerro Prieto I power station.

  16. Application of oil-field well log interpretation techniques to the Cerro Prieto Geothermal Field

    Energy Technology Data Exchange (ETDEWEB)

    Ershaghi, I.; Phillips, L.B.; Dougherty, E.L.; Handy, L.L.

    1979-10-01

    An example is presented of the application of oil-field techniques to the Cerro Prieto Field, Mexico. The lithology in this field (sand-shale lithology) is relatively similar to oil-field systems. The study was undertaken as a part of the first series of case studies supported by the Geothermal Log Interpretation Program (GLIP) of the US Department of Energy. The suites of logs for individual wells were far from complete. This was partly because of adverse borehole conditions but mostly because of unavailability of high-temperature tools. The most complete set of logs was a combination of Dual Induction Laterolog, Compensated Formation Density Gamma Ray, Compensated Neutron Log, and Saraband. Temperature data about the wells were sketchy, and the logs had been run under pre-cooled mud condition. A system of interpretation consisting of a combination of graphic and numerical studies was used to study the logs. From graphical studies, evidence of hydrothermal alteration may be established from the trend analysis of SP (self potential) and ILD (deep induction log). Furthermore, the cross plot techniques using data from density and neutron logs may help in establishing compaction as well as rock density profile with depth. In the numerical method, R/sub wa/ values from three different resistivity logs were computed and brought into agreement. From this approach, values of formation temperature and mud filtrate resistivity effective at the time of logging were established.

  17. Geothermal energy

    International Nuclear Information System (INIS)

    Laplaige, Ph.; Lemale, J.

    2008-01-01

    Geothermal energy is a renewable energy source which consists in exploiting the heat coming from the Earth. It covers a wide range of techniques and applications which are presented in this article: 1 - the Earth, source of heat: structure of the Earth, geodynamic model and plate tectonics, origin of heat, geothermal gradient and terrestrial heat flux; 2 - geothermal fields and resources; 3 - implementation of geothermal resources: exploration, main characteristic parameters, resource exploitation; 4 - uses of geothermal resources: power generation, thermal uses, space heating and air conditioning heat pumps, district heating, addition of heat pumps; 5 - economical aspects: power generation, heat generation for district heating; 6 - environmental aspects: conditions of implementation, impacts as substitute to fossil fuels; 7 - geothermal energy in France: resources, organisation; 8 - conclusion. (J.S.)

  18. Origin of rainwater acidity near the Los Azufres geothermal field, Mexico

    Science.gov (United States)

    Verma, M.P.; Quijano, J.L.; Johnson, Chad; Gerardo, J.Y.; Arellano, V.

    2000-01-01

    The chemical and isotopic compositions of rainwater were monitored at Los Azufres geothermal field (88 MWe) and its surroundings during May - September 1995, which is the rainy season. Samples were collected from eight sites: three within the field, three in its surroundings and two sufficiently far from the field such that they have no geothermal input. The concentrations of Cl-, SO42- and NO3- were measured in about 350 samples and found to be generally rainwater sulfur. The determination of pH was found to be necessary, but is not sufficient to characterize rainwater acidity. The Gran titration method was used to determine alkalinity with respect to equivalence point of H2CO3(*). Values of alkalinity were found to range from 10-4 to 10-6 eq/L, and were negative only for some samples from Vivero and Guadalajara. Thus, SO42- and NO3- are in general not in acidic form (i.e. balanced by Na+, Ca2+, etc. rather than H+). Sulfate ??34S values were about -1.5??? in Los Azufres and its surroundings, and in Morelia, but differed from the value of -0.2??? for Guadalajara. The ??34S values for H2S from the Los Azufres geothermal wells are in the range -3.4 to 0.0???. The ??34S ranges for the natural and anthropogenic sources for environmental sulfur overlap, making it difficult to differentiate between the contribution of different sources. However, a similarity of values of ??34S at Los Azufres and Morelia (85 km distant) suggest a regional source of sulfate that is not associated with geothermal emissions from Los Azufres. (C) 2000 Published by Elsevier Science Ltd on behalf of CNR.The chemical compositions of rainwater were analyzed at Los Azufres geothermal field in Spain from May-September 1995. The concentrations of Cl-, SO42- and NO3- were measured and found to be generally rainwater sulfur.

  19. Case history report on East Mesa and Cerro Prieto geothermal fields

    Energy Technology Data Exchange (ETDEWEB)

    Davis, DG.; Sanyal, S.K.

    1979-06-01

    Well log analysis as applied to the geothermal industry is one of the areas of technology in great need of further development. One means of improving log analysis technology is to study case histories of the past uses of log analysis as applied to specific fields. The project described in this report involved case history studies on two well-known geothermal areas in North America: the East Mesa field in California and the Cerro Prieto field in Mexico. Since there was considerably more pertinent material available on East Mesa, a major part of the effort on this project was devoted to studying the East Mesa field. One particular problem that first came to attention when studying the Cerro Prieto data was the difficulty in determining actual formation temperature at the time of logging. Since the temperature can have a significant effect on well log readings, an accurate temperature determination was considered to be important.

  20. Inverse modeling and forecasting for the exploitation of the Pauzhetsky geothermal field, Kamchatka, Russia

    Energy Technology Data Exchange (ETDEWEB)

    Finsterle, Stefan; Kiryukhin, A.V.; Asaulova, N.P.; Finsterle, S.

    2008-04-01

    A three-dimensional numerical model of the Pauzhetsky geothermal field has been developed based on a conceptual hydrogeological model of the system. It extends over a 13.6-km2 area and includes three layers: (1) a base layer with inflow; (2) a geothermal reservoir; and (3) an upper layer with discharge and recharge/infiltration areas. Using the computer program iTOUGH2 (Finsterle, 2004), the model is calibrated to a total of 13,675 calibration points, combining natural-state and 1960-2006 exploitation data. The principal model parameters identified and estimated by inverse modeling include the fracture permeability and fracture porosity of the geothermal reservoir, the initial natural upflow rate, the base-layer porosity, and the permeabilities of the infiltration zones. Heat and mass balances derived from the calibrated model helped identify the sources of the geothermal reserves in the field. With the addition of five makeup wells, simulation forecasts for the 2007-2032 period predict a sustainable average steam production of 29 kg/s, which is sufficient to maintain the generation of 6.8 MWe at the Pauzhetsky power plant.

  1. 36Cl/Cl ratios in geothermal systems: preliminary measurements from the Coso Field

    International Nuclear Information System (INIS)

    Nimz, G.J.; Moore, J.N.; Kasameyer, P.W.

    1997-01-01

    The 36 Cl/Cl isotopic composition of chlorine in geothermal systems can be a useful diagnostic tool in characterizing hydrologic structure, in determining the origins and age of waters within the systems, and in differentiating the sources of chlorine (and other solutes) in the thermal waters. The 36 Cl/Cl values for several geothermal water samples and reservoir host rock samples from the Coso, California geothermal field have been measured for these purposes. The results indicate that most of the chlorine is not derived from the dominant granitoid that host the geothermal system. If the chlorine was originally input into the Coso subsurface through meteoric recharge, that input occurred at least 1-1.25 million years ago. The results suggest that the thermal waters could be connate waters derived from sedimentary formations, presumably underlying and adjacent top the granitic rocks, which have recently migrated into the host rocks. Alternatively, most of the chlorine but not the water, may have recently input into the system from magmatic sources. In either case, the results indicate that most of the chlorine in the thermal waters has existed within the granitoid host rocks for no more than about 100,00-200,00 years. this residence time for the chlorine is similar to residence times suggested by other researchers for chlorine in deep groundwaters of the Mono Basin north of the Coso field

  2. 36Cl/Cl ratios in geothermal systems: preliminary measurements from the Coso Field

    Energy Technology Data Exchange (ETDEWEB)

    Nimz, G.J.; Moore, J.N.; Kasameyer, P.W.

    1997-07-01

    The {sub 36}Cl/Cl isotopic composition of chlorine in geothermal systems can be a useful diagnostic tool in characterizing hydrologic structure, in determining the origins and age of waters within the systems, and in differentiating the sources of chlorine (and other solutes) in the thermal waters. The {sub 36}Cl/Cl values for several geothermal water samples and reservoir host rock samples from the Coso, California geothermal field have been measured for these purposes. The results indicate that most of the chlorine is not derived from the dominant granitoid that host the geothermal system. If the chlorine was originally input into the Coso subsurface through meteoric recharge, that input occurred at least 1-1.25 million years ago. The results suggest that the thermal waters could be connate waters derived from sedimentary formations, presumably underlying and adjacent top the granitic rocks, which have recently migrated into the host rocks. Alternatively, most of the chlorine but not the water, may have recently input into the system from magmatic sources. In either case, the results indicate that most of the chlorine in the thermal waters has existed within the granitoid host rocks for no more than about 100,00-200,00 years. this residence time for the chlorine is similar to residence times suggested by other researchers for chlorine in deep groundwaters of the Mono Basin north of the Coso field.

  3. Hydraulic model and steam flow numerical simulation of the Cerro Prieto geothermal field, Mexico, pipeline network

    International Nuclear Information System (INIS)

    García-Gutiérrez, A.; Hernández, A.F.; Martínez, J.I.; Ceceñas, M.; Ovando, R.; Canchola, I.

    2015-01-01

    The development of a hydraulic model and numerical simulation results of the Cerro Prieto geothermal field (CPGF) steam pipeline network are presented. Cerro Prieto is the largest water-dominant geothermal field in the world and its transportation network has 162 producing wells, connected through a network of pipelines that feeds 13 power-generating plants with an installed capacity of 720 MWe. The network is about 125 km long and has parallel high- and low-pressure networks. Prior to this study, it was suspected that steam flow stagnated or reversed from its planned direction in some segments of the network. Yet, the network complexity and extension complicated the analysis of steam transport for adequate delivery to the power plants. Thus, a hydraulic model of the steam transportation system was developed and implemented numerically using an existing simulator, which allowed the overall analysis of the network in order to quantify the pressure and energy losses as well as the steam flow direction in every part of the network. Numerical results of the high-pressure network were obtained which show that the mean relative differences between measured and simulated pressures and flowrates are less than 10%, which is considered satisfactory. Analysis of results led to the detection of areas of opportunity and to the recommendation of changes for improving steam transport. A main contribution of the present work is having simulated satisfactorily the longest (to our knowledge), and probably the most complex, steam pipeline network in the world. - Highlights: • Extensive literature review of flow models of geothermal steam gathering networks. • Hydraulic model of the Cerro Prieto geothermal field steam network. • Selection and validation of the employed pressure-drop model. • Numerical flow simulation of the world's largest geothermal steam gathering network. • Detailed network pressure drop analysis and mapping of steam flow distribution

  4. Sustainable energy development and water supply security in Kamojang Geothermal Field: The Energy-Water Nexus

    Science.gov (United States)

    Sofyan, Y.; Nishijima, J.; Fujimitsu, Y.

    2014-12-01

    The Kamojang Geothermal Field (KGF) is a typical vapor dominated hydrothermal system in West Java, Indonesia. This geothermal field is the oldest exploited geothermal field in Indonesia. From 1983 to 2005, more than 160 million tons of steam have been exploited from the KGF and more than 30 million tons of water were injected into the reservoir system. The injected water come from condensed water, local river and ground water. Sustainable production in the geothermal energy development is the ability of the production system applied to sustain the stable production level over long times and to manage the mass balance between production, injection and natural recharge in the geothermal reservoir during exploitation. Mass balance in the reservoir system can be monitored by using time lapse gravity monitoring. Mass variation of hydrodynamic in the reservoir of KGF from 1999 to 2005 is about -3.34 Mt/year while is about -3.78 Mt/year from 1999 to 2008. Another period between 2009 and 2010, mass variation decreased about -8.24 Mt. According to the history of production and injection, natural recharge to the KGF's reservoir is estimated at about 2.77 Mt/year from 1999 to 2005 and 2.75 Mt/year from 1999 to 2008. Between 2009 and 2010, KGF has a bigger mass deficiency rate throughout 200 MWe maintain production. Large amount of fresh water is needed for sustainable geothermal energy production, while the domestic water supply need is also increased. Natural recharge, about 50% of injected water, cooling system, drilling and other production activities in KGF spend large amounts of fresh water. Water consumption for local people around KGF is about 1.46 MT/year. The water volume around KGF of total runoff is the range between dry season 0.07 MT/month and rainy season 4.4 MT/month. The water demands for sustainable geothermal production of KGF and for local people's consumption will increase in the future. Integrated planning between the energy and water sectors in KGF

  5. Tracking Hydrothermal Fluid Pathways from Surface Alteration Mineralogy: The Case of Licancura Geothermal Field, Northern Chile

    Science.gov (United States)

    Camus, E.; Elizalde, J. D.; Morata, D.; Wechsler, C.

    2017-12-01

    In geothermal systems alteration minerals are evidence of hot fluid flow, being present even in absence of other surface manifestations. Because these minerals result from the interaction between geothermal fluids and surrounding host rocks, they will provide information about features of thermal fluids as temperature, composition and pH, allowing tracking their changes and evolution. In this work, we study the Licancura Geothermal field located in the Andean Cordillera in Northern Chile. The combination of Principal Components Analysis on ASTER-L1T imagery and X Ray Diffraction (XRD) allow us to interpret fluid conditions and the areas where fluid flow took place. Results from red, green, blue color composite imagery show the presence of three types of secondary paragenesis. The first one corresponds to hematite and goethite, mainly at the east of the area, in the zone of eroded Pliocene volcanic edifices. The second one, mainly at the center of the area, highlighting propylitic alteration, includes minerals such as chlorite, illite, calcite, zeolites, and epidote. The third paragenesis, spatially related to the intersection between faults, represents advanced argillic alteration, includes minerals as alunite, kaolinite, and jarosite. XRD analysis support results from remote sensing techniques. These results suggest an acid pH hydrothermal fluid reaching temperatures at surface up to 80-100°C, which used faults as a conduit, originating advanced argillic minerals. The same fluid was, probably, responsible for propylitic paragenesis. However, iron oxides paragenesis identified in the area of eroded volcanoes probably corresponds to other processes associated with weathering rather than geothermal activity. In this work, we propose the applicability of remote sensing techniques as a first level exploration tool useful for high-altitude geothermal fields. Detailed clay mineral studies (XRD and SEM) would allow us to a better characterization of the geothermal fluid

  6. Structural Controls of Neal Hot Springs Geothermal Field, Malhuer County, Oregon

    Science.gov (United States)

    Edwards, J. H.; Faulds, J. E.

    2012-12-01

    Detailed mapping (1:24,000) of the Neal Hot Springs area (90 km2) in eastern Oregon is part of a larger study of geothermal systems in the Basin and Range, which focuses on the structural controls of geothermal activity. The study area lies within the intersection of two regional grabens, the middle-late Miocene, N-striking, Oregon-Idaho graben and younger late Miocene to Holocene, NW-striking, western Snake River Plain graben. The geothermal field is marked by Neal Hot Springs, which effuse from opaline sinter mounds just north of Bully Creek. Wells producing geothermal fluids, with temperatures at 138°C, intersect a major, W-dipping, NNW-striking, high-angle normal fault at depths of 850-915 m. Displacement along this structure dies southward, with likely horse-tailing, which commonly produces high fracture density and a zone of high permeability conducive for channeling hydrothermal fluids. Mapping reveals that the geothermal resource lies within a local, left step-over. 'Hard-linkage' between strands of the left-stepping normal fault, revealed through a study of well chips and well logs, occurs through two concealed structures. Both are W-striking faults, with one that runs parallel to Cottonwood Creek and one 0.5 km N of the creek. Injection wells intersect these two transverse structures within the step-over. Stepping and displacement continue to the NW of the known geothermal field, along W-dipping, N-striking faults that cut lower to middle Miocene Hog Creek Formation, consisting of silicic and mafic volcanic rocks. These N-striking faults were likely initiated during initial Oregon-Idaho graben subsidence (15.3-15.1 Ma), with continued development through late Miocene. Bully Creek Formation deposits, middle to upper Miocene lacustrine and pyroclastic rocks, concomitantly filled the sub half-grabens, and they dip gently to moderately eastward. Younger, western Snake River Plain deposits, upper Miocene to Pliocene fluvial, lacustrine, and pyroclastic rocks

  7. Results of investigations at the Zunil geothermal field, Guatemala: Well logging and brine geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Adams, A.; Dennis, B.; Van Eeckhout, E.; Goff, F.; Lawton, R.; Trujillo, P.E.; Counce, D.; Archuleta, J. (Los Alamos National Lab., NM (USA)); Medina, V. (Instituto Nacional de Electrificacion, Guatemala City (Guatemala). Unidad de Desarollo Geotermico)

    1991-07-01

    The well logging team from Los Alamos and its counterpart from Central America were tasked to investigate the condition of four producing geothermal wells in the Zunil Geothermal Field. The information obtained would be used to help evaluate the Zunil geothermal reservoir in terms of possible additional drilling and future power plant design. The field activities focused on downhole measurements in four production wells (ZCQ-3, ZCQ-4, ZCQ-5, and ZCQ-6). The teams took measurements of the wells in both static (shut-in) and flowing conditions, using the high-temperature well logging tools developed at Los Alamos National Laboratory. Two well logging missions were conducted in the Zunil field. In October 1988 measurements were made in well ZCQ-3, ZCQ-5, and ZCQ-6. In December 1989 the second field operation logged ZCQ-4 and repeated logs in ZCQ-3. Both field operations included not only well logging but the collecting of numerous fluid samples from both thermal and nonthermal waters. 18 refs., 22 figs., 7 tabs.

  8. Application of modern well test analysis techniques to pressure transient tests in Kizildere geothermal field, Turkey

    Energy Technology Data Exchange (ETDEWEB)

    Onur, M.; Serpen, U.; Gok, I.M. [Istanbul Technical Univ. (Turkey). Faculty of Mines; Zeybek, A.D. [Al-Mutlaq Compound, Al-Khobar (Saudi Arabia)

    2003-04-01

    The analyses of two build-up tests and one interference test in the Kizildere geothermal field, Turkey, are presented. Modern well test analysis methods based on pressure-derivative (logarithmic time rate of pressure) and non-linear regression, as well as conventional log-log and semi-log straight-line methods, have been used in the interpretation of these field pressure tests. Pressure transient models based on both homogeneous reservoirs and fractal reservoirs without matrix participation are considered in the analysis. It is shown that the use of conventional analysis methods alone can lead to an inaccurate interpretation of these field tests, and the use of modern analysis techniques in conjunction with conventional analysis techniques provides a more reliable and accurate interpretation of the well test data in the Kizildere geothermal field. The information obtained (e.g., estimates of permeability thickness and fractal dimensions) from analyses of these tests should prove useful for reservoir characterization studies in the Kizildere field, where reinjection is scheduled to begin soon. Finally, the modern interpretation methods described in this paper are recommended for analysis of well test pressure data from geothermal reservoirs. (Author)

  9. Detecting Events Beyond the Catalog - Applying Empirical Matched Field Processing to Salton Sea Geothermal Field Seismicity

    Science.gov (United States)

    Templeton, D. C.; Wang, J.; Harris, D. B.

    2011-12-01

    We apply the empirical Matched Field Processing (MFP) method to continuous seismic data obtained from the Salton Sea Geothermal Field to detect and locate more micorearthquakes than can be detected using only traditional earthquake detections methods. The empirical MFP method compares the amplitude and phase of the incoming seismic data to a set of pre-computed master templates. The master templates are created from previously observed earthquakes with good signal-to-noise ratio. We will relocate the seismicity using two different methods: hypoDD and BayesLoc. hypoDD is a double-difference earthquake relocation method that utilizes absolute P- and S-wave travel-time measurements and cross-correlation P- and S- wave differential travel-time measurements to determine high-resolution relative hypocenter locations (Waldhouser and Ellsworth, 2000). BayesLoc is a probabilistic (Bayesian) multiple-event locator that simultaneously provides a probabilistic characterization of the unknown origin parameters, corrections to the assumed travel-time model, improvements in the precision of the observed arrival-time data and accuracy of the assigned phase labels (Myers et al., 2007, 2009). Additionally, we will model the Coulomb stress changes, assuming the seismicity is due to an opening or shearing crack. We will match the location of the modeled stress increases with the locations of the mapped seismicity using a grid-search method.

  10. El Centro Geothermal Utility Core Field Experiment environmental-impact report and environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    The City of El Centro is proposing the development of a geothermal energy utility core field experiment to demonstrate the engineering and economic feasibility of utilizing moderate temperature geothermal heat, on a pilot scale, for space cooling, space heating, and domestic hot water. The proposed facility is located on part of a 2.48 acre (1 hectare) parcel owned in fee by the City in the southeastern sector of El Centro in Imperial County, California. Geothermal fluid at an anticipated temperature of about 250/sup 0/F (121/sup 0/C) will heat a secondary fluid (water) which will be utilized directly or processed through an absorption chiller, to provide space conditioning and water heating for the El Centro Community Center, a public recreational facility located approximately one-half mile north of the proposed well site. The geothermal production well will be drilled to 8500 feet (2590m) and an injection well to 4000 feet (1220m) at the industrially designated City property. Once all relevant permits are obtained it is estimated that site preparation, facility construction, the completion and testing of both wells would be finished in approximately 26 weeks. The environmental impacts are described.

  11. Development of a geothermal resource in a fractured volcanic formation: Case study of the Sumikawa Geothermal Field, Japan. Final report, May 1, 1995--November 30, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Garg, S.K.; Combs, J.; Pritchett, J.W. [and others

    1997-07-01

    The principal purpose of this case study of the Sumikawa Geothermal Field is to document and to evaluate the use of drilling logs, surface and downhole geophysical measurements, chemical analyses and pressure transient data for the assessment of a high temperature volcanic geothermal field. This comprehensive report describes the work accomplished during FY 1993-1996. A brief review of the geological and geophysical surveys at the Sumikawa Geothermal Field is presented (Section 2). Chemical data, consisting of analyses of steam and water from Sumikawa wells, are described and interpreted to indicate compositions and temperatures of reservoir fluids (Section 3). The drilling information and downhole pressure, temperature and spinner surveys are used to determine feedzone locations, pressures and temperatures (Section 4). Available injection and production data from both slim holes and large-diameter wells are analyzed to evaluate injectivity/productivity indices and to investigate the variation of discharge rate with borehole diameter (Section 5). New interpretations of pressure transient data from several wells are discussed (Section 6). The available data have been synthesized to formulate a conceptual model for the Sumikawa Geothermal Field (Section 7).

  12. Fracture mapping in geothermal fields with long-offset induction logging

    Energy Technology Data Exchange (ETDEWEB)

    Wilt, M.; Takasugi, Shinji; Uchida, Toshihiro [and others

    1997-12-31

    The mapping of producing fractures in a geothermal field is an important technical objective in field development. Locating, orienting, and assessing producing fractures can guide drilling programs and optimize the placement of production and injection wells. A long-offset multicomponent borehole induction resistivity tool capable of surviving the high temperatures encountered in geothermal wells has recently been developed in a NEDO project, {open_quotes}Deep-Seated Geothermal Reservoirs,{close_quotes} and tested in a high temperature environment. Several characteristics of this device make it ideal for detecting producing fractures. Whereas commercial induction logging devices have source-receiver separations of 1 m, this device has multiple sensors with separations up to 8 m, allowing for deeper penetration and the ability to straddle fracture-induced washout zones in boreholes. The three-component measurements also make it possible to map the strike and inclination of nearby fractures and other three-dimensional structures. This, in turn, allows for accurate projection of these structures into the space between wells. In this paper, we describe the design of the tool and show results of a performance test carried out in an oil-field steam flood. Data from vertical sensors are compared to conventional logging results and indicate the recent formation of a low-resistivity zone associated with high temperatures due to steam flood breakthrough. Horizontal field data indicate that the high-temperature zone is irregular in the vicinity of the borehole and more pronounced closest to the steam injector.

  13. Field tests of 2- and 40-tube condensers at the East Mesa Geothermal Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, R.W.; Domingo, N.

    1982-05-01

    Two water-cooled isobutane condensers, one with 2 tubes and one with 40 tubes, were subjected to field tests at the East Mesa Geothermal Test Site to assess relative heat transfer performance in both surface evaporator and direct-contact evaporator modes. The five groups of tests established that field performance was below earlier laboratory-determined levels and that direct-contact evaporator mode performance was poorer than that for the surface evaporator mode. In all test situations, fluted condenser tubes performed better than smooth condenser tubes. Cooling water quality had no significant effect on performance, but brine preflash in the direct-contact mode did promote some relative performance improvement. Important implications of these results for binary geothermal power plants are that (1) working-fluid-side impurities can significantly degrade heat transfer performance of the power plant condensers and (2) provisions for minimizing such impurities may be required.

  14. Field trip guide to the Valles Caldera and its geothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Goff, F.E.; Bolivar, S.L.

    1983-12-01

    This field trip guide has been compiled from extensive field trips led at Los Alamos National Laboratory during the past six years. The original version of this guide was designed to augment a workshop on the Valles Caldera for the Continental Scientific Drilling Program (CSDP). This workshop was held at Los Alamos, New Mexico, 5-7 October 1982. More stops were added to this guide to display the volcanic and geothermal features at the Valles Caldera. The trip covers about 90 miles (one way) and takes two days to complete; however, those who wish to compress the trip into one day are advised to use the designated stops listed in the Introduction. Valles Caldera and vicinity comprise both one of the most exciting geothermal areas in the United States and one of the best preserved Quaternary caldera complexes in the world.

  15. Interpretation of a well interference test at the Chingshui geothermal field, Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    Fan, K.C.; Tom Kuo, M.C.; Liang, K.F.; Shu Lee, C.; Chiang, S.C. [National Cheng Kung University, Tainan (China). Dept. of Mineral and Petroleum Engineering

    2005-02-01

    Production in the liquid-dominated Chingshui geothermal field is largely from a fractured zone in the Jentse Member of the Miocene Lushan Formation. The geological data strongly indicate a possibility of linear-flow geometry on a field-wide scale. This was confirmed by re-analyzing the results of a multiple-well interference test performed in 1979. Radial and linear-flow models were used in this process. An evaluation of computed reservoir transmissivities and well capacities indicated that a linear model fitted the interference test data significantly better than a radial model. The linear-flow model that was developed for the Chingshui reservoir was also instrumental in obtaining an improved estimation of the geothermal fluid reserves (i.e., fluid-in-place). (author)

  16. Identification of linear features at geothermal field based on Segment Tracing Algorithm (STA) of the ALOS PALSAR data

    Science.gov (United States)

    Haeruddin; Saepuloh, A.; Heriawan, M. N.; Kubo, T.

    2016-09-01

    Indonesia has about 40% of geothermal energy resources in the world. An area with the potential geothermal energy in Indonesia is Wayang Windu located at West Java Province. The comprehensive understanding about the geothermal system in this area is indispensable for continuing the development. A geothermal system generally associated with joints or fractures and served as the paths for the geothermal fluid migrating to the surface. The fluid paths are identified by the existence of surface manifestations such as fumaroles, solfatara and the presence of alteration minerals. Therefore the analyses of the liner features to geological structures are crucial for identifying geothermal potential. Fractures or joints in the form of geological structures are associated with the linear features in the satellite images. The Segment Tracing Algorithm (STA) was used for the basis to determine the linear features. In this study, we used satellite images of ALOS PALSAR in Ascending and Descending orbit modes. The linear features obtained by satellite images could be validated by field observations. Based on the application of STA to the ALOS PALSAR data, the general direction of extracted linear features were detected in WNW-ESE, NNE-SSW and NNW-SSE. The directions are consistent with the general direction of faults system in the field. The linear features extracted from ALOS PALSAR data based on STA were very useful to identify the fractured zones at geothermal field.

  17. Consideration of geological aspects and geochemical parameters of fluids in Bushdi geothermal field, south of mount Sabalan, NW Iran

    Science.gov (United States)

    Masoumi, Rahim; Calagari, Ali Asghar; Siahcheshm, Kamal; Porkhial, Soheil; Pichler, Thomas

    2017-05-01

    The geothermal field at Bushdi to the south of Sabalan volcano encompasses both cold and hot springs along with surficial steam vents. This geothermal field is situated in a volcanic terrain which includes basaltic and trachy-andesitic lavas and pyroclastics which have undergone considerable faulting during Quaternary times. Regardless of conventional uses, no industrial utilization has been reported from this field yet. In the geothermal fluids Na is the most abundant cation following the trend Na+ >> Ca2+ > K+ > Mg2+. Cl- is the most abundant anion following two trends (1) Cl- >> HCO3- > SO42- and (2) HCO3- > Cl- > SO42-. From a hydrogeochemical point of view the geothermal fluids in the study area can be divided into two categories: (1) Na-Cl and (2) Na-Ca-HCO3. The conic and lenticular shaped travertine deposits around hot springs possessing a Ca2+-Na+-HCO3- composition are the most conspicuous features in this area. According to oxygen and hydrogen stable isotopes (δD and δ18O) data, a large proportion of the fluids in this geothermal system are of meteoric origin. Downward percolation along the brecciated rocks in the fault zones between the mount Sabalan and the Bushdi area can be regarded as the main fluid source for the geothermal system. The geothermal fluids have 3H above 1 TU and hence can be considered as young (modern to sub-modern) waters, with a residence time of less than 63 years.

  18. Matched Filter Detection of Microseismicity at Ngatamariki and Rotokawa Geothermal Fields, Central North Island, New Zealand

    Science.gov (United States)

    Hopp, C. J.; Savage, M. K.; Townend, J.; Sherburn, S.

    2016-12-01

    Monitoring patterns in local microseismicity gives clues to the existence and location of subsurface structures. In the context of a geothermal reservoir, subsurface structures often indicate areas of high permeability and are vitally important in understanding fluid flow within the geothermal resource. Detecting and locating microseismic events within an area of power generation, however, is often challenging due to high levels of noise associated with nearby power plant infrastructure. In this situation, matched filter detection improves drastically upon standard earthquake detection techniques, specifically when events are likely induced by fluid injection and are therefore near-repeating. Using an earthquake catalog of 637 events which occurred between 1 January and 18 November 2015 as our initial dataset, we implemented a matched filtering routine for the Mighty River Power (MRP) geothermal fields at Rotokawa and Ngatamariki, central North Island, New Zealand. We detected nearly 21,000 additional events across both geothermal fields, a roughly 30-fold increase from the original catalog. On average, each of the 637 template events detected 45 additional events throughout the study period, with a maximum number of additional detections for a single template of 359. Cumulative detection rates for all template events, in general, do not mimic large scale changes in injection rates within the fields, however we do see indications of an increase in detection rate associated with power plant shutdown at Ngatamariki. Locations of detected events follow established patterns of historic seismicity at both Ngatamariki and Rotokawa. One large cluster of events persists in the southeastern portion of Rotokawa and is likely bounded to the northwest by a known fault dividing the injection and production sections of the field. Two distinct clusters of microseismicity occur in the North and South of Ngatamariki, the latter appearing to coincide with a structure dividing the

  19. Geodetic Measurements and Numerical Models of Deformation at Coso Geothermal Field, California, USA

    Science.gov (United States)

    Ali, S. T.; Reinisch, E. C.; Feigl, K. L.; Davatzes, N. C.

    2016-12-01

    We measure transient deformation at the Coso geothermal field in south-central California using interferometric synthetic aperture data acquired between 2004 and 2016 by the Envisat and Sentinel-1A satellite missions. All well-correlated interferometric pairs show subsidence, with rates as high as 30 mm/year, over a large 75 km2 circular area surrounding the field below which most of the seismicity associated with geothermal production is located. The deformation signature remains in the same location throughout the 12 year interval. Time-series analysis of multiple interferometric pairs reveals continuous subsidence. A decrease in the subsidence rate after 2010 corresponds to a decrease in the net production rate. Using three-dimensional, fully numerical, multiphysics models, we explore the coupling between deformation and geothermal production. We seek to distinguish between two possible mechanisms: (i) decreasing pore-pressure following net extraction of fluids, or (ii) decrease in temperature of presumably fractured reservoir rock. Irrespective of the mechanism, a contracting ellipsoidal reservoir located at a depth of 2 km, with a volume of 80 km3 or less is required to explain the geodetic observations. Almost 90% of the seismicity beneath the field occurs within this 80 km3 ellipsoid.

  20. Comparative Study of Earthquake Clustering in Relation to Hydraulic Activities at Geothermal Fields in California

    Science.gov (United States)

    Martínez-Garzón, P.; Zaliapin, I. V.; Ben-Zion, Y.; Kwiatek, G.; Bohnhoff, M.

    2017-12-01

    We investigate earthquake clustering properties from three geothermal reservoirs to clarify how earthquake patterns respond to hydraulic activities. We process ≈ 9 years from four datasets corresponding to the Geysers (both the entire field and a local subset), Coso and Salton Sea geothermal fields, California. For each, the completeness magnitude, b-value and fractal dimension are calculated and used to identify seismicity clusters using the nearest-neighbor approach of Zaliapin and Ben-Zion [2013a, 2013b]. Estimations of temporal evolution of different clustering properties in relation to hydraulic parameters point to different responses of earthquake dynamics to hydraulic operations in each case study. The clustering at the Geysers at local scale and Salton Sea are most and least affected by hydraulic activities, respectively. The response of the earthquake clustering from different datasets to the hydraulic activities may reflect the regional seismo-tectonic complexity as well as the dimension of the geothermal activities performed (e.g. number of active wells and superposition of injection + production activities).Two clustering properties significantly respond to hydraulic changes across all datasets: the background rates and the proportion of clusters consisting of a single event. Background rates are larger at the Geysers and Coso during high injection-production periods, while the opposite holds for the Salton Sea. This possibly reflects the different physical mechanisms controlling seismicity at each geothermal field. Additionally, a lower proportion of singles is found during time periods with higher injection-production rates. This may reflect decreasing effective stress in areas subjected to higher pore pressure and larger earthquake triggering by stress transfer.

  1. Three-dimensional Magnetotelluric Characterization of the Xinzhou Geothermal Field, Southeastern China

    Science.gov (United States)

    Han, Q.; Hu, X.; Cai, J.; Wei, W.

    2016-12-01

    Xinzhou geothermal field is located in the Guangdong province and adjacent to the China South Sea, and its hot springs can reach up to 92 degree Celsius. Yanshanian granite expose widely in the south of this geothermal field and four faults cut across each other over it. A dense grid of 176 magnetotelluric (MT) sites with broadband has been acquired over the Xinzhou geothermal field and its surrounding area. Due to the related electromagnetic (EM) noise one permanent observatory was placed as a remote reference to suppress this cultural EM noise interference. The datasets are processed using the mutual reference technique, static shift correction, and structural strike and dimensionality analysis based on tensor decomposition. Data analysis reveals that the underground conductivity structure has obvious three-dimensional characterization. For the high resolution result ,two and three dimensional inversion are both applied in this area employing the non-linear conjugate gradient method (NLCG).These MT data sets are supposed to detect the deep subsurface resistivity structure correlated to the distribution of geothermal reservoir (such as faults and fractured granite) and investigate the channel of the upwelling magma. The whole and cold granite usually present high resistivity but once it functions as reservoir the resistivity will decrease, sometimes it is hard to separate the reservoir from the cap layer. The 3D inversion results delineate three high resistivity anomalies distributed in different locations. At last we put forward that the large areas of granite form the major thermal source for the study area and discuss whether any melt under these magma intrusions exists.

  2. A joint geophysical analysis of the Coso geothermal field, south-eastern California

    Science.gov (United States)

    Wamalwa, Antony M.; Mickus, Kevin L.; Serpa, Laura F.; Doser, Diane I.

    2013-01-01

    Three-dimensional density models derived from gravity data and two-dimensional resistivity models derived from magnetotelluric data collected in the vicinity of the Coso geothermal field are analyzed in order to determine the source region of the geothermal field. The derived models show zones of both low resistivity and low density at and below 6 km depth in the Devils Kitchen and the Coso Hot Springs areas. These zones agree with seismic reflection and tomography results which found a high amplitude reflector at 5 km and low velocities zones below 5 km. We interpret the density and resistivity zones to indicate the presence of cooling magmatic material that provides the heat for the shallower geothermal system in these regions. A zone marked by high resistivity and low density was found to lie directly above the interpreted partially melted region extending to within 1 km depth below the surface in the reservoir region where it is capped by a low resistivity clay zone. In addition, the density models indicate that the high density bodies occurring under volcanic outcrops may be mafic intrusions.

  3. Geophysical investigation using gravity data in Kinigi geothermal field, northwest Rwanda

    Science.gov (United States)

    Uwiduhaye, Jean d.'Amour; Mizunaga, Hideki; Saibi, Hakim

    2018-03-01

    A land gravity survey was carried out in the Kinigi geothermal field, Northwest Rwanda using 184 gravity stations during August and September, 2015. The aim of the gravity survey was to understand the subsurface structure and its relation to the observed surface manifestations in the study area. The complete Bouguer Gravity anomaly was produced with a reduction density of 2.4 g/cm3. Bouguer anomalies ranging from -52 to -35 mGals were observed in the study area with relatively high anomalies in the east and northwest zones while low anomalies are observed in the southwest side of the studied area. A decrease of 17 mGals is observed in the southwestern part of the study area and caused by the low-density of the Tertiary rocks. Horizontal gradient, tilt angle and analytical signal methods were applied to the observed gravity data and showed that Mubona, Mpenge and Cyabararika surface springs are structurally controlled while Rubindi spring is not. The integrated results of gravity gradient interpretation methods delineated a dominant geological structure trending in the NW-SE, which is in agreement with the regional geological trend. The results of this gravity study will help aid future geothermal exploration and development in the Kinigi geothermal field.

  4. Gas Geothermometry Based on CO Content--Application in Italian Geothermal Fields

    Energy Technology Data Exchange (ETDEWEB)

    D' Amore, F.; Fancelli, R.; Saracco, L.; Truesdell, A.H.

    1987-01-20

    This paper discusses gas chemical equilibria in geothermal reservoirs involving the species CO{sub 2}, CH{sub 4}, CO, H{sub 2}S, H{sub 2}, and H{sub 2}O. A set of equations is developed correlating ratios of gas to CO{sub 2} with temperature, steam fraction, and CO{sub 2} partial pressure in the reservoir. A method for solving the set of nonlinear equations is proposed. These equations do not involve discharge gas/total H{sub 2}O ratios and may therefore be used for fumaroles and hot-spring fluids. Applications to fumarole and well-discharge fluid compositions in Italian geothermal fields show good correlations between temperatures calculated with this method and the temperatures measured in the reservoir (between 140° to 330°C). 5 tabs., 1 fig., 19 refs.

  5. Hydrothermal alteration of sediments associated with surface emissions from the Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Valette-Silver, J.N.; Esquer P., I.; Elders, W.A.; Collier, P.C.; Hoagland, J.R.

    1981-01-01

    A study of the mineralogical changes associated with these hydrothermal vents was initiated with the aim of developing possible exploration tools for geothermal resources. The Cerro Prieto reservoir has already been explored by extensive deep drilling so that relationships between surface manifestations and deeper hydrothermal processes could be established directly. Approximately 120 samples of surface sediments were collected both inside and outside of the vents. The mineralogy of the altered sediments studied appears to be controlled by the type of emission. A comparison between the changes in mineralogy due to low temperature hydrothermal activity in the reservoir, seen in samples from boreholes, and mineralogical changes in the surface emission samples shows similar general trends below 180 C: increase of quartz, feldspar and illite, with subsequent disappearance of kaolinite, montmorillonite, calcite and dolomite. These mineral assemblages seem to be characteristic products of the discharge from high intensity geothermal fields.

  6. Reservoir Characterization around Geothermal Field, West Java, Indonesia Derived from 4-D Seismic Tomography

    Science.gov (United States)

    Verdhora Ry, Rexha; Nugraha, A. D.

    2016-01-01

    Observation of micro-seismic events induced by intensive geothermal exploitation in a particular geothermal field, located in West Java region, Indonesia was used to detect the fracture and permeability zone. Using local monitoring seismometer network, tomographic inversions were conducted for the three-dimensional Vp, Vs, and Vp/Vs structure of the reservoir for January - December 2007, January - December 2008, and January - December 2009. First, hypocenters location was relocated using joint hypocenter determination (JHD) method in purpose to estimate best location. Then, seismic tomographic inversions were conducted using delay time tomography for dataset of every year respectively. The travel times passing through the three-dimensional velocity model were calculated using ray tracing pseudo-bending method. Norm and gradient damping were added to constrain blocks without ray and to produce smooth solution model. The inversion algorithm was developed in Matlab environment. Our tomographic inversion results from 3-years of observations indicate the presence of low Vp, low Vs, and low Vp/Vs ratio at depths of about 1 - 3 km below sea level. These features were interpreted may be related to steam-saturated rock in the reservoir area of this geothermal field. The locations of the reservoir area were supported by the data of well- trajectory, where the zones of high Vp/Vs were observed around the injection wells and the zones of low Vp/Vs were observed around the production wells. The extensive low Vp/Vs anomaly that occupies the reservoir is getting stronger during the 3-years study period. This is probably attributed to depletion of pore liquid water in the reservoir and replacement with steam. Continuous monitoring of Vp, Vs, and Vp/Vs is an effective tool for geothermal reservoir characterization and depletion monitoring and can potentially provide information in parts of the reservoir which have not been drilled.

  7. Seismicity and deformation in the Coso Geothermal field from 2000 to 2012

    Science.gov (United States)

    Kaven, J. Ole; Hickman, Stephen H.; Davatzes, Nicholas C.

    2015-04-01

    Induced micro-seismicity in geothermal reservoirs, in particular in enhanced geothermal systems (EGS), is an intended byproduct of injection and production, as it often indicates the generation of permeability pathways on either pre-existing or newly generated faults and fractures. The hazard of inducing an earthquake large enough to cause damage to surface structures, however, is not easily avoided and has led to termination of geothermal projects. To explore the physical processes leading to damaging earthquakes, we investigate the evolution of seismicity and the factors controlling the migration, moment release rate, and structure within the seismicity in the Coso Geothermal Field (CGF). The CGF has been in production since the 1980s and includes both naturally occurring geothermal resources and portions of the reservoir that are EGS projects. We report on seismicity in the CGF that has been relocated with high precision double-difference relocation and simultaneous velocity inversion to understand the reservoir compartmentalization, in particular, where boundaries to flow exist both vertically and horizontally. We also calculate moment magnitudes (Mw) from the initial displacement pulse of the seismograms to relate moment directly to the deformation. We find that two distinct compartments form the CGF, which are divided by an aseismic gap that also shows a relatively low Vp/Vs ratio. Further, we find that events with Mw> 3.5 tend to map onto larger fault structures that are imaged by the relocated seismicity. We relate the temporal and spatial migration of moment release rate to the injection and production records in the reservoir by employing a thermo-poro-elastic finite element model in which the compartment boundaries are defined by the seismicity. We find that pore pressure effects alone are not responsible for the migration of seismicity and that poro-elastic and thermo-elastic strain changes can account for more of the observed moment release rate than

  8. Hydro-geochemical and isotopic fluid evolution of the Los Azufres geothermal field, Central Mexico

    International Nuclear Information System (INIS)

    Gonzalez-Partida, E.; Carrillo-Chavez, A.; Levresse, G.; Tello-Hinojosa, E.; Venegas-Salgado, S.; Ramirez-Silva, G.; Pal-Verma, M.; Tritlla, J.; Camprubi, A.

    2005-01-01

    Hydrothermal alteration at Los Azufres geothermal field is mostly propylitic with a progressive dehydration with depth and temperature increase. Argillic and advanced argillic zones overlie the propylitic zone owing to the activity of gases in the system. The deepest fluid inclusions (proto-fluid) are liquid-rich with low salinity, with NaCl dominant fluid type and ice melting temperatures (T mi ) near zero (0 deg C), and salinities of 0.8 wt% NaCl equivalent. The homogenization temperature (T h ) = 325 ± 5 deg C. The boiling zone shows T h = ±300 deg C and apparent salinities between 1 and 4.9 wt% NaCl equivalent, implying a vaporization process and a very important participation of non-condensable gases (NCGs), mostly CO 2 . Positive clathrate melting temperatures (fusion) with T h = 150 deg C are observed in the upper part of the geothermal reservoir (from 0 to 700 m depth). These could well be the evidence of a high gas concentration. The current water produced at the geothermal wells is NaCl rich (geothermal brine) and is fully equilibrated with the host rock at temperatures between T = 300 and 340 deg C. The hot spring waters are acid-sulfate, indicating that they are derived from meteoric water heated by geothermal steam. The NCGs related to the steam dominant zone are composed mostly of CO 2 (80-98% of all the gases). The gases represent between 2 and 9 wt% of the total mass of the fluid of the reservoir. The authors interpret the evolution of this system as deep liquid water boiling when ascending through fractures connected to the surface. Boiling is caused by a drop of pressure, which favors an increase in the steam phase within the brine ascending towards the surface. During this ascent, the fluid becomes steam-dominant in the shallowest zone, and mixes with meteoric water in perched aquifers. Stable isotope compositions (δ 18 O-δD) of the geothermal brine indicate mixing between meteoric water and a minor magmatic component. The enrichment in δ 18

  9. High radiogenic heat-producing Caenozoic granites: implications for the origin of Quman geothermal field in Taxkorgan, northwestern China

    Science.gov (United States)

    Shuai, W.; Shihua, Q.

    2017-12-01

    As a new found geothermal field, Quman geothermal field (Taxkorgan, China) holds a wellhead temperature of 144 ° and a shallow buried depth of heat reservoir. The heat source of the geothermal field is thought to be the heat flow from the upper mantle, which is disputable with the average Pamir Moho depth of 70 km. The new geochemical data of Taxkorgan alkaline complex, which is located to the west of the geothermal field and is exposed for 60 km along the western side of the Taxkorgan Valley, shed a light on the origin of Quman geothermal field. Together with the lithological association, the geochemical results present that Taxkorgan alkaline complex are mainly composed of alkaline syenites and subalkaline granitoids. Based on the contents of Th, U and K of 25 rock samples, the average radioactive heat generation of the complex (9.08 μW/m3) is 2 times of the standard of high heat production granites (HHPGs) (5 μW/m3), and 4 times of the average upper continental crust (UCC) heat production (2.7 μW/m3). According to U-Pd dating of zircon in aegirine-augite syenite, the crystallization age of the complex is 11 Ma. The complex has incompatible element abundances higher than generally observed for the continental crust, therefore a mantle source should be considered. The results of apatite fission track ange and track length of the complex indicate a low uplift rate (0.11 mm/a) in 3 5 Ma and a high uplift rate (2 3 mm/a) since ca. 2Ma, which indicates a low exposed age of the complex. Therefore, combined with previous studies, we propose that radioactive heat production of the complex and afterheat of magma cooling are the heat source of Quman geothermal field. With a shallow buried heat source, the geothermal field is potential for EGS development.

  10. Preliminary isotopic studies of fluids from the Cerro Prieto geothermal field

    Science.gov (United States)

    Truesdell, A.H.; Rye, R.O.; Pearson, F.J.; Olson, E.R.; Nehring, N.L.; Whelan, J.F.; Huebner, M.A.; Coplen, T.B.

    1979-01-01

    Preliminary isotopic studies of Cerro Prieto geothermal fluids and earlier studies of Mexicali Valley ground waters suggest local recharge of the geothermal system from the area immediately to the west. Oxygen isotope exchange of water with reservoir rock minerals at temperatures increasing with depth has produced fluids with oxygen-18 contents increasing with depth, and pressure drawdown in the southeastern part of the field has allowed lower oxygen-18 fluids to invade the production aquifer from above. The contents of tritium and carbon-14 in the fluid suggest only that the age of the fluid is between 50 and 10,000 years. The isotopic compositions of carbon and sulfur are consistent with a magmatic origin of these elements but a mixed sedimentary-organic origin appears more likely for carbon and is also possible for sulfur. Investigations of the isotopic compositions of geothermal and cold ground waters continue and are being expanded as fluids become available and as separation and analysis methods are improved. ?? 1979.

  11. Relationship between water chemistry and sediment mineralogy in the Cerro Prieto geothermal field: a preliminary report

    Energy Technology Data Exchange (ETDEWEB)

    Valette-Silver, J.N. (Univ. de Perpignan, France); Thompson, J.M.; Ball, J.W.

    1981-01-01

    The chemical compositions of waters collected from the Cerro Prieto geothermal production wells and hydrothermal emanations are different. Compared to the Cerro Prieto well waters, the surficial waters generally contain significantly less potassium, slightly less calcium and chloride, and significantly more magnesium and sulfate. In comparison to the unaltered sediments, the changes in the mineralogy of the altered sediments appear to be controlled by the type of emanation (well, spring, mud pot, geyser, fumarole, or cold pool). However, an increase in quartz and potassium feldspar percentages seems to be characteristic of the majority of the sediments in contact with geothermal fluids. Preliminary attempts to model the chemical processes occurring in the Cerro Prieto geothermal field using chemical equilibrium calculations are reported. For this purpose the chemical compositions of thermal waters (well and surficial emanation) were used as input data to make calculations with SOLMNEQ and WATEQ2 computer programs. Then the theoretical mineral composition of altered sediments was predicted and compared to the mineralogy actually observed in the solid samples.

  12. A method of fundamental solutions in poroelasticity to model the stress field in geothermal reservoirs

    CERN Document Server

    Augustin, Matthias Albert

    2015-01-01

    This monograph focuses on the numerical methods needed in the context of developing a reliable simulation tool to promote the use of renewable energy. One very promising source of energy is the heat stored in the Earth’s crust, which is harnessed by so-called geothermal facilities. Scientists from fields like geology, geo-engineering, geophysics and especially geomathematics are called upon to help make geothermics a reliable and safe energy production method. One of the challenges they face involves modeling the mechanical stresses at work in a reservoir. The aim of this thesis is to develop a numerical solution scheme by means of which the fluid pressure and rock stresses in a geothermal reservoir can be determined prior to well drilling and during production. For this purpose, the method should (i) include poroelastic effects, (ii) provide a means of including thermoelastic effects, (iii) be inexpensive in terms of memory and computational power, and (iv) be flexible with regard to the locations of data ...

  13. Analysis and interpretation of stress indicators in deviated wells of the Coso Geothermal Field

    Science.gov (United States)

    Schoenball, Martin; Glen, Jonathan M. G.; Davatzes, Nicholas C.

    2016-04-01

    Characterizing the tectonic stress field is an integral part for the development of hydrothermal systems, especially enhanced geothermal systems (EGS). With a known stress field, critically stressed faults can be identified. Faults that are critically oriented with respect to the in-situ stress field exhibit a high tendency for slip, and thus are likely candidates for reactivation during the creation of an EGS. Reactivated faults are known to serve as dominant fluid pathways during hydrothermal circulation and the characteristics of this process determine the potential for damaging earthquakes; should extensive portions of well-oriented, large features be reactivated. As part of the FORGE initiative at the West Flank of the Coso Geothermal Field, we analyze a large set of image logs obtained from wells distributed across the geothermal field for details about the stress state revealed by indicators such as borehole breakouts and drilling-induced tensile fractures. Previous stress analyses at Coso have ignored deviated well sections, since their interpretation for the orientation of the stress tensor is non-unique with respect to varying stress magnitudes. Using interpreted borehole-induced structures, we perform a grid search over all possible Andersonian stress states and find a best fitting vertical stress tensor for each stress state characterized by principal stress magnitudes. By including deviated well sections and recently drilled wells, we considerably expand the suite of stress measurements in the Coso Geothermal Field. Along individual wells, this analysis also reveals local meter length-scale deviations from the best-fitting mean stress orientation. While most wells show consistent horizontal principal stress orientations with standard deviations of about 10°, other wells show large standard deviations on the order of 25°. Several regions have logged well trajectories with lateral spacing below 1 km. This enables us to trace changes of the stress

  14. Characterization of Hydrologic and Thermal Properties at Brady Geothermal Field, NV

    Science.gov (United States)

    Patterson, J.; Cardiff, M. A.; Lim, D.; Coleman, T.; Wang, H. F.; Feigl, K. L.

    2017-12-01

    Understanding and predicting the temperature evolution of geothermal reservoirs is a primary focus for geothermal power plant operators ensuring continued financial sustainability of the resource. Characterization of reservoir properties - such as thermal diffusivity and hydraulic conductivity - facilitates modeling efforts to develop a better understanding of temperature evolution. As part of the integrated "PoroTomo" experiment, borehole pressure measurements were collected in three monitoring wells of various depths under varying operational conditions at the Brady Geothermal Field near Reno, NV. During normal operational conditions, a vertical profile of borehole temperature to 330 m depth was collected using distributed temperature sensing (DTS) for a period of 5 days. Borehole pressure data indicates 2D flow and shows rapid responses to changes in pumping /injection rates, likely indicating fault-dominated flow. The temperature data show that borehole temperature recovery following cold water slug injection is variable with depth. Late time vertical temperature profiles show the borehole following a shallow geotherm to a depth of approximately 275 meters, below which the temperature declines until a depth of approximately 320 meters, with a stable zone of cold water forming below this, possibly indicating production-related thermal drawdown. A validated heat transfer model is used in conjunction with the temperature data to determine depth-dependent reservoir thermal properties. Hydraulic reservoir properties are determined through inversion of the collected pressure data using MODFLOW. These estimated thermal and hydraulic properties are synthesized with existing structural and stratigraphic datasets at Brady. The work presented herein was funded in part by the Office of Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy, under Award Number DE-EE0006760.

  15. Detailed microearthquake studies at the Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Majer, E.L. (Lawrence Berkeley Lab., CA); McEvilly, T.V.

    1981-01-01

    There appears to be an increase in seismic activity within the Cerro Prieto production zone since early 1978. The microearthquake activity is now more or less constant at a rate of 2 to 3 events per day. The b-values within the field are significantly higher inside the production zone than are those for events on faults outside of the production region. The earthquakes seem to be controlled by the Hidalgo fault, although slight clustering was observed in the center of the main production region. The earthquakes within the production zone may reflect the reservoir dynamics associated with heat and mass withdrawal. Mechanisms such as volume change, thermal stresses and weakening of materials associated with boiling (i.e., phase changes, dissolution) may all be responsible for the increased seismic activity. Although a small reinjection program has started, the pressure drawdown conditions existing within the field would imply that increased pore pressure resulting from the injection activities is not responsible for the increased seismic activity.

  16. Identification of natural fractures and in situ stress at Rantau Dedap geothermal field

    Science.gov (United States)

    Artyanto, Andika; Sapiie, Benyamin; Idham Abdullah, Chalid; Permana Sidik, Ridwan

    2017-12-01

    Rantau Dedap Area is a geothermal field which is located in Great Sumatra Fault (GSF). The fault and fracture are main factor in the permeability of the geothermal system. However, not all faults and fractures have capability of to flow the fluids. Borehole image log is depiction of the borehole conditions, it is used to identify the natural fractures and drilling induced fracture. Both of them are used to identify the direction of the fracture, direction of maximum horizontal stress (SHmax), and geomechanics parameters. The natural fractures are the results of responses to stress on a rock and permeability which controlling factor in research area. Breakouts is found in this field as a trace of drilling induced fracture due to in situ stress work. Natural fractures are strongly clustered with true strike trending which first, second, and third major direction are N170°E – N180°E (N-S), N60°E – N70°E (NE-SW), and N310°E – N320°E (NW-SE), while the dominant dip is 80° –90°. Based on borehole breakout analysis, maximum horizontal stress orientation is identified in N162°E – N204°E (N-S) and N242°E (NE-SW) direction. It’s constantly similar with regional stress which is affected by GSF. Several parameters have been identified and analyzed are SHmax, SHmin, and Sy. It can be concluded that Rantau Dedap Geothermal Field is affected by strike-slip regime. The determination of in situ stress and natural fractures are important to study the pattern of permeability which is related to the fault in reservoir of this field.

  17. Probabilistic approach of resource assessment in Kerinci geothermal field using numerical simulation coupling with monte carlo simulation

    Science.gov (United States)

    Hidayat, Iki; Sutopo; Pratama, Heru Berian

    2017-12-01

    The Kerinci geothermal field is one phase liquid reservoir system in the Kerinci District, western part of Jambi Province. In this field, there are geothermal prospects that identified by the heat source up flow inside a National Park area. Kerinci field was planned to develop 1×55 MWe by Pertamina Geothermal Energy. To define reservoir characterization, the numerical simulation of Kerinci field is developed by using TOUGH2 software with information from conceptual model. The pressure and temperature profile well data of KRC-B1 are validated with simulation data to reach natural state condition. The result of the validation is suitable matching. Based on natural state simulation, the resource assessment of Kerinci geothermal field is estimated by using Monte Carlo simulation with the result P10-P50-P90 are 49.4 MW, 64.3 MW and 82.4 MW respectively. This paper is the first study of resource assessment that has been estimated successfully in Kerinci Geothermal Field using numerical simulation coupling with Monte carlo simulation.

  18. Rapid high temperature field test method for evaluation of geothermal calcite scale inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, R.G.

    1982-08-01

    A test method is described which allows the rapid field testing of calcite scale inhibitors in high- temperature geothermal brines. Five commercial formulations, chosen on the basis of laboratory screening tests, were tested in brines with low total dissolved solids at ca 500 F. Four were found to be effective; of these, 2 were found to be capable of removing recently deposited scale. One chemical was tested in the full-flow brine line for 6 wks. It was shown to stop a severe surface scaling problem at the well's control valve, thus proving the viability of the rapid test method. (12 refs.)

  19. Movement of geothermal fluid in the Cerro Prieto field as determined from well log and reservoir engineering data

    Energy Technology Data Exchange (ETDEWEB)

    Halfman, S.E.; Lippmann, M.J.; Zelwer, R.

    1982-01-01

    A hydrogeologic model of the Cerro Prieto geothermal field in its undisturbed state, developed on the basis of well log and reservoir engineering data, is discussed. According to this model, geothermal fluid enters the field from the east through a deep (>10,000 ft) sandstone aquifer which is overlain by a thick shale unit which locally prevents the upward migration of the fluid. As it flows westward, the fluid gradually rises through faults and sandy gaps in the shale unit. Eventually, some of the fluid leaks to the surface in the western part of the field, while the rest mixes with surrounding colder waters.

  20. Discovering new events beyond the catalogue—application of empirical matched field processing to Salton Sea geothermal field seismicity

    Science.gov (United States)

    Wang, Jingbo; Templeton, Dennise C.; Harris, David B.

    2015-10-01

    Using empirical matched field processing (MFP), we compare 4 yr of continuous seismic data to a set of 195 master templates from within an active geothermal field and identify over 140 per cent more events than were identified using traditional detection and location techniques alone. In managed underground reservoirs, a substantial fraction of seismic events can be excluded from the official catalogue due to an inability to clearly identify seismic-phase onsets. Empirical MFP can improve the effectiveness of current seismic detection and location methodologies by using conventionally located events with higher signal-to-noise ratios as master events to define wavefield templates that could then be used to map normally discarded indistinct seismicity. Since MFP does not require picking, it can be carried out automatically and rapidly once suitable templates are defined. In this application, we extend MFP by constructing local-distance empirical master templates using Southern California Earthquake Data Center archived waveform data of events originating within the Salton Sea Geothermal Field. We compare the empirical templates to continuous seismic data collected between 1 January 2008 and 31 December 2011. The empirical MFP method successfully identifies 6249 additional events, while the original catalogue reported 4352 events. The majority of these new events are lower-magnitude events with magnitudes between M0.2-M0.8. The increased spatial-temporal resolution of the microseismicity map within the geothermal field illustrates how empirical MFP, when combined with conventional methods, can significantly improve seismic network detection capabilities, which can aid in long-term sustainability and monitoring of managed underground reservoirs.

  1. Guidebook to Geothermal Finance

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

    2011-03-01

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  2. Characteristics of Seismicity at Ngatamariki and Rotokawa Geothermal Fields, North Island, New Zealand

    Science.gov (United States)

    Hopp, C. J.; Mroczek, S.; Savage, M. K.; Sewell, S. M.; Townend, J.; Sherburn, S.

    2017-12-01

    Fluid-induced seismicity (FIS) is a useful indicator of thermal and pressure changes within a geothermal reservoir. Given the difficulty of making measurements in the space between wells, FIS provides one of the only direct observations of fluid-related reservoir processes. Understanding exactly why and how these microearthquakes occur helps us unravel the interaction between the movement of fluid and heat at depth and could allow for a better understanding of the creation and destruction of permeability in the reservoir. We begin with an earthquake catalog of roughly 6200 events which occurred between May 2012 and November 2015 at the Mercury geothermal fields at Rotokawa and Ngatamariki. We expand this catalog using matched filter detection to include 350,000 microearthquakes. Earthquakes at the fields are densely clustered in areas of active fluid injection and the rate of seismicity is highly correlated with injection rate. We present high-precision locations as well as frequency-magnitude distributions and source mechanisms for significant events and discuss their relation to injection and production rates at the fields. In particular, we focus on specific periods of interest including the stimulation of well NM08 in June 2012, the Ngatamariki plant startup in April 2013, the switch of injection at Rotokawa to well RK22 in 2013 and a prolonged period of permeability change at well RK24.

  3. A review of the microbiology of the Rehai geothermal field in Tengchong, Yunnan Province, China

    Directory of Open Access Journals (Sweden)

    Brian P. Hedlund

    2012-05-01

    Full Text Available The Rehai Geothermal Field, located in Tengchong County, in central-western Yunnan Province, is the largest and most intensively studied geothermal field in China. A wide physicochemical diversity of springs (ambient to ∼97 °C; pH from ≤1.8 to ≥9.3 provides a multitude of niches for extremophilic microorganisms. A variety of studies have focused on the cultivation, identification, basic physiology, taxonomy, and biotechnological potential of thermophilic microorganisms from Rehai. Thermophilic bacteria isolated from Rehai belong to the phyla Firmicutes and Deinococcus-Thermus. Firmicutes include neutrophilic or alkaliphilic Anoxybacillus, Bacillus, Caldalkalibacillus, Caldanaerobacter, Laceyella, and Geobacillus, as well as thermoacidophilic Alicyclobacillus and Sulfobacillus. Isolates from the Deinococcus-Thermus phylum include several Meiothermus and Thermus species. Many of these bacteria synthesize thermostable polymer-degrading enzymes that may be useful for biotechnology. The thermoacidophilic archaea Acidianus, Metallosphaera, and Sulfolobus have also been isolated and studied. A few studies have reported the isolation of thermophilic viruses belonging to Siphoviridae (TTSP4 and TTSP10 and Fuselloviridae (STSV1 infecting Thermus spp. and Sulfolobus spp., respectively. More recently, cultivation-independent studies using 16S rRNA gene sequences, shotgun metagenomics, or “functional gene” sequences have revealed a much broader diversity of microorganisms than represented in culture. Studies of the gene and mRNA encoding the large subunit of the ammonia monooxygenase (amoA of ammonia-oxidizing Archaea (AOA and the tetraether lipid crenarchaeol, a potential biomarker for AOA, suggest a wide diversity, but possibly low abundance, of thermophilic AOA in Rehai. Finally, we introduce the Tengchong Partnerships in International Research and Education (PIRE project, an international collaboration between Chinese and U.S. scientists with

  4. Coupled thermo-hydro-mechanical modeling of heat extraction from the Tattapani geothermal field, India

    Science.gov (United States)

    Nand Pandey, Sachchida; Vishal, Vikram

    2017-04-01

    Modeling of coupled thermo-hydro-mechanical processes in enhanced geothermal systems is presented using the finite element method of modeling for a 3-D domain. The reservoir consists of a single horizontal fracture surrounded by low permeable rock matrix. The flow is imposed on a fracture plane, consisting of a doublet system. The reservoir rock mechanical properties were taken from the field data of the Tattapani geothermal field, India. We investigate the effects of injection temperature and mass flow rate on the energy output. The results indicate that temperature and pressure changes within the reservoirs occur due to injection of cold water. The temperature drop and fluid overpressure inside the reservoirs/fracture affect the transport properties of the fracture. The spatial-temporal variations of fracture aperture inside the reservoir greatly impact the thermal drawdown and therefore net energy output. The results showed that maximum aperture evolution occurs near the injection zone than the production zone. The fracture aperture evolution is a result of combined effects of thermal stress and fluid overpressure inside the fracture. The fracture opening reduces the injection pressure required to circulate the fixed volume of water. The effects of the injection temperature on heat extraction were also analyzed under different reservoir formations. The results indicate that reservoir permeability plays a significant role on heat extraction, highlighting the important effect of water losses. For each factor, it is concluded that thermal breakthrough primarily depends on injection temperate, mass flow rate, reservoir permeability and well distances. The results of this study can help in choosing the operational parameters for successful operation of geothermal system. The study will also be helpful to optimize the EGS performance under varying reservoir conditions.

  5. Use of silica waste from the Cerro Prieto geothermal field as construction material

    Energy Technology Data Exchange (ETDEWEB)

    Lund, J.W.; Boyd, T.; Monnie, D.

    1995-02-01

    The Cerro Prieto geothermal field generates 620 MW of electric power and in the process produces 11,000 tonnes of brine per hour that is disposed of in surface ponds. Approximately 1300 tonnes of silica waste is the residual product from this hourly production of brine. At present, there is no use for this waste silica. Some experimental work has been undertaken by CFE to utilize this waste silica such as for surfacing roads with a cement-silica mixture and making bricks with various additives. However, none of this research has been documented. Approximately two years ago, a joint USDOE/CFE research project was proposed to investigate the use of the waste silica. The proposal included using the silica mixed with asphalt and cement to produce a suitable road surfacing material, and to combine the silica with various additives to be used as bricks for low cost housing. It was thought, that the low specific gravity of the silica and the proposed mixtures would give the bricks a high insulating value (low-thermal conductivity), thus protecting the residents from high solar heating, typical of Baja California and the area around Mexicali. Finally, since the geothermal fields of the area extend into the Imperial Valley of California where 420 MW of geothermal power is generated, it was hoped that this research would also be applicable to the U.S. side of the border. Some attempt has been made by UNOCAL at their Imperial Valley plant (now owned by Magma Power) to use the waste silica stabilized with cement for roads and dikes around the plant.

  6. Icelandic basaltic geothermal field: A natural analog for nuclear waste isolation in basalt

    International Nuclear Information System (INIS)

    Ulmer, G.C.; Grandstaff, D.E.

    1984-01-01

    Analog studies of Icelandic geothermal fields have shown that the design of nuclear waste repositories in basalt can benefit by comparison to the data base already available from the development of these geothermal fields. A high degree of similarity exists between these two systems: their petrology, groundwater geochemistry, mineral solubilities, hydrologic parameters, temperature ranges, water-rock redox equilibria, hydrothermal pH values, and secondary mineralogies all show considerable overlap in the range of values. The experimentally-simulated hydrothermal studies of the basaltic nuclear waste repository rocks have, at this time, produced a data base that receives a strong confirmation from the Icelandic analog. Furthermore, the Icelandic analog should eventually be employed to extrapolate into higher and lower temperatures, into longer time-base chemical comparisons, and into more realistic mineral deposition studies, than have been possible in the laboratory evaluations of the nuclear waste repository designs. This eventual use of the Icelandic analog will require cooperative work with the Icelandic Geological Survey. 46 refs., 4 figs., 2 tabs

  7. Repetitive precision gravity studies at the Cerro Prieto and Heber geothermal fields

    Science.gov (United States)

    Grannell, R. B.

    1982-09-01

    To study subsidence and mass removal, a precise gravity network was established on 60 permanent monuments in the Cerro Prieto geothermal field in early 1978, and repeated annually through early 1981; the survey was tied to two bedrock sites outside the limits of the current production zone. The looping technique of station occupation was utilized, in which occupation of the base was followed by occupation of several stations, followed by a return to the base. Use of two LaCoste and Romberg gravity meters, and replication of values within loops as well as entire loops, enhanced precision such that the median standard deviations of the base-to-station differences, reduced to observed gravity values, ranged from 7 to 15 microgals for individual surveys. The smaller values were obtained as field and data reduction techniques were improved and experience was gained. A similar survey was initiated in the Heber area just north of the Mexican border in early 1980. It too was established on permanent monuments, was tied to bedrock stations outside the geothermal area, and used multiple repetitions of values with two meters to achieve high precision.

  8. Project Title: Geothermal Play Fairway Analysis of Potential Geothermal Resources in NE California, NW Nevada, and Southern Oregon: A Transition between Extension$-$Hosted and Volcanically$-$Hosted Geothermal Fields

    Energy Technology Data Exchange (ETDEWEB)

    McClain, James S. [Univ. of California, Davis, CA (United States). Dept. of; Dobson, Patrick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Glassley, William [Univ. of California, Davis, CA (United States). Dept. of Earth and Planetary Sciences; Schiffman, Peter [Univ. of California, Davis, CA (United States). Dept. of Earth and Planetary Sciences; Zierenberg, Robert [Univ. of California, Davis, CA (United States). Dept. of Earth and Planetary Sciences; Zhang, Yingqi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Conrad, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Siler, Drew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gasperikova, Erika [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Spycher, Nicolas F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-09-30

    Final report for the UCD-LBNL effort to apply Geothermal Play Fairway Analysis to a transition zone between a volcanically-hosted and extensionally-hosted geothermal. The project focusses on the geothermal resources in northeastern California.

  9. Monitoring reservoir response to earthquakes and fluid extraction, Salton Sea geothermal field, California

    Science.gov (United States)

    Taira, Taka’aki; Nayak, Avinash; Brenguier, Florent; Manga, Michael

    2018-01-01

    Continuous monitoring of in situ reservoir responses to stress transients provides insights into the evolution of geothermal reservoirs. By exploiting the stress dependence of seismic velocity changes, we investigate the temporal evolution of the reservoir stress state of the Salton Sea geothermal field (SSGF), California. We find that the SSGF experienced a number of sudden velocity reductions (~0.035 to 0.25%) that are most likely caused by openings of fractures due to dynamic stress transients (as small as 0.08 MPa and up to 0.45 MPa) from local and regional earthquakes. Depths of velocity changes are estimated to be about 0.5 to 1.5 km, similar to the depths of the injection and production wells. We derive an empirical in situ stress sensitivity of seismic velocity changes by relating velocity changes to dynamic stresses. We also observe systematic velocity reductions (0.04 to 0.05%) during earthquake swarms in mid-November 2009 and late-December 2010. On the basis of volumetric static and dynamic stress changes, the expected velocity reductions from the largest earthquakes with magnitude ranging from 3 to 4 in these swarms are less than 0.02%, which suggests that these earthquakes are likely not responsible for the velocity changes observed during the swarms. Instead, we argue that velocity reductions may have been induced by poroelastic opening of fractures due to aseismic deformation. We also observe a long-term velocity increase (~0.04%/year) that is most likely due to poroelastic contraction caused by the geothermal production. Our observations demonstrate that seismic interferometry provides insights into in situ reservoir response to stress changes. PMID:29326977

  10. PNAS Plus: Origin of first cells at terrestrial, anoxic geothermal fields

    Science.gov (United States)

    Mulkidjanian, Armen Y.; Bychkov, Andrew Yu.; Dibrova, Daria V.; Galperin, Michael Y.; Koonin, Eugene V.

    2012-04-01

    All cells contain much more potassium, phosphate, and transition metals than modern (or reconstructed primeval) oceans, lakes, or rivers. Cells maintain ion gradients by using sophisticated, energy-dependent membrane enzymes (membrane pumps) that are embedded in elaborate ion-tight membranes. The first cells could possess neither ion-tight membranes nor membrane pumps, so the concentrations of small inorganic molecules and ions within protocells and in their environment would equilibrate. Hence, the ion composition of modern cells might reflect the inorganic ion composition of the habitats of protocells. We attempted to reconstruct the "hatcheries" of the first cells by combining geochemical analysis with phylogenomic scrutiny of the inorganic ion requirements of universal components of modern cells. These ubiquitous, and by inference primordial, proteins and functional systems show affinity to and functional requirement for K+, Zn2+, Mn2+, and phosphate. Thus, protocells must have evolved in habitats with a high K+/Na+ ratio and relatively high concentrations of Zn, Mn, and phosphorous compounds. Geochemical reconstruction shows that the ionic composition conducive to the origin of cells could not have existed in marine settings but is compatible with emissions of vapor-dominated zones of inland geothermal systems. Under the anoxic, CO2-dominated primordial atmosphere, the chemistry of basins at geothermal fields would resemble the internal milieu of modern cells. The precellular stages of evolution might have transpired in shallow ponds of condensed and cooled geothermal vapor that were lined with porous silicate minerals mixed with metal sulfides and enriched in K+, Zn2+, and phosphorous compounds.

  11. Optimization of Wellhead Piping Design for Production Wells at Development of Steam-Water Geothermal Fields

    Directory of Open Access Journals (Sweden)

    A.N. Shulyupin

    2017-03-01

    Full Text Available At present, the exploitation of geothermal resources develops in a fair competition with other types of energy resources. This leads to actuality of questions which associated with the more efficient use of existing wells, because cost of their drilling is a significant share of geothermal projects. In domestic practice of development of geothermal resources the steam-water wells have greatest energy potential. One way to improve the performance of these wells is a providing of smooth change of direction of motion of steam-water mixture from the vertical, in the well, to the horizontal, in steam gathering system. Typical wellhead piping of domestic steam-water wells involves the removal of the mixture through a cross bar at a right angle. Cross bar can generate considerable pressure loss that increases the operating pressure at the mouth of the well and reduces flow rate. It seems reasonable to substitute the typical cross bar by smooth pipe bend. This reduces wellhead resistance coefficient by more than on 2. Increase of curvature radius of pipe bend reduces the pressure loss to a local resistance but increases the friction pressure loss. There is an optimal curvature radius of pipe bend for minimum pressure loss in view of a local resistance and friction in the pipe bend. Calculations have shown that the optimum value for the radius of curvature is found in the range from 1.4 to 4.5 tube internal diameters. However, for technological reasons it is recommended to choose the radius of curvature from 1.4 to 2.4 diameters. Mounting of smooth pipe bend on the wellhead can provide significant economic benefits. For Mutnovka field (Kamchatka, this effect is estimated at 17.5 million rubles in year.

  12. Monitoring reservoir response to earthquakes and fluid extraction, Salton Sea geothermal field, California.

    Science.gov (United States)

    Taira, Taka'aki; Nayak, Avinash; Brenguier, Florent; Manga, Michael

    2018-01-01

    Continuous monitoring of in situ reservoir responses to stress transients provides insights into the evolution of geothermal reservoirs. By exploiting the stress dependence of seismic velocity changes, we investigate the temporal evolution of the reservoir stress state of the Salton Sea geothermal field (SSGF), California. We find that the SSGF experienced a number of sudden velocity reductions (~0.035 to 0.25%) that are most likely caused by openings of fractures due to dynamic stress transients (as small as 0.08 MPa and up to 0.45 MPa) from local and regional earthquakes. Depths of velocity changes are estimated to be about 0.5 to 1.5 km, similar to the depths of the injection and production wells. We derive an empirical in situ stress sensitivity of seismic velocity changes by relating velocity changes to dynamic stresses. We also observe systematic velocity reductions (0.04 to 0.05%) during earthquake swarms in mid-November 2009 and late-December 2010. On the basis of volumetric static and dynamic stress changes, the expected velocity reductions from the largest earthquakes with magnitude ranging from 3 to 4 in these swarms are less than 0.02%, which suggests that these earthquakes are likely not responsible for the velocity changes observed during the swarms. Instead, we argue that velocity reductions may have been induced by poroelastic opening of fractures due to aseismic deformation. We also observe a long-term velocity increase (~0.04%/year) that is most likely due to poroelastic contraction caused by the geothermal production. Our observations demonstrate that seismic interferometry provides insights into in situ reservoir response to stress changes.

  13. Micro-seismicity and seismic moment release within the Coso Geothermal Field, California

    Science.gov (United States)

    Kaven, Joern; Hickman, Stephen H.; Davatzes, Nicholas C.

    2014-01-01

    We relocate 16 years of seismicity in the Coso Geothermal Field (CGF) using differential travel times and simultaneously invert for seismic velocities to improve our knowledge of the subsurface geologic and hydrologic structure. We expand on our previous results by doubling the number of relocated events from April 1996 through May 2012 using a new field-wide 3-D velocity model. Relocated micro-seismicity sharpens in many portions of the active geothermal reservoir, likely defining large-scale fault zones and fluid pressure compartment boundaries. However, a significant fraction of seismicity remains diffuse and does not cluster into sharply defined structures, suggesting that permeability is maintained within the reservoir through distributed brittle failure. The seismic velocity structure reveals heterogeneous distributions of compressional (Vp) and shear (Vs) wave speed, with Vs generally higher in the Main Field and East Flank and Vp remaining relatively uniform across the CGF, but with significant local variations. The Vp/Vs ratio appears to outline the two main producing compartments of the reservoir at depths below mean ground level of approximately 1 to 2.5 km, with a ridge of relatively high Vp/Vs separating the Main Field from the East Flank. Detailed analyses of spatial and temporal variations in earthquake relocations and cumulative seismic moment release in the East Flank reveal three regions with persistently high rates of seismic activity. Two of these regions exhibit sharp, stationary boundaries at the margins of the East Flank that likely represent barriers to fluid flow and advective heat transport. However, seismicity and moment release in a third region at the northern end of the East Flank spread over time to form an elongated NE to SW structure, roughly parallel both to an elongated cluster of seismicity at the southern end of the East Flank and to regional fault traces mapped at the surface. Our results indicate that high

  14. Analysis and interpretation of stress indicators in deviated wells of the Coso Geothermal Field

    Science.gov (United States)

    Schoenball, Martin; Glen, Jonathan M. G.; Davatzes, Nicholas C.

    2016-01-01

    Characterizing the tectonic stress field is an integral part of the development of hydrothermal systems and especially for enhanced geothermal systems (EGS). With a well characterized stress field the propensity of fault slip on faults with known location and orientation can be identified. Faults that are critically oriented for faulting with respect to the stress field are known to provide natural fluid pathways. A high slip tendency makes a fault a likely candidate for reactivation during the creation of an EGS. Similarly, the stress state provides insight for the potential of larger, damaging earthquakes should extensive portions of well-oriented, larger faults be reactivated.The analysis of stress indicators such as drilling-induced fractures and borehole breakouts is the main tool to infer information on the stress state of a geothermal reservoir. The standard procedure is applicable to sub-vertical wellbore sections and highly deviated sections have to be discarded. However, in order to save costs and reduce the environmental impact most recent wells are directionally drilled with deviations that require appropriate consideration of the deviated trajectory. Here we present an analysis scheme applicable to arbitrary well trajectories or a combination of wells to infer the stress state. Through the sampling of the stress tensor along several directions additional information on the stress regime and even relative stress magnitudes can be obtained. We apply this method on image logs from the pair of wells 58-10 and 58A-10 that were drilled from the same well pad. Both wells have image logs of about 2km of their trajectories that are separated by less than 300m. For both wells we obtain a mean orientation of SHmax of N23° with large standard deviations of locations of stress indicators of 24° and 26°, respectively. While the local stress direction is highly variable along both wells with dominant wavelengths from around 50 to 500m, the mean directions are very

  15. Addendum to material selection guidelines for geothermal energy-utilization systems. Part I. Extension of the field experience data base. Part II. Proceedings of the geothermal engineering and materials (GEM) program conference (San Diego, CA, 6-8 October 1982)

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.S.; Ellis, P.F. II

    1983-05-01

    The extension of the field experience data base includes the following: key corrosive species, updated field experiences, corrosion of secondary loop components or geothermal binary power plants, and suitability of conventional water-source heat pump evaporator materials for geothermal heat pump service. Twenty-four conference papers are included. Three were abstracted previously for EDB. Separate abstracts were prepared for twenty-one. (MHR)

  16. Phase 2 and 3 Slim Hole Drilling and Testing at the Lake City, California Geothermal Field

    Energy Technology Data Exchange (ETDEWEB)

    Dick Benoit; David Blackwell; Joe Moore; Colin Goranson

    2005-10-27

    temperatures of 270 to 310 oF), intermediate (elevation 2800 to 3700 ft and temperatures 270 to 320 oF ) and deep (elevations < 1000 ft and temperatures 323 to 337 oF) components. In the south part of the field, near Phipps #2 the shallow and deep components are present. In the central part of the field, near OH-1 the shallow and intermediate components are present and presumably the deep component is also present. In the north part of the field, the intermediate and deep components are present. Most or all of the fractures in the core have dips between 45 degrees and vertical and no strong stratigraphic control on the resource has yet been demonstrated. Conceptually, the Lake City geothermal resource seems to be located along the north-south trending range front in a relatively wide zone of fractured rock. The individual fractures do not seem to be associated with any readily identifiable fault. In fact, no major hydraulically conductive faults were identified by the core drilling.

  17. Plant adaptation to extreme environments: the example of Cistus salviifolius of an active geothermal alteration field.

    Science.gov (United States)

    Bartoli, Giacomo; Bottega, Stefania; Forino, Laura M C; Ciccarelli, Daniela; Spanò, Carmelina

    2014-02-01

    Cistus salviifolius is able to colonise one of the most extreme active geothermal alteration fields in terms of both soil acidity and hot temperatures. The analyses of morpho-functional and physiological characters, investigated in leaves of plants growing around fumaroles (G leaves) and in leaves developed by the same plants after transfer into growth chamber under controlled conditions (C leaves) evidenced the main adaptive traits developed by this pioneer plant in a stressful environment. These traits involved leaf shape and thickness, mesophyll compactness, stomatal and trichome densities, chloroplast size. Changes of functional and physiological traits concerned dry matter content, peroxide and lipid peroxidation, leaf area, relative water and pigment contents. A higher reducing power and antioxidant enzymatic activity were typical of G leaves. Though the high levels of stress parameters, G leaves showed stress-induced specific morphogenic and physiological responses putatively involved in their surviving in active geothermal habitats. Copyright © 2013 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  18. Micro-seismicity within the Coso Geothermal field, California, from 1996-2012

    Science.gov (United States)

    Kaven, Joern; Hickman, Stephen H.; Weber, Lisa C.

    2017-01-01

    We extend our previous catalog of seismicity within the Coso Geothermal field by adding over two and a half years of additional data to prior results. In total, we locate over 16 years of seismicity spanning from April 1996 to May of 2012 using a refined velocity model, apply it to all events and utilize differential travel times in relocations to improve the accuracy of event locations. The improved locations elucidate major structural features within the reservoir that we interpret to be faults that contribute to heat and fluid flow within the reservoir. Much of the relocated seismicity remains diffuse between these major structural features, suggesting that a large volume of accessible and distributed fracture porosity is maintained within the geothermal reservoir through ongoing brittle failure. We further track changes in b value and seismic moment release within the reservoir as a whole through time. We find that b values decrease significantly during 2009 and 2010, coincident with the occurrence of a greater number of moderate magnitude earthquakes (3.0 ≤ ML Coso reservoir is comprised of a network of fractures at a variety of spatial scales that evolves dynamically over time, with progressive changes in characteristics of microseismicity and inferred fractures and faults that are only evident from a long period of seismic monitoring analyzed using self-consistent methods.

  19. Estimation of deepwater temperature and hydrogeochemistry of springs in the Takab geothermal field, West Azerbaijan, Iran.

    Science.gov (United States)

    Sharifi, Reza; Moore, Farid; Mohammadi, Zargham; Keshavarzi, Behnam

    2016-01-01

    Chemical analyses of water samples from 19 hot and cold springs are used to characterize Takab geothermal field, west of Iran. The springs are divided into two main groups based on temperature, host rock, total dissolved solids (TDS), and major and minor elements. TDS, electrical conductivity (EC), Cl(-), and SO4 (2-) concentrations of hot springs are all higher than in cold springs. Higher TDS in hot springs probably reflect longer circulation and residence time. The high Si, B, and Sr contents in thermal waters are probably the result of extended water-rock interaction and reflect flow paths and residence time. Binary, ternary, and Giggenbach diagrams were used to understand the deeper mixing conditions and locations of springs in the model system. It is believed that the springs are heated either by mixing of deep geothermal fluid with cold groundwater or low conductive heat flow. Mixing ratios are evaluated using Cl, Na, and B concentrations and a mass balance approach. Calculated quartz and chalcedony geothermometer give lower reservoir temperatures than cation geothermometers. The silica-enthalpy mixing model predicts a subsurface reservoir temperature between 62 and 90 °C. The δ(18)O and δD (δ(2)H) are used to trace and determine the origin and movement of water. Both hot and cold waters plot close to the local meteoric line, indicating local meteoric origin.

  20. Irregular focal mechanisms observed at Salton Sea Geothermal Field: Possible influences of anthropogenic stress perturbations

    Science.gov (United States)

    Crandall-Bear, Aren; Barbour, Andrew J.; Schoenball, Martin; Schoenball, Martin

    2018-01-01

    At the Salton Sea Geothermal Field (SSGF), strain accumulation is released through seismic slip and aseismic deformation. Earthquake activity at the SSGF often occurs in swarm-like clusters, some with clear migration patterns. We have identified an earthquake sequence composed entirely of focal mechanisms representing an ambiguous style of faulting, where strikes are similar but deformation occurs due to steeply-dipping normal faults with varied stress states. In order to more accurately determine the style of faulting for these events, we revisit the original waveforms and refine estimates of P and S wave arrival times and displacement amplitudes. We calculate the acceptable focal plane solutions using P-wave polarities and S/P amplitude ratios, and determine the preferred fault plane. Without constraints on local variations in stress, found by inverting the full earthquake catalog, it is difficult to explain the occurrence of such events using standard fault-mechanics and friction. Comparing these variations with the expected poroelastic effects from local production and injection of geothermal fluids suggests that anthropogenic activity could affect the style of faulting.

  1. Observing and Modeling Temporal Variations of Seismic Velocities at the Geysers Geothermal Field, California

    Science.gov (United States)

    Lai, V. H.; Tsai, V. C.; Taira, T.

    2016-12-01

    Perturbations in subsurface elastic parameters induce changes in seismic velocity. To understand the stress perturbations due to geothermal operation, we apply seismic noise interferometry to examine the temporal variations of seismic velocity (dv/v) at the Geysers Geothermal Field, California. Our observations show a strong positive correlation between dv/v and net production (steam production minus fluid injection), and a strong negative correlation between dv/v and fluid injection. Notably, there is little time lag (less than a month) between dv/v and fluid injection in the SE region of the field, suggesting a rapid response in elastic properties in this highly saturated region. The influx of fluid decreases the effective shear modulus, which in turn decreases the velocities. A number of hypotheses have been suggested to cause stress perturbations in the field, including poroelastic-induced stresses, direct elastic loading and thermoelastic-induced stresses. We perform a 1-D hydrological simulation to calculate the expected variations in dv/v due to different stresses by considering Murnaghan's theory of finite deformations and the third-order terms in the strain energy function. The synthetic dv/v measurements are spatially averaged based on computed sensitivity kernels, allowing for direct comparison with both the amplitude and phase of dv/v observations. We show the order-of-magnitude effect that each of the stresses have on the dv/v measurement, and explore the possibility of using dv/v to constrain important hydrological and elastic properties such as hydraulic conductivity in the field.

  2. Hydrogeochemistry of the thermal waters from the Yenice Geothermal Field (Denizli Basin, Southwestern Anatolia, Turkey)

    Science.gov (United States)

    Alçiçek, Hülya; Bülbül, Ali; Alçiçek, Mehmet Cihat

    2016-01-01

    The chemical and isotopic properties of thermal waters (Kamara and Çizmeli) and cold springs from the Yenice Geothermal Field (YGF), in southwestern Anatolia, Turkey are investigated in order to establish a conceptual hydrogeochemical-hydrogeological model. These thermal waters derive from Menderes metamorphic rocks and emerge along normal faults; they are commonly used for heating of greenhouses and bathing facilities. Discharge temperatures of thermal waters are 32 °C to 57 °C (mean 51 °C) for Kamara and 35 °C to 68 °C (mean 47 °C) for Çizmeli, whereas deep groundwaters are 15 °C to 20.1 °C (mean 17 °C) and shallow groundwaters are 12 to 16 °C (mean 15 °C). Kamara and Çizmeli thermal waters are mostly of Na-Ca-HCO3-SO4 type, whereas deep groundwaters are Ca-Mg-HCO3 and Mg-Ca-HCO3 types and shallow groundwaters are mainly Mg-Ca-SO4-HCO3 and Ca-Mg-HCO3 types. In the reservoir of the geothermal system, dissolution of host rock and ion-exchange reactions changes thermal water types. High correlation in some ionic ratios (e.g. Na vs. Cl, K vs. Cl, HCO3 vs. Cl) and high concentrations of some minor elements (e.g., As, Sr, B, Cl, F) in thermal waters likely derive from enhanced water-rock interaction. Water samples from YGF have not reached complete chemical re-equilibrium, possibly as a result mixing with groundwater during upward flow. Geothermal reservoir temperatures are calculated as 89-102 °C for Kamara and 87-102 °C for Çizmeli fields, based on the retrograde and prograde solubilities of anhydrite and chalcedony. Based on the isotope and chemical data, a conceptual hydrogeochemical-hydrogeological model of the YGF has been constructed. Very negative δ18O and δ2H isotopic ratios (Kamara: mean of - 8.43‰ and - 56.9‰, respectively and Çizmeli: mean of - 7.96‰ and - 53.7‰, respectively) and low tritium values (< 1 TU) reflect a deep circulation pathway and a meteoric origin. Subsequent heating by conduction in the high geothermal gradient

  3. Hydrothermal Alteration in an Acid-Sulphate Geothermal Field: Sulphur Springs, Saint Lucia

    Science.gov (United States)

    Joseph, E. P.; Barrett, T. J.

    2017-12-01

    Sulphur Springs is a vigorous geothermal field associated with the Soufrière Volcanic Centre in southern Saint Lucia. Bubbling hydrothermal pools are rich in sodium-calcium sulphate, with pHs of 3-7 and temperatures of 41-97ºC. Fumaroles have temperatures up to, and at times above, 100°C. Gases from bubbling pools and fumaroles have high contents of CO2 (601-993 mmol/mol) and H2S (3-190 mmol/mol). To investigate the nature and extent of hydrothermal alteration, detailed chemical analysis was carried out on 25 altered rocks, 10 sediments from pools and creeks in the main discharge area, and 15 little-altered rocks up to 2 km away from geothermal field. Eight altered samples were also analysed for stable isotope compositions, with mineralogy determined by X-ray diffraction and mineral liberation analysis. Least-altered host rocks comprise calc-alkaline feldspar-quartz-porphyritic dacites of near-uniform composition that form massive domes and volcaniclastic units. These rocks were emplaced 10-30 Ka ago (Lindsay et al. 2013). Within the geothermal field, the dacites have been highly altered to kaolinite, quartz, cristobalite, alunite, natroalunite, smectite, native sulphur, jarosite, gypsum and amorphous compounds. Muds from grey to blackish hydrothermal pools additionally contain iron sulphides, mainly pyrite. Despite intense alteration of the original dacites, Zr and Ti have remained essentially immobile, allowing the calculation of mass changes. Major depletions of Fe, Mg, Ca, Na and commonly Si occur over an area of at least 200 x 400 m. The most altered rocks also show losses of Al, light REE and Y, implying leaching by highly acidic waters. A few altered rocks have, however, gained Al together with Si and P. Also present are m-scale zones of silica + native sulphur, wherein the silica appears to represent a residue from the leaching of dacite, rather than a hydrothermal addition. Delta-34S values of samples containing mixtures of sulphates, native sulphur and

  4. Internal structure of fault zones in geothermal reservoirs: Examples from palaeogeothermal fields and potential host rocks

    Science.gov (United States)

    Leonie Philipp, Sonja; Reyer, Dorothea; Meier, Silke; Bauer, Johanna F.; Afşar, Filiz

    2014-05-01

    Fault zones commonly have great effects on fluid transport in geothermal reservoirs. During fault slip all the pores and small fractures that meet with the slip plane become interconnected so that the inner part of the fault, the fault core, consisting of breccia or gouge, may suddenly develop a very high permeability. This is evidenced, for example by networks of mineral veins in deeply eroded fault zones in palaeogeothermal fields. Inactive faults, however, may have low permeabilities and even act as flow barriers. In natural and man-made geothermal reservoirs, the orientation of fault zones in relation to the current stress field and their internal structure needs be known as accurately as possible. One reason is that the activity of the fault zone depends on its angle to the principal stress directions. Another reason is that the outer part of a fault zone, the damage zone, comprises numerous fractures of various sizes. Here we present field examples of faults, and associated joints and mineral veins, in palaeogeothermal fields, and potential host rocks for man-made geothermal reservoirs, respectively. We studied several localities of different stratigraphies, lithologies and tectonic settings: (1) 58 fault zones in 22 outcrops from Upper Carboniferous to Upper Cretaceous in the Northwest German Basin (siliciclastic, carbonate and volcanic rocks); (2) 16 fault zones in 9 outcrops in Lower Permian to Middle Triassic (mainly sandstone, limestone and granite) in the Upper Rhine Graben; and (3) 74 fault zones in two coastal sections of Upper Triassic and Lower Jurassic age (mudstones and limestone-marl alternations) in the Bristol Channel Basin, UK. (1) and (2) are outcrop analogues of geothermal reservoir horizons, (3) represent palaeogeothermal fields with mineral veins. The field studies in the Northwest German Basin (1) show pronounced differences between normal-fault zones in carbonate and clastic rocks. In carbonate rocks clear damage zones occur that are

  5. Enhancement of subsurface geologic structure model based on gravity, magnetotelluric, and well log data in Kamojang geothermal field

    Science.gov (United States)

    Yustin Kamah, Muhammad; Armando, Adilla; Larasati Rahmani, Dinda; Paramitha, Shabrina

    2017-12-01

    Geophysical methods such as gravity and magnetotelluric methods commonly used in conventional and unconventional energy exploration, notably for exploring geothermal prospect. They used to identify the subsurface geology structures which is estimated as a path of fluid flow. This study was conducted in Kamojang Geothermal Field with the aim of highlighting the volcanic lineament in West Java, precisely in Guntur-Papandayan chain where there are three geothermal systems. Kendang Fault has predominant direction NE-SW, identified by magnetotelluric techniques and gravity data processing techniques. Gravity techniques such as spectral analysis, derivative solutions, and Euler deconvolution indicate the type and geometry of anomaly. Magnetotelluric techniques such as inverse modeling and polar diagram are required to know subsurface resistivity charactersitics and major orientation. Furthermore, the result from those methods will be compared to geology information and some section of well data, which is sufficiently suitable. This research is very useful to trace out another potential development area.

  6. Geothermal handbook

    Science.gov (United States)

    1976-01-01

    The Bureau of Land Management offered over 400,000 hectares (one million acres) for geothermal exploration and development in 1975, and figure is expected to double this year. The Energy Research and Development Administration hopes for 10-15,000 megawatts of geothermal energy by 1985, which would require, leasing over 16.3 million hectares (37 million acres) of land, at least half of which is federal land. Since there is an 8 to 8-1/2 year time laf between initial exploration and full field development, there would have to be a ten-fold increase in the amount of federal land leased within the next three years. Seventy percent of geothermal potential, 22.3 million hectares (55 million acres), is on federal lands in the west. The implication for the Service are enormous and the problems immediate. Geothermal resource are so widespread they are found to some extent in most biomes and ecosystems in the western United States. In most cases exploitation and production of geothermal resources can be made compatible with fish and wildlife management without damage, if probable impacts are clearly understood and provided for before damage has unwittingly been allowed to occur. Planning for site suitability and concern with specific operating techniques are crucial factors. There will be opportunities for enhancement: during exploration and testing many shallow groundwater bodies may be penetrated which might be developed for wildlife use. Construction equipment and materials needed for enhancement projects will be available in areas heretofore considered remote projects will be available in areas heretofore considered remote by land managers. A comprehensive knowledge of geothermal development is necessary to avoid dangers and seize opportunities. This handbook is intended to serve as a working tool in the field. It anticipated where geothermal resource development will occur in the western United States in the near future. A set of environmental assessment procedures are

  7. Niland development project geothermal loan guaranty: 49-MW (net) power plant and geothermal well field development, Imperial County, California: Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    1984-10-01

    The proposed federal action addressed by this environmental assessment is the authorization of disbursements under a loan guaranteed by the US Department of Energy for the Niland Geothermal Energy Program. The disbursements will partially finance the development of a geothermal well field in the Imperial Valley of California to supply a 25-MW(e) (net) power plant. Phase I of the project is the production of 25 MW(e) (net) of power; the full rate of 49 MW (net) would be achieved during Phase II. The project is located on approximately 1600 acres (648 ha) near the city of Niland in Imperial County, California. Well field development includes the initial drilling of 8 production wells for Phase I, 8 production wells for Phase II, and the possible need for as many as 16 replacement wells over the anticipated 30-year life of the facility. Activities associated with the power plant in addition to operation are excavation and construction of the facility and associated systems (such as cooling towers). Significant environmental impacts, as defined in Council on Environmental Quality regulation 40 CFR Part 1508.27, are not expected to occur as a result of this project. Minor impacts could include the following: local degradation of ambient air quality due to particulate and/or hydrogen sulfide emissions, temporarily increased ambient noise levels due to drilling and construction activities, and increased traffic. Impacts could be significant in the event of a major spill of geothermal fluid, which could contaminate groundwater and surface waters and alter or eliminate nearby habitat. Careful land use planning and engineering design, implementation of mitigation measures for pollution control, and design and implementation of an environmental monitoring program that can provide an early indication of potential problems should ensure that impacts, except for certain accidents, will be minimized.

  8. INVESTIGATION OF DISSOLVED SULPHATE IN VARIOUS GEOTHERMAL FIELDS OF SUMATRA USING OXYGEN AND SULPHUR ISOTOPES

    Directory of Open Access Journals (Sweden)

    E. Ristin Pujiindiyati

    2010-06-01

    Full Text Available There are at least 30 high temperature systems; eleven active volcanoes, five degassing volcanoes and one caldera volcano controlled by Sumatra Fault Zone over a length of 1700 km. To understand this geothermal field system, some information about geochemistry including isotope composition in its fluid is needed. Sulphur-34 and oxygen-18 isotopes in dissolved sulphate pair have been used to determine the origin of acidic fluid of sulphate and to evaluate the process involved. The fluids from eight hot springs, two fumaroles, four deep wells and crater have been collected in along Sumatra geothermal fields. Sulphur-34 (d 34S (SO4, 0/00 CDT and oxygen-18 (d 18O (SO4, 0/00 SMOW in sulphate is analyzed according to Robinson-Kusakabe and Rafter method, respectively. The d 34S (SO4 values from Sibayak wells are more enriched of 16.8 0/00 to 18.2 0/0 that may indicate the dissolution of anhydrite minerals or isotope partitioning in hydration of SO2. The d 34S (SO4 values from two fumaroles (Pusuk Bukit - North Sumatra and Rantau Dadap - South Sumatra are at depleted value of -0.150/00 and 1.80/00, those are close to d 34S from magmatic sulphur.  In general, the d 34S (SO4 of springs spread in a wide range of 5.250/00 to14.20/00 and show a mixing process between atmospheric sulphate and sulphate from deep wells. The d 18O (SO4 from wells exhibits depleted value around -3.60/00 suggesting that 87.5% of sulphate oxygen is derived from groundwater oxygen and 12.5% is derived from atmospheric molecular oxygen in sulphide oxidation reaction. In the other hand, hot springs (except Semurup, crater and fumaroles have enriched value of d 18O (SO4. These enriched values suggest that a higher percentage of atmospherically derived oxygen compared to those from the depth.   Keywords: isotope, geothermal, Sumatra

  9. Testing for the ‘predictability’ of dynamically triggered earthquakes in Geysers Geothermal Field

    Science.gov (United States)

    Aiken, Chastity; Meng, Xiaofeng; Hardebeck, Jeanne L.

    2018-01-01

    The Geysers geothermal field is well known for being susceptible to dynamic triggering of earthquakes by large distant earthquakes, owing to the introduction of fluids for energy production. Yet, it is unknown if dynamic triggering of earthquakes is ‘predictable’ or whether dynamic triggering could lead to a potential hazard for energy production. In this paper, our goal is to investigate the characteristics of triggering and the physical conditions that promote triggering to determine whether or not triggering is in anyway foreseeable. We find that, at present, triggering in The Geysers is not easily ‘predictable’ in terms of when and where based on observable physical conditions. However, triggered earthquake magnitude positively correlates with peak imparted dynamic stress, and larger dynamic stresses tend to trigger sequences similar to mainshock–aftershock sequences. Thus, we may be able to ‘predict’ what size earthquakes to expect at The Geysers following a large distant earthquake.

  10. Geological Results from Drilling in the Poihipi (Western) Sector of the Wairakei Geothermal Field, NZ

    Energy Technology Data Exchange (ETDEWEB)

    Bogie, I.; Lawless, J.V.; MacKenzie, K.M.

    1995-01-01

    Four wells drilled into the Poihipi Sector on the Western margin of the Wairakei geothermal field have found a similar lithostratigraphy to that encountered in wells previously drilled in the general area. Young pumice breccias overly the Huka Falls Formation, with the latter containing intercalations of the Rautehuia Breccia. This in turn overlies ignimbrites and tuffaceous sediments of the Waiora Formation, which contains flows of Haparangi Rhyolite. This sequence is cut by steeply dipping normal faults which strike to the northeast and for the most part dip towards the northwest. Hydrothermal alteration is virtually limited to the Waiora and Haparangi units where a sequence of interlayered illite-smectite and illite clays are found along with chlorite, quartz, pyrite and calcite. There is a minor occurrence of zeolites. Despite large changes in the area's hydrology in response to exploitation, changes in alteration are limited to a comparatively deep occurrence of kaolinite and minor overprinting of epidote by illitic clay.

  11. Testing for the 'predictability' of dynamically triggered earthquakes in The Geysers geothermal field

    Science.gov (United States)

    Aiken, Chastity; Meng, Xiaofeng; Hardebeck, Jeanne

    2018-03-01

    The Geysers geothermal field is well known for being susceptible to dynamic triggering of earthquakes by large distant earthquakes, owing to the introduction of fluids for energy production. Yet, it is unknown if dynamic triggering of earthquakes is 'predictable' or whether dynamic triggering could lead to a potential hazard for energy production. In this paper, our goal is to investigate the characteristics of triggering and the physical conditions that promote triggering to determine whether or not triggering is in anyway foreseeable. We find that, at present, triggering in The Geysers is not easily 'predictable' in terms of when and where based on observable physical conditions. However, triggered earthquake magnitude positively correlates with peak imparted dynamic stress, and larger dynamic stresses tend to trigger sequences similar to mainshock-aftershock sequences. Thus, we may be able to 'predict' what size earthquakes to expect at The Geysers following a large distant earthquake.

  12. Triggering processes of microseismic events associated with water injection in Okuaizu Geothermal Field, Japan

    Science.gov (United States)

    Okamoto, Kyosuke; Yi, Li; Asanuma, Hiroshi; Okabe, Takashi; Abe, Yasuyuki; Tsuzuki, Masatoshi

    2018-02-01

    A continuous water injection test was conducted to halt the reduction in steam production in the Okuaizu Geothermal Field, Japan. Understanding the factors triggering microseismicity associated with water injection is essential to ensuring effective steam production. We identified possible triggering processes by applying methods based on microseismic monitoring, including a new method to determine the presence of water in local fractures using scattered P-waves. We found that the evolving microseismicity near the injection point could be explained by a diffusion process and/or water migration. We also found that local microseismicity on a remote fault was likely activated by stress fluctuations resulting from changes in the injection rate. A mediator of this fluctuation might be water remaining in the fracture zone. After the injection was terminated, microseismicity possibly associated with the phase transition of the liquid was found. We conclude that a variety of triggering processes associated with water injection may exist.[Figure not available: see fulltext.

  13. Pressure changes and their effects on the Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Bermejo M, F.J.; Navarro O, F.X.; Esquer P, C.A.; Castillo B, F.; de la Cruz D, F.C.

    1981-01-01

    Continuous extraction of the water-steam mixture at the field has been increasing to fulfill the steam requirements of the power plant. As a result, pressure declines have been observed in the producing strata in all of the wells, as well as in the geothermal reservoir as a whole. Anomalous behavior that has been observed in the wells' hydraulic columns in most cases is due to the interconnection of the various strata penetrated by the well. When this occurs, unbalanced hydraulic pressures cause the movement of fluids between the strata. As an example of this hydraulic imbalance causing the flow of fluids from an upper to a lower zone, well Nuevo Leon 1 where this effect occurs between regions 600 m apart was chosen.

  14. Research on the use of waste silica from the Cerro Prieto geothermal field, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Lund, J.W.; Boyd, T.L.

    1996-12-31

    The Geo-Heat Center has been investigating the utilization of waste silica from the Cerro Prieto geothermal field for several years. The main objectives of the research were to combine silica with various additives to (1) form bricks for low cost housing, and (2) to produce a suitable road surfacing material. The various additives that were tested included hydrated lime, portland cement, plastic fibers, asphalt cement and emulsified asphalt. The silica-cement combination produced the strongest bricks and had the best weather resistance, whereas, the silica-lime combination produced the bricks with the lowest thermal conductivity and specific gravity density. The addition of plastic fibers to the silica-lime mixture improved both strength and weather resistance. The combination of asphalt and silica is not suitable as a road surfacing material, however, silica-cement appears promising.

  15. Development And Application Of A Hydrothermal Model For The Salton Sea Geothermal Field, California

    Energy Technology Data Exchange (ETDEWEB)

    Kasameyer, P.; Younker, L.; Hanson, J.

    1984-01-01

    A simple lateral flow model adequately explains many of the features associated with the Salton Sea Geothermal Field. Earthquake swarms, a magnetic anomaly, and aspects of the gravity anomaly are all indirect evidence for the igneous activity which is the ultimate source of heat for the system. Heat is transferred from this area of intrusion by lateral spreading of hot water in a reservoir beneath an impermeable cap rock. A two dimensional analytic model encompassing this transport mechanism matches general features of the thermal anomaly and has been used to estimate the age of the presently observed thermal system. The age is calculated by minimizing the variance between the observed surface heat-flow data and the model. Estimates of the system age for this model range from 3,000 to 20,000 years.

  16. A comparison of long-term changes in seismicity at The Geysers, Salton Sea, and Coso geothermal fields

    Science.gov (United States)

    Trugman, Daniel T.; Shearer, Peter M.; Borsa, Adrian A.; Fialko, Yuri

    2016-01-01

    Geothermal energy is an important source of renewable energy, yet its production is known to induce seismicity. Here we analyze seismicity at the three largest geothermal fields in California: The Geysers, Salton Sea, and Coso. We focus on resolving the temporal evolution of seismicity rates, which provides important observational constraints on how geothermal fields respond to natural and anthropogenic loading. We develop an iterative, regularized inversion procedure to partition the observed seismicity rate into two components: (1) the interaction rate due to earthquake-earthquake triggering and (2) the smoothly varying background rate controlled by other time-dependent stresses, including anthropogenic forcing. We apply our methodology to compare long-term changes in seismicity to monthly records of fluid injection and withdrawal. At The Geysers, we find that the background seismicity rate is highly correlated with fluid injection, with the mean rate increasing by approximately 50% and exhibiting strong seasonal fluctuations following construction of the Santa Rosa pipeline in 2003. In contrast, at both Salton Sea and Coso, the background seismicity rate has remained relatively stable since 1990, though both experience short-term rate fluctuations that are not obviously modulated by geothermal plant operation. We also observe significant temporal variations in Gutenberg-Richter b value, earthquake magnitude distribution, and earthquake depth distribution, providing further evidence for the dynamic evolution of stresses within these fields. The differing field-wide responses to fluid injection and withdrawal may reflect differences in in situ reservoir conditions and local tectonics, suggesting that a complex interplay of natural and anthropogenic stressing controls seismicity within California's geothermal fields.

  17. Subsurface Characterization Beneath the Coso Geothermal Field by Ambient Noise Tomography

    Science.gov (United States)

    Ritzwoller, M. H.; Yang, Y.; Levshin, A. L.; Barmin, M. P.; Jones, C. H.

    2009-12-01

    The Coso Geothermal Area has been the subject of numerous geophysical studies over the past 30 years. Various seismological techniques have been applied to evaluate the regional stress distribution, velocity and attenuation structure of the subsurface. None of these studies has imaged subsurface shear velocity using surface waves generated either by local micro-earthquakes or by regional or teleseismic earthquakes, nor have any used interferometric methods based on ambient noise. In this study, we apply an interferometic method based on ambient seismic noise aimed at imaging the shallow shear velocity structure beneath the Coso Geothermal Area. Data are from a PASSCAL experiment deployed between 1998 and 2000 and regional broad-band seismometers operated by CalTech. Cross-correlations are performed between each pair of the COSO PASSCAL and CalTech stations for 15 months from March 1999 to May 2000. After compensating for or correcting instrumental irregularities and selecting reliable Rayleigh wave dispersion measurements from the inter-station cross-correlations, we obtain about 300 measurement paths as the basis for surface wave tomography at periods from 3 to 10 sec. Uncertainties of both group and phase velocity measurements are estimated using the variations among the dispersion curves from one-month cross-correlations in different months. The resulting dispersion maps reveal low group and phase velocities in the COSO volcanic field, especially at 3 sec period for group velocities, and high velocities to the east of the COSO volcanic field. The velocity variations are consistent with surface geological features, which encourages future inversion for 3-D shear velocity structure in the top 15 km of the crust.

  18. New chemical and original isotopic data on waters from El Tatio geothermal field, Northern Chile

    International Nuclear Information System (INIS)

    Cortecci, Gianni; Mussi, Mario; Boschetti, Tiziano; Herrera Lameli, Christian; Mucchino, Claudio; Barbieri, Maurizio

    2005-01-01

    The El Tatio geothermal field is located at an height of 4200-4300 m on the Cordillera de los Andes (Altiplano). Geysers, hot pools and mudpots in the geothermal field and local meteoric waters were sampled in April 2002 and analyzed for major and trace elements, δ 2 H, δ 18 O and 3 H of water, δ 34 S and δ 18 O of dissolved sulfate, δ 13 C of dissolved total carbonate, and 87 Sr/ 86 Sr ratio of aqueous strontium. There are two different types of thermal springs that field, that are chloride-rich water and sulfate-rich water. The chemical composition of chloride springs is controlled by magma degassing and by water-rock interaction processes. Sulfate springs are fed by shallow meteoric water heated by ascending gases. In keeping with the geodynamic setting and nature of the reservoir rocks, chloride water is rich in As, B, Cs, Li; on the other hand, sulfate waste is enriched only in B relative to local meteoric water. Alternatively to a merely meteoric model, chloride waters can be interpreted as admixtures of meteoric and magmatic (circa andesitic) water, which moderately exchanges oxygen isotopes with rocks at a chemical Na/K temperature of about 270degC in the main reservoir, and then undergoes loss of vapor (and eventually mixing with shallow water) and related isotopic effects ascent to the surface. These chloride waters do not present tritium and can be classified as submodern (pre-1952). A chloride content of 5,400 mg/l is estimated in the main reservoir, for which δ 2 H and δ 18 O values, respectively of -78 per mille and -6.9 per mille, are calculated applying the multistage-steam separation isotopic effects between liquid and vapor. From these data, the meteoric recharge (Cl≅0 mg/l) of the main reservoir should approach a composition of -107 per mille in δ 2 H and -14.6 per mille in δ 18 O, when a magmatic water of δ 2 H=-20 per mille, δ 18 O=+10 per mille and Cl=17,500 mg/l is assumed. The 87 Sr/ 86 ratios of the hot springs are quite

  19. World geothermal congress

    International Nuclear Information System (INIS)

    Povarov, O.A.; Tomarov, G.V.

    2001-01-01

    The World geothermal congress took place in the period from 28 May up to 10 June 2000 in Japan. About 2000 men from 43 countries, including specialists in the area of developing geothermal fields, creating and operating geothermal electrical and thermal plants and various systems for the earth heat application, participated in the work of the Congress. It was noted at the Congress, that development of the geothermal power engineering in the world is characterized by the large-scale application of geothermal resources for the electrical energy generation [ru

  20. Success in geothermal development

    International Nuclear Information System (INIS)

    Stefansson, V.

    1992-01-01

    Success in geothermal development can be defined as the ability to produce geothermal energy at compatible energy prices to other energy sources. Drilling comprises usually the largest cost in geothermal development, and the results of drilling is largely influencing the final price of geothermal energy. For 20 geothermal fields with operating power plants, the ratio between installed capacity and the total number of well in the field is 1.9 MWe/well. The drilling history in 30 geothermal fields are analyzed by plotting the average cumulative well outputs as function of the number of wells drilled in the field. The range of the average well output is 1-10 MWe/well with the mean value 4.2 MWe/well for the 30 geothermal fields studied. A leaning curve is defined as the number of wells drilled in each field before the average output per well reaches a fairly constant value, which is characteristic for the geothermal reservoir. The range for this learning time is 4-36 wells and the average is 13 wells. In general, the average well output in a given field is fairly constant after some 10-20 wells has been drilled in the field. The asymptotic average well output is considered to be a reservoir parameter when it is normalized to the average drilling depth. In average, this reservoir parameter can be expressed as 3.3 MWe per drilled km for the 30 geothermal fields studied. The lifetime of the resource or the depletion time of the geothermal reservoir should also be considered as a parameter influencing the success of geothermal development. Stepwise development, where the reservoir response to the utilization for the first step is used to determine the timing of the installment of the next step, is considered to be an appropriate method to minimize the risk for over investment in a geothermal field

  1. Numerical Studies of the Heat and Mass Transport in the Cerro Prieto Geothermal Field, Mexico

    Science.gov (United States)

    Lippmann, M. J.; Bodavarsson, G. S.

    1983-06-01

    Numerical simulation techniques are employed in studies of the natural flow of heat and mass through the Cerro Prieto reservoir, Mexico and of the effects of exploitation on the field's behavior. The reservoir model is a two-dimensional vertical east to west-southwest cross section, which is based on a recent hydrogeologic model of this geothermal system. The numerical code MULKOM is used in the simulation studies. The steady state pressure and temperature distributions are computed and compared against observed preproduction pressures and temperatures; a reasonable match is obtained. A natural hot water recharge rate of about 1×10-2 kg/s per meter of field length (measured in a north-south direction) is obtained. The model is then used to simulate the behavior of the field during the 1973-1978 production period. The response of the model to fluid extraction agrees to what has been observed in the field or postulated by other authors. There is a decrease in temperatures and pressures in the produced region. No extensive two-phase zone develops in the reservoir because of the strong fluid recharge. Most of the fluid recharging the system comes from colder regions located above and west of the produced reservoir.

  2. Geological, Geophysical, And Thermal Characteristics Of The Salton Sea Geothermal Field, California

    Energy Technology Data Exchange (ETDEWEB)

    Younker, L.W.; Kasameyer, P. W.; Tewhey, J. D.

    1981-01-01

    The Salton Sea Geothermal Field is the largest water-dominated geothermal field in the Salton Trough in Southern California. Within the trough, local zones of extension among active right-stepping right-lateral strike-slip faults allow mantle-derived magmas to intrude the sedimentary sequence. The intrusions serves as heat sources to drive hydrothermal systems. We can characterize the field in detail because we have an extensive geological and geophysical data base. The sediments are relatively undeformed and can be divided into three categories as a function of depth: (1) low-permeability cap rock, (2) upper reservoir rocks consisting of sandstones, siltstones, and shales that were subject to minor alterations, and (3) lower reservoir rocks that were extensively altered. Because of the alteration, intergranular porosity and permeability are reduced with depth. permeability is enhanced by renewable fractures, i.e., fractures that can be reactivated by faulting or natural hydraulic fracturing subsequent to being sealed by mineral deposition. In the central portion of the field, temperature gradients are high near the surface and lower below 700 m. Surface gradients in this elliptically shaped region are fairly constant and define a thermal cap, which does not necessarily correspond to the lithologic cap. At the margin of the field, a narrow transition region, with a low near-surface gradient and an increasing gradient at greater depths, separates the high temperature resource from areas of normal regional gradient. Geophysical and geochemical evidence suggest that vertical convective motion in the reservoir beneath the thermal cap is confined to small units, and small-scale convection is superimposed on large-scale lateral flow of pore fluid. Interpretation of magnetic, resistivity, and gravity anomalies help to establish the relationship between the inferred heat source, the hydrothermal system, and the observed alteration patterns. A simple hydrothermal model is

  3. Integrated Resistivity and Ground Penetrating Radar Observations of Underground Seepage of Hot Water at Blawan-Ijen Geothermal Field

    Directory of Open Access Journals (Sweden)

    Sukir Maryanto

    2016-01-01

    Full Text Available Geothermal resource investigation was accomplished for Blawan-Ijen geothermal system. Blawan geothermal field which located in the northern part of Ijen caldera presents hydrothermal activity related with Pedati fault and local graben. There were about 21 hot springs manifestations in Blawan-Ijen area with calculated temperature about 50°C. We have performed several geophysical studies of underground seepage of hot water characterization. The geoelectric resistivity and GPR methods are used in this research because both of them are very sensitive to detect the presence of hot water. These preliminary studies have established reliable methods for hydrothermal survey that can accurately investigate the underground seepage of hot water with shallow depth resolution. We have successfully identified that the underground seepage of hot water in Blawan geothermal field is following the fault direction and river flow which is evidenced by some hot spring along the Banyu Pahit river with resistivity value less than 40 Ωm and medium conductivity.

  4. Fracture permeability in the Matalibong-25 corehole, Tiwi geothermal field, Philippines

    Energy Technology Data Exchange (ETDEWEB)

    Nielson, Dennis L.; Clemente, Wilson C.; Moore, Joseph N.; Powell, Thomas S.

    1996-01-24

    The Tiwi geothermal field is located in southern Luzon on the northeast flank of Mt. Malinao, an andesitic volcano that was active 0.5 to 0.06 Ma. Matalibong-25 (Mat-25) was drilled through the Tiwi reservoir to investigate lithologic and fracture controls on reservoir permeability and to monitor reservoir pressure. Continuous core was collected from 2586.5 to 8000 feet (789 to 2439 meters) with greater than 95% recovery. The reservoir rocks observed in Mat-25 consist mainly of andesitic and basaltic lavas and volcaniclastic rocks above 6600 feet depth (2012 meters) and andesitic sediments below, with a transition from subaerial to subaqueous (marine) deposition at 5250 feet (1601 meters). The rocks in the reservoir interval are strongly altered and veined. Common secondary minerals include chlorite, illite, quartz, calcite, pyrite, epidote, anhydrite, adularia and wairakite. An 39Ar/40Ar age obtained on adularia from a quartz-adularia-cemented breccia at a depth of 6066 feet (2012 meters) indicates that the hydrothermal system has been active for at least 320,000 years. Fractures observed in the core were classified as either veins (sealed) or open fractures, with the latter assumed to represent fluid entries in the geothermal system. Since the core was not oriented, only fracture frequency and dip angle with respect to the core axis could be determined. The veins and open fractures are predominantly steeply dipping and have a measured density of up to 0.79 per foot in the vertical well. Below 6500 feet (1982 meters) there is a decrease in fracture intensity and in fluid inclusion temperatures.

  5. Predicting thermal conductivity of rocks from the Los Azufres geothermal field, Mexico, from easily measurable properties

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Alfonso; Contreras, Enrique; Dominquez, Bernardo A.

    1988-01-01

    A correlation is developed to predict thermal conductivity of drill cores from the Los Azufres geothermal field. Only andesites are included as they are predominant. Thermal conductivity of geothermal rocks is in general scarce and its determination is not simple. Almost all published correlations were developed for sedimentary rocks. Typically, for igneous rocks, chemical or mineral analyses are used for estimating conductivity by using some type of additive rule. This requires specialized analytical techniques and the procedure may not be sufficiently accurate if, for instance, a chemical analysis is to be changed into a mineral analysis. Thus a simple and accurate estimation method would be useful for engineering purposes. The present correlation predicts thermal conductivity from a knowledge of bulk density and total porosity, properties which provide basic rock characterization and are easy to measure. They may be determined from drill cores or cuttings, and the procedures represent a real advantage given the cost and low availability of cores. The multivariate correlation proposed is a quadratic polynomial and represents a useful tool to estimate thermal conductivity of igneous rocks since data on this property is very limited. For porosities between 0% and 25%, thermal conductivity is estimated with a maximum deviation of 22% and a residual mean square deviation of 4.62E-3 n terms of the log{sub 10}(k{rho}{sub b}) variable. The data were determined as part of a project which includes physical, thermal and mechanical properties of drill cores from Los Azufres. For the correlation, sixteen determinations of thermal conductivity, bulk density and total porosity are included. The conductivity data represent the first determinations ever made on these rocks.

  6. Geothermal energy in Jordan

    International Nuclear Information System (INIS)

    Al-Dabbas, Moh'd A. F.

    1993-11-01

    The potential of geothermal energy utilization in Jordan was discussed. The report gave a summary of the location of geothermal anomalies in Jordan, and of ongoing projects that utilize geothermal energy for greenhouse heating, fish farming, refrigeration by absorption, and water desalination of deep aquifers. The problems facing the utilization of geothermal energy in Jordan were identified to be financial (i.e. insufficient allocation of local funding, and difficulty in getting foreign financing), and inadequate expertise in the field of geothermal energy applications. The report gave a historical account of geothermal energy utilization activities in Jordan, including cooperation activities with international organizations and foreign countries. A total of 19 reports already prepared in the areas of geochemical and hydrological studies were identified. The report concluded that the utilization of geothermal energy offers some interesting economic possibilities. (A.M.H.). 4 refs. 1 map

  7. Recover Act. Verification of Geothermal Tracer Methods in Highly Constrained Field Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Matthew W. [California State University, Long Beach, CA (United States)

    2014-05-16

    The prediction of the geothermal system efficiency is strong linked to the character of the flow system that connects injector and producer wells. If water flow develops channels or “short circuiting” between injection and extraction wells thermal sweep is poor and much of the reservoir is left untapped. The purpose of this project was to understand how channelized flow develops in fracture geothermal reservoirs and how it can be measured in the field. We explored two methods of assessing channelization: hydraulic connectivity tests and tracer tests. These methods were tested at a field site using two verification methods: ground penetrating radar (GPR) images of saline tracer and heat transfer measurements using distributed temperature sensing (DTS). The field site for these studies was the Altona Flat Fractured Rock Research Site located in northeastern New York State. Altona Flat Rock is an experimental site considered a geologic analog for some geothermal reservoirs given its low matrix porosity. Because soil overburden is thin, it provided unique access to saturated bedrock fractures and the ability image using GPR which does not effectively penetrate most soils. Five boreholes were drilled in a “five spot” pattern covering 100 m2 and hydraulically isolated in a single bedding plane fracture. This simple system allowed a complete characterization of the fracture. Nine small diameter boreholes were drilled from the surface to just above the fracture to allow the measurement of heat transfer between the fracture and the rock matrix. The focus of the hydraulic investigation was periodic hydraulic testing. In such tests, rather than pumping or injection in a well at a constant rate, flow is varied to produce an oscillating pressure signal. This pressure signal is sensed in other wells and the attenuation and phase lag between the source and receptor is an indication of hydraulic connection. We found that these tests were much more effective than constant

  8. Absence of dynamic triggering inside the Coso geothermal field following the 1992 Mw7.3 Landers earthquake: an indication of low pore pressure?

    Science.gov (United States)

    Zhang, Q.; Lin, G.; Zhan, Z.

    2013-12-01

    Geothermal fields are often considered to be susceptible to dynamic triggering because they are likely to be at near-critical stress state and involved with fluid movement in tectonically active extensional regimes. The 1992 Mw7.3 Landers earthquake dynamically triggered widespread earthquakes, especially at active geothermal areas, such as Long Valley, the Geysers and Coso (Hill et al., 1993). Dynamic triggering in Coso, southern California, is often referred to the broad area around the geothermal field. In this study, we investigate the spatial distribution of triggered events in Coso following the Landers earthquake and find no triggered events inside the geothermal field. The Coso geothermal production area is around 6*10 km2, confined between the Coso Hot Springs and the Sugarloaf Mountain. We estimate the b-value and completeness magnitude from a relocation catalog in the geothermal field to be 1.09 and M1.0, respectively. Based on the relocations for events above magnitude 1.0, we select seven small areas to compare the seismicity rate before and after the Landers earthquake. No seismicity was detected inside the geothermal field within 30 days after the Landers earthquake, whereas the surrounding fault zones outside of the geothermal field display strong elevated seismicity rate, including a segment of the Airport Lake Fault zone where the background seismicity was low before the Landers earthquake. The production area lacking of triggered events correlates with strong subsidence from the InSAR study by Fialko and Simons (2000), which may indicate low pore pressure in the area. This observation is further supported by the low Vp/Vs ratios from our recent 3D tomography model since Vp/Vs ratio decreases with pore pressure reduction (Ito et al., 1979, Christensen, 1984). Our results imply that the geothermal production of hot water and steam in Coso may have decreased the pore pressure and brought the stress state away from the critical state.

  9. Origin, evolution and geothermometry of the thermal waters in the Gölemezli Geothermal Field, Denizli Basin (SW Anatolia, Turkey)

    Science.gov (United States)

    Alçiçek, Hülya; Bülbül, Ali; Brogi, Andrea; Liotta, Domenico; Ruggieri, Giovanni; Capezzuoli, Enrico; Meccheri, Marco; Yavuzer, İbrahim; Alçiçek, Mehmet Cihat

    2018-01-01

    The Gölemezli Geothermal Field (GGF) is one of the best known geothermal fields in western Anatolia (Turkey). The exploited fluids are of meteoric origin, mixed with deep magmatic fluids, which interacted with the metamorphic rocks of the Menderes Massif. The geothermal fluids are channeled along Quaternary faults belonging to the main normal faults system delimiting the northern side of the Denizli Basin and their associated transfer zones. In this study, hydrochemical and isotopic analyses of the thermal and cold waters allow us to determine water-rock interactions, fluid paths and mixing processes. Two groups of thermal waters have been distinguished: (i) Group 1A, comprising Na-SO4 type and Ca-SO4 type and (ii) Group 1B, only consisting Ca-HCO3 type waters. Differently, two groups were recognized in the cold waters: (i) Group 2A, corresponding to Ca-HCO3 type and (ii) Group 2B, including Mg-HCO3 type. Their geochemical characteristics indicate interactions with the Paleozoic metamorphic rocks of the Menderes Massif and with the Neogene lacustrine sedimentary rocks. Dissolution of host rock and ion-exchange reactions modify thermal water composition in the reservoir of the GGF. High correlation in some ionic ratios and high concentrations of some minor elements suggest an enhanced water-rock interaction. None of the thermal waters has been reached a complete chemical re-equilibrium, possibly as a result of mixing with cold water during their pathways. Geothermal reservoir temperatures are calculated in the range of 130-210°C for the Gölemezli field. Very negative δ18O and δ2H isotopic ratios are respectively between -8.37 and -8.13‰ and -61.09 and -59.34‰ for the SO4-rich thermal waters, and ca. - 8.40 and -8.32‰ and - 57.80 and -57.41‰ for the HCO3-rich thermal waters. Low tritium (rock volumes. Volatile ascent from deep magmatic sources through crustal structures can explain the occurrence of mantle volatiles at shallow depth in the Denizli Basin

  10. Observations of Dynamic Triggering in the Coso Geothermal Field 2004-2013

    Science.gov (United States)

    Alfaro-Diaz, R. A.; Velasco, A. A.; Kilb, D.; Pankow, K. L.

    2015-12-01

    Over a ten-year period (2004-2013), we search for remotely triggered seismicity utilizing data from EarthScope's USArray Transportable Array (TA) and the Southern California Seismic Network. In particular, we apply an STA/LTA approach for 154 M ≥ 7 earthquakes and use local earthquake catalogs (magnitude of completeness 0.8) to investigate triggered seismicity in the Coso Geothermal Field (CGF). Of 154 remote mainshocks, we find 34 mainshocks (22%) show triggered seismicity based on the increase in the magnitude and frequency (rate) from pre-mainshock to post-mainshock auto-detection rates and cataloged seismicity. We observe both instantaneous (16) and delayed (18) triggering within ± 5 hours of the mainshock. We also find that remote triggering in the CGF region is enhanced by the orientation (back-azimuth) of the passing seismic (mostly surface) waves in relation to the local stress field (NNE-SSW trending faults), and there appears little correlation between the peak dynamic stress and event triggering. Our results suggest that remote dynamic triggering strongly depends on the regional stress orientation, and for the CGF region the stress threshold for remote M ≥ 7 earthquakes is not critically important for dynamic triggering.

  11. Salton Sea Geothermal Field, California, as a near-field natural analog of a radioactive waste repository in salt

    Science.gov (United States)

    Elders, W. A.; Cohen, L. H.

    1983-11-01

    Since high concentrations of radionuclides and high temperatures are not normally encountered in salt domes or beds, finding an exact geologic analog of expected near-field conditions in a mined nuclear waste repository in salt will be difficult. The Salton Sea Geothermal Field, however, provides an opportunity to investigate the migration and retardation of naturally occurring U, Th, Ra, Cs, Sr and other elements in hot brines which have been moving through clay-rich sedimentary rocks for up to 100,000 years. The more than thirty deep wells drilled in this field to produce steam for electrical generation penetrate sedimentary rocks containing concentrated brines where temperatures reach 3650C at only 2 km depth. The brines are primarily Na, K, Ca chlorides with up to 25% of total dissolved solids; they also contain high conentrations of metals such as Fe, Mn, Li, Zn, and Pb. This report describes the geology, geophysics and geochemistry of this system as a prelude to a study of the mobility of naturally occurring radionuclides and radionuclide analogs within it.

  12. Salton Sea Geothermal Field, California, as a near-field natural analog of a radioactive waste repository in salt

    International Nuclear Information System (INIS)

    Elders, W.A.; Cohen, L.H.

    1983-11-01

    Since high concentrations of radionuclides and high temperatures are not normally encountered in salt domes or beds, finding an exact geologic analog of expected near-field conditions in a mined nuclear waste repository in salt will be difficult. The Salton Sea Geothermal Field, however, provides an opportunity to investigate the migration and retardation of naturally occurring U, Th, Ra, Cs, Sr and other elements in hot brines which have been moving through clay-rich sedimentary rocks for up to 100,000 years. The more than thirty deep wells drilled in this field to produce steam for electrical generation penetrate sedimentary rocks containing concentrated brines where temperatures reach 365 0 C at only 2 km depth. The brines are primarily Na, K, Ca chlorides with up to 25% of total dissolved solids; they also contain high concentrations of metals such as Fe, Mn, Li, Zn, and Pb. This report describes the geology, geophysics and geochemistry of this system as a prelude to a study of the mobility of naturally occurring radionuclides and radionuclide analogs within it. The aim of this study is to provide data to assist in validating quantitative models of repository behavior and to use in designing and evaluating waste packages and engineered barriers. 128 references, 33 figures, 13 tables

  13. Salton Sea Geothermal Field, California, as a near-field natural analog of a radioactive waste repository in salt

    Energy Technology Data Exchange (ETDEWEB)

    Elders, W.A.; Cohen, L.H.

    1983-11-01

    Since high concentrations of radionuclides and high temperatures are not normally encountered in salt domes or beds, finding an exact geologic analog of expected near-field conditions in a mined nuclear waste repository in salt will be difficult. The Salton Sea Geothermal Field, however, provides an opportunity to investigate the migration and retardation of naturally occurring U, Th, Ra, Cs, Sr and other elements in hot brines which have been moving through clay-rich sedimentary rocks for up to 100,000 years. The more than thirty deep wells drilled in this field to produce steam for electrical generation penetrate sedimentary rocks containing concentrated brines where temperatures reach 365/sup 0/C at only 2 km depth. The brines are primarily Na, K, Ca chlorides with up to 25% of total dissolved solids; they also contain high concentrations of metals such as Fe, Mn, Li, Zn, and Pb. This report describes the geology, geophysics and geochemistry of this system as a prelude to a study of the mobility of naturally occurring radionuclides and radionuclide analogs within it. The aim of this study is to provide data to assist in validating quantitative models of repository behavior and to use in designing and evaluating waste packages and engineered barriers. 128 references, 33 figures, 13 tables.

  14. A time-lapse gravity survey of the Coso geothermal field, China Lake Naval Air Weapons Station, California

    Science.gov (United States)

    Phelps, Geoffrey; Cronkite-Ratcliff, Collin; Blake, Kelly

    2018-04-19

    We have conducted a gravity survey of the Coso geothermal field to continue the time-lapse gravity study of the area initiated in 1991. In this report, we outline a method of processing the gravity data that minimizes the random errors and instrument bias introduced into the data by the Scintrex CG-5 relative gravimeters that were used. After processing, the standard deviation of the data was estimated to be ±13 microGals. These data reveal that the negative gravity anomaly over the Coso geothermal field, centered on gravity station CER1, is continuing to increase in magnitude over time. Preliminary modeling indicates that water-table drawdown at the location of CER1 is between 65 and 326 meters over the last two decades. We note, however, that several assumptions on which the model results depend, such as constant elevation and free-water level over the study period, still require verification.

  15. Three-dimensional numerical reservoir simulation of the EGS Demonstration Project at The Geysers geothermal field

    Science.gov (United States)

    Borgia, Andrea; Rutqvist, Jonny; Oldenburg, Curt M.; Hutchings, Lawrence; Garcia, Julio; Walters, Mark; Hartline, Craig; Jeanne, Pierre; Dobson, Patrick; Boyle, Katie

    2013-04-01

    The Enhanced Geothermal System (EGS) Demonstration Project, currently underway at the Northwest Geysers, California, aims to demonstrate the feasibility of stimulating a deep high-temperature reservoir (up to 400 °C) through water injection over a 2-year period. On October 6, 2011, injection of 25 l/s started from the Prati 32 well at a depth interval of 1850-2699 m below sea level. After a period of almost 2 months, the injection rate was raised to 63 l/s. The flow rate was then decreased to 44 l/s after an additional 3.5 months and maintained at 25 l/s up to August 20, 2012. Significant well-head pressure changes were recorded at Prati State 31 well, which is separated from Prati 32 by about 500 m at reservoir level. More subdued pressure increases occur at greater distances. The water injection caused induced seismicity in the reservoir in the vicinity of the well. Microseismic monitoring and interpretation shows that the cloud of seismic events is mainly located in the granitic intrusion below the injection zone, forming a cluster elongated SSE-NNW (azimuth 170°) that dips steeply to the west. In general, the magnitude of the events increases with depth and the hypocenter depth increases with time. This seismic cloud is hypothesized to correlate with enhanced permeability in the high-temperature reservoir and its variation with time. Based on the existing borehole data, we use the GMS™ GUI to construct a realistic three-dimensional (3D) geologic model of the Northwest Geysers geothermal field. This model includes, from the top down, a low permeability graywacke layer that forms the caprock for the reservoir, an isothermal steam zone (known as the normal temperature reservoir) within metagraywacke, a hornfels zone (where the high-temperature reservoir is located), and a felsite layer that is assumed to extend downward to the magmatic heat source. We then map this model onto a rectangular grid for use with the TOUGH2 multiphase, multicomponent, non

  16. Sulfate mineralogy of fumaroles in the Salton Sea Geothermal Field, Imperial County, California

    Science.gov (United States)

    Adams, Paul M.; Lynch, David K.; Buckland, Kerry N.; Johnson, Patrick D.; Tratt, David M.

    2017-11-01

    The Salton Trough lies in the transition between the San Andreas Fault and oblique spreading centers and transform faults in the Gulf of California. The Salton Sea Geothermal Field is the northernmost expression of those spreading centers. In 2007 two ammonia-emitting fumarole fields that had been submerged beneath the Salton Sea were exposed for the first time in nearly 50 years. As the sea level continued to drop these fields have developed a number of boiling pools, mud pots, gryphons and a unique suite of ammonium sulfate minerals. These have been studied over time with long-wave infrared remote sensing coupled with ground truth surveys backed by laboratory analyses of the minerals. Many vents lie at the center of concentric rings of mineralization with systematic occurrence of different minerals from center to edge. Three semi-concentric zones (fumarole, transition and evaporite) have been defined with respect to ammonia-emitting vents and bubbling pools. The scale of these zones range from several meters, localized around individual vents, to that of the fumarole fields as a whole. The fumarole zone is closest to the vents and locally contains cavernous sulfur crystals and significant deposits of gypsum, mascagnite, boussingaultite and other ammonium sulfates. The transition zone comprises a dark brown surficial band of inconspicuous sodium nitrate underlain by anhydrite/bassanite that is thought to have formed by ammonia-oxidizing microbes interacting with the ammonium sulfates of the outer fumarole zone. The evaporite zone is the outermost and contains blödite, thenardite and glauberite, which are typical of the sulfates associated with the shoreline of the Salton Sea. Remote sensing has shown that the mineral zones have remained relatively stable from 2013 to 2017, with minor variations depending on rainfall, temperature and levels of agricultural runoff.

  17. Physical properties of two core samples from Well 34-9RD2 at the Coso geothermal field, California

    Science.gov (United States)

    Morrow, C.A.; Lockner, D.A.

    2006-01-01

    The Coso geothermal field, located along the Eastern California Shear Zone, is composed of fractured granitic rocks above a shallow heat source. Temperatures exceed 640 ?F (~338 ?C) at a depth of less than 10000 feet (3 km). Permeability varies throughout the geothermal field due to the competing processes of alteration and mineral precipitation, acting to reduce the interconnectivity of faults and fractures, and the generation of new fractures through faulting and brecciation. Currently, several hot regions display very low permeability, not conducive to the efficient extraction of heat. Because high rates of seismicity in the field indicate that the area is highly stressed, enhanced permeability can be stimulated by increasing the fluid pressure at depth to induce faulting along the existing network of fractures. Such an Enhanced Geothermal System (EGS), planned for well 46A-19RD, would greatly facilitate the extraction of geothermal fluids from depth by increasing the extent and depth of the fracture network. In order to prepare for and interpret data from such a stimulation experiment, the physical properties and failure behavior of the target rocks must be fully understood. Various diorites and granodiorites are the predominant rock types in the target area of the well, which will be pressurized from 10000 feet measured depth (MD) (3048m MD) to the bottom of the well at 13,000 feet MD (3962 m MD). Because there are no core rocks currently available from well 46A-19RD, we report here on the results of compressive strength, frictional sliding behavior, and elastic measurements of a granodiorite and diorite from another well, 34-9RD2, at the Coso site. Rocks cored from well 34-9RD2 are the deepest samples to date available for testing, and are representative of rocks from the field in general.

  18. Differentiating induced and natural seismicity using space-time-magnitude statistics applied to the Coso Geothermal Field

    Science.gov (United States)

    Schoenball, Martin; Davatzes, Nicholas C.; Glen, Jonathan M. G.

    2016-04-01

    A remarkable characteristic of earthquakes is their clustering in time and space, displaying their self-similarity. It remains to be tested if natural and induced earthquakes share the same behavior. The Coso Geothermal Field is one of the most seismically active areas in California and features an abundance of natural seismicity due to active tectonics and a large number of induced earthquakes resulting from geothermal power production since 1987. We study natural and induced earthquakes comparatively in the same tectonic setting at the Coso Geothermal Field. Covering the pre- and co-production periods from 1981 to 2013, we analyze inter-event times, spatial dimension, and frequency-size distributions for natural and induced earthquakes. Individually, these distributions are statistically indistinguishable. Determining the distribution of nearest-neighbor distances in a combined space-time-magnitude metric lets us identify the triggering relationship of an earthquake pair. Nearest-neighbors pairs naturally fall into two populations that categorize it as either clustered (triggered) or background (independent) events. Compared to natural earthquakes, induced earthquakes feature a larger fraction of background seismicity. Furthermore, they contain a population of independent pairs at large magnitude-rescaled times and small magnitude-rescaled distances. Unlike tectonic processes, stress changes by the field operations occur on much smaller time scale and appear strong enough to drive small-scale faults through several seismic cycles. As a result, we record seismicity close to previous hypocenters after a period on the order of a year.

  19. Extension of the Cerro Prieto field and zones in the Mexicali Valley with geothermal possibilities in the future

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca L, H.L.; de la Pena L, A.; Puente C, I.; Diaz C, E.

    1981-01-01

    This study concerns the possible extension of the Cerro Prieto field and identification of other zones in the Mexicali Valley with geothermal development potential by assessing the structural geologic conditions in relation to the regional tectonic framework and the integration of geologic and geophysical surveys carried out at Cerro Prieto. This study is based on data obtained from the wells drilled to date and the available geological and geophysical information. With this information, a geologic model of the field is developed as a general description of the geometry of what might be the geothermal reservoir of the Cerro Prieto field. In areas with geothermal potential within the Mexicali Valley, the location of irrigation wells with anomalous temperatures was taken as a point of departure for subsequent studies. Based on this initial information, gravity and magnetic surveys were made, followed by seismic reflection and refraction surveys and the drilling of 1200-m-deep multiple-use wells. Based on the results of the final integration of these studies with the geology of the region, it is suggested that the following areas should be explored further: east of Cerro Prieto, Tulecheck, Riito, Aeropuerto-Algodones, and San Luis Rio Colorado, Sonora.

  20. Deep geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The hot-dry-rocks located at 3-4 km of depth correspond to low permeable rocks carrying a large amount of heat. The extraction of this heat usually requires artificial hydraulic fracturing of the rock to increase its permeability before water injection. Hot-dry-rocks geothermics or deep geothermics is not today a commercial channel but only a scientific and technological research field. The Soultz-sous-Forets site (Northern Alsace, France) is characterized by a 6 degrees per meter geothermal gradient and is used as a natural laboratory for deep geothermal and geological studies in the framework of a European research program. Two boreholes have been drilled up to 3600 m of depth in the highly-fractured granite massif beneath the site. The aim is to create a deep heat exchanger using only the natural fracturing for water transfer. A consortium of german, french and italian industrial companies (Pfalzwerke, Badenwerk, EdF and Enel) has been created for a more active participation to the pilot phase. (J.S.). 1 fig., 2 photos

  1. Modelling the Interaction of Multiple Borehole Heat Exchangers in Shallow Geothermal Fields

    Science.gov (United States)

    Shao, H.; Schelenz, S.; Kist, N.; Shim, B. O.; Bucher, A.; Kolditz, O.

    2014-12-01

    The utilization of Borehole Heat Exchanger (BHE) to transfer heat from the shallow subsurface has been a common practice for the Ground Source Heat Pump (GSHP) system. To represent realistic application scenarios for numerical simulations of such systems, saturated and unsaturated conditions as well as heterogeneous soil properties have to be considered. Analytical solutions such as the Moving Finite Line Source (MFLS) model are not flexible enough to capture the full dynamics of the system. Furthermore, application examples with a high density of installed BHEs exist. There, temperature plumes produced by the individual BHEs may start to interact with each other and lead to lower thermal output. To simulate this interaction, a dual continuum approach has been implemented into the open-source FEM simulator OpenGeoSys (OGS). The model is capable of simulating the temperature evolution around the BHE, with the consideration of both saturated and unsaturated groundwater flow processes in the surrounding soil. Instead of imposing Dirichlet or Neumann type of boundary condition at the location of a BHE, the newly developed model allows the user to specify inflow refrigerant temperature and flow rate as the driving force of heat transport. In a benchmark with homogeneous soil properties and fully saturated condition, temperature evolution predicted by the numerical model has been verified against MFLS analytical solution. In a second benchmark, the model simulated outflow temperature is validated by comparing to field measured data from a Thermal Response Test (TRT), provided by the Korean Institute of Geoscience and Mineral Resources (KIGAM) in Dajeon, South Korea. After simulating several shallow geothermal scenarios of multiple BHEs operating in close vicinity, we find that the super-imposed MFLS based analytical solution predicts similar temperature distribution, provided the heat extraction from each BHE is relatively low. However, when the heat exchange rate is

  2. The Galapagos Spreading Centre at 86o W: a detailed geothermal field study.

    Science.gov (United States)

    Green, K.E.; Von Herzen, R. P.; Williams, D.L.

    1981-01-01

    We report here measurements of the heat flow field of the Galapagos Spreading Center on crust of age less than 1.0 m.y. The 443 measurements in an area of about 570 km2 reveal the general planform of the geothermal flux and permit the first truly areal estimate of the near-axis conductive heat flux. The intrusion process and associated hydrothermal circulation dominate the surface heat flow pattern, with circulation apparently continuing beyong the limits of our survey. The areal average of the conductive heat flux is 7.1+-0.8 HFU (295+-33 m W/m2), about one-third the heat flux predicted by plate models. The remaining heat is apparently removed by venting of hydrothermal waters at the spreading axis and through basalt outcrops and hydrothermal mounds off axis. The pattern of surface heat flux is lineated parallel to the axis and the strongly lineated topography. Sharp lateral gradients in the heat flow, greater than 10 HFU/km near escarpments and commonly expressed as high heat flow at the tops of the scarps and lower heat flow in the valleys, may indicate a local concentration of the circulation by surface fault systems and/or variable sediment thickness. -Authors

  3. Dynamic triggering of microearthquakes in the Long Valley Caldera and Coso Geothermal Field

    Science.gov (United States)

    Aiken, C.; Peng, Z.; Wu, C.

    2010-12-01

    Recent studies have shown that microearthquakes can be dynamically triggered by the passing of surface waves from regional and teleseismic events. However, the underlying physical mechanisms and the necessary conditions that favor dynamic triggering are still in debate. Here we conduct a systematic search of dynamically triggered microearthquakes around the Long Valley Caldera (LVC) and Coso Geothermal Field (CGF) in California. In each region, we select distant mainshocks in 1999-2010 with M>=7.5 over 1000 km away, or M>=5.5 between 100-2500 km. Next, we apply 2-8 or 2-16 Hz band-pass-filtered data to the three-component seismograms recorded at each region, and identify triggered events as high-frequency seismic energy during large-amplitude surface waves of regional and teleseismic events. We calculate the beta statistic values based on events listed in the local earthquake catalogs and hand-picked events from the envelope functions, and verify that the triggering is statistically significant. Based on this simple procedure, we have identified many distant events that have triggered activity in both regions, including the recent 08/03/2009 and 04/04/2010 Baja California earthquakes at regional distances, and the 02/27/2010 Chile earthquake at teleseismic distances. Our next steps are to examine the dynamic triggering thresholds in each region, and to understand the triggering potential in terms of frequency, amplitude, incident angle, and type of surface waves.

  4. Two-dimensional inversion of resistivity monitoring data from the Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, N.E.; Sasaki, Y.; Wilt, M.J.

    1985-03-01

    Two-dimensional iterative, least-squares inversions were performed on dc resistivity data obtained over the Cerro Prieto geothermal field at five successive times during the 1979-1983 period. The data were taken on a 20-km-long control line centered over the production region. Inversions were performed on the apparent resistivities after they were converted to percent changes in apparent resistivity relative to the base year data of 1979. The resulting solutions gave the percent change in resistivity within each of 47 rectangular blocks representing the reservoir and recharge regions. These changes are compared to and found consistent with hydrogeologic and recharge models proposed by other workers on the basis of geophysical well logs, well cuttings, well production, geochemical and reservoir engineering data. The solutions support the model of a reservoir that is being recharged mainly by cooler, less saline water, causing changes in both pore fluid resistivity and the extent of boiling near the wells. There may be a component of high-temperature recharge from below and to the east, but flow may be impeded by a two-phase zone. Notwithstanding the various sources of error and uncertainty in the data acquisition and 2-D inversions, repetitive, high precision dc resistivity monitoring seems to be a useful method for assessing reservoir conditions when used in conjunction with production and reservoir engineering data and analyses. 17 refs., 6 figs.

  5. Effect of variable frequency electromagnetic field on deposit formation in installations with geothermal water in Sijarinjska spa (Serbia

    Directory of Open Access Journals (Sweden)

    Stojiljković Dragan T.

    2011-01-01

    Full Text Available In this paper we have examined the effect of variable frequency electromagnetic field generated with a homemade device on deposit formation in installations with geothermal water from Sijarinjska Spa. The frequency alteration of the electromagnetic field in time was made by means of the sinusoidal and saw-tooth function. In laboratory conditions, with the flow of geothermal water at 0.015 l/s and temperature of 60 °C for 6 hours through a zig-zag glass pipe, a multiple decrease of total deposit has been achieved. By applying the saw-tooth and sinusoidal function, the decrease in contents of calcium and deposit has been achieved by 8 and 6 times, respectively. A device was also used on geothermal water installation in Sijarinjska Spa (Serbia, with the water flow through a 1'' diameter non-magnetic prochrome pipe at 0.15 l/s and temperature of 75 °C in a ten-day period. A significant decrease in total deposit and calcium in the deposit has also been achieved.

  6. Geothermal energy

    International Nuclear Information System (INIS)

    Rummel, F.; Kappelmeyer, O.; Herde, O.A.

    1992-01-01

    Objective of this brochure is to present the subject Geothermics and the possible use of geothermal energy to the public. The following aspects will be refered to: -present energy situation -geothermal potential -use of geothermal energy -environemental aspects -economics. In addition, it presents an up-dated overview of geothermal projects funded by the German government, and a list of institutions and companies active in geothermal research and developments. (orig./HP) [de

  7. An integrated deep electrical resistivity model of the Larderello geothermal field (Italy)

    Science.gov (United States)

    Rizzo, Enzo; Capozzoli, Luigi; De martino, Gregory; Godio, Alberto; Manzella, Adele; Perciante, Felice; Santilano, Alessandro

    2017-04-01

    A new deep electrical resistivity acquisition was carried out in Larderello geothermal area (Tuscania Region, Italy) by 3D Deep Electrical Resistivity Tomography (3D-DERT) and Magnetotelluric (M) acquisition. The investigated area is located close the Venelle2 well in the southern part of Larderello site, where there is the oldest field in the world under exploitation for power production (actual installed capacity is about 795 MWe). A vapour-dominated system is exploited to depth over 3500 m, with temperatures exceeding 350°C, from two different reservoirs. The Larderello area has been investigated by many geological and geophysical data of previous exploration projects but nowadays several critical issues on deep features of the field are still matter of debate, e.g., permeability distribution in the hydrothermal reservoir and the presence of fluids at supercritical condition at depth. The 3D-DERT system was designed by Surface-Surface and Surface-Hole electrode distributions in the area around Venelle2 well covering an area around 16km2. The well (kindly provided by Enel GP) was accessible down to 1.6 km with a temperature up to 250°C and a metallic casing down to 1 km. The in-hole thermal cable is characterized by n.12 flexible metallic electrodes with an electrodes space of 50m covering the open-hole portion (1050m-1600m). The surface electrodes are located around the Venelle2 hole on n.23 different positions connected to automatic dataloger to acquire the drop of potential and to transmitter device to inject the current (5-10A). The crucial task was the data processing, considering the large distance between the Tx and Rx systems that strongly reduces the signal to-noise ratio. To overcome this drawback, for each quadripole position the corresponding voltage signal was filtered, stored and processed with advanced statistical packages. The new 22 station were installed in the studied area and the data were carried out taking in account a permanent remote

  8. Environmental summary document for the Republic Geothermal, Inc. application for a geothermal loan guaranty project: 64 MW well field and 48 MW (net) geothermal power plant

    Energy Technology Data Exchange (ETDEWEB)

    Layton, D.W.; Powers, D.J.; Leitner, P.; Crow, N.B.; Gudiksen, P.H.; Ricker, Y.E.

    1979-07-01

    A comprehensive review and analysis is provided of the environmental consequences of (1) guaranteeing a load for the completion of the 64 MW well field and the 48 MW (net) power plant or (2) denying a guaranteed load that is needed to finish the project. Mitigation measures are discussed. Alternatives and their impacts are compared and some discussion is included on unavoidable adverse impacts. (MHR)

  9. Micro-seismicity, fault structure, and hydrologic compartmentalization within the Coso Geothermal Field, California, from 1996 until present

    Science.gov (United States)

    Kaven, J. O.; Hickman, S.; Davatzes, N. C.

    2010-12-01

    Geothermal reservoirs derive their capacity for fluid and heat transport in large part from faults and fractures. In conventional reservoirs, preexisting faults and fractures are the main conduits for fluid flow, while in enhanced geothermal systems (EGS), fractures and faults that are generated or enlarged (i.e., through increases in surface area and aperture) by hydraulic stimulation provide the main pathways for fluids and heat. In both types of geothermal systems, seismicity can be used to locate active faults, which can act either as conduits for along-fault fluid flow and/or barriers to cross-fault flow. We relocate 14 years of seismicity in the Coso Geothermal Field (CGF) using differential travel time relocations to improve our knowledge of the subsurface geologic and hydrologic structure. The seismicity at Coso has been recorded on a local network operated by the Navy Geothermal Program, which provides exceptional coverage and quality of data. Using the relocated catalog, we employ a newly developed algorithm for fault identification using the spatial seismicity distribution and a priori constraints on fault zone width derived from local geologic mapping. We avoid having to assume a particular fault-normal seismicity distribution by finding regions of maximum spatial seismicity density. Assuming a maximum spatial density is physically plausible since faults, or more accurately fault zones, generate most of the associated seismicity within a central fault core or damage zone. These techniques are developed for naturally occurring, active faults within the CGF on which seismicity is induced, in part, by changes in production and injection. They can also be applied to EGS if seismicity is induced within newly created fracture systems of comparable width or if this seismicity is generated by stimulating pre-existing, partially sealed faults. The results of the relocations reveal that clouds of seismicity shrink into distinct oblate volumes of seismicity in

  10. CFE-DOE agreement for the study of Mexican geothermal fields

    International Nuclear Information System (INIS)

    Le Bert, G.

    1990-01-01

    The Commission Federal de Electricidad (CFE) is the public utility in Mexico in charge of electric energy service, as well as harnessing geothermal resources. An agreement of mutual benefit to achieve a thorough understanding of the nature of geothermal reservoirs was signed on April 17, 1986 with the United State Department of Energy (DOE). The major objective of this agreement was to investigate how geothermal resources can best be explored and exploited. The duration of the agreement was for 3 years, but as happens in many long-term research programs, new topics and problems appear. Thus an extension of 5 years was foreseen. A brief discussion on the results of the main tasks is presented in this paper, as well as of the new tasks and scopes for the 5-year extension of the agreement

  11. Magmatic-like fluid source of the Chingshui geothermal field, NE Taiwan evidenced by carbonate clumped-isotope paleothermometry

    Science.gov (United States)

    Lu, Yi-Chia; Song, Sheng-Rong; Wang, Pei-Ling; Wu, Chung-Che; Mii, Horng-Sheng; MacDonald, John; Shen, Chuan-Chou; John, Cédric M.

    2017-11-01

    The Chingshui geothermal field, a moderate-temperature and water-dominated hydrothermal system, was the site of the first geothermal power plant in Taiwan. Many geological, geophysical and geochemical studies using more than 21 drilled wells have been performed since the 1960s. However, there are still controversies regarding the heat and fluid sources due to the tectonically complicated geological setting. To clarify the heat and fluid sources, we analyzed clumped isotopes with carbon and oxygen isotopic compositions of calcite scaling in geothermal wells and veins on outcrops and calculated the δ18O values of the source fluids. Two populations of δ18O values were calculated: -5.8 ± 0.8‰ VSMOW from scaling in the well and -1.0 ± 1.6‰ to 10.0 ± 1.3‰ VSMOW from outcropping calcite veins, indicative of meteoric and magmatic fluid sources, respectively. Meanwhile, two hydrothermal reservoirs at different depths have been identified by magnetotelluric (MT) imaging with micro-seismicity underneath this area. As a result, we propose a two-reservoir model: the shallow reservoir provides fluids from meteoric water for the scaling sampled from wells, whereas the deep reservoir provides magmatic fluids from deep marble decarbonization recorded in outcropping calcite veins.

  12. Status of geothermal energy in Ethiopia

    International Nuclear Information System (INIS)

    Endeshaw, A.; Belaineh, M.

    1990-01-01

    This paper reports that there are several identified geothermal localities in Ethiopia. Ten geothermal localities have been studied with regional assessments, while three localities have had pre-feasibility studies. In one area, the Aluto-Langano geothermal field, the feasibility studies have been completed. However, the geothermal resources have not been utilized yet except in the traditional baths

  13. Causality between expansion of seismic cloud and maximum magnitude of induced seismicity in geothermal field

    Science.gov (United States)

    Mukuhira, Yusuke; Asanuma, Hiroshi; Ito, Takatoshi; Häring, Markus

    2016-04-01

    Occurrence of induced seismicity with large magnitude is critical environmental issues associated with fluid injection for shale gas/oil extraction, waste water disposal, carbon capture and storage, and engineered geothermal systems (EGS). Studies for prediction of the hazardous seismicity and risk assessment of induced seismicity has been activated recently. Many of these studies are based on the seismological statistics and these models use the information of the occurrence time and event magnitude. We have originally developed physics based model named "possible seismic moment model" to evaluate seismic activity and assess seismic moment which can be ready to release. This model is totally based on microseismic information of occurrence time, hypocenter location and magnitude (seismic moment). This model assumes existence of representative parameter having physical meaning that release-able seismic moment per rock volume (seismic moment density) at given field. Seismic moment density is to be estimated from microseismic distribution and their seismic moment. In addition to this, stimulated rock volume is also inferred by progress of microseismic cloud at given time and this quantity can be interpreted as the rock volume which can release seismic energy due to weakening effect of normal stress by injected fluid. Product of these two parameters (equation (1)) provide possible seismic moment which can be released from current stimulated zone as a model output. Difference between output of this model and observed cumulative seismic moment corresponds the seismic moment which will be released in future, based on current stimulation conditions. This value can be translated into possible maximum magnitude of induced seismicity in future. As this way, possible seismic moment can be used to have feedback to hydraulic stimulation operation in real time as an index which can be interpreted easily and intuitively. Possible seismic moment is defined as equation (1), where D

  14. Composition and origin of rhyolite melt intersected by drilling in the Krafla geothermal field, Iceland

    Science.gov (United States)

    Zierenberg, R.A.; Schiffman, P.; Barfod, G.H.; Lesher, C.E.; Marks, N.E.; Lowenstern, Jacob B.; Mortensen, A.K.; Pope, E.C.; Bird, D.K.; Reed, M.H.; Friðleifsson, G.O.; Elders, W.A.

    2013-01-01

    The Iceland Deep Drilling Project Well 1 was designed as a 4- to 5-km-deep exploration well with the goal of intercepting supercritical hydrothermal fluids in the Krafla geothermal field, Iceland. The well unexpectedly drilled into a high-silica (76.5 % SiO2) rhyolite melt at approximately 2.1 km. Some of the melt vesiculated while extruding into the drill hole, but most of the recovered cuttings are quenched sparsely phyric, vesicle-poor glass. The phenocryst assemblage is comprised of titanomagnetite, plagioclase, augite, and pigeonite. Compositional zoning in plagioclase and exsolution lamellae in augite and pigeonite record changing crystallization conditions as the melt migrated to its present depth of emplacement. The in situ temperature of the melt is estimated to be between 850 and 920 °C based on two-pyroxene geothermometry and modeling of the crystallization sequence. Volatile content of the glass indicated partial degassing at an in situ pressure that is above hydrostatic (~16 MPa) and below lithostatic (~55 MPa). The major element and minor element composition of the melt are consistent with an origin by partial melting of hydrothermally altered basaltic crust at depth, similar to rhyolite erupted within the Krafla Caldera. Chondrite-normalized REE concentrations show strong light REE enrichment and relative flat patterns with negative Eu anomaly. Strontium isotope values (0.70328) are consistent with mantle-derived melt, but oxygen and hydrogen isotope values are depleted (3.1 and −118 ‰, respectively) relative to mantle values. The hydrogen isotope values overlap those of hydrothermal epidote from rocks altered by the meteoric-water-recharged Krafla geothermal system. The rhyolite melt was emplaced into and has reacted with a felsic intrusive suite that has nearly identical composition. The felsite is composed of quartz, alkali feldspar, plagioclase, titanomagnetite, and augite. Emplacement of the rhyolite magma has resulted in partial melting of

  15. Environmental assessment of proposed geothermal well testing in the Tigre Lagoon Oil Field, Vermilion Parish, Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    1976-03-01

    An environmental assessment is made of the proposed testing of two geopressured, geothermal aquifers in central coastal Louisiana. On the basis of an analysis of the environmental setting, subsurface characteristics, and the proposed action, potential environmental impacts are determined and evaluated together with potential conflicts with federal, state, and local programs. (LBS )

  16. Geochemical/hydrochemical evaluation of the geothermal potential of the Lamongan volcanic field (Eastern Java, Indonesia)

    NARCIS (Netherlands)

    Deon, F.; Förster, H.J.; Brehme, M.; Wiegand, B.; Scheytt, T.; Moeck, I.; Jaya, M.S.; Putriatni, D.J.

    2015-01-01

    Magmatic settings involving active volcanism are potential locations for economic geothermal systems due to the occurrence of high temperature and steam pressures. Indonesia, located along active plate margins, hosts more than 100 volcanoes and, therefore, belongs to the regions with the greatest

  17. Using micro-seismicity and seismic velocities to map subsurface geologic and hydrologic structure within the Coso geothermal field, California

    Science.gov (United States)

    Kaven, Joern Ole; Hickman, Stephen H.; Davatzes, Nicholas C.

    2012-01-01

    Geothermal reservoirs derive their capacity for fluid and heat transport in large part from faults and fractures. Micro-seismicity generated on such faults and fractures can be used to map larger fault structures as well as secondary fractures that add access to hot rock, fluid storage and recharge capacity necessary to have a sustainable geothermal resource. Additionally, inversion of seismic velocities from micro-seismicity permits imaging of regions subject to the combined effects of fracture density, fluid pressure and steam content, among other factors. We relocate 14 years of seismicity (1996-2009) in the Coso geothermal field using differential travel times and simultaneously invert for seismic velocities to improve our knowledge of the subsurface geologic and hydrologic structure. We utilize over 60,000 micro-seismic events using waveform cross-correlation to augment to expansive catalog of P- and S-wave differential travel times recorded at Coso. We further carry out rigorous uncertainty estimation and find that our results are precise to within 10s of meters of relative location error. We find that relocated micro-seismicity outlines prominent, through-going faults in the reservoir in some cases. We also find that a significant portion of seismicity remains diffuse and does not cluster into more sharply defined major structures. The seismic velocity structure reveals heterogeneous distributions of compressional (Vp) and shear (Vs) wave speed, with Vp generally lower in the main field when compared to the east flank and Vs varying more significantly in the shallow portions of the reservoir. The Vp/Vs ratio appears to outline the two main compartments of the reservoir at depths of -0.5 to 1.5 km (relative to sea-level), with a ridge of relatively high Vp/Vs separating the main field from the east flank. In the deeper portion of the reservoir this ridge is less prominent. Our results indicate that high-precision relocations of micro-seismicity can provide

  18. The Application of Tritium Radioactive Tracer for Measuring Mass Recovery of Water Reinjection on Geothermal Field Kamojang

    International Nuclear Information System (INIS)

    Djijono; Zainal Abidin; Alip; Rasi Prasetyo

    2004-01-01

    The investigations has been done by using tritium radioactive for measuring water reinjection mass recovery at Kamojang geothermal field, West Java. The aim of the investigation is to know the water reinjection effectively for steam production. The method is to inject 10 Ci of tritium radioactive in KMJ-15 well. Monitoring has been done by collected and condensed steam at production well KMJ-11, 14,17 and 18 periodically. Samples be analyzed by enrichment method and counted by liquid scintillation counter. Counting results be simulated by TRINV model. The result is that the total mass recovery for KMJ-11, 14, 17 and 18 inject water is 8.35 %. (author)

  19. The Significance of Acid Alteration in the Los Humeros High-Temperature Geothermal Field, Puebla, Mexico.

    Science.gov (United States)

    Elders, W. A.; Izquierdo, G.

    2014-12-01

    The Los Humeros geothermal field is a high-enthalpy hydrothermal system with more than 40 drilled deep wells, mostly producing high steam fractions at > 300oC. However, although it has a large resource potential, low permeability and corrosive acid fluids have hampered development so that it currently has an installed electrical generating capacity of only 40 MWe. The widespread production of low pH fluids from the reservoir is inconsistent with the marked absence in the reservoir rocks of hydrothermal minerals typical of acid alteration. Instead the hydrothermal alteration observed is typical of that due to neutral to alkaline pH waters reacting with the volcanic rocks of the production zones. Thus it appears that since the reservoir has recently suffered a marked drop in fluid pressure and is in process of transitioning from being water-dominated to being vapor-dominated. However sparse examples of acid leaching are observed locally at depths of about 2 km in the form of bleached, intensely silicified zones, in low permeability and very hot (>350oC) parts of reservoir. Although these leached rocks retain their primary volcanic and pyroclastic textures, they are altered almost entirely to microcrystalline quartz, with some relict pseudomorphs of plagioclase phenocrysts and traces of earlier-formed hydrothermal chlorite and pyrite. These acid-altered zones are usually only some tens of meters thick and deeper rocks lack such silicification. The acid fluids responsible for their formation could either be magmatic volatiles, or could be formed during production (e.g. reaction of water and salts forming hydrogen chloride by hydrolysis at high temperatures). The very high boron content of the fluids produced by the Los Humeros wells suggests that their ultimate source is most likely magmatic gases. However, these acid gases did not react widely with the rocks. We suggest that the silicified zones are forming locally where colder descending waters are encountering

  20. Numerical simulation of electricity generation potential from fractured granite reservoir through vertical wells at Yangbajing geothermal field

    International Nuclear Information System (INIS)

    Zeng, Yu-chao; Zhan, Jie-min; Wu, Neng-you; Luo, Ying-ying; Cai, Wen-hao

    2016-01-01

    Yangbajing geothermal field is the first high-temperature hydrothermal convective geothermal system in China. Research and development of the deep fractured granite reservoir is of great importance for capacity expanding and sustaining of the ground power plant. The geological exploration found that there is a fractured granite heat reservoir at depth of 950–1350 m in well ZK4001 in the north of the geothermal field, with an average temperature of 248 °C and a pressure of 8.01–11.57 MPa. In this work, electricity generation potential and its dependent factors from this fractured granite reservoir by water circulating through vertical wells are numerically investigated. The results indicate that the vertical well system attains an electric power of 16.8–14.7 MW, a reservoir impedance of 0.29–0.46 MPa/(kg/s) and an energy efficiency of about 29.6–12.8 during an exploiting period of 50 years under reference conditions, showing good heat production performance. The main parameters affecting the electric power are water production rate and injection temperature. The main parameters affecting reservoir impedance are reservoir permeability, injection temperature and water production rate. The main parameters affecting the energy efficiency are reservoir permeability, injection temperature and water production rate. Higher reservoir permeability or more reasonable injection temperature or water production rate within certain ranges will be favorable for improving the electricity generation performance. - Highlights: • We established a numerical model of vertical well heat mining system. • Desirable electricity production performance can be obtained under suitable conditions. • The system attains an electric power of 16.8–14.7 MW with an efficiency of about 29.6–12.8. • Electric power mainly depends on water production rate and injection temperature. • Higher permeability within a certain range is favorable for electricity generation.

  1. Reservoir Considerations and Direct Uses of São Pedro do Sul Hydromineral and Geothermal Field, Northern Portugal

    Science.gov (United States)

    Ferreira Gomes, L. M.; Neves Trota, A. P.; Sousa Oliveira, A.; Soares Almeida, S. M.

    2017-12-01

    São Pedro do Sul Hydromineral and Geothermal Field, located in the northern interior zone of Portugal (Lafões zone), has the greatest widespread utilization of geothermal energy in Portugal mainland and is the most important thermal centre from the economical revenues point of view, obtained from direct and indirect utilization of the thermal water, mostly for wellness, health, and leisure of human beings. Recent utilization includes district and greenhouses heating and even cosmetic applications. The Hydromineral Field includes two exploitable zones: the Termas and Vau Poles. The waters are recognised for their mineral and medicinal effects, since the time of the Romans about 2000 years ago and, later on, on the 12th century, by the first King of Portugal, D. Afonso Henriques. The traditional spring and the 500 m well (AC1), located in the Termas Pole, currently supplies artesian hot water flow of about 16.9 L/s with a temperature of 67 °C. Despite the low flow rate of the actual two exploration wells drilled in the Vau Pole, the geothermal potential is high; a new deep well is planned to be drilled in this zone where is expected to obtain fluid temperature of around 75 °C. The occurrence of São Pedro do Sul mineral water, included in the sulphurous type waters, are linked to Hercynian granitoids, emplaced between 290 and 321 Myr. There is a close relationship between the placement of the main hot springs and the Verin-Chaves-Penacova fault, namely Verin (Spain), Chaves, Moledo, and S. Pedro do Sul (Portugal) hot springs. Heat flow generated at shallow crustal zones by the radiogenic host mineral of the granitic rocks, added to the deep Earth heat flow, heats the cold water inflow along fractures. Open fracture network along the main faults allows the hot fluids reach the surface, thus giving chance to the occurrence of hot springs and mineralized cold springs. Coupling between fracture opening and density difference between cold water inflow and hot water

  2. Effective geothermal heat

    International Nuclear Information System (INIS)

    Abelsen, Atle

    2006-01-01

    Scandinavia's currently largest geothermal heating project: the New Ahus hospital, is briefly presented. 300-400 wells on a field outside the hospital are constructed to store energy for both heating and cooling purposes

  3. Inversion modeling of the natural state and production history of Mutnovsky geothermal field in 1986-2006

    Directory of Open Access Journals (Sweden)

    А. В. Кирюхин

    2017-04-01

    Full Text Available Numerical 3D model of Mutnovsky geothermal field (Dachny springs, which consist of 517 elements and partially takes into account double porosity, was developed in 1992-1993 using computer program TOUGH2. Calibration of the model was based on data from test yield of the wells and initial distribution of temperature and pressure in the reservoir. This model was used for techno-economic justification of power plant construction (Mutnovskaya GeoES, 2002. The model was recreated in the program PetraSim v.5.2, the calibration was carried out using additional data on production history before year 2006 and inversion iTOUGH2-EOS1 modeling. Comparison of reservoir parameters, estimated using inversion modeling, with previous parameter estimations (given in brackets showed the following: upflow rate of heat-transfer agent in natural conditions 80.5 (54.1 kg/s, heat flux enthalpy 1430 (1390 kJ/kg, reservoir permeability 27∙10–15-616∙10–15 (3∙10–15-90∙10–15 m2. Inversion modeling was also used to estimate reinjection rates, inflow of meteoric water in the central part of geothermal field and compressibility of reservoir rocks.

  4. Environmental protection at the Los Azufres, Michoacan geothermal field; La proteccion ambiental en el campo geotermico de Los Azufres, Michoacan

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza Rangel, Ernesto; Hernandez Ayala, Cuauhtemoc [Comision Federal de Electricidad, Morelia, Michoacan (Mexico)

    2004-12-01

    Geothermal-electric development is a sustainable activity from an environmental viewpoint, as is proved by the operation and management of the Los Azufres geothermal field. Impacts to soil and vegetation can be prevented and adequately mitigated. Liquid residues can be returned to the reservoir avoiding contaminating surface and ground waters and aquifers; and atmospheric emissions can kept bellow allowable limits. The main environmental technical experiences of Comision Federal de Electricidad (CFE) in this field are presented in this paper. [Spanish] El desarrollo geotermoelectrico es una actividad sustentable desde el punto de vista ambiental, como lo prueba el manejo del campo geotermico de Los Azufres. Los impactos al suelo y a la vegetacion pueden prevenirse y mitigarse con las medidas adecuadas. Los desechos liquidos pueden regresarse al yacimiento sin contaminar cuerpos de agua superficiales o acuiferos someros, y las emisiones a la atmosfera pueden controlarse para mantenerlas dentro de limites permisibles. Se presentan las principales experiencias tecnicas de tipo ambiental obtenidas por la Comision Federal de Electricidad (CFE) en ese campo.

  5. Maximum Magnitude and Probabilities of Induced Earthquakes in California Geothermal Fields: Applications for a Science-Based Decision Framework

    Science.gov (United States)

    Weiser, Deborah Anne

    Induced seismicity is occurring at increasing rates around the country. Brodsky and Lajoie (2013) and others have recognized anthropogenic quakes at a few geothermal fields in California. I use three techniques to assess if there are induced earthquakes in California geothermal fields; there are three sites with clear induced seismicity: Brawley, The Geysers, and Salton Sea. Moderate to strong evidence is found at Casa Diablo, Coso, East Mesa, and Susanville. Little to no evidence is found for Heber and Wendel. I develop a set of tools to reduce or cope with the risk imposed by these earthquakes, and also to address uncertainties through simulations. I test if an earthquake catalog may be bounded by an upper magnitude limit. I address whether the earthquake record during pumping time is consistent with the past earthquake record, or if injection can explain all or some of the earthquakes. I also present ways to assess the probability of future earthquake occurrence based on past records. I summarize current legislation for eight states where induced earthquakes are of concern. Unlike tectonic earthquakes, the hazard from induced earthquakes has the potential to be modified. I discuss direct and indirect mitigation practices. I present a framework with scientific and communication techniques for assessing uncertainty, ultimately allowing more informed decisions to be made.

  6. Advanced Geothermal Turbodrill

    Energy Technology Data Exchange (ETDEWEB)

    W. C. Maurer

    2000-05-01

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

  7. Preliminary study of near surface detections at geothermal field using optic and SAR imageries

    Science.gov (United States)

    Kurniawahidayati, Beta; Agoes Nugroho, Indra; Syahputra Mulyana, Reza; Saepuloh, Asep

    2017-12-01

    Current remote sensing technologies shows that surface manifestation of geothermal system could be detected with optical and SAR remote sensing, but to assess target beneath near the surface layer with the surficial method needs a further study. This study conducts a preliminary result using Optic and SAR remote sensing imagery to detect near surface geothermal manifestation at and around Mt. Papandayan, West Java, Indonesia. The data used in this study were Landsat-8 OLI/TIRS for delineating geothermal manifestation prospect area and an Advanced Land Observing Satellite(ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) level 1.1 for extracting lineaments and their density. An assumption was raised that the lineaments correlated with near surface structures due to long L-band wavelength about 23.6 cm. Near surface manifestation prospect area are delineated using visual comparison between Landsat 8 RGB True Colour Composite band 4,3,2 (TCC), False Colour Composite band 5,6,7 (FCC), and lineament density map of ALOS PALSAR. Visual properties of ground object were distinguished from interaction of the electromagnetic radiation and object whether it reflect, scatter, absorb, or and emit electromagnetic radiation based on characteristic of their molecular composition and their macroscopic scale and geometry. TCC and FCC composite bands produced 6 and 7 surface manifestation zones according to its visual classification, respectively. Classified images were then compared to a Normalized Different Vegetation Index (NDVI) to obtain the influence of vegetation at the ground surface to the image. Geothermal area were classified based on vegetation index from NDVI. TCC image is more sensitive to the vegetation than FCC image. The later composite produced a better result for identifying visually geothermal manifestation showed by detail-detected zones. According to lineament density analysis high density area located on the peak of Papandayan overlaid with zone 1

  8. Differentiating induced and natural seismicity using space-time-magnitude statistics applied to the Coso Geothermal field

    Science.gov (United States)

    Schoenball, Martin; Davatzes, Nicholas C.; Glen, Jonathan M. G.

    2015-01-01

    A remarkable characteristic of earthquakes is their clustering in time and space, displaying their self-similarity. It remains to be tested if natural and induced earthquakes share the same behavior. We study natural and induced earthquakes comparatively in the same tectonic setting at the Coso Geothermal Field. Covering the preproduction and coproduction periods from 1981 to 2013, we analyze interevent times, spatial dimension, and frequency-size distributions for natural and induced earthquakes. Individually, these distributions are statistically indistinguishable. Determining the distribution of nearest neighbor distances in a combined space-time-magnitude metric, lets us identify clear differences between both kinds of seismicity. Compared to natural earthquakes, induced earthquakes feature a larger population of background seismicity and nearest neighbors at large magnitude rescaled times and small magnitude rescaled distances. Local stress perturbations induced by field operations appear to be strong enough to drive local faults through several seismic cycles and reactivate them after time periods on the order of a year.

  9. Uranium-thorium series radionuclides in brines and reservoir rocks from two deep geothermal boreholes in the Salton Sea Geothermal Field, southeastern California

    Science.gov (United States)

    Zukin, Jeffrey G.; Hammond, Douglas E.; Teh-Lung, Ku; Elders, Wilfred A.

    1987-10-01

    Naturally occurring U and Th series radionuclides have been analyzed in high temperature brines (~300°C, 25 wt% dissolved solids) and associated rocks from two deep geothermal wells located on the northeastern margin of the Salton Sea Geothermal Field (SSGF). These data are part of a study of the SSGF as a natural analog of possible radionuclide behavior near a nuclear waste repository constructed in salt beds, and permit evaluation of some characteristics of water-rock interaction in the SSGF. Rock/Brine concentration ratios ( Rc = (dpm/ g) rock/(dpm/ g) brine) were found to vary from near unity for isotopes of Ra, Pb and Rn to about 5 × 10 5 for 232Th. The high sorptivity of 232Th is closely followed by that of 238U and 234U ( Rc ~ 5 × 10 4), suggesting that U is retained in the +4 oxidation state by the reducing conditions in the brines. The relatively high solubility of 210Pb and 212Pb is attributed to formation of chloride complexes, while the high Ra solubility is attributed to chloride complexing, a lack of suitable adsorption sites due to the high brine salinity and temperature, and the reducing conditions that prevent MnO 2 and RaSO 4 from forming. The 228Ra /226Ra ratios in the brines are approximately equal to those of their parents ( 232Th /230Th ) in associated rocks, indicating that Ra equilibration in the brine-rock system is achieved within the mean life of 228Ra (8.3 years). The 224Ra /228Ra ratios in these brines are about 0.7, indicating that either (1) brine composition is not homogeneous and 224Ra decays in fracture zones deficient in Ra and Th as the brine travels to the wellhead or (2) Ra equilibration in the brine-host rock system is not complete within the mean life of 224Ra (5.2 days) because the desorption of 224Ra from the solid phase is impeded. The 228Ac /228Ra activity ratio in the SSGF brines studied is <0.1, and from this ratio the residence time of 228Ac in the brine before sorption onto solid surfaces is estimated to be <70

  10. Silica phases in sinters and residues from geothermal fields of New Zealand

    Science.gov (United States)

    Rodgers, K. A.; Browne, P. R. L.; Buddle, T. F.; Cook, K. L.; Greatrex, R. A.; Hampton, W. A.; Herdianita, N. R.; Holland, G. R.; Lynne, B. Y.; Martin, R.; Newton, Z.; Pastars, D.; Sannazarro, K. L.; Teece, C. I. A.

    2004-06-01

    Five silica phases are major components of silica sinters, deposited from both near-neutral pH alkali-chloride and acid-sulfate thermal waters, and of silica residues formed at the surface of geothermal fields in New Zealand. In all cases, the initial silica is noncrystalline opal-A deposited commonly as microspheres that possess an underlying nanospherical substructure, upon different substrate templets, including microbes living in hot springs. Deposition may also occur monomerically upon earlier deposited silica. Following microsphere growth through Ostwald ripening, silica remains mobile throughout the postdepositional history of the sinter/residue deposits, resulting in a range of textures. These include the continuing growth of microspheres, the development of secondary microspheres and silica coatings, phase transformations, a reduction in sinter porosity, dissolution features, and late-stage deposition of drusy quartz and opal-A. The sinter mass attempts to achieve thermodynamic equilibrium through stepwise phase transformations (maturation): opal-A crystallises to paracrystalline opal-CT±opal-C, which recrystallises to microcrystalline α-quartz+moganite. No intermediate silica phases are produced, but gradual changes occur among different opal-A or opal-CT/-C phases. The phase maturation produces changes in particle densities, silanol water, and in X-ray powder response of the different silica phases, although the rates of change can be perturbed by heating, weathering, and dissolution of the sinter/residue. The properties of opal-A change little in a sinter/residue mass within the first 10,000 years, but reductions occur in the densities, silanol water, and X-ray scattering bandwidth of older sinters where opal-A can persist for up to 100,000 years. Eventually, opal-A transforms to opal-CT when silanol water is reduced sufficiently for enough -Si-O-Si- linkages to produce a crude diffraction-like X-ray response. The transformation is aided by heat, as

  11. Direct utilization of geothermal resources field experiments at Monroe, Utah. Final report, July 14, 1978-July 13, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Blair, C.K.; Owen, L.B. (eds.)

    1982-12-01

    The City of Monroe, Utah undertook a project to demonstrate the economic and technical viability of utilizing a low temperature geothermal resource to provide space and hot water heating to commercial, municipal, and domestic users within the community. During the course of the project, resource development and assessment, including drilling of a production well, was successfully completed. Upon completion of the field development and assessment phase of the program and of a preliminary design of the district heating system, it was determined that the project as proposed was not economically viable. This was due to: (1) a significant increase in estimated capital equipment costs resulting from the general inflation in construction costs, the large area/low population density in Monroe, and a more remote fluid disposal well site than planned, could not balance increased construction costs, (2) a lower temperature resource than predicted, and (3) due to predicted higher pumping and operating costs. After a thorough investigation of alternatives for utilizing the resource, further project activities were cancelled because the project was no longer economical and an alternative application for the resource could not be found within the constraints of the project. The City of Monroe, Utah is still seeking a beneficial use for the 600 gpm, 164/sup 0/F geothermal well. A summary of project activities included.

  12. Time-series analysis of surface deformation at Brady Hot Springs geothermal field (Nevada) using interferometric synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S. T. [Univ. of Wisconsin, Madison, WI (United States); Akerley, J. [Ormat Technologies Inc., Reno, NV (United States); Baluyut, E. C. [Univ. of Wisconsin, Madison, WI (United States); Cardiff, M. [Univ. of Wisconsin, Madison, WI (United States); Davatzes, N. C. [Temple Univ., Philadelphia, PA (United States). Dept. of Earth and Environmental Science; Feigl, K. L. [Univ. of Wisconsin, Madison, WI (United States); Foxall, W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fratta, D. [Univ. of Wisconsin, Madison, WI (United States); Mellors, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spielman, P. [Ormat Technologies Inc., Reno, NV (United States); Wang, H. F. [Univ. of Wisconsin, Madison, WI (United States); Zemach, E. [Ormat Technologies Inc., Reno, NV (United States)

    2016-05-01

    We analyze interferometric synthetic aperture radar (InSAR) data acquired between 2004 and 2014, by the ERS-2, Envisat, ALOS and TerraSAR-X/TanDEM-X satellite missions to measure and characterize time-dependent deformation at the Brady Hot Springs geothermal field in western Nevada due to extraction of fluids. The long axis of the ~4 km by ~1.5 km elliptical subsiding area coincides with the strike of the dominant normal fault system at Brady. Within this bowl of subsidence, the interference pattern shows several smaller features with length scales of the order of ~1 km. This signature occurs consistently in all of the well-correlated interferometric pairs spanning several months. Results from inverse modeling suggest that the deformation is a result of volumetric contraction in shallow units, no deeper than 600 m, likely associated with damaged regions where fault segments mechanically interact. Such damaged zones are expected to extend downward along steeply dipping fault planes, providing a high permeability conduit to the production wells. Using time series analysis, we test the hypothesis that geothermal production drives the observed deformation. We find a good correlation between the observed deformation rate and the rate of production in the shallow wells. We also explore mechanisms that could potentially cause the observed deformation, including thermal contraction of rock, decline in pore pressure and dissolution of minerals over time.

  13. Hydrogeochemical Characteristics and Geothermometry Applications of Thermal Waters in Coastal Xinzhou and Shenzao Geothermal Fields, Guangdong, China

    Directory of Open Access Journals (Sweden)

    Xiao Wang

    2018-01-01

    Full Text Available Two separate groups of geothermal waters have been identified in the coastal region of Guangdong, China. One is Xinzhou thermal water of regional groundwater flow system in a granite batholith and the other is thermal water derived from shallow coastal aquifers in Shenzao geothermal field, characterized by high salinity. The hydrochemical characteristics of the thermal waters were examined and characterized as Na-Cl and Ca-Na-Cl types, which are very similar to that of seawater. The hydrochemical evolution is revealed by analyzing the correlations of components versus Cl and their relative changes for different water samples, reflecting different extents of water-rock interactions and clear mixing trends with seawaters. Nevertheless, isotopic data indicate that thermal waters are all of the meteoric origins. Isotopic data also allowed determination of different recharge elevations and presentation of different mixing proportions of seawater with thermal waters. The reservoir temperatures were estimated by chemical geothermometries and validated by fluid-mineral equilibrium calculations. The most reliable estimates of reservoir temperature lie in the range of 148–162°C for Xinzhou and the range of 135–144°C for Shenzao thermal waters, based on the retrograde and prograde solubilities of anhydrite and chalcedony. Finally, a schematic cross-sectional fault-hydrology conceptual model was proposed.

  14. Overview of the Mexican-American cooperative program at the Cerro Prieto geothermal field

    Science.gov (United States)

    Lippmann, M. J.; Zelwer, R.

    1982-09-01

    The Lawrence Berkeley Laboratory is coordinating the US technical activities being carried out at Cerro Prieto under a five-year agreement between the US Department of Energy and the Comission Federal de Electricidad de Mexico. This agreement, signed in July 1977, is expected to expire in July 1982. Efforts are being made to continue some of the research beyond the formal termination of the agreement. A description of the program, which involves studies of geology, geophysics, hydrodynamics, subsidence, geothermal wells and reservoirs, and aquifers, is discussed.

  15. Geothermal energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role of geothermal energy may have on the energy future of the US. The topics discussed in the chapter include historical aspects of geothermal energy, the geothermal resource, hydrothermal fluids, electricity production, district heating, process heating, geopressured brines, technology and costs, hot dry rock, magma, and environmental and siting issues

  16. Stress concentrations at structural discontinuities in active fault zones in the western United States: Implications for permeability and fluid flow in geothermal fields

    Science.gov (United States)

    Siler, Drew; Hinz, Nicholas H.; Faulds, James E.

    2018-01-01

    Slip can induce concentration of stresses at discontinuities along fault systems. These structural discontinuities, i.e., fault terminations, fault step-overs, intersections, bends, and other fault interaction areas, are known to host fluid flow in ore deposition systems, oil and gas reservoirs, and geothermal systems. We modeled stress transfer associated with slip on faults with Holocene-to-historic slip histories at the Salt Wells and Bradys geothermal systems in western Nevada, United States. Results show discrete locations of stress perturbation within discontinuities along these fault systems. Well field data, surface geothermal manifestations, and subsurface temperature data, each a proxy for modern fluid circulation in the fields, indicate that geothermal fluid flow is focused in these same areas where stresses are most highly perturbed. These results suggest that submeter- to meter-scale slip on these fault systems generates stress perturbations that are sufficiently large to promote slip on an array of secondary structures spanning the footprint of the modern geothermal activity. Slip on these secondary faults and fractures generates permeability through kinematic deformation and allows for transmission of fluids. Still, mineralization is expected to seal permeability along faults and fractures over time scales that are generally shorter than either earthquake recurrence intervals or the estimated life span of geothermal fields. This suggests that though stress perturbations resulting from fault slip are broadly important for defining the location and spatial extent of enhanced permeability at structural discontinuities, continual generation and maintenance of flow conduits throughout these areas are probably dependent on the deformation mechanism(s) affecting individual structures.

  17. Geology of the Pavana geothermal area, Departamento de Choluteca, Honduras, Central America: Field report

    Energy Technology Data Exchange (ETDEWEB)

    Eppler, D.B.; Heiken, G.; Wohletz, K.; Flores, W.; Paredes, J.R.; Duffield, W.A.

    1987-09-01

    The Pavana geothermal area is located in southern Honduras near the Gulf of Fonseca. This region is underlain by late Tertiary volcanic rocks. Within ranges near the geothermal manifestations, the rock sequences is characterized by intermediate to mafic laharic breccias and lavas overlain by silicic tuffs and lavas, which are in turn overlain by intermediate to mafic breccias, lavas, and tuffs. The nearest Quaternary volcanoes are about 40 km to the southwest, where the chain of active Central American volcanoes crosses the mouth of the Gulf of Fonseca. Structure of the Pavana area is dominated by generally northwest-trending, southwest-dipping normal faults. This structure is topographically expressed as northwest-trending escarpments that bound blocks of bedrock separated by asymmetric valleys that contain thin alluvial deposits. Thermal waters apparently issue from normal faults and are interpreted as having been heated during deep circulation along fault zones within a regional environment of elevated heat flow. Natural outflow from the main thermal area is about 3000 l/min of 60/sup 0/C water. Geothermometry of the thermal waters suggests a reservoir base temperature of about 150/sup 0/C.

  18. Temporal velocity variations beneath the Coso geothermal field observed using seismic double difference tomography of compressional and shear wave arrival times

    Science.gov (United States)

    Seher, T.; Zhang, H.; Fehler, M. C.; Newman, G. A.

    2011-12-01

    Microseismic imaging can be an important tool for characterizing geothermal reservoirs. Since microseismic sources occur more or less continuously due to the operations of a geothermal plant and the naturally occurring background seismicity, passive seismic monitoring is well suited for quantifying the temporal variations in reservoir properties that occur within the geothermal reservoir during production. In this study we will use microseismic data recorded between 1996 and 2008 to investigate the temporal variations in seismic velocity below the Coso geothermal field in California. In this study we will apply the double difference tomography method to simultaneously locate a suite of microseismic events and determine the compressional and shear wave velocity as well as their ratio. The double-difference method uses both absolute and relative arrival times of earthquakes measured at the same station, which allows a more precise determination of the relative locations of earthquakes. In particular, we apply a cross-correlation technique to improve the measurement of relative traveltimes. The large number of microearthquakes observed between 1996 and 2008 allows us to characterize subsurface velocity and to investigate changes in velocity that accompany production from the geothermal reservoir.

  19. Land subsidence in the Cerro Prieto Geothermal Field, 1 Baja California, Mexico, from 1994 to 2005. An integrated analysis of DInSAR, levelingand geological data.

    Energy Technology Data Exchange (ETDEWEB)

    Sarychikhina, O; Glowacka, E; Mellors, R; Vidal, F S

    2011-03-03

    Cerro Prieto is the oldest and largest Mexican geothermal field in operation and has been producing electricity since 1973. The large amount of geothermal fluids extracted to supply steam to the power plants has resulted in considerable deformation in and around the field. The deformation includes land subsidence and related ground fissuring and faulting. These phenomena have produced severe damages to infrastructure such as roads, irrigation canals and other facilities. In this paper, the technique of Differential Synthetic Aperture Radar Interferometry (DInSAR) is applied using C-band ENVISAR ASAR data acquired between 2003 and 2006 to determine the extent and amount of land subsidence in the Mexicali Valley near Cerro Prieto Geothermal Field. The DInSAR results were compared with published data from precise leveling surveys (1994- 1997 and 1997-2006) and detailed geological information in order to improve the understanding of temporal and spatial distributions of anthropogenic subsidence in the Mexicali Valley. The leveling and DInSAR data were modeled to characterize the observed deformation in terms of fluid extraction. The results confirm that the tectonic faults control the spatial extent of the observed subsidence. These faults likely act as groundwater flow barriers for aquifers and reservoirs. The shape of the subsiding area coincides with the Cerro Prieto pull-apart basin. In addition, the spatial pattern of the subsidence as well as changes in rate are highly correlated with the development of the Cerro Prieto Geothermal Field.

  20. Geothermal spas

    International Nuclear Information System (INIS)

    Woodruff, J.L.; Takahashi, P.K.

    1990-01-01

    The spa business, part of the health and fitness industry that has sprung up in recent years, is highly successful world-wide. The most traditional type of spa is the geothermal spa, found in geothermal areas around the world. In Japan, for example, some 2,000 geothermal spas and resorts generate $6 billion annually. Hawaii has an ideal environment for geothermal spas, and several locations in the islands could supply warm mineral water for spa development. Hawaii receives about 6 million visitors annually, a high percentage of whom are familiar with the relaxing and therapeutic value of geothermal spas, virtually guaranteeing the success of this industry in Hawaii. Presently, Hawaii does not have a single geothermal spa. This paper reports that the geothermal spa business is an industry whose time has come, an industry that offers very promising investment opportunities, and one that would improve the economy while expanding the diversity of pleasurable vacation options in Hawaii

  1. Dynamics of a geothermal field traced by noble gases: Cerro Prieto, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Mazor, E. (Weizmann Inst. of Science, Rehovot, Israel); Truesdell, A.H.

    1981-01-01

    Noble gases have been measured mass spectrometrically in samples collected during 1977 from producing wells at Cerro Prieto. Positive correlations between concentrations of radiogenic (He, /sup 40/Ar) and atmospheric noble gases (Ne, Ar, and Kr) suggest the following dynamic model: the geothermal fluids originated from meteoric water penetrated to more than 2500 m depth (below the level of first boiling) and mixed with radiogenic helium and argon-40 formed in the aquifer rocks. Subsequently, small amounts of steam were lost by a Raleigh process (0 to 3%) and mixing with shallow cold water occurred (0 to 30%). Noble gases are sensitive tracers of boiling in the initial stages of 0 to 3% steam separation and complement other tracers, such as Cl or temperature, which are effective only beyond this range.

  2. Studies of brine chemistry and scaling at the Salton Sea Geothermal field

    Science.gov (United States)

    Harrar, J. E.

    1981-01-01

    Features of studies related to brine chemistry and scaling are reported. The results of investigations of brine chemistry, the effects of brine acidification and organic additives on the rate of scale formation and scale composition, and the use of other additives for scale control are summarized. High salinity, high silica geothermal brines were studied and it was shown that the silica and sulfide scales formed from these brines could be eliminated by lowering the pH of brine. The following steps were completed: testing of technical chemical solutions to the scaling problem; finding low cost metallic materials that will resist the brine; proving a method for the treatment of spend brine for injection; perfection of chemical measurement techniques. Most environmental issues are addressed and first increments of electrical power are generated.

  3. Physical rock properties at in-situ conditions of pyroclastic rocks from Ngatamariki geothermal field, New Zealand.

    Science.gov (United States)

    Durán, E.; Adam, L.; Wallis, I. C.; Barnhoorn, A.

    2017-12-01

    A better understanding of the seismic properties of volcanic rocks will benefit geothermal exploration and volcanology in general. Little experimental analysis of the in-situ rock elasticity and its correlation to the rock physical properties exists. We study volcaniclastic and pyroclastic rocks from Ngatamariki Geothermal Field. P- and S-wave velocities, CT scans, pycnometer and Archimedes porosity, SWIR data, and XRD/XRF measurements are used to recognize mineral assemblages and alteration, degrees of fluid saturation, and pore micro-structure of the rocks. This information helps define rock physics models to match the elastic measurements made at in-situ confining and fluid pressures. CT scans reveal lithic fragments and cracks in volcaniclastic rocks. Some of these fragments are high porosity tuffs which significantly decrease the elastic wave velocities. XRD and SWIR are combined to get a finer quantitative representation of the mineral constituents. Rock alteration is the second dominant parameter on the elastic wave velocities, with alteration to chlorite resulting in an increase in wave velocities. We will also present results on estimates of elastic wave attenuation for these volcaniclastic samples. We interpret these experimental data by testing several rock physics theories and models, which have seldom been studied for volcanic rocks. These results add to the existing knowledge gap in the rock physics literature on the properties of volcaniclastic/pyroclastic rocks for which empirical and theoretical models developed for clastic sedimentary rocks must be judiciously applied. Finally, free software to aid the velocity picking of ultrasonic P and S waves with their respective uncertainties is made available.

  4. Chemical and physical reservoir parameters at initial conditions in Berlin geothermal field, El Salvador: a first assessment

    Energy Technology Data Exchange (ETDEWEB)

    D`Amore, F. [CNR, Pisa (Italy). International Institute for Geothermal Research ; Mejia, J.T. [Comision Ejuctiva Hidroelectrica del Rio Lempa, El Salvador (El Salvador)

    1999-02-01

    A study has been made to obtain the main chemical and physical reservoir conditions of the Berlin field (El Salvador), before the commencement of large-scale exploitation of the geothermal resource. The upflow zone and the main flow path within the geothermal system have been determined from the area distribution of chemical parameters such as Cl concentrations, ratios such as Na/K, K/Mg, K/Ca, and temperatures computed from silica concentrations and cation ratios. Gas compositions have been used to calculate reservoir parameters such as temperature, steam fraction and P{sub CO{sub 2}}. The computer code WATCH (new edition 1994) has been used to evaluate the temperature of equilibrium between the aqueous species and selected alteration minerals in the reservoir. The fluid in Berlin flows to the exploited reservoir from the south, entering it in the vicinity of well TR-5. Along its flow-path (south-north direction), the fluid is cooled by boiling and conductive cooling. The chloride-enthalpy diagram indicates the existence of a parent water, with a chemical composition similar to well TR-5, that boils and the residual brine produces the fluid of well TR-3, which is very concentrated in salts. The fluid of TR-5 is probably produced from this parent water, generating the fluids of wells TR-2 and TR-9 by boiling, and the fluids of wells TR-1 and TR-4 by conductive cooling. The computed values for the deep steam fraction clearly indicate that this is a liquid-dominated system, with computed temperature values decreasing from 310{sup o}C (upflow zone) to about 230{sup o}C, from south to north. (author)

  5. Geothermal heat can cool, too

    International Nuclear Information System (INIS)

    Wellstein, J.

    2008-01-01

    This article takes a look at how geothermal energy can not only be used to supply heating energy, but also be used to provide cooling too. The article reports on a conference on heating and cooling with geothermal energy that was held in Duebendorf, Switzerland, in March 2008. The influence of climate change on needs for heating and cooling and the need for additional knowledge and data on deeper rock layers is noted. The seasonal use of geothermal systems to provide heating in winter and cooling in summer is discussed. The planning of geothermal probe fields and their simulation is addressed. As an example, the geothermal installations under the recently renewed and extended 'Dolder Grand' luxury hotel in Zurich are quoted. The new SIA 384/6 norm on geothermal probes issued by the Swiss Association of Architects SIA is briefly reviewed.

  6. Imperial County geothermal development annual meeting: summary

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    All phases of current geothermal development in Imperial County are discussed and future plans for development are reviewed. Topics covered include: Heber status update, Heber binary project, direct geothermal use for high-fructose corn sweetener production, update on county planning activities, Brawley and Salton Sea facility status, status of Imperial County projects, status of South Brawley Prospect 1983, Niland geothermal energy program, recent and pending changes in federal procedures/organizations, plant indicators of geothermal fluid on East Mesa, state lands activities in Imperial County, environmental interests in Imperial County, offshore exploration, strategic metals in geothermal fluids rebuilding of East Mesa Power Plant, direct use geothermal potential for Calipatria industrial Park, the Audubon Society case, status report of the Cerro Prieto geothermal field, East Brawley Prospect, and precision gravity survey at Heber and Cerro Prieto geothermal fields. (MHR)

  7. Geothermal energy

    International Nuclear Information System (INIS)

    Le Du, H.; Bouchot, V.; Lopez, S.; Bialkowski, A.; Colnot, A.; Rigollet, C.; Sanjuan, B.; Millot, R.; Brach, M.; Asmundsson, R.; Giroud, N.

    2010-01-01

    Geothermal energy has shown a revival for several years and should strongly develop in a near future. Its potentiality is virtually unexhaustible. Its uses are multiple and various: individual and collective space heating, heat networks, power generation, heat storage, heat exchanges etc.. Re-launched by the demand of renewable energy sources, geothermal energy has become credible thanks to the scientific works published recently which have demonstrated its economical and technical relevance. Its image to the public is changing as well. However, lot of work remains to do to make geothermal energy a real industry in France. Several brakes have to be removed rapidly which concern the noise pollution of geothermal facilities, the risk of bad results of drillings, the electricity costs etc. This dossier gives an overview of today's main research paths in the domain of geothermal energy: 1 - geothermal energy in France: historical development, surface and deep resources, ambitions of the French national energy plan (pluri-annual investment plan for heat generation, incentives, regional 'climate-air-energy' schemes), specific regulations; 2 - geothermal energy at the city scale - sedimentary basins: Ile-de-France 40 years of Dogger reservoir exploitation, potentialities of clastic reservoirs - the Chaunoy sandstones example; 3 - geothermal power generation: conventional reservoirs - the Bouillante model (Guadeloupe, French Indies); the Soultz-sous-Forets pilot plant (Bas-Rhin, France); the supercritical reservoirs - the Krafla geothermal area (Iceland). (J.S.)

  8. A plausible two-dimensional vertical model of the East Mesa Geothermal Field, California

    Energy Technology Data Exchange (ETDEWEB)

    Goyal, K. P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division; Kassoy, D. R. [Univ. of Colorado, Boulder, CO (United States). Mechanical Engineering Dept.

    1981-11-10

    For this study, a two-dimensional conceptual model of the East Mesa Geothermal system is developed on the basis of existing geological, geophysical, geochemical, heat flux, and borehole logging data. Hot water rising in a set of faults is assumed to charge the reservoir, which is overlaid by a clay-rich cap. The temperature-depth distribution observed at the site implies that the liquid is converting at a high Rayleigh number. In this approximation, liquid rises up the fault and spreads isothermally into the nearby sections of the reservoir. The cooling effect of the surface on the flow in the reservoir is confined to a thin layer adjacent to the cap-reservoir interface near the fault. This layer grows with the distance from the fault. Eventually, the entire depth of the reservoir is cooled by the surface. The mathematical model is based on the flow of liquid water in a saturated porous medium. Results are obtained for the velocities, pressures, and temperatures in the entire system consisting of fault zone, aquifer, and clay cap. Finally we compare the predicted surface heat flux to that measured at the site in shallow wells. We conclude that the model represents a plausible description of fault zone controlled systems like that at East Mesa.

  9. San Ignacio (La Tembladera) geothermal site, Departamento de Francisco Morazan, Honduras, Central America: Geological field report

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, M.J.; Eppler, D.; Heiken, G.; Flores, W.; Ramos, N.; Ritchie, A.

    1987-06-01

    The San Ignacio (La Tembladera) geothermal site is located on the north side of the Siria Valley, Departamento de Francisco Morazan, near the village of Barrosa. Hot springs are located along a northwest-trending fault scarp at the edge of the valley and along north-trending faults that cross the scarp. The rocks in the area are primarily Paleozoic metamorphic rocks, overlain by patches of Tertiary Padre Miguel Group tuffs and alluvial deposits. Movement probably occurred along several faults during latest Tertiary and possibly early Quaternary times. Four spring areas were mapped. Area 1, the largest, is associated with a sinter mound and consists of 40 spring groups. About half of the springs, aligned along a north-south trend, are boiling. Area 2 is a small sinter mound with several seeps. Area 3 consists of a group of hot and boiling springs aligned along a north-trending fault. The springs rise through fractured schists and a thin cover of alluvium. Area 4 is located at the intersection of several faults and includes one of the largest boiling springs in the area.

  10. Methods for collection and analysis of geopressured geothermal and oil field waters

    Energy Technology Data Exchange (ETDEWEB)

    Lico, M.S.; Kharaka, Y.K.; Carothers, W.W.; Wright, V.A.

    1982-01-01

    Present methods are described for the collection, preservation, and chemical analysis of waters produced from geopressured geothermal and petroleum wells. Detailed procedures for collection include precautions and equipment necessary to ensure that the sample is representative of the water produced. Procedures for sample preservation include filtration, acidification, dilution for silica, methyl isobutyl ketone (MIBK) extraction of aluminum, addition of potassium permanganate to preserve mercury, and precipitation of carbonate species as strontium carbonate for stable carbon isotopes and total dissolved carbonate analysis. Characteristics determined at the well site are sulfide, pH, ammonia, and conductivity. Laboratory procedures are given for the analysis of lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, iron, manganese, zinc, lead, aluminum, and mercury by atomic absorption and flame emission spectroscopy. Chloride is determined by silver nitrate titration and fluoride by ion-specific electrode. Bromide and iodide concentrations are determined by the hypochlorite oxidation method. Sulfate is analyzed by titration using barium chloride with thorin indicator after pretreatment with alumina. Boron and silica are determined colorimetrically by the carmine and molybdate-blue methods, respectively. Aliphatic acid anions (C/sub 2/ through C/sub 5/) are determined by gas chromatography after separation and concentration in a chloroform-butanol mixture.

  11. Water adsorption at high temperature on core samples from The Geysers geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Gruszkiewicz, M.S.; Horita, J.; Simonson, J.M.; Mesmer, R.E.

    1998-06-01

    The quantity of water retained by rock samples taken from three wells located in The Geysers geothermal reservoir, California, was measured at 150, 200, and 250 C as a function of pressure in the range 0.00 {le} p/p{sub 0} {le} 0.98, where p{sub 0} is the saturated water vapor pressure. Both adsorption (increasing pressure) and desorption (decreasing pressure) runs were made in order to investigate the nature and the extent of the hysteresis. Additionally, low temperature gas adsorption analyses were performed on the same rock samples. Nitrogen or krypton adsorption and desorption isotherms at 77 K were used to obtain BET specific surface areas, pore volumes and their distributions with respect to pore sizes. Mercury intrusion porosimetry was also used to obtain similar information extending to very large pores (macropores). A qualitative correlation was found between the surface properties obtained from nitrogen adsorption and the mineralogical and petrological characteristics of the solids. However, there is in general no proportionality between BET specific surface areas and the capacity of the rocks for water adsorption at high temperatures. The results indicate that multilayer adsorption rather than capillary condensation is the dominant water storage mechanism at high temperatures.

  12. Methods for collection and analysis of geopressured geothermal and oil field waters

    Science.gov (United States)

    Lico, Michael S.; Kharaka, Yousif K.; Carothers, William W.; Wright, Victoria A.

    1982-01-01

    Present methods are described for the collection, preservation, and chemical analysis of waters produced from geopressured geothermal and petroleum wells. Detailed procedures for collection include precautions and equipment necessary to ensure that the sample is representative of the water produced. Procedures for sample preservation include filtration, acidification, dilution for silica, methyl isobutyl ketone (MIBK) extraction of aluminum, addition of potassium permanganate to preserve mercury, and precipitation of carbonate species as strontium carbonate for stable carbon isotopes and total dissolved carbonate analysis. Characteristics determined at the well site are sulfide, pH, ammonia, and conductivity. Laboratory procedures are given for the analysis of lithium, sodium, potassium, rubidium, cesium, magnesium, calcium, strontium, barium, iron, manganese, zinc, lead, aluminum, .and mercury by atomic absorption and flame emission spectroscopy. Chloride is determined by silver nitrate titration and fluoride by ion-specific electrode. Bromide and iodide concentrations are determined by the hypochlorite oxidation method. Sulfate is analyzed by titration using barium chloride with thorin indicator after pretreatment with alumina. Boron and silica are determined colorimetrically by the carmine and molybdate-blue methods, respectively. Aliphatic acid anions (C2 through C5) are determined by gas chromatography after separation and concentration in a chloroform-butanol mixture.

  13. Energy Exploitation of High-Temperature Geothermal Sources in Volcanic Areas—a Possible ORC Application in Phlegraean Fields (Southern Italy

    Directory of Open Access Journals (Sweden)

    Angelo Algieri

    2018-03-01

    Full Text Available This work aims to investigate the energy performances of small-scale Organic Rankine Cycles (ORCs for the exploitation of high temperature geothermal sources in volcanic areas. For this purpose, a thermodynamic model has been developed, and a parametric analysis has been performed that considers subcritical and transcritical configurations, and different organic fluids (isobutane, isopentane, and R245ca. The investigation illustrates the significant effect of the temperature at the entrance of the expander on the ORC behaviour and the rise in system effectiveness when the internal heat exchange (IHE is adopted. As a possible application, the analysis has focused on the active volcanic area of Phlegraean Fields (Southern Italy where high temperature geothermal reservoirs are available at shallow depths. The work demonstrates that ORC systems represent a very interesting option for exploiting geothermal sources and increasing the share of energy production from renewables. In particular, the investigation has been performed considering a 1 kg/s geothermal mass flow rate at 230 °C. The comparative analysis highlights that transcritical configurations with IHE guarantee the highest performance. Isopentane is suggested to maximise the ORC electric efficiency (17.7%, while R245ca offers the highest electric power (91.3 kWel. The selected systems are able to fulfil a significant quota of the annual electric load of domestic users in the area.

  14. Geothermal energy

    International Nuclear Information System (INIS)

    Kappelmeyer, O.

    1991-01-01

    Geothermal energy is the natural heat of the earth. It represents an inexhaustible source of energy. In many countries, which are mostly located within the geothermal belts of the world, geothermal energy is being used since many decades for electricity generation and direct heating applications comprising municipal, industrial and agricultural heating. Outside the geothermal anomalous volcanic regions, hot ground water from deep rock formations at temperatures above 70 o C is used for process heat and space heating. Low prices for gas and oil hinder the development of geothermal plants in areas outside positive geothermal anomalies; the cost of drilling to reach depths, where temperatures are above 50 o C to 70 o C, is high. The necessary total investment per MW th installed capacity is in the order of 5 Mio- DM/MW th (3 Mio $/MW th ). Experience shows, that an economic break even with oil is reached at an oil price of 30$ per barrel or if an adequate bonus for the clean, environmentally compatible production of geothermal heat is granted. Worldwide the installed electric capacity of geothermal power plants is approximately 6 000 MW e . About 15 000 MW th of thermal capacity is being extracted for process heat and space heat. The importance of the terrestrial heat as an energy resource would be substantially increased, if the heat, stored in the hot crystalline basement could be extracted at economical production costs. Geothermal energy is a competitive energy source in areas with high geothermal gradients (relative low cost for drilling) and would be competitive in areas with normal geothermal gradients, if a fair compensation for environmental implications from fossil and nuclear power production would be granted. (author) 2 figs., 1 tab., 6 refs

  15. Results from shallow research drilling at Inyo Domes, Long Valley Caldera, California and Salton Sea geothermal field, Salton Trough, California

    Energy Technology Data Exchange (ETDEWEB)

    Younker, L.W.; Eichelberger, J.C.; Kasameyer, P.W.; Newmark, R.L.; Vogel, T.A.

    1987-09-01

    This report reviews the results from two shallow drilling programs recently completed as part of the United States Department of Energy Continental Scientific Drilling Program. The purpose is to provide a broad overview of the objectives and results of the projects, and to analyze these results in the context of the promise and potential of research drilling in crustal thermal regimes. The Inyo Domes drilling project has involved drilling 4 shallow research holes into the 600-year-old Inyo Domes chain, the youngest rhyolitic event in the coterminous United States and the youngest volcanic event in Long Valley Caldera, California. The purpose of the drilling at Inyo was to understand the thermal, chemical and mechanical behavior of silicic magma as it intrudes the upper crust. This behavior, which involves the response of magma to decompression and cooling, is closely related to both eruptive phenomena and the establishment of hydrothermal circulation. The Salton Sea shallow research drilling project involved drilling 19 shallow research holes into the Salton Sea geothermal field, California. The purpose of this drilling was to bound the thermal anomaly, constrain hydrothermal flow pathways, and assess the thermal budget of the field. Constraints on the thermal budget links the local hydrothermal system to the general processes of crustal rifting in the Salton Trough.

  16. Geothermal Energy.

    Science.gov (United States)

    Nemzer, Marilyn; Page, Deborah

    This curriculum unit describes geothermal energy in the context of the world's energy needs. It addresses renewable and nonrenewable energy sources with an in-depth study of geothermal energy--its geology, its history, and its many uses. Included are integrated activities involving science, as well as math, social studies, and language arts.…

  17. Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

    1995-01-01

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

  18. Empirical Green's tensor retrieved from ambient noise cross-correlations at The Geysers geothermal field, Northern California

    Science.gov (United States)

    Nayak, Avinash; Taira, Taka'aki; Dreger, Douglas S.; Gritto, Roland

    2018-04-01

    We retrieve empirical Green's functions in the frequency range (˜0.2-0.9 Hz) for interstation distances ranging from ˜1 to ˜30 km (˜0.22 to ˜6.5 times the wavelength) at The Geysers geothermal field, Northern California, from coherency of ambient seismic noise being recorded by a variety of sensors (broad-band, short-period surface and borehole sensors, and one accelerometer). The applied methodology preserves the intercomponent relative amplitudes of the nine-component Green's tensor that allows us to directly compare noise-derived Green's functions (NGFs) with normalized displacement waveforms of complete single-force synthetic Green's functions (SGFs) computed with various 1-D and 3-D velocity models using the frequency-wavenumber integration method and a 3-D finite-difference wave propagation method, respectively. These comparisons provide an effective means of evaluating the suitability of different velocity models to different regions of The Geysers, and assessing the quality of the sensors and the NGFs. In the T-Tangential, R-Radial, Z-Vertical reference frame, the TT, RR, RZ, ZR and ZZ components (first component: force direction, second component: response direction) of NGFs show clear surface waves and even body-wave phases for many station pairs. They are also broadly consistent in phase and intercomponent relative amplitudes with SGFs for the known local seismic velocity structure that was derived primarily from body-wave traveltime tomography, even at interstation distances less than one wavelength. We also find anomalous large amplitudes in TR, TZ, RT and ZT components of NGFs at small interstation distances (≲4 km) that can be attributed to ˜10°-30° sensor misalignments at many stations inferred from analysis of longer period teleseismic waveforms. After correcting for sensor misalignments, significant residual amplitudes in these components for some longer interstation distance (≳8 km) paths are better reproduced by the 3-D velocity

  19. Cost model for geothermal wells applied to the Cerro Prieto geothermal field case, BC Abstract; Modelo de costeo de pozos geotermicos aplicado para el caso del campo geotermico de Cerro Prieto, BC

    Energy Technology Data Exchange (ETDEWEB)

    Vaca Serrano, Jaime M.E [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico)]. E-mail: jaime.vaca@cfe.gob.mx

    2008-01-15

    A project for drilling geothermal wells to produce electrical energy can be defined as a sequence of plans to get steam or geothermal fluids to satisfy a previously known demand, and, under the best possible conditions, to obtain payment. This paper presents a cost model for nine wells drilled at the Cerro Prieto geothermal field in 2005 and 2006 to supply steam to the power plants operating in the field. The cost model is based on the well cost, the initial steam production, the annual decline of steam, the drilling schedule and the break-even point for each well. The model shows the cost of steam by the ton and the sale price needed to determine the discount rate and the investment return time. [Spanish] Un proyecto de perforacion de pozos geotermicos puede definirse como una secuencia o sucesion de planes para obtener vapor o fluidos geotermicos destinados a satisfacer una demanda previamente determinada, que se emplearan principalmente para generar energia electrica, bajo las mejores condiciones para obtener un pago. Este trabajo presenta un modelo de costeo para nueve pozos en el campo geotermico de Cerro Prieto, que fueron perforados entre 2005 y 2006 como parte del suministro de vapor para las plantas generadoras que operan en este campo. El modelo de costeo se basa en el costo por pozo, la produccion inicial de vapor, la declinacion anual de vapor, los intereses de las obras de perforacion y el punto de equilibrio para cada pozo. Los resultados permiten conocer el costo de la tonelada de vapor y el precio de venta para determinar la tasa de descuento y el tiempo de retorno de la inversion.

  20. Geopressured geothermal bibliography (Geopressure Thesaurus)

    Energy Technology Data Exchange (ETDEWEB)

    Hill, T.R.; Sepehrnoori, K.

    1981-08-01

    This thesaurus of terminology associated with the geopressured geothermal energy field has been developed as a part of the Geopressured Geothermal Information System data base. A thesaurus is a compilation of terms displaying synonymous, hierarchical, and other relationships between terms. These terms, which are called descriptors, constitute the special language of the information retrieval system, the system vocabulary. The Thesaurus' role in the Geopressured Geothermal Information System is to provide a controlled vocabulary of sufficient specificity for subject indexing and retrieval of documents in the geopressured geothermal energy field. The thesauri most closely related to the Geopressure Thesaurus in coverage are the DOE Energy Information Data Base Subject Thesaurus and the Geothermal Thesaurus being developed at the Lawrence Berkeley Laboratory (LBL). The Geopressure Thesaurus differs from these thesauri in two respects: (1) specificity of the vocabulary or subject scope and (2) display format.

  1. Hydrochemical-isotopic and hydrogeological conceptual model of the Las Tres Vírgenes geothermal field, Baja California Sur, México

    Science.gov (United States)

    Portugal, E.; Birkle, P.; Barragán R, R. M.; Arellano G, V. M.; Tello, E.; Tello, M.

    2000-09-01

    Based on geological, structural, hydrochemical and isotopic data, a hydrogeological conceptual model for the geothermal reservoir, shallow wells and springs at the Las Tres Vírgenes geothermal field and its surroundings is proposed. The model explains the genesis of different types of thermal and cold groundwater in the NW (El Azufre Valley, Las Tres Vírgenes and Aguajito complex), NE (Reforma complex) and S (Sierra Mezquital) areas. Shallow groundwater of sulfate type in the NW zone is explained by the rise of CO2-H2S vapor from a shallow magma chamber and the subsequent heating up of a shallow aquifer. Vertical communication between the reservoir and the surface is facilitated by a series of extensional, NW-SE-trending normal faults, forming the graben structures of the Santa Rosalía Basin. Low-permeability characteristics of the geological formations of the study area support the hypothesis of a fracture and fault-dominated, subterranean-flow circulation system. The Na- (Cl-HCO3) composition of springs in the NE and SE zones indicates influence of ascending geothermal fluids, facilitated by radial fault systems of the Reforma caldera and probably the existence of a shallow magma chamber. Close to the surface, the rising geothermal fluids are mixed up with meteoric water from a shallow aquifer. The Las Tres Vírgenes and the Reforma complex are separated by younger, N-S-trending lateral shearing faults, such as the Cimarrón fault; such disposition explains the genesis of different hydrogeological flow regimes on both sides. HCO3-type surface water from the southern zone between San Ignacio and Mezquital is of typical meteoric origin, with no influence of geothermal fluids. Due to arid climatic conditions in the study zone, recent recharge in the geothermal area seems improbable; thus, recent interaction between the surface and the geothermal reservoir can be excluded. Furthermore, isotopic and hydrochemical data exclude the presence of marine water from the

  2. Geological determination of the limits, area and volume of the geothermal reservoir of the Los Humeros geothermal field, Puebla, Mexico; Determinacion geologica de los limites, area y volumen del yacimiento geotermico de Los Humeros, Puebla, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Castillo Hernandez, Daniel [Gerencia de Proyectos Geotermoelectricos, Comision Federal de Electricidad, Morelia, Michoacan (Mexico)

    1999-08-01

    A geologic analysis to determine the limits, area and volume of the exploitable reservoir of the Los Humeros Geothermal Field, in Puebla, Mexico was carried out. We defined the structural boundaries, both at surface and at deep that seem to control the distribution of the fluids of high enthalpy and favor or limit the production of steam. With 40 wells drilled to date, an average thickness of the lithological producer Unit of 1 163 m has been estimated. A surface of 12.54 km{sup 2} was calculated, that with the estimated thickness, gives a volume of the reservoir of 14.6 km{sup 3}. We consider that there are two main production sectors in the Geothermal Field: The Central Collapse and The Mastaloya Corridor. [Spanish] Se realizo un analisis geologico para determinar los limites, area y volumen del yacimiento explotable del campo geotermico de Los Humeros en Puebla, Mexico. Se definen las barreras estructurales, tanto superficiales como del subsuelo, que controlan la distribucon de los fluidos de alta entalpia que favorecen o limitan la produccion de vapor. Con los 40 pozos perforados hasta la fecha, se estima un espesor promedio de la unidad productora de 1 163 m. Se calculo una superficie de 12.54 km{sup 2}, la que con el espesor mencionado, da un volumen del yacimiento de 14.6 km{sup 3}. Se plantea que dentro del campo existen dos sectores principales de produccion. El Colapso Central y el Corredor de Mastaloya.

  3. Compartmentalization of the Coso East Flank geothermal field imaged by 3-D full-tensor MT inversion

    Science.gov (United States)

    Lindsey, Nathaniel J.; Kaven, Joern; Davatzes, Nicholas C.; Newman, Gregory A.

    2017-01-01

    Previous magnetotelluric (MT) studies of the high-temperature Coso geothermal system in California identified a subvertical feature of low resistivity (2–5 Ohm m) and appreciable lateral extent (>1 km) in the producing zone of the East Flank field. However, these models could not reproduce gross 3-D effects in the recorded data. We perform 3-D full-tensor inversion and retrieve a resistivity model that out-performs previous 2-D and 3-D off-diagonal models in terms of its fit to the complete 3-D MT data set as well as the degree of modelling bias. Inclusion of secondary Zxx and Zyy data components leads to a robust east-dip (60†) to the previously identified conductive East Flank reservoir feature, which correlates strongly with recently mapped surface faults, downhole well temperatures, 3-D seismic reflection data, and local microseismicity. We perform synthetic forward modelling to test the best-fit dip of this conductor using the response at a nearby MT station. We interpret the dipping conductor as a fractured and fluidized compartment, which is structurally controlled by an unmapped blind East Flank fault zone.

  4. Compartmentalization of the Coso East Flank geothermal field imaged by 3-D full-tensor MT inversion

    Science.gov (United States)

    Lindsey, Nathaniel J.; Kaven, Joern Ole; Davatzes, Nicholas; Newman, Gregory A.

    2017-02-01

    Previous magnetotelluric (MT) studies of the high-temperature Coso geothermal system in California identified a subvertical feature of low resistivity (2-5 Ohm m) and appreciable lateral extent (>1 km) in the producing zone of the East Flank field. However, these models could not reproduce gross 3-D effects in the recorded data. We perform 3-D full-tensor inversion and retrieve a resistivity model that out-performs previous 2-D and 3-D off-diagonal models in terms of its fit to the complete 3-D MT data set as well as the degree of modelling bias. Inclusion of secondary Zxx and Zyy data components leads to a robust east-dip (60†) to the previously identified conductive East Flank reservoir feature, which correlates strongly with recently mapped surface faults, downhole well temperatures, 3-D seismic reflection data, and local microseismicity. We perform synthetic forward modelling to test the best-fit dip of this conductor using the response at a nearby MT station. We interpret the dipping conductor as a fractured and fluidized compartment, which is structurally controlled by an unmapped blind East Flank fault zone.

  5. Geothermal energy

    International Nuclear Information System (INIS)

    Vuataz, F.-D.

    2005-01-01

    This article gives a general overview of the past and present development of geothermal energy worldwide and a more detailed one in Switzerland. Worldwide installed electrical power using geothermal energy sources amounts to 8900 MW el . Worldwide utilization of geothermal energy for thermal applications amounts to 28,000 MW th . The main application (56.5%) is ground-coupled heat pumps, others are thermal spas and swimming pools (17.7%), space heating (14.9%), heating of greenhouses (4.8%), fish farming (2.2%), industrial uses (1,8%), cooling and melting of snow (1.2%), drying of agricultural products (0.6 %). Switzerland has become an important user of geothermal energy only in the past 25 years. Earlier, only the exploitation of geothermal springs (deep aquifers) in Swiss thermal baths had a long tradition, since the time of the Romans. Today, the main use of geothermal energy is as a heat source for heat pumps utilizing vertical borehole heat exchangers of 50 to 350 meters length. 35,000 installations of this type with heating powers ranging from a few kW to 1000 kW already exist, representing the highest density of such installations worldwide. Other developments are geostructures and energy piles, the use of groundwater for heating and cooling, geothermal district heating, the utilization of draining water from tunnels and the project 'Deep Heat Mining' allowing the combined production of heat and electric power

  6. Geothermal energy

    International Nuclear Information System (INIS)

    Lemale, J.

    2009-01-01

    The geothermal energy, listed among the new and renewable energy sources, is characterized by a huge variety of techniques and applications. This book deals with the access to underground geothermal resources and with their energy valorization as well. After a presentation of the main geological, hydrogeological and thermal exploitation aspects of this resource, the book presents the different geothermal-related industries in detail, in particular the district heating systems, the aquifer-based heat pumps, the utilizations in the agriculture, fishery and balneology sectors, and the power generation. (J.S.)

  7. Correlation of wireline log characteristics with hydrothermal alteration and other reservoir properties of the Salton Sea and Westmorland geothermal fields, Imperial Valley, California, USA

    Energy Technology Data Exchange (ETDEWEB)

    Muramoto, F.S.; Elders, W.A.

    1984-05-01

    A detailed study of wireline logs from 11 wells in the Salton Sea and Westmorland geothermal systems was undertaken in order to determine the effects of hydrothermal alteration on the response of electrical and gamma-gamma density well logs. For the Salton Sea geothermal field, definite correspondence between log responses and hydrothermal mineralogy is evident, which in turn is related to the physical properties of the rocks. Three hydrothermal and one unaltered zone can be identified from log data on shales. These are: (1) the unaltered montmorillonite zone (<100/sup 0/ to 190/sup 0/C); (2) the illite zone (100/sup 0/ to 190/sup 0/C to 230/sup 0/ to 250/sup 0/C); (3) the chlorite zone (230/sup 0/ to 250/sup 0/C to 290/sup 0/ to 300/sup 0/C); and (4) the feldspar zone (>290/sup 0/ to 300/sup 0/C). The characteristic responses on well logs by which these zones are identified result primarily from changes in clay mineralogy of the shales and increases in density with progressive hydrothermal metamorphism. In the Westmorland geothermal field, differentiating mineral zones from log responses was only partially successful. However, analyses of both well log and petrologic data for wells Landers 1 and Kalin Farms 1 suggest that the former is heating up and the latter is cooling.

  8. Coseismic Slip Deficit of the 2017 Mw 6.5 Ormoc Earthquake That Occurred Along a Creeping Segment and Geothermal Field of the Philippine Fault

    Science.gov (United States)

    Yang, Ying-Hui; Tsai, Min-Chien; Hu, Jyr-Ching; Aurelio, Mario A.; Hashimoto, Manabu; Escudero, John Agustin P.; Su, Zhe; Chen, Qiang

    2018-03-01

    Coseismic surface deformation imaged through interferometric synthetic aperture radar (InSAR) measurements was used to estimate the fault geometry and slip distribution of the 2017 Mw 6.5 Ormoc earthquake along a creeping segment of the Philippine Fault on Leyte Island. Our best fitting faulting model suggests that the coseismic rupture occurred on a fault plane with high dip angle of 78.5° and strike angle of 325.8°, and the estimated maximum fault slip of 2.3 m is located at 6.5 km east-northeast of the town of Kananga. The recognized insignificant slip in the Tongonan geothermal field zone implies that the plastic behavior caused by high geothermal gradient underneath the Tongonan geothermal field could prevent the coseismic failure in heated rock mass in this zone. The predicted Coulomb failure stress change shows that a significant positive Coulomb failure stress change occurred along the SE segment of central Philippine Fault with insignificant coseismic slip and infrequent aftershocks, which suggests an increasing risk for future seismic hazard.

  9. A Study of Production/Injection Data from Slim Holes and Large-Diameter Wells at the Okuaizu Geothermal Field, Tohoku, Japan

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Joel Lawrence; Garg, Sabodh K.; Combs, Jim

    2002-06-01

    Discharge from the Okuaizu boreholes is accompanied by in situ boiling. Analysis of cold-water injection and discharge data from the Okuaizu boreholes indicates that the two-phase productivity index is about an order of magnitude smaller than the injectivity index. The latter conclusion is in agreement with analyses of similar data from Oguni, Sumikawa, and Kirishima geothermal fields. A wellbore simulator was used to examine the effect of borehole diameter on the discharge capacity of geothermal boreholes with two-phase feedzones. Based on these analyses, it appears that it should be possible to deduce the discharge characteristics of largediameter wells using test data from slim holes with two-phase feeds.

  10. Gas geochemistry of Los Humeros geothermal field, Mexico; Geoquimica de gases del campo geotermico de Los Humeros, Puebla, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Barragan R, Rosa Maria; Arellano G, Victor M; Nieva G, David; Portugal M, Enrique; Garcia G, Alfonso; Aragon A, Alfonso [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico); Torres A, Ignasio S [Centro de Investigacion en Energia, Temixco, Morelos (Mexico); Tovar A, Rigoberto [Comision Federal de Electricidad, Los Humeros, Puebla (Mexico)

    1999-12-01

    Gas data of Los Humeros geothermal field were analyzed. A new method, which is based on the Fischer-Tropch reactions and on the combined pyrite-magnetite mineral equilibrium, was used. Reservoir temperature and reservoir excess steam were estimated for the starting stage of the field by using early data taken from producing wells at controlled conditions. The same parameters were also obtained for the present stage by using 1997 gas data. Reservoir temperatures ranged from 275 and 337 Celsius degrees and positive values for reservoir excess steam fractions were obtained for the starting stage. For well H-1 no excess steam was found since this well was fed by the shallower liquid-dominated reservoir. Results for 1997 showed lower scattering compared to early data and the possible occurrence of a heating process in the shallower stratum which could due to exploitation. [Spanish] En este articulo se presenta un analisis de datos de la fase gaseosa producida por pozos productores del campo geotermico de Los Humeros mediante un metodo que considera el equilibrio de la reaccion de Fischer-Tropsh y el equilibrio de minerales pirita-hematia y pirita-magnetita. Este metodo provee la temperatura del yacimiento y el exceso de vapor presente en la descarga total de los pozos. Los resultados se discuten tanto para el estado inicial del yacimiento utilizando los primeros datos de produccion en los que el flujo del pozo estuvo controlado y los obtenidos en 1997 que representan el estado actual del yacimiento. En el estado inicial se estimaron temperaturas de yacimiento de entre 275 y 337 grados Celsius y excesos de vapor positivos, con excepcion del pozo H-1 que se alimenta del estrato somero dominado por liquido. Los resultados obtenidos para 1997 muestran una dispersion menor y la probable ocurrencia de un proceso de calentamiento del estrato somero propiciado por la explotacion.

  11. Engineered Geothermal System Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Petty, Susan

    2014-06-19

    In June 2009, AltaRock Energy began field work on a project supported by the U.S. Department of Energy entitled “Use of Multiple Stimulations to Improve Economics of Engineered Geothermal Systems in Shallow High Temperature Intrusives.” The goal of the project was to develop an Engineered Geothermal System (EGS) in the portion of The Geysers geothermal field operated by the Northern California Power Agency (NCPA). The project encountered several problems while deepening Well E-7 which culminated in the suspension of field activities in September 2009. Some of the problems encountered are particular to The Geysers area, while others might be encountered in any geothermal field, and they might be avoided in future operations.

  12. Geothermal injection monitoring project

    Energy Technology Data Exchange (ETDEWEB)

    Younker, L.

    1981-04-01

    Background information is provided on the geothermal brine injection problem and each of the project tasks is outlined in detail. These tasks are: evaluation of methods of monitoring the movement of injected fluid, preparation for an eventual field experiment, and a review of groundwater regulations and injection programs. (MHR)

  13. Geothermal heat pump

    International Nuclear Information System (INIS)

    Bruno, R.; Tinti, F.

    2009-01-01

    In recent years, for several types of buildings and users, the choice of conditioning by heat pump and low enthalpy geothermal reservoir has been increasing in the Italian market. In fact, such systems are efficient in terms of energy and consumption, they can perform, even at the same time, both functions, heating and cooling and they are environmentally friendly, because they do not produce local emissions. This article will introduce the technology and will focus on critical points of a geothermal field design, from actual practice, to future perspectives for the geo exchanger improvement. Finally, the article presents a best practice case in Bologna district, with an economic analysis showing the convenience of a geothermal heat pump. Conclusions of the real benefits of these plants can be drawn: compared to a non-negligible initial cost, the investment has a pay-back period almost always acceptable, usually less than 10 years. [it

  14. INTEGRATED EXPLORATION OF GEOTHERMAL RESOURCES

    Directory of Open Access Journals (Sweden)

    A. B. Alkhasov

    2016-01-01

    Full Text Available The aim. The aim is to develop the energy efficient technologies to explore hydro geothermal resources of different energy potential.Methods. Evaluation of the effectiveness of the proposed technologies has been carried out with the use of physical and mathematical, thermodynamic and optimization methods of calculation and the physical and chemical experimental research.Results. We propose the technology of integrated exploration of low-grade geothermal resources with the application of heat and water resource potential on various purposes. We also argue for the possibility of effective exploration of geothermal resources by building a binary geothermal power plant using idle oil and gas wells. We prove the prospect of geothermal steam and gas technologies enabling highly efficient use of thermal water of low energy potential (80 - 100 ° C degrees to generate electricity; the prospects of complex processing of high-temperature geothermal brine of Tarumovsky field. Thermal energy is utilized in a binary geothermal power plant in the supercritical Rankine cycle operating with a low-boiling agent. The low temperature spent brine from the geothermal power plant with is supplied to the chemical plant, where the main chemical components are extracted - lithium carbonate, magnesium burning, calcium carbonate and sodium chloride. Next, the waste water is used for various water management objectives. Electricity generated in the binary geothermal power plant is used for the extraction of chemical components.Conclusions. Implementation of the proposed technologies will facilitate the most efficient development of hydro geothermal resources of the North Caucasus region. Integrated exploration of the Tarumovsky field resources will fully meet Russian demand for lithium carbonate and sodium chloride.

  15. Geothermal energy

    Science.gov (United States)

    Manzella, A.

    2017-07-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  16. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.

    2017-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  17. Geothermal energy development in Turkey

    International Nuclear Information System (INIS)

    Simsek, S.; Okandan, E.

    1990-01-01

    Geothermal fields in Turkey are related to rather complex zones of collision between the Eurasian and African continents, and penetration of the Arabian plate into the Anatolian continental mass. These processes gave rise to fracturing of the lithosphere and eruption of magmas. Geothermal regional assessment studies have proven several low enthalpy sources and some high enthalpy fields suitable for electricity generation. This paper summarizes developments in exploration-drilling and give examples of direct utilization implemented in recent years

  18. Silica control and materials tests at the Salton Sea geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Quong, R.; Harrar, J.E.; McCright, R.D.; Locke, R.D.; Lorensen, L.E.; Tardiff, G.E.

    1979-06-07

    The Lawrence Livermore Laboratory maintains and operates a test facility near Niland, California, in the Imperial Valley for field studies on SSGF brine chemistry, scale and solids control, materials, and injection. Recent work in silica control and materials testing is reviewed.

  19. Rapid, high-temperature, field test method for evaluation of geothermal calcium carbonate scale inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Asperger, R.G.

    1986-09-01

    A new test method is described that allows the rapid field testing of calcium carbonate scale inhibitors at 500/sup 0/F (260/sup 0/C). The method evolved from use of a full-flow test loop on a well with a mass flow rate of about 1 x 10/sup 6/ lbm/hr (126 kg/s). It is a simple, effective way to evaluate the effectiveness of inhibitors under field conditions. Five commercial formulations were chosen for field evaluation on the basis of nonflowing, laboratory screening tests at 500/sup 0/F (260/sup 0/C). Four of these formulations from different suppliers controlled calcium carbonate scale deposition as measured by the test method. Two of these could dislodge recently deposited scale that had not age-hardened. Performance-profile diagrams, which were measured for these four effective inhibitors, show the concentration interrelationship between brine calcium and inhibitor concentrations at which the formulations will and will not stop scale formation in the test apparatus. With these diagrams, one formulation was chosen for testing on the full-flow brine line. The composition was tested for 6 weeks and showed a dramatic decrease in the scaling occurring at the flow-control valve. This scaling was about to force a shutdown of a major, long-term flow test being done for reservoir economic evaluations. The inhibitor stopped the scaling, and the test was performed without interruption.

  20. Analysis of three geopressured geothermal aquifer-natural gas fields; Duson Hollywood and Church Point, Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, L.A.; Boardman, C.R.

    1981-05-01

    The available well logs, production records and geological structure maps were analyzed for the Hollywood, Duson, and Church Point, Louisiana oil and gas field to determine the areal extent of the sealed geopressured blocks and to identify which aquifer sands within the blocks are connected to commercial production of hydrocarbons. The analysis showed that over the depth intervals of the geopressured zones shown on the logs essentially all of the sands of any substantial thickness had gas production from them somewhere or other in the fault block. It is therefore expected that the sands which are fully brine saturated in many of the wells are the water drive portion of the producing gas/oil somewhere else within the fault block. In this study only one deep sand was identified, in the Hollywood field, which was not connected to a producing horizon somewhere else in the field. Estimates of the reservoir parameters were made and a hypothetical production calculation showed the probable production to be less than 10,000 b/d. The required gas price to profitably produce this gas is well above the current market price.

  1. Mexican geothermal development and the future

    International Nuclear Information System (INIS)

    Serrano, J.M.E.V.

    1998-01-01

    Geothermics in Mexico started in 1954, by drilling the first geothermal well in Pathe, State of Hidalgo, which reached a depth of 237 meters. In 1959 electrical generation from geothermal origin began, with an installed capacity of 3.5 MW. From 1959 to 1994 Mexico increased its installed capacity to 753 MW, by developing three geothermal fields: Cerro Prieto, Los Azufres, and Los Humeros. Currently, 177 wells produce steam at a rate of 36 tons per hour (t/h) each. Comision Federal de Electricidad (CFE, Federal Commission of Electricity) has planned to increase the geothermal-electric installed capacity through construction and installation of several projects. Repowering of operating units and development of new geothermal zones will also allow Mexican geothermal growth

  2. World Geothermal Congress WGC-2015

    Science.gov (United States)

    Tomarov, G. V.; Shipkov, A. A.

    2016-08-01

    This article discusses materials and results of the World Geothermal Congress that was held in Melbourne (Australia) from April 19 to April 25, 2015. Information on the extent and technological features of utilization of geothermal resources for heat supply and power production, as well as in other economic areas, is given. A stable growth in the capacity and number of geothermal power systems that is determined by ecological cleanliness, economic efficiency, and the highest (among renewable energy sources) indicators of installed capacity utilization is shown. It was noted that combined schemes of geothermal power plants (GPPs), such as turbine units of different type (binary units, units with one or two separation pressures, etc.), have become more frequently used to increase the efficiency of utilization of geothermal heat carrier. Actual data determining room heating systems with the total worldwide capacity of nearly 50000 MW thermal (MWt) as the most currently significant segment of consumption of geothermal waters are given. In addition, geothermal resources are also utilized in soil pumps, balneological and sports basins, greenhouse complexes, and other manufactures. It was noted that geological studies were carried out in more than 40 countries, with the development of methods of simulation of tanks for the existing and new geothermal fields. Trends of development and the role of geothermal power engineering in the energy supply of many countries are shown. It was shown that prospects for the development of geothermal power generation are significantly associated with utilization of low-temperature geothermal sources in binary power generating units, as well as with the increase in installed capacity of operating geothermal power plants (GPPs) without drilling additional wells, i.e., by using waste geothermal heat carrier in binary-cycle or combined-cycle power plants. The article provides data on a pilot binary power unit at Pauzhetka GPP and on a

  3. Petrophysical Properties of Twenty Drill Cores from the Los Azufres, Mexico, Geothermal Field

    Energy Technology Data Exchange (ETDEWEB)

    Iglesias, E.R.; Contreras L., E.; Garcia G., A.; Dominquez A., Bernardo

    1987-01-20

    For this study we selected 20 drill cores covering a wide range of depths (400-3000 m), from 15 wells, that provide a reasonable coverage of the field. Only andesite, the largely predominant rock type in the field, was included in this sample. We measured bulk density, grain (solids) density, effective porosity and (matrix) permeability on a considerable number of specimens taken from the cores; and inferred the corresponding total porosity and fraction of interconnected total porosity. We characterized the statistical distributions of the measured and inferred variables. The distributions of bulk density and grain density resulted approximately normal; the distributions of effective porosity, total porosity and fraction of total porosity turned out to be bimodal; the permeability distribution resulted highly skewed towards very small (1 mdarcy) values, though values as high as 400 mdarcies were measured. We also characterized the internal inhomogeneity of the cores by means of the ratio (standard deviation/mean) corresponding to the bulk density in each core (in average there are 9 specimens per core). The cores were found to present clearly discernible inhomogeneity; this quantitative characterization will help design new experimental work and interpret currently available and forthcoming results. We also found statistically significant linear correlations between total density and density of solids, effective porosity and total density, total porosity and total density, fraction of interconnected total porosity and the inverse of the effective porosity, total porosity and effective porosity; bulk density and total porosity also correlate with elevation. These results provide the first sizable and statistically detailed database available on petrophysical properties of the Los Azufres andesites. 1 tab., 16 figs., 4 refs.

  4. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.

    2015-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  5. Geothermal Information Dissemination and Outreach

    Energy Technology Data Exchange (ETDEWEB)

    Clutter, Ted J. [Geothermal Resources Council (United States)

    2005-02-18

    Project Purpose. To enhance technological and topical information transfer in support of industry and government efforts to increase geothermal energy use in the United States (power production, direct use, and geothermal groundsource heat pumps). Project Work. GRC 2003 Annual Meeting. The GRC convened the meeting on Oct. 12-15, 2003, at Morelia's Centro de Convenciones y ExpoCentro in Mexico under the theme, International Collaboration for Geothermal Energy in the Americas. The event was also sponsored by the Comision Federal de Electricidad. ~600 participants from more than 20 countries attended the event. The GRC convened a Development of Geothermal Projects Workshop and Geothermal Exploration Techniques Workshop. GRC Field Trips included Los Azufres and Paricutin Volcano on Oct. 11. The Geothermal Energy Association (Washington, DC) staged its Geothermal Energy Trade Show. The Annual Meeting Opening Session was convened on Oct. 13, and included the governor of Michoacan, the Mexico Assistant Secretary of Energy, CFE Geothermal Division Director, DOE Geothermal Program Manager, and private sector representatives. The 2003 Annual Meeting attracted 160 papers for oral and poster presentations. GRC 2004. Under the theme, Geothermal - The Reliable Renewable, the GRC 2004 Annual Meeting convened on Aug. 29-Sept. 1, 2004, at the Hyatt Grand Champions Resort at Indian Wells, CA. Estimated total attendance (including Trade Show personnel, guests and accompanying persons) was ~700. The event included a workshop, Geothermal Production Well Pump Installation, Operation and Maintenance. Field trips went to Coso/Mammoth and Imperial Valley/Salton Sea geothermal fields. The event Opening Session featured speakers from the U.S. Department of Energy, U.S. Department of the Interior, and the private sector. The Geothermal Energy Association staged its Geothermal Energy Trade Show. The Geothermal Education Office staged its Geothermal Energy Workshop. Several local radio and

  6. Characterizing Fractures in Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Aminzadeh, Fred [Univ. of Southern California, Los Angeles, CA (United States); Sammis, Charles [Univ. of Southern California, Los Angeles, CA (United States); Sahimi, Mohammad [Univ. of Southern California, Los Angeles, CA (United States); Okaya, David [Univ. of Southern California, Los Angeles, CA (United States)

    2015-04-30

    The ultimate objective of the project was to develop new methodologies to characterize the northwestern part of The Geysers geothermal reservoir (Sonoma County, California). The goal is to gain a better knowledge of the reservoir porosity, permeability, fracture size, fracture spacing, reservoir discontinuities (leaky barriers) and impermeable boundaries.

  7. Field drilling tests on improved geothermal unsealed roller-cone bits. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickson, R.R.; Jones, A.H.; Winzenried, R.W.; Maish, A.B.

    1980-05-01

    The development and field testing of a 222 mm (8-3/4 inch) unsealed, insert type, medium hard formation, high-temperature bit are described. Increased performance was gained by substituting improved materials in critical bit components. These materials were selected on bases of their high temperature properties, machinability and heat treatment response. Program objectives required that both machining and heat treating could be accomplished with existing rock bit production equipment. Six of the experimental bits were subjected to air drilling at 240/sup 0/C (460/sup 0/F) in Franciscan graywacke at the Geysers (California). Performances compared directly to conventional bits indicate that in-gage drilling time was increased by 70%. All bits at the Geysers are subjected to reaming out-of-gage hole prior to drilling. Under these conditions the experimental bits showed a 30% increase in usable hole drilled, compared with the conventional bits. The materials selected improved roller wear by 200%, friction per wear by 150%, and lug wear by 150%. These tests indicate a potential well cost savings of 4 to 8%. Savings of 12% are considered possible with drilling procedures optimized for the experimental bits.

  8. Long-term dipole-dipole resistivity monitoring at the Cerro Prieto geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Wilt, M.; Goldstein, N.E.; Sasaki, Y.

    1984-04-01

    Dipole-dipole resistivity measurements for the combined purposes of reservoir delineation and reservoir monitoring were first made at Cerro Prieto in 1978 and have continued on approximately an annual basis since then. Two 20 km-long dipole-dipole lines with permanently emplaced electrodes at 1-km spacings were established over the field area. Resistivity remeasurements have been made on one line at 6- to 18-month intervals using a 25 kW generator capable of up to 80A output and a microprocessor-controlled signal-averaging receiver. This high-power, low-noise system provides highly accurate measurements even at large transmitter receiver separations. Standard error calculations for collected data indicate errors less than 5% for all points. Results from four years of monitoring (1979-1983) indicate a 5% average annual increase in apparent resistivity over the present production area, and larger decreases in apparent resistivity in the region to the east. The increase in resistivity in the production zone is most likely due to dilution of reservoir fluids with fresher water, as evidenced by a drop in chloride content of produced waters. The area of decreasing resistivity east of the reservoir is associated with a steeply dipping conductive body, a zone of higher thermal gradients and an increase in shale thickness in the section. Decreasing resistivity in this area may be caused by an influx of high temperature, saline water from depths of 3/sup +/ km through a sandy gap in the shales.

  9. Geothermal areas as analogues to chemical processes in the near-field and altered zone of the potential Yucca Mountain, Nevada repository

    Energy Technology Data Exchange (ETDEWEB)

    Bruton, C.J.; Glassley, W.E.; Meike, A.

    1995-02-01

    The need to bound system performance of the potential Yucca Mountain repository for thousands of years after emplacement of high-level nuclear waste requires the use of computer codes. The use of such codes to produce reliable bounds over such long time periods must be tested using long-lived natural and historical systems as analogues. The geothermal systems of the Taupo Volcanic Zone (TVZ) in New Zealand were selected as the site most amenable to study. The rocks of the TVZ are silicic volcanics that are similar in composition to Yucca Mountain. The area has been subjected to temperatures of 25 to 300 C which have produced a variety of secondary minerals similar to those anticipated at Yucca Mountain. The availability of rocks, fluids and fabricated materials for sampling is excellent because of widespread exploitation of the systems for geothermal power. Current work has focused on testing the ability of the EQ3/6 code and thermodynamic data base to describe mineral-fluid relations at elevated temperatures. Welfare starting long-term dissolution/corrosion tests of rocks, minerals and manufactured materials in natural thermal features in order to compare laboratory rates with field-derived rates. Available field data on rates of silica precipitation from heated fluids have been analyzed and compared to laboratory rates. New sets of precipitation experiments are being planned. The microbially influenced degradation of concrete in the Broadlands-Ohaaki geothermal field is being characterized. The authors will continue to work on these projects in FY 1996 and expand to include the study of naturally occurring uranium and thorium series radionuclides, as a prelude to studying radionuclide migration in heated silicic volcanic rocks. 32 refs.

  10. Geothermal areas as analogues to chemical processes in the near-field and altered zone of the potential Yucca Mountain, Nevada repository

    International Nuclear Information System (INIS)

    Bruton, C.J.; Glassley, W.E.; Meike, A.

    1995-02-01

    The need to bound system performance of the potential Yucca Mountain repository for thousands of years after emplacement of high-level nuclear waste requires the use of computer codes. The use of such codes to produce reliable bounds over such long time periods must be tested using long-lived natural and historical systems as analogues. The geothermal systems of the Taupo Volcanic Zone (TVZ) in New Zealand were selected as the site most amenable to study. The rocks of the TVZ are silicic volcanics that are similar in composition to Yucca Mountain. The area has been subjected to temperatures of 25 to 300 C which have produced a variety of secondary minerals similar to those anticipated at Yucca Mountain. The availability of rocks, fluids and fabricated materials for sampling is excellent because of widespread exploitation of the systems for geothermal power. Current work has focused on testing the ability of the EQ3/6 code and thermodynamic data base to describe mineral-fluid relations at elevated temperatures. Welfare starting long-term dissolution/corrosion tests of rocks, minerals and manufactured materials in natural thermal features in order to compare laboratory rates with field-derived rates. Available field data on rates of silica precipitation from heated fluids have been analyzed and compared to laboratory rates. New sets of precipitation experiments are being planned. The microbially influenced degradation of concrete in the Broadlands-Ohaaki geothermal field is being characterized. The authors will continue to work on these projects in FY 1996 and expand to include the study of naturally occurring uranium and thorium series radionuclides, as a prelude to studying radionuclide migration in heated silicic volcanic rocks. 32 refs

  11. Geothermal Permeability Enhancement - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Joe Beall; Mark Walters

    2009-06-30

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  12. Japanese geothermics

    International Nuclear Information System (INIS)

    Laplaige, P.

    1995-01-01

    At the end of the seventies, the NEDO (New Energy and Industrial Technology Development Organisation) and the Central Research Institute of Electric Power Industry have started two independent projects of deep geothermics research in Honshu island (Japan). The two sites are 50 km apart of each other and the boreholes have been drilled up to 2300 and 1100 m of depth, respectively, in hot-dry moderately fractured volcanic rocks. These sites are characterized by high geothermal gradients with a rock temperature reaching 250 C at the bottom of the wells. Hydraulic circulation tests are still in progress to evaluate the profitability of these sites. (J.S.). 1 fig., 1 photo

  13. Fluid circulation and structural system of Cerritos Colorados geothermal field in La Primavera volcanic caldera (Mexico) inferred from geophysical surveys

    Science.gov (United States)

    Bolós, X.; Cifuentes-Nava, G.; Macias, J. L.; Sosa-Ceballos, G.; García-Tenorio, F.; Albor, M., III; Juarez, M.; Gamez, V.

    2017-12-01

    Hydrothermal activity in volcanic calderas is the consequence of energy transfer between deep magmatic chambers and subsurface layers saturated in water. This hydrothermal system is generated by convection of the groundwater supplied by meteoric water recharged and the ascent of hot volcanic gasses exsolved from deep magma reservoirs. Calderas are heterogeneous geological structures that due to their formation and evolution produced a complex stratigraphy. All of these heterogeneities can be affected by deformation and also by the presence of fractures and faults which constitute the main pathways whereby hydrothermal fluids can move easily through the surface as spring discharges and fumarolic activity. Geophysical methods have been used in the last decades to investigate the relationship between structural geology and hydrothermal systems in different volcanic areas around the world. In this work, we have focused on the role of subsurface structures to understand and localize the pathways of fluids related to the hydrothermal system of the Cerritos Colorados geothermal field. We focused in the central area of the caldera (P12 well and Cerritos Colorados graben), where active hydrothermal activity is evidenced by fumaroles, thermal anomalies, CO2 diffuse emission, and sulfur precipitation. We have applied a self-potential method (SP) that combined with temperature measurements that allowed to identify the main infiltration and ascending fluid zones in the area, and their specific surface temperature coinciding with fumarolic activity. From this data we an applied Electrical Resistivity Tomography (ERT) survey in two selected places. One ERT profile (1.2 km in length) was located in the P12 well area. A 3D resistivity model used with the equatorial method was carried out on the Cerritos Colorados graben area. Combining the results of the SP, TºC, and ERT data with a detailed structural map we identified the main degassing zones (i.e. fumaroles) that correspond to

  14. Production data from five major geothermal fields in Nevada analysed using a physiostatistical algorithm developed for oil and gas: temperature decline forecasts and type curves

    Science.gov (United States)

    Kuzma, H. A.; Golubkova, A.; Eklund, C.

    2015-12-01

    Nevada has the second largest output of geothermal energy in the United States (after California) with 14 major power plants producing over 425 megawatts of electricity meeting 7% of the state's total energy needs. A number of wells, particularly older ones, have shown significant temperature and pressure declines over their lifetimes, adversely affecting economic returns. Production declines are almost universal in the oil and gas (O&G) industry. BetaZi (BZ) is a proprietary algorithm which uses a physiostatistical model to forecast production from the past history of O&G wells and to generate "type curves" which are used to estimate the production of undrilled wells. Although BZ was designed and calibrated for O&G, it is a general purpose diffusion equation solver, capable of modeling complex fluid dynamics in multi-phase systems. In this pilot study, it is applied directly to the temperature data from five Nevada geothermal fields. With the data appropriately normalized, BZ is shown to accurately predict temperature declines. The figure shows several examples of BZ forecasts using historic data from Steamboat Hills field near Reno. BZ forecasts were made using temperature on a normalized scale (blue) with two years of data held out for blind testing (yellow). The forecast is returned in terms of percentiles of probability (red) with the median forecast marked (solid green). Actual production is expected to fall within the majority of the red bounds 80% of the time. Blind tests such as these are used to verify that the probabilistic forecast can be trusted. BZ is also used to compute and accurate type temperature profile for wells that have yet to be drilled. These forecasts can be combined with estimated costs to evaluate the economics and risks of a project or potential capital investment. It is remarkable that an algorithm developed for oil and gas can accurately predict temperature in geothermal wells without significant recasting.

  15. Geothermal energy in Italy and abroad

    International Nuclear Information System (INIS)

    Caputo di Calvisi, C.

    2001-01-01

    Geothermal systems and fields are analysed giving particular evidence to the value of the geothermal source as an important natural source of energy. The paper analyses hydrothermal systems and describes the international experimental studies on the use of geothermal reservoirs in hot rocks with geopressured and magmatic systems. Experts are optimistic as far as the use of this innovative source of energy is possible in the medium-short term [it

  16. Status on high enthalpy geothermal resources in Greece

    International Nuclear Information System (INIS)

    Koutinas, G.A.

    1990-01-01

    Greece is privileged to have many high and medium enthalpy geothermal resources. Related activities during the last 5 years were conducted mainly on the previously discovered geothermal fields of Milos, Nisyros and Lesvos islands, without any deep geothermal drilling. Most efforts were focused on the demonstration of a high enthalpy geothermal reservoir on Milos, by generating electricity from high salinity fluid, with a 2 MW pilot plant. Significant experience has been gained there, by solving technical problems, but still site specific constraints have to be overcome in order to arrive at a comprehensive feasibility study, leading to the development phase. A pre-feasibility study has been carried out in the Nisyros geothermal field. Moreover, a detailed geoscientific exploration program has been completed on Lesvos island, where very promising geothermal areas have been identified. In this paper, reference is made to the most important data concerning high enthalpy geothermal resources by emphasizing the Milos geothermal field

  17. Three-dimensional inversion of magnetotelluric data from the Coso Geothermal Field, based on a finite difference Gauss-Newton method parallelized on a multicore workstation

    Science.gov (United States)

    Maris, Virginie

    An existing 3-D magnetotelluric (MT) inversion program written for a single processor personal computer (PC) has been modified and parallelized using OpenMP, in order to run the program efficiently on a multicore workstation. The program uses the Gauss-Newton inversion algorithm based on a staggered-grid finite-difference forward problem, requiring explicit calculation of the Frechet derivatives. The most time-consuming tasks are calculating the derivatives and determining the model parameters at each iteration. Forward modeling and derivative calculations are parallelized by assigning the calculations for each frequency to separate threads, which execute concurrently. Model parameters are obtained by factoring the Hessian using the LDLT method, implemented using a block-cyclic algorithm and compact storage. MT data from 102 tensor stations over the East Flank of the Coso Geothermal Field, California are inverted. Less than three days are required to invert the dataset for ˜ 55,000 inversion parameters on a 2.66 GHz 8-CPU PC with 16 GB of RAM. Inversion results, recovered from a halfspace rather than initial 2-D inversions, qualitatively resemble models from massively parallel 3-D inversion by other researchers and overall, exhibit an improved fit. A steeply west-dipping conductor under the western East Flank is tentatively correlated with a zone of high-temperature ionic fluids based on known well production and lost circulation intervals. Beneath the Main Field, vertical and north-trending shallow conductors are correlated with geothermal producing intervals as well.

  18. Proceedings of NEDO International Geothermal Symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-11

    This is a proceedings of the NEDO International Geothermal Symposium held in Sendai in 1997. The worldwide geothermal energy power generation capacity exceeds 7000 MW. Geothermal energy is widely used also for heating, snow melting, greenhouse cultivation as well as electric power generation. Geothermal energy generates far less CO2 causing the global warming than fossil fuels. The geothermal energy is clean and renewable. Considering the environmental issue and energy supply/demand of the world, we have to exert further efforts for the geothermal development. In this conference, discussions were made on each country`s experiences of the geothermal development, and future prediction and strategies for geothermal utilization in the Asia/Pacific region, in particular. Further, in the technical session, conducted were the IEA study and technical presentation/discussion for technical cooperation. The proceedings includes research reports of more than 30, which are clarified into three fields: impacts of the geothermal development on the environment, technical development of the hot dry rock power generation system, and development of technology for collecting deep-seated geothermal resource

  19. Geothermal tomorrow 2008

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  20. Areas to explore surrounding the Cerro Prieto geothermal field, BC; Areas para exploracion en los alrededores del campo geotermico de Cerro Prieto, BC

    Energy Technology Data Exchange (ETDEWEB)

    Aguilar Dumas, Alvaro [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Residencia General de Cerro Prieto, Mexicali, Baja California (Mexico)]. E-mail: alvaro.aguilar@cfe.gob.mx

    2009-07-15

    Exploration plays an important role in tapping underground natural resources-whether water, oil, natural gas or minerals. Exploratory data allow us to learn reservoir conditions, increasing probable reserves and reservoir life span. Around the Cerro Prieto geothermal field, BC, and in the Mexicali Valley in general, exploration had almost stopped but recently was resumed by the Studies Division of Comision Federal de ELectricidad (CFE)'s Gerencia de Proyectos Geotermoelectricos. The division sent technical personnel to structurally map the northern and eastern portions of Laguna Salada. The paper offers a general outline of the main zones undergoing exploratory studies-studies perhaps culminating in siting exploratory wells to locate more geothermal resources (and ultimately producing them using binary power plants). CFE also wants to site injection wells west of the current production zone, and this is covered, as well. All activities are meant to increase the productive lifespan of the geothermal reservoir. [Spanish] Cuando se trata de la explotacion de recursos naturales del subsuelo, sea agua, gas, petroleo o minerales, la exploracion juega un papel muy importante, ya que permite conocer las condiciones del yacimiento que pudieran llevar a incrementar las reservas de los recursos explotados y extender su vida util. En las zonas aledanas al campo geotermico de Cerro Prieto, BC, y en general en el Valle de Mexicali, la exploracion estaba practicamente detenida habiendose reactivado a raiz de que la Subgerencia de Estudios de la Gerencia de Proyectos Geotermoelectricos de la Comision Federal de Electricidad (CFE) envio personal para realizar mapeos estructurales en las porciones norte y oriente de la Laguna Salada. Este trabajo presenta un panorama general de las areas prioritarias para realizar estudios exploratorios y poder programar, con mas bases, pozos exploratorios enfocados a localizar mas recursos geotermicos, inclusive para generar energia por medio

  1. Using noble gases and 87Sr/86Sr to constrain heat sources and fluid evolution at the Los Azufres Geothermal Field, Mexico

    Science.gov (United States)

    Wen, T.; Pinti, D. L.; Castro, M. C.; Lopez Hernandez, A.; Hall, C. M.; Shouakar-Stash, O.; Sandoval-Medina, F.

    2017-12-01

    Geothermal wells and hot springs were sampled for noble gases' volume fraction and isotopic measurements and 87Sr/86Sr in the Los Azufres Geothermal Field (LAGF), Mexico, to understand the evolution of fluid circulation following three decades of exploitation and re-injection of used brines. The LAGF, divided into the Southern Production Zone (SPZ) and the Northern Production Zone (NPZ), is hosted in a Miocene to Pliocene andesitic volcanic complex covered by Quaternary rhyolitic-dacitic units. Air contamination corrected 3He/4He ratios (Rc) normalized to the atmospheric ratio (Ra=1.384 x 10-6), show a median value of 6.58 indicating a dominant mantle helium component. Contributions of crustal helium up to 53% and 18% are observed in NPZ and SPZ, respectively. Observations based on Rc/Ra and 87Sr/86Sr ratios points to the mixing of three magmatic sources supplying mantle helium to the LAGF: (1) a pure mantle He (Rc/Ra = 8) and Sr (87Sr/86Sr = 0.7035) source; (2) a pure mantle helium (Rc/Ra = 8) with some radiogenic Sr (87Sr/86Sr = 0.7049) source possibly resulting from Quaternary rhyolitic volcanism; and (3) a fossil mantle He component (Rc/Ra = 3.8) with some radiogenic Sr (87Sr/86Sr = 0.7038), corresponding possibly to the Miocene andesite reservoir. Intrusions within the last 50 kyrs from sources (1) and (2) are likely responsible for the addition of mantle volatiles and heat to the hydrothermal system of Los Azufres. He and Ar isotopes indicate that heat flow is transported by both convection and conduction. Atmospheric noble gas elemental ratios suggest that geothermal wells located closer to the western re-injection zone are beginning to be dominated by re-injection of used brines (injectate). The area affected by boiling in LAGF has further extended to the north and west since the last noble gas sampling campaign in 2009.

  2. Geothermal probabilistic cost study

    Energy Technology Data Exchange (ETDEWEB)

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  3. The National Geothermal Energy Research Program

    Science.gov (United States)

    Green, R. J.

    1974-01-01

    The continuous demand for energy and the concern for shortages of conventional energy resources have spurred the nation to consider alternate energy resources, such as geothermal. Although significant growth in the one natural steam field located in the United States has occurred, a major effort is now needed if geothermal energy, in its several forms, is to contribute to the nation's energy supplies. From the early informal efforts of an Interagency Panel for Geothermal Energy Research, a 5-year Federal program has evolved whose objective is the rapid development of a commercial industry for the utilization of geothermal resources for electric power production and other products. The Federal program seeks to evaluate the realistic potential of geothermal energy, to support the necessary research and technology needed to demonstrate the economic and environmental feasibility of the several types of geothermal resources, and to address the legal and institutional problems concerned in the stimulation and regulation of this new industry.

  4. Seismic response to power production at the Coso Geothermal field, south-eastern CA: using operational parameters and relocated events to study anthropogenic seismicity rates and reservoir scale tectonic structure

    Science.gov (United States)

    Lajoie, L. J.; O'Connell, D. R.; Creed, R. J.; Brodsky, E. E.

    2013-12-01

    The United States is increasing its dependence on renewable energies and with that has come an interest in expanding geothermal operations. Due to the proximity of many existing and potential geothermal sites to population centers and seismically active regions, it is important to understand how geothermal operations interact with local (and regional) seismicity, and to determine if seismicity rates are predictable from operational parameters (i.e. fluid injection, production, and net fluid extraction) alone. Furthermore, geothermal injection and production strategies can be improved by identifying, locating and characterizing related earthquakes within the tectonic related background seismicity. As the geothermal production related seismic source focal mechanisms, moment, and location are better characterized, important pragmatic questions (such as the improvement of injection strategies and 3-d thermohydromechanical model validation) and research issues (such as the relationship between far field seismic signals, local rheology changes, and native state reservoir stress evolution as a function of injection and production transients) can be more systematically addressed. We focus specifically on the 270 MW Coso geothermal field in south-eastern California, which is characterized by both high seismicity rates and relatively high aftershock triggering. After performing statistical de-clustering of local seismicity into background and aftershock rates, we show that the background rate (at both the Coso and Salton Sea geothermal fields) can be approximated during many time intervals at the 90% + confidence level by a linear combination of injection volume and the net extracted volume (difference between production and injection). Different magnitude ranges are sampled to determine if the response is constant with respect to magnitude. We also use relative relocations and focal mechanisms from Yang et al. (2012) to map fault planes within the Coso geothermal field. We

  5. 2012 geothermal energy congress. Proceedings

    International Nuclear Information System (INIS)

    2012-01-01

    Within the Geothermal Energy Congress 2012 from 13th to 16th November 2012, in Karlsruhe (Federal Republic of Germany), the following lectures were held: (1) Comparison of different methods for the design of geothermal probes on the example of the thermal utilization of smouldering fires at heaps (Sylvia Kuerten); (2) Determination of the thermo-physical features of loose rocks (Johannes Stegner); (3) Tools for the planning and operation of district heating grids (Werner Seichter); (4) geo:build - System optimisation of the cooling mode of the ground-source heat and cooling supply (Franziska Bockelmann); (5) Successful and economic conception, planning and optimization of district heating grids (Werner Seichter); (6) Treacer / Heat transfer decoupling in a heterogeneous hydrothermal reservoir characterized by geological faults in the Upper Rhine Graben (I. Ghergut); (7) Determination of the porosity, thermal conductivity and particle size distribution in selected sections of the Meisenheim-1 drilling core (Saar-Nahe basin, Rheinland-Palatinate) under consideration of geothermally relevant formulation of questions (Gillian Inderwies); (8) Innovative technologies of exploration in the Jemez Geothermal project, New Mexico, USA (Michael Albrecht); (9) Geothermal energy, heat pump and TABS - optimization of planning, operational control and control (Franziska Bockelmann); (10) The impact of large-scale geothermal probes (storage probes) on the heat transfer and heat loss (Christopher Steins); (11) Numeric modelling of the permocarbon in the northern Upper Rhine Graben (L. Dohrer); (12) Engineering measurement solutions on quality assurance in the exploitation of geothermal fields (C. Lehr); (13) Evaluation and optimization of official buildings with the near-surface geothermal energy for heating and cooling (Franziska Bockelmann); (14) On-site filtration for a rapid and cost-effective quantification of the particle loading in the thermal water stream (Johannes Birner

  6. Stanford geothermal program. Final report, July 1990--June 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This report discusses the following: (1) improving models of vapor-dominated geothermal fields: the effects of adsorption; (2) adsorption characteristics of rocks from vapor-dominated geothermal reservoir at the Geysers, CA; (3) optimizing reinjection strategy at Palinpinon, Philippines based on chloride data; (4) optimization of water injection into vapor-dominated geothermal reservoirs; and (5) steam-water relative permeability.

  7. Geothermal energy

    CERN Document Server

    Mangor, Jodie

    2016-01-01

    Vast amounts of heat exist below the planet's surface. Geothermal Energy shows how scientists are tapping into this source of energy to heat homes and generate electricity. Easy-to-read text, vivid images, and helpful back matter give readers a clear look at this subject. Features include a table of contents, infographics, a glossary, additional resources, and an index. Aligned to Common Core Standards and correlated to state standards. Core Library is an imprint of Abdo Publishing, a division of ABDO.

  8. Geothermal Energy

    Science.gov (United States)

    1975-11-15

    important from the geothermal point of view. These are known as La Tacita, Hacienda de Agua Fria, Banos del Chino, Laguna Verde, El Nopal...Institute for the Electrical Industry has begun to study surface geo- logy, photointerpretation, and gas and water sampling. La Primavera . - La ... Primavera is situated close to and west of the city of Guadalajara, capital of the State of Jalisco . It is described as a volcanic caldera, and the

  9. Federal Geothermal Research Program Update - Fiscal Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Laney

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or

  10. Federal Geothermal Research Program Update Fiscal Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently

  11. Lichens as biological monitors in the Los Azufres geothermal field, Michoacan, Mexico; Liquenes como indicadores biologicos en el campo geotermico Los Azufres, Michoacan, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Peralta, Marlene; Chavez Carmona, Arturo [Universidad Michoacana de San Nicolas de Hidalgo, Morelia (Mexico)

    1995-09-01

    The results obtained in the monitoring of the atmospheric emissions of the Los Azufres geothermal field in Michoacan State, Mexico utilizing lichens as monitors of the presence of sulphur and arsenic, at the areas near geothermal sites, both under evaluation and production, are presented. The results are based on symptoms which included: chlorosis, necrosis, brown and reddish spots, loss of adherence to substrate, thalli disintegration and disappearance of sensitive species; and also on the amounts of sulphur and arsenic contained in the lichens thallus. [Espanol] Se presentan los resultados obtenidos en el monitoreo de las emisiones atmosfericas del campo geotermico Los Azufres, Michoacan, Mexico en el que se utilizaron liquenes como indicadores de la presencia de azufre y arsenico, en las areas cercanas a los sitios de pozos geotermicos tanto en evaluacion como en produccion. Los resultados estan basados en sintomas que incluyen clorosis, necrosis, manchas cafes y rojizas, perdida de adherencia al sustrato, desintegracion del talo y desaparicion de especies sensibles; asi como en los contenidos de azufre y arsenico en los talos liquenicos.

  12. Fifteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.

  13. Prospects of geothermal resource exploitation

    International Nuclear Information System (INIS)

    Bourrelier, P.H.; Cornet, F.; Fouillac, C.

    1994-01-01

    The use of geothermal energy to generate electricity has only occurred during the past 50 years by drilling wells in aquifers close to magmas and producing either dry steam or hot water. The world's production of electricity from geothermal energy is over 6000 MWe and is still growing. The direct use of geothermal energy for major urban communities has been developed recently by exploitation of aquifers in sedimentary basins under large towns. Scaling up the extraction of heat implies the exploitation of larger and better located fields requiring an appropriate method of extraction; the objective of present attempts in USA, Japan and Europe is to create heat exchangers by the circulation of water between several deep wells. Two field categories are considered: the extension of classical geothermal fields beyond the aquifer areas, and areas favoured by both a high geothermal gradient, fractures inducing a natural permeability at large scale, and good commercial prospects (such as in the Rhenan Graben). Hot dry rocks concept has gained a large interest. 1 fig., 5 tabs., 11 refs

  14. Energy and Exergy Analysis of Kalina Cycle for the Utilization of Waste Heat in Brine Water for Indonesian Geothermal Field

    Directory of Open Access Journals (Sweden)

    Nasruddin Nasruddin

    2015-04-01

    Full Text Available The utilization of waste heat in a power plant system—which would otherwise be released back to the environment—in order to produce additional power increases the efficiency of the system itself. The purpose of this study is to present an energy and exergy analysis of Kalina Cycle System (KCS 11, which is proposed to be utilized to generate additional electric power from the waste heat contained in geothermal brine water available in the Lahendong Geothermal power plant site in North Sulawesi, Indonesia. A modeling application on energy and exergy system is used to study the design of thermal system which uses KCS 11. To obtain the maximum power output and maximum efficiency, the system is optimized based on the mass fraction of working fluid (ammonia-water, as well as based on the turbine exhaust pressure. The result of the simulation is the optimum theoretical performance of KCS 11, which has the highest possible power output and efficiency. The energy flow diagram and exergy diagram (Grassman diagram was also presented for KCS 11 optimum system to give quantitative information regarding energy flow from the heat source to system components and the proportion of the exergy input dissipated in the various system components.

  15. A preliminary interpretation of gas composition in the CP IV sector wells, Cerro Prieto geothermal field, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Barragan Reyes, Rosa Maria; Arellano Gomez, Victor M; Portugal Marin, Enrique [Instituto de Investigaciones Electricas, Gerencia de Geotermia, Morelos (Mexico)]. E-mail: rmb@iie.org.mx; Perez Hernandez, Alfredo; Rodriguez Rodriguez, Marco Helio; Leon Vivar, Jesus de [Comision Federal de Electricidad, Residencia General Cerro Prieto, B.C. (Mexico)

    2007-07-15

    To increase the electrical generation capacity of the Cerro Prieto geothermal field from 620 MW to 720 MW, the Cerro Prieto IV (CP IV) sector of the field was developed in the NE portion of the exploited field. Fourteen new wells have been drilled there since 2000. The wells in CP IV zone produce two-phase fluids at wellhead with heterogeneous steam fraction characteristics: at the central zone and towards the NW, the wells are liquid-dominated while those towards the E and S produce a relatively high steam fraction. This work studies the gas compositions of produced fluids to obtain reservoir parameters such as temperature and steam fraction and identify different sources of fluids in the wells. A method was used based on the Fischer Tropsch reaction and H{sub 2}S equilibria with pyrite-pyrrhotite as a mineral buffer (FT-HSH3). The results for the natural state showed the presence of fluids with reservoir temperatures from 275 to 310 degrees Celsius and excess steam values from -1 to 50%. Data are aligned in a FT-HSH3 trend, suggesting that the well discharges consist of a mixture in different proportions of the two end members. One seems to be a liquid with a temperature of over 300 degrees Celsius with negative or negligible excess steam. The other seems to be a two-phase fluid with a temperature of about 275 degrees Celsius and an excess steam fraction of about 0.5. According to the data for single wells and depending on the production conditions of the wells, reservoir fluid mixtures could occur in different proportions of liquid and steam. Data for 2005 that included wells drilled after 2000 suggest the presence of a steam phase in the reservoir. The steam could be generated with the boiling of deep reservoir fluid from a pressure drop. The mixing trend obtained for the natural state was also seen for 2005 data but lower temperatures (from 265 to 295 degrees Celsius) were obtained compared with those for natural conditions. The entry of lower

  16. High- and middle-energy geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    High and middle energy geothermal resources correspond to temperature intervals of 220-350 C and 90-180 C, respectively, and are both exploited for electricity production. Exploitation techniques and applications of high and of middle energy geothermics are different. High energy geothermics is encountered in active volcanic and tectonic zones, such as the circum-Pacific fire-belt, the lesser Antilles, the peri-Mediterranean Alpine chain or the African rift zone. The geothermal steam is directly expanded in a turbine protected against gas and minerals corrosion. About 350 high energy plants are distributed in more than 20 different countries and represent 6000 M We. The cost of high energy installed geothermal kWh ranges from 0.20 to 0.50 French Francs. Middle energy geothermics is encountered in sedimentary basins (between 2000 and 4000 m of depth), in localized fractured zones or at lower depth in the high energy geothermal fields. Heat exchangers with organic fluid Rankine cycle technology is used to produce electricity. Unit power of middle energy plants generally ranges from few hundreds of k W to few MW and correspond to a worldwide installed power of about 400 M We. The annual progression of geothermal installed power is estimated to 4 to 8 % in the next years and concerns principally the circum-Pacific countries. In France, geothermal resources are mainly localized in overseas departments. (J.S.). 3 photos

  17. Geothermal in transition

    International Nuclear Information System (INIS)

    Anderson, J.L.

    1991-01-01

    This article examines the current market for geothermal projects in the US and overseas. The topics of the article include future capacity needs, upgrading the Coso Geothermal project, the productivity of the Geysers area of Northern California, the future of geothermal, and new projects at Soda Lake, Carson Basin, Unalaska Island, and the Puna Geothermal Venture in Hilo, Hawaii

  18. Alaska geothermal bibliography

    Energy Technology Data Exchange (ETDEWEB)

    Liss, S.A.; Motyka, R.J.; Nye, C.J. (comps.)

    1987-05-01

    The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

  19. Status of geothermal resources in Mexico

    International Nuclear Information System (INIS)

    Le-Bert, G.

    1990-01-01

    Except for some isolated instances with tourist or therapeutic objectives and some attempts in the Cerro Prieto geothermal field, there are no projects for direct heat utilization of geothermal resources in Mexico. Therefore, all places that are studied are studied with geothermal-electric objectives. It is convenient to keep in mind that in Mexico, by law, the Comision Federal de Electricidad (CFE) is the public utility in charge of electrical energy service. This institution is directly responsible for the exploration, development and commercial use of geothermal energy for electrical generation. Therefore, this paper includes the present and planned exploration and utilization of geothermal resources only for electricity generation for the period 1985 to the present. Likewise, starting 5 years ago, the CFE efforts have been directed toward the development of high enthalpy fields

  20. Decree from July 25, 2015 related to general prescriptions applicable to geothermal activities of minor importance. Decree from July 25, 2015 related to the certification of drilling companies intervening in geothermal energy of minor importance. Decree from July 25, 2015 related to the zoning map in the field minor importance geothermal energy

    International Nuclear Information System (INIS)

    Delduc, P.; Blanc, P.; Michel, L.

    2015-01-01

    These decrees concern various actors of the geothermal sector in the case of projects and works of minor importance. The first one defines general technical prescriptions applicable to a geothermal site of minor importance, the conditions related to the implantation of a geothermal installation of minor importance, measures to be implemented when performing geothermal works and when stopping its exploitation, control and maintenance modalities in order to prevent risks for the environment and to preserve water resource quality. The second decree defines measures to be implemented by drilling companies in the case of geothermal projects of minor importance. The third decree defines the map of geothermal areas of minor importance, specifies the map elaboration methodology and its reviewing modalities

  1. Rock specific hydraulic fracturing and matrix acidizing to enhance a geothermal system — Concepts and field results

    Science.gov (United States)

    Zimmermann, Günter; Blöcher, Guido; Reinicke, Andreas; Brandt, Wulf

    2011-04-01

    Enhanced geothermal systems (EGS) are engineered reservoirs developed to extract economic amounts of heat from low permeability and/or porosity geothermal resources. To enhance the productivity of reservoirs, a site specific concept is necessary to actively make reservoir conditions profitable using specially adjusted stimulation treatments, such as multi fracture concepts and site specific well path design. The results of previously performed stimulation treatments in the geothermal research well GtGrSk4/05 at Groß Schönebeck, Germany are presented. The reservoir is located at a 4100-4300 m depth within the Lower Permian of the NE German Basin with a bottom-hole temperature of 150 °C. The reservoir rock is classified by two lithological units from bottom to top: volcanic rocks (andesitic rocks) and siliciclastics ranging from conglomerates to fine-grained sandstones (fluvial sediments). The stimulation treatments included multiple hydraulic stimulations and an acid treatment. In order to initiate a cross-flow from the sandstone layer, the hydraulic stimulations were performed in different depth sections (two in the sandstone section and one in the underlying volcanic section). In low permeability volcanic rocks, a cyclic hydraulic fracturing treatment was performed over 6 days in conjunction with adding quartz in low concentrations to maintain a sustainable fracture performance. Flow rates of up to 150 l/s were realized, and a total of 13,170 m 3 of water was injected. A hydraulic connection to the sandstone layer was successfully achieved in this way. However, monitoring of the water level in the offsetting well EGrSk3/90, which is 475 m apart at the final depth, showed a very rapid water level increase due to the stimulation treatment. This can be explained by a connected fault zone within the volcanic rocks. Two gel-proppant treatments were performed in the slightly higher permeability sandstones to obtain long-term access to the reservoir rocks. During each

  2. Sperry Low Temperature Geothermal Conversion System, Phase I and Phase II. Volume IV. Field activities. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Harvey, C.

    1984-01-01

    This volume describes those activities which took place at the Sperry DOE Gravity Head plant site at the East Mesa Geothermal Reservoir near Holtville, California between February 1980, when site preparation was begun, and November 1982, when production well 87-6 was permanently abandoned. Construction activities were terminated in July 1981 following the liner collapse in well 87-6. Large amounts of program time manpower, materials, and funds had been diverted in a nine-month struggle to salvage the production well. Once these efforts proved futile, there was no rationale for continuing with the site work unless and until sufficient funding to duplicate well 87-6 was obtained. Activities reported here include: plant construction and pre-operational calibration and testing, drilling and completion of well 87-6, final repair effort on well 87-6, abandonment of well 87-6, and performance evaluation of well 87.6. (MHR)

  3. Thermal-Economic Modularization of Small, Organic Rankine Cycle Power Plants for Mid-Enthalpy Geothermal Fields

    Directory of Open Access Journals (Sweden)

    Yodha Y. Nusiaputra

    2014-07-01

    Full Text Available The costs of the surface infrastructure in mid-enthalpy geothermal power systems, especially in remote areas, could be reduced by using small, modular Organic Rankine Cycle (ORC power plants. Thermal-economic criteria have been devised to standardize ORC plant dimensions for such applications. We designed a modular ORC to utilize various wellhead temperatures (120–170 °C, mass flow rates and ambient temperatures (−10–40 °C. A control strategy was developed using steady-state optimization, in order to maximize net power production at off-design conditions. Optimum component sizes were determined using specific investment cost (SIC minimization and mean cashflow (MCF maximization for three different climate scenarios. Minimizing SIC did not yield significant benefits, but MCF proved to be a much better optimization function.

  4. Active-Source Seismic Tomography at Bradys Geothermal Field, Nevada, with Dense Nodal and Fiber-Optic Seismic Arrays

    Science.gov (United States)

    Thurber, C. H.; Parker, L.; Li, P.; Fratta, D.; Zeng, X.; Feigl, K. L.; Ak, E.; Lord, N.

    2017-12-01

    We deployed a dense seismic array to image the shallow structure in the injection area of the Brady Hot Springs geothermal site in Nevada. The array was composed of 238 5 Hz, three-component nodal instruments and 8,700 m of distributed acoustic sensing (DAS) fiber-optic cable installed in surface trenches plus about 400 m installed in a borehole. The geophone array had about 60 m instrument spacing in the target zone, whereas DAS channel separations were about 1 m. The acquisition systems provided 15 days of continuous records including active source and ambient noise signals. A large vibroseis truck (T-Rex) was operated at 196 locations, exciting a swept-frequency signal from 5 to 80 Hz over 20 seconds using three vibration modes. Sweeps were repeated up to four times during different modes of geothermal plant operation: normal operation, shut-down, high and oscillatory injection and production, and normal operation again. The cross-correlation method was utilized to remove the sweep signal from the geophone records. The first P arrivals were automatically picked from the cross-correlation functions using a combination of methods, and the travel times were used to invert for the 3D P-wave velocity structure. Models with 100 m and 50 m horizontal node spacing were obtained, with vertical node spacing of 10 to 50 m. The travel time data were fit to about 30 ms, close to our estimated picking uncertainty. We will present our 3D Vp model and the result of our search for measurable temporal changes, along with preliminary results for a 3D Vs model. The work presented herein was funded in part by the Office of Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy, under Award Number DE-EE0006760.

  5. Evidence for tectonic, lithologic, and thermal controls on fracture system geometries in an andesitic high-temperature geothermal field

    Science.gov (United States)

    Massiot, Cécile; Nicol, Andrew; McNamara, David D.; Townend, John

    2017-08-01

    Analysis of fracture orientation, spacing, and thickness from acoustic borehole televiewer (BHTV) logs and cores in the andesite-hosted Rotokawa geothermal reservoir (New Zealand) highlights potential controls on the geometry of the fracture system. Cluster analysis of fracture orientations indicates four fracture sets. Probability distributions of fracture spacing and thickness measured on BHTV logs are estimated for each fracture set, using maximum likelihood estimations applied to truncated size distributions to account for sampling bias. Fracture spacing is dominantly lognormal, though two subordinate fracture sets have a power law spacing. This difference in spacing distributions may reflect the influence of the andesitic sequence stratification (lognormal) and tectonic faults (power law). Fracture thicknesses of 9-30 mm observed in BHTV logs, and 1-3 mm in cores, are interpreted to follow a power law. Fractures in thin sections (˜5 μm thick) do not fit this power law distribution, which, together with their orientation, reflect a change of controls on fracture thickness from uniform (such as thermal) controls at thin section scale to anisotropic (tectonic) at core and BHTV scales of observation. However, the ˜5% volumetric percentage of fractures within the rock at all three scales suggests a self-similar behavior in 3-D. Power law thickness distributions potentially associated with power law fluid flow rates, and increased connectivity where fracture sets intersect, may cause the large permeability variations that occur at hundred meter scales in the reservoir. The described fracture geometries can be incorporated into fracture and flow models to explore the roles of fracture connectivity, stress, and mineral precipitation/dissolution on permeability in such andesite-hosted geothermal systems.

  6. Geothermal Reservoir Well Stimulation Program: technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    1980-05-01

    A literature search on reservoir and/or well stimulation techniques suitable for application in geothermal fields is presented. The literature on stimulation techniques in oil and gas field applications was also searched and evaluated as to its relevancy to geothermal operations. The equivalent low-temperature work documented in the open literature is cited, and an attempt is made to evaluate the relevance of this information as far as high-temperature stimulation work is concerned. Clays play an important role in any stimulation work. Therefore, special emphasis has been placed on clay behavior anticipated in geothermal operations. (MHR)

  7. Geothermal rice drying unit in Kotchany, Macedonia

    International Nuclear Information System (INIS)

    Popovski, K.; Dimitrov, K.; Andrejevski, B.; Popovska, S.

    1992-01-01

    A geothermal field in Kotchany (Macedonia) has very advantageous characteristics for direct application purposes. Low content of minerals, moderate temperature (78C) and substantial available geothermal water flow (up to 300 1/s) enabled the establishment of a district heating scheme comprising mainly agricultural and industrial uses. A rice drying unit of 10 t/h capacity was installed 8 years ago, using the geothermal water as the primary heat source. A temperature drop of 75/50C enables the adaptation of conventional drying technology, already proven in practice in the surrounding rice growing region. Water to air heat exchanger and all necessary equipment and materials are of local production, made of copper and carbon steel. The use of such drying units is strongly recommended for the concrete district heating scheme because it offers a very simple geothermal application and enables improvement in the annual heating load factor without high investments in geothermal water distribution lines

  8. Federal Geothermal Research Program Update, FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Joel Lawrence

    2001-08-01

    The Department of Energy's Geothermal Program serves two broad purposes: 1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and 2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

  9. Geoelectrical structure by electrical logs and Schlumberger sounding at the Akinomiya geothermal field, Akita Prefecture; Denki kenso oyobi Schlumberger ho ni yoru Akinomiya chinetsu chiiki no hiteiko kozo

    Energy Technology Data Exchange (ETDEWEB)

    Kajiwara, T.; Takemoto, S.

    1997-05-27

    Based on the electrical logging data of the existed well and Schlumberger sounding data obtained in 1974, a two-dimensional inversion analysis of the specific resistance profile was conducted at the Akinomiya geothermal field, Akita Prefecture. From the electrical logging data, relationships between the geology and the specific resistance were illustrated. The specific resistance values of basement rocks showed more than 100 ohm-m, which were higher than those of the other seams. Intrusive rocks and tuffs in the basement rocks showed locally low values less than 100 ohm-m. Younger volcanic rocks showed low values around 10 ohm-m. As a result of the two-dimensional inversion analysis, the basement rocks could be detected as high specific resistance layers. Accordingly, it was considered that the basement rocks in this field can be detected as high specific resistance layers by analyzing the results of field survey sufficiently. Low specific resistance zones were observed in the shallow depth, which corresponded to the fumarolic gases. There were some layers with remarkably varied specific resistance values, which were considered to be related with alteration. 6 refs., 3 figs.

  10. Application of dating for searching geothermic sources

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez-Negrin, L.; Balcazar-Garcia, M.; Lopez-Martinez, A.

    1984-01-01

    A Geothermal field is usually associated with a volcanic region and, therefore, with an abundance of volcanic glasses such as obsidians. The magmatic chambers constitute an excellent source of heat for a geothermical system. These chambers can be geologically identified from the surface by its recent volcanic products. Therefore, the geological age of the volcanic units is of great interest for a location of a worthwile thermal energy field. This paper presents some preliminary results of the ages obtained by dating obsidians.

  11. Insight into the Geothermal Structure in Chingshui, Ilan, Taiwan

    Directory of Open Access Journals (Sweden)

    Lun-Tao Tong

    2008-01-01

    Full Text Available The Chingshui geothermal field is the largest known productive geothermal area in Taiwan. The purpose of this paper is to delineate this geothermal structure by integrating geophysical data and borehole information. The existence of a magma chamber in the shallow crust and shallow intrusive igneous rock results in a high heat flow and geothermal gradient; furthermore, the NE deep fault system within the meta-sandstones provides meteoric recharge from a higher elevation to artesianally drive the geothermal system. There is evidence that geothermal fluid deeply circulated within the fracture zone and was heated by a deeply located body of hot rock. The geothermal reservoir of the Chingshui geothermal field might be related to the fracture zone of the Chingshuihsi fault. It is bounded by the C-fault in the north and Xiaonanao fault in the south. Based on information obtained from geophysical interpretations and well logs, a 3-D geothermal conceptual model is constructed in this study. Further, the geothermal reservoir is confined to an area that is 260 m in width, N21°W, 1.5 km in length, and has an 80° dip toward the NE. Ahigh-temperature zone is found in the SE region of the reservoir, which is about 500 m in length; this zone is located near the intersection of the Chingshuihsi and Xiaonanao faults. An area on the NE side of the high-temperature zone has been recommended for the drilling of production wells for future geothermal development.

  12. City of El Centro geothermal energy utility core field experiment. Final report, February 16, 1979-November 30, 1984

    Energy Technology Data Exchange (ETDEWEB)

    Province, S.G.; Sherwood, P.B.

    1984-11-01

    The City of El Centro was awarded a contract in late 1978 to cost share the development of a low to moderate temperature geothermal resource in the City. The resource would be utilized to heat, cool and provide hot water to the nearby Community Center. In December 1981, Thermal 1 (injector) was drilled to 3970 feet. In January 1982, Thermal 2 (producer) was drilled to 8510 feet. Before testing began, fill migrated into both wells. Both wells were cleaned out. A pump was installed in the producer, but migration of fill again into the injector precluded injection of produced fluid. A short term production test was undertaken and results analyzed. Based upon the analysis, DOE decided that the well was not useful for commercial production due to a low flow rate, the potential problems of continued sanding and gasing, and the requirement to lower the pump setting depth and the associated costs of pumping. There was no commercial user found to take over the wells. Therefore, the wells were plugged and abandoned. The site was restored to its original condition.

  13. MT2-D inversion analysis in Kakkonda geothermal field; Kakkonda chinetsu chiiki ni okeru MT ho nijigen kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Yamane, K.; Takasugi, S. [Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan); Miyazaki, S. [Japan Metals and Chemicals Co. Ltd., Tokyo (Japan); Uchida, T. [New Energy and Industrial Technology Development Organization, Tokyo, (Japan)

    1996-05-01

    Data, collected from an MT method-assisted survey conducted in the Kakkonda geothermal region in 1987, was re-examined, and a new structure was found. The review was carried out by use of a 2D analysis in the TM mode. According to the 1D analysis of 1987 and the geological data gathered then, it is estimated that the resistivity structure of this region runs in the northwest-southeast direction. A northeast-southwest traverse line was set for this analysis, orthogonal to the strike, and the impedance at each observation spot was caused to rotate to this direction across the whole range of frequency. Furthermore, in 1994-95, surveys were conducted using arrayed CSMT/MT methods. All these sum up to indicate that a high-resistivity region extends northwest in the southwestern part of the Kakkonda river but that there exists a low-resistivity region of several 10 Ohm m centering about the B traverse line. The high-resistivity region deep in the ground being the target of excavation in the Kakkonda region, to collect knowledge about this high-resistivity is important, and here the effectiveness of the 2d analysis has been verified. 5 refs., 11 figs.

  14. Geothermal pilot study final report: creating an international geothermal energy community

    Energy Technology Data Exchange (ETDEWEB)

    Bresee, J.C.; Yen, W.W.S.; Metzler, J.E. (eds.)

    1978-06-01

    The Geothermal Pilot Study under the auspices of the Committee on the Challenges of Modern Society (CCMS) was established in 1973 to apply an action-oriented approach to international geothermal research and development, taking advantage of the established channels of governmental communication provided by the North Atlantic Treaty Organization (NATO). The Pilot Study was composed of five substudies. They included: computer-based information systems; direct application of geothermal energy; reservoir assessment; small geothermal power plants; and hot dry rock concepts. The most significant overall result of the CCMS Geothermal Pilot Study, which is now complete, is the establishment of an identifiable community of geothermal experts in a dozen or more countries active in development programs. Specific accomplishments include the creation of an international computer file of technical information on geothermal wells and fields, the development of studies and reports on direct applications, geothermal fluid injection and small power plants, and the operation of the visiting scientist program. In the United States, the computer file has aready proven useful in the development of reservoir models and of chemical geothermometers. The state-of-the-art report on direct uses of geothermal energy is proving to be a valuable resource document for laypersons and experts in an area of increasing interest to many countries. Geothermal fluid injection studies in El Salvador, New Zealand, and the United States have been assisted by the Reservoir Assessment Substudy and have led to long-range reservoir engineering studies in Mexico. At least seven small geothermal power plants are in use or have been planned for construction around the world since the Small Power Plant Substudy was instituted--at least partial credit for this increased application can be assigned to the CCMS Geothermal Pilot Study. (JGB)

  15. Shallow gas and temperature survey at San Jacinto-Tizate geothermal field, Nicaragua; Levantamiento de gases del subsuelo y temperaturas superficiales en el campo geotermico San Jacinto-Tizate, Nicaragua

    Energy Technology Data Exchange (ETDEWEB)

    Ostapenko, Sergio [INTERGEOTERM S. A., Managua (Nicaragua); Romero Chavez, Francisco [Centro de Investigaciones Geocientificas (CIGEO), UNAN-MANAGUA, Managua (Nicaragua)

    1995-09-01

    The geothermal reservoirs generally indicate themselves on the surface not only by thermal manifestations (fumaroles, hot springs) but also by anomalies of soil gases and subsurface temperature. Soil gas CO{sub 2} and temperature surveys were conducted at the San Jacinto-Tizate geothermal field in Nicaragua. They helped to understand better the location site of the geothermal reservoir and, together with other exploration methods, to choose the best position for the wells. The results of the drilling showed that all the wells situated inside the common anomalies of soil gas (CO{sub 2}) and temperature, encountered a high temperature geothermal reservoir. [Espanol] Los yacimientos geotermicos de altas temperaturas, ademas de manifestarse en la superficie a traves de focos visibles naturales de descarga, lo hacen en forma de anomalias de valores altos de concentracion de CO{sub 2}, y de temperaturas superficiales. La realizacion del levantamiento termico y de CO{sub 2} en el campo geotermico San Jacinto-Tizate, Nicaragua permitio definir: Los sitios de descarga no visibles del sistema geotermico; Precisar la distribucion espacial del yacimiento geotermico y Recomendar, en combinacion con otros metodos de exploracion, sitios para la perforacion de pozos geotermicos. Los resultados de las perforaciones demostraron que todos los pozos ubicados dentro de los limites de las anomalias de CO{sub 2} y temperatura, intersecaron el yacimiento permeable con aguas subterraneas de altas temperaturas.

  16. Natural or Induced: Identifying Natural and Induced Swarms from Pre-production and Co-production Microseismic Catalogs at the Coso Geothermal Field

    Science.gov (United States)

    Schoenball, Martin; Kaven, Joern; Glen, Jonathan M. G.; Davatzes, Nicholas C.

    2015-01-01

    Increased levels of seismicity coinciding with injection of reservoir fluids have prompted interest in methods to distinguish induced from natural seismicity. Discrimination between induced and natural seismicity is especially difficult in areas that have high levels of natural seismicity, such as the geothermal fields at the Salton Sea and Coso, both in California. Both areas show swarm-like sequences that could be related to natural, deep fluid migration as part of the natural hydrothermal system. Therefore, swarms often have spatio-temporal patterns that resemble fluid-induced seismicity, and might possibly share other characteristics. The Coso Geothermal Field and its surroundings is one of the most seismically active areas in California with a large proportion of its activity occurring as seismic swarms. Here we analyze clustered seismicity in and surrounding the currently produced reservoir comparatively for pre-production and co-production periods. We perform a cluster analysis, based on the inter-event distance in a space-time-energy domain to identify notable earthquake sequences. For each event j, the closest previous event i is identified and their relationship categorized. If this nearest neighbor’s distance is below a threshold based on the local minimum of the bimodal distribution of nearest neighbor distances, then the event j is included in the cluster as a child to this parent event i. If it is above the threshold, event j begins a new cluster. This process identifies subsets of events whose nearest neighbor distances and relative timing qualify as a cluster as well as a characterizing the parent-child relationships among events in the cluster. We apply this method to three different catalogs: (1) a two-year microseismic survey of the Coso geothermal area that was acquired before exploration drilling in the area began; (2) the HYS_catalog_2013 that contains 52,000 double-difference relocated events and covers the years 1981 to 2013; and (3) a

  17. Geothermal Technologies Program: Alaska

    Energy Technology Data Exchange (ETDEWEB)

    2005-02-01

    This fact sheets provides a summary of geothermal potential, issues, and current development in Alaska. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

  18. Operation and Performance of a Biphase Turbine Power Plant at the Cerro Prieto Geothermal Field (Final Report)

    Energy Technology Data Exchange (ETDEWEB)

    Hays, Lance G. [Douglas Energy Company, Placentia, CA (United States)

    2000-09-01

    A full scale, wellhead Biphase turbine was manufactured and installed with the balance of plant at Well 103 of the Cerro Prieto geothermal resource in Baja, California. The Biphase turbine was first synchronized with the electrical grid of Comision Federal de Electricidad on August 20, 1997. The Biphase power plant was operated from that time until May 23, 2000, a period of 2 years and 9 months. A total of 77,549 kWh were delivered to the grid. The power plant was subsequently placed in a standby condition pending replacement of the rotor with a newly designed, higher power rotor and replacement of the bearings and seals. The maximum measured power output of the Biphase turbine, 808 kWe at 640 psig wellhead pressure, agreed closely with the predicted output, 840 kWe. When combined with the backpressure steam turbine the total output power from that flow would be increased by 40% above the power derived only from the flow by the present flash steam plant. The design relations used to predict performance and design the turbine were verified by these tests. The performance and durability of the Biphase turbine support the conclusion of the Economics and Application Report previously published, (Appendix A). The newly designed rotor (the Dual Pressure Rotor) was analyzed for the above power condition. The Dual Pressure Rotor would increase the power output to 2064 kWe by incorporating two pressure letdown stages in the Biphase rotor, eliminating the requirement for a backpressure steam turbine. The power plant availability was low due to deposition of solids from the well on the Biphase rotor and balance of plant problems. A great deal of plant down time resulted from the requirement to develop methods to handle the solids and from testing the apparatus in the Biphase turbine. Finally an online, washing method using the high pressure two-phase flow was developed which completely eliminated the solids problem. The availability of the Biphase turbine itself was 100

  19. Sign of Radon for locate geothermic sources

    International Nuclear Information System (INIS)

    Gonzalez Teran, D.

    1991-01-01

    Evaluation of a geothermic field is based upon geological, geophysical and geochemical studies that enable the evaluation of the deposit potential, that is to say, the amount of energy per unit mass, the volume of the trapped fluid, vapor fraction and fluid chemistry. This thesis has as its objective the evaluation of radon gas emanation in high potential geothermic zones in order to utilize the results as a low cost and easy to manage complimentary tool in geothermic source prospection. In chapter I the importance and evaluation of a geothermic deposit is discussed. In chapter II the general characteristics of radon are discussed: its radioactivity and behavior upon diffusion over the earth's surface> Chapter III establishes the approach used in the geothermic field of Los Azufres, Michoacan, to carry out samplings of radon and the laboratory techniques that were used to evaluate the concentration of radon in the subsoil. Finally in chapter IV measurements of radon in the field are compared to geological faults in the area under study. The sampling zones were: low geothermic potential zone of the northern and the southern zone having a greater geothermic potential than that in the north. The study was carried out at different sampling times using plastics detectors of from 30 to 46 days from February to July. From the results obtained we concluded that the emission of radon was greater in the zones of greatest geothermic potential than in the low geothermic potential zones it was also affected by the fault structure and the time of year in which sampling was done. (Author)

  20. Evaluation of CO2-Fluid-Rock Interaction in Enhanced Geothermal Systems: Field-Scale Geochemical Simulations

    Directory of Open Access Journals (Sweden)

    Feng Pan

    2017-01-01

    Full Text Available Recent studies suggest that using supercritical CO2 (scCO2 instead of water as a heat transmission fluid in Enhanced Geothermal Systems (EGS may improve energy extraction. While CO2-fluid-rock interactions at “typical” temperatures and pressures of subsurface reservoirs are fairly well known, such understanding for the elevated conditions of EGS is relatively unresolved. Geochemical impacts of CO2 as a working fluid (“CO2-EGS” compared to those for water as a working fluid (H2O-EGS are needed. The primary objectives of this study are (1 constraining geochemical processes associated with CO2-fluid-rock interactions under the high pressures and temperatures of a typical CO2-EGS site and (2 comparing geochemical impacts of CO2-EGS to geochemical impacts of H2O-EGS. The St. John’s Dome CO2-EGS research site in Arizona was adopted as a case study. A 3D model of the site was developed. Net heat extraction and mass flow production rates for CO2-EGS were larger compared to H2O-EGS, suggesting that using scCO2 as a working fluid may enhance EGS heat extraction. More aqueous CO2 accumulates within upper- and lower-lying layers than in the injection/production layers, reducing pH values and leading to increased dissolution and precipitation of minerals in those upper and lower layers. Dissolution of oligoclase for water as a working fluid shows smaller magnitude in rates and different distributions in profile than those for scCO2 as a working fluid. It indicates that geochemical processes of scCO2-rock interaction have significant effects on mineral dissolution and precipitation in magnitudes and distributions.

  1. Hot Dry Rock; Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    None

    1990-01-01

    The commercial utilization of geothermal energy forms the basis of the largest renewable energy industry in the world. More than 5000 Mw of electrical power are currently in production from approximately 210 plants and 10 000 Mw thermal are used in direct use processes. The majority of these systems are located in the well defined geothermal generally associated with crustal plate boundaries or hot spots. The essential requirements of high subsurface temperature with huge volumes of exploitable fluids, coupled to environmental and market factors, limit the choice of suitable sites significantly. The Hot Dry Rock (HDR) concept at any depth originally offered a dream of unlimited expansion for the geothermal industry by relaxing the location constraints by drilling deep enough to reach adequate temperatures. Now, after 20 years intensive work by international teams and expenditures of more than $250 million, it is vital to review the position of HDR in relation to the established geothermal industry. The HDR resource is merely a body of rock at elevated temperatures with insufficient fluids in place to enable the heat to be extracted without the need for injection wells. All of the major field experiments in HDR have shown that the natural fracture systems form the heat transfer surfaces and that it is these fractures that must be for geothermal systems producing from naturally fractured formations provide a basis for directing the forthcoming but, equally, they require accepting significant location constraints on HDR for the time being. This paper presents a model HDR system designed for commercial operations in the UK and uses production data from hydrothermal systems in Japan and the USA to demonstrate the reservoir performance requirements for viable operations. It is shown that these characteristics are not likely to be achieved in host rocks without stimulation processes. However, the long term goal of artificial geothermal systems developed by systematic

  2. Multidisciplinary exploratory study of a geothermal resource in the active volcanic arc of Basse-Terre (Guadeloupe, Lesser Antilles)

    Science.gov (United States)

    Navelot, Vivien; Favier, Alexiane; Géraud, Yves; Diraison, Marc; Corsini, Michel; Verati, Chrystèle; Lardeaux, Jean-Marc; Mercier de Lépinay, Jeanne; Munschy, Marc

    2017-04-01

    The GEOTREF project (high enthalpy geothermal energy in fractured reservoirs), supported by the French government program, "Investissements d'avenir" develops a sustainable geothermal resource in the Vieux Habitants area, 8-km south of the currently exploited Bouillante geothermal field. The Basse Terre Island is a recent volcanic arc (geothermal gradient of 70 ˚ C/km.

  3. Spatial analysis of noise emission at the Los Azufres geothermal field, Mich.; Analisis espacial de emision de ruido en el campo geotermico de Los Azufres, Mich.

    Energy Technology Data Exchange (ETDEWEB)

    Camarena Magana, Emilio; Ordaz Mendez, Christian A. [Comision Federal de Electricidad, Residencia de Los Azufres, Morelia, Michoacan (Mexico)]. E-mail: emilio.camarena@cfe.gob.mx

    2010-01-15

    To verify noise emissions from the usual activities in an operating geothermal field, noise measurements were carried out in a 4.2 km{sup 2} area in the southern zone of the Los Azufres, Mich., geothermal field. There are seven production wells operating here and three abandoned wells. The average noise emission in the southern zone was 36.5 decibels (dB), regarded as the natural reading of environmental-noise emission. In the Christmas (valves) tree for operating production wells, the noise ranges from 70.9 to 91.7 dB, while in open discharging valves for steam-pipes, the noise can reach 118 dB. In Mexico the maximum permissible limit of noise on the periphery of a property is 68 dB in daytime and 65 dB at night. Based on measurements made at the periphery of lots where the geothermal wells are located, four out of seven production wells measured do not exceed the maximum allowable level, while the other three seem to exceed it. However no definite limits exist for the lots. It is recommended that the measurement points as indicated by the official standard in environmental matters be re-established, which will enable noise emissions by several wells that have exceeded the permissible limit, to actually fall within it. [Spanish] Se realizaron mediciones sonicas en un area de 4.2 km{sup 2} localizada en la zona sur del campo geotermico de Los Azufres, Mich., a fin de verificar la emision de ruido asociada a las actividades usuales en un campo geotermico en operacion. En esta area se encuentran siete pozos productores en operacion y tres pozos abandonados. La emision promedio de ruido en estos ultimos fue de 36.5 decibeles (dB), considerandose como la condicion natural de emision de ruido ambiental. En el arbol de valvulas de los pozos productores en operacion el ruido va de los 70.9 a los 91.7 dB, mientras que en valvulas abiertas de descarga de vaporductos la emision puede llegar hasta los 118 dB. En Mexico el limite maximo permisible de ruido en la periferia de

  4. Effects of galvanic distortions on magnetotelluric data: Interpretation ...

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Geophysics 56 951–960. Romo J M, Flores C, Vega R, Vazquez R, Perez Flores M A,. Gomez-Trevino E, Esparza F Z, Quizano J E and Gar- cia V H 1997 A closely spaced magnetotelluric study of the Ahuachapan-Chipilapa geothermal fields, El Sal- vador; Geothermics 26 627–656. Simpson F L, Haak V, Khan M A, Sakkas ...

  5. Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho

    Energy Technology Data Exchange (ETDEWEB)

    Glaspey, Douglas J.

    2008-01-30

    Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield.

  6. Hawaii geothermal project

    Science.gov (United States)

    Kamins, R. M.

    1974-01-01

    Hawaii's Geothermal Project is investigating the occurrence of geothermal resources in the archipelago, initially on the Island of Hawaii. The state's interest in geothermal development is keen, since it is almost totally dependent on imported oil for energy. Geothermal development in Hawaii may require greater participation by the public sector than has been true in California. The initial exploration has been financed by the national, state, and county governments. Maximization of net benefits may call for multiple use of geothermal resources; the extraction of by-products and the application of treated effluents to agricultural and aquacultural uses.

  7. Environmental framework for the development of the Los Humeros, Puebla geothermal field; Contexto ambiental del desarrollo del campo geotermico de Los Humeros, Puebla

    Energy Technology Data Exchange (ETDEWEB)

    Pastrana Melchor, Eugenio J.; Fernandez Solorzano, Maria Elena; Mendoza Rangel, Ernesto; Hernandez Ayala, Cuauhtemoc [Comision Federal de Electricidad, Morelia, Michoacan (Mexico)

    2005-06-01

    The construction, operation and maintenance of the Los Humeros, Puebla, geothermal field were undertaken in accordance with Mexican environmental regulations. The resolutions on environmental impacts, license for atmospheric pollution prevention, concession title for exploitation and use of national waters, permission for wastewater discharging services, company registration for producing dangerous wastes and fulfillment of all conditions noted in the documents show the applicable environmental laws for the project have been followed. [Spanish] La construccion, operacion y mantenimiento del campo geotermoelectrico Los Humeros, Puebla, se ha llevado a cabo dentro del marco juridico ambiental vigente en Mexico. Las resoluciones en materia de impacto ambiental, la licencia en materia de prevencion de la contaminacion de la atmosfera, el titulo de concesion para explorar, usar o aprovechar aguas nacionales, el permiso para descargar aguas residuales domesticas, el registro como empresa generadora de residuos peligrosos, y el cumplimiento de las disposiciones y condicionantes establecidos en cada uno de estos documentos, evidencian la observancia de la legislacion ambiental aplicable al proyecto.

  8. Geochemical evidences of the boiling phenomena in Los Humeros geothermal field; Evidencias geoquimicas del fenomeno de ebullicion en el campo de Los Humeros

    Energy Technology Data Exchange (ETDEWEB)

    Munguia Bracamontes, Fernando; Lopez Mendiola, Juan Manuel [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1989-12-31

    The geochemical behavior of the fluids in the geothermal field Los Humeros suggests the existence of a reservoir of relatively low permeability, with hydrostatic pressure gradients and thermodynamic conditions of pressure-temperature close to the boiling point in stationary conditions, that is, non-disturbed. Nevertheless, the fluid geochemistry also indicates the presence of steam under stationary conditions, mainly in the fault, fracture, fissure, etc. zones. The steam diminishes progressively as the extraction time increases, being replaced by boiling fluid. [Espanol] El comportamiento geoquimico de los fluidos en el campo geotermico de Los Humeros sugiere la existencia de un yacimiento de relativa baja permeabilidad, con gradientes de presion hidrostatica y condiciones termodinamicas de presion-temperatura cercanas al punto de ebullicion a condiciones estables; es decir, no perturbadas. Sin embargo, la geoquimica de los fluidos tambien indica la existencia de vapor bajo condiciones estables, principalmente en las zonas de fallas, fracturas, fisuras, etc. El vapor disminuye progresivamente conforme aumenta el tiempo de extraccion, siendo reemplazado por fluido en ebullicion.

  9. Geothermal and volcanism in west Java

    Science.gov (United States)

    Setiawan, I.; Indarto, S.; Sudarsono; Fauzi I, A.; Yuliyanti, A.; Lintjewas, L.; Alkausar, A.; Jakah

    2018-02-01

    Indonesian active volcanoes extend from Sumatra, Jawa, Bali, Lombok, Flores, North Sulawesi, and Halmahera. The volcanic arc hosts 276 volcanoes with 29 GWe of geothermal resources. Considering a wide distribution of geothermal potency, geothermal research is very important to be carried out especially to tackle high energy demand in Indonesia as an alternative energy sources aside from fossil fuel. Geothermal potency associated with volcanoes-hosted in West Java can be found in the West Java segment of Sunda Arc that is parallel with the subduction. The subduction of Indo-Australian oceanic plate beneath the Eurasian continental plate results in various volcanic products in a wide range of geochemical and mineralogical characteristics. The geochemical and mineralogical characteristics of volcanic and magmatic rocks associated with geothermal systems are ill-defined. Comprehensive study of geochemical signatures, mineralogical properties, and isotopes analysis might lead to the understanding of how large geothermal fields are found in West Java compared to ones in Central and East Java. The result can also provoke some valuable impacts on Java tectonic evolution and can suggest the key information for geothermal exploration enhancement.

  10. Geothermal for kids

    International Nuclear Information System (INIS)

    Nemzer, M.; Condy, M.

    1990-01-01

    This paper reports that educating children about geothermal energy is crucial to the future growth of the geothermal industry. The Geothermal Education Office (GEO) was founded in 1989 to provide materials and support to teachers and the geothermal community in educating grades K-12 about geothermal energy. GEO's goals are to: provide easy access to or referral to appropriate sources of geothermal information; foster teacher interest; create posters, booklets, lesson plans and other educational materials; monitor and review textbooks, encyclopedias and other educational materials distributed by educational groups to ensure inclusion of appropriate, accurate information and to encourage fair treatment of alternative energy resources; contribute articles to industry, science and educational publications; and foster communication and cooperation among GEO, the geothermal industry, government agencies, and educational and environmental groups

  11. Tracing Geothermal Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Michael C. Adams; Greg Nash

    2004-03-01

    Geothermal water must be injected back into the reservoir after it has been used for power production. Injection is critical in maximizing the power production and lifetime of the reservoir. To use injectate effectively the direction and velocity of the injected water must be known or inferred. This information can be obtained by using chemical tracers to track the subsurface flow paths of the injected fluid. Tracers are chemical compounds that are added to the water as it is injected back into the reservoir. The hot production water is monitored for the presence of this tracer using the most sensitive analytic methods that are economically feasible. The amount and concentration pattern of the tracer revealed by this monitoring can be used to evaluate how effective the injection strategy is. However, the tracers must have properties that suite the environment that they will be used in. This requires careful consideration and testing of the tracer properties. In previous and parallel investigations we have developed tracers that are suitable from tracing liquid water. In this investigation, we developed tracers that can be used for steam and mixed water/steam environments. This work will improve the efficiency of injection management in geothermal fields, lowering the cost of energy production and increasing the power output of these systems.

  12. FIJI geothermal resource assessment and development programme

    Energy Technology Data Exchange (ETDEWEB)

    Autar, Rohit K.

    1996-01-24

    The Fiji Department of Energy (DOE) has a comprehensive resource assessment programme which assesses and promotes the use of local renewable energy resources where they are economically viable. DOE is currently involved in the investigation of the extent of geothermal resources for future energy planning and supply purposes. The aim is to determine (a) whether exploitable geothermal fields exist in the Savusavu or Labasa areas. the two geothermal fields with the greatest potential, (b) the cost of exploiting these fields for electricity generation/process heat on Vanua Levu. (c) the comparative cost per mega-watt-hour (MWh) of geothermal electricity generation with other generating options on Vanua Levu, and. (d) to promote the development of the geothermal resource by inviting BOO/BOOT schemes. Results to date have indicated that prospects for using geothermal resource for generating electricity lies in Savusavu only - whereas the Labasa resource can only provide process heat. All geophysical surveys have been completed and the next stage is deep drilling to verify the theoretical findings and subsequent development.

  13. The low-energy geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Low-energy geothermal resources are characterized by temperatures ranging from 30 to 100 C. The principal worldwide applications are: towns and greenhouses heating, spa bathing, agriculture products drying, etc.. Sources depth ranges from 1500 to 2500 m in porous and permeable formations (sandstones, sands, conglomerates, limestones..) carrying aquifers. The worldwide installed power was of about 11500 MWth in 1990, with an annual production of about 36000 GWh (about 1% of worldwide energy consumption). The annual production rate is estimated to 10% and would represent a 30000 and 80000 MWth power in 2000 and 2010, respectively. In France, low-energy geothermal resources are encountered principally in Mesozoic sediments of the Parisian and Aquitanian basins. French geothermics has developed during the last 30 years and principally between 1980 and 1985 after the second petroleum crack. After 1985, the decay of fossil fuel costs and the development of corrosion problems in the geothermal wells have led to the abandonment of the less productive fields and to the study of technical solutions to solve the corrosion problems. (J.S.). 1 fig., 5 photos

  14. Achievement report for fiscal 1999 on project for supporting the formation of energy/environmental technology verification project. International joint verification research project (Use of combined binary power generation systems at new geothermal fields on Mindoro Island, the Philippines, and comparison with conventional power generation systems); 1999 nendo Philippines koku Mindoro to no shinki chinetsutai ni okeru combined binary hatsuden hoshiki no tekiyo seika hokokusho. Conventional hatsuden hoshiki tono hikaku kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Concerning the Manito Lowlands geothermal field and the Montelago geothermal field where the systems are to be newly installed, the geothermal reservoir characteristics are assessed, and cost effectiveness is compared between different power generating systems. According to the investigations conducted into the two geothermal fields in the past, they are supposed to have geothermal potentials of the medium grade. Chemical analyses are conducted anew on this occasion into the hot spring water and fumarole gas, and the MT (magnetotelluric) method is implemented for the survey of reservoir distribution. It is now expected that approximately 20MWe will be exploited from each of the two geothermal fields. The power generation systems studied are the single flash type and double flash type for the conventional power generation system, and the cascade type, bottoming type, and two-phase binary type for the combined binary power generation system. As the result, it is concluded that the double flash type or two-phase binary type will be advantageous to the Manito Lowlands geothermal field, and the double flash type or bottoming type or two-phase binary type will be advantageous to the Montelago geothermal field. (NEDO)

  15. Use of geothermal energy for desalination in New Mexico: a feasibility study. Final report, January 1, 1977-May 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, L.; Keyes, C.G. Jr.; Swanberg, C.A.; Gupta, Y.F.; Davis, R.J.

    1979-06-01

    The water requirements and availability for New Mexico are described. The possibility of using geothermal resources for desalination of the state's saline water sources is discussed. The following aspects of the problem are covered: resource evaluation, geothermal desalination technology, potential geothermal desalination sites, saline and geothermal aquifer well fields design, geothermal desalination plant waste brine disposal, process water pumping and brine disposal unit costs, environmental considerations, and legal and institutional considerations. (MHR)

  16. Geothermal direct-heat utilization assistance. Federal Assistance Program, Quarterly project progress report, October--December 1994

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-31

    The report summarizes activities of the Geo-Heat Center (GHC) at Oregon Institute of Technology for the first quarter of Fiscal Year 1995. It describes contacts with parties during this period related to assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research is also being conducted on geothermal energy cost evaluation, low-temperature geothermal resource assessment, use of silica waste from the Cerro Prieto geothermal field as construction materials and geothermal heat pumps. Outreach activities include the publication of a quarterly Bulletin on direct heat applications and dissemination of information on low-temperature geothermal resources and utilization.

  17. Reference book on geothermal direct use

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J.; Lund, J.W.; Rafferty, K.; Culver, G.

    1994-08-01

    This report presents the direct uses of geothermal energy in the United States. Topics discussed include: low-temperature geothermal energy resources; energy reserves; geothermal heat pumps; geothermal energy for residential buildings; and geothermal energy for industrial usage.

  18. Geothermal energy in Turkey. 2008 update

    Energy Technology Data Exchange (ETDEWEB)

    Serpen, Umran; Korkmaz, E. Didem [Istanbul Technical University, Petroleum and Natural Gas Engineering Department, 34469 Maslak-istanbul (Turkey); Aksoy, Niyazi [Dokuz Eyluel University, Torbali Technical Vocational School of Higher Education, 35120 Torbali-Izmir (Turkey); Oenguer, Tahir [Geosan Co. Inc., Buyukdere Str 27/7, 3438 Sisli-Istanbul (Turkey)

    2009-06-15

    Geological studies indicate that the most important geothermal systems of western Turkey are located in the major grabens of the Menderes Metamorphic Massif, while those that are associated with local volcanism are more common in the central and eastern parts of the country. The present (2008) installed geothermal power generation capacity in Turkey is about 32.65 MWe, while that of direct use projects is around 795 MWt. Eleven major, high-to-medium enthalpy fields in western part of the country have 570 MWe of proven, 905 MWe of probable and 1389 MWe of possible geothermal reserves for power generation. In spite of the complex legal issues related to the development of Turkey's geothermal resources, their use is expected to increase in the future, particularly for electricity generation and for greenhouse heating. (author)

  19. Geothermal resource and utilization in Bulgaria

    International Nuclear Information System (INIS)

    Bojadgieva, K.; Benderev, A.

    2011-01-01

    Bulgarian territory is rich in thermal water of temperature in the range of 20 - 100 o C. The highest water temperature (98 o C) is measured in Sapareva banya geothermal reservoir. Electricity generation from geothermal water is not currently available in the country. The major direct thermal water use nowadays covers: balneology, space heating and air-conditioning, domestic hot water supply, greenhouses, swimming pools, bottling of potable water and geothermal ground source heat pumps (GSHP). The total installed capacity amounts to about 77.67 MW (excl. GSHP) and the produced energy is 1083.89 TJ/year. Two applications - balneology and geothermal ground source heat pumps show more stable development during the period of 2005 - 2010. The update information on the state-owned hydrothermal fields is based on issued permits and concessions by the state.

  20. Monitoring Biological Activity at Geothermal Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Peter Pryfogle

    2005-09-01

    The economic impact of microbial growth in geothermal power plants has been estimated to be as high as $500,000 annually for a 100 MWe plant. Many methods are available to monitor biological activity at these facilities; however, very few plants have any on-line monitoring program in place. Metal coupon, selective culturing (MPN), total organic carbon (TOC), adenosine triphosphate (ATP), respirometry, phospholipid fatty acid (PLFA), and denaturing gradient gel electrophoresis (DGGE) characterizations have been conducted using water samples collected from geothermal plants located in California and Utah. In addition, the on-line performance of a commercial electrochemical monitor, the BIoGEORGE?, has been evaluated during extended deployments at geothermal facilities. This report provides a review of these techniques, presents data on their application from laboratory and field studies, and discusses their value in characterizing and monitoring biological activities at geothermal power plants.

  1. Enhanced Geothermal Systems

    Energy Technology Data Exchange (ETDEWEB)

    Jeanloz, R. [The MITRE Corporation, McLean, VA (United States); Stone, H. [The MITRE Corporation, McLean, VA (United States); et al.

    2013-12-31

    DOE, through the Geothermal Technologies Office (GTO) within the Office of Energy Efficiency and Renewable Energy, requested this study, identifying a focus on: i) assessment of technologies and approaches for subsurface imaging and characterization so as to be able to validate EGS opportunities, and ii) assessment of approaches toward creating sites for EGS, including science and engineering to enhance permeability and increase the recovery factor. Two days of briefings provided in-depth discussion of a wide range of themes and challenges in EGS, and represented perspectives from industry, government laboratories and university researchers. JASON also contacted colleagues from universities, government labs and industry in further conversations to learn the state of the field and potential technologies relevant to EGS.

  2. The geothermal power organization

    Energy Technology Data Exchange (ETDEWEB)

    Scholl, K.L. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-31

    The Geothermal Power Organization is an industry-led advisory group organized to advance the state-of-the-art in geothermal energy conversion technologies. Its goal is to generate electricity from geothermal fluids in the most cost-effective, safe, and environmentally benign manner possible. The group achieves this goal by determining the Member`s interest in potential solutions to technological problems, advising the research and development community of the needs of the geothermal energy conversion industry, and communicating research and development results among its Members. With the creation and adoption of a new charter, the Geothermal Power Organization will now assist the industry in pursuing cost-shared research and development projects with the DOE`s Office of Geothermal Technologies.

  3. Geothermal energy worldwide

    International Nuclear Information System (INIS)

    Barbier, Enriko

    1997-01-01

    Geothermal energy, as a natural steam and hot water, has been exploited for decades in order to generate electricity as well as district heating and industrial processes. The present geothermal electrical installed capacity in the world is about 10.000 MWe and the thermal capacity in non-electrical uses is about 8.200 MWt. Electricity is produced with an efficiency of 10-17%, and the cost of the kWh is competitive with conventional energy sources. In the developing countries, where a total installed electrical power is still low, geothermal energy can play a significant role: in El Salvador, for example, 25% of electricity comes from geothermal spring, 20% in the Philippines and 8% in Kenya. Present technology makes it possible to control the environmental impact of geothermal exploitation. Geothermal energy could also be extracted from deep geopressured reservoirs in large sedimentary basins, hot dry rock systems and magma bodies. (author)

  4. Computational methods for planning and evaluating geothermal energy projects

    International Nuclear Information System (INIS)

    Goumas, M.G.; Lygerou, V.A.; Papayannakis, L.E.

    1999-01-01

    In planning, designing and evaluating a geothermal energy project, a number of technical, economic, social and environmental parameters should be considered. The use of computational methods provides a rigorous analysis improving the decision-making process. This article demonstrates the application of decision-making methods developed in operational research for the optimum exploitation of geothermal resources. Two characteristic problems are considered: (1) the economic evaluation of a geothermal energy project under uncertain conditions using a stochastic analysis approach and (2) the evaluation of alternative exploitation schemes for optimum development of a low enthalpy geothermal field using a multicriteria decision-making procedure. (Author)

  5. Continuity and productivity analysis of three geopressured geothermal aquifer-natural gas fields: Duson, Hollywood and Church Point, Louisiana

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, L.A.; Boardman, C.R.; Bebout, D.G.; Bachman, A.L. (eds.)

    1981-01-01

    The available well logs, production records and geological structure maps were analyzed for the Hollywood, Duson, and Church Point, Louisiana oil and gas fields to determine the areal extent of the sealed geopressured blocks and to identify which aquifer sands within the blocks are connected to commercial production of hydrocarbons. Studies such as these are needed for the Department of Energy program to identify geopressured brine reservoirs that are not connected to commercial productions. The analysis showed that over the depth intervals at the geopressured zones shown on the logs essentially all of the sands of any substantial thickness had gas production from them somewhere or other in the fault block. It is therefore expected that the sands which are fully brine saturated in many of the wells are the water drive portion of the producing gas/oil somewhere else within the fault block. In this study only one deep sand was identified, in the Hollywood field, which was apparently not connected to a producing horizon somewhere else in the field. Estimates of the reservoir parameters were made for this sand and a hypothetical production calculation showed the probable production to be less than 10,000 b/d. The required gas price to profitably produce this gas is well above the current market price.

  6. An application of neural network in geophysical prospecting. Electrical resistivity at Las Virgenes geothermal field, Baja California Sur, Mexico; Una aplicacion de las redes neuronales a la prospeccion geofisica. Resistividad electrica en las Tres Virgenes, Baja California Sur, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Palma Guzman, Sergio Hugo [Comision Federal de Electricidad, Morelia, Michoacan (Mexico)

    2000-12-01

    The technology of the neural network is presented with geophysical focus in the Las Virgenes geothermal field, Baja California Sur, Mexico. The results obtained when extrapolating the associative data of the prospecting magnetoteluria and Vertical Electric Sounding, on the area of the geothermal wells to the rest of the area, allows to classify zones of interest for the geothermal exploitation. Also, the use of these associative parameters with the information of the stabilized temperature of the wells, they allow to predict temperatures for the rest of the area. [Spanish] Se presenta una aplicacion de la tecnologia de las redes neuronales con enfoque geofisico en el campo geotermico de Las Virgenes, Baja California Sur, Mexico. Los resultados obtenidos al extrapolar los datos asociativos de las prospecciones geoelectricas de magnetoteluria y sondeos electricos verticales, en la zona de los pozos geotermicos al resto del area, permiten clasificar zonas de interes para la explotacion geotermica. Tambien, la utilizacion de estos parametros asociativos con la informacion de la temperatura estabilizada de los pozos, permiten predecir temperaturas para la misma area.

  7. Geothermal Today - 1999

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-05-01

    U.S. Department of Energy 1999 Geothermal Energy Program Highlights The Hot Facts Getting into Hot Water Turning Waste water into Clean Energy Producing Even Cleaner Power Drilling Faster and Cheaper Program in Review 1999: The Year in Review JanuaryCal Energy announced sale of Coso geothermal power plants at China Lake, California, to Caithness Energy, for $277 million. U.S. Export-Import Bank completed a $50 million refinancing of the Leyte Geothermal Optimization Project in the Philippines. F

  8. Geothermal Today - 2001

    Energy Technology Data Exchange (ETDEWEB)

    None

    2001-08-01

    U.S. Department of Energy Geothermal Energy Program Highlights Partnering with Industry A New Power Source for Nevada Drilling Research Finding Geothermal Resources Small-Scale Geothermal Power Plants The Heat Beneath Your Feet R&D 100 Award Program in Review Milestones January 2000 The U.S. Department of Energy GeoPowering the West initiative was launched. February 2000 Grants totaling $4.8 million were awarded in six western states, primarily for development of reservoir exploration, character

  9. Numerical investigation of electricity generation potential from fractured granite reservoir by water circulating through three horizontal wells at Yangbajing geothermal field

    International Nuclear Information System (INIS)

    Zeng, Yuchao; Zhan, Jiemin; Wu, Nengyou; Luo, Yingying; Cai, Wenhao

    2016-01-01

    Highlights: • A numerical model of the 950–1350 m fractured granite reservoir through horizontal wells is established. • Desirable electricity production performance can be obtained under suitable conditions. • The system attains an electric power of 26.9–24.3 MW with an efficiency of about 50.10–22.39. • Electric power mainly depends on water production rate and injection temperature. • Higher permeability within a certain range is favorable for electricity generation. - Abstract: Deep geological exploration indicates that there is a high-temperature fractured granite reservoir at depth of 950–1350 m in well ZK4001 in the north of Yangbajing geothermal field, with an average temperature of 248 °C and a pressure within 8.01–11.57 MPa. In this work, we evaluated electricity generation potential from this fractured granite reservoir by water circulating through three horizontal wells, and analyzed main factors affecting the performance and efficiency through numerical simulation. The results show that in the reference case the system attains a production temperature of 248.0–235.7 °C, an electrical power of 26.9–24.3 MW, an injection pressure of 10.48–12.94 MPa, a reservoir impedance of 0.07–0.10 MPa/(kg/s), a pump power of 0.54–1.08 MW and an energy efficiency of 50.10–22.39 during a period of 20 years, displaying favorable production performance. Main factors affecting the production performance and efficiency are reservoir permeability, water production rate and injection temperature; within certain ranges increasing the reservoir permeability or adopting more reasonable water production rate or injection temperature will obviously improve the system production performance.

  10. Flux and genesis of CO2 degassing from volcanic-geothermal fields of Gulu-Yadong rift in the Lhasa terrane, South Tibet: Constraints on characteristics of deep carbon cycle in the India-Asia continent subduction zone

    Science.gov (United States)

    Zhang, Lihong; Guo, Zhengfu; Sano, Yuji; Zhang, Maoliang; Sun, Yutao; Cheng, Zhihui; Yang, Tsanyao Frank

    2017-11-01

    Gulu-Yadong rift (GYR) is the longest extensional, NE-SW-trending rift in the Himalayas and Lhasa terrane of South Tibet. Many volcanic-geothermal fields (VGFs), which comprise intense hot springs, steaming fissures, geysers and soil micro-seepage, are distributed in the GYR, making it ideal area for studying deep carbon emissions in the India-Asia continent subduction zone. As for the northern segment of GYR in the Lhasa terrane, its total flux and genesis of CO2 emissions are poorly understood. Following accumulation chamber method, soil CO2 flux survey has been carried out in VGFs (i.e., Jidaguo, Ningzhong, Sanglai, Tuoma and Yuzhai from south to north) of the northern segment of GYR. Total soil CO2 output of the northern GYR is about 1.50 × 107 t a-1, which is attributed to biogenic and volcanic-geothermal source. Geochemical characteristics of the volcanic-geothermal gases (including CO2 and He) of the northern GYR indicate their significant mantle-derived affinities. Combined with previous petrogeochemical and geophysical data, our He-C isotope modeling calculation results show that (1) excess mantle-derived 3He reflects degassing of volatiles related with partial melts from enriched mantle wedge induced by northward subduction of the Indian lithosphere, and (2) the crust-mantle interaction can provide continuous heat and materials for the overlying volcanic-geothermal system, in which magma-derived volatiles are inferred to experience significant crustal contamination during their migration to the surface.

  11. Geothermal energy program overview

    Science.gov (United States)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained within the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost-effective heat and electricity for our nation's energy needs. Geothermal energy - the heat of the Earth - is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40 percent of the total U.S. energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The U.S. Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma (the four types of geothermal energy), still depends on the technical advancements sought by DOE's Geothermal Energy Program.

  12. Geothermal reservoir engineering

    CERN Document Server

    Grant, Malcolm Alister

    2011-01-01

    As nations alike struggle to diversify and secure their power portfolios, geothermal energy, the essentially limitless heat emanating from the earth itself, is being harnessed at an unprecedented rate.  For the last 25 years, engineers around the world tasked with taming this raw power have used Geothermal Reservoir Engineering as both a training manual and a professional reference.  This long-awaited second edition of Geothermal Reservoir Engineering is a practical guide to the issues and tasks geothermal engineers encounter in the course of their daily jobs. The bo

  13. Geothermal Energy Program overview

    International Nuclear Information System (INIS)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program

  14. Geothermal Power Technologies

    DEFF Research Database (Denmark)

    Montagud, Maria E. Mondejar; Chamorro, C.R.

    2017-01-01

    Although geothermal energy has been widely deployed for direct use in locations with especial geologic manifestations, its potential for power generation has been traditionally underestimated. Recent technology developments in drilling techniques and power conversion technologies from low......-temperature heat resources are bringing geothermal energy to the spotlight as a renewable baseload energy option for a sustainable energy mix. Although the environmental impact and economic viability of geothermal exploitation must be carefully evaluated for each case, the use of deep low-temperature geothermal...

  15. Isotopic Evolution of Wells in the Geothermal Field of Los Azufres, Michoacan, Mexico; Evolucion isotopica de fluidos de pozos del campo geotermico de Los Azufres, Michoacan, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Barragan Reyes, Rosa Maria; Portugal Marin, Enrique; Arellano Gomez, Victor Manel; Aragon Aguilar, Alfonso [Instituto de Investigaciones Electricas (Mexico); Sandoval Medina, Fernando [Comision Federal de Electricidad (Mexico)

    2002-12-01

    Isotopic ({delta}{sup 1}8 O and {delta}D) data from production and reinjection web fluids from the Los Azufres geothermal field were interpreted in order to define reservoir evolution and the occurrence of physical processes as a result of exploitation. The study included data of 30 wells, which were sampled in September, 2000. General results indicate that different phenomena seem to occur in both zones of the field. In the southern zone there are two different trends of behavior: a mixture of fluids evidenced by the {delta}D versus {delta}{sup 1}8 O trend with a positive slope, was interpreted as the result of reservoir vapor separation at a temperature above 220 Celsius degrees, since for temperatures above 220 Celsius degrees deuterium behaves as a volatile component. No well-defined {delta}{sup D} vs {delta}{sup 1}8 O trend was found for the northern zone, but some points seem to fit the same negative slope trend found in the souther zone. The study of reservoir temperatures estimated by different approaches for particular wells through time, as well as temperature results obtained with a heat and flow well simulator, suggest that reservoir boiling occurs in localized areas in both zone of the field. This process is probably due to exploitation. [Spanish] Se interpretaron datos isotopicos ({delta}{sup 1}8 O y {delta}D) de fluidos de pozos productores y de reinyeccion del campo geotermico de Los Azufres, Michoacan, Mexico, para definir la evolucion del yacimiento y la ocurrencia de procesos fisicos como resultado de la explotacion. En el estudio se consideran datos de treinta pozos segun el muestreo realizado en septiembre de 2000. El estudio de la evolucion en el tiempo de las estimaciones de temperatura de yacimiento mediante diferentes tecnicas, asi como la temperatura obtenida de simulacion de pozos, sugiere que ocurre ebullicion en areas localizadas en ambas zonas del campo debido a la explotacion. Los resultados generales indican la existencia de

  16. The Coso geothermal area: A laboratory for advanced MEQ studies for geothermal monitoring

    Science.gov (United States)

    Julian, B.R.; Foulger, G.R.; Richards-Dinger, K.

    2004-01-01

    The permanent 16-station network of three-component digital seismometers at the Coso geothermal area, California, supplemented by 14 temporary instruments deployed in connection with the DOE Enhanced Geothermal Systems (EGS) Project, provides high-quality microearthquake (MEQ) recordings that are well suited to monitoring a producing geothermal area. We are currently using these data to investigate structure and active processes within the geothermal reservoir by applying three advanced methods: a) high-precision MEQ hypocenter location; b) time-dependent tomography; c) complete (moment tensor) MEQ source mechanism determination. Preliminary results to date resolve seismogenic structures in the producing field more clearly than is possible with conventional earthquake-location techniques. A shallow part of the producing field shows clear changes in the ratio of the seismic wave speeds, Vp/V s, between 1996 and 2002, which are probably related to physical changes in the reservoir caused by fluid extraction.

  17. Metal fluxing in a large-scale intra-arc fault: insights from the Liquiñe-Ofqui Fault System (LOFS) and associated geothermal fields in southern Chile

    Science.gov (United States)

    Tardani, D.; Reich, M.; Sano, Y.; Takahata, N.; Wen, H.; Roulleau, E.; Sanchez-Alfaro, P.; González-Jiménez, J. M.; Shinohara, H.; Yang, T. F.; Cembrano, J. M.; Arancibia, G.

    2014-12-01

    In compressional and extensional settings, high-enthalpy geothermal systems and epithermal vein deposits are genetically linked to shallow magmatic reservoirs, overlying hydrothermal circulation cells, and structural meshes that permit vertical migration of fluids. In the Andean Cordillera of Central-Southern Chile, the nature of the relationship between tectonics and volcanism is the result of interaction between the crustal structures and the regional stress field. Between 37° and 46°S, the volcanic and geothermal activity is controlled by the NNE-trending, 1,200 km long LOFS, an intra-arc dextral strike-slip fault system, associated with second-order intra-arc anisotropies of overall NE-SW and NW-SE orientation. Although there is consensus that volcanism in this segment are controlled by the regional scale tectonic stress field, the structural controls on magma degassing and metal fluxing remains poorly constrained. The goal of the study is to constrain the first-order controls on fluxes of noble metals (Au, Ag, PGEs), base metals (Cu, Zn, Pb) and metalloids (As, Sb, Se) along this segment. For this purpose we collected fumarole and thermal water samples from five selected volcanic-geothermal systems along the northern termination of the LOFS. The selected areas are characterized by the occurrence of surface manifestations and are located along NNE-oriented or NWN-oriented fault systems. In each location, the trace metal budget and isotopic composition of fumaroles and springs were constrained along with cations, anions and dissolved gaseous species. The helium isotopic ratios of fumaroles, defined as R/Ra, range between 3.5 and 7.5 in the studied segment. High R/Ra, mantle-like signatures are associated with geothermal manifestations occurring along NNE-trending faults, whereas lower R/Ra values in NWN-oriented systems most likely represent mixing between mantle and crustal sources. Concentrations of Au, Cu and As are significant in selected geothermal wells

  18. DARPA Workshop on Geothermal Energy for Military Operations

    Science.gov (United States)

    2010-05-01

    is administered by its Geothermal Program Office (GPO) at the Navy Air Weapons Station, China Lake, CA. GPO manages the Coso Geo- thermal Field at...China Lake and conducts geothermal exploration and develop- ment at other military facilities. Coso has an installed capacity of 270 MW and has

  19. Preliminary petrological and geochemical results from the Salton Sea Geothermal Field, California: A near-field natural analog of a radioactive waste repository in salt: Topical report No. 2

    International Nuclear Information System (INIS)

    Elders, W.A.; Cohen, L.H.; Williams, A.E.; Neville, S.; Collier, P.; Oakes, C.

    1986-03-01

    High concentrations of radionuclides and high temperatures are not naturally encountered in salt beds. For this reason, the Salton Sea Geothermal Field (SSGF) may be the best available geologic analog of some of the processes expected to occur in high level nuclear waste repositories in salt. Subsurface temperatures and brine concentrations in the SSGF span most of the temperature range and fluid inclusion brine range expected in a salt repository, and the clay-rich sedimentary rocks are similar to those which host bedded or domal salts. As many of the chemical processes observed in the SSGF are similar to those expected to occur in or near a salt repository, data derived from it can be used in the validation of geochemical models of the near-field of a repository in salt. This report describes preliminary data on petrology and geochemistry, emphasizing the distribution of rare earth elements and U and Th, of cores and cuttings from several deep wells chosen to span a range of temperature gradients and salinities. Subsurface temperature logs have been augmented by fluid inclusion studies, to reveal the effects of brines of varying temperature and salinity. The presence of brines with different oxygen isotopic signatures also indicate lack of mixing. Whole rock major, minor and trace element analyses and data on brine compositions are being used to study chemical migration in these sediments. 65 refs., 20 figs., 3 tabs

  20. Geothermal Today: 2003 Geothermal Technologies Program Highlights (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    2004-05-01

    This outreach publication highlights milestones and accomplishments of the DOE Geothermal Technologies Program for 2003. Included in this publication are discussions of geothermal fundamentals, enhanced geothermal systems, direct-use applications, geothermal potential in Idaho, coating technology, energy conversion R&D, and the GeoPowering the West initiative.

  1. Presence of cross flow in the Cerro Prieto geothermal field, BC; Presencia de flujo cruzado en el campo geotermico de Cerro Prieto, BC

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez Rodriguez, Marco Helio [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Residencia General de Cerro Prieto, Mexicali, Baja California (Mexico)]. E-mail: marco.rodriguez01@cfe.gob.mx

    2011-01-15

    During the development of Cerro Prieto geothermal field, BC, exploitation has increased gradually, causing a continuous drop in pressure to almost 100 bars in the central and eastern parts of the field. This has occurred despite the high natural recharge induced by the reservoir exploitation and helped by the high permeability of the reservoir and the wide availability of natural recharge of low-temperature water in the vicinity. The strata above the production zones have significantly lower temperatures than these zones, but due to the particular characteristics of the reservoir, do not have pressure drops. As the pressure of producing strata declines, the hydraulic pressure differential between them and the overlying strata increases. Thus in recent years the phenomenon of cross flow occurs with greater frequency and severity. In this paper, this phenomenon is analyzed, detailing the specific mechanisms favoring it and identifying the stage (drilling or workover) in which it commonly occurs. Rigorous supervision during these stages is crucial to identifying cross flow and to taking necessary measures to save the well. Cross flow cases are presented at different stages in the history of a well: during drilling, repair, before and during the stimulation, and during production. [Spanish] Durante el desarrollo del campo geotermico de Cerro Prieto, BC, la explotacion se ha incrementado en forma gradual provocando una continua caida de presion, que en las porciones central y oriente ha sido de casi 100 bars. Esto ha ocurrido a pesar de la enorme recarga natural inducida por la explotacion, favorecida por la alta permeabilidad del yacimiento y la gran disponibilidad de recarga natural de agua de baja temperatura en los alrededores del mismo. Los estratos ubicados encima de las zonas productoras presentan temperaturas significativamente menores que estos, pero debido a las caracteristicas particulares del yacimiento, no han presentado abatimiento en su presion. En la

  2. Initial distribution of pressure and temperature in the geothermal field of Los Humeros, Puebla; Distribucion inicial de presion y temperatura del campo geotermico de Los Humeros, Puebla

    Energy Technology Data Exchange (ETDEWEB)

    Arellano Gomez, Victor M.; Garcia Gutierrez, Alfonso; Barragan Reyes, Rosa Maria; Aragon Aguilar, Alfonso; Pizano, Arturo [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    2000-07-01

    In order to infer the distributions of non disturbed pressure and temperature of the reservoir fluid, a considerable amount of information originating from several disciplines was analyzed, corresponding to 42 wells of the geothermal field of Los Humeros. On the base of the analyzed data models were developed, in one and two dimensions, of the reservoir in an initial state. The models reveal the existence of at least two reservoirs. The first one and most superficial is located between 1600 and 1025 m.a.s.l. and it is a reservoir of dominant liquid. The pressure profile of this reservoir corresponds to a boiling water column approximately between 300 and 339 Celsius degrees. The second reservoir is located underneath the 850 m.a.s.l. and as far as the collected data, it can be said that it extends at least until the 100 m.a.s.l and it is estimated that it is a reservoir of low liquid saturation. For the wells that are fed from this zone of the field temperatures between 300 and 400 Celsius degrees were estimated. A table of the geology of the subsoil of the region of the Los Humeros is shown and a table where the chemical composition of the separated water is indicated and the enthalpy of some of the wells of Los Humeros, Puebla, Mexico. [Spanish] Para inferir las distribuciones de presion y temperatura no perturbadas del fluido del yacimiento, se analizo una considerable cantidad de informacion proveniente de varias disciplinas, correspondiente a 42 pozos del campo geotermico de Los Humeros. Sobre la base de los datos analizados se desarrollaron modelos, en una y dos dimensiones, del yacimiento en un estado inicial. Los modelos revelan la existencia de cuando menos dos yacimientos. El primero y mas superficial se encuentra localizado entre 1600 y 1025 m.s.n.m. y es un yacimiento de liquido dominante. El perfil de presion de este yacimiento corresponde a una columna de agua en ebullicion aproximadamente entre 300 y 339 grados centigrados. El segundo yacimiento se

  3. Initial thermal state of the Los Humeros, Puebla, Mexico, geothermal field; Estado termico inicial del campo geotermico de Los Humeros, Puebla, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Gutierrez, Alfonso [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)]. E-mail: aggarcia@iie.org.mx

    2009-01-15

    The initial temperatures field is presented for 40 wells in the Los Humeros geothermal reservoir, along with an elevation curve based on the formation temperature or the most probable reservoir temperature. Stabilized temperatures were estimated using the Radial Spherical Heat Flow method, chosen over the Horner method based on the numerical simulation of the circulation and stop processes of well H-26. In this well, the last temperature log series was reproduced, considering circulation losses. The temperatures were used to produce isothermal curves over three geological sections of the field, which represent the initial distribution of temperatures in the reservoir and show the thermal characteristics and the relationships among thermal anomalies and faults in the reservoir. The elevation curve plotted against the initial temperature of the formation was generated based on detection of the main feed zones at each well, which in turn was developed using detailed analyses of diverse information, such as temperature logs, circulation losses, lithology, well completion, and heat velocities. Based on the results, two groups of wells may be distinguished: one between 1000 and 1600 masl with temperatures from 290 to 330 degrees Celsius, and one between 900 and 0 masl with temperatures from 300 to 400 degrees Celsius. [Spanish] En este trabajo se presenta el campo de temperatura inicial del yacimiento geotermico de Los Humeros y una curva de elevacion contra la temperatura de formacion o temperatura mas probable del yacimiento, obtenida para 40 pozos del campo. Las temperaturas estabilizadas se estimaron mediante el metodo de Flujo de Calor Esferico Radial, y su eleccion sobre las temperaturas del metodo de Horner se soporta con simulacion numerica de los procesos de circulacion y paro del pozo H-26, en la cual la ultima serie de registros se reprodujo considerando perdidas de circulacion. Con estas temperaturas se generaron curvas isotermicas para tres secciones

  4. Scaling control in superficial installations at the Las Tres Virgenes, geothermal field, BCS; Control de incrustacion en instalaciones superficiales del campo geotermico de Las Tres Virgenes, BCS

    Energy Technology Data Exchange (ETDEWEB)

    Tapia Salazar, Ruth [Comision Federal de Electricidad (Mexico)]. E-mail: ruth.tapia@cfe.gob.mx

    2007-01-15

    Silica scaling is one of the most important problems in the Las Tres Virgenes geothermal field. It affects not only the superficial installations, like brine injection pipelines, but also the injection wells where it reduces injection capacity. Separated brine passes from production wells to injection wells by means of steel pipelines 10 and 14 inches in diameter. The pipelines are affected by silica scaling that occurs when the two-phase fluid is discharged at atmospheric pressure and the separated brine is cooled and concentrated and then over saturated with amorphous silica. Even when the pipelines were cleaned periodically, it was necessary to implement a technique for prevent scaling. Two methods considered appropriate to the specific field conditions were studied, and finally the technique of modifying the brine pH was adopted. After over a year of using this technique in the general injection system, no mechanical cleaning of the pipelines has been necessary-and once cleaning was needed at least every third day. This represents an important improvement in the steam supply system. [Spanish] Uno de los problemas mas importantes en el campo geotermico de Las Tres Virgenes es la incrustacion por silice, la cual afecta no solo a instalaciones superficiales como lineas de inyeccion de salmuera, sino tambien a los pozos inyectores al reducir su capacidad de aceptacion. El agua producida por los pozos productores se conduce hasta los pozos inyectores por medio de tuberias de acero al carbon de 10 y 14 pulgadas de diametro, que se ven afectadas por la incrustacion de silice. La incrustacion ocurre debido a que cuando el fluido en dos fases es descargado a presion atmosferica, la salmuera separada, enfriada y concentrada, esta usualmente sobresaturada con respecto a la solubilidad de la silice amorfa. Aunque las tuberias se limpiaban mecanicamente, fue necesario seleccionar una tecnica para prevenir la incrustacion, para lo cual se estudiaron dos de los metodos que

  5. Geothermal Financing Workbook

    Energy Technology Data Exchange (ETDEWEB)

    Battocletti, E.C.

    1998-02-01

    This report was prepared to help small firm search for financing for geothermal energy projects. There are various financial and economics formulas. Costs of some small overseas geothermal power projects are shown. There is much discussion of possible sources of financing, especially for overseas projects. (DJE-2005)

  6. Geothermal energy for greenhouses

    Science.gov (United States)

    Jacky Friedman

    2009-01-01

    Geothermal energy is heat (thermal) derived from the earth (geo). The heat flows along a geothermal gradient from the center of the earth to the surface. Most of the heat arrives at the surface of the earth at temperatures too low for much use. However, plate tectonics ensure that some of the heat is concentrated at temperatures and depths favorable for its commercial...

  7. Prospects of geothermal energy

    International Nuclear Information System (INIS)

    Manzella, A.; Bianchi, A.

    2008-01-01

    Geothermal energy has great potential as a renewable energy with low environmental impact, the use of heat pumps is becoming established in Italy but the national contributions are still modest when compared to other nations. Mature technologies could double the installed geothermal power in Italy at 2020. [it

  8. 1992--1993 low-temperature geothermal assessment program, Colorada

    Energy Technology Data Exchange (ETDEWEB)

    Cappa, J.A.; Hemborg, H.T.

    1995-01-01

    Previous assessments of Colorado`s low-temperature geothermal resources were completed by the Colorado Geological Survey in 1920 and in the mid- to late-1970s. The purpose of the 1992--1993 low-temperature geothermal resource assessment is to update the earlier physical, geochemical, and utilization data and compile computerized databases of the location, chemistry, and general information of the low-temperature geothermal resources in Colorado. The main sources of the data included published data from the Colorado Geological Survey, the US Geological Survey WATSTOR database, and the files of the State Division of Water Resources. The staff of the Colorado Geological Survey in 1992 and 1993 visited most of the known geothermal sources that were recorded as having temperatures greater than 30{degrees}C. Physical measurements of the conductivity, pH, temperature, flow rate, and notes on the current geothermal source utilization were taken. Ten new geochemical analyses were completed on selected geothermal sites. The results of the compilation and field investigations are compiled into the four enclosed Quattro Pro 4 databases. For the purposes of this report a geothermal area is defined as a broad area, usually less than 3 sq mi in size, that may have several wells or springs. A geothermal site is an individual well or spring within a geothermal area. The 1992-1993 assessment reports that there are 93 geothermal areas in the Colorado, up from the 56 reported in 1978; there are 157 geothermal sites up from the 125 reported in 1978; and a total of 382 geochemical analyses are compiled, up from the 236 reported in 1978. Six geothermal areas are recommended for further investigation: Trimble Hot Springs, Orvis Hot Springs, an area southeast of Pagosa Springs, the eastern San Luis Valley, Rico and Dunton area, and Cottonwood Hot Springs.

  9. The USGS national geothermal resource assessment: An update

    Science.gov (United States)

    Williams, C.F.; Reed, M.J.; Galanis, S.P.; DeAngelo, J.

    2007-01-01

    The U. S. Geological Survey (USGS) is working with the Department of Energy's (DOE) Geothermal Technologies Program and other geothermal organizations on a three-year effort to produce an updated assessment of available geothermal resources. The new assessment will introduce significant changes in the models for geothermal energy recovery factors, estimates of reservoir volumes, and limits to temperatures and depths for electric power production. It will also include the potential impact of evolving Enhanced Geothermal Systems (EGS) technology. An important focus in the assessment project is on the development of geothermal resource models consistent with the production histories and observed characteristics of exploited geothermal fields. New models for the recovery of heat from heterogeneous, fractured reservoirs provide a physically realistic basis for evaluating the production potential of both natural geothermal reservoirs and reservoirs that may be created through the application of EGS technology. Project investigators have also made substantial progress studying geothermal systems and the factors responsible for their formation through studies in the Great Basin-Modoc Plateau region, Coso, Long Valley, the Imperial Valley and central Alaska, Project personnel are also entering the supporting data and resulting analyses into geospatial databases that will be produced as part of the resource assessment.

  10. Geothermal Program Review XVII: proceedings. Building on 25 years of Geothermal Partnership with Industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-01

    The US Department of Energy's Office (DOE) of Geothermal Technologies conducted its annual Program Review XVII in Berkeley, California, on May 18--20, 1999. The theme this year was "Building on 25 Years of Geothermal Partnership with Industry". In 1974, Congress enacted Public Law 93-410 which sanctioned the Geothermal Energy Coordination and Management Project, the Federal Government's initial partnering with the US geothermal industry. The annual program review provides a forum to foster this federal partnership with the US geothermal industry through the presentation of DOE-funded research papers from leaders in the field, speakers who are prominent in the industry, topical panel discussions and workshops, planning sessions, and the opportunity to exchange ideas. Speakers and researchers from both industry and DOE presented an annual update on research in progress, discussed changes in the environment and deregulated energy market, and exchanged ideas to refine the DOE Strategic Plan for research and development of geothermal resources in the new century. A panel discussion on Climate Change and environmental issues and regulations provided insight into the opportunities and challenges that geothermal project developers encounter. This year, a pilot peer review process was integrated with the program review. A team of geothermal industry experts were asked to evaluate the research in progress that was presented. The evaluation was based on the Government Performance and Results Act (GPRA) criteria and the goals and objectives of the Geothermal Program as set forth in the Strategic Plan. Despite the short timeframe and cursory guidance provided to both the principle investigators and the peer reviewers, the pilot process was successful. Based on post review comments by both presenters and reviewers, the process will be refined for next year's program review.

  11. Idaho Geothermal Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, Gay Davis; Esposito, Louis; Montgomery, Martin

    1979-07-01

    Idaho's energy problems have increased at alarming rates due to their dependency on imports of gas and oil. The large hydroelectric base developed in Idaho has for years kept the electric rates relatively low and supplied them with energy on a consumer demand basis. However, this resource cannot be 4expected to meet their growing demands in the years to come. Energy alternatives, in whatever form, are extremely important to the future welfare of the State of Idaho. This handbook addresses the implications, uses, requirements and regulations governing one of Idaho's most abundant resources, geothermal energy. The intent of the Idaho Geothermal Handbook is to familiarize the lay person with the basis of geothermal energy in Idaho. The potential for geothermal development in the State of Idaho is tremendous. The authors hope this handbook will both increase your knowledge of geothermal energy and speed you on your way to utilizing this renewable resource.

  12. Geothermal Greenhouse Development Update

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, Paul J.

    1997-01-01

    Greenhouse heating is one of the popular applications of low-to moderated-temperature geothermal resources. Using geothermal energy is both an economical and efficient way to heat greenhouses. Greenhouse heating systems can be designed to utilize low-temperature (>50oC or 122oF) resources, which makes the greenhouse an attractive application. These resources are widespread throughout the western states providing a significant potential for expansion of the geothermal greenhouse industry. This article summarizes the development of geothermal heated greenhouses, which mainly began about the mid-1970's. Based on a survey (Lienau, 1988) conducted in 1988 and updated in 1997, there are 37 operators of commercial greenhouses. Table 1 is a listing of known commercial geothermal greenhouses, we estimate that there may be an additional 25% on which data is not available.

  13. Geothermal energy: a brief assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lunis, B.C.; Blackett, R.; Foley, D. (eds.)

    1982-07-01

    This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

  14. Geothermal country update of Japan

    International Nuclear Information System (INIS)

    Higo, M.

    1990-01-01

    This paper reports on the status of geothermal energy in Japan. Topics covered include: present and planned production of electricity, present utilization of geothermal energy for direct heat, information about geothermal localities, and wells drilled for electrical utilization of geothermal resources to January 1, 1990

  15. Geothermal Progress Monitor, report No. 13

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    Geothermal Progress Monitor (GPM) Issue No. 13 documents that most related factors favor the growth and geographic expansion of the US geothermal industry and that the industry is being technologically prepared to meet those challenges into the next century. It is the function of GPM to identify trends in the use of this resource and to provide a historical record of its development pathway. The information assembled for this issue of GPM indicates that trends in the use of geothermal energy in this country and abroad continue to be very positive. Favorable sentiments as well as pertinent actions on the part of both government and industry are documented in almost every section. The FEDERAL BEAT points up that the National Energy Strategy (NES) developed at the highest levels of the US government recognizes the environmental and energy security advantages of renewable energy, including geothermal, and makes a commitment to substantial diversification'' of US sources of energy. With the announcement of the construction of several new plants and plant expansions, the INDUSTRY SCENE illustrates industry's continued expectation tha the use of geothermal energy will prove profitable to investors. In DEVELOPMENT STATUS, spokesmen for both an investor-owned utility and a major geothermal developer express strong support for geothermal power, particularly emphasizing its environmental advantages. DEVELOPMENT STATUS also reports that early successes have been achieved by joint DOE/industry R D at The Geysers which will have important impacts on the future management of this mature field. Also there is increasing interest in hot dry rock. Analyses conducted in support of the NES indicate that if all the postulated technology developments occur in this field, the price of energy derived from hot dry rock in the US could drop.

  16. Geothermal Program Review XI: proceedings. Geothermal Energy - The Environmental Responsible Energy Technology for the Nineties

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    These proceedings contain papers pertaining to current research and development of geothermal energy in the USA. The seven sections of the document are: Overview, The Geysers, Exploration and Reservoir Characterization, Drilling, Energy Conversion, Advanced Systems, and Potpourri. The Overview presents current DOE energy policy and industry perspectives. Reservoir studies, injection, and seismic monitoring are reported for the geysers geothermal field. Aspects of geology, geochemistry and models of geothermal exploration are described. The Drilling section contains information on lost circulation, memory logging tools, and slim-hole drilling. Topics considered in energy conversion are efforts at NREL, condensation on turbines and geothermal materials. Advanced Systems include hot dry rock studies and Fenton Hill flow testing. The Potpourri section concludes the proceedings with reports on low-temperature resources, market analysis, brines, waste treatment biotechnology, and Bonneville Power Administration activities. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  17. Three-dimensional seismic velocity models, high-precision earthquake locations and their implications for seismic, tectonic and magmatic settings in the Coso Geothermal Field, California

    Science.gov (United States)

    Zhang, Q.; Lin, G.

    2012-12-01

    The Coso Geothermal Field (CGF) lies at the east of Sierra Nevada and is situated in tectonically active area with the presence of hot spring, rhyolite domes at the surface, strike-slip and normal faulting and frequent seismic activity. In this study, we present our comprehensive analysis of three-dimensional velocity structure, high-precision earthquake relocation and in situ Vp/Vs estimates. We select 1,893 master events among 177,000 events between 1981 and 2011 recorded by the Southern California Seismic Network stations. High-resolution three-dimensional (3-D) Vp and Vp/Vs models in Coso are inverted from the master events with 52,160 P- and 23,688 S-wave first arrivals by using the SIMUL2000 algorithm. The tomographic model reveals slightly high Vp and Vp/Vs in most regions of Coso near the surface compared to the layers at depth of 6 and 12 km, which is consistent with the fact that the Coso area is filled with diorite and minor basalt. The feature of low Vp, low Vs and low Vp/Vs between 6 and 12 km depths underneath the CGF can be related to the porous, gas-filled rock or volatile-rich magma. The low Vp, low Vs and low Vp/Vs structure from the surface to 3 km depth beneath the Indian Wells Valley is consistent with the existence of the 2 km deep sediment strata revealed by the borehole data. The resulting new 3-D velocity model is used to improve the absolute event location accuracy. We then apply waveform cross-correlation, similar event cluster analysis and differential time relocation methods to improve relative event location accuracy with the horizontal and vertical location uncertainties in tens of meters. The relocated seismicity indicates that the brittle-ductile transition depth is as shallow as 5 km underneath the CGF. We also estimate in situ near-source Vp/Vs ratio within each event cluster using differential times from cross-correlation to complement the Vp/Vs model from tomographic inversions, which will help to estimate the volume fraction of

  18. Isotopic behaviour of fluids from the Los Humeros, Puebla (Mexico) geothermal field; Comportamiento isotopico de fluidos de pozos del campo geotermico de Los Humeros, Puebla, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Barragan R, Rosa Maria; Portugal M, Enrique; Arellano G, Victor Manuel [Instituto de Investigaciones Electricas, Cuernavaca (Mexico); Tello L, Mirna del Rocio; Tello H, Enrique [gerencia de Proyectos Geotermoelectricos de la Comision Federal de Electricidad, Morelia (Mexico)

    1997-05-01

    Isotopic data from well fluids from the Los Humeros geothermal field were interpreted. Twenty wells were monitored during 1994-1996 in order to study the reservoir behavior as a result of exploitation. The isotopic composition of the total discharge and also that for the reservoir liquid phase were calculated considering the reservoir excess steam at reservoir temperature. This temperature was estimated to be between 280 degrees celsius and 325 degrees celsius through the CO{sub 2}/H{sub 2} geothermometer. The isotopic values for reservoir fluids were found in the ranges: between -8 and -1% for d{sup 18}O and -75 and -55% for dD. Isotopic patterns suggested the occurrence of a mixing process between reservoir and reinjection fluids since a linear trend (dD vs d{sup 18}O) with positive slope was found. The reservoir fluid for well H-7 (sampled June 1996) was found to be the isotopically lightest extreme of the relationship, while the reinjection fluid constituted the isotopically heaviest component. [Espanol] Con el fin de conocer la respuesta del yacimiento geotermico de Los Humeros a la extraccion y reinyeccion de fluidos, se llevo a cabo el monitoreo de especies isotopicas d{sup 18}O y dD en fluidos de 20 pozos del campo durante 1994-1996. Se calculo la composicion isotopica del fluido de la descarga total y de la fase liquida del yacimiento, corrigiendose los valores obtenidos para la descarga total considerando el parametro exceso de vapor a la temperatura estimada de yacimiento. La temperatura del yacimiento se estimo entre 280 grados celsius y 325 grados celsius mediante el geotermometro basado en la relacion CO{sub 2}/H{sub 2}. La composicion isotopica de los fluidos del yacimiento se encuentra en un amplio rango de valores: entre -8 y -1% para d{sup 18}O y entre -75 -55% para dD. Los resultados sugieren la ocurrencia de interferencia de fluidos de reinyeccion, ya que al correlacionar el contenido de deuterio contra el de oxigeno-18, los datos se alinean en

  19. Geothermal resources assessment in Hawaii. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, D.M.

    1984-02-21

    The Hawaii Geothermal Resources Assessment Program was initiated in 1978. The preliminary phase of this effort identified 20 Potential Geothermal Resource Areas (PGRA's) using available geological, geochemical and geophysical data. The second phase of the Assessment Program undertook a series of field studies, utilizing a variety of geothermal exploration techniques, in an effort to confirm the presence of thermal anomalies in the identified PGRA's and, if confirmed, to more completely characterize them. A total of 15 PGRA's on four of the five major islands in the Hawaiian chain were subject to at least a preliminary field analysis. The remaining five were not considered to have sufficient resource potential to warrant study under the personnel and budget constraints of the program.

  20. Geological model of supercritical geothermal reservoir related to subduction system

    Science.gov (United States)

    Tsuchiya, Noriyoshi

    2017-04-01

    Following the Great East Japan Earthquake and the accident at the Fukushima Daiichi Nuclear power station on 3.11 (11th March) 2011, geothermal energy came to be considered one of the most promising sources of renewable energy for the future in Japan. The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. Supercritical geothermal resources could be evaluated in terms of present volcanic activities, thermal structure, dimension of hydrothermal circulation, properties of fracture system, depth of heat source, depth of brittle factures zone, dimension of geothermal reservoir. On the basis of the GIS, potential of supercritical geothermal resources could be characterized into the following four categories. 1. Promising: surface manifestation d shallow high temperature, 2 Probability: high geothermal gradient, 3 Possibility: Aseismic zone which indicates an existence of melt, 4 Potential : low velocity zone which indicates magma input. Base on geophysical data for geothermal reservoirs, we have propose adequate tectonic model of development of the supercritical geothermal reservoirs. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550

  1. Geothermal energy statistics 2002-2003 for Switzerland

    International Nuclear Information System (INIS)

    Signorelli, S.; Andenmatten Bertoud, N.; Kohl, T.; Rybach, L.

    2004-01-01

    Herein, the Swiss geothermal energy production of the years 2002 and 2003 is statistically compiled. Again, an increase of the total geothermal-driven energy can be noted, reaching more than 1.1 TWh, with a geothermal energy share greater than 860 GWh. (The difference is the non-geothermal energy needed by the heat pump systems involved.) Since 2000 the installed capacity could be increased by 20%, i.e. 40 MW per year. Geothermal energy is mainly used in combination with heat pump- (HP-) systems for heating purposes (>700 GWh), of which >80% are produced by borehole heat exchanger (BHE) systems. The remaining HP-utilization splits up into ground water utilization (about 15%), deep BHE, foundation pile systems and tunnel water. Non HP-dependent geothermal utilizations are mainly thermal-springs applications for balneological use. Their contribution is nearly constant over the year. Together with the HP sales figures, the BHE drilling meters are now included in the present statistics. Since 2003, the compilation of the drilled lengths also includes the specifications of BHE fields with more than 10 BHE each. Such BHE fields make up >10% of the total drilled length. More and more frequently, such fields are used for the cooling of buildings as well. In order to clearly display these geothermal applications in the future, such BHE fields should be systematically registered, as it is now done for foundation pile systems and BHE systems. Of great importance for the promotion of geothermal energy are the activities of the Center of Competence 'Geothermal energy' and its regional information centers. The currently available funding allows the financing of information and know-how dissemination as well as education. All of these activities are essential for a further increase in geothermal energy production. (author)

  2. Origin and evolution of geothermal fluids from Las Tres Vírgenes and Cerro Prieto fields, Mexico – Co-genetic volcanic activity and paleoclimatic constraints

    International Nuclear Information System (INIS)

    Birkle, Peter; Marín, Enrique Portugal; Pinti, Daniele L.; Castro, M. Clara

    2016-01-01

    Major and trace elements, noble gases, and stable (δD, δ 18 O) and cosmogenic ( 3 H, 14 C) isotopes were measured from geothermal fluids in two adjacent geothermal areas in NW-Mexico, Las Tres Vírgenes (LTV) and Cerro Prieto (CP). The goal is to trace the origin of reservoir fluids and to place paleoclimate and structural-volcanic constraints in the region. Measured 3 He/ 4 He (R) ratios normalized to the atmospheric value (R a  = 1.386 × 10 −6 ) vary between 2.73 and 4.77 and are compatible with mixing between a mantle component varying between 42 and 77% of mantle helium and a crustal, radiogenic He component with contributions varying between 23% and 58%. Apparent U–Th/ 4 He ages for CP fluids (0.7–7 Ma) suggest the presence of a sustained 4 He flux from a granitic basement or from mixing with connate brines, deposited during the Colorado River delta formation (1.5–3 Ma). Radiogenic in situ 4 He production age modeling at LTV, combined with the presence of radiogenic carbon (1.89 ± 0.11 pmC – 35.61 ± 0.28 pmC) and the absence of tritium strongly suggest the Quaternary infiltration of meteoric water into the LTV geothermal reservoir, ranging between 4 and 31 ka BP. The present geochemical heterogeneity of LTV fluids can be reconstructed by mixing Late Pleistocene – Early Holocene meteoric water (58–75%) with a fossil seawater component (25–42%), as evidenced by Br/Cl and stable isotope trends. CP geothermal water is composed of infiltrated Colorado River water with a minor impact by halite dissolution, whereas a vapor-dominated sample is composed of Colorado River water and vapor from deeper levels. δD values for the LTV meteoric end-member, which are 20‰–44‰ depleted with respect to present-day precipitation, as well as calculated annual paleotemperatures 6.9–13.6 °C lower than present average temperatures in Baja California point to the presence of humid and cooler climatic conditions in the Baja California peninsula

  3. Fifteen years of seismic monitoring at the Las Tres Virgenes, BCS, geothermal field; Quince anos de monitoreo sismico en el campo geotermico de Las Tres Virgenes, BCS

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz Prieto, Irais; Lorenzo Pulido, Cecilia [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico)]. E-mail: cecilia.lorenzo@cfe.gob.mx

    2009-07-15

    Seismic monitoring at the Las Tres Virgenes, BCS, geothermal field started in 1992 with an analog station of vertical components detecting a large number of earthquakes of varying magnitudes. In February 1993, a seismic network was installed, composed of six digital stations DR-2000-with S-6000 and S-5000 sensors and three registration channels (N-S, E-W and vertical). This was the basis for the development of a program to correct arrival-time data for P and S waves due to instrument drift. From January to April 1994 and May to August 1995, based on the 170 seismic events recorded, a velocity model was proposed. From December 1995 to July 1996, seismic data were processed and interpreted, and zones of occurrence were determined for events according to magnitude and the predominant noise in the field. From September 2003 to December 2004, 10 seismic stations (permanent and temporary) were installed and monitored and it was concluded the most active fault system was El Volcan. From September to December 2004, production wells LV-4 and LV-13 were acid-stimulated and seismic monitoring during this period allowed for the definition of two important seismic zones, both related to the El Volcan fault system and to injection well LV-8. After reopening these production wells, it was concluded an increase in seismic activity had occurred. From May to August 2006, information was compiled from the seismic network and it was concluded El Partido had became the most active fault system. Presently the seismic network in this field is composed of one SARA station and four K2 units. The SARA station is telemetrically connected to the base station. [Spanish] En el campo geotermico de Las Tres Virgenes, BCS, el monitoreo sismico empezo a partir de 1992 con una sola estacion analogica de registro vertical, la cual detecto una gran cantidad de temblores de distintas magnitudes. En febrero de 1993 se instalo una red sismica con seis estaciones digitales DR-2000 con sensores S-6000 y S

  4. Energy Exploitation of High-Temperature Geothermal Sources in Volcanic Areas—a Possible ORC Application in Phlegraean Fields (Southern Italy)

    OpenAIRE

    Angelo Algieri

    2018-01-01

    This work aims to investigate the energy performances of small-scale Organic Rankine Cycles (ORCs) for the exploitation of high temperature geothermal sources in volcanic areas. For this purpose, a thermodynamic model has been developed, and a parametric analysis has been performed that considers subcritical and transcritical configurations, and different organic fluids (isobutane, isopentane, and R245ca). The investigation illustrates the significant effect of the temperature at the entrance...

  5. Seventeenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

    1992-01-31

    PREFACE The Seventeenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 29-31, 1992. There were one hundred sixteen registered participants which equaled the attendance last year. Participants were from seven foreign countries: Italy, Japan, United Kingdom, France, Belgium, Mexico and New Zealand. Performance of many geothermal fields outside the United States was described in the papers. The Workshop Banquet Speaker was Dr. Raffaele Cataldi. Dr. Cataldi gave a talk on the highlights of his geothermal career. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Cataldi. Dr. Frank Miller presented the award at the banquet. Thirty-eight papers were presented at the Workshop with two papers submitted for publication only. Dr. Roland Horne opened the meeting and the key note speaker was J.E. ''Ted'' Mock who discussed the DOE Geothermal R. & D. Program. The talk focused on aiding long-term, cost effective private resource development. Technical papers were organized in twelve sessions concerning: geochemistry, hot dry rock, injection, geysers, modeling, and reservoir mechanics. Session chairmen were major contributors to the program and we thank: Sabodh Garg., Jim Lovekin, Jim Combs, Ben Barker, Marcel Lippmann, Glenn Horton, Steve Enedy, and John Counsil. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to Francois Groff who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook -vii

  6. Geothermal electricity generation

    International Nuclear Information System (INIS)

    Eliasson, E.T.

    1991-01-01

    Geothermal conversion, as discussed here, is the conversion of the heat bound within the topmost three kilometres of the upper crust of the earth into useful energy, principally electricity. The characteristics of a geothermal reservoir and its individual technical features are highly site-specific. Applications therefore must be designed to match the specific geothermal reservoir. An estimate of the electric energy potential world-wide made by the Electric Power Research Institute (United States) in 1978 and based on sustaining a continuous 30-year operation is given in the box at the right for comparison purposes only. 8 refs, 5 figs

  7. Global geothermal energy scenario

    International Nuclear Information System (INIS)

    Singh, S.K.; Singh, A.; Pandey, G.N.

    1993-01-01

    To resolve the energy crisis efforts have been made in exploring and utilizing nonconventional energy resources since last few decades. Geothermal energy is one such energy resource. Fossil fuels are the earth's energy capital like money deposited in bank years ago. The energy to build this energy came mainly from the sun. Steam geysers and hot water springs are other manifestations of geothermal energy. Most of the 17 countries that today harness geothermal energy have simply tapped such resources where they occur. (author). 8 refs., 4 tabs., 1 fig

  8. Worldwide installed geothermal power

    International Nuclear Information System (INIS)

    Laplaige, P.

    1995-01-01

    Worldwide electric energy production data are easy to compile, according to the informations given by individual countries. On the contrary, thermal applications of geothermics are difficult to quantify due to the variety of applications and the number of countries concerned. Exhaustive informations sometimes cannot be obtained from huge countries (China, Russia..) because of data centralization problems or not exploitable data transmission. Therefore, installed power data for geothermal heat production are given for 26 countries over the 57 that have answered the International Geothermal Association questionnaire. (J.S.). 1 fig., 2 tabs., 1 photo

  9. Navy Geothermal Plan

    Energy Technology Data Exchange (ETDEWEB)

    1984-12-01

    Domestic geothermal resources with the potential for decreasing fossil fuel use and energy cost exist at a significant number of Navy facilities. The Geothermal Plan is part of the Navy Energy R and D Program that will evaluate Navy sites and provide a technical, economic, and environmental base for subsequent resource use. One purpose of the program will be to provide for the transition of R and D funded exploratory efforts into the resource development phase. Individual Navy geothermal site projects are described as well as the organizational structure and Navy decision network. 2 figs.

  10. Parabolic troughs to increase the geothermal wells flow enthalpy

    Energy Technology Data Exchange (ETDEWEB)

    Lentz, Alvaro; Almanza, Rafael [Engineering Institute, National Autonomous University of Mexico, Building 12, Cuidad Universitaria, Mexico D.F., A.P. 70-472, C.P. 04510 (Mexico)

    2006-10-15

    This work investigates the feasibility of using parabolic trough solar field to increase the enthalpy from geothermal wells' flow in order to increase the steam tons; in addition, it is possible to prevent silica deposition in the geothermal process. The high levels of irradiance in Northwestern Mexico make it possible to integrate a solar-geothermal hybrid system that uses two energy resources to provide steam for the geothermal cycle, like the Cerro Prieto geothermal field. The plant consists of a geothermal well, a parabolic trough solar field in series, flash separator, steam turbine and condenser. Well '408' of Cerro Prieto IV has enthalpy of 1566kJ/kg and its quality must be increased by 10 points, which requires a {delta}h of 194.4kJ/kg. Under these considerations the parabolic troughs area required will be 9250m{sup 2}, with a flow of 92.4tons per hour (25.67kg/s). The solar field orientation is a N-S parabolic trough concentrator. The silica content in the Cerro Prieto geothermal brine causes problems for scaling at the power facility, so scale controls must be considered. (author)

  11. Geothermal life cycle assessment - part 3

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, E. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Han, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Elgowainy, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, M. Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-11-01

    A set of key issues pertaining to the environmental performance of geothermal electric power have been addressed. They include: 1) greenhouse gas emissions (GHG) from geothermal facilities, 2) the use of supercritical carbon dioxide (scCO2) as a geofluid for enhanced geothermal systems (EGS), 3) quantifying the impact of well field exploration on the life cycle of geothermal power, and finally 4) criteria pollutant emissions for geothermal and other electric power generation. A GHG emission rate (g/kWh) distribution as function of cumulative running capacity for California has been developed based on California and U. S. government data. The distribution is similar to a global distribution for compared geothermal technologies. A model has been developed to estimate life cycle energy of and CO2 emissions from a coupled pair of coal and EGS plants, the latter of which is powered by scCO2 captured from coal plant side. Depending on the CO2 capture rate on the coal side and the CO2 consumption rate on the EGS side, significant reductions in GHG emissions were computed when the combined system is compared to its conventional coal counterpart. In effect, EGS CO2 consumption acts as a sequestration mechanism for the coal plant. The effects CO2 emissions from the coupled system, prompt on the coal side and reservoir leakage on the EGS side, were considered as well as the subsequent decline of these emissions after entering the atmosphere over a time frame of 100 years. A model was also developed to provide better estimates of the impact of well field exploration on the life cycle performance of geothermal power production. The new estimates increase the overall life cycle metrics for the geothermal systems over those previously estimated. Finally, the GREET model has been updated to include the most recent criteria pollutant emissions for a range of renewable (including geothermal) and other power

  12. Sixteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Miller, F.G.; Horne, R.N.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

    1991-01-25

    The Sixteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23-25, 1991. The Workshop Banquet Speaker was Dr. Mohinder Gulati of UNOCAL Geothermal. Dr. Gulati gave an inspiring talk on the impact of numerical simulation on development of geothermal energy both in The Geysers and the Philippines. Dr. Gulati was the first recipient of The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy. Dr. Frank Miller presented the award. The registered attendance figure of one hundred fifteen participants was up slightly from last year. There were seven foreign countries represented: Iceland, Italy, Philippines, Kenya, the United Kingdom, Mexico, and Japan. As last year, papers on about a dozen geothermal fields outside the United States were presented. There were thirty-six papers presented at the Workshop, and two papers were submitted for publication only. Attendees were welcomed by Dr. Khalid Aziz, Chairman of the Petroleum Engineering Department at Stanford. Opening remarks were presented by Dr. Roland Horne, followed by a discussion of the California Energy Commission's Geothermal Activities by Barbara Crowley, Vice Chairman; and J.E. ''Ted'' Mock's presentation of the DOE Geothermal Program: New Emphasis on Industrial Participation. Technical papers were organized in twelve sessions concerning: hot dry rock, geochemistry, tracer injection, field performance, modeling, and chemistry/gas. As in previous workshops, session chairpersons made major contributions to the program. Special thanks are due to Joel Renner, Jeff Tester, Jim Combs, Kathy Enedy, Elwood Baldwin, Sabodh Garg, Marcel0 Lippman, John Counsil, and Eduardo Iglesias. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Angharad Jones, Rosalee Benelli, Jeanne Mankinen, Ted Sumida, and Terri A. Ramey who also

  13. Steam saving during maintenance of the 50-MW Unit 7 at Los Azufres geothermal field, Michoacan; Ahorro de vapor durante el mantenimiento de la Unidad 7 de 50 MW en el campo geotermico de Los Azufres, Michoacan

    Energy Technology Data Exchange (ETDEWEB)

    Medina Barajas, Elvia Nohemi; Ruiz Lemus, Alejandro [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Residencia de Los Azufres, Morelia, Michoacan (Mexico)]. E-mail: elvia-medina@cfe.gob.mx

    2011-07-15

    Commercial-steam production in the southern area of Los Azufres, Mich., Mexico, Geothermal Field began in 1982 with the operation of Unit 2, the backpressure 5-MW unit, and continued in 1988 when the 50-MW condensing Unit 7 was commissioned. Today to supply steam to Unit 7, it is necessary to gather steam from 15 production wells, amounting 450 tons per hour (t/h) under operating conditions. During maintenance periods for Unit 7, production wells are removed from the steam-supply system but continue producing steam that is discharged to the atmosphere-a loss affecting the economic life of the geothermal reservoir. Therefore several actions have been proposed and tried to save the steam and preserve the geothermal resource. This paper presents the results of the actions and the technical and economic benefits obtained from them. [Spanish] La produccion de vapor con fines comerciales en la zona sur del campo geotermico de Los Azufres, Mich., Mexico, empezo en 1982 con la puesta en marcha de la Unidad 2 de 5 MW a contrapresion, para continuar en 1988 con la Unidad 7 de 50 MW a condensacion. Para cumplir con el suministro de vapor a la U-7, a la fecha es necesario integrar la produccion de 15 pozos productores, que producen un total de 450 toneladas por hora (t/h) a condiciones de operacion. Durante los periodos de mantenimiento de la U-7 los pozos son desintegrados del sistema de suministro, pero continuan produciendo vapor, el cual es descargado a la atmosfera sin ningun provecho, lo que representa una perdida que afecta la vida util del yacimiento geotermico. Por ello se han propuesto y aplicado diversas acciones operativas en cada uno de esos pozos con el objetivo de ahorrar vapor y preservar el recurso geotermico. En este trabajo se presentan los resultados de esas acciones y los beneficios tecnicos y economicos obtenidos.

  14. Initial temperature distribution in Los Humeros, Mexico, geothermal field; Distribucion de temperatura inicial en el campo geotermico de Los Humeros, Puebla

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A; Arellano, V; Aragon, A; Barragan, R.M; Izquierdo, G [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico); Pizano, A [Comision federal de Electricidad, Los Humeros, Puebla (Mexico)

    2000-12-01

    The initial formation temperatures surrounding 40 wells from the Los Humeros geothermal field are presented. These temperatures were estimated using the Horner and the sphere methods. A brief discussion on the applicability of each method is presented and previous applications are detailed. Then the more likely reservoir temperature of each well versus elevation is plotted based on the estimations about the main feed zone and the temperature of each well. The boiling with depth curve for pure water is also included. Two longitudinal and one traverse geological sections are presented to illustrate the field initial temperature distribution, the lithology and layers thickness, the basement topography and the wells traversed along each sections. Also, the main feed zones of the wells are indicated. Finally, the last series of measured temperature logs in well H-26 are produced by numerical simulation. This considers the well circulation losses and an assumed initial temperature profile. This profile iteratively modified until the computed profiles match the measured temperature profiles. The last assumed temperature profile is then considered as the best approximation to the undisturbed formation temperature around well H-26 and it is then compared with the stabilized temperatures obtained via the Horner and Sphere methods. [Spanish] Se presentan las temperaturas iniciales o estabilizadas de la formacion circundante a 40 pozos del campo geotermico Los Humeros, las cuales se estimaron mediante los metodos de Horner y el metodo de la esfera. Se presenta una discusion sobre la aplicacion de cada metodo y se detallan las aplicaciones previas del metodo de la esfera. Posteriormente y con base en las estimaciones de las principales zonas de aporte de cada pozo y sus correspondientes temperaturas se grafican las temperaturas mas probables de yacimiento para cada pozo contra la elevacion y se incluye en la misma grafica la curva de ebullicion del agua contra la elevacion. Se

  15. Federal Geothermal Research Program Update Fiscal Year 1998

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.G.

    1999-05-01

    This report reviews the specific objectives, status, and accomplishments of DOE's Geothermal Research Program for Fiscal Year 1998. The Exploration Technology research area focuses on developing instruments and techniques to discover hidden hydrothermal systems and to expose the deep portions of known systems. The Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal and hot dry rock reservoirs. The Drilling Technology projects focus on developing improved, economic drilling and completion technology for geothermal wells. The Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Direct use research covers the direct use of geothermal energy sources for applications in other than electrical production.

  16. New Zealand geothermal: Wairakei -- 40 years

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This quarterly bulletin highlights the geothermal developments in New Zealand with the following articles: A brief history of the Wairakei geothermal power project; Geothermal resources in New Zealand -- An overview; Domestic and commercial heating and bathing -- Rotorua area; Kawerau geothermal development: A case study; Timber drying at Kawerau; Geothermal greenhouses at Kawerau; Drying of fibrous crops using geothermal steam and hot water at the Taupo Lucerne Company; Prawn Park -- Taupo, New Zealand; Geothermal orchids; Miranda hot springs; and Geothermal pipeline.

  17. Geothermal Program Review VII: proceedings. DOE Research and Development for the Geothermal Marketplace

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    Each year the Geothermal Technology Division of the US Department of Energy conducts an indepth review of its entire geothermal R and D program. The 2--3 day conference serves several purposes: a status report on current R and D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal industry. This year's conference, Program Review 7, was held in San Francisco on March 21--23, 1989. As indicated by its title, ''DOE Research and Development for the Geothermal Marketplace'', Program Review 7 emphasized developing technologies, concepts, and innovations having potential for commercial application in the foreseeable future. Program Review 7 was comprised of eight sessions including an opening session and a special presentation on the ''Role of Geothermal Energy in Minimizing Global Environmental Problems.'' The five technical sessions covered GTD-sponsored R and D in the areas of hydrothermal (two sessions), hot dry rock, geopressured, and magma. Presentations were made by the relevant field researchers, and sessions were chaired by the appropriate DOE Operations Office Geothermal Program Manager. The technical papers and commentary of invited speakers contained in these Proceedings have been compiled in the order in which they were presented at Program Review 7.

  18. THE HOHI GEOTHERMAL AREA, KYUSHU, JAPAN

    Energy Technology Data Exchange (ETDEWEB)

    Pritchett, J.W.; Garg, S.K.; Farrell, W.E.; Ishido, T.; Yoshimurs, T.; Murakami, K.; Makanishi, S.

    1985-01-22

    Geophysical data from surface measurements and downhole pressure/temperature data in northern Kyushu centered around Mount Waita are examined. The study area includes the geothermal fields supplying steam for the Hatchobaru and Ohtake power stations, but also extends a considerable distance to the northwest. Evidence from drilling logs, magnetotelluric surveys, lost-circulation horizons, downhole temperature surveys, and thermal and chemical properties of surface hot-spring discharge suggests the presence of a large geothermal reservoir north of the towns of Takenoyu and Hagenoyu.

  19. Biochemical processes for geothermal brine treatment

    Energy Technology Data Exchange (ETDEWEB)

    Premuzic, E.T.; Lin, M.S.; Bohenek, M.; Joshi-Tope, G.; Zhou, W.; Shelenkova, L.; Wilke, R.

    1998-08-01

    As part of the DOE Geothermal Energy Program, BNL`s Advanced Biochemical Processes for Geothermal Brines (ABPGB) project is aimed at the development of cost-efficient and environmentally acceptable technologies for the disposal of geothermal wastes. Extensive chemical studies of high and low salinity brines and precipitates have indicated that in addition to trace quantities of regulated substances, e.g., toxic metals such as arsenic and mercury, there are significant concentrations of valuable metals, including gold, silver and platinum. Further chemical and physical studies of the silica product have also shown that the produced silica is a valuable material with commercial potential. A combined biochemical and chemical technology is being developed which (1) solubilizes, separates, and removes environmentally regulated constituents in geothermal precipitates and brines, (2) generates an amorphous silica product which may be used as feedstock for the production of revenue generating materials, (3) recover economically valuable trace metals and salts. Geothermal power resources which utilize low salinity brines and use the Stretford process for hydrogen sulfide abatement generate a contaminated sulfur cake. Combined technology converts such sulfur to a commercial grade sulfur, suitable for agricultural use. The R and D activities at BNL are conducted jointly with industrial parties in an effort focused on field applications.

  20. BIOCHEMICAL PROCESSES FOR GEOTHERMAL BRINE TREATMENT

    Energy Technology Data Exchange (ETDEWEB)

    PREMUZIC,E.T.; LIN,M.S.; BOHENEK,M.; JOSHI-TOPE,G.; ZHOU,W.; SHELENKOVA,L.; WILKE,R.

    1998-09-20

    As part of the DOE Geothermal Energy Program, BNL's Advanced Biochemical Processes for Geothermal Brines (ABPGB) project is aimed at the development of cost-efficient and environmentally acceptable technologies for the disposal of geothermal wastes. Extensive chemical studies of high and low salinity brines and precipitates have indicated that in addition to trace quantities of regulated substances, e.g., toxic metals such as arsenic and mercury, there are significant concentrations of valuable metals, including gold, silver and platinum. Further chemical and physical studies of the silica product have also shown that the produced silica is a valuable material with commercial potential. A combined biochemical and chemical technology is being developed which (1) solubilizes, separates, and removes environmentally regulated constituents in geothermal precipitates and brines (2) generates an amorphous silica product which may be used as feedstock for the production of revenue generating materials, (3) recover economically valuable trace metals and salts. Geothermal power resources which utilize low salinity brines and use the Stretford process for hydrogen sulfide abatement generate a contaminated sulfur cake. Combined technology converts such sulfur to a commercial grade sulfur, suitable for agricultural use. The R and D activities at BNL are conducted jointly with industrial parties in an effort focused on field applications.

  1. NGDC Geothermal Data Bases

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Geothermics is the study of heat generated in Earth's interior and its manifestation at the surface. The National Geophysical Data Center (NGDC) has a variety of...

  2. Geothermal Energy: Current abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Ringe, A.C. (ed.)

    1988-02-01

    This bulletin announces the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. (ACR)

  3. Geothermics in Aquitaine

    International Nuclear Information System (INIS)

    Dane, J.P.

    1995-01-01

    The geothermal exploitation of the Aquitanian Basin (S W France) started 15 years ago and has extended today to 12 different places. Three main aquifers of different depth are exploited in Bordeaux region: the old alluvial deposits of Garonne river (20-30 m), the Middle Eocene aquifer (300-400 m), and the Cenomanian-Turonian aquifer (900-1100 m) which is the deepest and most exploited for geothermal purposes. The drinkable quality of the water and the use of single-well technique are important factors that reduce the operating costs. Geothermics remains competitive with other energy sources due to the long-term stability of geothermal energy costs. (J.S.). 2 figs., 1 tab., 5 photos

  4. Geothermal Orientation Handbook

    Energy Technology Data Exchange (ETDEWEB)

    None

    1984-07-01

    This is a useful overview of the Department of Energy's outlook on geothermal energy development in the U.S. as of late 1983. For example, Exhibit 4 shows how electric utility planners' estimates of likely amounts of geothermal power on line for 1990 and 2000 first increased and then declined over time as they were surveyed in 1977 through 1983 (date are from the EPRI Survey). Additions to direct heat uses in 1979 through 1981 are in Exhibit 7. A Table (not numbered) at the back of the report "Historical Development of Geothermal Power ..." shows world installed geothermal capacity by nation at decadal intervals from 1950 to 1980, and the first year of power production for each country. (DJE 2005)

  5. Fourteenth workshop geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1989-01-01

    The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

  6. Fourteenth workshop geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Miller, F.G.; Brigham, W.E.; Cook, J.W.

    1989-12-31

    The Fourteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 24--26, 1989. Major areas of discussion include: (1) well testing; (2) various field results; (3) geoscience; (4) geochemistry; (5) reinjection; (6) hot dry rock; and (7) numerical modelling. For these workshop proceedings, individual papers are processed separately for the Energy Data Base.

  7. Geothermal drill pipe corrosion test plan

    Energy Technology Data Exchange (ETDEWEB)

    Caskey, B.C.; Copass, K.S.

    1980-12-01

    Plans are presented for conducting a field test of drill pipe corrosion, comparing air and nitrogen as drilling fluids. This test will provide data for evaluating the potential of reducing geothermal well drilling costs by extending drill pipe life and reducing corrosion control costs. The 10-day test will take place during fall 1980 at the Baca Location in Sandoval County, New Mexico.

  8. Geothermal studies in China

    Science.gov (United States)

    Ji-Yang, Wang; Mo-Xiang, Chen; Ji-An, Wang; Xiao, Deng; Jun, Wang; Hsien-Chieh, Shen; Liang-Ping, Hsiung; Shu-Zhen, Yan; Zhi-Cheng, Fan; Xiu-Wen, Liu; Ge-Shan, Huang; Wen-Ren, Zhang; Hai-Hui, Shao; Rong-Yan, Zhang

    1981-01-01

    Geothermal studies have been conducted in China continuously since the end of the 1950's with renewed activity since 1970. Three areas of research are defined: (1) fundamental theoretical research on geothermics, including subsurface temperatures, terrestrial heat flow and geothermal modeling; (2) exploration for geothermal resources and exploitation of geothermal energy; and (3) geothermal studies in mines. Regional geothermal studies have been conducted recently in North China and more than 2000 values of subsurface temperature have been obtained. Temperatures at a depth of 300 m generally range from 20 to 25°C with geothermal gradients from 20 to 40°C/km. These values are regarded as an average for the region with anomalies related to geological factors. To date, 22 reliable heat flow data from 17 sites have been obtained in North China and the data have been categorized according to fault block tectonics. The average heat flow value at 16 sites in the north is 1.3 HFU, varying from 0.7 to 1.8 HFU. It is apparent that the North China fault block is characterized by a relatively high heat flow with wide variations in magnitude compared to the mean value for similar tectonic units in other parts of the world. It is suggested that although the North China fault block can be traced back to the Archaean, the tectonic activity has been strengthening since the Mesozoic resulting in so-called "reactivation of platform" with large-scale faulting and magmatism. Geothermal resources in China are extensive; more than 2000 hot springs have been found and there are other manifestations including geysers, hydrothermal explosions, hydrothermal steam, fumaroles, high-temperature fountains, boiling springs, pools of boiling mud, etc. In addition, there are many Meso-Cenozoic sedimentary basins with widespread aquifers containing geothermal water resources in abundance. The extensive exploration and exploitation of these geothermal resources began early in the 1970's. Since then

  9. Results of an injection test using ethyl alcohol as tracer at Los Humeros geothermal field, Puebla, Mexico; Resultados de una prueba de inyeccion de alcohol empleado como trazador, en el campo geotermico de Los humeros, Puebla, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Tovar Aguado, Rigoberto; Lopez Romero, Oscar [Comision Federal de Electricidad, Los Humeros, Puebla (Mexico)

    2000-12-01

    Los Humeros is the third Mexican geothermal field where ethyl alcohol was used as organic tracer to test communication between wells. The first Mexican geothermal field where this kind of test was used Los Azufres, Michoacan. The second was Las Tres Virgenes, Baja California Sur. In both cases, connections between wells were observed. The injection well H-29 is in the north-central sector of Los Humeros geothermal field, Puebla, Mexico. At a depth of 1580 meters, 600 liters of ethyl alcohol was pumped through a 60.35 mm (23/8 inch) diameter tube after 2.7 m{sup 3} of geothermal fluids were displaced, allowing the alcohol to reach the formation. Then, the normal injection process continued with water and condensed steam (130 t/h). On the basis of the experience acquired with similar tests conducted at Las Tres Virgenes geothermal field, and with the goal of detecting the tracer, samples of condensed steam were collected in nearby wells (H-15, H-16, H-17, H-30, H-33, H-36 and H-8) and in distant wells-named special samples (H-32, H-1, H-11, H-12, H-19, H-20, H-35, H-37, H-39, H-6 and H-9). Condensed steam samples were collected every 12 hours, the every week and finally every 15 days, making a total of 592 samples. The chemical analysis were done in two stages because of probable with the chromatograph. In the first stage, 441 samples were run and the rest were run in the second stage. No evidence of the tracer was observed in the monitoring wells. The results confirm the existence of a low-to-moderate permeability, as was previously interpreted using pressure log data. [Spanish] Los Humeros es el tercer campo geotermico de Mexico en el que se realiza una prueba de trazadores organicos empleando alcohol etilico con la finalidad principal de conocer si existe comunicacion entre pozos. El primer campo geotermico en el que se realizo esta prueba fue el de Los Azufres, Michoacan y el segundo el de Las Tres Virgenes, Baja California Sur; en ambos casos se encontro

  10. Geopressured geothermal bibliography. Volume 1 (citation extracts)

    Energy Technology Data Exchange (ETDEWEB)

    Hill, T.R.; Sepehrnoori, K.

    1981-08-01

    This bibliography was compiled by the Center for Energy Studies at The University of Texas at Austin to serve as a tool for researchers in the field of geopressured geothermal energy resources. The bibliography represents citations of papers on geopressured geothermal energy resources over the past eighteen years. Topics covered in the bibliography range from the technical aspects of geopressured geothermal reservoirs to social, environmental, and legal aspects of tapping those reservoirs for their energy resources. The bibliography currently contains more than 750 entries. For quick reference to a given topic, the citations are indexed into five divisions: author, category, conference title, descriptor, and sponsor. These indexes are arranged alphabetically and cross-referenced by page number.

  11. Renewable Energy Essentials: Geothermal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Geothermal energy is energy available as heat contained in or discharged from the earth's crust that can be used for generating electricity and providing direct heat for numerous applications such as: space and district heating; water heating; aquaculture; horticulture; and industrial processes. In addition, the use of energy extracted from the constant temperatures of the earth at shallow depth by means of ground source heat pumps (GSHP) is also generally referred to as geothermal energy.

  12. Geothermal environmental impact

    International Nuclear Information System (INIS)

    Armannsson, H.; Kristmannsdottir, H.

    1992-01-01

    Geothermal utilization can cause surface disturbances, physical effects due to fluid withdrawal noise, thermal effects and emission of chemicals as well as affect the communities concerned socially and economically. The environmental impact can be minimized by multiple use of the energy source and the reinjection of spent fluids. The emission of greenhouse gases to the atmosphere can be substantially reduced by substituting geothermal energy for fossil fuels as an industrial energy source wherever possible

  13. Federal Geothermal Research Program Update Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Renner, J.L.

    2001-08-15

    The Department of Energy's Geothermal Program serves two broad purposes: (1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and (2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

  14. Federal Geothermal Research Program Update Fiscal Year 2000; ANNUAL

    International Nuclear Information System (INIS)

    Renner, J.L.

    2001-01-01

    The Department of Energy's Geothermal Program serves two broad purposes: (1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and (2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research

  15. Geothermal System Extensions

    Energy Technology Data Exchange (ETDEWEB)

    Gunnerson, Jon [Boise City Corporation, ID (United States); Pardy, James J. [Boise City Corporation, ID (United States)

    2017-09-30

    This material is based upon work supported by the Department of Energy under Award Number DE-EE0000318. The City of Boise operates and maintains the nation’s largest geothermal heating district. Today, 91 buildings are connected, providing space heating to over 5.5 million square feet, domestic water heating, laundry and pool heating, sidewalk snowmelt and other related uses. Approximately 300 million gallons of 177°F geothermal water is pumped annually to buildings and institutions located in downtown Boise. The closed loop system returns all used geothermal water back into the aquifer after heat has been removed via an Injection Well. Water injected back into the aquifer has an average temperature of 115°F. This project expanded the Boise Geothermal Heating District (Geothermal System) to bring geothermal energy to the campus of Boise State University and to the Central Addition Eco-District. In addition, this project also improved the overall system’s reliability and increased the hydraulic capacity.

  16. Pumpernickel Valley Geothermal Project Thermal Gradient Wells

    Energy Technology Data Exchange (ETDEWEB)

    Z. Adam Szybinski

    2006-01-01

    The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1

  17. Results of investigation at the Miravalles Geothermal Field, Costa Rica: Part 1, Well logging. Resultados de las investigaciones en el campo geotermico de Miravalles, Costa Rica: Parte 1, Registros de pozos

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, B.R.; Lawton, R.G.; Kolar, J.D.; Alvarado, A.

    1989-03-01

    The well-logging operations performed in the Miravalles Geothermal Field in Costa Rica were conducted during two separate field trips. The Phase I program provided the deployment of a suite of high-temperature borehole instruments, including the temperature/rabbit, fluid sampler, and three-arm caliper in Well PGM-3. These same tools were deployed in Well PGM-10 along with an additional survey run with a combination fluid velocity/temperature/pressure instrument used to measure thermodynamic properties under flowing well conditions. The Phase II program complemented Phase I with the suite of tools deployed in Wells PGM-5, PGM-11, and PGM-12. 4 refs., 25 figs., 1 tab.

  18. Understanding the circulation of geothermal waters in the Tibetan Plateau using oxygen and hydrogen stable isotopes

    International Nuclear Information System (INIS)

    Tan, Hongbing; Zhang, Yanfei; Zhang, Wenjie; Kong, Na; Zhang, Qing; Huang, Jingzhong

    2014-01-01

    Highlights: • Unique geothermal resources in Tibetan Plateau were discussed. • Isotopes were used to trace circulation of geothermal water. • Magmatic water mixing dominates geothermal water evolution. - Abstract: With the uplift of the Tibetan Plateau, many of the world’s rarest and most unique geothermal fields have been developed. This study aims to systematically analyze the characteristics of the hydrogen and oxygen isotopic data of geothermal, river, and lake waters to understand the circulation of groundwater and to uncover the mechanism of geothermal formation in the Tibetan Plateau. Field observations and isotopic data show that geothermal water has higher temperatures and hydraulic pressures, as well as more depleted D and 18 O isotopic compositions than river and lake waters. Thus, neither lakes nor those larger river waters are the recharge source of geothermal water. Snow-melt water in high mountains can vertically infiltrate and deeply circulate along some stretching tensile active tectonic belts or sutures and recharge geothermal water. After deep circulation, cold surface water evolves into high-temperature thermal water and is then discharged as springs at the surface again in a low area, under high water-head difference and cold–hot water density difference. Therefore, the large-scale, high-temperature, high-hydraulic-pressure geothermal systems in the Tibetan Plateau are developed and maintained by rapid groundwater circulation and the heat source of upwelled residual magmatic water. Inevitably, the amount of geothermal water will increase if global warming accelerates the melting of glaciers in high mountains

  19. Time-lapse Joint Inversion of Geophysical Data and its Applications to Geothermal Prospecting - GEODE

    Energy Technology Data Exchange (ETDEWEB)

    Revil, Andre [Univ. of Savoy, Chambery (France)

    2015-12-31

    The objectives of this project were to develop new algorithms to decrease the cost of drilling for geothermal targets during the exploration phase of a hydrothermal field and to improve the monitoring of a geothermal field to better understand its plumbing system and keep the resource renewable. We developed both new software and algorithms for geothermal explorations (that can also be used in other areas of interest to the DOE) and we applied the methods to a geothermal field of interest to ORMAT in Nevada.

  20. Imperial County geothermal development semi-annual report, October 1, 1980-March 31, 1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    The current geothermal progress in Imperial County is reported. Three areas are reported: Geothermal Administration, Geothermal Planning, and other Geothermal Activities. Geothermal Administration addresses the status of the Imperial Valley Environmental Project (IVEP) transfer, update of the Geothermal Resource Center, and findings of Geothermal field inspections. In addition, the cooperative efforts between industry and the County; Master EIR for the Salton Sea KGRA and the resurveying of the subsidence detection network are covered. Geothermal Planning addresses a Board of Supervisor action on the Union Oil Geothermal Production Permit for 16 wells in the Salton Sea KGRA and a permit for Southern California Edison 10 megawatts power plant in the Salton Sea KGRA. Planning Commission action covers: Amendment of Magma Power's 49 megawatts Geothermal Production Permit to 28 megawatt power plant and relocation of the plant and wells within the Salton Sea KGRA; Exploration permit to Occidental Geothermal for four exploratory wells in East Brawley; Geothermal Production Permit to Southern California Edison to operate a 10 megawatt power plant in the Salton Sea KGRA; and Geothermal production permit to Union Oil for 16 production-injection wells in the Salton Sea KGRA. Lastly, EIR exemptions to CEQA were granted to Chevron for 70 shallow temperature observation holes and Union for fifteen. Other Geothermal Activity addresses the County Direct Heat Development study; the solicitation for district heating and cooling proposals; the new Geothermal Class II-1 disposal site; the DOE Region IX meeting in Tucson; and USGA designating a new KGRA, the East Brawley KGRA, the Westmorland KGRA, and revising the southern border of the Salton Sea KGRA.

  1. The Geothermal Potential, Current and Opportunity in Taiwan

    Science.gov (United States)

    Song, Sheng-Rong

    2016-04-01

    Located in the west Pacific Rim of Fire, Taiwan possesses rich geothermal resources due to volcanic activities and rapid uplifting of plate collision. Based on available data prior to 1980, Taiwan may have about 1 GWe of potential shallow geothermal energy, which is less than 3% of the national gross power generation. A 3-Mw pilot power plant, therefore, was constructed in 1981 and terminated in 1993 in the Chingshui geothermal field of Ilan, northeastern Taiwan. Recently, one of the National Science & Technology Program (NSTP) projects has been conducting research and reevaluating the island-wide deep geothermal energy. Four hot potential sites have been recognized. They are: (1) Tatun Volcano Group of northern Taiwan; (2) I-Lan Plain of NE Taiwan; (3) Lu-Shan area of Central Taiwan; and (4) Hua-Tung area of eastern Taiwan. We found that the geothermal resource in Taiwan may be as high as 160 GWe, with 33.6 GWe of exploitable geothermal energy. There are no any commercial geothermal power plants until now in Taiwan, although the potential is great. However, geothermal energy has been listed as one of major tasks of National Energy Program, Phase II (NEP-II) in Taiwan. We will conduct more detailed geothermal energy surveys on some proposed hot sites and to construct an EGS pilot geothermal plant with 1 MWe capability in a few years. Currently, there are three nuclear power plants, named No. 1, 2 & 3, in operations, which produce 16.5% gross generation of electricity and one (No. 4) is under construction, but is stopped and sealed now in Taiwan. Furthermore, the life-span of 40-year operation for those three power plants will be close-at hand and retire in 2018-2019, 2021-2023 and 2024-2025, respectively. Therefore, to find alternative energy sources, especially on the clean, renewable and sustainable ones for generating electricity are emergent and important for Taiwan's government in next few years. Among various energy sources, geothermal energy can be as base

  2. Discovering geothermal supercritical fluids: a new frontier for seismic exploration.

    Science.gov (United States)

    Piana Agostinetti, Nicola; Licciardi, Andrea; Piccinini, Davide; Mazzarini, Francesco; Musumeci, Giovanni; Saccorotti, Gilberto; Chiarabba, Claudio

    2017-11-06

    Exploiting supercritical geothermal resources represents a frontier for the next generation of geothermal electrical power plant, as the heat capacity of supercritical fluids (SCF),which directly impacts on energy production, is much higher than that of fluids at subcritical conditions. Reconnaissance and location of intensively permeable and productive horizons at depth is the present limit for the development of SCF geothermal plants. We use, for the first time, teleseismic converted waves (i.e. receiver function) for discovering those horizons in the crust. Thanks to the capability of receiver function to map buried anisotropic materials, the SCF-bearing horizon is seen as the 4km-depth abrupt termination of a shallow, thick, ultra-high (>30%) anisotropic rock volume, in the center of the Larderello geothermal field. The SCF-bearing horizon develops within the granites of the geothermal field, bounding at depth the vapor-filled heavily-fractured rock matrix that hosts the shallow steam-dominated geothermal reservoirs. The sharp termination at depth of the anisotropic behavior of granites, coinciding with a 2 km-thick stripe of seismicity and diffuse fracturing, points out the sudden change in compressibility of the fluid filling the fractures and is a key-evidence of deep fluids that locally traversed the supercritical conditions. The presence of SCF and fracture permeability in nominally ductile granitic rocks open new scenarios for the understanding of magmatic systems and for geothermal exploitation.

  3. Exergoeconomic optimization of integrated geothermal system in Simav, Kutahya

    International Nuclear Information System (INIS)

    Arslan, Oguz; Kose, Ramazan

    2010-01-01

    The aim of this study is to investigate the integrated use of the geothermal resources in the Kutahya-Simav region, Turkey. Although geothermal energy has been in use for years in the others countries, the integrated use of the geothermal fluid is new in Turkey. The high temperature level of the geothermal fluid in the Simav field makes it possible to utilize it for electricity generation, space heating and balneology. In this regard, a multiple complex has been proposed there in order to use the energy of the geothermal fluid more efficiently. Therefore, the possibility of electricity generation by a binary cycle has been preliminarily researched. After the electricity generation process, the waste geothermal fluid has been conducted to residences and greenhouses later for heating purpose in the field. In this regard, twenty one different models have been formed and analyzed using exergy and LCC methods. As a conclusion, the pre-feasibility study indicates that utilization of this geothermal capacity for multiple uses would be an attractive investment for Simav region.

  4. Accelerating Geothermal Research (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-05-01

    Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

  5. Geothermal Resource Exploration by Stream pH Mapping in Mutsu Hiuchi Dake Volcano, Japan

    Directory of Open Access Journals (Sweden)

    Yota Suzuki

    2017-07-01

    Full Text Available Although pH measurements of hot spring water are taken in conventional geothermal resource research, previous studies have seldom created pH distribution maps of stream and spring waters for an entire geothermal field as a technique for geothermal exploration. In this study, a pH distribution map was created by measuring stream and spring water pH at 75 sites in the Mutsu Hiuchi Dake geothermal field, Japan. Areas of abnormally high pH were detected in midstream sections of the Ohaka and Koaka rivers; these matched the location of the Mutsu Hiuchi Dake East Slope Fault, which is believed to have formed a geothermal reservoir. The abnormally high pH zone is attributed to the trapping of rising volcanic gases in a mature geothermal reservoir with neutral geothermal water. This causes the gas to dissolve and prevents it from reaching the surface. Thus, the mapping of stream water pH distribution in a geothermal field could provide a new and effective method for estimating the locations of geothermal reservoirs. As the proposed method does not require laboratory analysis, and is more temporally and economically efficient than conventional methods, it might help to promote geothermal development in inaccessible and remote regions.

  6. Development of geothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This paper describes the geothermal development promotion survey project. NEDO is taking the lead in investigation and development to reduce risks for private business entities and promote their development. The program is being moved forward by dividing the surveys into three ranks of A, B and C from prospects of geothermal resource availability and the state of data accumulation. The survey A lacks number of data, but covers areas as wide as 100 to 300 km{sup 2}, and studies possible existence of high-temperature geothermal energy. The survey B covers areas of 50 to 70 km{sup 2}, investigates availability of geothermal resources, and assesses environmental impacts. The survey C covers areas of 5 to 10 km{sup 2}, and includes production well drilling and long-term discharge tests, other than those carried out by the surveys A and B. Results derived in each fiscal year are evaluated and judged to establish development plans for the subsequent fiscal year. This paper summarizes development results on 38 areas from among 45 areas surveyed since fiscal 1980. Development promotion surveys were carried out over seven areas in fiscal 1994. Development is in progress not only on utilization of high-temperature steam, but also on binary cycle geothermal power generation utilizing hot waters of 80 to 150{degree}C. Fiscal 1994 has carried out discussions for spread and practical use of the systems (particularly on economic effects), and development of small-to-medium scale binary systems. 2 figs., 1 tab.

  7. Geothermal resources in Algeria

    Energy Technology Data Exchange (ETDEWEB)

    Saibi, Hakim [Laboratory of Geothermics, Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan)

    2009-12-15

    The geothermal resources in Algeria are of low-enthalpy type. Most of these geothermal resources are located in the northeastern of the country. There are more than 240 thermal springs in Algeria. Three geothermal zones have been delineated according to some geological and thermal considerations: (1) The Tlemcenian dolomites in the northwestern part of Algeria, (2) carbonate formations in the northeastern part of Algeria and (3) the sandstone Albian reservoir in the Sahara (south of Algeria). The northeastern part of Algeria is geothermally very interesting. Two conceptual geothermal models are presented, concerning the northern and southern part of Algeria. Application of gas geothermometry to northeastern Algerian gases suggests that the reservoir temperature is around 198 C. The quartz geothermometer when applied to thermal springs gave reservoir temperature estimates of about 120 C. The thermal waters are currently used in balneology and in a few experimental direct uses (greenhouses and space heating). The total heat discharge from the main springs and existing wells is approximately 642 MW. The total installed capacity from producing wells and thermal springs is around 900 MW. (author)

  8. The significance of "geothermal microzonation" for the correct planning of low-grade source geothermal systems

    Science.gov (United States)

    Viccaro, Marco; Pezzino, Antonino; Belfiore, Giuseppe Maria; Campisano, Carlo

    2016-04-01

    Despite the environmental-friendly energy systems are solar thermal technologies, photovoltaic and wind power, other advantageous technologies exist, although they have not found wide development in countries such as Italy. Given the almost absent environmental impact and the rather favorable cost/benefit ratio, low-enthalpy geothermal systems are, however, likely to be of strategic importance also in Italy during the next years. The importance of geology for a sustainable exploitation of the ground through geothermal systems from low-grade sources is becoming paramount. Specifically, understanding of the lithological characteristics of the subsurface along with structures and textures of rocks is essential for a correct planning of the probe/geo-exchanger field and their associated ground source heat pumps. The complex geology of Eastern Sicily (Southern Italy), which includes volcanic, sedimentary and metamorphic units over limited extension, poses the question of how thermal conductivity of rocks is variable at the scale of restricted areas (even within the same municipality). This is the innovative concept of geothermal microzonation, i.e., how variable is the geothermal potential as a function of geology at the microscale. Some pilot areas have been therefore chosen to test how the geological features of the subsurface can influence the low-enthalpy geothermal potential of an area. Our geologically based evaluation and micro-zonation of the low-grade source geothermal potential of the selected areas have been verified to be fundamental for optimization of all the main components of a low-enthalpy geothermal system. Saving realization costs and limiting the energy consumption through correct sizing of the system are main ambitions to have sustainable development of this technology with intensive utilization of the subsurface. The variegated territory of countries such as Italy implies that these goals can be only reached if, primarily, the geological features

  9. Geothermal energy program summary

    Energy Technology Data Exchange (ETDEWEB)

    1990-01-01

    The Geothermal Technology Division (GTD) of the US Department of Energy (DOE) is charged with the lead federal role in the research and development (R D) of technologies that will assist industry in economically exploiting the nation's vast geothermal resources. The GTD R D Program represents a comprehensive, balanced approach to establishing all forms of geothermal energy as significant contributors to the nation's energy supply. It is structured both to maintain momentum in the growth of the existing hydrothermal industry and to develop long-term options offering the greatest promise for practical applications. This volume, Volume 2, contains a detailed compilation of each GTD-funded R D activity performed by national laboratories or under contract to industrial, academic, and nonprofit research institutions.

  10. Geothermal Plant Capacity Factors

    Energy Technology Data Exchange (ETDEWEB)

    Greg Mines; Jay Nathwani; Christopher Richard; Hillary Hanson; Rachel Wood

    2015-01-01

    The capacity factors recently provided by the Energy Information Administration (EIA) indicated this plant performance metric had declined for geothermal power plants since 2008. Though capacity factor is a term commonly used by geothermal stakeholders to express the ability of a plant to produce power, it is a term frequently misunderstood and in some instances incorrectly used. In this paper we discuss how this capacity factor is defined and utilized by the EIA, including discussion on the information that the EIA requests from operations in their 923 and 860 forms that are submitted both monthly and annually by geothermal operators. A discussion is also provided regarding the entities utilizing the information in the EIA reports, and how those entities can misinterpret the data being supplied by the operators. The intent of the paper is to inform the facility operators as the importance of the accuracy of the data that they provide, and the implications of not providing the correct information.

  11. Geothermal : Economic Impacts of Geothermal Development in Skamania County, Washington.

    Energy Technology Data Exchange (ETDEWEB)

    Lesser, Jonathan A.

    1992-07-01

    This report estimates the local economic impacts that could be anticipated from the development of a 100 megawatt (MW) geothermal power plant in eastern Skamania County, Washington, near Mt. Adams, as shown in Figure 1. The study was commissioned by the Bonneville Power Administration to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council. Skamania County was chosen due to both identified geothermal resources and developer interest. The analysis will focus on two phases: a plant construction phase, including well field development, generating plant construction, and transmission line construction; and an operations phase. Economic impacts will occur to the extent that construction and operations affect the local economy. These impacts will depend on the existing structure of the Skamania County economy and estimates of revenues that may accrue to the county as a result of plant construction, operation, and maintenance. Specific impacts may include additional direct employment at the plant, secondary impacts from wage payments being used to purchase locally produced goods and services, and impacts due to expenditures of royalty and tax payments received by the county. The basis for the analysis of economic impacts in this study is the US Forest Service IMPLAN input-output modeling system.

  12. Water Intensity of Electricity from Geothermal Resources

    Science.gov (United States)

    Mishra, G. S.; Glassley, W. E.

    2010-12-01

    BACKGROUND Electricity from geothermal resources could play a significant role in the United States over the next few decades; a 2006 study by MIT expects a capacity of 100GWe by 2050 as feasible; approximately 10% of total electricity generating capacity up from less than 1% today. However, there is limited research on the water requirements and impacts of generating electricity from geothermal resources - conventional as well as enhanced. To the best of our knowledge, there is no baseline exists for water requirements of geothermal electricity. Water is primarily required for cooling and dissipation of waste heat in the power plants, and to account for fluid losses during heat mining of enhanced geothermal resources. MODEL DESCRIPTION We have developed a model to assess and characterize water requirements of electricity from hydrothermal resources and enhanced geothermal resources (EGS). Our model also considers a host of factors that influence cooling water requirements ; these include the temperature and chemical composition of geothermal resource; installed power generation technology - flash, organic rankine cycle and the various configurations of these technologies; cooling technologies including air cooled condensers, wet recirculating cooling, and hybrid cooling; and finally water treatment and recycling installations. We expect to identify critical factors and technologies. Requirements for freshwater, degraded water and geothermal fluid are separately estimated. METHODOLOGY We have adopted a lifecycle analysis perspective that estimates water consumption at the goethermal field and power plant, and accounts for transmission and distribution losses before reaching the end user. Our model depends upon an extensive literature review to determine various relationships necessary to determine water usage - for example relationship between thermal efficiency and temperature of a binary power plant, or differences in efficiency between various ORC configurations

  13. Corrosion in pipelines and well casings at the Cerro Prieto geothermal field, BC; Corrosion en tuberias de linea y de revestimiento de pozos del campo geotermico de Cerro Prieto, BC

    Energy Technology Data Exchange (ETDEWEB)

    Miranda Herrera, Carlos A.; Canchola Felix, Ismael; Raygoza Flores, Joaquin; Mora Perez, Othon [Comision Federal de Electricidad, Residencia General de Cerro Prieto, Mexicali, Baja California (Mexico)]. E-mail: carlos.miranda02@cfe.gob.mx

    2009-07-15

    In the area called Poligono Hidalgo, inside the Cerro Prieto IV zone in the Cerro Prieto geothermal field, BC, corrosion has occurred in the last few years on well casings and pipelines used for geothermal fluids. Corrosion test results are presented here for pipes, type API L-80 and ASTM A-53 grade B, which were subjected to condensate from wells 403 and 424. These wells have thrown corroded material from their respective casings. With these data we pinpoint corrosive conditions in this field area and determine which pipes are adequate to case wells in similar chemical, production conditions to minimize adverse effects and extend the life of the well, allowing more efficient exploitation of the deepest production zones in the reservoir. [Spanish] En el campo geotermico de Cerro Prieto, BC, dentro del area del Poligono Hidalgo en el sector conocido como Cerro Prieto IV, algunos pozos han presentado en los ultimos anos desgastes en sus tuberias de revestimiento y en las tuberias de linea para el transporte del fluido geotermico. Se presentan resultados de pruebas de corrosion con tuberias tipo API L-80 y ASTM A-53 grado B al ser sometidas al condensado de los pozos 403 y 424, los cuales han estado arrojando material de sus respectivas tuberias de revestimiento. Con estos datos se pretende conocer las condiciones corrosivas de esa zona del campo y determinar cual seria la tuberia ideal a utilizar en pozos con condiciones quimicas de produccion semejantes a fin de minimizar este efecto adverso y prolongar la vida de los pozos, a la vez que se permita la explotacion eficiente de las zonas productoras mas profundas del yacimiento.

  14. Drilling of bilateral wells: analysis and selection of wells in the Los Humeros, Pue., geothermal field; Perforacion de pozos bilaterales: analisis y seleccion de pozos en el campo geotermico de Los Humeros, Pue.

    Energy Technology Data Exchange (ETDEWEB)

    Flores Armenta, Magaly del Carmen; Ramirez Montes, Miguel [Comision Federal de Electricidad, Gerencia de Proyectos Geotermoelectricos, Morelia, Michoacan (Mexico)]. E-mail: miguel.ramirez02@cfe.gob.mx

    2010-01-15

    Drilling bilateral geothermal wells has been conducted successfully in fields in the U.S., the Philippines and Japan, among other places. The reason for drilling a second leg in a well is to increase production by penetrating additional production zones. In this report, criteria are presented for selecting wells in Los Humeros, Pue., geothermal field to be considered for a second leg, taking into account the mechanical condition of the wells, geological targets, distances between wells, production characteristics and thermodynamic conditions. The cases of wells H-3, H-8, H-11, H-16, H-33, H-34 and H-36, which have low production, were reviewed. Wells H-3, H-8 and H-34 were selected as the best subjects for bi-directional drilling. A design is proposed for constructing a second leg in well H-8. [Spanish] La perforacion de pozos bilaterales se ha venido realizando de manera exitosa en campos geotermicos de Estados Unidos, Filipinas y Japon, entre otros. El objetivo de perforar una segunda pierna en un mismo pozo es incrementar su produccion, ya que habran mas zonas de produccion. En este reporte se presentan los criterios para la seleccion de pozos del campo geotermico de Los Humeros, Pue., candidatos para una segunda pierna, considerando el estado mecanico de los mismos, los objetivos geologicos, la distancia entre pozos, sus caracteristicas de produccion y sus condiciones termodinamicas. Para ello se revisaron los casos de los pozos H-3, H-8, H-11, H-16, H-33, H-34 y H-36, que presentan una produccion baja. Posteriormente, aplicando los criterios de evaluacion y con la informacion obtenida de cada pozo, se seleccionaron los pozos H-3, H-8 y H-34 como los que presentan mejores condiciones para la perforacion bidireccional. Finalmente, se establecio un diseno para la construccion de una segunda pierna en el pozo H-8.

  15. Victorian first for geothermal

    International Nuclear Information System (INIS)

    Wallace, Paula

    2014-01-01

    AGL Limited (AGL) will assist Maroondah Sports Club to save hundreds of thousands of dollars on its energy bills over the next decade by commencing work to install Victoria's first GeoAir geothermal cooling and heating system. Utilising the earth's constant temperature, the new GeoAir geothermal system provides a renewable source of energy that will save the club up to $12,000 in the first year and up to $150,000 over the next 10 years

  16. Geothermal and environment

    International Nuclear Information System (INIS)

    1993-01-01

    The production of geothermal-electric energy, presents relatively few contamination problems. The two bigger problems associated to the geothermal production are the disposition of waste fluids and the discharges to the atmosphere of non-condensable gases as CO 2 , H 2 O and NH 3 . For both problems the procedures and production technologies exist, like it is the integral use of brines and gases cleaning systems. Other problems consist on the local impact to forest areas for the effect of the vapor discharge, the contamination for noise, the contamination of aquifer shallow and the contamination related with the construction and termination of wells

  17. Estimation of a stress field in the earth`s crust using drilling-induced tensile fractures observed at well WD-1 in the Kakkonda geothermal field; Kakkonda WD-1 sei de kansokusareta drilling induced tensile fracture ni yoru chikaku oryokuba no suitei

    Energy Technology Data Exchange (ETDEWEB)

    Okabe, T. [GERD Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan); Hayashi, K. [Tohoku Univ., Sendai (Japan). Inst. of Fluid Science; Kato, O.; Doi, N.; Miyazaki, S. [Japan Metals and Chemicals Co. Ltd., Tokyo (Japan); Uchida, T. [New Energy and Industrial Technology Development Organization, Tokyo, (Japan)

    1997-05-27

    This paper describes estimation of a stress field in the earth`s crust in the Kakkonda geothermal field. Formation micro imager (FMI) logging known as a crack detecting logging was performed in the well WD-1. This FMI logging has made observation possible on cracks along well axis thought to indicate size and direction of the crust stress, and drilling-induced tensile fractures (DTF). It was verified that these DTFs are generated initially in an azimuth determined by in-situ stress (an angle up to the DTF as measured counterclockwise with due north as a starting point, expressed in {theta}) in the well`s circumferential direction. It was also confirmed that a large number of cracks incline at a certain angle to the well axis (an angle made by the well axis and the DTF, expressed in {gamma}). The DTF is a crack initially generated on well walls as a result of such tensile stresses as mud pressure and thermal stress acting on the well walls during well excavation, caused by the in-situ stress field. Measurement was made on the {theta} and {gamma} from the FMI logging result, and estimation was given on a three-dimensional stress field. Elucidating the three-dimensional crust stress field in a geothermal reservoir is important in making clear the formation mechanism thereof and the growth of water-permeable cracks. This method can be regarded as an effective method. 9 refs., 8 figs., 1 tab.

  18. Process applications for geothermal energy resources. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mikic, B.B.; Meal, H.C.; Packer, M.B.; Guillamon-Duch, H.

    1981-08-01

    The principal goal of the program was to demonstrate economical and technical suitability of geothermal energy as a source of industrial process heat through a cooperative program with industrial firms. To accomplish that: a critical literature survey in the field was performed; a workshop with the paper and pulp industry representatives was organized; and four parallel methods dealing with technical and economical details of geothermal energy use as a source of industrial process heat were developed.

  19. Polymer-cement geothermal-well-completion materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Zeldin, A.N.; Kukacka, L.E.

    1980-07-01

    A program to develop high-temperature polymer cements was performed. Several formulations based on organic and semi-inorganic binders were evaluated on the basis of mechanical and thermal stability, and thickening time. Two optimized systems exhibited properties exceeding those required for use in geothermal wells. Both systems were selected for continued evaluation at the National Bureau of Standards and contingent upon the results, for field testing in geothermal wells.

  20. Geothermal drilling in Cerro Prieto

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez A., Bernardo

    1982-08-10

    The number of characteristics of the different wells that have been drilled in the Cerro Prieto geothermal field to date enable one to summarize the basic factors in the applied technology, draw some conclusions, improve systems and procedures, and define some problems that have not yet been satisfactorily solved, although the existing solution is the best now available. For all practical purposes, the 100 wells drilled in the three areas or blocks into which the Cerro Prieto field has been divided have been completed. Both exploratory and production wells have been drilled; problems of partial or total lack of control have made it necessary to abandon some of these wells, since they were unsafe to keep in production or even to be used for observation and/or study. The wells and their type, the type of constructed wells and the accumulative meters that have been drilled for such wells are summarized.

  1. 2008 Geothermal Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Cross, J.; Freeman, J.

    2009-07-01

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  2. Geothermally Coupled Well-Based Compressed Air Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, Casie L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bearden, Mark D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Horner, Jacob A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cabe, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Appriou, Delphine [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B. Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-20

    Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storage portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well-field infrastructure

  3. Geothermally Coupled Well-Based Compressed Air Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, C L [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bearden, Mark D [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Horner, Jacob A [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Appriou, Delphine [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storage portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well-field infrastructure

  4. Eighteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Horne, R.J.; Kruger, P.; Miller, F.G.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

    1993-01-28

    PREFACE The Eighteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 26-28, 1993. There were one hundred and seventeen registered participants which was greater than the attendance last year. Participants were from eight foreign countries: Italy, Japan, United Kingdom, Mexico, New Zealand, the Philippines, Guatemala, and Iceland. Performance of many geothermal fields outside the United States was described in several of the papers. Dean Gary Ernst opened the meeting and welcomed the visitors to the campus. The key note speaker was J.E. ''Ted'' Mock who gave a brief overview of the Department of Energy's current plan. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Mock who also spoke at the banquet. Thirty-nine papers were presented at the Workshop with two papers submitted for publication only. Technical papers were organized in twelve sessions concerning: field operations, The Geysers, geoscience, hot-dry-rock, injection, modeling, slim hole wells, geochemistry, well test and wellbore. Session chairmen were major contributors to the program and we thank: John Counsil, Kathleen Enedy, Harry Olson, Eduardo Iglesias, Marcelo Lippmann, Paul Atkinson, Jim Lovekin, Marshall Reed, Antonio Correa, and David Faulder. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to John Hornbrook who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook

  5. Coso Hot Springs: A Condensate Fed Geothermal Feature

    Science.gov (United States)

    Person, M. A.; Cohen, D.; Sabin, A.; Unruh, J.; Gable, C.; Zyvoloski, G.; Meade, D.; Bjornstad, S.; Monastero, F.

    2007-12-01

    The Coso Hot Springs are located almost two miles from the Coso geothermal field within the China Lake Naval Air Weapons Station, China Lake, California. The hot springs are about 16 m above the adjacent valley floor and because of their position are not believed to be in good hydrologic connection with the regional groundwater water table. Shortly after the onset of geothermal production in 1987, both water levels and temperatures within the South Pool of Coso Hot Springs increased. Although water levels appeared to be stable by 1989-1990, temperatures continued to rise until about 1993. We postulate that Coso hot springs are a condensate fed geothermal feature associated with vapor flux emanating from the Coso Wash Fault. We developed a suite of generic and site specific numerical models using FEHM to test whether these measured changes in the hot springs might be due to the removal of fluids associated with production from the Coso geothermal field. The idealized models were based on observed conditions including the locations of faults and geologic framework as well as temperature/pressure/production history of the geothermal field. The model results suggest that pressure declines associated with geothermal production led to an expanded steam cap which resulted in an enhanced vapor flux up the Coso Wash Fault zone.

  6. Applied geology as key in modern geothermal exploration

    Science.gov (United States)

    Moeck, I. S.

    2012-12-01

    The renewed interest in geothermal energy resources arises from two major reasons: I) The recent development in Enhanced Geothermal System (EGS) technologies produces tangible pilot projects of future heat and power generation from low-enthalpy resources extending the worldwide geothermal potential, and (II) the political-social request for renewable energy to reduce climate gas emission. This new interest is tied with the question for economic risks and potential of individual geothermal resource types involving feasibility studies and utilization concepts to economically develop geothermal systems. From this perspective it is important to note that a geothermal system is part of a geologic system where geologic factors such as facies, faults, fractures, stress field, diagenesis, rock mechanics, fluid chemistry and geochemistry control key parameters as high porosity and high permeability domains, fluid flow, lateral and vertical temperature gradient, and overall reservoir behavior during injection and production. A site specific appropriate field development should therefore be based on a profound understanding of the geologic controls of a geothermal system involving a suite of modern exploration techniques. Applied geology is the key in this modern concept of geothermal exploration where geology is not only descriptive but also quantitative including 3D geological modeling and parametrisation. From different parts of the world various geothermal systems in both high and low enthalpy environments are described examined with individual exploration strategies. The first example from Western U.S.A. shows how structural geology, 3D geological modeling and surface geochemistry are combined to evidence permeability anisotropy controlled by faults. Another example from Indonesia demonstrates how secondary faults control the subsurface geochemistry and fluid flow in a geothermal system at the Sumatra mega shear zone. More examples from EGS resources in Alberta

  7. Modern geothermal power: GeoPP with geothermal steam turbines

    Science.gov (United States)

    Tomarov, G. V.; Shipkov, A. A.

    2017-03-01

    The first part of the review presents information on the scale and specific features of geothermal energy development in various countries. The classification of geothermal power plant (GeoPP) process flow diagrams by a phase state of the primary heat source (a geothermal fluid), thermodynamic cycle, and applicable turbines is proposed. Features of geothermal plants using methods of flashing and steam separation in the process loop and a flowsheet and thermodynamic process of a geothermal fluid heat-to-power conversion in a GeoPP of the most widespread type using a double-flash separation are considered. It is shown that, for combined cycle power units, the specific power-to-consumption geothermal fluid ratio is 20-25% higher than that for traditional single-loop GeoPP. Information about basic chemical components and their concentration range for geothermal fluids of various formations around the world is presented. Three historic stages of improving geothermal energy technologies are determined, such as development of high-temperature geothermal resources (dry, superheated steam) and application of a two-phase wet-steam geothermal fluid in GeoPP power units with one or two expansion pressures and development of binary cycle GeoPPs. A current trend of more active use of binary power plants in GeoPP technological processes is noted. Design features of GeoPP's steam turbines and steam separating devices, determined by the use of low-potential geothermal saturated steam as a working medium, which is characterized by corrosion aggressiveness and a tendency to form deposits, are considered. Most promising Russian geothermal energy projects are determined. A list of today's most advanced geothermal turbine performance technologies is presented. By an example of a 25 MW steam turbine design, made by JSC Kaluga Turbine Works, advantages of the internal moisture separation with a special turbine-separator stage are shown.

  8. Geothermal energy conversion facility

    Energy Technology Data Exchange (ETDEWEB)

    Kutscher, C.F.

    1997-12-31

    With the termination of favorable electricity generation pricing policies, the geothermal industry is exploring ways to improve the efficiency of existing plants and make them more cost-competitive with natural gas. The Geothermal Energy Conversion Facility (GECF) at NREL will allow researchers to study various means for increasing the thermodynamic efficiency of binary cycle geothermal plants. This work has received considerable support from the US geothermal industry and will be done in collaboration with industry members and utilities. The GECF is being constructed on NREL property at the top of South Table Mountain in Golden, Colorado. As shown in Figure 1, it consists of an electrically heated hot water loop that provides heating to a heater/vaporizer in which the working fluid vaporizes at supercritical or subcritical pressures as high as 700 psia. Both an air-cooled and water-cooled condenser will be available for condensing the working fluid. In order to minimize construction costs, available equipment from the similar INEL Heat Cycle Research Facility is being utilized.

  9. Very low energy geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Very low energy geothermics correspond to temperatures below 30 C and has been developed to cover heating and cooling needs of recent individual houses or tertiary industries using heat pumps and low depth aquifers (<100 m). Geothermal heat pumps industry has made great strides in European Northern countries, China, Japan and the United States of America. Geothermal heat pumps are less energy consuming than air heat pumps and require less cooling fluid and maintenance. The Aquapac procedure has been developed in France in 1983 by the AFME (French Energy Control Agency), EdF and the BRGM (Geologic and Mining Research Office) to encourage the use of geothermal heat pump for domestic and sanitary water heating and to make a survey of low-depth aquifers in the whole french territory. The decay of energy costs that started in 1986 has led to a loss of interest for the Aquapac procedure, even in the tertiary industries for which the air-conditioning demand is growing up. (J.S.). 1 tab

  10. Simulation of geothermal subsidence

    Energy Technology Data Exchange (ETDEWEB)

    Miller, I.; Dershowitz, W.; Jones, K.; Myer, L.; Roman, K.; Schauer, M.

    1980-03-01

    The results of an assessment of existing mathematical models for subsidence simulation and prediction are summarized. The following subjects are discussed: the prediction process, physical processes of geothermal subsidence, computational models for reservoir flow, computational models for deformation, proficiency assessment, and real and idealized case studies. (MHR)

  11. Review of geothermal subsidence

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, S.L.; Fair, J.A.; Henderson, F.B. III; Schwartz, S.R.

    1975-09-01

    Forty-nine citations are included most of which deal with geothermal subsidence. Other citations deal wit